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Abstract

Learning-Based Procedural Content Generation
Jonathan Roberts

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2014

Procedural Content Generation (PCG) has become one of the hottest topics in

Computational Intelligence and Artificial Intelligence (AI) game research in the

past few years. PCG is the process of automatically creating content for video

games, rather by hand, and can offer great benefits for video games companies by

helping to bring costs down and quality up. By guiding the process with AI it can

be enhanced further and even be made to personalize content for target players.

Among the current research into PCG, search-based approaches overwhelmingly

dominate. While search-based algorithms have been shown to have great promise

and produce several success stories there are a number of open challenges remain-

ing. In this thesis, we present the Learning-Based Procedural Content Generation

(LBPCG) framework, which is an alternative, novel approach designed to address

some of these challenges. The major difference between the LBPCG framework

and contemporary approaches is that the LBPCG is designed to learn about the

problem space, freeing itself from the necessity for hard-coded information by the

game developers. In this thesis we apply the LBPCG to a concrete example, the

classic first-person shooter Quake, and present results showing the potential of

the framework in generating quality content.
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Chapter 1

Introduction

In this thesis, we introduce a new framework for Procedural Content Generation

(PCG) in video games. In Section 1.1 we will introduce the context and moti-

vation of this work, in Section 1.2 we will state the contributions, in Section 1.3

we will give the structure for this document and in Section 1.5 we will provide

mathematical notation that is used in subsequent sections.

1.1 Context and Motivation

The video games industry originally catered to a relatively small hobbyist crowd

and has drastically grown into a global phenomenon since. The estimated global

revenue for the video games industry was $60.4 billion in 2009, which is expected

to rise to $70.1 billion in 2015 [57]. The video games industry has already sur-

passed the size of the movie industry [85]. Increases in computational power and

the wide-spread availability of high-end graphics hardware have resulted in a de-

mand for video games with much deeper game-play and realistic graphics. This

in turn has increased the complexity of game development. Many early games

such as Space Invaders (1978), Pacman (1980) and Pong (1972) were constructed

using relatively basic game worlds consisting of a finite state-space of possible

movements. 2D sprites were used for graphical representation and AI was hard

coded to control enemy behaviour. In contrast, modern video games such as

Grand Theft Auto V (2013), Just Cause 2 (2010) and Skyrim (2011) consist of

large continuous 3D worlds with cutting edge rendering techniques, advanced

physics engines and increasingly life-like AI. Figure 1.1, Figure 1.2, Figure 1.3,

Figure 1.4 and Figure 1.5 show the progress of games since the 1970s. Large sums

14



1.1. CONTEXT AND MOTIVATION 15

Figure 1.1: Typical 1970s game: Pong (1972).

Figure 1.2: Typical 1980s game: Treasure Island Dizzy (1988).

of money and personnel are required for the development of new games and it is

estimated that only 20% of games that enter production turn a profit [63]. This

means that while video games development can be very lucrative, it is also highly

risky. As such, anything that can assist the games development process, be it a

new high-level work-flow or a new software tool, is of high value.

Most cutting edge video games are driven by a game engine written by game

programmers, usually in an object orientated language such as C++. Most games

development companies don’t create their own game engines, rather they pay a

license fee for an existing commercial game engine and modify it to suit their

own needs. Example game engines are Source, Unreal, CryEngine and Unity.

The engine loads and interacts with game content, which is created by artists

and game designers. Artists have the job of producing art assets, and examples
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Figure 1.3: Typical 1990s game: Mr Nutz (1993).

Figure 1.4: Typical 2000s game: Oblivion (2006).
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Figure 1.5: A recent game: Skyrim (2011).

include: (a) 3D meshes representing objects such as weapons, vehicles and crea-

tures and structure of the world such as terrain and buildings, (b) animations for

characters, (c) sound effects and music and (d) particle effects representing events

such as explosions, dust clouds and magical spells. Most game engines come with

high-level tools that allow for the creation of content without any programming

knowledge.

Game designers specify and implement the game-play features of the game.

They are responsible for describing the purpose of the game, how the player

interacts with it and tuning its level of challenge. They construct the game world

by placing art assets and design the storyline and challenges that need to be

overcome by the player. It is also common for game designers to construct the AI

for non-player characters (NPC) in the game, although this is sometimes a job

performed alongside or solely by the game programmers. Games companies also

employ a number of internal testers that continually test a game as it proceeds

through the production process. It is becoming increasingly common, especially

in multi-player online games, for companies to utilize open beta tests, which allow

members of the public to test the game before release. These members of the

public, known as beta testers, provide feedback and bug reports for the developers.

Throughout this thesis, game content will be terminology used to denote both

art assets and game-play features. Every game has unique requirements on con-

tent, for example, a space exploration game requires ship models, particle effects

and sound, but may not necessarily require character animations or buildings.

The creation of game content by humans is both costly and time consuming as
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it requires a diverse range of personnel such as software engineers, sound techni-

cians, producers, concept artists and 3D modellers. Artists usually make use of

model and animation software such as 3D Studio Max and Maya.

Procedural Content Generation (PCG) is the process of constructing video

game content using algorithms, as opposed to generating content by hand. PCG is

not restricted to creating content before a game released, it can also be used after

a game has been shipped to provide players with a unlimited supply of content.

While it has been argued that PCG has a key role to play in the video game

content creation pipeline in the future, PCG is not an easy task to perform [18].

Unconstrained PCG can result in undesirable results that are neither playable

nor satisfying for the user. An article by Joe Ludwig of Flying Lab Software

[47] discusses some of the pitfalls they encountered while attempting to integrate

PCG into Pirates of the Burning Sea (2008).

Machine learning is a field that constructs algorithms that have the ability

to learn on their own with limited human interaction. For example, rather than

programming a robot to navigate an environment, one can instead use a re-

enforcement learning algorithm, such that the robot would learn behaviour by

being rewarded and penalized by a human trainer. The most important feature of

a machine learning algorithm is that it has the ability to solve problems beyond

those that it has been presented with during training. As with most traditional

algorithmic approaches, existing PCG methods can be viewed as constrained as

they only operate within the bounds a human defines. As such, machine learning

is something that, theoretically, can act as a controller for a PCG algorithm

allowing it to produce unexpected but desirable game content

1.2 Contributions

In this thesis, our main contributions are summarized as follows:

1. We propose a novel framework for PCG in video games, termed the Learning-

Based Procedural Content Generation (LBPCG) framework, which is data-

driven in nature and aims to overcome weaknesses in existing PCG tech-

niques.

2. We develop enabling techniques to support the proposed LBPCG frame-

work.
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3. For a proof of concept, we apply the LBPCG framework to the classic

first-person shooter game, Quake, leading to a prototype that verifies high

quality content is produced, based on our experiments.

1.3 Thesis structure

This thesis is organized as follows. In Chapter 2 we introduce basic Machine

Learning techniques that will be critical to the rest of this thesis. In Chapter 3 we

will describe basic video games concepts, such as categorization and description

and then move on to review cutting edge techniques in player modelling and

PCG, critically analysing the flaws in the current approaches. In Chapter 4 we

introduce the LBPCG framework, covering the justification for its approach and

the enabling techniques that are used. In Chapter 5 we detail how the LBPCG was

applied to the video game Quake, using the level generator OBLIGE and provide

results showing its success. Finally, in Chapter 6 we conclude by summarizing

the contributions of this thesis and further work that could be done in the future.

1.4 Glossary

The following table gives a glossary of terminology used throughout this thesis.

Term Description

Active Learning A learning algorithm that interactively queries the user

to gain knowledge of the problem domain.

Alpha (Sensitivity) Rate at which positive examples are identified as such.

Artificial Intelligence (AI) The field of creating human-like intelligence using com-

puters.

Artificial Neural Network

(ANN)

A form of machine learning based on creating models

using brain-like neuron components.

Balanced Model A Model used to evaluate the LBPCG which selects

equal amounts of games from each category.

Beta (Specificity) Rate at which negative examples are identified as such.

Beta Test A phase of game development when the product is given

to testers for evaluation.

Continued on next page
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Table 1.1 – continued from previous page

Term Description

Category A class that content can be mapped to.

CATEGORIZE State A state the IP Model can enter such that it attempts to

identify the player with a category of content.

Cellular Automata A PCG method based on manipulating grids of cells.

Classifier Model A model that, when presented with an input value, pre-

dicts its class.

Content An entity that can be loaded into a video game and

experienced by the player.

Content Categorization

(CC) model

A component of the LBPCG that maps a Content De-

scription Object to a Category.

Content Description Object An abstract representation of content which can be

passed into a Content Generator producing content.

Content Generator Software that receives a Content Description Object and

produces content.

Content Space The space of all possible content for a Content Genera-

tor.

(Shannon) Entropy The measure of information contained in a message.

Decision Tree A procedural structure where each node represents a

question and each sub-node represents the path that

should be followed based on the response to the ques-

tion.

Ensemble A learning algorithm that makes use of multiple weak

models.

Expectation Maximization

(EM)

An iterative machine learning algorithm that optimizes

it parameters based on estimated values for hidden vari-

ables.

Experience-Driven PCG

(EDPCG)

A framework for PCG with emphasis placed on optimiz-

ing the experience of the player.

Evolutionary Algorithms

(EA)

Optimization algorithm that uses the principles of evo-

lution and manipulates the problem variables directly.

Continued on next page
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Table 1.1 – continued from previous page

Term Description

First-person Shooter (FPS) A type of game controlled in first-person view where the

player fights NPCs or other players, typically with guns.

Fractal Algorithm A PCG algorithm based on the principle that recursively

smaller parts of the content being generated are related

in structure to the content as a whole.

Game When used in terms of the Quake-LBPCG, a game is

a level that be generated a played in Quake i.e. a type

of content. In more general usage, “game” could also

refer to “video game”, i.e. software that be loaded onto

a computer and played.

Game Description Lan-

guage (GDL)

A language that be used to describe a video game.

General Game Playing

(GGP)

The field of constructing agents that are designed to play

multiple games, usually described using a GDL.

General Player Experience

(GPE) model

A component of the LBPCG that captures public opin-

ion on a fixed set of games.

GENERALIZE State A state that the IP Model can enter wherein it generates

non-personalized content.

Genetic Algorithm (GA) Optimization algorithm that uses the principles of evo-

lution by manipulates bit string representations of the

problem.

Genetic Programming (GP) Algorithm that uses the principles of evolution and

manipulates parse trees representing programming lan-

guages.

Individual Preference (IP)

model

A component of the LBPCG framework that attempts

to personalize content for a target player by determining

their categorical preference.

Initial Content Quality

(ICQ) model

A component of the LBPCG framework that filters un-

acceptable content.

k-means/k-medoids Two algorithms that look for clusters of points in data

sets.

Continued on next page
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Table 1.1 – continued from previous page

Term Description

k-Nearest Neighbour

(KNN)

A classifier that operates by looking for the closest

known example to an input point.

Learning-Based PCG

(LBPCG)

A data-driven PCG framework that learns how to cat-

egorize content and match target players to content in-

teractively.

Machine Learning The field of constructing algorithms that have the ability

to learn on their own with limited human interaction.

Multi-Layer Perceptron

(MLP)

An ANN with multiple hidden layers.

Non-player character

(NPC)

A computer controlled character in a game.

OBLIGE An open source Content Generator for the FPS game

Quake.

Perlin Noise Function A function that attempts to mimic the patterns experi-

enced in nature.

Player Experience Mod-

elling (PEM)

The act of modelling the player’s experience as a func-

tion of game content and the player’s playing style [90].

Principle Components

Analysis (PCA)

A method that identifies patterns in high-dimensional

data and facilitates the projection of data to a lower

dimension.

PRODUCE state A state the IP Model can enter wherein it produces con-

tent from a specific category for the target player.

Play-log A vector summarizing the events that occurred when

player experienced an item of content.

Play-log Driven Categoriza-

tion (PDC) model

A component of the LBPCG that identifies whether a

player had fun or not with an item of content based on

a play-log.

Procedural Content Gener-

ation (PCG)

The automated generation of content for video games.

QRACK A fork of Quake with extra graphics effects, which we

use on Microsoft Windows.

Continued on next page
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Table 1.1 – continued from previous page

Term Description

Quake An open source FPS game.

QuakeSpasm A fork of Quake, which we use on Linux.

Random Forest A classifier that uses an ensemble of decision trees.

Random Model A Model used to evaluate the LBPCG which selects

completely random games from the Content Space.

Regression Model A prediction model that outputs a continuous or ordered

whole value.

Search-Based PCG

(SBPCG)

A family of PCG algorithms, with the general approach

being to generate and then evaluate content.

Single-Layer Perceptron

(SLP)

An ANN with a single hidden layer.

Support Vector Machine

(SVM)

A classification/regression model that solves problems

by forming a hyper-plane in the input space separating

the training examples into their respective classes.

t-Distributed Stochastic

Neighbour Embedding

(t-SNE)

A state-of-the-art dimensionality reduction algorithm.

1.5 Nomenclature

Table 1.2 lists the mathematical notation used in Chapter 4 and Chapter 5 where

we formally introduce the LBPCG and the test implementation for Quake.
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D The number of parameters in the content description vector
G The content space
ΦICQ ICQ model
TICQ Validation set for the ICQ Model
Fi Content feature i
F The set of all content features
ΦCC CC model

C The set of all categories (∪|F|i=1Fi).
TCC CC Model validation set
Ga Acceptable content in G
ΦGPE The GPE model
GGPE Content chosen to give to the beta-testers during public test phase
P The total number of beta-testers in the public test stage

y
(p)
n Feedback received from beta-tester p for content GnGPE

α(p),β(p) Sensitivity and specificity for beta-tester p
ŷn The predicted quality of GnGPE

L Space of all play-logs
ΦPDC The PDC model
O Total number of play-logs available for training the PDC model
DPDC Training set for PDC model
M Number of weak learners used for PDC ensemble
Dm

PDC Training set for weaker learner m in PDC ensemble

Table 1.2: Mathematical Notation.



Chapter 2

Machine Learning

Machine learning is the development of intelligent algorithms that learn from

data and then have the ability to generalize, that is, provide predictions on data

that hasn’t been seen before. In Chapter 3 we will review many papers which

make use of machine learning for the purposes of procedural content generation,

and indeed our own framework described in Chapter 4 makes extensive use of it.

As such we will provide a review of the relevant literature in this chapter.

An example problem that machine learning can solve is hand-written charac-

ter recognition. People write letters in a variety of ways, even though the core

structure of each letter is the same. Machine learning algorithms could be de-

ployed in such a situation by training them on a number of available examples. If

sufficient training data has been provided, then the algorithm should be able to

accurately predict what letter is represented in examples it has not seen before.

There are a variety of categories of machine learning algorithm that are used

in the PCG literature and that we make use of in the LBPCG framework. In

this section we will review them. In Section 2.3, we will describe supervised

algorithms that learn from data that has been labelled. In Section 2.4 we will

review unsupervised algorithms, such as clustering, which learn from data in the

absence of labels. In Section 2.5 we will look at evolutionary algorithms and finally

in Section 2.6 we will briefly review crowd sourcing-related machine learning

algorithms.

Further information on the algorithms covered in this section can be found in

most machine learning books [6] [53].

25
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2.1 Fundamentals

From a Bayesian standpoint, Machine Learning algorithms are governed by the

laws of probability and statistics. This is a very powerful abstraction as it al-

lows for the analysis and comparison of algorithms in a theoretical manner. This

section will introduce the main elements of the theoretical Bayesian view. The

probabilistic features of particular algorithms will be covered as they are intro-

duced in later sections.

A random variable X is the result of an observation. The value that a ran-

dom variable takes is determined by a probability distribution. The notation

Pr(X = v) denotes the probability that the variable X will take the value

v. A discrete random variable is one which can take a finite number of val-

ues i.e. labels. The probability distribution for discrete random variable X is

characterized by a probability mass function of the form P (X). In this case

Pr(X = v) = P (X = v). A continuous random variable Y is one that can take

on an infinite number of values. It is characterized by a probability density func-

tion of the form p(Y ). The sum of the probability of all values in the distribution

sums to one i.e.
∑

v∈V als(Y ) p(v) = 1 and the probability for any specific value is

zero i.e. ∀v∈V als(Y )p(Y = v) = 0. The probability density function can be used to

find the probability of a range of values by taking the integral between the two

endpoints of the range as such:

Pr(Y ∈ [a, b]) =

∫ b

a

p(X)dx

Two random variables X and Y are said to be conditionally independent

if Pr(X|Y ) = Pr(X) and Pr(Y |X) = Pr(Y ). X is said to be conditionally

independent of Y given Z if Pr(X|Y, Z) = Pr(X|Z). This can be generalized by

saying that X is conditionally independent of a set of variables given another set

of variables i.e. Pr(X|Y1, ...Yn, Z1, ...Zn) = Pr(X|Z1, ..., Zn).

In general terms, one can view the goal of machine learning to be to find the

highest probability hypothesis h from a set of hypotheses H given observed data

D. The prior probability that a hypothesis is true, Pr(h), reflects our certainty

that h is the correct hypothesis before any data is observed. In formal terms, we

seek h ∈ H that maximises the posterior probability Pr(h|D). We call this hy-

pothesis the maximum a posteriori hypothesis. A maximum likelihood hypothesis

is that which maximises Pr(D|h). Bayes Theorem breaks down Pr(h|D) in the
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following manner:

Pr(h|D) =
Pr(D|h)Pr(h)

Pr(D)

If the prior probability of all hypotheses is uniform, then Bayes theorem states

that the maximum a posteriori hypothesis is the maximum likelihood hypothesis.

When attempting to find a maximum likelihood hypothesis, it is likely that

many small floating point values will be multiplied with each other. This means

that values may be produced that cannot be handled by a computer. As such,

many algorithms instead work with the log-likelihood, which is defined as ln(Pr(D|h)).

If we are optimising the log-likelihood of a hypothesis then we are also optimis-

ing the likelihood of the hypothesis, since there is a monotonic relationship be-

tween a number and its log. Rather than multiplying probabilities e.g.Pr(a) =

Pr(b) ∗ Pr(c), we instead add them as such ln(Pr(a)) = ln(Pr(b)) + ln(Pr(c)).

2.2 Classification and regression

Classification is the act of identifying members of a set of examples with one of a

discrete set of categories. For example, given a vector of parameters describing an

applicants previous credit history, a loan company may want to map this into one

of two classes, indicating whether the applicant is reliable or not. More formally,

a classification problem involves determining a function φ : A → B, where A is

the set of all possible examples and B is the set of classes.

Some types of classifier that we will later describe not only have the ability to

map an example to a category, but can also indicate the posterior probability of it

lying in the category. For example, a classifier φ may indicate that input vector

v has label x, with probability p. If the problem is binary, then the probability

according to φ that v belongs to the opposing class to x is 1− p. The probability

can be used to indicate a level of certainty in the classifiers decision. A binary

classifier that indicates the label for an input vector v resides in class x with

probability 0.55, clearly isn’t as confident in its decision as if the probability

was 0.95. In this thesis we formulate this into a confidence score. In the binary

classification example, we can say that given a probability p, the confidence of

the classifier is |p− (1− p)|. If p = 1, then the confidence is 1, whereas if p = 0.5,

then the confidence is 0.0. In binary classification, a class boundary is a threshold

that determines what class a particular value belongs to i.e. if the value is below
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the threshold then it belongs to the first class and if it is above it then it belongs

to the second class. In binary classification it is possible to use the posterior

probability as a boundary. Suppose we are constructing a classifier φ : A → B,

where A is the set of all possible examples and B is the binary class set {c1, c2}.
Also suppose that p(a ∈ A, b ∈ B) gives the conditional probability, according

to φ that a belongs to class b. One can assume that if p(a1, b1) > 0.5 then φ is

telling us that a belongs to class b. In this case it is possible to treat the value

0.5 as a type of class boundary. The value of the boundary can be changed to

any particular value we choose, and this may be useful in biasing the classifier

towards one of the two classes, which may potentially increase its accuracy.

In addition to classification problems, regression problems are also encountered

quite frequently in various fields. A regression problem attempts to map an input

vector to a real value. An example regression problem would be where there

exists a function f : A → R, where A is a set of input vectors describing the

various attributes of a day and the range is a temperature in degrees Celsius.

Our objective in this case is to be able to predict what the temperature may be

given previous data acquired in the form of (a ∈ A, b ∈ R).

2.3 Supervised learning algorithms

In this section we will review supervised learning, which includes algorithms that

are trained using a training set of data consisting of ordered pairs of the form

(x, y), where x is an example input and y is the output of a target function

f for it. Once trained, such algorithms are expected to be able to predict the

output of the target function. An example of a supervised learning algorithm

in a video game would be providing a computer chess player with a number of

board configurations and the next move a human player made with the aim of

the algorithm learning how to mimic a particular player.

2.3.1 Assessing accuracy

As discussed, supervised learning algorithms usually train a classification or re-

gression model using a training set, which provides a set of ordered pairs of

example inputs and the desired outputs. After such a model has been trained it

is desirable to get an estimate of how accurate it is likely to be on examples it

hasn’t seen before. One could assess the accuracy on the training set, but this
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isn’t a good approach as it may be the case that the model has over-fitted to

the training set. This means that while it might capable of classifying examples

in the set well it may not be able to generalize beyond them. It is therefore a

good idea to have a separate validation set, which is disjoint from the training

set. It is important that validation sets contain adequate amounts of examples,

either from each class in a classification problem, or from a good range of values

in a regression problem. Failure to do so may result in an unbalanced validation

set, which may negatively affect the accuracy assessment. For example, having

1 sample from class A and 99 samples from class B in a binary classification

problem will not really allow us to assess the accuracy of the model for class A.

One technique for constructing validation sets is n-fold cross-validation. In n-fold

cross-validation we assume the existence of a set of labelled instances. This set

is divided into n disjoint subsets. We then choose n − 1 of these subsets for

training the model, and then use the remaining 1 for validation. The process can

be repeated by selecting different subsets to be used for validation.

In this section we will constrain ourselves to discussing the error rates of

classification models only, which is the main type of model we will use in this

thesis. Information on calculating error rates for regression models can be found

in most machine learning hand-books such as [53].

In a binary classification problem, we can determine the error rate of a model

on the validation set in a straightforward manner. This is simply the total number

of examples the model classified incorrectly divided by the total number of exam-

ples. This, however, is quite a basic measure and it better to know the accuracy

of the model individually on each class. A classifier that is 100% successfully at

identifying members of class A, and 0% successful at identifying examples from

class B may still have quite a respectable error rate depending on the distribution

of the validation set, even though it is clearly not useful.

If in a binary classification problem we have two classes (i.e. a positive and

negative class). We define a true positive as an positive example that was cor-

rectly identified and a true negative as a negative example that was correctly

identified. We define false positive and false negative as incorrectly identified

negative and positive examples, respectively. Sensitivity is defined as the number

of true positives divided by the total number of positive examples. The specificity

is the number of true negatives divided by the total number of negative examples.

In some problems the sensitivity may be more important than the specificity or
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vice-versa. For example, it is more important to identify that patients have a

disease, even if we are sometimes wrong, rather than assume they are not when

they do in fact have the disease.

It is often useful to analyse validation results using two scores: (a) precision,

which is equivalent to the sensitivity, and (b) recall, which is defined as tp/(tp+

fn), where tp is the number of true positives and fn is the number of false

negatives. A high precision indicates that the classifier returns mostly correct

results, i.e. the examples it classifies as positive that are actually positive. A

high recall indicates that the classifier returned most of the results it needed to.

The f-measure is defined as the harmonic mean of the precision and recall, more

specifically: 2∗ ((p∗ r)/(p+ r)), where p and r are the precision and recall scores,

respectively. The harmonic mean is used as it gives less significance to high-value

outliers.

Several of the concepts for binary classification that we have discussed can

be extended to multi-class classification in a straightforward manner, such as the

overall and per-class error rates. In addition, it is often useful to construct a

so-called confusion matrix, which has dimension n ∗ n, where n is the number

of classes. The element at row i and column j tells us the number of examples

of class i that were classified as j. If our classifier is 100% accurate, then only

the diagonal values will be non-zero. If our classes are ordinal (i.e. arranged in

an order), then visualizing the matrix allows us to see clearly whether incorrect

classifications are close to the desired class or not.

It is very common for researchers in the field of machine learning to compare

their algorithms against competing algorithms on public data sets. One approach

to this would be to calculate the average error rate of each algorithm on each

data set and declare the winner to be the one with the lowest error rate. Demšar

is very critical of this approach in a paper in which he examines submissions

to the Internal Conference on Machine Learning (ICML) [14]. He states that

one reason why this isn’t a good idea is that the error rates between data sets

may simply not be comparable with each other. Secondly, he states that taking

the average may cover up extremely poor performance on a few data sets i.e.

outliers. The standard approach to comparing results in scientific experiments

is to use a statistical hypothesis test. The aim of such a test is to establish that

the results seen are statistically significant in that they weren’t the result of

random chance, or in other words, to reject the null-hypothesis that states there
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is no relationship between two measured phenomena. If the phenomena under

scrutiny are the results from classifiers on a number of data sets, then this means

that the classifiers perform to the same accuracy, or that more information is

needed before a conclusion can be drawn.

One of the most common statistical tests is the paired student’s t-test (or

“t-test” for short). Demšar [14] states three criticisms for using the student’s

t-test for machine learning. Firstly, the test assumes that results on the different

data sets are commensurate, in that the results have similar meaning on each

set. This is also a problem that straight comparison of the average error has.

Secondly, if the number of data sets isn’t large enough, then the test requires

that the data conforms to a normal distribution. In the case of the comparison

of machine learning algorithms, this would mean that the reported accuracy for

each model is distributed normally, something which Demšar claims in general

cannot be guaranteed. We note that tests such as Kolmogorov-Smirnoff [32]

and Shapiro-Wilk [71] can be used for testing whether a data set conforms to

the normal distribution. The final criticism of the t-test is that may not be

able to handle outliers correctly. As a result of these weaknesses with the t-

test, Demšar [14] recommends that the Wilcoxon signed-ranks test (or “Wilcoxon

test” for short) is used instead. Demšar argues that the Wilcoxon test ignores

the magnitude of values when comparing error rates, which helps to alleviate

the problem of commensurability between data sets, and it does not assume that

the data conforms to a normal distribution. In addition, due to the ranking

mechanism that it is based on, outliers have less of an effect that on the t-test.

He does, however, note that the t-test can under certain circumstances be more

powerful than the Wilcoxon test.

The Wilcoxon and t-test are useful when comparing the results from two al-

gorithms across multiple data sets, however, in the later experiments performed

in this thesis we will be comparing results from three different algorithms. In

his paper on statistical testing for machine learning, Demšar examines two tests,

namely ANOVA and the Friedman test. Demšar criticises ANOVA in a similar

manner to the t-test, in that it assumes the data is drawn from a normal distri-

bution. He also criticises ANOVA because it requires that a spherecity condition

is met, which places a limitations on the variances between the results of tests.

For these reasons, Demšar recommends the Friedman test instead, which avoids

these issues.
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The following definition of Friedman Test is based on Demšar’s paper [14] and

the book “Handbook of parametric and non-parametric statistical procedures”

[72]. Let us assume we have k classifiers and want to determine if there is a

significant difference in performance between each of k on a data sets D. Let rji
denote the rank of classifier j on data set i, ordered by descending accuracy. Let

Rj = 1
N

Σir
j
i denote the average rank of algorithm j. The Friedman statistic is

calculated as follows [72]:

X2
F =

12

Nk(k + 1)
[Σk

j=1(ΣRj)
2]− 3n(k + 1)

If the null-hypothesis holds then each Rj should be statistically similar [14].

This can be tested by checking whether the Friedman statistic is less than a

critical chi-square value [72]. If the test rejects the null-hypothesis, then several

post-hoc tests, such as the Nemenyi test and Bonferroni-Dunn test, can be used

to detect pair-wise statistical differences between each classifier.

2.3.2 Artificial Neural Networks

Artificial Neural Networks (ANN) [6] [53] were originally created with the idea

of mimicking the biological processes of the brain. The structure of an ANN

consists of a number of layers of neurons connected via weighted synapses. ANN

are suitable for learning solutions to problems where the training data may be

quite noisy, such as input sensors for real-world problems. The main issues with

ANN are that they usually take a long time to train and that they often need to

be regarded as black boxes as it is difficult to gain any information as to how a

problem was solved by them. However, ANN are widely used in the video game

research literature.

Each neuron in an ANN applies weights to its inputs and passes the sum

through an activation function. Single Layer Perceptrons (SLP) are ANN con-

sisting of a single layer of neurons with an output that thresholds its inputs into

a boolean value (0 or 1). An SLP can represent linearly separable classification

problems only, such as AND, OR, NAND and NOR logic gates.

A more capable type of ANN is the Multi-Layer Perceptron (MLP), which

has multiple hidden layers consisting of one or more neurons. Unlike the SLP, it

has the ability to solve non-linearly separable problems. It is important that the

functions used for activation are differentiable as this enables the influence of each
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weight on the error produced by activation function to be calculated. The popular

back-propagation algorithm can then be used, which in broad terms, calculates

the error of the network at the activation function and moves backwards through

the nodes calculating to what proportion each node and each node’s weights were

responsible for the error, and adjusting them as appropriate.

Another type of network that is used for visualization is Kohonen’s Self Orga-

nizing Map (SOM). A SOM is a ANN consisting of a number of layers of neurons.

Each neuron has a vector of weights equal to the dimensions of the input data.

A SOM can be thought of as a method for visualizing a multi-dimensional data

set in a lower dimension. It is trained by presenting a sequence of data vectors

to it. The neuron in the network with the most similar weight vector to the data

vector has its weight vector modified to resemble the data vector more closely.

This adjustment is also applied to adjacent neurons. As such, the SOM learns

the topological structure of the input data set.

2.3.3 Ensembles

An ensemble [39] is a supervised learning algorithm that makes use of multiple

models. The ensemble makes an overall prediction based on the individual predic-

tions of each model. Ensembles are constructed such that each model is accurate,

in that they have better than random prediction, and the models are diverse, in

that they have a different error rate from each other on new data. There are a

number of arguments in favour of ensembles. Statistically the ensemble can be

seen as averaging the prediction of the individual models, making it more robust

to error, provided the models have an appropriate minimum error rate. Indi-

vidual models in the ensemble may be incapable of representing the true target

function i.e. they may be stuck at local optima. As such, by combining multiple

models seeded from different points an ensemble can produce a more accurate

representation of the target function.

Bagging [6] is an ensemble method that constructs each of the models in the

ensemble by randomly training sets for each based on the original training data.

The selection function allows multiple occurrences of training examples to appear

in each set. This means that some models are trained with a greater emphasis

on certain training examples, which occur more than once, and less emphasis on

other examples, which don’t occur often or at all. Implicitly this means that

some models are better at predicting certain training examples. AdaBoost is a
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classifier ensemble algorithm that is similar to bagging in that it manipulates

the training sets. It is iterative in that it builds each classifier in the ensemble

in sequence based on the result of the previous iteration. The process starts by

constructing a classifier based on the training set. Each training example that is

incorrectly classified by the classifier is weighted higher, such that more emphasis

is placed upon it. The weighted training set is used to train the next classifier

and the process repeats. After all required classifiers have been constructed, each

of them is weighted based on its success at classifying the original training set.

The ensemble operates by querying each classifier and weighting its prediction.

2.3.4 Support Vector Machines

A Support Vector Machine (SVM) [6] is a model that solves classification problems

by forming a hyperplane in the input space separating the training examples into

their respective classes. A Support Vector is a sample that when removed from

the training set results in a different hyper-plane. A margin in this context

refers to the distance the hyperplane has from any two selected points of differing

class in the input space. The goal is to form a hyper-plane that maximises the

minimum margin between points of differing class, as this increases its accuracy.

The reasons for this are that a hyperplane with a high margin on the training

data will tend to separate the training examples better and examples that it has

not seen are likely to be closer to the space of training examples of the same class.

The problem of classification cannot usually be solved using linear classifi-

cation. Often the two classes cannot be separated using a hyperplane in the

input space. As such, kernel methods are commonly used to translate the in-

put data into a higher dimension, while maintaining the distance relationship

between input samples in the higher dimension. It is in these higher dimensions

that hyperplanes can be found to separate the data. Many different variations of

kernels exist, which are suitable for different types of data.

In the subsequent chapters of this thesis we will make use of SVMs, with

the extra requirement that they output posterior probabilities along with clas-

sification labels. However, SVMs do not output such a probability by default.

Fortunately, the LIBSVM [12] library, which is a popular SVM implementation

for C++, adds support for this. In a binary classification problem consisting of

two classes C1 and C2 the posterior probability for C1 can be written as such,

where D is the input vector [6]:
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Pr(C1|D) =
Pr(D|C1)Pr(C1)

Pr(D|C1)Pr(C1) + Pr(D|C2)Pr(C2)
=

1

1 + exp(ln(Pr(D|C1)Pr(C1)
Pr(D|C2Pr(C2)

The function present in the derived equation, σX = 1
1+exp(−a) , is called the

a logistic sigmoid function. Chang and Lin provide an explanation of how they

implemented support for LIBSVM [11]. Their work is based on an approach sug-

gested by Platt [62], which proposes that the posterior probability of an SVM

can be approximated by a sigmoid function, and that the best fitting parameters

for this can be determined by solving a regularized maximum likelihood prob-

lem. Lin et al go on to suggest several improvements that they have made to

avoid several numerical difficulties. For pseudo-code detailing how the LIBSVM

extension was implemented and further details please see [44].

2.3.5 Decision Trees

A Decision Tree [53] is a procedural structure where each node represents a ques-

tion and each sub-node represents the path that should be followed based on what

the response to the question is. The leaves of the tree represent the final decision

of the process. Decision Trees can be used for both regression and classification

problems. Given an input, the evaluation begins at the root node of the tree and

progresses downwards on a path determined by what conditions are met. Deci-

sion Trees aren’t specific to machine learning and are common in many different

fields.

Decision Tree Learning is the process of constructing a decision tree by learn-

ing about the problem. Let D be a classification data set, with set of classes C

and attributes A. Let V (A) give all the values for the attribute A. The goal

of Decision Tree Learning is to construct a Decision Tree, which takes an input

I composed of values for each attribute. At each node the Decision Tree asks a

question about one of the attribute values in I. The leaf nodes provides an answer

in the form of a class c ∈ C to the query I. There are many different algorithms

for constructing trees, each with their own advantages. As an example, we will

demonstrate the basic operation of the ID3 algorithm for classification tasks.

Entropy is the measure of uncertainty of a random variable or set of data.

The entropy for D′ ⊂ D is defined as: Entropy(D′) = −
∑

c∈C(p(c)log2p(c),

where p(c) represents the probability of class c in D′ i.e. how often it occurs. For
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v ∈ V alues(a ∈ A), let D′v represent the number of examples in D′ where the

value for attribute a is v. For Decision Tree Learning, we define the information

gain for an attribute a ∈ A with respect to D′ as:

InfoGain(D′, a) = Entropy(S)−
∑

v∈V alues(a)

((|Sv|/|S|) ∗ Entropy(Sv))

This metric tells us the reduction in entropy (i.e. decrease in uncertainty) that

would be achieved if we were to know the value of a particular attribute. The ID3

algorithm is designed to construct a tree where at each node a question is asked

about the attribute with the highest information to be gained. The recursive ID3

algorithm is described in Algorithm 2.1 and proceeds with D′ = D in the first

iteration.

Algorithm 2.1. ID3 algorithm.

1: Purpose: To train a decision tree capable mapping input vectors to a class.
2: Input: (a) A training set D′ of input values along with classification labels,

(b) a set of attributes A of which each input vector is made up of.
3: Output: A decision tree.
4: if All examples in D′ are of class c. then
5: Create a leaf node with classification c.
6: else
7: if |D′| = 0 then
8: Create a leaf node with the most popular class c.
9: else
10: For the current data set D′, find the attribute a ∈ A with the highest

information gain.
11: Set the current node to ask the question “What is the value of a?”.
12: for all v ∈ V alues(a) do
13: Create a sub-tree for the response to the question as v
14: Recursively go to (1) with D′ = Dv to build the sub-tree.
15: end for
16: end if
17: end if
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2.3.6 Random Forests

Random Forests [8] are a machine learning algorithm combining the techniques

of decision trees and ensembles and have several advantages that make them par-

ticularly appealing, including the ability to report a so-called out-of-bag error,

which is similar to a cross-validation error, and the ability to report what the

most influential features are in the decision making process i.e. a form of fea-

ture selection. Random Forests can be viewed as a framework of sorts, where

the particular implementation details of the algorithm can be swapped out for

alternatives. The central concept is that a number of decision trees are trained

on subsets of the training data and when new data is presented, each decision

tree makes a decision and the mode is taken as the output classification. One

approach is to first choose a number of trees, e.g. 5. For each tree, a percentage

of the training data is chosen as the training set and the rest as the validation set.

The tree is then trained on the training set, and then tested on the validation

set producing the out-of-bag error, which is an estimate of the accuracy of the

tree. It is also possible to rank the features of a data set based on importance,

which involves calculating the out-of-bag error after training the random forest

and then comparing it against the out-of-bag error after randomly permuting the

values of each feature in turn in the training set. Random forests can be extended

to output a probability value for a classification by calculating the rate at which

all trees in the ensemble agree with the classification. More formally, let there

exist a random forest consisting of n trees and a function ft(x, y) which gives the

value 1 if the prediction of tree t for input x it y, or 0 otherwise. We can define a

probability function p(x, y) that gives the probability that example x has label y

according to r as follows: p(x, y) = (Σtft(x, y))/n. This is also the method that

the software library librf [42] uses, which we will make use of later in this thesis.

2.3.7 Expectation-maximization

Expectation Maximisation (EM) [53] is an algorithm designed to find the maxi-

mum likelihood estimates of parameters for a model using a data set where there

are random variables affecting the data that cannot be observed. We assume we

have a complete data set D = {(x0, y0), ..., (xn, yn)} and that there is a set of

parameters θ that influence the data. The set X = {x0, ..., xn} is the incomplete

set. We assume that we have access to X, but not D, and would like to determine
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what both θ and D are. EM is quite elegant in its design, and in high-level terms

it can be described using two steps shown in Algorithm 2.2.

Algorithm 2.2. Expectation Maximization.

1: Purpose: To estimate what the labels for a set of data are along with hidden
parameters influencing them.

2: Input: An incomplete set of data X.
3: Output: (a) An estimation for hidden parameters θ, (b) An estimation of

the complete set of data D.
4: Let θi represent the current estimate of the parameters
5: Assign θ0 randomly
6: Let i = 0
7: E-Step: Given θi, guess what the values for Y = {y0, ..., yn} are as Y ′i .
8: M-Step: Choose θi+1 that maximizes the log-likelihood Pr(Y ′i |X, θi+1)
9: Go to E-step with i = i+ 1

2.3.8 Active learning

Active Learning [66] is a semi-supervised machine learning method which can be

used to build both classification and regression models. The input space for the

problem that active learning tries to solve consists of a large number of unlabelled

samples, which can be selected and then labelled by an oracle. The oracle could be

a human, robot or even an experiment that needs to be performed. It is expected

that the oracle is a limited resource and therefore examples from the search-

space should be chosen in an intelligent manner, as to minimize the burden on

the oracle. The general process for active learning algorithm is to use a strategy

to choose the best members of the input space to label, have the oracle label these

members and then add them as training examples for the model it is attempting

to build. The process then repeats again until a termination condition has been

reached. The process for pool-based active learning is summarized in Figure 2.1,

which is a specific type of active learning that will be explained shortly. Settles

[66] provides an in-depth literature review for active learning. In this section will

summarize the important concepts from this paper and several others.

We have mentioned that the input space consists of a large number of unla-

belled samples, from which the active learning algorithm can choose examples to

be labelled. The manner in which the algorithm is allowed to sample the input

space is very important. It may be that we are restricted in what samples we can

choose as some may only be available at certain times, or there may be some cost
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Figure 2.1: Pool-based Active learning (taken from [66]).

associated with retrieval. We will describe three sampling scenarios as identified

by Settles [66]. In the membership query sampling scenario, the active learning

process can request labels for any member of the input space. The active learner

can synthesize the examples they wish to label, rather than be constrained to

some distribution throughout the space. Settles [66] highlights one potential is-

sue with this form of search if the oracle is a human, in that the learner could

select an example which isn’t particularly well-formed. He provides an example

from Lang and Baum [40], in which the objective was to train a neural network to

recognize hand-written characters. Since the learner was using membership query

synthesis, it had a tendency to produce characters which were a mix of different

letters. This was obviously potentially confusing for the oracles, and had the

potential to train the neural network with invalid data. Stream-based selective

sampling is another sampling scenario. Typically in this scenario the samples are

provided to the learner in a sequence and the learner can choose whether or not

to have the oracle label each sample it presented with. The important distinction

between this and membership query synthesis is that the learner cannot arbitrar-

ily choose samples from the input space, and its choice may be somewhat more

constrained. The final form of sampling scenario is pool-based sampling, which is

the most commonly used. It is also the scenario we will later encounter in the

experiments in this thesis. In this scenario a large pool of samples are available

and the learner may choose any to be labelled. Typically the members of the

pool remain the same.

In the previous paragraph we have discussed the different types of sampling
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ability an active learner may have. However, more important is perhaps the ap-

proach the learner takes in deciding which of the samples it has available to pass

to the oracle for labelling. Settles [66] mentions several types of query strategy,

of which we will describe four. The first strategy is termed uncertainty sampling,

which is the approach we will take later on this thesis to solve several of the

problems we encountered. In uncertainty sampling, the learner chooses the sam-

ples that it is the least sure about. In Section 2.2 we described how some types

of classifier have the ability to output a probability along with any classification

they make. We also described how this can be converted into a confidence value.

One can immediately see that one straightforward approach to uncertainty sam-

pling is to choose samples that the learner assigns the lowest confidence value

to. Another approach is to make use of entropy, as described in Section 2.3.5.

This approach is regarded as being better suited for problems that use multi-label

classifiers. Entropy is a measure of how much information is needed to encoded a

distribution and therefore it can considered to be a measure of uncertainty [66].

For binary classification problems, using the entropy for uncertainty sampling is

equivalent to choosing examples with the lowest confidence [66]. Query by com-

mittee is another query strategy, in which multiple models are trained on the

data. Those points which cause the most disagreement amongst the models are

considered to be the best candidates to be given to the oracle for labelling. One

could perceive of this approach as being useful in the case where the learner being

used does not output probability, making it difficult to use an approach such as

uncertainty sampling. Expected model change is a strategy that chooses to label

points that would have the most effect on the model if the label was known and

in a similar vein expected error reduction is a strategy that chooses points that

are the most likely to reduce the error rate of the resulting model. The latter

strategy can be implemented by estimating what the label is likely to be for the

unlabelled instances in the input space, then determining how much the error is

likely to be reduced on these estimated examples on labelling each member of the

input space.

The query strategies we have mentioned so far have been rather general and

applicable to any type of model. There are, however, specific approaches for

several types of classification and regression model. For example, in their paper

on active learning with SVMs, Tong and Koller [83] describe three approaches:

Simple Margin, MaxMin Margin and MaxRatio Margin, which rely on the internal
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structure of SVMs to determine either how uncertain examples are according to

the model or how much of an effect they would have on the model if they were

labelled.

In the subsequent chapters of this thesis we will make use of pool-based active

learning. As of the submission of this thesis, no researchers have applied active

learning to solve the exact same problems that we attempt to. However, several

researchers have applied techniques in a somewhat similar manner to us. Set-

tles highlights several papers on using active learning for text, image and video

classification, information extraction, and speech recognition [66]. Of these, we

examine a paper by Tong and Koller [83] to give an example of active learning

using pool-based sampling, which is the approach we will later rely upon. In

their paper, they aim to train SVMs to learn how to categorize documents from

the Reuters-21578 data set and another large set constructed from articles in

several newsgroups. They trained 10 different classifiers capable of recognizing

10 different categories on each set i.e. each classifier was binary. The inputs

were word frequency vectors of dimension 10000. All documents had been hand

labelled already, and as such the learning process was simulated by selecting sub-

sets of data sets and removing the labels to form the pools. The authors then

applied active learning using SVMs and three different types of query strategy:

Simple Margin, Ratio and MaxMin. These were contrasted with a query strategy

that selecting examples at random. The objective of their study was to show

that the non-random query strategies performed better, which they did, and also

determine what the best kind of query strategy was. This turned out to be a

trade-off, as Simple Margin generally provided a rough approximation, but was

quicker than the other two. Interestingly, the authors suggested that combining

query strategies to form hybrid strategies may be useful. The pool sizes used in

both experiments were fewer than 1000, which could be criticised as being rather

small. It would be interesting to see how the models would have performed on

larger sets and if the convergence rates would have stayed the same. In terms of

their research, the authors have an advantage in that they have two large data

sets available. This allows them to experiment with different types of algorithm

and find out which is the best. One can question whether their results are gener-

alizable to other problem domain, and this also brings about the question of how

one can properly determine what the best active learning approach is when the

input domain is very large, meaning that it cannot be exhaustively explored.
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Active learning is not without its challenges. It is easy to assume that the

oracle in an active learning approach is noiseless, that is, their feedback can be

trusted entirely and their labels can be treated as a gold standard. However,

this isn’t necessarily the case. It may be that the oracle has limited ability

to classify all member of the problem space or that the label being applied is

actually subjective. Settles [66] highlights several papers that attempt to address

these issues. Potential approaches include averaging out feedback amongst several

experts and also calculating reliability scores for oracles. The solutions using the

latter approach become potentially even more complex when one realizes that an

oracles reliability may shift over time.

2.4 Unsupervised learning algorithms

In this section we will review unsupervised learning methods. These are algo-

rithms that do not require the data to be labelled. Generally algorithms that fall

into this category tell us the structure of the data presented and are useful for

both clustering and visualization.

2.4.1 Dissimilarity measures

In the following sections we will go into detail about several types of clustering

algorithm, which are algorithms based on grouping data using some form of dis-

tance metric. Before doing so, however, we need to specify exactly how a distance

metric between two data items can be established. In this section we will consider

the input to our problem to be a parameter vector consisting of attributes rep-

resenting features of a problem domain. For example, the parameter vector may

represent a patient and each attribute some feature of the patient such as age,

previous illnesses, eye colour and so on. Our objective in this section is, given

two such parameter vectors, to describe how similar they are. The immediate

issue is that the components of the parameter vector could be of different types.

For example, one attribute could be “gender”, which is a binary attribute since

it can take on two values “male” or “female”. We may also have another value

“miles exercised per year”, which is a numeric attribute which may take on a

real or integer value, perhaps from some restricted range of values. It is also con-

ceivable there could be an ordinal attribute called “weight status”, that can take

on four values “underweight”, “healthy”, “overweight” and “obese”. The values



2.4. UNSUPERVISED LEARNING ALGORITHMS 43

have order to them, in each attribute value has a set place amongst the other

values. Finally, we could conceive of another attribute called “favourite colour”,

which can take on one of several values with no particular order, such as “red”,

“blue”, “green” and “orange”.

In this section we restrict ourselves to the case where the parameter vector

has attributes of different types, as this is the more generic case and the one

which is most relevant to the techniques we require later on in this thesis. Our

approach is taken from pages 75-76 of [29]. In our transcription of their approach

we assume that the attributes of each parameter vector are always present, and

therefore define our similarity metric as: (Σp
f=1d

f
ij)/f , where p is the number of

attributes and dfij gives a distance value between parameter vectors i and j for

attribute f . Put in a more verbose manner, the similarity metric tells us the

average distance between each attribute pair in the two parameter vectors. It is

immediately apparent that caution should be taken with the distance function

d, as we have to ensure that no one or more attributes dominate the others due

to the range of values they may take. This is why normalization needs to be

included.

Let xif give the value of attribute f in parameter vector i. For numeric

attributes, we define dfij as |xif − xjf |/rangef . We define rangef as the range of

values that attribute f can take and as such d in this case produces normalized

distances in the range [0, 1]. For both nominal and binary attributes, we define

dfij = 0 if xif = xjf or dfij = 1 otherwise. In other words, if two binary/nominal

attribute values are equal, then there is considered to be no distance between

them, otherwise we consider there to be a distance of 1, regardless of what the

two values actually are, which makes sense as there is no notion of order for

such attributes. For ordinal attributes, however, there is a notion of order and

therefore we can take this into account. We define tif as the translation of nominal

attribute f in parameter vector i. We define it as tif = (rif − 1)/(mf − 1), where

rif gives the rank of attribute f in i and mf gives the total number of attribute

values for attribute f . The rank of an attribute value is considered to be index,

beginning at 1, at which the value occurs in the order of possible values. Once

we have attained tif and tjf for vectors i and j we can treat the problem as we

would a numeric attribute, noting that the denominator is simply 1. Note that

for all definitions of d we have used, the value returned is always in the range

[0, 1], which ensures that no one attribute dominates the others when considering
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distance.

2.4.2 k-means and k-medoids

k-means and k-medoids [6] are two closely related clustering algorithms. Cluster-

ing is useful as it allows us to group points in a data set based on their spatial

distance from each other. We will first introduce k-means, then explain the dif-

ference between it and k-medoids. For any data set D of any dimension, the

k-means algorithm will find a user specified c clusters, defined by a central point

or centroid, and output what cluster each point in the data set is assigned to.

The algorithm is defined Algorithm 2.3.

Algorithm 2.3. k-means.

1: Purpose: To identify clusters in an unlabelled data set.
2: Input: (a) Unlabelled data points, (b) The desired number of clusters to be

identified c
3: Output: A list of centroids and, for each centroid, a list of points in the

unlabelled data set associated with it.
4: Randomly initialize c centroids
5: Assign each data point to the nearest cluster, defined by a centroid
6: If no points were re-assigned, terminate the algorithm
7: Re-calculate the centroid for each cluster by averaging all the other points in

the cluster
8: Goto (2)

The k-medoids algorithm is the same as k-means but an actual point from

each cluster is selected as the centroid, rather than a mean value. The centroid

must be that which minimizes the distance between all other points in the cluster.

Caution must be made when applying such k-means and k-medoids to large data

sets, as calculating distances can be computationally very expensive.

2.4.3 Principal Component Analysis

Principle Components Analysis (PCA) [6] is a method for identifying patterns in

high-dimensional data. It can be used to reduce the dimensionality of data while

minimizing data loss and as such is useful for both compression and visualization.

Throughout the literature related to PCG in games it is directly useful and also

forms the basis of several other machine learning algorithms.
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For a thorough dissemination of PCA, it is necessary to first introduce two

concepts from linear algebra, eigenvectors and eigenvalues. Eigenvectors can

only be found for square matrices, (i.e. those matrices whose dimensions are the

same length) and a non-defective n by n matrix has n eigenvectors of length 1

associated with it, which are all orthogonal. Multiplying a matrix with one of its

eigenvectors result in a scaled instance of the original eigenvector i.e. Me = λe, or

in other words the matrix acts as a transformation on the eigenvector. Eigenvalues

are the λ in the previous formula and tell us the scale of the transformation

that the matrix has on the eigenvector. There are several methods to calculate

eigenvectors/eigenvalues such as a Singular Value Decomposition (SVD).

For an n by m data set D with n examples of m variables, the variance of

a particular variable is the square of the standard deviation of that variable i.e.

for variable j: var(j) =
∑n

i ((Dij −D∗j)2)/(n− 1), where x represents the mean.

The variance is a measure of how much that variable changes throughout the

set. The co-variance is an extension of this concept that tells us how much two

variables vary in relation to each other and is defined as, for variables j and

k: cov(j, k) =
∑n

i ((Dij − D∗j)(Dik − D∗k)/(n − 1). The co-variance matrix is

the square matrix giving the co-variance for each variable i.e. CMij gives the

co-variance of variables i and j. Note that CMii gives the variance for variable i.

The basic idea of PCA is to calculate the eigenvectors and eigenvalues of the

co-variance matrix of the data set. The eigenvectors in this case tell us the general

directions of the data e.g. if the data generally forms a line in Cartesian space with

some deviation from it then we should have one eigenvector in the direction of the

line and then another eigenvector perpendicular to it to represent the deviation.

We then project the data onto the principle eigenvectors. Algorithm 2.4 defines

the steps for PCA reduction.

t-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) [84] is a state-of-the-art

non-linear dimension reduction approach, which can be used for the visualization

of high-dimensionality data. t-SNE calculates the distances between the data

points in the high-dimensional space and uses this to form a probability distribu-

tion representing similarities between them. For points that are close, the proba-

bility is high, whereas for points that are distant, the probability is infinitesimally

small. The Kullback-Leibler divergence between two probability distributions is
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Algorithm 2.4. Principal Component Analysis.

1: Purpose: To reduce the dimensionality of a data set while preserving trends
within it.

2: Input: (a) A set of data points D of a high dimension, (b) the desired
dimensionality, n, which the data should be reduced to

3: Output: (a) Eigenvectors E, (b) Eigenvalues V and (c) a data set Dr of
dimensionality n

4: Let n be the desired reduced dimensionality.
5: Subtract the mean from each dimension of the data set D to form D′.
6: Calculate the covariance matrix C of D′.
7: Calculate the eigenvectors E and eigenvalues V of C.
8: Select n eigenvectors, ranked by V , and put them as columns in E.
9: Let the reduced data set be Dr = ET × (D′)T .

the measure of information lost when the first is used to approximate the sec-

ond. t-SNE constructs a second probability distribution for the lower dimensional

space, representing the distances between points, and attempts to minimize the

Kullback-Leibler divergence between it and the higher dimensional probability

distribution. This produces a lower dimensional representation, based on the

second probability distribution, that preserves relationships from the higher di-

mensional space.

The main advantage of t-SNE over PCA is that t-SNE attempts to find a

non-linear mapping between the high and low dimensional space, whereas PCA

finds linear mappings which means that clusters may not get separated properly

if the problem is non-linear in nature. The disadvantage of t-SNE is that it is

quite costly to execute and is geared towards visualization, rather than being a

general purpose dimensionality reduction technique.

2.5 Evolutionary Algorithms

Evolutionary Algorithms (EA) [53] are an approach to solving optimization prob-

lems whose design is influenced by biological processes. EA generate populations

of solutions and use a fitness function to assess the quality of each member of

the population. The best candidates are “bred” using the biological principles

of recombination and mutation to produce a new population. The design of the

fitness function is important, as a badly posed fitness function would result in

the EA being misguided causing it to optimize solutions that aren’t desirable.
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The processes of recombination, which is the combining of two candidates, and

mutation, which is the random modification of a candidate, also need to be well

designed to make the search progress in a meaningful manner. EA have a long

history and have been given different names by researchers, but in recent years,

there has been a movement to unify them under one banner [36]. Algorithm 2.5

gives the general form of an evolutionary algorithm.

Algorithm 2.5. Evolutionary algorithm.

1: Purpose: To find optimized solutions to a problem using the process of
evolution.

2: Input: (a) A fitness function f that can rate a candidate solution, (b) cross-
over and mutation operators for solutions.

3: Output: A set of solutions to the problem.
4: Create the first generation of candidate solutions G0 randomly
5: Set i = 0
6: while Gi not optimal enough or time constraint not met do
7: Evaluate fitness of each member of Gi using fitness function f
8: Using crossover and mutation, reproduce using fittest members of Gi to

produce a set of offspring O
9: Replace least fit members of Gi with offspring O to produce generation

Gi+1

10: Set i = i+ 1
11: end while

The two most prominent forms of EA used in research literature for PCG

are Generic Algorithms (GA) and Genetic Programming (GP). GA traditionally

operate on genotypes that consist of bit string representations of the actual so-

lutions, also known as phenotypes. In principle, their theory is based on the

Building Block Hypothesis (BBH), which states that solutions are made up of

building blocks that can be recombined into an optimal solution. Both mutation

and recombination are used to produce offspring. The main question when using

a GA is the form that the genotypes take, as different forms of encoding can

completely change the success of the algorithm. It is generally desirable that the

extent of changes in the genotype would have a similar extent of change in the

phenotype, but this can be difficult to achieve without good prior knowledge of

the solution space. GP directly evolve programs and as such the solution space

is represented using parse trees, with operation and value nodes located at the

leaves of the tree.
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Both types of evolution mentioned in this section have very critical configu-

ration parameters that need to be chosen, such as the fitness function, genotype

representation and the recombination and mutation operators. Identifying the

best parameters is usually problem specific. In order to apply EA to PCG, one

has to consider the challenge of parameters selection, and whether the approach

taken is general enough to be applied to other problems or just the current prob-

lem at hand.

EA can be used to both train ANN and modify characteristics of an ANN

to find one appropriate for a particular problem. Yao discusses many of the

techniques that can be used to combine both EA and ANN [91], taking into

account issues such as the permutation problem. The values of the weights in

an ANN can be put under the control of an EA and evolved. This has the

advantage that the activation function of the network need not be differentiable,

since the hypothesis search is based upon the fitness comparison of members

of a population, rather than modification of individual weights based on the

output error of the network. Neuro-evolution also tends to require only sparse

reinforcement from the environment, whereas back-propagation requires a lot of

supervision.

2.6 Crowd Sourcing and Machine Learning

Crowd sourcing is the act of delegating tasks to, often anonymous, members of

the public. Crowd sourcing has been used successfully in commercial applications,

such as “Amazon Mechanical Turk”, which is a website allowing people to assign

tasks, such as labelling, to the public. Of interest to us is the fact that it is

possible to use “the crowd” as experts to train machine learning models. This

has the advantage of providing a large number of people, perhaps with various

levels of expertise, for labelling data and providing feedback. On the other hand,

crowd sourcing brings with it the critical problem of handling unreliable feedback

[75], which may cause harm to the training process. Researchers have attempted

to make the process of crowd sourcing more robust, and learn attributes of the

contributors such as competence, expertise and bias [86]. Recent research has

also investigated how active learning and crowd sourcing can work alongside each

other [1]. In Section 4.4.3 we go into more detail by describing one particular

approach that attempts to do just this, an expectation-maximization model that
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uses crowd sourcing [65].

2.7 Conclusions

In this section we have covered various machine learning concepts that will be

of use in subsequent chapters of this thesis. In the next section we will see how

several of these algorithms are used in the PCG literature.



Chapter 3

Procedural Content Generation

Chapter 1 provided a basic introduction to the field of PCG in video games and

stated the main contribution of this thesis. The goal of this chapter is to provide

an overview of video games (Section 3.1), player modelling (Section 3.2) and PCG

(Section 3.3). Many of the techniques we will review will rely on the machine

learning algorithms we have described in Chapter 2. Near the end of this chapter

we will provide a critical analysis and taxonomy of existing PCG techniques,

which gives motivation for the design decisions made with respect to the LBPCG

framework, the primary contribution of this thesis.

3.1 Video Games

Before embarking on a detailed discussion of PCG in video games, it is necessary

to take a step back and consider precisely what a video game is. In this section we

will cover the topics of video game categorization and description. Categorization

tells us the general nature of a video game, such as how the player interacts with

it and what the objectives are. This is useful information, as it allows us to limit

the scope of PCG algorithms to particular genres. Description on the other hand

provides us with a layer of communication that facilitates the manipulation of

game content by a PCG algorithm.

3.1.1 Game Categorization

The traditional method used for game categorisation is genres. It is very common

to see genres used on game review websites such as IGN [35] and Gamespot [25].

50
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Some examples of genres are:

1. First Person Shooter (FPS): The player controls a character who is

wielding a ranged or melee weapon. The objective is to navigate through

various levels killing enemies as they are encountered. Examples: Doom

(1993), Duke Nukem 3D (1996) and Halo (2001).

2. Adventure: The player controls one or more characters and moves through

the world using a point-and-click interface solving various puzzles and un-

covering a storyline. Examples: The Secret of Monkey Island (1990), The

Longest Journey (1999) and Zak McKracken and the Alien Mindbenders

(1988). Moving further back in time, classic adventure games were entirely

text-based, such as Zork (1977).

3. Role Playing Game (RPG): The player controls one or more characters,

usually in a fantasy-based setting. The objective is to enhance their char-

acter(s) abilities to make them more powerful while progressing through

a storyline. Examples: Daggerfall (1996), Final Fantasy (1987) and The

Legend of Zelda (1986).

4. Real-Time Strategy (RTS): The player controls a faction. The objec-

tive is to collect resources, construct buildings and units and engage in

warfare against other factions. Examples: Command and Conquer Red

Alert (1996), Warcraft (1994) and Starcraft (1998).

5. Racing: The player races a vehicle around racing tracks against opponents.

Examples: Forza Motorsport (2005), Virtua Racing (1994) and Test Drive

(1987).

It is not always clear what genre a game belongs to, for example, the popular

game series Grand Theft Auto (1997-) includes elements of the racing and first

person shooter genres. This is a common issue as games have become more

complex by incorporating many game play features and has seemingly become

more difficult to classify the exact nature of a video game using genres.

Frasca [24] states that one can view the genre approach as narratological, in

that it views games as extensions of drama and narrative. He argues, however,

that the narratological approach to defining video games is inaccurate and lim-

its understanding of the video game medium. He also introduces the formalist
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discipline known as ludology, which is dedicated to the study of video games and

focuses on the understanding of structure and rules with a view to create ty-

pologies and models for explaining the mechanics of games. Apperley et al [3]

build on this argument and agree that many existing classifications of games are

representational. By this it is meant that they are tied to existing descriptions

of other media (e.g. films) and focus too much on the aesthetic qualities of a

game. The authors argue that the way in which the user interacts with the game

is not taken into enough consideration with this type of classification. This is

true, since two games may look visually very similar, but their control schemes

may be significantly different resulting in two very distinct experiences.

Lindley [45] defines four classification models for games. These models provide

a number of dimensions in which a game can exist. Three recurring axes in each

model are Simulation, Ludology and Narratology. The ludological dimension

specifies how much a game is rule based. An example of purely ludological game

would be Battlechess (1988). The simulation dimension specifies how much a

game attempts to represent something real, for example an economy. A game such

as Risk rests between the simulation extreme and the ludological extremes, as it

attempts to simulate a war in a rule-based fashion The narratological dimension

specifies how much a game is based upon a storyline that advances over time. At

the extreme of this dimension are movies, with which the user has no interaction.

Moving slightly away from this extreme are multi-path movies, in which the user

can select the direction of the movie. Role-playing games, which tend to feature

a storyline, simulated world and combat rules tend to sit in the centre of the

ludological, narratological and simulation dimensions. Such a classification is

useful for categorising the high-level nature of a game but does not say much

about a game’s mechanics.

Gunn et al [28] provide a ludological taxonomy of video games with the aim

of providing a framework for matching AI techniques to games. They state that a

ludological classification is the one that interests developers and academics. This

standpoint is understandable from a machine learning perspective, as researchers

in this field are interested in determining the mechanics of the game that they

intend to have their algorithm interact with. The model in their paper provides

a number of boolean values that in sequence can be used to describe the features

of a game. Figure 3.1 shows a complete visualization of the model, along with

mappings to appropriate machine learning algorithms. As an example, a game
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Figure 3.1: Gunn’s taxonomy [28].

is player-versus-environment if it consists of rather limited AI and involves the

player manipulating the game world directly, such as a puzzle game. A player-

as-actor game involve the player directly controlling an actor in the environment,

such as first-person-shooter. On the other hand player-as-manager games involve

the player controlling more than one actor in the game world, such as a real-time

strategy. Games can be co-operative, in that players within the game can work

together or non-co-operative in which they work against each other. The model is

useful as it provides a general mechanism for describing the traits of a particular

game, beyond its aesthetic qualities.

In summary, there is no single generally agreed approach for categorizing

video games and most professionals often resort to the use of genres. In the next

section, we will review video game description, which is perhaps a more useful

perspective on video games for the purposes of PCG.

3.1.2 Game Description

We begin this section on game description literature by first reviewing approaches

that are used for traditional board games like chess. The Stanford Logic group

have developed a first-order logic Game Description Language (GDL), which is

intended to be used by General Game Playing (GGP) agents [46]. A GGP agent

is an agent that has the capability to play different types of game having been
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provided with a description of the game rules only. GGP agents can compete

in various open competitions [7]. The Stanford Logic group state that the GDL

can be used for “finite, discrete, deterministic, multi-player games of complete

information”. In terms of Gunn’s taxonomy, this limits the supported games to

those that are player-as-actor, accessible and environmentally discrete. As such,

the scope is somewhat limited, especially with respect to the current generation

of video games. The Stanford GDL is similar in syntax to Prolog and as such

is unlikely to be of practical use by game designers, who tend to have minimal

programming experience.

Zillions of Games [92] is a commercial product that provides a large number of

games written in the Zillions Rule Language. It allows a great deal of interesting

rule-based games with sprite graphics to be defined. The language is Lisp-like in

that it is based on S-Expressions. The expressions in the language can specify

players, valid moves and completion objectives of the game. Similar to the GDL,

while the language is simple to use and can cover a wide-range of computerized

board games, it is not sufficient to describe modern day video games which can

involve large amounts of continuous elements that re-act in real time.

Browne et al [9] define a method for automatically generating combinatorial

games. A combinatorial game is a two-player game which does not involve chance

and is fully accessible, as in all information is visible to players. Their paper

describes a general game system which includes a GDL and a GGP agent. Unlike

existing general game systems that are used to evolve AI, the aim of their system is

to evolve interesting games automatically. They introduce the Ludi GDL, which is

more high-level than the Zillions of Games rule language. It is specifically tailored

for creating combinatorial games and consists of ludemes, which are structured

rules. The language is very easy to understand, but is limited to combinatorial

games and cannot control the graphics displayed on the screen, unlike the Zillions

of Games rule language.

Pizzi et al define a novel technique for debugging game storyboards [60]. In

their paper they work with Eidos Interactive and make use of the game Hitman:

Codename 47 (2000). The technique involves writing a complete logical repre-

sentation of the high-level game play elements of the world in a propositional

language. They use Heuristic Search Planning (HSP) to derive possible solutions

to a level. Using this method they were able to show solutions to a level that the

game designers themselves weren’t aware of. Such an approach is appropriate for
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games that progress through certain storyboard stages, but would not be useful

for games such as first person shooters that tend to be purely action based.

Nelson and Mateas propose the use of a first-order event calculus to represent

games [54]. They include a construct known as fluents, which is a predicate type

whose truth value changes over time. In their paper, they write a description

for simple grid-based game executing using Mueller’s Discrete Event Calculus

Reasoner [34]. In the game the player must acquire a key to open a door which

they need to pass through to complete the game. The reasoner successfully

identifies that the game is winnable. After adding diagonal movement to the

representation, the reasoner is able to identify an error in the game logic that

allows players to move diagonally through walls. As such, their technique can

successfully determine whether a game is suitable to be played or not. Although

this work is successful at describing tile-based games, it is also limited for the same

reasons as the Zillions of Games language in that it would not be appropriate for

most modern video games which have large non-discrete 3D environments.

A paper by Dormans defines a methodology for describing and generating

action-adventure games [16]. In an action-adventure game, the player moves

through an environment and solves puzzles while a storyline develops. A very

prominent example of such a game is Tomb Raider (1995), where the player must

navigate the central character through various 3D environments while fighting

enemies and solving puzzles. Dormans observes that such games are made up

of two separate components. The first of which are the “missions”, including

activities such as collecting items and solving puzzles, and the second of which

is “space”, physical entities such as rooms and corridors. The paper argues that

generative grammars can be used to first generate the mission structure and then

the appropriate space structure for it. In addition to this, he states that rules can

be constructed that specify how new missions can be automatically generated.

The author demonstrates that a level from the game Zelda: The Twilight Princess

(2006) can be described in this manner. It is our opinion that this promising work

could pave the way for a high-level description language for video games, although

it does at this moment fail to incorporate a great deal of game elements such as

physics, control and artificial intelligence. The use of grammars is becoming

increasingly popular in the field of PCG. Recently researchers have used them to

represent platform games [68] and have even developed a specific grammar for

the representation of strategy games [49].
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The purpose of this section has been to analyse the topics of game categoriza-

tion and description. It is apparent that the ludological representation is more

useful for the purposes of PCG as it describes the components of a game, rather

than simply attempting to relate to existing media. A taxonomy by Gunn et al

[28] provides a very good basis for ludological classification, which can express the

suitability of a PCG algorithm for particular types of game. In summary there

are many approaches to representing video games, with no particular agreement

on which is the best for the purposes of PCG. In their paper on Search-Based

Procedural Content Generation (SBPCG) [82], Togelius et al mention some very

common approaches, of increasing abstraction, in which a video game can be rep-

resented for manipulation by a PCG algorithm. These are: (a) a grid where each

cell represents an entity in the environment, (b) a list of positions, orientations

and lengths of walls (c) a repository of pre-fabrications and a list of how they are

distributed (d) a list of abstract values specifying the properties of the content (e)

a random seed. Although making no reference to grammars, which are used in

some PCG techniques, based on the literature review in this thesis, we consider

Togelius et al’s list of approaches to be a good summary.

3.2 Modelling players in games

In this section we will present the concepts of entertainment and review algorithms

that attempt to model player satisfaction and other states in video games. Player

satisfaction is a measure that tells us whether game content is appealing and due

to its subjective nature it is very difficult to quantify exactly what constitutes it.

For example, a player may be frustrated by the difficulty of a particular game, but

will continue to return to it due to the challenge. In such a case, the player may

not be having fun in the traditional sense, but the game content is surely appealing

enough to be continually played. For a PCG algorithm, models that can predict

satisfaction can be extremely useful tools as they allow the implicit detection of

whether game content is desirable. If one was to apply an evolutionary algorithm

to PCG, a player satisfaction model could be used as a fitness function that needs

to be maximized to find desirable content.
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3.2.1 What is fun?

Sweetser et al state that player enjoyment is the single most important goal for

a computer game in their interpretation of the Theory of Flow applied to video

gaming [78]. The Theory of Flow is a model of enjoyment proposed by Csikszent-

mihalyi, which defines eight elements required to provide an enjoyable experience

[13]. Amongst their interpretation, they state that a game should provide suffi-

cient challenge, players should feel in control of their actions and games should

support and create opportunities for social interaction. Andrade et al put forth

that argument that balancing challenge is a key component to player entertain-

ment [2]. In their experiment they ask human players to fight against several AI

agents. Some of the agents are adaptive and learn to fight against the player more

affectively and analysis of game data and the use questionnaires suggested that

the adaptive agents provided the highest level of player satisfaction. Interestingly,

their results also showed that unpredictability also improved player satisfaction.

Using Malone’s intrinsic qualitative factors [50] and the Theory of Flow [78],

Yannakakis and Hallam attempt to correlate the relationship between difficulty,

curiosity and fun [88] using Pacman as a test bed. Each player played games

against two different agents selected from a collection of 5, each with different

challenge, behaviour diversity and spatial diversity, reporting their preference

between the two opponents. Two features from each match were also recorded:

(a) curiosity, which was the deviation of time played and (b) challenge, which was

the average time played. Neural networks were then used to learn the correlation

between difficulty, curiosity and fun based upon the collected data. The inputs

to the networks were the recorded features and the output gave an entertainment

value. The idea was that the networks should eventually be able to determine

what features of a game are preferable. Their results showed that entertainment

is low when challenge is too high or curiosity is low. The results also suggested

that keeping challenge at an appropriate level mitigated a lack of curiosity. These

results seemingly matched Malone’s hypotheses. The approach can be criticised

in that it assumes that the two features recorded, (a) and (b), are in fact curiosity

and challenge, and that the study relates only to predator/prey games.

Yannakakis and Hallam perform another experiment to model entertainment

in a grid sensor game [89]. In this experiment they ask several school children

to use the Playware physical interactive platform, which involves stamping on

tiles as lights appear on the tiles. Neural networks are trained in similar manner
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to their previous experiment. They then take the partial derivative of certain

neural network outputs and inputs with respect to each other. For example,

the rate of change of game speed with respect to entertainment. These partial

derivatives are then used as criteria to adapt additional games as they are played.

It was found that the school children prefer the adaptive games more than the

non-adaptive game, suggesting that diverse game play is something that could

increase entertainment.

A central argument of this thesis is that it isn’t a good idea to rely entirely

on the prior knowledge about a problem, such as the question of “What is Fun”,

and then encode this information to form some kind of assessment function. The

Theory of Flow and Malone’s intrinsic qualitative factors may hold for specific

examples of traditional games, but when it comes to open world games or even

educational/serious games they may not. A far more robust approach is to learn

in a data-driven way the function that can assess content by monitoring people

playing games. In the next few sections we will review techniques that do just

this to create models of entertainment and other emotive states.

3.2.2 Modelling using play-log features

If one is to model player behaviour, then the type of data used as input requires

in-depth consideration. In this section we will look at approaches that make use

of what this thesis terms play-logs. Play-logs are records of events that occurred

when a player played a game. For example, in the case of a first-person shooter,

a play-log might list how many times the player killed a monster, what kind of

weapons they preferred and how much of the level they managed to complete.

The necessary requirement for the existence of such data is, of course, that a

game has to be played by a player.

Pederson et al model human emotion while playing procedurally generated

levels in Infinite Mario [58]. Infinite Mario is an open source version of the classic

platform game Super Mario Brothers (1985), which has the ability to generate an

endless amount of levels. The authors take the engine and produce sixteen dif-

ferent level variants, based on four level generation parameters. Members of the

public were then asked to play two levels and report their emotional preferences,

including fun, with respect to the two games. For example, the player could

report that they thought game A caused more anxiety than game B. While play-

ing, a number of play-log features were collected such as the number of jumps
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the player made and how many enemies they killed. Empowered with a large

amount of feedback from players, the authors performed analysis to detect rela-

tionships between level generation parameters, game play statistics and emotion

preference. They also use two types of neural network (SLP and MLP) along with

feature selection to build a model that can accurately predict a players emotional

preference between two levels. They conclude that their model is successful, but

suffers from the fact that it requires play-log features as inputs rather than just

level generation parameters i.e. the levels must be played before they can be

assessed. They argue that neural networks are the best candidate for modelling

this problem based upon work on preference modelling in a paper by Yannakakis

[89]. In this paper the authors compare techniques including neuro-evolution, a

variant of SVMs called large-margin algorithm (LMA) and Gaussian Processes.

According to their results, neuro-evolution achieved the best results. The main

criticism of the work is that there were only a small number of level variants

(sixteen) and it is not clear whether the same modelling approach would work for

a larger set of games, or even if it would be possible to collect enough data for

such a purpose. Another problem is the question of what would happen in the

presence of unreliable players, who may provide noisy feedback.

Almost all of the studies in this literature review use data sets specifically

built for academic purposes. However, in 2010 Mahlmann et al are given access

to play-log data from 1000 people who played commercial game Tomb Raider Un-

derworld. In their second paper on the subject [48], the authors goal is to predict

the performance of a player, i.e. how much of the next level will be completed,

based on the players activities in previous levels. This time, more features are

extracted to be used as inputs and they use a combination of different machine

learning algorithms including neural networks and Bayesian Networks. Unfortu-

nately, they report only moderate performance, citing problems with noise in the

data. This paper highlights the difficulties in working with data collected from

the public, which could be infested with either unreliable feedback or simply be

incomplete. Such issues can cause very detrimental effects on model performance.

3.2.3 Modelling using content creation parameters

As stated at the start of the previous section, using play-logs to predict what

affective states game content produces is not always a desirable approach. It

is more useful in some circumstances to be able to predict how good content
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is based only upon the features of the content e.g. how many monsters does

the level have? In further work on Infinite Mario, Shaker et al model player

preference with respect to engagement, challenge and frustration across a larger

number of controllable parameters resulting in 40 variants this time [70]. After

playing two games the player reported their preference with respect to each of

the three qualities. The objective this time was to detect preference based on the

level parameters only, without consideration of the play-log. The authors also

attempt to model preference based on the properties of sub-sections of each level

as well as the entire the level, with an end goal of being able to generate content

in real-time for a player. The best result achieved was an accuracy of 65.72%

using neural networks, suggesting there is room for improvement, which could

perhaps be achieved by using a different machine learning method. The work

also suggests that including play-log features could improve the results.

3.2.4 Categorizing players

It is certainly conceivable that rather than every player being completely unique,

there actually exist different groups of player who play in a similar style, with

small deviations. Such information is highly useful, as it could be used as a

filtering step in an algorithm attempting to optimize content e.g. “We have

detected this player is a beginner gamer, therefore filter all difficult content”.

Drachen et al attempt to categorize players using a smaller subset of the Tomb

Raider Underworld data set which they acquired [48], consisting of play-logs from

1365 people [19]. They extract six play-log features related to character death and

usage of help functionality. They apply Emergent Self Organizing Maps (ESOM)

to cluster the data and find that there are four main types of player. Based on

their findings, the concept of using clustering to identify different player-styles

may be a good approach, although the data set used is somewhat limited meaning

the number of player-styles that can be identified is also limited.

Mart́ınez et al take an interesting approach to predicting affective state in their

paper on the predator/prey “Mazeball” video game [51]. They first used ESOMs

to identify types of player, which detected five different play-styles. They then

used play-log data consisting of game events, key strokes and high-level statistics

along with the detected category to predict challenge and fun. Their results

suggest that combining the players category with play-log information provides a

statistically significant performance increase. In general, this result suggests that
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categories of player exist for the target game in question, but it remains to be

seen if there are generic categories of player. If such generic categories exist, it

is debatable whether the detection methods presented in this paper are sufficient

to detect them.

Gow et al apply Linear Discriminant Analysis (LDA), a technique closely

related to PCA, to recognize player style in two games: Snakeotron, a basic 2D

game, and Rogue Trooper, a commercial 3D shooter game [26]. In the case of

Snakeotron, 16 features were extracted from each play-log including statistics

such as damage done and key-press information. There was a total of 215 unique

participants in the study, resulting in a data set of 1450 surveys. The results

showed that frequency of key presses was the most important feature for dividing

players. For Rogue Trooper, 32 participants were asked to play 20 minutes of the

first level of the game producing 35 level attempts and therefore 35 play-logs. The

data was then fed into the LDA algorithm, which allowed the authors to identify

that both health and movement were determining factors on player grouping.

The method of applying LDA in this manner is interesting, as it implicitly detects

groups of players. It remains to be seen whether using the categories found by

LDA would allow an algorithm to detect player affective states more efficiently.

3.2.5 Beyond play-logs

All of the techniques in this section so far, perhaps with the exception of the work

done by Yannakakis et al on the play-ware platform [89], have used cues from

software to model the player, for example, by looking at events that occur during

game-play. There are many examples of other approaches that use physiological

data to predict player emotive state, which we consider beyond the scope of this

thesis. However, an approach gaining traction is to use the physical expressions

of the player during game-play. This is something that is actually a viable option

on modern computers, as most laptops have web cams built into them. Papers

have recently been produced by Asteriadis [4] and Shaker [67] that record players

expressions while Super Mario is being played. In Shaker’s work, a very high

level of accuracy was reported when combining visual cues with play-log events

to predict challenge and frustration. It does remain to be seen if the technique

can be extended to other genres, and whether the system would be successfully

on a wider selection of people. It is also questionable as to whether such methods

could be used for online adaptation, for example, gamers may consider web-cam
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logging as being rather invasive and may not wish to use it.

3.2.6 Summary

In this section we have reviewed existing methods for modelling players in video

games. A direct approach to adapting content for a target player would be to

present content to them and ask them if they enjoyed it with a dialogue box or

similar. The search could then be updated base on this information, however,

this method is very intrusive to the users experience. Research in this section

has showed that it is possible, based on play-logs collected during game-play,

to identify whether the player’s experience was positive or not without asking

the player any questions. This is a strong indicator that such methods could

be employed to enable non-intrusive adaptive PCG. There are several pitfalls,

however, such as dealing with outliers and ensuring that enough data is collected

to train the player models [48]. Several papers indicate that players may fall into

different categories, based on their play-style, which could be used to focus the

search for player-specific content.

3.3 Procedural Content Generation

In this section we will introduce PCG in a taxonomy based on sophistication

in terms of adaptivity to players. In Section 3.3.1 we will review traditional

approaches to PCG, which are those that are the result of applying an algorithm

with some level of randomness involved, perhaps where the measure of fitness is

built into the algorithm itself. In Section 3.3.2 we will review search-based PCG

algorithms, which are algorithms attempting to optimize a pre-defined fitness

function. We distinguish algorithms in this section from the later algorithms by

noting that they do not directly attempt to adapt content to a target player,

rather they adapt the content to some general notion such as fun, challenge etc.

In Section 3.3.3 we will review algorithms that use search-based methods to adapt

content to a target player. The fitness function used to adapt to the player in

this case has been constructed by hand i.e. pre-defined. In Section 3.3.4 we will

review algorithms that learn models that adapt to the player and then make use

of the model to adapt content to a target player.

Many of the algorithms that we will introduce in this section fall under the

umbrella of Search-Based Procedural Content Generation (SBPCG) [82]. SBPCG
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are a family of generate-and-test algorithms, meaning that content is generated

then evaluated. At the heart of an SBPCG algorithm is a fitness function, which

is capable of grading the content. The most common example of a SBPCG is an

evolutionary algorithm, which generates populations of content, assesses them,

then performs cross-over and mutation on the most fit examples to produce a

new population.

Recently, another view of the PCG literature has emerged termed Experience-

Driven Procedural Content Generation (EDPCG) [90]. In this framework, the

emphasis is placed upon optimizing the experience of the player. Specifically,

an EDPCG algorithm has four components: (a) “Player Experience Modelling”

(PEM), which means the player’s experience is considered to be a function of the

game’s content and the player, (b) “Content Quality”, which means the quality

of the content is linked to the player experience, (c) “Content Representation”,

which means the representative form of the content used by generator is designed

well and (d) “Content Generator”, which means the algorithm searches through

the available content and attempts to optimize it with respect to the player’s

experience. The paper lists three types of PEM: (a) Subjective, which asks the

player about their experience, (b) Objective, which monitors physiological condi-

tions of the player while experiencing the game such as their facial expression,

posture and speech, and (c) Game-play based, which observes the play-logs gener-

ated by the player. The authors define three general approaches to assessing the

quality of content: (a) Direct Evaluation Functions, which extracts features from

the content for evaluation, (b) Simulation-Based Evaluation Functions, which

evaluate content by having artificial agents play it, and (c) Interactive Evalua-

tion Functions, which evaluate content based on how the player interacts with it.

These definitions are useful to bear in mind while considering the various PCG

techniques mentioned throughout this section.

3.3.1 Traditional Procedural Content Generation

In this section we will examine traditional methods of PCG and highlight their

significance. Togelius et al put forward strong argument as to why PCG in games

is important [82]. Their first argument is that it allows the reduction in size of the

game content. If the content is generated by an algorithm at run-time then there

is no need to distribute it. Although this is not such an important consideration

in modern times due to large storage space, it was certainly a benefit in the
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early days of video games. Their second argument states that it reduces the

cost of producing content. They use the example of SpeedTree which is software

capable of placing foliage in the game world. This frees game artists from the

tedious role of performing such a task and allows them to focus on more important

development. Their third argument is that PCG can produce an endless stream

of game content, which would extend the re-playability a game by a potentially

infinite amount. Their final argument is that PCG can augment the human

creative process, to provide a basis on which the human can develop their game.

Procedural Content Generation (PCG) is an approach that has been used in

commercial video games for a long time. Since video games are software, which

can be abstracted into high-level APIs for content generation, PCG has the poten-

tial to generate any type of content. This includes the physical game world such

as terrain, the non-player characters (NPCs) that the player interacts with, the

shaders used for graphical enhancement, the storyline, quests and so on. There

are many examples of PCG in commercial games, although it is unfortunately

predominantly the case that the source code for such games is unavailable, and as

such it is difficult to determine the exact methods that have been used. The fol-

lowing list describes some of the major examples of PCG use in games, providing

detail where it is available.

• Borderlands (2009): A multi-player First Person Shooter where weapons

in the game are procedurally generated to provide an endless and interesting

supply of items to collect. This contributes greatly to the re-playability of

the game because players don’t know what they will see next.

• Elite (1984): A very early 3D space game in which the player could explore

the universe. Star systems in the game were randomly generated as they

were encountered, which provided an endless game world to explore.

• Rogue (1980s): A classic ASCII game that randomly generated dungeons.

This has spawned a large number of similar games called Rogue-likes. Dia-

blo (1997) and Torchlight (2009) are isometric and 3D commercial games,

respectively, which can be considered to be rogue-likes as they generate

dungeon content and items procedurally.

• Spore (2008): An ambitious god game in which the player controls all

aspects of the development of a species from its emergence as a cell, to
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Darwinian evolution, war with other species and eventually colonization

of space. The breeding and evolution of the creatures, which can pass

characteristics onto their children can be viewed as a form of PCG.

• Elder Scrolls II: Daggerfall (1996): A 3D action RPG that had a vast

world of 161,600 squared kilometres and over 15,000 towns, cities, villages

and dungeons. Most of this was procedurally generated, as it would be

impossible to develop so much content by hand.

• Far Cry 2 (2008): A sandbox First Person Shooter set in war-torn Africa.

The development team used a form of PCG to generate the terrain before

release, which was likely to have been hand edited afterwards. The de-

velopers also spoke publicly that enemies in the game were procedurally

generated. They suggest that enemies had random faces selected during

run-time to provide dynamic appearance.

• Left4Dead (2008): A single and multi-player First Person Shooter in

which a team of four people have to fight through way through a zom-

bie infested city. The game flow is controlled by an “AI Director”, which

dynamically places spawn points for zombies based upon the skill of the

players.

• X-Com: Enemy Unknown (1994): A strategy game in which the

player must control an organization that researches UFO technology and

co-ordinates a defence against attack. The isometric levels where the com-

bat took place were procedurally pieced together from tile-sets, providing

an endless supply of locations in the world.

Many of the PCG techniques used in games are quite simple in design but

can produce spectacular results. A fractal is a shape where smaller parts of the

shape are similar to the shape as a whole. There are many examples of the

use of fractals to generate visually impressive imagery, however, a fractal is of

particular interest to PCG as the shapes found in nature tend to be less based

on Euclidean geometry and more on the self-recursive and irregular attributes of

a fractal. As such, there has been a large amount of research into and usage of

fractal algorithms to generate 3D geometry such as terrain. Such algorithms tend

to begin by constructing the general features of the terrain and then recursively
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Figure 3.2: A terrain generated with a fractal algorithm.

refining parts of it until a level of realism is reached. An example fractal terrain

is displayed in Figure 3.2.

Another common method used for PCG is Perlin Noise [59]. It is observable

that the natural world is not made up entirely of completely random variations.

It tends to be made up of groups of variation, such as large mountains with huge

variation, hills with less variation and small objects with very little variation. A

Perlin Noise function can be used to simulate this natural phenomena and pro-

duce realistic environments. It is constructed by creating several noise functions

with varying frequency and amplitude, which are smoothed using one of several

interpolation techniques. When queried for a random value, the Perlin function

samples each of the noise functions and produces a sum, which represents the re-

sult. Perlin noise was used in the open-source game Infiniminer (2009) to produce

multi-player blocked-based environments with interesting structure.

Cellular Automata are a type of machine that use a mesh of adjacent cells,

where the mesh may have any dimension e.g. a cube, line or 2D plane. The value

of a particular cell is affected by those cells around it based upon a rule, which

is shared by all other cells in the mesh. The value of every cell is determined

at the same time as every other cell, although some variations of the technique

pick random cells to be updated at separate times. Babcock describes a method
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Figure 3.3: Automatically generated buildings. [27]

that uses cellular automata to create cave-like levels for use in a Rogue-like game

[5]. The map consists of a grid of empty spaces, which may have a wall placed in

them. In the initialization step, walls are placed randomly using given probability

value. The algorithm then updates every space during each iteration. The rule is

that a wall should be placed in a space s if: (1) there are 5 walls near to s, or (2)

if s is surrounded by no nearby walls by a given distance. This simple algorithm

is successful in constructing maps that resemble cave-like labyrinths. Babcock’s

work goes on to define modifications to the rule to produce more enclosed variants.

PCG can also be used to generate artificial structures. Greuter et al describe

a resource sensitive algorithm to generate pseudo-infinite cities [27]. Their tech-

nique randomly generates polygons representing each floor of a building, which

are then extruded upwards to induce third dimensionality. Texture co-ordinates

are generated during the algorithm which enables building textures to be drawn

onto the surface of the geometry. A city is created by forming a grid of such

buildings. The technique produces relatively simple structure (see Figure 3.3),

but is particularly notable as it generates content on-the-fly as the user moves

through the world.

In a similar vein, Wonka et al describe an interpreted grammar called CGA

Shape, which can be used for the modelling of 3D cities [87]. Iterative rules

written in the grammar generate content by adding more and more detail. Rules

may specify operations upon basic shapes such as scaling, rotation and surface

subdivision. Additional procedures such as occlusion testing also exist, which can

be used to test for clipping between shapes in a model. A designer can also make

use of random variables, such that a single script can generate many different

buildings. An impressive result in the paper shows the reconstruction of ancient
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Figure 3.4: CGA recreation of Pompeii [23].

Figure 3.5: Game map (background) generated from simple image (top left) [64].

Pompeii using the grammar. The main criticism of this work is that to be fully

exploited the method does require a good deal of human input in the form of

script authoring.

The user interface for games can also be enhanced using PCG. Prachyabrued

et al present an algorithm [64] that generates visually pleasing maps from basic

pixelations, which identify key features of the terrain. The artist need only draw

a simple map of the game world, and the algorithm will draw a map that can be

presented to the player in the game. An example is shown in Figure 3.5. The

algorithm is interesting as it can be said that it is extrapolating features based

on user input.

PCG can also be used to enhance the rendering properties of video games. El-

Nasfr et al [22] [21] describe a technique to dynamically create lighting in a game.

Their system attempts to achieve several goals such as directing attention to

important objects, evoking moods to support events in the game and maintaining



3.3. PROCEDURAL CONTENT GENERATION 69

visual continuity between scenes. Several of these goals conflict with each other,

so the system carefully weights and balances their priority to produce an ideal

set of lights with distinct placement, colour and orientation.

A staple of Role-Playing Games (RPG) is the ability to converse with Non-

Player Characters (NPC). Strong and Mateas [77] observe that game dialogue

is still largely created by teams of writers and designers who hand-author every

line. In their paper they propose a method to automatically generate discourse in

a soap opera-like drama game. In the game two NPCs have a heated argument in

which they call upon knowledge of past events until the player is asked to side with

one NPC or the other. Both knowledge and the basic execution structure for an

argument are written in a Hierarchical Task Network (HTN) planner application

known as SHOP2. The results show that their system can automatically generate

well-formed dialogue that is based on an expanding knowledge base. They express

a desire to extend their research to natural language processing in the future.

Perhaps the more ambitious applications of PCG are those which generate the

world on the fly as the game is played. In a paper, Nitsche et al present a project

known as Charbitat [55], which is a game written for the Unreal engine. The

most interesting feature of Charbitat is that it procedurally generates segments

of the game world, which is divided into blocks. Terrain height maps and object

placement are all under the control of the PCG algorithm. Based on how the

player interacts with the world, the theme of tiles in the players path is changed.

For example if the player interacts a lot with the “Fire Element” in game, then the

game will generate fire-based world blocks. This work is of particular significance

as it procedurally generates a 3D game world including enemies and objects,

which is not something many PCG algorithms attempt.

This section has described some of the traditional methods for PCG. The

majority of these algorithms tend to be constrained by hand-written rules and

driven by a random seed. In general, this is somewhat restrictive on the content

that is created as it doesn’t allow new content of a high quality outside of the

original intentions of the game developers to be found. In the next section we

will move onto looking at algorithms that attempt to achieve just this.

3.3.2 Non-adaptive SBPCG

In this section we will review more advanced PCG algorithms, that employ an

intelligent search algorithm to explore the solution space. We restrict this section
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Figure 3.6: An automatically generated world in Charbitat. [55]

Figure 3.7: Terrain using GA [56].

to include algorithms that are not player adaptive i.e. don’t try to generate

content to satisfy a particular target player.

Ong et al make use of Genetic Algorithms (GA) to generate realistic height

map terrain [56]. Their algorithm is divided into two stages. The user first pro-

vides a basic sketch of the terrain, dividing it into areas of different terrain type.

A GA then evolves these dividing lines to create realistic transitional boundaries.

Height map vertices are then imported from satellite scans to be used as a seed for

evolution. Areas of influence are overlaid onto the height maps, which have do-

main over all vertices within their radius. A set of operations are defined which

can be performed upon them such as rotation, translation and height scaling.

When an operation is applied to an area it affects all of the vertices within it. It

is these operations that the GA encodes and evolves. A terrain is considered fit

if its variance from satellite data of the same terrain type is not too large. The

result is a varied and realistic looking terrain (see Figure 3.7).
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Doran et al have recently used a technique using multiple agents to generate

terrain [15]. Their technique is rather unique in that it makes use of multiple

agents, each with their own agenda, to generate the world. Their algorithm

switches between three modes: “coastline”, “land form” and “erosion”. In each

mode agents are deployed, of which there are five different types, which can view

and change the height of any part of the world depending on what the mode’s

objectives are. The agents can in fact interfere with each others work causing

quite interesting effects. The authors argue that their agents satisfy the criteria

of Ong et al [56] in building an entertaining world environment. The technique

is very interesting, but it is unclear what the advantage of using this method is

without the presence of a fitness metric. The technique seems to breaking the

global task of generating an environment up into smaller tasks only.

Togelius et al [79] experimented with several types of ML algorithm to gen-

erate racing tracks for a 2D racing game. Tracks in the game consist of b-splines

which can be parametrically modified to produce varied curvature. The first

phase in their methodology was to create an agent that had the ability to drive

around a track. The agent was trained upon examples of a human playing the

game using K-Nearest Neighbour (KNN), a Multi-Layer Perceptron (MLP) and

a GA algorithm known as Cascading Elitism (CE). The trained agent is used

as a tool to measure fitness during evolution of the race track content. They

incorporate the work of Malone [50], Koster [38] and their own informal ideas

into the fitness measure. Essentially, a good balance of challenge, variation in

challenge and the ability to go at fast speeds are all positively rewarded. The

experiment did not produce entirely desirable results likely due to the choice of

mutation operators used in the second phase. Two examples of evolved tracks

are shown in Figure 3.8 and Figure 3.9. In similar area of application, Loiacono

et al apply genetic algorithms to the more advanced 3D Open Racing Car Sim-

ulator (TORCS). In this case they do not use bots, and instead evolve tracks

using two fitness functions based on the entropy of track curvature and potential

speed. Their results are promising in that they show more highly evolved tracks

are preferred to less evolved tracks by 71.43% of players, validating that the evo-

lutionary algorithm is producing increasingly desirable content. It remains to be

seen if tracks can be evolved which are as, or more, appreciated than hand-built

tracks.
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Figure 3.8: Evolved Tracks 1 [79].

Figure 3.9: Evolved Tracks 2 [79].



3.3. PROCEDURAL CONTENT GENERATION 73

In his MSc thesis, Laskov discusses his usage of the Temporal Difference Learn-

ing (TDL) algorithm SARSA to generate levels in a side-scrolling 3D platform

game [41]. The player can move left, move right, jump and collect treasure. Lev-

els that provide multiple branches, or paths through the level, are assigned a

higher fitness along with levels that have treasure and dangers in them. He ad-

dresses the issue of accessibility by using a ballistic agent, which is a simulation

of the player than moves through the level and performs a jump at every possible

location. A lack of accessibility in a level can severely penalise the fitness of a

level dependant on how far into the level the problem occurs. His results show

that playable levels can be generated within reasonable time constraints and he

states that it could be used to reduce the amount of manual work required by

game designers.

Togelius et al present an attempt at evolving the rules of a game in an en-

vironment similar to Pac-Man [81]. The game world consists of a discrete grid,

walls and coloured objects (see Figure 3.10). The player controls one of the ob-

jects and attempts to increase their score before they are killed. Variables under

control by evolution include the number of items of each colour, their movement

and the effect of a collision between two types of coloured object. The rules of

the game are evolved using a Hill Climber algorithm that starts with a random

set of parameters. The fitness of a game is analysed in two stages. The first stage

uses agents with random behaviour to play the game. If they score well the game

is too easy and is discarded. The second stage trains an MLP to play the game.

The fitness function assigns a very low fitness to easy or very hard games based

upon the MLP’s behaviour. Games that can be learnt quickly are given a high

score. The results of the experiment produced playable games but not games

that were particularly well designed or fun.

Sorenson et al use the concept of rhythm groups as the basis of a fitness func-

tion to evolve levels for Super Mario Brothers and Zelda [76]. Rhythm groups

alternating periods of game play with low and high challenge, which are separated

by periods of rest, where the player is not being particularly taxed. The authors

argue that the calculation of how fun a level is is based upon the way in which

these groups occur within the level. Their method requires a function c(t) which

can identify the challenge at any particular time in a level. For both application

games this is defined statically. For example, in the case of Super Mario they

define it as a formula based upon the distance between platforms and the length
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Figure 3.10: An evolved Pac-man like game [81].

of platforms that the main character has to jump on to. An algorithm is then

employed which looks for rhythm groups in any level, which sets up boundaries

between rhythm groups by looking for periods of rest. A fitness function defined

which rewards levels where the total challenge distributed in different rhythm

groups is of the appropriate scale. The fitness function is then used as the basis

for a genetic algorithm, which is constrained by several hand tailored rules to

ensure a minimum level of quality. They do not verify their system using human

participants, rather they validate the levels produced based on industry experi-

ence of what constitutes good levels. We would argue this is not a good approach

to validation, since level designers often regard the games they produce as being

good, but public opinion can vary drastically. The method also makes a very

large assumption that challenge is critical to game enjoyment, whereas in some

games there is no true notion of challenge at all. The approach could perhaps be

enhanced by incorporating different measures to be optimized beyond challenge,

but it might be difficult to map the concept of rhythm groups on to these.

Basing the idea of fitness on a single quality, such as challenge, may not be a

good approach. The idea that fitness is multi-faceted and may require multiple

functions to be optimized is a better approach. Togelius et al use Multi-objective

Evolutionary Algorithms (MOEA) for this purpose in their paper on evolving

maps for multi-player RTS games [80]. MOEA are a special type of EA that

attempts to satisfy multiple fitness functions by means of a Pareto front. The

authors target applications are an imaginary RTS, which has many of the features

of commercial games, and the game Starcraft (1998) by Blizzard Entertainment.
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Their representation scheme allows bases and resources to be placed and allows

the terrain features to be changed. They defined a number of fitness functions

based on the concepts of interestingness, fairness, playability and skill differen-

tiation based loosely on the theories of Malone [50], Czikszentmihalyi [13] and

Koster [38] and then run MOEAs on single and double and triplet combinations

of the functions. The evaluation allowed players of evolved maps to tag the map

with various values including “Interesting”, “Fun” and “Good Game-play” and

the results show that the fitness functions defined, in conjunction with the MOEA

do indeed evoke the desired properties. The main criticism of this work is that the

fitness functions are statically defined and therefore very specific to RTS games,

and perhaps even just the games defined in this study. The ideas of tagging

content i.e. categorizing it and being able to optimizing multiple properties of

content is useful.

In terms of the representations Togelius et al describe in their paper on

SBPCG [82], most approaches in this literature review are high-level. However, in

a paper by Cardamone et al, four relatively low-level and representations are used

[10]. Their target platform is the open source multi-player first person shooter

Cube 2, which has some functionality similar to Minecraft (2009). Cube 2 allows

the player to actually edit the game as it is being played, raising terrain, adding

models and adding various power-ups and spawn points to the level. The geno-

type representations used by the author allow the structure of a single-floor level

to be defined, placing walls and open spaces. The four representations are: (a)

grid-based, a very direct representation where the genotype controls the activa-

tion state of 9.9 = 81 blocks, (b) “all-white”, where the entire level is assumed

to be empty and the genotype controls the placement of walls, (c) “all-black”,

where the entire level is full and the genotype controls the extraction of cavities

and (d) where the genotype represents the behaviour of an agent that “digs out”

the level. The fitness of a level is a static metric based on how long players fight

each other, assuming that this results in more action and therefore is more en-

joyable. The authors use bots, instead of human players, citing that it would be

impractical for humans to play so many levels. The authors evaluate the results

of the experiments with all four representations by hand. This paper raises some

interesting points, including whether bots can be used affectively in the evalua-

tion of content in a SBPCG algorithm and that low-level representations can be

viable. The method can be criticized since it can be very difficult to construct
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bots that accurately represent human behaviour and their choice of fitness metric

was very limited. One can imagine that a player, for example, spend much of

their time fighting, but also having a bad time.

In another paper for PCG in Super Mario Brothers, Shaker et al attempt to

generate levels using grammars [68]. The grammar consists of rules that govern

the location of environmental features like hills, cannons and platforms as well

as the location of monsters. Their generator evolves content using an algorithm

based on Genetic Programming (GP). The fitness function rates content based

on the number chunks placed in the level and conflicts between chunks. They

evaluate their generator by comparing its output with that of the original level

generator included with Infinite Mario Brothers and the authors level generator

from a previous paper [69], which generated content based on six features. The

generators are evaluated by assessing their expressiveness, based on a framework

designed by Smith et al [74]. The metric incorporates: (a) linearity, which con-

siders the variation in hills throughout the level, (b) density, which measures the

stacking of hills on top of each other (c) leniency, which is based on difficulty and

(d) diversity, a score that looks at gaps, platforms and monsters. Their results do

not show that any of the generators has a clear advantage over the others, with

each of them being better in one score while being worse in others. However, the

paper does show an interesting approach to evaluating expressiveness in the case

of a 2D game. The use of grammars is interesting, in that it potentially increases

the diversity of the content being generated, but in this case, the fitness function

for the GP was not entirely geared towards optimizing content quality for play-

ers. Shaker et al have recently applied grammar evolution to puzzle games, and

other researchers have also recently been experimenting with grammars for PCG,

including Dormans et al [17] and Smith et al [73], with promising results.

The precise definition of content is rather wide. Kerssemakers et al ask the

question, “Can PCG generate PCG generators?”, or in other words, can the

content generators themselves be generated [37]? Their target is Infinite Mario

Brothers. Each level generator consists of agents that move through the level

painting it with features. Each agent has attributes including its spawn time,

starting position, movement style and the actions it performs. In many ways,

one can consider each generator as being in similar in operation to the method

described in Section 3.3.1 by Doran et al for terrain [15]. The generator generator,

or “outer generator” as they term it uses a interactive genetic algorithm, where
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the fitness function is a human who can evaluate members of the population. The

authors do not provide concrete results regarding how well their system works,

but the approach itself is quite unique. The approach, if it were to be made more

feasible, would need a more automated method for evaluating inner generators, as

the developer of the system would eventually become very fatigued from reviewing

the progress of each generator that the GA creates.

3.3.3 Rule-based player-adaptive SBPCG

In this section we will review two SBPCG approaches that attempt to adapt

content for a target player. This approach to SBPCG is quite challenging, as such

algorithms have to deal with player types that may not have been encountered

before-hand. This section will only address algorithms that adapt to the player,

but do so using some form of static defined metric, for example a rule-based

solution.

Hastings et al discuss their use of NeuroEvolution of Augmenting Topologies

(NEAT) in the game Galactic Arms Race (GAR) [30]. GAR requires the player

to man a space craft and destroy enemies using upgradable weapons. The unique

feature is that the weapons in GAR are evolved using an extension to NEAT

known as content generation NEAT (cgNEAT). The basic idea of NEAT is to

evolve not only the weights in a neural network but the network topology itself

using GA. The primary fitness measure of a weapon in the game is how much a

player decides to use it. Powerful and fun weapons are more likely to be used by

a player and as such their fitness and probability to have their properties appear

in future weapons is increased. Their results showed that the game did indeed

evolve entertaining and surprising weapons. They claim that automatic content

generation is a viable technology and could be used to provide a user with a

continual stream of new content. Hastings et al propose an extension to GAR

that allows the player to influence the creation of new weapons more directly [31].

In this addition to the engine players can view the neural network structure of a

particular weapon and modify it. This concept is interesting as it suggests that

the machine learning mechanisms in the game can be exposed to players to make

the game more interesting. The adaptation algorithm makes a big assumption,

however, that weapons that are used more frequently are the most fun. It may be

simply that such weapons make the game easier, thus reducing the overall quality

of the game.



78 CHAPTER 3. PROCEDURAL CONTENT GENERATION

Figure 3.11: Galactic Arms Race [30].

Every algorithm in this literature so far has concerned itself with adapting

game content such as enemies, weapons and the game world structure. In their

paper, Plans and Morelli, instead adapt music for Super Mario in real-time using

genetic algorithms [61]. They frame their work under the principles of EDPCG

and SBPCG. Their approaches first evaluates the frustration, challenge and fun

in real-time by using metrics that evaluate various game-play events such as the

number of shells kicked, coins collected and amount of time alive. These three

values are fed into simple weighted formula that estimates what level “excitement”

is being experienced. Their system then adapts the music to match the level of

excitement in real-time. Their evaluation proved inconclusive due to the number

of participants in their study. The main criticisms of this work are that the low-

level metrics used are quite specific to Super Mario, and require developer expert

knowledge to determine. Such knowledge may not be available and may actually

vary for different types of player.

3.3.4 Learning-based player-adaptive Algorithms

In this final sub-section, we will review algorithms that learn a metric for assessing

content, before using it to adapt content to a specific player. There are currently

only a few examples of algorithms that meet this criteria.

The first example we review in this section is a recent paper by Liapis et al

which aims to evolve the aesthetics of space-ships in a simple 2D game [43]. The

ships are represented using a form of Neural Network known as Compositional

Pattern-Producing Networks (CPPNs). The CPPN receives a sequence 2D co-

ordinates as input representing 15 points in a circle and returns a sequence of 2D

co-ordinates giving the pattern of the ships base shape. The activation functions
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of the CPPN modify the shape of the space ship its represents. The authors define

four functions which calculate aesthetic properties of a ship, such as its symmetry

and simplicity, based on the polygons representing it. The four functions are

combined with weights to form an overall aesthetic score. The authors evaluate

a combination of off-line and online evolution. For off-line evolution, NEAT

and a technique known as FI-2Pop which evolves two separate populations with

migration are used. For the online adaptation, a form of interactive evolution is

used, which asks the player what kind of content they like and then updates the

aesthetic weights. It is interesting to note that the initial population given to the

user in the online stage are actually ships that were evolved off-line, demonstrating

the combination of of-fline and online models. The main criticism of this work is

that it requires the player to give direct feedback. If such a technique was to be

applied in a real game the end user may quickly get fatigued and no longer wish

to play, especially if the content being involved was not restricted to one thing.

A better approach would be to implicitly detect if the player enjoyed the content,

such as in Galactic Arms Race [30]. In addition, the aesthetic functions making

up the weighted aesthetic score are pre-defined functions which may be open to

human error in their definition.

Shaker et al build on their previous work described in Section 3.2 by taking

the player models for fun, frustration and challenge and using them as functions

to adapt content to a target player [69]. Their prediction model for fun is an MLP

trained on the previous data set with feature selection, taking a play-log as input

and four level generation parameters. Their approach to evaluation is interesting,

in that they adapt content not only for players, but also for two bots. Their

argument is that it is much easier to train bots to evaluate content than to get

real players to do so. The two bots are taken from a recent competition on Super

Mario AI and attempt to mimic human behaviour. The content space consists of

levels generated using four parameters, with enough variation to produce 12000

levels. Their system works by presenting a level to the player, extracting the

play-log features, then feeding these into the MLP along with potential candidate

levels for the next iteration. The level parameters that optimize fun are used to

generate the next level. In their first experiment they apply the algorithm for

each bot, and in the second experiment they apply it to a hybrid bot, consisting

of behaviour from both bots to test the ability of the approach to deal with

varying game-play. They report success in both experiments in optimizing fun
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reported by the MLP, but only 60% the players report preferring the adaptive

model over a random model. The main criticism of this approach is that the

adaptive model is being evaluated based on what the trained MLP says is fun,

whereas the actual level fun the real players is having may be very different. In

the case of the bot, there is of course no actual fun, so the reported results are

somewhat arbitrary. It also isn’t clear what the dependence between the play-log

features and the level itself are. It could be that these two sets of parameters

affect each other, making it unclear if the MLP can accurately predict fun for the

next level, or only for the level that they were generated upon. In another paper,

Shaker at al have combined the idea of adaptation with the principles of grammar

representation in the paper described in Section 3.3.2 [68]. They use a similar

approach involving two agents for evaluation, but this time adapt engagement,

frustration and challenge. It is difficult to draw conclusions from their results, as

they do not compare the performance of their adaptive model based on feedback

from real people.

3.4 Togelius et al’s Open Questions

In this section, we quote and discuss several questions posed by the seminal paper

on the subject of SBPCG by Togelius et al [82].

“Which types of content are suitable to generate?”. Togelius et al state that

some types of content are easier to generate than others using optimisation algo-

rithms and pose the question of just what can be generated quickly and reliably

enough with sufficient quality. They state the answer depends on whether the

content is being generated off-line or online and whether the content is optional

or necessary. For example, the generation of online content may sacrifice quality

to meet the demands for speed. We would add that much of the content currently

generated using SBPCG tends to be relatively basic in nature, as algorithms tend

to have only high-level control over the content produced. We believe it remains

to be seen if SBPCG can be successful when it has more fine control over con-

tent, such as the vertices in 3D models or detailed control over levels such as the

position of enemies and items.

“How can we avoid catastrophic failure?”. Togelius et al state that one of

the issues preventing the adoption of PCG by the commercial games industry is

the belief that the content generated is unreliable. They state that presenting
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the player with any content that is unplayable is unacceptable. They suggest

that limiting the content representation space or using simulation-based evalu-

ation functions to automatically play through the content (e.g. bots) may be

approaches towards tackling this issue, but also warn that this can reduce the

diversity of content produced and also may be prohibitively computationally ex-

pensive. We agree with this analysis but would add that there are different types

of catastrophic content. For example, in the case of level generation there is

content that is simply unplayable, perhaps because of incorrectly placed walls

or gaps which can’t be crossed, and also content that is unplayable because the

difficulty so high that no player of any level of skill would enjoy e.g. a room full

of monsters that requires a huge amount of luck to beat. We would say that in

academic research, presenting catastrophic content isn’t too bad, but presenting

such content to people who have paid to buy a game certainly is not acceptable.

In the existing research constraints have been applied to evolutionary algorithms

[76], which is one approach to solving the problem, but this brings the additional

challenge of requiring the developers of the game to have in-depth knowledge of

the problem space at hand, which cannot be guaranteed.

“How can we speed up content generation?”. Togelius et al state that the

computational expense of SBPCG can be prohibitive for both online and off-line

generation. They state that depending on representation and the shape of the

search space different types of algorithm can be applied which make increase

efficiency. We would add that this challenge is closely related to the question of

what type of content can be generated. As the content required becomes more

complex in nature, the computational power required to generate it is also likely

to increase. We suggest that one approach that could potentially speed up content

creation is to divide the PCG process up into two parts. The first part would

be off-line, generated models and perhaps pre-generating content, whereas the

second part would be online and be responsible for using the models to create

content for the target audience. The combination off-line and online adaptation

has been attempted already [69] and it would be interesting to find out how far

this concept could be pushed forward.

“How is game content best represented?”. Togelius et al state that there

are a number of different approaches to representing content and say that the

most appropriate representation for a problem is likely to be dependant on the



82 CHAPTER 3. PROCEDURAL CONTENT GENERATION

required amount of novelty and reliability. They say that generating a represen-

tation scheme may in itself be a considerable task and impact on the development

of the game. We would add that finding a good content representation scheme

is a very difficult task, which we have touched upon in Section 3.1.2. The sheer

amount of content that could potentially be generated by a PCG algorithm, in-

cluding geometry, music and behaviours makes it very difficult to specify a single

representation scheme. Togelius et al suggest there are five common representa-

tion schemes in their paper on SBPCG [82], and we also observe that recently

there has been a surge of interest in using game description languages. We agree

with Togelius et al and state that the question of representation isn’t just about

increasing the scope/novelty, but also ensuring that the representation does not

create a very large, or awkward, search space to negotiate. We note that some-

thing not really discussed in the research literature is the interchangeability of

the representation formats. For example, can a description language be converted

into a higher level vector representation for easier manipulation?

“How can player models be incorporated into evaluation function?”. Togelius

et al state that most SBPCG approaches so far use theory-driven evaluation func-

tions, which try to optimize some feature of content that has been assumed to

be desirable. They state that in may be more advantageous to move towards

evaluation functions that are based on based on information gained from exper-

iments with real players i.e. player models. They state that existing approaches

have managed to use data-driven evaluation functions for direct evaluation, that

being, the assessment of feature values extracted from content. They add that it

is an open question as to whether player models for simulation-based evaluation,

that being, evaluation of content by playing it using artificial agents, and also

whether player models can be used to evaluate content that isn’t represented in

a straightforward manner. We agree that basing evaluation functions on player

models is probably the best approach. Pre-defining an evaluation function using

prior knowledge about the problem is potentially unsafe because, quite simply,

the prior knowledge may be incomplete. We believe that the first part of adapt-

ing content for target players is to find a good evaluation function, and that

searching for the content itself is actually the second part of the problem. In our

taxonomy of PCG in Section 3.3, we order algorithms based on their adaptation

capabilities. At the high-end of the scale we review algorithms that learn their

evaluation functions, which are then applied to the task of adaptation. Most of
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the SBPCG approaches in this literature review focus entirely on the search side

of the problem.

“Can we combine interactive and theory-driven evaluation functions?”. Theory-

driven evaluation functions are those which the developer uses their intuition to

design. This includes almost all of the examples of PCG in Section 3.3. Togelius

et al ask whether such functions can be combined with interactive methods, which

evaluate content as it is being played based on explicit or implicit feedback from

the player. They state that this might be one approach to speeding up SBPCG

when only sparse human feedback is available. We have already mentioned the

weakness in theory-driven evaluation functions, which is that the developer must

have a very good understanding of the content space, whereas in actuality they

may very well not. We would therefore like to extend the question posed by

Togelius et al, and ask whether data-driven evaluation functions, those based on

knowledge gained from player experiments, can be combined with iterative eval-

uation functions. Stated a different way, we ask whether it is possible to detect if

the player is having fun based on knowledge gained from player experiments and

therefore improve our search of the content space. The examples in Section 3.3.4

do approach this problem somewhat, but it remains to be seen if there is an

abstract method for approaching the problem.

3.5 Summary

In this chapter we have reviewed video game description and categorization,

player modelling and PCG. Our goal has to been to highlight the foundations

on which cutting edge PCG is based, and highlight the major challenges that

need to be addressed. The most common approach to PCG in the research lit-

erature at the moment is SBPCG, which has shown a lot of promise in various

applications. However, the most common approach to SBPCG are evolutionary

algorithms such as GAs and Genetic Programming (GP), which by their very

nature bring two major problems with them. The first of which is content rep-

resentation, or in other words, the genotype-to-phenotype mapping. It is very

uncommon to use a direct encoding, although some papers have done this [43].

Most approaches uses an indirect encoding, which is not guaranteed to preserve

the locality principle, meaning that items close in the genotype space may not be

close in meaning in the phenotype space. For example, if a bad representation
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was being used for a model whose responsibility was to filter out unacceptable

content, then a lack of locality could result in poor content being very close to

high quality content in the genotype making the model very difficult to train.

Evolutionary approaches also usually require a large amount of content to be

assessed as populations are evolved, which make it a good approach for off-line

PCG, but not online PCG. The final major issue with current SBPCG approaches

is that many of them use hand tailored fitness functions for the assessment of con-

tent. Constructing such functions is very difficult, as they often require a very

good knowledge of the genotype space. In this thesis we argue that searching

for content is only one part of the problem, with the other equally large problem

being that of knowing what makes content good or bad.

We have summarized the current state of art in PCG and analysed the issues

with the most popular approach SBPCG. In the next chapter we will introduce

the Learning-Based Procedural Content Generation (LBPCG) framework, which

aims to address several of said issues.



Chapter 4

Learning-Based Procedural

Content Generation

4.1 Introduction

In this chapter 1 we will introduce the main contribution of the thesis, the novel

Learning-Based Procedural Content Generation (LBPCG) framework, which aims

to address some of the main issues in SBPCG highlighted in Section 3.4. The

major difference between LBPCG and many existing SBPCG approaches is that

the LBPCG insists that the models used to evaluate content are built using data-

driven machine learning. The LBPCG builds up robust models from different

contributors in the typical video games development life-cycle, requiring much less

prior knowledge about the problem domain than contemporary methods do. The

LBPCG does not attempt to solve the entire problem of PCG via a single model,

rather, it uses a five models working in tandem to generate content for a target

player. Since the LBPCG is less dependent on hard-coded content evaluation

and splits the problem of PCG across different models we believe it offers a more

robust approach to PCG than existing methods. It also provides several other

advantages such as avoiding interruption to the player’s experience, which will

be explained in this section.

1This chapter is adapted from J. Roberts and K. Chen, “Learning-Based Procedural Content
Generation”, arXiv:1308.6415 [cs.AI], 2013.
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4.2 Motivation

The commercial video games development process, like most software engineering

processes, is well-structured after decades of experience. Unlike many software

engineer processes, video games development needs to incorporate work-flows for

content including everything from music and sound effects to skeletal animation

and level design. Each type of content itself has its own development process,

usually requiring several tools such as 3D Model editors, 2D art software and level

editors. The games development process can require a large cohort of skilled

personnel including programmers, artists, managers, testers and sound artists.

Throughout this thesis, we refer to such people as developers. These are experts

who are “in” on the development process and have the ability to change content.

It is expected that they are very familiar with video games and can provide great

insight from past experience. The games development process includes a lot of

iterations involving internal testing. When the game being developed reaches the

required standard, it is sometimes released to the public in a so-called beta-test.

Beta-tests are very common in Massively Multi-player Online Games (MMOG)

such as World of Warcraft (2004), which regularly does such tests whenever a new

patch or expansion set is released. Throughout this thesis we refer to all people

involved in the beta-test as beta testers, and they are noted for their separation

from the internal development process. Beta-testers usually participate because

it means they get to see the content early or just enjoy contributing to a games

product. It is also a possibility that beta-testers could be rewarded in some way

for participating. Beta-testers are an invaluable resource, as they not only find

bugs, but can also provide quality feedback on whether the game is any good or

not. Depending on feedback, it is common for the developers to remove, modify

or even add new features to a game. While beta-testing is not standard in all

genres or games companies, the contribution of beta-testers forms an integral part

of the LBPCG framework. After the games development process is complete, a

game “goes gold” and is released to the buying public. The end-users of the game

are referred to as target players throughout this thesis.

In this thesis, we define content generators to be software that when provided

with a high-level content description object, produce video game content as shown

in Figure 4.1. We call this type of configuration a content generator system. As

reviewed in Section 3.3, the video game content to be generated can be almost

anything perceivable, from music to entire game levels and the content description
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Figure 4.1: Content Generators.

object includes all formats reviewed in Section 3.1.2 such as grammars, high-

level vectors and grid-like representations. One example of such an environment

would be a level generator, which takes a list of corridors and object co-ordinates

as input, then converts all of this to 3D geometry loading the 3D objects into

place and producing a level as output. In the LBPCG, we confine the content

description object to be a parameterized content description vector, which is a

vector consisting of real or discrete values. Each value in the vector can describe

the magnitude, quantity or ratio of a particular attribute of the video game

content, for example, in the case of a level generator the content description

vector could include values specifying the number of monsters, types of weapons

available and aesthetic qualities of the level. While at first this format seems

restrictive, many of the other representation formats can be converted to such

vectors, for example almost any of the genotype representations encountered in

Section 3.3. By varying all values of the content description vector we can define

a content space which is the space of all possible content that can be generated by

the content generator. Usually the content space is too large to be exhaustively

searched. We define the goal of the LBPCG to be to manipulate the parameters

of the content description vector to build the best content for a target player’s

individual preferences. We have already discussed the challenges that current

approaches, such as a SBPCG, encounter while trying to solve this problem in

Section 3.4.

One of the major challenges for content generation system is that the content

space may contain unacceptable content. This is content that is not appropri-

ate for any player. This definition does not only include technically unbeatable
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content, e.g. levels that have badly placed walls making then impossible to com-

plete, but it also includes games that couldn’t really be enjoyed by any player

no matter their tastes e.g. a map that consists of rooms full of monsters that

in most circumstances give the player little to no chance to retaliate. In this

chapter we argue that optimizing content for a target player is a multi-faceted

problem, in that it is a requirement to first filter out the unacceptable content,

and then search the acceptable content to optimize entertainment for a target

player and that the best approach is to divide responsibility for this between

separate models. As reviewed in Section 3.3 other approaches have attempted to

combine models before with some success. As of the current research literature,

it remains unclear as to the extent that models of different functionality can be

combined to form robust composite models.

The personalization of content is not only driven by how acceptable it is or

what level of challenge it poses, but also by a player’s affective and cognitive expe-

rience [90]. This means that modelling target players goes beyond just matching

them to a skill level. Traditionally, content was divided using difficulty. For

example, in many games it is possible to select a difficulty level ranging from

“Easy” up to “Hard”, and the effect of changing the parameter is usually that

the ability of the enemy NPCs in the game increases. Difficulty can go beyond

this, for example in the adventure game Monkey Island 2 (1992) there are two

difficulty levels. Selecting the easier difficulty results in simpler puzzles which

require less ability to solve. We argue that difficulty is simply a specialization of

a more abstract concept, that being, matching a player to a particular category

of content. For example, a player may like “Easy opponents”, but also like levels

that have “Lots of plasma guns”, combining these two features results in the con-

tent category “Levels with easy opponents and lots of plasma guns”, which we

can match the player to. Learning how to categorize the content space is a big

problem that has not yet been tackled, but in the LBPCG framework it forms a

major component of the approach for personalizing content to a target player.

The act of modelling a player is itself another problem, which we reviewed in

Section 3.2. If the goal of a content generation system is to match players to a

particular category of content, then there are two basic approaches. The first of

which is to present the player with content and ask them whether they enjoyed it,

which is quite intrusive and could actually be to the detriment of the process. The

second is to observe the player’s behaviour, and then update the model of player
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preference. In the LBPCG, we prefer the second approach and a substantial

part of the framework is designed around providing this functionality. Many

existing approaches to player modelling are based upon pre-defined player types

and styles from psychological studies. We argue that taking such an approach

may not encapsulate all player types and can lead to problems in identifying the

player’s preferences and that a more robust approach is to build up models for

player preference by learning from the players themselves.

So far we have argued in favour of the learning-based approach to PCG,

which builds up its models using data from players and developers of games.

In Section 3.3 and Section 3.2 we have reviewed papers where researchers have

already tried similar approaches. A major problem with training models is that

not only is the feedback subjective, but there is the risk that players can also

provide unreliable feedback. It can take many thousands of surveys to build up

an effective player model and even then the process can be hampered by missing

or invalid entries. This is especially the case if one is to train models using the

beta-testers, who could just be random samples of people from the internet. In

a recent paper on Tomb Raider Underworld, researchers attempted to build up

a predictive model to determine if a player would complete the next level of the

game based on their behaviour on the previous two levels [48]. Even with a

pool of 10,000 players, the researchers had difficulty due to the existence of many

outliers. In this context, outliers refer to people who play the game in an irregular

manner. The detection and handling of outliers and removal of unreliable experts

is one problem that the LBPCG framework aims to address.

The final major problem in PCG that we will address here is that of player’s

preference drifting over time. Shaker et al touch on this subject in their paper on

personalizing content for Super Mario [69]. Their approach was to record a play-

log from the previous level that the player played and then update their evaluative

function to find appropriate content using this information. Their approach was

seemingly successful in that it managed to adjust the content accordingly for

artificial agents, but when tested on human players it was reported that only 60%

of them preferred the adaptive system to the non-adaptive system. The notion of

a player changing their preference or even play-style is not far fetched, as for one

example, it can be imagined that a players skill level would increase over time

and thus so would their behaviour and preference for more challenging content.

A PCG system is not very useful if it cannot continue to generate appropriate
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content over a long period of time.

In this section we have introduced the main challenges, identified from the

research literature, that the LBPCG aims to solve. In the next section we will

introduce the LBPCG framework detailing each of its component models in ab-

stract detail.

4.3 Framework

It is useful for the LBPCG framework to split the games development process

into three distinct stages: (a) the development stage, which covers the process

of creating the game including both its code and the content and also includes

internal testing, (b) the public test stage, which is the period when the game is

released to the beta testers and (c) the adaptive stage, which is the period when

the game is considered complete and released to the target players.

The LBPCG framework aims to solve five challenges highlighted in the pre-

vious section:

1. Avoiding unacceptable content in the content vector space.

2. How to categorize the content in the content vector space.

3. How to exploit potentially unreliable information acquired from the public.

4. How to categorize players in terms of player type/style.

5. How to tackle the issue of concept-drift, where a player’s preference changes

over time, without asking invasive questions such as “Are you having fun?”

The LBPCG is designed in such a way as to learn from the developers in the

development stage and from the beta-testers in the public test stage to gain as

much information about the content space and player behaviour as possible, so

that when the game is released to the target players it can adapt content to them

as quickly as possible and minimize any interruptions to their experience. To

attain this goal the LBPCG uses five separate models to learn about the con-

tent space, learn about player behaviour and then adapt to the target model.

Figure 4.2 shows the three stages of development and the corresponding LBPCG

sub-models that are trained during each stage. The Initial Content Quality (ICQ)
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Figure 4.2: Learning-based procedure content generation (LBPCG) framework.

Model and Content Categorization (CC) Models are trained during the develop-

ment stage and aim to encode the developer’s knowledge of about what content is

legitimate and how content categories are defined in order to tackle issues (1) and

(2). The Generic Player Experience (GPE) and Play-log Driven Categorization

(PDC) models are trained during the public test stage and encode beta testers

knowledge regarding the public consensus on content and how play-logs map to

player’s enjoyment, addressing issues (3) and (4). The Individual Preference is

deployed during the adaptive stage and is designed to adapt content for the target

player by monitoring their play-logs, addressing issue (5).

The goal of the ICQ model is to recognize whether content is acceptable or not.

If the ICQ model is capable of achieving this, then it can be used as a filter on the

content vector space to carve out a manifold of vectors representing acceptable

content. Any content given to the target player should be selected from within

this manifold and, if the amount of unacceptable content is significantly large,

can help reduce size of the search space. The problem the ICQ model aims to

solve is a binary classification problem in that content is either acceptable, or

it is not. If the developers had perfect knowledge of the content vector space,

then they could theoretically hand craft a rule-based function that could solve

the problem. In reality, it is highly unlikely that the developers would have such

knowledge, and as such the LBPCG prefers a learning-based methodology. The

general principle for training the ICQ model is that a few well selected examples

of content are presented to the developer who provides a label for each. The

content description vector for the content, along with the labels, is then used

to train the ICQ model. This training method itself brings about several issues

that need to be surpassed. Firstly, how to choose the well selected examples

and keep them to a minimal amount to avoid asking the developer to label too
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much content, and secondly, how to train up a learner with good generalization,

especially if only a small number of examples are available due to constraints on

the developer’s time.

The CC model is designed to categorize content. The motivation for categoriz-

ing content is the observation that players often prefer content similar to content

they have enjoyed before. For example, a player who enjoys a level categorized

as “Hard”, is likely to prefer other levels categorized as “Hard”. This allows the

LBPCG to assign players to categories based on their preference. The definition

of what the categories are is down to the developer themselves. However, the

LBPCG treats the problem of determining exactly what makes a piece of content

belong to a particular category as a problem to be solved in a data-driven way,

and as such the CC Model is trained in a similar fashion to the ICQ Model, by

presenting the developer with well-chosen examples until enough data is avail-

able to train a classifier with good generalization ability. One can view each

category as an index, and thus the problem that the CC Model aims to solve as

being a mapping from the content vector space to either an ordinal or regression

value. Since it is only desirable to present acceptable content to the target player,

the CC Model is actually a mapping from the manifold of acceptable content in

the original content vector space. The CC Model training process has the same

critical issues as the ICQ Model does.

The GPE model is designed to model the public’s consensus as to what content

is good and bad. The input to the GPE model is a content description vector and

the output is a binary value specifying whether the content was enjoyable or not.

One could theoretically train a model for determining what content is good and

bad by just using the developers themselves, but the developers are only a small

group of people with probably a very large amount of gaming experience, making

them not very representative of all possible players. This is the justification for

training the GPE model on the beta-testers, which is a much large group of people

more likely to consist of different types of player. In the LBPCG framework, an

adequate amount of representative acceptable content is given to the beta-testers

to play, who provide labels indicating whether they enjoyed the content, and

this data forms the basis of the training set for the GPE Model. As we have

previously mentioned, it is unlikely that feedback from the beta-testers is going

to be completely reliable and there may be a large amount of noise in the training

data. It could even be the case that participants have deliberately mislabelled
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data. As such, the two critical issues that need to be solved in the training process

are the question of how to assign a reliability score to each beta-tester and then

the question of how to use this information to train the GPE Model.

The goal of the PDC Model is to implicitly detect whether a play-log rep-

resents a positive or negative experience. Recall that play-logs are generated

whenever a player experiences a particular piece of content. The PDC model en-

ables the LBPCG framework to maintain a model of a players preference without

ever interrupting them with potentially intrusive questions such as “Was that

fun?”. Again, the PDC Model could be trained on only the developers, but this

is not a good approach for the same reasons as with the GPE Model. It is likely

that the developers are a small number of people with very specific play-styles

and preferences, and training the PDC Model on them would probably reduce

the generality of the model. The PDC model is therefore trained on the play-logs

produced during the training process for the GPE Model, making use of the reli-

ability information for each beta-tester to filter out misleading information. The

inputs to the PDC Model is a play-log, along with the corresponding category for

the content the play-log was generated for, and the output is binary correspond-

ing to either a positive or negative experience. The content category is passed in

as it allows the classification model to discriminate based on category, potentially

making the problem easier to solve.

The IP model is designed to personalize content for a target player. It achieves

this goal by strategically making use of the other four models in the LBPCG

framework. By its nature, the IP model is well-suited to be a state machine

that controls the process of delivering content to the player. The ideal scenario

for the IP model is that it first presents a number of well-selected examples of

content, which are deemed acceptable by the ICQ model, to the target player. By

using the resulting play-logs and the output of the CC Model the IP model can

then determine which category of content the player prefers, and then proceed to

produce content from this category until the players preference drifts into another

category. If the player’s preference cannot be detected over a long period of time,

the GPE model can be used to find content that is generally regarded as fun,

and present such content to the player instead. As such, the IP model has to

address three major issues. Firstly, the question of how many games need to be

presented to the target player to detect their categorical preference. Secondly,

how to ensure that games presented to the player from a particular category have
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good variation and are not too similar. Thirdly, how to quickly detect concept

drift and respond to it.

To summarize, the LBPCG framework aims to provide a systematic solution

to many of the problems in cutting-edge research into PCG. In terms of the

EDPCG [90] framework, one could view the LBPCG as using game-play based

Player Experience Modelling and as using an interactive evaluation function since

it uses play-logs in conjunction with the PDC model to assess player experience

and the quality of content with respect to the player. However, this isn’t such

a straightforward mapping, since prior knowledge is gained before the adaptive

stage from the developers and beta-testers causing the IP model to also form

somewhat of a direct evaluation function. In the next section we will go into

detail about the enabling techniques that take the LBPCG framework from a

conceptual level to a partial implementation level.

4.4 Enabling techniques

In this section we will present the enabling techniques we use for each model

in the LBPCG framework. In Section 4.4.1 and Section 4.4.2 we detail how

active learning can be used to train the ICQ and CC models, respectively. In

Section 4.4.3 we introduce the expectation-maximization based crowd sourcing

algorithm used to train the GPE model. Finally, in Section 4.4.5 we show our

state-based machine solution for the IP model.

4.4.1 ICQ

The goal of the ICQ model is to be able to recognize whether a content description

vector represents acceptable content or not. We denote a content space of D

parameters as G ⊂ RD where g ∈ G is the parameter vector of some content

denoted by g=(g1, g2, · · · , gD). The ICQ model can be formalized as a mapping

ΦICQ : G→{+1,−1}, where +1/−1 indicates acceptable or unacceptable content,

respectively.

To tackle the problem, the LBPCG employs a binary classifier for ΦICQ that

can output a confidence, or something that can be converted to a confidence

such as posterior probability, for each classification it performs [20]. Please see

Section 2.2 for discussion of precisely what is meant by confidence and its relation

to probability. If ΦICQ(g∗) = +1, but the probability is 0.6, then the ICQ model
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believes that g∗ is acceptable, but is not very confident of it. The content space

in most non-trivial PCG scenarios will be too large to be exhaustively searched,

which means it is not possible to label each piece of content individually. It is

also assumed that prior knowledge about the domain is minimal or non-existent

meaning that ΦICQ needs to use learning to achieve its functionality. Since the

ICQ model is trained during the development stage, the only people available to

train it are the developers of the game, who are a limited resource. This means

that it is not really feasible to present them with thousands of examples of content

to classify and the ICQ training process must intelligently select examples that

when labelled provide the greatest insight into the problem.

Algorithm 4.1. Active ICQ Learning.

1: Purpose: To train a classifier capable of recognizing acceptable content using
active learning.

2: Input: The content space G consisting of vector representations of all content
we can generate.

3: Output: (a) A set of labelled training data, and (b) the trained ICQ Model
φICQ.

4: Initialization: Annotate a few randomly selected games from G, ensuring
they do not already exist in TICQ and add them to the training set for the
classifier. Train the classifier using the training set.

5: while classifier’s error on TICQ is not acceptable do
6: Determine the best g∗ ∈ G based on a chosen query strategy
7: Have developer annotate g∗, if it was not annotated already and add it

along with its true label to the training set.
8: Re-train the classifier on the training set.
9: end while
10: Train φICQ on the resulting training set.

While there are many different methods that can be used to train a classifier,

the LBPCG framework advises that active learning is used (Section 2.3.8), as it is

a query-based approach that aims to reduce the burden on the oracle, who is the

developer in the case of the ICQ model. In our conceptions of how the LBPCG is

likely to be used, we believe that the content space is best represented as a pool of

examples, and as such pool-based active learning is the likely sampling scenario.

We do not consider other types of sampling scenario in this thesis. Our active

learning algorithm trains ΦICQ by iteratively selecting examples from G based

on a chosen query strategy, which will provide the most value to the learning

process. Each example is provided the developer for labelling, and the result is
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added to the training set on which the classifier is re-trained. In Section 2.3.8 we

highlighted several types of query strategy, which can be dependent on the model

that needs to be trained. In this general description of the ICQ, we leave the

decision of what strategy to use to the implementers of the LBPCG framework.

One could, for example, use a uncertainty sampling approach if the model has

probabilistic outputs. We defined how posterior probabilities can be calculated for

two such models, random forests and SVMs, in Section 2.3.6 and Section 2.4.1,

respectively. The entire learning process for the ICQ model is summarized in

Algorithm 4.1.

The termination condition for training the ICQ model is reached when a

satisfactory error is achieved on a test set TICQ, although, other metrics such

as the f-measure (described in Section 2.3.1) could potentially be used. What

constitutes a satisfactory error is also something we leave to the implementer of

the system. This is likely to be based on examining the examples that the ICQ

model correctly identifies and those that it generally gets wrong, to provide some

context to the error rates. The generation of TICQ is itself another problem that

needs to be solved. It is desirable that TICQ is as representative of the space as

possible, but we are constrained by the fact that the developer needs to generate

TICQ and thus we need to keep the size of the set to an appropriate level. To

generate TICQ, we recommend that first a clustering algorithm is applied to G,

such as those mentioned in Section 2.4. TICQ should be generated based on the

centroids of the clusters, which are then labelled and added to TICQ. A clustering

algorithm ensures that the centroids are relatively spread out, and while not an

being a perfect or sophisticated solution, the approach does guarantee some degree

of spread in G of the test examples. While labelling the members of TICQ, we also

recommend that category labels and any other useful annotation is collected, as

this can be potentially re-used in the subsequent stages of the LBPCG.

4.4.2 CC

The purpose of the CC Model is to categorize acceptable content. A require-

ment for the CC Model is that the developers define content features F =

(F1, · · · , F|F|). Example content features include challenge, frustration and anxi-

ety. Each feature takes a discrete or continuous value, for example, if Fi represents

difficulty then it could take a value from the set {“Easy”, “Medium”, “Hard”}.
The Cartesian product of all possible content feature values C = ∪|F|i=1Fi is the set
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of all categories. The CC Model problem can therefore be formalized as learning

a mapping ΦCC : Ga→C. Note that the CC model is expected to only be able to

classify acceptable content.

Algorithm 4.2. Active Learning for CC.

1: Purpose: To train a classifier capable of recognizing the category of any
content in Ga using active learning.

2: Input: The content space Ga, consisting of all acceptable content according
to φICQ.

3: Output: A labelled training set for φCC , and the trained classifier φCC .
4: Initialization: Annotate a few randomly selected games that do not already

exist in TCC and add them to the training set. Train each of the |F| learners
with the training set.

5: for all Ff ∈ F do
6: while test error on TCC is unacceptable in terms of Ff do
7: Determine the best g∗ ∈ G based on a chosen query strategy
8: Have developer annotate g∗ if it was not already annotated and add it

along with its ground-truth label to the training set.
9: Re-train the fth learner with new training set.
10: end while
11: end for
12: Train φCC using the training set.

The CC model has the same potential problems as the ICQ model, in that

the original content space G is too large to be exhaustively searched and that it

is desirable to avoid asking the developers to label too many games. While it is

desirable to keep the number of queries to a minimum, the CC model must also

have good generalization. To ensure the CC Model meets these requirements,

the search-space for the CC model is the original search space G filtered by the

the ICQ Model ΦICQ, which is a sub-space of acceptable content Ga. To speed

the process up, the LBPCG framework advises that labelled data from the ICQ

model training process can be re-used in the CC model training process, as long

as the respective content is labelled as acceptable. To evaluate the CC model a

validation set TCC is formed, which consists of representative acceptable games

chosen from the space Ga. The CC Model ΦCC is trained using active learning as

described in Algorithm 4.2. As with the ICQ model training process, we leave the

details of the implementation, such as the query strategy, to the implementers of

the framework.

TCC can be generated in a similar manner to TICQ, by applying clustering to
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the space Ga and labelling the centroids. However, care should be taken to ensure

that there are enough representative examples from each category. As such it is

advisable, if after labelling each centroid there is insufficient representation, to

continue to label randomly selected games from Ga until sufficient amounts of

representatives from each category are found. If available, using prior knowledge

to increase the speed of test set generation is a good idea.

After an acceptable error rate is achieved in the validation set TCC , the ac-

tive learning process is terminated resulting in a trained model ΦCC , capable of

recognizing the category of any acceptable content in the content space. It is

imperative that the error rate is low on the CC model, otherwise the LBPCG

framework may produce content from the incorrect category for a target player,

even if the target player’s preferences are correctly identified. As such, it is im-

portant that the CC Model is able to output a confidence along with its output,

which says how confident it is in its decision. The confidence value allows the

LBPCG framework to reject content that the CC Model is unsure about, thus

potentially reducing the error rate. A possible side-effect of this is to reduce

the diversity of the content, and this is a trade-off that the implementers of the

LBPCG framework need to consider.

4.4.3 GPE

The GPE model has two objectives. The first objective is to enable the LBPCG

framework to identify content that is likely to be appreciated by the majority of

people. This is useful, as it can be used as a fall-back solution if the LBPCG

framework fails to adapt to a target player. This problem is solved by learning

a mapping ΦGPE : Ga →{+1,−1}, where +1 and −1 correspond to desirable

content and undesirable content, respectively. The second objective of the GPE

model is to identify the reliability of beta-testers. This information is useful both

in the training of the GPE model and the PDC model, described in the next

section. To train the GPE model, the implementers of the LBPCG framework

need to choose a set of highly representative examples of content, GGPE ⊆ Ga
to give to P beta-testers during the public testing phase of development. Each

beta-tester will play as much content from GGPE as they choose. After each

example they play, they provide binary feedback representing either a desirable

or undesirable experience and a play-log corresponding to their behaviour during

the experience is also recorded. The feedback for player p with content example
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GnGPE is denoted as y
(p)
n . It may also be useful to collect more feedback from the

beta-testers for evaluation purposes, such as information pertaining to emotive

states or desirability expressed as an ordinal value. This allows the implementers

of the LBPCG framework to perform statistical analysis of their data.

The GPE model problem can be further formalized by stating that for each

sample of content GnGPE played by the beta testers, the GPE model must find

the desirability of it according to public consensus, ŷn with confidence level γn

as well as a reliability factor for each player p. The reliability factor for a player

is described using sensitivity and specificity, which are the true positive rate

and true negative rate of the player respectively. We denote the sensitivity and

specificity of a player p as α(p) and β(p). See Section 2.3.1 for further discussion

of this terminology.

Our requirements for the GPE Model are that it is capable of assessing the true

label of examples given potentially noisy and incomplete feedback, and that it can

also estimate reliability information for the labellers. A crowd-sourcing algorithm

created by Raykar et al [65] meets these requirements. We refer to this algorithm

as Crowd-EM throughout this thesis. Crowd-EM is an expectation-maximization

algorithm (see Section 2.3.7) and its details are given in Algorithm 4.3. Since each

beta-tester might not play all content in GGPE, one simply needs to substitute P ,

the number of all beta players, with Pn, the number of beta players who actually

played content GnGPE, as well as N in Algorithm 4.3, the number of all games in

GGPE, with Np, the number of games that player p actually played.

In addition to a functional classification model ΦGPE, on completion of the

GPE model learning process, the LBPCG framework has access to two important

pieces of information which are used by both the PDC model and IP model. The

first of which is the reliability factor (α(p), β(p)) of each of the P beta-testers,

and the second of which is a desirability score for each sample of content in

GGPE. This desirability score can be used to rank each sample of content in GGPE

and therefore produce a list of top samples of content from each category. The

reliability scores are used by the PDC model to filter out unreliable training data,

so it can build up a more robust model of player behaviour, and the ranked list

of games are used by the IP model to help find a players categorical preference.
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Algorithm 4.3. Crowd-EM for Learning GPE.

1: Purpose: To train a model φGPE that captures public opinion on the content
space and additionally assess the reliability of participants in the GPE Model
training process.

2: Input: A labelled set of data consisting of content from GGPE, along with
labels provided by the public participants.

3: Output: (a) The model φGPE, and (b) sensitivity and specificity scores for
each participant, α and β.

4: Initialization
5: Let N = |GGPE|.
6: For p=1, · · · , P , set α(p)(0) = β(p)(0) = 0.5.

7: For n=1, · · · , N , set γn(0) = 1
P

∑P
p=1 y

(p)
n .

8: Train a regression model, f(g,Θ), by finding optimal parameters, Θ∗(0), with

the training set of N examples,
{(

gn, µn(0)
)}N

n=1
, and set t=1.

9: E-Step
10: For n=1, · · · , N , calculate

hn(t) = f(gn,Θ
∗(t−1)),

an(t) =
P∏

p=1

[
α(p)(t−1)

]y(p)n
[
1− α(p)(t−1)

]1−y(p)n ,

bn(t) =
P∏

p=1

[
β(p)(t−1)

]1−y(p)n
[
1− β(p)(t−1)

]y(p)n ,

γn(t) =
an(t)hn(t)

an(t)hn(t) + bn(t)[1− hn(t)]
.

11: M-Step
12: For p=1, · · · , P , update

α(p)(t) =

∑N
n=1 γn(t)y

(p)
n∑N

n=1 γn(t)
,

β(p)(t) =

∑N
n=1[1− γn(t)](1− y(p)n )∑N

n=1[1− γn(t)]
.

13: Re-train the chosen regressor, f(g,Θ), by finding optimal parameters, Θ∗(t),

with the training set of N examples,
{(

gn, µn(t)
)}N

n=1
, and set t= t+1.

14: Repeat both E-Step and M-Step until convergence.
15: Let φGPE be the model f .

4.4.4 PDC

The goal of the PDC model is to accurately detect whether an experience with

a sample of content was positive or negative based on a play-log of the expe-

rience and the category of the content. The space of all possible play-logs of
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L play-log features is denoted as L ⊂ RL, and l ∈ L represents the play-log

for a single experience where li represents the value for a particular play-log at-

tribute. Formally, the goal of training the PDC model is to create a mapping

ΦPDC : L×C → {−1,+1}, where +1 and −1 represent a positive experience and

negative experience, respectively. The problem is therefore binary classification,

but could also be formulated as a multi-classification problem if ordinal rather

than binary output is desired.

During the public testing phase, a set of O play-logs along with correspond-

ing feedback from beta-testers are recorded using a data collection system. In

addition, each play-log is associated with a content sample in GGPE, for which

there is a category label provided by the developers. As such, the PDC model

has a training data set DPDC =
{

[(li ∈ L, ci ∈ C), yi]
}O
i=1

. Due to the likelihood

of unreliable feedback from the beta-testers, the GPE model needs to take into

account the (α(p), β(p)) reliability information for each player p and only use data

from people whose sensitivity and specificity are above a certain threshold, and

thus considered to be reliable. However, selecting an appropriate threshold is

a difficult problem. It is conceivable that people who are labelled with a lower

sensitivity or specificity may in fact simply be outliers, in that they are reporting

their true preference but that preference is different to the vast majority of other

people. Such people are not liars and their feedback is valid. To tackle this prob-

lem, the LBPCG framework uses an ensemble learning algorithm to train multiple

classifiers based on subsets of DPDC created by varying thresholds on the sensi-

tivity and specificity. This results in M classifiers, whose weight can be adjusted

by calculating their potential accuracy on cross-validation sets. Algorithm 4.4

describes the algorithm used for training the GPE Model.

4.4.5 IP

The IP model has three objectives: (a) to discover a target player’s categorical

preference, (b) to generate content for the target player from their preferred

category, and (c) to avoid complete failure in the case where the target player’s

categorical preference cannot be identified. The general methodology of the IP

model is to present content to the target player and observe how they interact with

it. By examining the play-log of the interaction, the IP model should determine

what the target player’s categorical preference is. These functional requirements

suggest that the IP model is well suited to be implemented as a finite state
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Algorithm 4.4. Learning for PDC.

1: Purpose: To train a model φPDC that can recognize whether a player enjoyed
some content from Ga by looking at the play-log and content category.

2: Input: (a) Training data DPDC consisting of play-logs and category labels,
and (b) sensitivity and specificity scores for each participant in the public
survey, α and β.

3: Output: The trained model φPDC .
4: Initialization: Divide the training data set, DPDC , collected in beta tests

into M training subsets, D1
PDC , · · · ,DM

PDC by setting a number of thresholds
for α(p) and β(p), respectively. Choose a classification model for f [(l, c),Θ],
which will be a new member of the ensemble.

5: for m = 1 to m = M do
6: Train f [(l, c,Θm)] on Dm

PDC via cross-validation by finding optimal param-
eter, Θ∗m.

7: Record its accuracy, um, on cross-validation.
8: end for
9: Calculate weights:

wm =
exp(um)∑M
k=1 exp(uk)

for m=1, · · · ,M.

10: Construct the ensemble classifier:

F [(l, c),Θ∗] =
M∑
k=1

wkf [(l, c),Θ∗k].

machine that runs in an infinite loop during the adaptive stage. The LBPCG

framework’s enabling technique is therefore a finite state machine consisting of

three modes with multiple states each, to deal with the IP models three objectives

in turn.

Figure 4.3 shows the CATEGORIZE state, which is the first state entered by

the IP model. It is designed to detect a new target player’s categorical preference

by presenting content from each category and analysing the resulting play-log to

detect if the experience was desirable. Since the CATEGORIZE state is the first

state entered, it is important to present content that is of good quality as soon as

possible. If the player is immediately presented with poor quality content while

the IP model tries to find out more about them, then it is possible they will simply

give up, defeating the purpose of the entire framework. The best approach to the

problem, without prior knowledge about the target player’s individual preference,

is to present content GGPE in the order of rank determined during the GPE model
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Figure 4.3: The CATEGORIZE state in the IP model.

training process. Even if the top content does not match the player’s categorical

preference, it has at least been judged to be of a certain level of quality by the

public. It is also helpful that the exact category of each member of GGPE is

already known, since it was labelled by the developers. If it is determined that

the target player player enjoys enough content of a certain category, by observing

their play-logs and passing them through the PDC model, then the IP Model

switches to the PRODUCE state. If the IP Model cannot determine the player’s

categorical preference, then it switches to the GENERALIZE state.

Figure 4.4 shows the PRODUCE state, which is entered when it is detected

that the target player enjoys content of a particular category. The PRODUCE

state continues to present content from the determined category, until a play-log

produced by the player indicates they are not longer having fun. Whenever this

concept drift is detected, the IP model switches back to the CATEGORIZE state.

Figure 4.5 shows the GENERALIZE state, which is designed to mitigate the

situation where the target player’s categorical preference is unknown. This is not

the ideal state to enter, as the whole point of the LBPCG is to match content
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Figure 4.4: The PRODUCE state in the IP model.

to a player’s preferences, however, it is a good fall back solution that guarantees

some degree of content quality. The GENERALIZE state uses the ICQ and GPE

models to find content from Ga that is acceptable and likely to appreciated by

members of the general public. It uses the CC model to find the category of any

games that are presented, with the hope that the player’s categorical preference

will eventually become evident so the IP model can switch into the PRODUCE

state.

It should be noted that throughout all states that the output of the PDC

model and CC model is only trusted if its confidence of classification is above a

certain threshold. The reason for this is that it is likely that these models will

occasionally be unable to classify the data they are presented, and it is important

that the IP Model responds accordingly rather than taking a risk and presenting

the target player with undesirable content.

To summarize, the IP model is a state machine that makes use of all other

models in the LBPCG to generate personalized content for an arbitrary target

player whose initial preferences are unknown. It should be emphasized that the

IP model requires only play-logs detailing the target player’s experiences with

content, avoiding interruption to their experience.
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Figure 4.5: The GENERALIZE state in the IP model.



Chapter 5

LBPCG-Quake

5.1 Introduction

In Chapter 4 the core concepts behind the LBPCG framework were introduced

along with enabling techniques for each sub-model in the framework. The frame-

work was justified by analysing problems in the existing literature. In this chap-

ter 1 concrete evidence for the framework is provided by applying it to the classic

first-person shooter, Quake. Throughout the remainder of this thesis, the ap-

plication of LBPCG to Quake will be referred to as LBPCG-Quake, and the

specific enabling technique for each LBPCG model when applied to Quake will

be preceded by Quake- i.e. Quake-ICQ, Quake-CC, Quake-GPE, Quake-PDC

and Quake-IP.

In Section 5.2 Quake is introduced and in Section 5.3 the level generator,

OBLIGE, that was used to create content for it. Section 5.4 will detail the prob-

lems that the LBPCG framework faces in particular when applied to Quake.

Section 5.5 will list all of the concrete data types involved in the LBPCG-Quake

framework, including play-logs, content vectors and the like. In Section 5.6 we

will describe the data collection process and briefly touch on the software used.

Section 5.7 will show how the enabling techniques in Section 4.4 can be applied

to Quake. In Section 5.8 the experimental protocol is provided along with all cor-

responding results both on an individual model basis and global basis. Finally, in

Section 5.9 we summarize the results with LBPCG-Quake and draw conclusions.

1Some parts of this chapter are adapted from J. Roberts and K. Chen, “Learning-Based
Procedural Content Generation”, arXiv:1308.6415 [cs.AI], 2013.
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5.2 Quake

Quake is one of the most significant games of note in gaming history, and one of

those most fondly remembered by the author of this thesis. Devised as a follow-up

to the popular 2.5D game Doom by iD Software, Quake was completely 3D and

had strong multi-player elements. The graphics were incredibly advanced for the

90s and the game pushed forward the boundaries of the expectations of players.

It was one of the most popular packages distributed between people using the

Shareware license at the time of its release.

In the single-player mode of the game the player takes control of a marine

stranded in multiple demonic worlds, fighting off hordes of creatures with various

ranged weapons or, if necessary, an axe. The general flow of the game is that the

player starts the level, battles their way through various rooms and outdoor areas,

then eventually reaches an exit pedestal which completes the level. Monsters come

in many varieties, including humanoid undead marines, flying monstrosities that

shoot plasma at the player and also large tank-like ogres which soak up a great

deal of damage before dying. A diagram of monsters is shown in Figure 5.1. The

player can pick-up health to restore damage and various power-ups that increase

their damage ability, add invisibility or add protection against toxic elements in

the environment. Levels contain interior, exterior and underwater areas. Maps

in Quake also usually contain many hidden areas containing extra power-ups and

more powerful weapons, requiring the player to be very observant and curious to

get the full potential from their game-play. In summary, Quake has all the basic

elements of a modern first-person shooter, albeit it in a more classic form and

as such is a good representation of the first-person shooter category. In Gunn’s

taxonomy [28], one would identify Quake as being non-co-operative player-as-

actor and real-time.

Quake was released under the GNU Public License (GPL) in 1999, which

is the primary advantage of using it as an example game for the LBPCG. The

open source nature of the game allowed it to be modified in various ways for

the purposes of experimentation. It was desirable to have as large a group as

possible to train the LBPCG-Quake framework and as such we decided to open

up the project to both Linux and Windows users. This meant that we had to use

two different source ports of Quake named qrack and QuakeSpasm, for Windows

and Linux respectively. Both of these ports add stability and several additional

improvements to the game such as enhanced particle effects and bloom lighting
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Figure 5.1: Quake monsters.

effects. This makes both games much more palatable to the public who are used

to more graphically appealing games. The list of modifications we made to both

QuakeSpasm and qrack is as follows:

1. After a game is played, both qrack and QuakeSpasm now produce an event-

log, which is a raw list of time-stamped events that occurred during game

play. Examples of events are the player firing their weapon, a monster being

killed and the player moving the mouse. This modification was the most

important as it allows the construction of a high-level play-logs from the

low-level events, which are used as input to the Quake-PDC model.

2. The user interfaces for both qrack and QuakeSpasm have been modified to

“lock” the user in. Once a level has been launched, the player cannot switch

to another level and the only way of exiting is to quit the game via the menu

or by completing it. This prevents the player from playing multiple games,

which would cause the event-logs to be mixed together.

On its own, Quake is just a game engine and provides no way to generate new

content. The goal of the LBPCG is to optimize content and as such a require-

ment is for the existence of a content generator. In the following section we will

introduce one such content generator for Quake, named OBLIGE. Throughout

this section we refer to Quake levels as games, and the content vector as a game

vector.
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Figure 5.2: The classic first-person shooter Quake.

5.3 OBLIGE

OBLIGE is a level generator written by Andrew Apted for various iD Software

games including DOOM, DOOM 2, Hexen, Heretic and Quake. OBLIGE has

been in development since 2005 and as such is quite mature. Figure 5.3 shows the

GUI for the program, which allows the user to select the target game, set various

generic and game-specific options and specify a random seed. Appendix A gives

all the options that can be set for Quake. Although OBLIGE does have the ability

to produce good quality playable levels, it is missing some functionality such as

generating liquids, traps and levels featuring bosses. The levels it produces are

also less aesthetically pleasing and interesting than those that can be produced by

hand. Producing a level is quite a fast process and tends to take approximately

5-10 seconds for a small level. We note that OBLIGE does not produce levels

that are broken, in the sense that the geometry of the level makes it “physically”

unplayable e.g. the player starting the game in a cuboid with no exits.

The driver for the software, including the GUI, are written in C++ but most

of the functionality is written in the scripting language LUA. We have modified

OBLIGE in the following ways:

1. A few bugs in the LUA code were fixed which prevented several of the

parameters from having any effect.

2. The number of monsters spawned has been toned down across the board to

produce more sensible difficulty scaling.

3. The first room in a map has been coded to have less monsters, which still
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Figure 5.3: GUI for OBLIGE.

gives players a chance to find a weapon, as opposed to the original be-

haviour which gradually scaled up the number of monsters from the first

room onwards. This means that the monster parameters have a more read-

ily apparent effect on levels, which allows the player to assess them more

quickly.

4. The parameters which specified how many monsters there were of each

type were modified to be pairwise ratios, stating what proportion of the

total monster count each monster type should occupy. This is opposed to

the original code which meant each monster parameter affected the total

number of monsters, rendering the overall monster count parameter less

meaningful.

5. OBLIGE has been modified to generate levels which have one weapon avail-

able throughout, making weapon selection much more game-changing.

As is apparent from Appendix A, OBLIGE has many parameters. We have

combined and excluded many of these to reduce the search-space, while maintain-

ing meaningful game variation. Table 5.1 lists the parameters that we designed for

the project. The majority of removed parameters affect aesthetic qualities of the

level, making them somewhat less interesting. For parameters that aren’t varied

any more, we fixed their value to something sensible e.g. the median value. The

important parameters, which affect monsters and weapons have been included in

the game vector.
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There are several artificial game vector parameters, such as the weapon and

the monsterset parameters. These artificial parameters wrap several OBLIGE

parameters into one to reduce the search-space. monsterset1 specifies the fre-

quency of Rottweilers, Grunts and Enforcers. monsterset2 specifies the frequency

of Knights, Scrags and Ogres. monsterset3 specifies the frequency of Fiends,

Zombies and Deathknights. monsterset4 specifies the frequency of Shamblers

and Vores. The frequency of a monster determines how probable it is to ap-

pear instead of the other monsters. If, for example, monsterset1 is set to scarce

and monsterset2 is set to heaps then the player will see a lot more Rottweilers,

Grunts and Enforcers than the player will see Knights, Scrags and Ogres. Mon-

ster frequency is also influenced by strength, which gives a preference based on

how powerful the monster is. The mon parameter has the overall say in the total

number of monsters in a level. It should be noted that in our initial analysis we

found that the skill parameter did not have much of an effect on the level. In

some circumstances it produced more enemies, but not by a substantial amount.

As such, this parameter can be regarded as being not very influential, if at all. It

was not expected this parameter would not be very important when making any

decisions about content such as acceptability or category.

Table 5.1 lists the type of each attribute used. All variable attributes, ex-

cluding the weapon parameter, were ordinal, in that some feature of the level

was increased as the value of the attribute increased (note that the random seed

was not controllable and therefore not used for measuring distance). The weapon

parameter was considered to be nominal, as there was no clear order to the val-

ues. For example, the lightning gun may cause quite a lot of damage to enemies,

but it runs out of ammunition fast, making it less useful than the nail gun in

many situations. In other words, there was no clear advantage to any of the

weapons over the others, they all being rather situational. We used the mixed

attribute measure mentioned in Section 2.4.1 as a dissimilarity metric between

content vectors, primarily for the purposes of clustering.

There are a total of 116,640 possible games, excluding variation by the random

seed. If one was to consider the random seed a controllable variable, which isn’t

the case, then there is an effectively infinite supply of games.

Each game vector also contains a random seed. This means that two game

vectors which are identical except for the random seed will result in two games

that look different. The game-play should still be similar for both games. The
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seeds for the games presented to the public during training the Quake-GPE Model

are fixed, which means each player will experience exactly the same content as

others playing the same game vector.

Name Notes Type Values
skill Increases difficulty Ordinal,

Passed
to
game,
not
OBLIGE

0, 1, 2

mons Increases monster oc-
currence

Ordinal scarce, less, normal, more,
heaps

health Amount of health
packs

Ordinal none, scarce, normal, heaps

ammo Amount of ammo in
game

Ordinal none, scarce, normal, heaps

weapon Weapon availability Nominal,
Artifi-
cial

{ nailgun, supershotgun,
grenadelauncher, supernail-
gun, rocketlauncher, light-
ninggun }

monsters1 Frequency of monsters
in set 1

Ordinal,
Artifi-
cial

none, less, more

monsters2 Frequency of monsters
in set 2

Ordinal,
Artifi-
cial

none, less, more

monsters3 Frequency of monsters
in set 3

Ordinal,
Artifi-
cial

none, less, more

monsters4 Frequency of monsters
in set 4

Ordinal,
Artifi-
cial

none, less, more

seed Random seed adding
variation to level

Discrete Integer

Table 5.1: OBLIGE/Quake parameters.

In the previous two sections we have introduced the target game for the

LBPCG and the content generator used to generate levels for it. In the following

section we will describe precisely what the expected outcomes from applying the

LBPCG to Quake are and the challenges faced.
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5.4 Challenges

The objective, simply stated, is to generate Quake levels for a target player that

are optimal in terms of enjoyment. The target player could be anyone, from

someone who has never played a game before, all the way up to people who

are very experienced gamers. This means the LBPCG-Quake framework must

be versatile enough to recognize behaviour from, and adapt to, many different

types of player who it is likely have widely different preferences and play-styles.

The objective is to generate maps that have just the right amount and type of

monsters, health packs, power-ups and the correct types of weapon for the target

player. We will later measure the success of the LBPCG-Quake framework by

comparing it against two other models (see Section 5.8.5).

OBLIGE, with the specialized parameter set, has a content vector space con-

sisting of a total of 116,640 games. If one was to play each of these games for

3 minutes all day long, it would take approximately 243 days, which is certainly

infeasible even for the most dedicated gamer. This means that the content space

must be intelligently explored and any learned models must be able to generalize

very well. On randomly sampling the content space it becomes clear very quickly

that a large amount of the content is nightmarishly difficult. This is difficult in

the sense that no player, no matter how skilled, would want to play such levels.

An example unsuitable game would be one where the player enters the first room

and is overwhelmed by hordes of monsters before the player is able to acquire

any kind of weapon. Another challenge that is faced therefore is to filter such

illegitimate content, as presenting even one such game could ruin the experience

for a player to the point where they don’t want to play any more.

These general problems are not the only ones faced. There are many subtleties

with the parameters we have chosen to vary. For example, the overall number

of monsters is controlled by one parameter, but there are four other parameters

that control the proportion of different types of monsters that appear.

The final problem faced is that the event-logs generated from each experience

with a game are very large, consisting entirely of timestamped events. There

is a question of how to break these event-logs down into meaningful play-log

representations.

In the following section we will move onto detail the precise data types that

the LBPCG-Quake framework will need to handle including such objects as play-

logs, feedback values and content vectors.
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5.5 Data types

All of the OBLIGE parameters in Table 5.1, except the random seed, form the

content vector for the LBPCG-Quake framework. Whenever a new content vector

is generated, a random seed is also generated which is fixed and then associated

with the game vector. In other words, the LBPCG-Quake framework has control

over all the aforementioned parameters except the random seed, but the random

seed is still implicitly used in the content generation. The content vector is passed

to the content generator (OBLIGE) which creates a map that can be played in

Quake. We use the terminology game to mean a map that can be played in

Quake.

Categorization requires that one or more content features is selected. To keep

the experiment as simple yet realistic as possible we chose a single feature, which

was the most intuitive, namely difficulty. Difficulty has, throughout the history of

games, been one of the most ubiquitous options that can be set before or during

game-play. It is a standard method for grading players and altering the content

that is produced. It therefore makes sense that this is a feature that most players

would have a preference for and something that the LBPCG-Quake framework

could adapt to a target player. We set the difficulty content feature to have five

possible ordinal values, namely { Very Easy, Easy, Moderate, Hard, Very Hard }.

In addition, we define acceptability as a binary value in {Illegitimate, Legitimate},
ordinal fun is a single ordinal value in {V eryBad,Bad,Okay,Good, V eryGood}
and binary fun is binary value in {NotFun, Fun}.

As previously discussed, the event-log is a log of timestamped events that oc-

curred when a game of Quake was played. Note that many of these events provide

additional parameters. For example, QS Quake DmgFiend additionally states

how much damage was done. Other events, such as QS GotWeapon Nailgun

do not have additional parameters. The play-log is a real vector consisting of

statistics gained from an event-log. Its structure is described in Appendix B.

Throughout this table tick refers to a single pulse of the game engine.

In this section we have defined all the basic types that will be used as inputs

and outputs to the LBPCG-Quake framework. In the following section we will

detail the exact implementation of each member of the framework, translating

the enabling techniques in Section 4.4 into concrete procedures.
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5.6 Data Collection

In this section we will go into detail about the data collection process for each

model in the Quake-LBPCG framework. This section will focus primarily on soft-

ware and the techniques used in collection. Statistical breakdowns and analysis

of the resulting data collected will be given in Section 5.8. The software used

to store and receive data was written in C++. More details of the software are

given in Appendix C.

Both the Quake-ICQ and Quake-CC were trained using a single expert, who

was responsible for generating both the training sets and test sets for the models.

This can be viewed as a special case of developer training, where there is a single

developer.

As per definition, the GPE training set required a large number of members of

the public to be trained. It was decided that the best way to acquire such a data

set was to collect data from anonymous people via the internet. This of course

had some drawbacks, in that the data collected was not guaranteed to have an

equal spread across different types of player, which would be advantageous to the

later adaptive stages of the Quake-IP model. In a realistic games development

environment, the developers would be able to selectively choose the people to

participate in the beta trials of the game and thus construct a more optimal

training set.

To collect data from the internet, a client/server system was developed and

placed on a website. The website was then advertised to members of the public

on websites such as reddit, the OBLIGE forums and Facebook. We will give a

breakdown of the data received in Section 5.8.3. Figure 5.4 shows the basic design

of the data collection system. The server controls the client, which is responsible

for launching Quake and OBLIGE on the player’s computer. The server transmits

games across a network connection, and receives feedback and play-logs from the

client after a game has been played. The player runs the game via a launcher

which is responsible for executing the client and also checking the internet for

updates. This allows any bugs to be fixed remotely. The server builds up a

database of surveys which are then used in the Quake-GPE training process. The

questionnaire consisted of two questions: (a) “Did you enjoy the level?” (yes/no)

and (b) “How do you rate it?” (Very Bad/Bad/Average/Good/Very Good). The

justification for (a) is that there is not much room for misinterpretation as to what

the question means. The player either had fun, or they didn’t. This also allows
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Figure 5.4: LBPCG-Quake Client Server system.

us to form a binary classification problem, which is likely to be easier to model

than a multi-class problem in this initial study. The justification for (b) is just

that we simply wanted more information for the purpose of analysis e.g. to see

how people’s interpretation of ordinal feedback is related to binary feedback. We

do not use the information from the response to (b) as training for the LBPCG-

Quake framework. We note that other authors have used systems such as 4-AFC,

which allow the player to choose their preference between multiple examples [70].

The main advantage of this is that it is usually quite easy to express preference

between two games. It isn’t immediately clear how such feedback would be used

to train the models in the LBPCG-Quake framework as we have currently defined

them, but integration with feedback using protocols such as 4-AFC would be an

interesting topic to study in the future.

5.7 LBPCG-Quake models

5.7.1 Quake-ICQ

In the application of the LBPCG to Quake, the first model that needs to be

trained is the ICQ Model. The role of the Quake-ICQ is to classify games as

being either acceptable or unacceptable. An example unacceptable game would

be one which is highly unlikely to be enjoyed, where each room is full to the

brim with ogres, but the player is not provided with enough ammunition or

health packs to be able to progress, leading to a frustrating experience. An

acceptable game would be any for which there exists a reasonable number of

players who would enjoy the content. In general, these are games where the

player is provided with enough resources able to complete the level. We have

previously stated that OBLIGE does not produce “broken” levels, in the sense

that the geometry of the level makes the game unplayable. While this is not a

problem for Quake/OBLIGE, it could very well be an issue that the ICQ Model
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would need to deal with in other content spaces.

The content vector space for the target, Quake/OBLIGE, is too large to be

exhaustively explored and as such the ICQ model’s approach of using active

learning to present those games that will add the most value to the training set

and therefore potentially gain a good understanding of the search-space more

quickly is a good idea. Active learning does, however, require the trainer to

play games and it would be a bad idea to present the user with an unreasonable

amount of examples, say over 500.

The first step in training the ICQ Model is to generate a test set TICQ, which

can be used to validate the success of the model after, or during, its training

process. We want TICQ to be as varied as possible, so we first apply k-medoids

to G, which was reviewed in Section 2.4.2. K-medoids is not a particularly so-

phisticated algorithm, but provides all of the functionality required. The content

vector space is also sufficiently small, meaning the algorithm is unlikely to run for

an extended period of time. We chose k-medoids as the centroids it uses are ac-

tually points in the content vector space, rather than averaged values that would

be used in an algorithm such as k-means. This means the centroids are playable

games. The k-medoids algorithm is terminated after no games have moved to dif-

ferent clusters within a single iteration. After convergence, the developer played

every single centroid and provided acceptability feedback on each, forming the

set TICQ. We chose k, and thus |TICQ| to be 200, because we believe this is a

reasonable number of games to expect the developer to play.

The ICQ active learning process requires that the implementers of the LBPCG

choose a query strategy that will choose which games to give to the oracle at each

iteration. Although many approaches were available, we decided to make use of

the SVM implementation provided in the popular library libsvm [12], which has

probabilistic output. With such probabilistic output, it is possible to use query

using uncertainty sampling by converting the probability to a confidence score as

detailed in Section 2.2. As our problem was likely to be non-linear, we chose an

RBF kernel for all SVMs.

The active learning process was continued until the positive and negative er-

ror rates on TICQ converged, indicating that the ICQ Model had similar levels of

ability at recognizing both acceptable and unacceptable content. This is impor-

tant, as too much bias in one direction (e.g. biased towards classifying games as

acceptable) may lead to good overall performance on the test set, but may lead
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to poor performance on the actual data encountered when being used on new

data, which may be balanced in the other direction (e.g. lots of negative games).

5.7.2 Quake-CC

The next model to be trained in the LBPCG-Quake framework is the Quake-CC

Model, responsible for categorizing acceptable content, which is an active learning

process. This means that the training and test sets for the Quake-CC Model

should be composed of games that the Quake-ICQ deems as acceptable only.

The Quake-ICQ model is therefore applied to G to filter out any unacceptable

content and produce Ga.
Training the Quake-CC Model poses an immediate problem. The developer

of the game might have some insight, but doesn’t really know much about what

makes a game difficult. Also there are five levels of difficulty, and specific assign-

ment to each of these categories based on a content vector is even less clear. For-

tunately, the method proposed in Section 4.4.2 tackles this problem by building

up an evaluative categorization model that is built using learning. By presenting

strategically selected games, the developer’s knowledge is tapped indirectly.

We decided to require a minimum of 20 games from each category as a basis for

TCC . As such, we applied k-medoids with k = 100 to Ga, with the ideal situation

being that the centroids consists of 20 games from each category. In reality, this

is of course extremely unlikely, so after labelling each of the 100 centroids, games

were uniformly sampled from Ga and labelled until at least 20 games from each

category were found.

Finally, the Quake-CC learning algorithm was implemented as specified in

Algorithm 4.2. As with the ICQ learning process, our query strategy was un-

certainty sampling and the underlying binary classifier used were SVMs, with

added probabilistic output provided by libsvm [12]. SVMs were used as the code

was already in place from the ICQ training process. We did not experiment

with other classifiers so cannot report if they would give better performance. For

the resulting model, after learning had finished, we used an ensemble of random

forests. We chose random forests for the ensemble as these allowed us to easily

print out feature rank information for each class. Again, we make no claim as to

whether random forests would perform better than another type of classifier and

this might form interesting further research.
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5.7.3 Quake-GPE

The goal of the Quake-GPE is to capture public opinion about the games OBLIGE

produces for Quake with respect to fun. In addition, the GPE Model should assess

the reliability of each individual used in the public survey so that play-logs can

be ranked by reliability for use in the training process of the Quake-PDC model.

The first step in the training process for the Quake-GPE was to select candi-

date games to give to the public. It was important that there were equal numbers

of games from each difficulty class, so that a good spectrum of feedback, and play-

logs, were received for the training process of this and subsequent models. It was

decided that 100 total games would be a sufficient number to give to the public,

as results from training the Quake-ICQ and Quake-CC models showed that this

was sufficient for training purposes. In retrospect it is apparent that the Quake-

CC test set, TCC , is the best candidate game set for this purpose. However, a

separate active learning search process, was used to discover 100 games for the

public to play. Details of the data collection process used to conduct the public

surveys will be discussed in Section 5.6.

The Quake-GPE was implemented exactly as in Algorithm 4.3 making use of

Raykar’s crowd sourcing algorithm. Raykar’s algorithm requires an underlying

regression model, which is used to output a probabilistic classification. By default,

the underlying classifier is a logistic regression model. Several ideas were explored

to improve the flexibility of the model, including using an ensemble, but the

simplest solution was to replace the logistic regressor with an SVM regressor

with RBF kernel. As per Raykar’s paper [65], the algorithm was terminated

when the log-likelihood function reached a local maximum.

5.7.4 Quake-PDC

The Quake-PDC is designed to detect whether a player had an enjoyable expe-

rience playing a game generated by OBLIGE for Quake. It requires only the

difficulty of the game and a play-log of the interaction of the player with the

game. Algorithm 4.4 shows the learning process and operation of the resulting

model, which is a weighted ensemble. For the underlying classifier, we chose to

use random forests as these provide a fast method to extract cross-validation er-

ror i.e. the out-of-bag error. In addition, they provide statistics regarding the

weight of each feature, which is useful information for debugging the model. We
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applied four different thresholds, 0.0, 0.3, 0.6 and 0.9, on α(p) and β(p), which re-

sulted in a combination of 44 = 16 different training sets. 16 random forests

were then trained on the sets to produce the basis of the Quake-PDC ensemble.

We calculated the confidence, as specified in Section 2.2, by defining the Quake-

PDC’s posterior probability to be the weighted sum of the posterior probabilities

reported by the random forests in the ensemble, using the weights wk in Algo-

rithm 4.4. Please see Section 2.3.6 for information on how to calculate posterior

probabilities for random forests.

5.7.5 Quake-IP

The state machine of the Quake-IP model was implemented as specified in Sec-

tion 4.4.5. The rank we chose to use when selecting games in the CATEGORIZE

state for a particular category of content was based on controversy i.e. games

were ranked more highly if there was more disagreement on them between the

members of the public. This means that players will be presented with games

that divide opinion first, as opposed to games which are regarded by most people

as being good or bad. This reduces the uncertainty of what category the player

falls into.

5.8 Results

In this section we will describe both the experiments conducted and results gained

in the process of verifying the LBPCG-Quake framework. A number of the mod-

els in the LBPCG-Quake framework were verified using validation sets. Other

models, for example the IP Model, require an evaluation process involving tar-

get players. Each sub-section in this section will describe the results for each

sub-model in the LBPCG-Quake framework.

Throughout this section and beyond we define positive error (rate) as the rate

at which positive examples were misclassified as negative and negative error (rate)

as the rate at which negative examples were misclassified as positive. We define

average error as the average of the positive and negative error. Positive error

is represented using the notation +error and negative error using the notation

-error in all graphs throughout this thesis.



5.8. RESULTS 121

5.8.1 Quake-ICQ results

The Quake-ICQ learning algorithm was trained for a total of 108 iterations, as

it was around this point that the f-measure (Section 2.3.1) began to fall. The

positive error, negative error and average error at each iteration is given in Fig-

ure 5.5, as reported by training an SVM at each step. Figure 5.6 gives the

f-measure. It is immediately observable that all error rates gradually decrease

over time, indicating that the active learning process worked. The positive and

negative errors converge at around 80 iterations, indicating that the Quake-ICQ

Model is equally able to classify both positive and negative points. The resulting

Quake-ICQ Model, consisting of an SVM with RBF kernel, had an average error

of 0.1, positive error rate of 0.05, negative error rate of 0.15 and f-measure of 0.94.

These measures give us a degree of confidence in the generalization capabilities of

the model, but don’t really say how effective the model is. We did not compare

the active learning process to any other approaches such as random sampling,

so cannot make any claims as to whether active learning is the most effective

algorithm to use.
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Figure 5.5: Active Learning Error Plot
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Figure 5.6: Active Learning F-Measure Plot

Based on the literature review of PCG approaches in Section 3.3, there is

no equivalent research that is quite similar enough to compare these error rates

against. The Quake-ICQ model is somewhat unique in that it is a data-driven

model trained by experts that is used to identify acceptable content in a specific

game. Most existing approaches attempt to satisfy some metric such as fun or

tune a feature such as frustration. Even our definition of “acceptable content”

is less lenient than other approaches that attempt to exclude only “broken con-

tent”, that being content that is unplayable due to badly placed geometry and

other issues. Our definition goes further in that any content that is unlikely to

be enjoyed by anyone is also excluded, even if it is technically playable. This

specificness makes it difficult to find other comparable results.

The most meaningful analysis we can provide is to look at the what types of

content the ICQ Model classified incorrectly, and state what kind of consequences

this could have. It was generally found by the developer that the types of game

that were unacceptable were those which had: (a) overwhelming amounts of

monsters, with not enough resources or (b) games that had no monsters at all

i.e. with the monster1, monster2, monster3 and monster4 parameters set to

none. Almost all other types of game were playable to some extent and could

be perceived as being enjoyable to some particular user. On filtering G with the

Quake-ICQ Model, it was apparent that the model filtered out every game where

there was no ammunition present. This makes sense, since such games are very

rarely enjoyable in any way. However, the Quake-ICQ Model failed to filter out
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all games with no monsters in them, which is probably due to the active learning

process not exploring this exact combination of parameters during its iterations

thoroughly enough. This means that if we were relying on the opinion of the

Quake-ICQ Model only to decide what games to play, the user could potentially

be presented with unacceptable games consisting of no monsters, even if this is a

rare occurrence.

We also provide two examples of games the Quake-ICQ Model incorrectly

classified to add more context. First, we give an example game that the Quake-

ICQ thought was acceptable, when in fact the developer thought it was not.

The parameters for the game are described in Table 5.2. On beginning this

game, it is understandable as to why the Quake-ICQ might think it is acceptable.

There aren’t that many monsters, and you are provided with a decent weapon.

However, it soon becomes clear that there are quite a lot of powerful monsters,

and the player quickly runs out of all ammunition. With no health at all in the

level, the player is almost guaranteed to die unless they sprint through the entire

level ignoring all monsters. It was for these reasons the game was labelled as

unacceptable i.e. due to a lack of resources. In this case, the Quake-ICQ’s hasn’t

learnt the subtleties just mentioned. The second game is one that the Quake-

ICQ thought was unacceptable, while the developer found it to be acceptable.

The parameters for the game are given in Table 5.3. In this game, there are

a large number of monsters, and it is extremely difficult to move more than 50

metres before getting shredded by fiends or zapped by shamblers. The weapon is

a grenade launcher, which is not suitable for close quarter combat. However, the

game could still be enjoyable by a very dedicated player. As such, the decision

as to whether the game is acceptable or not was very close.

Parameter Value
skill 1
mons scarce
health none
ammo scarce
weapon supernailgun
monsters1 less
monsters2 less
monsters3 less
monsters4 less

Table 5.2: Quake-ICQ False Positive.



124 CHAPTER 5. LBPCG-QUAKE

Parameter Value
skill 1
mons heaps
health none
ammo scarce
weapon grenade
monsters1 none
monsters2 none
monsters3 less
monsters4 less

Table 5.3: Quake-ICQ False Negative.

The results from the Quake-ICQ Model suggested that the model was mostly

capable of recognizing acceptable content. The active learning process converged,

in the sense that the positive and negative errors were the similar, within 80 iter-

ations and it is certainly reasonable to assume that a developer in a commercial

setting would be willing to play this amount of games. Perhaps the main crit-

icism of the approach is of the active learning process. In general, it remains

to be seen if the active learning process would converge as quickly, or have as

high a success rate, if the problem was substantially more complex. In addition,

our experiments were performed with one type of active learning only, namely

uncertainty sampling using probabilistic SVMs. It would be interesting to see

if other configurations of SVM, using different kernels and degrees of complex-

ity, and SVM-specific active learning strategies, such as MaxMin [83], perform

better or worse. It would also be interesting in future research to find if other

query strategies such as query by committee, and models such as random forests

and neural networks provide any advantage. More importantly, a general ap-

proach to assessing, perhaps using prior knowledge, what the best active learning

configuration is likely to be would be very useful.

5.8.2 Quake-CC results

To help verify the Quake-CC model and the game selection process for the Quake-

GPE, a Manual Content Categorization (MCC) model was constructed for Quake,

which we term Quake-MCC. This is a rule-based version of the Quake-CC model

which relies entirely on developer knowledge. The rules for the model are given in

Table 5.4. Any game that did not match a rule in the MCC is marked as unknown
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by the MCC. In general, the MCC acts as an effective contrast for the Quake-CC

model, which is learning-based. It also acts as an alternative method for selecting

the games in GGPE and a comparative study will be given in Section 5.8.3.

Class Condition
“Very Easy” Lowest skill, very small number of monsters, no ogres/-

fiends/shamblers, only one type of enemy, no grenade
launchers, no rocket launchers and enough ammo and
health

“Easy” Like “Very Easy”, but more monsters, two types of mon-
ster and rocket launchers allowed

“Moderate” Like “Easy” but harder skill allowed, more monsters,
some fiends allowed and no super shotguns

“Hard” Like “Moderate” but more monsters, enforced normal
skill level, shamblers allowed but not lots, no mixing of
shamblers with ogres/fiends, no lightning gun, only just
enough ammo and health

“Very Hard” Like “Very Hard” but hard skill, lots of monsters, con-
strained health/ammo and all monsters allowed

Table 5.4: Rules for the Quake-MCC Model.

Figure 5.7 shows the construction process of TCC using the clustering/search

process described in Section 5.7.2. After labelling 165 games the algorithm has

found at least 20 examples of each class. This means that 65 games had to be

played beyond the centroids found by clustering, which while acceptable in terms

of developer time usage, does indicate that the uniform sampling process could

go on for quite a while. This could potentially be improved by using a more

intelligent search, such as active learning. The final iteration leaves TCC with 23

“Very Easy” games, 47 “Easy” games, 43 “Moderate” games, 33 “Hard” games

and 20 “Very Hard” games. The graph shows that there were much less “Very

Easy” and “Very Hard” games spread throughout the centroid set, and that the

uniform search had to spend most of its time looking for examples from these

two classes. This might be because games of this difficulty are less prevalent, or

simply that they are not as spread out through Ga as the other classes.
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Figure 5.7: CC Test discovery

Figure 5.9 shows the progression of the training process. Each curve shows the

error rate of the Quake-CC on a particular difficulty class. We define error rate

for a particular class as the rate at which members of that class were classified

incorrectly. The graph shows that the process seems to stagnate after approxi-

mately the 45th iteration. After this point the error rates for each class seem to

vary around a average values. This indicates that this iteration may be a good

place to end the training. Figure 5.8 shows the average error of the Quake-CC

learning process, that is, the average of all the individual class error rates. This

graph indicates that the average error continues to decrease until approximately

the 60th iteration where it seems to stagnate. The best iteration to stop at, based

on the average error, was found to the the 65th with an error of 0.0205. The error

rates for the “Very Easy”, “Easy”, “Moderate”, “Hard” and “Very Hard” classes

were 0.043, 0.149, 0.349, 0.33 and 0.15, respectively.

It isn’t really possible to draw a conclusion as to the success of the Quake-

CC model using these error rates alone. For the Quake-CC model, we are in a

similar situation as to that of the Quake-ICQ model, in that there is no equivalent

research to compare our model against. The Quake-CC is a data-driven approach

attempting to classify content into specific categories. In the case of the LBPCG-

Quake framework, the categories happen to be difficulty levels. However, it is

still difficult to contrast these results with existing research into approaches such

as dynamic difficulty adjustment [33]. One approach to determine how good our
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results are is to compare them against the Quake-MCC, by applying the Quake-

MCC to TCC . Unfortunately it was found that the Quake-MCC was incapable of

classifying almost all of the examples provided, due to how strict the rules added

were. This gives a small amount of evidence towards the idea that encoding

developer intuitions as sets of rules may be very difficult to do successfully. The

developer involved in this experiment was a very experienced gamer, but their

concept of difficulty, as encoded in the Quake-MCC may have been far too specific.

Whether this argument has any weight beyond the developer and the game Quake

is uncertain without further research.

Another meaningful manner in which to analyse the results, in the absence of

contemporary work, is to determine what the effect of an incorrect classification

is. To this end, Figure 5.10 gives the confusion matrix for the Quake-CC Model’s

run test on TCC . The matrix shows that most of the incorrect classifications land

in adjacent classes, meaning that when the Quake-CC Model incorrectly labels a

game, the label is “almost” correct. For example, we observe from the confusion

matrix that even though the “Moderate” difficulty class is the one the Quake-CC

struggles with the most, most of the incorrect classifications land in the “Easy”

class. In terms of the LBPCG-Quake framework, this would mean that if the

Quake-IP entered in a PRODUCE state for a player identified with a particular

category C, then the player might get given games that are either somewhat

harder, or somewhat easier. The net effect of this is uncertain.

Figure 5.11 shows the counts for each class as the active learning process

proceeds. This shows us how differently the training process for the Quake-CC

model proceeds in its exploration of the space in contrast to the test set generation

process. For example, the training process discovered much fewer “Moderate” and

“Hard” games than the test set generation process.
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Figure 5.10: Quake-CC confusion matrix.
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Figure 5.11: CC Learning discovery

One approach to improve the accuracy of the Quake-CC may be to reject

games that the model is not confident of classifying correctly. For the purposes of

testing, this means that any game that the model gives a confidence of being below

a certain confidence threshold does not contribute to the reported error rate.

Figure 5.12 and Figure 5.13 show the effect of applying a confidence threshold

to Quake-CC model, showing the per-class error rate and average error rates,

respectively. Figure 5.14 shows the rate of rejection, that being, the fraction of

games from each class that the model rejects as the threshold is varied. From

all three figures, it is apparent that there is no advantage to using a confidence

threshold. Increasing the rejection threshold reduces the error on some classes,

but raises it on others, and in general raises the rejection rate too high. Since the

Quake-CC model is used as a filter in the Quake-IP model, this means that fewer

games will be allowed to pass through it. The net effect of this is less diversity

in the games presented to the target player. As such, applying a confidence

threshold would make the Quake-CC somewhat less useful, and it was decided

that the Quake-CC should not do so.
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Figure 5.14: CC rejection rates

In summary, the results show an overall error rate of Quake-CC of 0.205. The

“Moderate” and “Hard” classes have higher error rates than the other classes,

with the Quake-CC getting approximately one-third of test set examples incorrect

for each of these classes. The confusion matrix showed that incorrect classifica-

tions tended to fall in adjacent classes. Therefore, the net effect would be that if

a game of a specific category was requested by the Quake-IP model by querying

the Quake-CC model, then the resulting game is more than likely of the correct

category, or will be of a similar category. The training process for the Quake-CC

model concluded in an acceptable number of iterations, 65. The advice of the

LBPCG framework in Section 4.4.2 is that the data from the Quake-ICQ model

training process is re-used for training and testing purposes with the Quake-CC

Model. However, it was found that this data was particularly skewed towards dif-

ferent categories, as the data had been derived using active learning with different

objectives. It was found that a far better approach was to start from afresh with

TCC and the training set for the Quake-CC Model. Unfortunately, enhancing the

model with a rejection threshold proved unsuccessful and it might be useful to

see if different approaches could be used to improve the model further.

Our main criticism of the approach we have taken is, as with the Quake-

ICQ, the active learning process used. We restricted ourselves to one type of

active learning algorithm, namely uncertainty sampling using SVMs. We also

restricted ourselves to one type of final model, namely an ensemble of random

forests, due to the conveniences it offered. Both of these approaches haven’t been
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contrasted with other active learning algorithms or classification models and as

such, in future work it would be interesting to know if there are, in general,

recommendations for the concrete techniques used in training the Quake-CC.

5.8.3 Quake-GPE results

The first step in training the GPE model is to select the games that are to

be provided to the public. The process by which this was done is specified in

Section 5.7.3. A desirable feature of the GPE games is to ensure that they are

as spread out as possible geometrically in the content vector space, therefore

increasing the likelihood of the information gain. To measure the spread of the

games we applied t-SNE as follows. Firstly, k-medoids was run on Ga to form

500 clusters and then all the centroids were extracted to form a set B. B is

a condensed representation of the general spread of all acceptable games in Ga,
which means that plotting it along with the games from GGPE would give a good

indication of how spread out the public games are. The GPE games, along with C

were fed into the t-SNE algorithm to produce the plot in Figure 5.15. To contrast

the result, the MCC Model (see Table 5.4) was applied to G, and the results fed

into t-SNE along with B to form the plot in Figure 5.16, showing how spread out

content would be if the the MCC model was used to select games. Comparing

the two t-SNE plots shows that the active learning approach does provide more

diverse selection, as the MCC model tends to select its games from very distinct

clusters, compared to the dispersion of the active learning selected games.

In total 895 surveys were recorded from a total of 140 people. Each game

was played roughly nine times each and players played on average approximately

three to five games. However, one particularly enthusiastic participant produced

154 surveys on their own. The user’s surveys were removed from the data set to

prevent their feedback having too large an influence on the framework.

Figure 5.17 shows the distribution of the binary fun feedback question amongst

the surveys received from the public. 40% of the surveys represented a positive

experience. Figure 5.18 shows the equivalent distribution of the ordinal fun feed-

back question. It is interesting to note that 33% of games were labelled “Very

Bad” or “Bad”, a discrepancy of 7% between the two feedback questions, indi-

cating the likely scenario that a number of users used the “Average” feedback

value to indicate a negative experience. This shows that caution should always

be taken when asking for feedback from members of the public, who have their
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Figure 5.15: t-SNE plot for games selected using active learning. Key: Very Easy
(Red), Easy (Green), Moderate (Blue), Hard (Yellow), Very Hard (Orange).

Figure 5.16: t-SNE plot for all MCC classified games. Key: Very Easy (Red),
Easy (Green), Moderate (Blue), Hard (Yellow), Very Hard (Orange).
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own interpretation of subjective questions. In general, the split of positive and

negative experiences was a good result, since it meant that there would be an

acceptable split of training data for the Quake-GPE and Quake-PDC models.

Figure 5.19 and Figure 5.20 show the distribution of feedback amongst games

of each difficulty class. Interestingly, the graphs show that as game difficulty

increases, the number of “Very Good” labels also increases, but the “Very Hard”

class also has the most labels of “Very Bad”. The middle difficulties “Easy” to

“Hard” have the least number of people labelling them as “Very Bad”. Addition-

ally, as difficulty increases, fewer surveys are labelled as “Average”, indicating

more polarized view points.

It is actually quite desirable to present controversial games to the public, as

games that divide opinion are likely to segregate players into different categories.

Figure 5.21 provides further analysis of the controversy. For each game, we deter-

mined the average binary fun feedback value and assigned the game to a bucket

based on the value. A game with average fun feedback value of 0.5 was clearly

very controversial, and labelled as such. A game with a low or high average fun

feedback back e.g. 0.1 or 0.9, was clearly not as controversial. The graph indi-

cates that the “Very Hard” and “Very Easy” games cause the most disagreement

amongst participants, whereas the middle difficulties caused less disagreement.

This indicates that the GPE games generated using the active learning process

were well selected since they did indeed cause a fair amount of controversy.

In summary, we analyzed the public feedback on the set of games, GGPE, used

to train the Quake-GPE model. The method of using active learning to discover

games of different categories for public consumption was successful, based on the

feedback received, which indicated a lot of controversy and also showed patterns

in feedback for games across categories. In retrospect, one change we would have
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made to the selection of GGPE would have been to simply re-use the Quake-CC

testing set, TCC , removing excess games from the categories to produce 100 games.

The Quake-GPE model itself is rather difficult to verify, since it is not actually

known what the true α and β (sensitivity and specificity) values for each player

are. It was found that people who didn’t play many games tended to have low α

and β scores. We would hypothesize that people who didn’t play many games are

likely to be somewhat unreliable, having not gained enough experience to judge

the games accordingly, although we have no direct evidence for this. This suggests

that the Quake-GPE is performing as required, although this result cannot be

truly verified.

5.8.4 Quake-PDC results

The first step in analysing the data received from the public was to examine the

effect of thresholding the data using the α and β values learnt for each player

by the Quake-GPE Model. Recall that each member of the public p has an α(p)

and β(p) associated with them, which provides an estimate of their sensitivity

and specificity. By ignoring data from people with values below a threshold, it is

possible to filter out unreliable data from the training set. Figure 5.22 shows the

remaining players as the α and β threshold is swept. It is interesting to note that

the initial increment of the threshold from 0.0 to 0.01 results in the sensitivity of

25 players being declared unreliable and specificity of 59 players being declared

unreliable, which accounts for a fairly large chunk of the player base. This is

an interesting phenomena, but Figure 5.23 sheds some more light upon it. This

second graph shows the total number of remaining surveys as the data from people

with unreliable sensitivity and specificity is removed. Interestingly, it shows that

the people removed as the threshold is initially incremented only account for

approximately 50 surveys. It is likely that the Quake-GPE model is detecting

people who only briefly played the game and probably didn’t provide very reliable

feedback. This is exactly the result that was hoped for.

When providing a classification for a play-log, the Quake-PDC provides a con-

fidence, based on the posterior probabilities outputted by its constituent random

forests (see Section 2.3.6 and Section 5.7.4). If the confidence is above a specific

value, by default 0.5, then the output of the Quake-PDC is considered to be a

positive classification, otherwise it is considered a negative classification. Better

results can be achieved by varying this class threshold, which adds bias towards
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Figure 5.22: Remaining users as alpha/beta threshold swept.
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Figure 5.23: Remaining surveys as alpha/beta threshold swept.
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Figure 5.24: PDC Error on Test set vs Class Threshold.

one particular class over the other. The approach for testing the Quake-PDC is

to use cross-validation on the training set and in Figure 5.24 we show the cross-

validation error as the class threshold is varied between 0 and 1. It is apparent

from the figure that the positive/negative error rates converge at a class thresh-

old of 0.61, producing an average error of 0.21, which is an acceptable error rate

given the issues faced with noisy, unreliable data. As such, we decided that 0.61

would be the class threshold used throughout the remainder of the experiments.

Another way in which the Quake-PDC cross-validation error can be improved

is to apply a rejection threshold, in a similar manner to that which was applied

to the Quake-CC in Section 5.7.2. Figure 5.25 shows the error rates as the

rejection threshold is varied between 0 and 1, and Figure 5.26 shows the rate

of rejected samples. Using a rejection threshold of 0.25 an average error rate

of 0.24 is achieved, with a rate of 0.25 and 0.27 on the positive and negative

classes, respectively. This is considered to be a reasonable trade-off and as such

was chosen as the rejection threshold.

To see just how the PDC model was determining whether a player was having

fun or not, we trained a random forest on the entirety of the PDC training set,

minus the surveys from the player who played an excessive number of games, and

then extracted the features sorted by importance score the random forest gave

them. The full results of this are listed in Appendix D. Table 5.5 gives the top

10 features as extracted from the longer table. For each of the top ten attributes,
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Figure 5.25: PDC Error on Test set vs Reject Threshold.
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Figure 5.26: PDC Rejection Rates on Test set vs Reject Threshold.
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Table 5.6 shows the mean and standard deviation of the attribute when the play-

logs were marked as fun and not fun. This table is interesting because it shows us

the effect on the players interpretation of fun as the attribute changes, although it

cannot be entirely trusted as many play-log attributes are likely to act in groups.

The top two features are the player death count and completion, which by

their score indicate they were much more important than the other features. The

means suggest that a higher death count means it is less likely the player enjoyed

the game. This makes sense, since more deaths are likely to lead to frustration,

or indicate that the content is just not suitable for the players level of ability. A

higher completion rate in a play-log is more likely to indicate a positive experience

than a negative one according to the results. This makes sense logically, since

a player is more likely to continue playing something they enjoy to completion,

rather than something they do not enjoy. Interestingly, the number of grunts

killed is ranked quite highly, with more grunts being present having a positive

effect. Grunts are a humanoid monster that are easy to kill, and when killed

with explosive weapons will often explode causing a rather satisfying experience.

It could be that player enjoy levels with monsters they can mow down easily.

This theory seems to stand, as killing more rottweilers, another easy monster

to kill, also seems to increase the enjoyment of the level. Games that result

in more fiends being spawned, which are quite a difficult monster to kill, seem

to be less enjoyable than those games where fewer fiends are spawned. Fiends

are difficult in that they launch themselves at the player, often resulting in the

player damaging themselves if they are using an explosive weapon, and quickly

killing the player in melee combat if not. Other attributes to rank highly include

distance travelled, monsters killed and the number of input events, all of which

are attributes linked with how much of the level was completed. The amount of

health received was also influential. Strangely, the means for the health related

attributes do not different much between enjoyed and not enjoyed games. This

may indicate they only have an effect in conjunction with other attributes, or

simply that small variations in this parameter are meaningful.

Rank Feature Score

0 Completion (Monsters Killed/Total Monsters) 6.36389303

1 Player Death count/ticks 5.66099739

2 Grunt killed 2.22189641

3 Total Input Events 2.14130044
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4 Fiend spawns 1.08697462

5 Monsters killed 0.979292214

6 Total distance 0.794655621

7 Rottweiler killed 0.646714807

8 In Health/ticks 0.570297718

9 In Health 0.501151502

10 Total ticks 0.498960942

Table 5.5: PDC Model Feature importance (Top 10)

Attribute Mean

(fun=1)

S. dev

(fun=1)

Mean

(fun=0)

S. dev

(fun=0)

Completion (Mon-

sters Killed/Total

Monsters)

0.739786 0.363648 0.409536 0.403648

Player Death coun-

t/ticks

0.00472 0.002354 0.002951 0.010833

Grunt killed 15.783784 23.823454 11.764310 31.556665

Total Input Events 1105.416626 1009.648560 799.323242 795.587463

Fiend spawns 17.349098 96.157455 41.956230 122.201279

Monsters killed 47.029278 58.440601 34.828281 61.966492

Total distance 216755.609 971947.125 114658.992 106461.969

Rottweiler killed 14.083333 19.817169 9.723906 21.440807

In Health/ticks 0.278697 0.549001 0.272439 0.648923

In Health 108.378380 214.095032 98.131310 189.794342

Table 5.6: Mean/Standard Deviation of play-log attributes for binary fun

In summary, after examining the cross-validation error, we identified a suit-

able rejection threshold and class bias for the Quake-PDC model. The ensemble

approach of combining different data sets generated by filtering using different

α and β threshold values was found to alleviate the potentially difficult problem

of selecting only one threshold. Improvements to this model could look into the

method for selecting different thresholds for the ensemble, rather than the basic

approach we have taken. We defer analysis of the performance of the PDC Model
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to the next section, the reason being that the best test of the Quake-PDC is to

see how it performs on a group of target players in conjunction with the Quake-IP

model, rather than those used specifically for training the system.

5.8.5 Quake-IP results

To determine the performance of the Quake-IP Model, and by implication the

LBPCG-Quake framework as a whole, we decided to contrast it against two

other models. We termed the first of these the Random Model. This model

uniformly selects games from the original content vector space G. It uses no prior

knowledge, filtering or adaptation in its selection, apart from that built into the

OBLIGE level generator itself. We named the second model the Balanced Model.

This model presents an equal number of games from each difficulty category, as

dictated by the developer. The games are chosen from the set of games given to

the public during training of the GPE Model. Each of these has been labelled

by the developer, meaning the label is precise. Since the Quake-IP Model uses

these exact same games itself while in the CATEGORIZE state, one can view the

Balanced Model as somewhat similar. However, for each category the Balanced

Model uniformly samples the games, whereas the IP Model selects games based

on popularity and controversy. In addition, the Balanced Model does not attempt

to adapt to a target player, whereas this is the primary goal of the IP Model.

Our expectations before performing the experiment was that the Random Model

would perform the worst, given the uniform sampling of G and the prevalence of

unacceptable content. We predicted, however, that the Balanced Model would

present a challenge to the IP Model, in particular if the IP Model failed to identify

the category of players and ended up presenting equal numbers of games from

each category itself.

To contrast the three models we developed a network-based system, which was

somewhat similar in functionality to the system used for training the Quake-GPE

Model. The system presented 20 games from the Quake-IP Model, 10 games from

the Balanced Model and 10 games from the Random Model to each participant.

At each iteration, one of the three models was chosen randomly to present a

game. Although we collected 20 surveys from each participant for the Quake-IP

Model, only 10 of these were used in our subsequent statistical tests. We collected

20 to give the Quake-IP Model more to time to move into the PRODUCE and

GENERALIZE states and provide further analysis. After playing each game, the
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player was asked a number of questions, which are given in Table 5.7. Please note

that such feedback was not used for the purposes of adaptation, it was used to

assess the performance of the models only.

ID Question Response

A How difficult was that? Too easy, Just right, Too hard

B Do you want to see more levels

like that?

No, Yes

C Did you find the level fun? No, Yes

D Do you think other people would

enjoy it?

No, Yes

E How do you rate the level? Very Bad, Bad, Average, Good,

Very Good

Table 5.7: IP Evaluation Survey questions and available responses

During the Quake-GPE Model training we observed that players, on average,

played under 5 games each. In the Quake-IP evaluation we required that each

player played 40 games, which made it somewhat more challenging to find can-

didates. Each participant was asked to give honest feedback and play each game

for as long as they wished. Before the first game was presented, the players were

asked two questions each, which are given in Table 5.8. This gave us an indication

of the ability of each participant, of course depending on whether the participant

was accurate in their own self-assessment.

Question Response

What kind of gamer would you

describe yourself as?

(a) I don’t play games much - if at

all, (b) I play games sometimes,

(c) I play games regularly, (d) I’m

a hardcore gamer

How would you rate your skill

level at action video games?

(a) Inexperienced, (b) Average,

(c) Good, (d) Very good

Table 5.8: IP Evaluation self-assessment
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Don’t play much

32%Play sometimes

27%

Play regularly

36% Hardcore gamer
5%

Figure 5.27: IP Evaluation: What kind of gamer would you describe yourself as?

Inexperienced

27%Average

41%

Good

27%
Very good

5%

Figure 5.28: IP Evaluation: How would you rate your skill level at action video
games?

The feedback from one person was removed as they answered positively for

every response to the question C (binary fun). This meant that the experiment

was successfully completed by 22 people. The self-assessment feedback is dis-

played in Figure 5.27 and Figure 5.28. Each participant answered 10 surveys

from the Random and Balanced models and 20 from the Quake-IP Model, and

each survey consisted of a play-log, a game, feedback for the game (see Table 5.7)

and state information for the model used e.g. IP Model target category. We

viewed each participant as a separate “experiment”. As such, it was necessary to

devise a metric for assessing the performance of each model in each experiment.

We came up with three such metrics. The first metric, binary fun, was a simple

sum of how many games received positive feedback for the question “Did you

find the level fun?” (question C). For example, if the Random Model produced 6

games in an experiment which the player labelled as “Yes” for question C, then

it received the score 6, or in other words 60% of the games it produced (6 of 10)

were fun for this player. The second metric, which we termed the simple metric,

was a scoring system which rewarded positive feedback on each question asked.
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For some player p, model m and question q (from Table 5.7), let qmp denote the

number of games produced by model m for p which received positive feedback

for question q. For example, if q is Question A, and player p responded to 3 of

the 10 games m produced with “Just Right”, then qmp = 3. For Question E, we

counted any feedback above and including a response of “Average” as positive.

We define the simple metric, for player p and model m as Σqq
m
p i.e. a sum over

all positive responses.

The third metric, which we termed the advanced metric was a scoring system

designed to assess the success of each of the model at providing for the player’s

categorical preference. The metric was designed to reward models which produced

content from the player’s favourite category, which was determined by summing

up the positive feedback for each category of game presented to the player. For

the 30 games played by player p, let Np,c and NE
p,c denote the number of the games

of difficulty category c played and the number of games of difficulty category c

enjoyed by them, respectively. Hence, the preference rate of player p for games

of difficulty category c is ρp,c = NE
p,c/Np,c. For player p, let Nm,p,c be the number

of games of difficulty category c generated by model m. For model m and player

p, the scoring metric Sm,p is defined as

Sm,p =
∑
c∈C

ρp,cNm,p,c,

where C is the set of five content categories in the LBPCG-Quake framework.

Intuitively, a higher score awarded to a model indicates that the model produces

more games of the difficulty category enjoyed by the player. Thus, it is possible to

use such a metric to measure the success of a model in terms of personalization.

For games where no category label was available, we used the Quake-CC Model

to provide a classification.

Figure 5.29, Figure 5.30 and Figure 5.31 shows the result of applying the three

metrics to the IP Evaluation surveys.
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Figure 5.29: Binary Fun Metric for Quake-IP Evaluation
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Figure 5.30: Simple Metric for Quake-IP Evaluation
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Figure 5.31: Advanced Metric for Quake-IP Evaluation

In Section 2.3.1 we discussed the fallacy of using average error rates to com-

pare different machine learning algorithms, a stance taken by Demšar [14]. The

three metrics we have presented could be considered to be a type of accuracy

measurement, i.e. how accurate each model is in predicting whether a player

will enjoy some content it proposes. Since we have three models, either Fried-

man or ANOVA are good candidates for use as statistical tests. Analysis using

Kolmogorov-Smirnov in MedCalc [52] showed that the distribution of the results

did conform to a normal distribution, which is a requirement for ANOVA. How-

ever, since we did not want to take the sphericity assumption required by ANOVA,

we chose the Friedman test instead. The Friedman test was executed three times,

one for each metric, using a statistical significance of 0.05 i.e. the null-hypothesis

is rejected if its probability is less than 5%. The output of the statistics package

MedCalc [52] for the Binary Fun metric, Simple metric and Advanced metric is

given in Figure 5.32, Figure 5.33 and Figure 5.34, respectively. The important

sections of these figures are the third and fourth tables. The third table gives

the p-value, which if under our threshold of 0.05 allows us to safely reject the

null-hypothesis, meaning that some of the models produce significantly different

results. If the null-hypothesis is rejected, the post-hoc testing in the fourth table

tells us which of the models were different and also their mean rank, indicating

which performed better.
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Figure 5.32: Friedman test for binary metric (MedCalc).
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Figure 5.33: Friedman test for simple metric (MedCalc).
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Figure 5.34: Friedman test for advanced metric (MedCalc).

The tests on the binary fun and simple metric both indicate that the IP Model

and Balanced Model outperform the Random Model, but there is no statistically

significant difference between the performance of the IP Model and Balanced

models. However, for the advanced metric, the IP Model outperforms both the

Random and Balanced Models, and there is no statistically significant difference

between the performance of the other two models. The results for the advanced

metric suggest that the Quake-IP Model may very well be doing the job it sets

out to do, which is to generate content of the appropriate category for the target

player, and in this respect it outperforms the other models. However, the results

for the binary fun and simple metrics indicate that player satisfaction between

the Balanced Model and Quake-IP Model are similar, regardless of this.

To analyse the results in more detail, we examined the states that the IP

Model entered for each participant. We are primarily interested in how often

the Quake-IP Model managed to enter the PRODUCE state for each player, as

this indicates that the IP Model had detected that the player had a particular
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preference for a category. The IP State transition table, and several other pieces

of information, is given in Appendix E for each player whose IP Model entered

the PRODUCE state. The Quake-IP Model entered the PRODUCE state for

10 out of the 22 participants. This means that it failed to match 12 of the

players to any particular category. We suggest that this could have been caused

by one or more of several problems: (a) the player not having a preference for

a particular category, (b) the PDC threshold being set too high, meaning even

if the PDC Model classified play-logs correctly it’s classification was not taken

into account or (c) the PDC Model not being accurate enough to detect if a

player was having fun. In addition, we note that if the Quake-IP fails to enter

the PRODUCE state, it will continue to present games ranked by controversy,

as justified in Section 4.4.5. This potentially places it at a disadvantage to the

Balanced Model, if the Balanced Model is “luckier” and chooses more appealing

games from GGPE. Table 5.9 provides a summary of the level of success when

entering the PRODUCE state for several of the players for which it did so. Note

the analysis in this table is based on binary fun feedback from the player.

Player ID Observations

Player 8 The Quake-IP Model also entered into the PRODUCE

twice for this player. On the first occasion, it success-

fully determined that the player enjoyed two games of

category 2 in a row. It then generated eight games for

this category of which the player enjoyed half. Later on,

the Quake-IP Model correctly identified that the player

enjoyed two games of category 3 in a row, and produced

two games, of which the player enjoyed one. The Quake-

IP model correctly determined this and switched back

to the CATEGORIZE state.
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Player 10 The Quake-IP model moved into the PRODUCE state

twice for this player. On the first occasion it correctly

determined the player enjoyed two games of category 1

in a row and so shifted to the PRODUCE state, pre-

senting four games of this category, of which the player

only liked one. It correctly determined that the player

disliked one of the games and re-entered the CATE-

GORIZE state. Later on, the Quake-IP model briefly

entered the PRODUCE state again, after correctly de-

termining the player enjoyed two games of category 3

in a row. However, it then detected the player disliked

the first game presented to the player in the PRODUCE

state, and so shifted back to the CATEGORIZE state.

Player 11 The Quake-IP Model incorrectly determined that the

player enjoyed two games of category 3 in a row (they

only enjoyed one). The Quake-IP model then presented

four games of category 3, of which the player enjoyed

three, before correctly determining the player wasn’t

having fun and switched back to the CATEGORIZE

state.

Player 13 The Quake-IP Model only momentarily moved into the

PRODUCE state for this player, for one iteration. The

model correctly determined that the player enjoyed two

games of category 0 in a row. However, it then incor-

rectly determined that the player disliked the next game

it presented, and as such switched back to the PRO-

DUCE state.
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Player 15 The Quake-IP Model correctly determined that the

player enjoyed two games of category 1 in a row, al-

though it failed to see that the player also enjoyed two

games of category 0 before-hand due to a low PDC confi-

dence. It presented seven games for category 1, while in

the PRODUCE state, before exiting back to the CAT-

EGORY state. Of these games, only two were enjoyed

by the player.

Player 16 The Quake-IP Model entered into the PRODUCE state

twice for this player. On the first occasion, it incorrectly

determined that the player enjoyed two games of cate-

gory 1 in a row, even though the player only enjoyed one,

it then also incorrectly determined the player didn’t en-

joy the first game it presented in the PRODUCE state

and so switched back to the CATEGORIZE state. Later

on, the Quake-IP incorrectly identified that the Player

enjoyed two category 0 games in a row, and entered the

PRODUCE state. Of the six games that were presented,

four of these were enjoyed by the player.

Table 5.9: Quake-IP PRODUCE state analysis

We analysed the performance of the Quake-PDC Model on the evaluation

surveys. Figure 5.35 shows the effect on the error rates of the PDC of sweeping

the rejection threshold from 0 to 1 and Figure 5.36 shows the rejection rate

resulting from sweeping the rejection threshold from 0 to 1. We observe from

these two graphs that the rejection threshold was probably well chosen. Reducing

the rejection threshold by a small amount would have had a noticeable effect on

the error rates. Figure 5.37 shows the error rates as the class boundary is swept

from 0 to 1. Recall from Section 5.8.4 that a class threshold of 0.61 was chosen as

a result of studying Figure 5.24. We observe that the positive and negative error

rates for the IP evaluation meet at a class boundary of approximately 0.525,

suggesting that the class boundary chosen based on the results from the GPE

surveys may have been too high, which could have increased the error rate of the

Quake-PDC.
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Figure 5.35: PDC Error on IP Evaluation Surveys vs rejection threshold
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Figure 5.37: PDC Error on IP Evaluation Surveys vs class threshold

Since the Random Model uniformly sampled G, this meant that it had the

possibility of presenting games the Quake-ICQ model found unacceptable to the

player. Therefore, this enabled us to verify whether the participants agreed with

the ICQ Model’s notion of whether content is acceptable or not. For every game

produced by the Random Model, we assessed its acceptability using the ICQ

Model, then determined the rate at which players labelled unacceptable games

positively and negatively, by checking the response to question C. We found that

players liked 32% of the games that the Quake-ICQ Model found unacceptable.

This means that the Random Model was able to produce fun content that the

Quake-LBPCG could not produce due to its initial filtering. This suggests a

weakness in the training of the ICQ Model, either in the learning mechanism or

the notion of acceptability envisioned by the developer, which affects the model

as a whole.

5.9 Summary

In this section we will make our parting conclusions with respect to the LBPCG-

Quake framework. The LBPCG-Quake framework was implemented as per the

requirement of the LBPCG framework in Chapter 4. A number of design choices

were made in the implementation, such as: (a) the use of SVMs, extended with

probabilistic output, for active learning in the Quake-ICQ and Quake-CC models,

(b) the use of SVMs as the resulting classifier/regressor for the Quake-ICQ and
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Quake-GPE models, (c) the use of random forests for the resulting classifier for

the Quake-CC and Quake-PDC models. We built up the Quake-ICQ and Quake-

CC using a single developer and built the Quake-GPE and Quake-PDC using

a large number of anonymous people on the internet. Analysis of the Quake-

ICQ and Quake-CC models seemed to suggest that they were successful to an

extent, although the availability of models to contrast against was limited, so

we cannot make conclusions as to whether other implementations would perform

better. A final evaluation study using 10 participants was performed, which

compared the LBPCG-Quake framework against two non-adaptive models. The

data collected in this study helped us to assess the performance of the Quake-

PDC and Quake-IP models. The results indicated potential weaknesses in the

Quake-PDC Model, such as the choice of the class boundary. Three metrics

were constructed which allowed us to rate the success of the each of the models

in the evaluative study. Statistical analysis showed that the Quake-IP Model

outperformed the non-adaptive models for one of the metrics used. For the other

two metrics, the Quake-IP and one of the non-adaptive models outperformed the

third model, but did not perform statistically significantly differently from each

other. It was noticed that the Quake-IP Model failed to enter its PRODUCE

state for over half of the players, which is important for its adaptive capabilities.

Several possible explanations of this phenomena were offered. It was also found

that the Quake-ICQ model may have been too restrictive in its filtering of content,

hiding potentially fun content from the target player. In summary, we conclude

the LBPCG-Quake framework, as a new approach to data-driven PCG, produced

some promising results and we have highlighted how it could be improved in future

research.
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Concluding Remarks

6.1 Summary

In this thesis we have introduced a novel framework for Procedural Content Gen-

eration (PCG) in video games. PCG allows content to be constructed in video

games automatically, rather than by hand by developers of the game. PCG has

a long history in video games, dating back to the 80s, and has many notable suc-

cess stories in commercial applications. As video game development costs spiral,

PCG has an important role to play in the future of video games and could be

used for many advanced applications, including creating a sturdy base of content

on which developers can create games or even individually tailoring content for

players in a dynamic fashion.

A literature review of the current state of art in Section 3.3 revealed that

there is much exciting ongoing research into PCG, with researchers aiming to re-

define and improve how content is created for video games. Many of the current

approaches fall under the description of Search-Based Procedural Content Gen-

eration (SBPCG) algorithms, which usually use evolutionary approaches with

either a pre-defined or learnt fitness function to find desirable game content.

While SBPCG shows promising results in several applications, it also poses many

challenges that need to be overcome.

The main contribution of this thesis is a framework that aims to solve several of

these problems, described in Chapter 4. The Learning-Based Procedural Content

Generation (LBPCG) framework adapts content for an arbitrary target player

using five models, each trained using learning-based approaches. The LBPCG

itself is quite high-level, and while it recommends the use of several enabling

158
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techniques, the exact details are left to the implementers of the system. We have

provided a concrete implementation for the LBPCG using the game Quake in

Chapter 5, which show promising results for the framework.

It can be stated that the LBPCG framework shows some promising results in

solving the following challenges in the current state of the art research into PCG:

1. Avoiding catastrophic content. Unacceptable content, such as that which

is unplayable or that which is of exceedingly poor quality should never be

given to a target player. The Initial Content Quality (ICQ) model described

in Section 4.4.1 is designed to filter out unacceptable content. An imple-

mentation of the ICQ was created for Quake as described in Section 5.7.1,

which showed a level of success at identifying undesirable content in a test

set as described in Section 5.8.1. In Section 5.8.5 the Quake-ICQ Model

was found to filter our content that players did in fact enjoy, indicating that

its performance could be improved on the Quake/OBLIGE content space.

It also remains to be seen if the approach could generalize to other content

spaces. The Individual Preference (IP) model described in Section 4.4.5, is

designed in such a way that it immediately begins by presenting content that

has been rated by the public, guaranteeing some level of quality. The results

in Section 5.8.5 were not entirely conclusive, but showed that the Quake-IP

model performed better than two non-adaptive models when performance

was measured using one metric. The Quake-IP Model performed statisti-

cally equivalently to another model using the two other metrics, while at

the same time performing better than the remaining model.

2. Removing the requirement for pre-defined fitness functions. Many existing

SBPCG approaches use pre-defined fitness functions for exploring the solu-

tion space, although researchers have recently been using approaches that

learn the evaluative functions required as detailed in Section 3.3. The ad-

vantages of using a learning-based approach are that the implementers of

the PCG framework need less prior knowledge about the problem. Using a

non-learning approach means that the developer has to be able to articu-

late their knowledge to form an evaluative function usually made up rules.

The learning-based approach has more potential to capture knowledge of

the fitness of content from the developer, perhaps discovering information

they would be unable to encode in a rule-based way. All components of
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the LBPCG are learning-based, which provides what we believe to be a

much more robust and generalized approach. The results of each individual

model in the LBPCG-Quake in Section 5.8 suggest that the learning-based

approach to learning evaluative functions is potentially achievable.

3. How to exploit potentially unreliable information acquired from the public.

SBPCG and similar approaches to PCG generally require that desirable

content is found with the assistance of the public. The public can be dif-

ficult to work with, either because they provide poor feedback for mali-

cious reasons or simply because their individual tastes are too unique. The

General Player Experience (GPE) model component of the LBPCG is a

crowd-sourcing approach designed to circumvent this problem by determin-

ing contributor reliability and using this information to form a robust model

of general consensus. The results for the Quake-specific implementation of

this model in Section 5.7.3 are given in Section 5.8.3 and suggest that this

approach can work.

4. Modelling the player without interrupting their experience. In video games

development, it goes without saying that making the player’s experience

enjoyable is of critical importance. Anything that detracts from that should

be avoided. In many existing approaches to player modelling it is common

to ask players questions about their experience as reviewed in Section 3.2.

The Player-Driven Categorization (PDC) model along with the Content

Categorization (CC) model, described in Section 4.4.4 and Section 4.4.2,

are formed to avoid this problem by enabling the LBPCG framework to

recognize different categories of content and recognizing whether a player

is having a positive experience. Both models were implemented for the

LBPCG-Quake with the results given in Section 5.8.4 and Section 5.8.2,

respectively. The Quake-CC model indicated a level of success when it was

tested on a test set, indicating that incorrect classifications often ended up

in adjacent classes. When tested on the evaluation study in Section 5.8.5,

the Quake-PDC indicated that there may be potential issues, in particular

with the selection of a threshold value that it uses.

5. Handling the volatility of player preference. Video games players are volatile

entities. At one point they may prefer one type of content and then later on

something completely different. The IP model component of the LBPCG is
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designed to tackle this problem of concept drift by monitoring the players

experience over time and then changing the type of content it produces

when a bad experience is detected. It was inconclusive from the results in

Section 5.8.5 whether or not the Quake-LBPCG has the ability to recognize

and solve concept drift and future work will need to address several issues

found.

From the results for the LBPCG-Quake experiment, this thesis concludes that

a learning-based approach to PCG has potential, but more research should be

conducted to improve issues encountered. We propose that our results are a good

baseline for comparison in future research within this area.

6.2 Limitations

The LBPCG framework is a new approach to PCG and has some limitations.

In this section we divide the issue into two parts, firstly issues with the general

LBPCG framework, and secondly issues encountered in the LBPCG-Quake.

6.2.1 LBPCG limitations

1. The LBPCG framework is dependent on the quality of each of its constituent

models to have good performance. For example, if the PDC model has a low

accuracy, then the IP model will be unable to recognize whether the player

is having a good experience or not, resulting in the IP model producing

generally acceptable non-optimized content, or in the worst case, presenting

inappropriate content, although some safeguarding measures were taken in

our IP algorithms. Another challenge is recognizing whether the models do

have good performance or not given the fact that in most circumstances

there is not a ground truth and feedback is noisy and subjective.

2. Our current enabling techniques for the LBPCG suggest that active learn-

ing can be used for the ICQ and CC models. Although these methods

worked for the LBPCG-Quake, there is in fact no proof these approaches

will converge and lead to satisfactory performance with a limited number

of annotated examples. This can be mitigated to some extent by requiring
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the models of the LBPCG to output confidence along with their classifi-

cations and using this information to ignore classifications that have a low

confidence.

6.2.2 LBPCG-Quake limitations

1. It was found after informally speaking to participants after the evaluation of

the Quake-LBPCG that several players didn’t particularly have a preference

for the difficulty of a game, rather they had preferences for what weapons

were available and the type of monsters they encountered. The core concept

of the IP Model is identifying a player with a category of content they like

and then producing content of that category for them until their preference

shifts. If the content categories themselves are ill-defined, then the LBPCG

can potentially failed at its main objective. In the current designed for

the LBPCG framework, the developers define the categories. However, a

better approach may be to implicitly learn the categories of content using

a learning-based approach. Since there are a lot of people with potentially

very diverse preferences, it would be wise to enlist the help of the public

to identify what the categories are, potentially implicitly. As such, the

Quake-CC training process would, in addition to the Quake-GPE process,

be something that is trained using members of the public. We believe this

is an important vector of research moving forwards which could greatly

improve the LBPCG.

2. Machine learning is a data-driven methodology and this means that the

training data must contain sufficient information. The public test surveys,

in the case of the LBPCG-Quake, have no assurance in quality feedback or

the inclusion of a sufficiently diverse set of player types. In contrast, the

target players in the Quake-IP evaluation were better selected and hence

they played all games seriously and were likely to have given their genuine

feedback. The Quake-PDC, trained on the public test surveys, behaved in a

somewhat different manner when test on the Quake-IP evaluation subjects.

One explanation for this may be due to the members of the public not

being varied enough in their play-style, or simply being too unreliable in

their feedback. In conclusion, the public test surveys should be done on a

set of more appropriate beta players, which may incur a cost in commercial
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games.

3. Through the training of the Quake-ICQ, Quake-CC, Quake-GPE and Quake-

PDC we chose a number of concrete implementations of the abstract ap-

proaches proposed in Chapter 4, using machine learning techniques such

as random forests and SVMs. In addition, active learning was used on

several occasions using a specific approach, uncertainty sampling. These

implementations were not contrasted with other potential approaches, so

we make no claims as to whether better methods exist. In future work we

would like to see if more sophisticated algorithms could be deployed, which

would potentially make the LBPCG-Quake more successful.

In conclusion, the LBPCG framework provides a fresh approach towards gen-

erating personalised game content. Our proof-of-concept prototype LBPCG-

Quake showed some success, but also identified a number of issues ranging from

the robustness of the LBPCG framework to its enabling techniques to be studied

in future research.
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Appendix A

OBLIGE parameters

Parameter Effect Values

strength Frequency of

types of mon-

sters that will

appear

weak, medium, tough, crazy

health Frequency of

health packs

none, scarce, less, normal, more,

heaps

ammo Frequency of

ammo

none, scarce, less, normal, more,

heaps

mons Frequency of

monsters

none, scarce, less, normal, more,

heaps, nuts, prog, mixed

powers Frequency of

power-ups

none, less, normal, more, mixed

theme Theme for the

level

original, mixed, jumble, psycho,

quake base, quake castle

size Size of the level tiny, small, regular, large, ex-

treme, prog, mixed

outdoors Frequency of

outdoor areas

none, few, some, heaps, always,

mixed

traps Frequency of

traps

none, few, some, heaps, mixed

Continued on next page
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Table A.1 – continued from previous page

Parameter Effect Values

secrets Frequency of Se-

cret areas

none, few, some, heaps, mixed

dog Rottweiler Fre-

quency

none, scarce, less, plenty, more,

heaps, insane

fish Rotfish Fre-

quency

none, scarce, less, plenty, more,

heaps, insane

grunt Grunt Fre-

quency

none, scarce, less, plenty, more,

heaps, insane

enforcer Enforcer Fre-

quency

none, scarce, less, plenty, more,

heaps, insane

zombie Zombie Fre-

quency

none, scarce, less, plenty, more,

heaps, insane

knight Knight Fre-

quency

none, scarce, less, plenty, more,

heaps, insane

death kt Death Knight

Frequency

none, scarce, less, plenty, more,

heaps, insane

scrag Scrag Frequency none, scarce, less, plenty, more,

heaps, insane

tarbaby Spawn Fre-

quency

none, scarce, less, plenty, more,

heaps, insane

ogre Ogre Frequency none, scarce, less, plenty, more,

heaps, insane

fiend Fiend Frequency none, scarce, less, plenty, more,

heaps, insane

vore Vore frequency none, scarce, less, plenty, more,

heaps, insane

shambler Shambler fre-

quency

none, scarce, less, plenty, more,

heaps, insane

ssg Double Shotgun

frequency

none, scarce, less, plenty, more,

heaps, loveit

Continued on next page
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Table A.1 – continued from previous page

Parameter Effect Values

nailgun Nailgun fre-

quency

none, scarce, less, plenty, more,

heaps, loveit

nailgun2 Perforator fre-

quency

none, scarce, less, plenty, more,

heaps, loveit

grenade Grenade

Launcher fre-

quency

none, scarce, less, plenty, more,

heaps, loveit

rocket Rocket

Launcher fre-

quency

none, scarce, less, plenty, more,

heaps, loveit

zapper Thunderbolt fre-

quency

none, scarce, less, plenty, more,

heaps, loveit

bridges Level structure mixed, none, few, some, heaps

barrels Level structure mixed, none, few, some, heaps

beams Level structure mixed, none, few, some, heaps

big room Level structure mixed, none, few, some, heaps

big juncs Level structure mixed, none, few, some, heaps

cages Level structure mixed, none, few, some, heaps

caves Level structure mixed, none, few, some, heaps

crates Level structure mixed, none, few, some, heaps

crossovers Level structure mixed, none, few, some, heaps

cycles Level structure mixed, none, few, some, heaps

hallways Level structure mixed, none, few, some, heaps

lakes Level structure mixed, none, few, some, heaps

liquids Level structure mixed, none, few, some, heaps

odd shapes Level structure mixed, none, few, some, heaps

pictures Level structure mixed, none, few, some, heaps

pillars Level structure mixed, none, few, some, heaps

scenics Level structure mixed, none, few, some, heaps

symmetry Level structure mixed, none, few, some, heaps

teleporters Level structure mixed, none, few, some, heaps

Continued on next page
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Table A.1 – continued from previous page

Parameter Effect Values

windows Level structure mixed, none, few, some, heaps

room shape Level structure mixed, none, L, T, U, S, H



Appendix B

Quake Play-log format

Play-log feature Description

Completion Monsters killed / total monsters

Total ticks Total number of loops of the game engine

Total distance Total distance travelled

Total distance/ticks Average distance travelled per tick

Total Input Events Total number of input events

Total Input Events/ticks Average input events per tick

Input Event Speed How quickly input events occur

Mouse X mean Average mouse movement in x-axis per win-

dow

Mouse Y mean Average mouse movement in y-axis per win-

dow

Mouse X std dev Standard deviation of mouse movement in x-

axis

Mouse Y std dev Standard deviation of mouse movement in y-

axis

Mouse X sum Total sum of movement of mouse in x-axis

Mouse Y sum Total sum of movement of mouse in y-axis

Mouse X sum/ticks Average mouse movement in x-axis per tick

Mouse Y sum/ticks Average mouse movement in y-axis per tick

Key x Count For each interesting key (5 total), average

movement

Continued on next page
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Table B.1 – continued from previous page

Play-log feature Description

In Damage Total damaged received

In Health Total health received

In ammo Total ammo received

Axe Usage Frequency of axe use

Shotgun Usage Frequency of shotgun use

Supershotgun Usage Frequency of super shotgun use

Nailgun Usage Frequency of nailgun use

Supernailgun Usage Frequency of super nailgun use

Grenade Launcher Usage Frequency of grenade launcher use

Rocket Launcher Usage Frequency of rocket launcher use

Lightning Gun Usage Frequency of lightning gun use

In Damage/ticks Damage received per tick

In Health/ticks Health received per tick

In ammo/ticks Ammo received per tick

Axe Usage/ticks Axe use per tick

Shotgun Usage/ticks Shotgun use per tick

Supershotgun Usage/ticks Super shotgun use per tick

Nailgun Usage/ticks Nailgun use per tick

Supernailgun Usage/ticks Super nailgun use per tick

Grenade Launcher Usage/ticks Grenade launcher use per tick

Rocket Launcher Usage/ticks Rocket launcher use per tick

Lightning Gun Usage/ticks Lightning gun user per tick

Monster x Damage For each monster x, total amount of damage

received

Monster x Damage/ticks For each monster x, amount of damage re-

ceived per tick

Monster x killed For each monster x, amount killed

Monster x killed/ticks For each monster x, amount killed per tick

Out Damage Total damage given

Out Damage/ticks Damage given per tick

Monsters killed Total monsters killed

Continued on next page
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Table B.1 – continued from previous page

Play-log feature Description

Monsters killed/ticks Monsters killed per tick

Total monster spawns Total monsters spawned

Total monster spawns/ticks Monsters spawned per tick

Player Death count How many times played died

Player Death count/ticks Player deaths per tick



Appendix C

LBPCG Software Project

In this appendix we provide an overview the software developed to implement

the LBPCG for the target game Quake in Chapter 5. We refer to the software

used to drive LBPCG-Quake as the LBPCG Software Project (LSP). The LSP

consists of 5 software libraries and 11 executables written in C++, which are

illustrated in Figure C.1 and Figure C.2, respectively. Packages coloured red and

green indicate software libraries and executables that are part of the LSP, respec-

tively, and packages coloured white are external components. Arrows indicate

communication and dependency. Table C.3 gives a summary of the executables.

Table C.6, Table C.7, Table C.5, Table C.8 and Table C.4 gives details of the

libraries.

Figure C.1: LSP Libraries.
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Figure C.2: LSP Executables.
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quake icq Quake-ICQ model
quake cc Quake-CC model
quake gpe Quake-GPE model
quake pdc Quake-PDC model
quake ip Quake-IP model
quake mcc Quake-MCC model
quake server Server software designed to collect surveys from the pub-

lic for the games in GGPE. Ensures that each game is
distributed evenly amongst participants. Each commu-
nication packet is hashed using a secret sequence to pre-
vent malicious interaction.

quake client Client software designed to collect surveys from the pub-
lic. Communicates with quake server using the encoding
format provided by UtilLib. Uses OBLIGE to generate
games, then launches either QuakeSpasm or qrack de-
pendant on platform. Collects feedback via dialogs.

quake launcher Downloads new versions of quake client to the partici-
pants computer and launches quake client. This is the
executable distributed via the web.

quake evaluate Launche quake ip and collects feedback via dialogs. No
network communication. Files needs to be loaded from
participants computer afterwards.

quake tool Tool for miscellaneous operations such as interacting
with data.

Figure C.3: LSP Executables.
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Name UtilLib
Purpose A helper library providing basic utility functionality to

the rest of the LSP.
Functionality (a) An encoding API to store all classes used throughout

the LSP on disk and enable them to be transferred by
network connection (b) MD5 support for hashing (c)
Latex API for creating .tex files, compiling them using
external utilities and generating graphs (d) Compression
support for data, including network packets (e) Logging
support (f) GUI support for dialogs

Dependencies (a) Standard Template Library (STL): For lists, vectors,
strings and other basic utilities (b) zlib: For compression
(c) FLTK: For GUI features (d) Sockets: For network
transportation

Important Classes Serial: Base class inherited by any other that needs en-
coding support

Important Files (a) compress.h/compress.cpp: Contains functions
classes for compression (b) encoding.h/encoding.cpp:
Contains classes and functions for encoding (c)
graph.h/graph.cpp: Contains functions for creating LA-
TEX and GNUPLOT graphs (d) latex.h/latex.cpp:
Contains functions for generating LATEX files (e)
log.h/log.cpp: Containins functions for logging (f) net-
work.h/network.cpp: Contains functions and classes for
network support (g) ui.h/ui.cpp: Contains classes and
functions for GUI support (h) utils.h/utils.cpp: Con-
tains many miscellaneous helper functions

Figure C.4: LSP: UtilLib



184 APPENDIX C. LBPCG SOFTWARE PROJECT

Name MachineLearningLib
Purpose To provide machine learning algorithms to the rest

of the LSP
Functionality (a) Random Forests (b) Support Vector Machines

(SVM) (c) k-medoids (d) An abstract format for
machine learning data (e) t-SNE (f) Bagging sup-
port for SVMs and random forests (g) Multi-class
random forest support (h) Support for various er-
ror formats, including regression error, multi-class
error and binary class error

Dependencies (a) librf: For random forests (b) libsvm: For SVMs
(c) UtilLib: For basic functionality

Important Classes (a) Model::Training: Class that represents ma-
chine learning data, which can be fed into the
APIs for the machine learning algorithms. Con-
sists of a list of vectors of floating point inputs
and outputs. (b) Normaliser: Helps to maintain
a normalized version of training data, where new
data can be added resulting in re-normalization
(c) Svm: Base class for SVM functionality (d)
RSvm: SVM-R support (regression) (e) CSvm: Bi-
nary classifier SVM support (f) MSvm: Multi-class
SVM support (g) RForest: Random forest support
(h) MultiClassRandomForest: Multi-class random
forest support, achieved by maintaining an ensem-
ble of random forests and checking their probabilis-
tic outputs (i) RegressionError: Class for reporting
regression error (j) ClassError: Class for report-
ing binary classification error (k) MultiClassError:
Class for reporting multi-classification error and
confusion matrices

Figure C.5: LSP: MachineLearningLib
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Name GameSurveyLib
Purpose To provide an abstract representation of games

and feedback surveys
Functionality (a) Specifying content features (b) Randomizing

game description vectors (c) Storing feedback from
developers and the public (d) Representing play-
logs

Dependencies (a) UtilLib: For basic functionality (b) Machine-
LearningLib: To enable surveys, games and play-
logs to be converted into a generic machine learn-
ing format

Important Classes (a) EventLog: Basic representation of an event-log
generated by a player (b) Game: Representation of
a game, stores a Parameters object (c) GameClus-
ters: A class used to hold clusters of games af-
ter a clustering algorithm has been applied to the
content space (c) Games: A list of Game objects
with extra functionality to convert them into var-
ious formats suitable for learning (d) Parameters:
A class representing the various parameters that
can be set for a game e.g. OBLIGE parameters
(e) PlayLog: Generated from an EventLog object,
can be converted into a suitable format for ma-
chine learning (f) Survey: Generic class represent-
ing feedback from either a developer or member
of the public. Can store multiple feedback entries
in one record e.g. Difficulty, Acceptability, Fun.
(g) Surveys: Storage class for Survey objects. Has
functionality, for example, for converting all the
surveys into a format for machine learning

Figure C.6: LSP: GameSurveyLib
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Name LbpcgLib
Purpose Implements all models in the LBPCG-Quake

framework
Functionality (a) Quake-ICQ model (b) Quake-CC model (c)

Quake-GPE model (d) Quake-PDC model (e)
Quake-IP model (f) Quake-MCC model

Dependencies (a) Armadillo maths library for manipulation of
vectors in implementation of Crowd-EM algorithm
(b) UtilLib: For basic functionality (c) GameSur-
veyLib: For manipulation of surveys provided by
developers and members of the public (d) Machine-
LearningLib: For learning algorithms

Important Classes (a)-(e) IcqModel/CCModel/GpeModel/PdcMod-
el/IpModel: Implementations of learning and clas-
sification functionality for each LBPCG-Quake
model (f) SvmCrowdEM: Implementation of
Crowd-EM

Figure C.7: LSP: LbpcgLib

Name QuakePluginLib
Purpose A plugin library for qrack and QuakeSpasm

(Quake implementations) that allow them to com-
municate with the other LBPCG libraries. Written
to be C compatible.

Functionality (a) Event creation and saving
Dependencies None
Important Files quakeplugin.h: Code that can be included in

Quake for generating events

Figure C.8: LSP: QuakePluginLib
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Play-log feature rank table

Rank Feature Score

0 Completion (Monsters Killed/Total Monsters) 6.36389303

1 Player Death count/ticks 5.66099739

2 Grunt killed 2.22189641

3 Total Input Events 2.14130044

4 Fiend spawns 1.08697462

5 Monsters killed 0.979292214

6 Total distance 0.794655621

7 Rottweiler killed 0.646714807

8 In Health/ticks 0.570297718

9 In Health 0.501151502

10 Total ticks 0.498960942

11 Rottweiler spawns 0.434645385

12 Grunt killed/ticks 0.425062567

13 Rottweiler spawns/ticks 0.401339918

14 Out Damage/ticks 0.351460725

15 Total Input Events/ticks 0.329764009

16 Ogre spawns 0.265760571

17 Total monster spawns 0.19812569

18 Out Damage 0.171154276

19 Rottweiler killed/ticks 0.160433486

20 In Damage 0.151273817

21 Fiend spawns/ticks 0.118670218
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22 Grunt spawns 0.0514944792

23 Total monster spawns/ticks 0.0418163836

24 Damage to Knight 0.037143372

25 Input Event Speed 0.019054858

26 Damage to Scrag 0.00519630685

27 Grunt spawns/ticks -0.000385532388

28 Game Category -0.033378467

29 In ammo -0.0413112752

30 In Damage/ticks -0.0445075855

31 Scrag killed/ticks -0.0499573499

32 Supernailgun Usage -0.0721520185

33 Shotgun Usage/ticks -0.0887285322

34 Knight killed/ticks -0.128696725

35 Shotgun Usage -0.136336938

36 Damage to Scrag/ticks -0.139845476

37 Axe Usage -0.140687734

38 Damage to Shambler -0.15862149

39 Damage to Fiend/ticks -0.163362622

40 Damage to Grunt -0.166941941

41 Monsters killed/ticks -0.168565825

42 Damage to Grunt/ticks -0.174115255

43 Knight killed -0.188326776

44 Lightning Gun Usage/ticks -0.191952005

45 Scrag spawns -0.194354117

46 Damage to Knight/ticks -0.201093554

47 Ogre spawns/ticks -0.20419924

48 Supershotgun Usage/ticks -0.210053176

49 Damage to Rottweiler/ticks -0.213232994

50 Fiend killed/ticks -0.224306539

51 Shambler spawns/ticks -0.226584211

52 Nailgun Usage/ticks -0.230327412

53 Shambler killed -0.230972141

54 Rocket Launcher Usage/ticks -0.236424536
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55 Scrag spawns/ticks -0.238995433

56 Lightning Gun Usage -0.242695928

57 Rocket Launcher Usage -0.244883463

58 Scrag killed -0.245931849

59 Damage to Zombie/ticks -0.246905729

60 Player Death count -0.247356415

61 Supernailgun Usage/ticks -0.247871488

62 Knight spawns/ticks -0.248428971

63 Damage to Fiend -0.253079534

64 Axe Usage/ticks -0.266998738

65 Supershotgun Usage -0.270154864

66 Nailgun Usage -0.274748832

67 Ogre killed/ticks -0.274985939

68 Damage to Ogre/ticks -0.278800994

69 Zombie spawns -0.282825083

70 Zombie spawns/ticks -0.283434957

71 Damage to Shambler/ticks -0.291206509

72 Damage to Enforcer -0.2993626

73 Damage to Enforcer/ticks -0.2993626

74 Damage to Fish -0.2993626

75 Damage to Fish/ticks -0.2993626

76 Damage to Vore -0.2993626

77 Damage to Vore/ticks -0.2993626

78 DeathKnight killed -0.2993626

79 DeathKnight killed/ticks -0.2993626

80 DeathKnight spawns -0.2993626

81 Enforcer killed -0.2993626

82 Enforcer killed/ticks -0.2993626

83 Enforcer spawns -0.2993626

84 Enforcer spawns/ticks -0.2993626

85 Fish killed -0.2993626

86 Fish killed/ticks -0.2993626

87 Fish spawns -0.2993626
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88 Fish spawns/ticks -0.2993626

89 Key ’ ’ Count -0.2993626

90 Key ’a’ Count -0.2993626

91 Key ’d’ Count -0.2993626

92 Key ’s’ Count -0.2993626

93 DeathKnight spawns/ticks -0.2993626

94 Mouse X mean -0.2993626

95 Mouse X std dev -0.2993626

96 Key ’w’ Count -0.2993626

97 Mouse X sum -0.2993626

98 Mouse X sum/ticks -0.2993626

99 Mouse Y mean -0.2993626

100 Mouse Y std dev -0.2993626

101 Mouse Y sum -0.2993626

102 Mouse Y sum/ticks -0.2993626

103 Vore killed -0.2993626

104 Vore killed/ticks -0.2993626

105 Vore spawns -0.2993626

106 Vore spawns/ticks -0.2993626

107 Damage to DeathKnight -0.2993626

108 Damage to DeathKnight/ticks -0.2993626

109 Damage to Zombie -0.300134003

110 In ammo/ticks -0.300640106

111 Grenade Launcher Usage -0.30311954

112 Ogre killed -0.30668819

113 Damage to Ogre -0.311606795

114 Knight spawns -0.311769724

115 Damage to Rottweiler -0.31335175

116 Shambler spawns -0.313557893

117 Shambler killed/ticks -0.315817714

118 Fiend killed -0.321126133

119 Zombie killed -0.333991498

120 Grenade Launcher Usage/ticks -0.338178664
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121 Zombie killed/ticks -0.429573596

122 Total distance/ticks -0.653832018

Table D.1: PDC Model Feature importance
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IP Evaluation Data

E.1 Player 8

1. Q: What kind of gamer would you describe yourself as?

2. A: I play games regularly

3. Q: How would you rate your skill level at action video games?

4. A: Good

E.1.1 IP State Transitions (Player 8)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 0 0.620913029 No

1 CATEGORIZE 1 0 0.368943989 No

2 CATEGORIZE 1 0 0.551352024 No

3 CATEGORIZE 2 1 0.204161003 Yes

4 CATEGORIZE 2 1 0.768211007 Yes

5 CATEGORIZE 2 1 0.731657028 Yes

6 PRODUCE 2 1 0.736346006 Yes

7 PRODUCE 2 1 0.340023994 Yes

8 PRODUCE 2 0 0.038511999 No

9 PRODUCE 2 1 0.187472999 No
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10 PRODUCE 2 1 0.366742015 Yes

11 PRODUCE 2 0 0.385650992 No

12 PRODUCE 2 0 0.344686002 Yes

13 PRODUCE 2 0 0.761400998 No

14 CATEGORIZE 3 1 0.937162995 Yes

15 CATEGORIZE 3 1 0.635923982 Yes

16 PRODUCE 3 0 0.215125993 Yes

17 PRODUCE 3 0 0.626323998 No

18 CATEGORIZE 4 0 0.884727001 No

19 CATEGORIZE 0 0 0.443284005 No

Table E.1: IP State Transitions (Player 8)

E.2 Player 10

1. Q: What kind of gamer would you describe yourself as?

2. A: I play games regularly

3. Q: How would you rate your skill level at action video games?

4. A: Average

E.2.1 IP State Transitions (Player 10)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 1 0.390008003 No

1 CATEGORIZE 0 1 0.569269001 No

2 CATEGORIZE 0 1 0.459095001 No

3 CATEGORIZE 0 1 0.441112012 No

4 CATEGORIZE 1 1 0.165254995 Yes

5 CATEGORIZE 1 1 0.575468004 Yes

6 CATEGORIZE 1 1 0.411365002 Yes

7 CATEGORIZE 1 1 0.545356989 Yes
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8 CATEGORIZE 1 1 0.738659024 Yes

9 PRODUCE 1 1 0.281372994 Yes

10 PRODUCE 1 1 0.536148012 No

11 PRODUCE 1 1 0.196021006 No

12 PRODUCE 1 0 0.639014006 No

13 CATEGORIZE 2 1 0.345277011 No

14 CATEGORIZE 2 1 0.266259998 Yes

15 CATEGORIZE 3 0 0.0980189964 No

16 CATEGORIZE 3 1 0.538091004 Yes

17 CATEGORIZE 3 1 0.892060995 Yes

18 PRODUCE 3 0 0.750014007 No

19 CATEGORIZE 4 0 0.646501005 No

Table E.2: IP State Transitions (Player 10)

E.3 Player 11

1. Q: What kind of gamer would you describe yourself as?

2. A: I play games regularly

3. Q: How would you rate your skill level at action video games?

4. A: Very good

E.3.1 IP State Transitions (Player 11)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 0 0.438519001 No

1 CATEGORIZE 0 0 0.298756003 No

2 CATEGORIZE 1 1 0.165935993 Yes

3 CATEGORIZE 1 1 0.369623989 No

4 CATEGORIZE 2 1 0.229450002 Yes

5 CATEGORIZE 2 0 0.595052004 No
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6 CATEGORIZE 3 1 0.0842669979 Yes

7 CATEGORIZE 3 1 0.687744021 Yes

8 CATEGORIZE 3 1 0.517071009 No

9 PRODUCE 3 1 0.813212991 Yes

10 PRODUCE 3 0 0.392215997 Yes

11 PRODUCE 3 1 0.969971001 Yes

12 PRODUCE 3 0 0.635760009 No

13 CATEGORIZE 4 0 0.568572998 Yes

14 CATEGORIZE 0 1 0.638808012 No

15 CATEGORIZE 0 0 0.301896006 Yes

16 CATEGORIZE 0 0 0.0254280008 Yes

17 CATEGORIZE 1 1 0.278035015 No

18 CATEGORIZE 1 0 0.136187002 Yes

19 CATEGORIZE 2 1 0.907438993 Yes

Table E.3: IP State Transitions (Player 11)

E.4 Player 13

1. Q: What kind of gamer would you describe yourself as?

2. A: I play games sometimes

3. Q: How would you rate your skill level at action video games?

4. A: Average

E.4.1 IP State Transitions (Player 13)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 1 0.0681329966 No

1 CATEGORIZE 0 1 0.119361997 No

2 CATEGORIZE 1 0 0.392589003 Yes

3 CATEGORIZE 1 1 0.137170002 Yes
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4 CATEGORIZE 2 0 0.800689995 Yes

5 CATEGORIZE 3 0 0.0857639983 Yes

6 CATEGORIZE 3 0 0.678871989 Yes

7 CATEGORIZE 4 0 0.843699992 Yes

8 CATEGORIZE 0 1 0.544448972 Yes

9 CATEGORIZE 0 1 0.502516985 Yes

10 PRODUCE 0 0 0.660826027 Yes

11 CATEGORIZE 1 0 0.296741009 Yes

12 CATEGORIZE 1 1 0.262616009 Yes

13 CATEGORIZE 2 1 0.451296985 Yes

14 CATEGORIZE 2 1 0.88695699 Yes

15 CATEGORIZE 2 0 0.0768970028 No

16 CATEGORIZE 2 0 0.449748009 No

17 CATEGORIZE 3 1 0.727337003 Yes

18 CATEGORIZE 3 0 0.357080996 Yes

19 CATEGORIZE 3 1 0.767158985 Yes

Table E.4: IP State Transitions (Player 13)

E.5 Player 15

1. Q: What kind of gamer would you describe yourself as?

2. A: I play games regularly

3. Q: How would you rate your skill level at action video games?

4. A: Good

E.5.1 IP State Transitions (Player 15)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 1 0.112305999 Yes

1 CATEGORIZE 0 0 0.0104360003 Yes
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2 CATEGORIZE 1 1 0.507088006 Yes

3 CATEGORIZE 1 1 0.65684998 Yes

4 PRODUCE 1 0 0.277242988 No

5 PRODUCE 1 1 0.255997002 Yes

6 PRODUCE 1 1 0.204125002 Yes

7 PRODUCE 1 0 0.307186007 No

8 PRODUCE 1 1 0.210003003 No

9 PRODUCE 1 1 0.209531993 No

10 PRODUCE 1 0 0.63637203 No

11 CATEGORIZE 2 0 0.788820982 No

12 CATEGORIZE 3 1 0.155102 No

13 CATEGORIZE 3 0 0.0833500028 Yes

14 CATEGORIZE 4 0 0.636707008 Yes

15 CATEGORIZE 0 1 0.152757004 Yes

16 CATEGORIZE 0 0 0.419456005 Yes

17 CATEGORIZE 1 1 0.283681005 Yes

18 CATEGORIZE 1 0 0.477816999 Yes

19 CATEGORIZE 2 1 0.271456987 No

Table E.5: IP State Transitions (Player 15)

E.6 Player 16

1. Q: What kind of gamer would you describe yourself as?

2. A: I don’t play games much - if at all

3. Q: How would you rate your skill level at action video games?

4. A: Average

E.6.1 IP State Transitions (Player 16)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun
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0 CATEGORIZE 0 1 0.428667992 No

1 CATEGORIZE 0 1 0.226069003 Yes

2 CATEGORIZE 1 1 0.817843974 Yes

3 CATEGORIZE 1 1 0.594521999 No

4 PRODUCE 1 0 0.675516009 Yes

5 CATEGORIZE 2 0 0.649600983 No

6 CATEGORIZE 3 1 0.0805289969 Yes

7 CATEGORIZE 3 1 0.107128002 Yes

8 CATEGORIZE 4 0 0.702085018 No

9 CATEGORIZE 0 1 0.537397027 No

10 CATEGORIZE 0 1 0.513351023 No

11 PRODUCE 0 0 0.0531920008 No

12 PRODUCE 0 1 0.37501201 Yes

13 PRODUCE 0 1 0.256669998 Yes

14 PRODUCE 0 1 0.109323002 Yes

15 PRODUCE 0 1 0.312775999 Yes

16 PRODUCE 0 0 0.546459019 No

17 CATEGORIZE 1 0 0.00957500003 Yes

18 CATEGORIZE 1 1 0.714644015 Yes

19 CATEGORIZE 1 1 0.36313799 Yes

Table E.6: IP State Transitions (Player 16)

E.7 Player 18

1. Q: What kind of gamer would you describe yourself as?

2. A: I play games regularly

3. Q: How would you rate your skill level at action video games?

4. A: Average

E.7.1 IP State Transitions (Player 18)
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Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 1 0.406421989 Yes

1 CATEGORIZE 0 1 0.373145014 Yes

2 CATEGORIZE 1 1 0.767575026 Yes

3 CATEGORIZE 1 1 0.508132994 No

4 PRODUCE 1 0 0.616512001 No

5 CATEGORIZE 2 0 0.576898992 No

6 CATEGORIZE 3 0 0.149935007 No

7 CATEGORIZE 3 1 0.621451974 No

8 CATEGORIZE 3 1 0.692376018 Yes

9 PRODUCE 3 0 0.449270993 No

10 PRODUCE 3 0 0.638375998 Yes

11 CATEGORIZE 4 0 0.708742976 No

12 CATEGORIZE 0 1 0.651836991 Yes

13 CATEGORIZE 0 1 0.61076498 Yes

14 PRODUCE 0 0 0.672994018 No

15 CATEGORIZE 1 1 0.454356998 Yes

16 CATEGORIZE 1 0 0.166938007 No

17 CATEGORIZE 2 1 0.580411971 Yes

18 CATEGORIZE 2 1 0.891815007 Yes

19 PRODUCE 2 0 0.636524975 No

Table E.7: IP State Transitions (Player 18)

E.8 Player 19

1. Q: What kind of gamer would you describe yourself as?

2. A: I play games regularly

3. Q: How would you rate your skill level at action video games?

4. A: Good
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E.8.1 IP State Transitions (Player 19)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 1 0.437638015 Yes

1 CATEGORIZE 0 1 0.858783007 Yes

2 CATEGORIZE 0 1 0.590866983 Yes

3 PRODUCE 0 1 0.646411002 Yes

4 PRODUCE 0 1 0.323325992 Yes

5 PRODUCE 0 1 0.683916986 Yes

6 PRODUCE 0 1 0.174156994 Yes

7 PRODUCE 0 1 0.681186974 Yes

8 PRODUCE 0 1 0.636089981 Yes

9 PRODUCE 0 1 0.696941972 Yes

10 PRODUCE 0 1 0.459930986 Yes

11 PRODUCE 0 0 0.31931901 Yes

12 PRODUCE 0 0 0.229060993 Yes

13 PRODUCE 0 0 0.381471008 Yes

14 PRODUCE 0 0 0.525040984 Yes

15 CATEGORIZE 1 1 0.54586798 Yes

16 CATEGORIZE 1 1 0.592835009 Yes

17 PRODUCE 1 0 0.254368991 Yes

18 PRODUCE 1 1 0.458236992 Yes

19 PRODUCE 1 1 0.62291199 Yes

Table E.8: IP State Transitions (Player 19)

E.9 Player 20

1. Q: What kind of gamer would you describe yourself as?

2. A: I’m a hardcore gamer

3. Q: How would you rate your skill level at action video games?

4. A: Good
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E.9.1 IP State Transitions (Player 20)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 1 0.449721992 Yes

1 CATEGORIZE 0 0 0.0986630023 Yes

2 CATEGORIZE 1 0 0.0745590031 Yes

3 CATEGORIZE 1 1 0.397621989 Yes

4 CATEGORIZE 2 0 0.434058994 Yes

5 CATEGORIZE 2 1 0.73664403 Yes

6 CATEGORIZE 2 1 0.892782986 No

7 PRODUCE 2 1 0.160027996 Yes

8 PRODUCE 2 1 0.329775989 Yes

9 PRODUCE 2 1 0.448424995 Yes

10 PRODUCE 2 1 0.748813987 Yes

11 PRODUCE 2 0 0.407593995 Yes

12 PRODUCE 2 1 0.768700004 Yes

13 PRODUCE 2 1 0.343199015 Yes

14 PRODUCE 2 0 0.431199998 Yes

15 PRODUCE 2 0 0.312193006 No

16 PRODUCE 2 0 0.0103900004 Yes

17 PRODUCE 2 0 0.358013988 Yes

18 PRODUCE 2 1 0.429695994 Yes

19 PRODUCE 2 0 0.577466011 Yes

Table E.9: IP State Transitions (Player 20)

E.10 Player 21

1. Q: What kind of gamer would you describe yourself as?

2. A: I don’t play games much - if at all

3. Q: How would you rate your skill level at action video games?

4. A: Average



202 APPENDIX E. IP EVALUATION DATA

E.10.1 IP State Transitions (Player 21)

Iteration State Target

Category

PDC Output PDC Conf. Player

Binary

Fun

0 CATEGORIZE 0 1 0.736769021 Yes

1 CATEGORIZE 0 1 0.339435995 Yes

2 CATEGORIZE 0 1 0.333685011 Yes

3 CATEGORIZE 1 0 0.00334000005 Yes

4 CATEGORIZE 1 1 0.125159994 No

5 CATEGORIZE 2 0 0.085326001 Yes

6 CATEGORIZE 2 0 0.327980995 Yes

7 CATEGORIZE 3 1 0.0698999986 Yes

8 CATEGORIZE 3 0 0.36786899 Yes

9 CATEGORIZE 4 0 0.314502001 Yes

10 CATEGORIZE 4 0 0.526748002 Yes

11 CATEGORIZE 0 1 0.718445003 Yes

12 CATEGORIZE 0 1 0.507511973 Yes

13 PRODUCE 0 0 0.485612988 Yes

14 PRODUCE 0 0 0.230024993 Yes

15 PRODUCE 0 1 0.332740009 Yes

16 PRODUCE 0 1 0.680931985 Yes

17 PRODUCE 0 0 0.361384004 No

18 PRODUCE 0 1 0.355194986 Yes

19 PRODUCE 0 1 0.366937995 Yes

Table E.10: IP State Transitions (Player 21)


