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Abstract

As part of the Large Hadron Collider high luminosity upgrade it is proposed

to include crab cavities and large aperture Nb3Sn final focussing magnets in

the lattice in order to enhance the luminosity. In this thesis the dynamics of a

proposed cavity design were considered in terms of their impact upon the dynamic

aperture of the machine. Taylor maps for the cavity were created and used to

perform this analysis with a full assessment of their validity. A set of symplectic

thin cavity models were also developed and cross checked with the Taylor maps.

Finally, dynamic aperture studies were performed using these models in order to

determine which components of the crab cavity dynamics are important when

considering the long term stability of the beam in the LHC upgrade. It is shown

that crab cavities exhibit little impact on the LHC beam stability. For the final

focussing magnets a preliminary study was conducted into the importance of

including their fringe fields in a model of the LHC upgrade. A technical study

was carried out into developing a symplectic model which was compatible with

the current magnet models use for dynamic aperture studies. A preliminary

dynamic aperture study was performed with the inclusion of fringe fields for the

final focussing magnets from which the fringe fields are shown to have a negative

impact on the long term beam stability.
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Chapter 1

Aim

In 2010 the Large Hadron Collider (LHC) became the world’s largest and most

powerful particle accelerator. The LHC is a 27 km ring of superconducting

magnets, which is buried over 100 m below the France-Switzerland border near

Geneva. It delivers proton-proton collisions to four different high energy particle

physics detectors. A key performance factor in its operation is the rate at which

collisions can be delivered to these detectors, which is proportional to the lumi-

nosity. A number of new technologies are being developed to increase luminosity

for a proposed upgrade to in 2022. This thesis considers two questions about

these new technologies:

1. Which components of the crab cavity dynamics are important

when considering the long term stability of the LHC upgrade?

Crab cavities are a new technology being introduced as part of this upgrade.

Crab cavities are RF cavities which rotate bunches in order that they can

overlap completely at the collision point thereby providing an increase in

luminosity. Furthermore, not only do they allow complete correction of the

overlap but also control over the luminosity. The crab cavity designs have
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significant geometric constraints in order to fit into the LHC machine, lead-

ing to exotic cavity designs which exhibit complex electromagnetic fields.

These fields lead to complex non-linear dynamics which must be understood

with respect to their affect upon the LHC.

2. Are fringe fields important when considering the long term sta-

bility of the LHC upgrade?

New final focussing magnets are another addition necessary for the LHC

upgrade. A rectangular function (or hard edge model) is normally used to

describe a magnet in LHC models. The magnetic field in this model fails

Maxwell’s equations as they go to zero at the edges of the magnet. The

additional components of the field neglected in this hard edge model are

described as fringe fields and the new large aperture Nb3Sn final focussing

magnets of the upgrade have fringe fields which are possibly significant to

the long term stability of the machine.

In chapter 2 the context and the theory required to understand the dynamics

of the LHC are introduced. The need for the new final focussing magnets and

crab cavities is also explained. It shows that a hadron machine’s stability can

be particularly vulnerable to non-linear motion due to the lack of any damping

mechanisms such as synchrotron radiation. In order to predict the beam stability

of a machine such as the LHC, a large number of turns are required to be tracked

in order to understand the impact of the non-linear motion. This long term

tracking requires both numerical stability and a precise model of the accelerator.

As accelerators have developed many different mathematical methods have been

considered for tracking particles through them.

In chapter 3 a generalised model to represent a crab cavity is considered in

the form of a Taylor map. The methods to construct the Taylor map and the

dynamics contained within provide a method to consider the complete picture

17



of the crab cavity dynamics. Furthermore the non-symplectic nature of Taylor

maps is also discussed.

In response to the non-symplectic nature of Taylor maps a series of thin lens

models are considered in chapter 4. These models provide a symplectic approach

to modelling the crab cavities considering only specific components of the crab

cavity dynamics. These can be compared directly with the Taylor maps to con-

sider the model limitations in terms of the missing dynamics.

In chapter 5, the impact of the crab cavities on the long term stability of

the LHC upgrade is investigated. This long term stability is defined in terms

of a dynamic aperture which is a time based measurent of the hypersphere in

phase space within which particles remain in the machine i.e. not lost. By using

a number of crab cavity models, devised in this thesis, a series of studies are

performed to determine the components of the crab cavity dynamics that are

important to the long term stability of the LHC upgrade.

Finally, in chapter 6 a preliminary study is performed to consider the methods

in which to simulate the fringe fields in the LHC upgrade. The limitations of a

proposed model are then considered and a first study performed to determine

whether fringe fields need to be considered in future long term stability studies

for the LHC upgrade.

Overall, in this thesis, the dynamics of the crab cavities and fringe fields in

the context of the LHC upgrade are studied in terms of their impact upon long

term stability.
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Chapter 2

Introduction to the HL-LHC and

single particle dynamics

In order to understand the need for crab cavities, in the context of the LHC up-

grade, the dynamics of proton colliders, including the transverse beam dynamics

and concept of luminosity, must first be introduced. These are introduced in sec-

tions 2.1 and 2.2. The details of the upgrade and the specifics of the crab cavities

are required in order to develop models of crab cavities. These are presented in

sections 2.3 and 2.4. Finally in section 2.5, the mathematical framework required

to develop these models is explained. Overall this chapter provides an overview

of the beam dynamics of particle colliders, the high luminosity LHC upgrade and

the framework for constructing new models for accelerator elements.
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2.1 Introduction to colliders

2.1.1 A brief history of accelerators

Accelerators from their earliest development have allowed greater understanding

of the fundamental constituents of our observable universe. The very first dis-

coveries were made by J.J. Thomson [1] in 1896 who used a cathode ray tube to

measure the charge to mass ratio of an electron, as shown in figure 2.1. This type

of accelerator used direct current (DC) to develop a potential between a cathode

(C in figure 2.1) and an anode (A in figure 2.1) inside a vacuum vessel and a pair

of charged plates (D and E in figure 2.1) were used to bend the beam.

Figure 2.1: J.J. Thomson’s cathode ray tube [1]

In 1932, the next major particle physics discovery made with an accelerator

was developed by Cockcroft and Walton [2] in which a lithium nucleus was bom-

barded with 800 KeV protons to form two helium nuclei. This kind of nuclear

experiment, involving a fixed target and acceleration via a direct current, con-

tinued to be developed with further discoveries about the nucleus. However, this

DC approach has a limit of around 20 MV at which point it becomes very hard to

accelerate the particles to higher energies due to electrical breakdown on surfaces.

The largest such machine was the Nuclear Structure Facility at Daresbury shown

in figure 2.2.

To overcome the limitations of DC acceleration two methods were proposed,

one a linear accelerator, and the other a circular accelerator. The initial concept

20



Figure 2.2: The Nuclear Structure Facility, Daresbury [3], the world’s highest
voltage machine (1983-1992)

for a linear accelerator came from Ising in 1924 [4]. The idea was developed and

eventually patented by Widerøe in 1928 [5], who used a series of increasing length

drift tubes with an alternating current (AC) voltage applied to the tubes. The

particles see the accelerating voltage in the gaps between tubes, with increasing

drift tube length required to allow the particle to synchronise with the kick applied

by the field between the tubes. Based on this principle of accelerating across

gaps with an AC voltage, Lawrence in 1934 patented the cyclotron [6]. Lawrence

had noted from Widerøe’s work that each accelerating gap required increasing

spacing in order to account for the particle’s increasing velocity. He realised that

by passing through the same gap multiple times and using a magnet to bend the

path of the particles only one gap would be required. This is shown in figure 2.3

and was the first machine to exhibit multiple pass and resonant acceleration

features.

The fundamental idea underpinning the cyclotron is that the path length

exhibited by the charged particle when crossing the gap increases with the path’s

radius r, while the transit time remains constant. In a cyclotron the radius, r, of
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Figure 2.3: Cyclotron schematic from Lawrence’s 1934 patent [6]

the accelerated particle has the dependency,

r =
γmv

eB
(2.1)

where γ is the relativistic factor, m is mass, v is speed, e is charge and B is the

magnetic field strength perpendicular to the plane of motion.

In order for synchronism, in which the high frequency oscillator’s frequency

matched the rotation frequency of the accelerated particle, γ ≈ 1 must hold.

With larger cyclotrons even higher energies of particles were attained heading

towards a limit at which synchronism is lost as γ 6≈ 1. In order to overcome

this relativistic effect the first proposed solution was the synchrocyclotron which

was patented by McMillan [7], in which the radio frequency source is varied to

compensate for the variation in rotation frequency of the accelerating particle. In

1957 the first accelerator to be built at CERN was a 600 MeV synchrocyclotron

accelerating protons for fixed target experiments, shown in figure 2.4.

The synchrotron was the advance in which the relativistic effects were over-

come by varying the magnetic fields rather than the RF frequency. In 1952 a very

important breakthrough came in the form of the principle of strong focussing [9]

which allows the components of the accelerator to be separated rather than have
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Figure 2.4: 600 MeV Synchrocyclotron, CERN [8]

one singular massive magnet. Such synchrotrons with separated magnetic compo-

nents are called strong-focussing synchrotrons. In 1959 the Proton Synchrotron

(PS) was the first sychrotron to be built at CERN, and accelerated protons to an

energy of 28 GeV.

Early particle physics experiments, such as those of Cockcroft and Walton [2],

were performed using fixed targets. However, fixed target experiments are limited

in terms of their centre of mass energy, where significant gain can be made in

colliding two beams. Considering the simple case of two particles colliding with

masses m1 and m2, both with the same beam energy Ebeam. The centre of mass

energy for two colliding beams is given by,

ECM = 2Ebeam. (2.2)

The centre of mass energy for a fixed target of particle type 2 and a beam of

particle type 1 is given by,

ECM =
√
m2

1 +m2
2 + 2m2Etarget, (2.3)

where Etarget is the energy of the beam. In order to reach the same center of

mass energy the fixed target beam energy, in terms of the collision beam energy,
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is given by,

Etarget =
4E2

beam −m2
1 −m2

2

2m2

. (2.4)

There are two groupings of species used in colliders: leptons and hadrons.

Lepton machines, in terms of particle physics, provide clean collisions in which

the centre of mass energy of the collision is directly known. Lepton colliders, such

as LEP and PEP-II, specialise in precision measurements. Synchrotron radiation

occurs when a charged particle is accelerated radially and is a mechanism for

particle energy loss [10]. The total radiated power from synchrotron radiation for

a particle in a bending magnet is proportional to

P ∝ E4

ρ2
, (2.5)

where E is the particle’s energy and ρ is the bending radius of the particle’s tra-

jectory [10]. This synchrotron radiation loss requires additional power from the

RF system to maintain the beam energy, leads to radiation damage in the accel-

erator [10] and generates a background in particle detectors. A hadron machine

can attain a higher beam energy in a smaller radius machine for the equivalent

power of a lepton machine, since hadrons are considerably heavier than leptons.

The main disadvantage of hadron colliders is that hadrons are not fundamental

particles and are instead made up of quarks and gluons. This property leads to

the centre of mass energy of the actual collision having some level of uncertainty

due to interactions occurring between individual quarks of unknown energy rather

than fundamental particles of known energy. In a detector some particle species

produced in a collision will not generate a signal and instead the missing energy

will be used to determine the missing species. However, due to the uncertainty in

the original collision centre of mass energy in a hadron collider it is not possible
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to accurately determine this missing energy from a single collision.

ISR PS

Figure 2.5: Intersecting Storage Rings (ISR) and the proton synchrotron (PS),
CERN [11]

The first hadron collider was developed at CERN and was called the Inter-

secting Storage Rings (ISR), shown in figure 2.5. It consisted of 2 interlaced rings

of diameter 150 m, colliding protons with a centre of mass energy of 62 GeV and

operated between 1971 and 1984. A low β insertion is a region of an accelerator in

which the beams are strongly squeezed in order to achieve very small transverse

cross sections. The ISR was the first machine to exhibit include low β insertions

at its interaction points (IPs) [12]. Relatively little physics was investigated at

the ISR due to a significant lack of detector capabilities. However, it did enable

greater understanding of the physics required to build and operate large scale

hadron colliders.

The Large Electron-Positron Collider (LEP) [14] operated at CERN between

1989 and 2000, with a circumference of 27 km and top centre of mass energy of

209 GeV. This machine enabled precise measurements of the properties of the

W and Z bosons. At a similar time the Tevatron (shown in figure 2.6) operated

at Fermilab between 1987 and 2011, during which the top quark was discovered,

colliding protons with antiprotons with, after many upgrades, a top centre of

mass energy of 1.96 TeV. In terms of physics, these two colliders hinted at the

existence of the theorised Standard Model Higgs Boson [15], however, during their
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Figure 2.6: Tevatron, Fermilab [13] (1987-2011)

operation they were unable to conclude its existence. The principle of colliding

particles with their antiparticles allows the same dipole magnets to be shared

for the two counter-rotating beams, however, the difficulty in producing large

numbers of antiparticles creates a limit in the beam intensities. For this reason

the LHC [16] was designed to collide two counter-rotating proton beams.

2.1.2 LHC

The LHC is a two ring, superconducting accelerator and collider. The first col-

lisions occurred in March 2010 with a centre of mass energy of 7 TeV. It was

installed in a 27 km tunnel previously used for LEP [14], with the physics objec-

tive of searching for the Higgs boson and other new particles as well as studying

rare events [16]. The observation of an event is dependent on the collision rate

generated by the LHC machine such that the number of events per second Nevent

is given by,

Nevent = L × σevent (2.6)

where L is the luminosity and σevent is the cross section of the event. The lumi-

nosity of the machine will deteriorate over time due to various loss mechanisms,

26



primarily proton burn from collisions at the interaction point, but also collisions

with restrictive apertures resulting from chaotic motion, reducing the effective

performance of the machine. The stated performance factor of a collider is given

by its peak luminosity, at the end of the first run the LHC had a peak luminosity

of ≈ 7× 1033cm−2s−1, with a centre of mass energy of 8 TeV [17].

The LHC has 4 interaction points (IP) at which the beams cross and exper-

imental detectors exist. ATLAS [18] and CMS [19] are located at IP1 and IP5

and are general purpose experiments which have the highest delivered luminos-

ity, created through having the greatest squeezed beams. LHCb [20] investigates

b quark and CP violation and exploits the copious amounts of b quarks produced

at the LHC. It is located at IP8 and operates at a luminosity ≈ 20 times lower

than the general purpose experiments. ALICE [21] is a dedicated heavy-ion de-

tector, particularly optimised for use during Pb-Pb collisions in the LHC which

is located at IP2 and operates at a luminosity of ≈ 105 times lower than that

of ATLAS and CMS; this is a result of the slow triggering rate of ALICE’s sub

detectors, which require a low number of collisions at each bunch crossing in order

to limit the signal from the detector.

The machine is made up of eight octants, as shown in figure 2.7, made up of

a straight insertion region (IR), and arc regions, which contain the main bending

dipoles. The bending dipoles define the energy limit of the machine, with the

nominal field of 8.33 T corresponding to a beam energy of 7 TeV [16]. The

LHC as it stood before its first long shut down was unable to attain this beam

energy due to issues surrounding the power connections between superconducting

magnets. A series of further planned shutdowns are included in the lifetime of the

LHC in order to increase the operating performance of the machine, and allow

for the experiments to upgrade in order to make full use of the increased machine

performance.
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Figure 2.7: Schematic of the basic LHC layout [22].

Two long shutdowns, starting around 2013 and 2018 and lasting approxi-

mately 18 months, were planned before the upgrade of the machine to the HL-

LHC, shown in figure 2.8 along with the planned luminosity. The main aim of

the first long shutdown is to repair the superconducting interconnection between

magnets. In 2008, during the first powering tests of the machine, a fault occurred

Figure 2.8: Proposed long shutdown time plan against luminosity [23].
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in one such interconnection leading to significant damage to a section of the ma-

chine. In order to prevent other such incidents the current passing through these

interconnects has been limited during the first operational period of the machine,

preventing the dipole magnets from reaching their nominal field and the machine

from reaching its maximum design energy. In order to overcome this limitation

the interconnects are being upgraded with the addition of a shunt. This is a low

resistance path alternative to the superconducting connection used in the event

that the interconnect loses its superconducting state [24].

The second long shutdown is aimed to begin in 2017, and will be focussed

primarily on upgrading the injection chain to the LHC to reduce the machine

emittance below that of the nominal LHC [25, 17]. This upgrade includes the

addition of Linac4 to the injection chain to increase the available beam current

(see figure 2.9), reducing the electron cloud in the SPS, and the application of

transverse dampers in the PS and SPS. The transverse dampers dampen injec-

tion errors by using a feedback loop including pickups and electrostatic kickers.

Furthermore the second long shutdown seeks to upgrade the LHC collimation

with dispersion suppression section collimation (if needed) [26].

2.2 Collider beam dynamics

The dynamics of hadron colliders, in general, are dominated by the transverse

motion of the particles as they orbit inside the machine. This transverse motion

is often non-linear and can lead to it being chaotic, thereby leading to losses in the

restrictive apertures of the machine. It is important to build an understanding

of the features of this motion in order to better design, develop and operate a

hadron collider.

The basic accelerator coordinate system, shown in figure 2.10, considers the

motion of a particle relative a reference particle travelling around a reference orbit
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Figure 2.9: CERN accelerator complex including the addition of Linac4 [27].

s of length L. The reference orbit is often chosen to coincide with the closed orbit

which is defined by the orbit at a given energy which has the same initial and

final positions over one period of the machine. The period of the machine relates

to its design and for larger machines such as the LHC often equates to one turn.

The transverse unit vector in the plane of the reference orbit, perpendicular to

the unit vector ŝ, is x̂. The vector perpendicular to this is ŷ.

x̂

ŷ

ŝ

Figure 2.10: Accelerator coordinate system.
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2.2.1 Transverse beam dynamics

Hill’s equations and β-functions

In the transverse plane there are two degrees of freedom, with the spatial coor-

dinates x and y and respective associated angles x′ and y′. Hill’s equations [28]

describe the equations of motions for a linearised system with periodic focussing

properties, such as those in the transverse plane of a circular accelerator,

x′′ +Kx(s)x = 0,

y′′ +Ky(s)y = 0, (2.7)

where K is a position dependent force, which for a periodic machine is therefore

a periodic force. These equations neglect higher order terms in x and momen-

tum dependence. From this information a periodic harmonic motion can be

described [9], where the amplitude β and phase ψ will depend on the position s

in the ring such that,

x(s) =
√
ε
√
β(s) cos(ψ(s) + φ) (2.8)

where ε and φ are constants. Due to the periodicity for a machine of cir-

cumference L, the β-function has a periodic boundary condition such that

β(s) = β(s+ L). Furthermore, the phase advance ψ(s) is defined by,

ψ(s) =

∫ s

0

ds

β(s)
. (2.9)

The tune is defined by the number of oscillations per turn and hence is dependent

on the phase advance over the whole turn such that

Qx =
1

2π

∫ s+L

s

ds

β(s)
=

1

2π

∮
ds

β(s)
. (2.10)
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In a similar definition to the transverse position, x(s), around the ring, the trans-

verse angle, x′(s), can also be defined in terms of the amplitude and phase,

x′(s) = −
√
ε√
β(s)

(α(s) cos(ψ(s) + φ) + sin(ψ(s) + φ)) (2.11)

where α(s) ≡ −β′(s)/2. The transverse angle x′(s) is defined by the rate of

change of x with s. Introducing one more variable γ(s) ≡ (1 + α(s)2)/β(s) and

inserting into Hill’s equations, the Courant-Snyder invariant [9] is derived,

γx2 + 2αxx′ + βx′2 = ε. (2.12)

This invariant ε in phase space takes the form of an ellipse as shown in figure 2.11,

where the area of the ellipse is the invariant and the shape of the ellipse is defined

by β, α and γ.

x′
int =

√
ε
β

x

x′

x
m

a
x

=
√

β
ε

Figure 2.11: Relationship between β and ε and beam phase space ellipse [29,
p. 73]

The β-function is directly related to the phase space area occupied by the

beam and is characterised by the emittance ε. The emittance remains invariant

under the condition that there are no collective effects [30], such as interaction
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with other particles in a bunch, at a fixed energy. As a bunch accelerates inside

an accelerator the process of adiabatic damping occurs at which the emittance

reduces as the momentum increases. Normalised emittance is an energy indepen-

dent measurement and is defined by,

ε∗ = β0γ0ε (2.13)

where β0 is the speed as a fraction of c and γ0 is the relativistic factor. For

a Gaussian bunch, which is Gaussian distributed in all three spatial directions,

with a standard deviation σ, 15% of the area occupied by the phase space ellipse

encloses the beam [29, p. 66], where σ is related to the β-function by,

σx,y =
√
εx,yβx,y. (2.14)

The emittance of a Gaussian bunch defines the phase space area containing a

fraction F of the beam [29],

ε = −2πσ2

β
ln(1− F ). (2.15)

The control of the amplitude and phase around a strong focussing synchrotron

is performed using a series of magnets.

Magnets

The lattice of an accelerator describes the composition of the series of magnets

surrounding the vacuum pipe. These magnets are categorised in terms of their

rotational symmetry, with 3 examples shown in figure 2.12.

In the ultra-relativistic limit these magnets are often expressed solely in terms

of their transverse magnetic fields. In the simplest case this is expressed as a
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Figure 2.12: Magnet profiles with rotational symmetries. (a) Dipole b1, (b)
quadrupole b2, and (c) sextupole b3.

multipole expansion [31]1,

By + iBx =
∞∑
n=1

(bn + ian) (x+ iy)n−1 , (2.16)

where bn and an are the normal and skew coefficients and n refers to a magnet

with 2n poles. This follows from the Laplace equation in two dimensions where

it is assumed there are no Bz fields. Real magnets, owing to their construction,

exhibit a range of errors in the form of these magnetostatic multipoles. In this

ultra-relativistic limit, considering a charged particle undergoing a periodic orbit,

the relationship between the radius of curvature ρ and perpendicular magnetic

field By is given by,

qvBy =
γmv2

ρ
, (2.17)

where q is the charge of the particle, v is the speed on the path of the orbit, m

is the mass of the particle, ρ is the radius of curvature, and By is the magnetic

field perpendicular to the plane of motion. This was already seen to describe the

motion of the particle in a cyclotron in equation 2.1. Rearranging equation 2.17

1European multipole convention.
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in terms of momentum, which is defined by p = γmv, results in,

1

ρ(x, y, s)
=
e

p
By(x, y, s). (2.18)

In the case where By is constant there is no option to focus or control the size of

the beam, but by Taylor expansion of By and 1/ρ for small variations in x the

separated magnets described by the multipole expansion arise,

1

ρ
+ kx+

1

2!
mx2 + . . . =

e

p
By +

e

p

dBy

dx
x+

1

2!

e

p

d2By

dx2
x2 + . . . (2.19)

where the dipole magnet determines the curvature ρ, the quadrupole magnet with

strength k applies a linear force in the plane of the orbit and the sextupole with

strength m applies a non-linear force in the plane of the orbit.

Chromaticity and dispersion

A stable particle in a circular accelerator will have an equilibrium orbit about

which the particle will undergo betatron oscillations. This orbit will have a mo-

mentum dependency described by the dispersion function D such that,

x(s) = D(p, s)
∆p

p0

. (2.20)

The dispersion function is periodic therefore D(p, s) = D(p, s+L) and in a circular

accelerator this leads to differing path lengths in equilibrium orbit. This variation

in path length is described by the compaction factor αp,

αp =

〈
D

ρ

〉
, (2.21)
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where ρ is the radius of curvature. This describes the linear path variation such

that,

∆L

L
= αp

∆p

p0

, (2.22)

where L is the path length at the reference momentum p0.

Chromaticity is the change in linear optics parameters with the beam en-

ergy. In addition it defines the change in tune with respect to the change in

momentum [29, p. 66]. Linear chromaticity, Q′, arises from the linear optics (i.e.

quadrupoles) and is corrected for by sextupoles,

Q′(p) = ∓ 1

4π

∮
β(s) [k(s) +m(s)D(p, s)] ds, (2.23)

where k(s) and m(s) are the quadrupole and sextupole strengths. The component

of the linear chromaticity resulting from the quadrupoles is called the natural

chromaticity. The chromaticity correction from the sextupoles is proportional

both to the β-function and sextupole strength at a given point of correction.

Nonlinear chromaticity, Q′′, is defined by the quadratic and higher dependencies

of the tune on the momentum. This tune variation with momentum can be

expressed in the form of a Taylor expansion,

Q(p0 + ∆p) = Q(p0) +Q′(p0)∆p+
1

2!
Q′′(p0)∆p2 +

1

3!
Q′′′(p0)∆p3 + . . . (2.24)

As greater amounts of beam focussing are used in accelerators more terms of this

expansion are required to describe the chromatic dynamics of particle motion [32].

2.2.2 Luminosity

For a collider, the centre of mass energy and collision rate are its key performance

goals [33]. The collision rate dR
dt

is related to the properties of the accelerator in
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the form of the luminosity L by,

dR

dt
= L × σp (2.25)

where σp is the collision cross section.

Head on collision

N1ρ1 N2ρ2IP

s0

Figure 2.13: Head on bunch crossing [33].

From the simplest case of two bunches colliding head on, as shown in figure

2.13, with charge densities ρ1 and ρ2 respectively, N1 and N2 particles per bunch,

the luminosity is given by [33],

L ∝ KN1N2

∫ ∫ ∫ ∫
ρ1(x, y, s,−s0)ρ2(x, y, s, s0) dx dy ds ds0 (2.26)

where K is a kinematic factor relating to the velocities ~v1,2 of the two bunches,

K =

√
(~v1 − ~v2)2 − (~v1 × ~v2)2

c2
, (2.27)

and s0 = ct. By making a number of assumptions a simple luminosity relation

can be derived. Firstly, assuming that the charge densities for each bunch are

independent and separable in x, y and s, they can be factorised,

ρ(x, y, s, s0) = ρx(x) · ρy(y) · ρs(s± s0). (2.28)
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In the case of head on collisions the velocities will be equal and opposite such

that ~v1 = −~v2, this simplifies the luminosity to [33],

L =2N1N2fnb

×
∫ ∫ ∫ ∫

ρ1x(x)ρ1y(y)ρ1s(s− s0)ρ2x(x)ρ2y(y)ρ2s(s+ s0) dx dy ds ds0

(2.29)

where f is the revolution frequency about the whole machine, and nb the number

of bunches per beam. Assuming that the bunches are Gaussian distributions,

with standard deviation σ∗x,y,s at the IP, that there is zero dispersion at the IP,

and that the two beams are equal (σ1x = σ2x, σ1y = σ2y and σ1s = σ2s), the

luminosity is given by [33],

L =
N1N2fnb
4πσ∗xσ

∗
y

. (2.30)

This simple luminosity relationship is dependent on the number of bunches and

the number of particles in each bunch. From equation 2.14 the luminosity is

dependent on the emittance ε and β-function at the IP, β∗, such that,

L ∝ 1√
εxεyβ∗xβ

∗
y

. (2.31)

Collision with long bunches

A further effect that occurs, in particular with long bunches, is the hour glass

effect [33], which arises from the s dependence of the β-function. The β-function

is a minimum at the IP, increasing either side approximately quadratically,

βx,y(s) ≈ β∗x,y

(
1 +

(
s

β∗x,y

)2
)
, (2.32)
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leading to a variation in the σ with s,

σx,y(s) ≈ σ∗x,y

√
1 +

(
s

β∗x,y

)2

. (2.33)

This hour glass effect is important in the case where β∗ is smaller than the bunch

length σs and leads to a luminosity reduction factor of [33],

L(σs) =
N1N2fnb
4πσ∗xσ

∗
y

·
(√

π
β∗

σs
e

(
β∗
σs

)2
(

1− erf

(
β∗

σs

)))
. (2.34)

Collision with a crossing angle

N
1ρ

1 N2
ρ2

φ

Figure 2.14: Bunch crossing with a crossing angle; required for colliders with
many bunches or coasting beams to avoid unwanted collisions.

In a collider with many bunches or coasting beams it is necessary to have a

crossing angle φ at the IP in order to avoid unwanted collisions. In figure 2.14 the

crossing angle is shown to be defined as the acute angle between the two beams.

There is a loss in luminosity, compared to that of a head on collision, due to

the loss in overlap of the bunches as they cross at a crossing angle φ, with a L

reduction of

L =
N1N2fnb

4π
√
εxεyβ∗xβ

∗
y

1√
1 +

(
σs
σx

tan φ
2

)2
. (2.35)

This effect can be seen graphically in figure 2.15. The Piwinski angle,
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φp = σs
σx

tan φ
2
, is the scaled angle to describe the combined effect of the di-

mensions of the bunch and the crossing angle upon the reduction in luminosity.

(a) (b) (c)

Figure 2.15: Effect of changing crossing angle φ, on the geometric overlap. φ set
to (a) 40◦, (b) 20◦, and (c) 10◦.

Beam-beam interaction

The beam-beam interaction is the electromagnetic interaction between the two

beams, leading to a net defocussing of the beams in the case where the charge of

the two beam species is of the same sign. This leads to tune shifts and instabilities

in the accelerator. There are two types of electromagnetic beam-beam interaction,

dependent upon the model required to describe their behaviour. The “weak-

strong” interaction is where a single particle in the opposing beam can be treated

with a force applied by a strong unperturbed beam. When the perturbation of

both beams is important the interaction is described as “strong-strong” and single

particle dynamics is no longer considered [34]. As the crossing angle is reduced

the impact of beam-beam interaction is amplified. In equation 2.35 reducing the

β∗ of a beam would appear to allow for an increased luminosity. However, beam-

beam interaction is also dependent upon β∗ such that the beam-beam parameter

is defined,

ξx =
e2

0

4πε0mc2

N1β
∗
x

2πγ
√
σ2
x + φ2σ2

s(
√
σ2
x + φ2σ2

s + σy)
, (2.36)
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where e0, ε0, m are the charge of an electron, permittivity of free space and mass

of a proton respectively [29, p. 91]. The beam lifetime is determined in part

by the Piwinski angle and the beam-beam parameter ξx [35], hence reduction of

the β∗ and changing φ do not directly lead to an integrated luminosity increase.

Therefore, controlling the luminosity of a collider is not trivial. Methods such as

the use of correction wires and electron lenses [34, 36] are proposed to overcome

the dominant linear part of the force resulting from the beam-beam interaction.

Integrated luminosity

The instantaneous luminosity is time dependent, arising from the dependency

of N1,2 on time. The decay in N1,2 is caused by proton burn at the IP, collec-

tive effects [30] and unbounded chaotic motion which lead to losses within the

expected lifetime of the beam [37] in the accelerator. Collective effects are the

interaction of accelerated particles with other accelerated particles, such as beam-

beam interaction, and interaction of accelerated particles with the machine, such

as wakefields. These collective effects lead to emittance growth, which leads to

losses on restrictive apertures in the accelerator.

Pileup describes the number of collisions in one bunch crossing at an IP. With

increased pileup a detector must be able to disentangle the products resulting

from multiple collisions, however, the detectors ability to disentangle collisions

is limited. With no other alterations to the luminosity over the beam lifetime

the luminosity will undergo a continuous decay, leading to greater pileup at the

beginning of a run beyond the capabilities of the detector, and under utilising

the detector towards the end of the run. In order to overcome this, a technique

known as luminosity levelling has been developed whereby altering the machine

during operation the luminosity can be decreased at the beginning leading to a

more even pileup over the course of a run. The luminosity without such alteration
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is called the virtual luminosity and is higher than the levelled luminosity.

Luminosity can be controlled in a number of ways; crab cavities can be used

to recover the loss due to crossing angle, varying the β∗ can vary the amount the

beam is squeezed and offsetting the bunches at crossing can reduce the geometric

overlap. The pileup density, which is defined as the pileup per unit length along

the length of the bunches, is another issue for the detectors. Reducing the pileup

density (i.e. flattening the distribution of the pileup density) makes identifying

each collision vertex simpler for the detector thereby allowing a greater total

pileup.

2.2.3 Non-linear phenomena

Action-Angle coordinate systems

In accelerator physics a number of coordinate systems are used to simplify analysis

of the lattice. In table 2.1 the generally recognised 4D coordinate systems are

shown, describing the transverse motion in the machine.

Coordinate system Variables

Accelerator variables x,x′,y,y′

Linear action-angles Jx, φx, Jy, φy
Non-linear action-angles Ix, ψx, Iy, ψy

Table 2.1: 4D accelerator coordinate systems

The accelerator variables allow the consideration of the actual motion of par-

ticles in the machine relative to the physical closed orbit. This is particularly

useful when considering the motion relative to the physical aperture; e.g colli-

mation studies. Transforming to an action-angle coordinate system removes the

s dependence of the coordinate system giving an effective global coordinate sys-

tem which is independent of the optics at a given location. This is useful in the
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Figure 2.16: Action-angles on normalised phase space

study of dynamic aperture where the stable aperture around the whole lattice is

required. The linear action-angle variables allow for the effects of higher order

non-linear terms to be considered by reducing the linear motion to a constant

amplitude and phase [38]. This technique can be extended further to express

coordinates in the form of non-linear action angles where all stable trajectories

can be described with a constant action. For linear motion in the machine the

action J remains constant, while the angle advances with the β-function,

φx(s) = φx(0) +

∫ s

0

ds′

β(s′)
(2.37)

which is depicted in figure 2.16. The transformation from the accelerator variables

to the linear action Jx is given by,

Jx =
1

2βx(s)

[
x2(s) +

(
βx(s)x

′(s)− β′x(s)x(s)

2

)2
]
, (2.38)

where β′x(s) is the rate in change in βx with s. The transformation back to the
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accelerator variables is given by [38],

x(s) =
√

2Jxβx(s) cos(φx)

x′(s) = −
√

2Jxβx(s)

(
sin(φx)−

β′x(s)

2
cos(φx)

)
. (2.39)

The action, Jx,y, is a property of a single particle and can be related to the

emittance, εx,y, such that for a Gaussian distribution of particles in amplitude, the

emittance is equal to the mean of the action for each particle in that distribution,

εx,y = 〈Jx,y〉 (2.40)

The angle can be further simplified through a further coordinate transformation

(φ, J) 7→ (φ1, J1), where φ1 is a uniformly advancing phase [38]. Only the angle

variable changes in this transformation meaning that,

J1 = J

φ1 = φ+
2πQs

C
−
∫ s

0

ds′

β(s′)
, (2.41)

where C is the circumference of the accelerator. This allows a simplified Hamil-

tonian to be written,

H =
2πQ

C
J1. (2.42)

More generally this approach can be extended to include the non-linear motion

of the machine to define a coordinate system so that the non-linear action, I,

remains constant with an angular advance, ψ [29, p. 96]. In general the normal

form,

N = AMA−1 (2.43)
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is the simplest Lie transformation2 from the one turn map M, which describes

the transformation in accelerator coordinates for one turn of the machine, where

A describes the transformation between the coordinate systems so that,

Ix = A−1

(
x2 + x′2

2

)
. (2.44)

The process for determining A is normal form analysis. By determining A and

calculating M the resonant driving terms (RDTs) of the lattice can be found.

Resonances

A resonance, in an accelerator, is a tendency for increased betatron motion at a

given tune. Considering an arbitrary lattice in which there are a series of dipole

errors, if there is an integer tune these errors will add on every turn. However,

if there is a half-integer tune these errors will cancel every other turn. In a real

lattice there are additional quadrupole errors, which for a half-integer tune will

add on every turn. This argument continues where higher order magnet errors

exist resonances will occur at given tunes. As the order of magnet error increases

the impact of the resonance will decrease. In transverse variables there are two

tunes which vary, Qx and Qy. In general the resonances can be described by,

(j − k)Qx + (l −m)Qy = n (2.45)

where j, k, l, m and n are integers and the order of a resonance is given by,

Resonance Order = |j − k|+ |l −m|. (2.46)

The combinations of the tunes in the two planes form a web of tunes. The

non-integer part of these tunes is shown in figure 2.17, in which an accelerators

2A transformation which is symplectic that conserves the phase space density.
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working point would be chosen so that it avoids these resonance lines.

Figure 2.17: Tune diagram displaying all betatron resonances up to order 5 in
the unitary square [39]

Coupling occurs when the three planes of motion can no longer be treated

separately. Linear coupling, in particular, is generated by longitudinal magnetic

fields or skew quadrupoles. As the motion is coupled, vertical dispersion and

optics functions become distorted [40]. There are two types of linear coupling:

linear difference resonance and linear sum resonance. The linear difference res-

onance occurs on the resonance line Qx − Qy = n, where n is an integer. The

linear difference resonance constrains the sum of the two transverse emittances

such that the total emittance does not grow, making it stable [32]. The linear

sum resonance constrains the difference in transverse emittances allowing the to-

tal emittance to grow making it unstable [32]. Linear coupling leads the betatron

tunes to approach each other such that they eventually become indistinguishable

in measurement.

The strength of these various resonances are defined by the resonant driving

terms (RDTs) which have varying amplitudes. The Hamiltonian description of
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an accelerator in terms of RDTs is given by [41],

H =
∑
jklm

hjklm(2Ix)
j+k

2 (2Iy)
l+m

2 e−ı[(j−k)(ψx+ψx0 )+(l−m)(ψy+ψy0 )] (2.47)

where ψx0 and ψy0 are the horizontal and vertical initial non-linear angles, ψx and

ψy are the horizontal and vertical non-linear angles, and hjklm is the amplitude of

the resonance (j− k, l−m). The resonance order, |j− k|+ |l−m| and resonance

amplitude lead to varying changes in the transverse position of a particle.

Amplitude dependent tune shift

Chromaticity is the tune shift with change of momentum which can lead to in-

stabilities as momentum changes move the tunes onto resonances. Tune shift can

also vary with amplitude, a source of which is an octupolar magnetic field [42].

Consider the multipole expansion of a magnetic field in an accelerator,

By(x, y, s) + ıBx(x, y, s) =
∑
m

[bm(s) + ıam(s)](x+ ıy)m−1, (2.48)

where bm and am are the normal and skew multipole coefficients respectively.

These multipole coefficients perturb the Hamiltonian away from the linear Hamil-

tonian of equation 2.42 by Hp,

Hp =
q

p0

<

[
∞∑
m=3

1

m
[bm(s) + ıam(s)] (x+ ıy)m

]
. (2.49)

For the case of a normal octupolar component where m = 4,

H4 =
q

p0

b4(s)

4

(
x4 − 6x2y2 + y4

)
. (2.50)
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The tune shift is defined by,

∆Qx,y =
1

2π

∮
∂〈H4〉
∂Jx,y

ds, (2.51)

where the Hamiltonian perturbation for the octupolar case in linear action-angle

coordinates from the transformations given in equation 2.39 is given by,

H4 =
q

p0

b4(s)

4

[
4J2

xβ
2
x cos4(φx) + 4J2

yβ
2
y cos4(φy)− 24JxJyβxβy cos2(φx) cos2(φy)

]
.

(2.52)

Averaging over the angular terms, using the following results,

〈cos2(φ)〉 =
1

2π

∫ 2π

0

cos2(φ) =
1

2
,

〈cos4(φ)〉 =
1

2π

∫ 2π

0

cos4(φ) =
3

8
, (2.53)

allows the expression of the averaged Hamiltonian perturbation to be expressed,

〈H4〉 =
q

p0

b4(s)

4

(
3

2
J2
xβ

2
x +

3

2
J2
yβ

2
y − 6βxβyJxJy

)
. (2.54)

This leads to an amplitude dependent tune shift,

∆Qx =
q

p0

3B4

8π

(
β2
xJx − 2βxβyJy

)
,

∆Qy =
q

p0

3B4

8π

(
β2
yJy − 2βxβyJx

)
, (2.55)

where B4 is the integrated normal octupolar strength. This tune shift shows

explicitly that varying the amplitude leads to a change in tune, which could

possibly lead to driving the tune of a particle on to a resonance, which could

lead to unbounded motion and eventual loss on a restrictive aperture. For a real

machine, if this amplitude detuning increases then the available dynamic aperture
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in which bounded motion can occur decreases.

Frequency map analysis

A real accelerator with non-linearities can be described in the form of a Hamil-

tonian with the linear Hamiltonian H0 and a non-linear perturbation H1,

H = H0 + εH1 (2.56)

where ε is a small parameter describing the amplitude of perturbation. The

equations of motion for the linear Hamiltonian can be thought of as a set of

orbits which are confined within an n dimensional tori. In the case where ε is

zero such that the system is integrable there exists a one to one correspondence

linking the tune Q, and action I. This correspondence holds if the system is not

degenerated (remains stable over the time period of evaluation) such that [43],

det

∣∣∣∣∂Q(I)

∂I

∣∣∣∣ = det

∣∣∣∣∂2H0(I)

∂I2

∣∣∣∣ 6= 0. (2.57)

The frequency map F is a mapping from actions to frequencies,

F : (I1, . . . , In) 7→ (Q1, . . . , Qn). (2.58)

For a fixed energy only n − 1 actions are independent, leading to the frequency

map,

F : (I1, . . . , In−1) 7→
(
Q1

Qn

, . . . ,
Qn−1

Qn

)
(2.59)

where describing the system in terms of frequencies is equivalent to actions. Con-

sidering the simple 2D case of H0 which gives a constant tune for each amplitude,

Q(I) = Q0 (2.60)
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where Q0 is the reference tune.

When ε is small, such that the tori containing the orbits are deformed and

not destroyed, the frequencies of the tori change. The family of tori describing

stable orbits are parameterised by a set of frequencies. In the gaps of this set

chaotic behaviour occurs (resonances). For the case of an accelerator these gaps

form an interconnected web passing close to all points in phase space with varying

amplitudes of resonance [44]. Diffusion is defined by the rate of transport of orbits

between tori. This rate of transport of orbits between tori can also be seen as a

measure of proximity to integrability i.e. a particle on a trajectory with a high

level of diffusion will become quickly unbounded and therefore will be lost rapidly

(Nekhoroshev theorem [45]). Such diffusion was first analysed for a real system

by Laskar [46] who used it to analyse the chaotic nature of the Solar system.

Figure 2.18: Frequency map analysis of the LHC [47], colour coded by initial
amplitude greater (blue) and less (red) than 5σ, with head on and long range
collisions.

An example of a frequency map is shown in figure 2.18 in which the reso-

nance lines are overlaid on the frequency map. The resonance lines are denoted
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(j − k, l −m) as described in equation ??.

A fold in a map occurs where the tune shift with amplitude is no longer pos-

itive. An example of a fold can be seen in figure 2.18 in the amplitude transition

from less than 5σ to greater than 5σ. In order to determine the nature of a fold

a torsion matrix is defined to describe the type of fold [48]. This torsion matrix

is a generalised matrix describing tune shift with amplitude in the transverse

variables, and is defined by

M =
∂ ~Q(~I)

∂~I
=

 ∂Qx
∂Ix

∂Qx
∂Iy

∂Qy
∂Ix

∂Qy
∂Iy

 (2.61)

where ~Q is the vector of transverse tunes and ~I is the vector containing transverse

actions. If the torsion matrix M is of a definite3 quadratic form, finite time

stability results exist, which do not persist in the case of non-definite4 torsion [45,

48]. Non-definite torsion means that the quadratic form is also non-definite. For

the case of non-definite torsion the quadratic form of M will indicate directions

of fast escape, in which unbounded motion will occur. The inverse of the torsion

matrix is defined,

M−1 =
1(

∂Qx
∂Ix

∂Qy
∂Iy −

∂Qx
∂Iy

∂Qy
∂Ix

)
 ∂Qy

∂Iy −∂Qx
∂Iy

−∂Qy
∂Ix

∂Qx
∂Ix

 . (2.62)

If the inverse of the torsion matrix takes a quadratic form it will look like,

M−1 =

 a c

c b

 . (2.63)

3Definite = The sign remains constant over vector space.
4Non-definite = The sign varies over vector space.
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For this to be true it must be the case that

∂Qx

∂Iy
=
∂Qy

∂Ix
. (2.64)

The vector V = (x, y) are the possible directions of escape, if [48],

V TM−1V = ax2 + 2cxy + by2 = 0. (2.65)

The discriminant in x is given by ∆ = y2(c2−ab) = −y2 det(M−1). The signature

of torsion is defined by the determinant of the torsion matrix [48]. The signature

of torsion indicates the type of transition the frequency map has with amplitude

at a given point in frequency space. The interpretation of the signature of torsion

comes from the resulting value of the discriminant ∆ [48],

|M |


< 0 Torsion non-definite, ∆ > 0→ Two possible directions of escape,

0 Fold,

> 0 Torsion definite, ∆ < 0→ No possible directions of escape.

(2.66)

If torsion is said to be non-definite a particle at this point in phase space is

more likely to undergo unbounded motion due to the existence of two possible

directions for fast escape, in which diffusion is higher. In contrast, if torsion is

said to be definite a particle at this point in phase space is less likely to undergo

unbounded motion as there are no possible directions of escape and therefore the

diffusion is lower. There are two types of fold: a single fold, in which there is one

change in the sign of the signature of torsion, and a double fold in which there

are two changes. Figure 2.19 shows the signature of torsion for these two types

of fold found in a frequency map. The single fold ends in a region of non-definite

torsion, so is less stable, while the double fold ends in a region of definite torsion
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so is more stable.

(a) (b)

Figure 2.19: The nature of folded frequency maps in terms of the signature of
torsion. (a) Single fold and (b) double fold in map [48].

The fold in figure 2.18 can be seen to be a single fold which means that

amplitudes beyond this fold are likely to form unbounded motion caused by res-

onances. An example of one of these destructive resonances is marked by (3,-6)

in figure 2.18. In general, the frequency map allows loss mechanisms caused by

chaotic motion to be studied. It indicates areas of phase space which are partic-

ularly vulnerable to unbounded motion from resonances.

Dynamic aperture

The dynamic aperture (DA) is defined by the region in phase space over which

stable motion occurs [49]. Stable motion is defined as bounded quasi-periodic

motion over a given time or number of turns, depending upon the choice of

independent variable. This definition implies that DA is time dependent, which

asymptotically will tend towards the chaotic boundary. The chaotic boundary

is time independent and is defined as the boundary which separates bounded

and unbounded motion. When defining the stability of a real machine the DA is

measured for a particular number of turns or time. In a lepton machine, where

radiation damping is important, this choice may be considerably lower than a
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hadron machine of similar circumference, in which radiation damping is generally

negligible.

Figure 2.20: Phase space for a simple 2D model with a sextupole and octupole
term showing the formation of stable islands.

By definition, the dynamic aperture does not contain all possible stable par-

ticles that remain within the physical aperture over the lifetime of the beam, as

some exist in stable islands. This island formation is shown in figure 2.20. In a

full six dimensional phase space this aperture is described by a six dimensional

hypersphere centred on the closed orbit. For ease of scanning over the phase

space to determine the dynamic aperture, action-angle coordinates can be used

thus reducing the transverse phase space to be scanned from 4D to 2D. Similarly

the longitudinal motion can be expressed in action-angle coordinates and be re-

duced from 2D to 1D. This reduction arises because in action-angle coordinates

the action remains constant while the angle varies periodically, hence over the

number of turns tracked all angles will be effectively scanned. Use of a search
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method, for example a binary search, is not feasible to determine the dynamic

aperture, for risk of converging on an island. A large scale scanning of the action

phase space is required in order to determine dynamic aperture without the risk

of converging on an island.

Long term tracking scans over various initial conditions, for up to 107 turns,

to see if a particle is “lost” (goes beyond a physical aperture far greater than

the mechanical aperture of the machine). For the LHC this is conducted using

SixTrack [50]. This provides a direct measurement of the dynamic aperture.

However, in order to determine the long term stability a relationship between

the dynamic aperture and time is required [49]. This direct measurement is

computationally intensive.

The chaotic boundary is defined where unbounded motion begins. There is

some correlation between the chaotic boundary and dynamic aperture, although

a particle can have unbounded and yet stable motion [51]. Short term track-

ing predictions make use of a fewer number of turns to determine the chaotic

boundary, from as little as 103 turns. There are two methods available for such

a calculation; the Lyapunov exponent [52] and the tune variation [53]. These

methods are not often used for dynamic aperture calculations as they exclude

initial conditions where a particle is chaotic yet physically stable (i.e. never lost),

hence greatly underestimating the dynamic aperture.

2.3 HL-LHC

After 2022, it is intended to begin the third long shut down in order to upgrade

the LHC’s delivered luminosity to the experiments (see figure 2.8). To do this, the

pileup (see section 2.2.2) needs to be kept fairly constant throughout a run, rather

than degrading with time. In order to perform such a run a luminosity levelling

scheme has been proposed [54], which will deliver a levelled peak luminosity of
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5 × 1034 cm−2s−1 with a virtual luminosity of 2 × 1035 cm−2s−1, which aims to

provide an integrated luminosity of 250 fb−1 per year [55]. A schematic of this is

shown in figure 2.21 in which the luminosity is given over the lifetime of a run.

Over 12 years of operation this will equate to 3000 fb−1 of integrated luminosity,

post upgrade, running with a centre of mass energy of 14 TeV. This would see

a 10 fold increase in the integrated luminosity compared to the planned first ten

years operation of the LHC [56]. The aim is to deliver this luminosity to the two

low β∗ experiments ATLAS and CMS, at IP1 and IP5 respectively.
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Figure 2.21: Example of luminosity levelling over one run (Schematic). [17]

The ATLAS [57] and CMS [58] collaborations, in 2012, presented the first

results, with 5 standard deviations of significance, indicating the existence of the

Standard Model Higgs boson at the LHC. The increased integrated luminosity

would allow for greater accuracy of measurement to be made on the properties

of this boson, as shown in figure 2.22. Beyond this an integrated luminosity of

this magnitude allows for limits to be placed on the observation of rare processes,

both in keeping with and beyond the standard model (e.g heavy stable charged

particles and dark matter candidates [59]).

The HL-LHC upgrade requires a number of significant hardware changes to

reach its goals, of increasing the luminosity and enabling operation with lumi-

nosity levelling. In order to reach this high luminosity goal the beam must be
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Figure 2.22: Improvement in relative uncertainty on the total signal strength µ
for different Higgs final states, assuming the Standard Model Higgs boson has
a mass of 125 GeV/c2. “Comb.” refers to combined measurements and “Incl.”
indicates inclusive analysis. The dotted regions indicate theory uncertainty. [60]

strongly squeezed at the IP and emittance reduced. This is currently limited

by the injector chain, which impacts the emittance, and the optics and aperture

restraints of the current LHC [61]. The aim is to upgrade the injector chain in

long shutdown 2 leaving the upgrades to the LHC machine to long shutdown 3.

At the ultimate bunch intensity of 1.7×1011 protons the crossing angles which

the nominal optics permit lead to a decreased dynamic aperture as a result of

long range beam-beam interaction, where the reduced dynamic aperture leads

to a greatly shortened lifetime. In the nominal LHC, without any beam-beam

compensation, the minimum normalised crossing angle φ increases as a function of

the bunch intensity Nb and bunch spacing Tsep with the approximate relation [47,

62],

φ ≈
√
εβ∗

(
DA

σ
+ 3

√
Nb

1.05× 1011

25 ns

Tsep

nLR
72

)
, (2.67)
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where DA/σ is the required dynamic aperture and where the units are given in

terms of the rms width of the bunch. nLR is the number of long range beam-beam

encounters. The dynamic aperture is nominally required to be greater than 6σ

as this is the minimum physical aperture set by the collimation system in the

LHC. With the ultimate bunch intensity, 25 ns time separation, β∗ of 15 cm,

and normalised emittance of 3.75 π mm mrad, the required crossing angle is

approximately 300 µrad. In order to gain such a crossing angle it is necessary to

increase the aperture and field strength of the final focussing triplet, this allows

for a smaller β∗ and a larger crossing angle. An increased crossing angle can be

attained using inner triplet magnets with an aperture of 150 mm constructed with

superconducting wires made from Nb3Sn [63]; allowing for a peak field gradient

of 150 T/m.

While this larger crossing angle permits for an increased dynamic aperture it

leads to significant geometric loss in luminosity. The effect of this overlapping

loss in luminosity is demonstrated in figure 2.15, in which the area of overlap

decreases with increased crossing angle. The method proposed to overcome this

loss in luminosity is a local crab cavity scheme [64, 63, 54]. The crab cavities

generate a rotation of the bunch about its centre at the IP, correcting for the

geometric losses from the crossing angle. Adjusting this angle means that the crab

cavity scheme also presents a method in which to control these geometric losses,

allowing luminosity levelling throughout a run in the machine. A novel approach

to the optics called the “Achromatic Telescopic Squeezing” (ATS) scheme allows

for further squeezing of the beam with limited alteration to the current LHC

lattice.
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2.3.1 Arc and insertion regions

The LHC can be broken down into two types of optical regions, the insertion

regions (IR) and the arc regions, of which there is one of each for each octant.

For the HL-LHC the insertion regions contain the experiments, some collimation,

injection and beam dump systems. For the HL-LHC the IRs will undergo the

greatest number of changes, while the arc regions will mostly go unchanged except

for the addition of the new dispersion suppression collimation system [65]. In the

HL-LHC the final focussing magnets and separation dipoles in IR1 and IR5 will

be replaced to allow for an increased crossing angle and to allow for a greater

squeezing of the β∗ value.

Figure 2.23: Schematic layout of one LHC arc cell [66]

Each arc in the LHC is made up of 23 cells and is 106.9 m long, as shown

in figure 2.23. Each cell is made up of dipole bending magnets, quadrupole

magnets and a series of correctors [16]. The two counter rotating beams are held

in separate apertures throughout the arcs, separated by 194 mm. There are a

number of different components making up the arc cell, as shown in figure 2.23:

• MBA/MBB.These are the two types of bending dipole magnet. MBA

come equipped with a b4/b5 correction spool piece (MCDO) (Figure 2.24)

• MQ. Lattice quadrupole.

• MO. Landau octupole for damping the coherent oscillations caused by col-

lective effects.
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• MQT. Tuning quadrupole for independent control of the phase advance

between the two beams.

• MQS. Skew quadrupole corrector magnets to correct for systematic a2

errors in the main dipole magnets.

• MSCB. Combined lattice sextupole or skew sextupole and orbit corrector

• BPM. Beam position monitor.

• MCS/MCDO. The local sextupole corrector and local combined decapole

and octupole correctors are also known as the spool pieces. These are small

corrector magnets designed to compensate for the b3,4,5 field components of

the main dipoles which would impact linear chromaticity at the top centre

of mass energy.
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Figure 2.24: Magnet field in dipole magnets (MBA/MBB) [67]

The IRs at the time of writing were not finalised for the HL-LHC design and

the optics discussed throughout this thesis are that of the SLHCv3.1b [68]. The

IRs are all classed as long straight sections, with interaction points (IPs) at their

centres. From the arcs the aperture remains split for the two beams entering the

IR, combining into one aperture for the IP. IR1 and IR5 contain ATLAS and

CMS respectively, and are the low-β insertion regions.
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Figure 2.25: (a) IR1 and (b) IR5 schematics for SLHC v3.1b [68], beam 1. Includes

quadrupoles (blue) and sextupoles (red) which are both relatively scaled with field

strength, collimators (yellow) and crab cavities (magenta). Aperture shown to indicate

separated and split regions, however, not to scale.

In figure 2.25 the basic layouts of IR1 and IR5 are shown, not all magnets are

included. The following is a brief description of the key elements of the IR and

their alternative naming [16]:

• MQXC/MQXD (Q1,Q2A,Q2B,Q3). These are the inner triplet mag-

nets, as with the nominal LHC, for this optics layout the central magnet

is split. In later optics layouts it is proposed to split all three magnets.

They are superconducting and constructed of Nb3Sn with a large aperture

(≈ 150 mm)

• MBXA/MBRD (D1,D2). This is a pair of separation/recombination

dipoles which take the beams from a double to a single aperture. In the

nominal machine D1 was a normal conducting magnet due to the large

aperture requirements, however, as part of the upgrade this will become a
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superconducting magnet.

• CRAB. This is the proposed location for the crab cavities in the optics. In

this optical layout it was proposed that there should be six cavities either

side of the IP, with three cavities per beam at each location, laid out in a

staggered formation.

• MQYY/MQYL/MQML (Q4,Q5,Q6). These quadrupoles are super-

conducting and form the beginning of the matching section, which is key

to the ATS scheme.

• Collimation. In the schematic two sets of collimation are shown either

side of the IP. The set closest to the IP, the TAS absorber, protects the

inner triplet magnets from particles leaving the IP. The second set, the

TAN absorber, protects the split aperture magnets from neutrally charged

particles coming from the IP.

• IP. At the time of writing there were two different proposed β∗ configura-

tions with a variety of properties which are still under consideration. There

is a round beam proposal with β∗ of 15 cm and flat beam of β∗x,y of 7.5/30

cm.

The luminosity levelling need not be controlled solely by crab cavities, as pre-

viously mentioned. Another possibility lies in the control of the β∗, instead of

reducing the geometric loss from the crossing angle. This is done through a set

of large corrector magnets just after Q4. Such a scheme has already been verified

during a machine development run, in 2011, by applying a luminosity control to

LHCb [69].
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Figure 2.26: The low β∗ insertion region layouts for the (a) nominal and (b)
HL-LHC optics.

2.3.2 Achromatic Telescopic Squeezing scheme

The nominal LHC optics, shown in figure 2.26a, are limited by the mechanical

acceptance of the matching section, the gradient limits of the quadrupoles in the

insertion region (IR) and the strength limit of the arc sextupoles [61]. Sextupoles

are the basic tool used to reduce the chromaticity in a lattice. The basis of the

chromaticity correction scheme, to allow for a squeezed β∗ at IP1 and IP5, is to

allow correction to occur in the matching section of the IRs either side of the

IR being corrected. For example, for IR1, the matching sections of IR8 and IR2

closest to IR1 are used to gain additional chromaticity correction, as shown in

figure 2.26b.

Increased chromatic errors arise from the introduction of large aperture, higher

strength quadrupoles close to the IP, required to squeeze the β∗. These lead to

both significant linear and non-linear chromaticity which must be corrected for.

The larger aperture and increased field strength of these quadrupoles, over the

nominal LHC magnets, allow for a greater crossing angle to be attained which

is needed to overcome the beam-beam interaction limit. There is a significant

amount of beam-beam interaction, even with an increased crossing angle, which

can be limited by orientating the crossing angles such that IP1 is vertical and IP5

horizontal relative to the plane of the HL-LHC ring. This is done so that the tune

shift resulting from the beam-beam interaction does not occur in the same plane.

It is proposed to build the final triplet (Q1, Q2, Q3) using the superconducting
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material Nb3Sn [70]. The Nb3Sn allows the gradient of the magnets to operate

at 150 T/m with an aperture of 150 mm [68].

Chromaticity is generally unwanted in an accelerator as it can lead to instabil-

ities by pushing particles onto unstable resonances [71]. The primary instability

is in the particle’s transverse motion and is called the strong head-tail instabil-

ity. It is dependent on the synchrotron motion and impedance resulting from the

aperture of the machine. In order to correct for the chromaticity in the HL-LHC

lattice large families of sextupoles are used which are contained in the matching

sections at the edges of the IRs and in the arcs. These matching sections pre-exist

in the nominal machine, however, their usage in the ATS scheme differs.

The ATS scheme creates a mismatch in the matching sections adjacent to the

IR so that there are intentional errors in the β-function in these regions. These

errors are used to increase the chromatic correction capabilities of the lattice

to correct for the chromaticity arising from the strong focussing used to gain

the ultra low β∗ values at IP1 and IP5 [61]. In this case matching refers to

gaining the desired β-function and phase advances at given points in the lattice.

Initial matching of the sextupoles arises from the matching sections of IR1 and

IR5 down to a certain β∗. Beyond this β∗ the additional matching sections are

required to reach the desired operational β∗. The adjacent matching sections are

used to produce a mismatch in the optics which induces a beta-beating wave in

the arcs adjacent to IR1 and IR5. A beta-beating wave refers to an error in the

β-function which processes around the machine with twice the phase advance to

the betatron phase advance. Around the arc sextupoles this phase advance is π

for every π/2 betatron phase advance, such that the total amplitude of the β-

function resulting from the induced errors peaks at every other sextupole. These

sextupoles are powered in two families with every other sextupole connected to

each other, requiring any change in magnet strength to be continuous across a
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whole family. This beta-beating wave increases the efficiency of chromaticity

correction due to all the sextupoles in one family gaining the same increase in

β-function. This allows the current sextupole powering arrangement to overcome

the strength limit of the arc sextupoles [61].

2.3.3 Crab crossing scheme

In 1988 Palmer [72] suggested, for linear colliders, the possibility of a crab crossing

scheme as a way of recovering some of the luminosity lost by the geometric loss

at the crossing angle. It was proposed to use an RF deflector (crab cavity) to

deflect the front and back of the bunch in opposite directions so that at the IP

they would cross head on, as shown in figure 2.27.

Figure 2.27: Crab crossing scheme at a linear collider as proposed by Palmer [72]

This was later extended to storage rings by Oide et al [64]. A local crab

crossing scheme involves the introduction of cavities on each beam either side of

the IP [54]. A “crab bump” occurs between two points either side of the IP with

a π betatron phase advance between the two cavities in order to return the bunch

to its original pre-crabbed state. At the initial point in the bump a transverse

z dependent kick is applied to the bunch by a deflecting (aka. crab) cavity; this

generates an effective angular momentum about the centre of the bunch. By the
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time the bunch reaches the IP it will have rotated far enough to collide head

on, thereby recovering the luminosity lost by the crossing angle. Between the

crab cavity and the IP a betatron phase advance of π/2 occurs, hence from the

IP the direction of bunch rotation reverses until it reaches the final crab cavity

where the bunch returns to its original physical orientation. At this point a kick

of the same phase as initially applied to the bunch is applied to close the “crab

bump”. This process is shown in figure 2.28. The ability to completely correct

IPBetatron phase advance
Beam direction
Crab cavity

Bunch rotation

Figure 2.28: Bunch crossing with crossing angle and local crab cavity scheme

for these geometric losses with crab cavities leads to a maximum peak luminosity,

however, this also leads to significant pileup for an experiment. This method of

partially correcting these geometric losses using crab cavities is proposed in order

to control the luminosity over the lifetime of a run.

The dependence of luminosity upon voltage can be calculated starting with

an idealised crab cavity, for which the transverse momentum kick applied at any

given longitudinal position z for a cavity with voltage V and frequency ω is given

by,

∆px =
qV

cp0

sin
(ωz
c

)
(2.68)

where the reference momentum is p0. This can be reduced by the small angle
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approximation to give an expression for the required voltage,

V =
c2p0

qω

∆px
z
. (2.69)

The R matrix defines the linear transfer map through any number of accelerator

elements such that between s0 and s1 the map for transverse variables is defined,


x(s1)

px(s1)

y(s1)

py(s1)


=


R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44




x(s0)

px(s0)

y(s0)

py(s0)


, (2.70)

where Rij are the coefficients of the linear transfer map, and px and py are the

transverse momenta. The longitudinal position in the bunch is designated z and

defined as,

z =
s

β0

− ct, (2.71)

where t is time and β0 is the reference speed as a fraction of the speed of light.

The change in px with z can be expressed in terms of the crossing angle φ and

the linear coefficient R12, which gives the linear dependence of x at the IP on px

at the crab cavity,

∆px
z
≈ ∆px

∆x

∆x

z
≈

tan
(
φ
2

)
R12

. (2.72)

The R12 between the crab cavity and IP is related to the β-function by the

following relation [73],

R12 =
√
β∗xβxcrab sin (∆ψcrab) , (2.73)

where ∆ψcrab is the betatron phase advance between the cavity and the IP, βxcrab

and β∗x are the horizontal β-function at the crab cavity and IP respectively. This
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leads to the following voltage relation for the cavity before the IP [74],

V1 =
c2p0 tan

(
φ
2

)
qω
√
β∗xβxcrab sin (∆ψcrab)

. (2.74)

The corresponding voltage of the cavity after the IP is dependent on the optics

between the two cavities. The linear relation between the horizontal momenta

across the two sets of cavities R22, is given by,

V2 = −R22V1, (2.75)

with the stipulation that there is no relation between the initial horizontal mo-

mentum and the resulting horizontal displacement between the two sets of crab

cavities,

R12 = 0, (2.76)

to allow for complete correction of the crab kick. From equation 2.74, a relation-

ship between the crossing angle φ and voltage V1 can be found,

tan

(
φ

2

)
=
V1qω

c2p0

√
β∗xβxcrab sin(∆ψcrab). (2.77)

Substituting this into equation 2.35 leads to a voltage dependence on luminosity,

L(V1) =
N1N2fnb
4πσxσy

1√
1 +

(
σs
σx

V1qω
c2p0

√
β∗xβxcrab sin(∆ψcrab)

)2
(2.78)

allowing direct control of the luminosity from the crab cavities. This technique

enables luminosity levelling to be performed. Correcting for the loss in luminosity

due to the crossing angle by use of crab cavities is not the only technique to

perform luminosity levelling, other techniques involve offsetting bunches [69, 54]

and varying β∗.
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2.4 Crab cavities

2.4.1 Introduction to RF cavities

Resonant cavities are approximately closed volumes within which electromagnetic

resonant modes are excited. In general they consist of two openings for the

beam to pass through, a hole through which the power is coupled to enable the

resonances to form, and often couplers to dampen unwanted excited modes. The

simplest cavity design is a pillbox, which can be further simplified to its closed

form of a cylinder, as shown in figure 2.29.

(a) (b)

Figure 2.29: Layout of pillbox cavity with (a) a real cavity from the EMMA
accelerator [75] and (b) an idealised model.

The excited modes in a cavity are defined by their electromagnetic fields and

associated frequencies. The only modes which can exist in a cavity are the eigen-

modes found from the Helmholtz equation and the boundary conditions exerted

by the cavity’s structure. These boundary conditions prevent the existence, in

the case of a conductive boundary, of parallel electric and perpendicular magnetic

fields to the cavity’s surface (defined by the surface vector ~n), such that,

~n× ~E = 0, ~n · ~B = 0. (2.79)
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The Helmholtz equation for the electric and magnetic fields is given by,

∇2 ~E + |~k|2 ~E = 0,

∇2 ~B + |~k|2 ~B = 0, (2.80)

where ~k is the wavenumber of one eigenmode from a set of allowed eigenmodes

defined by the boundary conditions on the internal surface of the cavity. In

general, two types of mode exist in a resonant cavity of similar form to a pillbox.

1. TE, Transverse Electric where the electric field only has transverse com-

ponents and the magnetic field is parallel to the axis, Ez = 0.

2. TM, Transverse Magnetic where the magnetic field only has transverse

components and the electric field is parallel to the axis, Bz = 0.

A further type of mode can exist by inserting conductive structures into the

volume of the cavity.

3. TEM, Transverse Electric and Magnetic where the electric and mag-

netic fields only have transverse components, Ez = 0 and Bz = 0.

The nomenclature for describing these eigenmodes is given by Amnp where A can

be interchanged with TM, TE and TEM to describe the field components, the

index m (for a pillbox cavity) describes the rotational symmetry, n describes the

number of nodes in radial dependence and p describes the number of longitudinal

nodes. For a TM mode the fields in the idealised cavity of length L and radius
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R are given by [76],

Ez = E0 cos
(pπz
L

)
Jm

(umnρ
R

)
cos(mφ) (2.81)

Eρ = −E0
pπR

Lumn
sin
(pπz
L

)
J ′m

(umnρ
R

)
cos(mφ) (2.82)

Eφ = E0
mpπR2

ρLu2
mn

sin
(pπz
L

)
Jm

(umnρ
R

)
sin(mφ) (2.83)

Bz = 0 (2.84)

Bρ = iE0
mµ0ωmnpR

2

ηcρu2
mn

cos
(pπz
L

)
Jm

(umnρ
R

)
sin(mφ) (2.85)

Bφ = iE0
µ0ωmnpR

ηcumn
cos
(pπz
L

)
J ′m

(umnρ
R

)
cos(mφ) (2.86)

γmn =
umn
R

ωmnp = c

√
γ2
mn +

(pπ
L

)2

(2.87)

where η is the impedance in a vacuum (
√

(µ0/ε0)), umn is the nth root of Jm(x),

and J ′m(x) is the first derivative with respect to x. In figure 2.30 the electric and

magnetic fields of the TM010 mode are shown for a pillbox cavity.

(a) (b)

Figure 2.30: (a) Electric and (b) magnetic fields of TM010 mode in a pillbox
cavity.
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When describing the quality of a cavity mode, in terms of its ability to act on

a beam, the measure R/Q is used. The quality factor Q of the cavity is defined as

the ratio of the stored energy to the energy lost in one radian of an oscillation [73].

The shunt impedance Rs, is defined by the ratio of the square of the energy gain

to the loss rate. The ratio of these two quantities, the R/Q, relates the work

done by the cavity on a particle to the energy stored in the cavity. A high R/Q

indicates that a mode will do work efficiently on a particle as it passes through

the cavity.

Beam loading occurs when a beam passes through a cavity and transfers

energy into unwanted modes. The RF system, which drives the cavity’s desired

mode or operating mode, will also drive unwanted modes in the cavity. These

unwanted modes are often referred to as Higher Order Modes (HOMs), as they

often exist at higher frequencies than the operating mode. In some cases Lower

Order Modes occur (LOMs), however, these only tend to occur for deflecting

or crab cavities. Couplers are often added to RF cavities and are designed to

resonate at the frequency of the HOMs which increases the power loss from these

particular modes, resulting in a reduced R/Q value. In figure 2.31, the R/Q values

for the various modes of the four rod crab cavity prototype design are shown. It

can be seen that the R/Q value is significantly higher for the operating mode that

the other modes. Many of the HOMs have the same spatial field distributions as

the operating mode but at integer multiples of the operating frequency.

2.4.2 Crab cavities

Crab cavities, compared with accelerating cavities, provide a z dependent trans-

verse kick rather than a z dependent longitudinal kick. The lowest frequency

mode to operate in a pillbox cavity that provides this deflecting kick is given by

a TM110 mode. The desired operating frequency for the HL-LHC is 400 MHz,
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Figure 2.31: Modes of the four rod cavity; showing the Lower Order Mode,
operating mode and Higher Order Modes [77].

which is chosen out of consideration of the bunch length in order to deliver a

reasonably linear kick over the length of the bunch. From equation 2.87 this

frequency would equate to a pillbox cavity with a radius of 610 mm.

Crab cavities are relatively new in colliders with the first implementation for

crossing angle correction performed at the lepton collider KEKB in 2007 [78].

This crab cavity system has met with many operational issues linked to cavity

breakdown, where the eigenmodes of the cavity fail due to sudden change in the

boundary conditions caused by plasma emission from the surface of the cavity [79].

In KEKB a global crabbing scheme was used, in which the phase advance of the

machine causes bunches to oscillate about their bunch centre as they travel around

the machine, with the bunches reaching the desired angle for head on collision at

the IP.

Crab cavities have never been tested in a hadron collider. They present many

issues for a collider such as the HL-LHC where long term beam stability is impor-

tant. In the initial studies for the HL-LHC two crabbing schemes were proposed;

a global scheme and a local scheme, as shown in figure 2.32. The global scheme

involved having crab cavities at IP4 which would cause the bunches to oscillate
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(a) (b)

Figure 2.32: (a) Global and (b) local crabbing schemes for the HL-LHC [80].

around the machine giving the correct tilt at each IP for the desired geometric

correction. The global scheme allowed the use of elliptical cavities, similar to

those used at KEKB, to perform the kick on the beam as there are no space

constraints in having the cavities at IP4. The local scheme only applies this os-

cillation with phase advance locally across the IPs, with sets of cavities either

side of the IP in order to cancel the oscillation. The local crab cavity scheme was

chosen because of its flexibility, in that the scheme allows independent control of

the IPs. It is anticipated that three cavities will be required for each beam, at

each crabbing location in order to reach the desired voltage, for the SLHC v3.1b

optics [68], required to completely overcome the geometric loss from the crossing

angle.

2.4.3 Prototype crab cavity designs

There have been a number of proposed designs for the crab cavities in the HL-

LHC with the shortlist of three potential designs, at the time of writing, shown

in figure 2.33. The final shortlist of three potential crab cavity designs includes

the four rod (4RCAV), quarter wave resonator (QWCAV) and the ridged wave

guide (ODUCAV) cavities. The cavities have many space constraints which arise

from having to fit side by side on two beam lines, within one cryostat, and
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(a) (b) (c)

Figure 2.33: Proposed compact crab cavity designs. (a) Four rod cav-
ity (Lancaster University/ CERN) [81] (b) Quarter wave resonator cavity
(Brookhaven) [82] (c) Ridged wave guide cavity (ODU) [83]

longitudinally in the space between Q4 and D2 (see figure 2.25). The transverse

beam separation is 194 mm at these locations, requiring the outer radius of the

cavities to be limited to 150 mm. The length required to fit the three cavities,

including couplers, is constrained to a maximum of 10 m [84].

In order to fit in this confined space, operate at a frequency of 400 MHz, and

apply the correct voltage, unusual cavity geometries are required. The simplest

cavity design of a pillbox, as previously discussed, would have a radius of 610 mm.

For this reason a TM110 mode pillbox cavity can not be used for the crab cavities in

the local crossing scheme whereas a TEM type resonator allows for more compact

geometries of cavity. For TM mode cavities the frequency is dependent on the

radius of the cavity, however, for a TEM type cavity this dependency is lost

allowing for a cavity to have a very small transverse size.

The simplest design for a TEM type cavity is a quarter wave resonator [85].

This consists of a coaxial geometry with one end closed at a quarter of the wave-

length from the resonator opening (Figure 2.34b). At resonance the high voltage

is generated at the open end of the cavity and a transverse voltage is generated

between that and the closed end of the cavity. The open end, which is at the

bottom of the cavity, is where the RF power is inserted and the top is the closed
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Figure 2.34: Basic form of coaxial geometry from which the (a) 4RCAV, (b)
QWCAV, and (c) ODUCAV cavity designs are derived, where λ is the wavelength
of the cavity.

end where the E field is reflected. The operating mode for deflection in the QW-

CAV is the lowest frequency eigenmode of the cavity. The higher order modes

are at significantly higher frequencies than the fundamental mode which makes

damping the cavity relatively simple compared with other designs. Geometrically

the design is very compact between the closed end and the beam, allowing for

the tight 194 mm beam separation.

The ODUCAV was originally based upon a half wave resonator design (Fig-

ure 2.34c). A half wave resonator is formed from two quarter wave resonators

with both ends shorted and a length half that of the wavelength. The power is

inputted half way up the cavity perpendicular to the beam line. The first eigen-

mode of such a resonator develops a potential between the upper and lower rods,

leading to a cosine voltage distribution with zero voltage at the beam entrance

and exit. This is an accelerating mode rather than the desired transverse deflect-

ing mode. From this basic cavity design alterations can be made to produce a

transverse deflecting mode. There are several ways to alter the half wave res-

onator to produce a deflecting mode; a spoke design by Li [86], and a parallel bar

design based upon a pair of half wave resonators side by side with the deflecting
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voltage formed between the two resonators [87]. In the plane perpendicular to the

resonator the half wave resonator can be small. However, in the other plane the

geometry is limited to half the wave length, meaning that the proposed designs

will not fit when a crab cavity is orientated vertically. This was the reason for

the development of the ODUCAV, as shown in figure 2.33c.

Beam direction

Figure 2.35: The operating mode of the four rod cavity showing the E field (red)
around the tips of the rods [88].

The 4RCAV is based upon four quarter wave resonators arranged co-linearly

about the beam axis, shown in figure 2.34a. The potential is developed between

the tips of the rods leading to various resonant modes (shown in figure 2.31).

The lowest order mode is an accelerating mode where the potential between the

rods leads to an electric field parallel with the beam axis. This lower order

mode requires significant damping in order to remove it. The operating mode

resonates with rod tips with alternating polarity such that the electric field cir-

culates around the four rod tips. Unlike the half wave and quarter wave designs

this cavity’s geometric constraint lies in its length, which causes less physical

constraint, rather than in transverse dimensions. This length constraint consists

of the length of each rod, λ/4, which dictates the cavity frequency and the sepa-

ration between the rods, which is determined by the distance required to mitigate

the electrical breakdown between the rods. This geometry allows the 4RCAV to

be ultra compact [89]. This design already exists in a normal conducting context
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for beam diagnostics at the Cornell electron recovery linac [90].

2.5 Single particle dynamics

In order to fully understand the behaviour of an accelerator an accurate and effi-

cient model is required. For a high energy machine, the ability to calculate single

particle trajectories through the machine is essential for its design and operation.

The equations of motion for the Hamiltonian description of a given accelerator

do not have a simple analytical result, hence a whole range of techniques are used

to calculate approximate transformations around the machine in order to deter-

mine the trajectory of a particle. These techniques have to make compromises

on the speed of calculation, numerical accuracy of the result and accuracy in the

representation of the real machine in order for a trajectory to be calculated.

For a storage ring, such as the LHC, a significant performance goal is its in-

tegrated luminosity. The integrated luminosity is dependent upon the lattice,

to allow for a large peak luminosity (see section 2.2.2), and the dynamic aper-

ture, to allow for a long beam lifetime and significant current (see section 2.2.3).

The beam lifetime and current are dependent upon the long term stability of

the machine, which corresponds directly to particle losses on restrictive physi-

cal apertures e.g. collimators. Comparing such stability calculations for hadron

machines, such as the LHC, requires a significantly greater number of turns to

be tracked in order to define the dynamic aperture. This is significantly higher

than for lepton machines, such as LEP, for which the processes of synchrotron

radiation and damping lead to far more stable machines.

In order to find the dynamic aperture a Poincaré section from the tracking

data is required. A Poincaré section describes the turn by turn behaviour of a

particle as it passes a point periodically in the lattice. A Poincaré map projects

a particle to its next position on the Poincaré section after one turn. There are
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three techniques for generating such a map from a periodic accelerator, in order

of slowest to fastest:

1. Numerically integrate through the complete electromagnetic field

map of the accelerator.

This technique is often preferred for cases of small accelerators in which

the small variation of fields has significant impact upon the stability of the

machine. Issues arise when a precise magnet strength is required in the

lattice and the step size throughout the fields affects the convergence to

this strength; this is particularly true for a hadron synchrotron where small

errors scale considerably over many turns. This method is able to conserve

the phase space volume and is therefore relatively numerically stable. The

most significant issues with this technique are its computational and time

inefficiencies; this method is very slow.

2. Model each element as a single transformation and integrate

through the lattice, element by element.

In general this is used for long term tracking of larger accelerators, for exam-

ple LHC simulations, in the form of a kick code (e.g. SixTrack [91]), which

describes each element as a set of momentum kicks separated by drifts. This

is particularly reasonable for cases of magnets where the edge, or “fringe”

field effects are small and many magnets have to be modelled. It is possible

to further decompose the magnets into azimuthal modes called multipoles,

with the integrated kicks of each multipole providing the description for any

magnet. An extension to this method is the use of generating functions. A

phase space conserving (or symplectic) transformation can be described by

a generating function which ensures the phase conservation when integrat-

ing through the lattice. This method is computationally very fast and is

particularly useful for cases of machines with many different magnets.
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3. Devise a single transformation representing one turn of the accel-

erator.

This technique requires integrating through the lattice, using either the first

or second method without assigning the initial canonical variables on the

Poincaré section. This generates a one turn map or Poincaré map from

which the whole of phase space might be evaluated. One representation

of this transformation is a Taylor map, these are Taylor series [92] repre-

sentations formed by multiplying through the single element transfer maps

using truncated power series algebra. Truncation of such a map, caused by

the limitations of orders to which power series can be computed, generates

significant errors in the numerical and model accuracy. Particular issues

lie in the conservation of phase space volume, more formally described as

symplectic error. Methods exist to fix this broken symplecticity in a Tay-

lor map [93], however, these generate further complications. The typical

approach to rectify this symplectic error is to factorise the Taylor map to

give a transformation which has a corresponding generating function. This

method has been used in the past to study large machines, for example

the LHC [94, 95], but it is now avoided for long term tracking due to the

symplecticity issues which lead to a broken phase space. The single transfer

map, however, does allow the calculation of the normal form, closed orbit

and many global properties of the lattice, hence it is still useful. Other rep-

resentations of this one turn map can be considered such as Lie maps [93]

or mixed variable generating functions [96].

The techniques used to make a Taylor map can be expanded to the construc-

tion of single element transformations rather than just those of the whole machine.

This considerably improves the accuracy of the description of specific elements

within an accelerator, thereby restricting the symplectic errors to originate in a
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small number of elements rather than over the whole of the machine.

2.5.1 Accelerator Hamiltonian

A Hamiltonian, H, is a function which describes the total energy of a physical

system in terms of a set of canonical variables. A Lagrangian, in a similar manner,

is a function describing the dynamics of a physical system defined by the kinetic

energy of the system minus its potential energy. The Lagrangian, L, is expressed

in terms of position and velocity rather than position and momentum. Two

representations are linked by the Legendre transformation of the Lagrangian so

that,

H(qj, pj; t) =
∑
i

q̇ipi − L(qj, q̇j; t) (2.88)

where q is position, p is momentum, q̇ is velocity and t is time, which is the

independent variable. The time evolution of the system is defined by Hamilton’s

equations,

dp

dt
=
∂H

∂q
, (2.89)

dq

dt
= −∂H

∂p
. (2.90)

For simple Hamiltonian systems, for example a pendulum, for which the Hamil-

tonian is separable into components with p and q dependence, directly applying

Hamilton’s equations is possible. Introducing mixed terms means that solving

the equations of motion is no longer trivial.

All single particle dynamics calculations consider the motion of a charged

particle through an electromagnetic field. This can be considered from a New-

tonian or Hamiltonian perspective, where in the Hamiltonian case the particle is

considered moving in a potential. Single particle dynamics ignores things such

as collective effects, which are related to the interaction of the particles with
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each other [30]. For many applications, to first order, these interactions are not

considered. Defining the Hamiltonian of such a system begins with the relation-

ship between energy E and mechanical momentum ~P of a particle given by the

relation [97],

E2 = m2c4 + ~P 2c2 (2.91)

where m is the mass of the particle. In the case where no external forces are

applied the Hamiltonian of a system H can be considered the total energy,

H =

√
~P 2c2 +m2c4. (2.92)

At this point it is important to clarify the difference between the mechanical

and conjugate momenta, denoted ~P and ~p respectively. To describe the electro-

magnetic potential in which the particle is sited a scalar function φ and vector

potential ~A are required; these are dependent on the position and time. In the

presence of an electromagnetic field the conjugate and mechanical momenta are

no longer equal and they are related to each other by the vector potential ~A [98].

This arises from the Lagrangian of a non-relativistic particle in an electromagnetic

field,

L =
1

2
m~̇x · ~̇x− qφ+ q ~A · ~̇x, (2.93)

where q is the particle charge. The conjugate momentum is given by,

~p =
∂L
∂~̇x

= m~̇x+ q ~A (2.94)

which can be rearranged to,

~P = ~p− q ~A, (2.95)

where ~P is the mechanical momentum and in the relativistic case is given by γm~̇x.
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The Hamiltonian may now be expressed in terms of the conjugate momentum,

H(x, px, y, py, z, pz; t) =

√
(~p− q ~A)2c2 +m2c4 + qφ. (2.96)

In the form given in equation 2.96, the Hamiltonian is not particularly useful

for describing an accelerator, where the lattice is defined in space and not time,

hence a change of independent variable is convenient. The first step required is

to change the independent variable from time t to path length s, via the principle

of least action [99]. The action of a physical system S is defined as the integral

of the Lagrangian between two instants in time. The Euler-Lagrange equations

further define a path between these two instances in which the property of the

action is a minimum such that,

δS = δ

[∫ t1

t0

L dt
]

= 0. (2.97)

Expressing the action in terms of the Hamiltonian using equation 2.88 takes the

form,

S =

∫ t1

t0

(
pxẋ+ pyẏ + pz ˙̃z −H

)
dt (2.98)

where the ẋ is the first derivative of x with respect to t. Changing the independent

variable to z̃, which is defined as the path length, changes the action to

S =

∫ z̃1

z̃0

(pxx
′ + pyy

′ + pz −Ht′) dz̃ (2.99)

where the x′ is the first derivative of x with respect to z̃. From this it can be seen

that the new set of canonical variables required for z̃ as the independent variable

are given by,

(x, px) (y, py) (−t,H) (2.100)
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and the new Hamiltonian, H̃ equates to −pz. Rearranging the Hamiltonian,

H, given in equation 2.96 with energy E, and normalising with the reference

momentum p0 results in,

H̃(x, p̃x, y, p̃y,−t, E; z̃) = −

√
(E − qφ)2

p2
0c

2
− m2c2

p2
0

− (p̃x − ax)2 − (p̃y − ay)2 − az

(2.101)

where E is the total energy, ~̃p is the normalised conjugate momentum, and

~a = q ~A/p0. For a relativistic particle E/p0 ≈ c, showing that this Hamiltonian’s

sensitivity to energy variation is small. In order to increase this sensitivity a new

pair of conjugate variables are introduced to replace z̃ and E. The longitudinal

variable describing the energy deviation is given by,

δ =
E

p0c
− 1

β0

, (2.102)

where β0 is the speed of the reference particle as a fraction of c. A particle with

reference energy will have a value of δ = 0. The conjugate to δ is the relative

longitudinal position of a particle relative to the reference particle,

z =
z̃

β0

− ct. (2.103)

A particle ahead of the reference particle has a positive z̃ value and behind has

a negative value. By renaming the conjugate variables in order to simplify the

expression of the Hamiltonian,

H̃ 7→ H ~̃p 7→ ~p z̃ 7→ s
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the accelerator Hamiltonian is defined,

H(x, px, y, py, z, δ; s) =
δ

β0
−

√(
1

β0
+ δ − qφ

p0c

)2

− (px − ax)2 − (py − ay)2 − 1

β2
0γ

2
0

−az.

(2.104)

In this accelerator Hamiltonian the independent variable is now the reference orbit

position s, with the canonical transverse positions x and y, canonical transverse

momenta px and py and longitudinal variables z and δ. In order to simplify

this Hamiltonian further a gauge can be chosen which reduces the number of

components of the electromagnetic potential required to describe the fields. One

such gauge is named the Weyl gauge (or Hamiltonian gauge) and sets the scalar

potential to zero, φ = 0.

2.5.2 Symplecticity

A canonical transformation is a change in canonical coordinates that preserves

the form of Hamilton’s equations [100]. Symplecticity is the property that de-

fines this preservation. If a transformation can be said to be symplectic then

it must also be canonical. A canonical transformation is characterised by the

generating function of the transformation [100, p. 144]. The generating function

gives the relationship between the initial coordinates, final coordinates and the

new Hamiltonian. Generating function theory states that if a given transforma-

tion is canonical then a generating function exists to describe it. This provides

a direct method with which to test the symplecticity of a transformation. A di-

rect calculation to obtain the corresponding generating function from a general

transformation does not exist. Another method is then required to analytically

determine whether the transformation is canonical, and therefore symplectic, this

approach uses the symplectic condition [101].

In order to generalise the form of Hamilton’s equations the antisymmetric
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matrix S is introduced,

S =


s 0 0

0
. . . 0

0 0 s


s =

 0 1

−1 0

 . (2.105)

This matrix has the following properties,

S−1 = S̃ = −S, S2 = −I, |S| = 1. (2.106)

Consider that a transformation can be written,

x = x(X, s) (2.107)

where x is the column matrix of initial conjugate variables and X is the resulting

column matrix of conjugate variables. The inverted transformation is defined,

X = X(x, s). (2.108)

Using the S matrix Hamilton’s equations can be expressed for the Hamiltonian

H(x, s); in addition, if the transformation is canonical, a Hamiltonian K(X, s)

will exist. This leads to the general forms of Hamilton’s equations,

X′ = S
∂K

∂X
x′ = S

∂H

∂x
. (2.109)

The total derivative of X with respect to s is,

X′ =
∂X

∂x
x′ +

∂X

∂s
, (2.110)
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this can be further simplified by introducing the Jacobian, J, defined,

J =
∂X

∂x
. (2.111)

Inserting equation 2.111 into equation 2.110 with the relations defined in equa-

tion 2.109 leads to,

∂K

∂X
= S̃

(
JS

∂H

∂x
+
∂X

∂s

)
. (2.112)

Using the Jacobian relation,

∂K

∂x
= J̃

∂K

∂X
, (2.113)

allows for further simplification of equation 2.112 to,

∂K

∂x
= J̃S̃JS

∂H

∂x
+ J̃S̃

∂X

∂s
. (2.114)

This resulting matrix equation represents a set of 2N equations which take the

form,

∂K

∂xj
= aj +

2N∑
k=1

bjk
∂H

∂xk
(2.115)

where a and b are,

a = J̃S̃
∂X

∂s
b = J̃S̃JS. (2.116)

If K is a Hamiltonian, it is also a scalar function, and hence takes the following

condition,

∂2K

∂xi∂xj
=

∂2K

∂xj∂xi
(2.117)

Applying this to equation 2.115 leads to,

(
∂aj
∂xi
− ∂ai
∂xj

)
+

2N∑
k=1

(
∂bjk
∂xi
− ∂bik
∂xj

)
∂H

∂xk
+ eij = 0 (2.118)
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where eij is defined in terms of the Hamiltonian H such that,

eij =
2N∑
k=1

(
bjk

∂2H

∂xi∂xk
− bik

∂2H

∂xj∂xk

)
(2.119)

H and K must be scalar functions for any i and j hence,

•
(
∂aj
∂xi
− ∂ai

∂xj

)
vanishes when summed over all i and j values.

•
(
∂bjk
∂xi
− ∂bik

∂xj

)
also vanishes for each k value when summed over all i and j

values.

• This leaves eij = 0. Considering the cases where i 6= j in the summation,

there will exist two cases where k = j and k = i,

(
bjj

∂2H

∂xi∂xj
− bij

∂2H

∂x2
j

) (
bji
∂2H

∂x2
i

− bii
∂2H

∂xj∂xi

)

These are the only terms in which mixed derivatives appear, for them to

disappear bii = bjj, furthermore bij = 0 for all i 6= j.

This leaves the diagonal components of b which must be equal but not zero,

which leads to b = λI, where λ is a constant. From equation 2.116 the extended

symplectic condition can be derived,

J̃S̃JS = λI

J̃SJS = λS2

J̃SJ = λS (2.120)

This result determines whether a generating function exists for a given transfor-

mation, thereby removing the need to attempt to find one. This is especially

useful for something like a Taylor map where there can be many terms making

up the transformation. The symplectic condition is given by the case of λ = 1,
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from which an error E can be defined,

E = J̃SJ− S (2.121)

This gives a technique which analytically determines whether a transformation

is canonical, and hence symplectic. It can also provide a measure of symplec-

tic error of a given transformation. A further general property of a symplectic

transformation is that [102],

det(J) = 1. (2.122)

This can be shown by considering the Jacobian in terms of the Hamiltonian.

From Hamilton’s equations, the Jacobian describing the transformation over a

small time step ∆t is given by,

J =

 1 + ∂2H
∂q ∂p

∆t −∂2H
∂q2 ∆t

∂2H
∂p2 ∆t 1− ∂2H

∂q ∂p
∆t

+O(∆t2), (2.123)

det(J) = 1. (2.124)

Unlike E, which is in the form of a matrix, det(J) provides a scalar value of error.

However, det(J) does not determine if the transformation is canonical.

A further property of these canonical transformations is that every result from

an initial condition is unique. This property arises from the theory of differential

equations [103, 101]. Consider the case of a volume of phase space filled with

points of various initial conditions such that all points have an infinitely small

gap between their neighbouring points. Applying a canonical transformation to

each of these points for a small time step leads to a new resulting condition.

Given that the initial conditions were all unique the corresponding results must

be unique. As the points are restricted to their own unique trajectory the gaps

between them must remain conserved. This leads to Liouville’s theorem which
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states:

“In any system governed by a Hamiltonian, the density of system

points surrounding a particular system point in phase space must

remain constant as the independent variable evolves.” [101, 104]

2.5.3 Numerical integration methods

Numerical integration is used when there is an inability to find a closed form

expression for an integral. It is common for a Hamiltonian system not to have

a closed form expression for the equations of motion but instead for numerical

integration to be applied in order to determine the evolution of the system with

the independent variable.

Classification of integration methods

Numerical integration comes in two forms: explicit and implicit. An integration

step starts from the current value of the independent variable, s0, and goes to

the future step, s0 + ∆s, over which the conjugate variables change. The explicit

approach evaluates the Hamiltonian from the current conjugate variables, at s0.

The implicit approach finds a solution to a set of equations determining both the

current and future conjugate variable values, at s0 and s0 + ∆s respectively; this

might be done using a numerical method such as the Newton-Raphson method.

The first form of integration to consider is the first order explicit Euler method.

The order of an integrator is defined by the truncation of the following Taylor

expansion,

p(s+ ∆s) = p(s) + ∆s ṗ(s) +
1

2
∆s2 p̈(s) + . . . (2.125)

where ṗ and p̈ are the first and second order differentiation of p with respect to

s, and the order is defined by the highest order of differentiation. From the ex-

pansion, the first order explicit method (Forward Euler) is given by the following
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steps,

1: q(s+ ∆s) =q(s) + ∆s p(s), (2.126)

2: p(s+ ∆s) =p(s) + ∆s ṗ(s), (2.127)

where p and q are the conjugate momenta and position. From Hamilton’s equa-

tions (equation 2.89), Forward Euler in terms of the Hamiltonian is given by,

1: q(s+ ∆s) =q(s) + ∆s p(s), (2.128)

2: p(s+ ∆s) =p(s)−∆s ∇qH [q(s), p(s); s] . (2.129)

The implicit case for the Euler method (Backward Euler) requires using a numer-

ical method to determine the future values of the canonical variables,

1: q(s+ ∆s) =q(s) + ∆s p(s+ ∆s), (2.130)

2: p(s+ ∆s) =p(s)−∆s ∇qH [q(s) + ∆s p(s+ ∆s), p(s+ ∆s); s+ ∆s] .

(2.131)

The second step can be performed by numerically solving,

p(s+ ∆s) =p(s)−∆s ∇Hq [q(s) + ∆s p(s+ ∆s), p(s+ ∆s); s+ ∆s] , (2.132)

using a method such as the Newton-Raphson method, where the function

f(p(s+ ∆s)) is,

f [p(s+ ∆s)] =p(s+ ∆s)− p(s)

+ ∆s∇qH [q(s) + ∆s p(s+ ∆s, p(s+ ∆s); s+ ∆s] . (2.133)
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The value of p(s+∆s) for which f [p(s+ ∆s)] = 0 can be found using the method,

pn+1 =pn −
f(pn)

f ′(pn)
,

pn =pn+1, (2.134)

where pn converges on the solution. The forward and backward Euler methods

are both non-symplectic which means that as the system evolves the phase space

density is no longer conserved. The semi-implicit Euler method, however, is

globally symplectic and is given by,

1: q(s+ ∆s) =q(s) + ∆s p(s+ ∆s), (2.135)

2: p(s+ ∆s) =p(s)−∆s ∇qH [q(s), p(s); s] . (2.136)

Locally the semi-implicit method exhibits oscillations in the phase space area. To

consider the properties of these three Euler integration methods the Hamiltonian

of a non-linear pendulum is considered,

H(q, p; t) =
1

2
p2 − cos(q). (2.137)

The phase space area conservation is a property of a symplectic transformation.

In figure 2.36 the phase space and phase space area are shown; they are calculated

using the aforementioned Euler integration methods implemented using Mathe-

matica [105]. It can be seen that globally the phase space area of the semi-implicit

method remains conserved. The explicit method undergoes an increase in phase

space area over time, equating to an energy growth and outward spiralling tra-

jectory. In contrast the implicit method decreases in phase space area over time,

equating to energy loss and inward spiralling trajectory.

The order of integration is increased by taking the next term in the series given
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Figure 2.36: (a) The position and momentum and (b) phase space area over
1000 turns with ∆s = 0.02 using Euler (First order) methods.

in equation 2.125. The second order semi implicit integration (Velocity-Verlet) is

given by,

1: q(s+ ∆s) =q(s) + ∆s p(s)− 1

2
∆s2 ∇qH [q(s), p(s); s] , (2.138)

2: p(s+ ∆s) =p(s)

+
∆s

2
{∇qH [q(s), p(s); s] +∇qH [q(s) + ∆s p(s), p(s); s+ ∆s]} .

(2.139)

In figure 2.37 it can be seen that both semi-implicit methods undergo oscillatory

errors. The magnitude and frequency decreases with the order of integration.
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Figure 2.37: (a) The position and momentum and (b) the phase space error
over 1000 turns with ∆s = 0.02, comparing first and second order semi implicit
methods.
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In summary, non-symplectic integration methods lead to a loss in the preser-

vation of phase space. Furthermore, with increased order of integration there is

a decreased local phase space area error.

Extending and expanding the accelerator Hamiltonian

The integration order and the method are both important considerations in cal-

culating the transformation generated by a Hamiltonian. In order to integrate

the accelerator Hamiltonian an approach is required to deal with the mixed terms

in the Hamiltonian. An implicit method is computationally more intensive due

to the need to numerically find the future canonical variable values. The semi-

implicit method requires the Hamiltonian to be separable, with no mixed mo-

mentum and position terms, such that it is directly solvable with Hamilton’s

equations; this excludes it from being used with the accelerator Hamiltonian.

Therefore, an explicit symplectic method is required for the accelerator Hamilto-

nian. For a Hamiltonian of the form,

H = T (~p) + V (~q) (2.140)

the momentum and spatial dependent components are separable. This work

was originally performed by Ruth [106] and allows for symplectic integration of

accelerator components for which ax = ay = 0. For cases in which these are non-

zero, where the transverse magnetic field varies longitudinally, the Hamiltonian

takes the following form [107],

H = T [~p− ~a(~q, s)] + V (~q, s). (2.141)

In order to develop an integrator for an s dependent Hamiltonian an extension

of the phase space is required in order for s to become a canonical variable rather
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than just an independent variable. When integrating through a vector potential

which is s dependent, such as that of a real magnet, the Hamiltonian phase space

can be extended to include (s, ps) with a new independent variable σ, where

dσ = ds [108]. This leads to the extended accelerator Hamiltonian,

H(x, px, y, py, z, δ, s, ps;σ)

=
δ

β0

−

√(
1

β0

+ δ − qφ

p0c

)2

− (px − ax)2 − (py − ay)2 − 1

β2
0γ

2
0

− az + ps,

(2.142)

where ~a = ~a(x, y, z, s;σ). There are two main difficulties when finding the equa-

tions of motion from such a Hamiltonian. The first is that, unlike the case of the

pendulum, it is not directly solvable using Hamilton’s equations, and the second

arises from the complexity caused by the square root. The first difficulty arises

from the mixed terms containing both momentum and position dependence. The

series expansion,
√
a2 − x2 ≈ a− x2

2a
(2.143)

to second order, allows the second difficulty to be removed. This expansion is

called the paraxial approximation and is valid in cases where px/ps � 1. This

expresses the Hamiltonian to second order in transverse canonical variables:

H =−
(

1

β0

+ δ

)
+

1

2β2
0γ

2
0

(
1

β0

+ δ

)−1

+
δ

β0

+
(px − ax)2

2
(

1
β0

+ δ
) +

(py − ay)2

2
(

1
β0

+ δ
)

− az + ps. (2.144)

From this Hamiltonian there are mixed terms originating from the transverse vec-

tor potential terms, but with the use of Lie transformations an explicit integrator

can be produced.
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Lie transformations

In order to find the transformations resulting from the paraxial approximation of

the extended phase space Hamiltonian Lie algebra must first be introduced. A

Lie operator : H : for any function H(q, p; s) is defined [109],

: H :≡ [H, ◦] =
∂g

∂q

∂

∂p
− ∂g

∂p

∂

∂q
(2.145)

where ◦ is the canonical variable being operated on. Hamilton’s equations in Lie

operator form are given by,

dx

dσ
= − : H : x. (2.146)

The evolution of variable x in the independent variable σ can be written as,

x(σ0 + ∆σ) = e−:H:∆σx(σ0). (2.147)

In the exponential form this operation is defined by the Taylor expansion,

e−∆σ:H: = 1−∆σ : H : +
∆σ2

2
: H : H : −∆σ3

3!
: H : H : H : + . . . (2.148)

This operation e:H: is called a Lie transformation. The properties of this transfor-

mation allow for an appropriate integrator to be developed. The following rules

apply to Lie transformations:

1. The series expression for a Lie transformation with generator x is,

e:H:x = x+ [H, x] +
1

2
[H, [H, x]] + . . . (2.149)

2. The Lie transformation of the product of two functions is,

e:H:(xy) = (e:H:x)(e:H:y). (2.150)

96



3. The Lie transformation of a function operating on a function is,

e:H:x(y) = x(e:H:y). (2.151)

4. The Lie transformation of a Poisson bracket is,

e:H:[x, y] = [e:H:x, e:H:y]. (2.152)

5. The Lie transformation of a Lie transformation with generator x is,

e:e:H:x: = e:H:e:x:e−:H:. (2.153)

Lie transformations also provide a way in which the Hamiltonian can be split

into parts. From the Baker-Campbell-Hausdoff formula (BCH) the combination

of two Lie transformations might be expressed as [110]

e:A:e:B: = e:C: (2.154)

where,

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] + . . . (2.155)

The Zassenhaus formula comes from the BCH and is needed to be able to factorize

a Lie transformation whose generator is expressed as a sum;

e−∆σ:A+B: = e−∆σ:A:e−∆σ:B:e
∆σ2

2
:[A,B]:e−

∆σ3

6
(2:[B,[A,B]]:+:[A,[A,B]]:) . . . (2.156)
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Considering the simple case in which H = H1 + H2, using BCH this might be

expressed as,

e−∆σ:H1:e−∆σ:H2: =e−∆σ:H1+H2−∆σ
2

[H1,H2]+...: (2.157)

=e−∆σ:H1+H2+O(∆σ):. (2.158)

This concatenation of maps leaves errors of ∆σ2, in order to gain a higher order

map a different form of this concatenation is required. Therefore by further

splitting H1 the following can be derived,

e−d1∆σ:H1:e−∆σ:H2:e−d2∆σ:H1: = e−d1∆σ:H1:e−∆σ:d2H1+H2− 1
2
d2L[H1,H2]+...: (2.159)

= e−∆σ:(d1+d2)H1+H2− 1
2

(d1−d2)L[H1,H2]+...:. (2.160)

From the choice of d1 = d2 = 1
2

a second order splitting can be formed,

e−
∆σ
2

:H1:e−∆σ:H2:e−
∆σ
2

:H1: = e−∆σ:H1+H2+O(∆σ2):. (2.161)

Using similar methods developed by Yoshida even higher order concatenation of

maps can be performed [111].

Splitting of the Hamiltonian

From the accelerator Hamiltonian H, the transfer map over a path length ∆σ is

given by [107],

M(∆σ) = e−∆σ:H:. (2.162)

The Hamiltonian H, in its paraxial form, can be split into four components.

This is chosen to simplify the splits to two components which are only dependent

on either momentum or spatial components (H1 and H4). The remaining two

components, formed of mixed variables, can be reduced to a solvable form by
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using Lie methods.

H1(δ, ps;σ) =−
(

1

β0

+ δ

)
+

1

2β2
0γ

2
0

(
1

β0

+ δ

)−1

+
δ

β0

+ ps, (2.163)

H2(x, y, z, s, px, δ;σ) =
(px − ax)2

2
(

1
β0

+ δ
) , (2.164)

H3(x, y, z, s, py, δ;σ) =
(py − ay)2

2
(

1
β0

+ δ
) , (2.165)

H4(x, y, z, s;σ) =− az. (2.166)

From this splitting the transfer map is written,

M(∆σ) = e−∆σ:H1+H2+H3+H4:. (2.167)

Using a second order splitting the full transfer map is given by,

e−∆σ:H1+H2+H3+H4: = e−
∆σ
2

:H1+H2+H3:e−∆σ:H4:e−
∆σ
2

:H1+H2+H3:

= e−
∆σ
4

:H1+H2:e−
∆σ
2

:H3:e−
∆σ
4

:H1+H2:e−∆σ:H4:e−
∆σ
4

:H1+H2:e−
∆σ
2

:H3:e−
∆σ
4

:H1+H2:

= e−
∆σ
8

:H1:e−
∆σ
4

:H2:e−
∆σ
8

:H1:e−
∆σ
2

:H3:e−
∆σ
8

:H1:e−
∆σ
4

:H2:e−
∆σ
8

:H1:

e−∆σ:H4:e−
∆σ
8

:H1:e−
∆σ
4

:H2:e−
∆σ
8

:H1:e−
∆σ
2

:H3:e−
∆σ
8

:H1:e−
∆σ
4

:H2:e−
∆σ
8

:H1:. (2.168)

This splitting is not unique and is dependent upon the choice of order H1,2,3,4,

however the result of the transfer map is the same for all cases. This splitting

only describes a second order integrator; however from this splitting higher order

integrators can be constructed [111]. A fourth order integrator M4(∆σ) can be

constructed from the second order integrator M2(∆σ),

M4(∆σ) =M2(c1∆σ) ◦M2(c0∆σ) ◦M2(c1∆σ), (2.169)
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where the constants c1 and c2 are defined [111],

c0 =
−2

1
3

2− 2
1
3

c1 =
1

2− 2
1
3

. (2.170)

Beyond this even higher order integrators can be formulated in a similar manner

with this kind of splitting.

Evaluation of the transfer map

The transformations resulting from H1 and H4 can be directly calculated from

the Lie transformation due to the lack of any mixed terms,

e−∆σ:H1:



x

px

y

py

z

δ

s

ps



7→



x

px

y

py

z + ∆s

(
1
β0
− 1− 1

2β2
0γ

2
0

(
1
β0

+δ
)2

)
δ

s+ ∆s

ps



(2.171)
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e−∆σ:H4:



x

px

y

py

z

δ

s

ps



7→



x

px + ∆s∂as
∂x

y

py + ∆s∂as
∂y

z

δ + ∆s∂as
∂z

s

ps



. (2.172)

where ∆σ = ∆s in the conveniently chosen independent variable. In order to

evaluate transformations with mixed variables the equations 2.151 and 2.153 are

required. Starting with H2 as a function of a new dummy momentum p̃x and

using equation 2.150,

H̃2(p̃x) =
p̃2
x

2
(

1
β0

+ δ
) (2.173)

e:Ix:H̃2(px) = H̃2(e:Ix:px)

= H̃2(px − ax) ≡ H2 (2.174)

where the identity of Ix is,

e:Ix:px 7→ px − ax (2.175)

which leads to this definition for Ix,

px − ax = px −
∂Ix
∂x

∂Ix
∂x

= ax

Ix =

∫ x

0

ax(x, y, z, s) dx. (2.176)
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Using equation 2.149 this can be extended to,

e:Ix:e−∆σ:H̃2(px):e−:Ix = e∆σ:H2:. (2.177)

The transformation for H2 is given by the following maps,

e:Ix:



x

px

y

py

z

δ

s

ps



7→



x

px − ax

y

py −
∫ x

0
∂
∂y
ax(x, y, z, s) dx

z

δ −
∫ x

0
∂
∂z
ax(x, y, z, s) dx

s

ps



(2.178)

e−∆σ:H̃2:



x

px

y

py

z

δ

s

ps



7→



x+ ∆s px(
1
β0

+δ
)

px

y

py

z −∆s p2
x

2
(

1
β0

+δ
)2

δ

s

ps



. (2.179)

The maps for H3 are calculated in an identical manner. This gives the definition

for all the operations performed by each component of the integrator described

by the concatenation of operations in equation 2.168. This symplectic integrator
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is the necessary tool required to completely evaluate the dynamics of an element

with an s dependent field, without needing to assume the rigid bunch and axial

approximations i.e. no momentum change and constant x and y through the

cavity.

2.5.4 Kick codes

Kick codes were developed out of a need to track particles numerically through

very large lattices, for many turns, with the need to remain symplectic. The

formalism of a kick code arises from applying approximations to the accelerator

Hamiltonian,

H(x, px, y, py, z, δ; s) =
δ

β0
−

√(
1

β0
+ δ − qφ

p0c

)2

− (px − ax)2 − (py − ay)2 − 1

β2
0γ

2
0

−az,

(2.180)

where in this case s is an independent variable. If the thin lens approximation

is applicable to all accelerator elements the Hamiltonian does not need to be

extended to include s as a canonical variable, as was seen in section 2.5.3. In this

approximation it is also assumed that there are only transverse magnetic fields,

hence in the Hamiltonian gauge the vector potential components ax and ay go to

zero, thereby greatly simplifying the Hamiltonian. This allows the Hamiltonian

to be split into two components,

Hdrift(px, py, δ; s) =
δ

β0

−

√(
1

β0

+ δ − qφ

p0c

)2

− p2
x − p2

y −
1

β2
0γ

2
0

, (2.181)

Hkick(x, y, z; s) =− az, (2.182)

where the choice of az(x, y, z) describes the integrated kicks resulting from the

elements in the lattice. The choice of the order of splitting allows for better

representation of stronger magnets; these higher order splittings were exploited
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in the code TEAPOT [112]. SixTrack [113] is another example of a kick code and

is used for much of the analysis of the HL-LHC. For all kick codes the integrator

is both symplectic and fast, and therefore ideal for long term tracking studies.

2.5.5 Taylor maps

A Taylor map is a representation of a transfer map in the form of a set of Tay-

lor series expressed as functions of the initial variables. These Taylor maps are

truncated in order to allow them to be evaluated quickly. Taylor maps are con-

structed using a differential (or truncated power series) algebra. This type of

library allows starting variables to be declared symbolically rather than numer-

ically and for algebraic operations to be performed on them. The library can

often be contained and handled within an accelerator code, e.g SixTrack [91] and

MADX [114], or as standalone software e.g COSY INFINITY [115].

Taylor maps have been seen in many guises in the accelerator field, more typ-

ically for use in one turn maps describing the whole machine in the form of a set

of Taylor series. Studies were carried out for the LHC in the past [116] and it was

concluded that the use of a one turn map at large amplitudes presented significant

errors in the calculation of the dynamic aperture for long term tracking [117]. The

issue encountered was that the magnitude of the symplectic error resulting from

the truncation of the maps meant that over the number of iterations required

for a dynamic aperture study, the difference between tracked particles compared

with a direct integration scheme was significant. To overcome the errors asso-

ciated with directly calculated one turn maps, symplectification schemes were

introduced which sought to factorise the Taylor map into a transformation with

a corresponding generating function [118]. However, in the process of symplecti-

fying the maps non linear terms were altered along with the detailed dynamics

contained within the maps, resulting in the creation of an unrealistic symplectic
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representation. Therefore in order to conserve symplecticity, the development

of numerical tracking methods is still focussed on kick code development rather

than more complex methods.

Taylor maps still have their uses when calculating global properties such as the

tune, chromaticity, dispersion and closed orbit. From these properties the global

coordinate system, relative to the closed orbit, can be found and normal form

analysis performed, whereby a transformation of variables is conducted such that

the Poincaré map of the new variables appears as a pure rotation. Calculations

such as these are carried out by SixTrack [113].

2.6 Conclusion

In this chapter the reason for the luminosity upgrade to the LHC has been pre-

sented and it has been shown that crab cavities serve a role in delivering increased

luminosity. In addition to this the need for compact crab cavities has been shown

and the resulting exotic cavity designs presented. Understanding the impact of

such cavity designs in the complexity of such a large machine is not trivial with

non-linear components leading to chaotic motion.

Taylor maps and kick codes form the two options when performing long term

tracking through large accelerator lattices. Kick codes allow for a symplectic

integration through the machine, however, they prevent the inclusion of an s

dependent Hamiltonian. The use of a single element Taylor maps constructed to

describe the precise dynamics of a crab cavity allows some possible insight into

the dynamics of a crab cavity and its impact on the dynamic aperture of the

whole machine. This insight comes in the form of the separation of the various

dependencies on the initial conditions of the transfer map which would not be

shown with direct numerical integration.

The tools developed in this chapter are used in the rest of the thesis to develop
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new models for crab cavities and fringe fields in order that they can studied in

the context of the stability of the HL-LHC.
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Chapter 3

Single element Taylor maps

In chapter 2 it was seen that the non-linear dynamics can lead to chaotic motion

in an accelerator and possible losses of particles. It is therefore important to

consider the non-linear dynamics of a new element being introduced into a ma-

chine like the LHC. In order to consider this a model of the crab cavities must be

constructed. Single element Taylor maps allow the precise dynamics of a single

accelerator element to be contained in a form which is both computationally fast

and physically correct. They provide a benchmark from which to compare models

with simplified dynamics.

A model of the crab cavity operating mode is constructed by first fitting the

electric field to a solution of the Helmholtz equation. This provides an analytical

field description which in combination with a truncated power series algebra li-

brary, and a symplectic integrator enables the production of a Taylor map of the

cavity.

One downside of a Taylor map, as discussed in section 2.5.5, is that symplectic

errors are introduced from the power series truncation. An evaluation of this error

is presented from the single evaluation of a Taylor map and from the multiple

evaluations used in long term tracking.

In this chapter the implementation of a field fitting method is presented which
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allows an analytical vector potential to be calculated for a real cavity, with ap-

plication to a real crab cavity shown for the first time. A parallelised differential

algebra library is also introduced and demonstrated in the creation of extended

variable Taylor maps. The first implementation of a Taylor map within a kick

code is presented with studies of symplectic error made.

3.1 Field fitting of standing wave RF cavities

This section explores methods to analytically express the electric field of a stand-

ing wave RF cavity in the form of a power series in the transverse variables of

x and y at positions in s. This gives a complete analytic representation of the

vector potential from which a Taylor map of the dynamics can be produced. The

basis of the method comes from [119, 120]. In this section three different forms

of the electric field are discussed:

1. Interpolated field refers to the field directly interpolated from meshed field

data.

2. Fitted field refers to an analytical description which is an exact solution to

the Helmholtz equation in cylindrical coordinates.

3. Taylor field refers to the fitted field in the form of a truncated power series

in cartesian coordinates.
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3.1.1 Implementation of the fitting method and study of

the four rod cavity

The electric field contained within the vacuum of a powered RF cavity satisfies

the homogeneous wave equation,

∇2 ~E − 1

c2

∂2 ~E

∂t2
= 0. (3.1)

For a standing wave cavity it is assumed that the ~E field’s time dependence

is harmonic, and hence the spatial and time dependent field components are

separable,

~E(r, t) =
∑
l

~E(l)(r)e−i(ωlt+Φl), (3.2)

where ωl and Φl are the frequency and phase of the harmonic time dependence

respectively, for a given mode l. The spatial component of the field obeys the

vector Helmholtz equation,

∇2 ~E(l) + k2
l
~E(l) = 0, (3.3)

where kl ≡ ωl/c. The fields can be related to the vector potential through the

expressions

~E = −∂
~A

∂t
, (3.4)

~B = ∇× A. (3.5)

A gauge is chosen to relate the electromagnetic field to the scalar ϕ and vector

potential ~A such that ϕ = 0. For standing wave modes the vector potential ~A is
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only dependent on the spatial mode of the electric field ~E(l), such that,

~A =
∑
l

− i

ωl
~E(l)e−i(ωlt+Φl). (3.6)

This removes the necessity to consider the ~B field to calculate the vector potential.

The solutions to the Helmholtz equation in cylindrical coordinates can be written

as [119] 1, where the radial electric field has the form,

Er(r) =

∫ ∞
−∞

dk√
2π
eikz

(
−ik

κl

)
(ẽ0R1(k, ρ)+

∞∑
n=1

[(
ẽn(k)Rn+1(k, ρ) + β̃n(k)

Rn(k, ρ)

κlρ

)
cos(nφ)

+

(
f̃n(k)Rn+1(k, ρ) + α̃n(k)

Rn(k, ρ)

κlρ

)
sin(nφ)

])
, (3.7)

the azimuthal electric field takes the form,

Eφ(r) =

∫ ∞
−∞

dk√
2π
eikz

(
ik

κl

)(
f̃0R1(k, ρ)+

∞∑
n=1

[(
f̃n(k)Rn+1(k, ρ) + α̃n(k)

(
Rn(k, ρ)

κlρ
− 1

n
Rn−1(k, ρ)

))
cos(nφ)

+

(
ẽn(k)Rn+1(k, ρ) + β̃n(k)

(
Rn(k, ρ)

κlρ
− 1

n
Rn−1(k, ρ)

))
sin(nφ)

])
,

(3.8)

and the longitudinal electric field takes the form,

Ez(r) =

∫ ∞
−∞

dk√
2π
eikz (ẽ0(k)R0(k, ρ)+

∞∑
n=1

[
ẽn(k)Rn(k, ρ) cos(nφ) + f̃n(k)Rn(k, ρ) sin(nφ)

])
. (3.9)

1For the remainder of this section the superscript (l) is dropped, discussing only the spatial
component of a given mode.
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The radial function Rn consists of a regular and modified Bessel function,

Rn(k, ρ) =

 Jn(κl(k)ρ) If sgn(k2 − k2
l ) < 0,

In(κl(k)ρ) Otherwise.
(3.10)

kl is the wavenumber for the given mode in the cavity and n is the order of the

Bessel function. For the prototype crab cavity designs the operating mode has

a frequency of approximately ω ≈ 2π × 400 MHz, leading to a wavenumber of

approximately kl ≈ 8.34 m−1. The function κl is defined,

κl(k)2 = |k2 − k2
l |. (3.11)

The series of functions ẽn, f̃n, α̃n and β̃n are calculated from the field values

on the surface of a cylinder of radius R. The resulting analytical field is valid

for ρ < R. The field data used to populate the surface of the cylinder comes

from the eigenmode solution of the cavity geometry which corresponds with the

operating mode produced using the finite element solver, HFSS [121]. The field

data is produced on a specially defined cylindrical mesh [122] of radius R = 20

mm with 16 azimuthal points and steps of 2 mm in s through the centre of the

cavity, as shown in figure 3.1a. A special mesh was created such that nodes of

the tetrahedra created by the finite element solver would lie on the the surface

of a cyclinder. By doing this it removes the necessity to interpolate between

nodes in order to populate the field values for the field fitting. From the field

data Fourier transforms are performed resulting in the harmonic functions of the

spatial component of the fields. The interpolated field is an interpolation over

a 1 mm Cartesian mesh of field data produced to allow for validation of the

fitting. By fitting the fields to this exact solution to the Helmholtz equation,

error resulting from the finite element solver is damped. This means that while

the fields from the solver may not exactly be a valid Helmholtz solution, the
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analytical fields will be. However, not all errors will be removed as some will be

attributed to valid components of the Helmholtz solution [119, 123].

Fitting surface
Cavity

(a)

(b)

Figure 3.1: (a) Field fitting surface through cavity (b) four rod crab cavity show-
ing peak E field of the operating mode [89].

From the field data, Fourier transforms are performed to give the harmonic

modes of the fields. ẽn(k) is defined for n ∈ {0, 1, 2, ...} in terms of the longitudinal

electric field,

ẽn(k) =
1

Rn(k,R)

∫ ∞
−∞

ds√
2π
e−iks

∫ ∞
−∞

dφ

π
cos(nφ)Ez(R, φ, s). (3.12)
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f̃n(k) is similarly defined for n ∈ {1, 2, ...};

f̃n(k) =
1

Rn(k,R)

∫ ∞
−∞

ds√
2π
e−iks

∫ ∞
−∞

dφ

π
sin(nφ)Ez(R, φ, s), (3.13)

f̃0(k) requires the azimuthal component of the electric field such that

f̃0(k) =
κl
ik

1

R1(k,R)

∫ ∞
−∞

ds√
2π
e−iks

∫ ∞
−∞

dφ

π
Eφ(R, φ, s). (3.14)

α̃n(k) is defined for n ∈ {1, 2, ...}

α̃n(k) =
κlR

Rn(k,R)

[
i
κl
k

(∫ ∞
−∞

dφ

π
sin(nφ)Eρ(R, φ, s)

)
− f̃m(k)Rn+1(k,R)

]
,

(3.15)

β̃n(k) is defined for n ∈ {1, 2, ...};

β̃n(k) =
κlR

Rn(k,R)

[
i
κl
k

(∫ ∞
−∞

dφ

π
cos(nφ)Eρ(R, φ, s)

)
− ẽn(k)Rn+1(k,R)

]
,

(3.16)

however α̃0(k) = β̃0(k) ≡ 0. An example of the analysis is shown here for the

4 rod cavity design [89]. This cavity has two transverse planes of symmetry which

are shown in figure 3.1b.

The harmonic functions are calculated using a parallelised c++ code which

uses bilinear interpolation of the E field data on the surface of the cylinder. The

bilinear interpolation method uses the regular grid created by the field data, as

shown in figure 3.2. To calculate a desired value ~E(s, φ) at longitudinal position

s and angle φ surrounded by known values ~EA(s1, φ2), ~EB(s2, φ2), ~EC(s1, φ1) and
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Figure 3.2: Bilinear interpolation method

~ED(s2, φ1) the following relation is used,

~E(s, φ) ≈ 1

(s1 − s2)(φ2 − φ1)(
~EA(s2 − s)(φ− φ1) + ~EB(s− s1)(φ− φ1)

+ ~EC(s2 − s)(φ2 − φ) + ~ED(s− s1)(φ2 − φ)
)
. (3.17)

From this bilinear interpolation the azimuthal integration in φ and then the

longitudinal integration in s are performed using the midpoint method. The

use of bilinear interpolation does not improve the integration beyond that of the

midpoint method, but it does simplify the implementation of the fitting method.

In order to go beyond the midpoint method a higher order interpolation could

be used, e.g. a spline interpolation. Like the bilinear interpolation, these higher

order methods would not hold to Maxwell’s equations for interpolated points.

The resulting harmonic functions are expressed in discrete steps of k over a

range of ±400 m−1 in steps of 0.2 m−1, up to an order of n = 8. In figure 3.3,

the error in fitting performed with different step sizes in k is shown. It can be
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seen that the peak error reduces with step size, however, it is also shown that the

sensitivity to noise where field is low increases with step size. This implies that

there is no definite convergence in the analytical field for the case where the field

data does not exactly correspond to a solution to the Helmholtz equation.
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Figure 3.3: Converge of the analytical Ez field with the step size of the harmonic
functions. The error is normalised to the peak field.

The planes of symmetry lead to an absence in skew longitudinal field compo-

nents and only odd values for the index n. The first symmetry condition,

Ez(r, φ, z) = Ez(r,−φ, z), (3.18)

determines that fn(k) must be equal to zero in order for Ez to be an even function.

The second symmetry condition is given by,

Ez(r, φ, z) = −Ez(r, φ+ π, z). (3.19)
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where,

Ez(r, φ, z) =

∫ ∞
−∞

dk√
2π
eikz

(
ẽ0(k)R0(k, ρ) +

∞∑
n=1

ẽn(k)Rn(k, ρ) cos(nφ)

)

Ez(r, φ+ π, z) =

∫ ∞
−∞

dk√
2π
eikz

×

(
ẽ0(k)R0(k, ρ) +

∞∑
n=1

ẽn(k)Rn(k, ρ) cos(nπ) cos(nφ)

)
.

(3.20)

For this condition to be true it is required that cos(nπ) = −1 which is only true

for odd values of n.

From the field fitting it was apparent that fn(k) was not equal to zero. This is

a result of the Fourier decomposition method only dampening noise from the field

data rather than totally removing it. This, combined with the errors from the

numerical integration, generates a small additional skew component in the fitted

field. Integrating the total kick applied to a particle from ẽ1 and f̃1 allows an

effective rotation of the cavity to be calculated, which equates to approximately

10 µrad.

The electric field in the cavity is dominated by the longitudinal “dipole” field

component (the n = 1 term in equation 3.9) which is observed in the ẽ1 harmonic

function, shown in figure 3.4a. Although ẽ5 is of similar magnitude to ẽ1, in terms

of contribution to the field these are scaled by the radial function and hence ẽ5

is a small component of the field.

The radial dependencies corresponding to the ẽ functions in figure 3.4 are

shown in figure 3.5. As k increases, ẽn(k) decreases at a faster rate than Rn(k,R)

increases. This effect leads to greater sensitivity to ẽn(k) at smaller values of k.

In figure 3.6 this effect is shown for the case of ẽ1(k) ·R1(k, 0.02 m) which tends

to zero with increasing k.

A coordinate transformation from the fields given by the harmonic functions
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Figure 3.4: The ẽ functions, (a) ẽ1(k), (b) ẽ3(k), and (c) ẽ5(k) for the four rod
cavity which form the largest contribution to the longitudinal component of the
electric field.
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Figure 3.5: The radial functions (a) R1(k), (b) R3(k), and (c) R5(k) which
correspond to the ẽ functions in figure 3.4, evaluated at R = 20 mm.
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(given in equations 3.7, 3.8 and 3.9), which are dependent on ρ and φ (fitted), is

required in order to produce a Taylor map. Firstly it is necessary to transform

the fields to the same spatial coordinates as the accelerator Hamiltonian given

in equation 2.104 i.e. Cartesian coordinates. It is then necessary to put these

Cartesian fields into the form of a power series using a Taylor series expansion such

that they are compatible with a truncated power series library in order to produce

a Taylor map. This Taylor series expansion of the Cartesian fields is performed

in Mathematica [105] and produces the Taylor analytic field. The Cartesian

coordinate form of the field is expressed in terms of generalised gradients [124,

119], which are a set of functions dependent on longitudinal position s, azimuthal

index n and radial index m. There are six sets of functions, where the longitudinal

normal C
(l)
zc and skew C

(l)
zs functions are defined [119],

Czc(s, n,m) =

∫ ∞
−∞

dk√
2π
eikssgn(k2 − k2

l )
mκl(k)n+2mẽn(k) (3.21)

Czs(s, n,m) =

∫ ∞
−∞

dk√
2π
eikssgn(k2 − k2

l )
mκl(k)n+2mf̃n(k), (3.22)

azimuthal normal C
(l)
φc and skew C

(l)
φs functions are defined,

Cφc(s, n,m) =

∫ ∞
−∞

dk√
2π
eiks

(
ik

κl

)
sgn(k2 − k2

l )
mκl(k)n−1+2m

×
(
m sgn(k2 − k2

l )f̃n(k)− n+ 2m

2n
α̃n(k)

)
(3.23)

Cφs(s, n,m) =

∫ ∞
−∞

dk√
2π
eiks

(
ik

κl

)
sgn(k2 − k2

l )
mκl(k)n−1+2m

×
(
m sgn(k2 − k2

l )ẽn(k)− n+ 2m

2n
β̃n(k)

)
, (3.24)
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and radial normal C
(l)
ρc and skew C

(l)
ρs functions are defined,

Cρc(s, n,m) =

∫ ∞
−∞

dk√
2π
eiks

(
−ik

κl

)
sgn(k2 − k2

l )
mκl(k)n−1+2m

×
(
m sgn(k2 − k2

l )ẽn(k) +
1

2
β̃n(k)

)
(3.25)

Cρs(s, n,m) =

∫ ∞
−∞

dk√
2π
eiks

(
−ik

κl

)
sgn(k2 − k2

l )
mκl(k)n−1+2m

×
(
m sgn(k2 − k2

l )f̃n(k) +
1

2
α̃n(k)

)
. (3.26)

The cylindrical fields in terms of the generalised gradients are given by [119],

Eρ(ρ, φ, s) =
∞∑
m=0

∞∑
n=1

(ρ/2)n−1+2m

m!(n+m)!
[Cρc(s, n,m) cos(nφ) + Cρs(s, n,m) sin(nφ)]

(3.27)

Eφ(ρ, φ, s) =
∞∑
m=0

∞∑
n=1

(ρ/2)n−1+2m

m!(n+m)!
[Cφc(s, n,m) cos(nφ)− Cφs(s, n,m) sin(nφ)]

(3.28)

Eφ(ρ, φ, s) =
∞∑
m=0

∞∑
n=1

(ρ/2)n+2m

m!(n+m)!
[Czc(s, n,m) cos(nφ) + Czs(s, n,m) sin(nφ)] .

(3.29)

The Eφ and Eρ are related to Ex and Ey by the following relations,

Ex =Eρ cos(φ)− Eφ sin(φ) (3.30)

Ey =Eρ sin(φ) + Eφ cos(φ). (3.31)

To obtain the ~E fields in Cartesian coordinates the following transformations are

also required,

ρ2 → x2 + y2, ρn cos(nφ)→ <[(x+ iy)n], ρn sin(nφ)→ =[(x+ iy)n]. (3.32)
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The Cartesian E fields in terms of these generalised gradients are given by,

Ex(x, y, s) =
M∑
m=0

N∑
n=1

(x2 + y2)m−1

2n+2m−1m!(n+m)![(
<[(x+ iy)nC(l)

ρc (s, n,m)] + =[(x+ iy)nC(l)
ρs (s, n,m)]

)
x

−
(
<[(x+ iy)nC

(l)
φc (s, n,m)]−=[(x+ iy)nC

(l)
φs (s, n,m)]

)
y
]
, (3.33)

Ey(x, y, s) =
M∑
m=0

N∑
n=1

(x2 + y2)m−1

2n+2m−1m!(n+m)![(
<[(x+ iy)nC(l)

ρc (s, n,m)] + =[(x+ iy)nC(l)
ρs (s, n,m)]

)
y

+
(
<[(x+ iy)nC

(l)
φc (s, n,m)]−=[(x+ iy)nC

(l)
φs (s, n,m)]

)
x
]
, (3.34)

Ez(x, y, s) =
M∑
m=0

N∑
n=1

(x2 + y2)m

2n+2mm!(n+m)!(
<[(x+ iy)nC(l)

zc (s, n,m)] + =[(x+ iy)nC(l)
zs (s, n,m)]

)
. (3.35)

The methods used to construct these analytical fields are summarised in fig-

ure 3.7, with the intermediate transformations and functions to describe the fields.

Field data

Eρ,φ,z(ρ, φ, z)

Fourier
decomposition

Harmonic

functions

ẽn(k), f̃n(k),
α̃n(k), β̃n(k)

Integration of

harmonic functions

Generalised

gradients

C
(l)
ρc , C

(l)
φc , C

(l)
zc ,

C
(l)
ρs , C

(l)
φs , C

(l)
zs

Coordinate
transformation

Cartesian

fields

Ex,y,z(x, y, s)

Taylor series

expansion

Taylor

fields

Ex,y,z(x, y)[s]

Figure 3.7: Summary of the method used to construct the analytical fields for
Taylor map production from the field data.

The Taylor analytical field was truncated to include all the terms up to and

including fifth order for each position in s. This order was chosen due to the

uncertainty in the n = 7 component observed in another study [125]. The uncer-

tainty of n = 7 arises from the choice to fit over 16 angles azimuthally. From this
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choice the Nyquist critical frequency [126] is reached at n = 8 at which higher

order n terms greater than eight fold back on lower terms to contribute to their

values. The results from this final step are shown in figure 3.8 compared with

interpolated field data directly from the eigenmode solver.
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Figure 3.8: E fields with varying s at x = 0.01 m and y = 0. m. (a) Ex,
(b) Ey and (c) Ez. The interpolated mesh fields and fitted and Taylor analytical
representations are shown. (d) Ez transverse variation in x and y away from from
variation at y = 0 m from Taylor field.

Ex and Ez are the largest components of the ~E field in the operating mode of

the crab cavity; in the horizontal crab cavity orientation. The distribution of the

fields arises from the position of the tips of the rods, as discussed in section 2.4.3.

The Ez field is shown to peak between the rods, longitudinally, while the Ex field

peaks at the tips of the rods. The Ey component is a consequence of mesh noise,

the result of which can be seen in figure 3.8a. The apparent smoothness of the

fitted and Taylor Ey field arises from the fitting method damping non-Maxwellian

components of the fields on to the general solution of the Helmholtz equation. The

transverse variation in the Ez field beyond the dipole distribution at the centre
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of the cavity is shown in figure 3.8d. This shows that there are components of

the Ez field with radial dependencies beyond a linear ρ dependence.

To study the variation in the field with radius requires the use of the gener-

alised gradients. In figure 3.9 the field components are plotted in terms of their

radial dependencies with constant x and y. It can be seen that for a field compo-

nent, with a radial power given by n+ 2m, it is made up of an increasing number

of terms, with differing azimuthal dependencies, n. This effect can be clearly seen

for the ρ3 dependent component of the field, which for x = 10 mm is dominated

by the n = 1 term, while for y = 10 mm the n = 3 is most significant.

The errors introduced at the two stages in the fitting process are shown in

Fig. 3.10 and 3.11, in comparison to the meshed field data. The difference in the

Ez field between the fitted and interpolated fields is of order 0.3% of the peak Ez

field. The step expressing the field in the Taylor analytical form from the fitted

increases the fitting error by 0.01%.

The ~E field error between the Taylor and interpolated field, with radial position

in x, is shown in figure 3.11. The error is normalised, to the peak field value, at

the given x value along the whole length of the cavity. The error in Ex and Ez

is relatively stable at ≈ 2% and ≈ 0.3% respectively. The Ey field has significant

errors due to the peak field values being close to zero.
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Figure 3.9: Contributions from various generalised gradients to Ez with radial
dependencies (a,b) ρ, (c,d) ρ3 and (e,f) ρ5. Evaluated at (a,c,e) (x, y) = (10, 0)
mm, (b,d,f) (x, y) = (0, 10) mm.
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Figure 3.11: E fitting error with varying x for the (a) Ex, (b) Ey, and (c) Ez compo-

nents of the field. Absolute difference between interpolated and Taylor fitted fields as

function of s normalised to the maximum field value.
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3.1.2 Quarter wave cavity and ridge wave cavity analyses

This field fitting was applied to two additional cavity designs proposed for the HL-

LHC. These are the quarter wave cavity designed by Brookhaven (QWCAV) [127]

and the ridge wave cavity designed by Old Dominium University and Stanford

(ODUCAV) [87]. Figure 3.12 shows the central plane for both cavities. They

exhibit similar symmetries to the 4RCAV, removing skew components from the

field variation. The field fitting for these cavities was carried out with the cavities

orientated with a horizontal kick. Therefore Ey should be expected to be small.

(a) (b)

Figure 3.12: x-y plane for (a) QWCAV and (b) ODUCAV transparent from end
of cavity [127, 87].

Rather than the double peak transverse field seen in the 4RCAV the QWCAV

exhibits a singular broad peak. In a similar manner to the 4RCAV there exists

a small skew component for the QWCAV which is a result of the meshing noise

and numerical integration. This is particularly evident in figure 3.13e where a

significant Ey component error is shown to increase with radius.

There are many similarities in the geometry of the ODUCAV and QWCAV,

with the resulting Ex field component almost identical in longitudinal variation,

as shown in figure 3.14a. This is similar for Ez, however, the magnitude of the

peak for the ODUCAV is lower than that seen in the QWCAV. The field fitting
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Figure 3.13: Fitted fields for the QWCAV comparing the interpolated and fitted
(a,d) Ex, (b,e) Ey, and (c,f) Ez components of the field. (a,b,c) Comparison of
the interpolated (line) and fitted (dotted) fields. (d,e,f) Residual of the fitted fields
evaluated at y = 0.
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for the ODUCAV and QWCAV were carried out using the same code with the

same numerical integration settings for the Fourier analysis, which means that

the errors for both are of similar order.
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Figure 3.14: Fitted fields for the ODUCAV comparing the interpolated and fitted
(a,d) Ex, (b,e) Ey, and (c,f) Ez components of the field. (a,b,c) Comparison of
the interpolated (line) and fitted (dotted) fields. (d,e,f) Residual of the fitted fields
evaluated at y = 0.
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3.1.3 Conclusion

The fitting method has been presented and applied to all three cavity prototype

designs. This is the first time that such an analysis was performed on TEM type

cavities with previous studies only considering simple pillbox like geometries [120,

119]. The field data has been used to provide a continuous description of the fields

expressed as a power series in x and y. It has been shown that the fitted field,

for the 4RCAV 2011 design, exhibits a maximum error of 0.3% at x = 0.02 m in

the Ez component. It has also been shown that there are visible harmonic field

components in the 4RCAV cavity beyond those of the dipole component. This

would suggest that whatever model is used it would need to go beyond that of a

simple kick model [128, 129, 74].

3.2 Differential algebra

Differential algebra, also known as truncated power series algebra (TPSA), has a

large variety of applications with many different available codes. In accelerator

physics COSY INFINITY [115] is a popular choice of TPSA code, though there

are many other alternatives e.g. PTC [130]. The purpose of a TPSA code is

to apply multiple operations on an initial set of variables and express the result

without assigning the initial variables. Many of the codes originate from the devel-

opment of the Superconducting Super Collider [131], with the desire to simulate

the whole ring as a one turn map using differential algebra. The programming

language of choice was F77 which lacks the modern memory management fea-

tures, object-orientation and parallelisation capabilities open to newer languages

such as c++. A truncated power series lends itself to a very object orientated

style of programming.

One of the most powerful components of the c++ programming language is the
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standard template library (STL) [132]. This is a highly optimised library based

around class templates that allow you to have dynamically controllable arrays of

any desired class type, including user defined classes. In the traditional memory

model of a code such as COSY, a series S is defined in size by its order no and

the number of variables nv such that,

S(xj) =

(nv+no)!
nv !no!∑
i

ci

nv∏
j

x
εij
j , (3.36)

where xj is a vector of size nv of the unassigned initial variables, ci is the coefficient

of a term in the series with the nv exponents εij. The number of terms in the

series increases quickly with order, for example for a series with six variables of

up to tenth order there are,

(nv + no)!

nv!no!
= 8008 coefficients. (3.37)

To efficiently store these large arrays of coefficients the most common method

used is to put the coefficients ci in a large array of double precision numbers.

For precompiled software such as COSY, where only static memory allocation

is allowed, this has to be performed by setting the array to a very large size

and only partially using this allocated memory; in terms of memory usage this

is rather inefficient. The STL allows for dynamic and static memory allocation

of arrays. Static array sizing is computationally more efficient when copying

TPSA; copying a succinct array is obviously more time efficient than copying

an array which is unnecessarily large. The other major component of memory

management is the system to access coefficients in the array corresponding to

a specific array of exponents. The STL has a template type called map, which

creates an elegant solution to this access problem. A map element is made up

of a key, which is a unique identifier, which in this case is the vector of integers
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holding the exponents, and a corresponding mapped value which in this case is

the array address where the coefficient is held. It might appear more logical for

this map to hold the corresponding coefficient, however, using the array address

has the benefit of allowing sparse array techniques, in which only filled values

are considered, to be applied. The use of the maps is shown in figure 3.15. In

the code there exists one master map of addresses, which is static and is from

where the addresses are copied. For each TPSA object there is a dynamic map

containing the filled addresses of the coefficients in the static vector array. This

removes the necessity of iterating over the whole static array of coefficients when

performing operations.

Master addresses Filled addresses

C
oeffi

cients

Static storage
TPSA object

Dynamic storage

Address transfer

Figure 3.15: The memory address management for new TPSA code.

One advantage of using a truncated power series (TPS) representation is that

many algebraic operations can be applied. The use of the memory management

method discussed prior is to allow a highly optimised set of operations, thereby

removing unnecessary computations. An STL template object can be iterated

over which means that only the filled array is read instead of all the possible series

elements. Addition and subtraction are the computationally simplest operations

with the number of computations performed scaling linearly with the number of

power series variables. The addition operation is shown in algorithm 1, with the
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subtraction operation defined in a similar manner.

input : TPS object A, TPS object B
output: TPS object C

C:=A for Filled elements in B ,i do
C[i]=C[i]+B[i]

end

Algorithm 1: Addition

The addition and subtraction operations do not create additional terms in the

power series from those present in the initial two series. In contrast, multiplication

can create additional terms in the series and hence the operation is required to

remove higher order terms and take into account that multiple computations can

lead to results with the same exponents. The multiplication algorithm, shown

in algorithm 2, requires access to the master addresses to find the address of

the coefficient of new terms formed in the multiplication. The multiplication

operation removes information contained in the two original series through the

truncation formed by the “if” statement. If this truncation did not exist then the

number of terms would increase upon each operation, increasing the computation

time and memory usage.

input : TPS object A, TPS object B
output: TPS object C

for Filled elements in B ,i do
for Filled elements in A ,j do

if Sum(A[j].Exponents+B[i].Exponents)6 no then
k:=GetAddress[A[j].Exponents+B[i].Exponents)]
C[k]:=C[k]+A[j]×B[i]

end

end

end

Algorithm 2: Multiplication

Many mathematical operations can be reduced to a Taylor series allowing
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them to be expressed in terms of multiplication, addition and subtraction op-

erations. These operations all have limitations requiring a significant constant

component to the truncated power series. The sine and cosine functions applied

to a truncated power series C are given by,

cos(C) =

no/2∑
k=0

(−1)kC2k

(2k)!
(3.38)

sin(C) =

(no−1)/2∑
k=0

(−1)kC2k+1

(1 + 2k)!
. (3.39)

In the event that C has a constant term a,

C(xi) = B(xi) + a, (3.40)

it is necessary to extend the cosine and sine function definitions in order to avoid

unnecessary rounding errors caused by large constant terms. This is performed

using the following,

cos(C) = cos(B) cos(a)− sin(B) sin(a) (3.41)

sin(C) = cos(B) sin(a) + cos(a) sin(B) (3.42)

where the cos(B) and sin(B) functions are as described in equation 3.38 and 3.39.

The following operations are also included in the code for truncated power series

with constant terms only,

1

C
=

n0∑
k=0

Bk

(−a)ka
(3.43)

√
C =

n0∑
k=0

akB
1
2
−k
(

1
2

k

)
. (3.44)

One advantage of a truncated power series over a numerical value are the
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possibilities to perform algebraic differentiation and integration. The algorithms 3

and 4 show the methods used to implement these operations. They use very

similar methods to that of addition in that they iterate over one loop, however

they lose terms due to truncation.

input : TPS object A, Exponent index D
output: TPS object C

for Filled elements in A , i do
if Sum(A[i].Exponent+(A[i].Exponent[D]+=1))6 no then

j:=GetAddress(A[i].Exponent+(A[i].Exponent[D]+=1))
C[j]:=A[i].Exponent[D]×A[i]

end

end

Algorithm 3: Differentiation

input : TPS object A, Exponent index D
output: TPS object C

for Filled elements in A , i do
if Sum(A[i].Exponent+(A[i].Exponent[D]-=1))> 0 then

j:=GetAddress(A[i].Exponent+(A[i].Exponent[D]-=1))
C[j]:= 1

A[i].Exponent[D]+1
×A[i]

end

end

Algorithm 4: Integration

The presented methods were implemented and a benchmark performed with

COSY. The benchmarks comparing all the TPSA operations of both codes re-

sulted in exact agreement. In figure 3.16 one such test is shown for the result of

cos(2x+ 1).

A further test was performed with a 2D Gaussian defined,

f(x, y) =
1

2πσxσy
e
− 1

2

(
x2

σ2
x

+ y2

σ2
y

)
, (3.45)

which was evaluated both numerically and with a power series computed to 20th

order. This order limit is defined by the size of the integer which is formed during
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(a) (b)

Figure 3.16: Benchmark of truncated power series codes for cos(2x + 1). (a)
COSY infinity version 9 [133]. (b) New code.

the factorial operation used to compute the exponential. Over the range depicted

in figure 3.17 there is agreement ranging from double precision to 10−6 % at the

extremities of the range. This ability to compute power series to higher orders
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Figure 3.17: Test of truncated power series code using a double Gaussian func-
tion, where σx = 1 and σy = 2, using power series and numerical evaluation. (a)
Comparison of evaluation. (b) Error in power series calculation.

beyond the limitation of COSY INFINITY allowed the computation of Taylor

maps with the number of variables extended beyond the six canonical variables.
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3.3 Taylor map

A Taylor map expresses the relationship between the initial and final state vari-

ables in the form of a set of truncated power series, in this case for six variables,



xf1

xf2

xf3

xf4

xf5

xf6


=



f1(xi1,...,x
i
6)

f2(xi1,...,x
i
6)

f3(xi1,...,x
i
6)

f4(xi1,...,x
i
6)

f5(xi1,...,x
i
6)

f6(xi1,...,x
i
6)


, (3.46)

where fk(x
i
1, . . . , x

i
6) is a truncated power series. For a six variable Taylor map in

which ~i are the exponents and A is the coefficient of a given term in the series,

fk(x
i
1, . . . , x

i
6) =

∑6
j ij=Order∑
i1,...,i6=0

Ak,i1,...,i6

6∏
j=1

(xij)
ij . (3.47)

The order of a Taylor map is determined by the largest total power of any term in

the series. To calculate a Taylor map the numerical integration must be carried

out using a differential algebra library. The second order explicit integrator,

described in section 2.5, is then used to integrate through the Taylor series vector

potential with calculus operations performed directly upon the individual terms

of the vector potential series. This means that the integration is carried out with

unassigned initial variables. For this study COSY infinity [133] was used up to

and including eighth order. This order is chosen such that the five orders from

the spatial component of the field and an additional three for the time component

can be included. The Taylor maps must be normalised and phase corrected to set

the correct voltage kick and desired phase required to rotate the bunch about its

centre (crabbing phase). In order to determine the correct phase a second order
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map was calculated and the zero order momentum kick term then extracted; from

this a binary search was used to minimise the momentum kick at z = 0 to 10−20

rad. The second order map is computed because a minimum order of two is

required in order to represent the first term of the vector potential representing

the dipole field, axz, where a is a constant. The correct voltage normalisation is

then calculated by a similar binary search to match the linear z dependence of

px, px(z), with the corresponding analytical map term,

px(z) =
e0V

cp0

ω

c
, (3.48)

where e0 is the charge on a electron, V is the voltage, ω is the frequency, p0 is the

reference momentum, minimising the error to 14 significant figures. This normal-

isation is necessary due to the longitudinal variation in the kicks. Otherwise it is

impossible to analytically calculate the required phase and corresponding voltage

to correctly match the desired dynamics of the cavity.

The chosen step size used for the integration was 0.01 m, giving 70 steps

through the cavity. This choice gives an error at the level of 10−7% of the peak px

kick. The choice of step size was determined from exploratory studies looking to

balance the computing time and precision of the Taylor maps. The step size also

coincides with the step size of the mesh from which the field data was produced.

The variation of momentum kick as a function of step size is shown in figure 3.18,

indicating that the variation rapidly decreases with step size. A further reduction

by a factor of two in step size does not equate to any further gain in the error

reduction. Beyond 0.01 m the momentum error is no longer asymptotic but

instead sensitive to the limits of the original mesh.

The Taylor map contains non-linear terms which are beyond the simple map
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Figure 3.18: Convergence of integration. Final px error produced with WFR in-
tegration with varying step size compared with integration with step size 0.5 mm.
Initial conditions (x, px, y, py, δ) = 0., z = 0.01

shown in equation 3.49. These non-linearities arise from two sources: the trans-

verse field dependency and the longitudinal field dependency. The longitudi-

nal field dependency leads to a particle experiencing multiple kicks as it passes

through the cavity. In order to understand the properties contained within a Tay-

lor map it is important to consider the trajectories of individual particles through

the element.

Considering the 4RCAV, figures 3.19a and 3.19b show that longitudinal vari-

ation in the kick results in a net offset in x for the z = 0 case. Figure 3.19d

shows that the py kick is approximately 105 times smaller than that of the px

kick. Figure 3.19f shows that for a particle at z = 0.01 m, the net transverse mo-

mentum kick varies both radially and azimuthally. The plot shows a maximum

variation of 2% at 20 mm radius. The magnitude of this variation is a result

of the compact geometry of the cavity close to the beam axis. This transverse

variation has already been seen in the higher order field components in figure 3.9.
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Figure 3.20 shows trajectories through the fields using a numerical integra-

tion and TPSA integration truncated to eighth order. There is a difference of

5 × 10−4% in the total integrated px kick resulting from the truncation in the

TPSA integration. The trajectories in x and y appear to be more affected by the

truncation than the transverse momenta, with x experiencing a final difference

of 2%. The energy variation δ results in a final difference of 0.3%.
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Figure 3.19: Trajectories and transverse non-linearities for the horizontally orien-
tated 4RCAV at the crabbing phase, normalised to 3.83833 MV [134]. Trajectory
in (a) x, (b) px, (c) y, (d) py, and (e) δ for various z values. (f) The variation
in px as a percentage of the on axis value with respect to the initial radial r and
azimuthal θ position. Initially z = 0.01 m.
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Figure 3.20: Trajectory error resulting from integration with truncated power
series normalised to the maximum value over the trajectory. For variables (a)
x, (b) px, (c) y, (d) py, and (e) δ. Initial condition z = 0.1 m, normalised to
3.83833 MV.
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The R matrix describes the linear components of the Taylor map. The ana-

lytical R matrix for a horizontal crab cavity is,



x

px

y

py

z

δ


7→



1 l 0 0 l
2
qV
cp0

ω
c

0

0 1 0 0 qV
cp0

ω
c

0

0 0 1 l 0 0

0 0 0 1 0 0

0 0 0 0 1 1
γ2

0β
2
0

qV
cp0

ω
c

l
2
qV
cp0

ω
c

0 0 0 1





x

px

y

py

z

δ


, (3.49)

where l is the cavity length, ω the cavity frequency and V the cavity voltage. This

R matrix of the crab cavity is very similar to that of a drift. The additional terms

present for a crab cavity are the z dependent transverse terms which are required

to rotate the bunch about its centre. In table 3.1 the linear R matrix terms

R15 and R25, from the 4RCAV Taylor map, are in agreement with the analytical

model to 3 significant figures. The presence of a constant x term indicates that

there is an additional phase offset between the z dependences of x and px, which

was also observed in figure 3.19.

Linear Term Drift-Kick-Drift 4 Rod Taylor map

Constant x 0. −2.021× 10−8

R15 4.127× 10−6 4.127× 10−6

R16 0. 2.021× 10−8

R25 1.197× 10−5 1.197× 10−5

Table 3.1: Linear map terms comparing the simple kick model with the four rod
cavity Taylor map.

In figure 3.21 a number of R matrix terms are evaluated for the cavity at

various phases. This shows that there are other terms, similar to the constant

x term, which are non synchronous with the R25 transverse kick term. These
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non synchronous terms occur as a result of the multiple kicks experienced by a

charged particle passing through the cavity. Figure 3.19 shows that there are

multiple changes in the momentum px trajectory resulting from multiple kicks in

the cavity. Between these kicks the particle has time to move transversely which

means that even if the integrated kick is zero there may have been more time

spent with an overall momentum in one particular direction. This effect allows

for the non-synchronous terms to form.
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Figure 3.21: Phase dependence of the (a) constant x, (b) R15, (c) R61, (d) con-
stant y, (e) R25, and (f) R62 linear map terms for the 4RCAV evaluated at discrete
phases using the TPSA library. The crabbing phase is at Φ = 0.

Beyond the linear terms of the map, contained in the R matrix, there are

higher order terms. These result from the higher order radial and azimuthal

components of the field (shown in section 3.1), the non rigid trajectory of the

particle through the cavity (shown in figure 3.19), and the higher order terms

of the expansion of the time component, sin(kz). In the production of Taylor

maps, for use in long term tracking, the maps were calculated to eighth order

with six variables, giving 3003 terms for each Taylor series in the Taylor map.

Many of these series terms contribute very little to a particle within the aperture

of the cavity, with their contribution at the level of machine precision. In order
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to evaluate the contribution of each term to an actual particle, a scoring system

is used to rank the terms. The score is given by,

score = |coefficient× (0.01 m)Ox+Oy+Oz × 0.0001Opx+Opy+Oδ | (3.50)

where On is the power to which a given variable n is raised. This scoring simply

gives an order of magnitude to the maxima of initial variables from a particle in

a stable position on the edge of a bunch. The values of 0.01 m and 0.0001 for the

spatial and momentum values were chosen from the order of magnitude of the

maximum absolute values of a single particle’s position at large amplitude. This

information was taken from tracking data at the face of each cavity in the lattice

over 105 turns. The effect of small changes to these weighting values makes little

change in the top ranked 50 terms of the Taylor series. Table 3.2 shows the ranked

top 10 terms for each Taylor series in the Taylor map. Most of these terms are

non-linear. Of these top 10 terms there are a number of particular note; the zero

order term in x is ranked third showing significance to the transverse variation

in the final x value, and the sum of the exponents of the x and y dependencies

for the transverse kick px are even, while odd for δ, resulting from the dominant

higher order transverse field components.

In figure 3.22 a number of the dominant non-linear terms are plotted against

phase. It can be seen for both the third and fifth order momentum terms that the

absolute peak coefficient value coincides with the crabbing phase. In contrast,

the spatial terms, as seen previously for the linear case, are non synchronous with

the momentum terms; in fact figure 3.22a shows that they are not even in phase

with each other. This is a result of the multiple non-linear kicks contained in the

full dynamic description of the crab cavity.
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Rank
Series

x px y py z δ

1 x px y py z δ
2 px z py xyz const. x
3 const. x2y2z pyδ xy3z p2

y xz2

4 z x2z xy x3yz p2
x px

5 pxδ y2z x3y x3y3z px xy2

6 x2 z3 xz3 xpy δ x3y2

7 x2y2 x4z xyz x5yz pxz x3

8 z2 y4z xy3z x2pxy p2
yδ xy4

9 y2 x2y4z x3yz xy2py p2
xδ x5

10 x2y2z x4y2z x3y3z pxy pxypy x3y4

Table 3.2: Ranked terms of the Taylor map showing terms with greatest impact
on dynamics for particles with |(x, y, z)| ≈ 0.01 m and |(px, py, δ)| = 10−4
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Figure 3.22: Phase dependence of (a) third order spatial, (b) third order mo-
mentum, (c) fifth order spatial, and (d) fifth order momentum non-linear terms
for the 4RCAV evaluated at discrete phases using the TPSA library. Operating
mode at crabbing phase, normalised to 4.155 MV.
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Taylor maps and Numerical precision

In single particle dynamics some of the greatest limitations of tracking for larger

numbers of turns lie with the numerical precision of numbers stored on a com-

puter. The result of a function can be represented either symbolically or numer-

ically. The simplest method of expressing a symbolic result is in the form of a

power series. Computers store 64 bit double precision numbers in the following

manner [135],

value = (−1)sign(1 +
52∑
i=1

fraction−i2
−i)× 2exponent−1023 (3.51)

where one bit is assigned to the sign, 11 bits to the exponent and 52 bits for the

fraction. This then stores a number with up to 15 decimal places of precision.

This limit in precision leads to rounding errors in computation particularly when

adding numbers. Considering a power series in one dimension is stored as,

value =
order∑
i=0

ci × xi, (3.52)

where ci and xi are double precision numbers some rounding error will occur in its

evaluation. This is true whether considering a Taylor map representation or nu-

merical integration, thereby making all transformations effectively non-symplectic

when considering evaluation using a computer.

Extended Taylor maps

To increase the capabilities of a Taylor map, additional non-canonical variables,

that are constants of the vector potential, can be added. This would allow, for

example, a simulation in which the voltage changes on each turn to be computed

using Taylor maps. For this study the extended variable considered was a voltage
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scaling factor. The total crabbing voltage required from the three cavities is of

order 10 MV. It was therefore decided that an extended variable Vscale would be

defined as a fraction of 3 MV,

Vscale =
V

3 MV
, (3.53)

where V is the voltage in MV. In the TPSA this is implemented as a power series

variable that acts as a normalisation factor on the vector potential. A Taylor map

is calculated to 11th order with seven variables. Six variable maps based on the

canonical variables are produced for a set of Vscale values by summing the terms

with common canonical variable exponents. In figure 3.23 it is shown that there

is a non-linear scaling of the map with voltage of order 10−10% which is either a

result of a physical effect or just the error in the convergence of the maps.
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Figure 3.23: Nonlinearity in (a) y and (b) py with V introduced by scaling the
voltage with a 7 variable Taylor map. Initial variables (0.02,0,0,0,0.05,0). Cavity
orientated vertically.

Symplectic error

The symplectic error is introduced in the Taylor maps through the loss of numer-

ical precision provided by the truncated power series. The integration method,

while theoretically symplectic, is only symplectic to the precision of the numerical

storage whether as a power series or a real number. This level of symplecticity
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can be analysed by evaluating the Jacobian of the Taylor map. The Jacobian of

a map is defined by [136],

J(~xi) =


∂xf1
∂xi1

· · · ∂xf1
∂xi6

...
. . .

...

∂xf6
∂xi1

· · · ∂xf6
∂xi6

 , (3.54)

where ~xi and ~xf are the initial and final canonical variables. From the symplectic

condition, the symplectic error is given by the coefficients of the matrix E defined,

E(~xi) = J̃(~xi) · S · J(~xi)− S, (3.55)

as shown in section 2.5.2. The resulting symplectic error is shown in figure 3.24 for

varying initial conditions. The coefficients peak at 10−7, with very little change

in the error once the order is above four, due to the contribution of higher order

power series terms being smaller than the symplectic error of lower order terms.

Figure 3.24b also shows that the maximum coefficient of the matrix E does not

always decrease with order which is caused by significant higher order terms that

have greater impact than those of lower orders when evaluated at a given point

in the phase space.

Furthermore, considering the matrix E(~xi) as a function of the initial condi-

tions, the maximum symplectic error over the hypersphere of the 6D phase space

bounded by the dynamic aperture can be found. Scanning the value of E over the

phase space ranges, as determined by the 6D tracking at large amplitude, given

by (x, y) = [−0.02, 0.02] m, (px, py) = [−0.0001, 0.0001], z = [−0.1, 0.1] m and

δ = [−0.0001, 0.0001], gives a position independent measurement of the symplec-

tic error. For the eighth order 4.155 MV map for the 4RCAV cavity this is given

by 6.05 × 10−13. For a symplectic map expressed to double precision one might
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expect rounding errors to lead to an error of order 1 × 10−15. This Taylor map

has an error significantly greater than the error resulting from double precision

rounding errors which suggests that the symplectic error would have a visible

effect in the numerical tracking at a faster rate than that of symplectic tracking

with double precision numbers. The point at which this occurs cannot be verified

from a single evaluation of the symplectic error.

Reduced coefficient Taylor map

Truncating Taylor maps by order means that even with a 8th order map each

variable can have a power series with up to 3003 variables. Computationally

using this full 8th order map is slow in comparison to using a multipole method.

In addition numerical noise is generated from the evaluation of the Taylor map

from the addition of many very small numbers produced by higher order terms.

Ordering the terms of a Taylor series by contribution to the final value instead of

by power series order would allow a truncation which conserved more dynamics for

fewer terms within the phase space over which the Taylor map must be valid for.

Ranking these components would then provide a method of truncation based on a

term’s impact on the dynamics, instead of truncating based on power order. The

two questions arising from this method relate to how does the symplectic error

scale with the number of terms, and how many terms are needed to reproduce

approximately the complete map. The coefficient scoring is carried out by,

score =
∣∣Coefficient× (0.01 m)Ox+Oy+Oz × 0.0001Opx+Opy+Oδ

∣∣ , (3.56)

The values of 0.01 m and 0.0001 for the spatial and momentum values respectively

were taken from the order of magnitude of the maximum absolute values of a

single particle’s position at large amplitude. This information was taken from

tracking data at the face of each cavity in the lattice over 105 turns.
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Figure 3.24: Symplectic error of the 4RCAV Taylor map evaluated at (a)
(x, y, z) = 0.01 and (px, py, δ) = 0.01, (b) (x, y, z) = 0.01 and (px, py, δ) = 0.0001,
and (c) (x, y, z) = 0.001 and (px, py, δ) = 0.001. Taylor map normalised to a
voltage of 4.155 MV.
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The reduced coefficient map (RCM) is produced from the full eighth order Tay-

lor map previously discussed. The standard Taylor map method in figure 3.25a

shows that for the first 8 orders there are still highly contributing terms contained

at higher orders. Contrasting this by taking a RCM in figure 3.25b it can be seen

that far fewer terms are needed as insignificant terms are removed making it a

far more efficient method in terms of number of computations.
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Figure 3.25: Contribution to the final value from (a) all the terms of a given power
series order, and (b) individual ranked terms. Map evaluated at (x, y, z) = 0.01
and (px, py, δ) = 0.0001

The RCM method removes the less significant terms from the Taylor map

which allows a control on the level of symplectic error; the symplectic error in-

creases with the reduction of the Taylor map. In figure 3.26 the resulting varia-

tion in symplectic error and deviation in the Jacobian with coefficient reduction

is shown. The Jacobian describes both the linear matrix, J , and its determinant,

of the equations of motion evaluated at some instance [136]. The determinant

of the Jacobian gives a measure of the growth of the phase space density, which

for a conserved symplectic system is equal to unity. Both plots show that after

500 terms there is very little variation in the error and that the amplitude of the

Jacobian error is at 10−15. This error is the minimum error associated with a

complete map and is at the level of machine precision. This levelling off of the

error is expected as the precision of the largest contributing term will become
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the limiting factor in decreasing the error. This effect is caused by the precision

limit on a Taylor map being lower than that of a double precision number, as

discussed in section 3.3.
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Figure 3.26: (a) Symplectic error and (b) Jacobian error as a function of ranked

coefficient evaluated at (x, y, z)=0.01 m and (px, py, δ)=0.0001 for cavity normalised to

4.155 MV

Implementation of Taylor maps into a thin lens tracking code

In a thin lens tracking code, such as SixTrack [128], the elements in the lattice

are described by a series of kicks and drift spaces as discussed in section 2.5.4.

However, in a Taylor map the kicks and drift spaces are combined into one ele-

ment, which means that a Taylor map in its “standard” form would not be able
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to be applied directly. In order to overcome this, each element has an additional

set of Taylor maps called anti-drifts. These are constructed using the same inte-

gration program used to produce the Taylor maps in reverse for half the length

of the cavity with a zero potential. In the tracking code this anti-drift is ap-

plied either side of each cavity Taylor map, leading to an effectively thin element

with a momentum change and orbit offset, shown in the schematic in figure 3.27.

In terms of technical detail, within SixTrack, the element is both constructed

for numerical integration and TPSA integration through the lattice. The Taylor

maps are stored as a long list in a file external to the tracking file and then read

into the code at the beginning of a run. When evaluated for either integration

type, the array containing the Taylor map terms is iterated over to apply the

transformation.

Cavity Taylor map

Anti-drift Taylor map

SixTrack drift

C
om

p
u

ta
ti

on
st

ep

Distance

Figure 3.27: Implementation of a Taylor map element in a thin lens tracking
code.
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3.4 Symplecticity of a Taylor map in long term

tracking

In order to simulate the crab cavities it is possible to integrate through the cavity

fields either numerically, in situ within the tracking code, or with truncated power

series, to form high order single element Taylor maps. For long term tracking,

computationally, the Taylor maps are faster. However, their symplecticity has

caused hesitation in using them to describe a single element. Just as with the

impact of rounding errors [137], the truncation of a single element map will cause

an error at every single pass through the map during tracking. The question then

posed is not, “Is there an error?” but rather, “Do the gains made from using

the single element Taylor map, i.e. the precision in dynamics far outweighs the

effect of the symplectic error introduced?”. The thin lens model used to describe

a crab cavity is called an RF multipole which gives time dependent multipole

kicks [138], and provides a symplectic model with a simpler description of the

dynamics compared with those contained in the Taylor maps.

For this study the thin lens model [138] was replaced with Taylor maps for

the 4RCAV cavity design [89]. The magnitude of symplectic error was controlled

using the reduced coefficient Taylor map method; by reducing the number of

terms, the symplectic error increases. A single particle tracking is performed

using SixTrack [91] at a large amplitude (close to the dynamic aperture) and

the cumulative symplectic error is evaluated. A symplectic numerical integration

of the fields was implemented in SixTrack and used to bench mark against the

tracking with the Taylor maps. This provides a control from which to evaluate

the impact of symplectic error in terms of the physical tracking and the growth

in symplectic error. A full dynamic aperture study was not deemed feasible with

such an integrator due to the long computation time required.
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In section 3.3 the single element symplectic errors were shown. However,

these do not provide a direct correlation to the errors associated with long term

tracking at large amplitudes. At large amplitudes the amplitude will be turn

dependent which will change the symplectic error added on each turn hence a

linear relation cannot simply be considered in terms of the overall multiple turn

symplectic error.

For 100,000 turns the phase space at IP3 was recorded for a single particle at a

large, but stable, amplitude (a particle at this amplitude is not lost after 100,000

turns of tracking). This amplitude equates to 16 times the root mean square

beam width (16σ) which is within the upper 25% of the dynamic aperture. The

tracking is performed using various models of the crab cavity; a thin lens model,

various truncated Taylor maps and a numerical integration through the fields.

Figure 3.28 shows the linear action calculated from tracking data in accelerator

coordinates using equation 2.39 plotted with turn number. It can be seen that

the linear action varies over a wide range of values indicating that the motion

is very non-linear. Considering the moving average of the linear action it can

be seen that this varies far more slowly than the linear action with turn. This

averaged linear action is a more stable measurement, and hence is considered as

a reasonable way in which to compare the different models in terms of tracking.
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Figure 3.28: Linear action with turn for numerical integrator with moving average and

action (a) Jx and (b) Jy values.
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In figure 3.29 the Taylor maps and RF multipole model are compared with

the numerical integrator. It can be seen that the variation compared with the

numerical integrator is up to the order of 1% of the moving average after 105

turns. The differences between the Taylor map model and RF multipole are

similar suggesting that either the overall dynamics has limited sensitivity to the

crab cavity model choice, in terms of variation in averaged linear action with

turn, or that the models have a good level of agreement. A dynamic aperture

result would confirm which is true.
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Figure 3.29: Moving average of linear action with turn for numerical integrator com-

pared with other cavity models for (a) Jx and (b) Jy.

Irrespective of the method used for tracking, whether using an algebraically

symplectic kick model or a Taylor map, some level of numerical error will oc-

cur. This may be purely due to round off error from the machine’s numerical

precision [137] or the truncation errors associated with Taylor maps. In order

to consider Taylor maps for long term tracking the loss in symplecticity must

be deemed acceptable relative to the additional changes in dynamics which the

Taylor map achieves compared to an alternative symplectic model. In order to

evaluate the symplectic error over a large number of turns, 105 turns are tracked,

with the cumulative symplectic and Jacobian errors calculated from the track-

ing data at each Taylor map element. From this data the Jacobian matrices are

calculated from the individual Taylor maps and multiplied together in order to
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calculate the total errors from the Taylor maps. The symplectic and Jacobian

errors are not calculated for every element in the machine as it is assumed that

the contribution is greatest from the Taylor maps.

The cumulative Jacobian error, shown in figure 3.30, is evaluated at an am-

plitude close to the dynamic aperture, in a very chaotic region. It can be seen

that with a reduced number of coefficients there is an increased Jacobian error.

However the difference between 500 and 3003 coefficients is very small compared

with that of 200 coefficients at this point in phase space. It can be concluded

that for this point in phase space the increase in number of terms beyond ≈500

does not equate to a significant reduction in the cumulative symplectic error. It

is evident, however, that in terms of tracking there are differences. These may

arise from numerical precision limitations, as discussed in section 3.3, or removal

of physics, through truncation, relevant to this point in phase space.
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Figure 3.30: Jacobian error from all Taylor maps in SixTrack model with varying

number of coefficients in units of |1− det(J)|.

In figure 3.31 the cumulative symplectic error can be seen to behave in a

similar manner to the Jacobian error. A few symplectic error matrix coefficients

dominate, with almost linear growth with each turn. These larger terms have

almost identical values for the 500 and 3003 coefficient cases suggesting that the
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error is caused by the numerical precision resulting from a common significant

term or terms rather than through truncation of series terms.

Figure 3.31: Cumulative symplectic error matrix coefficients, from all Taylor maps in

SixTrack model, with varying number of coefficients.

While these methods show the amount of symplectic error at a given point in

phase space, they do not determine the suitability over the whole of the phase

space when considering long term tracking. It was shown in section 3.3 that the

errors in tracking with Taylor maps would be significant due to the maximum

symplectic errors of the single maps. The dynamic aperture is defined by the

boundary of a closed volume formed by the lowest amplitude particles lost after

105 turns. The requirement on numerical precision is that close to this boundary

the error in tracking does not exceed the steps in which amplitude is scanned.

However, determining this tolerance is not a trivial task and was beyond the

scope of this study. The chaotic nature of particles close to the dynamic aperture

creates added complication, where small differences in the tracking could lead

to significant differences in the final amplitude. This principle is used in the

chaotic boundary calculation of the Lyapunov exponent [139]. The only true

determination of the suitability of a Taylor map for dynamic aperture studies is

to have exact agreement with a symplectic model.

158



3.5 Conclusion

A method for fitting the electric field to a set of analytical functions has been pre-

sented and successfully applied to the three prototype crab cavity designs. From

these fitted fields an integration was performed using a truncated power series

library to produce a Taylor map to describe the dynamics of the cavity. From

these Taylor maps the cavity dynamics has been shown to exhibit strong non-

linear terms resulting from the transverse variation of the fields. Furthermore,

through this Taylor map approach, it has been shown that the phase depen-

dences of the spatial terms are not synchronous with the phase dependences of

the momentum terms, as a result of longitudinal variations in the fields. A new

truncated power series algebra library has also been described and applied to

create Taylor maps with variables beyond that of the six canonical variables.

The symplecticity of the Taylor maps has been studied and it has been shown

that there is evident symplectic error which increases cumulatively with turn.

However, studying a single point in phase space has been inconclusive in deter-

mining the suitability of using Taylor maps for dynamic aperture studies. One

proposed method is to seek agreement in dynamic aperture results between the

Taylor map and symplectic cavity models. The dynamic aperture defines a bound-

ary outside of the chaotic boundary at which particles remain stable after a given

number of turns. By being chaotic the particles are sensitive to their initial condi-

tions, hence having a close dynamic aperture between two different models would

suggest a very small perturbation in the dynamics of the accelerator relative to

the sensitivity to initial conditions. In order to create a symplectic model ap-

proximations upon the dynamics of the cavity must be applied. A Taylor map

will contain both additional dynamics and symplectic error beyond a symplectic

model. If there is a good agreement between a symplectic model and a Tay-

lor map in terms of the resulting dynamic aperture this would indicate that the
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impact of the additional dynamics and symplectic error are within the level of

agreement of the two dynamic apertures.
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Chapter 4

Symplectic cavity models

From the previous chapter it was seen that there was uncertainty surrounding

the use of non symplectic models, such as single element Taylor maps, for long

term tracking. However, the Taylor map provides the most complete picture of

the dynamics of the cavity, thereby giving a reference point from which to choose

a symplectic model. In this chapter thin kick models of the style by Ripken et

al. [128] are considered. The distinct advantage of such models over Taylor maps

is that they are symplectic. However, as already shown in section 3.3, Taylor

maps contain the dynamics resulting from the longitudinal variation in the fields

which can not be included in thin models. As a result it would be impossible to

have a thin model which exactly agreed with the Taylor map.

In this chapter a series of symplectic cavity models in the rigid bunch and axial

approximations are described, i.e. no momentum change and constant x and y

through the cavity. Two pre-existing models which apply further approximations

are described, these being the simple kick model and RF multipole kick model.

Furthermore, a new model is introduced, the generalised RF multipole kick model,

by generalising the thin model to a full solution of the Helmholtz equation. From

these symplectic models comparisons are made to the dynamics described by the

Taylor map.
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4.1 Thin cavity models

In order to form a thin cavity model the s dependence of the vector potential must

first be removed. In order to do this the Hamiltonian needs to be averaged in s

over the length of the cavity, however a number of approximations are required

in order to do this. By taking the rigid bunch and axial approximations (i.e. no

momentum change and constant x and y) an exactly symplectic model can be

produced. The extended accelerator Hamiltonian in the paraxial approximation

is given in equation 2.144,

H =−
(

1

β0

+ δ

)
+

1

2β2
0γ

2
0

(
1

β0

+ δ

)−1

+
δ

β0

+
[px − ax(x[s], y[s], z[s], s)]2

2
(

1
β0

+ δ
)

+
[py − ay(x[s], y[s], z[s], s)]2

2
(

1
β0

+ δ
) − az(x[s], y[s], z[s], s) + ps (4.1)

where the normalised vector potential ~a is dependent on x, y and z (which are

dependent on s), and s. Averaging over the length of the cavity leads to,

〈H〉 =
1

L

∫ L

0

H(x, px, y, py, z, δ, s, ps) ds, (4.2)

however, given that x, px, y, py ,z and δ all vary with s this becomes difficult to

evaluate. The rigid bunch approximation states that the momentum variables p

are constant with time over the length of the cavity from Hamilton’s equations

this means that the Hamiltonian does not vary with position variables q,

dp

dt
= −∂H

∂q
= 0. (4.3)

This means that only px, py and δ are effected by the kick of the cavity. The axial

approximation states that the position variables q are constant over the length of
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the cavity which leads to,

dq

dt
=
∂H

∂p
= 0. (4.4)

This means that the trajectory is independent of px, py and δ. These two as-

sumptions reduce the averaged Hamiltonian to,

〈H〉 =
1

L

∫ L

0

H(s, ps) ds, (4.5)

where ps is a constant, which results in,

〈H〉 =−
(

1

β0

+ δ

)
+

1

2β2
0γ

2
0

(
1

β0

+ δ

)−1

+
δ

β0

+
1

L

∫ L

0

[px − ax(x, y, z, s)]2

2
(

1
β0

+ δ
) ds+

1

L

∫ L

0

[py − ay(x, y, z, s)]2

2
(

1
β0

+ δ
) ds

− 1

L

∫ L

0

az(x, y, z, s) ds. (4.6)

The Panofsky-Wenzel theorem [140] assumes these rigid bunch and axial ap-

proximations and can be used to show that the kicks from the transverse vector

potential terms cancel over the integrated length of the cavity. From Newton’s

second law of dynamics, and the Lorentz force law, the normalised momentum

change from an electromagnetic field on a rigid particle is given by [140],

∆p⊥ =
q

p0v

∫ L

0

~E⊥ + (~v × ~B)⊥ ds. (4.7)

From Maxwell’s equations the ~E and ~B fields can be expressed in terms of the

magnetic vector potential ~A such that,

~B = ∇× ~A, ~E = −∂
~A

∂t
, (4.8)
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leading to the expression,

∆p⊥ =
q

p0v

∫ L

0

−∂
~A⊥
∂t

+ (~v ×∇× ~A)⊥ ds. (4.9)

By applying the vector calculus identity,

~v × (∇× ~A⊥) = ∇(~v · ~A⊥)− (~v · ∇) ~A⊥, (4.10)

the curl terms can be removed from equation 4.9 to give [140],

∆~p⊥ =− q

p0v

∫ L

0

[(
∂

∂t
+ ~v · ∇

)
~A⊥ −∇⊥(~v · ~A)

]
ds. (4.11)

In the relativistic limit where ~v → cŝ, such that the velocity is assumed constant,

the following simplifications can be made,

1

v
∇⊥(~v · ~A) = ∇⊥Az, (4.12)

1

v

(
∂

∂t
+ ~v · ∇

)
~A⊥ =

1

c

∂ ~A⊥
∂t

=
∂

∂s
~A⊥. (4.13)

From these simplifications the change in momentum is given by [140],

∆~p⊥ =
q

p0

[
~A⊥(s = 0)− ~A⊥(s = L)

]
+

q

p0

∫ L

0

∇⊥Az ds. (4.14)

The locations for s equal to zero and L equate to field free regions. Therefore,

the kicks resulting from the transverse vector potential can be seen to cancel.

This assumption means that this thin cavity model can only be applied over the

whole length of the cavity and prevents a cavity being split into slices as is often

considered for magnets [141]. This reduces the Hamiltonian in the rigid bunch
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approximation to,

〈H〉 =−
(

1

β0

+ δ

)
+

1

2β2
0γ

2
0

(
1

β0

+ δ

)−1

+
p2
x

2
(

1
β0

+ δ
) +

p2
y

2
(

1
β0

+ δ
)

+
δ

β0

− 1

L

∫ L

0

az(x, y, z, s) ds (4.15)

From the rigid bunch approximation then the Hamiltonian can be split such that,

〈H〉 = Hdrift(px, py, δ) +Hkick(x, y, z), (4.16)

where Hdrift is given by,

Hdrift(px, py, δ) =−
(

1

β0

+ δ

)
+

1

2β2
0γ

2
0

(
1

β0

+ δ

)−1

+
p2
x

2
(

1
β0

+ δ
) +

p2
y

2
(

1
β0

+ δ
)

+
δ

β0

, (4.17)

and Hkick,

Hkick(x, y, z) = − 1

L

∫ L

0

az(x, y, z, s) ds. (4.18)

Both Hamiltonian components are solvable with Hamilton’s equations and there-

fore they result in symplectic transformations. For Hkick in general the transfor-

mation is given by,

∆px =
∂

∂x

∫ L

0

az(x, y, z, s) ds, (4.19)

∆py =
∂

∂y

∫ L

0

az(x, y, z, s) ds, (4.20)

∆δ =
∂

∂z

∫ L

0

az(x, y, z, s) ds. (4.21)
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The removal of ax and ay terms mean that Hdrift no longer needs to be in a

paraxial form, such that,

Hdrift(px, py, δ) =
δ

β0

−

√(
1

β0

+ δ

)2

− p2
x − p2

y −
1

β2
0γ

2
0

. (4.22)

Symplectic transformations exist for this Hamiltonian of the drift and can be

found in [128, 142].

From the rigid bunch and axial approximations two further assumptions can

be applied to the averaged az to further simplify the crab cavity model. In this

section three variants of the thin crab cavity model are introduced. In its most

general form az is a solution to the Helmholtz equation, as discussed in section 3.1.

This leads to the generalised RF multipole kick model which is introduced in

section 4.1.3. The first approximation to this general form is that in the ultra-

relativistic limit, the transverse dependence of the work done on a particle is

a solution to the Laplace equation [143]. This limit reduces the integrated az

to a multipole expansion. This results in the RF multipole kick model which

is introduced in section 4.1.2. The second approximation is to only consider

the component of the multipole expansion that is dominant in the cavity. For

example, for the crab cavity this would be the dipole component. This leads to

the simple kick model shown in section 4.1.1. A summary of the different models

is shown in figure 4.1.

4.1.1 Simple kick model

For most accelerators the model describing cavities is limited to a simple thin

kick model [74, 128, 129]. These do not contain explicit information about the

dynamics of a specific cavity design and typically either consider a uniform accel-

eration or transverse kick [119, 120]. The simplest model for a crab cavity comes
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Figure 4.1: Assumptions made in the construction of crab cavity models.

from the following kick Hamiltonian,

Hkick =
qV (s)

p0

x sin
(ωz
c

+ Φ
)
, (4.23)

where q is the charge of the particle, V is the cavity deflecting voltage in the

horizontal plane, Φ is the cavity phase relative to the reference particle and ω is

the cavity frequency. The s dependence creates difficulties in handling and solving

the equations of motion, leading to methods such as those used to compute the

single element Taylor maps. By taking the thin lens approximation for V (s),

V (s) = V (s0) ∆s δ(s− s0), (4.24)

such issues can be avoided. The Hamiltonian kick component, by integration over

the length of the cavity, can be reduced to,

Hkick =
qV

p0

x sin
(ωz
c

+ Φ
)
. (4.25)
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The effective length of the cavity is then treated as drift space. By applying

Hamilton’s equations directly to this kick Hamiltonian the following symplectic

transfer map describing the kick of the cavity is derived,

px 7→ px +
qV

p0

sin
(ωz
c

+ Φ
)
, (4.26)

py 7→ py, (4.27)

δ 7→ δ +
qV

p0

ωx

c
cos
(ωz
c

+ Φ
)
. (4.28)

From this transformation it can be seen that this model exhibits a z dependent

transverse kick, and an x and z dependent change in δ because of symplecticity.

This model is good in the limit that the transverse dependencies of the kick can be

neglected. If this were not the case a model including these dependencies would

be required. It has already been shown that this is not the case in figure 3.19 in

which a transverse kick dependence beyond the dipole kick was observed.

4.1.2 RF multipole kick model

The RF multipole kick model (RFM) is named after the corresponding multi-

poles used to express azimuthal components of magnetic fields [144, 138]. The

azimuthal decomposition of static magnet fields was sought to be applied also

to RF cavities. The RFM model provides a leading order description of the

transverse dependencies of the kick.

The first assumption comes about by considering the spatial dependencies of

the transverse kicks which do most work on a particle as it passes through the

cavity. The work done to a particle traversing the cavity needs to be found as

a function of x and y, which has been previously derived in [143]. A function

describing the work done (or voltage) V is needed from the cavity ~E field. The
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~E field in a cavity is described in general by the wave equation,

∇2 ~E − 1

c2

∂2 ~E

∂t2
= 0, (4.29)

where c is the speed of light and t is time. From the axial and rigid bunch

approximations the energy transferred to the particle from the cavity field is

given by [143],

qV (x, y) = q

∫ b

a

Ez(x, y, s) ds, (4.30)

where q is the particle charge, a and b are the start and end locations in the

longitudinal position s. The Laplacian operator applied to the potential is given

by,

∇2V ≡ ∂2V

∂x2
+
∂2V

∂y2
, (4.31)

where V is only dependent on x and y. Expanding the Laplace operator in the

wave equation in equation 4.29, considering only the Ez component, leads to [143],

∂2Ez
∂x2

+
∂2Ez
∂y2

+
∂2Ez
∂s2

− 1

c2

∂2Ez
∂t2

= 0. (4.32)

Rearranging this and integrating over the length of the cavity results in,

∫ b

a

(
∂2Ez
∂x2

+
∂2Ez
∂y2

)
ds =

∫ b

a

(
1

c2

∂2Ez
∂t2

− ∂2Ez
∂s2

)
ds. (4.33)

The left hand side of equation 4.33 is identical to equation 4.31 hence,

∇2
⊥V =

∫ b

a

∇2
⊥Ez ds =

∫ b

a

(
1

c2

∂2Ez
∂t2

− ∂2Ez
∂s2

)
ds. (4.34)

The Ez field component takes the form of a function f [s, t(s)] which has a total
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differential of the form,

∫
∂f

∂s
ds = f −

∫
∂f

∂t

dt

ds
ds+ const. (4.35)

Applying this first to ∂Ez/∂s allows the simplification of equation 4.34 to [143],

∇2V = −∂Ez
∂s

∣∣∣b
a

+

∫ b

a

(
1

c2

∂2Ez
∂t2

+
1

βc

∂2Ez
∂s∂t

)
ds (4.36)

where β is the velocity as a fraction of c. Applying equation 4.35 to ∂Ez/∂t allows

further simplification to,

∇2
⊥V =

(
−∂

~E

∂s
+

1

βc

∂ ~E

∂t

)∣∣∣b
a

+

∫ b

a

1

(β0γ0c)2

∂2 ~E

∂t2
ds (4.37)

From equation 4.30 this can be arranged to a form close to that of the wave

equation,

∇2
⊥V +

1

(β0γ0c)2

∂2V

∂t2
=

(
−∂Ez
∂s

+
1

βc

∂Ez
∂t

) ∣∣∣b,ta+
(b−a)
βc

a,ta
(4.38)

where ta is the time at point a. Defining a and b as the position at the entrance

and exit of the cavity, which are field free regions, leads the right hand side of

equation 4.38 to go to zero leaving,

∇2
⊥V +

1

(β0γ0c)2

∂2V

∂t2
= 0. (4.39)

Equation 4.39 can be simplified if the time component of the field is harmonic

with frequency ω and wavenumber k = ω/βc,

∇2
⊥V −

(
k

γ0

)2

V = 0, (4.40)
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where in the limit k/γ0 → 0 this reduces to the Laplace equation. This gives an

expression for V from the form of the ~E field in the cavity. This is important as

it defines the transverse dependency of the work done on a particle as it passes

through the cavity. In order to reach this function the rigid bunch and axial

approximations were applied.

Given that V is defined in terms of Ez in equation 4.30, in this limit, the spatial

component E
(l)
z , defined in equation 3.2, takes the form of a general solution to

the Laplace equation,

∫ b

a

E(l)
z (ρ, φ, s) ds = E0

∞∑
n=0

cnρ
neinφ. (4.41)

cn is a series of complex coefficients describing the field, E0 is a normalisation

factor, ρ is radius and φ is the azimuthal position. The direct relation between

the vector potential and electric field arising from Maxwell’s equations,

~A =
i

ω
~E, (4.42)

leads to the integrated vector potential,

∫ L

0

Az ds = ei(klz+Φl)

∫ L

0

A(l)
z ds = ei(klz+Φl)

N∑
n=1

ρn

n

(
b(l)
n cos(nφ) + a(l)

n sin(nφ)
)
.

(4.43)

a
(l)
n and b(l)n are the skew and normal RF-multipole coefficients of a spatial compo-

nent of a particular standing wave mode, and A
(l)
z is the spatial component of the

longitudinal vector potential. In [138] the multipole coefficients are complex to

include the phase dependency as their argument. However, to keep with the for-

malism described in chapter 3 the convention is chosen that they are real numbers

with an additional term Φl used to describe the phase. Using the transforma-

tions given in equation 3.32 the integrated vector potential can be expressed in
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Cartesian coordinates,

∫ L

0

Az ds = ei(klz+Φl)

N∑
n=1

1

n

{
b(l)
n <[(x+ iy)n] + a(l)

n =[(x+ iy)n]
}
. (4.44)

From the kick Hamiltonian,

Hkick(x, y, z) = − q

p0

1

L

∫ L

0

Az ds, (4.45)

by applying Hamilton’s equations the following symplectic transformation is de-

rived [138],

px 7→px +
q

p0

sin (klz + Φl)
N∑
n=1

<
[(
b(l)
n + ia(l)

n

)
(x+ iy)n−1

]
, (4.46)

py 7→py −
q

p0

sin (klz + Φl)
N∑
n=1

=
[(
b(l)
n + ia(l)

n

)
(x+ iy)n−1

]
, (4.47)

δ 7→δ +
q

p0

kl cos (klz + Φl)
N∑
n=1

1

n
<
[(
b(l)
n + ia(l)

n

)
(x+ iy)n

]
. (4.48)

This map goes beyond the simple kick model seen in equation 4.26 by including a

transverse kick dependency, while still including the rigid bunch and axial approx-

imations. However, this model is only valid in the high γ0 limit where additional

terms present in the solution to the Helmholtz equation can be neglected. Below

this limit additional terms which are present in the solution to the Helmholtz

equation will contribute.

4.1.3 Generalised RF multipole kick model

The generalised RF multipole kick model takes the rigid bunch and axial approx-

imations and makes no further assumptions in its construction. The integrated

az description comes from the general solution to the Helmholtz equation given
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in equation 3.9. From the form of the fitted E
(l)
z in equation 3.9 [119], in terms

of the generalised gradients in equation 3.33 (which are directly calculable from

the field surface data), in Cartesian coordinates the integrated Az is given by,

∫ L

0

Az ds =
∑
l

i

ωl
e−i(klz+Φl)

∫ L

0

eiklsE(l)
z ds

=
∑
l

i

ωl
e−i(klz+Φl)

M∑
m=0

N∑
n=1

1

2n+2mm!(n+m)!
(x2 + y2)m{

< [(x+ iy)n]

∫ L

0

eiklsC(l)
zc (s, n,m) ds

+= [(x+ iy)n]

∫ L

0

eiklsC(l)
zs (s, n,m) ds

}
, (4.49)

for multiple standing modes. From the kick Hamiltonian defined in equation 4.45

the following equations of motion are found using Hamilton’s equations,1

px 7→ px +
q

p0

sin
(ωz
c

+ Φ
) M∑
m=0

N∑
n=1{

(x2 + y2)m
(
<
[
(x+ iy)n−1

]
bn,m + =

[
(x+ iy)n−1

]
an,m

)
+2

m

n
x(x2 + y2)m−1 (< [(x+ iy)n] bn,m + = [(x+ iy)n] an,m)

}
, (4.50)

py 7→ py −
q

p0

sin
(ωz
c

+ Φ
) M∑
m=0

N∑
n=1{

(x2 + y2)m
(
=
[
(x+ iy)n−1

]
bn,m + <

[
(x+ iy)n−1

]
an,m

)
+2

m

n
y(x2 + y2)m−1 (< [(x+ iy)n] bn,m + = [(x+ iy)n] an,m)

}
, (4.51)

1Suppressing the superscript (l) and assuming a singular standing mode.
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δ 7→ δ +
q

p0

ω

c
cos
(ωz
c

+ Φ
) M∑
m=0

N∑
n=1

1

n
(x2 + y2)m

(< [(x+ iy)n] bn,m + = [(x+ iy)n] an,m) . (4.52)

The generalised multipole coefficients are defined by,

bn,m =<
[

in

ω

1

2n+2mm!(n+m)!

∫ L

0

eiωs
c Czc(s, n,m) ds

]
, (4.53)

an,m =<
[

in

ω

1

2n+2mm!(n+m)!

∫ L

0

eiωs
c Czs(s, n,m) ds

]
, (4.54)

The generalised multipole coefficients bn,m are directly related to the multipole

coefficients bn such that bn,0 ≡ bn. This model provides a description of the

cavity dynamics with only the rigid bunch and axial approximations applied.

This model is applicable for cases where the ultra-relativistic limit is no longer

valid such that the additional terms in the solution to the Helmholtz equation

are important and where the rigid bunch and axial approximations hold.

4.2 RF multipole coefficient calculations

The RF multipole coefficients were calculated directly from field maps of the

various cavity designs. There are several methods used to do this [138], with

each method starting from the eigenmode solution for the cavity operating mode,

calculated using the frequency domain finite element code HFSS [121]. A precise

Fourier decomposition of the fields required a regular meshing upon the surface of

a cylinder. This avoids non-Maxwellian interpolation between the automatically

assigned mesh nodes, which would be the default for HFSS. Instead the nodes of

the solution are forced to lie regularly upon the cylinder. Figure 4.2 shows the

mesh, which is constructed from a series of tetrahedra whose nodes lie on the

surface of three cylinders, used to perform this eigenmode solution [122].
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Figure 4.2: Meshing used to construct azimuthal decomposition constructed in
HFSS [121] with equiradial mesh points lying on coaxial polyhedrons [122].
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Figure 4.3: Mesh error from interpolating the fields on a Cartesian mesh com-
pared with the exact cylindrical meshing method. Absolute error in (a) Ex and
(b) Ez field components at x = 20 mm and y = 0 mm.
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It was found that there were significant errors introduced if this method was

not used. Figure 4.3 shows the resulting error from interpolating from a Cartesian

mesh compared with the fields on a Cylindrical mesh. It can be seen that there

errors of order 0.1% in the Ez field introduced from this interpolation. The

meshes used produced cylinders at radii of 10 mm and 20 mm respectively, with

16 uniformly separated azimuthal points in steps of 2 mm down the length of the

cavity. For each mesh point the ~E and ~B fields were extracted, and from these

the multipole coefficients calculated.

4.2.1 Lorentz Force multipole calculation

The Lorentz force multipole calculation makes use of electric and magnetic field

data to calculate RF-multipole coefficients. Starting from the general Lorentz

force expression, the transverse force is given by,

~F⊥ = q
(
~E⊥ + c(ŝ× ~B)

)
, (4.55)

where ŝ is the unit vector in the reference orbit direction and ~E and ~B are the elec-

tric and magnetic fields respectively. From Newton’s second law, assuming that

ds/dt is constant, the force can be expressed as the rate in change in momentum

with position s,

~F =
d~P

dt
≈ 1

c

d~P

ds
. (4.56)

The normalised momentum kick ~p, normalised to the reference momentum p0,

can be found from the force by integrating over the length of the cavity L,

∆~p⊥ =
1

p0c

∫ L

0

~F⊥ ds. (4.57)
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From the integrated vector potential in the high γ0 limit, described by equa-

tion 4.39, the transverse momentum change can be directly calculated from

Hamilton’s equations in polar coordinates,

∆~p⊥(ρ, φ) = ei(klz+Φl)
q

p0

∫ L

0

∇⊥A(l)
z ds

= ei(klz+Φl)
q

p0

∫ L

0

 ∂A
(l)
z

∂ρ
ρ̂

1
ρ
∂A

(l)
z

∂φ
φ̂

 ds, (4.58)

where A
(l)
z in the high γ0 limit, from equation 4.44, is given by,

∫ L

0

A(l)
z ds =

N∑
n=1

ρn

n

(
b(l)
n cos(nφ) + a(l)

n sin(nφ)
)
. (4.59)

This leads to a transverse momentum change of,

∆~p⊥(ρ, φ) = ei(klz+Φl)
q

p0

N∑
n=1

ρn−1

 (b
(l)
n cos(nφ) + a

(l)
n sin(nφ))ρ̂

(a
(l)
n cos(nφ)− b(l)

n sin(nφ))φ̂

 . (4.60)

From this relation the following expression can be found by equating the radial

component of momentum in equations 4.57 and 4.60,

1

c

∫ L

0

Fρ ds = ei(klz+Φl)q

N∑
n=1

ρn−1
(
b(l)
n cos(nφ) + a(l)

n sin(nφ)
)
. (4.61)

The spatial component of the force ~F (l) is defined by ~F =
∑

l
~F (l) · ei(kz+Φ) and

can be directly calculated from the fields given by HFSS using the Lorentz force

equation in equation 4.55. The spatial component of the right hand side of

equation 4.61 takes the form of a Fourier series given by,

f(φ) =
1

qc

∫ L

0

F (l)
ρ ds =

N∑
n=1

ρn−1
(
b(l)
n cos(nφ) + a(l)

n sin(nφ)
)
. (4.62)
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Multiplying f(φ) by cos(pφ), where p is an integer, and integrating over one full

period in φ results in,

∫ π

−π
f(φ) cos(pφ) dφ =

N∑
n=1

ρn−1a(l)
n

∫ π

−π
cos(pφ) sin(nφ) dφ

+
N∑
n=1

ρn−1b(l)
n

∫ π

−π
cos(pφ) cos(nφ) dφ. (4.63)

The only non-vanishing terms on the right hand side occur when p = n so,

∫ π

−π
f(φ) cos(nφ) dφ = ρn−1b(l)

n π. (4.64)

In a similar way f(φ) can be multiplied by sin(pφ) resulting in a relation for a
(l)
n ,

∫ π

−π
f(φ) sin(nφ) dφ = ρn−1a(l)

n π. (4.65)

Using f(φ) defined by the Lorentz force in equation 4.62 the multipole coefficients

can be calculated using,

a(l)
n = <

{
1

qc

1

π

∫ π

−π

1

ρn−1
sin(nφ)

∫ L

0

F (l)
ρ (ρ, φ, s) ds dφ

}
, (4.66)

b(l)
n = <

{
1

qc

1

π

∫ π

−π

1

ρn−1
cos(nφ)

∫ L

0

F (l)
ρ (ρ, φ, s) ds dφ

}
. (4.67)

4.2.2 Panofsky-Wenzel multipole calculation

The Panofsky-Wenzel theorem [140] is a useful relationship between transverse

kicks and the electric field, allowing calculation of the multipole coefficients from

only the longitudinal electric field component. Equation 4.14 states that,

∆~p⊥ =
q

p0

[
~A⊥(s = 0)− ~A⊥(s = L)

]
+

q

p0

∫ L

0

∇⊥Az ds. (4.68)
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With some manipulation, assuming that field free regions are at the edges of the

integrable region [0, L], the momentum change can be expressed in terms of Ez

only,

∆~p⊥ =
q

p0

∫ L

0

∇⊥Az ds

=
iq

ωp0

e−i(klz+Φl)

∫ L

0

eikls∇⊥E(l)
z ds. (4.69)

The Ez field is separable into spatial and time components, as discussed in sec-

tion 3.1, such that Ez =
∑

lE
(l)
z · ei(klz+Φl). From equations 4.60 and 4.69 the

following relation can found,

iq

ωl

∫ L

0

eikls
∂E

(l)
z

∂ρ
ds =q

N∑
n=1

ρn−1
(
b(l)
n cos(nφ) + a(l)

n sin(nφ)
)
, (4.70)

from which a new function f(φ) is defined,

f(φ) =
i

ωl

∫ L

0

eiklsE(l)
z ds =

N∑
n=1

1

n
ρn
(
b(l)
n cos(nφ) + a(l)

n sin(nφ)
)
. (4.71)

By similar arguments used to find the coefficients of the Fourier series f(φ) in

section 4.2.1 the multipole coefficients are given by,

a(l)
n =

1

π

1

ρn

∫ π

−π
f(φ) sin(nφ) dφ, (4.72)

b(l)
n =

1

π

1

ρn

∫ π

−π
f(φ) cos(nφ) dφ. (4.73)
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From the definition of f(φ) in terms of Ez given in equation 4.71 the multipole

coefficients can be calculated using,

a(l)
n = <

{
in

ω

1

π

∫ π

−π

1

ρn
sin(nφ)

∫ L

0

eiklsE(l)
z (ρ, φ, s) ds dφ

}
(4.74)

b(l)
n = <

{
in

ω

1

π

∫ π

−π

1

ρn
cos(nφ)

∫ L

0

eiklsE(l)
z (ρ, φ, s) ds dφ

}
. (4.75)

This method requires the eigenmode solver to solve the fields beyond the beam

pipe cutoff of the operating mode such that the vector potential is zero at the

limits of integration.

4.2.3 Helmholtz decomposition

The field fitting method can be extended to calculate generalised multipole co-

efficients from the harmonic functions ẽn(k) and f̃n(k) defined in equations 3.12

and 3.13 respectively. Starting from the generalised multipole coefficients defined

in equations 4.53 and 4.54,

bn,m =<
[

in

ω

1

2n+2mm!(n+m)!

∫ L

0

eiωs
c Czc(s, n,m) ds

]
(4.76)

an,m =<
[

in

ω

1

2n+2mm!(n+m)!

∫ L

0

eiωs
c Czs(s, n,m) ds

]
, (4.77)

the generalised multipoles are expressed in terms of generalised gradients defined

in equation 3.21. The generalised gradients in terms of ẽn(k) and f̃n(k) are given

by,

Czc(s, n,m) =

∫ ∞
−∞

dk√
2π
eikssgn(k2 − k2

l )
mκl(k)n+2mẽn(k) (4.78)

Czs(s, n,m) =

∫ ∞
−∞

dk√
2π
eikssgn(k2 − k2

l )
mκl(k)n+2mf̃n(k). (4.79)
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As previously stated, given that the generalised multipoles of the form bn,0 are

equal to the regular multipoles this method provides a further way to calculate

the regular multipoles.

4.2.4 Multipole results

The results of the various multipole calculations applied to the different cavities

is summarised in table 4.1; in which it can be seen that there are apparent

variations between the methods. The most significant of these differences occurs

with the Helmholtz decomposition and arises from the use of Bessel functions in

computing the harmonic functions by forcing the fields to form an exact solution

to the Helmholtz equation. For example, in the 4RCAV 2011 cavity this leads to

a difference of approximately 1% in the b3 value at 20 mm. Comparing the two

direct methods, the Lorentz force and Panofsky-Wenzel decomposition, there can

be seen at 0.5% difference in the 20 mm results for b3 of the QWCAV 2011 cavity.

Further variations arise between all three methods from the mesh noise and the

error introduced in the Fourier decomposition through the limited number of

angular bins. Examples of this can be seen in the non-zero b2 and b4 values for

all cavities with two planes of transverse symmetry i.e. all but the QWCAV 2011

cavity.

Considering the actual multipole values of the various cavity designs it can

be seen that only for the QWCAV 2011 design are there significant b2 and b4

components. This arises from the cavity only having one plane of transverse

symmetry. The maximum b3 component of the 2012 designs can be found in

the ODUCAV 2012 design which is approximately 4.5 T/m. Comparatively the

minimum b3 of the 2012 designs is the QWCAV closely followed by the 4RCAV,

both with approximately 1 T/m.
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Cavity Multipole Lorentz method Panofsky-Wenzel Helmholtz

coefficient 10 mm 20 mm 10 mm 20 mm 20 mm

4RCAV 2011
b2 −0.02 −0.03 −0.02 −0.03 −0.06
b3 898 898 896 898 906
b4 24 −7 −5 39 −2

4RCAV 2012
b2 −0.06 −0.05 −0.06 −0.06 −0.10
b3 1160 1159 1161 1162 1156
b4 −4 100 65 27 57

ODUCAV 2011
b2 −0.04 −0.04 −0.04 −0.06 −0.08
b3 3198 3199 3196 3198 3194
b4 −239 −52 323 −96 −57

ODUCAV 2012
b2 0.01 0.00 0.00 0.01 0.01
b3 4511 4511 4495 4495 4518
b4 −4 −7 −21 7 10

QWCAV 2011
b2 111.42 111.40 111.43 111.48 113.06
b3 1266 1267 1256 1260 1279
b4 1776 1776 1400 1836 2102

QWCAV 2012
b2 0.29 0.29 0.29 0.29 0.24
b3 1073 1073 1077 1078 1073
b4 50 67 6 64 22

Table 4.1: Values of the multipole RF kick coefficients for the crab cavity proto-
types at nominal deflecting voltage: Vcc=10 MV in units of mT/mn−2. Calculated
using the Lorentz force, Panofsky-Wenzel and Helmholtz decomposition methods
at a radius of either 10 mm or 20 mm.
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4.3 Comparing thin models with the Taylor

map

The terms of the Taylor map can be directly compared to the three cavity models

described in sections 4.1.1, 4.1.2 and 4.1.3.

Considering the simple thin kick model, as described in section 4.1.1, a com-

parison with the Taylor map has already been made in section 3.3 in table 3.1.

It was shown that there was good agreement in the px and py dependencies upon

the canonical variables. However, averaging over the Hamiltonian leads to the re-

moval of additional terms in the spatial functions resulting from the longitudinal

kick variation of the cavity. This longitudinal kick variation was observed in the

numerical integration through the cavity shown in figure 3.19. In this figure it was

shown that additional displacement arose from the time integrated momentum

being different between the positive and negative transverse kicks. Furthermore

it was shown in table 4.1 that higher order multipoles do exist indicating the

limitations of this model.

The RF multipole kick model, as described in section 4.1.2, can be directly

compared with the Taylor map. In applying a Taylor expansion to the transverse

kick terms described in equation 4.46, it is possible to match terms with those of

the Taylor map. The transverse kicks of the RF multipole kick model are given

by,

px 7→ px +
q

p0

sin (klz + Φl)
N∑
n=1

<
[(
b(l)
n + ia(l)

n

)
(x+ iy)n−1

]
, (4.80)

py 7→ py −
q

p0

sin (klz + Φl)
N∑
n=1

=
[(
b(l)
n + ia(l)

n

)
(x+ iy)n−1

]
. (4.81)

The nominal phase for a crab cavity is Φl = 0. By using the Taylor series of a
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sine function,

sin(x) =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1, (4.82)

the Taylor series expansions for equations 4.80 and 4.81 are given by,

px 7→px + b1
q

p0

ω

c
z + b2

q

p0

ω

c
xz + b3

q

p0

ω

c
x2z − b3

q

p0

ω

c
y2z + . . . (4.83)

py 7→py − b2
q

p0

ω

c
yz − b3

q

p0

ω

c
2xyz + b3

q

p0

ω

c
y3z + . . . (4.84)

From this expansion equivalent terms can be directly compared with the Taylor

map. From the coefficients of these terms an equivalent multipole coefficient can

be calculated. For example, from the first multipole term in equation 4.83 the

equivalent b1 can be calculated such that,

b1 =
cp0

qω
px(z), (4.85)

where px(z) is the Taylor map term referring to the z dependence of px. A first

comparison made use of the px terms with the highest power in x and first order

dependence in z. However, these are not unique terms from which to extract the

multipole coefficients. In table 4.2 the results of this comparison show that to

three significant figures the dominant multipoles (b1, b3 and b5) agree between

the multipole calculation and Taylor map terms. This would imply a significant

agreement between the Taylor map model and the RF multipole model. However,

there are some differences present, for example for b3 there is a 0.07% difference,

suggesting that there is not absolute agreement in the px and py descriptions of

the two models.
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Multipole
coefficient

Terms used Taylor map RF multipole

b1 px(z) 3.333× 10+1 3.333× 10+1

b2 px(xz) 7.362× 10−2 7.386× 10−2

a2 px(yz) −3.308× 10−2 −3.313× 10−2

b3 px(x
2z) 9.055× 10+2 9.062× 10+2

a3 px(xyz) −1.845× 100 −0.917× 10−1

b4 px(x
3z) 3.078× 100 2.565× 10+0

a4 px(x
2yz) 6.106× 10+2 2.033× 10+2

b5 px(x
4z) −2.395× 10+6 −2.399× 10+6

a5 px(x
3yz) −5.949× 10+4 −1.485× 10+4

Table 4.2: Comparison of multipole coefficients derived from Taylor map terms
and the RF multipole calculation using the Helmholtz decomposition at 20 mm
result. Coefficients in units of mT/mn−2 at 10 MV.

Table 4.3 shows the extension of this study to consider all the Taylor map

terms containing b3 with a first order dependence in z. It can be seen that the

result of px(x
2z) differs to that of px(y

2z) and py(xyz). This further indicates

that there is not absolute agreement in the px and py descriptions of the two

models.

Multipole
coefficient

Terms used Taylor map RF multipole

b3 px(x
2z) 9.055× 10+2 9.062× 10+2

b3 px(y
2z) 9.061× 10+2 9.062× 10+2

b3 py(xyz) 9.061× 10+2 9.062× 10+2

Table 4.3: Comparison of b3 derived from Taylor map terms and the RF multipole
calculation using the Helmholtz decomposition at 20 mm result. Coefficients in
units of mT/m at 10 MV.

Although table 4.2 shows reasonable agreement between the Taylor map and

the RF multipole kick model it is evident that there are definite differences. From

the generalised RF multipole kick model (as presented in section 4.1.3) a similar
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Taylor expansion can be made to express the transverse kicks in the form of a

Taylor series. In this expansion there is no longer a one to one correlation between

multipole coefficients and Taylor map terms and hence a series of simultaneous

equations must be solved in order to calculate the effective multipoles. For ex-

ample, there are three terms in which the b3,0 generalised multipole coefficient

appears,

px(x
2z) =

q

p0

ω

c
(b3,0 + 3b1,1) ,

px(y
2z) = − q

p0

ω

c
(b3,0 − b1,1) ,

py(xyz) = − q

p0

ω

c
2 (b3,0 + b1,1) , (4.86)

where px(x
2z) is the Taylor map term corresponding to the x2z dependence of px.

Equation 4.86 indicates that the value of b3 calculated in table 4.2 is in fact equal

to b3,0 + 3b1,1. In table 4.4 the results of this method for a number of generalised

RF multipole coefficients is shown and compared with the coefficients calculated

using the generalised gradients from equation 4.53. It can be seen that there is

good agreement in the bn,0 terms and that from the scaled values they contribute

approximately 1% of the dipole kick at x = 20 mm. The higher order terms (b1,1,

b1,2 and b3,1) contribute at the level of 0.001% of the dipole kick. It can be seen

that that for the b1,1, b1,2 and b3,1 coefficients that the values between the Taylor

map and Helmholtz decomposition are completely different. This indicates that

the generalised RF multipole kick model does not correctly describe the beyond

RF multipole kick model dynamics for the px and py transformations contained

within the Taylor map.

Considering the case of b3,0 terms, there are three Taylor map terms contain-

ing b3,0; shown in equations 4.86. Comparing the solutions using the different

arrangements of these simultaneous equations, shown in table 4.5, the relation
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Terms used Taylor map Helmholtz decomposition

Value Scaled [10−4] Value Scaled [10−4]

b1,0 px(z) 33.333 10000.0007 33.333 10000.000
b1,1 px(x2z), px(y2z) −0.146 −0.017 −0.438 −0.052
b1,2 px(x4z), px(y4z), py(x3yz) 668.523 0.032 −123.657 −0.006
b3,0 px(x2z), px(y2z) 905.977 108.717 906.178 108.741
b3,1 px(x4z), px(y4z), py(x3yz) −121.248 −0.006 −221.112 −0.011
b5,0 px(x4z), px(y4z), py(x3yz) −2.399× 106 −115.152 −2.399× 106 −115.152

Table 4.4: Generalised multipole coefficients calculated from the Taylor map and
Helmholtz decomposition. Coefficients in units of mT/mn+2m−2 for bn,m, nor-
malised to 10 MV. Where the scaled value is given by (bn,m/b1,0)× (20 mm)n+2m−2

between the Taylor map and generalised multipoles is no longer so clear. This

suggests that there are other physical effects that feature in the Taylor map at

the same level of impact as the generalised RF multipoles where m > 0 for bn,m.

Therefore the application of generalised RF multipoles for the HL-LHC case ap-

pears inappropriate in that there is ambiguity with the Taylor maps at the level

of the additional dynamics which they would provide.

Terms used Taylor map Scaled [10−4]

b1,1 px(x
2z), px(y

2z) −0.146 −0.018
b3,0 px(x

2z), px(y
2z) 905.977 108.717

b1,1 px(x
2z), py(xyz) −0.293 −0.035

b3,0 px(x
2z), py(xyz) 906.415 108.770

b1,1 px(y
2z), py(xyz) −9.720× 10−8 −1.166× 10−8

b3,0 px(y
2z), py(xyz) 906.123 108.735

Table 4.5: Variation in generalised multipole coefficients calculated from the
Taylor map. Coefficients in units of mT/mn+2m−2 for bn,m, normalised to 10 MV.
Where the scaled value is given by (bn,m/b1,0)× (20 mm)n+2m−2

4.4 Conclusion

The symplectic thin models remove the need to consider the impact of symplectic

error making them a preferred option over Taylor maps to model the crab cavities
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for long term tracking. Three different thin models have been shown with various

assumptions leading to varying levels of model complexity. Methods to calculate

the multipole coefficients which parametrise these models directly from the fields

by assuming the rigid bunch and axial approximations have also been shown.

It has been shown that between the different methods there is a difference of

approximately 1% in the multipole values. It has also been shown that the RF

multipole kick model changes the kicks by approximately 1% of the total kick

from the simple kick model at x = 20 mm. Furthermore, it has been shown

that the additional terms of the generalised RF multipole kick model change the

kicks by approximately 0.001% of the total kick from the simple kick model at

x = 20 mm.

Taylor maps have been used as a cross check with these thin models by using a

technique to extract the multipole values from them. It has been shown that there

is reasonable agreement between the Taylor map and RF multipole method for the

descriptions of the x and y dependence on px and py with a 0.07% disagreement in

the b3 value for the 4RCAV 2011 design, between the Taylor map and Helmholtz

decomposition values. A more complex description of the px and py dependence

on x and y is required to describe that which is contained within the Taylor map.

The generalised RF multipole kick model did not provide a suitable description

for the beyond RF multipole description found in the Taylor map. It can be

concluded that of the available symplectic models the RF multipole kick model

is the most practical choice of crab cavity model.
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Chapter 5

Dynamic aperture with crab

cavities in the HL-LHC

Chapter 2 showed that non-linearities can lead to chaotic motion in an accelerator,

with some of this chaotic motion leading to unstable motion in which particles

become lost on restrictive apertures. Chapters 3 and 4 showed that the crab

cavity itself exhibits non-linear dynamics. In this chapter these two findings are

combined to consider the impact of the crab cavities on the HL-LHC.

Dynamic aperture provides a means to understand the impact of non-linear

behaviour upon the stability of an accelerator, as discussed in section 2.2.3. A fur-

ther tool available to study the non-linear behaviour of an accelerator is frequency

map analysis, also discussed in section 2.2.3, which considers the mechanisms un-

derlying any non-linear behaviour. In this chapter these two methods are used

to consider the impact of the crab cavities.

In chapters 3 and 4 a variety of models of the crab cavity were introduced.

Three models of the crab cavities are used in this chapter. The two symplectic

thin lens models considered for use in these studies are the simple kick model

(section 4.1.1) and the RF multipole kick model (section 4.1.2). The Taylor maps

were shown to contain dynamics beyond these simple kick models, however, they
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also exhibited symplectic errors. The Taylor maps continue to be used as a model

of the crab cavities in this chapter.

In this chapter, section 5.1 details the HL-LHC model created in SixTrack [145]

within which the crab cavities are installed. In sections 5.2.1 and 5.2.2 the tech-

niques of dynamic aperture and frequency map analysis are used to consider the

impact of the crab cavities, modelled using the simple kick model, on the HL-

LHC. In section 5.2.3 the impact of the transverse dependence of the crab cavity

kick on the HL-LHC is investigated using the three different cavity models. This

section seeks to answer the question over which components of the crab cavity

dynamics are important when studying long stability in the HL-LHC.

5.1 SixTrack

SixTrack is a suite of programs used to perform single particle tracking, in par-

ticular for dynamic aperture studies [145]. It uses a 6D thin lens tracking al-

gorithm [128] for all the accelerator elements, with a symplectic treatment of

synchrotron motion [50]. This creates a numerically stable model of the HL-LHC

which neglects any dynamics beyond that of the thin lens approximation. In these

dynamic aperture studies magnet multipole errors are included, and a series of

points in transverse action phase space are evaluated to determine the dynamic

aperture.

5.1.1 Lattice input and magnet errors

The lattice used for these studies was the SLHC v3.1b lattice [68]. This uses

the ATS scheme [146], as previously discussed in section 2.3, with inner triplet

quadrupole magnets which have an aperture of 150 mm. From this lattice se-

quence, for these studies, a β∗ of 15 cm with round beams was considered at the
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two low-β IPs (IP1, IP5) and β∗ of 10 m at IP2 and IP8. The corresponding

unperturbed betatron tune for Qx0 and Qy0 were set to 62.31 and 60.32 respec-

tively.

The lattice input begins in the form of thick elements, which have associated

lengths. This can not be made directly into a thin element lattice due to the

need to preserve optical parameters (e.g. tune, chromaticity, β-function etc.).

Figure 5.1 shows the β-function around the whole of the lattice. The lattice

undergoes a series of matching routines to preserve the twiss parameters and

tune advances around the ring. This is performed using matching routines built

into the accelerator design program MADX [114], which performs the numerical

search of parameters required to convert from the thick to the thin lattice whilst

preserving the optical properties of the ring.
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Figure 5.1: β-function around the complete SLHC v3.1b lattice [68].

In MADX kicker magnets at z = 1σz of the bunch length are used instead

of crab cavities. The voltages for the cavities are determined from the linear

optics across the crab bump, given by the relations in equation 2.74 and 2.75,

and calculated using the dipole kicker magnets placed between D2 and Q4 (see

figure 2.26b). When using the Taylor maps the elements are added later by

directly replacing each crab cavity element in the SixTrack lattice input files with

sets of anti-drifts and Taylor maps. The matching and addition of crab cavities

produces a thin lens lattice with crab cavities.

Magnet field errors are applied in the form of magnetic multipoles up to the
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15th order multipole. Estimates of errors arising from measurements and uncer-

tainty are applied to the bending arc dipoles and the arc quadrupoles. Simulated

estimates of errors for the inner triplet quadrupoles (Q1, Q2, Q3), separation

dipoles (D1, D2), and matching quadrupoles (Q4, Q5) also exist. However, at

the time of writing these errors remained under study and therefore were not

used. A set of 60 different combinations of the errors in the bending arc dipoles

and the arc quadrupoles were used to create 60 variants of the lattice. These

60 combinations were produced using a program called WISE [147], which in-

corporates all known uncertainties in the magnet error measurements. Many of

the magnet error measurements of the superconducting magnets were only per-

formed in warm conditions with low currents leading to an uncertainty in the

magnet errors under operational conditions. A small set of these magnets were

also measured in cold conditions with operational current. A linear model was

assumed and fitted to these few cases in order to provide an estimation of the

magnet errors for all the magnets under operational conditions [148, 149]. In

WISE it is also assumed that the measured multipole magnet errors will form a

Gaussian distribution from which magnet error values can be randomly chosen

for each lattice variation. 60 random variants of the lattice, calculated using

60 seeds, are deemed sufficient from dynamic aperture considerations to gain a

95% certainty in the dynamic aperture [150]. The 60 seeds are common to all

of the dynamic aperture simulations studied. Correction magnets are applied

to remove any orbit distortion introduced by the magnet errors using matching

routines. Further adjustments of the correction magnets are performed in order

to recover the nominal optical parameters lost through the magnet errors. From

this final set of matched thin lattices 60 sets of SixTrack input files are created.
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5.1.2 Tracking

From the lattice files, computed with MADX, numerical tracking is performed us-

ing SixTrack. The tracking study begins with two one turn map calculations [50],

from which the β-function values, chromaticity, tune and closed orbit are cal-

culated and normal form analysis performed. The closed orbit is the point in

phase space where it is assumed the orbit remains constant and stable, and is the

reference point from which the dynamic aperture is defined. The closed orbit,

defined by a single point in phase space X0, can be found directly from the one

turn map M by solving,

X0 =M(X0). (5.1)

The transverse phase space is scanned about the closed orbit using action-

angle variables. This is broken down in terms of the ratio between horizontal and

vertical actions defined by,

θ = arctan

(
Iy
Ix

)
, (5.2)

where Ix and Iy are the non-linear action, with θ scanned linearly across

0◦ < θ < 90◦. It is only necessary to scan across initial action and not the

corresponding initial angle due to the periodicity of a stable orbit in the non-

linear action-angle phase space [145]. Amplitude is measured in units of σ where

1σ is the transverse RMS value of an assumed Gaussian shaped bunch. The range

of amplitudes over which the dynamic aperture is scanned is user defined in Six-

Track. In these studies the amplitude range is broken down into blocks of 2σ,

over which 30 particles are tracked, and evenly distributed in amplitude over the

2σ step. For these cases only beam one in a clockwise direction is considered, it

is assumed that the dynamic aperture of beam two would be identical. However,

this is not the case in the real machine which has differing magnet errors.
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The dynamic aperture is the greatest surviving averaged amplitude for 105

turns; given that the rotation frequency of the LHC is 11 KHz this is equivalent

to 9 seconds of beam time. With this number of turns it is considered that the

result is convergent on the dynamic aperture within the other uncertainties of the

calculation [145] (where beam-beam interaction is not considered). This number

of turns is considered the standard in terms of LHC dynamic aperture studies.

This choice partially arises from computational considerations as the change in

dynamic aperture with turn rapidly decreases with turn number hence for a con-

siderable increase in computation time little will be gained. It is considered that

the safety margin at collision for the dynamic aperture at 105 turns should be

double the aperture of the collimation system which is 6σ [151]. From the phase

space averaged amplitudes 〈x − x0〉 and 〈y − y0〉, which are averaged over 105

turns, where (x0,y0) is the position of the closed orbit, the dynamic aperture is

defined by,

DA[σ] =

√√√√√
 〈x− x0〉√

ε∗

β0γ0
βx

2

+

 〈y − y0〉√
ε∗

β0γ0
βy

2

(5.3)

in units of 1 σ where ε∗ = 3.75 mm mrad is the normalised emittance, β0 and

γ0 are relativistic factors, βx,y are the β functions at the point of measurement.

The minimum dynamic aperture is defined by the minimum value at each angle

in phase space over the 60 lattice variations.

5.1.3 SixTrack uncertainties

Many considerations are included in the determination of the dynamic aperture

using the method outlined in the previous sections. However, there are some

uncertainties which remain unaccounted for in its calculation. These uncertainties

in SixTrack calculations can be split into 3 classes; scanning of the phase space,

numerical tracking through the machine and lattice uncertainty.
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The finite step size in phase space angle θ generates an uncertainty in the

minimum dynamic aperture value due to the unknown behaviour of the dynamic

aperture between these θ values. The magnitude of this variation is dependent

upon the lattice and step size. The number of angles used for crab cavity studies

was increased from 5 to 19 angles, this leads to an uncertainty in the minimum

dynamic aperture of 0.5σ [152], as shown in figure 5.2. To reduce this uncertainty

further would have required a significant increase in the number of computations.

Figure 5.2: Minimum dynamic aperture as a function of number of phase space
angles [152].

The finite step size in amplitude brings about an uncertainty on the dynamic

aperture. Close to the chaotic boundary stable islands form which are not in-

cluded in the hypersphere of the dynamic aperture. If the amplitude step size is

too large it is possible that a stable island will be included in the measurement of

dynamic aperture. In [153] a study was performed which it observed that there

was no impact on the dynamic aperture from changing the step size from (2/30)σ

to (0.5/30)σ. For this reason (2/30)σ is chosen as the step size over which the

amplitude is varied.

The numerical tracking through the machine has two uncertainties: the nu-

merical stability of the tracking and the physics included in the simulation. In
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order to retain numerical stability SixTrack’s integration methods are symplec-

tic. This symplecticity is achieved by applying the thin lens approximation to the

accelerator Hamiltonian [128]. However, the resulting transformations introduce

unphysical non-Maxwellian fields, e.g. the instantaneous field drop off at the edge

of a magnet [154]. In [95] additional tune shift with amplitude was observed as

a result of the inclusion of fringe fields into the nominal LHC model. A more

physically correct, computationally slower [141], thick quadrupole model can be

used instead of a series of thin lens quadrupoles to model a quadrupole in Six-

Track. In [141] it was found that this thick model lead to a maximum variation

in the minimum dynamic aperture across 60 lattice variations of approximately

4% between the two models for the nominal LHC lattice. A further physical

uncertainty lies in the modelling of the beam-beam effect which is very complex

and hard to calculate [34]. A number of approximations can be made in order to

simplify the computations and avoid large multi-particle simulations. Numerical

uncertainties are introduced in long term tracking studies from rounding errors

produced by using numbers of finite precision [137]. These prevent very long term

tracking (> 107 turns) over which any extremely slow loss mechanisms might also

be observed [49].

The final type of uncertainty is that of lattice uncertainty. The errors in

the real magnets installed in the machine will differ depending on whether the

magnetic field components were measured under warm or cold conditions, or at

low or high current [148, 149]. A linear model was made between warm magnetic

multipole coefficients and cold (1.9 K) coefficients. Due to the time constraints

only a small number of magnets were measured for both warm and cold conditions,

with the rest only measured in warm conditions, with their cold magnet errors

calculated using the linear model. This leads to an uncertainty in the magnet error

tables. An attempt to account for this is made by having 60 lattice variants which
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then defines the dynamic aperture as a range of values. Taking the minimum of

this range results in a worst case scenario based upon these 60 variants. For

a tolerance study, such as looking at the worst possible impact from the crab

cavities, this minimum dynamic aperture is the best measurement to consider.

Further uncertainties are introduced into the magnet error tables through errors

in the measurement methods. The magnetic hysteresis due to the iron yoke

and persistent currents in superconducting magnets lead to further uncertainties

in the magnet fields [155]. Only some hysteresis induced errors are taken into

account in the magnet error tables leading to further uncertainty.

5.2 Dynamic aperture studies

The introduction of crab cavities presents many unknowns into the long term

stability of the machine. Preliminary studies performed [74] focussed on both a

local and global crab crossing scheme. However, these studies were only carried

out using the simple kick model and used an old version of the lattice layout.

These studies were performed using the SLHCv3.1b [68] optics with crab

cavities. From the available magnet errors only the arc dipole and arc quadrupole

multipole errors were included. Beam one (in a clockwise direction) was studied

at collision, with a beam energy of 7 TeV and with beam crossing at IP1, IP2,

IP8 and IP5. The simulations did not consider beam-beam interaction as this

was known to dominate the dynamic aperture and make it difficult to disentangle

any effects of the crab cavities. Furthermore, beam-beam would have required

longer simulations. The simulations were performed with synchrotron oscillations

using a momentum offset of 3/4 of the bucket half-height, which was chosen

to be consistent with previous calculations and to allow potential sensitivity to

chromatic and synchro-betatron effects [153].

The main focus of these dynamic aperture studies has been on the non-linear

197



transverse kick which is a result of the compact geometry of the cavity designs.

In previous work performed using the RF multipole kick model [156] it was found

that the introduction of a b2 RF multipole component to the transverse kick led

to a tune shift in the horizontal-horizontal crossing case which had a detrimental

effect on the dynamic aperture. This discovery led to a redesign of the QWCAV

to remove the asymmetric geometry introduced by the quarter wave resonator,

leading to a geometry resembling a half wave resonator. This study illustrated the

importance of understanding the non-linear transverse kick of the crab cavities.

In addition to the effect of the non-linear transverse kick there are other areas

of interest regarding the dynamics associated with the crab cavities including:

The linear kick, RF noise related to the power system, beam loading of non op-

erating modes and geometric misalignment in the cryostat. The linear transverse

kick of the crab cavity is studied along with the voltage error using the simple

thin crab cavity model presented in section 4.1. Furthermore using this model an

understanding of the resonance mechanisms caused by the crab cavities is consid-

ered using frequency map analysis. Studies on the impact of RF noise, geometric

misalignments and beam-loading are beyond the scope of these studies.

5.2.1 Impact of the simple thin crab cavity model

The initial dynamic aperture studies used the simple kick model, described by

the transformation in equation 4.26, to consider the impact of the time dependent

dipole kick. The crab cavities were modelled as 3 individual cavities with a sepa-

ration of 2 cavity lengths between each cavity kick. The voltages were calculated

using MADX [114] as described in section 5.1.1. The calculated voltages for the

cavities are shown in table 5.1.

Figure 5.3 shows the dynamic aperture result of applying these voltages to the

crab cavities in the lattice. It shows an insignificant change in the minimum of the
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Cavity voltage (MV)

Left Right

IP1 (Vertical crossing) 4.07233 3.83833
IP5 (Horizontal crossing) 3.81933 4.15500

Table 5.1: Cavity voltages (MV) for the Horizontal-Vertical crossing scheme
for optics SLHCv3.1b beam 1 clockwise direction, based on 3 cavities at each
crabbing location.
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Figure 5.3: Impact of the addition of a closed crab bump on the minimum dy-
namic aperture determined from 60 variants of the lattice.

minimum dynamic aperture, which is at the order of the steps in amplitude, with

an overall maximum difference of less than 0.5σ. While the minimum dynamic

aperture provides a method to determine the worst case boundary of machine

stability it does not indicate the mechanisms leading to any instabilities.

An operational consideration with the crab cavities is the impact of voltage

error. In [157] it is stated that the low level RF systems in the LHC should be

able to control the voltage jitter to within 0.1% of the total voltage. Such voltage

jitter would break the closure of the crab bump, leading to possible head-tail

oscillations of the bunch around the machine. This was studied using the simple
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thin kick model. The case of varying the total voltage of the crab cavities left

of IP1 up to 1% was considered. Figure 5.4 shows the impact of breaking the

crab bump, with voltage error, upon the minimum dynamic aperture. There is

no visible detrimental effect within the anticipated performance of the low level

RF system; with the maximum variation across phase space being less than 0.5σ.
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Figure 5.4: Impact of a voltage error to the cavities left of IP1 on the dynamic
aperture performed using 60 variants of the lattice.

5.2.2 Resonance studies using the simple thin kick model

It was proposed in [158] that non zero dispersion at crab cavities, in a circular

collider, leads to synchro-betatron resonances formed from a closed crab bump,

without the effect of any beam-beam interaction. The arguments made in [158]

are for a simpler case (a singular crab bump which is symmetric such that the

voltages are identical either side of the IP), however it provides a motivation
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Figure 5.5: The dispersion D, and β functions about IP1, with crab cavities
located about 19.83 km and 20.15 km (marked with blue vertical lines), for the
bare lattice.
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to investigate whether or not the closed crab bump leads to synchro-betatron

resonances for the SLHC v3.1b optics. In figure 5.5 the dispersion about IP1

is shown to be non zero at the crab cavity locations. This generated interest

in whether such synchro-betatron resonances formed in these optics as a result

of the crab cavities. For these resonance studies the nominal lattice (without

magnetic errors) was considered, for the cases with and without the crab bump;

the resulting dynamic aperture is shown in figure 5.6.
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Figure 5.6: Impact of the addition of a closed crab bump on the dynamic aperture
performed with an magnet error free lattice.

In order to consider the resonances associated with the lattice it is useful

to consider the chaotic motion they generate. A useful tool when considering

the chaotic motion of a particle is the diffusion rate, which measures the rate

of change in tune. The tunes are calculated from 2000 turns of tracking data

using SUSSIX [159], with a Hanning window filter [160] applied to the BPM data

to increase the sensitivity of the tune measurement [53, 161]. SUSSIX produces

a high precision tune measurement by performing a spectral decomposition of

tracking data [159]. From SUSSIX the transverse and longitudinal tunes, Qx, Qy

and Qs are calculated and averaged over 10 BPMs to reduce any statistical error
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in the tune measurement. The conventional measurement of diffusion rate comes

from the difference in tune measurements arising from the first and second half

of the tracking data,

D = log10

(√
∆Q2

x + ∆Q2
y + ∆Q2

s

N

)
, (5.4)

where N is the number of turns (N = 4000) and ∆Qx,y,s are the change in tune

between the first 2000 and second 2000 turns.

Amplitude maps consider the diffusion rate as a function of the transverse

amplitudes. The amplitude maps in figures 5.7a and 5.7b show the diffusion rates

across the amplitude phase space for the cases with and without crab cavities

respectively. They show very similar features in the distribution of diffusion with

some regions of increased diffusion for amplitudes less than 10σ for the lattice

with crab cavities. In figures 5.7c and 5.7d the region in which the linear difference

resonance is encountered is highlighted i.e. Qx−Qy = 0. This is found by filtering

the amplitude map for cases where |Qx − Qy| < 10−4. The dynamic aperture is

overlaid on these results, and it can be seen that in this region of linear difference

coupling that there is a significant increase in stability compared with the rest

of the phase space. Physically the linear difference coupling resonance is stable

because it leads to an exchange of emittance in the transverse planes which are

constrained such that [32, p. 625],

εx + εy = const. (5.5)

Particles on this resonance can still be lost when other resonances cross the linear

difference resonance, as shown in the tune diagram in figure 2.17. Other reso-

nances lead to beam instability as they do not impose such a constraint on the

emittance [32]. This region of linear coupling at its lower boundary is bounded
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by a fold in frequency space; similar to that shown in figure 2.18 as discussed in

section 2.2.3.
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Figure 5.7: Amplitudes maps with diffusion with dynamic aperture overlaid
(black line) for (a) nominal SLHCv3.1b no errors, (b) nominal SLHCv3.1b no
errors with crab cavities, (c) nominal SLHCv3.1b no errors with transverse linear
coupling highlighted, and (d) nominal SLHCv3.1b no errors with crab cavities
with transverse linear coupling highlighted.

205



Frequency map analysis (FMA) is a numerical tool typically intended for 4D

systems in which betatron resonances are studied (see section 2.2.3) [53]. FMA

considers the chaotic motion of a particle starting at a given point in phase space

in terms of its tune. It has already been shown that amplitude dependent tune

shift can occur in section 2.2.3 and this mechanism leads to the formation of the

frequency map. As the frequency map expands with amplitude, away from the

working point, particles will encounter resonances, some of which will lead to

unbounded motion.

Previous studies [48, 47] for the LHC have only considered 4D motion; thereby

seeking to keep the particle energy constant in tracking. Inclusion of synchrotron

motion and crab cavities requires the technique to be extended to consider a full

6D system, in which the canonical variables z and δ are included. In order to

do this a new time dependent method of the frequency map analysis was de-

veloped. Time is no longer an independent variable in the resulting extended

frequency space. Synchrotron motion will couple with the betatron motion such

that synchro-betatron resonances will occur. This means that the measured be-

tatron tunes will undergo an additional time dependence beyond that associated

with diffusion associated with the synchrotron motion. This means that the fre-

quency map must be time dependent. This technique was developed for this

study, based upon the idea of using a moving time window to calculate the tunes

at different turns. A total of ten BPMs were placed with approximately equal

separation about the machine. The 2000 turn window is shifted by a single turn

and the measurement is then repeated, producing a total of 2000 averaged tune

measurements from a total of 4000 turns of tracking data.

Figure 5.8 shows the frequency map for one instance in time, for the lattice

with crab cavities. In the figure two folded regions are highlighted [48]. In fig-

ure 5.10 it can be observed that these are folds in that they exhibit high levels of
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diffusion with resonances formed either side them. A fold in the frequency map

occurs when the betatron tune no longer increases with transverse amplitude in

either plane, but instead folds in on itself. These folded regions often lead to

unbounded motion [48] and were studied in order to understand the stability

associated with the linear difference resonance observed in figure 5.7d. The re-

gion with the linear difference resonance, shown in figure 5.7, occurs after the

fold shown in the red region. The green fold transitions onto a different set of

resonances.
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Figure 5.8: Regions indicating folds in the frequency map, leading to resonances.
Frequency map with crab cavities taken from turn 1.

In order to determine the nature of a fold a torsion matrix can be found to

describe the type of fold [48], as described in section 2.2.3. This torsion matrix,

for this study, is determined by creating multidimensional interpolations of varia-

tion of Qx and Qy with Jx and Jy using Mathematica [105]. From these functions

the torsion matrix can be directly evaluated for any point in amplitude space.

Furthermore, since the corresponding point is known in frequency space the The

signature of torsion indicates the type of transition the frequency map has with

amplitude at a given point in frequency space and is given by the determinant of
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the torsion matrix. In regions of the frequency map where the signature of torsion

is less than zero the torsion is said to be non-definite. This means that there is

a greater likelihood of unbounded motion through strong resonances [48]. From

the interpolated torsion in amplitude space, given that corresponding frequencies

are known, the sign of torsion as a function of frequency can plotted. Figure 5.9b

shows the signature of torsion over the red fold region seen in figure 5.8. The

transition in torsion and folding with amplitude are shown, exhibiting the prop-

erties of a double fold, as shown in figure 2.19b. Particles beyond the double fold

are less vulnerable to unbounded motion caused by strong resonances compared

with those beyond the single fold. This means that the dynamic aperture in this

region, in which there is a linear difference resonance, is comparatively larger

than that found beyond the other fold (figure 5.13). This then explains the peak

observed in the dynamic aperture found in the region of amplitude space where

linear coupling occurs.

In order to visualise the time dependent frequency map animations were pro-

duced. In figure 5.10 a series of frames from the animated frequency maps are

shown for the two lattices. The frames chosen exhibit fast, turn by turn, changes

in the tune of a point, which in amplitude space lies on the dynamic aperture,

moving from the linear difference resonance to the folded region. There are signif-

icant changes in this region of frequency space in the turn by turn measurements,

for both cases. Over the entire time period the point moves between the linear

difference resonance and other resonances erratically. This motion does not fit

with the traditional diffusion measurement, which would miss such turn by turn

effects. This motion is chaotic and could easily cause issues for the traditional

measurement of diffusion. Such motion has been considered previously in [37]

where it was described as tune wandering, and is associated with particles which

are slowly lost. This observation from a time dependent frequency map approach
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Figure 5.9: (a) Amplitude (J) dependence across tune space in the region of the
fold. (b) Properties of the fold showing transition from definite → non-definite
→ definite torsion with amplitude.
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presents a new method by which to investigate this behaviour. Further inves-

tigation into tune wandering, however, is beyond the scope of this thesis. This

tune wandering behaviour inhibits the use of diffusion as a direct measurement

for dynamic aperture.

In order to investigate how this resonance wandering impacts the dynamic

aperture two variations in the diffusion measurement were considered. The con-

ventional diffusion measurement, as in equation 5.4, is designated D[first-last].

This approach appears to miss any effects that result from variation between

measurements observed in figure 5.10. A second proposed method, designated

D[max-min], uses the maximum and minimum values across the range of mea-

surements, instead of the first and last, to consider the maximum variation in the

tunes.

The amplitude ratio, θ = 36◦, was considered first as it coincides with the peak

of the dynamic aperture in figure 5.6. A study at this ratio was performed plot-

ting the diffusion variation with amplitude for the two diffusion measurements.

The result of this evaluation is shown in figures 5.11a and 5.11b for the lattice

without and with crab cavities respectively. Firstly, comparing the two lattices

it is apparent that there is an increased diffusive peak at 12σ in the presence of

crab cavities. Furthermore, the D[max-min] peak on the fold is reduced in the

presence of crab cavities. These differences do suggest that the crab cavities do

impact the non-linear dynamics of the lattice, however, these observations are at

amplitudes well below the dynamic aperture of the this error free lattice. This

does not rule out seeing an effect with increased errors in the lattice.

Comparing the two diffusion measurements in figures 5.11a and 5.11b, the

greatest difference can be seen in the peak around 21σ. At this peak there is a

strong disagreement between the D[max-min] and D[first-last] values. This dif-

ference arises from the increased sensitivity of the D[max-min] measurement to
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chaotic motion in the region with non-definite torsion. The D[max-min] measure-

ment does not appear to reveal new peaks in diffusivity. However, it does amplify

the diffusion between resonances. Furthermore it can be seen that the dynamic

aperture does not correlate with the first strong diffusive peak, at the amplitude

at which the frequency map folds. This result is in agreement with the signature

of torsion study which suggested that the stability arose from the frequency map

transitioning from a double fold onto the linear difference resonance.
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Figure 5.11: The variation in diffusion with amplitude at 36◦. Transition to
linear difference resonance (black, dashed vertical line), dynamic aperture (black,
dotted vertical line) and diffusion cut off (red, dashed horizontal line). Nominal
SLHCv3.1b no errors.

In contrast, a ratio of 72◦ was chosen because the amplitude at which the
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Figure 5.12: The variation in diffusion with amplitude at 72◦. Transition to
linear difference resonance (black, dashed vertical line), dynamic aperture (black,
dotted vertical line) and diffusion cut off (red, dashed horizontal line). Nominal
SLHCv3.1b no errors.
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dynamic aperture occurs does not correspond to a folded region. The results

of this ratio can be seen in figures 5.12a and 5.12b, showing a similar pattern

of peaks caused by resonances. However, for this case the dynamic aperture

coincides with a diffusive peak indicating that the corresponding resonance leads

to the unbounded motion that defines the dynamic aperture at this ratio.

In figures 5.12a and 5.12b the resonance peak crosses a boundary of

D[first-last] > −6 for the first time with increasing amplitude at the location

of the dynamic aperture. For the 36◦ cases the dynamic aperture is at a point

at which the diffusion measurement is much lower than this diffusion boundary,

suggesting that for this angular case there is no correlation between diffusion and

dynamic aperture. In previous studies [47] it was observed that there was some

relation between dynamic aperture and diffusion. This study suggests that this

relationship is only true in regions of amplitude space in which the frequency

space has not folded.

To further investigate the relationship between diffusion and dynamic aperture

a diffusive aperture is defined by the point at which the diffusion first exceeds −6.

This value was chosen from figures 5.12a and 5.12b by the point at which the dy-

namic aperture crosses the diffusion with amplitude line. Figure 5.13 shows the

amplitude diffusion map for the regions beyond the two folds. The diffusive aper-

ture, defined by the two diffusion measurements, and the dynamic aperture are

overlaid. The D[max-min] defined diffusive aperture exhibits greater deviation

from the dynamic aperture as it is more sensitive to the chaotic motion exhibited

between the two folds of the double fold. This correlates with the large amount

of resonance wandering exhibited in this region of phase space. The D[first-last]

defined diffusive aperture has a closer agreement with the dynamic aperture as it

is less sensitive to the resonance wandering that occurs between the folds of the
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double fold. However, it is apparent that these two diffusive aperture measure-

ments do not serve as a replacement for the dynamic aperture.

This frequency map study shows a new method to consider a 6D system. This

study has shown increased diffusion resulting from the crab cavities at amplitudes

well below that of the dynamic aperture of the error free nominal lattice. While

these differences do not show visible impact on the dynamic aperture of the error

free lattice they do not rule out an effect being observed in future lattice models

with magnet errors. Further insight has been made into the dynamics of the

SLHCv3.1b lattice. Through the time dependent map the process of resonance

wandering has been observed. Using a single frame of the animated frequency map

enabled the study of the nature of the folded regions and has shown that there is a

double folded region which transitions onto the linear difference resonance which

leads to a peak in the dynamic aperture. Furthermore, through this study it has

been shown that tune shift is not a direct measurement of machine stability and

that its relationship to dynamic aperture is dependent on the presence of folds in

the frequency map.

5.2.3 Impact of the transverse dependence in the cavity

model

Section 4.3 showed that the RF multipole kick model changed the kicks by ap-

proximately 1% of the total kick from that of the simple kick model at x = 20 mm.

In figure 5.3 it was shown that the crab bump caused a small variation in the

dynamic aperture, with no significant drop in the minimum of the minimum dy-

namic aperture. Studying the dynamic aperture with the RF multipoles kick

model generates an understanding of the importance of the x and y dependence

on px and py. Considering the 2012 cavity designs, in figure 5.14, the variation

in the RF multipole values between the cavity designs leads to a small variation
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Figure 5.13: Variation in D[first-last] across regions on and beyond folds, with
diffusive aperture and dynamic aperture overlaid. (a) Nominal SLHCv3.1b no
errors, and (b) nominal SLHCv3.1b no errors with crab cavities.
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Figure 5.14: Minimum dynamic aperture for 2012 designs with RF multipoles,
coefficients calculated using PW @ 20 mm (Up to b5), and crab bump performed
using 60 variants of arc magnet errors. H-V crossing.

in the minimum dynamic aperture. These cavity designs all have two transverse

planes of symmetry and hence only the b1, b3 and b5 components were consid-

ered. The additional variation in minimum dynamic aperture brought about by

the transverse spatial dependence of the kick is of a similar order of magnitude to

that introduced by the crab cavity bump in terms of its impact on the minimum

dynamic aperture. It can be seen that the variation in dynamic aperture across

the phase space is a maximum of 0.5σ between the different designs.

From the symplectic error studies in section 3.4 no methods were shown to

imply the impact of symplectic error on the dynamic aperture calculation. In

figure 5.15 the use of 200 and 500 coefficient reduced coefficient maps (RCM) are

presented showing that there is a maximum deviation of 0.34σ. This maximum

deviation occurs in the region of phase space at which the dynamic aperture lies

on a fold. This region exhibits particularly chaotic motion, from figure 5.13b,

and appears particularly sensitive to symplectic error.

In Fig. 5.16 the dynamic aperture is presented for four different cavity models.
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aperture after 105 turns. Comparing the 500 coefficient Taylor map with the RF
multipole kick model (using multipoles calculated using the Helmholtz and PW
decompositions), and the simple kick model.
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The Taylor map used was a RCM with 500 coefficients per series, this is com-

pared with three different thin lens models: The simple kick model considers only

the kick from b1, the RF multipole kick model from HD multipoles (RFM-HD)

and RF multipole kick model from PW multipoles (RFM-PW). Comparing the

difference between the Taylor map and RFM-HD there is a maximum difference

of 0.4 σ. This difference arises from a combination of symplectic error and ad-

ditional dynamics as observed in Tab. 4.4. The largest difference occurs at 22.5◦

which correlates with the maximum difference observed in figure 5.15 resulting

from sensitivity of the dynamic aperture to the fold. By contrast comparing the

simple kick model with the Taylor map there is a maximum difference of 0.8 σ.

Even though symplectic error is present this indicates that the RFM-HD is a

closer approximation to the dynamics of the cavity relevant to the HL-LHC than

the simple kick model. The contributions to the difference between these models

from symplectic error and additional dynamics, however, are unknown. Further-

more there is a maximum difference between the RFM-PW and RFM-HD models

of 0.4 σ. This suggests that the sensitivity to additional dynamics and symplectic

error is similar to that of the sensitivity to the multipole calculation. This would

indicate that the RF multipole kick model gives a good approximation to the crab

cavity dynamics relevant to the HL-LHC given the tolerances in the calculation

of the multipole coefficients.

5.3 Conclusion

In this chapter the impact of the crab cavities on the HL-LHC dynamic aperture

has been studied. These studies were performed using the kick code SixTrack. An

initial study was performed to investigate the impact of the simple kick model

on the dynamic aperture in which it was seen to vary the minimum dynamic

aperture across phase space by up to 0.5σ. Furthermore, it was shown that
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within the range of the voltage jitter from the low level RF system the minimum

dynamic aperture variation remained within 0.5σ.

A study was performed to investigate any resonances associated with crab

cavities. A small change in the diffusion variation with amplitude was observed,

however, this had no direct consequence on the dynamic aperture for the case

considered as it occurred at an amplitude well below that of the dynamic aperture.

There were no visible additional resonances in the frequency map resulting from

crab cavities suggesting that for the nominal lattice no additional loss mechanisms

were introduced. This indicates why the impact of crab cavities on the dynamic

aperture is so small. Investigating the optics with a new 6D frequency map

technique showed the presence of resonance wandering occurring in a double

folded region. It was also shown that the peak in the dynamic aperture arose from

the stability of this double folded region’s transition on to the linear difference

resonance.

The transverse spatially dependent kicks from the different crab cavity de-

signs were shown to have an effect of less than 1σ across the distribution of

the minimum dynamic aperture. Taylor maps have been successfully applied in

the calculation of dynamic aperture and have been used to show that the RF

multipole description is a significant improvement to the simple kick model in de-

scribing the crab cavity dynamics relevant to the HL-LHC. The uncertainty from

symplectic error and additional dynamics has not prevented the Taylor maps from

indicating the relevance of the additional terms contained in the RF multipole

kick model, compared with those of the simple kick model. However, there is

some ambiguity over whether the difference between the models is dominated by

symplectic error or additional dynamics. The difference between two different

RF multipole calculations, arising from the sensitivity to errors from the finite

element solver, led to a variation in the dynamic aperture of up to 0.4σ. This
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difference is the largest uncertainty in the model for a specific cavity design with

respect to its impact on the dynamic aperture.
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Chapter 6

Developing an inner triplet fringe

field model for the HL-LHC

In this chapter the second question posed in chapter 1 into whether the fringe

fields of the inner triplet magnets cause significant variation in the stability of

the current model of the HL-LHC is considered. From the tools used to develop

models for crab cavities in chapters 3 and 4, models of the fringe fields of the Inner

Triplet (IT) quadrupole magnets about IP1 and IP5 can also be developed. Fringe

fields are a feature of an accelerator magnet resulting from the end windings and

transition to a field free region. Typically the longitudinal fall off of a magnetic

field in the fringe field region can be described using an Enge function [162, 133].

However, this is not the complete picture. As with the models developed for

the crab cavity the fringe field models must fit within a kick code model of the

HL-LHC.

In this chapter, in section 6.1 the need for a fringe field model is motivated.

In section 6.2 a model for the fringe fields which fits into the current HL-LHC

model is proposed and its limitations studied. Finally, in section 6.3 a first

dynamic aperture with a fringe field model is performed.
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6.1 Motivation

The ATS optics scheme, described in section 2.3.2, requires large aperture

quadrupole magnets for the final focussing IT in IR1 and IR5. A large aper-

ture of 150 mm is required to enable a large crossing angle of 300 µrad [163] in

order to reduce the effect of beam-beam interaction, as discussed in section 2.3.

Figure 6.1: Hard edge magnet model; Real magnet field (red) and hard edge
model (black).

In the kick code model of the HL-LHC a hard edge magnet model is used

to describe the longitudinal distribution of the magnetic fields, as shown in fig-

ure 6.1. A physical motivation for considering a fringe field model arises when

the assumptions used in the derivation of this hard edge model fail. Maxwell’s

equations for a magnetic field in a current and electric field free region are given

by,

∇× ~B = 0, (6.1)

∇ · ~B = 0. (6.2)

Expressing equation 6.1 in terms of the vector potential A leads to,

∇× ~B = ∇×∇× ~A

= ∇(∇ · ~A)−∇2 ~A

= −∇2 ~A. (6.3)
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In section 4.1 it was shown that in the axial and rigid bunch approximations the

kick Hamiltonian is described by the normalised longitudinal component of the

vector potential az. Applying the axial approximation, which assumes x and y

are constant with time,

dx

dt
= vx = 0,

dy

dt
= vy = 0, (6.4)

to the Lorentz force,

~F⊥ =
(
e0~v × ~B

)
⊥

= −vzByx̂+ vzBxŷ, (6.5)

means that Bz is neglected; therefore, ax and ay can also be neglected. From

equation 6.3, the normalised longitudinal component of the vector potential is

given by the solution to,

∇2az(x, y, s) ≡
∂2az
∂x2

+
∂2az
∂y2

+
∂2az
∂s2

= 0. (6.6)

The hard edge limit assumes that the magnetic field is constant in longitudinal

position s which leads to,

∇2az(x, y) ≡ ∂2az
∂x2

+
∂2az
∂y2

= 0. (6.7)

From the vector potential the transverse magnetic fields are given by,

~B⊥ =
e0

p0

∇× az, (6.8)
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so that,

p0

e0

Bx =
∂az
∂y

p0

e0

By = −∂az
∂x

. (6.9)

Substituting equation 6.9 into equation 6.7 results in,

− ∂By

∂x
+
∂Bx

∂y
= 0. (6.10)

The conventional notation for the solution of equation 6.10 is given by [31],

By + iBx = B0

∞∑
n=1

(bn + ian)

(
x+ iy

R0

)n−1

, (6.11)

where B0 and R0 are a reference field strength and reference radius, and bn

and an are the normal and skew multipole coefficients. Further discussion of

these multipoles can be found in section 2.2.1. These approximations no longer

hold in a fringe field in which the transverse magnetic field varies longitudinally.

Furthermore, in this fringe field region it is possible that Bz cannot be neglected

as a Bz field must exist at the boundary to the field free region [164, 154]. This

gives physical motivation to study the impact of the fringe fields.

The HL-LHC inner triplet magnets (MQXF) have apertures of 150 mm, as

shown in figure 6.2, and at collision the β-functions are increased to around

20 km. In the nominal machine the equivalent magnets (MQXA) have an aper-

ture of 70 mm and β-functions at collision of around 4 km. In studies of the

fringe fields of these MQXA magnets [95] significant tune variation and increased

amplitude dependent tune shift were observed in simulation. It was observed that

the horizontal tune shifted by 2% and that there was a ten-fold increase in the

ε2
x dependence of Qx [95]1. Furthermore, in studies performed on the LHC there

is non-linear coupling which remains unaccounted for in the current model, with

1εx in this case refers to the single particle emittance.
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Figure 6.2: Cross-section of inner triplet magnet (MQXF) design for HL-LHC
with aperture of 150 mm and gradient 140 T/m [165].

fringe fields a candidate for explaining this [166]. Comparing the HL-LHC case

with the studied nominal LHC [95], the MQXF magnets have considerably larger

fields, the lattice has greater β-functions and there is increased sensitivity to the

fringe fields generated by the phase advances required for the ATS scheme [154].

In summary, the hard edge model is independent of s which means that it

neglects any effects present in a real magnet at the boundary with the field free

region. Furthermore, previous studies of the inner triplet fringe fields in the

nominal LHC observed significant increase in tune shift with amplitude [95]. The

effect of the fringe fields is anticipated to be worse for the HL-LHC than the

nominal LHC so it was considered important to investigate the effects of these

fringe fields. From the tools used to develop and study the crab cavity models

a model is sought to study the impact of fringe fields of the IT magnets on the

stability of the HL-LHC lattice.
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(b)

(a)

Figure 6.3: Separation options of magnet fringe fields. Real transverse magnetic
field (red), region covered by hard edge model (grey), and region covered by fringe
field model (blue).

.

6.2 Modelling the inner triplet fringe field

The first technical requirement imposed on the model of the fringe field is that

it is an isolated mathematical representation which is separate from the core of

the magnet (region over which the magnetic field is constant in s), which remains

described by a hard edge model. This isolation is required in order to prevent

disruption to the current matching and correction routines. Two choices are

available in this separation of fringe fields from the central magnet and are shown

in figure 6.3. Option (a) keeps the hard edge model as already implemented for

previous LHC studies and any additional beam dynamic effects from the fringe

fields are lumped onto the end of the hard edge model. However, this approach

ignores any variation in the quadrupole component of the transverse field as the

whole of the quadrupole field is contained within the hard edge description. Op-

tion (b) reduces the length of the hard edge model to only include the physically

flat region of the quadrupole component. This allows the whole of the fringe field

to be considered in the model, including the variation in the quadrupole compo-

nent. Option (b) would appear to be the best option in terms of inclusion of all
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properties of the fringe fields because it allows for the inclusion of the variation

of the quadrupole component of the field.

A second technical requirement imposed on the model is that it must work

with the current magnet error definition [31]. This is defined by the hard edge

magnet of option (a) from the summed multipole errors which are calculated

using a 2D2 finite element solver. The multipole errors are calculated on a model

assuming a magnet of infinite length. This means that any additional multipole

errors associated with the fringe fields are neglected. This means only option

(a) can be considered with the multipole errors from the fringe fields and any

additional dynamics to be lumped on to the ends. These technical restraints

neglect any effect from the variation in quadrupole field which will alter the β-

function and phase advance, as seen previously [167]. In [167] it was observed

for the SLHCv3.1b optics that there was a beta-beat of up to 11% generated by

the longitudinal variation in the quadrupole field compared with that of the hard

edge model.

From the crab cavity studies, in chapters 3 and 4, four possible approaches

were considered when developing a new model.

1. Simple kick model: This model is computed from a split Hamiltonian

representation which leads to a symplectic approach. The model is inde-

pendent of the element design and arises from physical considerations. An

example of this for fringe fields is the leading order model developed in [164].

2. Parameterised kick model: This model is computed from a split Hamil-

tonian representation which leads to a symplectic model. This model would

make greater consideration of the details of a specific design. Similarly to

the generalised RF multipole kick model in section 4.1.3, which was devel-

oped from [119], a model might be generated for the fringe fields from [123].

2In the x-y plane.
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3. Numerical integration: Integration of a real field map using a symplectic

integration scheme; e.g. the WFR integrator [107]. However, this approach

is computationally very slow for long term tracking.

4. Single element Taylor map models: Integration of a real field map

using a symplectic integration scheme such as the WFR integrator [107].

To increase the speed of this approach a Taylor map is produced rather than

direct numerical integration. However, this approach leads to symplectic

errors. An approach to avoid these symplectic errors using mixed variable

generating functions was proposed in [96], however, it is anticipated such

approaches would be computationally too slow for long term tracking.

Modelling the fringe fields with option (3), Taylor maps, or (4), numerical

integration, could allow the inclusion of the full dynamics resulting from all

components of the magnetic field. However, from the technical constraints, the

quadrupole component of the field must be removed from the magnetic field of

the fringe field as it is already contained in the hard edge model. This means that

any effects arising from the path through fringe field would be incorrect due to

the absence of the quadrupole field component. For this reason options (3) and

(4) are ruled out. This leaves options (1) and (2), which are both kick models.

There are two physical effects generated in a fringe field which differ from

those of the hard edge model: the impact of the longitudinal component of the

magnetic field generated at the boundary to the field free region, and the ad-

ditional transverse magnetic field components resulting from the Laplace equa-

tion in three rather than two dimensions. In order to make use of pre-existing

work [123, 154, 164] and to keep the two physical effects separate a fringe field

model composed of two components was considered. Removal of the b2 multi-

pole component from the transverse fields means that any simulated trajectory
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through the fringe field will be incorrect. Therefore, the impact of changes in mo-

mentum from the magnetic field on the trajectory can no longer be considered on

a particle as it passes through the fringe field model. The paraxial approximation

of the accelerator Hamiltonian from equation 2.144 is given by,

H =−
(

1

β0

+ δ

)
+

1

2β2
0γ

2
0

(
1

β0

+ δ

)−1

+
δ

β0

+
(px − ax)2

2
(

1
β0

+ δ
) +

(py − ay)2

2
(

1
β0

+ δ
)

− az + ps. (6.12)

This can be split such that,

Hdrift =−
(

1

β0

+ δ

)
+

1

2β2
0γ

2
0

(
1

β0

+ δ

)−1

+
δ

β0

+
p2
x + p2

y

2
(

1
β0

+ δ
) + ps (6.13)

Htransverse =− az (6.14)

Hlongitudinal =
(px − ax)2 − p2

x

2
(

1
β0

+ δ
) +

(py − ay)2 − p2
y

2
(

1
β0

+ δ
) (6.15)

From this splitting a first order symplectic map can be formed to describe the

fringe field; at the entrance face to a magnet this is given by,

Mentrance = e:Hdrift:e:Htransverse:e:Hlongitudinal:, (6.16)

at the exit face this is given by,

Mexit = e:Hlongitudinal:e:Htransverse:e:Hdrift:. (6.17)

In this splitting, from the paraxial approximation, two separate models can be

considered to describe the dynamics of the transverse and longitudinal compo-

nents of the magnetic fields.
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6.2.1 Modelling the transverse magnetic fields

The fringe field model component to describe the transverse magnetic fields starts

from the work in [123, 124]. A field fitting was performed, in a similar manner

to that of the crab cavities, of the fringe fields of the inner triplet magnets, by

Dalena et al. [123, 124, 168]. The resulting fitted fields were provided by Dalena

in the form of a power series in x and y up to a total order of 20, as a function of s

with the corresponding raw field data from which the field fitting was performed.

The aim of this model component is to take this field fitting and develop a

kick model which uses a physically correct description of the dynamics resulting

from the transverse magnetic fields.

The fitting method used is shown in [123]. The method starts by assuming

fields inside the magnet are in a current free region, hence the magnetic field ~B

can be described by a scalar function ψ. From Maxwell’s equations, ~B is also

divergence free hence the scalar potential must obey the Laplace equation,

∇2Az = 0, (6.18)

as shown in equation 6.3. In cylindrical coordinates the general solution to the

Laplace equation is given by [123],

ψ(ρ, φ, s) =
∞∑
n=0

∫ ∞
−∞

dk In(kρ)eiks [Gn,s(k) sin(nφ) +Gn,c(k) cos(nφ)] . (6.19)

where Gn,s(k) and Gn,c(k) are the normal and skew harmonic functions to be

defined and In is a modified Bessel function. By the same convention as chapter 3

the index n is the azimuthal index and m is the radial index. Using the Taylor

expansion of In the scalar function ψ can be expressed in the form of a multipole
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expansion,

ψ(ρ, φ, s) =
∞∑
n=0

[ψn,s(ρ, s) sin(nφ) + ψ(n, c) cos(nφ)] (6.20)

where ψn,(s,c) are defined,

ψn,s(ρ, s) =
∞∑
m=0

(−1)mn!

22mm!(n+m)!
C [2m]
n,s (s)ρ2m+n, (6.21)

ψn,c(ρ, s) =
∞∑
m=0

(−1)mn!

22mm!(n+m)!
C [2m]
n,c (s)ρ2m+n. (6.22)

The functions C
[m]
n,s (s) and C

[m]
n,c (s) are the normal and skew generalised gradients

defined [123],

C [m]
n,s (s) =

im

2nn!

∫ ∞
−∞

dk eikskn+mGm,s, (6.23)

C [m]
n,c (s) =

im

2nn!

∫ ∞
−∞

dk eikskn+mGm,c. (6.24)

In Cartesian coordinates, using the transformations in equation 3.32, the scalar

function in terms of the generalised gradients is,

ψ(x, y, s) =
∞∑
m=0

∞∑
n=0

(−1)mn! (x2 + y2)
m

22mm!(m+ n)!

[
C [2m]
n,s (s)={(x+ iy)n}

+C [2m]
n,c (s)<{(x+ iy)n}

]
. (6.25)

To find an expression in terms of the vector potential ~A a solution must be found

from the equation ∇× ~A = ∇ψ. The expression for Az is given by [123],

Az(x, y, s) =
∞∑
m=0

∞∑
n=0

(−1)mn! (x2 + y2)
m

22mm!(m+ n)!

[
C [2m]
n,c (s)={(x+ iy)n}

−C [2m]
n,s (s)<{(x+ iy)n}

]
. (6.26)

232



The generalised gradients were calculated from the radial component of the mag-

netic field Bρ at a given radius R such that [123],

C
[m]
n,(c,s)(s) =

im

2nn!

∫ ∞
−∞

dk eikskn+m−1 b̃n,(c,s)(R, k)

I ′n(kR)
, (6.27)

b̃n,s =
1

2π2

∫ 2π

0

dφ sin(nφ)

∫ ∞
−∞

ds e−iksBρ(R, φ, s), (6.28)

b̃n,c =
1

2π2

∫ 2π

0

dφ cos(nφ)

∫ ∞
−∞

ds e−iksBρ(R, φ, s). (6.29)

From the fitting data provided the radial terms of C
[m]
2,s are shown in figure 6.4.

One property of the generalised gradients is that,

C
[m]
n,(c,s)(s) = dmC

[0]
n,(c,s)(s)/ds

m, (6.30)

which means that in a region where the generalised gradients are constant with s

all generalised gradients for m > 0 will be zero. This can be seen in figure 6.4

where terms with m > 0 go to zero at the boundaries of the fringe field. In

figure 6.4b C
[2]
2,s is calculated both from the field fitting and from equation 6.30

using an interpolation function of C
[0]
2,s created in Mathematica [105]. It was

found that this approach of only using the fitted C
[0]
2,s to calculate C

[2]
2,s provides a

reasonable agreement with the fitting result. However, it could be conceived that

an Enge function be fitted to C
[0]
2,s in order to determine the generalised gradients

for m > 0 as a cross check of the fitting.

The results from the field fitting are shown in figure 6.5. It can be seen that

at a radius of 50 mm there is a peak error in the transverse fields of order 0.3%

of the Bx value found at the exit face of the magnet core. Furthermore, there is a

peak error in the longitudinal field component of order 1%. These errors are very

high considering that in [123] a peak error of 2×10−3% was achieved. This would

suggest that this field fitting could be further improved. From the experience of
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Figure 6.4: Generalised gradients of the fitted fringe fields, normalised to the
magnet strength of MQXC.1R1, (a) C

[0]
2,s, (b) C

[2]
2,s, (c) C

[4]
2,s, and (d) C

[6]
2,s.
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fitting the crab cavities in section 4.2 and the discussions in [123] it is possible

that some of this error arises from the Cartesian mesh used to output the fields

from the Eigenmode solver, which could be improved by going to a cylindrical

mesh similar to that seen in figure 4.2. Furthermore, it is possible that in the

provided fitting too lower truncation occurred of the generalised gradients, which

could be improved by including generalised gradients of increased m and n.
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Figure 6.5: Results of the field fitting of fringe fields normalised to the magnet
strength of MQXC.1R1 evaluated at φ = 45◦ and ρ = 50 mm [168]. s is the
distance from the exit face of the magnet core. (a,c,e) Fitted fields compared
with original fields from field data. (b,d,e) Residuals of the field fitting at this
point in phase space.
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Analogously to the generalised RF multipole kick model (equation 4.50) such

a model can be formulated for magnets whose fields vary longitudinally. From

the generalised gradients, generalised multipole coefficients are defined,

bn,m =<
{

(−1)mn!

22mm!(n+m)!

∫ L

0

C [2m]
n,s (s) ds

}
, (6.31)

an,m =<
{

(−1)mn!

22mm!(n+m)!

∫ L

0

C [2m]
n,c (s) ds

}
. (6.32)

A consequence of equation 6.30 is that for m > 0 the sign of the multipole

coefficient will change at the exit face of the magnet, compared to the entrance

face. From equation 6.26 a kick Hamiltonian can be written to describe the

transverse magnetic fields in the fringe field region,

Htransverse =− q

p0

∫ L

0

Az ds

=− q

p0

∞∑
m=0

∞∑
n=0

(
x2 + y2

)m
[an,m={(x+ ıy)n} − bn,m<{(x+ ıy)n}] .

(6.33)

From Hamilton’s equations the symplectic momentum kicks are given by,

px 7→px

+
q

p0

∞∑
m=0

∞∑
n=0

(
2
m

n
x
(
x2 + y2

)m−1
[={(x+ ıy)n} an,m −<{(x+ ıy)n} bn,m]

+
(
x2 + y2

)l [={(x+ ıy)n−1} an,m −<{(x+ ıy)n−1} bn,m]) (6.34)

py 7→py

+
q

p0

∞∑
m=0

∞∑
n=0

(
2
m

n
y
(
x2 + y2

)m−1
[={(x+ ıy)n} an,m −<{(x+ ıy)n} bn,m]

+
(
x2 + y2

)l [<{(x+ ıy)n−1} an,m −={(x+ ıy)n−1} bn,m]) (6.35)

δ 7→δ. (6.36)
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The generalised multipoles are related to the integrated regular multipoles from

equation 6.11 by,

bn,0 =
B0

nR0
n−1

∫ L

0

bn(s) ds an,0 =
B0

nR0
n−1

∫ L

0

an(s) ds. (6.37)

The physical radius of the dynamic aperture in the region of the inner triplet

magnets, for a minimum dynamic aperture of 12σ and β-function of 18 km, is

approximately 37 mm. In table 6.1 the higher order radial index terms of b2,m

are shown at the entrance face of the magnet. They indicate that the largest

coefficient b2,1 is approximately 10−5% of the total kick at 37 mm, by contrast

the b4,0 is 4%. This suggests that the multipole terms will dominate the additional

dynamics at the dynamic aperture resulting from the transverse magnetic fields

found in the fringe fields. Furthermore, given that at the exit face the multipoles

with m > 0 will have the opposite sign their total kick will be dependent on the

change in x and y over the length of the magnet only. Moreover, the multipoles

with m = 0 do not change their sign at the exit face and will be dependent on

x and y for both faces of the magnet, hence the kick from the multipoles with

m = 0 will be considerably larger.

Multipole value Scaled value [10−4]

b2,0 22.0987 1.00× 10+4

b2,1 0.0036 1.44× 10−3

b2,2 1.7024 6.18× 10−4

b2,3 118.6619 3.87× 10−5

b4,0 274.8540 3.69× 10+2

Table 6.1: Generalised integrated multipole coefficients of the inner triplet fringe
field at the entrance face. Coefficients in units of Tm2−n−2m for bn,m, normalised
to the magnet strength of MQXC.1R1. Where the scaled value is given by
(bn,m/b2,0)× (37 mm)n+2m−2

In summary, this section presents a proposed extension of the multipole model
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to describe the additional transverse field components present in an s dependent

field. A consideration has been made for the fringe fields of a prototype MQXF

design showing that the kicks will be dominated by the “standard” multipoles

with b4 having a kick over 105 times greater than that of b2,1 in the vicinity of the

dynamic aperture with the kicks for the multipoles with m > 0 almost cancelling

at the exit face of the magnet.

6.2.2 Modelling the longitudinal magnetic fields

In the hard edge model the magnetic fields described by equation 6.11 are known

to not obey Maxwell’s equations at the boundary with the field free region. By

computing the vector potential needed to satisfy Maxwell’s equations at this

boundary it is possible to attain a Hamiltonian expression for the fringe field

effect from the longitudinal magnetic fields. This has been derived previously

in [164, 154]. The derivation makes use of the property given in equation 6.30

taking the generalised gradients in the limit of a step function. The leading

order model is defined from the vector potential expressed with terms up to

the second derivative of the generalised gradient functions. This Hamiltonian is

integrated in the thin lens limit to find the Hamiltonian describing the effect of the

longitudinal magnetic field component. Using the conventions of equation 6.11,

the transformation M across the boundary between the field free region and

hard edge model for a skew and normal quadrupole fringe field is given by the

Lie transformation [164],

M = e:Hlongitudinal:,

Hlongitudinal =
qB0

p0

(
1
β0

+ δ
)
R0

[
b2

12

(
3x2ypy − 3y2xpx + y3py − x3px

)
+
a2

6

(
x3py + y3px

)]
, (6.38)
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where the Lie transformation is defined in equation 2.149. Expanding equa-

tion 6.15 to first order in ~a results in,

Hlongitudinal ≈ −
axpx + aypy(

1
β0

+ δ
) . (6.39)

Comparing this result with equation 6.38 leads to expressions for the vector po-

tential corresponding to the Bz field component described in the leading order

model;

ax =
qB0b2

12p0R0

(
3xy2 + x3

)
, (6.40)

ay = − qB0b2

12p0R0

(
3x2y + y3

)
. (6.41)

The normal part of Hlongitudinal is not easy to evaluate due to it containing mixed

terms (e.g. x3px) which require a significant amount of manipulation in order

to reach a form in which the Lie transformation rule in equation 2.151 can be

applied. However, the skew component can be directly evaluated with Hamilton’s

equations in a symplectic manner. Just considering the skew term of Hlongitudinal

the map M can be factorised [164],

M = e:Hlongitudinal: = exp

: α
x3py(
1
β0

+ δ
) :

 exp

: α
y3px(
1
β0

+ δ
) :

+O(α2),

(6.42)

where the normalisation constant α is defined,

α =
qB0a2

6p0R0

. (6.43)
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The constant term α can also be defined in terms of k0 [164] such that,

α ≡ k0

6
. (6.44)

Applying these Lie transformations leads to the following maps of the leading

order model which describes the effect of the longitudinal component of the mag-

netic field at the entrance face to the magnet,

exp

: α
y3px(
1
β0

+ δ
) :

x = x− αy3(
1
β0

+ δ
) , (6.45)

exp

: α
y3px(
1
β0

+ δ
) :

 py = py +
3αy2px(

1
β0

+ δ
) , (6.46)

exp

: α
y3px(
1
β0

+ δ
) :

 z = z +
αy3px(
1
β0

+ δ
)2 , (6.47)

exp

: α
x3py(
1
β0

+ δ
) :

 y = y − αx3(
1
β0

+ δ
) , (6.48)

exp

: α
x3py(
1
β0

+ δ
) :

 px = px +
3αx2py(

1
β0

+ δ
) , (6.49)

exp

: α
x3py(
1
β0

+ δ
) :

 z = z +
αx3py(
1
β0

+ δ
)2 . (6.50)

For the exit face of the magnet the sign of the normalisation factor α changes

such that α→ −α. However, this map only applies the fringe field component of

the skew quadrupole. In order to apply the normal fringe field, the beam is first

rotated −45◦ to effectively rotate the fringe field by 45◦, the fringe field map is

then applied and the beam rotated back 45◦ to its original orientation to complete
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the transformation. This rotation is performed using the map,



x

px

y

py

z

δ


7→



cos(θ) 0 sin(θ) 0 0 0

0 cos(θ) 0 sin(θ) 0 0

− sin(θ) 0 cos(θ) 0 0 0

0 − sin(θ) 0 cos(θ) 0 0

0 0 0 0 1 0

0 0 0 0 0 1





x

px

y

py

z

δ


, (6.51)

where θ is the angle of rotation.
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Figure 6.6: Bz field evaluated at x, y=30 mm, normalised to the magnet strength
of MQXC.1R1. The resulting Bz field from the transverse vector potential terms
Ax[xy

2] and Ay[x
2y] is shown to be a reasonable approximation at this position.

The equivalent position of the hard edge model is overlaid.

To consider the realism of such a model a comparison must be made with

the actual longitudinal component of the magnetic field. Equation 6.38 implies

that the transverse vector potential are dominated by the terms xy2 in Ax and

yx2 in Ay. In figure 6.6 the contribution to the Bz field from these terms using

the generalised gradients which contribute to them is overlaid on the hard edge
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model and Bz field data. It can be seen that these terms dominate the Bz field

component.
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Figure 6.7: Numerical tracking through the Bz component of the fringe field
compared with the leading order model, normalised to the magnet strength of
MQXC.1R1. Initial conditions (x, px, y, py, z, δ) = (0.001 m, 0.0001, y0, 0., 0., 0.).
Comparisons of the change in (a) px, and (b) py. Residuals of these changes for
the change in (c) px, and (d) py.

A direct test of the leading order model of the longitudinal magnetic field is

performed by using direct numerical integration through the longitudinal com-

ponent of the fringe field using the Wu-Forest-Robin integrator [107], shown in

section 2.5.3. Numerically integrating through the Bz field component resulting

from the transverse vector potential does not cause issues relating to comparing

the canonical and mechanical momenta because the Bz field goes to zero at either

end of the fringe field. This provides a direct comparison with the transfer map

from the leading order effect. Figure 6.7 shows that there is reasonable agree-

ment for the variation in px with respect to y with a maximum error of 10−3% at

y = 20 mm. However, at amplitudes greater than 20 mm in y there are orders
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of magnitude difference between the model and integration for the change in py.

This study implies that the leading order model fails beyond a radius of 20 mm.

In summary, a two component model has been shown for the fringe fields

in order to operate with the current hard edge magnet model, which contains

the whole integrated b2 multipole component of the transverse fields. The first

component of the model considers the effect of the Bz field and is contained in

the leading order model [164]. The second component of the model is the fringe

multipole model which makes use of the generalised multipoles in section 6.2.1.

For this second component it is necessary to take into account the total multipole

errors which are not already included by the magnet error table used in the hard

edge model. In addition the generalised multipoles for m > 0 are also included

in this component. A summary of this model is shown in figure 6.8.

Bx,y

Bz

Hard edge model (Bx,y)
including all b2
and magnet table errors

Leading order model (Bz)

Fringe multipole model (Bx,y)
excluding b2
and magnet table errors

Figure 6.8: Summary of the fringe field model for the inner triplet quadrupoles.
Blue indicates the longitudinal magnetic component of the fringe field. Red
indicates the transverse magnetic component of the fringe field. The red solid
box is the hard edge model containing all of the b2 component of the magnet
and the magnet table errors. The red dashed box is fringe multipole model
containing the additional transverse kicks resulting from various multipole errors
and the higher order bn,m multipoles. The blue line is the leading order model
describing the effect of the longitudinal magnetic component.
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6.3 Impact upon the dynamic aperture

The first dynamic aperture study, including a fringe field model, applied the lead-

ing order model [164], described in section 6.2.2, at the entrance and exit faces

of the IT magnets for IR1 and IR5 in the SLHCv3.1b lattice [68]. In addition to

the settings for the dynamic aperture studies described in section 5.1 IT magnets

errors from table v6.6 were also included. This error table contains the multipole

errors for the hard edge core of the magnet resulting from manufacture. For this

study the second component of the fringe field model containing the additional

transverse magnetic components of the fringe field was neglected. Furthermore,

this study was performed without crab cavities and without beam-beam interac-

tion.

Fringe fields included Qx Qy

None 62.31000 60.32000
Inner triplet of IR1 and IR5 62.30941 60.31942

Table 6.2: Tune variation resulting from the addition of the leading order fringe
field model.

In the preliminary implementation of the fringe field model only the leading

order model described in section 6.2.2 was used. This model was implemented

as a new element in SixTrack; in both the one turn map and numerical tracking

sections of the code. The inner triplet magnets in the model are sliced into 16

thin multipole magnets separated by drift spaces. The fringe field elements were

placed before the first multipole slice and after the sixteenth multipole slice for

each of the inner triplet magnets in IR1 and IR5 in the SLHCv3.1b lattice.

The fringe fields were seen to introduce a tune shift of approximately 0.2%

compared to that of the hard edge lattice, as shown in table 6.2. In order to

directly observe the effect of the fringe fields on dynamic aperture, the machine
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working point must be corrected to remove this tune shift. If this correction

were not performed then the dynamic aperture’s dependence on the working

point could not be disentangled from the effect of the fringe fields. A global

correction of the tune was performed using a set of algorithms based upon normal

form techniques in SixTrack [169], using the first set of focusing/ defocusing trim

quadrupole magnets (MQT, see figure 2.23) in the arc between IR3 and IR4.

These particular magnets were chosen to remove the possibility of breaking the

phase advances required by the ATS scheme.

Hard edge only

Leading order fringe field
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Figure 6.9: Impact of the leading order fringe field model applied to the inner
triplet in IR1 and IR5 on minimum dynamic aperture. Model includes arc dipole
and quadrupole errors in addition inner triplet errors.

An initial note about figure 6.9 is that the dynamic aperture for the hard

edge model is significantly lower than those in chapter 5 which is a result of the

addition of the inner triplet errors into the model. Figure 6.9 shows that the

leading order fringe field model leads to a fall in the minimum of the minimum

dynamic aperture of approximately 1.5σ after the global tune correction has been

applied, indicating a significant effect. This is the first such study of dynamic

aperture with fringe fields for any version of the LHC. From figure 6.7 it has

already been shown that this leading order model is limited in its ability to

describe the fields beyond 20 mm. This means that the dynamics from the fringe
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field model are wrong at the location of the dynamic aperture (10σ) which at the

IT magnets is of order 30 mm; where the normalised emittance is 3.75 mm mrad,

β ≈ 20 km and γ0 ≈ 7078.

6.4 Conclusion

A first study of the IT fringe fields reveals the need to consider the transverse fields

as a solution to the Laplace equation in three rather than two dimensions and the

presence of a longitudinal component to the magnetic field. An initial simplified

model for the fringe fields using the multipole components of the transverse field

and the leading order effect from the longitudinal magnetic field was devised. It

was shown that within a radius of 20 mm the leading order fringe field model [164]

was in reasonable agreement with numerical integration. A first dynamic aperture

study using the leading order model [164] was also presented suggesting that the

longitudinal field possibly leads to a 1.5σ drop in the minimum of the minimum

dynamic aperture after a global tune correction. This is the first such study to be

considered for any version of the LHC. However, there is a level of uncertainty on

the reliability of this calculation because the dynamic aperture at the inner triplet

magnets is at 30 mm which means it falls outside of the 20 mm radius over which

the leading order model is valid. In order to overcome this limit additional terms

would be required in the Hamiltonian description, however, this would remove

the simplicity of the transfer map in its leading order form. It can be concluded

that further study of these fringe fields is required in order to both understand

their full effect and find any possible correction schemes to recover the resulting

dynamic aperture loss. In the future, one might consider the fringe field model

described in this chapter to be applied to the nominal LHC model in order to try

to experimentally observe the effects of the fringe fields.
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Chapter 7

Conclusion

The first question devised at the beginning of this thesis was,

“Which components of the crab cavity dynamics are important when

considering the long term stability of the LHC upgrade?”

The context of this question was introduced in chapter 2. In this chapter the

concepts of beam dynamics and luminosity for particle colliders were developed

to show a need for a luminosity upgrade of the LHC (see section 2.2). The

upgraded optics of the ATS scheme enabled a greater squeezing of the beams

at the IP with little change to the nominal LHC optics (see section 2.3.2). In

addition to this optics scheme, a crab cavity crossing scheme was shown to allow

a control of the luminosity (see section 2.4).

In section 2.2.3 it was shown that non-linear components of an accelerator can

lead to chaotic motion and the need to understand and define a machines sta-

ble aperture. In order to study such a stable (or dynamic) aperture, integration

through the lattice of the accelerator is required. It was shown in section 2.5 that

a number of different methods for integration were available. These integration

methods have to balance numerical precision, physical precision and computa-

tional speed. In order to develop a crab cavity model which contained dynamics
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relevant to the LHC it was decided to consider two approaches of development:

Taylor maps and thin models.

In chapter 3, the development of a Taylor map crab cavity model was shown.

A field fitting method was applied to field data created using a finite element

solver of one of the cavity designs. This field fitting approach took the data and

fitted it to an exact solution of the Helmholtz equation. From this fitted field a

vector potential could be found forming a complete analytical Hamiltonian de-

scription of the cavity. Using a truncated power series library and a second order

explicit integrator a Taylor map for the crab cavity was produced. This Taylor

map exhibited a significant number of non-linear features resulting from both the

transverse and longitudinal field variations. It was seen that an underlying issue

of using a Taylor map for long term tracking was its lack of symplecticity.

In chapter 4 a series of symplectic thin models were formed from the general

Hamiltonian developed to produce the Taylor map. In the rigid bunch and axial

approximations the longitudinal field variations were ignored and only the trans-

verse variation modelled. In section 4.1 three different models were introduced

to represent this transverse variation; the simple kick model, RF multipole kick

model and generalised RF multipole kick model. The methods to compute the

multipole values were also derived and demonstrated in section 4.2 from which it

was shown that there was some sensitivity to the method of measurement.

Comparison of the two model approaches was shown in section 4.3. It was

found that, when evaluated at 20 mm, the RF multipole kick model contributed

at the 1% level of the total kick and the additional terms of the generalised RF

multipole kick model contributed at the level of 0.001%. Furthermore it was seen

that to 0.001% there was exact agreement in the momentum kicks between the

Taylor map and RF multipole kick model when calculating the RF multipole

coefficients through the Helmholtz decomposition approach. At this 0.001% level
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it was observed that the dynamics beyond the RF multipole kick model contained

in the Taylor map could not be described by the generalised RF multipole kick

model.

In chapter 5, a series of dynamic aperture studies were performed and it

was shown that under all the different models for the crab cavity the dynamic

aperture was consistent to the case without crab cavities within a tolerance of 1σ.

Through frequency map analysis it was found that no additional loss mechanisms

were introduced by the crab cavities which suggested a reason why this variation

in dynamic aperture was small. The Taylor map was successfully used for the

dynamic aperture study despite the known symplectic error and shown to confirm

an agreement with the RF multipole kick model within 0.4σ across the minimum

dynamic aperture. Furthermore it was shown that the sensitivity to the RF

multipole coefficient calculation was similarly of this order.

In conclusion to the first question, from this study it has been shown that

the use of the RF multipole kick model used to describe the crab cavity dynam-

ics contains the more significant dynamics relevant to the dynamic aperture in

the HL-LHC within a tolerance of 0.4σ. To improve beyond this tolerance im-

provements in the RF multipole calculation would be required. On the scale of

the HL-LHC project this means that the RF multipole model should be applied

for simulations involving crab cavities and that no further model is required. In

terms of wider applications this work provides a tool kit from which to consider

cases where the transverse dynamics of a cavity may play an important role, for

example those arising from higher order modes in accelerating cavities. One such

conceivable project where this might apply is the European Spallation Source

project [170].

The second question posed was,
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“Are fringe fields important when considering the long term stability

of the LHC upgrade?”

In chapter 6 a preliminary study determined a method by which the fringe field

might be modelled within the existing simulation framework. In order for the

model to be symplectic the Hamiltonian was split to give two separate models;

one considering the transverse and the other the longitudinal components of the

magnetic field. It was proposed to model transverse components of the magnetic

field with a kick model similar to that of the generalised RF multipole kick model

based upon the generalised gradient description given in [123]. The longitudi-

nal component was simulated using a leading order model described in [164]. It

was found that this leading order model failed beyond a radius of 20 mm when

compared with numerical integration. A preliminary dynamic aperture study

performed using the leading order approximation applied to the inner triplet

quadrupole magnets in IR1 and IR5 indicated a significant fall of 1.5σ in the

minimum dynamic aperture after a global tune correction. However, there re-

mains some uncertainty on the validity of this result as the dynamic aperture

occurred at a radius of 30 mm inside the inner triplet which is beyond the va-

lidity of the leading order model. After investigating the second question it can

be concluded that further investigation into the impact of fringe fields on the

HL-LHC is required.

In terms of further work to extend and apply these studies two areas of re-

search are considered. The first is to make use of the experience with Taylor

maps and RF cavities and apply them to machines in which the there is high

sensitivity to the transverse kick from a cavity, for example the spoke cavities in

the ESS. The second study is to take the fringe field work and go back to look at

the nominal LHC and attempt to see the contribution of the fringe fields to non-

linear coupling at collision and compare with direct experimental measurements.
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There are also a number of unanswered questions from these studies, including:

1. Can a more complete symplectic cavity model be made to include the ad-

ditional dynamics observed in the Taylor maps?

2. Can an indirect measurement be made of the impact of symplectic measure

on a dynamic aperture measurement?

3. What are the mechanisms and properties associated with particles that

undergo tune wandering?

4. Do fringe fields really matter for the HL-LHC and if so can they be corrected

for in the HL-LHC optics?

In conclusion, this work provides insight into methods by which to consider im-

proving the precision of element descriptions in particle accelerators. A methodol-

ogy for devising models with precise descriptions relevant to the whole accelerator

of new accelerator elements has been presented. It has been shown that the most

precise description of an element is not always the more relevant to the whole

accelerator.
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