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This thesis is concerned with the development of a general numerical framework
that allows the computation of the evolution of non-axisymmetric perturbations to
arbitrary axisymmetric base flows. Both single- and two-phase flows are considered.
This framework is developed within oomph-lib, a finite element library for the simu-
lation of multi-physics problems.

Following the introduction of the core concepts of the finite element method via
the example of a two-phase viscous flow problem in a Cartesian coordinate system, we
begin our discussion of the Navier–Stokes equations in cylindrical polar coordinates
by deriving the finite element formulation of the equations governing an axisymmetric
flow and the conditions to be applied at a free surface. We apply this formulation
to two problems involving the relaxation of a free surface in a cylindrical geometry,
and validate the numerical results against analytical predictions for the frequency and
decay rate obtained from linearised analyses of the respective problems. We then
linearise the weak form of the governing equations for a fully three-dimensional flow
written in terms of a cylindrical polar coordinate system to obtain the finite element
formulation for a linear perturbation to a nonlinear base flow. The solution to the
linear problem depends on the base flow and is periodic in the azimuthal direction.
We exploit this periodicity by performing a Fourier decomposition in the azimuthal
direction, transforming the three-dimensional problem into a series of two-dimensional
problems in which the azimuthal mode number appears as a parameter. We implement
these equations in oomph-lib and apply this newly-developed methodology to two
representative single-phase flow problems. In both cases we demonstrate that our
computations match previously published results generated using different numerical
methods.

Having validated our implementation of the equations governing the perturbation
of a (time-dependent) axisymmetric base flow by a linear, non-axisymmetric distur-
bance, we extend this formulation to include problems containing two immiscible fluids
separated by an interface. We derive the equations which need to be applied at the free
boundary in such a problem, and augment oomph-lib’s existing moving-domain ‘ma-
chinery’ to allow the computation of arbitrary perturbations to a ‘base’ free surface po-
sition, which is itself an unknown in the problem. We validate this methodology for the
case of an axisymmetric disturbance to an axisymmetric base flow, and demonstrate
the use of the newly-developed functionality by applying it to a non-axisymmetric
relaxing interface problem. We demonstrate that, for all stably stratified configura-
tions of this system, all disturbances to the interface position decay. For an unstably
stratified configuration, however, we observe the growth of certain non-axisymmetric
modes.
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Chapter 1

Introduction

1.1 Background and motivation

In many practically important fluid mechanical problems, the domain occupied by the

fluid and the boundary conditions to be satisfied by the flow are such that the problem

admits axisymmetric solutions, i.e. flow fields in which the velocity and the pressure

are independent of the azimuthal coordinate, measured about some symmetry axis.

Probably the best-known example is that of Hagen–Poiseuille flow in a circular cylin-

drical pipe, in which (for sufficiently small flow rates, or Reynolds numbers) the flow is

not only axisymmetric but also unidirectional, with a parabolic axial velocity profile in

which the axial velocity is a function of the radius only. Other fluid mechanical prob-

lems that admit axisymmetric solutions include jets emerging from circular nozzles

[Batchelor and Gill, 1962]; the flow in a cylindrical cavity either above a rotating disk

[Batchelor, 1951] or between two parallel, rotating disks [Zandbergen and Dijkstra,

1987]; and the flow past spheres [Payne and Pell, 1960], to name but a few.

A key question that arises in the study of such flows is the following: what is the

effect of introducing a (small) perturbation1 to these simple solutions? There are three

outcomes: either

(i) the perturbation decays over time, and the flow eventually returns to the state

it was in before it was disturbed, or

(ii) the perturbation grows over time, and the flow gradually evolves away from its

1We will address the issue of precisely what we mean by a ‘small perturbation’ in some detail in
section 1.2.

13



CHAPTER 1. INTRODUCTION 14

initial state, or

(iii) the perturbation neither grows nor decays, and remains at the same amplitude

indefinitely.

Famously, Osborne Reynolds studied this question in the context of Hagen–Poiseuille

flow in 1883 [Reynolds, 1883]. He observed that the steady, unidirectional axisym-

metric flows mentioned above are only observed at sufficiently small flow rates (low

Reynolds number). As the flow rate (or the Reynolds number) is increased, the sim-

ple axisymmetric solution disappears, and the flow becomes increasingly complex and

ultimately fully turbulent [Mullin, 2011].

Similar scenarios arise, e.g., in the flow in an annular region between two con-

centric, rotating cylinders. At low Reynolds numbers this flow (known as ‘circular

Couette flow’) is steady and, in the limit where the cylinders are of infinite length, the

only non-zero velocity component is in the azimuthal direction. In 1923, G .I. Taylor

demonstrated that as the angular velocity of the inner cylinder is increased above a

particular threshold, axisymmetric perturbations to this base flow no longer decay:

instead they give rise to a secondary steady state characterised by toroidal vortices

[Taylor, 1923]. As the angular velocity is increased further still, this flow is eventu-

ally subject to three-dimensional disturbances, causing it to lose its regular spatial

structure.

The same type of instability also arises in boundary layers in flow past a concave

wall, as discovered by Görtler in 1940 [Görtler, 1940]. For boundary layer thicknesses

that are small compared to the radius of curvature of the wall and sufficiently low

flow speeds, a unidirectional flow along the wall is observed. When a critical velocity

is exceeded, however, this simple unidirectional flow (in boundary layer coordinates)

becomes unstable, leading to the formation of so-called ‘Görtler vortices’ [Saric, 1994].

The onset of this instability in the boundary layer is characterised by the ‘Görtler

number’, which can be interpreted as the ratio of the centrifugal force (which acts to

destabilise the flow) to the viscous frictional force (which acts to stabilise the flow).

This dimensionless parameter is analogous to the ‘Taylor number’ which characterises

the onset of Taylor vortices in circular Couette flow (as discussed above) [Oertel and

Prandtl, 2004].
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Another example is that of an axisymmetric jet emerging from a circular orifice

into an ambient fluid with the same properties. The axisymmetric solution of the

governing equations is only observed for sufficiently low Reynolds numbers: outside of

this regime, small disturbances in the flow field grow quickly and cause this laminar,

axisymmetric ‘base state’ to break down [Tritton, 1988].

The presence of free surfaces (defined as interfaces between two fluids) introduces

further complications. The surface tension forces acting at such interfaces generally act

to decrease the interfacial area. Many free surface flows therefore adopt axisymmetric

configurations, so long as the geometry admits them. However, even such flows can

become unstable. A famous example of this was first studied by Joseph Plateau in

1873, who observed the break up of a vertically falling jet of water into a series of

droplets [Plateau, 1873]. Here surface tension destabilises an axisymmetric, axially

uniform flow. The perturbations retain the axial symmetry of the jet but make the

flow axially non-uniform. A few years later, Lord Rayleigh presented an analysis of

this problem for an inviscid fluid [Rayleigh, 1878], and predicted that (in this limiting

case) all non-axisymmetric perturbations would neither grow nor decay, as would all

axisymmetric perturbations with wavelength smaller than the circumference of the

jet. For axisymmetric perturbations with sufficiently high wavelength, however, the

dominance of azimuthal curvature over longitudinal curvature promotes a pressure

gradient that amplifies the original disturbance: this leads to the fluid stream ‘pinching

off’ at this point. This effect is known as the ‘Plateau–Rayleigh instability’. Rayleigh’s

1878 paper is also notable for first suggesting that the mode that one would observe in

experiments would correspond to the fastest-growing perturbation [Drazin and Reid,

2004]. An analysis of the viscous problem was subsequently presented by Weber, who

provided a prediction for the most rapidly growing axisymmetric mode in terms of

the fluid viscosity, density and surface tension and the radius of the jet [Weber, 1931].

There has been considerable further study of this and many other related problems,

including (but certainly not limited to) the interaction of viscous and capillary forces

acting at the interface between a cylinder of viscous fluid surrounded by another

viscous fluid [Tomotika, 1935]; the stability of annular jets of viscous fluid moving in

an inviscid medium [Meyer and Weihs, 1987]; and the stability of an annular coating

of viscous fluid on a wire (or on the inside of a small tube) subject to capillary forces
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at its free surface [Goren, 1962].

It important to note that the presence of surface tension does not necessarily sup-

press all non-axisymmetric perturbations. In a study of fluid jets which are in a state of

solid rotation, Ponstein found that, in certain cases, non-axisymmetric perturbations

grew more rapidly than those disturbances that were axially symmetric, a feature that

does not occur in non-rotating jets [Ponstein, 1959]. Another interesting example is

the system studied by Shyh and Munson in 1986, where a cylindrical vessel containing

two stably stratified fluids with large viscosity contrast was subjected to sinusoidal

oscillations about its axis of rotational symmetry [Shyh and Munson, 1986]. At low

forcing amplitudes and frequencies an unsteady axisymmetric flow was observed, but

as either the amplitude or frequency was increased the interface was found to become

unstable to non-axisymmetric perturbations as a result of large velocity contrasts at

either side of the free surface. This instability manifested itself as a set of regularly-

spaced ‘fingers’ of the high-viscosity fluid.

A final example is that of two superposed fluids contained within a vertical cylinder

[Batchelor and Nitsche, 1993]. If the fluids are stably stratified (so that the lower

layer is that which has the greater density) then surface tension and gravitational

acceleration both act to restore any perturbation of the interface to its flat, undeformed

configuration. If the system is set up so that the more dense fluid is the upper layer,

however, then the force of gravitational acceleration acts to destabilise the interface.

For low density contrasts, disturbances to the interface position will still decay due

to the restoring force driven by surface tension. As the ratio of the densities of the

two layers is increased, however, gravitational forces will dominate and perturbations

to the interface position will grow, eventually causing the fluid system to ‘overturn’.

This is an example of the ‘Rayleigh–Taylor’ instability, first observed by Rayleigh in

1883 [Rayleigh, 1883].

1.2 Introduction to linear stability theory

Having introduced a range of classical problems in which it is useful to be able to

determine the time-evolution of perturbations to various fluid dynamical systems, we
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will now define what we mean by ‘small amplitude perturbations’ in a more math-

ematical sense. In this thesis we are only concerned with computing linear or ‘first

order’ perturbations to flows, and to put this into context we will summarise the key

concepts of linear stability theory in the following section.

Let us suppose that we have a physical system that can be described in terms of

a system of nonlinear partial differential equations. Since we are concerned with fluid

dynamical problems in this work, we shall assume here that the governing equations are

the Navier–Stokes equations and that the field variables are the velocity, u(x, t), and

the pressure, p(x, t). The governing equations are augmented by boundary conditions

appropriate for the problem geometry.

Let us now suppose that we have a velocity field ū and a pressure field p̄ that form

a solution

N {ū, p̄} = 0 (1.1)

to this system of nonlinear equations and boundary conditions. This solution, which

we call the ‘base state’, is typically chosen to be ‘simpler’ in some way: for example, the

solution may be independent of a particular coordinate direction, and/or independent

of time. In the Reynolds pipe experiment described in section 1.1, a sensible choice of

base state would be Hagen–Poiseuille flow, which is steady and in which the velocity

is uniaxial and depends on the radial coordinate only. Similarly, circular Couette flow

admits a steady solution in which the only non-zero component of the velocity is in

the azimuthal direction, and is a function of the radial coordinate only. Base flows

are not necessarily required to be steady, however: an appropriate base state for the

problem studied by Shyh and Munson2, in which a cylindrical vessel containing two

fluids is oscillated sinusoidally with period T about its axis of rotational symmetry,

would be one in which the solution was independent of the azimuthal coordinate θ and

periodic in time, so that

ū(r, z, t) = ū(r, z, t+ T ) and p̄(r, z, t) = p̄(r, z, t+ T ). (1.2)

Whatever the base state, the key requirement is that we must be able to clearly

define what we mean by a growing or decaying perturbation to that state. Having

defined the base flow, we next introduce a small perturbation of the form (û, p̂), so

2See the previous section (1.1) for an overview of this problem.
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that the solution of the nonlinear system of equations is now given by

u = ū + ε û and p = p̄+ ε p̂, (1.3)

where ε � 1 is the ‘perturbation amplitude’. The perturbation quantities û and p̂

typically depend on more variables than the underlying base flow: for example, to

assess the stability of fully-developed Hagen–Poiseuille flow to linear, time-dependent

perturbations in the azimuthal direction we would let

u(r, z, t) = ū(r) + ε û(r, z, t) and

p(r, z, t) = p̄(z) + ε p̂(r, z, t). (1.4)

The same decomposition would be used, for example, to investigate the stability of

steady circular Couette flow to axisymmetric perturbations, such as the ones which

lead to the onset of Taylor vortices. In the case of the problem studied by Shyh

and Munson, we would assess the stability of the periodic, axisymmetric base flow to

time-dependent, non-axisymmetric perturbations by letting

u(r, z, θ, t) = ū(r, z, t) + ε û(r, z, θ, t) and

p(r, z, θ, t) = p̄(r, z, t) + ε p̂(r, z, θ, t). (1.5)

By substituting (1.3) into the governing equations and expanding in the small pa-

rameter ε we obtain a system of equations which we can group into powers of the

perturbation amplitude. Terms of order one correspond to the governing equations

for the base flow, while terms of order ε correspond to a linearised set of equations

governing the dynamics of the perturbations û(x, t) and p̂(x, t). In general these ‘lin-

ear perturbation equations’ contain coefficients which depend on the solution of the

base flow problem. For a known base flow, therefore, the time-evolution of a linear

perturbation to this flow can be computed simply by time-evolving these perturbation

equations, and there are three possible outcomes as t→∞:

(i) The perturbation decays: in this case, we consider the base flow to be linearly

stable.

(ii) The perturbation grows: in this case, we consider the base flow to be linearly

unstable.
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(iii) The perturbation neither grows nor decays, and thus the amplitude remains the

same for all time: in this case, we consider the base flow to be neutrally stable.

Just because linear stability theory predicts that a particular solution is stable does

not necessarily mean that the corresponding physical state would be observed in an

experiment. A famous example of this is the very first example discussed in section

1.1, that of Hagen–Poiseuille flow in a circular pipe. The results of a linear stability

analysis about this base state suggest that this flow is stable for all flow rates (or

values of the Reynolds number) [Mullin, 2011]. In reality, however, the basic laminar

flow is observed to undergo a transition to turbulence for Reynolds numbers greater

than a certain critical value. This value has been observed experimentally to range

between ∼ 2000 and ∼ 40000, depending on the smoothness of the pipe walls and

the regularity of the flow at the inlet [Davey and Drazin, 1969]. The reason behind

this apparent inconsistency is that Hagen–Poiseuille flow, while stable to infinitesimal

perturbations, is unstable to perturbations of a finite size at sufficiently high flow

rates. More recent research suggests that a possible mechanism for this transition

might be by initially small disturbances growing in a transient phase, which can arise

as a consequence of the non-normality of the linearised Navier–Stokes operator [Schmid

and Henningson, 1994, O’Sullivan and Breuer, 1994]. The initial linear growth (which

subsequently decays exponentially) can enable small disturbances to a linearly stable

flow to reach sufficiently high amplitude that nonlinear effects become important,

and this highlights one of the failings of a linear stability analysis of this type. By

disregarding terms of order ε2 and above we are restricted to a regime in which the

amplitude of the perturbations remains very small, as we are neglecting the effects

of the interaction of the perturbations with themselves. Consequently, in the case of

an unstable flow we cannot ascertain the long-term evolution of a perturbation since

the amplitude is no longer sufficiently small for the linearised equations to be valid.

Despite these limitations, however, the analysis of a linear perturbation to a given

base flow remains a very useful tool in a range of stability problems.



CHAPTER 1. INTRODUCTION 20

1.3 The aim and structure of this thesis

The aim of this project is to develop a general numerical framework that allows the

computation of the evolution of linear, non-axisymmetric perturbations for arbitrary

nonlinear, axisymmetric base flows, both with and without free surfaces. This was

achieved by systematically deriving the equations governing (i) the (possibly time-

dependent) axisymmetric base state and (ii) the linearised non-axisymmetric pertur-

bations to such flows. The equations were implemented in oomph-lib, the open-source,

object-oriented finite element library developed by Matthias Heil and Andrew Hazel

[Heil and Hazel, 2006], and validated/applied to representative test problems.

The outline of the thesis is as follows. In chapter 2 we introduce oomph-lib and

provide a brief overview of its data structures. We then introduce the Navier–Stokes

equations in chapter 3 and discuss the conditions which must be applied at an interface

between two fluids. We introduce the concept of a ‘weak solution’ and go on to derive

the weak form of the governing equations and boundary conditions. From here we

provide an overview of the finite element method, and discuss its primary features

via the example of the Navier–Stokes equations. For compactness (and clarity) the

equations presented throughout this chapter are formulated with respect to a Cartesian

coordinate system. In chapter 4 we then go on to apply this formulation to two free

surface problems: (i) the relaxation of a (two-dimensional) fluid layer due to surface

tension and gravitational forces, and (ii) the relaxation of an interface between two

fluids of differing material properties.

With this introduction to the finite element formulation of free surface Navier–

Stokes problems complete, we will begin to discuss the formulation of these equations

in terms of cylindrical polar coordinates. We begin chapter 5 by deriving the weak

form of the governing equations in a general orthogonal coordinate system, before

specialising to cylindrical polar coordinates. We follow the same process for the free

surface boundary conditions, before considering the governing equations and boundary

conditions for the special case of an axisymmetric flow. Once we have written down

the full set of residual equations for such a problem, we consider two applications of

these in chapter 6. These two problems mirror those discussed in chapter 4.

Chapter 7 marks the start of our discussion of non-axisymmetric perturbations
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to axisymmetric flows. Here we consider just the bulk terms: we begin with the

three-dimensional Navier–Stokes equations in cylindrical polar coordinates and lin-

earise them about an axisymmetric base flow. We then exploit the fact that they are

periodic in the azimuthal direction in order to perform a Fourier decomposition: in this

way we transform a single three-dimensional problem into a series of two-dimensional

problems in which the azimuthal mode number appears as a parameter. The applica-

tion of the resulting equations is then illustrated in chapter 8, where we discuss two

specific problems: (i) the flow between two counter-rotating disks, and (ii) the flow

between two concentric cylinders, where the inner cylinder rotates at constant angular

velocity and the outer cylinder is driven sinusoidally in time. Both of these problems

admit axisymmetric solutions, and we use the methodology developed in chapter 7 to

assess the stability of these to both axisymmetric and non-axisymmetric perturbations.

The two problems discussed in chapter 8 both consider a single-fluid system only.

To complete the discussion we began in chapter 7, we present the derivation of the

free boundary conditions corresponding to linear, non-axisymmetric perturbations of

an otherwise axisymmetric surface in chapter 9. Finally, we combine the methodology

formulated in both of these chapters and apply them it to two problems involving

perturbations to a two-phase axisymmetric flow: these are discussed in chapter 10.

We conclude in chapter 11 with a brief summary of the functionality developed over

the course of this project, and its inclusion within the overall oomph-lib framework.



Chapter 2

Introduction to oomph-lib

All of the code development and numerical simulations performed as part of this

project took place within the general framework of oomph-lib [Heil and Hazel, 2006],

an object-oriented, open-source finite element library developed by Matthias Heil and

Andrew Hazel for the simulation of multi-physics problems. The library is written in

C++, with particular emphasis placed on maximising code re-use, in order to provide

an infrastructure in which it is possible to formulate a ‘new’ problem by combining

pre-existing elements, meshes, timesteppers and solvers. It also provides a consistent

framework in which to develop new functionality, such as the ‘machinery’ which will

be discussed throughout the course of the current work.

The basic principle at the heart of oomph-lib’s design is that, in principle, ‘any’

problem can be discretised both spatially and temporally to yield a system of nonlinear

algebraic equations1, which can then be solved monolithically by Newton’s method

[Press et al., 2007, sec 9.6]. Let us suppose that we have a system of residual equations

Rl(V1, . . . , VM) = 0, where M is the number of degrees of freedom in the problem

and l ranges from 1 to M . Each of the M residual equations is a function of the

M unknowns Vj, where j = 1, . . . ,M . The solution to this system of equations is

computed by application of the following algorithm:

1. Set the iteration counter k to zero and provide an initial approximation for the

unknowns,

V
(0)
j = Vj for j = 1, . . . ,M. (2.1)

1oomph-lib assumes that all problems are nonlinear by default, and treats linear problems as a
special case.

22
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2. Evaluate the residuals

R(k)
l = Rl

(
V

(k)
1 , . . . , V

(k)
M

)
(2.2)

for l = 1, . . . ,M .

3. Find the maximum entry in the global residual vector R(k)
l . If this is less than

some prescribed tolerance, stop and accept V
(k)
j as the solution.

4. Compute the Jacobian matrix

Jlj =
∂Rl

∂Vj

∣∣∣∣(
V

(k)
1 ,...,V

(k)
M

) (2.3)

for j, l = 1, . . . ,M .

5. Solve the linear system
M∑
j=1

Jlj δVj = −R(k)
l , (2.4)

where l = 1, . . . ,M , for δVj.

6. Compute an improved approximation for the solution using

V
(i+1)
j = V

(i)
j + δVj (2.5)

for j = 1, . . . ,M .

7. Update the iteration counter k → k + 1 and go to step (2).

Provided that a ‘good enough’ initial guess V
(0)
j has been provided in step (1) (and that

the Jacobian matrix Jlj is sufficiently well-conditioned) the Newton method converges

quadratically towards the exact solution. In the special case in which we have a linear

system of equations, the method provides the exact solution in a single iteration.

The majority of the ‘machinery’ in oomph-lib is concerned with the task of formu-

lating physical problems in terms of a system of algebraic equations which can then

be solved in the manner described above. This discretisation is achieved through a

finite element framework in which the equations which are to be solved are specified

via (and implemented within) the individual elements themselves. This concept is

key to the overall design: every element e computes its local residual vector R(e) and

Jacobian matrix J (e), and the global residual vector R and Jacobian matrix J are
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Figure 2.1: Sketch illustrating the assembly of the global Jacobian matrix J and
residual vector R from the individual elemental contributions. This diagram is based
on a similar schematic originally presented in [Heil and Hazel, 2006].

then constructed via element-by-element assembly. This process is sketched in figure

2.1. Once R and J have been assembled we apply the Newton method, which requires

the solution of a series of large linear systems (arising from the application of step (5)

of the above algorithm). In all of the problems considered in this work, these linear

systems were solved using the SuperLU code [Demmel et al., 1999], a library special-

ising in the direct solution of large systems of linear equations by LU decomposition

methods. oomph-lib contains wrappers to several other state-of-the-art linear solvers,

however, such as the HSL frontal solvers [HSL2004, 2004] and MUMPS [Amestoy et al.,

2000], as well as the iterative solvers implemented by the Hypre [Falgout and Yang,

2002] and Trilinos [Heroux et al., 2003] projects. Although these iterative solvers

come with their own ‘black-box’ preconditioning strategies, oomph-lib also provides

a range of problem-specific Preconditioner classes.
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Central to the design of oomph-lib is the ability to construct a range of single-

and multi-physics problems by combining more basic functionality in as flexible as

possible a way. This ability to constantly ‘recycle’ code is facilitated via heavy use of

object-orientation, which provides both

(i) encapsulation: the combining of data into small logical units known as ‘objects’

which can be interacted with by well-defined interfaces, and

(ii) inheritance: the construction of more complex objects by adding new function-

ality to already existing simpler ones.

Designing the library in this way leads to a hierarchical data structure, in which derived

classes ‘inherit’ existing functionality before adding to it. In certain cases it is also

useful for derived classes to ‘overload’ the more general functionality inherited from

the base class with new, more specific functionality tailored to the more specialised

function of the derived class.

2.1 Overview of the data structure

Figure 2.2 presents a simplified, general overview of the relationship between the ba-

sic data structures within oomph-lib. The most fundamental of these is the Data

class, which provides storage for one or more ‘values’, or double precision numbers.

By default oomph-lib treats every value as an ‘unknown’ (or ‘degree of freedom’) in

the overall problem, and therefore each individual value has a global equation number

associated with it. The Data class provides an interface to ‘pin’ a value: this opera-

tion is used when the user wishes to prescribe the value of the solution at a particular

point, for example on a domain boundary. ‘Pinned’ values are not treated as degrees of

freedom, and as such are not included in the global system of equations. By contrast,

‘unpinned’ values represent unknowns and will be determined by the solution of the

problem. In addition to this functionality, the Data class also stores an arbitrary num-

ber of ‘history values’ corresponding to each value: these are required by timestepping

schemes and are therefore necessary for the solution of time-dependent problems.

There are many occasions when we wish to associate a given set of values with an

Eulerian position within the problem domain. The Node class inherits from the Data
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Figure 2.2: Overview of the relationship between the fundamental objects in
oomph-lib. This diagram is based on a similar sketch originally presented in [Heil
and Hazel, 2006].

class and adds storage for the position (in an arbitrary number of spatial dimensions),

and is used to represent the discrete nodal points in the finite element method at which

the solution is represented by discrete coefficients. The details of this formulation

will be discussed in the following chapter, but we note here that in problems with a

moving mesh the nodal positions will evolve over time. In order to accomodate this the

Node class stores the required number of history values associated with each Eulerian

position, thus facilitating the computation of the nodal velocities. Moreover, in certain

problems the actual nodal positions may themselves be unknowns in the problem. The

SolidNode class inherits from the base Node class and provides the extra functionality

to allow the position to be an unknown which is then represented by Data.

All Nodes are associated with one or more Elements. Each Element is responsi-

ble for computing its own residual vector and Jacobian matrix. The Elements (and

their associated Nodes) are then stored in a Mesh, which represents the physical ge-

ometry of the problem. The Mesh class stores information such as which Nodes lie

on which domain boundaries, and provides interfaces through which this information

may be accessed in an ordered manner. The Mesh is also responsible for setting up

the connectivity of the elements and nodes based on the geometry of the domain.
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The ‘highest level’ class in the oomph-lib hierarchy is known as a Problem. Each

Problem object is meant to represent a discrete physical problem, and is responsible

for implementing the problem formulation. The Problem class provides interfaces for

standard tasks such as setting up the Mesh, defining boundary conditions, setting up

timesteppers and defining the various non-dimensional parameters that feature in the

equations. The Problem object is also responsible for assembling the global residual

vector and Jacobian matrix from the individual elemental contributions, and in order

to do so must provide routines to set up the overall equation numbering schemes.

It is often convenient to formulate more complex physical problems by representing

them as two or more ‘simpler’ Problem objects, which are coupled together in some

way. This is particularly useful in multi-physics problems, since it allows for maximum

code re-use. We will refer back to this concept in chapter 8 of this work when we

discuss the implementation of the linearised perturbation equations about a base flow:

in these applications the base flow is represented by a single Problem object and the

perturbation equations by a second, with a one-way coupling between the two.

2.2 Developing new functionality

When designing a large library of this kind, care must be taken to ensure that new

functionality can easily be inserted at the ‘correct’ level of the data structure, with min-

imum disruption in terms of interface changes and alterations to pre-existing classes.

As previously discussed, oomph-lib’s design philosophy is to avoid code duplication

wherever possible, and to this end the library employs a rich inheritance structure for

its classes. So-called ‘base’ classes establish common functionality that will be required

for all objects derived from this type, and many of these base classes have the prop-

erty that they are ‘virtual’: this means that specific implementations of generic tasks

can be delayed to derived classes. We will expand on this concept via the example of

the AxisymmetricQCrouzeixRaviartElement, an oomph-lib class that implements a

quadratic Crouzeix–Raviart2 finite element for the solution of axisymmetric Navier–

Stokes problems. Figure 2.3 shows the (simplified) inheritance diagram for this class,

and we notice that in this case the base class is a GeneralisedElement. We recall

2We will introduce Crouzeix–Raviart elements properly in section 3.3.2.
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AxisymmetricQCrouzeixRaviartElement

AxisymmetricNavierStokesEquations QElement<DIM,NNODE_1d>

GeneralisedElement

FiniteElement

Figure 2.3: Simplified inheritance diagram for the AxisymmetricQCrouzeix-

RaviartElement class.

that it is a requirement that every element computes its contribution to the global

residual vector and Jacobian matrix, and therefore the interfaces to these functions

are defined in this base class:

GeneralisedElement::get_residual(...)

GeneralisedElement::get_jacobian(...)

Crucially, however, the actually implementation of these elements will be delayed un-

til the AxisymmetricQCrouzeixRaviartElement class, which is sufficiently specialist

that the functions can be specified in a ‘concrete’, rather than an ‘abstract’, sense.

The GeneralisedElement class is also responsible for implementing other generic

tasks which are common to all elements, such as returning the number of degrees of

freedom and setting up the lookup scheme that stores the correspondence between

local and global equation numbers. The FiniteElement class then inherits from this

class and adds the additional functionality that must be shared by all finite elements:

this includes storage for (pointers to) the element’s nodes and a spatial integration

scheme, interfaces which specify the spatial dimension of the element, interfaces to

specify the local shape functions (and their derivatives) and functions to calculate the
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mapping between the local and global coordinates, amongst many other tasks. Any

functions which cannot be implemented in complete generality are defined as virtual

interfaces so that their specific implementation can be ‘overloaded’ in derived classes.

One example of this is the definition of the shape functions: since all finite elements

must have these, a common interface is defined here, but their actual implementation

must be delayed until the specific geometry of the element has been established.

Note from figure 2.3 that at the next layer of abstraction the definition of the

geometry has been isolated from the definition of the equations. The QElement class

inherits from FiniteElement and provides all of the functionality common to quadri-

lateral elements. This element makes use of ‘templating’, which allows this single class

to implement an entire family of geometric elements. The two template parameters

are the spatial dimension of the element, DIM, and the number of nodes along one

edge, NNODE 1D. In this way this one class can provide the specific implementation of,

for example:

• QElement<1,4>: a four-node ‘line’ element, or

• QElement<3,3>: a twenty-seven-node ‘brick’ element.

The AxisymmetricNavierStokesEquations class implements the actual axisymmetric

Navier–Stokes equations themselves, and its principal task is to overload the virtual

get residual(...) and get jacobian(...) functions defined in the base class

with concrete implementations specific to this particular equation class. It also stores

(pointers to) any source functions or parameters that occur in the governing equations.

The final class in figure 2.3 is of type AxisymmetricQCrouzeixRaviartElement,

and is termed the ‘specific element’. It inherits from both the AxisymmetricNavier-

StokesEquations and QElement<2,3> classes3 to form a ‘specific element’ which im-

plements the axisymmetric Navier–Stokes equations in a nine-noded quadrilateral ele-

ment. These ‘specific element’ classes are often (and deliberately) fairly ‘lightweight’,

since it is desirable that as much generic ‘machinery’ as possible is abstracted away.

Separating the geometry from the equation class in the manner described above

provides just one example of the power of object-orientation. Let us suppose that

3This is known as ‘multiple inheritance’. oomph-lib regularly makes use of the ‘diamond’ multiple
inheritance structure, where a specific class inherits from one or more classes which themselves inherit
from the same base class(es). To avoid any ambiguity in the implementation of specific functions
arising from such a structure, oomph-lib generally employs ‘virtual’ inheritance by default.
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MyTriangularAxisymmetricNSElement

TElement<DIM,NNODE_1d>AxisymmetricNavierStokesEquations

Figure 2.4: Illustration of the manner in which the underlying geometry of a finite
element can be changed by simply ‘dropping’ in a new geometric element class: in this
case, the TElements class has been substituted for the QElements class.

we wish to solve the axisymmetric Navier–Stokes equations using six-noded triangular

elements. To do this we would simply ‘drop’ these new elements into the overall frame-

work by defining a new specific element class, MyTriangularAxisymmetricNSElement,

which inherits from both the AxisymmetricNavierStokesEquations and oomph-lib’s

generic triangular elements class, TElement<DIM,NNODE 1D>, as shown in figure 2.4.

The existing axisymmetric Navier–Stokes equations, as well as all the generic function-

ality implemented in the various base classes, have all been ‘recycled’. The same would

be true if we wanted to develop a new set of equations, and solve them using quadratic

finite elements. By way of an example, let us imagine that we have developed a class,

LinearisedAxisymNavierStokesEquations, which implement a linearised version of

the axisymmetric Navier–Stokes equations. In order to begin using this new equa-

tion class within our finite element framework all we need to do is ‘swap’ the existing

AxisymmetricNavierStokesEquations class with our new class, and write a new spe-

cific element to combine these new equations with our existing quadratic geometric

elements, as illustrated in figure 2.5. In this way we have again ‘recycled’ almost all

of the existing functionality which is not specific to our equation class.

Most of the development carried out throughout this project was performed at the

element level, in developing new classes of equations to study generic non-axisymmetric

perturbations to otherwise axisymmetric flows. Throughout this document we will

(briefly) discuss the classes which were implemented, but we note here that their

inclusion into the overall framework took place (broadly speaking) in the manner
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LinearisedAxisymQCrouzeixRaviartElement

QElement<DIM,NNODE_1d>LinearisedAxisymNavierStokesEquations

Figure 2.5: Illustration to demonstrate how new equation classes can easily be ‘slotted
into’ oomph-lib’s overall finite element framework. In this example, a ‘new’ class of
equations, the LinearisedAxisymNavierStokesEquations, have been inserted in the
place of the ‘standard’ AxisymmetricNavierStokesEquations. All of the existing
generic functionality has been retained, however, thanks to the inheritance structure
in place.

described above.



Chapter 3

The free surface Navier–Stokes

equations and the Finite Element

Method

3.1 Governing equations

In dimensional form the Navier–Stokes equations (in Cartesian coordinates x∗i ) for a

Newtonian fluid with constant density, ρ, and dynamic viscosity, µ, are given by the

momentum equations

ρ

(
∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

)
= −∂p

∗

∂x∗i
+B∗i + ρG∗i +

∂

∂x∗j

[
µ

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)]
(3.1)

and the continuity equation
∂u∗j
∂x∗j

= Q∗, (3.2)

where we have used index notation and the summation convention. The velocity com-

ponents are denoted by u∗i , the pressure by p∗ and time by t∗, and the free index i

runs over the spatial dimension. The body force has been split into two components:

a constant vector ρG∗i which typically represents gravitational forces, and a variable

body force, B∗i (x
∗
j , t
∗). Q∗(x∗j , t

∗) is a volumetric source term for the continuity equa-

tion and is typically equal to zero. The stress-divergence form of the viscous terms

has been used as it will be required for the formulation of free surface problems.

We non-dimensionalise the equations, using problem-specific reference quantities

for the velocity, U , length, L, and time, T , and scale the constant body force vector

32
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on the gravitational acceleration, g, so that

u∗i = U ui, x∗i = Lxi, t∗ = T t,

G∗i = g Gi, B∗i =
U µref

L2
Bi, (3.3)

p∗ =
U µref

L
p, Q∗ =

U
L
Q,

where we note that the pressure and the variable body force have been non-dimensionalised

on the viscous scale. µref and ρref are reference values for the fluid’s dynamic viscosity

and density, respectively, and in single-fluid problems are identical to the viscosity

µ and density ρ of the (one and only) fluid in the problem. In problems involving

multiple fluids, however, we use the ratios Rµ = µ/µref and Rρ = ρ/ρref to describe a

particular fluid’s viscosity and density relative to the reference values used to form the

non-dimensional parameters.

The non-dimensional form of the Navier–Stokes equations is then given by

Rρ Re

(
St
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+Bi +Rρ

Re

Fr
Gi +

∂

∂xj

[
Rµ

(
∂ui
∂xj

+
∂uj
∂xi

)]
(3.4)

and
∂uj
∂xj

= Q, (3.5)

where the dimensionless parameters

Re =
ULρref

µref

, St =
L
UT

and Fr =
U2

gL
(3.6)

are the Reynolds number, Strouhal number and Froude number respectively.

The (non-dimensional) stress tensor is given by

τij = −p δij +Rµ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.7)

and we can use this to rewrite (3.4) as

Rρ Re

(
St
∂ui
∂t

+ uj
∂ui
∂xj

)
= Bi +Rρ

Re

Fr
Gi +

∂τij
∂xj

. (3.8)

These governing equations determine the velocity ui and pressure p within a do-

main D. They must be augmented by conditions applied at the boundary ∂D. The

simplest of these is the Dirichlet condition, in which the values of one or more velocity

components are prescribed on (a subsection of) the boundary:

ui = u[prescribed]

i for some i. (3.9)
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For example, where fluid meets an (axis-aligned) solid boundary the normal velocity

component must be prescribed to be zero so that there is no penetration of the bound-

ary by the fluid. Similarly, any tangential velocity components are required to be

identical to the velocity of the boundary in the corresponding coordinate direction, so

that there is no movement (or ‘slip’) of the fluid along the boundary. This set of condi-

tions, in which every component is prescribed to be identical to the boundary motion,

are known as the ‘no slip’ boundary conditions. Another common case, which will

feature in many of the problems discussed in this work, are so-called ‘non-penetration’

conditions in which the normal component of the fluid velocity is prescribed to be zero

but the values of the components tangential to the boundary remain unconstrained1.

These often arise on symmetry boundaries.

Another typical boundary condition which can be applied is a Neumann condition,

in which the flow on (a subsection of) the boundary is driven by an applied traction,

t[prescribed], which balances the fluid stress so that

ti = τij nj = t[prescribed]i for some i, (3.10)

where n is a unit normal to the boundary pointing out of the fluid. Note that we

cannot directly prescribe the pressure field at a boundary: we can only impose the

normal component of the applied traction, t · n. From (3.10) and (3.7) it can be seen

that this applied traction is then distributed between the pressure and the viscous

normal stresses.

3.1.1 Boundary conditions at a free surface

At the interface between two fluids, two boundary conditions must be applied:

(i) a dynamic condition which is concerned with the force balance at the free surface,

and

(ii) a kinematic condition which relates the motion of the free surface to the fluid

velocities at the surface.

1We note that although the current work will only ever consider domains in which the boundaries
are axis-aligned, it is straightforward to generalise the concepts described here to boundaries which
are not parallel to any particular coordinate axis.
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The dynamic condition

Figure 3.1: Sketch of the interface between two fluids.

The dynamic boundary condition requires the stress to be continuous across a flat

interface between two fluids. Referring to figure 3.1, we define the lower fluid to be

fluid 1 and the upper fluid to be fluid 2. The traction exerted by fluid 1 onto fluid 2,

t[1]∗, is equal and opposite to that exerted by fluid 2 onto fluid 1, t[2]∗, and therefore

t[1]∗ = −t[2]∗. The traction in fluid β (β = 1, 2) is given by

t
[β]∗
i = τ

[β]∗
ij n

[β]
j , (3.11)

where τ [β]∗ is the stress tensor in fluid β and n[β] is the outer unit normal to fluid β.

Since n[2] must equal −n[1], we have

τ
[1]∗
ij n

[1]
j = τ

[2]∗
ij n

[1]
j , (3.12)

where we have arbitrarily chosen to use n[1] as the unit normal.

On curved surfaces, surface tension creates a pressure jump ∆p∗ = σκ∗ across the

interface, where σ is the surface tension and κ∗ is equal to twice the mean curvature

of the surface, and can be computed via

κ∗ = −∇ · n[1]. (3.13)

The dynamic boundary condition is therefore given by

τ
[1]∗
ij n

[1]
j = τ

[2]∗
ij n

[1]
j + σ κ∗ n

[1]
i , (3.14)

where κ∗ < 0 if the centre of curvature lies inside fluid 1. In this work we shall always

assume that the surface tension is constant along the interface (and so any Marangoni
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stresses vanish). Again using the reference quantities (3.3) we have

τ ∗ij =
Uµref

L
τij and κ∗ =

1

L
κ, (3.15)

and the non-dimensional form of the dynamic boundary condition is therefore given

by

τ
[1]
ij n

[1]
j = τ

[2]
ij n

[1]
j +

1

Ca
κn

[1]
i , (3.16)

where the Capillary number is

Ca =
Uµref

σ
. (3.17)

In certain problems we wish to model the fluid above the interface as totally in-

viscid, and in these cases the stress tensor in fluid 2 reduces to τ
[2]
ij = −δij pext, where

pext is the (non-dimensional) constant pressure above the free surface. The dynamic

boundary condition therefore becomes

τij nj =
1

Ca
κni − pext ni, (3.18)

where we have dropped the explicit references to fluid 1 since it is understood that the

stress tensor and unit normals refer to those of the (one and only) viscous fluid in the

problem.

The kinematic condition

The kinematic condition states that any fluid particles at the surface remain on the

surface for all times. If the surface is parameterised by intrinsic coordinates ζ∗α, where

α runs over the spatial dimension of the surface, then the Eulerian position vector

which describes the surface at a given time t∗ can be written as X∗ = X∗(ζ∗α, t
∗). The

kinematic condition is then given by(
u∗i −

∂X∗i
∂t∗

)
ni = 0, (3.19)

where ni are the components of the outer unit normal to the free surface. Using the

same problem-specific reference quantities (3.3) we scale the dimensional quantities

such that

u∗i = U ui, X∗i = LXi and t∗ = T t, (3.20)

and the non-dimensional form of the kinematic boundary condition is then given by(
ui − St

∂Xi

∂t

)
ni = 0. (3.21)
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3.2 Weak form of the governing equations

Let us write the governing equations (3.8) and (3.5) in residual form, so that the

momentum equations are given by

Rρ Re

(
St
∂ui
∂t

+ uj
∂ui
∂xj

)
−Bi −Rρ

Re

Fr
Gi −

∂τij
∂xj

= 0 (3.22)

and the continuity equation is given by

∂uj
∂xj
−Q = 0. (3.23)

Let us also assume from this point onwards that we are solving these equations in a

two-dimensional domain. This is simply to make the following discussion clearer; the

results below can easily be generalised to three spatial dimensions.

A classical, or ‘strong’, solution of these equations is one in which ui(xj) and p(xj)

satisfy (3.22) and (3.23), as well as the appropriate boundary conditions, at every point

in the domain D. To facilitate the subsequent solution of the equations by the method

of finite elements we shall now introduce the concept of a ‘weak’ solution: one which

satisfies the Dirichlet boundary conditions, and for which the ‘weighted residuals’2,

R[f]
i =

∫∫
D

{
Rρ Re

(
St
∂u(i)

∂t
+ uj

∂u(i)

∂xj

)
−B(i) −Rρ

Re

Fr
G(i) −

∂τ(i)j

∂xj

}
φ

[f]
(i)(xk) dx1 dx2 (3.24)

and

R[p] =

∫∫
D

(
∂uj
∂xj
−Q

)
φ[p](xk) dx1 dx2, (3.25)

vanish for any ‘test functions’ φ
[f]
i (xk) and φ[p](xk). Each of these three (as i = 1, 2 in

two spatial dimensions) test functions correspond to the three scalar fields u1(x1, x2),

u2(x1, x2) and p(x1, x2), and have the property that they must evaluate to zero on

any boundaries for which the corresponding scalar quantity is subject to Dirichlet

boundary conditions. Since (as discussed in section 3.1) we never have any pressure

boundary conditions, the previous statement can be simplified in the following way:

we insist that any test function φ
[f]
i vanishes on boundaries at which the i-th velocity

component is prescribed by Dirichlet conditions. The choice of the specific forms of

2Note that from (3.24) onwards we shall adopt the usual convention where we do not perform a
sum over any repeated indices in parentheses.



CHAPTER 3. FREE SURFACE N–S AND THE FEM 38

φ
[f]
i and φ[p] is important and will be discussed in detail in section 3.3.2. While the

weak form may appear to considerably relax the concept of a solution, we note that

the insistence that the integral vanishes for any test function implies that the weak

solution does, in fact, satisfy the strong (original) equations point-wise rather than

just in an average sense.

Note that (3.24) involves second derivatives of u (in the ∂τij/∂xj term) and zero-

th derivatives of the test function φ[f]. A ‘symmetric’ form, which will turn out to

be useful for the practical implementation of the method of finite elements (section

3.3.2), can be obtained using the divergence theorem,∫∫
D

∂τ(i)j

∂xj
φ

[f]
(i) dx1 dx2 =

∮
∂D

τ(i)j φ
[f]
(i) nj dζ −

∫∫
D

τ(i)j

∂φ
[f]
(i)

∂xj
dx1 dx2, (3.26)

where the line integral is evaluated over the entire domain boundary ∂D. The pa-

rameter ζ is the arc length along ∂D, and so
∮
∂D

dζ evaluates to the perimeter of the

domain. Substituting (3.26) into (3.24) yields

R[f]
i =

∫∫
D

{
Rρ Re

[
St
∂u(i)

∂t
+ uj

∂u(i)

∂xj

]
−B(i) −Rρ

Re

Fr
G(i)

}
φ

[f]
(i) dx1 dx2

+

∫∫
D

τ(i)j

∂φ
[f]
(i)

∂xj
dx1 dx2 −

∮
∂D

τ(i)j nj φ
[f]
(i) dζ, (3.27)

and finally we use the definition of the stress tensor (3.7) to rewrite the second term

in (3.27):

R[f]
i =

∫∫
D

{
Rρ Re

[
St
∂u(i)

∂t
+ uj

∂u(i)

∂xj

]
−B(i) −Rρ

Re

Fr
G(i)

}
φ

[f]
(i) dx1 dx2

−
∫∫

D

p
∂φ

[f]
(i)

∂x(i)

dx1 dx2 +

∫∫
D

Rµ

(
∂u(i)

∂xj
+

∂uj
∂x(i)

)
∂φ

[f]
(i)

∂xj
dx1 dx2

−
∮
∂D

τ(i)j nj φ
[f]
(i) dζ. (3.28)

Equation (3.28) now simply involves first derivatives of both ui and the test function

φ
[f]
i , and using the definition of the traction (3.11) we can replace the line integral term

with

−
∮
∂D

t(i) φ
[f]
(i) dζ. (3.29)

This line integral must be evaluated over the entire domain boundary. However, since

the test function φ
[f]
i evaluates to zero on Dirichlet boundaries for ui, the integral (3.29)

vanishes there and the only contribution is made on non-Dirichlet boundaries, where
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the applied traction ti must be specified. It follows that leaving out the line integral

term in (3.28) on these boundaries is equivalent to prescribing the applied traction

to be zero: this is the ‘natural boundary condition’. We note that the use of the

divergence theorem implies certain differentiability requirements on the test functions

and the solution: these requirements will be discussed in detail in section 3.3.1.

3.2.1 Weak form of the free surface boundary conditions

The dynamic condition

The free surface is a non-Dirichlet boundary, but one on which we are not prescribing

the traction explicitly. Let us consider the case in which we are describing a single

viscous fluid layer: the traction on the free surface is given by the dynamic boundary

condition (3.18),

ti =
1

Ca
κni − pext ni, (3.30)

and therefore the contribution to the line integral term (3.29) from the free surface

boundary Ω is given by ∫
Ω

κ

Ca
n(i) φ

[f]
(i) dζ −

∫
Ω

pext n(i) φ
[f]
(i) dζ. (3.31)

The above expression implicitly contains second derivatives of the position vector to

the surface (in the κ term) and zero-th derivatives of the test function φ[f]. Once again

we wish to obtain a symmetric form, and employ the surface divergence theorem

[Weatherburn, 1955, Article 122]:∫∫
S

∇S · v dS =

∮
C

(v ·m) dC −
∫∫

S

κ (v · n) dS, (3.32)

where v is an arbitrary vector field on the surface and m is the outward-pointing unit

vector which is tangent to the surface and normal to the contour bounding the free

surface, C. This contour will in future be referred to as the ‘contact line’. ∇S =

(I− nn) · ∇ is the surface gradient. Since in our two-dimensional example the free

surface is one-dimensional, we reduce (3.32) appropriately,∫
Ω

∇S · v dζ = v ·m|C1
+ v ·m|C2

−
∫

Ω

κ (v · n) dζ, (3.33)

and note that the contact ‘line’ reduces to two contact ‘points’, C1 and C2. These are

located at either side of the portion of the domain boundary corresponding to the free
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surface, and hence the integral over C in (3.33) has reduced to two point contributions.

Additionally, we use the fact that in one dimension the action of ∇S acting on a scalar

field φ(xi) can be rewritten in the following way:

∇S φ = (I− nn) · ∇φ = I · ∇φ− n (n · ∇φ) = ∇φ− n
∂φ

∂n
. (3.34)

We can then resolve ∇φ into two orthogonal components which are normal and tan-

gential to the free surface such that

∇φ = n
∂φ

∂n
+ t1

∂φ

∂ζ
, (3.35)

where ζ is the arc length along the free surface (as before) and n and t1 are unit

normal and tangent vectors to the free surface respectively. Substituting (3.35) into

(3.34) gives

∇S φ = t1
∂φ

∂ζ
or ∇S = t1

∂

∂ζ
, (3.36)

which enables us to rewrite (3.33) as∫
Ω

t1 ·
∂v

∂ζ
dζ = v ·m|C1

+ v ·m|C2
−
∫

Ω

κ (v · n) dζ. (3.37)

We apply this one-dimensional form of the surface divergence theorem by first

letting v = 1
Ca
φ

[f]
(i) e(i), where ei (i = 1, 2) is the Cartesian basis vector in the i-th

coordinate direction, to obtain

∫
Ω

1

Ca
(t1)(i)

dφ
[f]
(i)

dζ
dζ =

1

Ca
φ

[f]
(i) m(i)

∣∣∣∣
C1

+
1

Ca
φ

[f]
(i) m(i)

∣∣∣∣
C2

−
∫

Ω

κ

Ca
n(i) φ

[f]
(i) dζ, (3.38)

which can be substituted into the first term of the dynamic boundary condition (3.31)

to give

∫
Ω

t(i) φ
[f]
(i) dζ = −

∫
Ω

pext n(i) φ
[f]
(i) dζ −

∫
Ω

1

Ca
(t1)(i)

dφ
[f]
(i)

dζ
dζ

+
1

Ca
φ

[f]
(i) m(i)

∣∣∣∣
C1

+
1

Ca
φ

[f]
(i) m(i)

∣∣∣∣
C2

. (3.39)

The complete weak form of the Navier–Stokes momentum equations are thus obtained
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by substituting the above into (3.28) to give

R[f]
i =

∫∫
D

{
Rρ Re

[
St
∂u(i)

∂t
+ uj

∂u(i)

∂xj

]
−B(i) −Rρ

Re

Fr
G(i)

}
φ

[f]
(i) dx1 dx2

−
∫∫

D

p
∂φ

[f]
(i)

∂x(i)

dx1 dx2 +

∫∫
D

Rµ

(
∂u(i)

∂xj
+

∂uj
∂x(i)

)
∂φ

[f]
(i)

∂xj
dx1 dx2

−
∫
∂D/Ω

τ(i)j nj φ
[f]
(i) dζ +

∫
Ω

pext n(i) φ
[f]
(i) dζ

+

∫
Ω

1

Ca
(t1)(i)

dφ
[f]
(i)

dζ
dζ − 1

Ca
φ

[f]
(i) m(i)

∣∣∣∣
C1

− 1

Ca
φ

[f]
(i) m(i)

∣∣∣∣
C2

, (3.40)

where ∂D/Ω represents the portion of ∂D which is not the free boundary Ω. Note

that if the contact points C1 or C2 are located on Dirichlet boundaries then the test

function evaluates to zero at this point and these contributions vanish. Alternatively,

the contributions are added by specifying the tangent to the surface, mi, at each of the

contact points, which is equivalent to prescribing the contact angle that the free surface

makes with the neighbouring domain boundary. Neglecting these contributions is

equivalent to implicitly prescribing a 90o contact angle, which is the ‘natural’ condition.

This condition is appropriate at symmetry boundaries. Additionally, we note that we

have to prescribe the external pressure pext, and that not doing so is equivalent to

setting it to zero (the natural condition).

The kinematic condition

By solving R[f]
i = 0 (for the two spatial dimensions i = 1, 2) and R[p] = 0 we can

determine the fluid velocities and pressure. However, we have a further unknown in a

free surface problem: the position of the surface itself. To account for this extra degree

of freedom we must also solve the weak form of the kinematic boundary condition

(3.21), R[h] = 0, where the weighted residual R[h] is given by

R[h] =

∫
Ω

(
ui − St

∂Xi

∂t

)
ni φ

[h](ζ) dζ (3.41)

where φ[h] is any test function (subject to the usual requirement that it vanishes at

points where the position of the free surface is fixed).
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3.3 Discretisation of the equations and the finite

element method

3.3.1 Discretisation of the bulk equations

In the previous section we derived the weak form of a two-dimensional Cartesian

free surface Navier–Stokes problem. Let us for the moment just consider the ‘bulk’

equations: that is, the terms in the governing equations (3.40) and (3.25) that perform

an integral over the two-dimensional domain D. To facilitate this we shall express the

weak form of the momentum equations R[f]
i (3.40) as a sum of bulk terms, R[f,bulk]

i ,

and terms arising from integrals over the domain boundary, R[f,boundary]
i , (including the

point contributions), so that

R[f]
i = R[f,bulk]

i +R[f,boundary]
i . (3.42)

Additionally, we will assume (for now) that the problem domain is fixed. The ‘bulk’

problem that we are considering for the time being is therefore given by

R[f,bulk]
i =

∫∫
D

{
Rρ Re

[
St
∂u(i)

∂t
+ uj

∂u(i)

∂xj

]
−B(i) −Rρ

Re

Fr
G(i)

}
φ

[f]
(i) dx1 dx2

−
∫∫

D

p
∂φ

[f]
(i)

∂x(i)

dx1 dx2 +

∫∫
D

Rµ

(
∂u(i)

∂xj
+

∂uj
∂x(i)

)
∂φ

[f]
(i)

∂xj
dx1 dx2 (3.43)

and

R[p] =

∫∫
D

(
∂uj
∂xj
−Q

)
φ[p] dx1 dx2. (3.44)

In order to discretise these equations we expand ui in the following way,

ui(xk) = u[Dirichlet]

i (xk) +
∞∑
j=1

U(i)j ψ
[f]
(i)j(xk), (3.45)

where u[Dirichlet]

i is a function which satisfies the Dirichlet boundary conditions and the

ψ
[f]
ij , for a particular i, are a (given) infinite set of basis functions (j = 1, . . . ,∞). A

consequence of this construction is that the basis functions ψ
[f]
ij are required to vanish

on any boundaries where the i-th velocity component is subject to Dirichlet boundary

conditions. Because there are no Dirichlet conditions for the pressure we can simply

expand this field as

p(xk) =
∞∑
j=1

Pj ψ
[p]
j (xk), (3.46)
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where ψ
[p]
j are another (given) infinite set of basis functions. The basis sets ψ

[f]
ij and

ψ
[p]
j must be chosen such that:

(i) they form a complete basis for the function space containing the velocities and

pressures, respectively, and

(ii) they are sufficiently well-behaved that the integrals in (3.43) and (3.44) are ‘well

defined’.

The solution is now determined by the (unknown) discrete coefficients Uij (i = 1, 2

and j = 1, . . . ,∞) and Pj (j = 1, . . . ,∞). Substituting (3.45) and (3.46) into (3.43)

and (3.44) yields expressions of the form

R[f,bulk]
i (U11, U12, . . . ;U21, U22, . . . ;P1, P2, . . .)

=

∫∫
D

{
. . .
}
φ

[f]
(i) dx1 dx2 −

∫∫
D

{
. . .
} ∂φ[f]

(i)

∂x(i)

dx1 dx2 (3.47)

and

R[p] (U11, U12, . . . ;U21, U22, . . .) =

∫∫
D

{
. . .
}
φ[p] dx1 dx2, (3.48)

and we now employ the Galerkin method by expanding the test functions in terms of

the same basis functions ψ
[f]
ij and ψ

[p]
j with which we represent the solution,

φ
[f]
i =

∞∑
l=1

Φ
[f]
(i)l ψ

[f]
(i)l (3.49)

and

φ[p] =
∞∑
l=1

Φ
[p]
l ψ

[p]
l . (3.50)

Inserting these into the weak solution, (3.47) and (3.48), and exploiting the fact that

the solution is linear in φ
[f]
i and φ[p], yields

R[f,bulk]
i =

∞∑
l=1

Φ
[f]
(i)lR

[f,bulk]
(i)l (U11, U12, . . . ;U21, U22, . . . ;P1, P2, . . .) (3.51)

and

R[p] =
∞∑
l=1

Φ
[p]
l R

[p]
l (U11, U12, . . . ;U21, U22, . . .) , (3.52)

where

R[f,bulk]
il =

∫∫
D

{
Rρ Re

[
St
∂u(i)

∂t
+ uj

∂u(i)

∂xj

]
−B(i) −Rρ

Re

Fr
G(i)

}
ψ

[f]
(i)l dx1 dx2

−
∫∫

D

p
∂ψ

[f]
(i)l

∂x(i)

dx1 dx2 +

∫∫
D

Rµ

(
∂u(i)

∂xj
+

∂uj
∂x(i)

)
∂ψ

[f]
(i)l

∂xj
dx1 dx2 (3.53)
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and

R[p]
l =

∫∫
D

(
∂uj
∂xj
−Q

)
ψ

[p]
l dx1 dx2. (3.54)

We recall from section 3.2 that the equations (3.47) and (3.48) are obliged to hold

for any test functions φ
[f]
i and φ[p]. In order to ensure this, therefore, we must impose

the condition that (3.51) and (3.52) hold for any value of the coefficients Φ
[f]
il and Φ

[p]
l .

Hence Uij and Pj must satisfy

R[f,bulk]
il (U11, U12, . . . ;U21, U22, . . . ;P1, P2, . . .) = 0 for l = 1, . . . ,∞ (3.55)

and

R[p]
l (U11, U12, . . . ;U21, U22, . . .) = 0 for l = 1, . . . ,∞. (3.56)

By examination of the discrete momentum equation (3.53) we observe that the velocity

basis functions ψ
[f]
ij and their derivatives both appear in squares inside the integral, and

hence the minimum requirements on ψ
[f]
ij are that both the functions themselves and

their first derivatives can be square-integrated over the problem domain. Examination

of the discrete continuity equation (3.54), on the other hand, reveals that there are

no derivatives of the pressure basis functions ψ
[p]
j and hence the only requirement is

that they are themselves square-integrable over the domain. Note that a consequence

of this construction is that while the velocity solution is required to be continuous,

discontinuities in the pressure solution are permitted. If H0(D) denotes the Sobolev

space containing all functions which are square-integrable over D, then we require

ψ
[p]
j ∈ H0

0 (D), a subset of this space containing only those members of H0(D) which

vanish on the domain boundary ∂D[Dirichlet]. Similarly, we require ψ
[f]
ij ∈ H1

0 (D), a

further subset containing only those members of H0
0 (D) for which their first derivatives

are also square-integrable over D. In order for us to expand the solution variables and

the test functions in the manner described above, (3.45)–(3.46) and (3.49)–(3.50), we

require ψ
[f]
ij and ψ

[p]
j to form complete bases for H1

0 (D) and H0
0 (D) respectively.

So far we have been solving for the exact solution ui and p, but in practice we

must truncate the expansions (3.45), (3.46), (3.49) and (3.50) after a finite number of

terms. We are therefore solving for the approximate solutions

ũi =
Mu∑
j=1

U(i)j ψ
[f]
(i)j (3.57)
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and

p̃ =

Mp∑
j=1

Pj ψ
[p]
j , (3.58)

and determine the 2Mu +Mp unknowns from the 2Mu equations

R[f,bulk]
il

(
U11, . . . , U1Mu , U21, . . . , U2Mu , P1, . . . , PMp

)
= 0 (3.59)

for i = 1, 2 and l = 1, . . . ,Mu, and the Mp equations

R[p]
l (U11, . . . , U1Mu , U21, . . . , U2Mu) = 0 (3.60)

for l = 1, . . . ,Mp. Note that (as a consequence of employing the Galerkin method) we

obtain precisely the same number of equations as there are degrees of freedom in the

problem. Having obtained the discrete residual equations (3.59) and (3.60), we must

now choose a specific form for the various basis functions ψ
[f]
ij and ψ

[p]
j .

3.3.2 Overview of the finite element method

Central to the method of finite elements is the decomposition of the problem domain

D into a number of subdomains, or ‘elements’, as sketched in figure 3.2. The key

feature is that the basis functions ψ
[f]
ij and ψ

[p]
j are chosen to have finite support. The

approximation of the solution (3.57) and (3.58) is performed within each element, and

then the finite element solution for the entire domain is assembled from the individual

elemental contributions.

In order to represent the finite element solution of a problem over a particular

element, it is assumed that the value of the solution is known at a certain number

of points in that element. At each of these so-called ‘nodal points’ the value of the

field in question is precisely the value of the corresponding coefficient Uij or Pj. Note

that from this point onwards we take the index j to mean the j-th local unknown of

any particular field, where we are using the word ‘local’ to refer to any elemental-level

quantity. The range of j is therefore from 1 to the number of degrees of freedom of

the field in question represented in the element. In general, the number of velocity

degrees of freedom in an element is not equal to the number of pressure degrees of

freedom. We note that since nodes located on element boundaries are ‘shared’ with

neighbouring elements, continuity of the solution between elements is guaranteed.
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Figure 3.2: Sketch representing the subdivision of a typical problem domain into a
number of finite elements.

Between these nodal points, or ‘nodes’, the solution is interpolated using a set

of local basis functions, or ‘shape functions’, which are usually chosen to be simple

polynomials. It is convenient to express these as functions of a set of local coordinates

(s1 ∈ [−1, 1], s2 ∈ [−1, 1]) which are intrinsic to the element, as illustrated in figure

3.3 for a quadrilateral element.

The finite element solution within a particular element e is then represented in the

following way:

ui(s1, s2) =
nu∑
j=1

U(i)j ψ
[f]
(i)j(s1, s2) (3.61)

and

p(s1, s2) =

np∑
j=1

Pj ψ
[p]
j (s1, s2), (3.62)

where nu and np are the number of velocity and pressure degrees of freedom in e

respectively. We can now incorporate the Dirichlet boundary conditions into this

representation by treating some of the nodal velocity values Uij as ‘pinned’. In a finite

element context, ‘pinning’ a value means that we no longer treat it as an unknown:

instead, it becomes a prescribed quantity. With the Dirichlet conditions incorporated

in this manner we no longer require a separate set of shape functions for each of the

velocity components, and can instead interpolate each velocity field using the same set

of shape functions. The representation of the i-th velocity field within each element is
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Figure 3.3: A sketch of a quadrilateral finite element, parametrised by the local coor-
dinates s1 ∈ [−1, 1] and s2 ∈ [−1, 1]. In the case of a four-noded element the nodes
would be located at local coordinates (-1,-1), (-1,1), (1,-1) and (1,1).

therefore simply given by

ui(s1, s2) =
nu∑
j=1

Uij ψ
[f]
j (s1, s2). (3.63)

The exact forms of ψ[f] and ψ[p] will be discussed below, but it is clear that in order

for the solution to be equal to the value of the coefficients Uij and Pj at the j-th node,

the j-th local shape function must evaluate to one at the j-th node and zero at all

other nodes. This is known as the ‘interpolation condition’,

ψ
[f]
j (sk1, sk2) = δjk and ψ

[p]
j (sk1, sk2) = δjk, (3.64)

where in both expressions (sk1, sk2) represents the local coordinates (s1, s2) of the k-th

local node corresponding to either a velocity or pressure degree of freedom.

From (3.61) and (3.62) we observe that the finite element solution is now repre-

sented exclusively in terms of quantities which are intrinsic to the element. However,

the integrals in R[f,bulk]
il and R[p]

l require the evaluation of quantities such as Bi(xk)

rather than Bi(sk), and we therefore have to specify the mapping xi(sk) between the

local and global coordinates. We choose an ‘isoparametric mapping’ where the global

coordinates are interpolated using the same shape functions ψ[f] as are used to inter-

polate the unknown velocity fields. The i-th component of the global coordinate of
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the j-th local node in element e is thus given by

xi(s1, s2) =
n∑
j=1

Xij ψ
[f]
j (s1, s2), (3.65)

where n is the number of nodes in e. The Jacobian of this mapping between local and

global coordinates is given by

Jij =
∂xj
∂si

=
n∑
k=1

Xjk
∂ψ

[f]
k

∂si
, (3.66)

and its inverse, (J −1)ij, can be used to evaluate derivatives with respect to the global

coordinates of any particular variable v in the following way:

∂v

∂xi
=
(
J −1

)
ij

∂v

∂sj
. (3.67)

If we let J = detJij then the integration over the element e can be performed in local

coordinates, ∫∫
e

{
. . .
}

dx1 dx2 =

∫ 1

−1

∫ 1

−1

{
. . .
}
J ds1 ds2, (3.68)

and the elemental residual equations (3.53) and (3.54) are therefore given by

R[f,bulk]
il =

∫ 1

−1

∫ 1

−1

Rρ Re St
∂ui
∂t

ψ
[f]
l J ds1 ds2

+

∫ 1

−1

∫ 1

−1

Rρ Reuj
∂ui
∂xj

ψ
[f]
l J ds1 ds2 −

∫ 1

−1

∫ 1

−1

Bi ψ
[f]
l J ds1 ds2

−
∫ 1

−1

∫ 1

−1

Rρ
Re

Fr
Gi ψ

[f]
l J ds1 ds2 −

∫ 1

−1

∫ 1

−1

p
∂ψ

[f]
l

∂xi
J ds1 ds2

+

∫ 1

−1

∫ 1

−1

Rµ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ψ

[f]
l

∂xj
J ds1 ds2 (3.69)

and

R[p]
l =

∫ 1

−1

∫ 1

−1

(
∂uj
∂xj
−Q

)
ψ

[p]
l J ds1 ds2. (3.70)

These integrals, which are now functions of the local coordinates exclusively, can be

evaluated numerically by Gauss quadrature rules. The integrand is evaluated at Nint

‘integration points’ within the element, located at a series of known positions (Si1, Si2),

where i = 1, . . . , Nint. Each integration point has a (known) associated ‘weight’ Wi,

and the integral is approximated by summing the products of the evaluated integrands

and their corresponding weights,∫ 1

−1

∫ 1

−1

F(s1, s2) ds1 ds2 ≈
Nint∑
i=1

F(Si1, Si2)Wi. (3.71)
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Taylor–Hood and Crouzeix–Raviart elements

Having subdivided the problem domain into a number of ‘elements’, each of which are

responsible for making their own contributions to the overall problem, we turn our

attention to the matter of the choice of element. The geometry of the problems we

will consider in this work lend themselves well to quadrilateral rather than triangular

elements, and choosing these allows us to build straightforward structured meshes

of the problem domain. Out of the many choices for two-dimensional quadrilateral

elements we will restrict ourselves to two: the so-called ‘Taylor–Hood’ (Q2Q1) and

‘Crouzeix–Raviart’ (Q2P−1) elements. Both contain nine nodes, located at the points

(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0), (−1, 1), (0, 1) and (1, 1), and the

mapping between local and global coordinates is given by

xi(s1, s2) =
9∑
j=1

Xij ψ
[f]
j (s1, s2), (3.72)

whereXij is the i-th Eulerian coordinate of the j-th local node. If the nodes are labelled

in the manner specified by the blue characters in figure 3.4, then the associated shape

functions are given by

ψ
[f]
1 =

s1s2

4
(s1 − 1)(s2 − 1),

ψ
[f]
2 =

s2

2
(1− s2

1)(s2 − 1),

ψ
[f]
3 =

s1s2

4
(s1 + 1)(s2 − 1),

ψ
[f]
4 =

s1

2
(s1 − 1)(1− s2

2),

ψ
[f]
5 = (1− s2

1)(1− s2
2),

ψ
[f]
6 =

s1

2
(s1 + 1)(1− s2

2),

ψ
[f]
7 =

s1s2

4
(s1 − 1)(s2 + 1),

ψ
[f]
8 =

s2

2
(1− s2

1)(s2 + 1),

ψ
[f]
9 =

s1s2

4
(s1 + 1)(s2 + 1). (3.73)

The velocity components ui are stored as nodal values and are represented by the same

bi-quadratic interpolation as the nodal coordinates,

ui(s1, s2) =
9∑
j=1

Uij ψ
[f]
j (s1, s2), (3.74)
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Figure 3.4: Sketch illustrating the node numbering scheme in a Taylor–Hood element.
This type of element contains nine nodes, each of which stores n unknowns Uij (i =
1, . . . , n) corresponding to the value of the i-th velocity field at the particular local
node j. The four ‘corner nodes’ each store an additional unknown Pj corresponding
to the value of the pressure field at local node j.

where Uij is the i-th component of the velocity at the j-th local node.

The difference between the two elements is the way in which the pressure is repre-

sented. In Taylor–Hood elements the pressure is represented by a globally-continuous,

piecewise bilinear interpolation between the unknowns Pj that are stored at the ele-

ment’s four corner nodes,

p(s1, s2) =
4∑
j=1

Pj ψ
[p]
j (s1, s2), (3.75)

where the pressure shape functions are given by

ψ
[p]
1 =

1

4
(1− s1)(1− s2),

ψ
[p]
2 =

1

4
(1 + s1)(1− s2),

ψ
[p]
3 =

1

4
(1− s1)(1 + s2),

ψ
[p]
4 =

1

4
(1 + s1)(1 + s2), (3.76)

and we note that P1, P2, P3 and P4 are the pressure values stored at nodes 1, 3, 7 and

9 respectively (as labelled on figure 3.4). In Crouzeix–Raviart elements, however, the
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pressure is given by

p(s1, s2) = P1 + P2 s1 + P3 s2, (3.77)

which provides a discontinuous, piecewise bilinear representation in terms of three

degrees of freedom per element. Unlike Taylor–Hood elements, Crouzeix–Raviart ele-

ments ensure that the continuity equation is satisfied in an average sense within each

element. This can be clearly seen from (3.77), where we observe that in each element

one of the basis functions used to represent the pressure is 1, and therefore when test-

ing against this we have one equation satisfying the condition that the integral of the

continuity equation itself over the element must vanish. Taylor–Hood elements, on

the other hand, only ensure that the continuity equation is satisfied in a weak sense

over the entire domain. Crouzeix–Raviart elements are a convenient choice for prob-

lems containing two fluids and finite surface tension, since their discontinuous pressure

representation allows them to accommodate pressure jumps across the interface.

As a final note, we point out that both Taylor–Hood and Crouzeix–Raviart ele-

ments are ‘LBB-stable’ [Gresho and Sani, 2000, pp. 551-9], which means that they

are guaranteed to converge at the optimal rate under mesh refinement. Although it is

possible to perform finite element computations using elements which do not satisfy

the conditions for LBB stability, we shall not consider any such elements in this work.

3.3.3 Temporal discretisation

Having discussed the manner in which the domain is spatially discretised, we will

now briefly introduce the concept of temporal discretisation and timestepping. In

time-dependent problems we accommodate time dependence in the nodal values so

that

ui(sk, t) =
nu∑
j=1

Uij(t)ψ
[f]
j (sk) (3.78)

and

p(sk, t) =

np∑
j=1

Pj(t)ψ
[p]
j (sk). (3.79)

This turns the nonlinear algebraic equations into systems of coupled nonlinear ordinary

differential equations, where the time derivative of the i-th velocity component in (3.69)
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is represented by
∂ui
∂t

=
nu∑
j=1

dUij
dt

ψ
[f]
j . (3.80)

Note that no time derivatives of the pressure field ever appear in the governing equa-

tions. We discretise the functions Uij(t) and Pj(t) in time using an implicit timestep-

ping method, and we choose the second-order ‘Backward Differentiation Formula’ (or

‘BDF2’) scheme [Gresho and Sani, 2000, pp. 805-6] for the majority of the problems

in this work. Terms of the form (3.80) are then approximated by

dUij
dt
≈

Nhistory∑
τ=0

(Uij)τ ωτ , (3.81)

where Nhistory is the number of history values required by the scheme (Nhistory = 2 in the

case of BDF2) and ωτ (for τ = 0, . . . , Nhistory) are a set of (known) weights. Quantities

with the index τ = 0 denote the solution at the ‘current’ time, with indices > 0

representing ‘previous’ timesteps.

3.3.4 Moving domains

In section 3.3.1 we considered the solution of the bulk equations in a stationary do-

main. Throughout this work, however, we will (at times) be considering problems in

which the domain is moving. We will always discretise the domain using a boundary-

fitted mesh, which is then required to deform in response to changes in the problem’s

geometry. In order to accommodate this we use the arbitrary Lagrangian-Eulerian

(ALE) formulation of the Navier–Stokes equations [Donea et al., 1982], which involves

adding an extra term to the (discretised weak form of the) momentum equations in

the bulk of the fluid (3.69).

If we consider the continuous momentum equations (3.40) briefly, we note that

the ∂ui/∂t term describes the time-derivative of the i-th velocity component at a

fixed Eulerian position. By discretising the equations as outlined in section 3.3.1, this

term is actually evaluated by computing (a sum of) the time-derivatives of the nodal

values Uij, which is appropriate when solving the equations on a stationary mesh. In

a problem where the nodal positions vary as a function of time, however, the time-

derivatives of the nodal values dUij/ dt actually represent the rate-of-change of ui at

the moving node. In order to compensate for this, we note that this quantity can also
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be expressed by the material derivative,

Dui
Dt

∣∣∣∣
node j

=
∂ui
∂t

∣∣∣∣
node j

+
d∑
a=1

vaj
∂ui
∂xa

, (3.82)

where d is the spatial dimension and the quantity

vaj =
dXaj

dt
(3.83)

is the a-th velocity component of local node j and is described as the ‘mesh velocity’.

The rate of change of ui as experienced at the (fixed) Eulerian position that coincides

with the current position of node j is therefore given by

∂ui
∂t

∣∣∣∣
node j

=
dUij
dt
−

d∑
a=1

(
dXaj

dt

Nnode∑
k=1

Uik
∂ψ

[f]
k

∂xa

)
, (3.84)

and hence the rate of change of ui at any point in the domain is evaluated using

∂ui
∂t

=

Nnode∑
j=1

dUij
dt

ψ
[f]
j −

d∑
a=1

[
Nnode∑
j=1

(
dXaj

dt

Nnode∑
k=1

Uik
∂ψ

[f]
k

∂xa

)
ψ

[f]
j

]
. (3.85)

We note that from this point forward we are implying (3.85) whenever we write terms

of the form ∂ui/∂t. When we linearise the governing equations in section 7.1 it will

be useful, however, to explicitly show contributions from the mesh velocity terms. In

order to do this, we rewrite (3.85) as

∂ui
∂t

=
δui
δt
−

d∑
a=1

u[M]

a

∂ui
∂xa

, (3.86)

where
δui
δt

=

Nnode∑
j=1

dUij
dt

ψ
[f]
j (3.87)

is the rate of change of ui at a fixed set of local coordinates and

u[M]

a =

Nnode∑
j=1

vaj ψ
[f]
j (3.88)

is the a-th component of the interpolated mesh velocity.

In the moving-domain problems that we shall be considering, the change in geome-

try of the mesh is driven by changes in the shape of the free surface. As the position of

the free surface X is unknown, this introduces additional degrees of freedom into the

problem, and the ‘extra equation’ that is required in order to accommodate for this is
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the kinematic boundary condition. Once X has been established for a given timestep,

the positions of the ‘bulk’ nodes must be updated accordingly, and we shall consider

two distinct approaches to this problem here: a pseudo-solid meshing strategy and a

scheme based on the method of spines.

The method of spines

Figure 3.5: Sketch of a typical free surface problem in two dimensions, in which (at any
given time t) it is possible to describe the ‘height’ of the surface as a scalar function
x2 = h(x1). Solid boundaries are displayed as solid lines with blue shading, and the
dashed line denotes the free surface. The position vector to this surface is labelled in
red.

The ‘method of spines’ was originally proposed by Kistler and Scriven for the com-

putation of coating flows [Kistler and Scriven, 1983]. We demonstrate the technique

(as utilised in this current work) by first considering the sketch in figure 3.5, which

displays a typical free surface problem in the x1 − x2 plane with three solid bound-

aries (solid lines, blue shading) and a free surface boundary (dashed line). For the

interface shape shown in this sketch there exists a unique x2 value associated with

each x1 value. It is therefore possible to describe the ‘height’ of the free surface as a

(continuous) scalar function x2 = h(x1, t), and so the position vector to the surface

can be expressed as

X = x1 i + h(x1, t) j, (3.89)
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where i and j are the Cartesian unit basis vectors in the x1 and x2 directions respec-

tively. The function h(x1, t) is unknown and needs to be determined as part of the

solution, and we therefore discretise it in a similar manner to that described in section

3.3.1,

h(s, t) =

Nnode∑
j=1

Hj(t)ψ
[f]
j (s), (3.90)

where s is the local coordinate that parametrises the free surface. Note that we are

choosing to represent the height using the same shape functions ψ[f] as are used to inter-

polate the Eulerian positions of the nodal coordinates, but evaluated on the boundary.

This choice is motivated by the requirement that the ‘height’ shape functions are the

trace of the ‘coordinate’ shape functions ψ[f] in order to ensure that the geometries are

consistent.

Figure 3.6: Sketch illustrating the manner in which the position each node (repre-
sented by black dots) is defined by the fraction at which it is located along the spine
(represented by red lines) with which it is associated. Here, global node 23 is located
on spine s23 = 5, and at a fraction w23 = 0.6 along its length. Each spine s has a
variable associated with it that defines its ‘height’ Hs. The axial position of global
node 23 is therefore given by 0.6×H5.

Figure 3.6 shows a body-fitted finite element mesh that discretises the domain, and

we note that as a result of discretising h(x1, t) we have an unknown value H associated

with each node on the free surface (at any given time t). Let us now assume that the

mesh has been constructed in such a way that its Nnode nodes are distributed along
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Nspine lines that are (topologically) orthogonal to the free surface boundary. We call

these lines ‘spines’ and note that they each have an associated unknown coefficient Hs

(s = 1, . . . , Nspine) which determines the ‘height’ of the domain in a direction parallel

to that spine: these will be referred to as the ‘spine heights’. We then set the mesh

up in such a way that each node j is located at a fixed fraction wj along a particular

spine sj, so that its position is prescribed by

xj = Bsj + wj Hsj Ssj , (3.91)

where Bs is the vector to the ‘base’ of spine s and Ss the unit vector along that spine

(as shown in figure 3.6). In all of the problems considered in the following work we

will use spines which are orientated such that they are parallel to the vertical axis.

Moreover, the bases of the spines will always be located along the horizontal axis, so

that the j-th node’s position (3.91) simplifies to

xj = x1 i + wj Hsj j. (3.92)

The key feature of this method is that the only additional unknowns which are

introduced into the problem are the Nspine spine heights Hsj that correspond to the

position of the free surface boundary. The positions of the nodes in the bulk of the

domain are ‘enslaved variables’ which simply update themselves algebraically once

the values of Hsj have been determined. This is known as a ‘sparse’ node-update

strategy and is computationally inexpensive. However, the formulation is dependent

on the ability to express the ‘height’ of the surface as a one-to-one function in the

horizontal coordinate, and as a result cannot be used to simulate problems involving

‘overturning’ of the free boundary. The second, pseudo-solid-based approach (which

we shall consider now) does not suffer from this issue.

The pseudo-solid node-update procedure

In the spine-based method described above, the position of the free surface is deter-

mined as part of the solution, and the positions of the bulk nodes are then updated

based on this result. By contrast, the pseudo-solid approach discussed here treats

the interior of the mesh as a fictitious elastic solid, and a solid mechanics problem is

solved at every timestep for the (unknown) nodal positions. The deformation of the
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free surface boundary is imposed by applying a suitable line traction υ n along the

free surface, which is discretised in the usual way,

υ(s) =

Nnode∑
j=1

Υj ψ
[f]
j (s), (3.93)

and the nodal values Υj of the line traction are then determined by the solution of the

kinematic boundary condition.

In addition to being able to accommodate a wider range of interface shapes (than

a spine-based method), this approach benefits from being able to take advantage of

the existing refineable element framework which has already been developed within

oomph-lib. It is, however, far more costly in a computational sense than the spine

method since it introduces two additional unknowns for every node in the mesh and

requires the solution of a solid mechanics problem at each timestep on top of the

fluid problem that we are actually interested in. Moreover, while it is (in principle)

able to accommodate any change in shape of the interface, as individual elements

get increasingly stretched there will be a point at which the domain will require ‘re-

meshing’. Problems of this nature are outside the scope of this work, however.

3.3.5 Discretisation of the free surface boundary conditions

The dynamic condition

In section 3.3.1 we split the contributions to the momentum equations into those aris-

ing from integrals over the bulk of the domain and those arising from integrals over its

boundary, and wrote down the terms in the il-th elemental residual momentum equa-

tions corresponding to the bulk contributions R[f,bulk]
il (3.69). We turn our attention

now to the remaining terms in (3.40),

R[f,boundary]
i = −

∫
∂D/Ω

τij nj φ
[f] dζ +

∫
Ω

pext ni φ
[f] dζ

+

∫
Ω

1

Ca
(t1)i

dφ[f]

dζ
dζ − 1

Ca
φ[f]mi

∣∣∣∣
C1

− 1

Ca
φ[f] mi

∣∣∣∣
C2

, (3.94)

and recall that from (3.49) we have

R[f,boundary]
i =

∞∑
l=1

Φ
[f]
l R

[f,boundary]
il (Uk1, Uk2, . . . ;P1, P2, . . . ;Xk1, Xk2, . . .) , (3.95)
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where k = 1, 2 and

R[f,boundary]
il = −

∫
∂D/Ω

τij nj ψ
[f]
l dζ +

∫
Ω

pext ni ψ
[f]
l dζ

+

∫
Ω

1

Ca
(t1)i

dψ
[f]
l

dζ
dζ − 1

Ca
ψ

[f]
l mi

∣∣∣∣
C1

− 1

Ca
ψ

[f]
l mi

∣∣∣∣
C2

. (3.96)

The line integrals in (3.96) are computed by one-dimensional ‘face’ elements which are

‘attached’ to the appropriate faces of those bulk elements adjacent to the boundary

over which the integral is to be performed. Within these elements the Jacobian of

the mapping between local and global coordinates is given by J = dζ/ ds, where s is

the (one and only) local coordinate, and the contributions to the elemental residual

momentum equations arising from the boundary integral terms are therefore given by

R[f,boundary]
il = −

∫ 1

−1

ti ψ
[f]
l J ds (3.97)

on non-Dirichlet, non-free surface boundaries3, and

R[f,boundary]
il =

∫ 1

−1

pext ni ψ
[f]
l J ds+

∫ 1

−1

1

Ca
(t1)i

dψ
[f]
l

ds
ds (3.98)

on free surface boundaries. Additionally, the two point contributions

R[f,boundary]
il = − 1

Ca
ψ

[f]
l mi

∣∣∣∣
C1

− 1

Ca
ψ

[f]
l mi

∣∣∣∣
C2

(3.99)

need to be added at the two contact points at either side of the free surface.

The kinematic condition

Finally, we require the elemental residual equation for the kinematic boundary condi-

tion. From section (3.2.1) we have that the (continuous) weak form is given by

R[h] =

∫
Ω

(
ui − St

∂Xi

∂t

)
ni φ

[f] dζ, (3.100)

and we shall assume from this point onwards that we are using the method of spines

as described in section 3.3.4 to update the bulk nodal positions. We can express the

rate of change of the position vector to the surface (3.89) as

∂X

∂t
=
∂h

∂t
j, (3.101)

3Note that we have used (3.11) to write (3.97) in terms of the traction ti.
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and from (3.49) we have

R[h] =
∞∑
l=1

Φ
[f]
l R

[h]
l (Uk1, Uk2, . . . ;H1, H2, . . .) , (3.102)

where

R[h]
l =

∫
Ω

(
ui ni − St

∂h

∂t
n2

)
ψ

[f]
l dζ. (3.103)

Finally, using the same mapping from local to global coordinates, J = dζ/ ds, the

elemental residual kinematic equation is given by

R[h]
l =

∫ 1

−1

(
ui ni − St

∂h

∂t
n2

)
ψ

[f]
l J ds. (3.104)

3.3.6 Implementation

In oomph-lib the get residual(...) and get jacobian(...) functions for the

Navier–Stokes equations are implemented in the NavierStokesEquations<DIM> class,

which is templated by the spatial dimension of the problem. As discussed in section

2.24, this class implements the governing equations but contains no specific geomet-

rical information: the concrete implementations of the (quadrilateral) Taylor–Hood

and Crouzeix–Raviart elements are therefore defined in QTaylorHoodElement<DIM>

and QCrouzeixRaviartElement<DIM> respectively5. Both of these classes inherit

from the NavierStokesEquations<DIM> and QElement<DIM,3> classes6, and are again

templated by the spatial dimension. The triangular counterparts of these elements,

TTaylorHoodElement<DIM> and TCrouzeixRaviartElement<DIM>, are also available.

From this point forward, however, we will only consider quadrilateral elements when

discussing implementation details since no triangular elements were used for any of

the computations presented in the current work.

The common interfaces and functions for all interface elements are implemented

in the FluidInterfaceElement base class. This class inherits from FaceElement,

a class which provides the generic functionality common to all elements which are

in some way ‘attached’ to the faces of higher-dimensional ‘bulk’ elements, and adds

functionality specific to fluid interface elements. Because the implementation of the

boundary conditions differs considerably depending on the spatial dimension of the

4In particular, see figure 2.3 on page 28 (and surrounding discussion).
5See section 3.3.2 for a discussion of these element types and the differences between them.
6Both of these elements are quadratic elements and hence have 3× 3 nodes.
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interface element, the kinematic condition and contributions made to the momentum

equations by the dynamic condition are implemented in classes that are derived from

FluidInterfaceElement. For two-dimensional Navier–Stokes problems (as discussed

for the majority of this chapter) the corresponding interface element is implemented

in the LineFluidInterfaceElement class.

Node-update methodology

Since the ‘bulk’ elements described above are to be used in free surface problems, they

require additional functionality which enables their nodal positions to be adjusted in

accordance with the motion of the interface. In section 3.3.4 we discussed two different

node-update strategies: (i) the method of spines, and (ii) a pseudo-solid technique,

and oomph-lib provides a straightforward approach to allow existing ‘standard’ ele-

ments to be augmented with the appropriate capabilities through the use of templated

‘wrapper’ classes. The SpineElement<BASIC ELEMENT> class takes an existing element

as a template parameter and adds the necessary functionality to allow the element to

be updated using the method of spines. This includes adding storage for a vector of

(pointers to) spines and a lookup scheme to establish which local equation numbers are

associated with each spine. The pseudo-solid counterpart to this element is defined in

the PseudoSolidNodeUpdateElement<BASIC ELEMENT,PSEUDOSOLID ELEMENT> class,

which takes two template parameters: the ‘basic’ existing element, as well as an ele-

ment which will be used to solve the solid mechanics equations on which this node-

update method is based.

The interface elements also require additional functionality that differs depending

on the chosen node-update strategy: oomph-lib therefore supplies the SpineLine-

FluidInterfaceElement and ElasticLineFluidInterfaceElement classes, both of

which inherit from the ‘standard’ LineFluidInterfaceElement class. It is the respon-

sibility of these classes to overload the function that determines the equation number

of the kinematic boundary condition associated with each local node depending on the

node-update strategy which has been employed.



Chapter 4

Applications of the

two-dimensional free surface

Navier–Stokes equations

Having formulated the weak forms of the governing equations and boundary conditions

for an arbitrary free surface Navier–Stokes problem in Cartesian coordinates, we shall

apply the newly-developed methodology to two specific applications:

(i) the relaxation of a fluid layer due to surface tension and gravitational forces, and

(ii) the relaxation of an interface between two fluids of differing material properties.

These particular problems are chosen in part because they can (in the limit of small

amplitudes) be validated against analytical predictions.

4.1 Relaxation oscillations of a fluid layer

We consider the problem sketched in figure 4.1, in which we have a single, incompress-

ible, viscous fluid layer governed by the Navier–Stokes equations

Re St
∂ui
∂t

+ Reuj
∂ui
∂xj

= − ∂p

∂xi
+

Re

Fr
Gi +

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.1)

and
∂uj
∂xj

= 0, (4.2)
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Figure 4.1: Sketch of a single layer free surface problem in two dimensions. The
equilibrium position of the interface corresponds to x2 = 1 and is represented by the
dashed line.

with gravity acting in the negative x2 direction. In order to facilitate the validation of

this problem against a corresponding analytical problem (which we will do in section

4.1.1) we wish to solve 4.1 and 4.2 in a truncated domain with boundary conditions

chosen so that this domain represents a ‘periodic box’. This is advantageous since it

allows the problem to be set up in such a way that (in the limit of small perturbations

away from the equilibrium position) we can solve for a single linearised separable

eigenmode of the system. With this in mind, we choose to solve the governing equations

in the domain x1 ∈ [0, L], x2 ∈ [0, 1] and apply non-penetration boundary conditions,

u1 = 0, on the left and right boundaries and the no-slip condition, u1 = u2 = 0, on

the bottom (solid) boundary. The free surface is located at X and is subject to the

kinematic condition, (
ui − St

∂Xi

∂t

)
ni = 0, (4.3)

and the dynamic condition,

τij nj =
1

Ca
κni − pext ni, (4.4)
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Figure 4.2: Pressure contour plot for the relaxing interface problem at time t = 0.01,
with superimposed velocity vectors. A mesh of 12 × 12 Crouzeix–Raviart elements
and a second-order-accurate BDF timestepping scheme with a non-dimensionalised
timestep of 0.0025 were used, for the parameters Re = Re St = Re /Fr = 5.0, Ca =
0.01, L = 1 and ε = 0.1. The (non-dimensional) pressure ranges from -244 to 281,
with areas of highest and lowest pressure shown in red and blue respectively. Note
that although the usual hydrostatic pressure variation is present, it cannot be seen
here since its contribution to the pressure field is sufficiently small in comparison to
the fluctuations close to the surface.

where the stress tensor is defined to be

τij = −p δij +

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.5)

This problem was solved numerically in oomph-lib using both Taylor–Hood and

Crouzeix–Raviart elements, using the methodology described in section 3.3.2. The

problem domain was discretised into a 12 × 12 element mesh whose deformation in

response to the motion of the free surface boundary was implemented by a spine-based

node update strategy (section 3.3.4). The time-derivatives were discretised using a

second-order-accurate BDF scheme with a (non-dimensionalised) timestep of 0.0025.
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Figure 4.3: Time-trace of the height of the fluid layer at the edge of the domain for
the parameters Re = Re St = Re /Fr = 5.0, Ca = 0.01 and ε = 0.1. A mesh of
12 × 12 Crouzeix–Raviart elements and a second-order-accurate BDF timestepping
scheme with a non-dimensionalised timestep of 0.0025 were used.

The free-surface boundary conditions (4.3 and 4.4) were implemented by attaching one-

dimensional face elements to the upper boundaries of the bulk elements adjacent to

the free boundary, as described in section 3.3.5. The initial configuration of the system

was such that the velocity everywhere was zero and the free surface was deformed by

X = x1 i + [1.0 + ε cos (2πx1/L)] j, (4.6)

where ε is a (small) parameter controlling the amplitude of the deflection away from

the equilibrium position. The simulation ran for 240 timesteps after being started

‘impulsively’: by this we mean that we assume that for all previous timesteps t < 0

the interface was ‘held’ in this initial static configuration. Figure 4.2 shows a contour

plot of the pressure distribution with superimposed velocity vectors at the fourth

timestep (t = 0.01), for the parameters Re = Re St = Re /Fr = 5.0, Ca = 0.01 and

L = 1. The initial amplitude of the free surface perturbation was 10% of the domain

width (ε = 0.1).

At time t ≤ 0 the free surface is fixed in its deformed shape, but as the simulation
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begins the restoring forces of surface tension and gravitational acceleration act to revert

it to its undeformed flat state. The surface oscillates up and down, but the motion is

damped as the energy in the system is dissipated through viscous forces. Eventually

the interface settles down to its equilibrium position. This viscous damping effect can

be seen in the time-trace of the height of the fluid layer at the edge of the domain

shown in figure 4.3.

4.1.1 Validation against an analytical dispersion relation

In order to validate the numerical simulations described above we shall compare them

to analytical predictions for the frequency and decay rate obtained from a linearised

analysis of the problem (valid for small amplitudes). We begin by considering the

problem sketched in figure 4.4, in which we are solving the Navier–Stokes equations

(4.1) and (4.2) in a domain chosen so that the equilibrium position of the free surface

corresponds to the line x2 = 0. The position of the free boundary is described by

defining its ‘height’, h, as a function of the horizontal coordinate, and the position

vector to the surface can therefore be expressed as

X(x1, t) = x1 i + h(x1, t) j. (4.7)

A unit vector normal to a line specified by x2 = h(x1, t) is given by

n =

[
1 +

(
∂h

∂x1

)2
]− 1

2 (
− ∂h

∂x1

i + j

)
, (4.8)

and the curvature can be expressed as

κ =
∂2h

∂x1
2

[
1 +

(
∂h

∂x1

)2
]− 3

2

. (4.9)

Using (4.7) and (4.8) the kinematic condition (4.3) then becomes

−u1
∂h

∂x1

+ u2 − St
∂h

∂t
= 0, (4.10)

and using (4.8) and (4.9) the dynamic condition (4.4) is given by

− ∂h

∂x1

τ11 + τ12 = − 1

Ca

∂h

∂x1

∂2h

∂x1
2

[
1 +

(
∂h

∂x1

)2
]− 3

2

(4.11)
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Figure 4.4: Sketch of the problem domain used to derive the dispersion relation for
a single-layer free surface problem. The problem is very similar to that described in
figure 4.1, except that in this case it is convenient to set the problem up so that the
equilibrium position of the interface corresponds to the line x2 = 0.

and

− ∂h

∂x1

τ21 + τ22 =
1

Ca

∂2h

∂x1
2

[
1 +

(
∂h

∂x1

)2
]− 3

2

, (4.12)

where the external pressure has been set to zero. The definition of the stress tensor

(4.5) can now be used to write these conditions in the form

∂h

∂x1

p− 2
∂h

∂x1

∂u1

∂x1

+
∂u1

∂x2

+
∂u2

∂x1

= − 1

Ca

∂h

∂x1

∂2h

∂x1
2

[
1 +

(
∂h

∂x1

)2
]− 3

2

(4.13)

and

− ∂h

∂x1

(
∂u2

∂x1

+
∂u1

∂x2

)
− p+ 2

∂u2

∂x2

=
1

Ca

∂2h

∂x1
2

[
1 +

(
∂h

∂x1

)2
]− 3

2

. (4.14)

A trivial solution to the governing equations and associated boundary conditions

described above is one in which the interface is undeformed, the velocity is zero every-

where and there is a hydrostatic pressure gradient. We shall call this the ‘base state’,

and define it to be

h̄ = 0, ū1 = ū2 = 0 and p̄ = −Re

Fr
x2. (4.15)
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Note that this is a steady solution of the governing equations. We then consider an

infinitesimal perturbation to this base state, so that the solution is given by

h = h̄+ ε ĥ, ui = ūi + ε ûi and p = p̄+ ε p̂, (4.16)

where ε � 1. Substituting (4.16) into the governing equations and neglecting orders

of ε2 and higher yields

Re St
∂ûi
∂t

= − ∂p̂

∂xi
+

∂

∂xj

(
∂ûi
∂xj

+
∂ûj
∂xi

)
(4.17)

and
∂ûj
∂xj

= 0, (4.18)

and we note that using (4.18) we can rewrite (4.17) as

Re St
∂ûi
∂t

= − ∂p̂

∂xi
+
∂2ûi
∂xj2

. (4.19)

The kinematic condition (4.10) is evaluated at the interface, h = ε ĥ, which gives

ε û2|x2=εĥ = ε St
∂ĥ

∂t
+ O(ε2), (4.20)

and we use Taylor’s theorem to express u2 as a power series about x2 = 0,

û2|x2=εĥ = û2|x2=0 + ε ĥ
∂û2

∂x2

∣∣∣∣
x2=0

+ O(ε2). (4.21)

This allows us to evaluate the kinematic condition at the undeformed position of the

free boundary,

û2|x2=0 = St
∂ĥ

∂t
, (4.22)

where we have neglected terms of order ε2 and higher. The dynamic conditions (4.13)

and (4.14) contain terms raised to negative powers, and we expand these using the

binomial theorem,

[
1 +

(
∂h

∂x1

)2
]− 3

2

=

1 + ε2

(
∂ĥ

∂x1

)2
− 3

2

= 1 + O(ε2), (4.23)

before using (4.16) and (4.15) to give

ε

[
∂û1

∂x2

∣∣∣∣
x2=εĥ

+
∂û2

∂x1

∣∣∣∣
x2=εĥ

]
= O(ε2) (4.24)
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and

ε

[
− p̂|x2=εĥ + 2

∂û2

∂x2

∣∣∣∣
x2=εĥ

+
Re

Fr
ĥ

]
=

ε

Ca

∂2ĥ

∂x1
2

+ O(ε2). (4.25)

As before we wish to evaluate these conditions at the undeformed interface position,

and therefore use Taylor’s theorem to give

∂û1

∂x2

∣∣∣∣
x2=0

+
∂û2

∂x1

∣∣∣∣
x2=0

= 0 (4.26)

and

− p̂|x2=0 + 2
∂û2

∂x2

∣∣∣∣
x2=0

+
Re

Fr
ĥ =

1

Ca

∂2ĥ

∂x1
2
, (4.27)

where we have again neglected terms of order ε2 and higher. Finally, we have the

following Dirichlet boundary conditions:

û1|x2=−1 = 0, (4.28)

û2|x2=−1 = 0, (4.29)

û1|x1=0 = 0 and (4.30)

û1|x1=L = 0. (4.31)

The governing equations (4.18 and 4.19) and boundary conditions (4.22 and 4.26–

4.31) have now been linearised and we propose a separable solution of the form

ĥ(x1, t) = H cos(2πkx1) eλt,

û1(x1, x2, t) = U(x2) sin(2πkx1) eλt,

û2(x1, x2, t) = V (x2) cos(2πkx1) eλt and

p̂(x1, x2, t) = P (x2) cos(2πkx1) eλt, (4.32)

where k = 1/L is the wavenumber. We note that this ansatz automatically satisfies the

conditions (4.30) and (4.31). Substituting (4.32) into the governing equations yields

Re StλU = 2πk P − 4π2k2 U +
d2U

dx2
2
, (4.33)

Re StλV = − dP

dx2

− 4π2k2 V +
d2V

dx2
2

(4.34)

and

2πk U +
dV

dx2

= 0. (4.35)
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Rearranging (4.35) for U and substituting into (4.33) gives

P =
1

4π2k2

d3V

dx2
3
−
(

1 +
Re Stλ

4π2k2

)
dV

dx2

, (4.36)

where we have rearranged for P . We then differentiate this expression with respect to

x2 and substitute it into (4.34) to obtain a fourth-order ODE in V ,

d4V

dx2
4
−
(
Re Stλ+ 8π2k2

) d2V

dx2
2

+ 4π2k2
(
Re Stλ+ 4π2k2

)
V = 0. (4.37)

As all the coefficients are constant we can find a general solution for V (x2) by assuming

a solution of the form V (x2) = Aemx2 , which gives rise to the following auxiliary

equation:

m4 −
(
Re Stλ+ 8π2k2

)
m2 + 4π2k2

(
Re Stλ+ 4π2k2

)
= 0. (4.38)

Provided that both the Reynolds and Strouhal numbers are non-zero the solutions of

(4.38) are m = ± 2πk, ±
√

Re Stλ+ 4π2k2, and hence the general solution of V (x2)

is given by

V (x2) = Ae2πkx2 +Be−2πkx2 + Ceβx2 +De−βx2 , (4.39)

where β =
√

Re Stλ+ 4π2k2. Using (4.35) and (4.36) we can also obtain general

solutions for U(x2),

U(x2) = −Ae2πkx2 +Be−2πkx2 − β

2πk
Ceβx2 +

β

2πk
De−βx2 , (4.40)

and P (x2),

P (x2) = −Re Stλ

2πk
Ae2πkx2 +

Re Stλ

2πk
Be−2πkx2 . (4.41)

A, B, C and D are constant coefficients to be determined from the boundary condi-

tions, and we therefore substitute the same ansatz (4.32) into (4.22), (4.26), (4.27),

(4.28) and (4.29) to obtain the separated forms of the kinematic,

V (0) = StH λ, (4.42)

dynamic,

dU

dx2

∣∣∣∣
x2=0

− 2πk V (0) = 0, (4.43)

−P (0) + 2
dV

dx2

∣∣∣∣
x2=0

+

(
4π2k2

Ca
+

Re

Fr

)
H = 0, (4.44)



CHAPTER 4. APPLICATIONS: TWO-DIMENSIONAL FREE SURFACE N–S 70

and Dirichlet conditions,

U(−1) = 0 and V (−1) = 0. (4.45)

We can now use the general solutions of U(x2), V (x2) and P (x2) in (4.42)–(4.45) to

obtain the following homogeneous linear system,

A+B + C +D − StλH = 0,

8π2k2 (A+B) +
(
Re Stλ+ 8π2k2

)
(C +D) = 0,

Re Stλ+ 8π2k2

2πk
(A−B) + 2 β (C −D) +

(
4π2k2

Ca
+

Re

Fr

)
H = 0,

−Ae−2πk +Be2πk − β

2πk
Ce−β +

β

2πk
Deβ = 0,

Ae−2πk +Be2πk + Ce−β +Deβ = 0. (4.46)

This system of five equations in the five unknowns A, B, C, D and H can be written

in the form

M



A

B

C

D

H


=



0

0

0

0

0


, (4.47)

where M is a 5 × 5 matrix whose entries are the coefficients of the unknowns. This

system only has a non-trivial solution if |M| = 0, and we solve this equation numer-

ically to obtain a dispersion relation λ(k). <(λ) is the growth rate of the wave and

=(λ) is its frequency, and this analytical result can now be compared to oomph-lib’s

computations for given values of the wavenumber k. An initial deflection amplitude of

1% of the domain width was chosen to be ‘sufficiently small’ that the nonlinear terms

would be negligible, and the growth rate and frequency of the oscillation was deter-

mined from a time-trace of the left-hand edge of the interface (such as the one plotted

in figure 4.3) using a Levenberg–Marquardt fitting technique [Press et al., 2007, sec

15.5.2]. The comparison is shown in figure 4.5, where the real and imaginary parts of

λ are plotted as lines and the points represent the results generated using oomph-lib.

The figure shows excellent agreement between the numerics and the linear theory. We
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Figure 4.5: Validation of the oomph-lib code (points) by comparison with an ana-
lytical dispersion relation (lines) for the two-dimensional single-layer interface prob-
lem. The oomph-lib simulations employ a 12× 12 element mesh and a second-order
BDF timestepper with a (non-dimensionalised) timestep of 0.0025, for the parameters
Re = Re St = Re /Fr = 5.0, Ca = 0.01 and ε = 0.01.

note that at higher wavenumbers the results generated by oomph-lib slightly drift

away from the analytical result: this is due to the fact that as we reduce the width

of the problem domain, but keep the amplitude of the initial perturbation constant,

we ‘steepen’ the free surface. Hence we would not expect the linear analysis to pro-

vide quite as good an approximation to the numerical solutions as the domain width

decreases.

4.1.2 Implementation

The problem discussed above was implemented as a demonstration code in oomph-lib,

and as such forms part of its range of self-test routines. The source file,

spine_single_layer.cc,

is located in the
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demo_drivers/navier_stokes/single_layer_free_surface/

directory. The same problem was also implemented using a pseudo-solid node-update

strategy, and its source file,

elastic_single_layer.cc,

is located in the same directory. This latter code takes advantage of oomph-lib’s

refineable element framework to (automatically) refine the mesh in regions where there

are steep velocity gradients. We note that there is excellent agreement between the

results generated by the two implementations of this problem. The pseudo-solid version

of this driver code was also comprehensively documented in an oomph-lib tutorial,

which can be found in the

doc/navier_stokes/single_layer_free_surface/

directory.

4.2 Relaxation oscillations of an interface between

two viscous fluids

Let us now extend the problem discussed above to one involving two immiscible,

incompressible viscous fluids separated by an interface, as sketched in figure 4.6. The

governing equations in the lower fluid are the same as before (4.1 and 4.2), but the

momentum equation in the upper fluid must be modified to include the ratios Rρ and

Rµ which describe the density and dynamic viscosity of this layer relative to that of

the lower layer:

Rρ Re St
∂ui
∂t

+Rρ Reuj
∂ui
∂xj

= − ∂p

∂xi
+Rρ

Re

Fr
Gi +Rµ

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.48)

As for the single-layer example, we wish to set up this problem in such a way that

it can be compared to analytical results which we will derive in section 4.2.1. We

facilitate this by choosing the domain to be that sketched in figure 4.6, and subject

the governing equations to the no-slip boundary conditions u1 = u2 = 0 on the top

and bottom solid boundaries and the non-penetration conditions u1 = ∂u2/∂x1 = 0

on the left and right boundaries. Gravity again acts in the negative x2 direction. The
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Figure 4.6: Sketch of a two layer interface problem in two dimensions. The equilibrium
position of the interface is located at x2 = 1 and is represented by the dashed line.

interface, located at X, is subject to the kinematic condition (4.3) and the dynamic

condition,

τ
[1]
ij n

[1]
j = τ

[2]
ij n

[1]
j +

1

Ca
κn

[1]
i , (4.49)

where the lower and upper fluids are denoted by [1] and [2] respectively, and the stress

tensor is defined as before (3.7).

This problem was solved numerically in oomph-lib using a very similar approach to

the previous example (discussed in section 4.1). The problem domain was discretised

into a 12 × 24 mesh of Crouzeix–Raviart elements. Taylor–Hood elements were not

used for this problem since they cannot accomodate the pressure jump at the interface.

A spine-based node update strategy was again used to deform the mesh in response
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to the motion of the interface, and the time-derivatives were again discretised using a

second-order-accurate BDF scheme with a (non-dimensionalised) timestep of 0.0025.

The simulation was started impulsively from the initial conditions of zero velocity

everywhere and an interfacial deformation as before (4.6), and ran for 240 timesteps.

The amplitude of the perturbation was again chosen to be 10% of the domain width,

and figure 4.7 shows a time-trace of the height of the fluid layer at the edge of the

domain for the parameters Re = Re St = Re /Fr = 5.0, Ca = 0.01, Rρ = 0.5,

Rµ = 0.1 and L = 1. The mechanics of the relaxation of the interface are the same

as in the single-layer example: surface tension and gravitational forces act to restore

it to its equilibrium position, with the energy in the system being damped by viscous

forces in the two layers.

time

H
ei
gh
to
ff
lu
id
la
ye
r

0 0.2 0.4 0.60.9

0.95

1

1.05

1.1

Figure 4.7: Time-trace of the height of the interface at the point x1 = 0 for the
parameters Re = Re St = Re /Fr = 5.0, Ca = 0.01, Rρ = 0.5, Rµ = 0.1, L = 1 and
ε = 0.1. A mesh of 12 × 24 Crouzeix–Raviart elements and a second-order-accurate
BDF timestepping scheme with a non-dimensionalised timestep of 0.0025 were used.
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4.2.1 Validation against an analytical dispersion relation

The simulations described above were again validated against an analytical test case in

a similar manner to those discussed in section 4.1. We consider a domain x1 ∈ [0, L],

x2 ∈ [−1, 1], with gravity acting in the negative x2 direction, in which we have an

interface corresponding to the line x2 = 0. We are solving the Navier–Stokes equations

in both regions of the domain, and for sufficiently small amplitudes, ε� 1, these can

be linearised about the trivial steady base state

h̄ = 0, ū
[1]
1 = ū

[1]
2 = ū

[2]
1 = ū

[2]
2 = 0,

p̄[1] = −R[1]
ρ

Re

Fr
(x2 + 1) and p̄[2] = −Re

Fr

(
R[1]
ρ +R[2]

ρ x2

)
(4.50)

to give

R[β]
ρ Re St

∂û
[β]
i

∂t
= −∂p̂

[β]

∂xi
+R[β]

µ

∂2û
[β]
i

∂xj2
(4.51)

and
∂û

[β]
j

∂xj
= 0, (4.52)

where β = 1, 2 and we note that R
[1]
ρ = R

[1]
µ = 1. The linearised form of the kinematic

boundary condition is as before,

û
[β]
2

∣∣∣
x2=0

= St
∂ĥ

∂t
, (4.53)

and the two components of the linearised dynamic condition are

R[1]
µ

∂û
[1]
1

∂x2

∣∣∣∣∣
x2=0

+R[1]
µ

∂û
[1]
2

∂x1

∣∣∣∣∣
x2=0

= R[2]
µ

∂û
[2]
1

∂x2

∣∣∣∣∣
x2=0

+R[2]
µ

∂û
[2]
2

∂x1

∣∣∣∣∣
x2=0

(4.54)

and

− p̂[1]
∣∣
x2=0

+ 2R[1]
µ

∂û
[1]
2

∂x2

∣∣∣∣∣
x2=0

= − p̂[2]
∣∣
x2=0

+ 2R[2]
µ

∂û
[2]
2

∂x2

∣∣∣∣∣
x2=0

+
1

Ca

∂2ĥ

∂x1
2
− Re

Fr

(
R[1]
ρ −R[2]

ρ

)
ĥ. (4.55)

Additionally we have the following Dirichlet conditions at the top and bottom solid

boundaries,

û
[1]
1

∣∣∣
x2=−1

= û
[1]
2

∣∣∣
x2=−1

= û
[2]
1

∣∣∣
x2=1

= û
[2]
2

∣∣∣
x2=1

= 0, (4.56)
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and we note that the horizontal component of the velocity must be continuous across

the interface:

û
[1]
1

∣∣∣
x2=0

= û
[2]
1

∣∣∣
x2=0

. (4.57)

This requirement is automatically satisfied by ensuring that the kinematic condition

(4.53) is evaluated for both fluids. Substitution of the ansatz

ĥ(x1, t) = H cos(2πkx1) eλt,

û
[β]
1 (x1, x2, t) = U [β](x2) sin(2πkx1) eλt,

û
[β]
2 (x1, x2, t) = V [β](x2) cos(2πkx1) eλt and

p̂[β](x1, x2, t) = P [β](x2) cos(2πkx1) eλt (4.58)
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into the linearised governing equations and boundary conditions yields the following

linear system,

A[1] +B[1] + C [1] +D[1] − StλH = 0,

A[2] +B[2] + C [2] +D[2] − StλH = 0,

R[1]
µ A

[1] +R[1]
µ B

[1] +

(
R

[1]
ρ Re Stλ

8π2k2
+R[1]

µ

)(
C [1] +D[1]

)
−R[2]

µ A
[2] −R[2]

µ B
[2] −

(
R

[2]
ρ Re Stλ

8π2k2
+R[2]

µ

)(
C [2] +D[2]

)
= 0,

(
R

[1]
ρ Re Stλ

2πk
+ 4πR[1]

µ k

)(
A[1] −B[1]

)
+ 2R[1]

µ a1

(
C [1] −D[1]

)
−

(
R

[2]
ρ Re Stλ

2πk
+ 4πR[2]

µ k

)(
A[2] −B[2]

)
− 2R[2]

µ a2

(
C [2] −D[2]

)
+

(
4π2k2

Ca
+

Re

Fr

(
R[1]
ρ −R[2]

ρ

))
H = 0,

−A[1]e−2πk +B[1]e2πk − a1

2πk
C [1]e−a1 +

a1

2πk
D[1]ea1 = 0,

A[1]e−2πk +B[1]e2πk + C [1]e−a1 +D[1]ea1 = 0,

−A[2]e2πk +B[2]e−2πk − a2

2πk
C [2]ea2 +

a2

2πk
D[2]e−a2 = 0,

A[2]e2πk +B[2]e−2πk + C [2]ea2 +D[2]e−a2 = 0,

−A[1] +B[1] − a1

2πk
C [1] +

a1

2πk
D[1] + A[2] −B[2] +

a2

2πk
C [2] − a2

2πk
D[2] = 0,

where aβ =
[(
R

[β]
ρ Re Stλ/R

[β]
µ

)
+ 4π2k2

]1/2

. The dispersion relation λ(k) can then be

obtained using the same procedure as before (section 4.1.1), and figure 4.8 shows a com-

parison between the real and imaginary parts of λ and the growth rate and frequency

of the oscillating interface as computed by oomph-lib for a range of wavenumbers k.

An initial deflection amplitude of 1% of the domain width was again chosen for this

validation exercise, and we note that, as in the single-layer example, there is excellent

agreement between the numerical results and those predicted by the linear theory.
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Figure 4.8: Validation of the oomph-lib code (points) by comparison with an an-
alytical dispersion relation (lines) for the two-dimensional two-layer interface prob-
lem. The oomph-lib simulations employ a 12× 24 element mesh and a second-order
BDF timestepper with a (non-dimensionalised) timestep of 0.0025, for the parameters
Re = Re St = Re /Fr = 5.0, Ca = 0.01, Rρ = 0.5, Rµ = 0.1 and ε = 0.01.

4.2.2 Implementation

As in the case of the single-layer example, the problem discussed above was also

implemented as two separate demonstration codes in oomph-lib, employing the two

different node-update strategies discussed earlier in this work. The source for the

spine-based implementation is located in

spine_two_layer_interface.cc,

and that for the pseudo-solid implementation is located in

elastic_two_layer_interface.cc.

Both of these codes are located in the

demo_drivers/navier_stokes/two_layer_interface/
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directory, and once again there is excellent agreement of the results generated by the

two implementations. The pseudo-solid version of this driver code was comprehensively

documented in an oomph-lib tutorial, which can be found in the

doc/navier_stokes/two_layer_interface/

directory.



Chapter 5

The free surface Navier–Stokes

equations in cylindrical geometries

At this point we will cease to consider problems formulated in Cartesian coordinate

systems, and instead take the principles introduced in the past two chapters and apply

them to problems formulated in cylindrical geometries. We begin our discussion by

examining the (strong) form of the governing equations and boundary conditions in

cylindrical polar coordinates in section 5.1. In order to solve problems governed by

these equations using the finite element method we must first derive their weak form,

and we present this formulation in the following way: first, we consider the weak form

of the Navier–Stokes equations in a general orthogonal coordinate system in section

5.2, before specialising to cylindrical geometries in section 5.3. We then derive the

weak form of the free boundary conditions in a general orthogonal coordinate system

in section 5.4. Finally, in section 5.5 we consider the special case of flows in cylindrical

coordinates which are independent of the azimuthal coordinate. We write down the

weak form of the governing equations (section 5.5.1) and the boundary conditions at a

free surface (section 5.5.2), before combining these in section 5.5.3. The complete set

of elemental residual equations for the finite element formulation of an axisymmetric

free surface Navier–Stokes problem is then presented in section 5.5.4.

80
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5.1 Governing equations

In a cylindrical polar coordinate system (r∗, z∗, θ∗) the Navier–Stokes equations (in

dimensional form) are given by the momentum equations

ρ

[
∂u∗r
∂t∗

+ u∗r
∂u∗r
∂r∗

+
u∗θ
r∗
∂u∗r
∂θ
− u∗θ

2

r∗
+ u∗z

∂u∗r
∂z∗

]
= −∂p

∗

∂r∗
+B∗r + ρG∗r + µ

[
∂2u∗r
∂r∗2

+
1

r∗
∂u∗r
∂r∗
− u∗r
r∗2

+
1

r∗2
∂2u∗r
∂θ2

+
∂2u∗r
∂z∗2

− 2

r∗2
∂u∗θ
∂θ

]
,

ρ

[
∂u∗z
∂t∗

+ u∗r
∂u∗z
∂r∗

+
u∗θ
r∗
∂u∗z
∂θ

+ u∗z
∂u∗z
∂z∗

]
= −∂p

∗

∂z∗
+B∗z + ρG∗z + µ

[
∂2u∗z
∂r∗2

+
1

r∗
∂u∗z
∂r∗

+
1

r∗2
∂2u∗z
∂θ2

+
∂2u∗z
∂z∗2

]
,

ρ

[
∂u∗θ
∂t∗

+ u∗r
∂u∗θ
∂r∗

+
u∗θ
r∗
∂u∗θ
∂θ

+
u∗ru

∗
θ

r∗
+ u∗z

∂u∗θ
∂z∗

]
= − 1

r∗
∂p∗

∂θ
+B∗θ + ρG∗θ + µ

[
∂2u∗θ
∂r∗2

+
1
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∂u∗θ
∂r∗
− u∗θ
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+
1

r∗2
∂2u∗θ
∂θ2

+
∂2u∗θ
∂z∗2

+
2

r∗2
∂u∗r
∂θ

]
,

(5.1)

and the continuity equation

∂u∗r
∂r∗

+
u∗r
r∗

+
1

r∗
∂u∗θ
∂θ

+
∂u∗z
∂z∗

= Q∗, (5.2)

where u∗r, u
∗
z and u∗θ are the radial, axial and azimuthal velocity components respec-

tively [Panton, 2005, pp. 781-5], and all other quantities are as defined in section

3.1. These equations can be non-dimensionalised using the same scalings as in the

Cartesian example (3.3) to give

Rρ Re

[
St
∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2

θ

r
+ uz

∂ur
∂z

]
= −∂p

∂r
+Br +Rρ

Re

Fr
Gr +Rµ

[
∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2

+
1

r2

∂2ur
∂θ2

+
∂2ur
∂z2

− 2

r2

∂uθ
∂θ

]
,

Rρ Re

[
St
∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

]
= −∂p

∂z
+Bz +Rρ

Re

Fr
Gz +Rµ

[
∂2uz
∂r2

+
1

r

∂uz
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+
1
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+
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]
,
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Rρ Re

[
St
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

+ uz
∂uθ
∂z

]
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r

∂p

∂θ
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[
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∂r2

+
1

r

∂uθ
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1

r2

∂2uθ
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+
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∂ur
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(5.3)

and
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

= Q, (5.4)

where the Reynolds (Re ), Strouhal (St ) and Froude (Fr ) numbers are as defined in

(3.6). The components of the (non-dimensional) stress tensor are

τrr = −p+ 2Rµ
∂ur
∂r

, τzz = −p+ 2Rµ
∂uz
∂z

,

τθθ = −p+ 2Rµ

(
1

r

∂uθ
∂θ

+
ur
r

)
, τrz = τzr = Rµ

(
∂ur
∂z

+
∂uz
∂r

)
, (5.5)

τrθ = τθr = Rµ

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
, τzθ = τθz = Rµ

(
1

r

∂uz
∂θ

+
∂uθ
∂z

)
,

and we can use this to rewrite (5.3) as

Rρ Re
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Rρ Re
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+ ur
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+
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+
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τrθ
r
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+
∂τzθ
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+
1

r

∂τθθ
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. (5.6)

As usual these equations will be augmented by Dirichlet boundary conditions for

some (or all) of the velocity components. In cases where there is a free boundary

between two fluids located at position X, we must (as before) apply both the dynamic

and kinematic conditions,

τ
[1]
ij n

[1]
j = τ

[2]
ij n

[1]
j +

1

Ca
κn

[1]
i (5.7)

and (
ui − St

∂Xi

∂t

)
ni = 0. (5.8)
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5.2 Weak form of the Navier–Stokes equations in

a general orthogonal coordinate system

To derive the weak form of equations (5.4) and (5.6), it turns out to be convenient

to first derive the weak form of the Navier–Stokes equations in a general orthogonal

coordinate system in which the (unit) basis vectors are e1, e2 and e3. If a = a1 e1 +

a2 e2 + a3 e3 and b = b1 e1 + b2 e2 + b3 e3 are two arbitrary vectors, then the tensor

product (or ‘dyad’) of a and b is written as a⊗ b and evaluated in the following way

[Lebedev and Cloud, 2003, p. 23]:

a⊗ b = (ai ei)⊗ (bj ej) = ai bj (ei ⊗ ej) . (5.9)

Written in dyadic form, the momentum and continuity equations are given by

Rρ Re St
∂u

∂t
+Rρ Re [u · (∇⊗ u)] = B +Rρ

Re

Fr
G +∇ · τ (5.10)

and

∇ · u = Q (5.11)

respectively, where the velocity is given by u = u1 e1 + u2 e2 + u3 e3 and the variable

and gravitational body forces are given by B = B1 e1 + B2 e2 + B3 e3 and G =

G1 e1 +G2 e2 +G3 e3. The stress tensor is defined by

τ = −p I +Rµ

[
(∇⊗ u) + (∇⊗ u)T

]
, (5.12)

where I is the identity matrix, and we note that the ∇⊗ u terms in (5.10) and (5.12)

are non-trivial due to the fact that in general the coordinate vectors ei depend on

position.

In preparation for the following discussion we shall define the product (from the

right) of a dyad a⊗ b by a vector c to be

(a⊗ b) · c = (b · c) a, (5.13)

and the product from the left to be

c · (a⊗ b) = (c · a) b. (5.14)
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It will also be useful to define the following product of two dyads a⊗ b and c⊗ d to

be

(a⊗ b) : (c⊗ d) = (a · d) (b · c) . (5.15)

To find the weak form of the momentum equations we first write (5.10) in residual

form before taking the dot product (on the right) with a vector test function φ[f].

Integrating over the entire domain then gives the weighted residual

R[f] =

∫∫∫
V

{
Rρ Re St

∂u

∂t
· φ[f] +Rρ Re [u · (∇⊗ u)] · φ[f]

−B · φ[f] −Rρ
Re

Fr
G · φ[f] − (∇ · τ ) · φ[f]

}
dV, (5.16)

and we recall from section 3.2 that we require R[f] to vanish for any choice of test

function. We now make use of the product rule for tensors to rewrite the stress tensor

term. The divergence of τ · φ[f] can be written as

∇ ·
(
τ · φ[f]

)
=
[
(∇ · τ ) · φ[f]

]
+
[
τ :
(
∇⊗ φ[f]

)]
, (5.17)

and therefore∫∫∫
V

(∇ · τ ) · φ[f] dV =

∫∫∫
V

{
∇ ·
(
τ · φ[f]

)
− τ :

(
∇⊗ φ[f]

)}
dV. (5.18)

The divergence theorem states that for any tensor field T,∫∫∫
V

∇ ·T dV =

∫∫
S

T · n dS, (5.19)

where S is the surface enclosing the volume V and n is an outward-pointing unit

normal to S [Riley et al., 2002, p. 803], and applying this to the second term in (5.18)

gives∫∫∫
V

(∇ · τ ) · φ[f] dV =

∫∫
S

(
τ · φ[f]

)
· n dS −

∫∫∫
V

τ :
(
∇⊗ φ[f]

)
dV. (5.20)

Substituting (5.20) into (5.16) yields the weak form of the momentum equations in a

general orthogonal coordinate system:

R[f] =

∫∫∫
V

{
Rρ Re St

∂u

∂t
· φ[f] +Rρ Re [u · (∇⊗ u)] · φ[f]

−B · φ[f] −Rρ
Re

Fr
G · φ[f] +

[
τ :
(
∇⊗ φ[f]

)]}
dV

−
∫∫

S

(
τ · φ[f]

)
· n dS = 0. (5.21)
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The three momentum equations are obtained by taking the three test functions φ[f] =

φ[f] e1, φ[f] = φ[f] e2 and φ[f] = φ[f] e3 and resolving (5.21) into components. We note

that if we choose a Cartesian basis where e1 = i, e2 = j, e3 = k and the gradient

operator is therefore defined to be

ej
∂

∂xj
, (5.22)

then by choosing a test function of the form φ[f] = φ[f] ei we recover the form of the

momentum equations given in (3.27):

R[f]
i =

∫∫∫
V

{
Rρ Re St

∂ui
∂t

φ[f] +Rρ Reuj
∂ui
∂xj

φ[f]

−Bi φ
[f] −Rρ

Re

Fr
Gi φ

[f] + τij
∂φ[f]

∂xj

}
dV

−
∫∫

S

τij nj φ
[f] dS = 0. (5.23)

Obtaining the weak form of the continuity equation is much more straightforward:

we multiply the residual form of (5.11) by a (scalar) test function φ[p] and integrate

over the domain to get

R[p] =

∫∫∫
V

(∇ · u−Q) φ[p] dV. (5.24)

Again, we note that by assuming a Cartesian basis we obtain the form of the continuity

equation given in (3.25):

R[p] =

∫∫∫
V

(
∂uj
∂xj
−Q

)
φ[p] dV. (5.25)

5.3 Weak form of the Navier–Stokes equations in

cylindrical polar coordinates

Having obtained the weak form of the Navier–Stokes equations in a general orthogonal

coordinate system it is straightforward to write them in terms of a cylindrical polar

coordinate system in which the radial, axial and azimuthal components are denoted by

r, z and θ respectively. The basis vectors for such a coordinate system can be written

in terms of the Cartesian basis vectors i, j and k in the following way:

e1 = er = cos θ i + sin θ j,

e2 = ez = k,

e3 = eθ = − sin θ i + cos θ j. (5.26)
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From (5.26) it is clear that

∂er
∂θ

= eθ and
∂eθ
∂θ

= −er, (5.27)

and all other derivatives of the basis vectors with respect to the coordinate directions

vanish. The gradient operator is defined to be

∇ = er
∂

∂r
+ ez

∂

∂z
+ eθ

1

r

∂

∂θ
, (5.28)

and the tensor product term ∇⊗ u is therefore given by

∇⊗ u =

(
er

∂

∂r
+ ez

∂

∂z
+ eθ

1

r

∂

∂θ

)
⊗ (ur er + uz ez + uθ eθ) (5.29)

=
∂ur
∂r

er ⊗ er +
∂uz
∂r

er ⊗ ez +
∂uθ
∂r

er ⊗ eθ

+
∂ur
∂z

ez ⊗ er +
∂uz
∂z

ez ⊗ ez +
∂uθ
∂z

ez ⊗ eθ

+

(
1

r

∂ur
∂θ
− uθ

r

)
eθ ⊗ er +

1

r

∂uz
∂θ

eθ ⊗ ez +

(
1

r

∂uθ
∂θ

+
ur
r

)
eθ ⊗ eθ.

Using (5.29) the stress tensor (5.12) can be written as

τ =

[
−p+ 2Rµ

∂ur
∂r

]
er ⊗ er +Rµ

[
∂uz
∂r

+
∂ur
∂z

]
er ⊗ ez

+Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
er ⊗ eθ +Rµ

[
∂ur
∂z

+
∂uz
∂r

]
ez ⊗ er

+

[
−p+ 2Rµ

∂uz
∂z

]
ez ⊗ ez +Rµ

[
∂uθ
∂z

+
1

r

∂uz
∂θ

]
ez ⊗ eθ

+Rµ

[
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

]
eθ ⊗ er +Rµ

[
1

r

∂uz
∂θ

+
∂uθ
∂z

]
eθ ⊗ ez

+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
eθ ⊗ eθ. (5.30)

From (5.14) we note that

ek · (ei ⊗ ej) = (ek · ei) ej, (5.31)

where i, j, k is any combination of r, z, θ, and we use this in combination with the fact

that the basis vectors are orthogonal,

ei · ej = δij ∀ i, j, (5.32)

to evaluate the advective term:

u · (∇⊗ u) =

[
ur
∂ur
∂r

+ uz
∂ur
∂z

+
uθ
r

∂ur
∂θ
− u2

θ

r

]
er

+

[
ur
∂uz
∂r

+ uz
∂uz
∂z

+
uθ
r

∂uz
∂θ

]
ez

+

[
ur
∂uθ
∂r

+ uz
∂uθ
∂z

+
uθ
r

∂uθ
∂θ

+
uruθ
r

]
eθ. (5.33)
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The three individual momentum equations are now obtained by taking the three

test functions φ[f] = φ[f] er, φ
[f] = φ[f] ez and φ[f] = φ[f] eθ and resolving (5.21) into

components.

Radial momentum equation (φ[f ] = φ[f ] er):

If we assume a test function of the form φ[f] = φ[f] er, the tensor product term ∇⊗φ[f]

is given by

∇⊗
(
φ[f] er

)
=
∂φ[f]

∂r
er ⊗ er +

∂φ[f]

∂z
ez ⊗ er +

1

r

∂φ[f]

∂θ
eθ ⊗ er +

φ[f]

r
eθ ⊗ eθ, (5.34)

and from (5.15) and (5.32) we note that

(ei ⊗ ej) : (ek ⊗ el) (5.35)

is only non-zero if i = l and j = k. Therefore using (5.30) we have

τ :
[
∇⊗

(
φ[f] er

)]
=

[
−p+ 2Rµ

∂ur
∂r

]
∂φ[f]

∂r
+Rµ

[
∂uz
∂r

+
∂ur
∂z

]
∂φ[f]

∂z

+Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
1

r

∂φ[f]

∂θ
+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
φ[f]

r
. (5.36)

From (5.13) we note that

(ei ⊗ ej) · ek = ei (ej · ek) (5.37)

where i, j, k is any combination of r, z, θ, and we use this in combination with (5.32)

to evaluate the
(
τ · φ[f]

)
term:

τ ·
(
φ[f] er

)
= φ[f]

{[
−p+ 2Rµ

∂ur
∂r

]
er +Rµ

[
∂ur
∂z

+
∂uz
∂r

]
ez

+Rµ

[
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

]
eθ

}
. (5.38)

Therefore we have

[
τ ·
(
φ[f] er

)]
· n = φ[f] (τrr nr + τrz nz + τrθ nθ) , (5.39)
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where τrr, τrz and τrθ are defined in (5.5). Finally, we substitute (5.33), (5.36) and

(5.39) into (5.21) to write down the radial momentum equation:

R[f]
r =

∫∫∫
V

{
Rρ Re St

∂ur
∂t

φ[f] +Rρ Re

[
ur
∂ur
∂r

+ uz
∂ur
∂z

+
uθ
r

∂ur
∂θ
− u2

θ

r

]
φ[f]

−Br φ
[f] −Rρ

Re

Fr
Gr φ

[f] +

[
−p+ 2Rµ

∂ur
∂r

]
∂φ[f]

∂r
+Rµ

[
∂uz
∂r

+
∂ur
∂z

]
∂φ[f]

∂z

+Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
1

r

∂φ[f]

∂θ
+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
φ[f]

r

}
dV

−
∫∫

S

[
τrr nr + τrz nz + τrθ nθ

]
φ[f] dS = 0. (5.40)

Axial momentum equation (φ[f ] = φ[f ] ez):

If we assume a test function of the form φ[f] = φ[f] ez, the tensor product term ∇⊗φ[f]

is given by

∇⊗
(
φ[f] ez

)
=
∂φ[f]

∂r
er ⊗ ez +

∂φ[f]

∂z
ez ⊗ ez +

1

r

∂φ[f]

∂θ
eθ ⊗ ez, (5.41)

and using (5.30) and (5.35) we have

τ :
[
∇⊗

(
φ[f] ez

)]
= Rµ

[
∂ur
∂z

+
∂uz
∂r

]
∂φ[f]

∂r
+

[
−p+ 2Rµ

∂uz
∂z

]
∂φ[f]

∂z

+Rµ

[
∂uθ
∂z

+
1

r

∂uz
∂θ

]
1

r

∂φ[f]

∂θ
. (5.42)

We use (5.37) and (5.32) to evaluate

τ ·
(
φ[f] ez

)
= φ[f]

{
Rµ

[
∂uz
∂r

+
∂ur
∂z

]
er +

[
−p+ 2Rµ

∂uz
∂z

]
ez

+Rµ

[
1

r

∂uz
∂θ

+
∂uθ
∂z

]
eθ

}
, (5.43)

and therefore we have

[
τ ·
(
φ[f] ez

)]
· n = φ[f] (τzr nr + τzz nz + τzθ nθ) , (5.44)
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where τzr, τzz and τzθ are defined in (5.5). Finally, we substitute (5.33), (5.42) and

(5.44) into (5.21) to write down the axial momentum equation:

R[f]
z =

∫∫∫
V

{
Rρ Re St

∂uz
∂t

φ[f] +Rρ Re

[
ur
∂uz
∂r

+ uz
∂uz
∂z

+
uθ
r

∂uz
∂θ

]
φ[f]

−Bz φ
[f] −Rρ

Re

Fr
Gz φ

[f] +Rµ

[
∂ur
∂z

+
∂uz
∂r

]
∂φ[f]

∂r

+

[
−p+ 2Rµ

∂uz
∂z

]
∂φ[f]

∂z
+Rµ

[
∂uθ
∂z

+
1

r

∂uz
∂θ

]
1

r

∂φ[f]

∂θ

}
dV

−
∫∫

S

[
τzr nr + τzz nz + τzθ nθ

]
φ[f] dS = 0. (5.45)

Azimuthal momentum equation (φ[f ] = φ[f ] eθ):

If we assume a test function of the form φ[f] = φ[f] eθ, the tensor product term ∇⊗φ[f]

is given by

∇⊗
(
φ[f] eθ

)
=
∂φ[f]

∂r
er ⊗ eθ +

∂φ[f]

∂z
ez ⊗ eθ +

1

r

∂φ[f]

∂θ
eθ ⊗ eθ −

φ[f]

r
eθ ⊗ er, (5.46)

and using (5.30) and (5.35) we have

τ :
[
∇⊗

(
φ[f] eθ

)]
= Rµ

[
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

]
∂φ[f]

∂r
+Rµ

[
1

r

∂uz
∂θ

+
∂uθ
∂z

]
∂φ[f]

∂z

+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
1

r

∂φ[f]

∂θ
−Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
φ[f]

r
. (5.47)

We use (5.37) and (5.32) to evaluate

τ ·
(
φ[f] eθ

)
= φ[f]

{
Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
er +Rµ

[
∂uθ
∂z

+
1

r

∂uz
∂θ

]
ez

+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
eθ

}
, (5.48)

and therefore we have

[
τ ·
(
φ[f] eθ

)]
· n = φ[f] (τθr nr + τθz nz + τθθ nθ) , (5.49)
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where τθr, τθz and τθθ are defined in (5.5). Finally, we substitute (5.33), (5.47) and

(5.49) into (5.21) to write down the azimuthal momentum equation:

R[f]
θ =

∫∫∫
V

{
Rρ Re St

∂uθ
∂t

φ[f] +Rρ Re

[
ur
∂uθ
∂r

+ uz
∂uθ
∂z

+
uθ
r

∂uθ
∂θ

+
uruθ
r

]
φ[f]

−Bθ φ
[f] −Rρ

Re

Fr
Gθ φ

[f] +Rµ

[
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

]
∂φ[f]

∂r

+Rµ

[
1

r

∂uz
∂θ

+
∂uθ
∂z

]
∂φ[f]

∂z
+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
1

r

∂φ[f]

∂θ

−Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
φ[f]

r

}
dV

−
∫∫

S

[
τθr nr + τθz nz + τθθ nθ

]
φ[f] dS = 0. (5.50)

Continuity equation:

From (5.24) and (5.28) we obtain the weak form of the continuity equation in a cylin-

drical polar coordinate system:

R[p] =

∫∫∫
V

(
∂ur
∂r

+
ur
r

+
∂uz
∂z

+
1

r

∂uθ
∂θ
−Q

)
φ[p] dV. (5.51)

5.4 Weak form of the free surface boundary condi-

tions in a general orthogonal coordinate system

In this section we shall derive the weak form of the conditions at a free boundary for

a general orthogonal coordinate system. In this case it is convenient to employ tensor

formulation, and therefore we begin by considering a general coordinate system ξi in

three dimensions (i = 1, 2, 3). If x(ξ1, ξ2, ξ3) is the position vector then the covariant

base vectors are defined as

gi =
∂x

∂ξi
, (5.52)

and a vector v can be written in the covariant basis as

v = vi gi = v1 ∂x

∂ξ1
+ v2 ∂x

∂ξ2
+ v3 ∂x

∂ξ3
, (5.53)

where v1, v2, v3 are the contravariant components of v [Riley et al., 2002, pp. 370-2].

The covariant components of the metric tensor g are defined by

gij = gi · gj, (5.54)
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and we then define the contravariant components of g such that gik gkj = δij, the

identity matrix. From this it follows that the contravariant base vectors can be found

using

gi = gij gj, (5.55)

and the same vector v can therefore be written in the contravariant basis as

v = vi g
i, (5.56)

where v1, v2, v3 are the covariant components of v [Riley et al., 2002, pp. 806-8].

Let us now consider a (two-dimensional) free surface described by the vector

X(ζ1, ζ2), where ζα are two intrinsic coordinates that parametrise the surface. The

covariant base vectors of the surface are then

aα =
∂X

∂ζα
(5.57)

and the covariant components of the metric surface tensor a are

aαβ = aα · aβ. (5.58)

As before the contravariant components of a are defined such that aαγ aγβ = δαβ , and

the contravariant base vectors of the surface are given by

aα = aαβ aβ. (5.59)

The dynamic condition

From (3.18) we have the dynamic boundary condition in the case where the fluid

‘above’ the free surface is considered to be totally inviscid

τ ij nj =
κ

Ca
ni − pext n

i, (5.60)

where τ ij are the contravariant components of the stress tensor and n = ni gi = nj gj

is the (unit) normal vector to the surface written in terms of the global base vectors.

Multiplying by a (scalar) test function φ[f] and integrating over the surface Ω yields∫∫
Ω

τ ij nj φ
[f] dS =

1

Ca

∫∫
Ω

κni φ[f] dS −
∫∫

Ω

pext n
i φ[f] dS, (5.61)

and, as discussed in section 3.2.1, this condition can be used in the surface integral

of the normal stress, provided that the stress-divergence form of the bulk equations is
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used. If we express the i-th momentum equation (i = 1, 2, 3) as a sum of bulk terms,

R[f,bulk]
i , terms arising from integrals over the free surface, R[f,fs]

i , and terms arising

from integrals over the rest of the domain boundary, R[f,non-fs]
i , so that

R[f]
i = R[f,bulk]

i +R[f,fs]
i +R[f,non-fs]

i , (5.62)

then the integral over the free surface can be written as

R[f,fs]
i =

1

Ca

∫∫
Ω

κni φ[f] dS −
∫∫

Ω

pext n
i φ[f] dS. (5.63)

From [Green and Zerna, 1954, eqns. 1.13.34 and 1.13.47] we have that the product

of the mean curvature of the surface with the normal vector is given by

κn =
∂aα

∂ζα
+ Γ̄ααβ aβ, (5.64)

where Γ̄ is the Christoffel symbol of the second kind with respect to the surface and,

using [Green and Zerna, 1954, eqn. 1.13.36], can be expressed in terms of the compo-

nents of the metric surface tensor:

Γ̄ααβ =
1

2
aαγ
(
∂aαγ
∂ζβ

+
∂aβγ
∂ζα

− ∂aαβ
∂ζγ

)
=

1

2
aαγ

∂aαγ
∂ζβ

. (5.65)

If a is the determinant of the metric surface tensor then it follows that

∂a

∂aαβ
= a aαβ (5.66)

and
∂
√
a

∂ζα
=

1

2
√
a

∂a

∂ζα
. (5.67)

Using these identities in (5.65) we have

Γ̄ααβ =
1

2a

∂a

∂aαγ

∂aαγ
∂ζβ

=
1

2a

∂a

∂ζβ
=

1√
a

∂
√
a

∂ζβ
, (5.68)

which allows us to rewrite (5.64) as

κn =
1√
a

∂ (
√
a aα)

∂ζα
. (5.69)

The components of the normal vector in the global covariant basis are found by taking

the scalar product of n with the global contravariant base vectors,

κni =
1√
a

∂ (
√
a aα)

∂ζα
· gi, (5.70)
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and by using the product rule on ∂
∂ζα

(√
a aα · gi φ[f]

)
we have

1

Ca

∫∫
Ω

κni φ[f] dS =
1

Ca

∫∫
Ω

1√
a

∂
(√

a aα · gi φ[f]
)

∂ζα
dS

− 1

Ca

∫∫
Ω

aα · ∂gi

∂ζα
φ[f] dS − 1

Ca

∫∫
Ω

aα · gi ∂φ
[f]

∂ζα
dS. (5.71)

The surface divergence theorem is given by [Green and Zerna, 1954, eqn. 1.13.61],

which states that if u = uα aα is the unit outward normal in the surface Ω to the

closed curve ∂Ω that marks the surface’s boundary, then∫∫
Ω

1√
a

∂ (
√
a vα)

∂ζα
dS =

∮
∂Ω

uα v
α dλ, (5.72)

where v = vα aα is any vector in Ω. Applying (5.72) to the first integral in the

right-hand side of (5.71) gives

1

Ca

∫∫
Ω

κni φ[f] dS =
1

Ca

∮
∂Ω

uα aα · gi φ[f] dλ

− 1

Ca

∫∫
Ω

aα · ∂gi

∂ζα
φ[f] dS − 1

Ca

∫∫
Ω

aα · gi ∂φ
[f]

∂ζα
dS, (5.73)

and we note that

uα aα · gi = u · gi = mi, (5.74)

where mi are the components of the outward normal to ∂Ω in the global covariant

basis. The unit vector m = mi gi is therefore tangent to the surface Ω and normal to

its bounding curve ∂Ω. The final integrand of (5.73) can alternatively be expressed as(
aα

∂φ[f]

∂ζα

)
· gi =

(
a1 ∂φ

[f]

∂ζ1
+ a2 ∂φ

[f]

∂ζ2

)
· gi, (5.75)

and then (5.59) is used to write the terms on the left-hand side of the scalar product

in (5.75) in the covariant basis,

(
a11 a1 + a12 a2

) ∂φ[f]

∂ζ1
+
(
a21 a1 + a22 a2

) ∂φ[f]

∂ζ2
. (5.76)

Using aαγ aγβ = δαβ it is straightforward to show that

a11 a = a22, a12 a = −a12, a21 a = −a21 and a22 a = a11, (5.77)

and hence (5.76) becomes

a1

a

(
a22

∂φ[f]

∂ζ1
− a21

∂φ[f]

∂ζ2

)
+

a2

a

(
a11

∂φ[f]

∂ζ2
− a12

∂φ[f]

∂ζ1

)
. (5.78)
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Using (5.74), (5.75), (5.78) and (5.73) gives

1

Ca

∫∫
Ω

κni φ[f] dS =
1

Ca

∮
∂Ω

mi φ[f] dλ− 1

Ca

∫∫
Ω

aα · ∂gi

∂ζα
φ[f] dS

− 1

Ca

∫∫
Ω

1

a

[
gi · a1

(
a22

∂φ[f]

∂ζ1
− a21

∂φ[f]

∂ζ2

)
+ gi · a2

(
a11

∂φ[f]

∂ζ2
− a12

∂φ[f]

∂ζ1

)]
dS,

(5.79)

and this can now be combined with (5.63) to write the integral over the free surface

as

R[f,fs]
i = −

∫∫
Ω

pext n
i φ[f] dS +

1

Ca

∮
∂Ω

mi φ[f] dλ− 1

Ca

∫∫
Ω

aα · ∂gi

∂ζα
φ[f] dS

− 1

Ca

∫∫
Ω

1

a

[
gi · a1

(
a22

∂φ[f]

∂ζ1
− a21

∂φ[f]

∂ζ2

)
+ gi · a2

(
a11

∂φ[f]

∂ζ2
− a12

∂φ[f]

∂ζ1

)]
dS.

(5.80)

The kinematic condition

If we write the velocity u and the position vector to the free surface X in terms of the

global contravariant basis,

u = ui g
i and X = Xi g

i, (5.81)

then the kinematic boundary condition (5.8) is given by

ui n
i − St

∂Xi

∂t
ni = 0. (5.82)

The weighted residual is therefore found by multiplying by a test function φ[f] and

integrating over the surface Ω to give

R[h] =

∫∫
Ω

(
ui n

i − St
∂Xi

∂t
ni
)
φ[f] dS (5.83)

5.5 Specialisation to axisymmetric flows

5.5.1 Governing equations

We shall now consider the weak form of the governing equations for the special case of

an axisymmetric flow that is independent of θ, and hence ur, uz, uθ and p are functions
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of r, z and t only. The weak form of the radial, axial and azimuthal momentum

equations therefore become

R[f]
r =

∫∫∫
V

{
Rρ Re St

∂ur
∂t

φ[f] +Rρ Re

[
ur
∂ur
∂r

+ uz
∂ur
∂z
− u2

θ

r

]
φ[f]

−Br φ
[f] −Rρ

Re

Fr
Gr φ

[f] +

[
−p+ 2Rµ

∂ur
∂r

]
∂φ[f]

∂r

+Rµ

[
∂uz
∂r

+
∂ur
∂z

]
∂φ[f]

∂z
+

[
−p+

2Rµ

r
ur

]
φ[f]

r

}
dV

−
∫∫

S

[
τrr nr + τrz nz + τrθ nθ

]
φ[f] dS = 0, (5.84)

R[f]
z =

∫∫∫
V

{
Rρ Re St

∂uz
∂t

φ[f] +Rρ Re

[
ur
∂uz
∂r

+ uz
∂uz
∂z

]
φ[f] −Bz φ

[f]

−Rρ
Re

Fr
Gz φ

[f] +Rµ

[
∂ur
∂z

+
∂uz
∂r

]
∂φ[f]

∂r
+

[
−p+ 2Rµ

∂uz
∂z

]
∂φ[f]

∂z

}
dV

−
∫∫

S

[
τzr nr + τzz nz + τzθ nθ

]
φ[f] dS = 0 (5.85)

and

R[f]
θ =

∫∫∫
V

{
Rρ Re St

∂uθ
∂t

φ[f] +Rρ Re

[
ur
∂uθ
∂r

+ uz
∂uθ
∂z

+
uruθ
r

]
φ[f]

−Bθ φ
[f] −Rρ

Re

Fr
Gθ φ

[f] +Rµ

[
∂uθ
∂r
− uθ

r

]
∂φ[f]

∂r

+Rµ
∂uθ
∂z

∂φ[f]

∂z
−Rµ

[
∂uθ
∂r
− uθ

r

]
φ[f]

r

}
dV

−
∫∫

S

[
τθr nr + τθz nz + τθθ nθ

]
φ[f] dS = 0, (5.86)

where the components of the stress tensor are given by

τrr = −p+ 2Rµ
∂ur
∂r

, τzz = −p+ 2Rµ
∂uz
∂z

,

τθθ = −p+ 2Rµ
ur
r
, τrz = τzr = Rµ

(
∂ur
∂z

+
∂uz
∂r

)
, (5.87)

τrθ = τθr = Rµ

(
∂uθ
∂r
− uθ

r

)
, τzθ = τθz = Rµ

∂uθ
∂z

.

The weak form of the continuity equation for an axisymmetric flow is given by

R[p] =

∫∫∫
V

(
∂ur
∂r

+
ur
r

+
∂uz
∂z
−Q

)
φ[p] dV. (5.88)

The above equations depend spatially on r and z only, and therefore the computa-

tional domain is two-dimensional. We note, however, that in general the azimuthal
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component of the velocity is non-zero: hence despite only having two spatial directions

we retain the three velocity components. In later chapters we will sometimes refer to

this azimuthal component as the ‘swirl’.

5.5.2 Free surface boundary conditions

In section 5.4 we described the surface integral terms for a general coordinate system

ξi, and we shall now write down their form for an axisymmetric surface in cylindrical

polar coordinates. If ξ1 = r, ξ2 = z and ξ3 = θ then the position vector can be written

in terms of the Cartesian basis vectors i, j and k as

x(r, z, θ) = r cos θ i + r sin θ j + z k. (5.89)

From (5.52) the covariant base vectors are given by

g1 = cos θ i + sin θ j,

g2 = k,

g3 = −r sin θ i + r cos θ j, (5.90)

and the non-zero covariant components of the global metric tensor (5.54) are

g11 = 1, g22 = 1 and g33 = r2. (5.91)

Its determinant is r2 and we can find the contravariant components of g by inverting

the matrix made up of the covariant components. We therefore have

g11 = 1, g22 = 1 and g33 =
1

r2
, (5.92)

which, using (5.55), allows us to construct the contravariant base vectors

g1 = cos θ i + sin θ j,

g2 = k,

g3 = −1

r
sin θ i +

1

r
cos θ j. (5.93)

Let us now consider an axisymmetric surface S in a cylindrical polar coordinate

system. We shall choose to parameterise it by θ and another surface coordinate,

η, so that (in the notation introduced in section 5.4) ζ1 = η and ζ2 = θ. If we
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establish an explicit connection between the global coordinate system, ξi, and the

surface coordinates, ζα, then we can define the Eulerian position vector to the surface

X. We therefore let ξ1 = R(ζ1) = R(η), ξ2 = Z(ζ1) = Z(η) and ξ3 = ζ2 = θ, and

write down the position vector

X(η, θ) = R(η) cos θ i +R(η) sin θ j + Z(η) k. (5.94)

It follows from (5.57) that the covariant base vectors of the surface are

a1 =
dR

dη
cos θ i +

dR

dη
sin θ j +

dZ

dη
k,

a2 = −R sin θ i +R cos θ j, (5.95)

and the non-zero covariant components of the metric surface tensor (5.58) are

a11 = (∆S)2 and a22 = R2, (5.96)

where

(∆S)2 =

(
dR

dη

)2

+

(
dZ

dη

)2

. (5.97)

The determinant of the metric surface tensor is

a = R2 (∆S)2 , (5.98)

and hence from (5.77) its non-zero contravariant components are

a11 =
1

(∆S)2 and a22 =
1

R2
. (5.99)

From (5.59) we can now construct the contravariant base vectors of the surface,

a1 =
1

(∆S)

dR

dη
cos θ i +

1

(∆S)

dR

dη
sin θ j +

1

(∆S)

dZ

dη
k,

a2 = − 1

R
sin θ i +

1

R
cos θ j. (5.100)

The derivatives of the global contravariant base vectors gi with respect to the surface

coordinates ζα are

∂g1

∂η
= 0,

∂g2

∂η
= 0,

∂g3

∂η
=

1

R2

dR

dη
sin θ i− 1

R2

dR

dη
cos θ j,

∂g1

∂θ
= − sin θ i + cos θ j,

∂g2

∂θ
= 0,

∂g3

∂θ
= − 1

R
cos θ i− 1

R
sin θ j.

(5.101)
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The dynamic condition

In order to evaluate (5.80) for a cylindrical polar system, we need to construct the

following terms,

aα · ∂g1

∂ζα
=

1

R
,

aα · ∂g2

∂ζα
= 0,

aα · ∂g3

∂ζα
= 0,

g1 · a1 =
dR

dη
,

g2 · a1 =
dZ

dη
,

g3 · a1 = 0,

g1 · a2 = 0,

g2 · a2 = 0,

g3 · a2 = 1,

(5.102)

and the contribution to the i-th momentum equation from the integral over the free

surface is therefore given by

R[f,fs]
i = −

∫∫
Ω

pext n
i φ[f] dS +

1

Ca

∮
∂Ω

mi φ[f] dλ− 1

Ca

∫∫
Ω

aα · ∂gi

∂ζα
φ[f] dS

− 1

Ca

∫∫
Ω

gi · a1

(
1

(∆S)2

dφ[f]

dη

)
dS. (5.103)

Considering each component separately and using (5.102) gives

R[f,fs]
1 = −

∫∫
Ω

pext n
1 φ[f] dS +

1

Ca

∮
∂Ω

m1 φ[f] dλ

− 1

Ca

∫∫
Ω

[
φ[f]

R
+

1

(∆S)2

dR

dη

dφ[f]

dη

]
dS,

R[f,fs]
2 = −

∫∫
Ω

pext n
2 φ[f] dS +

1

Ca

∮
∂Ω

m2 φ[f] dλ− 1

Ca

∫∫
Ω

1

(∆S)2

dZ

dη

dφ[f]

dη
dS,

R[f,fs]
3 = −

∫∫
Ω

pext n
3 φ[f] dS +

1

Ca

∮
∂Ω

m3 φ[f] dλ (5.104)

but we note that in order to be consistent with the form of the momentum equations

derived in section 5.3 we require the components of the vectors n and m to be described

with respect to the er, ez and eθ basis defined in (5.26). This basis is related to the

current basis gi by

ej = Sij gi, (5.105)

where j = 1, 2, 3 corresponds to r, z and θ respectively and S is the transformation

matrix

S =


1 0 0

0 1 0

0 0 1/r

 . (5.106)
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The coefficients of n and m with respect to er, ez and eθ are therefore given by

n′j =
(
S−1

)
ij
ni and m′j =

(
S−1

)
ij
mi, (5.107)

where S−1 is the inverse of S, and hence1

nr = n1,

mr = m1,

nz = n2,

mz = m2,

nθ = r n3,

mθ = rm3,
(5.108)

which allows us to rewrite (5.104) as

R[f,fs]
r = −

∫∫
Ω

pext nr φ
[f] dS +

1

Ca

∮
∂Ω

mr φ
[f] dλ

− 1

Ca

∫∫
Ω

[
φ[f]

R
+

1

(∆S)2

dR

dη

dφ[f]

dη

]
dS,

R[f,fs]
z = −

∫∫
Ω

pext nz φ
[f] dS +

1

Ca

∮
∂Ω

mz φ
[f] dλ− 1

Ca

∫∫
Ω

1

(∆S)2

dZ

dη

dφ[f]

dη
dS,

R[f,fs]
θ = −

∫∫
Ω

pext nθ
r

φ[f] dS +
1

Ca

∮
∂Ω

mθ

r
φ[f] dλ. (5.109)

Let us now consider the position vector to the free surface (5.94) written in terms

of the er, ez and eθ basis defined in (5.26):

X(η, θ) = R(η) er + Z(η) ez (5.110)

A unit tangent vector to the surface in the direction of increasing η is given by

t =

[
∂X

∂η
· ∂X

∂η

]− 1
2 ∂X

∂η
=

1

(∆S)

[
dR

dη
er +

dZ

dη
ez

]
, (5.111)

and therefore

tr =
1

(∆S)

dR

dη
and tz =

1

(∆S)

dZ

dη
. (5.112)

At any point on Ω a unit vector normal to the surface can be found using

n =
[

(a1 × a2) · (a1 × a2)
]− 1

2
(a1 × a2) , (5.113)

and using (5.95) we therefore have

n =
1

(∆S)

[
−dZ

dη
cos θ i− dZ

dη
sin θ j +

dR

dη
k

]
, (5.114)

1We note that since this coordinate system is orthonormal, there is no difference between the co-
and contravariant components of either n or m.
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and hence from (5.26) obtain

nr = − 1

(∆S)

dZ

dη
= −tz, nz =

1

(∆S)

dR

dη
= tr, nθ = 0. (5.115)

We also note that as the surface is independent of θ, the azimuthal component of m

must be equal to zero. Using (5.112) and (5.115) we can therefore rewrite (5.109) as

R[f,fs]
r =

∫∫
Ω

pext tz φ
[f] dS +

1

Ca

∮
∂Ω

mr φ
[f] dλ

− 1

Ca

∫∫
Ω

[
φ[f]

R
+

1

(∆S)
tr

dφ[f]

dη

]
dS,

R[f,fs]
z = −

∫∫
Ω

pext tr φ
[f] dS +

1

Ca

∮
∂Ω

mz φ
[f] dλ− 1

Ca

∫∫
Ω

1

(∆S)
tz

dφ[f]

dη
dS,

R[f,fs]
θ = 0. (5.116)

The kinematic condition

The components of the velocity u and the position vector to the free surface X with

respect to the er, ez and eθ basis defined in (5.26) are given by

u′j =
(
S−1

)
ij
ui and X ′j =

(
S−1

)
ij
Xi, (5.117)

where S is the transformation matrix that relates this basis to the global contravariant

basis (5.93) and is defined by

S =


1 0 0

0 1 0

0 0 r

 . (5.118)

The weak form of the kinematic boundary condition is therefore given by

R[h] =

∫∫
Ω

[
ur nr + uz nz + uθ nθ

− St
∂Xr

∂t
nr − St

∂Xz

∂t
nz − St

∂Xθ

∂t
nθ

]
φ[f] dS. (5.119)

From (5.110) we can write the position vector to the surface at time t,

X(η, θ, t) = R(η, t) er + Z(η, t) ez, (5.120)

and therefore using (5.115) we can rewrite (5.119) as

R[h] =

∫∫
Ω

[
−ur tz + uz tr + St

∂R

∂t
tz − St

∂Z

∂t
tr

]
φ[f] dS. (5.121)
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5.5.3 Complete weak form

Having derived the weak form of the bulk axisymmetric Navier–Stokes equations in

section 5.5.1 and the contributions made by a free boundary in section 5.5.2, we can

now combine these results to write down the complete set of residual equations for an

axisymmetric free surface problem. We note that the integral of an arbitrary function

f(x, y, z) over a surface S can alternatively be written as [Stewart, 2012, eqn. 16.7.2]∫∫
S

f(x, y, z) dS =

∫∫
S

f(X(ζ1, ζ2)) |a1 × a2| dζ1 dζ2, (5.122)

and from (5.95) we have

|a1 × a2| = R (∆S) . (5.123)

Combining (5.84)–(5.86) with (5.116) yields the three momentum equations,

R[f]
r =

∫∫∫
V

{
Rρ Re St r

∂ur
∂t

φ[f] +Rρ Re

[
rur

∂ur
∂r

+ ruz
∂ur
∂z
− u2

θ

]
φ[f]

−rBr φ
[f] −Rρ

Re

Fr
r Gr φ

[f] +

[
−rp+ 2Rµr

∂ur
∂r

]
∂φ[f]

∂r

+Rµ

[
r
∂uz
∂r

+ r
∂ur
∂z

]
∂φ[f]

∂z
+

[
−p+

2Rµ

r
ur

]
φ[f]

}
dr dz dθ

−
∫∫

S/Ω

r (∆S) tr φ
[f] dη dθ −

∫∫
Ω

r (∆S) pext tz φ
[f] dη dθ

− 1

Ca

∮
∂Ω

mr φ
[f] dλ+

1

Ca

∫∫
Ω

[
φ[f] (∆S) + r tr

dφ[f]

dη

]
dη dθ, (5.124)

R[f]
z =

∫∫∫
V

{
Rρ Re St r

∂uz
∂t

φ[f] +Rρ Re

[
rur

∂uz
∂r

+ ruz
∂uz
∂z

]
φ[f]

−rBz φ
[f] −Rρ

Re

Fr
r Gz φ

[f] +Rµ

[
r
∂ur
∂z

+ r
∂uz
∂r

]
∂φ[f]

∂r

+

[
−rp+ 2Rµr

∂uz
∂z

]
∂φ[f]

∂z

}
dr dz dθ

−
∫∫

S/Ω

r (∆S) tz φ
[f] dη dθ +

∫∫
Ω

r (∆S) pext tr φ
[f] dη dθ

− 1

Ca

∮
∂Ω

mz φ
[f] dλ+

1

Ca

∫∫
Ω

r tz
dφ[f]

dη
dη dθ (5.125)
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and

R[f]
θ =

∫∫∫
V

{
Rρ Re St r

∂uθ
∂t

φ[f] +Rρ Re

[
rur

∂uθ
∂r

+ ruz
∂uθ
∂z

+ uruθ

]
φ[f]

−rBθ φ
[f] −Rρ

Re

Fr
r Gθ φ

[f] +Rµ

[
r
∂uθ
∂r
− uθ

]
∂φ[f]

∂r

+Rµr
∂uθ
∂z

∂φ[f]

∂z
−Rµ

[
∂uθ
∂r
− uθ

r

]
φ[f]

}
dr dz dθ

−
∫∫

S/Ω

r (∆S) tθ φ
[f] dη dθ, (5.126)

where we note that we have replaced R(η) in the free surface terms with the global

radial coordinate r since they are precisely the same quantity2. From (5.88) we have

the continuity equation,

R[p] =

∫∫∫
V

(
r
∂ur
∂r

+ ur + r
∂uz
∂z
− r Q

)
φ[p] dr dz dθ, (5.127)

and from (5.121) the kinematic boundary condition,

R[h] =

∫∫
Ω

r (∆S)

[
−ur tz + uz tr + St

∂r

∂t
tz − St

∂z

∂t
tr

]
φ[f] dη dθ, (5.128)

where again we have used the fact that ξ1 = r = R(η) and ξ2 = z = Z(η) on the

boundary.

We integrate with respect to θ between zero and 2π to obtain

R[f]
r =

∫∫
D

{
Rρ Re St r

∂ur
∂t

φ[f] +Rρ Re

[
rur

∂ur
∂r

+ ruz
∂ur
∂z
− u2

θ

]
φ[f]

−rBr φ
[f] −Rρ

Re

Fr
r Gr φ

[f] +

[
−rp+ 2Rµr

∂ur
∂r

]
∂φ[f]

∂r

+Rµ

[
r
∂uz
∂r

+ r
∂ur
∂z

]
∂φ[f]

∂z
+

[
−p+

2Rµ

r
ur

]
φ[f]

}
dr dz

−
∫
∂D/Ω

r (∆S) tr φ
[f] dη −

∫
Ω

r (∆S) pext tz φ
[f] dη

− 1

Ca

[
rmr φ

[f]
]
∂Ω

+
1

Ca

∫
Ω

[
φ[f] (∆S) + r tr

dφ[f]

dη

]
dη, (5.129)

2Recall that we defined ξ1 = r = R(η) in section 5.5.2.
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R[f]
z =

∫∫
D

{
Rρ Re St r

∂uz
∂t

φ[f] +Rρ Re

[
rur

∂uz
∂r

+ ruz
∂uz
∂z

]
φ[f]

−rBz φ
[f] −Rρ

Re

Fr
r Gz φ

[f] +Rµ

[
r
∂ur
∂z

+ r
∂uz
∂r

]
∂φ[f]

∂r

+

[
−rp+ 2Rµr

∂uz
∂z

]
∂φ[f]

∂z

}
dr dz

−
∫
∂D/Ω

r (∆S) tz φ
[f] dη +

∫
Ω

r (∆S) pext tr φ
[f] dη

− 1

Ca

[
rmz φ

[f]
]
∂Ω

+
1

Ca

∫
Ω

r tz
dφ[f]

dη
dη, (5.130)

R[f]
θ =

∫∫
D

{
Rρ Re St r

∂uθ
∂t

φ[f] +Rρ Re

[
rur

∂uθ
∂r

+ ruz
∂uθ
∂z

+ uruθ

]
φ[f]

−rBθ φ
[f] −Rρ

Re

Fr
r Gθ φ

[f] +Rµ

[
r
∂uθ
∂r
− uθ

]
∂φ[f]

∂r

+Rµr
∂uθ
∂z

∂φ[f]

∂z
−Rµ

[
∂uθ
∂r
− uθ

r

]
φ[f]

}
dr dz

−
∫
∂D/Ω

r (∆S) tθ φ
[f] dη, (5.131)

R[p] =

∫∫
D

(
r
∂ur
∂r

+ ur + r
∂uz
∂z
− r Q

)
φ[p] dr dz, (5.132)

and

R[h] =

∫
Ω

r (∆S)

[
−ur tz + uz tr + St

∂r

∂t
tz − St

∂z

∂t
tr

]
φ[f] dη, (5.133)

where we have ignored the factors of 2π that premultiply (5.129)–(5.133).

5.5.4 Discrete residual equations

To complete this discussion we must write down the elemental residual equations which

were actually be implemented in oomph-lib in order to compute the finite element

solution of (5.129)–(5.133). The equations are discretised as described in section 3.3,

with the integration over each element performed in local coordinates. The bulk

elemental residual equations are therefore given by

R[f,bulk]
rl =

∫ 1

−1

∫ 1

−1

{
Rρ Re St r

∂ur
∂t

ψ
[f]
l +Rρ Re

[
rur

∂ur
∂r

+ ruz
∂ur
∂z
− u2

θ

]
ψ

[f]
l

−rBr ψ
[f]
l −Rρ

Re

Fr
r Gr ψ

[f]
l +

[
−rp+ 2Rµr

∂ur
∂r

]
∂ψ

[f]
l

∂r

+Rµ

[
r
∂uz
∂r

+ r
∂ur
∂z

]
∂ψ

[f]
l

∂z
+

[
−p+

2Rµ

r
ur

]
ψ

[f]
l

}
JB ds1 ds2, (5.134)
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R[f,bulk]
zl =

∫ 1

−1

∫ 1

−1

{
Rρ Re St r

∂uz
∂t

ψ
[f]
l +Rρ Re

[
rur

∂uz
∂r

+ ruz
∂uz
∂z

]
ψ

[f]
l

−rBz ψ
[f]
l −Rρ

Re

Fr
r Gz ψ

[f]
l +Rµ

[
r
∂ur
∂z

+ r
∂uz
∂r

]
∂ψ

[f]
l

∂r

+

[
−rp+ 2Rµr

∂uz
∂z

]
∂ψ

[f]
l

∂z

}
JB ds1 ds2, (5.135)

R[f,bulk]
θl =

∫ 1

−1

∫ 1

−1

{
Rρ Re St r

∂uθ
∂t

ψ
[f]
l +Rρ Re

[
rur

∂uθ
∂r

+ ruz
∂uθ
∂z

+ uruθ

]
ψ

[f]
l

−rBθ ψ
[f]
l −Rρ

Re

Fr
r Gθ ψ

[f]
l +Rµ

[
r
∂uθ
∂r
− uθ

]
∂ψ

[f]
l

∂r

+Rµr
∂uθ
∂z

∂ψ
[f]
l

∂z
−Rµ

[
∂uθ
∂r
− uθ

r

]
ψ

[f]
l

}
JB ds1 ds2, (5.136)

and

R[p]
l =

∫ 1

−1

∫ 1

−1

(
r
∂ur
∂r

+ ur + r
∂uz
∂z
− r Q

)
ψ

[p]
l JB ds1 ds2. (5.137)

where JB = det [∂xj/∂si] is the Jacobian of the mapping between local and global

coordinates. As described in section 3.3.5, contributions to the momentum equations

arising from the boundary integral terms are computed using one-dimensional ‘face’

elements, and are given by

R[f,boundary]
rl = −

∫ 1

−1

r tr ψ
[f]
l JS ds, (5.138)

R[f,boundary]
zl = −

∫ 1

−1

r tz ψ
[f]
l JS ds (5.139)

and

R[f,boundary]
θl = −

∫ 1

−1

r tθ ψ
[f]
l JS ds (5.140)

on non-Dirichlet, non-free surface boundaries, and

R[f,boundary]
rl = −

∫ 1

−1

r pext tz ψ
[f]
l JS ds+

1

Ca

∫ 1

−1

[
ψ

[f]
l JS + r tr

dψ
[f]
l

ds

]
ds (5.141)

and

R[f,boundary]
zl =

∫ 1

−1

r pext tr ψ
[f]
l JS ds+

1

Ca

∫ 1

−1

r tz
dψ

[f]
l

ds
ds (5.142)

on free surface boundaries, where

JS = (∆S)
dη

ds
(5.143)
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is the Jacobian of the mapping between local and global coordinates in the face ele-

ments. As usual, the point contributions

R[f,boundary]
rl = − 1

Ca

[
rmr ψ

[f]
l

]
∂Ω

(5.144)

and

R[f,boundary]
zl = − 1

Ca

[
rmz ψ

[f]
l

]
∂Ω

(5.145)

need to be added at the two contact points at either side of the free surface. Finally,

at a free boundary we also require the kinematic condition,

R[h]
l =

∫ 1

−1

r

[
−ur tz + uz tr + St

∂r

∂t
tz − St

∂z

∂t
tr

]
ψ

[f]
l JS ds. (5.146)

5.5.5 Implementation

In oomph-lib the get residual(...) and get jacobian(...) functions for the

axisymmetric Navier–Stokes equations are implemented in the AxisymmetricNavier-

StokesEquations class, which implements the governing equations but contains no

specific geometrical information. Concrete implementations are therefore provided by

the AxisymmetricQTaylorHoodElement and AxisymmetricQCrouzeixRaviartElement

classes, which inherit from the AxisymmetricNavierStokesEquations and QElement<2,3>

classes. We provide a comprehensive introduction to this equation class, and its im-

plementation in oomph-lib, in a tutorial located in the

doc/axisym_navier_stokes/spin_up/

directory. This tutorial introduces the equations in the context of an axisymmetric

spin-up problem, and the source for the corresponding driver code is located in

demo_drivers/axisym_navier_stokes/spin_up/spin_up.cc.

As discussed in section 3.3.6, the common interfaces and functions for all fluid

interface elements are implemented in the FluidInterfaceElement base class. The

specific interface element which implements the boundary conditions at an axisymmet-

ric surface is then implemented in the AxisymmetricFluidInterfaceElement class,

which is derived from this base class. This is the direct equivalent of the LineFluid-

InterfaceElement class used in the two-dimensional problems discussed in the previ-

ous two chapters, and as such the same structure is used to add the ‘machinery’ that is
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specific to the chosen node-update strategy: the SpineLineFluidInterfaceElement

and ElasticLineFluidInterfaceElement classes both inherit from Axisymmetric-

FluidInterfaceElement and provide the appropriate functionality.



Chapter 6

Applications of the axisymmetric

free surface Navier–Stokes

equations

In chapter 4 we applied the two-dimensional free surface Navier–Stokes equations to

two relaxing interface problems, and validated the implementation of these equations

in oomph-lib against analytical predictions obtained from linear analysis. We shall

now use the same technique to validate the formulation derived in the previous chap-

ter for axisymmetric free surfaces in a cylindrical polar coordinate system. The two

problems studied here are directly analogous to those studied in chapter 4: this time,

however, the fluid occupies a cylindrical domain orientated in such a way that its axis

of symmetry is normal to the equilibrium position of the interface.

6.1 Relaxation oscillations of a fluid layer

Let us consider the problem sketched in figure 6.1, in which we have a single, incom-

pressible, viscous fluid layer governed by the axisymmetric Navier–Stokes equations

Re St
∂ur
∂t

+ Re

[
ur
∂ur
∂r
− u2

θ

r
+ uz

∂ur
∂z

]
= −∂p

∂r
+
∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2

+
∂2ur
∂z2

,

Re St
∂uz
∂t

+ Re

[
ur
∂uz
∂r

+ uz
∂uz
∂z

]
= −∂p

∂z
− Re

Fr
+
∂2uz
∂r2

+
1

r

∂uz
∂r

+
∂2uz
∂z2

,

Re St
∂uθ
∂t

+ Re

[
ur
∂uθ
∂r

+
uruθ
r

+ uz
∂uθ
∂z

]
=
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

+
∂2uθ
∂z2

(6.1)
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Figure 6.1: Sketch of an axisymmetric single layer free surface problem, where the axis
of symmetry is located at r = 0. The equilibrium position of the interface corresponds
to z = 1 and is represented by the dashed line.

and
∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0, (6.2)

with gravity acting in the negative z direction. The domain is r ∈ [0, L], z ∈ [0, 1] and

is symmetric about the line r = 0, which corresponds to the axis of the cylindrical

container. As in the Cartesian example (studied in section 4.1) we wish to compare

the numerical solution of this problem to results obtained from a linear analysis, and

as such require a domain which is capable of capturing a single linearised separable

eigenmode of the system of equations. For an axisymmetric system such as this, a

standard separation-of-variables approach reveals that the radial part of the solution

is formed of a linear combination of Bessel functions of the first kind, of order zero.

In order for the initial deformation of the interface to be volume conserving, however,

we will require the surface to meet the ‘outer wall’ of the domain at right angles1: we

must therefore treat the solid boundary at r = L as a ‘slippery wall’ at which the fluid

is unconstrained in the axial direction. Hence we apply the non-penetration conditions

ur = uθ = 0 at both the axis of symmetry and the outer wall (the left and right domain

1The reasons for this are discussed in detail on page 109 of the current section.
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boundaries), and the usual no-slip condition ur = uz = uθ = 0 at the bottom solid

boundary. The free surface is located at X and is subject to the kinematic condition,(
ui − St

∂Xi

∂t

)
ni = 0, (6.3)

and the dynamic condition,

τij nj =
1

Ca
κni − pext ni, (6.4)

where the stress tensor is defined as

τrr = −p+ 2
∂ur
∂r

,

τθθ = −p+ 2
ur
r
,

τrθ = τθr =
∂uθ
∂r
− uθ

r
,

τzz = −p+ 2
∂uz
∂z

,

τrz = τzr =
∂ur
∂z

+
∂uz
∂r

,

τzθ = τθz =
∂uθ
∂z

.

(6.5)

This problem was solved numerically in oomph-lib using both Taylor–Hood and

Crouzeix–Raviart elements. The problem domain was discretised into a 12 × 12 ele-

ment mesh whose deformation in response to the motion of the free surface bound-

ary was facilitated by a spine-based node update strategy (section 3.3.4). The time-

derivatives were discretised using a second-order-accurate BDF scheme with a (non-

dimensionalised) timestep of 0.0025. The free-surface boundary conditions (6.3 and

6.4) were implemented by attaching one-dimensional ‘face’ elements to the upper

boundaries of the bulk elements adjacent to the free boundary.

The initial shape of the interface is defined by

X = r er + [1.0 + εJ0(kr)] ez, (6.6)

where ε is a small parameter controlling the amplitude of the deflection away from the

equilibrium position and k is a wavenumber. J0(kr) is a zeroth-order Bessel function of

the first kind, so chosen because it is an eigenmode of the system and has the required

property that its derivative with respect to r vanishes at r = 0, which ensures that

the interface is smooth at the symmetry boundary. In order for the equilibrium state

of the system to be such that the interface is a flat line at z = 1, we require an initial

deformation which is volume conserving. We must therefore satisfy∫ L

0

r J0(kr) dr = 0, (6.7)
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Figure 6.2: Pressure contour plot for the axisymmetric single layer relaxing interface
problem at time t = 0.005, with superimposed velocity vectors. A mesh of 12 × 12
Crouzeix–Raviart elements and a second-order-accurate BDF timestepping scheme
with a non-dimensionalised timestep of 0.0025 were used, for the parameters Re =
Re St = Re /Fr = 5.0, Ca = 0.01, L = 1 and ε = 0.1. The (non-dimensional) pressure
ranges from -56 to 144, with areas of highest and lowest pressure shown in red and
blue respectively. As in the Cartesian example (chapter 4), the hydrostatic pressure
gradient is present yet sufficiently small that its effect cannot be seen in the colour
contours.

and note that this condition is met if J1(k) = 0: hence the values of the wavenumber

k are constrained to be zeroes of J1(k). The properties of Bessel functions are such

that the derivative of J0(kr) with respect to r, evaluated at any point along the r-axis

which corresponds to a zero of J1(kr), is itself zero, and therefore the appropriate

velocity boundary condition in the axial direction must be the traction-free condition

∂uz/∂r = 0. This condition could be physically realised by having a ‘slippery’ outer

wall where the contact line can move and the contact angle is fixed at 90o.

Figure 6.2 shows a contour plot of the pressure distribution with superimposed

velocity vectors at the second timestep (t = 0.005), for the parameters Re = Re St =

Re /Fr = 5.0, Ca = 0.01 and L = 1. The simulation was started impulsively with an
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Figure 6.3: Time-trace of the height of the fluid layer at the edge of the domain for
the parameters Re = Re St = Re /Fr = 5.0, Ca = 0.01, L = 1 and ε = 0.1. A mesh
of 12× 12 Crouzeix–Raviart elements and a second-order-accurate BDF timestepping
scheme with a non-dimensionalised timestep of 0.0025 were used.

initial free surface perturbation amplitude of 10% of the domain width (ε = 0.1).

The physical description of this problem is the same as in the Cartesian case

(section 4.1). As the simulation begins the restoring forces of surface tension and

gravitational acceleration act to revert the deformed interface it to its equilibrium

position. The surface oscillations are damped as the energy in the system is dissipated

through viscous forces, until eventually the interface settles down to its undeformed

state. This viscous damping effect can be seen in the time-trace of the height of the

fluid layer at the edge of the domain, shown in figure 6.3.

6.1.1 Validation against an analytical dispersion relation

We shall validate the numerical simulations described above in the same way that we

validated their Cartesian counterparts (described in section 4.1.1). We start by con-

sidering the problem sketched in figure 6.4, in which we are solving the axisymmetric

Navier–Stokes equations (6.1 and 6.2) in a domain chosen so that the equilibrium
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Figure 6.4: Sketch of the problem domain used to derive the dispersion relation for
an axisymmetric single-layer free surface problem. As in the Cartesian example, it
is convenient to set the problem up so that the equilibrium position of the interface
corresponds to the line z = 0.

position of the interface corresponds to the line z = 0. As in the Cartesian case the

position of the free boundary is described by defining its ‘height’, h, as a function

of the horizontal coordinate, and the position vector to the surface can therefore be

expressed as

X(r, t) = r er + h(r, t) ez. (6.8)

A unit vector normal to a line specified by z = h(r, t) is given by

n =

[
1 +

(
∂h

∂r

)2
]− 1

2 (
−∂h
∂r

er + ez

)
, (6.9)

and the curvature can be expressed as

κ =
∂2h

∂r2

[
1 +

(
∂h

∂r

)2
]− 3

2

+
1

r

∂h

∂r

[
1 +

(
∂h

∂r

)2
]− 1

2

. (6.10)

Using (6.8) and (6.9) the kinematic condition (6.3) becomes

−ur
∂h

∂r
+ uz − St

∂h

∂t
= 0, (6.11)

and using (6.9) and (6.10) the dynamic condition (6.4) is given by

−∂h
∂r
τrr + τrz = − 1

Ca

∂h

∂r

∂2h

∂r2

[
1 +

(
∂h

∂r

)2
]− 3

2

+
1

r

∂h

∂r

[
1 +

(
∂h

∂r

)2
]− 1

2

 (6.12)
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and

−∂h
∂r
τzr + τzz =

1

Ca

∂2h

∂r2

[
1 +

(
∂h

∂r

)2
]− 3

2

+
1

r

∂h

∂r

[
1 +

(
∂h

∂r

)2
]− 1

2

 ,

where the external pressure has been set to zero. The definition of the stress tensor

(6.5) can now be used to write these conditions as

∂h

∂r
p− 2

∂h

∂r

∂ur
∂r

+
∂ur
∂z

+
∂uz
∂r

= − 1

Ca

∂h

∂r

∂2h

∂r2

[
1 +

(
∂h

∂r

)2
]− 3

2

+
1

r

∂h

∂r

[
1 +

(
∂h

∂r

)2
]− 1

2

 (6.13)

and

− ∂h

∂r

(
∂uz
∂r

+
∂ur
∂z

)
− p+ 2

∂uz
∂z

=
1

Ca

∂2h

∂r2

[
1 +

(
∂h

∂r

)2
]− 3

2

+
1

r

∂h

∂r

[
1 +

(
∂h

∂r

)2
]− 1

2

 . (6.14)

As in the Cartesian example we choose the trivial solution

h̄ = 0, ūr = ūz = ūθ = 0 and p̄ = −Re

Fr
z (6.15)

to be the base state to which we will introduce an infinitesimal perturbation. Substi-

tuting

ur = ūr + ε ûr, uz = ūz + ε ûz, uθ = ūθ + ε ûθ,

h = h̄+ ε ĥ and p = p̄+ ε p̂, (6.16)

where ε� 1, into the governing equations (6.1 and 6.2) yields

Re St
∂ûr
∂t

= −∂p̂
∂r

+
∂2ûr
∂r2

+
1

r

∂ûr
∂r
− ûr
r2

+
∂2ûr
∂z2

,

Re St
∂ûz
∂t

= −∂p̂
∂z

+
∂2ûz
∂r2

+
1

r

∂ûz
∂r

+
∂2ûz
∂z2

,

Re St
∂ûθ
∂t

=
∂2ûθ
∂r2

+
1

r

∂ûθ
∂r
− ûθ
r2

+
∂2ûθ
∂z2

(6.17)

and
∂ûr
∂r

+
ûr
r

+
∂ûz
∂z

= 0, (6.18)
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where we have neglected orders of ε2 and higher. The kinematic condition (6.11) must

be evaluated at the interface, h = ε ĥ, but we use Taylor’s theorem to express uz as a

power series about z = 0 so that we can instead evaluate it at the undeformed position

of the free boundary,

ûz|z=0 = St
∂ĥ

∂t
, (6.19)

where terms of order ε2 and higher have been neglected. The dynamic conditions

(6.13 and 6.14) contain terms raised to negative powers, and we expand these using

the binomial theorem,[
1 +

(
∂h

∂r

)2
]−n

2

=

1 + ε2

(
∂ĥ

∂r

)2
−n2 = 1 + O(ε2), (6.20)

before using (6.16) and (6.15) to give

∂ûr
∂z

∣∣∣∣
z=0

+
∂ûz
∂r

∣∣∣∣
z=0

= 0 (6.21)

and

− p̂|z=0 + 2
∂ûz
∂z

∣∣∣∣
z=0

+
Re

Fr
ĥ =

1

Ca

(
∂2ĥ

∂r2
+

1

r

∂ĥ

∂r

)
, (6.22)

where we have again used Taylor’s theorem to allow us to evaluate these conditions at

z = 0. Finally, we have the following Dirichlet boundary conditions:

ûr|z=−1 = 0, ûz|z=−1 = 0, ûθ|z=−1 = 0, (6.23)

ûr|r=0 = 0, ûθ|r=0 = 0, (6.24)

ûr|r=L = 0, and ûθ|r=L = 0. (6.25)

The governing equations, (6.18) and (6.17), and boundary conditions, (6.19) and

(6.21)–(6.25), have now been linearised and we propose a separable solution of the

form

ĥ(r, t) = H J0(kr) eλt,

ûr(r, z, t) = U(z) J1(kr) eλt,

ûz(r, z, t) = W (z) J0(kr) eλt,

ûθ(r, z, t) = 0 and

p̂(r, z, t) = P (z) J0(kr) eλt, (6.26)
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where Jν is a Bessel function of the first kind of ν-th order. Because the perturbation

that we are introducing, ĥ(r, t), is an eigenmode of the system and is independent of θ,

we can infer that the swirl, ûθ, is zero for all time. J1(0) = 0 and hence the symmetry

boundary condition at the axis (6.24) is automatically satisfied, but we note that (6.26)

only satisfies the symmetry condition at the outer wall (6.25) if k is chosen so that

J1(k) = 0.

Substituting (6.26) into the linearised governing equations (6.17) and (6.18) yields

Re StλUJ1(kr) =− P ∂

∂r

[
J0(kr)

]
+ U

∂2

∂r2

[
J1(kr)

]
+
U

r

∂

∂r

[
J1(kr)

]
− U

r2
J1(kr) +

d2U

dz2
J1(kr),

Re StλWJ0(kr) =− dP

dz
J0(kr) +W

∂2

∂r2

[
J0(kr)

]
+
W

r

∂

∂r

[
J0(kr)

]
+

d2W

dz2
J0(kr) (6.27)

and

U
∂

∂r

[
J1(kr)

]
+
U

r
J1(kr) +

dW

dz
J0(kr) = 0. (6.28)

The following property of Bessel functions,

d

dz

[
z−νJν(z)

]
= −z−νJν+1(z), (6.29)

allows us to evaluate their derivatives and hence we obtain

Re StλUJ1(kr) = kPJ1(kr) +
d2U

dz2
J1(kr) + U

[
k2J3(kr)− 4k

r
J2(kr)

]
,

Re StλWJ0(kr) = −dP

dz
J0(kr) +

d2W

dz2
J0(kr)

+W

[
k2J2(kr)− 2k

r
J1(kr)

]
(6.30)

and

U

[
2

r
J1(kr)− kJ2(kr)

]
+

dW

dz
J0(kr) = 0. (6.31)

We can combine Bessel functions of different orders using

Jν−1(kr) + Jν+1(kr) =
2ν

kr
Jν(kr), (6.32)
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and applying this to (6.30) and (6.31) yields

Re StλU = kP +
d2U

dz2
− k2U, (6.33)

Re StλW = −dP

dz
+

d2W

dz2
− k2W (6.34)

and

kU +
dW

dz
= 0. (6.35)

We can now rearrange (6.35) for U and substitute it into (6.33) to give

P =
1

k2

d3W

dz3
−
(

1 +
Re Stλ

k2

)
dW

dz
, (6.36)

where we have rearranged for P . We then differentiate this expression with respect to

z and substitute it into (6.34) to obtain a fourth-order ODE in W ,

d4W

dz4
−
(
Re Stλ+ 2k2

) d2W

dz2
+ k2

(
Re Stλ+ k2

)
W = 0. (6.37)

The coefficients of W are all constant and hence assuming a solution of the form

W (z) = Aemz yields the general solution

W (z) = Aekz +Be−kz + Ceβz +De−βz, (6.38)

where β =
√

Re Stλ+ k2 and we have assumed that Re St > 0. Using (6.35) and

(6.36) we can also obtain general solutions for U(z),

U(z) = −Aekz +Be−kz − β

k
Ceβz +

β

k
De−βz, (6.39)

and P (z),

P (z) = −Re Stλ

k
Aekz +

Re Stλ

k
Be−kz. (6.40)

A, B, C and D are constant coefficients to be determined from the boundary con-

ditions, and we therefore substitute the same ansatz (6.26) into (6.19), (6.21), (6.22)

and (6.23) to obtain the separated forms of the kinematic,

W (0) = StH λ, (6.41)

dynamic,
dU

dz

∣∣∣∣
z=0

− kW (0) = 0 (6.42)
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and

−P (0) + 2
dW

dz

∣∣∣∣
z=0

+

(
k2

Ca
+

Re

Fr

)
H = 0, (6.43)

and Dirichlet conditions,

U(−1) = 0 and W (−1) = 0. (6.44)

We can now use the general solutions of U(z), W (z) and P (z) in (6.41)–(6.44) to

obtain the following homogeneous linear system,

A+B + C +D − StλH = 0,

2k2 (A+B) +
(
Re Stλ+ 2k2

)
(C +D) = 0,

Re Stλ+ 2k2

k
(A−B) + 2 β (C −D) +

(
k2

Ca
+

Re

Fr

)
H = 0,

−Ae−k +Bek − β

k
Ce−β +

β

k
Deβ = 0,

Ae−k +Bek + Ce−β +Deβ = 0. (6.45)

As usual this system of five equations in the five unknowns A, B, C, D and H can be

written in matrix form, and there exists a non-trivial solution only if the determinant

of the matrix made up of the coefficients of the unknowns is equal to zero. We solve

this equation numerically as before to obtain a dispersion relation λ(k), and compare

this analytical result to oomph-lib’s computations for given values of k. As discussed

in section 6.1 we require the values of k to be such that J1(kr) = 0 at r = L, the

domain boundary. A disadvantage of this from a numerical point of view is that

for each subsequent root of J1(kr) the free boundary becomes increasingly complex

spatially and therefore requires more elements to resolve it properly. We choose to

use an alternative (but equivalent) approach where we instead vary the width of the

domain, and fix the initial shape of the surface so that the right-hand side of the

domain always corresponds to the first root of J1(kr). As the first root of J1(z) is

z = 3.8317, varying the width of the domain from L = 0.24 to L = 2.0 is equivalent

to varying k between 15.9654 and 1.91585.

An initial deflection amplitude of 1% of the domain width was chosen to be ‘suffi-

ciently small’ that the nonlinear terms would be negligible, and the growth rate and
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frequency of the oscillation was determined from a time-trace of the left-hand edge

of the interface (such as the one plotted in figure 6.3) using the same Levenberg–

Marquardt fitting technique as before. The comparison is shown in figure 6.5, where

the real and imaginary parts of λ are plotted as lines and the points are the results

generated using oomph-lib. We note that, as in the Cartesian case, our numerical

results agree very well with those predicted by the linear theory.
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Figure 6.5: Validation of the oomph-lib code (points) by comparison with an an-
alytical dispersion relation (lines) for the axisymmetric single-layer interface prob-
lem. The oomph-lib simulations employ a 12× 12 element mesh and a second-order
BDF timestepper with a (non-dimensionalised) timestep of 0.0025, for the parameters
Re = Re St = Re /Fr = 5.0, Ca = 0.01 and ε = 0.01.

6.1.2 Implementation

The problem discussed above was implemented as a demonstration code in oomph-lib,

and its source file,

single_layer_free_surface_axisym.cc,
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is located in the

demo_drivers/axisym_navier_stokes/single_layer_free_surface_axisym/

directory.

6.2 Relaxation oscillations of an interface between

two viscous fluids

We will now briefly extend the problem discussed in section 6.1 to one involving two

immiscible, incompressible viscous fluids separated by an interface, as sketched in

figure 6.6. As in the Cartesian two-layer example (section 4.2), the formulation only

requires slight modification from that described for the single-layer case. The governing

equations in the lower fluid are exactly as before (6.1 and 6.2), while the momentum

equation in the upper fluid requires modification to include the density and viscosity

ratios:

Rρ Re

[
St
∂ur
∂t

+ ur
∂ur
∂r
− u2

θ

r
+ uz

∂ur
∂z

]
= −∂p

∂r
+Rµ

[
∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2

+
∂2ur
∂z2

]
,

Rρ Re

[
St
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

]
= −∂p

∂z
−Rρ

Re

Fr
+Rµ

[
∂2uz
∂r2

+
1

r

∂uz
∂r

+
∂2uz
∂z2

]
and

Rρ Re

[
St
∂uθ
∂t

+ ur
∂uθ
∂r

+
uruθ
r

+ uz
∂uθ
∂z

]
= Rµ

[
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

+
∂2uθ
∂z2

]
.

(6.46)

The domain is very similar to that of the single-layer case, with non-penetration con-

ditions ur = uθ = 0 applied at both the axis of symmetry (r = 0) and the outer wall

(r = L), and no-slip conditions ur = uz = uθ = 0 applied on the top (z = 2) and

bottom (z = 0) solid boundaries. Gravity acts in the negative z direction. The inter-

face is located at X and is subject to the kinematic condition (6.3) and the dynamic

condition,

τ
[1]
ij n

[1]
j = τ

[2]
ij n

[1]
j +

1

Ca
κn

[1]
i , (6.47)

where the lower and upper fluids are denoted by [1] and [2] respectively. The stress

tensor in the lower fluid is identical to that in the single-layer case (6.5), and the stress

tensor in the upper fluid is defined in (5.87).
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Figure 6.6: Sketch of an axisymmetric two layer interface problem, where the axis of
symmetry is located at r = 0. The equilibrium position of the interface is located at
z = 1 and is represented by the dashed line.

This problem was solved numerically in oomph-lib using a very similar approach

to the previous example (discussed in section 6.1). The two regions of the mesh

corresponding to the two fluid layers were each discretised using 12 × 12 Crouzeix–

Raviart elements, since Taylor–Hood elements cannot accomodate the pressure jump

at the interface. The usual spine-based node update strategy was used to deform the

mesh in response to the motion of the interface, and the time-derivatives were again

discretised using a second-order-accurate BDF scheme with a (non-dimensionalised)

timestep of 0.005.

The simulation was started impulsively from the initial conditions of zero velocity

everywhere and an interfacial deformation as before (6.6), and ran for 240 timesteps.
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Figure 6.7 shows a time-trace of the height of the fluid layer at the edge of the domain

for the parameters Re = Re St = Re /Fr = 5.0, Ca = 0.01, Rρ = 0.5, Rµ = 0.1,

L = 1 and an initial deflection amplitude of ε = 0.1.
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Figure 6.7: Time-trace of the height of the interface at the point r = 0 for the pa-
rameters Re = Re St = Re /Fr = 5.0, Ca = 0.01, Rρ = 0.5, Rµ = 0.1, L = 1 and
ε = 0.1. A mesh of 12 × 24 Crouzeix–Raviart elements and a second-order-accurate
BDF timestepping scheme with a non-dimensionalised timestep of 0.005 were used.

6.2.1 Validation against an analytical dispersion relation

The simulations described above were validated against an analytical test case in

a similar manner to those discussed in section 6.1. We consider a domain r ∈ [0, L],

z ∈ [−1, 1], with gravity acting in the negative z direction, in which two fluids governed

by the Navier–Stokes equations are separated by an interface located at z = 0. For

sufficiently small amplitudes the governing equations can be linearised about the trivial

steady base state

h̄ = 0, ū[1]
r = ū[1]

z = ū
[1]
θ = ū[2]

r = ū[2]
z = ū

[2]
θ = 0,

p̄[1] = −R[1]
ρ

Re

Fr
(z + 1) and p̄[2] = −Re

Fr

(
R[1]
ρ +R[2]

ρ z
)

(6.48)
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to give

R[β]
ρ Re St

∂û
[β]
r

∂t
= −∂p̂

[β]

∂r
+R[β]

µ

[
∂2û

[β]
r

∂r2
+

1

r

∂û
[β]
r

∂r
− û

[β]
r

r2
+
∂2û

[β]
r

∂z2

]
,

R[β]
ρ Re St

∂û
[β]
z

∂t
= −∂p̂

[β]

∂z
+R[β]

µ

[
∂2û

[β]
z

∂r2
+

1

r

∂û
[β]
z

∂r
+
∂2û

[β]
z

∂z2

]
,

R[β]
ρ Re St

∂û
[β]
θ

∂t
= R[β]

µ

[
∂2û

[β]
θ

∂r2
+

1

r

∂û
[β]
θ

∂r
− û

[β]
θ

r2
+
∂2û

[β]
θ

∂z2

]
(6.49)

and
∂û

[β]
r

∂r
+
û

[β]
r

r
+
∂û

[β]
z

∂z
= 0, (6.50)

where β = 1, 2 and we note that R
[1]
ρ = R

[1]
µ = 1. The linearised form of the kinematic

boundary condition is as before,

û[β]
z

∣∣
z=0

= St
∂ĥ

∂t
, (6.51)

and the two components of the linearised dynamic condition are

R[1]
µ

∂û
[1]
r

∂z

∣∣∣∣∣
z=0

+R[1]
µ

∂û
[1]
z

∂r

∣∣∣∣∣
z=0

= R[2]
µ

∂û
[2]
r

∂z

∣∣∣∣∣
z=0

+R[2]
µ

∂û
[2]
z

∂r

∣∣∣∣∣
z=0

(6.52)

and

− p̂[1]
∣∣
z=0

+ 2R[1]
µ

∂û
[1]
z

∂z

∣∣∣∣∣
z=0

= − p̂[2]
∣∣
z=0

+ 2R[2]
µ

∂û
[2]
z

∂z

∣∣∣∣∣
z=0

+
1

Ca

[
∂2ĥ

∂r2
+

1

r

∂ĥ

∂r

]
− Re

Fr

(
R[1]
ρ −R[2]

ρ

)
ĥ. (6.53)

Additionally we have the following Dirichlet conditions at the top and bottom solid

boundaries,

û[1]
r

∣∣
z=−1

= û[1]
z

∣∣
z=−1

= û
[1]
θ

∣∣∣
z=−1

= 0, (6.54)

û[2]
r

∣∣
z=1

= û[2]
z

∣∣
z=1

= û
[2]
θ

∣∣∣
z=1

= 0, (6.55)

and we note that the radial and azimuthal components of the velocity must be con-

tinuous across the interface,

û[1]
r

∣∣
z=0

= û[2]
r

∣∣
z=0

and û
[1]
θ

∣∣∣
z=0

= û
[2]
θ

∣∣∣
z=0

. (6.56)
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Continuity of the vertical component of velocity across the interface can be ensured by

evaluating the kinematic condition (6.51) for both fluids. Substitution of the ansatz

ĥ(r, t) = H J0(kr) eλt,

û[β]
r (r, z, t) = U [β](z) J1(kr) eλt,

û[β]
z (r, z, t) = W [β](z) J0(kr) eλt,

û
[β]
θ (r, z, t) = 0 and

p̂[β](r, z, t) = P [β](z) J0(kr) eλt (6.57)

into the linearised governing equations and boundary conditions yields the following

linear system,

A[1] +B[1] + C [1] +D[1] − StλH = 0,

A[2] +B[2] + C [2] +D[2] − StλH = 0,

R[1]
µ A

[1] +R[1]
µ B

[1] +

(
R

[1]
ρ Re Stλ

2k2
+R[1]

µ

)(
C [1] +D[1]

)
−R[2]

µ A
[2] −R[2]

µ B
[2] −

(
R

[2]
ρ Re Stλ

2k2
+R[2]

µ

)(
C [2] +D[2]

)
= 0,

(
R

[1]
ρ Re Stλ

k
+ 2R[1]

µ k

)(
A[1] −B[1]

)
+ 2R[1]

µ a1

(
C [1] −D[1]

)
−

(
R

[2]
ρ Re Stλ

k
+ 2R[2]

µ k

)(
A[2] −B[2]

)
− 2R[2]

µ a2

(
C [2] −D[2]

)
+

(
k2

Ca
+

Re

Fr

(
R[1]
ρ −R[2]

ρ

))
H = 0,

−A[1]e−k +B[1]ek − a1

k
C [1]e−a1 +

a1

k
D[1]ea1 = 0,

A[1]e−k +B[1]ek + C [1]e−a1 +D[1]ea1 = 0,

−A[2]ek +B[2]e−k − a2

k
C [2]ea2 +

a2

k
D[2]e−a2 = 0,

A[2]ek +B[2]e−k + C [2]ea2 +D[2]e−a2 = 0,

−A[1] +B[1] − a1

k
C [1] +

a1

k
D[1] + A[2] −B[2] +

a2

k
C [2] − a2

k
D[2] = 0,
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where aβ =
[(
R

[β]
ρ Re Stλ/R

[β]
µ

)
+ k2

]1/2

. The dispersion relation λ(k) was obtained

using the same procedure as before (section 6.1.1), and figure 6.8 compares the real and

imaginary parts of λ with the growth rate and frequency of the oscillating interface as

computed by oomph-lib for a range of wavenumbers k. An initial deflection amplitude

of 1% of the domain width was again chosen for this validation exercise.
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Figure 6.8: Validation of the oomph-lib code (points) by comparison with an ana-
lytical dispersion relation (lines) for the axisymmetric two-layer interface problem.
The oomph-lib simulations employ a 12 × 24 element mesh and a second-order
BDF timestepper with a (non-dimensionalised) timestep of 0.005, for the parameters
Re = Re St = Re /Fr = 5.0, Ca = 0.01, Rρ = 0.5, Rµ = 0.1 and ε = 0.01.

6.2.2 Implementation

As in the case of the single-layer example, the problem discussed above was imple-

mented as an oomph-lib demonstration code, and its source,

spine_two_layer_interface_axisym.cc,

is located in the
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demo_drivers/axisym_navier_stokes/two_layer_interface_axisym/

directory. The same problem was also implemented using a pseudo-solid node-update

strategy, and its source file,

elastic_two_layer_interface_axisym.cc,

is located in the same directory. There is excellent agreement between the results

generated by the two implementations of this problem, and the pseudo-solid version

of this driver code was also comprehensively documented in a tutorial located in the

doc/axisym_navier_stokes/two_layer_interface_axisym/

directory.



Chapter 7

Perturbations to axisymmetric

flows: Part one

Having discussed the finite element formulation of the Navier–Stokes equations in

cylindrical polar coordinates, and their implementation within the oomph-lib frame-

work, we shall now move on to considering the effect of introducing a (small) non-

axisymmetric perturbation to an axisymmetric base state. We will introduce this

formulation in two parts: first, in the current chapter, we derive the set of equa-

tions which describe a linear, non-axisymmetric perturbation to the bulk axisymmetric

Navier–Stokes equations. In the subsequent chapter we then illustrate the application

of these equations by considering two single-phase problems. The second part of this

discussion will then begin in chapter 9, where we derive the equations describing a

linear perturbation to the free boundary conditions. Finally, chapter 10 considers the

effect of introducing a linear perturbation to a two-phase flow.

7.1 Linearisation of the bulk equations

We begin by considering just the bulk terms in the weak form of the Navier–Stokes

equations in a cylindrical polar coordinate system. From (5.40), (5.45) and (5.50) the

126
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radial, axial and azimuthal momentum equations are given by

R[f,bulk]
r =

∫∫∫
V

{
Rρ Re

[
St r

∂ur
∂t

+ rur
∂ur
∂r

+ ruz
∂ur
∂z

+ uθ
∂ur
∂θ
− u2

θ

]
φ[f]

−rBr φ
[f] −Rρ

Re

Fr
r Gr φ

[f] + r

[
−p+ 2Rµ

∂ur
∂r

]
∂φ[f]

∂r

+Rµr

[
∂uz
∂r

+
∂ur
∂z

]
∂φ[f]

∂z
+Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
∂φ[f]

∂θ

+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
φ[f]

}
dr dz dθ, (7.1)

R[f,bulk]
z =

∫∫∫
V

{
Rρ Re

[
St r

∂uz
∂t

+ rur
∂uz
∂r

+ ruz
∂uz
∂z

+ uθ
∂uz
∂θ

]
φ[f]

−rBz φ
[f] −Rρ

Re

Fr
r Gz φ

[f] +Rµr

[
∂ur
∂z

+
∂uz
∂r

]
∂φ[f]

∂r

+r

[
−p+ 2Rµ

∂uz
∂z

]
∂φ[f]

∂z
+Rµ

[
∂uθ
∂z

+
1

r

∂uz
∂θ

]
∂φ[f]

∂θ

}
dr dz dθ (7.2)

and

R[f,bulk]
θ =

∫∫∫
V

{
Rρ Re

[
St r

∂uθ
∂t

+ rur
∂uθ
∂r

+ ruz
∂uθ
∂z

+ uθ
∂uθ
∂θ

+ uruθ

]
φ[f]

−rBθ φ
[f] −Rρ

Re

Fr
r Gθ φ

[f] +Rµ

[
∂ur
∂θ
− uθ + r

∂uθ
∂r

]
∂φ[f]

∂r

+Rµ

[
∂uz
∂θ

+ r
∂uθ
∂z

]
∂φ[f]

∂z
+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
∂φ[f]

∂θ

−Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
φ[f]

}
dr dz dθ, (7.3)

where we have explicitly specified the variables of integration. The continuity equation

(5.51) is given by

R[p] =

∫∫∫
V

(
r
∂ur
∂r

+ ur + r
∂uz
∂z

+
∂uθ
∂θ
− rQ

)
φ[p] dr dz dθ. (7.4)

These equations are discretised as discussed in section 3.3 to obtain the elemental
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residual equations

R[f,bulk]
rl =

∫ 1

−1

∫ 1

−1

∫ 2π

θ=0

{
Rρ Re

[
St r

δur
δt

+ r (ur − Stu[M]

r )
∂ur
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+r (uz − Stu[M]

z )
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θ
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]
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r
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2Rµ

r
ur
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[f]
l

}
JB ds1 ds2 dθ, (7.5)
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+Rµ

[
∂uθ
∂z

+
1

r

∂uz
∂θ

]
∂φ

[f]
l

∂θ

}
JB ds1 ds2 dθ, (7.6)

R[f,bulk]
θl =

∫ 1

−1

∫ 1

−1

∫ 2π

θ=0

{
Rρ Re

[
St r

δuθ
δt

+ r (ur − Stu[M]

r )
∂uθ
∂r

+r (uz − Stu[M]

z )
∂uθ
∂z

+
(
uθ − Stu[M]

θ

) ∂uθ
∂θ

+ uruθ

]
φ

[f]
l

−rBθ φ
[f]
l −Rρ

Re

Fr
r Gθ φ

[f]
l +Rµ

[
∂ur
∂θ
− uθ + r

∂uθ
∂r

]
∂φ

[f]
l

∂r

+Rµ

[
∂uz
∂θ

+ r
∂uθ
∂z

]
∂φ

[f]
l

∂z
+

[
−p+

2Rµ

r

∂uθ
∂θ

+
2Rµ

r
ur

]
∂φ

[f]
l

∂θ

−Rµ

[
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

]
φ

[f]
l

}
JB ds1 ds2 dθ (7.7)

and

R[p]
l =

∫ 1

−1

∫ 1

−1

∫ 2π

θ=0

(
r
∂ur
∂r

+ ur + r
∂uz
∂z

+
∂uθ
∂θ
− rQ

)
φ

[p]
l JB ds1 ds2 dθ, (7.8)

where (3.86) has been used to write ∂ui/∂t in terms of the rate of change of ui at a

fixed set of local coordinates, δui/δt, and the mesh velocity terms, u[M]
a ∂ui/∂xa. The

Jacobian of the mapping between local si and global ξi coordinates is given by

Jij =
∂ξj
∂si

, (7.9)



CHAPTER 7. PERTURBATIONS: PART ONE 129

where ξ1 = r, ξ2 = z and ξ3 = s3 = θ as before, and its determinant is denoted by

JB. Note that in (7.5)–(7.8) the variables ur, uz, uθ, p, r and z are all functions of

the local coordinates s1, s2 and θ, and terms of the form ∂v/∂ξi are evaluated using

∂v

∂ξi
=
(
J −1

)
ij

∂v

∂sj
, (7.10)

where v is any particular variable.

In order to linearise the governing equations (7.5)–(7.8) about a non-linear, ax-

isymmetric base state we write the solution ur, uz, uθ and p in the following way:

ur(s1, s2, θ, t) = ūr(s1, s2, t) + ε ûr(s1, s2, θ, t),

uz(s1, s2, θ, t) = ūz(s1, s2, t) + ε ûz(s1, s2, θ, t),

uθ(s1, s2, θ, t) = ūθ(s1, s2, t) + ε ûθ(s1, s2, θ, t) and

p(s1, s2, θ, t) = p̄(s1, s2, t) + ε p̂(s1, s2, θ, t), (7.11)

where ε is a small, positive non-dimensional parameter (ε� 1). Here we have decom-

posed the velocity and pressure fields into components corresponding to a base state

(ū and p̄) and a perturbation to this base state (û and p̂). We also decompose the

Eulerian coordinates r and z in the same way:

r(s1, s2, θ, t) = r̄(s1, s2, t) + ε r̂(s1, s2, θ, t) and

z(s1, s2, θ, t) = z̄(s1, s2, t) + ε ẑ(s1, s2, θ, t). (7.12)

Note that the decomposition of the coordinates in this manner is not required for

problems which are to be solved on a fixed mesh, such as the single-fluid problems

which will be discussed in chapter 8. However, this formulation will become necessary

when solving two-layer problems (such as those discussed in chapter 10) since we

require the mesh to deform in response to changes in the shape of the interface, and in

order to avoid later repetition we will therefore include it at this point in the discussion.

Before substituting this ansatz into (7.5)–(7.8) it is convenient to evaluate certain

groups of terms explicitly. We begin by observing that by writing 1/r in the form

1

r
= (r̄ + εr̂)−1 =

1

r̄

(
1 + ε

r̂

r̄

)−1

(7.13)

we can use the binomial expansion to show that

1

r
=

1

r̄
− ε r̂

r̄2
+ O(ε2). (7.14)
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Next we substitute (7.12) into the definition of the Jacobian of the mapping (7.9) to

obtain

Jij =


∂r̄
∂s1

+ ε ∂r̂
∂s1

∂z̄
∂s1

+ ε ∂ẑ
∂s1

0

∂r̄
∂s2

+ ε ∂r̂
∂s2

∂z̄
∂s2

+ ε ∂ẑ
∂s2

0

ε∂r̂
∂θ

ε∂ẑ
∂θ

1

 , (7.15)

the determinant of which is given by

JB(s1, s2, θ, t) =
∂r̄

∂s1

∂z̄

∂s2

− ∂r̄

∂s2

∂z̄

∂s1

+ ε

[
∂r̄

∂s1

∂ẑ

∂s2

+
∂z̄

∂s2

∂r̂

∂s1

− ∂r̄

∂s2

∂ẑ

∂s1

− ∂z̄

∂s1

∂r̂

∂s2

]
+ O(ε2). (7.16)

For convenience of notation we write this as

JB = J̄B + εĴB + O(ε2),

where

J̄B =
∂r̄

∂s1

∂z̄

∂s2

− ∂z̄

∂s1

∂r̄

∂s2

(7.17)

and

ĴB =
∂r̄

∂s1

∂ẑ

∂s2

+
∂z̄

∂s2

∂r̂

∂s1

− ∂r̄

∂s2

∂ẑ

∂s1

− ∂z̄

∂s1

∂r̂

∂s2

. (7.18)

The reciprocal of this quantity can be evaluated by first writing

1

JB
=
(
J̄B + εĴB + O(ε2)

)−1

=
1

J̄B

(
1 + ε

ĴB
J̄B

+ O(ε2)

)−1

(7.19)

and then once again performing a binomial expansion to obtain

1

JB
=

1

J̄B
− εĴB
J̄ 2
B

+ O(ε2). (7.20)

The inverse of the Jacobian of the mapping (7.15) is given by

(
J −1

)
ij

=
1

JB


∂z̄
∂s2

+ ε ∂ẑ
∂s2

− ∂r̄
∂s2
− ε ∂r̂

∂s2
ε
[
∂r̄
∂s2

∂ẑ
∂θ
− ∂z̄

∂s2
∂r̂
∂θ

]
+ O(ε2)

− ∂z̄
∂s1
− ε ∂ẑ

∂s1
∂r̄
∂s1

+ ε ∂r̂
∂s1

ε
[
∂z̄
∂s1

∂r̂
∂θ
− ∂r̄

∂s1
∂ẑ
∂θ

]
+ O(ε2)

0 0 J̄B + εĴB + O(ε2)


T

, (7.21)

and using (7.20) we can write

(
J −1

)
ij

= K̄ij + εK̂ij + O(ε2), (7.22)
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where

K̄ij =


1
J̄B

∂z̄
∂s2

− 1
J̄B

∂z̄
∂s1

0

− 1
J̄B

∂r̄
∂s2

1
J̄B

∂r̄
∂s1

0

0 0 1

 (7.23)

and

K̂ij =


1
J̄B

∂ẑ
∂s2
− ĴBJ̄ 2

B

∂z̄
∂s2

− 1
J̄B

∂ẑ
∂s1

+ ĴB
J̄ 2
B

∂z̄
∂s1

0

− 1
J̄B

∂r̂
∂s2

+ ĴB
J̄ 2
B

∂r̄
∂s2

1
J̄B

∂r̂
∂s1
− ĴBJ̄ 2

B

∂r̄
∂s1

0

1
J̄B

(
∂r̄
∂s2

∂ẑ
∂θ
− ∂z̄

∂s2
∂r̂
∂θ

)
1
J̄B

(
∂z̄
∂s1

∂r̂
∂θ
− ∂r̄

∂s1
∂ẑ
∂θ

)
0

 . (7.24)

Derivatives of a given (arbitrary) field v = v(s1, s2, θ, t) with respect to the global

Eulerian coordinates ξ1 = r, ξ2 = z and ξ3 = θ are evaluated using (7.10). By analogy

with (7.11) we let

v(s1, s2, θ, t) = v̄(s1, s2, t) + ε v̂(s1, s2, θ, t) (7.25)

and then use (7.22) to rewrite (7.10) as

∂v

∂ξi
= K̄ij

∂v̄

∂sj
+ ε

[
K̄ij

∂v̂

∂sj
+ K̂ij

∂v̄

∂sj

]
+ O(ε2). (7.26)

Once again for notational convenience we write

∂v

∂ξi
=
∂v

∂ξi
+ ε

∂̂v

∂ξi
+ O(ε2), (7.27)

where
∂v

∂ξi
= K̄ij

∂v̄

∂sj
(7.28)

and
∂̂v

∂ξi
= K̄ij

∂v̂

∂sj
+ K̂ij

∂v̄

∂sj
. (7.29)

Derivatives of the (fluid) finite element test functions φ
[f]
l with respect to the global

Eulerian coordinates are evaluated in the same way. We can write ∂φ
[f]
l /∂ξi as

∂φ
[f]
l

∂ξi
=
∂φ

[f]
l

∂ξi
+ ε

∂̂φ
[f]
l

∂ξi
+ O(ε2), (7.30)

where

∂φ
[f]
l

∂ξi
= K̄ij

∂φ
[f]
l

∂sj
(7.31)

and

∂̂φ
[f]
l

∂ξi
= K̂ij

∂φ
[f]
l

∂sj
. (7.32)
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Finally, from (3.88) we have the definition of the interpolated mesh velocity,

u[M]

a =

Nnode∑
j=1

dXaj

dt
φ

[f]
j , (7.33)

and note that by analogy with (3.87) we can write this as

u[M]

a =
δxa
δt
. (7.34)

From (7.12) we can therefore write

u[M]

r =
δr̄

δt
+ ε

δr̂

δt
, u[M]

z =
δz̄

δt
+ ε

δẑ

δt
and u[M]

θ = 0, (7.35)

where ū[M]
r = δr̄/δt, ū[M]

z = δz̄/δt, û[M]
r = δr̂/δt and û[M]

z = δẑ/δt.

We can now substitute the ansatz (7.11) and (7.12) into the governing equations

(7.5)–(7.8) to obtain

R[f,bulk]
rl =

∫ 1

−1

∫ 1

−1

∫ 2π

θ=0

{
Ā

[f]
rl J̄B + ε

[
Â

[f]
rl J̄B + Ā

[f]
rl ĴB

]}
ds1 ds2 dθ + O(ε2),

R[f,bulk]
zl =

∫ 1

−1

∫ 1

−1

∫ 2π

θ=0

{
Ā

[f]
zl J̄B + ε

[
Â

[f]
zl J̄B + Ā

[f]
zl ĴB

]}
ds1 ds2 dθ + O(ε2),

R[f,bulk]
θl =

∫ 1

−1

∫ 1

−1

∫ 2π

θ=0

{
Ā

[f]
θl J̄B + ε

[
Â

[f]
θl J̄B + Ā

[f]
θl ĴB

]}
ds1 ds2 dθ + O(ε2) and

R[p]
l =

∫ 1

−1

∫ 1

−1

∫ 2π

θ=0

{
Ā

[p]
l J̄B + ε

[
Â

[p]
l J̄B + Ā

[p]
l ĴB

]}
ds1 ds2 dθ + O(ε2), (7.36)

where

Ā
[f]
rl = Rρ Re

[
St r̄

δūr
δt

+ r̄ (ūr − St ū[M]

r )
∂ur
∂r

+ r̄ (ūz − St ū[M]

z )
∂ur
∂z

+
(
ūθ − St ū[M]

θ

) ∂ur
∂θ
− ū2

θ

]
φ

[f]
l − r̄ Br φ

[f]
l −Rρ

Re

Fr
r̄ Gr φ

[f]
l

+ r̄

[
−p̄+ 2Rµ

∂ur
∂r

]
∂φ

[f]
l

∂r
+Rµr̄

[
∂uz
∂r

+
∂ur
∂z

]
∂φ

[f]
l

∂z

+Rµ

[
∂uθ
∂r

+
1

r̄

∂ur
∂θ
− ūθ

r̄

]
∂φ

[f]
l

∂θ
+

[
−p̄+

2Rµ

r̄

∂uθ
∂θ

+
2Rµ

r̄
ūr

]
φ

[f]
l , (7.37)
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Ā
[f]
zl = Rρ Re

[
St r̄

δūz
δt

+ r̄ (ūr − St ū[M]

r )
∂uz
∂r

+ r̄ (ūz − St ū[M]

z )
∂uz
∂z

+
(
ūθ − St ū[M]

θ

) ∂uz
∂θ

]
φ

[f]
l − r̄ Bz φ

[f]
l −Rρ

Re

Fr
r̄ Gz φ

[f]
l

+Rµr̄

[
∂ur
∂z

+
∂uz
∂r

]
∂φ

[f]
l

∂r
+ r̄

[
−p̄+ 2Rµ

∂uz
∂z

]
∂φ

[f]
l

∂z

+Rµ

[
1

r̄

∂uz
∂θ

+
∂uθ
∂z

]
∂φ

[f]
l

∂θ
, (7.38)

Ā
[f]
θl = Rρ Re

[
St r̄

δūθ
δt

+ r̄ (ūr − St ū[M]

r )
∂uθ
∂r

+ r̄ (ūz − St ū[M]

z )
∂uθ
∂z

+
(
ūθ − St ū[M]

θ

) ∂uθ
∂θ

+ ūθūr

]
φ

[f]
l − r̄ Bθ φ

[f]
l −Rρ

Re

Fr
r̄ Gθ φ

[f]
l

+Rµ

[
r̄
∂uθ
∂r

+
∂ur
∂θ
− ūθ

]
∂φ

[f]
l

∂r
+Rµ

[
∂uz
∂θ

+ r̄
∂uθ
∂z

]
∂φ

[f]
l

∂z

+

[
−p̄+

2Rµ

r̄

∂uθ
∂θ

+
2Rµ

r̄
ūr

]
∂φ

[f]
l

∂θ
−Rµ

[
∂uθ
∂r

+
1

r̄

∂ur
∂θ
− ūθ

r̄

]
φ

[f]
l , (7.39)

Ā
[p]
l =

[
r̄
∂ur
∂r

+ ūr + r̄
∂uz
∂z

+
∂uθ
∂θ
− r̄Q

]
φ

[p]
l , (7.40)
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Â
[f]
rl = Rρ Re

[
St r̄

δûr
δt

+ St r̂
δūr
δt

+ r̄ (ūr − St ū[M]

r )
∂̂ur
∂r

+ r̄ (ûr − St û[M]

r )
∂ur
∂r

+ r̂ (ūr − St ū[M]

r )
∂ur
∂r

+ r̄ (ūz − St ū[M]

z )
∂̂ur
∂z

+ r̄ (ûz − St û[M]

z )
∂ur
∂z

+ r̂ (ūz − St ū[M]

z )
∂ur
∂z

+
(
ūθ − St ū[M]

θ

) ∂̂ur
∂θ

+
(
ûθ − St û[M]

θ

) ∂ur
∂θ

− 2ūθûθ

]
φ

[f]
l − r̂ Br φ

[f]
l −Rρ

Re

Fr
r̂ Gr φ

[f]
l − r̄p̄

∂̂φ
[f]
l

∂r

− r̄p̂∂φ
[f]
l

∂r
− r̂p̄∂φ

[f]
l

∂r
+ 2Rµ

r̄ ∂ur
∂r

∂̂φ
[f]
l

∂r
+ r̄

∂̂ur
∂r

∂φ
[f]
l

∂r
+ r̂

∂ur
∂r

∂φ
[f]
l

∂r


+Rµ

∂uθ
∂r

∂̂φ
[f]
l

∂θ
+
∂̂uθ
∂r

∂φ
[f]
l

∂θ
+

1

r̄

∂ur
∂θ

∂̂φ
[f]
l

∂θ
+

1

r̄

∂̂ur
∂θ

∂φ
[f]
l

∂θ
− r̂

r̄2

∂ur
∂θ

∂φ
[f]
l

∂θ

− ūθ
r̄

∂̂φ
[f]
l

∂θ
− ûθ

r̄

∂φ
[f]
l

∂θ
+
r̂ūθ
r̄2

∂φ
[f]
l

∂θ

+Rµ

r̄ ∂uz
∂r

∂̂φ
[f]
l

∂z
+ r̄

∂̂uz
∂r

∂φ
[f]
l

∂z

+r̂
∂uz
∂r

∂φ
[f]
l

∂z
+ r̄

∂ur
∂z

∂̂φ
[f]
l

∂z
+ r̄

∂̂ur
∂z

∂φ
[f]
l

∂z
+ r̂

∂ur
∂z

∂φ
[f]
l

∂z


+

[
−p̂+

2Rµ

r̄

∂̂uθ
∂θ
− 2Rµr̂

r̄2

∂uθ
∂θ

+
2Rµûr
r̄
− 2Rµr̂ūr

r̄2

]
φ

[f]
l , (7.41)

Â
[f]
zl = Rρ Re

[
St r̄

δûz
δt

+ St r̂
δūz
δt

+ r̄ (ūr − St ū[M]

r )
∂̂uz
∂r

+ r̄ (ûr − St û[M]

r )
∂uz
∂r

+r̂ (ūr − St ū[M]

r )
∂uz
∂r

+ r̄ (ūz − St ū[M]

z )
∂̂uz
∂z

+ r̄ (ûz − St û[M]

z )
∂uz
∂z

+r̂ (ūz − St ū[M]

z )
∂uz
∂z

+
(
ūθ − St ū[M]

θ

) ∂̂uz
∂θ

+
(
ûθ − St û[M]

θ

) ∂uz
∂θ

]
φ

[f]
l

− r̂ Bz φ
[f]
l −Rρ

Re

Fr
r̂ Gz φ

[f]
l +Rµ

r̄ ∂uz
∂r

∂̂φ
[f]
l

∂r
+ r̄

∂̂uz
∂r

∂φ
[f]
l

∂r

+r̂
∂uz
∂r

∂φ
[f]
l

∂r
+ r̄

∂ur
∂z

∂̂φ
[f]
l

∂r
+ r̄

∂̂ur
∂z

∂φ
[f]
l

∂r
+ r̂

∂ur
∂z

∂φ
[f]
l

∂r


− r̄p̄ ∂̂φ

[f]
l

∂z
− r̄p̂∂φ

[f]
l

∂z
− r̂p̄∂φ

[f]
l

∂z
+ 2Rµ

r̄ ∂uz
∂z

∂̂φ
[f]
l

∂z
+ r̄

∂̂uz
∂z

∂φ
[f]
l

∂z
+ r̂

∂uz
∂z

∂φ
[f]
l

∂z


+Rµ

1

r̄

∂uz
∂θ

∂̂φ
[f]
l

∂θ
+

1

r̄

∂̂uz
∂θ

∂φ
[f]
l

∂θ
− r̂

r̄2

∂uz
∂θ

∂φ
[f]
l

∂θ
+
∂uθ
∂z

∂̂φ
[f]
l

∂θ
+
∂̂uθ
∂z

∂φ
[f]
l

∂θ

 , (7.42)
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Â
[f]
θl = Rρ Re

[
St r̄

δûθ
δt

+ St r̂
δūθ
δt

+ r̄ (ūr − St ū[M]

r )
∂̂uθ
∂r

+ r̄ (ûr − St û[M]

r )
∂uθ
∂r

+ r̂ (ūr − St ū[M]

r )
∂uθ
∂r

+ r̄ (ūz − St ū[M]

z )
∂̂uθ
∂z

+ r̄ (ûz − St û[M]

z )
∂uθ
∂z

+ r̂ (ūz − St ū[M]

z )
∂uθ
∂z

+
(
ūθ − St ū[M]

θ

) ∂̂uθ
∂θ

+
(
ûθ − St û[M]

θ

) ∂uθ
∂θ

+ ūθûr + ûθūr

]
φ

[f]
l − r̂ Bθ φ

[f]
l −Rρ

Re

Fr
r̂ Gθ φ

[f]
l +Rµ

r̄ ∂uθ
∂r

∂̂φ
[f]
l

∂r

+r̄
∂̂uθ
∂r

∂φ
[f]
l

∂r
+ r̂

∂uθ
∂r

∂φ
[f]
l

∂r
+
∂ur
∂θ

∂̂φ
[f]
l

∂r
+
∂̂ur
∂θ

∂φ
[f]
l

∂r
− ūθ

∂̂φ
[f]
l

∂r
− ûθ

∂φ
[f]
l

∂r


+Rµ

∂uz
∂θ

∂̂φ
[f]
l

∂z
+
∂̂uz
∂θ

∂φ
[f]
l

∂z
+ r̄

∂uθ
∂z

∂̂φ
[f]
l

∂z
+ r̄

∂̂uθ
∂z

∂φ
[f]
l

∂z
+ r̂

∂uθ
∂z

∂φ
[f]
l

∂z


− p̄ ∂̂φ

[f]
l

∂θ
− p̂∂φ

[f]
l

∂θ
+ 2Rµ

1

r̄

∂uθ
∂θ

∂̂φ
[f]
l

∂θ
+

1

r̄

∂̂uθ
∂θ

∂φ
[f]
l

∂θ
− r̂

r̄2

∂uθ
∂θ

∂φ
[f]
l

∂θ
+
ūr
r̄

∂̂φ
[f]
l

∂θ

+
ûr
r̄

∂φ
[f]
l

∂θ
− r̂ūr

r̄2

∂φ
[f]
l

∂θ

]
−Rµ

[
∂̂uθ
∂r

+
1

r̄

∂̂ur
∂θ
− r̂

r̄2

∂ur
∂θ
− ûθ

r̄
+
r̂ūθ
r̄2

]
φ

[f]
l (7.43)

and

Â
[p]
l =

[
r̄
∂̂ur
∂r

+ r̂
∂ur
∂r

+ ûr +
∂̂uθ
∂θ

+ r̄
∂̂uz
∂z

+ r̂
∂uz
∂z
− r̂Q

]
φ

[p]
l . (7.44)

We use (7.28) to evaluate the following terms which are used in (7.37)–(7.44):

∂ui
∂r

=
1

J̄B

(
∂z̄

∂s2

∂ūi
∂s1

− ∂z̄

∂s1

∂ūi
∂s2

)
,

∂ui
∂z

=
1

J̄B

(
∂r̄

∂s1

∂ūi
∂s2

− ∂r̄

∂s2

∂ūi
∂s1

)
,

∂ui
∂θ

= 0,

∂p

∂r
=

1

J̄B

(
∂z̄

∂s2

∂p̄

∂s1

− ∂z̄

∂s1

∂p̄

∂s2

)
,

∂p

∂z
=

1

J̄B

(
∂r̄

∂s1

∂p̄

∂s2

− ∂r̄

∂s2

∂p̄

∂s1

)
,

∂p

∂θ
= 0.

(7.45)
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Similarly, (7.29) is used to evaluate

∂̂ui
∂r

=
1

J̄B

[
∂z̄

∂s2

∂ûi
∂s1

+
∂ẑ

∂s2

∂ūi
∂s1

− ∂z̄

∂s1

∂ûi
∂s2

− ∂ẑ

∂s1

∂ūi
∂s2

]
− ĴB
J̄B

∂ui
∂r

,

∂̂p

∂r
=

1

J̄B

[
∂z̄

∂s2

∂p̂

∂s1

+
∂ẑ

∂s2

∂p̄

∂s1

− ∂z̄

∂s1

∂p̂

∂s2

− ∂ẑ

∂s1

∂p̄

∂s2

]
− ĴB
J̄B

∂p

∂r
,

∂̂ui
∂z

=
1

J̄B

[
∂r̄

∂s1

∂ûi
∂s2

+
∂r̂

∂s1

∂ūi
∂s2

− ∂r̄

∂s2

∂ûi
∂s1

− ∂r̂

∂s2

∂ūi
∂s1

]
− ĴB
J̄B

∂ui
∂z

,

∂̂p

∂z
=

1

J̄B

[
∂r̄

∂s1

∂p̂

∂s2

+
∂r̂

∂s1

∂p̄

∂s2

− ∂r̄

∂s2

∂p̂

∂s1

− ∂r̂

∂s2

∂p̄

∂s1

]
− ĴB
J̄B

∂p

∂z
,

∂̂ui
∂θ

=
∂ûi
∂θ
− ∂ui

∂r

∂r̂

∂θ
− ∂ui
∂z

∂ẑ

∂θ
,

∂̂p

∂θ
=

∂p̂

∂θ
− ∂p

∂r

∂r̂

∂θ
− ∂p

∂z

∂ẑ

∂θ
. (7.46)

Finally, (7.31) and (7.32) are used to evaluate

∂φ
[f]
l

∂r
=

1

J̄B

(
∂z̄

∂s2

∂φ
[f]
l

∂s1

− ∂z̄

∂s1

∂φ
[f]
l

∂s2

)
,

∂φ
[f]
l

∂z
=

1

J̄B

(
∂r̄

∂s1

∂φ
[f]
l

∂s2

− ∂r̄

∂s2

∂φ
[f]
l

∂s1

)
,

∂φ
[f]
l

∂θ
=

∂φ
[f]
l

∂θ
,

∂̂φ
[f]
l

∂r
=

1

J̄B

(
∂ẑ

∂s2

∂φ
[f]
l

∂s1

− ∂ẑ

∂s1

∂φ
[f]
l

∂s2

)
− ĴB
J̄B

∂φ
[f]
l

∂r
,

∂̂φ
[f]
l

∂z
=

1

J̄B

(
∂r̂

∂s1

∂φ
[f]
l

∂s2

− ∂r̂

∂s2

∂φ
[f]
l

∂s1

)
− ĴB
J̄B

∂φ
[f]
l

∂z
,

∂̂φ
[f]
l

∂θ
= −∂φ

[f]
l

∂r

∂r̂

∂θ
− ∂φ

[f]
l

∂z

∂ẑ

∂θ
. (7.47)

7.2 The base state

Let us briefly consider just the terms in (7.36) that are of order one. We recall from

(7.11) that the ‘base state solution’ (ū, p̄) is independent of θ, and therefore we can

discretise ūr, ūz, ūθ and p̄ in the manner outlined in section 3.3.2,

ūr(s1, s2) =
nu∑
j=1

Uj ψ
[f]
j (s1, s2),

ūθ(s1, s2) =
nu∑
j=1

Vj ψ
[f]
j (s1, s2),

ūz(s1, s2) =
nu∑
j=1

Wj ψ
[f]
j (s1, s2),

p̄(s1, s2) =

np∑
j=1

Pj ψ
[p]
j (s1, s2),

(7.48)
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where explicit references to the time dependence of the nodal values Uj, Wj, Vj and

Pj have been suppressed for the time being. The (unperturbed) Eulerian coordinates

r̄ and z̄ are discretised in a similar manner,

r̄(s1, s2) =
n∑
j=1

X1j ψ
[f]
j (s1, s2) and z̄(s1, s2) =

n∑
j=1

X2j ψ
[f]
j (s1, s2). (7.49)

As usual we employ the Galerkin method to expand the test functions in terms of the

same basis functions with which the solution is represented, and so we choose

φ
[f]
l = ψ

[f]
l (s1, s2) and φ

[p]
l = ψ

[p]
l (s1, s2). (7.50)

It follows that ∂φ
[f]
l /∂θ = 0 and hence from (7.47)

∂φ
[f]
l

∂θ
= 0. (7.51)

Putting all this together, the terms of order one in (7.36) are therefore

R̄[f,bulk]
rl = 2π

∫ 1

−1

∫ 1

−1

{
Rρ Re

[
St r̄

δūr
δt

+ r̄ (ūr − St ū[M]

r )
∂ur
∂r

+r̄ (ūz − St ū[M]

z )
∂ur
∂z
− ū2

θ

]
ψ

[f]
l − r̄ Br ψ

[f]
l

−Rρ
Re

Fr
r̄ Gr ψ

[f]
l + r̄

[
−p̄+ 2Rµ

∂ur
∂r

]
∂ψ

[f]
l

∂r

+Rµr̄

[
∂uz
∂r

+
∂ur
∂z

]
∂ψ

[f]
l

∂z
+

[
−p̄+

2Rµ

r̄
ūr

]
ψ

[f]
l

}
J̄B ds1 ds2, (7.52)

R̄[f,bulk]
zl = 2π

∫ 1

−1

∫ 1

−1

{
Rρ Re

[
St r̄

δūz
δt

+ r̄ (ūr − St ū[M]

r )
∂uz
∂r

+r̄ (ūz − St ū[M]

z )
∂uz
∂z

]
ψ

[f]
l − r̄ Bz ψ

[f]
l −Rρ

Re

Fr
r̄ Gz ψ

[f]
l

+Rµr̄

[
∂ur
∂z

+
∂uz
∂r

]
∂ψ

[f]
l

∂r
+ r̄

[
−p̄+ 2Rµ

∂uz
∂z

]
∂ψ

[f]
l

∂z

}
J̄B ds1 ds2, (7.53)

R̄[f,bulk]
θl = 2π

∫ 1

−1

∫ 1

−1

{
Rρ Re

[
St r̄

δūθ
δt

+ r̄ (ūr − St ū[M]

r )
∂uθ
∂r

+r̄ (ūz − St ū[M]

z )
∂uθ
∂z

+ ūθūr

]
ψ

[f]
l − r̄ Bθ ψ

[f]
l

−Rρ
Re

Fr
r̄ Gθ ψ

[f]
l +Rµ

[
r̄
∂uθ
∂r
− ūθ

]
∂ψ

[f]
l

∂r

+Rµr̄
∂uθ
∂z

∂ψ
[f]
l

∂z
−Rµ

[
∂uθ
∂r
− ūθ

r̄

]
ψ

[f]
l

}
J̄B ds1 ds2 (7.54)
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and

R̄[p]
l = 2π

∫ 1

−1

∫ 1

−1

[
r̄
∂ur
∂r

+ ūr + r̄
∂uz
∂z
− r̄Q

]
ψ

[p]
l J̄B ds1 ds2, (7.55)

where we have performed the integral over θ. Comparison with (5.84), (5.85), (5.86)

and (5.88) reveals that these are precisely the axisymmetric Navier–Stokes equations,

as expected.

7.3 Perturbation to the base state

Let us now consider the terms in (7.36) that are of order ε. Because the domain in

which we are solving the governing equations is periodic in the θ direction, we can

represent any function f(s1, s2, θ, t) as a Fourier series,

f(s1, s2, θ, t) =
∞∑
k=0

[
FC
k (s1, s2, t) cos kθ + F S

k (s1, s2, t) sin kθ
]
, (7.56)

where the ‘mode number’ k is an integer and the ‘Fourier coefficients’ FC
k and F S

k

are functions of the two remaining spatial coordinates and time. We note that F S
0

is undefined (since sin(0) = 0) but choose to write the decomposition in this way to

make the following discussion more concise. We therefore let

ûr(s1, s2, θ, t) =
∞∑
k=0

[
UC
k (s1, s2, t) cos kθ + US

k (s1, s2, t) sin kθ
]
,

ûz(s1, s2, θ, t) =
∞∑
k=0

[
WC
k (s1, s2, t) cos kθ +W S

k (s1, s2, t) sin kθ
]
,

ûθ(s1, s2, θ, t) =
∞∑
k=0

[
V C
k (s1, s2, t) cos kθ + V S

k (s1, s2, t) sin kθ
]
,

p̂(s1, s2, θ, t) =
∞∑
k=0

[
PC
k (s1, s2, t) cos kθ + P S

k (s1, s2, t) sin kθ
]
,

r̂(s1, s2, θ, t) =
∞∑
k=0

[
RC
k (s1, s2, t) cos kθ +RS

k (s1, s2, t) sin kθ
]

and

ẑ(s1, s2, θ, t) =
∞∑
k=0

[
ZC
k (s1, s2, t) cos kθ + ZS

k (s1, s2, t) sin kθ
]
. (7.57)

The finite element solution of ûr within the element is then represented by

ûr(s1, s2, θ) =
∞∑
k=0

{
nu∑
j=1

(
UC
k

)
j
ψ

[f]
j (s1, s2) cos kθ +

nu∑
j=1

(
US
k

)
j
ψ

[f]
j (s1, s2) sin kθ

}
,

(7.58)
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where we have again suppressed any explicit references to the time dependence of the

nodal values
(
UC
k

)
j

and
(
US
k

)
j
. The finite element solutions of ûz, ûθ, p̂, r̂ and ẑ

follow in a similar way. The Galerkin method requires us to choose the two sets of

test functions,

φ
[f,C]
l = ψ

[f]
l (s1, s2) cosmθ, φ

[p,C]
l = ψ

[p]
l (s1, s2) cosmθ (7.59)

and

φ
[f,S]
l = ψ

[f]
l (s1, s2) sinmθ, φ

[p,S]
l = ψ

[p]
l (s1, s2) sinmθ. (7.60)

From (7.47) we have

∂φ
[f,C]
l

∂r
=
∂ψ

[f]
l

∂r
cosmθ,

∂φ
[f,C]
l

∂z
=
∂ψ

[f]
l

∂z
cosmθ,

∂φ
[f,C]
l

∂θ
= −mψ[f]

l sinmθ,

∂φ
[f,S]
l

∂r
=
∂ψ

[f]
l

∂r
sinmθ,

∂φ
[f,S]
l

∂z
=
∂ψ

[f]
l

∂z
sinmθ,

∂φ
[f,S]
l

∂θ
= mψ

[f]
l cosmθ

(7.61)
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and

∂̂φ
[f,C]
l

∂r
=

1

J̄B

[
∂ψ

[f]
l

∂s1

∞∑
k=0

∂ZC
k

∂s2

cos kθ +
∂ψ

[f]
l

∂s1

∞∑
k=0

∂ZS
k

∂s2

sin kθ

−∂ψ
[f]
l

∂s2

∞∑
k=0

∂ZC
k

∂s1

cos kθ − ∂ψ
[f]
l

∂s2

∞∑
k=0

∂ZS
k

∂s1

sin kθ

]
cosmθ − ĴB

J̄B
∂φ

[f,C]
l

∂r

∂̂φ
[f,S]
l

∂r
=

1

J̄B

[
∂ψ

[f]
l

∂s1

∞∑
k=0

∂ZC
k

∂s2

cos kθ +
∂ψ

[f]
l

∂s1

∞∑
k=0

∂ZS
k

∂s2

sin kθ

−∂ψ
[f]
l

∂s2

∞∑
k=0

∂ZC
k

∂s1

cos kθ − ∂ψ
[f]
l

∂s2

∞∑
k=0

∂ZS
k

∂s1

sin kθ

]
sinmθ − ĴB

J̄B
∂φ

[f,S]
l

∂r

∂̂φ
[f,C]
l

∂z
=

1

J̄B

[
∂ψ

[f]
l

∂s2

∞∑
k=0

∂RC
k

∂s1

cos kθ +
∂ψ

[f]
l

∂s2

∞∑
k=0

∂RS
k

∂s1

sin kθ

−∂ψ
[f]
l

∂s1

∞∑
k=0

∂RC
k

∂s2

cos kθ − ∂ψ
[f]
l

∂s1

∞∑
k=0

∂RS
k

∂s2

sin kθ

]
cosmθ − ĴB

J̄B
∂φ

[f,C]
l

∂z

∂̂φ
[f,S]
l

∂z
=

1

J̄B

[
∂ψ

[f]
l

∂s2

∞∑
k=0

∂RC
k

∂s1

cos kθ +
∂ψ

[f]
l

∂s2

∞∑
k=0

∂RS
k

∂s1

sin kθ

−∂ψ
[f]
l

∂s1

∞∑
k=0

∂RC
k

∂s2

cos kθ − ∂ψ
[f]
l

∂s1

∞∑
k=0

∂RS
k

∂s2

sin kθ

]
sinmθ − ĴB

J̄B
∂φ

[f,S]
l

∂z

∂̂φ
[f,C]
l

∂θ
=

[
−∂ψ

[f]
l

∂r

∞∑
k=0

kRS
k cos kθ +

∂ψ
[f]
l

∂r

∞∑
k=0

kRC
k sin kθ

−∂ψ
[f]
l

∂z

∞∑
k=0

kZS
k cos kθ +

∂ψ
[f]
l

∂z

∞∑
k=0

kZC
k sin kθ

]
cosmθ

∂̂φ
[f,S]
l

∂θ
=

[
−∂ψ

[f]
l

∂r

∞∑
k=0

kRS
k cos kθ +

∂ψ
[f]
l

∂r

∞∑
k=0

kRC
k sin kθ

−∂ψ
[f]
l

∂z

∞∑
k=0

kZS
k cos kθ +

∂ψ
[f]
l

∂z

∞∑
k=0

kZC
k sin kθ

]
sinmθ (7.62)

where we have defined

∂ψ
[f]
l

∂r
=

1

J̄B

(
∂z̄

∂s2

∂ψ
[f]
l

∂s1

− ∂z̄

∂s1

∂ψ
[f]
l

∂s2

)
(7.63)

and
∂ψ

[f]
l

∂z
=

1

J̄B

(
∂r̄

∂s1

∂ψ
[f]
l

∂s2

− ∂r̄

∂s2

∂ψ
[f]
l

∂s1

)
, (7.64)
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and from (7.18) we have

ĴB =
∞∑
k=0

[(
∂r̄

∂s1

∂ZC
k

∂s2

+
∂z̄

∂s2

∂RC
k

∂s1

− ∂r̄

∂s2

∂ZC
k

∂s1

− ∂z̄

∂s1

∂RC
k

∂s2

)
cos kθ

]
+
∞∑
k=0

[(
∂r̄

∂s1

∂ZS
k

∂s2

+
∂z̄

∂s2

∂RS
k

∂s1

− ∂r̄

∂s2

∂ZS
k

∂s1

− ∂z̄

∂s1

∂RS
k

∂s2

)
sin kθ

]
. (7.65)

When we perform the integral over θ, we will exploit the fact that all the terms of

a Fourier serier are mutually orthogonal, and therefore∫ 2π

0

sin kθ cosmθ dθ = 0 for all k and m,

∫ 2π

0

cos kθ cosmθ dθ =


2π for k = m = 0

π for k = m > 0

0 for k 6= m

and

∫ 2π

0

sin kθ sinmθ dθ =


2π for k = m = 0

π for k = m > 0

0 for k 6= m

. (7.66)

Using this result we note that from (7.65)∫ 2π

0

ĴB cosmθ dθ = γm π Ĵ C
m and

∫ 2π

0

ĴB sinmθ dθ = γm π Ĵ S
m, (7.67)

where we have defined

Ĵ C
m =

∂r̄

∂s1

∂ZC
k

∂s2

+
∂z̄

∂s2

∂RC
k

∂s1

− ∂r̄

∂s2

∂ZC
k

∂s1

− ∂z̄

∂s1

∂RC
k

∂s2

(7.68)

and

Ĵ S
m =

∂r̄

∂s1

∂ZS
k

∂s2

+
∂z̄

∂s2

∂RS
k

∂s1

− ∂r̄

∂s2

∂ZS
k

∂s1

− ∂z̄

∂s1

∂RS
k

∂s2

, (7.69)

and we introduce the quantity

γm =

 2 for m = 0

1 for m > 0
. (7.70)



CHAPTER 7. PERTURBATIONS: PART ONE 142

If we also introduce the quantities(
∂ψ

[f]
l

∂R

)C
m

=
1

J̄B

(
∂ψ

[f]
l

∂s1

∂ZC
m

∂s2

− ∂ψ
[f]
l

∂s2

∂ZC
m

∂s1

)
,(

∂ψ
[f]
l

∂R

)S
m

=
1

J̄B

(
∂ψ

[f]
l

∂s1

∂ZS
m

∂s2

− ∂ψ
[f]
l

∂s2

∂ZS
m

∂s1

)
,(

∂ψ
[f]
l

∂Z

)C
m

=
1

J̄B

(
∂ψ

[f]
l

∂s2

∂RC
m

∂s1

− ∂ψ
[f]
l

∂s1

∂RC
m

∂s2

)
and(

∂ψ
[f]
l

∂Z

)S
m

=
1

J̄B

(
∂ψ

[f]
l

∂s2

∂RS
m

∂s1

− ∂ψ
[f]
l

∂s1

∂RS
m

∂s2

)
, (7.71)

then from (7.62) the integral over the spatial derivatives of the test functions are given

by ∫ 2π

0

∂̂φ
[f,C]
l

∂r
dθ = γm π

(∂ψ[f]
l

∂R

)C
m

− Ĵ
C
m

J̄B
∂ψ

[f]
l

∂r

 ,
∫ 2π

0

∂̂φ
[f,S]
l

∂r
dθ = γm π

(∂ψ[f]
l

∂R

)S
m

− Ĵ
S
m

J̄B
∂ψ

[f]
l

∂r

 ,
∫ 2π

0

∂̂φ
[f,C]
l

∂z
dθ = γm π

(∂ψ[f]
l

∂Z

)C
m

− Ĵ
C
m

J̄B
∂ψ

[f]
l

∂z

 ,
∫ 2π

0

∂̂φ
[f,S]
l

∂z
dθ = γm π

(∂ψ[f]
l

∂Z

)S
m

− Ĵ
S
m

J̄B
∂ψ

[f]
l

∂z

 ,
∫ 2π

0

∂̂φ
[f,C]
l

∂θ
dθ = −γm πm

[
RS
m

∂ψ
[f]
l

∂r
+ ZS

m

∂ψ
[f]
l

∂z

]
and

∫ 2π

0

∂̂φ
[f,S]
l

∂θ
dθ = γm πm

[
RC
m

∂ψ
[f]
l

∂r
+ ZC

m

∂ψ
[f]
l

∂z

]
. (7.72)

It is also convenient to define the following quantities:(
∂U

∂R

)C
m

=
1

J̄B

[
∂z̄

∂s2

∂UC
m

∂s1

+
∂ūr
∂s1

∂ZC
m

∂s2

− ∂z̄

∂s1

∂UC
m

∂s2

− ∂ūr
∂s2

∂ZC
m

∂s1

]
,

(
∂U

∂R

)S
m

=
1

J̄B

[
∂z̄

∂s2

∂US
m

∂s1

+
∂ūr
∂s1

∂ZS
m

∂s2

− ∂z̄

∂s1

∂US
m

∂s2

− ∂ūr
∂s2

∂ZS
m

∂s1

]
,(

∂W

∂R

)C
m

=
1

J̄B

[
∂z̄

∂s2

∂WC
m

∂s1

+
∂ūz
∂s1

∂ZC
m

∂s2

− ∂z̄

∂s1

∂WC
m

∂s2

− ∂ūz
∂s2

∂ZC
m

∂s1

]
,(

∂W

∂R

)S
m

=
1

J̄B

[
∂z̄

∂s2

∂W S
m

∂s1

+
∂ūz
∂s1

∂ZS
m

∂s2

− ∂z̄

∂s1

∂W S
m

∂s2

− ∂ūz
∂s2

∂ZS
m

∂s1

]
,
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(
∂V

∂R

)C
m

=
1

J̄B

[
∂z̄

∂s2

∂V C
m

∂s1

+
∂ūθ
∂s1

∂ZC
m

∂s2

− ∂z̄

∂s1

∂V C
m

∂s2

− ∂ūθ
∂s2

∂ZC
m

∂s1

]
,(

∂V

∂R

)S
m

=
1

J̄B

[
∂z̄

∂s2

∂V S
m

∂s1

+
∂ūθ
∂s1

∂ZS
m

∂s2

− ∂z̄

∂s1

∂V S
m

∂s2

− ∂ūθ
∂s2

∂ZS
m

∂s1

]
,(

∂U

∂Z

)C
m

=
1

J̄B

[
∂r̄

∂s1

∂UC
m

∂s2

+
∂ūr
∂s2

∂RC
m

∂s1

− ∂r̄

∂s2

∂UC
m

∂s1

− ∂ūr
∂s1

∂RC
m

∂s2

]
,(

∂U

∂Z

)S
m

=
1

J̄B

[
∂r̄

∂s1

∂US
m

∂s2

+
∂ūr
∂s2

∂RS
m

∂s1

− ∂r̄

∂s2

∂US
m

∂s1

− ∂ūr
∂s1

∂RS
m

∂s2

]
,(

∂W

∂Z

)C
m

=
1

J̄B

[
∂r̄

∂s1

∂WC
m

∂s2

+
∂ūz
∂s2

∂RC
m

∂s1

− ∂r̄

∂s2

∂WC
m

∂s1

− ∂ūz
∂s1

∂RC
m

∂s2

]
,(

∂W

∂Z

)S
m

=
1

J̄B

[
∂r̄

∂s1

∂W S
m

∂s2

+
∂ūz
∂s2

∂RS
m

∂s1

− ∂r̄

∂s2

∂W S
m

∂s1

− ∂ūz
∂s1

∂RS
m

∂s2

]
,(

∂V

∂Z

)C
m

=
1

J̄B

[
∂r̄

∂s1

∂V C
m

∂s2

+
∂ūθ
∂s2

∂RC
m

∂s1

− ∂r̄

∂s2

∂V C
m

∂s1

− ∂ūθ
∂s1

∂RC
m

∂s2

]
and(

∂V

∂Z

)S
m

=
1

J̄B

[
∂r̄

∂s1

∂V S
m

∂s2

+
∂ūθ
∂s2

∂RS
m

∂s1

− ∂r̄

∂s2

∂V S
m

∂s1

− ∂ūθ
∂s1

∂RS
m

∂s2

]
. (7.73)

Using (7.73) and (7.66) we can evaluate the integrals over θ of the spatial derivatives

of the perturbed velocities and pressures (7.46):∫ 2π

0

∂̂ur
∂r

cosmθ dθ = γm π

[(
∂U

∂R

)C
m

− Ĵ
C
m

J̄B
∂ur
∂r

]
,

∫ 2π

0

∂̂ur
∂r

sinmθ dθ = γm π

[(
∂U

∂R

)S
m

− Ĵ
S
m

J̄B
∂ur
∂r

]
,

∫ 2π

0

∂̂uz
∂r

cosmθ dθ = γm π

[(
∂W

∂R

)C
m

− Ĵ
C
m

J̄B
∂uz
∂r

]
,

∫ 2π

0

∂̂uz
∂r

sinmθ dθ = γm π

[(
∂W

∂R

)S
m

− Ĵ
S
m

J̄B
∂uz
∂r

]
,

∫ 2π

0

∂̂uθ
∂r

cosmθ dθ = γm π

[(
∂V

∂R

)C
m

− Ĵ
C
m

J̄B
∂uθ
∂r

]
,

∫ 2π

0

∂̂uθ
∂r

sinmθ dθ = γm π

[(
∂V

∂R

)S
m

− Ĵ
S
m

J̄B
∂uθ
∂r

]
, (7.74)
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∫ 2π

0

∂̂ur
∂z

cosmθ dθ = γm π

[(
∂U

∂Z

)C
m

− Ĵ
C
m

J̄B
∂ur
∂z

]
,

∫ 2π

0

∂̂ur
∂z

sinmθ dθ = γm π

[(
∂U

∂Z

)S
m

− Ĵ
S
m

J̄B
∂ur
∂z

]
,

∫ 2π

0

∂̂uz
∂z

cosmθ dθ = γm π

[(
∂W

∂Z

)C
m

− Ĵ
C
m

J̄B
∂uz
∂z

]
,

∫ 2π

0

∂̂uz
∂z

sinmθ dθ = γm π

[(
∂W

∂Z

)S
m

− Ĵ
S
m

J̄B
∂uz
∂z

]
,

∫ 2π

0

∂̂uθ
∂z

cosmθ dθ = γm π

[(
∂V

∂Z

)C
m

− Ĵ
C
m

J̄B
∂uθ
∂z

]
,

∫ 2π

0

∂̂uθ
∂z

sinmθ dθ = γm π

[(
∂V

∂Z

)S
m

− Ĵ
S
m

J̄B
∂uθ
∂z

]
, (7.75)

∫ 2π

0

∂̂ur
∂θ

cosmθ dθ = γm πm

[
US
m −

∂ur
∂r

RS
m −

∂ur
∂z

ZS
m

]
,∫ 2π

0

∂̂ur
∂θ

sinmθ dθ = γm πm

[
−UC

m +
∂ur
∂r

RC
m +

∂ur
∂z

ZC
m

]
,∫ 2π

0

∂̂uz
∂θ

cosmθ dθ = γm πm

[
W S
m −

∂uz
∂r

RS
m −

∂uz
∂z

ZS
m

]
,∫ 2π

0

∂̂uz
∂θ

sinmθ dθ = γm πm

[
−WC

m +
∂uz
∂r

RC
m +

∂uz
∂z

ZC
m

]
,∫ 2π

0

∂̂uθ
∂θ

cosmθ dθ = γm πm

[
V S
m −

∂uθ
∂r

RS
m −

∂uθ
∂z

ZS
m

]
,∫ 2π

0

∂̂uθ
∂θ

sinmθ dθ = γm πm

[
−V C

m +
∂uθ
∂r

RC
m +

∂uθ
∂z

ZC
m

]
,∫ 2π

0

∂̂p

∂θ
cosmθ dθ = γm πm

[
P S
m −

∂p

∂r
RS
m −

∂p

∂z
ZS
m

]
and∫ 2π

0

∂̂p

∂θ
sinmθ dθ = γm πm

[
−PC

m +
∂p

∂r
RC
m +

∂p

∂z
ZC
m

]
. (7.76)

Finally, using (7.61)–(7.76) we can write down the terms of order ε in (7.36). We

first choose the form of φ
[f]
l and φ

[p]
l given in (7.59), and perform the integral over θ to
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obtain the radial momentum equation,

R̂[fC,bulk]
rml = γm π

∫ 1

−1

∫ 1

−1

{
Rρ Re

[
St r̄

δUC
m

δt
J̄B + StRC

m

δūr
δt
J̄B + St r̄

δūr
δt
Ĵ C
m

+r̄ (ūr − St ū[M]

r )

(
∂U

∂R

)C
m

J̄B + r̄

(
UC
m − St

δRC
m

δt

)
∂ur
∂r
J̄B

+RC
m (ūr − St ū[M]

r )
∂ur
∂r
J̄B + r̄ (ūz − St ū[M]

z )

(
∂U

∂Z

)C
m

J̄B

+r̄

(
WC
m − St

δZC
m

δt

)
∂ur
∂z
J̄B +RC

m (ūz − St ū[M]

z )
∂ur
∂z
J̄B

+mūθ

(
US
m −

∂ur
∂r

RS
m −

∂ur
∂z

ZS
m

)
J̄B − 2ūθV

C
m J̄B − ū2

θĴ C
m

]
ψ

[f]
l

−
(
RC
mJ̄B + r̄Ĵ C

m

)
Br ψ

[f]
l −Rρ

Re

Fr

(
RC
mJ̄B + r̄Ĵ C

m

)
Gr ψ

[f]
l

−r̄p̄

(
∂ψ

[f]
l

∂R

)C
m

J̄B − r̄PC
m

∂ψ
[f]
l

∂r
J̄B −RC

mp̄
∂ψ

[f]
l

∂r
J̄B

+2Rµ

r̄(∂U
∂R

)C
m

∂ψ
[f]
l

∂r
J̄B + r̄

∂ur
∂r

(
∂ψ

[f]
l

∂R

)C
m

J̄B

+RC
m

∂ur
∂r

∂ψ
[f]
l

∂r
J̄B − r̄

∂ur
∂r

∂ψ
[f]
l

∂r
Ĵ C
m

]

+Rµ

r̄(∂W
∂R

)C
m

∂ψ
[f]
l

∂z
J̄B + r̄

∂uz
∂r

(
∂ψ

[f]
l

∂Z

)C
m

J̄B +RC
m

∂uz
∂r

∂ψ
[f]
l

∂z
J̄B

−r̄ ∂uz
∂r

∂ψ
[f]
l

∂z
Ĵ C
m + r̄

(
∂U

∂Z

)C
m

∂ψ
[f]
l

∂z
J̄B + r̄

∂ur
∂z

(
∂ψ

[f]
l

∂Z

)C
m

J̄B

+RC
m

∂ur
∂z

∂ψ
[f]
l

∂z
J̄B − r̄

∂ur
∂z

∂ψ
[f]
l

∂z
Ĵ C
m −m

(
∂V

∂R

)S
m

J̄Bψ[f]
l

−m∂uθ
∂r

(
∂ψ

[f]
l

∂r
RS
m +

∂ψ
[f]
l

∂z
ZS
m

)
J̄B +

m

r̄
ūθ

(
∂ψ

[f]
l

∂r
RS
m +

∂ψ
[f]
l

∂z
ZS
m

)
J̄B

]

+Rµ

[
m2

r̄

(
UC
m −

∂ur
∂r

RC
m −

∂ur
∂z

ZC
m

)
J̄B +

m

r̄
V S
mJ̄B

−m
r̄2
RS
mūθJ̄B +

m

r̄
ūθĴ S

m

]
ψ

[f]
l −

(
PC
m J̄B + p̄Ĵ C

m

)
ψ

[f]
l

+2Rµ

[
m

r̄

(
V S
m −

∂uθ
∂r

RS
m −

∂uθ
∂z

ZS
m

)
J̄B +

1

r̄
UC
mJ̄B

− 1

r̄2
RC
mūrJ̄B +

1

r̄
ūrĴ C

m

]
ψ

[f]
l

}
ds1 ds2, (7.77)
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axial momentum equation,

R̂[fC,bulk]
zml = γm π

∫ 1

−1

∫ 1

−1

{
Rρ Re

[
St r̄

δWC
m

δt
J̄B + StRC

m

δūz
δt
J̄B + St r̄

δūz
δt
Ĵ C
m

+r̄ (ūr − St ū[M]

r )

(
∂W

∂R

)C
m

J̄B + r̄

(
UC
m − St

δRC
m

δt

)
∂uz
∂r
J̄B

+RC
m (ūr − St ū[M]

r )
∂uz
∂r
J̄B + r̄ (ūz − St ū[M]

z )

(
∂W

∂Z

)C
m

J̄B

+r̄

(
WC
m − St

δZC
m

δt

)
∂uz
∂z
J̄B +RC

m (ūz − St ū[M]

z )
∂uz
∂z
J̄B

+mūθ

(
W S
m −

∂uz
∂r

RS
m −

∂uz
∂z

ZS
m

)
J̄B
]
ψ

[f]
l

−
(
RC
mJ̄B + r̄Ĵ C

m

)
Bz ψ

[f]
l −Rρ

Re

Fr

(
RC
mJ̄B + r̄Ĵ C

m

)
Gz ψ

[f]
l

+Rµ

r̄(∂W
∂R

)C
m

∂ψ
[f]
l

∂r
J̄B + r̄

∂uz
∂r

(
∂ψ

[f]
l

∂R

)C
m

J̄B +RC
m

∂uz
∂r

∂ψ
[f]
l

∂r
J̄B

−r̄ ∂uz
∂r

∂ψ
[f]
l

∂r
Ĵ C
m + r̄

(
∂U

∂Z

)C
m

∂ψ
[f]
l

∂r
J̄B + r̄

∂ur
∂z

(
∂ψ

[f]
l

∂R

)C
m

J̄B

+RC
m

∂ur
∂z

∂ψ
[f]
l

∂r
J̄B − r̄

∂ur
∂z

∂ψ
[f]
l

∂r
Ĵ C
m −m

∂uθ
∂z

(
∂ψ

[f]
l

∂r
RS
m +

∂ψ
[f]
l

∂z
ZS
m

)
J̄B

]

−r̄p̄

(
∂ψ

[f]
l

∂Z

)C
m

J̄B − r̄PC
m

∂ψ
[f]
l

∂z
J̄B −RC

mp̄
∂ψ

[f]
l

∂z
J̄B

+2Rµ

r̄(∂W
∂Z

)C
m

J̄B
∂ψ

[f]
l

∂z
+ r̄

∂uz
∂z

(
∂ψ

[f]
l

∂Z

)C
m

J̄B

+RC
m

∂uz
∂z

∂ψ
[f]
l

∂z
J̄B − r̄

∂uz
∂z

∂ψ
[f]
l

∂z
Ĵ C
m

]

+Rµ

[
m2

r̄

(
WC
m −

∂uz
∂r

RC
m −

∂uz
∂z

ZC
m

)
J̄B −m

(
∂V

∂Z

)S
m

J̄B

]
ψ

[f]
l

}
ds1 ds2,

(7.78)
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azimuthal momentum equation,

R̂[fC,bulk]
θml = γm π

∫ 1

−1

∫ 1

−1

{
Rρ Re

[
St r̄

δV C
m

δt
J̄B + StRC

m

δūθ
δt
J̄B + St r̄

δūθ
δt
Ĵ C
m

+r̄ (ūr − St ū[M]

r )

(
∂V

∂R

)C
m

J̄B + r̄

(
UC
m − St

δRC
m

δt

)
∂uθ
∂r
J̄B

+RC
m (ūr − St ū[M]

r )
∂uθ
∂r
J̄B + r̄ (ūz − St ū[M]

z )

(
∂V

∂Z

)C
m

J̄B

+r̄

(
WC
m − St

δZC
m

δt

)
∂uθ
∂z
J̄B +RC

m (ūz − St ū[M]

z )
∂uθ
∂z
J̄B

+mūθ

(
V S
m −

∂uθ
∂r

RS
m −

∂uθ
∂z

ZS
m

)
J̄B

+ūθU
C
mJ̄B + V C

m ūrJ̄B + ūθūrĴ C
m

]
ψ

[f]
l

−
(
RC
mJ̄B + r̄Ĵ C

m

)
Bθ ψ

[f]
l −Rρ

Re

Fr

(
RC
mJ̄B + r̄Ĵ C

m

)
Gθ ψ

[f]
l

+Rµ

r̄(∂V
∂R

)C
m

∂ψ
[f]
l

∂r
J̄B + r̄

∂uθ
∂r

(
∂ψ

[f]
l

∂R

)C
m
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∂r

∂ψ
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l
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∂r

∂ψ
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l

∂r
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m
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(
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∂R
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m
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+m
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m

)
∂ψ
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l
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+r̄

(
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∂Z

)C
m

∂ψ
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l

∂z
J̄B + r̄

∂uθ
∂z

(
∂ψ

[f]
l

∂Z

)C
m

J̄B +RC
m

∂uθ
∂z

∂ψ
[f]
l

∂z
J̄B

−r̄ ∂uθ
∂z

∂ψ
[f]
l

∂z
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(
W S
m −

∂uz
∂r
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m −

∂uz
∂z

ZS
m

)
∂ψ

[f]
l

∂z
J̄B

−2m

r̄
ūr

(
∂ψ

[f]
l

∂r
RS
m +

∂ψ
[f]
l

∂z
ZS
m

)
J̄B

]

+m

[
p̄RS

m

∂ψ
[f]
l

∂r
J̄B + p̄ZS

m

∂ψ
[f]
l

∂z
J̄B + P S

mψ
[f]
l J̄B + p̄ψ

[f]
l Ĵ

S
m

]

+Rµ

[
−2m2

r̄

(
−V C

m +
∂uθ
∂r
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m +

∂uθ
∂z

ZC
m

)
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−2m

r̄
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mJ̄B +

2m

r̄2
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mūrJ̄B −
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r̄
ūrĴ S

m

−
(
∂V

∂R
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m

J̄B −
m
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∂z

ZS
m

)
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+
1

r̄
V C
m J̄B −

1
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RC
mūθJ̄B +

1

r̄
ūθĴ C

m

]
ψ

[f]
l

}
ds1 ds2 (7.79)
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and continuity equation

R̂[pC]
ml = γm π

∫ 1

−1

∫ 1

−1

{
r̄

(
∂U

∂R

)C
m

J̄B +RC
m

∂ur
∂r
J̄B + UC

mJ̄B

+ ūrĴ C
m + r̄

(
∂W

∂Z

)C
m

J̄B +RC
m

∂uz
∂z
J̄B

+m

(
V S
m −

∂uθ
∂r

RS
m −

∂uθ
∂z

ZS
m

)
J̄B

−
(
RC
mJ̄B + r̄Ĵ C

m

)
Q

}
ψ

[p]
l ds1 ds2. (7.80)

We then choose the form of φ
[f]
l and φ

[p]
l given in (7.60), and again perform the integral
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over θ to obtain the radial momentum equation,

R̂[fS,bulk]
rml = γm π

∫ 1

−1

∫ 1

−1

{
Rρ Re

[
St r̄

δUS
m

δt
J̄B + StRS

m

δūr
δt
J̄B + St r̄

δūr
δt
Ĵ S
m

+r̄ (ūr − St ū[M]

r )
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∂R

)S
m
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∂r
J̄B + r̄ (ūz − St ū[M]
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m
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δZS
m

δt

)
∂ur
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m (ūz − St ū[M]
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∂ur
∂z
J̄B

+mūθ

(
−UC

m +
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∂r
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m +

∂ur
∂z

ZC
m

)
J̄B − 2ūθV

S
mJ̄B − ū2
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m

]
ψ

[f]
l

−
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mJ̄B + r̄Ĵ S

m

)
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l −Rρ
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m
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Gr ψ
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l
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∂ψ
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l

∂R

)S
m
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m

∂ψ
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l
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∂ψ

[f]
l
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J̄B
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∂R
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m

∂ψ
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l
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∂r
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∂ψ

[f]
l

∂R
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m

J̄B
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m

∂ur
∂r

∂ψ
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l
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∂r
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l

∂r
Ĵ S
m

]
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∂R
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m
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l
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∂ψ
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l

∂Z
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m
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m
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∂r
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l
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∂r
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l

∂z
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(
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∂Z
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m

∂ψ
[f]
l
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J̄B + r̄
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∂z

(
∂ψ

[f]
l

∂Z

)S
m

J̄B

+RS
m

∂ur
∂z

∂ψ
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l
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∂z
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l

∂z
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(
∂V

∂R

)C
m

J̄Bψ[f]
l

+m
∂uθ
∂r

(
∂ψ

[f]
l

∂r
RC
m +

∂ψ
[f]
l

∂z
ZC
m

)
J̄B −

m

r̄
ūθ

(
∂ψ

[f]
l

∂r
RC
m +

∂ψ
[f]
l

∂z
ZC
m

)
J̄B

]

+Rµ
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(
US
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∂r
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m −
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∂z

ZS
m

)
ψ
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m
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[f]
l J̄B

+
m

r̄2
RC
mūθψ
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m

r̄
ūθψ

[f]
l Ĵ

C
m

]
ψ

[f]
l −

(
P S
mJ̄B + p̄Ĵ S

m

)
ψ

[f]
l

+2Rµ

[
m
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(
−V C

m +
∂uθ
∂r

RC
m +

∂uθ
∂z
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m

)
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1
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US
mJ̄B
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mūrJ̄B +

1
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ūrĴ S

m

]
ψ

[f]
l

}
ds1 ds2, (7.81)



CHAPTER 7. PERTURBATIONS: PART ONE 150

axial momentum equation,

R̂[fS,bulk]
zml = γm π

∫ 1

−1

∫ 1

−1

{
Rρ Re

[
St r̄

δW S
m

δt
J̄B + StRS

m

δūz
δt
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δūz
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Ĵ S
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∂uz
∂z
J̄B +RS

m (ūz − St ū[M]
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Ĵ S
m +m

∂uθ
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∂z
ZC
m

)
J̄B

]

−r̄p̄

(
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∂Z

)S
m

∂ψ
[f]
l

∂z
J̄B + r̄

∂uz
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l
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(7.82)
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azimuthal momentum equation,

R̂[fS,bulk]
θml = γm π

∫ 1

−1

∫ 1

−1

{
Rρ Re
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St r̄
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+mūθ

(
−V C

m +
∂uθ
∂r

RC
m +

∂uθ
∂z

ZC
m

)
J̄B

+ūθU
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m
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+r̄

(
∂V

∂Z

)S
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Ĵ S
m +m

(
−WC

m +
∂uz
∂r

RC
m +

∂uz
∂z

ZC
m

)
∂ψ

[f]
l
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m
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+
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mJ̄B −
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1
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ψ

[f]
l

}
ds1 ds2 (7.83)
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and continuity equation

R̂[pS]
ml = γm π

∫ 1

−1

∫ 1

−1

{
r̄

(
∂U

∂R

)S
m

J̄B +RS
m

∂ur
∂r
J̄B + US

mJ̄B

+ ūrĴ S
m + r̄

(
∂W

∂Z

)S
m

J̄B +RS
m

∂uz
∂z
J̄B

−m
(
V C
m −

∂uθ
∂r

RC
m −

∂uθ
∂z

ZC
m

)
J̄B

−
(
RS
mJ̄B + r̄Ĵ S

m

)
Q

}
ψ

[p]
l ds1 ds2. (7.84)

We can solve the governing equations described in (7.36) by considering two sepa-

rate problems. The first of these will be called the ‘base problem’ and corresponds to

the terms of order one in (7.36). Its governing equations are the (non-linear) axisym-

metric Navier–Stokes equations (7.52)–(7.55) described in section 7.2. We will refer

to the second problem, which corresponds to the terms of order ε in (7.36), as the

‘perturbation problem’, since it describes a linear, non-axisymmetric perturbation to

the base state. There is a one-way coupling between these problems in the sense that

the solution of the perturbation problem depends on the base flow solution.

The governing equations for the perturbation problem are (7.77)–(7.84), and we

note that the θ-dependence has been replaced by a parameter m which corresponds to

the wavenumber of the particular Fourier mode in which we are interested. Since the

equations are linear, the Fourier modes fully decouple: this then allows us to solve each

mode separately. By performing this decomposition, therefore, we have transformed

the three-dimensional perturbation problem into an infinite sum of two-dimensional

problems. In practice we always truncate the sum over Fourier modes to some finite

number.

7.4 Implementation

We implemented equations (7.77)–(7.84) in the get residual(...) and get jacobian(...)

functions of a newly-developed LinearisedAxisymmetricNavierStokesEquations class.

Wherever possible, we mirrored the inheritance structure of the ‘standard’ Navier–

Stokes equations, and as such this class implements the governing equations but con-

tains no specific geometrical information. Concrete implementations were developed
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via the LinearisedAxisymmetricQTaylorHoodElement and LinearisedAxisymmetric-

QCrouzeixRaviartElement classes, which inherit from the LinearisedAxisymmetric-

NavierStokesEquations and QElement<2,3> classes.

Recall that the solution of the perturbation equations is dependent on the base flow.

In a finite element context this means that in order to evaluate the get residual(...)

and get jacobian(...) functions in the LinearisedAxisymmetricNavierStokes-

Equations class we require the values of certain fields, which have been computed

as part of the base state solution, evaluated at the Eulerian position corresponding

to a given integration point in the perturbation problem. This one-way coupling is

achieved in oomph-lib by ensuring that the elements that we use to compute the

perturbation equations inherit from the ElementWithExternalElement class: this

endows the elements with the functionality to determine, for each of the integration

points,

(i) which element in the base state problem occupies the spatial coordinates of that

integration point, and

(ii) the local coordinates in that element which correspond to that integration point.

Once this look-up scheme has been established using oomph-lib’s multi-domain ‘ma-

chinery’ it is straightforward to determine the base state problem’s finite element

solution for the required quantity, evaluated at the appropriate point in the domain.

One benefit of this ‘multi-domain’ approach is that it is not necessary for the base

flow and perturbation problems to utilise the same spatial discretisation. In general

one would not expect the flow fields in the two problems to have the same spatial

structure, and so it is advantageous to be able to employ different refinement patterns

in each problem.

With this in mind, we developed the LinearisedAxisymmetricQTaylorHoodMulti-

DomainElement and LinearisedAxisymmetricQCrouzeixRaviartMultiDomainElement

classes: these classes are derived from the LinearisedAxisymmetricQTaylorHood-

Element and LinearisedAxisymmetricQCrouzeixRaviartElement classes respectively,

but also inherit from ElementWithExternalElement and hence gain the additional

functionality described above. These classes define the interactions between the per-

turbation elements themselves and the ‘external’ base flow elements by overloading the
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virtual functions defined in LinearisedAxisymmetricNavierStokesEquations which

are required to return the value of particular base flow quantities. A (slightly simpli-

fied) inheritance diagram for the LinearisedAxisymmetricQCrouzeixRaviartMulti-

DomainElement class is shown in figure 7.1, where we only go as far ‘up’ the hierarchy

as the FiniteElement base class.

LinearisedAxisymmetricQCrouzeixRaviartMultiDomainElement

LinearisedAxisymmetricQCrouzeixRaviartElement

FiniteElement

LinearisedAxisymmetricNavierStokesEquations QElement<2,3>

ElementWithExternalElement

Figure 7.1: Inheritance diagram for the LinearisedAxisymmetricQCrouzeix-

RaviartMultiDomainElement class, where we only go as far ‘up’ as the Finite-

Element base class. This schematic is slightly simplified, as in reality there are actually
a number of levels of abstraction between QElement<DIM,NNODE 1D> and Finite-

Element.



Chapter 8

Applications to single-phase flows

In the previous chapter we linearised the three-dimensional Navier–Stokes equations

in a cylindrical polar coordinate system about an axisymmetric base flow. We shall

now illustrate the use of these ‘perturbation equations’ by applying them to two single-

fluid problems. The first of these considers the stability of the flow of a viscous fluid

between two exactly counter-rotating disks. In this case the base flow is steady but

non-trivial, and we assess the stability of this solution to linear, non-axisymmetric

perturbations by time-evolving the perturbation equations. We use the power method

to determine the growth rates of modes with different azimuthal mode numbers, and

compare our results with those of the study conducted by Nore et al. in their paper

Survey of instability thresholds of flow between exactly counter-rotating disks [Nore

et al., 2004]. The second application considers the stability of the flow in an annular

region between two concentric cylinders of infinite extent. The inner cylinder rotates at

constant angular velocity while the outer cylinder is driven sinusoidally in time, giving

rise to an unsteady, axisymmetric base flow. The stability of this flow to axisymmetric

disturbances is then investigated via the time-evolution of the perturbation equations,

where we set the mode number to zero. Stability thresholds are determined for a

range of forcing amplitudes, and we compare these results with those of the study

conducted by Murray et al. in their paper Stabilization of Taylor–Couette flow due to

time-periodic outer cylinder oscillation [Murray et al., 1990].

We note that both of these problems are computed on a fixed mesh, and hence

there are no perturbations to the nodal positions. In terms of the variables used in

the governing equations for the linear perturbation problem (7.77)–(7.84) we therefore

155
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(a) Physical domain (b) Computational domain

Figure 8.1: Sketch of the counter-rotating disks problem. The computational domain
represents a radial ‘slice’ of the physical domain, where r = 0 corresponds to the
centreline of the cylindrical cavity and r = 1 corresponds to the outer (solid) boundary.

have

RC
m = RS

m = 0 and ZC
m = ZS

m = 0 (8.1)

for all values of the azimuthal mode number m, and it follows from (7.68) and (7.69)

that

Ĵ C
m = 0 and Ĵ S

m = 0 (8.2)

as well. Hence these test problems are not able to validate the terms associated with

a moving mesh, and we will address this issue in chapter 10.

8.1 Stability of the flow between counter-rotating

disks

8.1.1 The base flow

Let us consider the problem sketched in figure 8.1(a), in which we have a cylindrical

cavity of radius a and height h filled with an incompressible fluid. The upper and
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lower ‘lids’ are disks which rotate at constant angular velocity Ω and −Ω respectively,

and (in the absence of gravitational forces) this gives rise to a steady, axisymmetric

base flow governed by

Re

[
ur
∂ur
∂r
− u2

θ

r
+ uz

∂ur
∂z

]
= −∂p

∂r
+
∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2

+
∂2ur
∂z2

,

Re

[
ur
∂uz
∂r

+ uz
∂uz
∂z

]
= −∂p

∂z
+
∂2uz
∂r2

+
1

r

∂uz
∂r

+
∂2uz
∂z2

,

Re

[
ur
∂uθ
∂r

+
uruθ
r

+ uz
∂uθ
∂z

]
=
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

+
∂2uθ
∂z2

(8.3)

and
∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0. (8.4)

We choose the length, velocity and time scales to be the cylinder radius, tangential

velocity and rotation period respectively so that

L = a, U = aΩ and T =
1

2πΩ
, (8.5)

and the Reynolds number is therefore defined to be

Re =
a2 Ω ρ

µ
, (8.6)

where ρ is the fluid density and µ the dynamic viscosity. The domain in which these

equations are to be solved is sketched in 8.1(b), where Γ = h/a is the aspect ratio.

We apply the symmetry condition ur = uθ = 0 at the axis (r = 0) and the no-slip

condition at the stationary side wall and the upper and lower rotating disks, so that

ur = uz = uθ = 0 at r = 1,

ur = uz = 0, uθ = −r at z = 0 and

ur = uz = 0, uθ = r at z = Γ. (8.7)

This base flow was computed numerically in oomph-lib with a mesh that was ini-

tially set up to contain 30× 30 elements. A refineable implementation of the axisym-

metric Navier–Stokes equations was used so that the mesh could adapt itself automat-

ically based on a posteriori error estimates provided by oomph-lib’s implementation

of the ‘Z2’ error estimator, [Zienkiewicz and Zhu, 1992a] and [Zienkiewicz and Zhu,

1992b]. The flow was computed using both Taylor–Hood and Crouzeix–Raviart ele-

ments for validation purposes. In this problem the fluid velocity is prescribed along
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the entire domain boundary, and the fluid pressure is therefore only determined up to

an arbitrary constant. This indeterminacy was overcome by prescribing the value of

the pressure at a single point in the domain. We note from (8.7) that at the point

at which the upper and lower boundaries meet the outer wall there is discontinuity

in the azimuthal velocity, and this was compensated for by ‘smoothing’ the azimuthal

boundary condition on the upper and lower lids so that

uθ =

 −r at z = 0 for 0 < r ≤ β

−β 1−r
1−β at z = 0 for β < r < 1

(8.8)

and

uθ =

 r at z = Γ for 0 < r ≤ β

β 1−r
1−β at z = Γ for β < r < 1

, (8.9)

where β is the fraction along the lid at which we wish the smoothing to start. A value

of β = 0.96 was used for all of these computations.

The base flow solution was obtained by first performing a steady Newton solve

for the zero Reynolds number case, and then using that solution as an initial guess

for the Newton solver when computing the flow at the desired Reynolds number. For

larger Reynolds numbers this initial guess turned out to be insufficient and the Newton

method would fail to converge: in these cases some additional continuation steps were

performed. We note that according to Nore et al. (figure 11(a), solid circle markers)

the base flow has a unique solution for the entire range of Reynolds numbers considered

in the current work. This result was confirmed by a later study conducted by Hewitt

and Hazel [Hewitt and Hazel, 2007, Fig. 5].

A plot of the solution using refineable Taylor–Hood elements for Re = 500 and

Γ = 1 is shown in figure 8.2, where the colour contours on the left and right-hand

sides of the plot illustrate the pressure and the azimuthal velocity respectively as

functions of r and z. On the pressure plot, dark blue and bright red correspond to the

minimum and maximum values of the pressure respectively. The legend to the right

of the azimuthal velocity plot describes the contours in terms of the non-dimensional

velocity. Streamlines on both plots track the motion of the in-plane recirculation of the

fluid. Examination of figure 8.2 reveals that the mesh refines most in areas where there

are steep velocity gradients: these areas correspond to the narrow ‘gap’ between the

rotating lids and the stationary outer wall. We note that the form of the recirculation
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Figure 8.2: Base flow computed using Taylor–Hood elements for Re = 500 and Γ = 1.
In both plots the symmetry axis is located at the ‘centre’ of the page, so that the radial
coordinate always extends ‘outwards’. The left-hand plot displays colour contours of
pressure which vary linearly between the maximum value of 27.4, shown in red, and the
minimum value of -3.1, shown in blue. The right-hand plot displays colour contours of
the azimuthal velocity, as described by the legend to the right of the figure. On both
plots superimposed streamlines track the in-plane velocity.

zones and the azimuthal velocity contours match those described by Nore et al. in

figures 1(c) and 4(a) respectively [Nore et al., 2004].

8.1.2 Determining stability thresholds

We now wish to assess the stability of the base flow computed in section 8.1.1 to small,

non-axisymmetric perturbations. If the base solution is (ū, p̄) then we can write the

sum of this flow and a small, non-axisymmetric, time-dependent perturbation as

u = ū(r, z) + ε û(r, z, θ, t),

p = p̄(r, z) + ε p̂(r, z, θ, t), (8.10)

where ε� 1. If we substitute this ansatz into the governing equations (5.3) and (5.4),

and consider only the terms of order ε, then we obtain a linear system of the form

∂û

∂t
+ L1(ū, p̄) û + L2(ū, p̄) p̂ = 0, (8.11)

where L1 and L2 are linear operators which depend on the base flow.
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Let us now consider the formulation discussed in chapter 7, where the weak form

of the three-dimensional Navier–Stokes equations in cylindrical polar coordinates were

linearised by application of the ansatz specified in (7.11) and (7.12). After performing

Fourier series expansions of all fields in the azimuthal direction, the resultant weak

form of this ‘perturbation problem’ was stated in (7.77)–(7.84). Each of the eight fields

in this problem is discretised in the usual finite element way,

UC
m(s1, s2) =

nu∑
j=1

(ÛC
m)j ψ

[f]
j (s1, s2),

WC
m(s1, s2) =

nu∑
j=1

(ŴC
m)j ψ

[f]
j (s1, s2),

V C
m (s1, s2) =

nu∑
j=1

(V̂ C
m )j ψ

[f]
j (s1, s2),

PC
m(s1, s2) =

np∑
j=1

(P̂C
m)j ψ

[p]
j (s1, s2),

US
m(s1, s2) =

nu∑
j=1

(ÛS
m)j ψ

[f]
j (s1, s2),

W S
m(s1, s2) =

nu∑
j=1

(Ŵ S
m)j ψ

[f]
j (s1, s2),

V S
m(s1, s2) =

nu∑
j=1

(V̂ S
m)j ψ

[f]
j (s1, s2),

P S
m(s1, s2) =

np∑
j=1

(P̂ S
m)j ψ

[p]
j (s1, s2),

where nu and np are the number of velocity and pressure degrees of freedom in each

element, respectively, and (ÛC
m)j, (ÛS

m)j, . . ., (P̂ S
m)j are the values of the respective

fields at the j-th local node. Let us now consider the vector ÛC
m of all nodal values of

UC
m in the entire problem. The length of ÛC

m will be equal to the number of nodes in

the global mesh at which the value of UC
m is an unknown. We can now construct the

vector

Z =
[
ÛC
m ÛS

m ŴC
m ŴS

m V̂C
m V̂S

m P̂C
m P̂S

m

]T
, (8.12)

where the vectors ÛS
m,Ŵ

C
m, . . . , P̂

S
m are defined in an equivalent manner to ÛC

m. Z is

a vector containing all of the unknown variables in the discretised problem, and we

can use it to write the system of linear equations in ‘matrix-vector’ form,

M∂Z

∂t
+A(ū, p̄) Z = 0, (8.13)

where A and M are square matrices of size N , the number of degrees of freedom in

the problem. We now employ a backward Euler timestepping scheme with timestep

∆t to obtain

M
(

Zn+1 − Zn

∆t

)
+A(ū, p̄) Zn+1 = 0, (8.14)

where Zn is the solution at the n-th timestep. Rearranging (8.14) gives

Zn+1 = BZn, (8.15)
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where

B = (M+ ∆tA)−1M. (8.16)

The eigenvectors of B form a complete basis for the N–dimensional vector space, and

hence we can express the initial state of the system Z0 as a linear combination of these

eigenvectors xi,

Z0 =
N∑
i=1

αi xi, (8.17)

where αi are constant coefficients. Since B xi = λi xi, where λi is the eigenvalue

corresponding to xi, it follows that

BZ0 =
N∑
i=1

λi αi xi, (8.18)

and then from (8.15) the solution at the n-th timestep is given by

Zn = Bn Z0 =
N∑
i=1

λni αi xi. (8.19)

Assuming that our initial state Z0 is a linear combination of all eigenvectors of

B (i.e. αi > 0 ∀ i), then it is clear from (8.19) that if the magnitudes of all the

corresponding eigenvalues λi are less than one then the perturbation will eventually

decay to zero and the base flow is stable. If, however, one or more of the eigenvalues

are equal to or greater than one then the corresponding eigenvector(s) will grow in

magnitude and the base flow is unstable. This means that in order to determine the

stability of the base flow at a given Reynolds number we require the value of the

dominating eigenvalue of B: that is, the eigenvalue of greatest magnitude. A simple

way to compute this is by use of the ‘power method’.

The power method

The power method is an algorithm designed to compute the dominant eigenvalue (and

corresponding eigenvector) of an arbitrary square matrix M of size N ×N . We based

our implementation of this algorithm in oomph-lib on that outlined in [Bai et al.,

2000, Algorithm 4.1]. We start with the initial guess y = Z0, and then loop over the

following set of instructions:

1. Define v = y/‖y‖2, where ‖y‖2 is the L2-norm of y.
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2. Perform the matrix-vector product y = M v.

3. Compute the scalar product θ = v · y.

4. Compute c = ‖y− θv‖2/
√
N , and then test this quantity against the product of

the absolute value of θ and a pre-defined tolerance ε.

We perform the loop outlined above until the convergence criterion c < ε |θ| is met, and

at this point we stop and accept the dominating eigenvalue to be θ and its correspond-

ing eigenvector to be v. Note the addition of the factor of 1/
√
N in step (4): this is so

that c is independent of the number of degrees of freedom in the discretised problem.

If the largest and second-largest eigenvalues of M in magnitude are denoted by λ1 and

λ2 respectively, then the convergence rate of this method is governed by |λ2/λ1|. By

constructing matrices for which the eigenvalues were known we were able to test our

implementation of this algorithm to ensure that the correct rate of convergence was

obtained.

8.1.3 Perturbation to the base flow

Having established that the stability of the base flow is determined by the dominating

eigenvalue of B, we now require a scheme to determine B itself. From (8.15) we

see that B is the linear operator that acts upon the unknowns in the discretised

linear perturbation problem in order to advance to the solution at the next timestep.

Therefore for each iteration of the power method we shall perform one timestep of the

governing equations, which are the linearised perturbation equations (7.77)–(7.84) as

formulated in section 7.3. As discussed at the beginning of this chapter, however, a

significant number of terms are equal to zero. In the interests of clarity we shall state

these equations again here, with only the non-zero terms. The momentum equations
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which arise through taking the ‘cosine’ test functions (7.59) are

R̂[fC]
rml = γm π

∫ 1

−1

∫ 1

−1

{
Re

[
St r̄

δUC
m

δt
+ r̄ūr
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m
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[f]
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}
J̄B ds1 ds2, (8.20)

R̂[fC]
zml = γm π
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and

R̂[fC]
θml = γm π
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(8.22)

and the continuity equation is

R̂[pC]
ml = γm π

∫ 1

−1

∫ 1

−1
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(
∂U

∂R

)C
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m + r̄

(
∂W
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)C
m

+mV S
m
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ψ
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l J̄B ds1 ds2. (8.23)
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The ‘sine counterparts’ that arise through taking the ‘sine’ test functions (7.60) are

R̂[fS]
rml = γm π
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R̂[fS]
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(8.26)

and

R̂[pS]
ml = γm π

∫ 1

−1

∫ 1
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CHAPTER 8. APPLICATIONS TO SINGLE-PHASE FLOWS 165

These equations are to be solved in a two-dimensional domain of radius 1 and height

Γ, and are subject to the Dirichlet boundary conditions

UC
m = US

m = WC
m = W S

m = V C
m = V S

m = 0 (8.28)

on all solid boundaries. The boundary conditions at the symmetry axis (r = 0) differ

depending on the azimuthal mode number m. For the axisymmetric mode we have

the same condition here as in the base state,

UC
0 = US

0 =
∂WC

0

∂r
=
∂W S

0

∂r
= V C

0 = V S
0 = 0, (8.29)

whereas for non-zero, even-numbered modes we must additionally prescribe that the

axial velocity is zero to avoid there being a discontinuity in the field at this boundary.

On odd-numbered modes, however, the ‘usual’ symmetry condition must be relaxed

as it is physically allowable for the fluid to have finite radial and azimuthal velocity

at the symmetry axis. Consequently, the boundary conditions at r = 0 for non-zero

modes are

UC
m = US

m = WC
m = W S

m = V C
m = V S

m = 0 (8.30)

for even m and

∂UC
m

∂r
=
∂US

m

∂r
= WC

m = W S
m =

∂V C
m

∂r
=
∂V S

m

∂r
= 0 (8.31)

for odd m.

To solve this problem in oomph-lib, both LinearisedAxisymmetricQTaylor-

HoodMultiDomainElement and LinearisedAxisymmetricQCrouzeixRaviartMulti-

DomainElement were used here1. The problem domain was discretised using a uniform

mesh of 50 × 50 elements and the BDF1 (or ‘backward Euler’) timestepper was em-

ployed, so as to match the formulation discussed in section 8.1.2. As remarked earlier,

the only requirement for the initial conditions is that the resulting vector of global

unknowns not be orthogonal to the dominant eigenvector. Bai et al. [Bai et al., 2000]

remark that this is unlikely to occur if the initial conditions are chosen at random.

We therefore choose to prescribe that all six velocity fields are given initially by

f(r, z) = 4rz(r − 1)(z − Γ), (8.32)

1See section 7.4 for a discussion of the implementation of these elements.
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a smoothly-varying function of r and z that satisfies the homogenous boundary con-

ditions.

Having set up the linear problem, the overall stability problem was solved in the

following way. For a given Reynolds number, the steady base flow was computed as

discussed in section 8.1.1. A linear perturbation problem was then set up as described

above, for a particular azimuthal mode m. We then performed the power method,

where for every iteration one timestep of the system of equations was taken. Because

the problem is linear and the base state is steady, the global Jacobian matrix is the

same at each timestep: this allowed us to compute it once, store it, and then reapply

it at each successive power method iteration. Once the power method had converged,

the resulting dominating eigenvalue was used to determine whether or not the base

flow is stable at the Reynolds number in question.

The results given in Nore et al. [Nore et al., 2004] were used as a guide to establish

roughly where we expected the stability thresholds to lie. The actual thresholds were

then computed by first choosing a value of the Reynolds number below the expected

threshold, and carrying out the above procedure to determine the stability of the flow

at this parameter. The Reynolds number was then increased slightly, and the proce-

dure performed again. The advantages of performing this automatic ‘continuation’-like

routine are twofold: firstly, the initial guess for the base flow solution at the advanced

Reynolds number is chosen to be the solution found using the ‘old’ Reynolds num-

ber. Since the two solutions are very similar this is an excellent initial guess and the

Newton method therefore requires very few steps to converge. Secondly, the dominant

eigenvector computed at the ‘old’ Reynolds number is used for the initial conditions

for the power method at the advanced Reynolds number. Since we are attempting to

‘trace’ this eigenvector as the magnitude of its corresponding eigenvalue crosses the

threshold λcrit = 1, this choice of starting vector allows the power method to converge

in significantly fewer iterations than if we constantly reset to the initial conditions

specified in (8.32).

Once a range of problems at various Reynolds numbers had been solved, the sta-

bility threshold was determined by plotting the dominant eigenvalue against Reynolds

number. Figure 8.3 shows such a plot for the azimuthal mode m = 2, where the two
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Figure 8.3: Plot of dominant eigenvalue against Reynolds number for the m = 2
mode, shown for two different spatial resolutions. The data plotted here were gen-
erated using LinearisedAxisymmetricQTaylorHoodMultiDomainElements, but the
use of their Crouzeix–Raviart counterparts would result in a near-identical plot. A
BDF1 timestepper with a non-dimensionalised timestep of 0.005 was employed, and
the aspect ratio was set to Γ = 1. The Reynolds number was increased in steps of 0.5.

lines correspond to the same set of problems computed at two different spatial reso-

lutions. From this we infer that (to the nearest integer value) the critical Reynolds

number at which the flow goes unstable is Re = 301.

8.1.4 Comparison with Nore et al.

The motivation for studying this particular problem was so that the linear perturbation

equations (on stationary meshes) could be validated by comparison against the study

conducted by Nore et al. [Nore et al., 2004]. Although a large portion of this paper

discusses the effect that changing the aspect ratio Γ has on the stability thresholds,

we restrict ourselves to cases where Γ = 1. The results generated by Nore et al. were

computed in the following way. First a stable steady base flow was computed for

Re = 100 and fixed Γ using an unsteady axisymmetric code. The flow fields were

represented in cylindrical coordinates, with a staggered non-uniform grid used in the
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(r, z)–plane. The refinement of the grid was concentrated at the top, bottom and

outer boundaries, as well as at the line of constant z exactly half-way between the

top and bottom boundaries. The base flow was represented by the azimuthal velocity

and a stream-function ψ defining the radial and axial velocities via ∇ψ × er/r, and

the Navier–Stokes equations were spatially discretised using mimetic finite-difference

operators. Once the (steady) Re = 100 solution was established by time integration of

the unsteady code, successive steady states (which may be unstable to axisymmetric

perturbations) were computed using a Newton–Raphson method. The large linear

systems which arise as a consequence of this method were solved using a preconditioned

Krylov subspace solver.

To carry out the linear stability analysis of the axisymmetric steady state a non-

axisymmetric code was used, with velocity and pressure components expanded as

truncated Fourier series over Nθ modes in the azimuthal direction. The governing

equations are
∂v

∂t
+ (V · ∇) v + (v · ∇) V = −∇p+

1

Re
∇2v (8.33)

and

∇ · v = 0, (8.34)

where (v, p) are the perturbation variables and V represents the previously computed

base flow. The velocity v was subject to homogeneous boundary conditions. The tem-

poral evolution of this system was performed by a second-order implicit discretisation

of the linear terms and explicit Adams-Bashforth type extrapolation of the ‘linearised

versions’ of the nonlinear terms. Velocity-pressure coupling was handled by means

of an incremental projection method. As in the formulation described in this the-

sis, the stability computation decoupled into a series of subproblems each associated

with a different azimuthal mode number m, which meant that time integration from

an arbitrary initial condition corresponded to performing Nθ parallel computations of

the Fourier-decomposed system. The leading eigenvalues were computed using an im-

plicitly restarted Arnoldi method within the ARPACK software library [Lehoucq et al.,

1998]. The critical Reynolds numbers Rem for each mode are those for which the real

part of the dominant eigenvalue is equal to zero, and their values were determined by

interpolation. Hence the critical Reynolds number for the overall flow was determined

by finding the minimum Rem, and the corresponding value of m gave the critical
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Study Spatial resolution
Critical Rem

1 2 3 4 5

Nore et al.
100×100 gridpoints (uniform spacing) 420 299 312 387 533

64×100 gridpoints (non-uniform spacing) 420 300 312 387 534

This work
25×25 elements 423 301 314 389 536

50×50 elements 423 301 314 389 536

Table 8.1: Comparison of the critical Reynolds numbers at which modes 1–5 go unsta-
ble between this work and the study conducted by Nore et al. In both works results
for two different spatial resolutions are given. All thresholds agree to within 1% of
each other.

mode.

Table 8.1 compares the results of the study performed in this thesis with that

performed by Nore et al., where two different spatial resolutions have been used in

each case. Nore et al. give results for both a uniform and a non-uniform grid, where in

the non-uniform case they use a larger number of grid points in the axial direction than

in the radial direction. We compare these results to those computed in the manner

discussed in sections 8.1.1–8.1.3, where quadratic finite elements have been used. We

note that our results agree to within 1% to those computed by Nore et al., which is the

same tolerance as quoted by these authors when validating their code against results

presented by a study by Gelfgat et al. for a rotor-stator flow [Gelfgat et al., 2001].

We note from (8.16) that the matrix B, the eigenvalues of which determine the

linear stability of the base flow, depends on the duration of the timestep ∆t. To

investigate the effect of this dependancy we re-computed the threshold of the m = 2

mode using several different values of the timestep, and the results are shown in figure

8.4. For all values of the timestep, the simulations were run with two different spatial

resolutions, 25× 25 and 50× 50 elements. Since the two spatial resolutions give very

similar results, only the results for the finer resolution runs are shown here for clarity.

We note that (as expected) the critical Reynolds number is independent of ∆t, but

the slope of the lines vary in a systematic way, with a larger timestep corresponding

to a steeper gradient. This is to be expected: taking a larger timestep per iteration

of the power method results in larger growth (or decay) of the dominant eigenvector
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Figure 8.4: Plot of dominant eigenvalue against Reynolds number for the m = 2 mode,
where the timestep is varied between 0.005 and 0.1. The domain was discretised spa-
tially using a mesh of 50 × 50 LinearisedAxisymmetricQTaylorHoodMultiDomain-

Elements, and a BDF1 timestepper with a non-dimensionalised timestep of 0.005 was
employed. The aspect ratio was set to Γ = 1, and the Reynolds number increased in
steps of 0.5.

over the duration of that iteration. If the dominant eigenvector and its corresponding

eigenvalue are denoted by xD and λD respectively, then from

B xD = λD xD (8.35)

it is clear that we would also expect the magnitude of λD to be larger (in the case of

a growing perturbation) if the timestep is increased. This is precisely what we see in

figure 8.4.

To complete this validation exercise, we ensured that the computed eigenvectors

were resolved by comparing each field carefully at the two different spatial resolutions.

Figures 8.5(a) and 8.5(b) show the cosine and sine components respectively of the

dominant eigenvector for the m = 2 mode at a Reynolds number of 301, for the higher-

resolution computations. The problem was discretised spatially using Linearised-

AxisymmetricQTaylorHoodMultiDomainElements on a uniform mesh containing 50

elements in each direction. A BDF1 timestepping scheme with ∆t = 0.01 was used to
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(a) Cosine part

(b) Sine part

Figure 8.5: Plot of the dominant eigenvector for the m = 2 mode at Re = 301 and
Γ = 1. The domain was discretised spatially using a mesh of 50 × 50 Linearised-

AxisymmetricQTaylorHoodMultiDomainElements, and a BDF1 timestepper with a
non-dimensionalised timestep of 0.01 was employed. The cosine part of the solution is
shown in 8.5(a), and the sine part of the solution is shown in 8.5(b). In both 8.5(a)
and 8.5(b) the left- and right-hand plots display colour contours of pressure P2(r, z)
and azimuthal velocity V2(r, z) respectively, with superimposed streamlines tracking
the motion of the in-plane velocity. The legends correspond to the azimuthal velocity
contours. On the pressure plots, dark blue and bright red regions correspond to areas
of lowest and highest pressure respectively. The cosine component of the pressure
ranges from -0.0091 to 0.0443, and the sine component ranges from -0.0227 to 0.0144.
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time evolve the equations. In both plots the right-hand side displays colour contours

of azimuthal velocity V C
2 and V S

2 at θ = 0, and the left-hand side displays colour

contours of pressure PC
2 and P S

2 at θ = π. On the pressure plots, dark blue and bright

red correspond to the minimum and maximum values of the pressure respectively,

whereas the legends to the right of the azimuthal velocity plots describe those contours

in terms of the non-dimensional velocity. The streamlines in figure 8.5(a) show the

motion of the in-plane velocities UC
2 and WC

2 , and those in 8.5(b) show the motion of

their ‘sine counterparts’ US
2 and W S

2 . We note that the apparent sources and sinks are

due to the fact that the flow is not two-dimensionally divergence-free.

8.1.5 Implementation

The problem discussed above was implemented as a demonstration code in oomph-lib,

and its source file,

counter_rotating_disks.cc,

is located in the

demo_drivers/axisym_navier_stokes/counter_rotating_disks/

directory.

8.2 Stability of time-periodic Taylor–Couette flow

Ever since Taylor’s investigation into the stability of steady Couette flow in 1923

[Taylor, 1923] there has been considerable research into many different aspects of

Taylor–Couette flow. Not until 1962, however, was the effect of modulating the rate

of rotation of one or both of the cylinders investigated. Donnelly et al. [1962] per-

formed experiments in which the outer cylinder was at rest while the inner cylinder

rotated, and found that modulating the inner cylinder acted to stabilise the flow. In

a later numerical study of a similar set up, Carmi and Tustaniwskyj [1981] derived a

closed-form analytic solution for the base flow in terms of modified Bessel functions

and investigated its stability by performing a Floquet analysis of the linearised pertur-

bation equations. Although they found good agreement in the case of inner cylinder
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modulation about a zero mean with experiments [Thompson, 1968], their findings gen-

erally opposed the observations of Donnelly et al. [1962] by suggesting that modulation

generally acts to destabilise the flow. For the particular case of steady rotation of the

inner cylinder and sinusoidal modulation of the outer cylinder about a zero mean, their

numerical prediction was directly contradicted by subsequent experiments performed

by Walsh and Donnelly for a corresponding system, who observed that the modulation

of the outer cylinder acted to stabilise the flow [Walsh and Donnelly, 1988].

This discrepancy motivated the study performed by Murray et al. in their pa-

per Stabilization of Taylor–Couette flow due to time-periodic outer cylinder oscillation

[Murray et al., 1990], whose numerical linear stability results agree with the experi-

ments of Walsh and Donnelly, except for low frequencies and large modulation am-

plitudes. As a validation exercise we shall consider the same problem here, in which

we have an annular region of incompressible fluid contained between two concentric

cylinders which are infinite in the axial direction, as sketched in figure 8.6(a). The

inner cylinder has radius R1 and rotates at a constant angular velocity Ω1. The outer

cylinder has radius R2 and is driven sinusoidally in time with zero mean rotation, and

we define its angular velocity Ω2 in terms of the angular velocity of the inner cylinder

and a forcing frequency ω, so that

Ω2(t) = εΩ1 cosωt. (8.36)

8.2.1 The base flow

In the absence of gravitational forces, this problem admits an unsteady, axisymmetric

base flow for which the only non-zero component of the velocity is in the azimuthal

direction. This velocity field uθ = uθ(r, t) and the pressure field p = p(r, t) are functions

of the radial coordinate and time only, and the base flow is therefore governed by

Re St
∂uθ
∂t

=
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

(8.37)

and
∂p

∂r
= Re

u2
θ

r
. (8.38)

We choose the length scale to be the fluid gap width,

L = R2 −R1, (8.39)
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(a) Physical domain (b) Computational domain

Figure 8.6: Sketch of the time-periodic Taylor–Couette problem. The computational
domain represents a radial ‘slice’ of the physical domain, where the inner and outer
solid boundaries are located at r = η/(1−η) and r = 1/(1−η) respectively. The axial
extent of the domain has been truncated to an arbitrary height h.

so that the non-dimensional cylinder radii become

R1

R2 −R1

=
η

1− η
(8.40)

for the inner cylinder and
R2

R2 −R1

=
1

1− η
(8.41)

for the outer, where η = R1/R2. We will follow Murray et al. by defining the velocity

and time scales in terms of the kinematic viscosity ν so that

U =
ν

R2 −R1

and T =
(R2 −R1)2

ν
, (8.42)

and as a result, since the kinematic and dynamic viscosities are related by ν = µ/ρ, our

‘usual’ definitions of the Reynolds and Strouhal numbers in the governing equations

both evaluate to unity. Using (8.40)–(8.42), however, we find the (non-dimensional)

azimuthal velocity boundary condition on the inner cylinder to be

uθ =
R1Ω1

U
=

[
Ω1 (R2 −R1)2

ν

]
η

1− η
, (8.43)
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and that on the outer cylinder to be

uθ =
R2Ω2

U
= ε

[
Ω1 (R2 −R1)2

ν

]
1

1− η
cosωt. (8.44)

If we now define a new Reynolds number as

Re∗ =
Ω1 (R2 −R1)2

ν
, (8.45)

then the azimuthal velocity boundary conditions on the inner and outer cylinders are

given by

uθ = Re∗
η

1− η
and uθ = εRe∗

1

1− η
cosωt. (8.46)

Note that the Reynolds number is now contained within these boundary conditions,

rather than appearing in the governing equations. We shall continue to denote this as

Re∗ to avoid confusion with our ‘usual’ Re .

Although the problem we are modelling concerns two cylinders of infinite axial

extent, we will in practice solve the governing equations in a truncated domain of

height h, as sketched in figure 8.6(b). The base flow (uθ, p) is independent of the axial

coordinate z, and the choice of h is therefore arbitrary. In practice, however, its value

is restricted by the linear stability problem which will be solved on top of the base

flow, and these conditions will be discussed in section 8.2.2. We must ensure that the

base flow is translationally invariant in the axial direction, and to be consistant with

this we apply the non-penetration condition

∂ur
∂z

= uz = 0 (8.47)

at the bottom (z = 0) and top (z = h) boundaries. At the left and right solid

boundaries we apply the no-slip condition so that

ur = uz = 0, uθ = Re∗
η

1− η
at r =

η

1− η
(8.48)

and

ur = uz = 0, uθ = εRe∗
1

1− η
cosωt at r =

1

1− η
. (8.49)

This base flow was computed numerically in oomph-lib with a mesh containing

32 × 32 elements, and both Taylor–Hood and Crouzeix–Raviart elements were used

for validation purposes. The time-derivatives were discretised using a second-order-

accurate BDF scheme with a timestep of T/40, where T = 2π/ω is the period of the
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flow. The simulation was started impulsively from the initial conditions ur = uz =

uθ = 0. A plot of the base solution for an amplitude of ε = 0.9, an angular frequency

of ω = 10.58 and Re∗ = 20.96 is shown in figure 8.7. The ratio of cylinder radii is

chosen to be η = 0.88. Since the solution is independent of the axial coordinate we

have simply plotted a ‘slice’ of the domain, taken at constant z, at each timestep,

and for simplicity have normalised the time t over a single period. We note that the

solution shown here was deemed to be ‘sufficiently periodic’ to within the tolerance

used for all the computations of this particular problem: the precise details of the

measure used to determine this will be discussed in section 8.2.2.

Figure 8.7: Plot of the base flow solution over one period for ε = 0.9, ω = 10.58,
Re∗ = 20.96 and η = 0.88. The domain was discretised spatially using a mesh of
32 × 32 LinearisedAxisymmetricQTaylorHoodMultiDomainElements, and a BDF2
timestepper with a non-dimensionalised timestep of 2π/40ω was employed. The left-
and right-hand plots show the azimuthal velocity ūθ(r, t) and pressure p̄(r, t) respec-
tively. The time t has been normalised over one period T = 2π/ω.

8.2.2 Perturbation to the base flow

We now wish to investigate the stability of this base solution to axisymmetric per-

turbations. We shall employ the same technique as was used to analyse the stability

of the counter-rotating disks problem (described in section 8.1). We recall that in

that example the stability of a given (steady) flow was determined by the dominating

eigenvalue of the linear operator corresponding to the action of advancing the pertur-

bation equations from one timestep to the next. Since in this example the base flow
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is periodic, we require the dominating eigenvalue of the linear operator corresponding

to timestepping the perturbation equations over an entire period. The ‘perturbation

problem’ which we wish to solve is governed by the linearised perturbation equations

(7.77)–(7.84) formulated in section 7.3. As previously discussed, a significant number

of these terms are equal to zero, including all those multiplied by the wavenumber m,

and therefore for clarity we shall state these equations again here. The momentum

equations which arise through taking the ‘cosine’ test functions (7.59) are

R̂[fC]
r0l = 2π

∫ 1

−1

∫ 1

−1

{
Re

[
St r̄

δUC
0

δt
+ r̄ūr

(
∂U

∂R

)C
0

+ r̄UC
0

∂ur
∂r

+r̄ūz

(
∂U

∂Z

)C
0

+ r̄WC
0

∂ur
∂z
− 2ūθV

C
0

]
ψ

[f]
l

−

(
r̄
∂ψ

[f]
l

∂r
+ ψ

[f]
l

)
PC

0 + 2r̄

(
∂U

∂R

)C
0

∂ψ
[f]
l

∂r

+r̄

[(
∂W

∂R

)C
0

+

(
∂U

∂Z

)C
0

]
∂ψ

[f]
l

∂z
+

2

r̄
UC

0 ψ
[f]
l

}
J̄B ds1 ds2, (8.50)

R̂[fC]
z0l = 2π

∫ 1

−1

∫ 1

−1

{
Re

[
St r̄

δWC
0

δt
+ r̄ūr

(
∂W

∂R

)C
0

+ r̄UC
0

∂uz
∂r

+r̄ūz

(
∂W

∂Z

)C
0

+ r̄WC
0

∂uz
∂z

]
ψ

[f]
l

+r̄

[(
∂W

∂R

)C
0

+

(
∂U

∂Z

)C
0

]
∂ψ

[f]
l

∂r

+r̄

[
2

(
∂W

∂Z

)C
0

− PC
0

]
∂ψ

[f]
l

∂z

}
J̄B ds1 ds2 (8.51)

and

R̂[fC]
θ0l = 2π

∫ 1

−1

∫ 1

−1

{
Re

[
St r̄

δV C
0

δt
+ r̄ūr

(
∂V

∂R

)C
0

+ r̄UC
0

∂uθ
∂r

+ r̄ūz

(
∂V

∂Z

)C
0

+r̄WC
0

∂uθ
∂z

+ ūθU
C
0 + V C

0 ūr

]
ψ

[f]
l

+

[
r̄

(
∂V

∂R

)C
0

− V C
0

]
∂ψ

[f]
l

∂r
+ r̄

(
∂V

∂Z

)C
0

∂ψ
[f]
l

∂z

+

[
1

r̄
V C

0 −
(
∂V

∂R

)C
0

]
ψ

[f]
l

}
J̄B ds1 ds2, (8.52)
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and the continuity equation is

R̂[pC]
0l = 2π

∫ 1

−1

∫ 1

−1

[
r̄

(
∂U

∂R

)C
0

+ UC
0 + r̄

(
∂W

∂Z

)C
0

]
ψ

[p]
l J̄B ds1 ds2. (8.53)

The ‘sine counterparts’ that arise through taking the ‘sine’ test functions (7.60) are

R̂[fS]
r0l = 2π

∫ 1

−1

∫ 1

−1

{
Re

[
St r̄

δUS
0

δt
+ r̄ūr

(
∂U

∂R

)S
0

+ r̄US
0

∂ur
∂r

+r̄ūz

(
∂U

∂Z

)S
0

+ r̄W S
0

∂ur
∂z
− 2ūθV

S
0

]
ψ

[f]
l

−

(
r̄
∂ψ

[f]
l

∂r
+ ψ

[f]
l

)
P S

0 + 2r̄

(
∂U

∂R

)S
0

∂ψ
[f]
l

∂r

+r̄

[(
∂W

∂R

)S
0

+

(
∂U

∂Z

)S
0

]
∂ψ

[f]
l

∂z
+

2

r̄
US

0 ψ
[f]
l

}
J̄B ds1 ds2, (8.54)

R̂[fS]
z0l = 2π

∫ 1

−1

∫ 1

−1

{
Re

[
St r̄

δW S
0

δt
+ r̄ūr

(
∂W

∂R

)S
0

+ r̄US
0

∂uz
∂r

+r̄ūz

(
∂W

∂Z

)S
0

+ r̄W S
0

∂uz
∂z

]
ψ

[f]
l

+r̄

[(
∂W

∂R

)S
0

+

(
∂U

∂Z

)S
0

]
∂ψ

[f]
l

∂r

+r̄

[
2

(
∂W

∂Z

)S
0

− P S
0

]
∂ψ

[f]
l

∂z

}
J̄B ds1 ds2, (8.55)

R̂[fS]
θ0l = 2π

∫ 1

−1

∫ 1

−1

{
Re

[
St r̄

δV S
0

δt
+ r̄ūr

(
∂V

∂R

)S
0

+ r̄US
0

∂uθ
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+ r̄ūz

(
∂V

∂Z

)S
0

+r̄W S
0

∂uθ
∂z

+ ūθU
S
0 + V S

0 ūr

]
ψ
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r̄

(
∂V

∂R

)S
0

− V S
0

]
∂ψ

[f]
l

∂r
+ r̄

(
∂V

∂Z

)S
0

∂ψ
[f]
l
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+

[
1

r̄
V S

0 −
(
∂V

∂R

)S
0

]
ψ

[f]
l

}
J̄B ds1 ds2 (8.56)

and

R̂[pS]
0l = 2π

∫ 1

−1

∫ 1

−1

[
r̄

(
∂U

∂R

)S
0

+ US
0 + r̄

(
∂W

∂Z

)S
0

]
ψ

[p]
l J̄B ds1 ds2. (8.57)

As usual these equations have to be solved in the same domain as the base flow

problem, so that r ranges from η/(1− η) to 1/(1− η) and z ranges from 0 to h. The
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choice of h is based on values quoted by Murray et al.: in their work, they model the

domain as infinite in the axial direction, and this allows them to Fourier decompose the

perturbation equations in this direction. They then solve the perturbation equations on

a one-dimensional mesh and compute the axial wavenumber a as part of the solution.

Since our domain is two-dimensional, we require h to be such that an integer number

of half-wavelengths can be contained in the axial direction. The simplest choice is to

set h = π/a, where a is taken from the calculations performed by Murray et al. for

the particular set of parameters in question.

We note that by setting up the problem in this way we are in fact treating the

computational domain as a ‘periodic box’ designed to fit precisely half a wavelength

in the axial direction. Although our choice of h is taken from the calculated values of

Murray et al., we acknowledge that these values were informed by the original analysis

of G. I. Taylor [Taylor, 1923]. The perturbation equations are subject to the Dirichlet

boundary conditions

UC
0 = US

0 = WC
0 = W S

0 = V C
0 = V S

0 = 0 (8.58)

on the left and right domain boundaries and the non-penetration conditions

∂UC
0

∂z
=
∂US

0

∂z
= WC

0 = W S
0 =

∂V C
0

∂z
=
∂V S

0

∂z
= 0 (8.59)

at the upper and lower boundaries. The solution was computed using both Linearised-

AxisymmetricQTaylorHoodMultiDomainElements and LinearisedAxisymmetricQ-

CrouzeixRaviartMultiDomainElements, as discussed in section 7.4, with uniform

meshes containing 32× 32 elements and a self-starting BDF2 timestepper. The initial

condition was identical to that used in the previous validation problem: all six velocity

fields were initially prescribed to be smoothly-varying functions of r and z of the form

f(r, z) = 4z(z − h)

(
r − η

1− η

)(
r − 1

1− η

)
. (8.60)

Having set up the linear problem, the overall stability problem was solved in the

following way. For a given Reynolds number, the base flow problem was initialised (as

discussed in section 8.2.1) and its degrees of freedom stored as entries of a vector V(0).

The unsteady base solution was then computed over a single period T and its degrees

of freedom stored as entries of a vector V(1). The quantity

d(1) =
1

Ndof

√√√√Ndof∑
i=1

[(
V

(1)
i − V (0)

i

)2
]

(8.61)
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provides a mesh-independent measure of the difference in the solution at the end of

the first period compared to the initial solution. We compared d(1) to a prescribed

tolerance, and considered the flow to have settled down to a periodic state if d(1) was

less than this value. Otherwise, we computed a second period, constructed d(2) in a

similar way and repeated the test. We continued in this way until we were satisfied

that we were computing a periodic base solution (to within our prescribed tolerance of

1×10−6), and at this point set up the linear perturbation problem as described above.

We then performed the power method, where for every iteration both the base and

perturbation equations were timestepped over an entire period T . Once the power

method had converged, the resulting dominating eigenvalue was used to determine

whether or not the base flow is stable at the Reynolds number in question.

The results given in Murray et al. [Murray et al., 1990] were used as a guide to

roughly where we expected the stability thresholds to lie. The actual thresholds were

then computed in exactly the same way as described in the counter-rotating disks

example (section 8.1.3). First a value of the Reynolds number below the expected

threshold was chosen, and the above procedure carried out to determine the stability

of the flow. The Reynolds number was then increased slightly, and the procedure

performed again, with the initial conditions for the power method taken to be the

dominant eigenvector computed for the previous Reynolds number. Once a range of

problems at various Reynolds numbers had been solved, the stability threshold was

determined by plotting the dominant eigenvalue against Reynolds number. Figure 8.8

shows such a plot for the parameters η = 0.88, h = π/3.2, ε = 0.9 and ω = 10.58. The

two lines correspond to the same set of problems computed at two different spatial

resolutions. From this we infer that (to within ±0.005) the critical Reynolds number

at which the flow goes unstable to the m = 0 mode is Re∗ = 20.935.

8.2.3 Comparison with Murray et al.

The motivation for studying this particular problem was so that the zeroth-mode

linear perturbation equations (on stationary meshes) could be validated by comparison

against the study of this problem conducted by Murray et al. [Murray et al., 1990]. In

this paper the authors decomposed the base flow into the sum of steady and periodic
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Figure 8.8: Plot of dominant eigenvalue against Reynolds number for the axisymmet-
ric (m = 0) mode at two different spatial resolutions, for the parameters ε = 0.9,
ω = 10.58, η = 0.88 and h = π/3.2. The domain was discretised spatially us-
ing LinearisedAxisymmetricQTaylorHoodMultiDomainElements, and a self-starting
BDF2 timestepper with a non-dimensionalised timestep of 2π/40ω was employed. The
Reynolds number was increased in steps of 0.0025.

components so that the azimuthal velocity is written as

v̄(r, t) = Vs(r) + Vp(r, t), (8.62)

where the steady part is given analytically by

Vs =
Re∗

1− η2

(
η2

r (1− η)2
− r η2

)
(8.63)

and the periodic part was determined numerically using the same scheme as the per-

turbed flow2. They then performed a linear stability analysis of the base flow by

2We note that throughout this discussion we will adopt Murray et al.’s notation for the three com-
ponents of the velocity field: hence u, v and w represent the radial, azimuthal and axial components
respectively.
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writing the field variables in the form
u(r, z, θ, t)

v(r, z, θ, t)

w(r, z, θ, t)

p(r, z, θ, t)

 =


0

v̄(r, t)

0

p̄(r, t)

+


û(r, t)

v̂(r, t)

ŵ(r, t)

p̂(r, t)

 exp (inθ + iaz) , (8.64)

where a is the axial wave number and n the azimuthal mode number. They substituted

this ansatz into the Navier–Stokes equations to obtain a sixth-order system for the

perturbation amplitudes û, v̂, ŵ and p̂ which is subject to the homogeneous boundary

conditions û = v̂ = ŵ = 0. The coefficients in the linear problem are periodic, and this

motivated the application of Floquet theory, which the authors implemented in two

different ways in order to solve the overall stability problem by two distinct approaches.

In the first of these the perturbation quantities f̂(r, t) were represented by

f̂(r, t) = eσt
∑
|m|≤M

fm(r) eimωt, (8.65)

where σ is a complex growth rate and M is the value of m at which the periodic

Fourier series is to be truncated. Substitution of this expansion into the linear system

yields a set of coupled boundary value problems in r for the Fourier coefficients fm(r)

in which σ appears as a parameter. This set of problems gives rise to an eigenvalue

problem for σ, which the authors solved using the computer code SUPORT [Scott and

Watts, 1977], choosing a high-order Adams-type timestepping procedure.

The periodic part of the base flow was obtained by assuming a solution of the form

Vp(r, t) = <
[
V (r) eiωt

]
, (8.66)

with appropriate sinusoidal boundary conditions, and substituting this into the gov-

erning equations and boundary conditions for the base state to obtain a boundary

value problem for V (r). Although V (r), which is complex, has an analytical solution

in the form of Kelvin functions, the authors found that it was computationally more

efficient to solve for V (r) numerically in the same manner (and at the same time) as

the perturbation amplitudes.

Murray et al.’s second approach to solving the stability problem took advantage

of the ability to reduce the system of equations for the perturbation amplitudes to a
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fourth-order equation for û and a second-order equation for v̂. A pseudo-spectral tech-

nique was then employed by expanding û and v̂ as a series of Chebyshev polynomials

Tn,

û(r, t) =
N∑
n=0

un(t)Tn
(
2 [r − η/(1− η)]− 1

)
(8.67)

and

v̂(r, t) =
N∑
n=0

vn(t)Tn
(
2 [r − η/(1− η)]− 1

)
, (8.68)

which were required to satisfy the governing equations at specific collocation points.

As a result of this discretisation the spatial differential operators in the governing

equations are replaced by discrete matrix operators, and the problem becomes a set

of coupled ordinary differential algebraic equations in time for the values of û and

v̂ at the collocation points. This system was solved using the computer code DASSL

[Petzold, 1982], utilising a fifth-order-accurate backward differentiation timestepper.

Since in this instance the amplitude of the periodic component of the base flow V (r)

was only required at the collocation points, the authors chose to evaluate the Kelvin

functions at these points and hence construct Vp according to the analytical solution.

The Floquet analysis in this second approach was carried out by constructing a

square fundamental solution matrix of size equal to the number of differential equa-

tions, where each column corresponds to a linearly independent solution at the end

of one period. The eigenvalues of this matrix are known as Floquet multipliers, from

which the complex growth rates are obtained. This approach yields a separate value of

σ corresponding to each solution mode, which provides more insight into the relative

stability of each mode than the first approach.

Using a combination of these two numerical schemes, Murray et al. performed a

range of parameter studies, in part inspired by the experimental results of Walsh and

Donnelly [Walsh and Donnelly, 1988]. Only axisymmetric disturbances were consid-

ered. For the purposes of validation of the numerical scheme formulated in the current

work, we performed a comparison against some of the results quoted by Murray et al.

for fixed η = 0.88 and forcing frequency ω = 10.58. Table 8.2 displays the comparison

between the critical Reynolds numbers as determined by Walsh and Donnelly, Murray

et al. and the current work, for various values of the modulation amplitude ε. We

note that Murray et al. convert their definition of the Reynolds number to that used
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by Walsh and Donnelly by the relation

R̃e = Re∗
√
η/(1− η), (8.69)

and we do the same with the data computed by oomph-lib. Two different spatial

resolutions were used in these computations: in the first case, both the base flow

and the linear perturbation solutions were discretised using the same uniform mesh

of 16 × 16 elements. In the second case, the spatial resolution of both meshes was

doubled, and the critical Reynolds number remained unchanged for all values of ε. We

note that our results agree within 1% to those computed by Murray et al., and within

2.5% to the data collected experimentally by Walsh and Donnelly.

ε 0.0 0.3 0.5 0.7 0.9

R̃e (Walsh & Donnelly) 44.5 45.9 47.8 50.8 55.5

R̃e (Murray et al.) 44.5 45.4 47.2 50.5 56.6

R̃e (This work) 44.5 45.4 47.2 50.4 56.7

Table 8.2: Comparison between the critical Reynolds numbers as determined by Walsh
and Donnelly, Murray et al. and the current work, for various values of the modulation
amplitude ε.

In order to ensure that the eigenvectors computed by oomph-lib were fully re-

solved spatially, we compared each field carefully at two different spatial resolutions.

Figure 8.9 shows the dominant eigenvector at Re = 20.96 for the higher-resolution

computations at four different timesteps over one period. The problem was discretised

on a mesh of 32 × 32 LinearisedAxisymmetricQTaylorHoodMultiDomainElements,

for the parameters ε = 0.9, ω = 10.58, η = 0.88 and h = π/3.2. In all four plots

8.9(a)–8.9(d) the right-hand side displays colour contours of azimuthal velocity V C
0

and the left-hand side displays colour contours of pressure PC
0 . On the pressure plots,

dark blue and bright red correspond to the minimum and maximum values of the

pressure respectively, whereas the legends to the right of the azimuthal velocity plots

describe those contours in terms of the non-dimensional velocity. We note that the

same contour levels have been used in all figures. The streamlines track the motion of

the in-plane velocities UC
0 and WC

0 .

Figure 8.10 plots the time-evolution of a ‘slice’ (taken at the line z = 0) of the

radial and azimuthal velocity components of the dominant eigenvector for the same
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set of parameters as above. Three complete periods are shown, and we note that when

computing the data to produce this figure we suppressed the normalisation of the

eigenvector in step (1) of the power method. Because Re = 20.96 is very close to (and

slightly above) the critical Reynolds number, we note that the dominant eigenvalue is

only growing very slightly with each successive period. We can compare this solution

to that shown in figure 8.11 for a Reynolds number of 20.50, which is considerably

lower than the critical value: in this case, the dominant eigenvector can clearly be

seen to be decaying. Figure 8.12 displays the solution for the same problem but at a

Reynolds number of 21.50, which is considerably larger than the critical value: here, we

observe the dominant eigenvector growing substantially with each successive period,

as we would expect.

8.2.4 Implementation

The problem discussed above was implemented as a demonstration code in oomph-lib,

and its source file,

time_periodic_taylor_couette.cc,

is located in the

demo_drivers/axisym_navier_stokes/time_periodic_taylor_couette/

directory.
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(a) t = 0.125

(b) t = 0.375

Figure 8.9: Plot of the dominant eigenvector of the axisymmetric (m = 0) mode for
the parameters ε = 0.9, ω = 10.58, Re = 20.96, η = 0.88 and h = π/3.2, computed
on a mesh of 32 × 32 LinearisedAxisymmetricQTaylorHoodMultiDomainElements

elements. A self-starting BDF2 timestepper with a non-dimensionalised timestep of
2π/40ω has been employed. The solution is shown at four different timesteps over
a single period. The right-hand plots display colour contours of azimuthal velocity
V C

0 (r, z), as described by the legends to the right of each sub-figure. The left-hand
plots display colour contours of the pressure PC

0 (r, z), which vary linearly between the
maximum value of 0.0269, shown in bright red, and the minimum value of -0.0269,
shown in dark blue, where we have rescaled the pressure so that its mean is zero.
On both the left- and right-hand plots, superimposed streamlines track the in-plane
velocity.
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(c) t = 0.625

(d) t = 0.875

Figure 8.9: Plot of the dominant eigenvector of the axisymmetric (m = 0) mode for the
parameters ε = 0.9, ω = 10.58, Re = 20.96, η = 0.88 and h = π/3.2, computed on a
mesh of 32×32 LinearisedAxisymmetricQTaylorHoodMultiDomainElements. A self-
starting BDF2 timestepper with a non-dimensionalised timestep of 2π/40ω has been
employed. The solution is shown at four different timesteps over a single period. The
right-hand plots display colour contours of azimuthal velocity V C

0 (r, z), as described by
the legends to the right of each sub-figure. The left-hand plots display colour contours
of the pressure PC

0 (r, z), which vary linearly between the maximum value of 0.0269,
shown in bright red, and the minimum value of -0.0269, shown in dark blue, where we
have rescaled the pressure so that its mean is zero. On both the left- and right-hand
plots, superimposed streamlines track the in-plane velocity.
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Chapter 9

Perturbations to axisymmetric

flows: Part two

In this chapter we will continue the discussion of the linearisation of the free sur-

face Navier–Stokes equations in cylindrical coordinates which we began in chapter

7. In that chapter we derived the set of equations which describe a linear, non-

axisymmetric perturbation to the bulk axisymmetric equations: here, we will complete

the formulation by deriving the free boundary conditions corresponding to a linear,

non-axisymmetric perturbation to an otherwise axisymmetric surface.

9.1 Linearisation of the free surface boundary con-

ditions

In section 5.4 we described the boundary conditions which are applied at the interface

between two fluids in a general orthogonal coordinate system, and in the following sec-

tion considered their form in cylindrical polar coordinates if the surface is taken to be

axisymmetric. Let us now consider a surface S, again in cylindrical polar coordinates,

which is now allowed to vary in the azimuthal direction. As before, we shall parame-

terise S by ζ1 = η and ζ2 = θ and establish an explicit connection between the global

coordinate system, ξi, and the surface coordinates, ζα, so that ξ1 = R(ζ1) = R(η),

ξ2 = Z(ζ1) = Z(η) and ξ3 = ζ2 = θ. We can then define the Eulerian position vector

191
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to the surface (at a given time t) to be

X(η, θ) = R(η, θ) cos θ i +R(η, θ) sin θ j + Z(η, θ) k, (9.1)

where i, j and k are the Cartesian unit basis vectors as before. Let us now decompose

this position vector in the following way,

X(η, θ) = X̄(η) + ε X̂(η, θ), (9.2)

where ε � 1, so that we are considering a small, non-axisymmetric perturbation to

an otherwise axisymmetric surface. We note that this is equivalent to performing the

decomposition of the global coordinates

R(η, θ) = R̄(η) + ε R̂(η, θ) and

Z(η, θ) = Z̄(η) + ε Ẑ(η, θ), (9.3)

in exactly the same way as for the bulk equations (equation 7.12 in section 7.1).

Substituting (9.3) into (9.1) yields

X(η, θ) = R̄(η) cos θ i + R̄(η) sin θ j + Z̄(η) k

+ ε
[
R̂(η, θ) cos θ i + R̂(η, θ) sin θ j + Ẑ(η, θ) k

]
, (9.4)

and it follows from (5.57) that the covariant base vectors of S are given by

a1 =
dR̄

dη
cos θ i +

dR̄

dη
sin θ j +

dZ̄

dη
k

+ ε

[
∂R̂

∂η
cos θ i +

∂R̂

∂η
sin θ j +

∂Ẑ

∂η
k

]
(9.5)

and

a2 = − R̄ sin θ i + R̄ cos θ j

+ ε

[(
∂R̂

∂θ
cos θ − R̂ sin θ

)
i +

(
∂R̂

∂θ
sin θ + R̂ cos θ

)
j +

∂Ẑ

∂θ
k

]
. (9.6)

The covariant components of the metric surface tensor (5.58) are then given by

a11 = (∆S)2 + 2ε

(
dR̄

dη

∂R̂

∂η
+

dZ̄

dη

∂Ẑ

∂η

)
+ O(ε2),

a22 = R̄2 + 2εR̄R̂ + O(ε2)
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and

a12 = a21 = ε

(
dR̄

dη

∂R̂

∂θ
+

dZ̄

dη

∂Ẑ

∂θ

)
+ O(ε2), (9.7)

where

(∆S)2 =

(
dR̄

dη

)2

+

(
dZ̄

dη

)2

, (9.8)

and it follows that its determinant is given by

a = R̄2 (∆S)2 + 2εR̄

[
(∆S)2 R̂ + R̄

(
dR̄

dη

∂R̂

∂η
+

dZ̄

dη

∂Ẑ

∂η

)]
+ O(ε2). (9.9)

If we rewrite (9.9) as

a = R̄2 (∆S)2

{
1 + 2ε

[
R̂

R̄
+

1

(∆S)2

(
dR̄

dη

∂R̂

∂η
+

dZ̄

dη

∂Ẑ

∂η

)]
+ O(ε2)

}
(9.10)

then we can use the binomial expansion to evaluate the inverse of a:

1

a
=

1

R̄2 (∆S)2 −
2ε

R̄2 (∆S)2

[
R̂

R̄
+

1

(∆S)2

(
dR̄

dη

∂R̂

∂η
+

dZ̄

dη

∂Ẑ

∂η

)]
+ O(ε2). (9.11)

This allows us to use (5.77) to evaluate the contravariant components of the surface

metric tensor,

a11 =
1

(∆S)2 −
2ε

(∆S)4

(
dR̄

dη

∂R̂

∂η
+

dZ̄

dη

∂Ẑ

∂η

)
+ O(ε2),

a22 =
1

R̄2
− 2ε

R̄3
R̂ + O(ε2)

and

a12 = a21 = − ε

R̄2 (∆S)2

(
dR̄

dη

∂R̂

∂θ
+

dZ̄

dη

∂Ẑ

∂θ

)
+ O(ε2), (9.12)



CHAPTER 9. PERTURBATIONS: PART TWO 194

and from (5.59) we can now construct the contravariant base vectors of the surface,

a1 =
1

(∆S)2

[
dR̄

dη
cos θ i +

dR̄

dη
sin θ j +

dZ̄

dη
k

]
+

ε

(∆S)4

{[((
dZ̄

dη

)2
∂R̂

∂η
−
(

dR̄

dη

)2
∂R̂

∂η
− 2

dR̄

dη

dZ̄

dη

∂Ẑ

∂η

)
cos θ

+
(∆S)2

R̄

(
dR̄

dη

∂R̂

∂θ
+

dZ̄

dη

∂Ẑ

∂θ

)
sin θ

]
i

+

[((
dZ̄

dη

)2
∂R̂

∂η
−
(

dR̄

dη

)2
∂R̂

∂η
− 2

dR̄

dη

dZ̄

dη

∂Ẑ

∂η

)
sin θ

−(∆S)2

R̄

(
dR̄

dη

∂R̂

∂θ
+

dZ̄

dη

∂Ẑ

∂θ

)
cos θ

]
j

+

[(
dR̄

dη

)2
∂Ẑ

∂η
−
(

dZ̄

dη

)2
∂Ẑ

∂η
− 2

dR̄

dη

dZ̄

dη

∂R̂

∂η

]
k

}
+ O(ε2) (9.13)

and

a2 =
1

R̄

[
− sin θ i + cos θ j

]

+
ε

R̄2

{[
1

(∆S)2

dZ̄

dη

(
dZ̄

dη

∂R̂

∂θ
− dR̄

dη

∂Ẑ

∂θ

)
cos θ + R̂ sin θ

]
i

+

[
1

(∆S)2

dZ̄

dη

(
dZ̄

dη

∂R̂

∂θ
− dR̄

dη

∂Ẑ

∂θ

)
sin θ − R̂ cos θ

]
j

+
1

(∆S)2

dR̄

dη

(
dR̄

dη

∂Ẑ

∂θ
− dZ̄

dη

∂R̂

∂θ

)
k

}
+ O(ε2). (9.14)

Recall that, as usual, the global coordinates which parametrise Eulerian space

are ξ1 = r, ξ2 = z and ξ3 = θ. From (5.90) and (5.93) the global covariant and

contravariant basis vectors are therefore

g1 = cos θ i + sin θ j,

g2 = k,

g3 = −r sin θ i + r cos θ j (9.15)

and

g1 = cos θ i + sin θ j,

g2 = k,

g3 = −1

r
sin θ i +

1

r
cos θ j. (9.16)
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We now wish to evaluate these basis vectors at a particular (given) Eulerian posi-

tion on a surface parametrised by (η, θ), and hence we must decompose the Eulerian

coordinates as above (9.3) so that

g3 = −
(
R̄ + εR̂

)
sin θ i +

(
R̄ + εR̂

)
cos θ j (9.17)

and

g3 = −

(
1

R̄
− ε R̂

R̄2
+ O(ε2)

)
sin θ i +

(
1

R̄
− ε R̂

R̄2
+ O(ε2)

)
cos θ j. (9.18)

The derivatives of the global contravariant base vectors gi with respect to the surface

coordinates ζα are then given by

∂g1

∂η
= 0,

∂g2

∂η
= 0,

∂g1

∂θ
= − sin θ i + cos θ j,

∂g2

∂θ
= 0,

(9.19)

∂g3

∂η
=

1

R̄2

[
−dR̄

dη
+ ε

(
2R̂

R̄

dR̄

dη
− ∂R̂

∂η

)
+ O(ε2)

](
− sin θ i + cos θ j

)
(9.20)

and

∂g3

∂θ
=

[
− 1

R̄
cos θ +

ε

R̄2

(
R̂ cos θ +

∂R̂

∂θ
sin θ

)
+ O(ε2)

]
i

+

[
− 1

R̄
sin θ +

ε

R̄2

(
R̂ sin θ − ∂R̂

∂θ
cos θ

)
+ O(ε2)

]
j. (9.21)

The dynamic condition

From section 5.4 we know that the contributions which are made to the i-th momentum

equation by the dynamic boundary condition are given by

R[f,fs]
i = −

∫∫
Ω

pext n
i φ[f] dS +

1

Ca

∮
∂Ω

mi φ[f] dλ− 1

Ca

∫∫
Ω

aα · ∂gi

∂ζα
φ[f] dS

− 1

Ca

∫∫
Ω

1

a

[
gi · a1

(
a22

∂φ[f]

∂ζ1
− a21

∂φ[f]

∂ζ2

)
+ gi · a2

(
a11

∂φ[f]

∂ζ2
− a12

∂φ[f]

∂ζ1

)]
dS,

(9.22)
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and using (9.7) and (9.11) this becomes

R[f,fs]
i =−

∫∫
Ω

pext n
i φ[f] dS +

1

Ca

∮
∂Ω

mi φ[f] dλ− 1

Ca

∫∫
Ω

aα · ∂gi

∂ζα
φ[f] dS

− 1

Ca

∫∫
Ω

gi · a1

{
1

(∆S)2

∂φ[f]

∂η
− ε

(∆S)2

[
1

R̄2

(
dR̄

dη

∂R̂

∂θ
+

dZ̄

dη

∂Ẑ

∂θ

)
∂φ[f]

∂θ

+
2

(∆S)2

(
dR̄

dη

∂R̂

∂η
+

dZ̄

dη

∂Ẑ

∂η

)
∂φ[f]

∂η

]
+ O(ε2)

}
dS

− 1

Ca

∫∫
Ω

gi · a2

{
1

R̄2

∂φ[f]

∂θ
− ε

R̄2

[
2
R̂

R̄

∂φ[f]

∂θ

+
1

(∆S)2

(
dR̄

dη

∂R̂

∂θ
+

dZ̄

dη

∂Ẑ

∂θ

)
∂φ[f]

∂η

]
+ O(ε2)

}
dS. (9.23)

In order to evaluate this we must first construct the following terms,

aα · ∂g1

∂ζα
=

1

R̄
− ε R̂

R̄2
+ O(ε2),

aα · ∂g2

∂ζα
= 0,

aα · ∂g3

∂ζα
=

2ε

R̄3 (∆S)2

dZ̄

dη

(
dR̄

dη

∂Ẑ

∂θ
− dZ̄

dη

∂R̂

∂θ

)
+ O(ε2), (9.24)

as well as the scalar products of the global contravariant base vectors with the surface

covariant base vectors,

g1 · a1 =
dR̄

dη
+ ε

∂R̂

∂η
,

g2 · a1 =
dZ̄

dη
+ ε

∂Ẑ

∂η
,

g3 · a1 = 0,

g1 · a2 = ε
∂R̂

∂θ
,

g2 · a2 = ε
∂Ẑ

∂θ
,

g3 · a2 = 1 + O(ε2).

(9.25)

We can now use (9.24) and (9.25) to consider each component of (9.23) separately:

R[f,fs]
r =−

∫∫
Ω

pext nr φ
[f] dS − 1

Ca

∫∫
Ω

{
1

R̄
− ε R̂

R̄2
+ O(ε2)

}
φ[f] dS

− 1

Ca

∫∫
Ω

{
1

(∆S)2

dR̄

dη

∂φ[f]

∂η
+

ε

(∆S)2

[
1

(∆S)2

((
dZ̄

dη

)2
∂R̂

∂η
−
(

dR̄

dη

)2
∂R̂

∂η
− 2

dR̄

dη

dZ̄

dη

∂Ẑ

∂η

)
∂φ[f]

∂η

+
1

R̄2

dZ̄

dη

(
dZ̄

dη

∂R̂

∂θ
− dR̄

dη

∂Ẑ

∂θ

)
∂φ[f]

∂θ

]
+ O(ε2)

}
dS, (9.26)
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R[f,fs]
z =−

∫∫
Ω

pext nz φ
[f] dS

− 1

Ca

∫∫
Ω

{
1

(∆S)2

dZ̄

dη

∂φ[f]

∂η
+

ε

(∆S)2

[
1

(∆S)2

((
dR̄

dη

)2
∂Ẑ

∂η
−
(

dZ̄

dη

)2
∂Ẑ

∂η
− 2

dR̄

dη

dZ̄

dη

∂R̂

∂η

)
∂φ[f]

∂η

+
1

R̄2

dR̄

dη

(
dR̄

dη

∂Ẑ

∂θ
− dZ̄

dη

∂R̂

∂θ

)
∂φ[f]

∂θ

]
+ O(ε2)

}
dS (9.27)

and

R[f,fs]
θ =−

∫∫
Ω

(
1

R̄
− ε R̂

R̄2
+ O(ε2)

)
pext nθ φ

[f] dS

− 1

Ca

∫∫
Ω

{
2ε

R̄3 (∆S)2

dZ̄

dη

(
dR̄

dη

∂Ẑ

∂θ
− dZ̄

dη

∂R̂

∂θ

)
+ O(ε2)

}
φ[f] dS

− 1

Ca

∫∫
Ω

{
1

R̄2

∂φ[f]

∂θ
− ε

R̄2

[
1

(∆S)2

(
dR̄

dη

∂R̂

∂θ
+

dZ̄

dη

∂Ẑ

∂θ

)
∂φ[f]

∂η

+2
R̂

R̄

∂φ[f]

∂θ

]
+ O(ε2)

}
dS, (9.28)

where we have used (5.108) to write the components of the normal vector n in terms

of the er, ez and eθ basis defined in (5.26)1. If we also consider the position vector to

the free surface (9.1) written in terms of this basis,

X(η, θ) = R(η, θ) er + Z(η, θ) ez, (9.29)

then we can define a unit tangent vector to the undeformed surface in the direction of

increasing η as

t̄ =

[
∂X̄

∂η
· ∂X̄

∂η

]− 1
2 ∂X̄

∂η
=

1

(∆S)

[
dR̄

dη
er +

dZ̄

dη
ez

]
, (9.30)

and therefore the radial and axial components of t̄ are given by

t̄r =
1

(∆S)

dR̄

dη
and t̄z =

1

(∆S)

dZ̄

dη
. (9.31)

At any point on the free boundary Ω a unit vector normal to the surface can be found

using

n =
[

(a1 × a2) · (a1 × a2)
]− 1

2
(a1 × a2) . (9.32)

1From this point forward we will neglect the terms containing integrals over the boundary of the
free surface since we will only be considering interfaces with 90o contact angles.
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From (9.5) and (9.6) we have

a1 × a2 = R̄

[
−dZ̄

dη
cos θ i− dZ̄

dη
sin θ j +

dR̄

dη
k

]
+ ε

{[(
dR̄

dη

∂Ẑ

∂θ
− dZ̄

dη

∂R̂

∂θ

)
sin θ −

(
R̄
∂Ẑ

∂η
+ R̂

dZ̄

dη

)
cos θ

]
i

−

[(
dR̄

dη

∂Ẑ

∂θ
− dZ̄

dη

∂R̂

∂θ

)
sin θ +

(
R̄
∂Ẑ

∂η
+ R̂

dZ̄

dη

)
cos θ

]
j

+

[
R̄
∂R̂

∂η
+ R̂

dR̄

dη

]
k

}
+ O(ε2), (9.33)

and we take the scalar product of (9.33) with itself and apply the binomial expansion

to give[
(a1 × a2) · (a1 × a2)

]− 1
2

=
1

R̄ (∆S)

{
1− ε

[
R̂

R̄
+

1

(∆S)2

(
dR̄

dη

∂R̂

∂η
+

dZ̄

dη

∂Ẑ

∂η

)]
+ O(ε2)

}
. (9.34)

Finally we take the product of (9.33) and (9.34) to obtain

n =
1

(∆S)

[
−dZ̄

dη
cos θ i− dZ̄

dη
sin θ j +

dR̄

dη
k

]
+

ε

(∆S)

{[
1

(∆S)2

dR̄

dη

(
dZ̄

dη

∂R̂

∂η
− dR̄

dη

∂Ẑ

∂η

)
cos θ

− 1

R̄

(
dZ̄

dη

∂R̂

∂θ
− dR̄

dη

∂Ẑ

∂θ

)
sin θ

]
i

+

[
1

(∆S)2

dR̄

dη

(
dZ̄

dη

∂R̂

∂η
− dR̄

dη

∂Ẑ

∂η

)
sin θ

+
1

R̄

(
dZ̄

dη

∂R̂

∂θ
− dR̄

dη

∂Ẑ

∂θ

)
cos θ

]
j

+
1

(∆S)2

dZ̄

dη

(
dZ̄

dη

∂R̂

∂η
− dR̄

dη

∂Ẑ

∂η

)
k

}
+ O(ε2). (9.35)

Using (5.26) we can write the components of n in terms of the er, ez and eθ basis,

nr = − 1

(∆S)

dZ̄

dη
+

ε

(∆S)3

dR̄

dη

(
dZ̄

dη

∂R̂

∂η
− dR̄

dη

∂Ẑ

∂η

)
,

nz =
1

(∆S)

dR̄

dη
+

ε

(∆S)3

dZ̄

dη

(
dZ̄

dη

∂R̂

∂η
− dR̄

dη

∂Ẑ

∂η

)
and

nθ =
ε

R̄ (∆S)

(
dZ̄

dη

∂R̂

∂θ
− dR̄

dη

∂Ẑ

∂θ

)
, (9.36)
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before employing (9.31) to obtain

nr = − t̄z +
ε

(∆S)
t̄r

(
t̄z
∂R̂

∂η
− t̄r

∂Ẑ

∂η

)
,

nz = t̄r +
ε

(∆S)
t̄z

(
t̄z
∂R̂

∂η
− t̄r

∂Ẑ

∂η

)
and

nθ =
ε

R̄

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)
. (9.37)

We can then use (9.31) and (9.37) to rewrite (9.26)–(9.28) as

R[f,fs]
r =−

∫∫
Ω

pext

[
−t̄z +

ε

(∆S)
t̄r

(
t̄z
∂R̂

∂η
− t̄r

∂Ẑ

∂η

)]
φ[f] dS

− 1

Ca

∫∫
Ω

[
1

R̄
− ε R̂

R̄2

]
φ[f] dS

− 1

Ca

∫∫
Ω

{
t̄r

(∆S)

∂φ[f]

∂η
+ ε

[
1

(∆S)2

(
t̄2z
∂R̂

∂η
− t̄2r

∂R̂

∂η
− 2t̄r t̄z

∂Ẑ

∂η

)
∂φ[f]

∂η

+
t̄z
R̄2

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)
∂φ[f]

∂θ

]}
dS + O(ε2),

(9.38)

R[f,fs]
z =−

∫∫
Ω

pext

[
t̄r +

ε

(∆S)
t̄z

(
t̄z
∂R̂

∂η
− t̄r

∂Ẑ

∂η

)]
φ[f] dS

− 1

Ca

∫∫
Ω

{
t̄z

(∆S)

∂φ[f]

∂η
+ ε

[
1

(∆S)2

(
t̄2r
∂Ẑ

∂η
− t̄2z

∂Ẑ

∂η
− 2t̄r t̄z

∂R̂

∂η

)
∂φ[f]

∂η

+
t̄r
R̄2

(
t̄r
∂Ẑ

∂θ
− t̄z

∂R̂

∂θ

)
∂φ[f]

∂θ

]}
dS + O(ε2)

(9.39)

and

R[f,fs]
θ =− ε

∫∫
Ω

pext

R̄2

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)
φ[f] dS

− 2ε

Ca

∫∫
Ω

t̄z
R̄3

(
t̄r
∂Ẑ

∂θ
− t̄z

∂R̂

∂θ

)
φ[f] dS

− 1

Ca

∫∫
Ω

1

R̄2

{
∂φ[f]

∂θ
− ε

[
1

(∆S)

(
t̄r
∂R̂

∂θ
+ t̄z

∂Ẑ

∂θ

)
∂φ[f]

∂η
+ 2

R̂

R̄

∂φ[f]

∂θ

]}
dS

+ O(ε2). (9.40)
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We note that, as expected, taking just the terms of order one in (9.38)–(9.40) yields the

contributions that are made to the momentum equations in the purely axisymmetric

case (5.116). From this point onwards we shall consider just the terms of order ε since

these are the terms which will contribute to the momentum equations in the ‘linear

perturbation problem’ formulated in chapter 7.

We recall that a function f = f(x, y, z) can be integrated over a surface Ω which

is parametrised by surface coordinates ζ1 and ζ2 in the following manner,∫∫
S

f(x, y, z) dS =

∫∫
S

f(X(ζ1, ζ2)) |a1 × a2| dζ1 dζ2, (9.41)

and from (9.33) we have

|a1 × a2| = R̄ (∆S) + ε

[
R̂ (∆S) +

R̄

(∆S)

(
dR̄

dη

∂R̂

∂η
+

dZ̄

dη

∂Ẑ

∂η

)]
+ O(ε2). (9.42)

Using (9.41) the terms of order ε in (9.38)–(9.40) are therefore

R̂[f,fs]
r =

∫∫
Ω

pext

[
t̄z (∆S) R̂ + R̄

∂Ẑ

∂η

]
φ[f] dη dθ

− 1

Ca

∫∫
Ω

{(
t̄r
∂R̂

∂η
+ t̄z

∂Ẑ

∂η

)
φ[f]

+

[
t̄rR̂ +

R̄

(∆S)
t̄z

(
t̄z
∂R̂

∂η
− t̄r

∂Ẑ

∂η

)]
∂φ[f]

∂η

+
(∆S)

R̄
t̄z

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)
∂φ[f]

∂θ

}
dη dθ, (9.43)

R̂[f,fs]
z =−

∫∫
Ω

pext

[
t̄r (∆S) R̂ + R̄

∂R̂

∂η

]
φ[f] dη dθ

− 1

Ca

∫∫
Ω

{[
t̄zR̂ +

R̄

(∆S)
t̄r

(
t̄r
∂Ẑ

∂η
− t̄z

∂R̂

∂η

)]
∂φ[f]

∂η

+
(∆S)

R̄
t̄r

(
t̄r
∂Ẑ

∂θ
− t̄z

∂R̂

∂θ

)
∂φ[f]

∂θ

}
dη dθ (9.44)
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and

R̂[f,fs]
θ =−

∫∫
Ω

pext

(∆S)

R̄

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)
φ[f] dη dθ

− 1

Ca

∫∫
Ω

{
2 (∆S)

R̄2
t̄z

(
t̄r
∂Ẑ

∂θ
− t̄z

∂R̂

∂θ

)
φ[f]

− 1

R̄

(
t̄r
∂R̂

∂θ
+ t̄z

∂Ẑ

∂θ

)
∂φ[f]

∂η

+
1

R̄

(
t̄r
∂R̂

∂η
+ t̄z

∂Ẑ

∂η
− (∆S)

R̂

R̄

)
∂φ[f]

∂θ

}
dη dθ. (9.45)

The kinematic condition

From section 5.4 the weak form of the kinematic boundary condition is given by

R[h] =

∫∫
Ω

(
ui n

i − St
∂Xi

∂t
ni
)
φ[f] dS, (9.46)

where ui and Xi are the components of the velocity and position vector to the free

surface relative to the global contravariant basis. Using (5.117) and (5.108) we can

write the components of u, X and n in terms of the er, ez and eθ basis defined in

(5.26). From (9.29) we can then write the position vector to the surface at time t,

X(η, θ, t) = R(η, θ, t) er + Z(η, θ, t) ez, (9.47)

and (9.46) is therefore given by

R[h] =

∫∫
Ω

[
ur nr + uz nz + uθ nθ − St

∂R

∂t
nr − St

∂Z

∂t
nz

]
φ[f] dS. (9.48)

We decompose the velocity components in the usual way (7.11) and use (9.3) to obtain

R[h] =

∫∫
Ω

{
ūr nr + ūz nz + ūθ nθ − St

∂R̄

∂t
nr − St

∂Z̄

∂t
nz

+ε

[
ûr nr + ûz nz + ûθ nθ − St

∂R̂

∂t
nr − St

∂Ẑ

∂t
nz

]}
φ[f] dS, (9.49)
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before employing (9.37) to give

R[h] =

∫∫
Ω

{
−ūr t̄z + ūz t̄r + St

∂R̄

∂t
t̄z − St

∂Z̄

∂t
t̄r

+ε

[
−ûr t̄z + ûz t̄r + St

∂R̂

∂t
t̄z − St

∂Ẑ

∂t
t̄r

+
1

(∆S)

(
ūr t̄r + ūz t̄z − St

∂R̄

∂t
t̄r − St

∂Z̄

∂t
t̄z

)(
t̄z
∂R̂

∂η
− t̄r

∂Ẑ

∂η

)

+
ūθ
R̄

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)]
+ O(ε2)

}
φ[f] dS. (9.50)

We note that taking just the terms of order one in the above expression yields the form

of the kinematic boundary condition which was derived in section 5.4 for the purely

axisymmetric case (5.121). Using (9.41) and considering only the terms of order ε in

(9.50) gives

R̂[h] =

∫∫
Ω

{
(∆S)

[
− t̄z

(
R̄ ûr + R̂ ūr

)
+ t̄r

(
R̄ ûz + R̂ ūz

)
+St t̄z

(
R̄
∂R̂

∂t
+ R̂

∂R̄

∂t

)
− St t̄r

(
R̄
∂Ẑ

∂t
+ R̂

∂Z̄

∂t

)

+ūθ

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)]

−R̄
(
ūr − St

∂R̄

∂t

)
∂Ẑ

∂η
+ R̄

(
ūz − St

∂Z̄

∂t

)
∂R̂

∂η

}
φ[f] dη dθ. (9.51)

9.2 Fourier decomposition

The dynamic condition

Let us consider the discretised form of the dynamic boundary terms derived in section

9.1. All variables must now be expressed in terms of the local elemental coordinates

(s, θ) rather than the global surface coordinates (η, θ). By use of the chain rule,

therefore, the discrete residual equations corresponding to the l-th local test function
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are given by

R̂[f,fs]
rl =

∫ 2π

0

∫ 1

−1

pext

[
t̄zR̂JS + R̄

∂Ẑ

∂s

]
φ

[f]
l ds dθ

− 1

Ca

∫ 2π

0

∫ 1

−1

{(
t̄r
∂R̂

∂s
+ t̄z

∂Ẑ

∂s

)
φ

[f]
l

+

[
t̄rR̂ +

R̄

JS
t̄z

(
t̄z
∂R̂

∂s
− t̄r

∂Ẑ

∂s

)]
∂φ

[f]
l

∂s

+
JS
R̄
t̄z

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)
∂φ

[f]
l

∂θ

}
ds dθ, (9.52)

R̂[f,fs]
zl =−

∫ 2π

0

∫ 1

−1

pext

[
t̄rR̂JS + R̄

∂R̂

∂s

]
φ

[f]
l ds dθ

− 1

Ca

∫ 2π

0

∫ 1

−1

{[
t̄zR̂ +

R̄

JS
t̄r

(
t̄r
∂Ẑ

∂s
− t̄z

∂R̂

∂s

)]
∂φ

[f]
l

∂s

+
JS
R̄
t̄r

(
t̄r
∂Ẑ

∂θ
− t̄z

∂R̂

∂θ

)
∂φ

[f]
l

∂θ

}
ds dθ (9.53)

and

R̂[f,fs]
θl =−

∫ 2π

0

∫ 1

−1

pext

JS
R̄

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)
φ

[f]
l ds dθ

− 1

Ca

∫ 2π

0

∫ 1

−1

{
2JS
R̄2

t̄z

(
t̄r
∂Ẑ

∂θ
− t̄z

∂R̂

∂θ

)
φ

[f]
l

− 1

R̄

(
t̄r
∂R̂

∂θ
+ t̄z

∂Ẑ

∂θ

)
∂φ

[f]
l

∂s

+
1

R̄

(
t̄r
∂R̂

∂s
+ t̄z

∂Ẑ

∂s
− R̂

R̄
JS

)
∂φ

[f]
l

∂θ

}
ds dθ, (9.54)

where we have defined

JS = (∆S)
dη

ds
. (9.55)

As in section 7.3 we can exploit the periodicity of the problem domain in the

azimuthal direction to represent the functions R̂ and Ẑ as Fourier series expansions,

R̂(s, θ, t) =
∞∑
k=0

[
RC
k (s, t) cos kθ +RS

k (s, t) sin kθ
]

(9.56)

and

Ẑ(s, θ, t) =
∞∑
k=0

[
ZC
k (s, t) cos kθ + ZS

k (s, t) sin kθ
]
. (9.57)
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We substitute (9.56) and (9.57) into (9.52)–(9.54) and choose the test function

φ
[f,C]
l = ψ

[f]
l (s) cosmθ. (9.58)

Performing the integral over θ then yields the contributions to the ‘cosine’ momentum

equations,

R̂[fC,fs]
rml = γm π

∫ 1

−1

pext

[
t̄zR

C
m JS + R̄

∂ZC
m

∂s

]
ψ

[f]
l ds

− γm π

Ca

∫ 1

−1

{(
t̄r
∂RC

m

∂s
+ t̄z

∂ZC
m

∂s

)
ψ

[f]
l

+

[
t̄rR

C
m +

R̄

JS
t̄z

(
t̄z
∂RC

m

∂s
− t̄r

∂ZC
m

∂s

)]
∂ψ

[f]
l

∂s

+
m2JS
R̄

t̄z
(
t̄zR

C
m − t̄rZC

m

)
ψ

[f]
l

}
ds, (9.59)

R̂[fC,fs]
zml =− γm π

∫ 1

−1

pext

[
t̄rR

C
m JS + R̄

∂RC
m

∂s

]
ψ

[f]
l ds

− γm π

Ca

∫ 1

−1

{[
t̄zR

C
m +

R̄

JS
t̄r

(
t̄r
∂ZC

m

∂s
− t̄z

∂RC
m

∂s

)]
∂ψ

[f]
l

∂s

+
m2JS
R̄

t̄r
(
t̄rZ

C
m − t̄zRC

m

)
ψ

[f]
l

}
ds (9.60)

and

R̂[fC,fs]
θml = γm π

∫ 1

−1

mpext

JS
R̄

(
t̄rZ

S
m − t̄zRS

m

)
ψ

[f]
l ds

− γm π

Ca

∫ 1

−1

{
2mJS
R̄2

t̄z
(
t̄rZ

S
m − t̄zRS

m

)
ψ

[f]
l

−m
R̄

(
t̄rR

S
m + t̄zZ

S
m

) ∂ψ[f]
l

∂s

−m
R̄

(
t̄r
∂RS

m

∂s
+ t̄z

∂ZS
m

∂s
− RS

m

R̄
JS
)
ψ

[f]
l

}
ds. (9.61)

Next we choose the test function

φ
[f,S]
l = ψ

[f]
l (s) sinmθ, (9.62)
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and again perform the integral over θ to evaluate the contributions to the ‘sine’ mo-

mentum equations,

R̂[fS,fs]
rml = γm π

∫ 1

−1

pext

[
t̄zR

S
m JS + R̄

∂ZS
m

∂s

]
ψ

[f]
l ds

− γm π

Ca

∫ 1

−1

{(
t̄r
∂RS

m

∂s
+ t̄z

∂ZS
m

∂s

)
ψ

[f]
l

+

[
t̄rR

S
m +

R̄

JS
t̄z

(
t̄z
∂RS

m

∂s
− t̄r

∂ZS
m

∂s

)]
∂ψ

[f]
l

∂s

+
m2JS
R̄

t̄z
(
t̄zR

S
m − t̄rZS

m

)
ψ

[f]
l

}
ds, (9.63)

R̂[fS,fs]
zml =− γm π

∫ 1

−1

pext

[
t̄rR

S
m JS + R̄

∂RS
m

∂s

]
ψ

[f]
l ds

− γm π

Ca

∫ 1

−1

{[
t̄zR

S
m +

R̄

JS
t̄r

(
t̄r
∂ZS

m

∂s
− t̄z

∂RS
m

∂s

)]
∂ψ

[f]
l

∂s

+
m2JS
R̄

t̄r
(
t̄rZ

S
m − t̄zRS

m

)
ψ

[f]
l

}
ds (9.64)

and

R̂[fS,fs]
θml = γm π

∫ 1

−1

mpext

JS
R̄

(
t̄zR

C
m − t̄rZC

m

)
ψ

[f]
l ds

− γm π

Ca

∫ 1

−1

{
2mJS
R̄2

t̄z
(
t̄zR

C
m − t̄rZC

m

)
ψ

[f]
l

+
m

R̄

(
t̄rR

C
m + t̄zZ

C
m

) ∂ψ[f]
l

∂s

+
m

R̄

(
t̄r
∂RC

m

∂s
+ t̄z

∂ZC
m

∂s
− RC

m

R̄
JS
)
ψ

[f]
l

}
ds. (9.65)

The kinematic condition

Let us now consider the discretised form of the kinematic boundary condition derived

in section 9.1,

R̂[h]
l =

∫ 2π

0

∫ 1

−1

{[
− t̄z

(
R̄ ûr + R̂ ūr

)
+ t̄r

(
R̄ ûz + R̂ ūz

)
+ St t̄z

(
R̄
∂R̂

∂t
+ R̂

∂R̄

∂t

)
− St t̄r

(
R̄
∂Ẑ

∂t
+ R̂

∂Z̄

∂t

)

+ ūθ

(
t̄z
∂R̂

∂θ
− t̄r

∂Ẑ

∂θ

)]
JS

− R̄

(
ūr − St

∂R̄

∂t

)
∂Ẑ

∂s
+ R̄

(
ūz − St

∂Z̄

∂t

)
∂R̂

∂s

}
φ

[f]
l ds dθ, (9.66)
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where all variables are now expressed in terms of elemental coordinates (s, θ) and JS
is defined in (9.55). We express ûr, ûz and ûθ as Fourier series expansions as defined in

(7.57), and use (9.56) and (9.57). We then make these substitutions in (9.66), choose

the test function

φ
[f,C]
l = ψ

[f]
l (s) cosmθ (9.67)

and integrate with respect to θ to obtain

R̂[hC]
ml = γm π

∫ 1

−1

{[
− t̄z

(
R̄ UC

m + ūr R
C
m

)
+ t̄r

(
R̄WC

m + ūz R
C
m

)
+ St t̄z

(
R̄
∂RC

m

∂t
+
∂R̄

∂t
RC
m

)
− St t̄r

(
R̄
∂ZC

m

∂t
+
∂Z̄

∂t
RC
m

)
+ mūθ

(
t̄z R

S
m − t̄r ZS

m

) ]
JS

− R̄

(
ūr − St

∂R̄

∂t

)
∂ZC

m

∂s
+ R̄

(
ūz − St

∂Z̄

∂t

)
∂RC

m

∂s

}
ψ

[f]
l ds.

(9.68)

Choosing the test function in (9.66) to be

φ
[f,S]
l = ψ

[f]
l (s) sinmθ (9.69)

and again integrating with respect to θ yields

R̂[hS]
ml = γm π

∫ 1

−1

{[
− t̄z

(
R̄ US

m + ūr R
S
m

)
+ t̄r

(
R̄W S

m + ūz R
S
m

)
+ St t̄z

(
R̄
∂RS

m

∂t
+
∂R̄

∂t
RS
m

)
− St t̄r

(
R̄
∂ZS

m

∂t
+
∂Z̄

∂t
RS
m

)
− mūθ

(
t̄z R

C
m − t̄r ZC

m

) ]
JS

− R̄

(
ūr − St

∂R̄

∂t

)
∂ZS

m

∂s
+ R̄

(
ūz − St

∂Z̄

∂t

)
∂RS

m

∂s

}
ψ

[f]
l ds.

(9.70)

9.3 Implementation

We implemented equations (9.59)–(9.61), (9.63)–(9.65), (9.68) and (9.70) in the

get residual(...) and get jacobian(...) functions of a newly-developed Linearised-

AxisymmetricFluidInterfaceElement class, which directly inherits from FaceElement.
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In a directly analogous fashion to the elements used to compute the interfacial bound-

ary conditions in the base flow, the additional functionality that is specific to the chosen

node-strategy is added via two derived classes: ElasticLinearisedAxisymmetric-

FluidInterfaceElement and PerturbedSpineLinearisedAxisymmetricFluidInterface-

Element.

The coupling between the perturbation and base flow problems is performed using

the ‘multi-domain’ approach, which we described in section 7.4 and applied to two

single-phase problems in chapter 8. In chapter 10 we will be discussing the application

of the equations formulated in chapter 7 and the current chapter to the numerical

simulation of two-phase flows, where the solutions to both the base flow and pertur-

bation problems are computed on meshes that deform in response to the position of

the interface in the base flow problem. We recall from section 7.3 that in our general

(three–dimensional) formulation of the linear problem the perturbed nodal positions

in the radial and axial directions are given (for arbitrary azimuthal mode m) by

r(s1, s2, θ, t) = r̄(s1, s2, t) +RC
m(s1, s2, t) cosmθ +RS

m(s1, s2, t) sinmθ (9.71)

and

z(s1, s2, θ, t) = z̄(s1, s2, t) + ZC
m(s1, s2, t) cosmθ + ZS

m(s1, s2, t) sinmθ. (9.72)

In (9.71) and (9.72) the quantities r̄ and z̄ correspond to the base flow nodal positions,

which are by construction also the physical positions at which the nodes in the linear

problem are located. The perturbations to these ‘base’ nodal positions are then repre-

sented by the four fields RC
m, RS

m, ZC
m and ZS

m, which are discretised in the usual way.

The discrete unknowns corresponding to the values of these fields at any given node

are represented by additional nodal values, which are then updated accordingly by the

chosen node-update strategy. If a pseudo-solid approach is employed these unknowns

are computed directly (using the equations of elasticity) as part of the solution to the

overall problem. If the method of spines is used, these nodal values become ‘enslaved’

variables that are updated algebraically. We will use this latter method in both the

problems considered in the following chapter. Moreover, we will assume that the in-

terface is only ever perturbed in an axial direction and that we can therefore express
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this perturbation X̂ at a given time t as

X̂(r, θ) =
∞∑
m=0

[
HC
m(r) cosmθ +HS

m(r) sinmθ
]

ez, (9.73)

where HC
m(r) and HS

m(r) are unknowns which need to be determined as part of the

solution. They are discretised in the usual way,

HC
m(s) =

Nnode∑
j=1

(̂HC
m)j ψ

[f]
j (s),

HS
m(s) =

Nnode∑
j=1

(̂HS
m)j ψ

[f]
j (s), (9.74)

where s is the local coordinate that parametrises the free surface and ψ[f] are the same

shape functions as those used to interpolate the velocity degrees of freedom.

Having discretised HC
m(r) and HS

m(r) we now construct the mesh of the linear prob-

lem such that its Nnode nodes are distributed along Nspine spines which are oriented so

that they are parallel to the z-axis, in exactly the same way as in the base flow problem.

As before, each node j is located at a fixed fraction wj along a particular spine ŝj. Each

of these so-called ‘perturbed spines’ is associated with a corresponding ‘base’ spine s̄j

in the base flow problem, and we note that this construction requires us to have the

same number of nodes in the radial direction in both problems. The perturbed spines

differ from those in the base problem by each storing two values for their ’heights’,

corresponding to the unknown coefficients (̂HC
m)ŝ and (̂HS

m)ŝ (ŝ = 1, . . . , Nspine). These

coefficients are determined by solving the two kinematic conditions at the interface,

which from (9.68) and (9.70) are given by

R̂[hC]
ml = γm π

∫ 1

−1

{[
− tzR̄ UC

m + trR̄W
C
m − St trR̄

∂HC
m

∂t
−mtr ūθH

S
m

]
JS

− R̄

(
ūr − St

∂R̄

∂t

)
∂HC

m

∂s

}
ψ

[f]
l ds (9.75)

and

R̂[hS]
ml = γm π

∫ 1

−1

{[
− tzR̄ US

m + trR̄W
S
m − St trR̄

∂HS
m

∂t
+mtr ūθH

C
m

]
JS

− R̄

(
ūr − St

∂R̄

∂t

)
∂HS

m

∂s

}
ψ

[f]
l ds. (9.76)

With this machinery in place, the process of updating the bulk nodal positions (in

the linear problem) involves two steps. Firstly, the actual Eulerian positions of the
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nodes, Xij, are updated so that the position of the interface is the same as in the

base flow problem. Since the nodes will only ever move in the axial direction this is

achieved by prescribing

X2j = wj Hs̄j , (9.77)

where Hs̄j is the ‘height’ of the base spine corresponding to the perturbed spine that

node j is associated with2. Secondly, the perturbations to the nodal perturbations in

the axial direction are updated by directly prescribing their nodal values via

(̂ZC
m)j = wj (̂HC

m)ŝj (9.78)

and

(̂ZS
m)j = wj (̂HS

m)ŝj . (9.79)

We note that, as in the base problem, the use of this ‘sparse’ node-update procedure is

advantageous from a computational perspective since the nodal values (̂ZC
m)j and (̂ZS

m)j

are merely enslaved variables which are updated algebraically, rather than additional

degrees of freedom in the problem. Since we only allow the nodes to move vertically,

the nodal values corresponding to radial perturbations of the nodal positions are set

to zero everywhere.

Equations (9.75) and (9.76) are implemented in the get residual(...) and

get jacobian(...) functions of the PerturbedSpineLinearisedAxisymmetricFluid-

InterfaceElement class. These functions overload those defined in the base class, and

we therefore have to re-implement the contributions to the momentum equations that

arise from the dynamic boundary conditions, (9.59)–(9.61) and (9.63)–(9.65). In this

2Note that in this context we take j to represent the j-th global node, as opposed to the j-th local
node inside any particular element.
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(more specific) implementation, these contributions are given by

R̂[fC,fs]
rml = γm π

∫ 1

−1

pextR̄
∂HC

m

∂s
ψ

[f]
l ds

− γm π

Ca

∫ 1

−1

t̄z

[
∂HC

m

∂s
ψ

[f]
l −

R̄

JS
t̄r
∂HC

m

∂s

∂ψ
[f]
l

∂s
− m2JS

R̄
t̄rH

C
mψ

[f]
l

]
ds, (9.80)

R̂[fC,fs]
zml =− γm π

Ca

∫ 1

−1

t̄2r

[
R̄

JS
∂HC

m

∂s

∂ψ
[f]
l

∂s
+
m2JS
R̄

HC
m ψ

[f]
l

]
ds, (9.81)

R̂[fC,fs]
θml = γm πm

∫ 1

−1

pext

JS
R̄
t̄rH

S
m ψ

[f]
l ds

− γm πm

Ca

∫ 1

−1

t̄z
R̄

[
2JS
R̄

t̄rH
S
m ψ

[f]
l −H

S
m

∂ψ
[f]
l

∂s
− ∂HS

m

∂s
ψ

[f]
l

]
ds, (9.82)

R̂[fS,fs]
rml = γm π

∫ 1

−1

pextR̄
∂HS

m

∂s
ψ

[f]
l ds

− γm π

Ca

∫ 1

−1

t̄z

[
∂HS

m

∂s
ψ

[f]
l −

R̄

JS
t̄r
∂HS

m

∂s

∂ψ
[f]
l

∂s
− m2JS

R̄
t̄rH

S
mψ

[f]
l

]
ds, (9.83)

R̂[fS,fs]
zml =− γm π

Ca

∫ 1

−1

t̄2r

[
R̄

JS
∂HS

m

∂s

∂ψ
[f]
l

∂s
+
m2JS
R̄

HS
m ψ

[f]
l

]
ds and (9.84)

R̂[fS,fs]
θml = − γm πm

∫ 1

−1

pext

JS
R̄
t̄rH

C
m ψ

[f]
l ds

− γm πm

Ca

∫ 1

−1

t̄z
R̄

[
−2JS

R̄
t̄rH

C
m ψ

[f]
l +HC

m

∂ψ
[f]
l

∂s
+
∂HC

m

∂s
ψ

[f]
l

]
ds. (9.85)

Following the structure of the ‘standard’ spines implementation, we developed a

‘perturbed spine’ class hierarchy. The actual perturbed spines themselves are defined

in the PerturbedSpine class, and the PerturbedSpineElement<BULK ELEMENT> takes

an existing element as a template parameter and adds the necessary functionality to

allow the element to be updated using perturbed spines.



Chapter 10

Applications to two-phase flows

In chapter 7 we derived the equations which describe a linear, non-axisymmetric per-

turbation to an axisymmetric flow governed by the Navier–Stokes equations in a cylin-

drical coordinate system. In the previous chapter we then extended this formulation

by deriving the corresponding free boundary conditions. This extended formulation

allows us to study linear perturbations to arbitrary axisymmetric two-phase flows in

cylindrical geometries. We shall illustrate the use of these equations by applying them

to two problems. In the first of these, we revisit the example described in section

6.2. We solve this (fully-axisymmetric) problem using the decomposition described in

chapters 7 and 9 in order to demonstrate the methodology, and compare the results to

those obtained previously using the single, fully-nonlinear code. The second problem

concerns the time-evolution of non-axisymmetric modes in a two-phase flow in which

a non-axisymmetric interface is allowed to relax under the influence of surface tension

and gravitational forces.

10.1 Axisymmetric perturbations to an axisymmet-

ric base flow

We consider the problem sketched in figure 10.1, in which two immiscible, incompress-

ible viscous fluids are contained within a cylindrical vessel. The physical problem is

exactly the same as that discussed in section 6.2 of this work: The governing equations

have to be solved in the domain r ∈ [0, 1], z ∈ [0, 2], with gravity acting in the negative

211
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Figure 10.1: Sketch of an axisymmetric two layer interface problem which has been
decomposed into two problems: a base flow and a perturbation to this base flow. The
dashed line corresponds to the position of the interface in the base flow, while the solid
line represents the ‘actual’ interface position, which can be obtained by combining the
base flow position with the perturbation to that position (as described in equation
10.2).
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z direction. The axis of the cylindrical container is located at r = 0 where we apply

the symmetry condition ur = uθ = 0. This condition is also applied at the ‘slippery’

outer wall (r = 1), as before. We apply the no-slip condition ur = uz = uθ = 0 at the

top and bottom solid boundaries (z = 0 and z = 2). The interface is located at X and

is subject to the usual kinematic and dynamic boundary conditions (6.3 and 6.4). At

time t = 0 the interface is deformed so that

X(r) = r er + [1.0 + εJ0(kr)] ez, (10.1)

where the wavenumber k is constrained to be a zero of J1(k) as discussed in section

6.1.

We are revisiting this example in order to solve the problem using the system

of decomposed governing equations and boundary conditions formulated in chapters 7

and 9 respectively. Using this scheme, we decompose the position vector to the surface

in the manner described in section 9.1,

X(r) = X̄(r) + ε X̂(r), (10.2)

where ε � 1, which can be thought of as a small (linear) axisymmetric perturbation

to an axisymmetric base flow. The governing equations of the base flow are the usual

axisymmetric Navier–Stokes equations
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+ ū[β]

r

∂ū
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and
∂ū

[β]
r

∂r
+
ū

[β]
r

r
+
∂ū

[β]
z

∂z
= 0, (10.4)

where β = 1, 2 labels the lower and upper fluids respectively. These equations are

subject to

ū[1]
r = ū[1]

z = ū
[1]
θ = 0 at z = 0,

ū[2]
r = ū[2]

z = ū
[2]
θ = 0 at z = 2,

ū[β]
r = ū[β]

z = 0 at r = 0 and r = 1, (10.5)

and the initial shape of the interface is defined by

X̄(r) = r er + [1.0 + aBJ0(kr)] ez, (10.6)

where aB represents the amplitude of the deflection away from the equilibrium position

at z = 1. On top of this base flow we solve a linear axisymmetric perturbation problem

subject to

û[1]
r = û[1]

z = û
[1]
θ = 0 at z = 0,

û[2]
r = û[2]

z = û
[2]
θ = 0 at z = 2,

û[β]
r = û[β]

z = 0 at r = 0 and r = 1 (10.7)

and an initial interface deflection of

X̂(r) = r er + aPJ0(kr) ez, (10.8)

where we require aP � aB in order for the decomposition (10.2) to be valid.

The solutions to these coupled problems were computed on identical meshes con-

taining 50 elements in the radial direction and 100 elements in the axial direction, using

a spine node-update strategy as discussed in section 9.3. Crouzeix–Raviart elements

and their linearised counterparts were used for the base and perturbation problems

respectively, with initial conditions corresponding to an impulsive start from zero

initial velocity. The time-derivatives were discretised using a second-order-accurate

BDF scheme with a (non-dimensionalised) timestep of 0.025. Figure 10.2 displays

a time-trace of the height of the interface at the symmetry axis for the parameters

Re = 51.3, St = 0.2, Fr = 0.04 and Ca = 5.0. The density and viscosity ratios
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Figure 10.2: Time-trace of the height of the interface at r = 0 for the parameters
Re = 51.3, St = 0.2, Fr = 0.04, Ca = 5.0, Rρ = 0.529 and Rµ = 52.9. The
solid line represents the solution of the fully-nonlinear problem described in section
6.2, computed using a mesh of 50 × 100 Crouzeix–Raviart elements and an initial
deflection amplitude of ε = 0.1. We compare this to the solution of the decomposed
problem described in the current section, computed using a base state mesh of 50×100
Crouzeix–Raviart elements and a perturbed state mesh of 50 × 100 Linearised-

AxisymmetricQCrouzeixRaviartMultiDomainElements, with initial deflection am-
plitudes of aB = 0.09 and aP = 0.01. All problems employed a second-order BDF
scheme with a non-dimensional timestep of 0.025.

were set to Rρ = 0.529 and Rµ = 52.9, and the amplitudes of the initial interface

deflections were chosen to be aB = 0.09 and aP = 0.01. The actual position of the

interface is recovered using (10.2), and is shown as points in figure 10.2. The solid line

is the computed solution for the same parameters (and the same spatial and temporal

discretisation) using the fully-nonlinear code described in section 6.2, with an initial

amplitude of deflection of ε = 0.1. We note that the two time-traces display excellent

agreement. Figure 10.3 shows snapshots at various timesteps of the radial profile of

the interface as it relaxes towards the equilibrium position. The thick, dashed lines

correspond to the combined interface position computed using the decomposed prob-

lem described above, while the thin, continuous lines display the reference solution

computed using the fully-nonlinear code. We note that these solutions again display
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Figure 10.3: Plot of the radial profile of the interface at various timesteps for the
parameters Re = 51.3, St = 0.2, Fr = 0.04, Ca = 5.0, Rρ = 0.529 and Rµ = 52.9.
The thick, dashed lines represent the solution computed using the decomposed prob-
lem described in the current section, computed using a base state mesh of 50 × 100
Crouzeix–Raviart elements and a perturbed state mesh of 50 × 100 Linearised-

AxisymmetricQCrouzeixRaviartMultiDomainElements, with initial deflection am-
plitudes of aB = 0.09 and aP = 0.01. The thin, continuous lines represent the cor-
responding solution computed using the fully-nonlinear code described in section 6.2,
which employed a mesh of 50×100 Crouzeix–Raviart elements and an initial deflection
amplitude of ε = 0.1. All problems were discretised temporally using a second-order
BDF scheme with a non-dimensional timestep of 0.025.

excellent point-wise agreement.

10.2 Non-axisymmetric perturbations

We now consider the same problem as in section 10.1, but restrict ourselves to the

case in which the base flow is prescribed to be the steady solution

ū[β]
r = ū[β]

z = ū
[β]
θ = 0, p̄[1] = −Re

Fr
z, p̄[2] = −Re

Fr

[
R[2]
ρ (z − 1) + 1

]
, (10.9)

and the (unperturbed) position of the interface is the plane z = 1. We wish to

investigate the effect of perturbing the interface by an arbitrary, non-axisymmetric

function f(r, θ), and allowing it to relax under the influence of gravity and capillary



CHAPTER 10. APPLICATIONS TO TWO-PHASE FLOWS 217

forces. We note that this is another extension of the problem studied in section 6.2,

in which we simulated the relaxation of the axisymmetric (m = 0) mode only. In

this case, however, the governing equations are the linearised perturbation equations

(7.77)–(7.84) and the interface conditions are the linearised dynamic (9.59)–(9.65)

and kinematic (9.75 and 9.76) conditions. The governing equations are subject to the

no-slip condition at the upper and lower (solid) boundaries,

UC[1]
m = US[1]

m = WC[1]
m = W S[1]

m = V C[1]
m = V S[1]

m = 0 at z = 0,

UC[2]
m = US[2]

m = WC[2]
m = W S[2]

m = V C[2]
m = V S[2]

m = 0 at z = 2, (10.10)

and the usual ‘slippery wall’ conditions at the outer boundary,

UC[β]
m = US[β]

m =
∂W

C[β]
m

∂r
=
∂W

S[β]
m

∂r
= V C[β]

m = V S[β]
m = 0 at r = 1. (10.11)

The boundary conditions at the symmetry axis differ depending on the azimuthal

mode number m. In all modes the surface must meet the symmetry boundary at 90o.

In all modes with m > 0 the interface height is restricted to be zero at r = 0, otherwise

modulation by cosmθ and sinmθ would lead to a discontinuity. Furthermore, in odd-

numbered modes we do not have the usual non penetration condition at r = 0: it

is physically allowable for fluid to have finite radial and azimuthal velocity at the

symmetry axis. Consequently, the boundary conditions at the symmetry axis are

U
C[β]
0 = U

S[β]
0 =

∂W
C[β]
0

∂r
=
∂W

S[β]
0

∂r
= V

C[β]
0 = V

S[β]
0 = 0 at r = 0 (10.12)

for the axisymmetric (m = 0) mode,

∂U
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m
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m
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m = W S[β]
m =

∂V
C[β]
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S[β]
m

∂r
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for odd m and

UC[β]
m = US[β]

m = WC[β]
m = W S[β]

m = V C[β]
m = V S[β]

m = 0 at r = 0 (10.14)

for even, non-zero m.

The initial perturbation to the interface was chosen to be

X̂(r, θ) = ε

{
J0(kr) +

∞∑
m=1

1

2

[(
1− cos(2πr)

)(
cosmθ + sinmθ

)]}
(10.15)
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with k equal to the first (non-zero) root of J1(k), which is approximately 3.8317.

The solution was computed on a uniform mesh containing 20 × 40 Linearised-

AxisymmetricQCrouzeixRaviartMultiDomainElements in the radial and axial direc-

tions respectively. The simulation was started impulsively from zero initial velocity,

and the time-derivatives were discretised using the usual second-order-accurate BDF

scheme with a timestep of 0.05. The red (solid) line in figure 10.4 displays a time-

trace of the height of the interface at the symmetry axis for the parameters Re = 50.0,

St = 1.0, Fr = 1.0, Ca = 1.0, Rµ = 0.1 and Rρ = 1.0 for the axisymmetric (m = 0)

mode. The initial perturbation amplitude was chosen to be ε = 0.01, and we note that

this time-trace agrees with that computed using the fully-nonlinear code in section

6.2, as we would expect. Since both fluids are of the same density, the only restoring

force in this simulation is that of surface tension, and this acts to revert the interface

to its undeformed state. As it settles down to its equilibrium position we see the usual

oscillation of the interface, which is damped as the energy in the system is dissipated

through viscous forces.

Let us now consider the effect of setting the density ratio to 0.1, so that the

upper fluid is ten times less dense than the bottom fluid. When the density ratio is

reduced, the upper fluid has less mass and as a consequence the inertia of the overall

system is reduced. Since there has been no change in the viscosity of the system, the

ratio of viscous forces to inertial forces has increased and this causes the frequency

of the oscillations to increase. Additionally, we now include the restoring force of

gravitational acceleration: this increases the damping of the oscillations and results in

the equilibrium position of the interface being approached more rapidly. Both of these

effects can be seen in the time-trace for this simulation, which is shown as the green

(dashed) line in figure 10.4.

The blue (dot-dashed) line in this figure plots the time-trace for the same problem,

but this time with the density ratio set to 2.0. In this case the system is no longer

stably stratified, since the upper fluid has twice the density of the lower fluid. The

inertia of the system as a whole has increased relative to the overall viscosity, and

as a result the oscillations are of lower frequency than either of the previous two

cases. However, the major consequence of an unstably stratified system is that the

gravitational acceleration is no longer a restoring force, but acts against the force
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Figure 10.4: Time-trace of the height of the interface at the symmetry axis for the
axisymmetric (m = 0) mode for the parameters Re = 50.0, St = 1.0, Fr = 1.0,
Ca = 1.0, Rµ = 0.1 and an initial perturbation amplitude of ε = 0.01. The four
lines correspond to four different values of the density ratio. The domain was discre-
tised spatially using a mesh of 20× 40 LinearisedAxisymmetricQCrouzeixRaviart-

MultiDomainElements, and a second-order BDF timestepping scheme with a non-
dimensional timestep of 0.05 was employed.

provided by surface tension in an attempt to destabilise the interface. From figure 10.4

it can be seen that at this set of parameters the capillary force is still sufficiently strong

for this axisymmetric mode to remain stable, but the growth rate of the oscillations is

larger than in the neutral density case. As we continue to increase the density of the

upper fluid we will eventually reach a point when the force of gravitational acceleration

causes the perturbation to grow, as can be seen in the purple (double-dot-dashed) line

representing the time-trace of the interface height for a system with Rρ = 10.0.

Figure 10.5 displays the time-traces of the next six azimuthal modes for the same

four cases discussed above. Because all of the non-axisymmetric modes are required

to be zero at the symmetry axis, we choose to take the trace the height of the inter-

face at the point r = 0.5, which corresponds to the point in the domain at which the

deformation is greatest in the initial configuration (10.15). We note that the structure

of the non-axisymmetric Navier–Stokes equations is such that the system of governing



CHAPTER 10. APPLICATIONS TO TWO-PHASE FLOWS 220

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6

Figure 10.5: Time-traces of the height of the interface at r = 0.5 for modes 1–6 for
the parameters Re = 50.0, St = 1.0, Fr = 1.0, Ca = 1.0 and Rµ = 0.1. The
four lines correspond to four different values of the density ratio. The problem was
discretised using 20× 40 LinearisedAxisymmetricQCrouzeixRaviartMultiDomain-

Elements, and a BDF2 scheme with non-dimensional timestep of 0.05.
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equations and boundary conditions cannot be separated in an analogous manner to

the axisymmetric case, and therefore we are unable to set the initial conditions such

that we only excite one eigenmode of the system for these higher modes. Consequently

the resulting time-traces (10.5(a))–(10.5(f)) display superpositions of multiple eigen-

modes, and each of these will oscillate with its own frequency and decay at its own

rate. As we continue to time-evolve the equations we will eventually be left with the

single eigenmode which decays least quickly, but in most cases the amplitude of the

perturbation is sufficiently small by the time this has happened that it is impossible to

see at the scales presented in figure 10.5. We note that, in general, the oscillation fre-

quency increases and the growth rate decreases as the mode number is increased: this

is the expected behaviour since the curvature of the interface increases with increasing

mode number.

We will conclude the discussion of these results by presenting the velocity and

pressure fields for the m = 3 mode of the neutral density (Rρ = 1.0) case at five

different timesteps. Figure 10.6 displays the time-trace of the interface height at

r = 0.5 for this mode, and we have marked on the five points at which we will present

‘snapshots’ of the solution. These points have been chosen because they roughly span

one period of the oscillation.

Figure 10.7 shows plots of the velocity and pressure fields for the parameters Re =

50.0, St = 1.0, Fr = 1.0, Ca = 1.0, Rρ = 1.0 and Rµ = 0.1. The flow fields are three-

dimensional, and we present contours of azimuthal velocity V3(r, z) in the plane θ = 0

and contours of pressure P3(r, z) in the plane θ = 2π/3. These particular ‘slices’ have

been chosen since in both cases sin(3θ) = 0 and cos(3θ) = 1, and hence the solution is

given simply by the cosine components of the fields, V C
3 (r, z) and PC

3 (r, z). We note,

however, that because the initial conditions for both the sine and cosine parts of the

solution are identical (see equation 10.15), the ‘cosine solutions’ V C
3 (r, z) and PC

3 (r, z)

at θ = 0 and θ = 2π/3 are identical to their sine counterparts V S
3 (r, z) and P S

3 (r, z) in

the θ = π/6 and θ = 5π/6 planes respectively. Legends for the contours are displayed

next to each figure and we note that the same contour levels have been used in all

figures.

Recall that the solutions of the linear problem are computed on meshes which

deform in response to the motion of the interface in the base flow. Since in this case
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Figure 10.6: Time-trace of the height of the interface at r = 0.5 for the m = 3 mode for
the parameters Re = 50.0, St = 1.0, Fr = 1.0, Ca = 1.0, Rρ = 1.0 and Rµ = 0.1. The
problem was discretised using 20× 40 LinearisedAxisymmetricQCrouzeixRaviart-

MultiDomainElements, and a BDF2 scheme with non-dimensional timestep of 0.05.
The five points represent the timesteps at which ‘snapshots’ of the solution will be
displayed.

the base state has been set up so that the interface is in its equilibrium position, we

note that the meshes in figure 10.7 are perfectly uniform. The bold line halfway up

each plot denotes the position of the interface in the base flow, and the perturbation

to this ‘base position’ is then displayed as a surface plot above the cylindrical domain.

We have scaled up the axial coordinate on these surface plots so that the shape of the

surface can more clearly be seen, and have used the same scaling across figures 10.7(a)–

10.7(e). The motion of this surface can be inferred from the velocity vectors, which

track the in-plane velocity UC
3 (r, z) and WC

3 (r, z). We note that the apparent sources

and sinks in these in-plane fields appear because the solution is not two-dimensionally

divergence-free.
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Chapter 11

Conclusions and outlook

In this thesis we presented the finite element formulation of the equations governing

(i) time-dependent, non-linear, axisymmetric two-phase flows, and

(ii) the evolution of linear, non-axisymmetric perturbations to such flows.

This formulation was implemented within oomph-lib in such a way that problems

(i) and (ii) above can be solved as separate Problem objects, with the one-way cou-

pling between them facilitated by oomph-lib’s multi-domain functionality. The newly-

developed methodology was carefully validated by comparison against linear analyses

(where possible) and existing numerical results generated using different techniques.

Two different approaches to the problem of updating the bulk nodal positions

in response to the motion of a free surface were developed. The first of these was

based on the method of spines, and we augmented oomph-lib’s existing spine func-

tionality to allow the computation of perturbations to ‘base’ nodal positions which

are themselves determined using this method. Spine-based node-update strategies are

computationally inexpensive but do not (currently) allow for spatial refineability, and

therefore we also designed all of our equation classes to accomodate the updating of

the bulk nodal positions using a pseudo-solid approach. Although this meshing strat-

egy is far more computationally expensive, the implementation of refineable versions

of the LinearisedAxisymmetricQTaylorHoodMultiDomainElement and Linearised-

AxisymmetricQCrouzeixRaviartMultiDomainElement classes (which were developed

as part of this project) enables these elements to benefit from oomph-lib’s general re-

fineable element framework and error estimation routines. In addition, domains which

226
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are discretised using this pseudo-solid meshing strategy do not suffer from the restric-

tion of requiring the interface shape to remain ‘one-to-one’: in principle, ‘any’ interface

shape can be accommodated, although in practice there will come a point at which

the individual elements are sufficiently deformed that the mesh is no longer adequate.

The use of oomph-lib’s ‘re-meshing’ functionality, however, will (in principle) allow

the indefinite time-evolution of an arbitrary deformation to be computed, including

scenarios where there is a complete ‘overturning’ of the interface.

When developing this general perturbation framework, great care was taken to

ensure that the newly-written classes were designed in such a way that they provided

clean and intuitive interfaces to the rest of the library. Wherever possible, the inher-

itance structure of any newly-developed functionality was designed to ‘mirror’ that

of existing classes, with the aims of maximising user friendliness and overall ‘trans-

parency’ of the library’s data structures. The same philosophy was applied to the

documentation that was written as a part of this project. In this way the function-

ality developed during this project can be easily combined with existing oomph-lib

functionality to solve highly-complex problems within a robust overall framework. In

addition, the inclusion of this code within a library of this type makes it straight-

forward to develop the methodology implemented here further at a later date should

additional, more specific functionality be required.

The oomph-lib source code is freely available from

http://www.oomph-lib.org,

which contains instructions for the installation and customisation of the library, as well

as links to the extensive range of documentation. The functionality that we have added

to oomph-lib can be used to solve, in principle, ‘any’ arbitrary single- or two-phase

problem involving the time-evolution of a linear perturbation to an otherwise axisym-

metric base flow. The wide range of problems which can now be solved include (but are

certainly not limited to) those discussed in chapter 1 of the current work. It is hoped

that, with further development of this and other areas of the library, users will utilise

(and build on) this core framework to solve an increasingly complex and diverse range

of single- and multi-physics problems. Examples of problems which can be studied

using this framework include the onset of instability in the experiment first proposed

by Shyh and Munson, in which a growing non-axisymmetric disturbance is observed
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when a cylindrical vessel containing two fluids is oscillated sinusoidally with period T

about its axis of rotational symmetry [Shyh and Munson, 1986], as well as problems

involving Plateau–Rayleigh-type instabilities in viscous jets, such as those studied by

[Ponstein, 1959] and Meyer and Weihs [1987], and related problems involving annular

coatings of viscous fluid on wires or on the insides of tubes. When combined with

a solid mechanics framework (such as those already present within oomph-lib), this

methodology could also be used to investigate the stability of various fluid-structure

interaction problems, which has much relevance to the study of biological flows: for

example, the work of Halpern and Grotberg on airway closure, in which they consider

instabilities which arise in liquid-lined flexible tubes [Halpern and Grotberg, 1992].
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