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Abstract

The Finite-Difference Time-Domain (FDTD) is the most widely used method for

solving Maxwell’s equations in the time domain. Since the FDTD domains are

usually open regions, an Absorbing Boundary Condition (ABC) is needed to ab-

sorb the outgoing waves and simulate the extension to infinity. The most popular

and effective ABCs is the Complex Frequency- Shifted Perfectly Matched Layer

(CFS-PML) ABCs. The CFS-PML ABCs absorbs almost all of the outgoing

waves, but the implementation of the CFS-PML ABCs is complicated and more

computational resources such as memory and CPU time are required.

In this thesis, a new ABC called Huygens Absorbing Boundary Condition

(HABC), which is simpler to implement than the CFS-PML, is presented. The

accuracy of the HABC is studied and compared with that of the CFS-PML. A

combination of the HABC and the Stretch Mesh (SM) is introduced. The SM-

HABC is tested with an object with dispersive materials.

For practical applications, the FDTD method with the HABC codes are par-

allelised on the Graphics Processing Units (GPUs) using the Compute Unified

Device Architecture programming model (CUDA) in this thesis. Two imple-

mentations of the HABC on GPUs are presented. The performance of the two

implementations are studied and compared with the implementation of the CFS-

PML on GPUs. In addition, the FDTD with the HABC codes are parallelized on

the shared memory architecture using Open Multi-Processing (OpenMP). The

OpenMP code of the HABC is scaled and the results are compared with the

scaled OpenMP code of the CFS-PML.

Finally, Huygens excitation is used in this thesis to heat up the human body

as an application of hyperthermia which is a cancer treatment. The SM-HABC

is also used in human body simulations. A comparison between the use of the

SM-HABC and the CFS-PML in human body simulations is introduced.
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Chapter 1

Finite Difference Time Domain

Method

The Finite Difference Time Domain (FDTD) [2] is the most widely used method

to solve Maxwell’s equation in time domain [11]. The method owns its success

to the power and simplicity it provides [12]. This chapter briefly introduces the

FDTD method.

1.1 The FDTD Method

1.1.1 Yee’s FDTD Method

Yee introduced the FDTD method in 1966 [13]. The idea of Yee’s FDTD method

is approximating the following Maxwell’s curl equations in time domain using the

central difference approximations:

∂B

∂t
= −∇×E (1.1)

∂D

∂t
= ∇×H − J . (1.2)

Where E, H , D, B, J , and t are the electric field, the magnetic field, the electric

flux density, the magnetic flux density, the conduction current density, and the

time, respectively. In each time step, the approximated Maxwell’s curl equations

are used to first calculate the electric field E and then the magnetic field H . The

15



CHAPTER 1. FINITE DIFFERENCE TIME DOMAIN METHOD 16

calculations of E and H are repeated throughout all time steps. Also, Yee has

divided the FDTD space into small cells. The calculation of E and H depends

on the relation between the neighbouring cells.

Considering linear, isotropic and nondispersive materials, the following rela-

tionships are true:

D = εE (1.3)

B = µH . (1.4)

Where ε and µ are the electrical permittivity and the magnetic permeability re-

spectively. For the source-free medium where J is equal to 0, the use of equations

(1.3) and (1.4) in (1.1) and (1.2) yields the following partial differential equations:

∂Hx

∂t
=

1

µ

[
∂Ey

∂z
− ∂Ez

∂y

]
(1.5)

∂Hy

∂t
=

1

µ

[
∂Ez

∂x
− ∂Ex

∂z

]
(1.6)

∂Hz

∂t
=

1

µ

[
∂Ex

∂y
− ∂Ey

∂x

]
(1.7)

∂Ex

∂t
=

1

ε

[
∂Hz

∂y
− ∂Hy

∂z

]
(1.8)

∂Ey

∂t
=

1

ε

[
∂Hx

∂z
− ∂Hz

∂x

]
(1.9)

∂Ez

∂t
=

1

ε

[
∂Hy

∂x
− ∂Hx

∂y

]
(1.10)

Applying central finite difference approximations for the time and space deriva-

tives when the separation between E and H is equal to half-time step gives the
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Yee FDTD equations:

H
n+ 1

2
x (i,j+ 1

2
,k+ 1

2
) = H

n− 1
2

x (i,j+ 1
2
,k+ 1

2
) (1.11)

+
∆t

µ(i, j + 1
2
, k + 1

2
)∆z

[
En

y (i,j+ 1
2
,k+1)− En

y (i,j+ 1
2
,k)

]
+

∆t

µ(i, j + 1
2
, k + 1

2
)∆y

[
En

z (i,j,k+ 1
2

)− En
z (i,j+1,k+ 1

2
)

]

H
n+ 1

2
y (i+ 1

2
,j,k+ 1

2
) = H

n− 1
2

y (i+ 1
2
,j,k+ 1

2
) (1.12)

+
∆t

µ(i+ 1
2
, j, k + 1

2
)∆x

[
En

z (i+1,j,k+ 1
2

)− En
z (i,j,k+ 1

2
)

]
+

∆t

µ(i+ 1
2
, j, k + 1

2
)∆z

[
En

x (i+ 1
2
,j,k)− En

x (i+ 1
2
,j,k+1)

]

H
n+ 1

2
z (i+ 1

2
,j+ 1

2
,k) = H

n− 1
2

z (i+ 1
2
,j+ 1

2
,k) (1.13)

+
∆t

µ(i+ 1
2
, j + 1

2
, k)∆y

[
En

x (i+ 1
2
,j+1,k)− En

x (i+ 1
2
,j,k)

]
+

∆t

µ(i+ 1
2
, j + 1

2
, k)∆x

[
En

y (i,j+ 1
2
,k)− En

y (i+1,j+ 1
2
,k)

]

En+1
x (i+ 1

2
,j,k) = En

x (i+ 1
2
,j,k) (1.14)

+
∆t

ε(i+ 1
2
, j, k)∆y

[
H

n+ 1
2

z (i+ 1
2
,j+ 1

2
,k)−Hn+ 1

2
z (i+ 1

2
,j− 1

2
,k)

]
+

∆t

ε(i+ 1
2
, j, k)∆z

[
H

n+ 1
2

y (i+ 1
2
,j,k− 1

2
)−Hn+ 1

2
y (i+ 1

2
,j,k+ 1

2
)

]

En+1
y (i,j+ 1

2
,k) = En

y (i,j+ 1
2
,k) (1.15)

+
∆t

ε(i, j + 1
2
, k)∆z

[
H

n+ 1
2

x (i,j+ 1
2
,k+ 1

2
)−Hn+ 1

2
x (i,j+ 1

2
,k− 1

2
)

]
+

∆t

ε(i, j + 1
2
, k)∆x

[
H

n+ 1
2

z (i− 1
2
,j+ 1

2
,k)−Hn+ 1

2
z (i+ 1

2
,j+ 1

2
,k)

]
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En+1
z (i,j,k+ 1

2
) = En

z (i,j,k+ 1
2

) (1.16)

+
∆t

ε(i, j, k + 1
2
)∆x

[
H

n+ 1
2

y (i+ 1
2
,j,k+ 1

2
)−Hn+ 1

2
y (i− 1

2
,j,k+ 1

2
)

]
+

∆t

ε(i, j, k + 1
2
)∆y

[
H

n+ 1
2

x (i,j− 1
2
,k+ 1

2
)−Hn+ 1

2
x (i,j+ 1

2
,k+ 1

2
)

]
where, ∆t, ∆x, ∆y and ∆z are the temporal discretisation, spatial discretisation

in x, spatial discretisation in y, and spatial discretisation in z, respectively.

Yee FDTD equations contain non-integer coordinates which cant be imple-

mented in the computational systems. Thus, the equations are modified so that

the non-integer coordinates are transformed to integers:

Hn+1
x (i,j,k) = Hn

x (i,j,k) +
∆t

µ(i, j, k)∆z

[
En

y (i,j,k+1)− En
y (i,j,k)

]
(1.17)

− ∆t

µ(i, j, k)∆y
[En

z (i,j+1,k)− En
z (i,j,k)]

Hn+1
y (i,j,k) = Hn

y (i,j,k) +
∆t

µ(i, j, k)∆x
[En

z (i+1,j,k)− En
z (i,j,k)] (1.18)

− ∆t

µ(i, j, k)∆z
[En

x (i,j,k+1)− En
x (i,j,k)]

Hn+1
z (i,j,k) = Hn

z (i,j,k) +
∆t

µ(i, j, k)∆y
[En

x (i,j+1,k)− En
x (i,j,k)] (1.19)

− ∆t

µ(i, j, k)∆x

[
En

y (i+1,j,k)− En
y (i,j,k)

]

En+1
x (i,j,k) = En

x (i,j,k) +
∆t

ε(i, j, k)∆y
[Hn

z (i,j,k)−Hn
z (i,j−1,k)] (1.20)

− ∆t

ε(i, j, k)∆z

[
Hn

y (i,j,k)−Hn
y (i,j,k−1)

]

En+1
y (i,j,k) = En

y (i,j,k) +
∆t

ε(i, j, k)∆z
[Hn

x (i,j,k)−Hn
x (i,j,k−1)] (1.21)

− ∆t

ε(i, j, k)∆x
[Hn

z (i,j,k)−Hn
z (i−1,j,k)]
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En+1
z (i,j,k) = En

z (i,j,k) +
∆t

ε(i, j, k)∆x

[
Hn

y (i,j,k)−Hn
y (i−1,j,k)

]
(1.22)

− ∆t

ε(i, j, k)∆y
[Hn

x (i,j,k)−Hn
x (i,j−1,k)]

(1.17), (1.18), (1.19), (1.20), (1.21) and (1.22) are the equations of the FDTD

method.

1.1.2 Frequency Dependent Media

The media parameters in the FDTD equations (1.17), (1.18), (1.19), (1.20), (1.21)

and (1.22) are frequency-independent. However, in practical simulations such as

the electromagnetic wave propagation in the human body, the media parameters

depend on the frequency. There are three main models to represent frequency

dispersive materials: Debye model, Lorentz-Drude model and Cole-Cole model.

Debye model is simple in implementation so that it is the most widely used model

for the FDTD method. In this thesis, the human tissues are assumed as Debye

media where the relative permittivity reads:

εr = ε∞ +
εS − ε∞
1 + ωτD

−  σ
ωε0

. (1.23)

where εS, ε∞, τD and σ are the static relative permittivity, the relative permittivity

at infinite frequency, the relaxation time and the conductivity, respectively.

In the Debye media, the FDTD method first solve the Maxwell equations for

D and H fields and then obtain the E field from D using Equation 1.23.

1.1.3 Features of the FDTD Method

There are several numerical Computational Electromagnetics (CEM) methods

such as Method of Moments (MoM) [14], Transmission Line Matrix (TLM) [15]

method, Finite Element Method (FEM) [16] and FDTD method. The FEM,

TLM and FDTD methods are based on differential equations while MoM is an

integral method. The integral methods are accurate but the capability of those

methods become difficult when dealing with complex materials. The FDTD and

TLM methods solve Maxwell’s equations in time domain. On the other hand,

FEM and MoM are used in frequency domain. Frequency domain methods give

solutions for a specific frequency and the simulations has to be repeated to provide



CHAPTER 1. FINITE DIFFERENCE TIME DOMAIN METHOD 20

solutions for a range of frequencies. Thus, for wide-band applications, the time

domain methods such as the FDTD and TLM are used. The FDTD and TLM

methods are similar, but the FDTD method requires less storage space than the

TLM method.

1.1.3.1 Strengths of The FDTD Method

Some of the many strengths of the FDTD method are:

• The FDTD method is relatively simple, straightforward and easy to imple-

ment on computers [17].

• The FDTD method is accurate and robust [2].

• The FDTD method has the capability to specify any material at all the

grids of the FDTD space.

• The FDTD method is suitable for parallel computing which is useful (faster)

for practical applications.

1.1.3.2 Weaknesses of The FDTD Method

The FDTD is the most commonly used method in electromagnetic modeling [2].

However, it has some weaknesses such as:

• The FDTD method cannot accurately model the curves unless the spa-

tial sampling is extremely small. That is because the FDTD method has

rectangular grids.

• Memory requirements. The FDTD computations require large amount of

data since E and H are stored for each grid point in the FDTD space.

One of the ways to reduce the memory requirement is the application of a good

absorbing boundary condition so that the distance between the objects in the

FDTD space and the artificial boundary can be minimized. This thesis aims for

the development of such a strong and efficient absorbing boundary condition.
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Absorbing Boundary Conditions

The FDTD domains are usually open regions. Since no computer can store infinite

data, the FDTD domain needs an Absorbing Boundary Condition (ABC) [2].

When the FDTD domain is bounded, the ABC is used to simulate the extension

to infinity. In practical problems, the ABC surrounds the FDTD domain, which

contains the structure of interest. In order to have acceptable results, the ABC

should absorb the reflection of the outgoing waves to an acceptable level [2].

The use of the ABC is essential in the FDTD practical simulations. That is

why different implementations of the ABCs have been introduced. Mur’s ABC

[18] is one of the oldest and popular ABCs. It is a simple and successful ABC [2].

The implementation of the Mur’s ABC is straightforward and requires (relatively)

less computational resources. But on the other hand, the accuracy of the Mur’s

ABC’s solutions can be improved [2].

During 1970s and 1980s, an ABC implementation was originated by Higdon

[19][20][2]. Higdon’s technique terminates the outgoing waves using a series of

linear differential operators. Those operators are designed to absorb the wave

that is propagating in a specific direction. If the order of the Higdon’s operators

is n then the waves are (almost) perfectly absorbed at n incident angles [21].

Higher orders Higdon’s ABCs are more complex in implementation [21].

In 1994 Jean-Pierre Bérenger introduced the perfectly matched layer (PML)

[22] ABC. The PML terminates the FDTD space with an absorbing material

medium that has a thickness of few cells [2]. The PML ABC has the capability

to absorb the plane waves that have different angles and frequencies. All the

waves are matched at the boundary, which makes the PML a highly effective

ABC [2]. The success of Bérenger’s PML led to propose different versions such

21
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as Un-split PML (UPML) [23], stretched coordinate PML [24] [25], and time

convolution PML [26][2].

2.1 ABC Based on One-Way Wave Equation

This section briefly introduces Mur’s first-order ABC, which is based on the one-

way wave equation.

2.1.1 Numerical formulation from one-way wave equation

The one-way wave equation is a partial-differential equation that permits the

wave to propagate in a certain direction [2]. It can be applied at the boundary

of the FDTD space to numerically absorb impinging outgoing waves [2].

In [11], Maxwell’s equations for an isotropic non dispersive homogeneous loss-

less linear media (1.1) was transformed as follows:

∇×∇×E = −∇× ∂B

∂t

using (1.4) yields:

∇×∇×E = −∇× ∂µH

∂t

= −µ∂∇×H

∂t

using (1.2):

∇×∇×E = −µ
∂
∂D

∂t
∂t

= −µ∂
2D

∂t2

substituting by (1.3) gives:

∇×∇×E = −µε∂
2E

∂t2
. (2.1)

Using the identity:

∇×∇×E = ∇(∇ •E)− (∇ •∇)E
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and assuming that the boundary is source-free (∇•E = 0), (2.1) can be re-written

as [27]:

− (∇ •∇)E + µε
∂2E

∂t2
= 0

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− µε ∂

2

∂t2
)E = 0

(
∂2

∂x2
− µε ∂

2

∂t2
(1−

∂2

∂y2
+

∂2

∂z2

µε
∂2

∂t2

))E = 0. (2.2)

2.1.2 Mur’s ABC

Mur’s ABC applies the central differencing on the pseudo-operator (2.2) in time

and spatial domains [2]. This approximation gives:

1

∆x

[
E

n+ 1
2

x=1 − En+ 1
2

x=0

]
=

√
µε

∆t

[
En+1

x= 1
2

− En
x= 1

2

]
. (2.3)

(2.3) is second-order accurate [11]. However, equation (2.3) does not include the

field at the boundary. Also, the field at time (n + 1)∆t is missing. Thus, Mur

represented E
(n+ 1

2
)

x=0 and En
x= 1

2

by calculating the average of the two adjacent fields

in time and spacial domains [11]. This yields:

E
n+ 1

2
x=0 =

1

2

[
En+1

x=0 + En
x=0

]
(2.4)

En
x= 1

2
=

1

2
[En

x=1 + En
x=0] (2.5)

Using (2.4) and (2.5) in equation (2.3) yields:

En+1
x=0 = En

x=1 +
∆t−∆x

√
µε

∆t+ ∆x
√
µε

[
En+1

x=1 − En
x=0

]
. (2.6)

Similarly, using the same approach at the other side of the boundary obtains:

En+1
x=xmax−1

= En
x=xmax

+
∆t−∆x

√
µε

∆t+ ∆x
√
µε

[
En+1

x=xmax
− En

x=xmax−1

]
(2.7)

(2.6) and (2.7) are Mur’s first-order boundary conditions.
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The same approach is used to obtain Mur’s boundary condition for the 3D-

FDTD space [11].

2.2 Complex Frequency-Shifted Perfectly Matched

Layer ABCs

Kuzuoglu and Mittra introduced the CFS-PML [28]. The stretching coefficient

of the normal PML is replaced with:

sx = 1 +
σx

αx + jωε0
(2.8)

where σx is the PML conductivity and αx is an additional parameter homogeneous

to a conductivity. In [26], Roden and Gedney used the following general form of

2.8 to improve the absorption capabilities of the CFS-PML:

sx = κx +
σx

αx + jωε0
(2.9)

where κx is real and ≥ 1.

As its name suggests, the CFS-PML almost perfectly absorb the waves, and

that makes it the most famous and effective ABCs nowadays [2]. However, the

implementation of the CFS-PML is complicated and needs more computational

resources such as memory and CPU time. This project handles a new boundary

condition, called the Huygens absorbing boundary condition (HABC), which is

proved to be comparable to the CFS-PML in accuracy and to be simpler than

the CFS-PML in implementation. The HABC is introduced in the Chapter 3.

The numerical results of the HABC experiments in this thesis are compared to

the CFS-PML results for accuracy and computational requirement.
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The Huygens Absorbing

Boundary Condition

The Huygens principle states that each point on a wave front acts like a new source

of waves [29]. In electromagnetics, the equivalence theorem uses the Huygens

principle to precisely define those equivalent source current densities [29]. Based

on the equivalence theorem, Section 3.1 demonstrates the idea of defining the

source current densities on a specific surface which is used in this chapter to

implement an incident wave and an Absorbing Boundary Condition (ABC).

3.1 The Huygens Surface

According to the equivalence theorem in electromagnetics, the field obtained in-

side a given part of space by sources placed outside this part can be re-obtained by

introducing the electric and magnetic current densities along the surface splitting

these two parts as shown in the equations below:

~J s = ~u× ~H i (3.1)

~Ks = ~u× ~Ei (3.2)

where:

• u is the unit vector normal to the surface and opposite to the source direc-

tion.

25
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• Ei is the electric field that would exists upon the surface if the source were

present.

• H i is the magnetic field that would exists upon the surface if the source

were present.

• J s is the electric current density.

• Ks is the magnetic current density.

This surface, that is used to produce the equivalent currents to only source-free

part, is called the Huygens surface [29][3] [2].

3.2 The Huygens Surface for Implementing an

Incident Wave

In wave-structure interaction problems, the incident plane wave strikes an object.

As shown in Figure 3.1 ,the incident wave extends upon a certain length L in

space, from its front to its back with duration of L/c in time at a given point

where c is the speed of light [1].

The wave has to be set in a finite computational domain. Setting the wave

as an initial condition is a simple way to introduce a wave in the FDTD domain.

This is done by setting the wave at time 0 before it strikes the object [1]. This

produces correct results for a certain time. However, the cut of the plane wave on

the boundary generates spurious field. This field propagates toward the object

and when it reaches the object the results become wrong [1]. Since the domain in

computational electromagnetics should be as small as possible, the time in which

the results are correct is short. This issue can be solved by using the Huygens

surface to generate the wave [1].

The Huygens surface is used to create incident wave within the surface while

no field exists outside the surface as shown in Figure 3.2 [1]. Consider a source

of field outside a closed surface as illustrated in Figure 3.3. The use of the

equivalence theorem removes the source and enforces the sources 3.1 and 3.2 on

the closed surface, where Ei and H i are equal to the incident field on the surface

or in other words the field if the sources were present [1]. As a result, the field

within the closed surface is equal to the field created by the original source while

no field exists outside the closed surface [1].
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Figure 3.1: An incident wave extends upon a certain length L in space, from its
front to its back with duration of L/c in time at a given point [1].

Huygens surface

No field outside
the surface

The incident wave
inside the surface

Figure 3.2: The use of Huygens surface to generate the wave [1].

The currents J s and Ks are sheets zero in thickness and expressed in A/m

and V/m respectively. Those currents are parallel to the Huygens surface. The

magnitudes of J s and Ks are equal to the components E and H parallel to the

Huygens surface [1]. As shown in Figure 3.4, in the FDTD domain, the zero
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Source

(antenna)

Closed surface

with no source
inside it

Figure 3.3: A source of field exterior to a closed surface [1].

thickness current is spread upon a width of one FDTD cell ∆x:

Jy =
JSy

∆x
= −Hy,inc

∆x
. (3.3)

Where JSy and Hy,inc are the y components of J s and H inc respectively. Thus,

the FDTD current Jy∆x is equal to the desired current JSy [1].

3.2.1 The 1D case

Figure 3.5 shows the 1D FDTD grid with the Huygens surface. Introducing the

sources in the 1D FDTD space:

∂Ey

∂t
=

1

ε

∂Hz

∂x
− J, (3.4)

En+1
y (IS) = En

y (IS) (3.5)

−∆t

ε

H
n+ 1

2
z (IS + 1

2
)−Hn+ 1

2
z (IS − 1

2
)

∆x
− (−1)

∆t

ε

J
n+ 1

2
z

∆x
.

Choosing J
n+ 1

2
Sz at (IS + 1

4
):

En+1
y (IS) = En

y (IS) (3.6)

−∆t

ε

[
H

n+ 1
2

z (IS + 1
2
)−Hn+ 1

2
z,inc(IS − 1

4
)
]
−Hn+ 1

2
z (IS − 1

2
)

∆x
.
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The theoretical
current sheet

(zero thickness)

The FDTD current
sheet (thickness ∆x)

x

y

Figure 3.4: The zero thickness current is spread upon a width of one FDTD cell
∆x in the FDTD domain [1].

Ey Hz

Incident wave

IS IS + 1
2

The theoretical
double sheet

Figure 3.5: Introducing sources using the Huygens surface in 1D FDTD space
[1].
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Similarly:

H
n+ 1

2
z (IS +

1

2
) = H

n− 1
2

z (IS +
1

2
) (3.7)

−∆t

µ

En
y (IS + 1)− [En

y (IS) + En
y,inc(IS + 1

4
)
]

∆x

Those equations are the same as the old equations, but a correction is added

at one node. The corrected equations are also applied on the other side of the

Huygens surface with just an opposite sign for the corrective terms. The sign is

reversed because the unit vector normal to the other side of the surface is oriented

in opposite direction [1].

3.2.2 The Trivial Implementation of the Huygens Surface

The incident wave can be implemented in a small closed area of space without

the equivalence theorem. For the FDTD method, this implementation is rather

trivial [1]. In Figure 3.5, assume at time n the field is equal to zero to the left

of the Huygens surface, and equal to the incident field to right of the Huygens

surface. Ey(IS) is computed as:

En+1
y (IS) = En

y (IS)− ∆t

ε

H
n+ 1

2
z (IS + 1

2
)−Hn+ 1

2
z (IS − 1

2
)

∆x
(3.8)

However, Equation 3.8 is not correct because Hz(IS + 1
2
) should be zero to let

Ey(IS) remain zero. This issue can be solved by simply subtracting the error

from the FDTD value Hz(IS + 1
2
). The error is the incident field at this node,

which is known by hypothesis [1]. This yield:

En+1
y (IS) = En

y (IS) (3.9)

−∆t

ε

[
H

n+ 1
2

z (IS + 1
2
)−Hn+ 1

2
z,inc(IS + 1

2
)
]
−Hn+ 1

2
z (IS − 1

2
)

∆x
.

For the Hz at node IS + 1
2
, it is not correct to use the regular formula because

Ez(IS) is equal to zero. Ez(IS) should be equal to the incident field to obtain

a correct Hz. Thus, the incident field should be added to Ez(IS) at this node.
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This yield:

H
n+ 1

2
z (IS +

1

2
) = H

n− 1
2

z (IS +
1

2
) (3.10)

−∆t

µ

En
y (IS + 1)− [En

y (IS) + En
y,inc(IS)

]
∆x

.

The only difference between the Equation 3.6 from the equivalence theorem

and the Equation 3.9 from the trivial reasoning is the location of the incident

field. The location of the incident field is IS + 1
4

in case of the equivalence

theorem and IS+ 1
2

in the trivial reasoning. The location IS+ 1
2

is better since it

is consistent with the FDTD discretisation [1]. Although the difference between

the two incident field locations is small, it is visible in actual implementation [1].

Similarly, for HZ , the equations yield by the equivalence theorem and the trivial

reasoning only differ in the locations of the incident EZ . The location of the

incident EZ is at IS + 1
4

in equivalence theorem and at IS, which is better and

consistent with the FDTD discretisation, in trivial reasoning [1].

3.2.3 Huygens Surface with an Object

Huygens surface

Incident + Scattered fields
= Total field

Object

Scattered field

Figure 3.6: The use of Huygens surface to generate the wave when an object is
present [1].

When the FDTD domain contains an object as shown in Figure 3.6, a scattered

field is created. The scattered field is defined as the difference between the actual

(total) field and the field in the absence of object (the incident field) [1]. Outside

the Huygens surface, there is only the scattered field while the total field exists
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inside the Huygens surface. In other words, The Huygens surface separates the

total field region and the scattered field region [1].

3.2.4 Huygens Surface in 3D

6 Huygens surfaces are used to excite the 3D FDTD space. These surfaces are

placed at:

• i = ihuyg1, j from j = jhuyg1 to j = jhuyg2 and k from k = khuyg1 to

k = khuyg2.

• i = ihuyg2, j from j = jhuyg1 to j = jhuyg2 and k from k = khuyg1 to

k = khuyg2.

• i from i = ihuyg1 to i = ihuyg2, j = jhuyg1 and k from k = khuyg1 to

k = khuyg2.

• i from i = ihuyg1 to i = ihuyg2, j = jhuyg2 and k from k = khuyg1 to

k = khuyg2.

• i from i = ihuyg1 to i = ihuyg2, j from j = jhuyg1 to j = jhuyg2 and

k = khuyg1.

• i from i = ihuyg1 to i = ihuyg2, j from j = jhuyg1 to j = jhuyg2 and

k = khuyg2.

Then following equations [30] are applied on the Huygens surfaces:

En+1
x (i,j,k) = En

x (i,j,k) +
∆t

ε(i,j,k)
× (3.11)[

Hn+1
z (i,j,k) + H̃en+1

z (i,j,k)− (Hn+1
z (i,j−1,k) + H̃en+1

z (i,j−1,k))
∆y(j−1)+∆y(j)

2

−H
n+1
y (i,j,k) + H̃en+1

y (i,j,k)− (Hn+1
y (i,j,k−1) + H̃en+1

y (i,j,k−1))

∆z(k)

]
[ihuyg1 ≤ i ≤ ihuyg2− 1

j = jhuyg1, j = jhuyg2

k = khuyg1, k = khuyg2].
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En+1
y (i,j,k) = En

y (i,j,k) +
∆t

ε(i,j,k)
× (3.12)[

Hn+1
x (i,j,k) + H̃en+1

x (i,j,k)− (Hn+1
x (i,j,k−1) + H̃en+1

x (i,j,k−1))

∆z(k)

−H
n+1
z (i,j,k) + H̃en+1

z (i,j,k)− (Hn+1
z (i−1,j,k) + H̃en+1

z (i−1,j,k))
∆x(i−1)+∆x(i)

2

]
[i = ihuyg1, i = ihuyg2

jhuyg1 ≤ j ≤ jhuyg2− 1

k = khuyg1, k = khuyg2].

En+1
z (i,j,k) = En

z (i,j,k) +
∆t

ε(i,j,k)
× (3.13)

+
∆t

ε(i,j,k)

[
Hn+1

y (i,j,k) + H̃en+1
y (i,j,k)− (Hn+1

y (i−1,j,k) + H̃en+1
y (i−1,j,k))

∆x(i−1)+∆x(i)

2

−H
n+1
x (i,j,k) + H̃en+1

x (i,j,k)− (Hn+1
x (i,j−1,k) + H̃en+1

x (i,j−1,k))
∆y(j−1)+∆y(j)

2

]
[i = ihuyg1, i = ihuyg2

j = jhuyg1, j = jhuyg2

khuyg1 ≤ k ≤ khuyg2− 1].

Hn+1
x (i,j,k) = Hn

x (i,j,k) (3.14)

+
∆t

µ

[
En

y (i,j,k+1)− Ẽen
y (i,j,k+1)− (En

y (i,j,k)− Ẽen
y (i,j,k))

∆z(k−1)+∆z(k)

2

−E
n
z (i,j+1,k)− Ẽen

z (i,j+1,k)− (En
z (i,j,k)− Ẽen

z (i,j,k))

∆y(j)

]
[ihuyg1 ≤ i ≤ ihuyg2

j = jhuyg1, j = jhuyg2− 1

k = khuyg1, k = khuyg2− 1].
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Hn+1
y (i,j,k) = Hn

y (i,j,k) (3.15)

+
∆t

µ

[
En

z (i+1,j,k)− Ẽen
z (i+1,j,k)− (En

z (i,j,k)− Ẽen
z (i,j,k))

∆x(i)

−E
n
x (i,j,k+1)− Ẽen

x (i,j,k+1)− (En
x (i,j,k)− Ẽen

x (i,j,k))
∆z(k−1)+∆z(k)

2

]
[i = ihuyg1, i = ihuyg2− 1

jhuyg1 ≤ j ≤ jhuyg2

k = khuyg1, k = khuyg2− 1].

Hn+1
z (i,j,k) = Hn

z (i,j,k) (3.16)

+
∆t

µ

[
En

x (i,j+1,k)− Ẽen
x (i,j+1,k)− (En

x (i,j,k)− Ẽen
x (i,j,k))

∆y(j)

−E
n
y (i+1,j,k)− Ẽen

y (i+1,j,k)− (En
y (i,j,k)− Ẽen

y (i,j,k))

∆x(i)

]
[i = ihuyg1, i = ihuyg2− 1

j = jhuyg1, j = jhuyg2− 1

khuyg1 ≤ k ≤ kuyg2].

The values for Ẽen
(i,j,k) and H̃en+1

(i,j,k) are as follows when J is set to the

incident wave:

Ẽen
(i,j,k) = En−1

(i,j,k)± J. (3.17)

H̃en+1
(i,j,k) = Hn

(i,j,k)± J. (3.18)

3.2.5 The Direction of the Incident wave

The direction of the incident wave generated by the Huygens surfaces is deter-

mined by the three angles: φ,θ and ψ. As shown in Figure 3.7, φ is the angle

from the x axis, θ is the angle from the xy plane and ψ is the angle of the field

itself. For instance, if the direction of the wave generated by Huygens surface
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Figure 3.7: Setting the direction of the wave generated by the Huygens surface
with the following three angles: φ,θ and ψ.

φ = 0 θ = 0

ψ = 180 Direction of
the wave

x

yz

Figure 3.8: The direction of the wave generated by the Huygens surface when the
angles φ,θ and ψ equal to 0,0 and 180 respectively.
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φ = 90

θ = 0

ψ = 180

Direction of
the wave

x

yz

Figure 3.9: The direction of the wave generated by the Huygens surface when the
angles φ,θ and ψ equal to 90,0 and 180 respectively.

φ = 0

θ = 90

ψ = 180

Direction of
the wave

x

yz

Figure 3.10: The direction of the wave generated by the Huygens surface when
the angles φ,θ and ψ equal to 0, 90 and 180 respectively.
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is to the positive x axis, then the angles φ,θ and ψ equal to 0, 0 and 180 as

shown in Figure 3.8. To get the opposite direction, negative x axis, ψ is set to 0

instead of 180. In Figure 3.9, the angles φ,θ and ψ are equal to 90, 0 and 180 so

that the direction of the wave is towards the positive y axis. Similarly, when φ,θ

and ψ equal to 0,90 and 180 respectively, the direction of the wave in the FDTD

domain is upward as shown in Figure 3.10. Different settings of the angels may

give the same direction for the wave. For example, the same direction of the wave

is produced when φ,θ and ψ equal to 0,0 and 180, and when φ,θ and ψ equal to

0,90 and 270.

3.3 Total-Field/Scattered-Field Technique

Huygens ABC is based on total-field/scattered-field (TF/SF) concept which is a

special case of Huygens (equivalence) principle, where two staggered surfaces are

used, one for the equivalent magnetic currents and the other for the equivalent

electric currents. The TF/SF formulation [2] assumes the following decomposition

for the physical total electric field Etot and physical total magnetic field H tot:

Etot = Einc + Escat (3.19)

H tot = H inc + Hscat (3.20)

where:

• Einc and H inc are the values of the incident-wave fields. The incident fields

are the fields that would exist when there are no materials within the space

(only vacuum). Einc and H inc are assumed to be known at all grid points

of the FDTD space [2].

• Escat and Hscat are the values of scattered-wave fields. The scattered fields

are generated when the incident wave interact with any material within the

space. Escat and Hscat are assumed to be initially unknown [2].

TF/SF technique divides the FDTD domain into TF and SF regions as shown

in Figure 3.11 [2]. The TF region contains the incident wave fields and scattered

wave fields. Both of those fields are used in the FDTD calculations. On the
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Lattice truncation

Connecting Surface

Plane wave source

Interacting

Structure

Total field

Scattered field

Figure 3.11: Total-field/Scattered-field zoning [2].

other hand, in the SF region, there is no incident wave, which means that only

scattered wave fields are used in the computations.

The fields of the two distinct regions are assumed to be stored in computer

memory [2]. The surface separating the TF and SF regions is physical and holds

the equivalent magnetic and electric currents used to create such a separation.

This surface connects the two regions and generates the incident wave [2]. The

outer grid surrounding the SF region is actually terminating the calculation and

acting as an ABC [2].

3.3.1 Benefits of the Connecting Surface in TF/SF tech-

nique

The use of the connecting surface in the TF/SF technique provides the following

benefits:

• Ability to generate arbitrary incident wave. The use of the connecting
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surface gives the user the option to define the time waveform and duration,

angle of incidence and angle of polarization for the generated incident wave.

This surface well-defines the SF region because it confines the incident wave

to TF region and it is transparent to outgoing waves [2].

• The connecting surface is Easy to implement. When TF/SF technique is

used, the connected surface has to be programmed. This is done by simply

calculating the incident field along the surface.

• Implementing an absorbing boundary condition. Based on the concept

of the connecting surface, Section 3.4 illustrates an implementation of an

absorbing boundary condition.

3.3.2 TF/SF 1D Formulation

Scattered field Scattered fieldTotal field

Ez,sct Ez,sctEz,totEz,totEz,totEz,totEz,tot

iL − 1

Hy,sct

iL − 1
2

iL

Hy,tot

iL + 1
2

iL + 1 Hy,tot Hy,tot

Hy,tot

iR − 1
2

iR

Hy,sct

iR + 1
2

iR + 1

Figure 3.12: Total-field/Scattered-field component locations, 1D [2].

Figure 3.12 shows a 1D x-directed cut through the 2D surface showed in

Figure 3.11. Consider the free-space 1D case, the finite-difference formula for Ez

is expressed as follows [2]:

En+1
z (i) = En

z (i) +
∆t

ε0∆x

[
H

n+ 1
2

y (i+ 1
2
)−Hn+ 1

2
y (i− 1

2
)
]
. (3.21)

(3.21) is used to express all total and scattered field components [2].
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3.3.2.1 Left side computation with x = iL

Applying (3.21) at the point iL on left connecting surface shown in Figure 3.12

yields:

En+1
z,tot(iL) = En

z,tot(iL) +
∆t

ε0∆x

[
H

n+ 1
2

y,tot (iL + 1
2
)−Hn+ 1

2
y,sct (iL − 1

2
)
]
. (3.22)

In (3.22), the TF component is supposed to be calculated using only TF region

components. However, both TF and SF magnetic field components are used

to calculate En+1
z,tot(iL). This makes the equation inconsistent because TF region

component is based on the difference of TF and SF region components [2]. To

resolve this issue, one more term is added to balance the equation (3.22):

En+1
z,tot(iL) = En

z,tot(iL) +
∆t

ε0∆x

[
H

n+ 1
2

y,tot (iL + 1
2
)−

(
H

n+ 1
2

y,sct (iL − 1
2
) +H

n+ 1
2

y,inc(iL − 1
2
)
)]
(3.23)

based on

H
n+ 1

2
y,sct (iL − 1

2
) +H

n+ 1
2

y,inc(iL − 1
2
) = H

n+ 1
2

y,tot (iL − 1
2
). (3.24)

Just like the electric field, according to (3.21), the magnetic field at the point

iL − 1
2

on left connecting surface is calculated as follows:

H
n+ 1

2
y,sct (iL − 1

2
) = H

n− 1
2

y,sct (iL − 1
2
) +

∆t

µ0∆x

[
En

z,tot(iL)− En
z,sct(iL − 1)

]
(3.25)

(3.25) is inconsistent because only SF components should be used in calculating

the SF component. But this equation uses the difference of TF and SF compo-

nents in calculating H
n+ 1

2
y,sct (iL − 1

2
). Thus, to balance the equation, one term is

added [2]:

H
n+ 1

2
y,sct (iL − 1

2
) = H

n− 1
2

y,sct (iL − 1
2
) +

∆t

µ0∆x

[(
En

z,tot(iL)− En
z,inc(iL)

)− En
z,sct(iL − 1)

]
(3.26)

based on

En
z,tot(iL)− En

z,inc(iL) = En
z,sct(iL). (3.27)
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3.3.2.2 Right side computation with x = iR

Similarly, at the point iR on the connecting surface at the right in Figure 3.12,

the electric field is calculated as follows:

En+1
z,tot(iR) = En

z,tot(iR) +
∆t

ε0∆x

[
H

n+ 1
2

y,sct (iR + 1
2
) +H

n+ 1
2

y,inc(iR + 1
2
)−Hn+ 1

2
y,tot (iR − 1

2
)
]

(3.28)

based on

H
n+ 1

2
y,sct (iR + 1

2
) +H

n+ 1
2

y,inc(iR + 1
2
) = H

n+ 1
2

y,tot (iR + 1
2
). (3.29)

Just like the electric field, the magnetic field at the point iR + 1
2

on the

connecting surface at the right in Figure 3.12 is calculated as [2]:

H
n+ 1

2
y,sct (iR + 1

2
) = H

n− 1
2

y,sct (iR + 1
2
) +

∆t

µ0∆x

[
En

z,sct(iR + 1)− En
z,tot(iR) + En

z,inc(iR)
]

(3.30)

based on

− En
z,tot(iR) + En

z,inc(iR) = −En
z,sct(iR). (3.31)

3.4 Huygens Absorbing Boundary Conditions

There are two novel ABCs used in numerical electromagnetics with FDTD method.

These ABCs are the Multiple Absorbing Surfaces (MAS) condition [31] and the

re-Radiating Boundary Condition (rRBC) [32] [3]. Both MAS and rRBC are

based on the same idea of canceling the outgoing field by radiating a field equal

in magnitude and opposite in direction. However, the value of the outgoing

field on the surface where the equivalent field is introduced cannot accurately be

known [3]. This surface is called Huygens surface [33][3] as mentioned in Section

3.1. Those ABCs need to estimate the values of the outgoing waves that would

exist on the Huygens surface. This estimation is done by an operator. Since

the cancellation is based on estimation, which is not perfect, it results a certain

amount of reflection. To resolve this issue Jean-Pierre Bérenger introduced the

HABC. The HABC is based on the same concept of canceling the outgoing waves

by introducing the opposite field on the Huygens surface, but it is more general

than MAS and rRBC [3]. An important feature of the HABC is that it can be

placed close to the object in the FDTD domain. This gives the HABC the ability
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to be easily combined with other ABCs as shown later in this Section.

3.4.1 Principle of ABC based on Huygens surface

The FDTD implementations require an ABC that surrounds the structure of

interest and absorbs the outgoing waves. This can be done by using the Huygens

surface introduced in Section 3.1. The Huygens surface can cancel the outgoing

waves by generating fields equal in magnitude and opposite in direction. On the

Huygens surface, the values of electric and magnetic current densities J s and Ks

from (3.1) and (3.2) are set to Ei and H i which are equal to the outgoing field

and opposite in direction [3]. Ei and H i are actually the fields that would exist

at the location of the Huygens surface. If Ei and H i are the exact values, the

Huygens surface will perfectly absorbs the outgoing waves. But, those fields are

estimated by Higdon operator [19][20] using the neighbouring FDTD cells of the

Huygens surface [3]. This ABC, which is implemented based on the Huygens

surface, is called the Huygens Absorbing Boundary Condition (HABC).

3.4.2 HABC in FDTD space

Huygens surface

Incident Field Total Field

Ey(−1)

Hz(−1
2)

Ey(0)

Hz(
1
2)

Ey(1)

y

x

Figure 3.13: 1D implementation of Huygens surface in FDTD grid [3].

Consider the use of the Huygens surface in 1D FDTD space [3] as shown in

Figure 3.13. The Huygens surface is placed between the nodes Ey(0) and Hz(1
2
)

while the incident wave is assumed to be propagating in +x direction. At the

node Ey(0), using (3.1), the equivalent current at the time n+ 1
2

is given by:

J
n+ 1

2
Sy

(0) = −H̃n+ 1
2

z (
1

2
). (3.32)
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Similarly, at the node Hz(1
2
), the equivalent current at the time n when applying

(3.2) is:

Kn
Sz

(
1

2
) = −Ẽn

y (0). (3.33)

Ẽy and H̃z in equations (3.32) and (3.33) are the estimated values of the incident

fields. The following elementary operator is used to estimate the incident fields:

Pe = K(−∆x)Z(−∆t). (3.34)

Where ∆x and ∆t are the space and time steps of the FDTD grid. This estima-

tions reads:

H̃
n+ 1

2
z (

1

2
) = H

n− 1
2

z (−1

2
) (3.35)

and

Ẽn
y (0) = En−1

y (−1). (3.36)

The following FDTD equations at the nodes Ey(0) and Hz(1
2
) are not consis-

tent according to TF/SF technique in Section 3.3.

En+1
y (0) = En

y (0)− ∆t

ε0∆x

[
H

n+ 1
2

z (
1

2
)−Hn+ 1

2
z (−1

2
)

]
(3.37)

H
n+ 1

2
z (

1

2
) = H

n− 1
2

z (
1

2
)− ∆t

µ0∆x

[
En

y (1)− En
y (0)

]
. (3.38)

Substituting (3.35) and (3.36) into (3.32) and (3.33) and introducing the re-

sults into the FDTD equations 3.37 and 3.38 yield the equation:

En+1
y (0) = En

y (0)− ∆t

ε0∆x

[
H

n+ 1
2

z (
1

2
)−Hn+ 1

2
z (−1

2
)

]
− ∆t

ε0∆x
H

n− 1
2

z (−1

2
) (3.39)

at the node Ey(0), and the equation:

H
n+ 1

2
z (

1

2
) = H

n− 1
2

z (
1

2
)− ∆t

µ0∆x

[
En

y (1)− En
y (0)

]− ∆t

µ0∆x
En−1

y (−1) (3.40)
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at the node Hz(1
2
), respectively [3]. (3.39) and (3.40) are now consistent based on

the TF/SF technique and can be applied for the Huygens surface in the FDTD

domain.

3.4.3 3D HABC in FDTD space

In 3D FDTD space, the HABC is implemented as 6 Huygens surfaces [30] that

surround the computational domain. The planes are placed at i = itlmin, i =

itlmax, j = jtlmin, j = jtlmax, k = ktlmin, and k = ktlmax. We assume the incident

waves propagate from around the centre to those 6 planes.

Instead of the standard FDTD equations, the following equations are applied

when Ẽen
(i,j,k) and H̃en+1

(i,j,k) have values on the HABC [30].

En+1
x (i,j,k) = En

x (i,j,k) +
∆t

ε(i,j,k)
× (3.41)[

Hn+1
z (i,j,k) + H̃en+1

z (i,j,k)− (Hn+1
z (i,j−1,k) + H̃en+1

z (i,j−1,k))
∆y(j−1)+∆y(j)

2

−H
n+1
y (i,j,k) + H̃en+1

y (i,j,k)− (Hn+1
y (i,j,k−1) + H̃en+1

y (i,j,k−1))

∆z(k)

]
[imin ≤ i ≤ imax − 1,

j = jtlmin, j = jtlmax

k = ktlmin, k = ktlmax]

En+1
y (i,j,k) = En

y (i,j,k) +
∆t

ε(i,j,k)
× (3.42)[

Hn+1
x (i,j,k) + H̃en+1

x (i,j,k)− (Hn+1
x (i,j,k−1) + H̃en+1

x (i,j,k−1))

∆z(k)

−H
n+1
z (i,j,k) + H̃en+1

z (i,j,k)− (Hn+1
z (i−1,j,k) + H̃en+1

z (i−1,j,k))
∆x(i−1)+∆x(i)

2

]
[i = itlmin, i = itlmax

jmin ≤ j ≤ jmax − 1,

k = ktlmin, k = ktlmax]



CHAPTER 3. THE HUYGENS ABSORBING BOUNDARY CONDITION 45

En+1
z (i,j,k) = En

z (i,j,k) +
∆t

ε(i,j,k)
× (3.43)

+
∆t

ε(i,j,k)

[
Hn+1

y (i,j,k) + H̃en+1
y (i,j,k)− (Hn+1

y (i−1,j,k) + H̃en+1
y (i−1,j,k))

∆x(i−1)+∆x(i)

2

−H
n+1
x (i,j,k) + H̃en+1

x (i,j,k)− (Hn+1
x (i,j−1,k) + H̃en+1

x (i,j−1,k))
∆y(j−1)+∆y(j)

2

]
[i = itlmin, i = itlmax

j = jtlmin, j = jtlmax

kmin ≤ k ≤ kmax − 1].

Hn+1
x (i,j,k) = Hn

x (i,j,k) (3.44)

+
∆t

µ

[
En

y (i,j,k+1)− Ẽen
y (i,j,k+1)− (En

y (i,j,k)− Ẽen
y (i,j,k))

∆z(k−1)+∆z(k)

2

−E
n
z (i,j+1,k)− Ẽen

z (i,j+1,k)− (En
z (i,j,k)− Ẽen

z (i,j,k))

∆y(j)

]
[imin + 1 ≤ i ≤ imax − 1,

j + 1 = jtlmin, j = jtlmax

k + 1 = ktlmin, k = ktlmax].

Hn+1
y (i,j,k) = Hn

y (i,j,k) (3.45)

+
∆t

µ

[
En

z (i+1,j,k)− Ẽen
z (i+1,j,k)− (En

z (i,j,k)− Ẽen
z (i,j,k))

∆x(i)

−E
n
x (i,j,k+1)− Ẽen

x (i,j,k+1)− (En
x (i,j,k)− Ẽen

x (i,j,k))
∆z(k−1)+∆z(k)

2

]
i+ 1 = itlmin, i = itlmax

jmin + 1 ≤ j ≤ jmax − 1,

k + 1 = ktlmin, k = ktlmax].
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Hn+1
z (i,j,k) = Hn

z (i,j,k) (3.46)

+
∆t

µ

[
En

x (i,j+1,k)− Ẽen
x (i,j+1,k)− (En

x (i,j,k)− Ẽen
x (i,j,k))

∆y(j)

−E
n
y (i+1,j,k)− Ẽen

y (i+1,j,k)− (En
y (i,j,k)− Ẽen

y (i,j,k))

∆x(i)

]
[i+ 1 = itlmin, i = itlmax

j + 1 = jtlmax, j = jtlmax

kmin + 1 ≤ k ≤ kmax − 1].

The values for Ẽen
(i,j,k) and H̃en+1

(i,j,k) are as follows.

Ẽen
y (i,j,k) = En−1

y (i±1,j,k) (3.47)

+
∆t−∆x(i)

√
µ0ε0ε(i±1,j,k)

∆t+ ∆x(i)

√
µ0ε0ε(i,j,k)

(En
y (i±1,j,k)− Ẽen−1

y (i,j,k))

i = itlminfor +sign, itlmaxfor −sign

jmin ≤ j ≤ jmax − 1

kmin + 1 ≤ k ≤ kmax − 1

Ẽen
z (i,j,k) = En−1

z (i±1,j,k) (3.48)

+
∆t−∆x(i)

√
µ0ε0ε(i±1,j,k)

∆t+ ∆x(i)

√
µ0ε0ε(i,j,k)

(En
z (i±1,j,k)− Ẽen−1

z (i,j,k))

i = itlminfor +sign, itlmaxfor −sign

jmin + 1 ≤ j ≤ jmax − 1

kmin ≤ k ≤ kmax − 1
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Ẽen
x (i,j,k) = En−1

x (i,j±1,k) (3.49)

+
∆t−∆y(j)

√
µ0ε0ε(i,j±1,k)

∆t+ ∆y(j)

√
µ0ε0ε(i,j,k)

(En
x (i,j±1,k)− Ẽen−1

x (i,j,k))

imin ≤ i ≤ imax − 1

j = jtlminfor +sign, jtlmaxfor −sign

kmin + 1 ≤ k ≤ kmax − 1

Ẽen
z (i,j,k) = En−1

z (i,j±1,k) (3.50)

+
∆t−∆y(j)

√
µ0ε0ε(i,j±1,k)

∆t+ ∆y(j)

√
µ0ε0ε(i,j,k)

(En
z (i,j±1,k)− Ẽen−1

z (i,j,k))

imin + 1 ≤ i ≤ imax − 1

j = jtlminfor +sign, jtlmaxfor −sign

kmin ≤ k ≤ kmax − 1

Ẽen
x (i,j,k) = En−1

x (i,j,k±1) (3.51)

+
∆t−∆z(k)

√
µ0ε0ε(i,j,k±1)

∆t+ ∆z(k)

√
µ0ε0ε(i,j,k)

(En
x (i,j,k±1)− Ẽen−1

x (i,j,k))

imin ≤ i ≤ imax − 1

jmin + 1 ≤ j ≤ jmax − 1

k = ktlminfor +sign, ktlmaxfor −sign
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Ẽen
y (i,j,k) = En−1

y (i,j,k±1) (3.52)

+
∆t−∆z(k)

√
µ0ε0ε(i,j,k±1)

∆t+ ∆z(k)

√
µ0ε0ε(i,j,k)

(En
y (i,j,k±1)− Ẽen−1

y (i,j,k))

imin + 1 ≤ i ≤ imax − 1

jmin ≤ j ≤ jmax − 1

k = ktlminfor +sign, ktlmaxfor −sign

H̃en+1
z (i,j,k) = Hn

z (i±1,j,k) (3.53)

+
∆t−∆x(i)

√
µ0ε0ε(i±1,j,k)

∆t+ ∆x(i)

√
µ0ε0ε(i,j,k)

(Hn+1
z (i±1,j,k)− H̃en

z (i,j,k))

i = itlmin − 1 for +sign, itlmaxfor −sign

jmin ≤ j ≤ jmax − 1

kmin + 1 ≤ k ≤ kmax − 1

H̃en+1
y (i,j,k) = Hn

y (i±1,j,k) (3.54)

+
∆t−∆x(i)

√
µ0ε0ε(i±1,j,k)

∆t+ ∆x(i)

√
µ0ε0ε(i,j,k)

(Hn+1
y (i±1,j,k)− H̃en

y (i,j,k))

i = itlmin − 1 for +sign, itlmaxfor −sign

jmin + 1 ≤ j ≤ jmax − 1

kmin ≤ k ≤ kmax − 1
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H̃en+1
z (i,j,k) = Hn

z (i,j±1,k) (3.55)

+
∆t−∆y(j)

√
µ0ε0ε(i,j±1,k)

∆t+ ∆y(j)

√
µ0ε0ε(i,j,k)

(Hn+1
z (i,j±1,k)− H̃en

z (i,j,k))

imin ≤ i ≤ imax − 1

j = jtlmin − 1 for +sign, jtlmaxfor −sign

kmin + 1 ≤ k ≤ kmax − 1

H̃en+1
x (i,j,k) = Hn

x (i,j±1,k) (3.56)

+
∆t−∆y(j)

√
µ0ε0ε(i,j±1,k)

∆t+ ∆y(j)

√
µ0ε0ε(i,j,k)

(Hn+1
x (i,j±1,k)− H̃en

x (i,j,k))

imin + 1 ≤ i ≤ imax − 1

j = jtlmin − 1 for +sign, jtlmaxfor −sign

kmin ≤ k ≤ kmax − 1

H̃en+1
y (i,j,k) = Hn

y (i,j,k±1) (3.57)

+
∆t−∆z(k)

√
µ0ε0ε(i,j,k±1)

∆t+ ∆z(k)

√
µ0ε0ε(i,j,k)

(Hn+1
y (i,j,k±1)− H̃en

y (i,j,k))

imin ≤ i ≤ imax − 1

jmin + 1 ≤ j ≤ jmax − 1

k = ktlmin − 1 for +sign, ktlmaxfor −sign



CHAPTER 3. THE HUYGENS ABSORBING BOUNDARY CONDITION 50

H̃en+1
x (i,j,k) = Hn

x (i,j,k±1) (3.58)

+
∆t−∆z(k)

√
µ0ε0ε(i,j,k±1)

∆t+ ∆z(k)

√
µ0ε0ε(i,j,k)

(Hn+1
x (i,j,k±1)− H̃en

x (i,j,k))

imin + 1 ≤ i ≤ imax − 1

jmin ≤ j ≤ jmax − 1

k = ktlmin − 1 for +sign, ktlmaxfor −sign

Equation (3.44) requires equations (3.52) and (3.50), equation (3.45) requires

equations (3.48) and (3.51) and finally equation (3.46) requires equations (3.49)

and (3.47) [30].

Similarly, equation (3.41) requires equations (3.55) and (3.57), equation (3.42)

requires both equations (3.58) and (3.53) and finally equation (3.43) requires

equations (3.54) and (3.56) [30].

3.4.4 Numerical Experiments

In this section, the HABC is tested in absorbing the high frequency traveling

waves. This is done by increasing the size of the FDTD domain. When the

FDTD domain is large, the reflection of the low frequency evanescent fields is

negligible.

3.4.4.1 Environmental Settings

Figure 3.14 shows the 3D FDTD space with 100 × 10 cells plate. The space is

excited with Huygens excitation one cell from the plate. ∆t is 18ps and ∆s is 1

cm. The HABC is used for the termination of the FDTD domain by placing the

Huygens surfaces 3 cells away from the plate. Ez is observed at the corner of the

plate. dPEC is the number of the FDTD grid points between the object and the

outer PEC. The reference is 15 cells CFS-PML placed 100 cells away from the

object.
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Figure 3.14: The object, Huygens excitation and the HABC in 3D FDTD space.
The HABC is placed 3 cells away from the object.
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Figure 3.15: Observation at the corner of the plate. 1 ns Gaussian pulse Huygens
excitation. ∆t = 18ps.
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Figure 3.16: Observation at the corner of the plate. 1 ns Unit-Step Huygens
excitaion. ∆t = 18ps.

3.4.4.2 Numerical Results

Figure 3.15 shows the results of dPEC = 10, dPEC = 100, dPEC = 200 and the

reference in the case of 1ns Gaussian pulse Huygens excitation. The results are

superimposed to the reference when dPEC grows. For instance, when dPEC = 100,

peak values of the HABC and the reference are 643.93 v.s. 643.5 respectively and

the difference is 0.4/640 = 0.6/1000.

1 ns Unit-Step Huygens excitation results are displayed in Figure 3.16, the

waveforms represent the results of dPEC = 10, dPEC = 100, dPEC = 200 and the

reference. It is clear from Figure 3.16 that the results tend to the reference as dPEC

increases. When dPEC = 100 cells, the plateau of the HABC is 1373.5 while the

plateau of reference is 1403. The difference in the plateau is 1403−1373.5
1403

= 1.4%.

The difference in plateau falls down to 0.35% (the plateau is 1398) in case of

dPEC = 200 computations.

3.4.4.3 Conclusion

When the FDTD domain is large enough and the reflection of the low frequency

evanescent waves is negligible, the HABC is comparable with the CFS-PML in
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absorbing the high frequency traveling waves. Also, the HABC absorbs the trav-

eling wave even when it is placed only 3 FDTD cells away from the object.

3.5 The Stretched-Mesh HABC

In the Stretched-Mesh HABC (SM-HABC), the HABC, which absorbs the trav-

eling waves, is combined with another ABC called the Stretched Mesh (SM) that

is capable to absorb the evanescent waves (SM is not the complex coordinate

stretching used in the CPML literature). By stretching the FDTD mesh, the SM

decreases the overall number of cells in the FDTD space while keeping the large

physical domain. The SM suffered from the strong reflection of high frequen-

cies from the large cells because the ABCs were placed at the outer boundary.

However, as shown in Section 3.4.4, the HABC can be placed close to the object

instead of the outer boundary. When the HABC is placed in front of the SM,

it will absorb the traveling waves and permits only the evanescent waves to get

into the SM. Those evanescent waves are then absorbed by the SM because of

their natural decrease. Thus, the combination of the HABC and SM provides

the ability to absorb both the high frequency traveling waves and low frequency

evanescent waves. Figure 3.17 shows the combination of the HABC and the SM

in the FDTD domain.

Stretched Mesh

Stretched Mesh

Mesh
Stretched

Mesh
Stretched

HABC

HABC

PEC

Scatterer

Figure 3.17: The combination of HABC placed close to an object with a large
exterior domain ended with a PEC condition [4].
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Figure 3.18: HABC and the stretch mesh [4].

The mechanism of applying the SM-HABC in the FDTD domain is shown

in Figure 3.18. From the object, the HABC is placed 3 cells away and the SM

starts after 4 cells. Those 4 cells that separate the object and the SM are regular

non-stretched FDTD cells. Then, starting from the fourth cell from the object,

the cells are growing geometrically with ratio g for ng cells up to the maximum

cell size (∆max). The value ∆max is related to the object size w because the

characteristic length of the decrease of the evanescent waves is about w [4]. The

following formula gives the relation between the number of the stretched cells ng

and the corresponding equivalent uniform cells ngequ:

ngequ = g
1− gng

1− g (3.59)
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where g is the expansion ratio that satisfies g = ∆
(1/ng)
max .

3.5.1 Numerical Experiments

In this section, the SM-HABC is tested with the Huygens excitation and an object

with dispersive materials. Several choices of ng, the number of stretched cells,

are tested to study the ability of small ng in simulating free space.

3.5.1.1 Environmental Settings

In the numerical experiments of SM-HABC, an object with human tissues is

tested. As illustrated in Figure 3.19, the outer 10 cells of the 300-cell object

are skin, which cover a 280-cell cube of fat. The Debye parameters for skin

are σ = 0.54073572 (S/m), εS = 47.93014336, ε∞ = 29.85054779 and τD =

43.6257593 (ps) and the Debye parameters for fat are σ = 0.03710634 (S/m),

εS = 5.53071189, ε∞ = 3.99812841 and τD = 23.6329289 (ps). ∆s = 2mm and

∆t = 3.6ps, so the size of the 300-cell cube is equal to 60cm. As shown in Figure

3.20, the Huygens excitation surfaces are 1 cell from the object. The incident wave

of the Huygens excitation is a Gaussian pulse, which has the following equation:

Einc(t) = 100e
−

h
t−2.5·10−9

0.5·10−9

i2

HABC starts 3 cells from the object and SM starts 4 cells from the object. dPEC =

2w = 600 and 3,5 and 10 stretched cells are tested in the numerical experiments.

3.5.1.2 Numerical Results

Figure 3.21 shows the observation of the electric field E at the center of the cube.

The observed E is parallel to the incident electric field. dPEC = 2w = 600 and

ng = 3,5 and 10. In Figure 3.21, the difference between the results of ng = 3

(red curve) and ng = 5 (green curve) is bigger than the difference between the

results of ng = 5 (green curve) and ng = 10 (blue curve). However, 2, which is

the difference between 3 and 5 is less than 5, which is the difference between 5

and 10. This suggests that the solutions with ng = 3,5 and 10 are converging and

it is possible to correctly simulate the free space with a small number of cells.

Also, in the case of ng = 10 and g = 1.74, Ex on 2D-plane is observed

when y is constant and x and z start from 1 to the end of the domain as shown
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Figure 3.19: The SM-HABCA is tested with a 280-cell cube of fat covered with
10 cells layer of skin. The Debye parameters for fat are σ = 0.03710634 (S/m),
εS = 5.53071189, ε∞ = 3.99812841 and τD = 23.6329289 (ps) and the Debye pa-
rameters for skin are σ = 0.54073572 (S/m), εS = 47.93014336, ε∞ = 29.85054779
and τD = 43.6257593 (ps).

in Figure 3.22. In Figure 3.23, Figure 3.24, Figure 3.25, Figure 3.26, Figure

3.27, Figure 3.28 and Figure 3.29 snapshots of the 2D-plane observations shown

at t = 500∆t, t = 600∆t, t = 700∆t, t = 850∆t, t = 950∆t, t = 1050∆t,

t = 1150∆t, t = 1250∆t and t = 1350∆t, respectively. The colored 2D-plane

observations show that the wave propagates faster around the cube than inside

the cube. Thus, the wave will get into the object not only from the bottom, but

also from the other sides of the object.

Figure 3.30 shows the reflection coefficient of the HABC and CFS-PML ABCs.

3.5.1.3 Conclusion

Since the HABC can be placed close to the object in the FDTD domain, it is

possible to combine the HABC with other ABCs. In this thesis, the HABC is

combined with the SM ABC. This is an effective combination because the HABC
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Figure 3.20: A cube with dispersive materials is tested with Huygens excitation
and SM-HABC.

absorbs the high frequency traveling waves while the SM ABC absorbs the low

frequency evanescent waves. The experiments demonstrate that the SM-HABC

can achieve a good level of absorption for both traveling and evanescent waves

and suggest that a small number of stretched cells ng can correctly simulate free

space when the SM is combined with the HABC.
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Figure 3.21: Electric field at the center point of a 300-cell cube composed of skin
and fat.
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Figure 3.22: A cube with dispersive materials. 2D-plane is observed when y is
constant.
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Figure 3.23: A cube with dispersive materials. The colored image of the observed
2D-plane when y is constant at t = 500∆t.
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Figure 3.24: A cube with dispersive materials. The colored image of the observed
2D-plane when y is constant at t = 700∆t.
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Figure 3.25: A cube with dispersive materials. The colored image of the observed
2D-plane when y is constant at t = 850∆t.
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Figure 3.26: A cube with dispersive materials. The colored image of the observed
2D-plane when y is constant at t = 950∆t.
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Figure 3.27: A cube with dispersive materials. The colored image of the observed
2D-plane when y is constant at t = 1050∆t.
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Figure 3.28: A cube with dispersive materials. The colored image of the observed
2D-plane when y is constant at t = 1150∆t.
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Figure 3.29: A cube with dispersive materials. The colored image of the observed
2D-plane when y is constant at t = 1250∆t.
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Figure 3.30: Frequency reflection coefficient with the HABC and CFS-PML
ABCs.



Chapter 4

High Performance Computing

High performance computing (HPC) is the use of multiple processors to solve

significant problems [34]. The simultaneous use of a number of processors in

calculating a computational problem is called parallel computing [5]. The com-

putational problem is broken into independent parts to be executed concurrently

on different processors. The processors might be of a single computer, a number

of computers connected by a network, or a combination of both [5]. HPC is im-

portant for practical applications such as the electromagnetic wave propagation

in the human body, because one processor can not process a huge amount of data

simulation within a realistic time.

In parallel computing, the memory used by multiple processors can have one

of the following architectures: shared memory, distributed memory, and hybrid

distributed-shared memory [5]. As shown in Figure 4.1, in a shared memory ar-

chitecture, all processors can access all memory resources as a global memory.

Changes in memory by one processor will be visible to all the other proces-

sors [5]. Figure 4.2 shows the distributed memory architecture. As the name

suggests, there is a local memory for each processor in the distributed mem-

ory architecture. Unlike the shared memory architecture, modifications done by

one processor to its local memory will not appear in the memory of the other

processors. A processor needs to use communication network to access another

processor’s local memory [5]. Nowadays, the largest and fastest computers in the

world use both shared and distributed memory architectures [5]. Such a hybrid

distributed-shared memory architecture is presented in Figure 4.3. A node in

the hybrid distributed-shared memory architecture contains multiple processors

and a shared memory. A communication network is needed to connect the nodes

68
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Memory

CPU CPU CPU CPU

Figure 4.1: Shared memory architecture.

CPU Memory CPU Memory CPU Memory CPU Memory

Communication Network

Figure 4.2: Distributed memory architecture.

in the hybrid distributed-shared memory architecture. As shown in Figure 4.3,

the graphics processing units (GPU) may be included in the hybrid distributed-

shared memory architecture [5]. Introduced by the American global technology

company NVIDIA, the GPU is one of the most complex processors to be used

together with CPU for accelerating general-purpose scientific and engineering ap-

plications [35]. Parallel computing with GPUs has become an industry standard

that is used in all HPC supercomputers [36]. For instance, TITAN, the world’s

fastest open science supercomputer, acquires 90% of its performance from GPUs

[37] [38].

4.1 Parallel Computing with GPUs

NVIDIA invented the GPU in 1999 for computer graphics [39]. The availability

of programmable pipelines has led to interest in implementing computations for

purposes other than graphics on GPUs. Researchers have begun to use GPUs for

general-purpose problems but they have had to learn graphics Application Pro-

gram Interface (API) such as OpenGL to code on GPUs. The use of graphics APIs

for general purpose computing led to the concept of General Purpose program-
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Figure 4.3: Hybrid distributed-shared memory architecture [5].

ming on Graphics Processing Units (GPGPU) [39]. In 2006, NVIDIA introduced

the G80 architecture and the Compute Unified Device Architecture (CUDA) [39].

The GPU was then programmed using high level languages since CUDA is an

extension of C/C++. The architecture of the GPUs has been improved by includ-

ing more streaming processors, allocating more space for registers, and increasing

the number of threads that could be executed at the same time [39]. Early

GPUs only supported single-precision floating-point operations. Since double

precision is a primary requirement for scientific calculations, G80 GPUs support

double precision but in a limited manner. NVIDIA has introduced a new GPU

called Fermi in 2010 [39]. Fermi improved the performance of double-precision

floating-point computations. Furthermore, Fermi introduced a true cache hier-

archy and increased the size of the shared memory. In 2012, NVIDIA released

its latest GPU architecture, named Kepler [40]. Kepler architecture includes a

new streaming multiprocessor design that gives a better performance than the

streaming multi-processor in Fermi [40]. Furthermore, Kepler has the capability

of dynamic parallelism where GPU threads generate new threads without going

back to the CPU to update the data [40]. Fermi and Kepler architectures are used

in our simulations to examine the performance of the GPGPU implementations
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of FDTD with the HABC.

Compute-Intensive Functions

Use GPU to Parallelize

GPU

Application Code

CPU

Rest of Sequential

CPU Code

Figure 4.4: Parallel computing with GPUs [6].

Figure 4.4 illustrates the main idea of using GPUs along with the CPUs to

accelerate an application code [6]. There are three ways to accelerate an appli-

cation on the GPUs. The first is the use of GPU-accelerated libraries. Using the

libraries gives high quality implementations of functions in a wide range of appli-

cations [6]. GPU-accelerated libraries are easy to use and do not require a deep

knowledge in GPU programming [6]. Those libraries follow the APIs standard,

so no big changes will be made to the code so as to accelerate the GPUs. The

second way to accelerate the GPUs is GPU computing with OpenACC directives

[6]. As shown in Figure 4.5, compiler hints are added to detect which parts of the

code should be executed in GPUs. Using OpenACC directives is straightforward

and portable across parallel and multi-core processors [6]. Using programming

languages for GPU computing is the third way which has the maximum flexibility

in accelerating GPUs [6]. There are several programming languages that might

be used to code on GPUs such as MATLAB, CUDA Fortran, CUDA C, CUDA

C++, PyCUDA and GPU.NET. CUDA Fortran is the key language in HPC for

programming GPUs [6]. CUDA Fortran has a familiar syntax, as in using allocate
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GPU

Program Mytest

CPU

..... serial code ....

!$ acc kernels
Do j=1, nj

Do i=1, ni

..... parallel code ....

end Do

end Do
!$ acc end kernels

.....

end Program Mytest

OpenACC

Compiler Hint

Figure 4.5: GPU computing with OpenACC directives [6].

and deallocate for the arrays and copying from CPU to GPU or from GPU to

CPU with assignment (=) [6]. There are simple language extensions in CUDA

Fortran that are used in kernel functions, thread / block IDs, device and data

management, and parallel loop directives [6]. We used CUDA Fortran (third way)

to program the FDTD with the HABC code on GPUs.

4.2 Parallel Computing with Shared Memory

Recently, a single processor is constructed using independent processing units.

The processing units are known as cores and are used to increase the speed of the

processor. A processor with multiple cores is called a multi-core processor. In a

shared memory architecture, all cores can access any memory location. Accessing

the shared main memory by the multi-cores needs to be controlled by the pro-

grammer [5]. The speed of accessing the shared memory is the same for all cores

but the amount of data transfer is restricted to the maximum memory transfer

rate, denoted as bandwidth.

In parallel computing, the parallel unit of the program is split into parts

called threads to be executed concurrently on different cores. All threads can

access the shared memory address, and the communication between the threads
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is implicit[7]. The programmer has the ability to explicitly define private data

for any thread that is not accessible by the other threads, as illustrated in Figure

4.6.

Core 1

Local LocalShared

Memory

Core 2

Figure 4.6: Threads access to local and shared data in shared memory architecture
[7].

As shown in Figure 4.7, the program runs as a master thread on the processor

at the beginning. Then, when the program reaches the parallel part, the master

thread spawns multiple threads. For instance, if the processor contains n cores,

n threads can run simultaneously which improves the computational speed. The

master thread waits unit all threads have finished running and then eliminates

them. The program runs the serial part as a master thread after completing

the parallel part. This process might be repeated depending on the number of

parallel parts in the program.

Master Thread

Parallel Threads

Thread 1

Parallel Threads

Thread 2

Thread 3

Thread n

Thread 1

Thread 2

Thread 3

Thread n

Figure 4.7: Threads in parallel computing with shared memory architecture [7].
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Open Multi-Processing (OpenMP) is an API specified for shared memory

parallelism [41]. OpenMP was introduced in 1997, so the compilers are rela-

tively advanced [41]. OpenMP is an extension of C/C++ and Fortran, which

makes it easy to parallelise an existing code. Most compilers support openMP

such as GNU, IBM, Intel, and PGI. OpenMP is the most popular option for

multi-threaded, shared memory parallelism [41]. Since using openMP for shared

memory has the advantages of standardization, ease of use, and portability [41],

Intel intends to produce a new technology with an intensive number of processors

based on shared memory architecture. In our application of the FDTD with the

SM-HABC on the whole human body, we used openMP to accelerate the code

on shared memory architecture.



Chapter 5

Parallelisation on Graphics

Processing Units

General Purpose computing on Graphics Processing Units (GPGPU) is becoming

popular in scientific computation. The GPU includes many processing units to

execute different parts of the code concurrently. To effectively use the GPU in

parallel computing, the computational problem should have a high degree of data

parallelism [10].

The data in the FDTD method and the HABC is stored as multidimensional

arrays. The multidimensional arrays are calculated through tens or hundreds of

thousands of time-steps. At each time-step, each item of the multidimensional

arrays is calculated independently and requires only one-cell neighbours, which

makes the FDTD method with the HABC good applications for parallel comput-

ing on GPUs [10].

5.1 General Purpose GPU Computing with CUDA

Tesla architecture is a GPU hardware design invented by NVIDIA. As shown

in Figure 5.1, Tesla architecture contains an array of general-purpose, streaming

multi-processors [8]. Also, NVIDIA released the Compute Unified Device Archi-

tecture programming model (CUDA) to code on Tesla architecture [8] [42] [9].

CUDA is used to indicate which parts of the code should be run on the GPUs.

The parallel sections of the program that are executed on the GPUs are called

kernels [8].

To make use of the general-purpose, streaming multi-processors in a GPU, the

75



CHAPTER 5. PARALLELISATION ON GRAPHICS PROCESSING UNITS76

SP

SP

SP

SP

SP

SP

SP

SP

SFU SFU

Shared
Memory

C Cache

MT Cache

I Cache

SM

DRAM DRAM DRAM DRAM

Interconnection network

SM SM SM SM SM SM SM SM

Vertex work
distribution

Pixel work
distribution

Compute work
distribution

Input
Assembler

Viewport/clip/setup/
raster/zcull

Host Interface

BridgeCPU System
Memory

Figure 5.1: The Tesla unified graphics and computing GPU architecture [8].

application should have a massive parallelism [10]. A kernel is used to calculate

a grid of threads. As illustrated in Figure 5.2, the grid has one or two dimensions

of blocks [43]. Each block is broken into one, two or three dimensions of threads

[42]. CUDA allows the programmer to identify each thread based on its indices

using the built-in parameters. For instance, the CUDA parameters blockIdx%x

and blockIdx%y indicates which block within a grid contains the thread, and the

parameters threadIdx%x, threadIdx%y and threadIdx%z specify the location of

the thread with respect to a block [10]. Threads in a single block are grouped into

wraps. A wrap usually contains 32 threads and executes on a single Streaming

Multiprocessor (labeled SM in Figure 5.1) with each thread runs on different

streaming processor core (labeled SP in Figure 5.1). The mechanism of wraps can
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Figure 5.2: CUDA grid organisation in Tesla [9].

improve the performance by hiding latency [9]. This is done by running threads

of another wrap while waiting for results of high-latency operation. Thus, the

waiting time is hided by the execution of another wrap. Theoretically, there will

always be a running wrap [44]. Krik and Huw named it zero-overhead thread

scheduling [9].

In CUDA programming system, the term host refers to the CPU, and the

term device represents the GPU [9]. Each of the host and device has its own

memory space. Figure 5.3 shows CUDA device memory for Tesla architecture.

Host memory is implicitly included in the host in Figure 5.3 [9]. The host and the

device can read and write to the global memory shown at the bottom of Figure
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Figure 5.3: CUDA device memory model [9].

5.3. The lifetime of the global memory is the application. When the program

starts, the data is transferred from the host memory to the device global memory.

And when the program finishes running, the data is moved back from the device

global memory to the host memory. All threads in all blocks in a grid can access

the large global memory [9]. To improve the performance of global memory

access, the ”memory coalescing” [9] concept is used. When a group of threads

in a single block are concurrently executing and accessing consecutive memory

locations, their memory requests can be merged to a single larger memory request.

This single larger fetch of consecutive block of memory leads to an efficient use

of the memory bandwidth [9] [10].

Like the global memory, the constant memory shown in Figure 5.3 lasts until

the end of the application. However, only the host can read and write in constant

memory, it is a read-only memory for the device [9]. Host can move data from
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and to device memory through the global memory and the constant memory as

demonstrated by the bidirectional arrows between the host and the device in

Figure 5.3 [9].

The shared memory can be accessed by all threads in a single block as il-

lustrated in Figure 5.3. Threads cannot read or write to the shared memory of

another block [9]. The shared memory has a lifetime of a kernel. Since the shared

memory is an on-chip memory for the device, it is faster to access than the global

memory [9]. The register in 5.3 is an on-chip memory assigned to each thread.

The register allows a very fast access [9]. Threads can read and write on the

registers allocated to them but the host cannot access those registers [44]. The

data stored in the register is scalar (not arrays) and private so each thread will

have different version of the scalar data [9]. The lifetime of the register is the

kernel, which means that the data will not be preserved when the thread ends [9].

Thread’s private array variables are stored in the local memory. The space of the

local memory is reserved to a thread but stored in the global memory [9]. As for

the registers, the local memory has the lifetime of a kernel. However, the speed of

accessing the local memory is lower than the speed of accessing the register, since

the local memory is located in the global memory, which is an off-chip memory

[44].

In CUDA computations, the programmer can explicitly specifies the type of

memory used for the data. For instance, the prefixes ’constant’, ’shared’ and

’device’ can be added for a variables in constant memory, shared memory and

global memory respectively [9].

5.2 Existing Implementations of the FDTD Method

on GPU Hardware

There are three main approaches to map the three dimensions of the FDTD

domain to the allocation of blocks and threads [10]. This Section presents those

three approaches introduced in [10].

5.2.1 First approach

The first approach splits the FDTD space into 2D planes. Each plane is cal-

culated using separate kernel invocation. The kernel invocations sequentially
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Kernel sequentially invoked

Figure 5.4: The 3D FDTD space decomposition in the first approach [10].
(a, b, c, d) means (blockIdx%x,blockIdx%y,threadIdx%x, threadIdx%y)

compute the 2D planes one after the other at each time step. Within a single

kernel, the 6 FDTD equations calculate the 2D plane concurrently. The kernel

in the first approach consists of 2D blocks with the standard CUDA parameters

blockIdx%x and blockIdx%y. Each block is divided into threads in 2D with the

standard CUDA parameters of threadIdx%x and threadIdx%y [10]. Figure 5.4

illustrates the mechanism of the first approach in implementing a 6 x 4 x 5 di-

mensional FDTD space on GPUs. A 2D plane from the 3D FDTD domain shown

in Figure 5.4 is presented in Figure 5.5 based on the first approach. Each cell of

the FDTD space is calculated using a single thread. The coordinates i and j of

that thread can be calculated as blockIdx%x × blockDim%x + threadIdx%x and

blockIdx%y × blockDim%y + threadIdx%y respectively [10]. Although the first

approach permit very fine-grained decomposition so that all of the parallelism of

a single plane is presented, it does not take the advantage of the fact that all

calculations in all planes are independent [10].

5.2.2 Second approach

In the second approach, shown in Figure 5.6, only one kernel invocation is used to

calculate the whole 3D FDTD space. The organization of the blocks and threads

in the second approach is the same as in the first approach. As shown in Figure

5.5, the blocks and threads perform 2D planes that are mapped to two of the

three FDTD dimensions. All the items in the third dimension are calculated in
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Figure 5.5: The 2D decomposition in the first and second approaches when using
blocks and threads on a k = constant plane. [10].

[a, b] and (a, b) mean [blockIdx%x,blockIdx%y ] and (threadIdx%x,
threadIdx%y) respectively.

a for loop by a single thread since only one kernel invocation is used in this

approach [10]. For instance, in Figure 5.5, the 2D plane is mapped to the x and

y dimensions of the FDTD space. Thus, all the items in the z dimension are

computed by a single thread.

The second approach uses much less kernel invocations than the first approach

and the work done by a single kernel is so heavier in the second approach. How-

ever, those differences between the first and the second approaches do not affect

the amount of parallelism at any point in time [10].

5.2.3 Third approach

In the third approach demonstrated in Figure 5.7, the whole 3D FDTD domain

is calculated using a single kernel invocation [10]. The third approach allocates

the blocks in two dimensions that are mapped to two of the three dimensions of

the FDTD domain. The threads in each block are allocated in one dimension,

which is mapped to the remaining third dimension of the FDTD space [10]. For

instance, in Figure 5.7, the x and y dimensions of the FDTD space are mapped
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Figure 5.6: The 3D FDTD space decomposition in the second approach [10].
(a, b, c, d) means (blockIdx%x, blockIdx%y, threadIdx%x,threadIdx%y).
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Figure 5.7: The 3D FDTD space decomposition in the third approach [10].
[a, b] means [blockIdx%x, blockIdx%y].

to the x and y indices of the 2D blocks. And the z dimension of the FDTD space

is mapped to the x index of the 1D threads. Thus, a thread is assigned to each

cell in the FDTD space, which uses the maximum available parallelism in the

FDTD method [10].
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5.3 The implementation of the FDTD method

on GPU hardware

This thesis uses the method introduced in [10] which is based on the third

approach but provides more flexibility in terms of the amount of work assigned

to each thread.

The builtin data type dim3 is used to define the dimensions of the blocks and

threads. dim3 contains 3 elements: x, y and z. If one of the elements is not

assigned to a value, it will be initialized to 1 [45]. As illustrated in Listing 5.1,

two dim3 variables are used in the kernel invocation. The first dim3 variable

initializes the dimensions of the blocks to the z and y dimensions of the FDTD

domain. However, in this method, the dimension of the threads is not assigned

to the third dimension of the FDTD domain, x, because each thread calculates

one or more cells in the FDTD space. In other words, the threads within a block

perform the calculations for the cells in a single dimension as shown in Figure 5.8

[10]. For instance, if Nx, which is the total number of cells in the x dimension, is

equal to 6 and the number of threads within a block is 3, each thread will calculate

2 cells in the x dimension. Thus, in Listing 5.1, the second dim3 variable in the

kernel call defines the one dimension of the threads to THREAD COUNT so

that each thread is responsible for Nx

THREAD COUNT
cells in the x dimension. The

number of active threads is Nz ×Ny × THREAD COUNT [10].

Listing 5.1: Launching kernels with multiple blocks and multiple threads [10].

type ( dim3 ) : : dimGrid , dimBlock
dimGrid = dim3 (nk−1,nj −1 ,1)
dimBlock = dim3 (THREAD COUNT, 1 , 1 )
/ / . . .
ca l l ekerne l<<<dimGrid , dimBlock>>>(
Ex d , Ey d , Ez d , Hx d , Hy d , Hz d ,
stepsdx , stepsdy , stepsdz ,THREAD COUNT, n i )
/ / . . .
ca l l hkernel<<<dimGrid , dimBlock>>>(
Ex d , Ey d , Ez d , Hx d , Hy d , Hz d ,
stmudx , stmudy , stmudz ,THREAD COUNT, n i )

In Figure 5.8a, sequential cells are allocated to each thread. In this case,
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threads of a single block are accessing different locations of the memory concur-

rently which lead to uncoalesced memory access [10]. On the other hand, when

cells are assigned to threads as shown in Figure 5.8b, the access to the memory

is coalesced because adjacent memory locations are processed by threads within

a block simultaneously [10]. Listing 5.2 shows the coalesced implementation

applied in this research.

Thread 1

Thread 1

Thread 3

Thread 2
Thread 2
Thread 3

A block[4,5]

x

y

z

A block [4,1]

A block[4,5]

A block [4,1]

Thread 1

Thread 2
Thread 3
Thread 1

Thread 2
Thread 3

x

y

z

(a) Uncoalesced memory access (b) Coalesced memory access

Figure 5.8: Patterns of memory access for multiple threads in a block [10].
[a, b] means [blockIdx%x, blockIdx%y].

Listing 5.2: Structure of the coalesced kernel implementation [10].

k=blockIdx\%x+1
j=blockIdx\%y+1
i=threadIdx\%x+1
Do while ( i . l e . gridDim\%x )

// Ca lcu la te Ex( i , j , k ) ,
//Ey( i , j , k ) and Ez( i , j , k )
i=i+THREAD COUNT

end Do
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5.4 Implementations of 3D HABC on GPU hard-

ware

The mechanism of implementing the HABC is based on updating the electric

fields and the magnetic fields at several regions of the FDTD domain according

to a certain calculations. Those regions can be organized in several ways in order

to map them to the kernels. Based on the organization, the number of kernel

invocations needed for the computation is determined. The dimensions of the

HABC parts within the FDTD space are used for the allocation of the blocks

and the threads within each kernel. The design of the kernel should optimize

the use of the GPUs to speedup the calculations. In this chapter, two different

kernel designs based on the characteristics of the HABC are presented. The two

implementations of the HABC are integrated with the GPGPU implementation

of the FDTD method in Section 5.3. Memory coalescing is used in both of the

GPGPU implementations of the HABC to improve the performance of accessing

the global memory.

5.4.1 First implementation

The first GPGPU implementation of the 3D HABC is based on the GPGPU

implementation of the FDTD presented in Section 5.3. The blocks within the

kernel are allocated in two dimensions. The x and y indices of each block are

mapped to the y and z dimensions of the FDTD space respectively. Threads

within each block are allocated in one dimension, and the x index of the threads

is mapped to the x dimension of the FDTD space. This implementation minimizes

the number of the kernel invocations. As shown in Listing 5.3, the implementation

requires two kernel calls. The first kernel calculates the electric arrays Ex, Ey

and Ez and the second kernel computes the magnetic arrays Hx, Hy and Hz.

Listing 5.4 presents the code of the kernel that is used to calculate the electric

arrays Ex, Ey and Ez in the first GPGPU implementation of the 3D HABC.

5.4.2 Second implementation

In the second implementation, the 6 surfaces of HABC are divided into 3 groups

as shown in Figure 5.9, Figure 5.10 and Figure 5.11. Since the two planes in

each group have the same 2D dimensions, we use one kernel in calculating each
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Listing 5.3: Launching kernels with multiple blocks and multiple threads to cal-
culate HABC

type ( dim3 ) : : dimGrid , dimBlock
dimGrid = dim3 (nk−1,nj −1 ,1)
dimBlock = dim3 (THREAD COUNT, 1 , 1 )
/ / . . .
ca l l habce<<<dimGrid , dimBlock>>>(
Ex d , Ey d , Ez d , Hx d , Hy d , Hz d , ni , i t l 1 ,
i t l 2 , j t l 1 , j t l 2 , kt l1 , kt l2 , de l ta x , de l ta y ,
de l t a z , d e l t a t ,THREAD COUNT)
/ / . . .
ca l l habch<<<dimGrid , dimBlock>>>(
Ex d , Ey d , Ez d , Hx d , Hy d , Hz d , ni , i t l 1 ,
i t l 2 , j t l 1 , j t l 2 , kt l1 , kt l2 , de l ta x , de l ta y ,
de l t a z , d e l t a t ,THREAD COUNT)

Listing 5.4: Structure of the single kernel implementation to calculate HABC

k=blockIdx\%x
j=blockIdx\%y
i=threadIdx\%x
Do while ( i . l e . gridDim\%x )

i f ( ( i . eq . i t l 1 ) . or . ( i . eq . i t l 2 ) ) then
// Ca lcu la te Ey( i , j , k ) and Ez( i , j , k )

end i f
i f ( ( j . eq . j t l 1 ) . or . ( j . eq . j t l 2 ) ) then

// Ca lcu la te Ex( i , j , k ) and Ez( i , j , k )
end i f
i f ( ( k . eq . k t l 1 ) . or . ( k . eq . k t l 2 ) ) then

// Ca lcu la te Ex( i , j , k ) and Ey( i , j , k )
end i f
i=i+THREAD COUNT

end Do
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group. Blocks are allocated in one dimension and the x index of each block is

mapped to one of the two dimensions of the surface. Threads within each block

are also allocated in one dimension, and the x index of the threads is mapped

to the other dimension of the surface. As shown in Figure 5.9, Figure 5.10 and

Figure 5.11, the parameters blockIdx%x and threadIdx%x are assigned to the

two dimensions of the planes. For instance, in Figure 5.9 which represents the x

direction we have two planes of size Ny×Nz. In this case, the number of blocks is

equal to Ny, which is 4, and the number of threads within each block is equal to

Nz, which is 5. For the cell in the upper corner shown in Figure 5.9 blockIdx%x

is equal to 4 since it is the fourth cell in y direction and threadIdx%x is equal to

5 because it is the fifth cell in z direction.

Listing 5.5 presents the kernels calls, each kernel is used to calculate two

planes as shown in Listing 5.6.

A thread with (4,5)

Block 1

Block 2

Thread 1

Thread 2

x

yz

Figure 5.9: The Huygens surfaces of the HABC are divided into 3 groups.
The x direction. (a,b) means (blockIdx%x , threadIdx%x).
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Listing 5.5: Launching multiple kernels with multiple blocks and multiple threads
to calculate HABC

ca l l habcei<<<nk−1,nj−1>>>(
ey d , ez d , hy d , hz d , iHuyg , iHuyg2 ,
de l ta x , de l ta y , de l t a z , d e l t a t )

ca l l habcej<<<nk−1,ni−1>>>(
ex d , ez d , hx d , hz d , jHuyg1 , jHuyg2 ,
de l ta x , de l ta y , de l t a z , d e l t a t )

ca l l habcek<<<nj−1,ni−1>>>(
ex d , ey d , hx d , hy d , kHuyg1 , kHuyg2 ,
de l ta x , de l ta y , de l t a z , d e l t a t )

/ / . . .

ca l l habchi<<<nj−1,nk−1>>>(
ey d , ez d , hy d , hz d , iHuyg1 , iHuyg2 ,
de l ta x , de l ta y , de l t a z , d e l t a t )

ca l l habchj<<<ni−1,nk−1>>>(
ex d , ez d , hx d , hz d , jHuyg1 , jHuyg2 ,
de l ta x , de l ta y , de l t a z , d e l t a t )

ca l l habchk<<<ni−1,nj−1>>>(
ex d , ey d , hx d , hy d , kHuyg1 , kHuyg2 ,
de l ta x , de l ta y , de l t a z , d e l t a t )

Listing 5.6: Structure of the multiple kernels implementation to calculate HABC

k=blockIdx\%x
j=threadIdx\%x
i=iHuyg1
// Ca lcu la te Ey( i , j , k ) and Ez( i , j , k )
i=iHuyg2
// Ca lcu la te Ey( i , j , k ) and Ez( i , j , k )
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Figure 5.10: The Huygens surfaces of the HABC are divided into 3 groups.
The y direction. (a,b) means (blockIdx%x , threadIdx%x).
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Figure 5.11: The Huygens surfaces of the HABC are divided into 3 groups.
The z direction. (a,b) means (blockIdx%x , threadIdx%x).
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5.5 Implementations of 3D CFS-PML on GPU

hardware

The calculation of the CFS-PML extends the FDTD domain. Assuming that the

thickness of the CFS-PML (ncell) is equal to 2, 2 cells will be added in to both

sides of each direction to calculate the arrays of the electric and the magnetic

fields. However, the organization of the added cells and the calculation of the

CFS-PML depend on the calculated field. For instance, Figure 5.12 shows the

areas in which the CFS-PML calculates Ex and Hx assuming that ncell is equal

to 2 cells. Those areas are computed in different loops using complex equations.

Figure 5.13 illustrates the regions required to calculate Ey and Hy and Figure

5.14 demonstrates where the CFS-PML computes Ez and Hz when ncell is equal

to 2. The simplest way to implement the CFS-PML on the GPUs is to map

the extended 3D domain to a single kernel. The kernel is broken into blocks in

2D, where the x and y indices of the blocks are assigned to two of the three

dimensions of the extended domain. Blocks are further divided into threads in

one dimension and the x index of the threads is set to the third dimension of

the extended domain. The calculation of the CFS-PML equations requires large

amount of data, thus memory coalescing is used in the GPGPU implementations

of the CFS-PML to improve the performance of accessing the global memory.

5.6 Numerical experiments

In this section the performance of the GPGPU implementations of the FDTD

with the HABC and the CFS-PML is presented. The simulations settings and

the computational environments are also illustrated in this section.

5.6.1 Simulations Settings

Figure 5.15 shows the environmental settings for the GPGPU numerical exper-

iments. The size of the FDTD space is 2563 with the spatial step ∆x = ∆y =

∆z = 1mm. The metal object is at the center of the FDTD domain. One cell from

the metal object is the Huygens excitation. The incident wave of the Huygens
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Figure 5.12: The CFS-PML regions to calculate Ex and Hx with ncell= 2.

excitation is a Gaussian pulse which has the following equation:

Einc(t) = 100e
−

h
t−2.5·10−9

0.5·10−9

i2

.

The Huygens excitation is also implemented in CUDA on the GPUs. The HABC

is 3 cells away from the metal object and 10 cells to the outer PEC in the HABC
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Figure 5.13: The CFS-PML regions to calculate Ey and Hy with ncell= 2.

simulations. Similarly, in case of the CFS-PML experiments, the thickness of

the PML ncell is equal to 10 cells and it started 3 cells away from the object.

Single-precision floating-point computations were used in the simulations.
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Figure 5.14: The CFS-PML regions to calculate Ez and Hz with ncell= 2.

5.6.2 Simulations Results

5.6.2.1 Fermi

In November 2012, the 40th edition of the TOP500 list of the world’s fastest super-

computers was released. Japan’s K computer developed by Fujitsu Inc. at RIKEN

was ranked as the third fastest supercomputer [46]. In RIKEN Integrated Cluster

of Clusters (RICC), GPU accelerators are installed on the Multi-purpose Parallel
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Figure 5.15: The simulations setting of the GPGPU implementations.

Cluster. RICC contains 100 nodes of NVIDIA Tesla C2075 GPUs (Fermi). The

specifications of Fermi Tesla C2075 are shown in table 5.1. The CPUs in the

Multi-purpose Parallel Cluster are Intel Xeon X5570. Our simulations were run

on Fermi GPUs at RICC to analyze the performance.

Figure 5.16 shows the performance of the two GPGPU implementations of the

HABC and the GPGPU implementation of the CFS-PML on Fermi GPUs when

the 6 FDTD arrays are transferred from GPUs to CPUs at each time step for

observation (data output). On the other hand, Figure 5.17 illustrates the perfor-

mance of the three GPGPU implementations on Fermi GPUs in case of no data

output, in other words, no data movement between the GPUs and the CPUs. The

curves in Figures 5.16 and 5.17 represent the change in the number of threads per

block and the corresponding number of the FDTD cells calculated per second. In

Figures 5.16 and 5.17, the red line represents the performance of first GPGPU

implementation of the HABC, the green line represents the performance of second

GPGPU implementation of the HABC and the blue line represents the GPGPU

implementation of the CFS-PML. It is clear from Figures 5.16 and 5.17 that the
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Fermi

GPU name Tesla C2075

Number of streaming
multiprocessors

14

Number of SP cores per
SM

32

L2 level cache size per
SP (KB)

768

Maximum threads per
block

1024

GPU clock (MHz) 575

Clock speed per stream-
ing processor core
(MHz)

1150

Type of global memory GDDR5

Global memory size(GB) 6

Bus width(bit) 384

Global memory band-
width (GB/s)

144

Peak performance
of GPGPU in single
precision(GFLOPS)

1030

Peak performance of
GPGPU in double
precision(GFLOPS)

515

Table 5.1: Specifications of Tesla Fermi C2075 GPUs.

second implementation of the HABC has better performance than the first imple-

mentation of the HABC and the implementation of the CFS-PML on GPUs over

all selections of the number of threads per block. The first GPGPU implementa-

tion of the HABC gives better performance than the GPGPU implementation of

the CFS-PML when the number of threads per block is equal to or greater than

32. As shown in Figures 5.16 and 5.17, all of the three GPGPU implementations

give their best results when the number of threads is equal to 64. And when the

number of threads per block is equal to 64 both of the GPGPU implementations

of the HABC give better performance than the GPGPU implementation of the
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Figure 5.16: Performance of the two GPGPU implementations of the HABC and
the CFS-PML on Tesla Fermi C2075 GPUs. The arrays of electric and magnetic
fields are moved from GPUs to CPUs at each time step for observation.

CFS-PML. The performance of the three GPGPU implementations improves in

case of no data output as illustrated in Figures 5.16 and 5.17.

5.6.2.2 Kepler

The GPUs in the parallel cluster of Kuyushu University are NVIDIA Tesla

K20Xm (Kepler). Kepler is the latest Tesla GPU architecture. The specifica-

tions of Kepler Tesla K20Xm are shown in table 5.2. The CPUs in Kepler are

Intel Xeon E5-2680. Our simulations were run on Kepler GPUs at Kuyushu

university HPC to evaluate the performance.

Figure 5.18 presents the performance of the first GPGPU implementation of

the HABC and the GPGPU implementation of the CFS-PML on Kepler GPUs.

Just like the results of Fermi, the curves represent the change in the number of

threads per block and the corresponding number of the FDTD cells calculated

per second. The red and blue lines represent the performance of first GPGPU

implementation of the HABC and the GPGPU implementation of the CFS-PML
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Figure 5.17: Performance of the two GPGPU implementations of the HABC and
the CFS-PML on Tesla Fermi C2075 GPUs. No data is moved from GPUs to
CPUs for observation (no data output).

respectively. The performance results of the Kepler GPUs agree with the perfor-

mance results of Fermi GPUs. When the number of threads per block is equal

to or greater than 32, the performance of the first GPGPU implementation of

the HABC is better than the performance of the GPGPU implementation of the

CFS-PML. Also, from Figure 5.18, both of the GPGPU implementations give

their best performance when the number of threads is equal to 64 where the

performance of the GPGPU implementation of the HABC is better than the

GPGPU implementation of the CFS-PML. However, although the computations

on the GPUs in Kepler are faster than the computations on the GPUs in Fermi,

the performance results of Fermi GPUs is slightly better than the performance

results of Kepler GPUs. That is because the communication between the GPUs

and the CPUs in Kepler is slower than the communication between the GPUs and

the CPUs in Fermi. And since our experiments had outputted the electric field
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Kepler

GPU name Tesla K20Xm

Number of streaming
multiprocessors

14

Number of SP cores per
SM

192

L2 level cache size per
SP (KB)

1536

Maximum threads per
block

1024

GPU clock (MHz) 732

Clock speed per stream-
ing processor core
(MHz)

735

Type of global memory GDDR5

Global memory size(GB) 6

Bus width(bit) 384

Global memory band-
width (GB/s)

250

Peak performance
of GPGPU in single
precision(GFLOPS)

3950

Peak performance of
GPGPU in double
precision(GFLOPS)

1310

Table 5.2: Specifications of Tesla Kepler K20Xm GPUs.

arrays, which required moving the data from the GPUs to the CPUs at each time

step, the speed of the communication between the CPUs and the GPUs affected

the performance of the simulations.

5.6.3 Conclusion

The new absorbing boundary condition HABC proposed in this thesis is simpler

in implementation than the most widely used ABC the CFS-PML. Furthermore,

the experiments in this section proofed that the HABC has better performance

than the CFS-PML when parallelised on GPUs. Two GPGPU implementations



CHAPTER 5. PARALLELISATION ON GRAPHICS PROCESSING UNITS99

First GPGPU implementation of HABC

GPGPU implementation of CFS-PML

Number of threads per block

C
e
ll
s/

se
co

n
d

3 · 107

3.5 · 107

4 · 107

4.5 · 107

5 · 107

5.5 · 107

6 · 107

6.5 · 107

7 · 107

0 100 200 300 400 500

Figure 5.18: Performance of the first GPGPU implementation of the HABC and
the CFS-PML on Tesla Kepler GPUs.

of the HABC were introduced, tested and compared with the GPGPU implemen-

tation of the CFS-PML. The second GPGPU implementation of the HABC has

better performance than the first GPGPU implementation of the HABC and the

GPGPU implementation of the CFS-PML. All of the three GPGPU implementa-

tions give their best results when the number of threads equals 64. And when the

number of threads equals 64, the performance of both GPGPU implementations

of the HABC is better than the performance of the GPGPU implementation of

the CFS-PML.



Chapter 6

Parallelisation on Shared

Memory Architecture

Parallel computing is the use of multiple processors simultaneously to calculate a

computational problem [5]. Cores in multi-core processors mentioned in Chapter

4 can have access to their own memory as in distributed memory architecture, or

can access one global memory as in shared memory architecture. In shared mem-

ory architecture, the simultaneous access to the global main memory by the mul-

tiple cores is controlled by the programmer. Open Multi-Processing (OpenMP) is

an Application Program Interface (API) specified for shared memory parallelism

[41].

OpenMP is the most popular option to parallelize scientific computation on

shared memory system [41]. Parallelizing an existing serial code using OpenMP

is done by adding special directives. Those directives are responsible for data

management and synchronization since the main memory is shared by the mul-

tiple cores. As the number of cores increases, the overhead of accessing the main

memory also increases. That is because, the speed of accessing the main mem-

ory by the multiple cores is restricted by the memory bandwidth mentioned in

Chapter 4.

6.1 Threads in Shared Memory Architecture

When the compiler reads the OpenMP directives, it knows that the parallel part

of the program is reached. As a result, the master thread swans multiple threads,

which are executed concurrently on separate cores. The number of generated

100
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threads can be specified in the OpenMP directives. For instance, if the processor

contains 8 cores, up to 8 threads can be generated for the parallel computations.

When all threads finish running, which is also detected by the OpenMP directives,

the master thread terminates the multiple threads and continues executing the

rest of the program. This process is illustrated in Figure 6.1. Increasing the

Thread0

Thread1

Thread2

Thread3
Master Thread

Thread4

Thread5

Thread6

Thread7

Master Thread

Figure 6.1: Threads in parallel computing.

number of threads lead to speedup the computations. Scaling is used to quantify

the speedup and the parallel efficiency when the number of thread increases.

6.2 Strong Scaling and Weak Scaling

The scalability of a parallel program is the evaluation of the execution time

relative to the number of processors running that program [47]. Measuring the

speedups when the number of the cores increases while the size of the problem

is fixed is called strong scaling [47]. However, measuring the speedups while

increasing the size of the problem when adding more threads is called the weak

scaling.

Amdahl’s law [48] states that the speedup ratio of a fixed-size parallel program
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is:

S(N) =
1

(1− P ) + ( P
N

)
(6.1)

where S is the speedup ratio, N is the number of the threads executing the

parallel program, P is the percentage of the parallel part of the program, and

(1− P ) is the percentage of the serial part of the program.

In strong scaling, since the total size of the problem stays fixed as the number

of threads increases, the computational size allocated to each thread decreases.

Figure 6.2 demonstrates how the size of the computation allocated to each thread

decreases when the number of threads increases in strong scaling. Furthermore,

when the size of the computational part assigned to each thread is reduced as

the number of threads increases, the execution time for each thread will also

decreases. Figure 6.3 shows the decrease in the computational time when the

number of threads increases in strong scaling.

The speedup in strong scaling depends on the ratio of the parallel part and

the serial part of the program. Although strong scaling reduces the size of com-

putations allocated to each thread in the parallel part of the program, the size of

the serial part of the program is fixed. This strongly affects the overall speedup

of the program. Also, more data transfer is needed as the number of threads

increases. The overall speedup in strong scaling is affected by the increase in the

data transfer because the speed of the data transfer is relatively slow.

In weak scaling, the size of computation assigned to each thread is fixed. Thus,

as the number of threads increases, the overall size of the problem increases.

Figure 6.4 demonstrates the size of the computations allocated to each thread

when the number of threads increases in weak scaling.

When the number of threads increases in weak scaling, the size of the com-

putation allocated to each thread is fixed. Since the size of the serial part of the

program is also fixed, the execution time is expected to be unchanged when more

threads are used in the parallel calculations. Theoretically, although the size of

the problem is increasing in proportion to the number of threads in weak scaling,

the computational time should not be affected as shown in Figure 6.5
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Figure 6.2: The size of the computations allocated to each thread as the number
of threads increases in strong scaling.
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Figure 6.3: The variation of the computational time when the number of threads
increases in strong scaling.

6.3 Speedup Ratio and Parallel Efficiency

The speedup ratio for a code is how much faster it runs in parallel relative to

the serial execution for the same code [47][49]. If T1 is the execution time for the

serial code and TN is the execution time for the parallel program with N threads,

the speedup ratio is given by

S(N) =
T1

TN

. (6.2)

Parallel efficiency is how each core is used effectively when the number of

threads increases [49]. When the size of a computational problem is fixed (strong
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Figure 6.4: The size of the computations allocated to each thread as the number
of threads increases in weak scaling.

scaling), the parallel efficiency is calculated as:

E(N) =
S(N)

N
=

T1

NTN

. (6.3)
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Figure 6.5: The variation of the computational time when the number of threads
increases in weak scaling.

In weak scaling, assuming that the time required for the computation should

not increase as the number of threads increases, the weak scaling efficiency is

defined as [50]:

E(N) =
T (1)

T (N)
. (6.4)

The code of the FDTD with the HABC and the CFS-PML is parallelized

using OpenMP on shared memory architecture. The parallel efficiency of the

HABC for both strong scaling and weak scaling is studied and compared with

the CFS-PML.

6.4 Numerical Experiments

The computations of the FDTD method requires huge amount of data. The Large

Memory Capacity Server in RIKEN Integrated Cluster of Clusters (RICC) High

Performance Computing (HPC) system was used for the experiments. RICC’s

Large Memory Capacity Server is Altix 450, that consists of 8 cores and 120GB
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shared main memory. The scalability of the parallelized HABC code with OpenMP

on shared memory system is presented in this section.

6.4.1 Environmental Settings

In the HABC and the CFS-PML OpenMP codes, the FDTD space was filled with

vacuum. The FDTD space was excited at the center using a soft point source

with the Gaussian waveform. The serial and the parallel programs were compiled

and run on Altix 450 in RICC.

In strong scaling experiments, the fixed size of the FDTD space was 10003

and the memory requirement was 100GB. In case of weak scaling, the size of the

FDTD space allocated to each thread was set to 5003 and the memory requirement

per thread is 12.5GB. When the number of threads increases in weak scaling from

1 to 8 the overall size of the parallel program changes from 5003 to 10003. The

variation of the size of the FDTD space in weak scaling and the corresponding

memory usage are shown in Table 6.1 and Figure 6.6.

Number of The size of the Memory Usage
Threads FDTD space (GB)

1 5003 12.5

2 6303 25

3 7213 37.5

4 7943 50.1

5 8553 62.5

6 9093 75.1

7 9563 87.4

8 10003 100

Table 6.1: The variation of the size of the FDTD space and the corresponding
memory usage when the size of the FDTD space allocated to each thread is set
to 5003 in weak scaling.

6.4.2 Experimental Results

The practical applications of the FDTD method, such as human body simulations

require a very large domain and a use of huge amount of data. Thus, in the FDTD
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Figure 6.6: The variation of the size of the FDTD space and the corresponding
memory usage when the size of the FDTD space allocated to each thread is set
to 5003 in weak scaling.

calculations, the total computational time depends on the speed of data access.

When the number of threads increases in the OpenMP code, more threads are

sharing the access to the global memory, which causes an overhead to the speed

of data access. This overhead affect the overall execution time as the number of

threads grows.

In the strong scaling simulations, the size of the FDTD domain is set to 10003,

which requires large data size of 100GB. As illustrated in Figure 6.7, when the

number of threads increases, the speedup ratio of the OpenMP code increases for

both HABC and CFS-PML. However, it is clear from the figure that the speedup

ratio of the HABC code is better than the CFS-PML OpenMP code.

Figure 6.8 shows the parallel efficiency of the OpenMP codes when the size

of the FDTD space is fixed to 10003. When the number of threads used for

the parallel program increases from 1 to 8, the parallel efficiency of the OpenMP

codes decreases because the overhead of accessing the shared main memory by the

threads increases. The HABC OpenMP code has better efficiency than CFS-PML

OpenMP code over all number of threads.
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Figure 6.7: The speedup ratio of the OpenMP codes in strong scaling. The fixed
size of the FDTD space is 10003 and the memory usage is 100GB.

The weak scaling efficiency is presented in Figure 6.9 when the number of

threads varies from 1 and 8 and the size of the FDTD space assigned to each

thread is 5003. When the number of threads increases, the size of the FDTD

space increases and the corresponding memory usage also increases which lead to

the decrease in the weak scaling efficiency of the OpenMP codes. Just like the

case of strong scaling, the HABC is more efficient than the CFS-PML over all

number of threads in weak scaling.

Figure 6.10 shows the performance of the HABC and CFS-PML implemen-

tations on shared memory architecture. The curves in Figure 6.10 represent the

change in the number of threads and the corresponding number of the FDTD

cells calculated per second. As illustrated in Figure 6.10, the HABC performs

better than the CFS-PML on shared memory architecture.

6.4.3 Conclusion

The execution times of the OpenMP codes are compared with the serial time.

The FDTD codes with the HABC and the CFS-PML are accelerated when paral-

lelized with OpenMP on shared memory architecture. As the number of threads
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Figure 6.8: The parallel efficiency of the OpenMP codes in strong scaling. The
fixed size of the FDTD space is 10003 and the memory usage is 100GB.

increases the speedup of the parallel programs increases. In strong scaling, as

the number of threads varies from 1 to 8, the speedup ratio of the HABC codes

increases from 1 to 3. On the other hand, the increase of the speedup ratio in

case of the CFS-PML is less than 2 as the number of threads varies from 1 to

8. Thus, the HABC code scales better than the CFS-PML code. The efficiencies

of the HABC OpenMP codes in strong scaling and weak scaling are equivalent.

Similarly, the CFS-PML OpenMP codes have the same efficiency in strong scal-

ing and weak scaling. In both strong scaling and weak scaling the HABC is more

efficient than the CFS-PML through all number of threads used to parallelize the

codes. However, the speed of the memory access highly affects the total compu-

tational time in the FDTD calculations, since the FDTD method requires large

amount of data. Thus, the efficiency of the OpenMP code decreases when the

number of threads increases because more threads are sharing the access to the

global memory and more communication time is needed.
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Figure 6.9: The weak scaling efficiency of the OpenMP codes. The FDTD space
vary from 5003 to 10003. The size of the FDTD space is set to 5003 for each
thread.
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Figure 6.10: Performance of the HABC and CFS-PML implementations on shared
memory architecture.



Chapter 7

Practical Application with

Human Body

High body temperatures are often caused by illnesses such as fever or heat stroke

[51]. However, throughout history, heat has been used as a therapy for the human

body. Hyperthermia, which is also called thermal therapy or thermotherapy, is

a type of cancer treatment in which body tissue is exposed to high temperatures

[52]. Very high temperatures can kill cancer cells outright, but they can also injure

or kill normal cells and tissues [51]. Warmer temperatures make changes inside

the cells and can render the cells more likely to be affected by other treatments

such as radiation therapy or chemotherapy.

Hyperthermia is almost always used in conjunction with other forms of cancer

therapy such as radiation therapy and chemotherapy [52]. For instance, the inner

part of the tumour masses usually contains oxygen-deprived (hypoxic) cells. The

hypoxic cells are sensitive to heat and resist radiation. Thus, when hyperther-

mia is combined with radiation, the radiation will kill the outer oxygenated cells

while hyperthermia will make low oxygen inner cells more susceptible to radi-

ation damage [53]. In 2009, the Berlin European Society of Medical Oncology

presented a study on Sarcoma using chemotherapy alone, or chemotherapy plus

hyperthermia. The study showed that in a randomised trial, the group also using

hyperthermia (almost) doubled their survival times from a mean of 18 months to

over 32 months [53].

There are several types of hyperthermia such as local hyperthermia, regional

hyperthermia, and whole body hyperthermia [54]. These types can be applied

to the human body using different methods. For example, microwaves, magnets,

112
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warm water blankets, hot wax, inductive coils and chambers may be used to heat

up the human body. This thesis uses Huygens excitation method to heat up the

human body with electromagnetic waves as an application of hyperthermia. The

Huygens excitation is applied to the human body with the SM-HABC and the

results are compared with those of the CFS-PML.

7.1 Numerical Modeling of the Human Body

In this thesis, the FDTD method is used to model the human body. This is

done by discretizing the human body and assigning the discretized space (tissues

and organs) to its corresponding dielectric parameters. These parameters vary

over frequency. The single-pole Debye is used to model the frequency-dependent

parameters.

The RIKEN Advanced Science Institute used Magnetic Resonance Imaging

(MRI) to scan the human body at every 1mm. They segmented each MRI image

using several medics and produced a 1mm3 voxel of Digital Human Phantom

(DHP). The DHP data was provided by the RIKEN Bio-research Infrastructure

Construction Team under the non-disclosure agreement between the University of

Manchester and RIKEN. Our group is using the DHP data provided by RIKEN.

This DHP data is transformed to a set of frequency-dependent media parameters

which is used in the Debye FDTD computations. This transformation is based

on Tables 7.1 and 7.2 which represent the media parameters of the human tis-

sues. Each voxel in the DHP has an identifying number that is mapped to the

corresponding tissue according to Tables 7.1 and 7.2. For instance, if the DHP

data gives the identifying number 45 for a voxel, then the corresponding Debye

parameters are σ = 0.10401546 (S/m), εS = 14.16905880, ε∞ = 7.36329556 and

τD = 34.1064989 (ps) based on Table 7.2. The Debye media parameters in Tables

7.1 and 7.2 were produced by the measurement data provided by the U.S. Air

force. The size of the data for the whole human body is 265×490×1682. In this

thesis, the whole human body is placed at the center of the FDTD space with

the SM-HABC or the CFS-PML surrounding the human body. The Huygens

excitation is applied to the human body in simulations to perform hyperthermia.
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Table 7.1: Parameters of the human tissues. Part(1).

Tissue
number

Tissue name σ(S/m) εS ε∞ τD(ps)

0 air 0.00000000 1.00000000 1.00000000 0.00000000

1 cerebral cortex 0.59515458 56.44398499 33.05709076 35.1972652

2 white matter 0.34836939 41.28079033 24.37136650 33.5850722

3 cerebellum 0.82605255 58.15469742 35.19484711 68.2758780

4 midbrain 0.34836939 41.28079033 24.37136650 33.5850722

5 eyeball 1.44514167 67.71049214 10.30803776 8.27143302

6 optic nerve 0.35986477 34.74881363 20.98018456 36.5079009

7 cornea 1.06887341 57.84246635 32.37210846 28.7477611

8 the crystalline lens 0.34613180 37.82515335 18.28276825 21.0985136

9 pituitary gland 0.80907071 60.54281044 27.70847893 17.7068464

10 thalamus 0.59515458 56.44398499 33.05709076 35.1972652

11 hypothalamus 0.59515458 56.44398499 33.05709076 35.1972652

12 pineal gland 0.80907071 60.54281044 27.70847893 17.7068464

13 tongue 0.69344097 56.52260780 28.25727081 20.4540135

14 cerebrospinal fluid 2.14390564 70.39963913 33.14797211 18.1622616

15 right suprarenal body(gland) 0.80907071 60.54281044 27.70847893 17.7068464

16 urinary bladder 0.30010962 19.33148861 9.67463303 20.8416045

18 colon (large intestine) 0.71641898 61.12129974 34.66533279 31.1704239

20 duodenum 0.91899437 66.27923393 31.50330162 18.9756596

21 esophagus 0.91899437 66.27923393 31.50330162 18.9756596

23 gall bladder 1.04225028 60.73483276 28.18050003 15.9106617

24 heart 1.01880646 63.54899597 34.90967941 28.8596560

25 right kidney 0.85720283 67.50839424 39.85999298 60.6079908

26 liver 0.52030158 50.15293502 27.98551559 35.6627956

27 right lung 0.45216662 38.25424575 21.43600845 27.3953464

29 pancreas 0.80907071 60.54281044 27.70847893 17.7068464
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Table 7.2: Parameters of the human tissues. Part(2).

Tissue
number

Tissue name σ(S/m) εS ε∞ τD(ps)

30 prostate gland 0.80907071 60.54281044 27.70847893 17.7068464

31 small intestine 1.70134962 65.79007912 39.19070053 45.8777842

32 spleen 0.84441698 62.58494759 37.11508179 42.6902229

33 stomach 0.91899437 66.27923393 31.50330162 18.9756596

37 nasal cavity 0.00000000 1.00000000 1.00000000 0.00000000

38 thyroid gland 0.80898708 60.55047417 27.73882103 17.7273439

39 trachea 0.56548506 43.18475723 22.14025688 22.5001805

45 bone 0.10401546 14.16905880 7.36329556 34.1064989

48 fat 0.03710634 5.53071189 3.99812841 23.6329289

49 muscle 0.74710494 56.93144607 28.00134277 18.6721420

51 skin 0.54073572 47.93014336 29.85054779 43.6257593

55 diaphragm 0.74710494 56.93144607 28.00134277 18.6721420

56 seminal vesicle 0.80907071 60.54281044 27.70847893 17.7068464

57 body of erectile tissue 1.25574398 62.90047836 30.59756851 21.0197831

80 spinal cord 0.35986477 34.74881363 20.98018456 36.5079009

82 paranasal sinus 0.00000000 1.00000000 1.00000000 0.00000000

83 testicle 0.93375176 62.06441498 31.30603409 21.1258597

84 left kidney 0.85720283 67.50839424 39.85999298 60.6079908

85 left lung 0.45216662 38.25424575 21.43600845 27.3953464

86 epiglottis 0.49346393 44.55864907 19.39198685 29.9815103

87 oral cavity 0.00000000 1.00000000 1.00000000 0.00000000

88 external ear 0.00000000 1.00000000 1.00000000 0.00000000

89 salivary gland 0.80907071 60.54281044 27.70847893 17.7068464

90 middle ear 0.05478248 7.31782723 3.96209121 37.7117643

91 inner ear 2.14390564 70.39963913 33.14797211 18.1622616

92 pharynx 0.56548506 43.18475723 22.14025688 22.5001805

94 left suprarenal body(gland) 0.80907071 60.54281044 27.70847893 17.7068464
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7.2 Numerical experiments

The FDTD space has a human body at the center. The Huygens excitation

planes are placed around the human body to heat it up as an application of

hyperthermia. The direction of the wave is from the front of the human body to

the back of the human body, as shown in Figure 7.1. The incident wave of the

Human body

Huygens excitation

Direction of the waves

Figure 7.1: The Huygens excitation planes are placed around the human body
and the direction of the wave is from the front to the back of the human body.

Huygens excitation is a Gaussian pulse which has the following equation:

Einc(t) = 100e
−

h
t−2.5·10−9

0.5·10−9

i2

.
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The size of the FDTD domain is 285× 510× 1707. In the SM-HABC experi-

ments, from the outer PEC of the FDTD domain, the number of stretched cells

(ng) is equal to 16 while the HABC planes are placed 17 cells away. Similarly, in

the case of the CFS-PML experiments, the CFS-PML starts 17 cells away from

the outer PEC of the FDTD domain, and the thickness of the CFS-PML (ncell)

is equal to 17.

Figure 7.2 shows a snapshots of a 2D-colored plane observations of the FDTD

domain in the SM-HABC experiments when y is constant. In Figure 7.2, the

snapshots show the FDTD domain including the HABC and the stretched cells

which are out the Huygens excitation. Figure 7.2(a), Figure 7.2(b), and Figure

7.2(c) show the snapshots at t = 250∆t, t = 650∆t and t = 800∆t, respectively.

Snapshots of a 2D-colored plane observations of the FDTD domain in the

CFS-PML experiments when y is constant are displayed in Figure 7.3. Unlike

Figure 7.2, in Figure 7.3 the snapshots illustrate only the Huygens excitation

planes and what is inside those planes. The CFS-PML cells do not appear in the

snapshots in Figure 7.2. The snapshots at t = 250∆t, t = 650∆t and t = 800∆t

are presented in Figure 7.3(a), Figure 7.3(b), and Figure 7.3(c), respectively.

7.3 Conclusion

The Huygens excitation heated up the human body as a method of applying the

hyperthermia. The human body was placed at the center of the FDTD space

surrounded by the Huygens excitation planes. The SM-HABC was tested with

the human body and the Huygens excitation. The results of the SM-HABC

experiments ware comparable to the results of the CFS-PML experiments. In

addition, for 10 time-steps, the SM-HABC simulations took 154 seconds and the

CFS-PML simulations took 283 seconds. Thus, the time required to simulate

the whole human body with the SM-HABC is better than the time required to

simulate the whole human body with the CFS-PML.
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(a) At t = 250∆t. (b) At t = 650∆t. (c) At t = 800∆t.

Figure 7.2: A snapshots of a 2D colored plane observations of the FDTD domain
that has a human body at the center surrounded with Huygens excitation planes
in the SM-HABC experiments. y is constant and the snapshots are at t = 250∆t,
t = 650∆t and t = 800∆t. The snapshots show the FDTD domain including the
HABC and the stretched cells which are out the Huygens excitation planes.
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(a) At t = 250∆t. (b) At t = 650∆t. (c) At t = 800∆t.

Figure 7.3: A snapshots of a 2D colored plane observations of the FDTD domain
that has a human body at the center surrounded with Huygens excitation planes
in the CFS-PML experiments. y is constant and the snapshots are at t = 250∆t,
t = 650∆t and t = 800∆t. The snapshots illustrate the FDTD domain starting
from the Huygens excitation planes and what is inside the Huygens excitation
planes. The CFS-PML cells do not appear in the snapshots.



Chapter 8

Conclusion and Future Works

8.1 Conclusion

The HABC is a new boundary condition that is simpler to implement than the

most widely used ABC the CFS-PML. The HABC is based on the idea of cancel-

ing the outgoing wave by introducing the opposite field on the Huygens surface.

This thesis showed that the HABC is comparable to the CFS-PML in absorbing

the high frequency traveling waves where the domain is large and the reflection

of the evanescent waves is negligible. This can be achieved even when the HABC

is placed 3 cells away from the object instead of the outer boundary. Since the

HABC can be placed close to the structure in the FDTD domain, it is possible to

combine it with other ABCs. The combination of the HABC and the SM ABC is

effective because the HABC can absorb the high frequency traveling waves and

the SM ABC can absorb the low frequency evanescent waves. The SM-HABC

can simulate the free space with small number of stretched cells.

For practical applications, the program should be executed within realistic

computational time. That is why, in this thesis, the FDTD with the HABC were

parallelized on GPUs and shared memory architecture. This thesis introduced two

GPGPU implementations of the HABC and compared their performance with the

performance of the GPGPU implementation of the CFS-PML. The performance

of the GPGPU implementation of the HABC was better than the performance of

the GPGPU implementation of the CFS-PML over all selections of the number

of threads per block.

The HABC code was scaled on the shared memory architecture in this thesis.

The experiments showed that the speedup ratio of the HABC codes is higher

120
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than the CFS-PML codes. Also, the efficiencies of the HABC OpenMP codes

in strong scaling and weak scaling are equivalent. And similarly, the CFS-PML

OpenMP codes have the same efficiency in strong scaling and weak scaling. In

both strong scaling and weak scaling the HABC is more efficient than the CFS-

PML through all numbers of threads used to parallelize the codes. However, the

speed of the memory access highly affects the total computational time in the

FDTD calculations, since The FDTD method requires large amount of data.

Finally, in this thesis, the SM-HABC was tested with the human body and

the Huygens excitation. The Huygens excitation heated up the human body as a

method of applying the hyperthermia. The results of the SM-HABC experiments

ware comparable to the results of the CFS-PML experiments. In addition, the

time required to simulate the whole human body with the SM-HABC is better

than the time required to simulate the whole human body with the CFS-PML.

8.2 Suggested Future Works

The suggested future works for the HABC are:

• Implementing the HABC with higher order operator instead of the first

order Higdon’s operator to improve the absorption of the high frequency

traveling waves.

• Using cascaded HABCs in the FDTD domain, which will improve the per-

formance of the results.

• Implementing the HABC on distributed memory architecture using MPI

and study the performance of the implementation.

• Developing GPGPU implementation of the HABC on multiple grids to sim-

ulate larger FDTD domains.

• Accelerating the HABC using electromagnetic field simulators such as EM-

PIRE XCcel [55].
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List of Publications
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• Jean-Pierre Bérenger, Hanan Almeer and Fumie Costen, “The Stretched-

Mesh Huygens Absorbing Boundary Condition (SM-HABC),” Journal of

IEEE Transactions on Antennas and Propagation.

Conference Publications, Refereed

• Hanan Almeer, Fumie Costen and Jean-Pierre Bérenger, “Development of

a CUDA Implementation of the 3D Huygens Boundary Condition,” 2013

Loughborough Antennas & Propagation Conference, 10th & 11th November

2013, Loughborough, UK.

• Hanan Almeer, Fumie Costen, Jean-Pierre Bérenger, Ryutaro Himeno and

Hideo Yokota, “Scaling the Huygens Absorbing Boundary Condition Code

on Shared Memory Architecture,” Ninth International Conference on Com-

putation in Electromagnetics, 31 March – 1 April 2014, London, UK.

• Hanan Almeer, Fumie Costen, Jean-Pierre Bérenger, Ryutaro Himeno and

Hideo Yokota, “The Performance of the CUDA Implementations of HABC

and CFS-PML ABCs on GPU Hardware,” The 8th European Conference

on Antennas and Propagation, 6–11 APRIL 2014, Hague, Netherlands.
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[4] F. Costen J.-P. Bérenger. Application of the Huygens Absorbing Boundary

Condition to Wave-Structure Interaction Problems , July, 2010. IEEE AP-S

Int. Symp. USNC/ CNC/URSI Radio Science Meeting.

[5] L. Livermore National Laboratory B. Barney. Introduction to Parallel Com-

puting , 2013 (accessed July. 22, 2013). https://computing.llnl.gov/

tutorials/parallel_comp/#Whatis.

[6] T. Lanfear J. Purches. Approaches to GPU Computing , July 23, 2013. The

University of Manchester.

[7] GridAUTH. Advanced Computing Services. , 2013 (accessed July. 24,

2013). http://linksceem.eu/ls2/images/stories/uploads/OpenMP_-_

Joint_HP-SEE_LinkSCEEM-2_and_PRACE_HPC_Summer_Training.pdf.

[8] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:

A unified graphics and computing architecture. IEEE Micro, 28(2):39 –55,

March-April 2008.

123

https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
http://linksceem.eu/ls2/images/stories/uploads/OpenMP_-_Joint_HP-SEE_LinkSCEEM-2_and_PRACE_HPC_Summer_Training.pdf
http://linksceem.eu/ls2/images/stories/uploads/OpenMP_-_Joint_HP-SEE_LinkSCEEM-2_and_PRACE_HPC_Summer_Training.pdf


BIBLIOGRAPHY 124

[9] D. Kirk and W. Hwu. Programming Massively Parallel Processors: A Hands-

on Approach (Applications of GPU Computing Series). Morgan Kaufmann,

2010.

[10] Matthew Livesey, James Francis Stack, Jr., Fumie Costen, Takeshi Nanri,

Norimasa Nakashima, Seiji Fujino . Development of a cuda implementation

of the 3d fdtd method. IEEE Antennas Propag. Magazine, 2012.

[11] Fumie Costen. High Speed Computational Modelling in the Application of

UWB Signals. PhD thesis, Kyoto University, Japan, 2005.

[12] S. Gonzalez Garcia, A. Rubio Bretones, B. Garcia Olmedo, and R. Gomez

Martin. Finite Difference Time Domain Methods, pages 91–132. WIT Press,

2003.

[13] K. S. Yee. Numerical solution of initial boundary value problems involving

Maxwell’s equations in isotropic media. IEEE Transactions on Antennas

and Propagation, AP-14, 1966.

[14] R. F. Harrington. Field Computation by Moment Methods. The McMillan

Company, New York, 1968.

[15] P. B. Johns and R. L. Beurle. Numerical solution of two dimensional

scattering problems using a transmission-line matrix. Proceedings of IEE,

118(12):1203–1208, 1971.

[16] M. N. O. Sadku. A simple introduction to finite element analysis of electro-

magnetics problems. IEEE Transactions on Education, 32(2):85–93, 1989.

[17] Hasan Rouf. Unconditionally Stable Finite Difference Time Domain Methods

for Frequency Dependent Media. PhD thesis, University of Manchester, UK,

2010.

[18] G. Mur. Absorbing boundary conditions for the finite-difference approxima-

tion of the time-domain electromagnetic-field equations. IEEE Transactions

on Electromagnetic Compatibility, 23:377–382, 1981.

[19] R. L. Higdon. Absorbing boundary conditions for difference approxima-

tions to the multi-dimentional wave equation. Mathematics of Computation,

47:437–459, 1986.



BIBLIOGRAPHY 125

[20] R. L. Higdon. Numerical absorbing boundary conditions for the wave equa-

tion. Mathematics of Computation, 49:65–90, 1987.

[21] S. M. Rao and E. K. Miller. Time Domain Electromagnetics. Academic

Press, 1999.
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