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Abstract

Interaction Patterns as Composite Connectors in
Component-based Software Development

Petr Štěpán
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2014

In current component models, interaction aspects of system behaviour are
mostly specified by components, rather than by composition mechanisms, due
to the fact that most composition mechanisms cannot express complex interac-
tions. Consequently current component models do not enjoy the benefits that
arise from separating the specification of computation from the specification of
interaction in software architecture. This thesis investigates the possibility of rep-
resenting recurring patterns of interaction as composition mechanisms (and other
associated component model entities), as distinct from components that define
computation; these composition mechanisms would appear as first-class entities
in architectures, and can be stored in and reused from repositories. To this end,
we have defined a novel, control-driven and data-driven component model that
strictly separates computation from interaction. To represent interaction patterns
in this model, we have defined composite connectors that can encapsulate control
flow and data flow and can be reused via repositories in different contexts. We
have also developed a prototype implementation of the component model, and
carried out a case study from the reactive control systems domain in order to
evaluate the feasibility of our approach. Comparison with related work shows
that our composite connectors improve the state of the art in component-based
interaction modelling (i) by specifying control flow and data flow explicitly and
separately in software architecture; and (ii) by increasing the reuse potential of
interaction patterns compared to patterns that are represented by components
only.
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Chapter 1

Introduction

The idea of software components has been present since the very beginnings of
software engineering [82]. It was inspired by other areas of engineering, such as
electronics, in which systems are assembled from pre-existing, standardised parts
– components. Component-based engineering brings scalability since systems are
defined as compositions of components that may in turn be further composed to
form hierarchical system descriptions. Furthermore, components can be reused
across many systems to minimise development efforts, thereby reducing project
schedules and budgets.

However, component-based software engineering formed as a discipline much
later: in the late 1990s [23], following the popularity of some industrial component
frameworks [22, 113] and advances in software architecture [105]. Since then,
the discipline has established some key terminology: the concept of a universally-
defined component [114] has been superseded with the concept of a component
model [56, 75], which defines what components are and how they are composed
together to form systems. Different component models thus provide different
component definitions that are suitable for different domains and purposes.

Although the component model definition puts equal emphasis on components
and their composition, the research in the latter has been given less attention. Ev-
ery existing component model allows developers to create their own components
and deploy them into system architectures – components are first-class entities.
On the other hand, composition mechanisms in many component models are only
defined implicitly and lack any explicit architectural representation. Typically,
they are just thin wrappers over underlying communication mechanisms, such as
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(remote) procedure calls or some messaging bus, provided by a particular pro-
gramming language or by middleware libraries. Developers thus cannot define
their own composition mechanisms in these models.

As a result, system behaviour in the models with such primitive composition
mechanisms is defined entirely by means of components. A composition mech-
anism typically only links behaviour required by a certain component with the
matching behaviour provided by another component (e.g., a caller is linked to a
callee in the case the composition mechanism represents procedure call).

The behaviour of a component-based software system can be decomposed
into two aspects: computation and interaction (or coordination). Computation
corresponds to expression or function (in the mathematical sense) evaluation; in-
teraction defines the order in which computations are carried out (control flow)
and the passing of outputs of some computations as inputs to other computations
(data flow). Because of their primitive composition mechanisms, current compo-
nent models mostly mix computation and interaction in component definitions.

However, this violates the general principle of separation of concerns and
consequently results in unnecessary coupling, decreased reuse potential of com-
ponents, and decreased comprehensibility of software architectures comprised of
such components. Carriero and Gelernter made an analogous observation in the
context of generic programming languages [47]. They proposed to split pro-
gramming languages into languages that would specify coordination [4, 93] and
languages that would specify computation in order to model these concerns sep-
arately.

Motivated by the promises of the separate specification of computation and
interaction, our research focuses on component models supporting complex com-
ponent composition mechanisms that would be able to define component inter-
action separately from component computation.

Another motivator for the research presented in this thesis is the concept of
design patterns. A design pattern is a written record that captures design knowl-
edge in a particular form which facilitates the communication and reuse of that
knowledge. The concept originated in the architecture of buildings [3] and was
introduced to software engineering by the object-oriented community [15, 44]; it
then spread to other areas of software design [28] due to its universality. A design
pattern gives a ‘good’ solution to a recurring design problem; additionally, it de-
scribes the context of the problem as well as various trade-offs and consequences
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of using the pattern. The solution defines participating entities (their role and
expected behaviour) and – crucially – their interaction that leads to solving the
given problem.

The key insight that links design patterns with component-based software
development is that the interaction among participants defined by solutions of
certain design patterns may be viewed as a high-level composition mechanism. In
the component-based setting, pattern participants would correspond to compo-
nents, and their mutual interaction would correspond to a composition mechanism
(represented in software architecture by connectors). Lau et al. [70] noticed this
correspondence between composite connectors in the X-MAN component model
and some behavioural design patterns [44]. The corollary of such correspondence
is that design patterns provide a rich pool of potential high-level composition
mechanisms.

Our research hypothesis directs our research on component composition mech-
anisms at design patterns as their source:

In component-based software development, it is possible to define
the solution part of certain design patterns (interaction patterns) as
composite connectors that (i) are first-class entities in software archi-
tecture, (ii) can be composed to create more complex patterns, and
(iii) can be reused via repositories in different contexts.

The hypothesis acknowledges that not every design pattern may be translated to
a composition mechanism by coining a name for the class of patterns for which
the translation is possible: interaction patterns. It also emphasises that the
composition mechanism defining interaction patterns should be represented by
explicit architectural entities of the same significance as components – including
their ability to be composed and reused – but with different semantics due to
their sole focus on interaction.

Although pattern-inspired composition mechanisms form the main focus of
our research, they cannot be explored in isolation from components. The two
concepts are intrinsically linked: since a composition mechanism facilitates com-
munication between components, the definition of components and their inter-
face affects the definition of component composition mechanisms, and vice versa.
Therefore, the goals of our research need to be formulated in terms of component
models, abstractions that take into account both components and their compo-
sition mechanism.
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In particular, our research aims

• to identify suitable component model characteristics (i.e., characteristics of
components and composition mechanisms) for expressing interaction pat-
terns separately from computation,

• to survey existing component models in order to establish their conformance
with such characteristics, and

• to either adapt an existing component model or to develop a new compo-
nent model with such characteristics so that interaction patterns can be
represented as composite connectors – explicit in software architecture and
reusable across many systems – in that component model.

Such a component model would have the following benefits:
Firstly, it would promote the separation of computation and interaction, in

accordance with the proposals of Carriero and Gelernter [47]. Consequently, it
would lead to more comprehensible software architectures and to greater reuse of
both components and connectors. Furthermore, the reuse of composite connectors
representing interaction patterns would be strengthened by the reusable nature
of interaction patterns themselves (if a mechanism was in place that would allow
connectors to vary among different contexts of their usage, similarly to patterns).

Secondly, interaction patterns represented as composite connectors would im-
prove the current practice of pattern usage. Currently, designers have to read
design patterns first and apply the knowledge embodied in patterns manually
during the creation of designs complying with those patterns. With patterns
represented as composite connectors, developers would instantiate patterns from
repositories into the context of their particular system. Not only would pat-
terns facilitate knowledge reuse but also the reuse of design and implementation
artefacts.

1.1 Thesis Outline

This section gives a brief overview of the chapters constituting this thesis.
Chapter 2 explains the research problem addressed in this thesis and gives an

overview of the results of our research; it is a good starting point for the reader.
Chapter 3 motivates and defines the notion of interaction patterns. Chapter 4
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provides the necessary background on component models and their properties
relevant in this thesis. The reader familiar with these concepts can skip this
chapter.

Chapter 5 enumerates the component model characteristics suitable for an
interaction pattern representation in component-based software development, on
which our work is based. It also surveys the existing component models with re-
spect to these characteristics and shows the poor support for separate modelling
of interaction patterns in current component models, and thus motivates the de-
velopment of a new component model suitable for separate interaction modelling.

The next three chapters form the technical core of the thesis. Chapter 6 defines
the basic elements of the new component model that separates computation and
interaction modelling, and shows the characteristics of system architectures con-
structed in the model. The structural and behavioural description of the model
is given as well as the formalisation of its execution using Coloured Petri Nets.
Chapter 7 defines composite connectors: their interface, composition structure
and run-time behaviour. Chapter 8 focuses on reuse of composite connectors; it
defines connector templates for repository-based reuse and presents a number of
mechanisms that increase connectors’ reuse potential.

Chapter 9 gives the reader an overview of the prototype tool that we imple-
mented to support our approach. The tool is used in the case study in Chapter 10,
in which we demonstrate the feasibility of our approach on the mode-switching
interaction pattern from the domain of reactive control systems. Chapter 11 dis-
cusses related work. We evaluate our approach by comparison with closely related
component models, coordination models and approaches to improving usage of
design patterns. The chapter also contains the overall evaluation of our approach.

Chapter 12 concludes the thesis by re-iterating the presented research con-
tributions and their limitations, and it discusses promising strands of the future
work.



Chapter 2

Overview of Our Research

In this chapter, we give an overview of the research presented in this thesis:
Section 2.1 explains our research problem, Section 2.2 discusses the limitations of
existing component-based methods, exemplified by UML 2.0, in addressing the
problem and Section 2.3 highlights the results of our research. For illustration, we
use an example of a photo storage system throughout the chapter. The chapter is
a good starting point for the reader as it introduces the main technical concepts
of our research and helps the reader navigate through the thesis.

2.1 Research Problem

In this section, we explain our research problem. Motivated by the benefits of
separate computation and interaction modelling in system design, we aim to
represent recurring patterns of interaction using suitable abstractions, different
from those representing computation. To represent them explicitly in software
architecture and reuse them both in design and implementation phases of sys-
tem life cycle, we want to define these abstractions in component-based software
engineering as component model entities.

The separation of computation and interaction in software design and imple-
mentation is an instance of the general principle of separation of concerns and
has been acknowledged to bring a number of benefits: increased modularity, in-
creased comprehensibility of software architectures, increased reuse potential and
potentially decreased complexity of system verification [47, 69, 101].

Many coordination languages [47, 93] and architectural patterns [77, 101,
55] exist that promote separating computation and interaction. For instance,
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Selic [101] calls this the principle of ‘separation of control from function’ and
defines the Recursive Control Pattern. The idea of the pattern is to decompose
systems into components responsible for control (interaction) and components
responsible for computation. Figure 2.1 depicts such a decomposition. Con-
trol components coordinate other components through control interfaces, whereas
functional components represent computation. As its name suggests, the pattern
is recursive: a functional component may be recursively composed of a number
of control subcomponents and functional subcomponents.

Figure 2.1: Recursive Control Pattern [101]

In order for the benefits of the separate specification of computation and in-
teraction to materialise, system designers need to identify units of computation
and units of interaction suitable for being used and reused on their own. System
designers are used to identifying units of computation because functional abstrac-
tions are abundant in current design and implementation techniques; however,
identifying units of interaction is more challenging.

In this thesis, we call these recurring units of interaction interaction patterns
(Chapter 3). An interaction pattern defines an interaction, i.e., an exchange of
data and control signals between a set of computations, but it is not depen-
dent on particular computations. It corresponds to a coordinator that enforces a
particular protocol among the participating computations. Like design patterns,
interaction patterns should recur in system designs. However, design patterns are
more general: they structure design knowledge by providing solutions to recur-
ring design problems, and their purpose is not primarily to separate computation
and interaction. Still, because design pattern solutions are typically specified
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as collaborations of participating entities, the collaboration part of some design
patterns can be viewed as an interaction pattern.

For example, the Observer design pattern [44], a well-known design pattern
in the object-oriented programming community, solves the problem of notifying
a group of objects if the state of an object in which they have registered their
interest changes. The solution part of the pattern specifies two kinds of par-
ticipating entities (roles): Subject, representing the object being observed, and
Listener, corresponding to an object listening for changes in the Subject. The
solution specifies the interaction between the Subject and a set of Listeners that
solves the given problem. This design pattern’s solution can be used to extract
the Producer-Consumers interaction pattern. We distinguish two kinds of par-
ticipating computations: Producer (formerly Subject) and Consumers (formerly
Listeners). The interaction pattern enforces that Consumers receive and process
the datum that the Producer computes when it is invoked.

Figure 2.2: Producer-Consumers Interaction Pattern

Figure 2.2 shows the pattern schematically. The interaction pattern defines
the interaction (not defined fully in this figure) among participating computa-
tions, in terms of control flow and data flow. The pattern does not fix particular
computations, it only requires different roles to exhibit some minimal behaviour,
such as the ability to produce or consume a datum, to be able to participate in
the interaction. In addition, role multiplicities may not be fixed (one producer
and at least one consumer). As a result, interaction patterns can be instantiated
in software design in many possible ways, like other design patterns.

Interaction patterns identify recurring units of interactions, which helps pro-
mote modelling computation and interaction separately in software designs. Like
design patterns, they enable reuse of design knowledge and facilitate the com-
munication of software designs by increasing the level of abstraction. However,
informal specification of interaction patterns would mean they would inherit the
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shortcomings of current usage of design patterns. Their instances would be de-
fined each time from scratch, diluted in low-level abstractions provided by existing
design and implementation methods. This would preclude them from being first-
class entities in design and implementation and would thus thwart their reuse in
these phases of software construction.

Our research aims to find a suitable abstraction for interaction patterns that
would enable us to define them as explicit entities in software architecture and
would make them reusable in both design and implementation. To achieve this
goal, we define interaction patterns as first-class entities in component-based soft-
ware engineering. Component-based system construction is inherently composi-
tional: a system is the result of composition of reusable building blocks. By
having separate building blocks for computation and interaction, we can separate
these concerns in system architecture. The building blocks of component-based
development are defined in so-called component models, which formalise the syn-
tax and semantics (including their run-time behaviour) of abstractions that are
used to compose system architecture. Furthermore, component-based software
engineering is focused on reuse: there exist separate life cycles for developing
reusable component model entities and developing systems out of these entities
by reusing them via repositories. By defining interaction patterns as compo-
nent model entities, not only can we achieve the reuse of their underlying design
knowledge, but we can also achieve their full reuse potential as both reusable
architectural abstractions and reusable implementation artefacts.

2.2 Shortcomings of Current Approaches

This section explains the shortcomings of most current component models, re-
lated to their ability to model computation and interaction separately in software
architecture (it draws from the component model survey in Chapter 5 and com-
parison with related work in Chapter 11). Due to their composition mechanisms
that cannot express complex interactions, these models rely on a single abstrac-
tion – components – to specify both computation and interaction. Consequently,
computation and interaction cannot be distinguished in software architecture and
cannot be defined and reused separately.

We illustrate this problem on an example of a photo storage system. We show
an architecture of this system in the UML 2.0 component model and explain
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(i) how such a representation fails to distinguish computation and interaction in
software architecture, and (ii) how this negatively affects the ability to define and
reuse interaction patterns.

In our comparisons, we limit ourselves to UML 2.0 component diagrams, the
subset of UML 2.0 that captures the component-and-connector view of system
architecture [33, 68].

Photo Storage System The photo storage system allows users to store photos
captured in the raw image format by their cameras. The system uploads the pho-
tos to some on-line photo repository; for simplicity, we ignore other functionality
of the repository, such as browsing and searching through stored photos. When
executed, the system performs the following steps:

1. It converts a given raw image to an RGB image (a 2-D matrix of pixels,
each of which consists of three values representing red, green and blue com-
ponents).

2. It encodes the RGB image as a JPEG image and stores it into the repository.

3. It generates a small preview of the RGB image, which is also stored in the
repository.

Mixing Computation and Interaction In Components

Figure 2.3 shows the architecture of the photo storage system in UML 2.0. Before
we show how computation and interaction aspects of system behaviour are mixed
in UML 2.0 components, we need to give a brief overview of UML 2.0 components
and connectors (Chapter 4 contains more background material on component
models).

interface IStorePhoto {
storePhoto(rawData: byte [])

}

interface IProcessImage {
process(image: RGBImage)

}

Figure 2.3: Photo Storage System Architecture in UML 2.0
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UML 2.0 components are units of functionality with specified interfaces. Com-
ponent interfaces consist of provided and required ports. A component’s provided
ports expose the component’s functionality to other components; conversely, a
component’s required ports specify the functionality of other components that is
needed by this component to carry out its provided services. The ‘functional-
ity’ is specified through abstract data types, which comprise sets of operations.
UML 2.0 components are first-class component model entities: new components
can be defined, and components have an explicit architectural representation (as
boxes).

The architecture of the photo storage system in Figure 2.3 comprises three
components: PhotoStorage, JPEGConverter and ThumbnailCreator. The Photo-
Storage component has a single provided port (depicted as a socket), associated
with the IStorePhoto type. It provides the overall functionality of the system:
the storePhoto operation uploads a photo in the raw image format to the reposi-
tory. The functionality is defined by the code (not shown in the figure) that first
converts a given raw image (the rawData parameter) to its RGB representation
(Step 1 above) and then invokes Steps 2 and 3 by calling the operation process
on its two required ports (depicted as receptacles), associated with the IProces-
sImage type. The components JPEGConverter and ThumbnailConverter define the
functionality to perform Step 2 and 3, respectively.

UML 2.0 components are composed by connecting provided and required ports
of different components, associated with the same abstract data type. The under-
lying composition mechanism is method delegation. A component calls operations
(methods) defined by the abstract data type associated with its required port;
these calls are delegated to the same operations exposed by the connected pro-
vided port of another component. The composition mechanism is represented in
architecture by connectors. Unlike components, connector types are fixed and
new connectors cannot be defined. In architecture, they are represented as links
between component ports.

Figure 2.3 depicts two port connections between required ports of PhotoStor-
age and provided ports of JPEGConverter and ThumbnailCreator. As a result, the
process operation calls in the implementation of PhotoStorage will be delegated
to the operations defined by the connected components.

Let us now examine computation and interaction in our example system.
Each of the three steps defining the behaviour of the photo storage system above
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represents a computation: converting a raw image into an RGB image, converting
an RGB image into a JPEG image and generating a thumbnail are all data
transformations. To classify behaviour as inter-component interaction, we need
to consider the actual architecture of the system. Figure 2.3 illustrates that each
step has been defined as a component. Any exchange of control flow and data flow
between components is an interaction. In our example, interaction corresponds
to the sequence of two invocations of the process operation of JPEGConverter and
ThumbnailCreator and to passing of an RGB image to these components. On
the other hand, storing a file in the repository (mentioned in Steps 2 and 3)
cannot be considered as inter-component interaction, because the repository is
not modelled as a component in our architecture; it is thus viewed as internal
computation within JPEGConverter and ThumbnailCreator.

Having identified computation and interaction in our example system, we can
observe how they are represented in the architecture in Figure 2.3. As already
mentioned, each of the three components defines a computation corresponding
to one of the three steps describing the behaviour of the photo storage system
above. The interaction that coordinates the invocations of JPEGConverter and
ThumbnailCreator is also defined within a component, in PhotoStorage in particu-
lar. The code implementing PhotoStorage contains calls to the process operation
of its required ports; the control flow and data flow defined by the code determine
the order of the two invocations and the data that are being passed. Therefore,
the PhotoStorage component represents both computation and interaction as-
pects of the photo storage system’s behaviour; the two aspects are mixed and
indistinguishable in the architecture.

Notice the role that connectors are playing here: they only link interface
elements of composed components. Although they signify that there is a control
flow and data flow exchange between linked components, they are incapable of
defining such an exchange, which must be therefore defined within components.

Shortcomings of Component Representation of Interaction

We have shown that standard UML 2.0 component diagrams do not distinguish
between interaction and computation by means of different architectural entities
since their components model both these aspects of system behaviour.1 How-
ever, this does not imply that every component has to mix computation and

1This also holds for similar existing component models.
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interaction; it is possible to design systems so that some components represent
computation while other components represent interaction. Here, we show how
such a component representation of interaction negatively impacts the ability to
define and reuse recurring interaction patterns. Again, we use the photo storage
system as an illustrative example.

Figure 2.4 shows the architecture of the photo storage system re-designed so
that some components represent computation only and other components rep-
resent interaction only. We can see that the PhotoStorage component from the
original architecture in Figure 2.3 has been split into two components: RGBIm-
ageCreator and StorePhotoFacade. The former represents the computation aspect
only as it converts a given raw image to a corresponding RGB image. The latter
represents the interaction aspect of the original component only.

interface IStorePhoto {
storePhoto(rawData: byte [])

}

interface IProcessImage {
process(image: RGBImage)

}

interface ICreateImage {
create(raw: byte []): RGBImage

}

Figure 2.4: Redesigned Architecture of Photo Storage System in UML 2.0

The StorePhotoFacade component coordinates the execution of other compo-
nents by invoking them in sequence and by passing data between them. First, it
passes the raw image to RGBImageCreator, invokes the create operation and gets
the corresponding RGB image back. Then, it sends the RGB image to JPEGCon-
verter by invoking its process operation. Finally, it invokes the operation of the
same name of ThumbnailCreator, passing the RGB image as its input at the same
time.

The architecture in Figure 2.4 represents an instance of the interaction pattern
Producer-Consumers, mentioned in Section 2.1. In our example, ThumbnailCre-
ator and JPEGConverter are Consumers; they are sent an RGB image whenever
RGBImageCreator (the Producer) creates a new one. The StorePhotoFacade com-
ponent then represents the interaction pattern itself since it defines the interaction
among the participating components.
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We argue that components, such as StorePhotoFacade in Figure 2.4, are not
suitable abstractions for representing and reusing interaction patterns. Firstly,
this interaction-defining component is semantically indistinguishable from other
components in software architecture. Secondly, since the interaction is defined
by the code implementing StorePhotoFacade, it is not explicit in software archi-
tecture. Thirdly, StorePhotoFacade does not model control flow and data flow
explicitly; instead, these flows are hidden and inseparable. Fourthly, its reuse
potential is decreased by dependence on the abstract data types associated with
StorePhotoFacade’s required ports: unlike the interaction pattern it represents,
the component depends on the operation names and exact types of exchanged
data. Finally, its reuse potential is further decreased by fixing the number of par-
ticipants of each role. The underlying interaction pattern may vary the number
of Consumers, unlike StorePhotoFacade, which is constrained to two participants
of this role.

2.3 Our Approach

Our research addresses the problem of finding an abstraction defined within a
component model that is suitable for representing and reusing interaction pat-
terns in component-based software development (see Section 2.1). We need to
overcome the failure of most existing component models to distinguish computa-
tion and interaction in software architecture, which results in poor representations
of interaction patterns by components (see Section 2.2). To this end, we have
developed a new component model that defines computation and interaction sep-
arately; the model also provides reusable abstractions suitable for representing
interaction patterns.

In this section, we illustrate these properties of the new component model with
the example of the photo storage system we have used in the previous section.
We first show how computation and interaction are distinguished in the system’s
architecture. Further, we demonstrate the ability of composite connectors in
our model to form high-level composition mechanisms that embody interaction
patterns.
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Separate Computation and Interaction Modelling

We have designed the new component model to enforce separation of computation
and interaction modelling (presented in Chapter 6). Different component model
entities define different aspects of system behaviour: components in our model can
only define computation; connectors can only define interaction. This is possible
by having coordination as the underlying composition mechanism. Connectors
act as coordinators that trigger component execution and control data exchange
between components. Unlike UML 2.0, both components and connectors are
first-class entities in our component model. The model allows the definition of
new components and new connectors, and both entities have an architectural
representation.

The interaction in our component model is defined in terms of control flow
and data flow to increase the expressiveness of interaction modelling. Both flows
are explicit in software architecture as they are represented by different kinds of
connectors. There are several pre-defined connector types: control connectors for
basic control flow structures, such as sequencing and branching; data connectors
for point-to-point data flow and data routing. These basic connectors can be
composed to define more complex interaction. To allow separate modelling of
control flow and data flow, we have proposed novel control-driven and data-driven
execution semantics.

Figure 2.5 illustrates how these component model characteristics affect the
architecture of the photo storage system. Notice that the component model

Figure 2.5: Architecture of Photo Storage System in Our Component Model

enforces the design more similar to Figure 2.4 than to Figure 2.3. Indeed, com-
ponents cannot mix computation and interaction in our model; they can only



34 CHAPTER 2. OVERVIEW OF OUR RESEARCH

represent computation. The components RGBImageCreator, JPEGConverter and
ThumbnailCreator represent the same computation as the corresponding compo-
nents in Figure 2.4. Nevertheless, component interfaces differ from the corre-
sponding UML 2.0 components: they consist of data ports (depicted as little
squares located at component sides) and control ports (the dark sockets on top
of components).

The StorePhotoFacade component, which represented the interaction pattern
in UML 2.0 architecture in Figure 2.4, has no corresponding component in this
figure. This is because interaction in our model is defined by means of connec-
tors. The interaction in this example is defined by two control connectors and
two data connectors. Both control connectors in Figure 2.5 are sequencers. They
route control flow from their control port (depicted as an empty socket) to their
parameters (receptacles) in sequence (the numbers adjacent to sequencer param-
eters denote the order of sequencing). All data flow connectors in this example
are also of the same type: FIFO data channels (arrows in the figure), which move
data from an output port of a connected component to an input port of another
connected component. The resulting interaction is identical to the one defined
by StorePhotoFacade.

Interaction Patterns As Composite Connectors

Our component model allows the computation and interaction aspects of system
behaviour to be modelled separately. Furthermore, new connectors can be de-
fined out of existing ones by hierarchical composition. In this section, we show
how these composite connectors can model complex interaction represented in
software architecture explicitly by abstractions distinguishable from components.
We illustrate with the example of the photo storage system that composite con-
nectors in our approach provide abstractions for representing interaction patterns
with a number of benefits over the component representation in UML 2.0.

To represent complex interactions by a single architectural entity, we have
defined a mechanism of connector composition (in Chapter 7). Existing data
and control connectors can be composed to form new connector types, so-called
composite connectors. Composite connectors compose control flow and data flow
defined by their constituent connectors to form more complex interactions. There-
fore, semantically they are still connectors; unlike components, they do not define
any computation. Composite connectors are first-class entities in our component
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model: they have well-defined interface, semantics and an architectural represen-
tation; they can be composed further to form new composite connectors. Com-
posite connectors enable our component model – unlike most existing component
models – to have an extensible pool of high-level component composition mech-
anisms.

Furthermore, composite connectors are designed to be reusable. They are
meant to be stored in a repository and be instantiated in a number of different
systems. To increase their reusability, we have defined the concept of a connector
template, which is a connector representation stored in a repository (see Chap-
ter 8). Connector templates parametrise some aspects of connector interfaces
and their internal structure. This allows a connector template to be instanti-
ated as a number of different connectors, obtained by parametrising the template
differently.

The ability to define complex interactions in a reusable manner makes com-
posite connectors suitable abstractions for representing interaction patterns. We
illustrate this with the example of the photo storage system.

(a) Photo Storage System
(b) Producer-Consumers
Connector Template

Figure 2.6: Redesigned Architecture of Photo Storage System in Our Approach

Figure 2.6a shows the architecture of the photo storage system in our compo-
nent model with the interaction pattern represented as the Producer-Consumers
composite connector. The computation part of the architecture, represented by
the three components, does not differ from the architecture in Figure 2.5. The
interaction part of the architecture is represented solely by the composite con-
nector. The connector routes data among the component ports connected to its
required data ports (black triangles); it also routes control flow from its control
port (an empty socket) to the components connected to its parameters (empty
half-ovals, which we call receptacles). The behaviour of the composite connector
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is equivalent to the behaviour defined by the four basic connectors in Figure 2.5
since we want to enforce the same interaction pattern as before.

Figure 2.6b shows the interface of the connector template of Producer-Con-
sumer, stored in a repository.2 The template defines the interface elements
and composition structure of its instances. A template’s interface elements are
grouped into roles, which correspond to the roles defined by the interaction pat-
tern. In the figure, we see two roles for this interaction pattern: Producer and
Consumer. Roles allow instances of a connector template to have different inter-
faces and inner composition structure by having a different number of participants
for each role. The number of participants assigned to a role (role multiplicity)
determines how many times the interface elements grouped in that role will be
multiplied in the interface of an instance. Role multiplicities are specified during
instantiation to suit a particular context. In our photo storage example, the Pro-
ducer and Consumer roles have been assigned the multiplicities of one and two,
respectively. Connector templates support this and other mechanisms to increase
the reusability of interaction patterns they represent.

In this thesis, we argue that composite connectors are an abstraction suitable
for representing interaction patterns in component-based systems. Compared to
the representation of interaction patterns by components in most current compo-
nent models, composite connectors in our approach bring the following benefits.
Firstly, interaction-defining composite connectors are semantically distinguish-
able from computation-defining components in software architecture. Secondly,
since the composite connectors are built up hierarchically by composing simple
connectors, their composition structure defines their interaction behaviour in ar-
chitecturally explicit way, unlike components, such as StorePhotoFacade, whose
behaviour is defined by code that is invisible in software architecture. Thirdly,
interaction in our approach is modelled by means of control flow and data flow;
some component models, such as UML 2.0, cannot model these flows explicitly
in software architecture. Fourthly, due to their port-based interfaces, composite
connectors have greater reuse potential compared to interaction-defining compo-
nents in component models with operation-based interfaces, since they do not
depend on operation names or the order of parameters. Finally, the reuse poten-
tial of composite connectors is further increased by the variability mechanisms
supported by connector templates, particularly their unique role-based structural

2For simplicity, we have not shown the inner composition structure of the template.
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Figure 2.7: System Architecture Editor in our Prototype Tool

variability.
To support our approach, we have implemented a prototype tool for designing

systems using our component model and their simulation (see Chapter 9). For
example, Figure 2.7 shows the photo storage system in our tool’s architecture
editor. The tool is used in Chapter 10, in which we demonstrate the feasibil-
ity of our approach on a mode-switching interaction pattern for reactive control
systems.

In the next chapter, we start the exposition of our research by defining inter-
action patterns.



Chapter 3

Interaction Patterns

In this chapter, we define a class of design patterns that define recurring units
of interaction. These patterns, which we call interaction patterns, help software
designers model computation and interaction separately. We use the domain
of reactive control systems throughout the chapter to illustrate the discussed
concepts; the domain also serves as an evaluation domain in the case study in
Chapter 10.

Section 3.1 explains the concept of computation and interaction separation
in software design, illustrates the concept with partitioning of reactive control
software and also defines the notions of control flow and data flow. Section 3.2
gives some background on design patterns as a form of capturing software design
knowledge. Interaction patterns are defined in Section 3.3. We conclude by
presenting the Mode Switching interaction pattern in Section 3.4.

3.1 Separation of Computation and Interaction

The distinction between computation and interaction1 in software specifications
has been first emphasised by Gelernter and Carriero [47]. In this view, soft-
ware systems can be defined as a mixture of computation and interaction by the
following equation:

Software System = Computation + Interaction.

Computation corresponds to sequential expression evaluation, such as computing
the result of a mathematical function with given input values. Interaction defines

1We use the terms coordination and interaction synonymously in this context.

38
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the order in which computations are carried out and data exchanges between
computations.

Gelernter and Carriero consider computation and interaction as orthogonal
concerns that should be specified separately by means of different languages.
Computation languages should focus on specifying computational activities; co-
ordination languages should manage interaction between computations [47].

Such separation brings a number of benefits to system designs. The modular-
ity of system designs increases. This helps to make designs more comprehensible.
It also increases the reuse potential of separate computation and interaction mod-
ules because they can be reused independently of each other. It also potentially
decreases the complexity of system verification.

These benefits have been acknowledged by a number of architectural pat-
terns [69, 77, 101, 55, 105, 121] that promote the separation of interaction and
computation in software architecture. We show examples of some architectural
patterns for the domain of reactive control systems in Section 3.1.1.

3.1.1 Reactive Control Systems

Reactive systems [54] are systems that continuously react to their environment.
Often, they control the operation of the physical devices they are embedded in,
hence reactive control systems. Figure 3.1 shows a schema of such a system. It
is embedded in an environment that it controls via actuators (also called effec-
tors), such as robotic arms, and monitors through sensors, such as cameras or
microphones. Examples of such systems vary from cruise control systems in cars
to control systems preventing core meltdown in nuclear power plants.

Figure 3.1: Schema of a Reactive Control System

The subsystem defining a system’s reactions to data coming from sensors
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is often implemented in software (the grey circle in Figure 3.1). In terms of
behaviour, control software corresponds to an infinite loop comprising reading
and processing inputs, computing a reaction to the inputs and issuing outputs to
actuators.

Separating computation and interaction in the architecture of control software
amounts to partitioning the architecture into the part that comprises computa-
tion (data transformation, expression evaluation) and the part that describes
interaction between computations. The former is called processing part and the
latter is called controller, as shown in Figure 3.2.

Figure 3.2: Control Software Structure

A number of architectural patterns in the domain recommend exactly such
separation. For instance, Selic’s Recursive Control Pattern [101], described in
Section 2.1 and shown in Figure 2.1 on page 25, proposes such separation. The
pattern defines two kinds of components that comprise control software: com-
ponents responsible for computation (processing part) and components respon-
sible for interaction between computation components (controller). Labbani et
al. show such separation in Scade [69]. Again, some components in their archi-
tecture only deal with computation, while others only encapsulate interaction.
Shaw, inspired by classic control theory, distinguishes controllers and processes
in the process control architectural style (and its feedback and feedforward con-
trol variants) [105, 121]. Lea differentiates between functional and controlling
components in avionic control systems [77]. Haslum identifies ‘mode switchers’
and ‘higher-order task procedures’ patterns for reactive programs [55].

3.1.2 Interaction Modelling

To specify computation and interaction separately in software design, we need
different modelling abstractions for computation and interaction. In this section,
we define control flow and data flow, two abstractions for interaction modelling.

Interaction between computations defines the order of execution of these com-
putations as well as the exchange of data (inputs and outputs) between them.
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Control flow represents the former aspect of interaction, data flow represents the
latter one:

Control flow defines the ordering of some computation steps, such as machine
instructions or function calls. It defines the ordering by describing the
trajectory of the movement of control signals between computations in time:
the presence of a control signal at a computation at a time signifies that
the given computation is being executed at the time.

The origin of the control flow abstraction can be traced to Von Neumann’s
computational model [123]. The computer’s central processing unit executes
the instruction whose memory address is stored in its special register. The
memory address corresponds to the location of the control signal. Impera-
tive programming languages have adopted this notion of control; the basic
building blocks of control flow thus correspond to sequencing, branching
and looping known from these languages.

Control flow can be modelled in software design by diagrams used in various
engineering disciplines since 1950s, whose variants are still present in the
current modelling notations. For instance, UML activity diagrams show
sequences (possibly alternative or iterated) of activities whose order of ex-
ecution is determined by control flow. Figure 3.3 shows2 the control flow
of the request-response interaction between Client A and Server B: compu-
tations are drawn as rounded boxes and control flow induced ordering as
solid arrows (the leftmost and rightmost circles represent the start and end
of the interaction, respectively).

Client A creates a 

request

Server B prepares 

a response

Client A processes 

the response

Figure 3.3: Control Flow in the Request-Response Interaction

Data flow captures the topology of information exchange between several com-
putations. It specifies which computations send their outputs to inputs of
which computations.

2The depicted diagrams serve for illustration of the concepts of control flow and data flow
only; they are not used for modelling interaction patterns in our approach.
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Data flow diagrams have been introduced in 1970s in structured design
methods [125] to depict data exchange between functions in hierarchical
functional system decompositions and are still in use, especially for mod-
elling information flow between business processes. Figure 3.4 shows the
data flow diagram depicting data flow in the request-response interaction:
bubbles correspond to functions, arrows represent data flow and their labels
describe transferred data.

Figure 3.4: Data Flow in the Request-Response Interaction

3.1.3 Identifying Reusable Units of Interaction

Separate specification languages for interaction and computation enable separate
modelling of these concerns in software designs. This allows partitioning software
designs to parts specifying computation and parts specifying interaction, exem-
plified for the domain of reactive control systems in Figure 3.2. Consequently, the
modularity of such designs increases, as does their comprehensibility. However,
it does not mean that separate interaction modules can be reused in multiple
contexts. To fully achieve the benefits of the separate specification of computa-
tion and interaction (including reuse), designers have to identify suitable units of
interaction.

This is a challenging task since software designers are rather used to identifying
units of computation, such as functions, or modules that mix both computation
and interaction than separate interaction modules. We believe that, as with many
challenging tasks in software design, the role of a software designer’s experience
is crucial. Experienced designers can distil recurring units of interactions from
their knowledge of many existing system designs.

One of the most successful forms of capturing software design knowledge are
design patterns [44, 100]. Many design patterns specify such recurring units of
interaction. In our thesis, we focus on representing this class of design patterns
as reusable entities in component-based development.
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3.2 Design Patterns

In this section, we describe what design patterns are (Section 3.2.1), how they are
used (Section 3.2.2) in current software design practice and what their benefits
and shortcomings are (Sections 3.2.3 and 3.2.4). This section contains background
material needed for the definition of interaction patterns in Section 3.3; the reader
familiar with design patterns can skip this section.

Design patterns [44, 29, 28] are a means for capturing expertise of software
designers; they prescribe the form in which the expertise should be captured. The
pattern form, originally conceived by Alexander [3] to capture design knowledge
in architecture of buildings, has been introduced to software engineering at the
end of 1980s in the object-oriented community [15]. Following the publication
of the seminal book Design Patterns by Gamma et al. [44], design patterns have
become a well-known software engineering concept, as witnessed by dozens of
published books, many conferences on patterns and their inclusion in software
engineering curricula.

3.2.1 Pattern Form

A design pattern describes a recurring design problem and a well-proven solu-
tion to the problem. Additionally, a pattern discusses consequences of using the
proposed solution and possible choices in the solution’s adaptation and implemen-
tation. Solutions should be generic and independent of implementation details of
a particular platform to make the pattern applicable in more contexts. Pattern
solutions thus have to be specialised to fit into the context of their application.

Although there exists a variety of design pattern forms, the structure of most
of them can be mapped to the following main constituents [28]:

Name A pattern’s unique and apt identification.

Context A specification of the situations in which the design problem solved by
a pattern occurs.

Problem A description of the problem that a pattern solves.

Solution Template The solution template identifies a set of entities, called par-
ticipants, and defines their collaboration whose aim is to solve the problem
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addressed by the pattern. Participants play different roles in the collabo-
ration and are defined in terms of their structure and expected behaviour
with respect to their role. That is, a role states the minimum structural and
behavioural requirements on the role’s participants to solve the pattern’s
problem; participants usually have extra context-specific behaviour, apart
from the one defined by their role. Therefore, a pattern solution is not a
single fixed design; instead, due to its generality and variability, it defines
an infinite set of complying designs. Each time a design pattern is used,
the template is instantiated to fit its instantiation context.

Consequences A discussion of trade-offs of the pattern’s solution, of different
choices in the solution’s adaptation and of various implementation hints.

3.2.2 Pattern Life Cycle

In this section, we describe the current practice in using design patterns in soft-
ware development. We follow the life cycle of a design pattern from the initial
design knowledge of the pattern’s author to the instantiation of the pattern in a
software design (see Figure 3.5).

In the beginning, a software designer accumulates a critical mass of experience
in solving a recurring design problem; he/she observes that a certain solution
(or rather a family of related solutions) has repeatedly satisfactorily solved the
problem in practice and thus has the potential to be useful to other developers.
The designer then embodies this design knowledge as a design pattern description
in a particular form (e.g., the form used by Gamma et al. [44]). Before the pattern
is published, it is usually reviewed by the pattern community at events, such as
pattern writers’ workshops, and improved based on their feedback.

Eventually, the design pattern is published. To be easier to find, the pat-
tern may be included in some pattern catalogue, be it a book [44, 29, 97] or an
electronic pattern library [94, 124].

Having been published, the pattern can be found by software developers who
are interested in solving the pattern’s problem. They read the pattern’s descrip-
tion to understand the design knowledge embedded in the pattern by its author.

Equipped with such knowledge, they can use it when creating software de-
signs. They need to match their particular design situation against the problem
described by the pattern and to apply the solution template given by the pattern
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Figure 3.5: Design Pattern Life Cycle

to construct design artefacts (their structure and behaviour) corresponding to
individual participants in the solution template.

Figure 3.5 illustrates that design patterns facilitate the transfer of design
expertise from pattern authors to pattern readers, which results in reusing that
expertise.

3.2.3 Benefits of Design Patterns

Design patterns bring a number of benefits to software developers, software de-
signs and even to the software designed with patterns in mind [28, 98, 99].

Design patterns capture software design expertise and thus enable its reuse.
The structured pattern form allows this expertise to be accumulated, categorised
and searched in printed pattern catalogues and on-line repositories. Patterns thus
form the ever-growing reusable design knowledge base.

Design patterns form the vocabulary of the language used by software devel-
opers to communicate design ideas concisely. This leads to raising the level of
abstraction in communicating software designs.

Using design patterns in software development affects the qualities of the soft-
ware. Because design patterns convey well-proven solutions to design problems,
they embody best design practices. Using design patterns therefore promotes
these good practices, which in turn helps to develop systems with some desirable
qualities. There exists some empirical evidence supporting this pattern benefit:
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e.g., stories of successfully applying patterns and achieving flexible [64] or less
complex and maintainable [100] software systems. Of course, using patterns does
not automatically guarantee those qualities; ultimately, it is the designer’s respon-
sibility to come up with good software designs. In addition, different patterns
contribute to different, and possibly opposing, qualities; for example, flexibil-
ity and lower complexity are often in opposition and are therefore achieved by
different patterns.

3.2.4 Shortcomings of Design Patterns

Since design patterns are defined informally in some natural language, they are
prone to ambiguity and vagueness. And whilst it is in most cases sufficient for
people to understand the core idea behind a pattern, their informal definition
limits their usage. It precludes using formal methods, such as reasoning about
patterns and their relations, and advanced tool support that would go beyond
displaying pattern descriptions.

Another negative consequence of patterns’ informal nature is the lack of their
first-class representation in mainstream software design (such as UML) and pro-
gramming notations (such as Java or C#). Although design patterns raise the
level of abstraction in communicating software design, pattern instances are spec-
ified each time from scratch using low-level design entities, such as classes and
methods, which developers then translate to low-level implementation constructs.
Therefore, patterns lack explicit representation in the actual software design and
implementation artefacts (e.g., UML models or source code of Java classes): the
high-level abstraction of design patterns is lost, dissolved in low-level notations.

As a result, design patterns achieve reuse of design knowledge only; there is no
direct reuse of design and implementation artefacts in traditional software devel-
opment with patterns. Instead, developers need to incorporate pattern solutions
into software designs and subsequently implement the designs manually.

3.3 Interaction Patterns Definition

In this section, we introduce interaction patterns as a class of design patterns
that define recurring units of interaction in software designs. Interaction pat-
terns are a novel concept, conceived for the purposes of this thesis, to formulate
pattern characteristics that help patterns to be represented in component models
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as connectors. This section states the specifics of interaction patterns compared
to generic design patterns.

We have identified design patterns as a potential source for reusable units of
interaction for several reasons. Firstly, they provide reusable solutions to recur-
ring design problems, distilled from design experience. This makes the solutions
reusable. Secondly, their solution templates are generally formulated as collab-
orations between several kinds of participating entities. The focus of pattern
solutions on defining collaborations – interactions between pattern participants
– is in accordance with our goal of finding suitable units of interaction to reuse.

However, not every design pattern defines such a reusable interaction. Design
patterns are a general means for structuring design knowledge and, although they
follow the same form, they solve a variety of different problems, some of which
focus on other aspects than the interaction between participants. For example,
the Singleton design pattern [44] solves the problem of ensuring that a certain
class is only instantiated once. It provides a solution defining a single participant
and focuses on the structural definition of that participant.

To narrow down the scope of design patterns of our interest, we define a class
of design patterns, whose solution templates focus on defining interaction between
a set of participants. They primarily prescribe data flow and control flow between
participants. Participants correspond to computational entities conforming to the
requirements of the role they play in the pattern. We call such design patterns
interaction patterns. Interaction patterns identify recurring units of interaction
and thus facilitate separate computation and interaction modelling in software
designs.

Figure 3.6: Schema of an Interaction Pattern’s Solution Template
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Figure 3.6 shows the schema of an interaction pattern’s solution template. In-
teraction and computation can be clearly distinguished: the interaction is defined
in terms of control flow and data flow; participating computations are defined in
terms of roles. A role specifies requirements on entities that can participate in the
interaction defined by the pattern. These requirements are defined in terms of
control flow and data flow that a participant exchanges with other participants
within the pattern. In addition, a role can prescribe some minimal behaviour
that enables participants to join the interaction in the given role. Each role also
has its multiplicity, which determines how many participants can play that role
in any pattern instance.

A simple example of an interaction pattern can be seen in Figure 2.2 on page
26 in Section 2.1. In the next section, we present a real-world example of an
interaction pattern from the domain of reactive control systems.

3.4 Mode Switching Interaction Pattern

In this section, we present an interaction pattern that defines a reusable interac-
tion for reactive control systems with multiple modes. We adapted the pattern
from the case study on which Labbani et al. [69] demonstrated the benefits of
separating interaction and computation in Scade. We represent the pattern as a
composite connector using our approach in the case study in Chapter 10.

Section 3.4.1 briefly describes what multi-mode systems are, presenting the
context for the pattern. An analysis of the functionality of a controller in such a
system, which explains the problem and gives the core idea of the mode switching
pattern’s solution, follows in Section 3.4.2. In Section 3.4.3, we formulate the
pattern’s solution template conforming to the interaction pattern definition from
Section 3.3.

3.4.1 Systems with Modes

Systems with modes, also known as multi-mode systems, are systems whose be-
haviour can change during their execution. That is, the same inputs to such
systems may result in different results at different times of their execution. The
behaviour changes of these systems are restricted at design-time: a system with
modes can exhibit one of finitely many predefined behaviours. The active be-
haviour is determined by a system’s mode, a special system state. The overall
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behaviour of a system with modes can be represented using a state transition
diagram determining the current mode.

In embedded control systems, the modes of control software often mirror the
modes of controlled devices in which the software is embedded. For example, a
simple burglar alarm can operate in five modes: active, ringing, inactive, PE1
(password entering) and PE2. The UML statechart diagram in Figure 3.7 cap-
tures the overall behaviour of the alarm system. In the active mode, the system

Figure 3.7: Modes of a Burglar Alarm System

uses data from its sensors to detect intrusion and to switch to the ringing mode, in
which the alarm bell is ringing. In the inactive mode, the system simply ignores
any sensor inputs and the alarm bell is not ringing. A user can switch between
inactive and active modes by keying in the password, which happens in PE1 or
PE2, depending on the subsequently active mode.

3.4.2 Mode Switching Controller

Reactive control systems with modes can be partitioned into controllers and pro-
cessing parts, as depicted in Figure 3.2 in Section 3.1.1. Controllers – encapsulat-
ing interaction aspect of systems – are responsible for mode switching: they acti-
vate computations required in the current mode, deactivate computations active
in the previous mode, feed data to those computations and collect their outputs.
Processing parts consist of computation components realising the behaviour of
systems in all their modes.

In general, every mode has an associated non-empty set of computation com-
ponents realising the system behaviour in that mode, activated by the controller
when the mode becomes active. For simplicity, we make an additional assumption
that the associated set contains exactly one computation component different for
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every mode. Although the assumption rules out some interesting cases (such
as components shared by several modes), it allows us to build a reusable mode
switching controller with a straightforward behaviour. Table 3.1 summarises the
responsibilities of controllers and processing parts in mode switching systems.

Controller (Interaction) Processing part (Computation)

• activation of the current mode’s
computation component
• deactivation of the previous

mode’s computation component
• feeding inputs to the current

mode’s computation component
• collecting outputs from the cur-

rent mode’s computation com-
ponent

• a computation component for
each mode
• computation of the next active

mode

Table 3.1: Responsibilities of a Controller and Processing Part

Such controller design is independent of (i) processing part and (ii) the mode
state transition diagram of a particular system. It takes into account only the
minimum set of concepts – current mode, (de)activation of a computation com-
ponent, routing data inputs and outputs – common to all systems with modes.
As a result, it has the potential to be reusable.

3.4.3 The Pattern’s Solution Template

The partitioning of a multi-mode system into a controller and processing part,
discussed in the previous section, addresses a common design problem and yields
a reusable unit of interaction (the controller); it can thus be formulated as an
interaction pattern. In this section, we present the solution template of the
pattern.

The solution template of the Mode Switching pattern, conforming to the
schema in Figure 3.63, is shown in Figure 3.8: the reusable interaction defined
by the pattern is represented by the grey oval; participants (entities the pattern
interacts with) are drawn as rounded rectangles; solid and dotted lines denote
data flow and control flow, respectively. The template defines four roles:

3The only difference is that the figure here depicts participants rather than roles to indicate
role multiplicities graphically.
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Figure 3.8: Schema of the Modes Interaction Pattern

Modes Provider provides the data (the current mode and, if the pattern is
state-less, previous mode) based on which the interaction pattern switches
the active Mode computation component.

Inputs Provider provides input data to be processed by the currently active
Mode component.

Outputs Consumer consumes the outputs of the currently active Mode com-
ponent.

Mode is a computation component that implements the system behaviour in a
particular mode; the multiplicity of this role is [2,∞).

The interaction defined by the pattern is summarised in the Controller column
in Table 3.1. Overall, the pattern maintains the invariant of having one active
Mode component at a time (it therefore requires one Mode component to be
enabled initially). Each Mode component has its inputs supplied and its outputs
collected by the pattern. The pattern thus defines the data flow from Inputs
Provider to the currently active Mode component, and it directs the component’s
outputs to Outputs Consumer. In terms of control flow, the pattern sends a
control signal to activate or deactivate any connected Mode component, based
on the data coming from Modes Provider. When the current mode changes, the
pattern

1. disables the Mode component corresponding to the old mode,
2. starts redirecting input data to the newly activated Mode component,
3. enables the newly activated Mode component.
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3.5 Towards Component-based Abstraction for
Interaction Patterns

The main motivation for defining interaction patterns is to identify reusable units
of interaction that help achieve the benefits of the separation of computation and
interaction in software designs (see Section 3.1). As a class of design patterns,
interaction patterns inherit the benefits and shortcomings of design patterns.

They positively influence software development practice (see Section 3.2.3) by
enabling reuse of design knowledge, they facilitate the communication of software
designs by increasing the level abstraction, and they have the potential to increase
some qualities of the software systems developed using patterns.

On the other hand, the informal nature of the design pattern form makes
interaction patterns deficient in a number of ways from a software engineering
point of view (see Section 3.2.4). The ambiguity of their form precludes patterns
from being reasoned about and having advanced tool support. Furthermore,
patterns lack an explicit representation in current design and implementation
notations, which causes their instances to be defined each time from scratch
in low-level abstractions. As a result, design patterns can only achieve reuse
of knowledge, but they fail to achieve the reuse of corresponding design and
implementation artefacts.

However, interaction patterns form a narrow class of design patterns focused
on separation of computation and interaction. Because they define their solutions
in terms of a limited number of concepts – control flow, data flow and a set of
computations – relevant in software design, their formalisation and first-class
representation in software development seems more feasible.

In this thesis, we aim to find a suitable abstraction that would represent
interaction patterns as explicit entities in software architecture and would be
reusable in both design and implementation. To achieve this goal, we propose
to define interaction patterns as first-class entities in component-based software
engineering.



Chapter 4

Component Models

This chapter provides the reader with the background on component-based soft-
ware development needed in the remainder of this thesis. It focuses on the key
abstraction of a component model.

Before we define component models in Section 4.2, we give an overview of
the basic aims and characteristics of component-based software engineering in
Section 4.1. Sections 4.3 and 4.4 provide more details on existing types of com-
ponents and composition mechanisms, respectively. Section 4.5 discusses the
run-time aspects of component models and introduces related terminology. Fi-
nally, Section 4.6 characterises several existing component models, with which we
compare our approach further in the thesis.

4.1 Component-based Software Engineering

Component-based software engineering (CBSE) [56, 114] is an area of software
engineering concerned with building software from components. It aims to tackle
the long-standing challenges of building software systems: to cope with their ever-
growing complexity and to develop them in a systematic, scalable and predictable
manner in order to minimise development times and budgets.

In CBSE, software systems are composed out of pre-existing components,
reusable across many systems via repositories, rather than built from scratch.
The component reuse promises to decrease system development effort (and thus
cost and time).

The resulting structure of component composition defines the behaviour of

53
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a system and forms its architecture. Component-based software engineering at-
tempts to make system construction compositional; i.e., the properties of com-
posed components determine the properties of the system. This principle has the
potential to assure system functional and quality (or non-functional) properties
in a scalable manner.

An important characteristic of components is that they form building blocks
of both design and implementation since they have both design time and im-
plementation time manifestations. At design time, the structure of component
composition forms the system’s architecture (or at least its structural part). At
implementation time, components are still useful abstractions as they have exe-
cutable code that realises their functionality at run-time.

The focus of component-based development on reuse is manifested in its de-
velopment process, which comprises two distinct development processes: a com-
ponent development process and a system development process [35, 75, 73]. The
former is an instance of development for reuse: it aims to develop components and
store them in a repository. The latter is an instance of development with reuse: it
aims to create systems by composing existing components stored in repositories.
The existence of two separate development processes ensures that life cycles of
components and systems are separate. This acknowledges that components are
not system-specific; on the contrary, they are reusable across a number of systems
through component repositories.

4.2 Component Model Definition

The exact definition of a software component is the central question of CBSE.
McIlroy [82] was the first to formulate the idea of reusable software components.
He envisaged reusable routines as software components. However, the idea has not
gained much attention until three decades later when CBSE emerged as a branch
of software engineering. The most cited definition comes from Szyperski [114]:

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to compo-
sition by third party.”

Szyperski considers the specification of a component’s functionality and of its
dependencies as a prerequisite for its reuse. He also stresses the independence
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of component and system development. However, such a universal definition
has its limitations due to its generality. Additionally, it disregards component
composition.

As a result, the concept of a component model has been conceived (i) to allow
for more specialised definitions of components and (ii) to define the standards
of component composition (and possibly of other aspects). A component model
defines the design and implementation abstractions of component-based systems
and how they are composed. Heineman and Councill [56] gave the following
definition of software components using the concept of a component model:

“A software component is a software element that conforms to a com-
ponent model and can be independently deployed and composed with-
out modification according to a composition standard.”

Several definitions of a component model exist. Table 4.1 illustrates the gen-
eral consensus that a component model is a set of standards/rules that define
(i) what components are, and (ii) how components can be composed to build
systems (component composition mechanism).

Authors Definition
Heineman and Coun-
cill [56]

“A component model defines a set of standards
for component implementation, naming, interoper-
ability, customization, composition, evolution, and
deployment.”

Lau and Wang [75] “A software component model is a definition of
(i) the semantics of components, (ii) the syntax of
components, and (iii) the composition of compo-
nents.”

Crnkovic et al. [36] “A component model defines standards for
(i) properties that individual components must
satisfy and (ii) methods for composing compo-
nents.”

Table 4.1: Definitions of a Component Model

Firstly, a component model specifies the semantics and syntax of components.
The former defines the meaning of components – what they are (e.g., objects or



56 CHAPTER 4. COMPONENT MODELS

services); how they behave at run-time (e.g., active or passive entities); what com-
prises component interfaces (e.g., sets of ports or methods); what comprises com-
ponent realisation (code or sets of subcomponents). The latter defines particular
specification languages and formats in which components should be developed
and distributed (e.g., a particular programming language or interface description
language).

Secondly, a component model specifies a component composition mechanism.
Such a mechanism composes component behaviour by establishing interaction
between composed components. Some component models have separate compo-
nent model entities defining interaction between components – connectors, while
other component models compose components via implicitly defined composition
mechanisms.

Standards set by component models are necessary for components to be
reusable without modification (adaptation). On the other hand, different appli-
cation domains may have different requirements on what constitutes components
and how they are composed. For instance, a dynamic composition mechanism
binding components based on some constraints may not be suitable in resource-
or performance-constrained environments. Component models thus allow the ex-
istence of several specialised sets of standards that do not have to conform to
some universal component definition.

4.3 Components

In this section, we identify basic component characteristics in existing compo-
nent models. First, we define the notion of a generic component, which embodies
the component characteristics common to existing component models, in Sec-
tion 4.3.1. Further, we present three main types of components, specialising the
generic component, identified by Lau and Wang [75] by analysing existing com-
ponent models. We use these component types in our component model survey
in Chapter 5.

4.3.1 Generic Component

In general, components are units of composition providing some functionality.
A component comprises an interface and realisation. A component’s interface
specifies the functionality the component provides to other components, and it
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may also state dependencies on other components or environment. The realisation
implements the behaviour specified by the interface.

The interface of a generic component comprises provided services and required
services. The former specifies the provided functionality, and it is a compulsory
part of any component interface. The latter specifies the functionality, provided
by other components, that this component needs to carry out its provided func-
tionality. Some component types lack explicit declaration of their required ser-
vices in their component interfaces. Figure 4.1 shows a schema of a generic com-
ponent. Provided services are depicted as sockets; required services are depicted
as receptacles.

Figure 4.1: Schema of a Generic Component

There exist two main types of interface specification in existing component
models: operation-based and port-based. Operation-based interfaces specify ser-
vices as sets of operations, similar to functions and procedures in imperative pro-
gramming. Operations have names, an ordered list of input and output param-
eters, which are possibly associated with their data types. Port-based interfaces
comprise control or data ports. Data ports represent places through which data
enter or leave a component; control ports are places through which a component
receives or sends out control signals.

A component realisation implements the behaviour of provided services spec-
ified in the component’s interface. Components may be either directly imple-
mented in some programming language or, in some component models, composed
of other components. Components of the latter type are called composite com-
ponents or hierarchical components.

A component’s interface and realisation are specified separately. This allows
for a component’s realisation to be hidden and promotes so-called black-box com-
ponent reuse – reuse of components based on their interface specification only.
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4.3.2 Component Types

Lau and Wang [75] have classified existing component models according to their
component semantics into three categories: objects, architectural units and en-
capsulated components. In this section, we present these three component types
as specialisations of the generic component. Example components of the following
types can be found in Section 4.6.

Objects This component type corresponds to objects from object-oriented pro-
gramming. They have operation-based interfaces, comprising sets of meth-
ods. Unlike the generic component, objects only declare provided methods
in their interfaces. Dependencies on the methods of other objects are not
part of their interfaces. Figure 4.2 depicts the interface of the object com-
ponent type schematically.

Figure 4.2: The Object Component Type

Objects are implemented by the code realising their interface. They are
composed by method invocation: an object can call in its implementation
code a method provided by another object. Existing component models
based on objects include JavaBeans [112], EJB [113], OSGi [120] and MS
COM [22].

Architectural Units Architectural units are units of functionality that – unlike
objects – have a first-class architectural representation and strictly separate
their interface and realisation. They correspond to basic elements of archi-
tecture description languages [105]. Their interfaces comprise both provided
and required services. There exist two variants of this component type that
differ in how they specify their interfaces: operation-based architectural
units (see Figure 4.3a) and port-based architectural units (see Figure 4.3b).

Architectural units can be directly implemented by the code realising their
interface (so-called atomic components), but many component models in
this category also support composite components. Components are com-
posed by connecting a provided and a required service of the same type (be
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(a) Operation-based (b) Port-based

Figure 4.3: The Architectural Unit Component Type

it a port’s data type or the same operation signature). Existing compo-
nent models based on operation-based architectural units include UML 2.0
(Section 4.6.1), SOFA 2.0 [26] and Fractal [24]; component models with
port-based architectural units are, e.g., ProCom (Section 4.6.2), Scade (Sec-
tion 4.6.3) and Simulink (Section 4.6.4).

Encapsulated Components Components of this type are units of computation
that do not depend on the services of other components to provide their
own services. They are encapsulated in the sense that any incoming control
signal is not redirected by a component to another component. Their inter-
face therefore comprises provided services only (see Figure 4.4), but they
do not have implicit dependencies like objects.

Figure 4.4: The Encapsulated Component Type

Like architectural units, they have a first-class architectural representation,
and they separate their interface specification and realisation. They can
be implemented in code (atomic components) or by composing other com-
ponents (composite components). Encapsulated components are composed
by means of external coordinators that invoke services of composed com-
ponents and move data between them. Existing component models with
encapsulated components include X-MAN (Section 4.6.5) and orchestrated
web services (Section 4.6.6).

4.4 Composition Mechanisms

A composition mechanism is inherent part of the definition of a component model.
It determines the way in which (at least two) components are composed. It
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defines the structure and behaviour of the resulting composition. In terms of
structure, the result of composing a set of at least two components can be either
another component of the same type or an entity of a different type, such as an
assembly of the composed components with their interfaces linked in some way.
The result of composition exhibits the behaviour that is derived from the be-
haviours of composed components. A composition mechanism is thus responsible
for constructing complex behaviours out of simpler behaviours of composed com-
ponents in a bottom-up fashion. The composed behaviour is generally the result
of establishing interactions between composed components. To this end, compo-
sition mechanisms provide basic inter-component communication primitives, out
of which more complex interactions can be built. Components can interact only
after they have been composed.

In this section, we first specialise the notions of control flow and data flow
to the context of component-based software engineering in Section 4.4.1. We
then give examples of several composition mechanisms from existing component
models in Section 4.4.2. Section 4.4.3 briefly describes connectors – component
model entities representing composition mechanisms. Finally, Section 4.4.4 de-
fines the class of exogenous composition mechanisms, which allow the separation
of computation and interaction in software architecture.

4.4.1 Control Flow and Data Flow in Component Models

Inter-component interaction is defined as an exchange of data (inputs and out-
puts) and control signals (activation or triggering signals) between interacting
components. The general interaction modelling concepts of control flow and data
flow (see Section 3.1.2) are therefore also applicable in this context. They cor-
respond to possible trajectories of data and control signals between component
services (see Section 4.3.1). Control flow defines the ordering of execution of com-
ponent services. Data flow specifies which component services send their outputs
to inputs of which component services; data flow modelling also involves data
stores (or buffers).
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4.4.2 Existing Composition Mechanisms

Software composition mechanisms can be defined at different levels of abstrac-
tion [30]: from composition of programming language constructs, through com-
position of modules during system development, to composition of distributed
systems over a network by various middleware mechanisms. Because components
are abstractions spanning a more abstract architectural level and a more concrete
implementation level, component composition mechanisms can be described at
both of these levels of abstraction.

At the architectural level, Lau and Rana [71] identified two groups of compo-
sition mechanisms used in existing component models: connection and coordina-
tion.

Connection Composition mechanisms in this category establish interaction be-
tween two components by linking one component to an interface of another
component.

Object-based component models use method call (or method delegation):
an object can call a method provided via the interface of another object.
Component models with architectural units use port connection (see Fig-
ure 4.5): a provided port of one component is connected to a required port

Figure 4.5: Composition of Architectural Units by Port Connection

of the same type of another component; the realisation of the latter compo-
nent (Component1 in the figure) can indirectly invoke services of the former
component (Component2 in the figure) through the connected required port.

Coordination Composition mechanisms in this category compose a set of at
least two components by means of a coordinator that mediates the inter-
action by routing control signals and data between the components. Coor-
dinators are semantically different from components. Control coordination
of encapsulated components belongs to this category (see Figure 4.6).
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Figure 4.6: Composition of Encapsulated Components by Coordination

At the implementation level, composition mechanisms define the composi-
tion of component realisations. These include a number of different mecha-
nisms [104, 84], ranging from method call1 in object-oriented programming lan-
guages to various middleware mechanisms, such as remote procedure calls, mes-
sage passing and data streaming.

In this thesis, we are not interested in particular composition mechanisms at
the implementation level; however, we are interested in different ways in which
they allow control and data to be exchanged between components. To abstract
from implementation details of individual mechanisms, we use the concept of
an interaction style [30, 36]. Interaction styles correspond to simple patterns of
interaction known from software architecture [105]. Throughout the thesis, we
use the following interaction styles:

Request-response This is a two-step, two-way interaction between two com-
ponents, which comprises the exchange of control signals and data (see
Figure 4.7). In the first step, the component that initiates the interaction
sends the control signal to trigger a service of another component and also
passes some input data needed by the service. The second step follows the
completion of the called service; the called component returns the output
data of its service, together with the control signal, back to the component
that has initiated the interaction.

Figure 4.7: The Request-Response Interaction Style

1Method call appears at both levels since objects are both architectural and implementation
abstractions.
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Method delegation and most port connection mechanisms between archi-
tectural units with operation-based interfaces follow the request-response
interaction style.

Pipe-and-filter This interaction style is based on a single-step, one-way inter-
action between two components (see Figure 4.8). Furthermore, this inter-
action style does not mix control flow and data flow since only one of them
is being transferred between the two interacting components, depending on
the types of composed interface elements.

Figure 4.8: The Pipe-and-Filter Interaction Style

This interaction style is typical for composition mechanisms in component
models based on architectural units with port-based interfaces, such as ProCom
(see Section 4.6.2) or Scade (see Section 4.6.3).

4.4.3 Connectors

In the discipline of software architecture, two basic architectural entities have
been traditionally distinguished: components and connectors [105]. Components
deal with computation; connectors deal with interaction between components.
These two notions form the basis of first-generation architecture description lan-
guages [83]. Although the purely structural definition of architecture has since
been expanded to “the set of principal design decisions made about the sys-
tem” [117], the component-and-connector view of a system remains part of the
multi-view software architecture descriptions, proposed by Kruchten [68] and
standardised in ISO/IEC/IEEE 42010:2011.

Component-based software engineering has largely adopted the notions of
components and connectors from software architecture. Connectors are entities
defined by a component model; they represent composition mechanisms in soft-
ware architecture. However, the support for connectors is not universal among
existing component models; indeed, the definition of a component model (see Sec-
tion 4.2) does not make connectors – unlike components – compulsory component
model entities.
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As a result, some existing component models, many of which are based on
objects, do not define connectors. Their composition mechanisms thus lack an
explicit architectural representation. Most component models based on architec-
tural units and encapsulated components define connectors. Furthermore, some
component models, such as X-MAN [74] or SOFA 2.0 [26], even define the concept
of connector composition, which allows them to create new connectors (so-called
composite connectors) by composing existing connectors to represent more com-
plex composition mechanisms.

4.4.4 Exogenous Composition Mechanisms

Composition mechanisms establish interaction between components. Different
composition mechanisms vary in the extent to which they separate the spec-
ification of computation in components and the specification of interaction in
connectors. In this section, we define two classes of composition mechanisms –
endogenous and exogenous composition mechanisms – based on how they sep-
arate computation and interaction specification. We base our definition on the
definition of exogenous and endogenous coordination languages by Arbab [4].

Arbab categorises coordination languages according to how the coordination2

specification written in those languages is combined with the specification of
computation [4]. He differentiates between endogenous and exogenous languages.

Endogenous languages mix coordination primitives with the specification of
computation: the specifications of computation units contain coordination prim-
itives. Exogenous models specify coordination of computation entities from out-
side: coordination and computation specifications are separate. We extend the
definition of endogenous and exogenous coordination languages to the context of
CBSE – where computation units correspond to components and coordination
corresponds to composition – and define endogenous and exogenous composition.

Figure 4.9 illustrates the difference between the two types of composition
mechanisms. It shows the specifications of two interacting components. In the
case of endogenous composition, the specifications of both entities comprise a
mixture of computation (white rectangles) and interaction (grey rectangles). In
the case of exogenous coordination, the computation specifications of the inter-
acting components are separate from the specification of their mutual interaction.
The interaction aspect can thus be encapsulated and exist on its own.

2We consider the terms ‘interaction’ and ‘coordination’ indistinguishable in this context.



4.5. EXECUTION SEMANTICS 65

Figure 4.9: Endogenous vs. Exogenous Composition Mechanisms

For example, method delegation in object-based component models is an en-
dogenous composition mechanism because it allows objects to mix in their im-
plementation code the specification of interaction (with other objects) and the
specification of their own computation. On the other hand, control coordination
of encapsulated components in X-MAN [74] is exogenous, because components
cannot define any interaction in their specification; the interaction is defined by
connectors, which cannot define any computation.

4.5 Execution Semantics

Components conforming to a particular component model can be composed to-
gether to form executable software systems. A component model thus has to
specify how components are executed at run-time and how component composi-
tion yields the behaviour of a system out of the behaviours of its components.
These rules for component and system execution are called execution seman-
tics. In this section, we define several terms, used further in the thesis, related
to execution semantics. In particular, we distinguish between active and passive
components, and we explain control-driven and data-driven system execution and
their influence on interaction modelling in component-based systems.

4.5.1 Active and Passive Components

An important characteristic of execution semantics is how the execution of com-
ponents is triggered. Two main alternatives exist: either components are con-
tinuously computing throughout the whole system execution or they are waiting
for some external stimulus to trigger their computation. The components of the
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former type are called active; the components of the latter type are called passive.
Active components have their own thread of control throughout the whole

of system execution, and they do not need any external triggering to perform
computation. Each component defines its own internal control flow, which con-
ceptually corresponds to an infinite loop with nested control flow structures that
coordinate internal component computations. Therefore, there is no need for an
exchange of control signals between active components; they communicate only
by exchanging data.

Passive components are by default inactive. They need an external stimulus
to start their computation, and they become inactive again once the computation
finishes. Passive components typically define short computations, such as func-
tion execution. Because they rely on external stimuli from other components to
determine when they should be triggered and what data they should process, both
control flow and data flow may be meaningful in modelling interactions between
passive components. Whether control flow modelling is meaningful depends on
whether system execution is control-driven or data-driven.

4.5.2 Control-driven and Data-driven Execution

Another characteristic of execution semantics is what kind of stimulus triggers
the execution of components. The execution can be either triggered by a control
signal or simply by arrival of data. Accordingly, we distinguish control-driven
and data-driven component execution.

Control-driven components are executed upon an arrival of a control signal.
Component models with port-based component interfaces, such as ProCom [103],
need two kinds of ports, control ports and data ports, and two kinds of port
connections, for control flow and data flow. Component models with operation-
based interfaces, such as UML 2.0, that compose component services by means of
method calls cannot distinguish between the two flows. Only passive components
can be control-driven.

The execution trigger of data-driven components is the presence of all their
data inputs. For example, Scade [18], an industrial system modelling tool for the
avionics domain, has data-driven components: their interfaces comprise input
and output data ports and they are composed by port connection. As a result,
architectures of such systems completely lack control. Both active and passive
components can be data-driven. In models with passive data-driven components,
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an implicit system scheduler triggers a component’s execution after it registers
that the component’s inputs arrived. Active components do not need such a
scheduler as they possess their own thread of control. The relationship between
active components and passive data-driven components is asymmetric: active
components can mimic the functionality of data-driven components; the opposite
is impossible in general (active components can perform some computation even
in the absence of their data inputs).

Both kinds of computation triggering influence interaction modelling in sys-
tem architecture. Data-driven execution renders control flow modelling redun-
dant; control flow is thus absent in architectures of data-driven systems. Control-
driven execution creates a dependency of data flow on control flow. Firstly, it
is meaningless to have data flow going to a component without a corresponding
control flow: the data will never be processed by the component, because it is
never triggered. Secondly, there is a temporal dependency between the flows:
input data have to arrive to a component before the control signal, otherwise the
control signal cannot immediately trigger component execution.

Consequently, different computation triggering kinds are suitable for differ-
ent application domains. Data-driven execution is suitable for data-processing
systems (e.g., digital signal processing or some computationally intensive scien-
tific calculations), in which modelling data flow dominates over modelling the
exact order of executions by control flow. Control-driven execution is suitable
for control-intensive systems (e.g., embedded control systems), in which control
flow is the primary modelling concern. In fact, there exists a whole spectrum
of systems (see Figure 4.10) and most systems fall between these two extremes:
they combine control-oriented and data-oriented functionalities and their models
therefore comprise a mixture of control and data flow.

Figure 4.10: Spectrum of Systems from Data-oriented to Control-oriented
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4.6 Existing Component Models

In this section, we introduce the following component models: UML 2.0, ProCom,
Scade, Simulink, X-MAN, web services and Reo. They illustrate the terminology
introduced earlier in the chapter, and we will compare our approach to them
in Chapter 11. UML 2.0 represents component models based on architectural
units with operation-based interfaces. ProCom, Scade and Simulink represent
component models based on architecture units with port-based interfaces; they
are specific to the domain of control systems and thus are closely related to the
case study in Chapter 10. X-MAN and web services represent component models
based on encapsulated components. Finally, Reo is a component model in which
active components are composed by means of data flow coordination.

4.6.1 UML 2.0

UML 2.0 is a generic software modelling language, which also defines an archi-
tecture description sub-language for component-based system design (component
diagrams).

UML 2.0 components are architectural units with operation-based interfaces.
They are first-class component model entities: new components can be defined
either by code that implements their interface or by hierarchical containment
and by delegating their functionality to their subcomponents. Components have
explicit architectural representation (as boxes).

UML 2.0 components are composed by connecting provided and required ports
of different components associated with the same abstract data type. At imple-
mentation level, the underlying composition mechanism is method delegation. A
component calls operations (methods) defined by the abstract data type asso-
ciated with its required port; these calls are delegated to the same operations
exposed by the connected provided port of another component.

The composition mechanism is represented in architecture by connectors. Un-
like components, connector types are fixed, and new connectors cannot be defined.
In architecture, they are represented as links between component ports. UML 2.0
supports two connector types: assembly and delegation. The former represents
a connection between two ports,3 one required and one provided, on the same

3Somewhat confusingly, UML 2.0 components communicate via ‘ports’ that – unlike data
and control ports in port-based component models – are associated with interfaces consisting
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level of composition; the latter connects two ports of the same type, one of which
belongs to a composite component and the second of which belongs to the sub-
component realising the delegated interface.

Figure 4.11: UML 2.0 Composite Component

Figure 4.11 shows an example of a UML 2.0 composite component. The
component contains subcomponents of the photo storage system from Figure 2.3
on page 28. Components are represented as boxes with sockets for provided
interfaces and receptacles for required interfaces. The figure gives examples of
both connector types: see, e.g., the assembly connector between PhotoStorage
and JPEGConverter and the delegation connector exporting the provided port of
PhotoStorage to the interface of the composite component (shown as a dashed
line).

4.6.2 ProCom

ProCom is a research component model for the domain of control-intensive sys-
tems [103]. ProCom components are architectural units with port-based inter-
faces. ProCom explicitly models control flow and data flow by means of two kinds
of connections, and it also contains connectors for more complex control and data
flow routing. It is a control-driven model, based on the pipe-and-filter interaction
style.

The ProCom component model comprises two modelling layers, ProSys and
ProSave, which enables system modelling on two different levels of abstraction.
The former focuses on modelling subsystems at a higher level of abstraction (ac-
tive components exchanging messages); the latter allows more detailed modelling
of interaction by means of data flow and control flow. Both layers are integrated:
ProSys subsystems can be represented by ProSave composite components. In this
thesis, we only consider ProSave because of its focus on interaction modelling.
of operations.
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ProSave components are units of functionality, whose interfaces comprise trig-
ger and data ports. Ports are aggregated into port groups, containing one trigger
port and several data ports; port groups are further organised into services, each
of which comprises one input port group and one or more output port groups. A
ProSave component’s interface is defined as a set of services. Components can be
composed hierarchically by port connection. At run-time, components are passive
entities: their services need to be triggered by a control signal arriving at their
input trigger port to be executed. ProCom thus has control-driven execution
semantics.

The interaction between subcomponents is modelled by means of control flow
and data flow. ProCom uses connections (arrows connecting either a pair of
trigger or data ports) to model point-to-point transfers of control or data, and
connectors (rounded rectangles routing control flow or data flow) to express more
complex routing behaviour.

Figure 4.12: ProCom Composite Component

Figure 4.12 depicts an example ProCom composite component. It comprises
three subcomponents: A, B and C, each of which has a single service consisting
of trigger ports (triangles) and data ports (rectangles). The connections model
control flow (dashed arrows) or data flow (solid arrows). The composite compo-
nent also comprises the following connectors: Selection directs its input control
flow to either B or C, depending on its data input; Data fork copies its data input
to its outputs; Control Or and Data Or merge their two input flows to produce a
resulting flow of the same type. Overall, the composite component delegates the
processing of input b either to B or C, depending on A’s decision based on input
a, and outputs the result via output port c. The execution starts when t receives
and consumes a control signal; when the computation is complete, u emits the
control signal.
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4.6.3 Scade

Scade is an industrial tool for designing critical reactive systems, used mainly
in the avionic and automotive domains [18]. Its underlying component model is
based on the data flow programming language Lustre [51]: components are pas-
sive functional blocks with data ports, composed by means of data connections.
Scade conforms to the pipe-and-filter interaction style. Scade is not control-driven
since control flow does not trigger computation and cannot even be expressed ex-
plicitly; instead, components are executed according to the synchronous data flow
execution semantics [17].

Synchronous data flow is a particular realisation of the synchronous paradigm
(explained in Section 6.5.4). System execution is driven by the basic clock – each
system reaction corresponds to one tick of the basic clock. The clock represents
an implicit form of control, rendering modelling control flow in system designs
redundant.

Figure 4.13: Scade Composite Component

Figure 4.13 illustrates that control flow is absent in Scade architectures; it
shows a composite component implementing the behaviour of the component
from Figure 4.12. All connections represent data flow. There is no control flow to
selectively trigger B or C; instead, both components process input b and the if-else
block chooses (based on A’s output) one of their outputs to become the output
of the whole composite.

4.6.4 Simulink

Simulink is an industrial tool [106] for modelling and simulation of dynamic sys-
tems. Components (called blocks) have port-based interfaces; they correspond
to equations specifying the relations between input and output ports. They are
composed via data flow connections. Simulink is primarily used for simulating



72 CHAPTER 4. COMPONENT MODELS

continuous systems, but can also simulate discrete systems, including software
systems.

During simulation, a Simulink system is represented as a set of ordinary dif-
ferential equations that depend on the time variable. Simulation amounts to the
repeated evaluation of the equations for certain values of the time variable. The
simulation behaviour is therefore influenced by the selected method for solving
the equations. Compared to Scade, the execution semantics is not formally de-
fined, but it depends on a chosen implementation of a particular technique for
finding a solution [122].

Despite modelling data flow only, Simulink features a richer palette of mod-
elling constructs than Scade, some of which try to mimic control flow. For exam-
ple, it supports so-called triggered and enabled subsystems. Both have an extra
data port that represents an incoming control signal. Subsystems of the former
type produce outputs only if their ‘control’ port values change (e.g., from 0 to 1);
subsystems of the latter type produce outputs while their ‘control’ signal remains
non-zero.

Figure 4.14: Simulink Composite Component

Figure 4.14 shows a Simulink composite component that has the same be-
haviour as the ProCom composite component in Figure 4.12. All components
have data ports only, and the connections between them represent data flow.
Components B and C exemplify enabled subsystems (notice their extra ports de-
noted as square waves): they are active only when A’s output equals 0 or 1,
respectively.
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4.6.5 X-MAN

X-MAN [74] is a component model based on encapsulated components. It has the
control coordination composition mechanism. As a result, connectors are explicit
in architecture and can be composed to define composite connectors.

Components in X-MAN are passive units of computation with operation-based
interfaces. Because components do not call operations of other components, they
encapsulate control flow – the control flow that enters a component to trigger one
of its services does not leak to other components; instead, it returns back upon the
completion of the triggered operation. Components can be either atomic, with
their operations’ behaviour defined in some programming language, or composite,
i.e., composed out of other components by means of connectors.

Connectors in X-MAN coordinate component execution. Basic connectors
correspond to control flow structures known from imperative programming: se-
quencing, branching and looping. Connectors can be composed to form more
complex control coordination behaviour. X-MAN connectors enable the construc-
tion of composite components. Each connector composing components C1, . . . , Cn

represents a composite component (with C1, . . . , Cn as subcomponents), whose
behaviour (and interface) is defined by the connector out of the behaviour (and
interfaces) of the subcomponents.

X-MAN lacks explicit data flow modelling. The general rule is that connectors
can also pass data along the control flow they define. For instance, the pipe
connector defines (on top of its sequencing coordination behaviour) data flow
between the composed components: it passes the results of some of the operations
of the first component as input parameters to some operations of the second
component. However, the flow of input parameters of a composite component’s
operations to the subcomponents and, conversely, the flow of subcomponents’
outputs to the outputs of the composite component are left unspecified in X-
MAN.

Execution of X-MAN systems is control-driven. The initial control flow enters
the top of the control connector hierarchy and traverses it according to the co-
ordination semantics of constituent connectors. When the control flow reaches a
component, it triggers its execution and then returns back. Ultimately, a system
terminates when the control flow finishes the traversal of the system’s connector
hierarchy.

An X-MAN realisation of our example composite component from Figure 4.12
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Figure 4.15: An X-MAN Composite Component

is depicted in Figure 4.15. The atomic components A, B and C are composed by
two control connectors: pipe and selector. The composite component’s interface
provides a method4 process(a, b):c, which corresponds to the port-based interface
in Figure 4.12. When the method is invoked, the pipe first triggers A, passes
A’s output to the selector, which is triggered second. The selector then triggers
either B or C, based on the A’s output.

4.6.6 WS-BPEL Coordinated Web Services

WS-BPEL (Web Services Business Process Execution Language) [61] is a stan-
dardised language for orchestration of web services. Orchestration is a type of
service composition based on exogenous coordination: individual existing web
services are composed by means of a coordinator, which is called a process in
WS-BPEL, into another web service(s). Thus, WS-BPEL is an exogenous coor-
dination language. It can be also considered as a component model, in which web
services are components and WS-BPEL processes represent composition mecha-
nism [75].

Web services are passive components exposing their functionality through
operation-based interfaces over the World Wide Web. Operations may or may
not return results, thereby supporting one-way or two-way remote procedure call.
They are based on a set of standards centred around XML (Extensible Markup
Language): WSDL (Web Service Description Language) for interface descrip-
tion, SOAP (Simple Object Access Protocol) for exchanging structured data over
a network and UDDI (Universal Description, Discovery and Integration) for lo-
cating web services. This reliance on XML-based standards and their inherently
distributed nature helps web services achieve inter-operability.

A WS-BPEL process coordinates several web services through their WSDL
4Method signatures serve for illustration only: they do not contain type declarations.
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Figure 4.16: Web Service Composition in WS-BPEL

interfaces by defining a workflow, and it exports the resulting functionality as
web services via other WSDL interfaces, thereby defining new composite web
services (see the schema in Figure 4.16). The workflow is defined by control
flow constructs: sequencing, branching, looping and concurrent execution. The
execution semantics is control-driven. Data flow is modelled indirectly, in the
imperative programming style, by assignments to mutable variables, which can
store inputs and outputs of web service invocations. The reader can find an
example of a WS-BPEL process in Section 11.2.2.

4.6.7 Reo

Reo [5, 6] is a dataflow-oriented, exogenous coordination language. It defines
a set of basic data channels, which can be composed into so-called connectors.
Connectors act as coordinators of components. Reo focuses on composition [7]
and leaves some details of the definition of components open. However, it makes
some assumptions about components in order to guarantee their composability
by Reo connectors. Therefore, we consider Reo to be a component model.

Data channels are basic building blocks of Reo connectors. They are data
flow connections with two ends. A channel end can be of two types: a source
(a data entry point to a channel) or a sink (a data exit point from a channel).
Combinations of different channel ends, channel buffer sizes and associated syn-
chronisation constraints give rise to different data channels. Data channels are
composed into connectors by means of nodes. Nodes join several channel ends
and actively move data among the connected channels while they can. Nodes
also form connector interfaces.

Reo components are active. They are composed via interface nodes of Reo
connectors and can invoke some pre-defined operations on these nodes, e.g., to
read a value or to write a value. The node operations can block component
execution if they cannot be performed immediately. This way, Reo connectors
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coordinate components they compose.
Reo connectors model data flow explicitly in architecture. However, control

flow is implicit because it is defined within the code of Reo components. The
reader can find examples of Reo connectors in Section 11.2.3.



Chapter 5

Representing Interaction
Patterns in Component Models

Our research aims to represent interaction patterns explicitly in architecture and
to reuse associated design and implementation artefacts in component-based soft-
ware development. To achieve this aim, we need to define interaction patterns as
an abstraction within a component model.

In this chapter, we formulate the basic principles of representing interaction
patterns underlying our approach [109], and we use them to survey existing com-
ponent models. The results of the survey confirm that current component models
are not suitable for this purpose. This motivates us to define a new component
model suitable for expressing interaction patterns (in Chapter 6).

Section 5.1 explains the choice of connectors as a component model abstrac-
tion for representing interaction patterns. In Section 5.2, we identify a number of
characteristics that a component model should possess to be able to express inter-
action patterns according to our research goals. The survey of current component
models with respect to these characteristics follows in Section 5.3.

5.1 The Abstraction for Interaction Patterns

Component-based software engineering is focused on reuse of design and imple-
mentation artefacts and on representing component model abstractions in system
architecture (see Section 4.1). In this thesis, we aim to define interaction patterns
as first-class CBSE abstractions – defined formally within a component model –
in order to achieve full reuse of design expertise and of design and implementation

77
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artefacts associated with interaction patterns.
Existing component models are based on two main abstractions, compo-

nents and connectors, originally conceived in software architecture [105]. In this
paradigm, components are units of computation, connectors deal with interac-
tions between components and systems are ensembles of components composed
by means of connectors. Interaction patterns focus on defining collaborations
between sets of participants. They primarily prescribe data flow and control flow
between participants (Section 3.3). Participants, on the other hand, are enti-
ties endowed with some system-specific behaviour (computation); they have to
conform to the requirements of the interaction pattern to be able to join the
pattern-defined collaboration.

Figure 5.1: Central Role of Interaction in CBSE and Pattern Solutions

Figure 5.1 shows the entities comprising meta-models of both component-
based systems and interaction pattern solutions.1 It illustrates the semantic cor-
respondence between connectors and collaborations defined by patterns on the
one hand, and components and pattern participants on the other hand. Collabo-
rations defined by interaction patterns are semantically closer to the abstraction
of connectors since both entities share the goal of establishing interaction between
a set of other entities. Components are better match for representing participants
as they both exhibit computation behaviour.

Therefore, it is our research hypothesis that interaction patterns can be de-
fined as connectors and used as high-level composition mechanisms for composing
software components.

1The plus sign in Figure 5.1 denotes the multiplicity of “at least one”.
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Using different abstractions for representing an interaction pattern itself and
pattern participants is of prime importance in our research. It allows us to dis-
tinguish both entities semantically at the level of system architecture and to
maintain the separation of computation and interaction in system design, which
is one of the main motivators of our research (see Section 3.1).

Representing interaction patterns as connectors, encapsulating control flow
and data flow of the pattern collaboration, impacts the underlying component
model. In the next section, we identify characteristics that a component model
suitable for expressing interaction patterns as connectors should possess.

5.2 Desirable Component Model Characteristics

In this section, we identify characteristics that make a component model suit-
able for representing interaction patterns. Since we propose to define interaction
patterns’ solutions as connectors, explicit in system architecture and reusable via
repositories, most characteristics state requirements on the composition mecha-
nism part of a component model specification.

In particular, a component model suitable for our aims should have the fol-
lowing characteristics:

• explicit architectural representation of connectors,

• the ability to define new connectors,

• separate specification of interaction and computation,

• explicit control flow and data flow modelling,

• composable connectors,

• separate control flow and data flow modelling.

In the rest of this section, we explain the above characteristics in detail and
discuss their implications.

Explicit Architectural Representation of Connectors
A minimal requirement is that connectors must have an explicit representation

in software architecture. In the absence of such a representation, our aim of
interaction patterns being first-class architectural abstractions (see Section 3.5)
would be thwarted.
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Ability to Define New Connectors
This allows developers to extend the set of available connectors in a particu-

lar component model by defining new ones (without re-defining the component
model). Since there exists a large and ever growing pool of interaction patterns,
the ability to define new connectors representing these patterns is needed. This
requirement implies that the complying component model needs some connector
specification language for defining new connectors.

Separate Specification of Interaction and Computation
Although connectors by definition mediate inter-component communication,

the extent to which the underlying composition mechanism separates the specifi-
cation of computation and the specification of interaction varies (see Section 4.4.4).
For our purpose of encapsulating the interaction between participants of an in-
teraction pattern, we need the composition mechanism to separate the behaviour
specification of pattern participants from that of their mutual interactions. This
enables the interaction to be encapsulated in the form of a connector, which can
stand on its own, without tight coupling to particular components (representing
participants).

In Section 4.4.4, we have defined a class of composition mechanisms – called
exogenous composition mechanisms – that separate the specification of connectors
from the specification of components. The underlying composition mechanism in
a component model suitable for expressing interaction patterns thus needs to be
exogenous.

Explicit Control Flow and Data Flow Modelling
A component model supports explicit control flow and data flow modelling

if it defines entities that represent control flow and entities that represent data
flow. As a result, a system architecture constructed in such a component model
explicitly models control flow and data flow.

Since we intend to model interaction by means of control and data flow (see
Section 3.1.2), a component model with explicit control flow and data flow gives
us means to define both aspects of interaction patterns, resulting in their more
precise representation.

Composable Connectors
Connectors in a component model are composable if there exists a mechanism
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for building new connectors out of existing connectors – connector composition.
In other words, the connector specification language allows composing new con-
nector specifications (of so-called composite connectors) out of existing ones. This
requirement is closely related to one of the previous requirements: connector com-
position is one possible way of creating new connector definitions.

The compositional representation of interaction patterns allows complex pat-
terns to be defined as composition of simpler patterns. A component model can
thus only define a fixed set of basic connectors, corresponding to simple inter-
action patterns, out of which all other patterns can be composed. Furthermore,
composite connectors are defined explicitly in software architecture, as opposed
to using some connector definition language without explicit architectural repre-
sentation.

Separate Control Flow and Data Flow Modelling
Most current component models cannot specify control flow and data flow in-

dependently. There are usually some constraints, related to a component model’s
execution semantics, that make one of the flows dominant in interaction mod-
elling: control flow modelling is redundant for data-driven component models
since the mere presence of all inputs triggers component execution; in control-
driven systems, data flow and control flow are inter-dependent (see Section 4.5.2).

Figure 4.10 on page 67 illustrates that different domains require different
proportion of control flow and data flow in their system designs. Component
models with separate control flow and data flow modelling can model both flows
explicitly and independently of (without any constraints with respect to) each
other. Consequently, they could be used to model interaction across the whole
spectrum of systems, from data flow dominated interactions all the way to control
flow dominated interactions. As a result, such models would be able to represent
a greater variety of interaction patterns.

5.3 Analysis of Existing Component Models

In this section, we assess the suitability of current component models for express-
ing interactions patterns. We analyse component models aggregated from two
major component model surveys found in the literature [75, 36] with respect to
the requirements identified in Section 5.2.
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Section 5.3.1 defines the set of analysed component models; Section 5.3.2
outlines the overall methodology of the analysis; the analysis is carried out in
three iterations in Sections 5.3.3, 5.3.4 and 5.3.5; Section 5.3.6 presents analysis
conclusions.

5.3.1 Surveyed Component Models

To identify existing component models, we use two major component model sur-
veys by Lau and Wang [75] and by Crnkovic et al. [36]. The former is the most
cited component model survey [81]; the latter is more recent and surveys more
component models. Table 5.1 gives an overview of component models identified
in each survey.

Survey Surveyed Component Models
Lau and Wang .NET, ACME, Corba CM, EJB, Fractal, JavaBeans, KOALA,

KobrA, MS COM, PECOS, SOFA 2.0, UML 2.0, Web Services
Crnkovic et al. AUTOSAR, BIP, BlueArX, Corba CM, COMDES II, Com-

poNets, EJB, Fractal, IEC 61131-3, IEC 61499, JavaBeans,
KOALA, KobrA, MS COM, OpenCOM, OSGi, Palladio,
PECOS, Pin, ProCom, ROBOCOP, RUBUS, SaveCCM,
SOFA 2.0

Our Survey all of the above + ACME, IEC 61131-3, IEC 61499 excluded
and X-MAN, Reo, Scade, Simulink added

Table 5.1: Component Models Identified in Different Surveys

In our analysis, we additionally include X-MAN [74], Reo [5], Scade [18]
and Simulink [106], the four component models with which we compare our
approach in Chapter 11. The reasons why these component models have not
been included in the two cited surveys vary: X-MAN is a relatively new research
component model, which was not mature enough at the time when the surveys
were published; Reo focuses on defining connectors and components are specified
only implicitly (e.g., no component definition language is prescribed); Scade and
Simulink, although they implicitly define component models, are generally more
known as industrial tools for developing control software systems.

We exclude ACME [45] since it is a language for exchanging architectural
descriptions without any fixed semantics; we also exclude IEC 61131-3 and IEC
61499, standards for modelling and implementing programmable logic controllers,
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because they do not clearly define the notion of components [111] and thus do
not fit our component model definition from Section 4.2. Overall, we survey
twenty-nine component models.

5.3.2 Methodology and Results

Because of the high number of analysed component models, we did not evaluate
all the characteristics from Section 5.2 for all the component models; instead, we
took an iterative approach.

In each iteration, we focused on just a subset of analysed characteristics, and
we evaluated component models with respect to these characteristics. In the
following iteration, we chose another subset of characteristics to analyse but only
included component models that had passed the previous iteration. Thus, we
gradually filtered out component models without the desired characteristics.

We carried out our survey in three iterations. In the first iteration, we eval-
uated the architectural representation of connectors in all component models.
In the second iteration, we evaluated the ability of component models that had
passed the first iteration to define new connectors. In the third interaction, we
evaluated all the remaining characteristics for all the remaining component mod-
els. The results of the survey are analysed in the next sections. For completeness,
Table 5.2 shows the survey results (the horizontal lines separate the results ob-
tained in different iterations).

5.3.3 Connectors’ Architectural Representation

The basic characteristic required of a component model for expressing interaction
patterns as connectors is an explicit representation of connectors in system archi-
tecture. However, many component models fail to comply with this requirement
since their composition mechanisms have no architectural representation.

Among the analysed models, we have identified three types of connector rep-
resentations: (i) connectors are absent from architecture, (ii) connectors are rep-
resented as links (connections) between elements of component interfaces, and
(iii) connectors are more complex architectural units with their own identity and
possibly reusable on their own. The component models belonging to the second
and third category represent connectors explicitly in software architecture, and
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Component model EC1 NC2 SCI3 ECF4 EDF5 SCD6 CC7

.NET 5 – – – – – –
Corba CM 5 – – – – – –
CompoNets 5 – – – – – –
EJB 5 – – – – – –
JavaBeans 5 – – – – – –
MS COM 5 – – – – – –
OpenCOM 5 – – – – – –
OSGi 5 – – – – – –
KobrA 5 – – – – – –
ROBOCOP 5 – – – – – –
AUTOSAR 3 5 – – – – –
BlueArX 3 5 – – – – –
COMDES II 3 5 – – – – –
KOALA 3 5 – – – – –
Palladio 3 5 – – – – –
PECOS 3 5 – – – – –
Pin 3 5 – – – – –
RUBUS 3 5 – – – – –
SaveCCM 3 5 – – – – –
Simulink 3 5 – – – – –
Scade 3 5 – – – – –
UML 2.0 3 5 – – – – –
Fractal 3 3 5 5 5 5 3

SOFA 2.0 3 3 5 5 5 5 3

BIP 3 3 3 5 5 5 3

Reo 3 3 3 5 3 5 3

Web Services 3 3 3 3 5 5 5

ProCom 3 58 3 3 3 5 5

X-MAN 3 3 3 3 5 5 3

1 Explicit Connector Representation in Architecture
2 Ability to Define New Connectors
3 Separate Specification of Computation and Interaction
4 Explicit Control Flow Modelling
5 Explicit Data Flow Modelling
6 Separate Control Flow and Data Flow Modelling
7 Composite Connectors
8 ProCom does not allow the definition of new connectors, but its pre-defined con-
nectors can be connected to form more complex coordination structures, which
is why it is included in the third iteration of the analysis.

Table 5.2: The Results of Our Survey
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thus conform to our requirement. Table 5.3 classifies the surveyed models accord-
ing to their connector representation. Models in the first column do not conform
to the analysed characteristic, and they thus do not proceed to the next iteration
of our analysis (see Table 5.2).

No Representation Explicit Architectural Representation
Connection Architectural Entity

.NET, Corba CM,
CompoNets, EJB,
JavaBeans, MS COM,
OpenCOM, OSGi,
KobrA, ROBOCOP

AUTOSAR, BlueArX,
COMDES II, KOALA,
Palladio, PECOS, Pin,
RUBUS, SaveCCM,
Simulink, Scade,
UML 2.0

BIP, Fractal, ProCom,
Reo, SOFA 2.0, Web Ser-
vices, X-MAN

Table 5.3: Component Models Categorised By Connector Representation

No Architectural Representation of Connectors
Most component models that do not represent connectors in architecture are

object-based (see Section 4.3.2): .NET [118], Corba CM [86], CompoNets [12],
EJB [113], JavaBeans [112], MS COM [22], OpenCOM [32] and OSGi [120].
The models that rely solely on object-oriented mechanisms to define components,
such as EJB, can only specify provided services; they cannot specify required
services and therefore cannot represent composition using links between compo-
nents’ required and provided interface elements. But even if they use some other
mechanism for defining component interfaces, such as meta-data in OSGi bundle
manifests, they lack any standard architecture description language.

The other two models in this category – KobrA [10] and ROBOCOP [79] – rep-
resent components as collections of object-oriented design models. KobrA models
components using UML diagrams (class and sequence diagrams). ROBOCOP
defines its own design models and focuses on run-time composition of services
(objects implementing some pre-defined interfaces).

Explicit Architectural Representation of Connectors
Most component models that represent connectors in architecture explicitly

have components that are architectural units or encapsulated components (see
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Section 4.3.2). The connector representation in these models can be further differ-
entiated: most approaches represent connectors as links (lines in graphical archi-
tectural descriptions) along which messages are sent between component interface
elements, whereas some component models embody connectors as architectural
entities – often nameable and reusable – with more complex structure (sometimes
composed hierarchically) and behaviour (e.g., mediating communication between
more than two parties).

The explicit architectural representation of connectors in component mod-
els based on architectural units is due to their shared common fundamentals
with first-generation architecture description languages, in which connectors were
first-class citizens of the same significance as components. However, the role of
connectors in most component models in this category has diminished: they
have become thin wrappers over underlying primitive composition mechanisms,
such as method call or message passing, unable to model more complex interac-
tions. Connectors linking operation-based architectural units (KOALA [91], UML
2.0 [87] and Palladio [16]) represent method calls between provided interfaces and
required interfaces of different components. Connectors linking port-based archi-
tectural units (BlueArX [65], COMDES II [63], Scade [18], PECOS [48], Pin [58],
RUBUS [53] and Simulink [106]) represent data flow (or control flow).

Nevertheless, some component models based on architectural components re-
tain the first-class connector status. ProCom [103] connectors can route control
or data flow between several component ports. Fractal [24] allows modelling of
complex interaction via so-called binding components. SOFA 2.0 [26] connectors
are composed of so-called connector elements, which can model multiple interac-
tion styles (see Section 4.4.2) and complex middleware mechanisms (e.g., remote
procedure call with data compression and encryption) [27].

Component models with encapsulated components composed by means of
coordination (X-MAN [74] and web services2 [61]) express connectors, which em-
body the possibly complex coordination behaviour, explicitly. Likewise, connec-
tors are treated as first-class entities in BIP (Behaviour, Interaction, Priority) [13],
where they define the interaction layer of system designs, and in Reo, where they
coordinate active components by means of data flow.

2We consider web services composed via WS-BPEL orchestration.
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5.3.4 Defining New Connectors

Component models suitable for representing interaction patterns need to have an
extensible set of connectors in order to define new connectors for new interaction
patterns. In this section, we assess how the models with an explicit architectural
representation of connectors, which passed the previous iteration of our analysis,
conform to this requirement.

The distinction between component models representing connectors as links
and as more complex architectural units made in Table 5.3 proves also useful in
the analysis of this requirement: none of the surveyed component models repre-
senting connectors as links supports definition of new connectors. As mentioned
in Section 5.3.3, the links between component interfaces in these models corre-
spond to the underlying composition mechanisms, which are fixed in component
model definitions and non-composable. As a result, these models cannot represent
interaction patterns as connectors.

The component models representing connectors as more complex architectural
units (in the third column of Table 5.3) support defining new connectors. BIP con-
nectors represent sets of interacting component behaviours, and new connectors
define new component interactions. Fractal defines new connectors (‘composite
bindings’) by means of so-called binding components. SOFA 2.0 provides a com-
positional way of building new connectors out of connector elements. In X-MAN,
new connectors can be composed from existing control connectors. Reo connec-
tors are composed by so-called nodes that actively move data between connectors.
In web services, new WS-BPEL processes can be created to compose web services.
ProCom does not define composite connectors as such, but its pre-defined basic
control flow and data flow connectors can be connected to form more complex
coordination structures3, albeit the resulting structures do not have the identity
of their own and cannot be reused as connectors.

5.3.5 Analysis of the Remaining Criteria

Having ruled out most surveyed component models in the previous two iterations
of our analysis, in this section we analyse the conformance of the remaining
models to the rest of the requirements from Section 5.2. The results for particular

3This is why we considered ProCom in the next iteration of our analysis, although it did
not completely pass this iteration.
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component models are shown in Table 5.2.

Separate Specification of Interaction and Computation
Component models based on encapsulated components (X-MAN and web ser-

vices) separate the specification of interaction and computation since they rely
on control coordination, which is an exogenous coordination mechanism. Compo-
nent models with port-based architectural units (ProCom) composed according
to the pipe-and-filter interaction style also conform to this requirement. BIP
distinguishes between interaction and computation by design: BIP architectures
separate behaviour (i.e., computation) and interaction in separate layers. Simi-
larly, Reo connectors encapsulate interaction separately from components.

On the other hand, Fractal and ProCom fail to separate computation and
interaction due to their reliance on method call, which is not an exogenous com-
position mechanism.

Explicit Control Flow and Data Flow Modelling
The method call composition mechanism, used by SOFA 2.0 and Fractal, com-

bines control flow and data flow, precluding their explicit representation. Neither
can BIP model control flow and data flow explicitly in architecture. Component
models based on control coordination – X-MAN and web services – model con-
trol flow explicitly; however, data flow is only implicit in software architecture.
On the contrary, Reo as a data-oriented coordination language models data flow
explicitly but lacks explicit control flow modelling.

The only model in our survey that models both flows explicitly is ProCom.
ProCom distinguishes between two kinds of ports (control and data ports), and
also between the corresponding two types of port connections.

Composable Connectors
Only two of the models surveyed in this iteration – ProCom and web services

– cannot define composite connectors. ProCom connectors for routing data flow
and control flow can be composed together to represent more complex coordi-
nation behaviour; however, these compositions cannot be encapsulated in the
form of composite connectors. WS-BPEL processes, playing the role of coordina-
tion connectors in web service composition, cannot be constructed out of other
WS-BPEL processes in a compositional manner.
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The rest of the models compose connectors in various ways. BIP connec-
tors, corresponding to interacting component behaviours, can be composed by set
union. The Fractal component model supports creation of composite connectors
(‘composite bindings’ [24]), realised by so-called binding components. SOFA 2.0
models connectors as compositions of, possibly hierarchically structured, connec-
tor elements. Connector elements represent implementation artefacts (such as
stubs, skeletons and interceptors) realising a particular middleware mechanism.
SOFA 2.0 connectors thus represent these mechanisms (e.g., remote procedure
call, message passing or blackboard); the connectors’ composition structure mod-
els the infrastructure implementing the mechanisms. X-MAN allows composition
of its control connectors to form more complex coordination connectors. Reo
composes connectors through nodes.

Separate Control Flow and Data Flow Modelling
None of the surveyed models model control flow and data flow separately,

without mutual dependencies imposed by their execution semantics. Firstly, the
component models that do not model control flow explicitly – BIP, Fractal and
SOFA 2.0 – cannot model these two flows separately. Likewise, because it does
not explicitly model control flow, Reo cannot model control flow and data flow
separately. The rest of the models in this iteration – ProCom, X-MAN and web
services – have control-driven execution semantics, which imposes dependencies
on the flows described in Section 4.5.2.

5.3.6 Analysis Conclusions

The main finding of our analysis of existing component models is that none of
the surveyed models exhibits all the desired properties for expressing interaction
patterns identified in Section 5.2. The majority of surveyed component models –
22 out of 29 – even fail to treat connectors as first-class citizens: they completely
lack connectors in architecture (object-based component models) or they only
represent connectors as fixed types of connections between component interfaces
without the ability to define new, more complex connectors (most component
models based on architectural units).

The analysis shows that some composition mechanisms are more suitable
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for our approach than others. Composition mechanisms based on the request-
response interaction style (e.g., method call) are not suitable for expressing inter-
action patterns, because they preclude the separation of computation and interac-
tion as well as modelling control flow and data flow explicitly. On the other hand,
composition mechanisms based on exogenous coordination (e.g., in X-MAN) and
the pipe-and-filter (e.g., in ProCom) allow these properties to be achieved.

The two component models that fulfil most of the desired properties are Pro-
Com and X-MAN. ProCom has first-class connectors and models data flow and
control flow explicitly, but it does not allow the definition of composite connec-
tors. X-MAN supports composite connectors and models control flow explicitly,
but it does not model data flow explicitly. Neither of the two models supports
separate (independent) modelling of data flow and control flow since they are
both control-driven.

As a result, the absence of an existing component model suitable for our
approach motivates us to define a new component model that possesses all of the
desirable characteristics. In the next chapter, we define such a component model.

Conceptually, the new component model builds on the component models
that fulfil many of the survey’s criteria. Like ProCom, it employs port-based
component interfaces and data connectors based on the pipe-and-filter paradigm.
Like X-MAN, it features hierarchical control connectors coordinating components.
However, we define our component model from scratch, not as an extension of
some existing component model, in order not to be restricted by the existing
model’s limitations (mainly related to execution semantics).



Chapter 6

A Component Model with
Control Flow and Data Flow
Separation

The survey of current component models presented in Section 5.3 found out that
there is no existing component model that would be suitable for representing
interaction patterns as connectors, with respect to the characteristics identified
in Section 5.2. This motivated us to develop a new component model suitable for
this purpose [72].

In this chapter, we define the new component model, in terms of its compo-
nents (Section 6.2) and connectors (Section 6.3), and show the characteristics of
system architectures constructed in the model (Section 6.4). We also describe its
execution semantics (Section 6.5) and present its formalisation using Coloured
Petri Nets (Section 6.6). In this chapter, we only define basic connectors; the
definition of composite connectors – the abstraction for representing interaction
patterns in our approach – can be found in Chapter 7.

6.1 Component Model Overview

In this section, we explain what decisions we took in designing our component
model to conform to the desirable properties for representing interaction patterns
from Section 5.2, and we give an overview of the model using a simple example.

In general, the architectures of systems developed in our model comply with
the schema in Figure 6.1. A system architecture (denoted by a dotted ellipse)
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contains the definition of the computation and interaction aspects of system be-
haviour, which transforms the system’s inputs to outputs. Input data can come
from data sources external to the system (such as files, databases or sensor read-
ings) or can be generated by the system itself (e.g., random number generators
or previously saved state); output data can also be sent to data stores outside of
the system or they can be saved as a system state.

Figure 6.1: Generic Schema of a System Architecture

Our component model separates computation and interaction in software ar-
chitecture: components define computation only, connectors define interaction
only. Components in our model are encapsulated components with port-based
interfaces performing a single function that transforms input data to output data.
Connectors in our model are explicit in architecture; they transfer data and con-
trol between components, thereby coordinating component execution.

To model control flow and data flow explicitly in architecture, component
interfaces distinguish between control ports and data ports, and there exist two
kinds of connectors: data and control connectors (see Section 6.3). Data con-
nectors are further divided into data channels, unidirectional point-to-point port
connections, and data coordinators, which route data dynamically within a group
of data channels. Control connectors correspond to the basic control structures
of sequencing, branching (selection or conditional execution) and looping.

To enable separate modelling of control flow and data flow, both flows can
trigger component execution. To this end, our component model defines the fol-
lowing types of components (see Section 6.2): data-driven, control-driven and
control-switched data-driven components. Data-driven components are triggered
by the mere presence of their data inputs; control-driven components are trig-
gered by an incoming control signal; control-switched data-driven components
are triggered by the presence of their data inputs as long as their state, which is
switched by control signals, is ‘on’ (a so-called enabled state). As a result, sys-
tems can comprise of control-driven and data-driven parts. The control-driven
and data-driven execution semantics (see Section 6.5) addresses the problem of
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concurrent execution of these two parts.
Our component model also defines connector composition to be able to cre-

ate new connectors out of existing ones. Composite connectors are described in
Chapter 7.

6.1.1 An Illustrative Example

To illustrate the aforementioned characteristics of our component model, we show
the architecture of a simple window controller system in Figure 6.2.1 The system
prevents the window motor in a car from being activated when the window is
already in the requested position. System inputs come from a window position
sensor and a user-operated button that controls the window movement. System
outputs control the motor.

Figure 6.2: Architecture of the Window Controller System

The figure shows a clear separation between computation, defined by compo-
nents, and interaction, defined by control and data connectors to make both data
flow and control flow explicit.

The system’s inputs are fed by the SRC source component; the system’s out-
puts are sent to the SINK sink component. The data-driven component decides

1The figure serves for illustrative purposes only: component model elements depicted in the
figure are defined in detail further in the chapter.
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whether the motor needs to be activated. Because it is data-driven, it is active all
the time. Motor up and Motor down are control-driven components that compute
the system’s output to the motor, based on the current window position coming
from the sensor, moving the window up or down, respectively. At most one of
them is active at a time, depending on the user’s preference, represented by the
button input.

Control flow is defined by control connectors. They define an infinite loop that
can optionally (based on SensorProcessor’s output) select (based on the button
input) one of the control-driven components to be sent a control signal and thus
executed. Data flow between components is defined by data channels, data guards
and a data switch. The data guards ensure that data are sent to the selector and
control-driven components only if the motor needs to be activated. The switch
routes sensor inputs to only one of the two control-driven components, depending
on the state of the user-operated button.

As a result, the SensorProcessor component determines whether the system
outputs any command to the motor. If it finds that the window should move,
its output makes the guard connector send a control signal to one of the control-
driven components, which is then executed, computes the command and outputs
it via the sink component. Otherwise, control flow returns to the loop connector
to start another loop iteration.

6.2 Components

Components in our model perform a single function, transforming input data
to output data. They strictly carry out computation only, and they do not
coordinate computation in other components. Instead, the execution of their
computation is being coordinated by connectors (see Section 6.3).

We have defined three kinds of components that differ in the way their compu-
tation is triggered: (i) data-driven components, (ii) control-switched data-driven
components and (iii) control-driven components. Additionally, there are two spe-
cial kinds of components: sources, providing system inputs, and sinks, consuming
system outputs. All of the component types are depicted in Figure 6.3 and de-
fined in Section 6.2.3. First, we cover characteristics common to all component
types: their interface and computation function.
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Figure 6.3: Component Types

6.2.1 Component Interface

A component’s interface comprises control ports and data ports. Control ports are
places through which control flow interacts with a component. Each component
has at most one control port. Control flow enters a component via its control
port and, depending on the component’s type, either triggers the execution of its
computation or changes the component’s state, and finally leaves the component.
Control ports are not typed since there is only one kind of control flow. In our
notation, control ports are depicted as dark sockets on top of components (see
Figure 6.3).

Data ports are places of interaction of data flow and a component’s compu-
tation function. Their semantics corresponds to that of variables in imperative
programming languages: they can hold a value and are, unlike control ports,
typed. We distinguish two kinds of data ports: input data ports hold the inputs
of a component’s function and output data ports hold the results of a compo-
nent’s function. Each component can have many input and output data ports.
In our notation, data ports are depicted as light triangles within darker squares
(see Figure 6.3).

6.2.2 Component Function

Computation carried out by a component is defined by a single function. A
component’s function f is defined as a function of the values of its input data
ports and the component’s state. It computes the values of output data ports of
the component and possibly changes the component’s state. Formally,

f : I × S → O × S

where I, O, S are the products of the data types (viewed as sets) of a component’s
input ports, output ports and state variables, respectively.
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Figure 6.4 shows an example of a component function written in the domain-
specific language for defining functions, implemented in our prototype tool. The
function updates the component’s state, stored in the integer variable sum, by
adding to it the value of the input port input, and outputs the state to the output
port output.

component Sum {
in input : int , out output: int
state sum: int = 0
{

sum = sum + input
output = sum

}
}

Figure 6.4: The Sum Component Function

Components are passive entities, which are executed from outside (by con-
nectors) to perform their computation. The component execution follows the
read-execute-write schema. A component first reads all the data from its input
ports. Then it executes its function, which computes the values to be written to
output ports. Finally, it writes the output values to its output data ports.

6.2.3 Component Types

Although every component in our model represents a single function, we distin-
guish different kinds of components according to the two following criteria:

• whether they exclusively produce or consume data, or whether they trans-
form non-empty inputs to non-empty outputs, and

• what triggers their execution.

The first criterion allows us to distinguish between components whose role is
only to feed data into a system (sources) or, conversely, only to consume the data
output by a system (sinks), and components that both consume and produce
data by transforming their inputs to their outputs.

The second criterion is related to the separation of control flow and data flow
in our component model. Whereas in most component models only one of the
two flows is responsible for triggering component execution, which creates the
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dependence of one flow on the other (see Section 4.5.2), we allow both flows to
trigger execution on their own to avoid the above-mentioned inter-dependence. As
a result, the component model has component types whose execution is triggered
by the presence of their data inputs as well as components triggered by control
signals. Table 6.1 summarises all component types; their definition follows below.

Component type
Interface (ports) Execution

Control Input
data

Output
data Trigger Additional

condition
Source 0 0 [1,∞) scheduler more input

data available
Sink 0 [1,∞) 0 data –
Data-driven 0 [1,∞) [1,∞) data –
Control-switched
Data-driven

1 [1,∞) [1,∞) data component is
enabled

Control-driven 1 [0,∞) [0,∞) control all input data
present

Table 6.1: Summary of Component Types

Sources
Source components provide input data to other components in a system. The

data typically come from files or, in the case of embedded systems, sensors. Con-
ceptually, the computation function of a source operates on its inner state, which
corresponds to the data that remain to be read, producing its new state and val-
ues for output ports. Its interface therefore comprises output data ports only. All
of them are filled at once during the write phase of a source’s execution. Source
components keep providing data until their data source is empty (see Section 6.5
for the details of their execution semantics).

Figure 6.5 shows an example of a source component. T has two output ports,
x and y of the data types boolean and double, respectively. T reads the data from
an input file, in which each line contains a value of one of the T’s ports together
with the port’s name. The table on the right shows the values of T’s ports (after
each execution) and the contents of the input file (before each execution) over
three consecutive executions of T (each column in the table corresponds to one
execution).
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(a) Interface

Input File
(before)

x True
y 1.1
x False
y 0.4
x True
y -2.3

x False
y 0.4
x True
y -2.3

x True
y -2.3

Port x (after) True False True
Port y (after) 1.1 0.4 -2.3

(b) Values of ports and the contents of the file over three
consecutive executions

Figure 6.5: Source Component Reading From a File

Sinks
Sink components consume data produced by other components and send them

to some external entity outside the scope of a modelled system. The target entity
may be a data store, such as a file or a database, or an actuator, in the case
of embedded systems. A sink’s computation function operates on its input data
ports and its inner state, which corresponds to the data that have been consumed
by the sink, producing its new state. Its interface therefore comprises input data
ports only. All of them are consumed at once during the read phase of a sink’s
execution. The execution is triggered by the presence of data at all of its input
ports.

For an example of a sink component, see Figure 6.6. S has two input ports, a
and b of the data types int and string, respectively. S sends the data it consumes
to an output file, where it stores the value of each of its input ports preceded by
the port’s name on separate lines. The table on the right shows the values of S’s
input ports (before each execution) and the contents of the output file (after each
execution) over three consecutive executions of S2.

Data-driven Components
indexcomponent!data-driven Data-driven components transform their non-empty

data inputs to non-empty data outputs, possibly also changing their state in the
process (so-called transformational components). Their execution is triggered by
the presence of data at all of their input ports, hence data-driven, and it follows
the read-execute-write scheme. The interface of a data-driven component consists
of input and output data ports.

2We assume the file is empty initially.
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(a) Interface

Port a (before) 1 2 0
Port b (before) "a" "b" "c"
Output File
(after)

a 1
b "a"

a 1
b "a"
a 2
b "b"

a 1
b "a"
a 2
b "b"
a 0
b "c"

(b) Values of ports and the contents of the file over
three consecutive executions

Figure 6.6: Sink Component Writing To a File

Data-driven components are suitable for modelling data-processing computa-
tions that are active as long as the data are available. For example, the Sensor-
Processor component in our illustrative example is data-driven for this reason.
Possible application domains include digital signal processing in multimedia sys-
tems, processing sensor readings in embedded systems or data compression in
archiving software.

Figure 6.7 shows a simple data-driven component. Sum has one input and
one output port of the int data type. It gradually sums all its inputs and outputs
partial sums (see Figure 6.4 for its definition). The table in Figure 6.7 shows the
values of Sum’s input and output ports as well as of its state variable over three
consecutive executions (assuming sum= 0 initially).

(a) Interface

Port input (before) 1 2 3
State sum (before) 0 1 3
State sum (after) 1 3 6
Port output (after) 1 3 6

(b) Values of the component’s ports and state
over three consecutive executions

Figure 6.7: The Sum Data-driven Component

Control-switched Data-driven Components
Control-switched data-driven components are transformational components whose

execution is triggered by data flow. Additionally, they always find themselves in
one of the two execution states – enabled or disabled, which are switched between
by incoming control signals. Their interfaces contain data ports and control ports
since both control flow and data flow can interact with them.



100 CHAPTER 6. OUR COMPONENT MODEL

The computation function of a control-switched data-driven component is
executed when all of its inputs are present and the current execution state is en-
abled; the execution proceeds in the same manner as for a data-driven component.
Whenever a control signal arrives at a control port, it switches the component’s
execution state (from enabled to disabled, and vice versa), and it immediately
returns back via the control port.

Components of this type are suitable for modelling data processing computa-
tions that can be switched on and off if needed. This is often the case in a class
of embedded systems, called systems with modes. Their functionality changes at
run-time when their mode changes. In our model, control flow can represent a
mode-changing mechanism and several control-switched data-driven components
can model functionalities of system modes.

(a) Interface

Control port – T – T –
Execution State E D D E E
Port input (before) 1 – – 2 3
State sum (before) 0 1 1 1 3
State sum (after) 1 1 1 3 6
Port output (after) 1 – – 3 6
T .. triggered, E .. enabled, D .. disabled

(b) Values of the component’s ports and state
over several executions

Figure 6.8: The Sum Control-switched Data-driven Component

Figure 6.8 shows a control-switched data-driven component that has the same
computation function as the component Sum in Figure 6.7 and thus has the same
data ports and, additionally, one control port. The table in Figure 6.8b captures
several snapshots of the component’s port and state values, its execution state
(Enabled or Disabled) and whether control flow switched the execution state by
triggering the control port (indicated by T). The component computes outputs
and changes its internal state in the same way as its data-driven version earlier
unless it is disabled.

Control-driven Components
They are also transformational components, but their execution is triggered

by control flow, hence control-driven. Because they interact with data flow and
control flow, they have ports of both kinds.
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A control-driven component’s computation function is triggered when a con-
trol signal arrives at its control port and all of its inputs are present. The execu-
tion then follows the read-execute-write scheme. At the end of the write phase,
output data ports are filled with the computed values, and the control signal
returns back via the control port. If a control signal arrives at a component’s
control port while some inputs are still missing, the component cannot be exe-
cuted; instead, control flows back without triggering any computation.

Control-driven components are suitable for modelling activities that are trig-
gered on-demand, with no action when inputs are missing. They can still be used
for data processing where every execution is individually triggered. Since they
may have no input data at all, they can be pure data producers (e.g., random
number generators and on-demand sensors), like sources. Similarly, they can have
no data outputs, like sinks, which may be used to control actuators in embedded
systems. Unlike sources and sinks, the execution is not driven by the availability
of data, but by control signals.

(a) Interface

Control port T T T – T
Port input (before) 1 – 2 3 3
State sum (before) 0 1 1 3 3
State sum (after) 1 1 3 3 6
Port output (after) 1 – 3 – 6

T .. triggered
(b) Values of the component’s ports and state
over several executions

Figure 6.9: The Sum Control-driven Component

Figure 6.9 gives an example of a control-driven component that, again, has
the Sum computation function and the same interface as the example control-
switched data-driven component. The only difference is a graphical symbol for
a control port. The port and state values in the table in Figure 6.9b illustrate
that the component function executes only when it is triggered and its inputs are
available.

6.3 Connectors

Connectors in our model transfer data and control in a system, thereby coordi-
nating computation by triggering the execution of data-driven and control-driven
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components. To maximise the separation of computation and interaction, they
represent an exogenous coordination composition mechanism, based on the pipe-
and-filter interaction style. We distinguish between two kinds of connectors by
the flow they carry: data and control connectors. Data connectors are further
divided into unidirectional channels, connecting an output data port to an input
data port, and data coordinators, which route data dynamically within a group of
channels according to some condition. Control connectors correspond to the basic
control structures of sequencing, branching (selection or conditional execution)
and looping. Connector types in our model are summarised in Figure 6.10 and
defined in the rest of this section.

(a) Data Connectors

(b) Control Connectors

Figure 6.10: Connector Types

In this section, we define connectors on their own. The ways of their composi-
tion are discussed in Section 6.4.1. Section 6.5 describes their run-time behaviour;
in particular, it addresses the problems of synchronising data flow and control
flow that connectors define in system architectures.

6.3.1 Data Channels

A data channel transfers data in one direction between an output data port
(source port) and an input data port (sink port). The data ports may belong to
a component, data coordinator or control connector. Data channels preserve the
type of transferred data, and they strictly require that the types of connected
ports are equal, which encourages type-safety and avoids the need for type con-
versions.

A data channel operates as follows: when its source port contains a value, the
channel removes the value from the port, which becomes empty, and writes it to
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its internal buffer. Whenever the sink port is empty and the channel’s internal
buffer contains a value, the value is read from the buffer and is written to the
sink port.

The prototype tool (see Chapter 9) currently supports the following data
channel types: FIFO, FIFO-1 and NDR-1. As shown in Table 6.2, they differ in
the capacity of their internal buffer and whether accesses to the buffer destroy
the values stored there. The list in Table 6.2 is not fixed since the model can
be extended with other types of data channels if necessary. However, due to our
model’s execution semantics, data channels have to be asynchronous, i.e., they
can never block component execution (see Section 11.4.2).

Data Channel Buffer Capacity Buffer Writing Buffer Reading
FIFO +∞ non-destructive destructive
FIFO-1 1 destructive destructive
NDR-1 1 destructive non-destructive

Table 6.2: Currently Defined Data Channels

Figure 6.11 illustrates the behaviour of the three channel types over the follow-
ing series of operations on their buffers: two writes (denoted by W) and several
reads (denoted by R). For each channel type, the table shows the contents of
internal buffers (as sequences of values) and source and sink ports (both before
and after an operation). We see that FIFO and FIFO-1 can do only a limited
number of reads, due to the destructive nature of their buffer reading operation;
in contrast, NDR-1 produces values indefinitely.

6.3.2 Data Coordinators

Data coordinators are data connectors that route data among a set of data chan-
nels dynamically, based on some condition. We have defined three kinds of data
coordinators: (i) data switches for splitting a data flow into several data flows,
(ii) data guards for filtering values of a data flow, and (iii) data joins for joining
several data flows into one.

The interface of data coordinators comprises data ports, to which data chan-
nels connect. Data coordinators have at least two input data ports and at least
one output data port: the values at one input port (also called control data)
control the routing behaviour, and the rest of input ports provide the data to be
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e Source port 1 2 – –

Sink port – – – –
Buffer () (1) (1, 2) (2)
Buffer operation W W R R

A
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er Source port – – – –

Sink port – – 1 2
Buffer (1) (1, 2) (2) ()

(a) FIFO
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e Source port 1 2 –

Sink port – – –
Buffer () (1) (2)
Buffer operation W W R
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er Source port – – –

Sink port – – 2
Buffer (1) (2) ()

(b) FIFO-1

B
ef
or
e Source port 1 2 – –

Sink port – – – –
Buffer () (1) (2) (2)
Buffer operation W W R R . . .

A
ft
er Source port – – – –

Sink port – – 2 2
Buffer (1) (2) (2) (2)

(c) NDR-1

Figure 6.11: Illustration of Data Channel Behaviour

routed out of the coordinator via its output ports. Data coordinators preserve
the type of transferred data. Each execution, triggered by the presence of input
data, consumes a control datum and an input datum, and produces at most one
output datum that is identical to the input datum. The detailed description of
the three types of data coordinators follows.

Data Switches
A data switch has two input and at least two output ports. It redistributes

input data from an input channel among the group of output channels, according
to control data coming from the other input channel. That is, a control datum
determines the target channel of an input datum. In our prototype tool, con-
trol data are integers whose values correspond to the selected target channels
(numbered from 0).

(a) Interface

Port sel (before) 0 0 1
Port in (before) "a" "b" "c"
Port out0 (after) "a" "b" –
Port out1 (after) – – "c"

(b) Values of ports over several executions

Figure 6.12: An Example Data Switch

For example, Figure 6.12 shows a data switch redistributing the flow of string
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values coming from its port in among two output flows via ports out0 and out1,
according to the control data from the input port sel. The table illustrates the
operation of the data switch over three executions, showing the values of input
ports before execution and the values of output ports after. Notice that only one
of the output ports is sent a value at a time.

Data Guards
A data guard has two input and one output ports. It filters the input data from

an input channel according to the control data (boolean conditions) coming from
the other input channel. That is, the condition determines whether the current
datum will be routed to the output channel or will be filtered out by the data
guard.

(a) Interface

Port cond (before) true true false
Port in (before) "a" "b" "c"
Port out (after) "a" "b" –

(b) Values of ports over several executions

Figure 6.13: An Example Data Guard

Figure 6.13 shows a data guard filtering the flow of string values coming from
its port in to the output port out, according to the conditions from cond. The
table illustrates the operation of the data guard over three executions, showing
the values of input ports before execution and the values of the output port after.

Data Joins
A data join has one output and N > 2 input ports. It builds the output data

flow by interleaving its (N−1) input data flows in an order determined by control
data coming from the Nth input channel. That is, a control datum determines
the source channel providing the next datum to be routed to the output flow.
In our prototype tool, control data are integers whose values correspond to the
selected source channels (numbered from 0).

For example, Figure 6.14 shows a data join interleaving two flows of boolean
values coming to its ports in0 and in1 into the output port out. The table illus-
trates the operation of the data join over three executions, showing the values of
input ports before execution and the values of output ports after.

Data coordinators share many similarities with data-driven components: their
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(a) Interface

Port sel (before) 0 0 1
Port in0 (before) T T T
Port in1 (before) F F F
Port out (after) T T F

(b) Values of ports over several executions

Figure 6.14: An Example Data Join

interface comprise data ports, and they are data-driven. However, data coordi-
nators are only data connectors: they forward data, but they cannot transform
data. Moreover, there exist subtle differences in execution semantics. For in-
stance, a data join does not have to wait for all its inputs but can execute as long
as the control data and the selected input channel contain values.

6.3.3 Control Connectors

Control connectors route control signals, thereby defining control flow in a system
and coordinating the execution of control-driven components. Each control con-
nector routes control according to one of the basic control patterns – sequencing,
branching, conditional execution and looping. A connector’s routing pattern can
be both static, such as sequencing and looping, or vary dynamically based on a
condition, such as branching and conditional execution.

Control connectors may interact with control flow and data flow. Their inter-
face, therefore, comprises a control port3, at least one control parameter (corre-
sponding to a required control port) and, optionally, a data port for connectors
realising a dynamic control pattern.

Figure 6.15: Generic Schema of Control Connector Behaviour

Figure 6.15 illustrates the behaviour of a generic control connector. Its execu-
tion is triggered by a control signal arriving at its control port. If the connector
needs data for its routing decision (e.g., a selector needs a branching condition),

3Except for the loop connector.
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it waits until the data arrive at its input data port. Once the connector deter-
mines its routing pattern (from its data input or statically), it invokes one of
its control parameters, by sending the control signal to the parameter and wait-
ing for the signal to return back. This is sequentially repeated until the routing
pattern is completed. Finally, the connector returns the control signal back via
the control port. Figure 6.15 depicts the sequence of control signal transfers by
labelling them: starting with 1 for the initial arrival of the control signal, contin-
uing with some intermediate control transfers (1 < i, j < n) and finishing with n
for the signal’s return. The exact sequence of invocations depends on the control
connector’s type.

The following control connectors are defined in our model: sequencers, se-
lectors, guards and loops. Table 6.3 gives an overview of their interface and
behaviour, which is defined in terms of possible invocation sequences of their
control parameters (numbered from 1 to n). Connectors with a static control
routing pattern have only one such sequence; whereas connectors with a dynamic
routing pattern have several possible invocation sequences, one of which is se-
lected based on the condition coming from their input data port.

Control
Connector

Interface (ports) Invocation
Sequence(s)Control

Port
Data
Port

Control
Parameters

Sequencer 1 0 [2,+∞) (1, 2, . . . , n)
Selector 1 1 [2,+∞) (1), (2), . . . , (n)
Guard 1 1 1 (), (1)
Loop 0 0 1 (1, 1, . . . )

Table 6.3: Summary of Control Connector Types

Sequencers
A sequencer has a control port and at least two ordered control parameters. It

invokes its control parameters in sequence in increasing order.

Selectors
A selector has a control port, an input data port and at least two control

parameters. It invokes one of its control parameters identified by an input datum;
it thus realises the control branching pattern. In our prototype tool, the input
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port has to have the integer type, and the selection value must lie in the integer
interval [0, n).

Guards
A guard has a control port, an input data port of the boolean type and one

control parameter, which is invoked if the condition value coming from the input
port equals true.

Loops
A loop has an interface consisting of just one control parameter. Therefore, it

can only be placed at the top of the connector hierarchy. It is the only control
connector that does not have any control port since it does not receive any control
signal from its parent control connector; instead, it emits the control signal at
the beginning of system execution and then continues to invoke its only control
parameter until the system terminates.

6.4 System Architecture

Having defined basic building blocks of our model in previous sections, in this
section we discuss how to compose these building blocks to construct system
architectures.

We can now refine the generic schema of a system architecture in our model
from Figure 6.1 on page 92 into the schema in Figure 6.16. A system reads
inputs from data sources, which can be source components or control-driven pro-
ducer components; system outputs are written to data sinks, which can be sink
components or control-driven consumer components. The computation part of
the original scheme comprises control-driven components, control-switched data-
driven components and data-driven components. The interaction part of the orig-
inal scheme comprises control connectors, coordinating composed control-driven
components and switching the state of composed control-switched data-driven
components, as well as data connectors (data channels and data coordinators),
exchanging data between components and thereby coordinating the data-driven
components

The two partitions in the schema distinguished by two shades of grey corre-
spond to control-driven (darker grey) and data-driven elements (lighter grey) of
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Figure 6.16: Refined Schema of a System Architecture

the model. Such partitioning of an architecture promotes clear separation be-
tween the two kinds of system behaviour on the global architectural level. This is
advantageous, for example, in reactive control software systems (see Section 3.1.1)
because it makes it easier to identify controllers and processing parts in architec-
ture.

In Section 6.4.1, we describe the mechanisms using which a system architec-
ture can be composed from components and connectors. Section 6.4.2 illustrates
the breadth of possible system architectures that can be created in our model.
Section 6.4.3 summarises the main structural constraints to which valid architec-
tures have to conform.

6.4.1 Composing Model Elements

In our model, connectors establish inter-component interactions since components
are self-contained computation functions. Connectors represent an exogenous
coordination composition mechanism, modelled in terms of inter-component data
flow and control flow. Components are thus composed by means of connectors.
Connectors can also be composed together to represent more complex data flow
and control flow routing patterns. In general, model elements are composed by
connecting their ports.

Table 6.4 summarises for each connector type what model entities it can com-
pose and what kind of interaction it establishes. Data channels compose entities
with data ports (components, data coordinators and some control connectors) to
establish one-way data flow links; data coordinators compose data channels to
route their data flows in a dynamic manner; control connectors compose other
control connectors and components with a control port (control-switched data-
driven and control-driven components) to establish control flow between them.
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Connector Type Composed Entities Established Interaction
Data channel Entities with data ports One-way data link
Data coordinator Data channels Dynamic data flow routing

pattern
Control connector Entities with control ports Control flow pattern

Table 6.4: Connectors as a Means for Composition

We can distinguish between two main kinds of composition in our model:
composition via data ports and composition via control ports.

Composition via Data Ports
Data channels and data coordinators compose via data ports. An output data

port can be a data channel’s source and can be read by the channel once it contains
a value. An input data port can be a channel’s sink and can be written by the
channel once it is empty. During system composition, multiple data channels can
share one source or target data port, as illustrated in Figure 6.17. If multiple
data channels share a single source port (Figure 6.17a), a value from the port
is copied to all of them. Conversely, if multiple data channels share a single
sink port (Figure 6.17b), only one of them will be able to write a value to the
port. The choice of the writing channel is arbitrary, and thus non-deterministic.
Developers can avoid non-determinism by ensuring that only one channel contains
data or by choosing the value deterministically, according to some condition, using
a data join.

(a) Multiple Outgoing Channels (b) Multiple Incoming Channels

Figure 6.17: Multiple Data Channels Connected to a Single Data Port

Composition via Control Ports
Control connectors compose via control ports and parameters and, depending of

their type, via an input data port. To compose a control connector with another
entity with a control port, a control parameter of the control connector needs
to be connected to the control port of the other entity. The control connector
then becomes the coordinator of the connected entity as it forwards control flow
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to the entity in accordance with its control routing pattern. If the connected
entity is a component, control switches its state (in the case of control-switched
components) or triggers its execution (in the case of control-driven components).
If the connected entity is a connector, the connection results in composing the
control routing patterns of the two connectors.

The resulting control flow is obtained by replacing the part of the flow corre-
sponding to the control parameter of the parent connector with the control flow
defined by the child connector. Figure 6.18a shows the composition of two control
connectors (the same notation as in Figure 6.15 is used). We see that ith and
(i + 1)th control transfers of CC1 (corresponding to sending control flow to the
left-most control parameter and its return in Figure 6.15) have been unified with
the first and last (mth) control transfer of the connector CC2, and the arrows
have been re-labelled to reflect the fact that the ith transfer is followed by the
invocation sequence of the whole CC2. For the scheme to be correct, invoca-
tions at different levels must be properly nested (1 < i, i + m, j, j + 1 < n and
i < k, k + 1, l, l + 1 < i + m), and invocations at the same level cannot overlap
(j + 1 < i ∨ i + m < j and k + 1 < l ∨ l + 1 < k). Figure 6.18b illustrates the
scheme on an example composition of two sequencers.

(a) Composition of Two Generic Connectors (b) Composition of Two Sequencers

Figure 6.18: Composing Control Connectors’ Flows

6.4.2 Possible System Architectures

To explore the variety of system architectures that can be built in our component
model and to demonstrate separate control flow and data flow modelling, in this
section we present three categories of system architectures: data-driven systems,
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control-driven systems and hybrid systems (using both control and data flow
coordination).

Data-driven Systems
Figure 6.19 shows an architecture of a data processing system. A typical exam-

ple is a video processing system; individual data-driven components might cor-
respond to different processing filters that perform signal transformations, such
as deinterlacing, noise reduction or edge enhancement. In our model, sources,
sinks, data-driven components, data channels and data coordinators can be used
to model these systems. Data flow is the only means for interaction modelling
and drives the computation.

Figure 6.19: Architecture of a Data-driven System

Control-driven Systems
Control-driven systems lie at the opposite end of the software spectrum to

data-driven systems: control flow dominates interaction modelling and drives the
computation.

An architecture of a simple, control-intensive system is shown in Figure 6.20.
Sources, sinks, control-driven components, data and control connectors can be
used to model these systems. Control connectors coordinate the composed control-
driven components. Because they do not need data inputs to be executed, control-
driven components can become pure data producers (such as the component A
in Figure 6.20) or even lack data interface at all (C in the figure). As a result,
their architecture may lack sources and sinks.

For example, A could be a random number generator. C can only change
its internal state during its execution, which may have a manifestation in the
physical world, such as activating a machine’s actuator.
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Figure 6.20: Architecture of a Control-driven System

Hybrid Systems with Control and Data Coordination
Finally, all component model entities can be combined to compose a single

system, as shown in the illustrative example in Figure 6.2 on page 93. Both control
flow (control connectors) and data flow (data channels and data coordinators)
model interaction and drive the execution of system components.

6.4.3 Architectural Constraints

System architectures constructed in our model have to conform to certain struc-
tural constraints to be valid, i.e., to represent well-defined systems.

In short, an architecture is valid (structurally) as long as data sources and
sinks and the main computation and interaction parts are well-defined. All data
ports need to be connected to a data channel of the same type and right direction-
ality. Likewise, all control ports and control parameters need to be connected.

The control connector hierarchy has two main constraints, both imposed by
the current execution semantics (see Section 6.5): (i) there must be at most one
top-most control connector and (ii) the hierarchy must form a directed acyclic
graph. The former requirement stems from a limitation of the execution semantics
that allows at most one control thread. The latter requirement prevents the
infinite control loop in a subset of the control hierarchy and therefore guarantees
that one iteration of the control hierarchy finishes in a finite time.

In addition, data flow loops – composed of data-driven components, data
coordinators and channels – should contain some conditional exit from the loop
(e.g., a data switch) in order for a system with such loops to terminate (see
Section 6.5.7).
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6.5 Execution Semantics

In this section, we define how systems constructed in our component model be-
have at run-time. The system behaviour is derived from the behaviour of its
constituents and from additional system-level rules that enforce properties that
composition itself does not guarantee, such as deterministic system behaviour.

The challenge of defining execution semantics for our component model lies
in synchronising execution of control-driven and data-driven component model
elements. Additionally, we want systems to execute in a deterministic manner
(i.e., a system always produces the same outputs for the same inputs) to simplify
their testing.

It is important to realise that execution semantics can be defined in many
possible ways, based on different rules one decides to impose on system execu-
tion. The execution semantics presented in this section (and implemented in the
prototype tool) is suitable for reactive control systems, the domain we chose for
validating our approach (see Chapter 10).

In Section 6.5.1, we introduce the main idea of control-driven and data-
driven execution using two run-time schedulers. However, the possibility of non-
deterministic system execution (illustrated with an example in Section 6.5.2),
caused by various design configurations and component models elements (listed
in Section 6.5.3), motivates us to synchronise the two run-time schedulers. In
particular, we take inspiration from synchronous execution of reactive systems
(explained in Section 6.5.4) and introduce the concept of a reactive execution
cycle in Section 6.5.5. The synchronisation constraints are formulated in terms of
so-called synchronisation rules in Section 6.5.6. Finally, we list some limitations
of the presented execution semantics in Section 6.5.7.

6.5.1 Control-driven and Data-driven Execution
Semantics

We have designed our component model so that both data and control can in-
dependently trigger component execution. As a result, some components are
control-driven and some components are data-driven. All component types (and
all other component model elements) are passive (see Section 4.5), i.e., they rely
on some active entity to trigger their execution at run-time. In control-driven
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models, it is a control thread (or many of them in concurrent systems); in data-
driven models, it is a scheduler.

A control thread traverses control paths defined in a system, triggers compo-
nent execution and moves data in a system. A data-driven scheduler is essentially
an infinite loop moving data in a system, detecting the presence of all inputs of
components and consequently triggering their execution.

The basic idea of combining both approaches to system execution in our model
is to have systems run by a hybrid scheduler comprising two schedulers – the con-
trol thread and the data-driven scheduler – concurrently operating on different
model elements. The control thread (i) traverses the control connector hierarchy,
(ii) triggers execution of control-driven components, and (iii) switches the execu-
tion state of control-switched data-driven components. The data-driven sched-
uler (i) moves data throughout a system (by reading and writing data channels
and running data coordinators), (ii) executes data-driven components, (iii) ex-
ecutes enabled control-switched data-driven components, and (iv) executes sink
and source components. Table 6.5 summarises the activities of both schedulers
carried out on different component model elements.

Model Element Control Thread Data-driven Scheduler
Control connector traversing supplying inputs
Data connector – writing & reading
Data-driven component – execution & moving data
Source & Sink – execution & moving data
Control-driven component triggering moving data
Control-switched data-driven
component

switching state execution & moving data

Table 6.5: Activities Carried Out by the Two Schedulers on Model Elements

Although some model elements interact with just one scheduler (such as data-
driven components or input-less control connectors), Table 6.5 shows that some
model elements (control-driven components, control connectors with data ports
and control-switched data-driven components) are operated on both by the con-
trol thread and data-driven scheduler. Because the two schedulers run concur-
rently, there is a potential for race conditions. The next section demonstrates
that, without additional synchronisation between the schedulers, systems may
indeed behave in a non-deterministic way.
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6.5.2 Example of Non-deterministic System Behaviour

In this section, we demonstrate non-deterministic behaviour of systems built from
control-driven and data-driven model elements on an example.

Systems in our model can be composed of control-driven and data-driven com-
ponents. Therefore, they need both schedulers for their execution. As Table 6.5
shows, there exist model entities that both of the schedulers operate on. Because
they run concurrently, the order in which they interact with the entities cannot
be determined without additional synchronisation rules. Consequently, even if
the input data remain the same, different runs of a system may yield different
results – a system behaves non-deterministically.

Let us illustrate possible non-deterministic behaviour of the system whose
architecture is shown in Figure 6.21. The system operates in one of the two
possible modes: it computes the square of its input in mode 0 and the square
root of its input in mode 1. The data-processing logic for both system’s modes is
implemented by control-switched data-driven components SQR and SRT, which
are enabled or disabled by control when the corresponding mode is being activated
or deactivated, respectively. The data-driven component Chooser computes the
next mode and whether the current mode needs changing; the mode-switching
logic is realised by control connectors and data coordinators.

Figure 6.21: System Computing the Square or Square Root of a Number

The input of the system comprises a sequence of pairs of integers. The first
integer in a pair determines the component that processes the second integer: 0
denotes SQR and 1 denotes component SRT. For the following input, we would
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thus expect Output 1:

Input (0, 1), (1, 2), (1, 3)
Output 1 12,

√
2,
√

3
Output 2

√
2,
√

3

Consider the component SQR. It is initially enabled, and the arrival of the second
input pair causes the selector connector to deactivate it and to activate SRT
instead (through the two sequencers). However, SQR is also being sent the value
1 from the first input pair for processing. That is, we have several activities –
switching SQR’s execution state, supplying SQR with data and its consequent
execution – performed by different schedulers. Without any synchronisation,
there is no guarantee that the data-driven scheduler moves 1 to the SQR’s input
port and executes SQR, before the selector disables SQR based on the second
input pair. If SQR is executed before it is disabled, the system produces Output
1. If, however, SQR is disabled before it processes its input, it will never be
enabled again (because the second and third input pairs have 1 as their second
element), and the system produces Output 2.

6.5.3 Sources of Non-determinism

Having shown that unsynchronised execution of the control-thread and data-
driven scheduler can lead to non-deterministic system behaviour, in this section
we identify potential sources of non-determinism in our component model. Non-
deterministic behaviour comes from non-deterministic model elements, architec-
tural configurations and race conditions between the two concurrent schedulers.

The following list enumerates these potential sources of non-determinism in
our component model:

• components with a non-deterministic computational function (e.g., using
random number generators),
Cause: A developer’s choice.

• multiple data channels connected to one input port (see Section 6.4),
Cause: A developer’s choice. Such configurations can be replaced by a data
join if determinism is required.

• control-switched data-driven components,
Cause: A race condition between the data-driven scheduler’s activities of
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supplying input data and of executing these components, and switching
their execution state carried out by the control thread.

• control-driven components, and
Cause: A race condition between the data-driven scheduler, supplying in-
put data, and the control thread, triggering their execution. If inputs arrive
before triggering, a component’s behaviour is executed; otherwise, its exe-
cution is skipped.

• data channels with destructive write operations (see Table 6.2).
Cause: A race condition between destructive write and read operations if
both operate on the same buffer location (the problem of accessing shared
memory for reading and writing simultaneously); it can be avoided by using
channels with non-destructive write operations.

Whereas non-deterministic components and the non-determinism related to data
channels are design choices of system developers (in other words, they can be
avoided by developers unless desired), the non-deterministic behaviour of control-
switched data-driven components and of control-driven components follows from
the lack of synchronisation between the two schedulers. To avoid such non-
determinism and to construct easily testable, deterministic systems, we need to
extend the execution semantics by imposing additional synchronisation rules.

6.5.4 Synchronous Execution of Reactive Systems

To synchronise the execution of the control thread and data-driven scheduler, we
use the idea of synchronous execution from the domain of reactive systems. In
this section, we explain this execution paradigm. Our mechanism for scheduler
synchronisation based on this principle is introduced in the next section.

The behaviour of reactive software systems (see Section 3.1.1) can be concep-
tualised as an infinite sequence of reactions to the environment. In each reaction4,
a system reads inputs from the environment, computes the reaction of the system
and outputs the reaction back to the environment (Figure 6.22). This contrasts
with the classical, so-called transformational, view of a program as an algorithm
that processes a set of given inputs, computes its outputs and finishes by emitting
them at the end of its execution.

4We use ‘reaction’ and ‘reactive cycle’ interchangeably.
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Figure 6.22: Reactive Cycles

Figure 6.23: Feasible Implementation of the Synchronous Paradigm

The synchronous paradigm [17] is an abstraction of reactive system execution
that aims to design deterministic and verifiable safety critical systems. It is based
on the idealised assumption – the so-called synchrony hypothesis – that each sys-
tem’s reaction takes zero time. It follows that (i) environment remains constant
during each reaction and (ii) component execution as well as inter-component
data transfer are simultaneous and instantaneous. Such an assumption certainly
cannot be achieved in real systems, because any implementation of such systems
takes non-zero time to compute. However, if a system implementation guarantees
that each reaction of the system can be processed before the inputs of the next
reactive cycle arrive from the environment (see Figure 6.23), the synchronous
hypothesis is feasible since it holds with respect to the environment. Any design
properties based on the synchrony hypothesis therefore still hold. In particu-
lar, such designs are easily composable and guaranteed to exhibit deterministic
behaviour by construction.

6.5.5 Reactive Execution Cycle

The execution semantics of our component model respects the conceptual view
of reactive system execution as a series of reactions, and adopts the synchronous
hypothesis to help us enforce deterministic system execution. In this section, we
present the basic idea of our approach – a reactive execution cycle.
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System execution is defined as a series of execution cycles, each of which
corresponds to one reactive cycle. Figure 6.24 illustrates the correspondence. An
execution cycle starts by source components emitting values (the system reads
inputs), continues by components processing the values (the system computes its
response) and finishes by sink components consuming the previously computed
results (the system writes its outputs).

Figure 6.24: Alignment of Reactive and Execution Cycles

Figure 6.25 offers a more detailed description of what happens during an
execution cycle. After the source components emit the system’s input data,
the data-driven scheduler transfers the data from output data ports across data
connectors to input data ports; it then schedules the data-driven components
with all their inputs present for execution, and it executes them. Component
execution leads to new data being produced, which triggers further data transfer
and scheduling (see the lower dashed arrow in Figure 6.25).

At the same time, the control thread starts its control loop iteration (see the
upper dashed arrow in the figure): traversing the structure of control connectors,
triggering the execution of control-driven components and switching the execution
states of control-switched data-driven components; it repeats these steps until it
completes one traversal of the connector hierarchy. If the loop connector is the
top-level control connector, the traversal of the connector hierarchy corresponds
to one iteration of the loop, and it is repeated every execution cycle; if another
control connector is at the top, the control connector hierarchy is traversed only
once in the first execution cycle.

To establish determinism within an execution cycle, we follow the ideas of the
synchronous hypothesis. However, we cannot directly use existing realisations of
the hypothesis, because they focus exclusively on control-driven languages, such
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Figure 6.25: A Reactive Execution Cycle

as Esterel [19], or data-driven languages, such as Lustre [51]. The basic principle
is to assume – as in synchronous data flow languages [51] – that data flow and
data-driven computation takes zero time, which effectively prioritises data flow
over control flow. As a result, the race conditions between the schedulers can
always be resolved by giving priority to the data-driven scheduler over the control
thread.

This is illustrated in Figure 6.25 by the arrows that denote waiting of the
control thread for the data-driven scheduler during control connector traversal
(waiting for connectors’ data inputs), before a component is triggered (waiting
for all inputs to arrive) and before disabling a control-switched data-driven com-
ponent (waiting for the component to process all available inputs). These rules
are described more precisely in the following section.

6.5.6 Synchronisation Rules

In this section, we introduce the rules imposed on system execution by the reactive
execution cycle and by prioritising data flow over control flow. These rules help to
avoid the undesired non-determinism stemming from the lack of synchronisation
between the two schedulers, hence synchronisation rules. We explain the rules
and also illustrate with an example how they help achieve deterministic system
behaviour.

Apart from conforming to the domain-specific system execution, the execution
cycle also serves as a synchronisation point between the control thread and the
data-driven scheduler: at the end of a cycle, the control thread has finished
one control iteration and the data-driven scheduler processed all data (the initial
output of sources and all the outputs of subsequent computations). The execution
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cycle imposes the following synchronisation rules:

• If the top-most control connector is a loop, the control thread makes one
traversal of the control connector hierarchy (one iteration of the loop) per
execution cycle; otherwise, the traversal is made once in the first execution
cycle. (SR1)

• The data-driven scheduler makes source components emit system inputs
once at the beginning of each execution cycle. (SR2)

• The data-driven scheduler continues to execute data-driven components and
transfer data via data connectors, while there exists a data-driven compo-
nent whose inputs are available or can be supplied via data connectors.
(SR3)

Although these rules cannot enforce deterministic system execution (situations
identified in Section 6.5.3 still cause non-determinism), they simplify the problem:
once we establish deterministic behaviour inside an execution cycle, the whole
system execution becomes deterministic. To achieve that, we prioritise data flow
over control flow in the situations in which the two flows interact. The following
two synchronisation rules capture this idea:

• The control thread can skip an execution of a control-driven component
during triggering only if at least one of its inputs is not computable in this
cycle. (SR4)

• The control thread can disable a control-switched data-driven component
only if at least one of its inputs is not computable in this cycle. (SR5)

To understand the rules, we need to explain the notion of ’an input not com-
putable in this cycle’.

’An input not computable in this cycle’
The assumption of instantaneous data flow and data-driven computation im-

plies that data, once source components emit them, are immediately transferred
to their target components and immediately processed by data-driven computa-
tions, whose outputs are in turn immediately distributed to other components,
etc. As a result, when the control thread reaches a component (control-driven
or control-switched), all its inputs that have been transferred or computed by
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data-driven computations based on the outputs of source components should be
present. Informally, an input not computable in this cycle is a datum that can-
not arrive to a component’s input port before the control thread reaches the
component, assuming instantaneous data flow and data-driven computation.

We can define this notion formally using a deterministic decision procedure.
Let us define the binary relation produces between all entities with ports in a
system (components and data coordinators) and all input ports that are connected
via a data connector to an output port of an entity with ports. We define the
production set of an input port i as a set of all entities with ports that can
either directly send a value to the input port i or can send an input to another
entity which can transitively send a value to the port i; we compute PS(i) =
ProductionSet(i) using the following recursive function5:
function ProductionSet(i)

E ← the set of all entities with ports in the system
PS ← {e ∈ E|(e, i) ∈ produces}
for all x ∈ PS do

for all inputPort ∈ input ports of x do
PS ← PS ∪ ProductionSet(inputPort)

end for
end for
return PS

end function

An input for a component port i of a component C is not computable in this
cycle at the time when control flow reaches C if i is empty, PS(i) contains no data-
driven entities that could be scheduled for execution and no data channel with a
target port in PS(i)∪C can write data from its buffer to the target port. Using
this procedure, the race conditions between several concurrent actions during
component triggering or switching a component’s execution state can be resolved
in a deterministic fashion, as described below.

Deterministic Triggering of Control-driven Components
When the control thread reaches a control-driven component that has at least
5For simplicity, this version of the procedure does not terminate if there is a data flow loop

in the system; however, the code can be modified to prevent this by passing the elements of
the production set found so far as an additional parameter and by avoiding recursive calls that
would not add new elements to the set.
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one empty input port, it must decide whether to wait for the component’s in-
puts and execute the component or to skip the execution. The racing concurrent
activities that can lead to non-determinism are: (i) supplying input data to the
component by the data-driven scheduler and (ii) triggering of the component by
the control thread. To achieve deterministic triggering of the component, the con-
trol thread’s decision must not be based on the order in which the racing activities
occur; instead, it needs to be based on a deterministic decision procedure.

The synchronisation rule for triggering components ensures that the control
thread only skips the execution of a control-driven component if at least one
of its inputs is not computable in this execution cycle. Effectively, this makes
the control thread wait until the production set of each empty input port of the
considered component contains no data-driven components that can be scheduled
for execution, and all relevant data channels have transferred their data.

Deterministic State Switching of Control-switched Data-driven Com-
ponents
When the control thread reaches a control-switched data-driven component

to switch its execution state, there may be three racing concurrent activities:
(i) supplying input data to a control-switched data-driven component, (ii) its ex-
ecution by the data-driven scheduler, and (iii) switching its state by the control
thread; the current execution state of the control-switched component has to be
considered as well.

All orderings of the three activities for the two states make up twelve possi-
bilities, some of which are invalid because execution always follows supplying of
inputs or because the data-driven scheduler only executes enabled components
(see Table 6.6).

The analysis of the valid possibilities shows that the synchronisation rule for
control-switched data-driven components ensures a deterministic resolution of the
order of the racing activities. If the component is enabled, the switching of the
component’s state can occur only after processing all inputs, when there are no
further inputs computable in this cycle. Again, this forces the control thread to
wait until there is at least one empty input port, whose production set contains
no data-driven entities that could be scheduled for execution, which effectively
means that activities (i) and (ii) take precedence over the activity (iii). If the
component is disabled, no additional synchronisation is necessary: after its state



6.5. EXECUTION SEMANTICS 125

Current
State

Activities’
Ordering Behaviour

enabled

IES process all inputs computable in this cycle, disable
ISE process all inputs computable in this cycle, disable
ESI impossible: E follows I
EIS impossible: E follows I
SEI impossible: E follows I
SIE process all inputs computable in this cycle, disable

disabled

IES impossible: only enabled components are executed
ISE enable, start executing
ESI impossible: E follows I
EIS impossible: E follows I
SEI impossible: E follows I
SIE enable, start executing

I = supplying inputs; E = execution; S = switching the execution state

Table 6.6: Possible Orderings of Activities Operating on a Control-switched Data-
driven Component

is switched to enabled, the component simply starts executing and processing any
arriving inputs.

An Example of Applying Synchronisation Rules
To show how the synchronisation rules ensure deterministic system execution,

we use the example system from Section 6.5.2, which exhibited non-deterministic
behaviour, and we demonstrate its new deterministic behaviour achieved by ap-
plying the synchronisation rules.

Table 6.7 describes the execution of the system (see Figure 6.21 on page 116)
on the sample input of length three. The execution is split into three execution

Sample Input = ((0, 2), (1, 4), (1, 9))
Execution cycle Reaction Input Reaction Output

1 (0, 2) 4
2 (1, 4) 2
3 (1, 9) 3

Table 6.7: System Execution on a Sample Input

cycles, each of which corresponds to one reactive cycle. In every execution cycle,
the source component emits two values. The first one goes to Chooser, which
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computes the current mode (fed to itself by an NDR-1 channel to keep record
of the state) and whether the current mode needs changing; it feeds the latter
to the data guard, which forwards the new mode to the selector connector, if
mode change is needed, and to the data switch, forwarding the second input
to the component active in the current mode. The control thread makes one
iteration of the loop every cycle; it uses the Chooser’s output as a condition
for the guard connector to decide whether the control signal should be sent to
the selector to switch modes. If the condition holds, the selector disables the
component responsible for the old mode and enables the component responsible
for the new mode, which has already received data from the data switch. The
enabled component’s output is sent to the sink.

Notice how the synchronisation rules ensured deterministic execution. In par-
ticular, consider the control-switched data-driven component SQR, on which we
demonstrated non-deterministic behaviour in Section 6.5.2. In the first cycle, it is
initially enabled (see Figure 6.21), and it processes the first input, due to (SR2)
and (SR3). In the second execution cycle, the system input (1, 4) makes the
selector connector deactivate SQR: there is no input for SQR computable in this
cycle, because none of the entities in the production set of the SQR’s input port
(Source, DS) sends it any data (SR5). There is no race of concurrent activities
concerning SQR, because the component does not receive any inputs and there-
fore cannot be executed. It remains disabled in the third cycle. SQRT is disabled
in the first cycle, it becomes enabled in the second cycle when it also processes
the reaction’s input, due to (SR2) and (SR3), and it remains enabled in the third
cycle.

6.5.7 Limitations

In this section, we list the main constraints brought about by the execution
semantics:

The cycle of data-driven component execution may not terminate.
For instance, if there is a directed cycle of data connectors connecting data-

driven components, the execution of one component in the cycle causes its succes-
sor component to be executed, etc. The model contains a means for preventing
this problem: e.g., data switches can route data out of such a cycle. Ultimately,
the responsibility of avoiding non-terminating execution cycles lies on the system
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designer.6

The execution is an infinite series of execution cycles.
The execution semantics has no means for detecting the end of a system ex-

ecution. It would not be sufficient to query source components whether they
can deliver more data since there exist other data sources (pure control-driven
producers) and, what is more, the system can compute without external data –
changing its own state (which can be, e.g., reflected via actuators in the system’s
physical environment).

One control loop iteration has to complete within one execution cycle.
Developers should avoid the control thread waiting for the input data of some

control connectors that cannot arrive in the current execution cycle, as it would
result in stalled system execution. Such a situation can be easily avoided; it,
however, puts an additional constraint on system construction.

Further, a more high level, discussion of the limitations of our model’s execu-
tion semantics can be found in Section 11.4.2.

6.6 Formal Definition of Execution Semantics
Using Coloured Petri Nets

We have formalised the execution semantics of our component model using Coloured
Petri Nets (CPN). For any system constructed in our component model, we can
derive a CPN model whose behaviour conforms to the execution semantics. The
benefits of such a formalisation are:

• a precise definition of the execution semantics,

• the ability to verify some properties of a CPN model, such as whether it
behaves deterministically.

We have chosen Coloured Petri Nets for formalising our model’s execution
semantics for a number of reasons. Firstly, CPN have comprehensible graphi-
cal notation, unlike well-known process calculi (e.g., Communicating Sequential

6Model checking of formalised system models, such as Coloured Petri Net models described
in Section 6.6, may help designers establish this property.
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Processes, Calculus of Communicating Systems, π-calculus); additionally, the re-
sulting CPN models can be mapped to the graphical representation of system
architectures in our component model. Secondly, Petri Nets have been success-
fully used to formalise related approaches, component models (X-MAN [70] and
Palladio [16]) and workflow languages [1]; our formalisation can be seen as an ex-
tension of the work by Lau et al. [70]. Finally, there exist many tools for creating
and analysing CPN models (e.g., CPNTools [96]).

In this section, we give an overview of the formalisation. Section 6.6.1 intro-
duces the CPN notation. Section 6.6.2 formulates the basic idea of the formali-
sation, of composing CPN models corresponding to component model elements.
This is further detailed in Sections 6.6.3, 6.6.4 and 6.6.5, which describe the
principles of constructing CPN models of component models elements, CPN rep-
resentation of synchronisation rules and their composition to form CPN models of
systems, respectively. In Section 6.6.6, we illustrate that it is possible to formally
verify whether the resulting CPN models behave deterministically.

6.6.1 Coloured Petri Nets

In this section, we give a brief summary of the CPN notation and of the concepts
necessary for the reader to follow the rest of this section.

Coloured Petri Nets [60] is a visual modelling language for the specification
of concurrent systems – their computation, communication and synchronisation.

Figure 6.26: Overview of Coloured Petri Nets Notation

A CPN model comprises static net structure – places, transitions, arcs and
declarations – and the dynamically changing state of the net, formed by token
colours (values) moving between places through transitions. Figure 6.26 depicts a
simple CPN model that illustrates how the basic elements connect together: arcs
link places and transitions. A place has a name, an initial marking (token colours
that appear in the place at the initial state) and a colour set. An arc connects a
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place to a transition and has an inscription specifying a multi-set of token colours.
A transition has a name and, optionally, a condition called guard. Declarations
define colour sets (types), functions and variables used in arc inscriptions and
transition guards.

A transition represents actions, called binding elements, that change the state
of a CPN model by removing token colours from the transition’s input places
(for which there exists a connected arc coming towards the transition) and by
adding token colours to the transition’s output places (for which there exists a
connected arc going out of the transition). The token colours removed from or
added to each place are determined by an inscription on the adjacent arc. A
binding element is enabled if there are enough token colours in input places and
the transition’s guard is true. Once enabled, a binding element can occur, which
moves the token colours, as described above.

The state of a net evolves in steps consisting of non-empty multi-sets of en-
abled binding elements that occur simultaneously7. Since there are no priorities
associated with transitions, any choice of a non-empty subset of non-conflicting
enabled binding elements makes a valid step.

For example, in the initial state of the CPN model from Figure 6.26, there are
two enabled binding elements associated with the transition AddOne: one binds
x to the token colour 1, and another binds x to the token colour 2. Any one or
both of them can constitute the next step in the net’s evolution. So, it may take
one or two steps to transition from the initial state to the state with no enabled
binding elements, as shown below:

Place Token Colours
In {1, 2, 3}
Out ∅

−→
Place Token Colours
In {3}
Out {2, 3}

Further in the section, we structure our CPN models hierarchically using the
constructs called substitution transitions. A substitution transition is a transition
that encapsulates an instance of a sub-net, called page. Input and output places
of the substitution transition (socket places) are unified with places in the sub-
net of the same colour-set (port places) so that the associated socket-port pairs
always contain the same marking. The sub-net composition is explained in more
detail in Section 6.6.5.

7The binding elements must not be in conflict; that is, there must be enough token colours
in input places for all of the binding elements.
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6.6.2 Basic Idea of the Formalisation

To formalise our component model using CPNs, we have

1. constructed CPN models for all component model elements in a way that
allows their further composition (by defining them as reusable CPN sub-
nets), and

2. created a CPN model for enforcing the execution according to the reactive
execution cycle and synchronisation rules.

The basic idea of creating a CPN model of a system constructed using our
component model is to compose the CPN models corresponding to component
model elements according to the structure of composition of the system and to
further compose the resulting CPN model with the CPN model enforcing the
synchronisation rules.

To model control flow and data flow, we use different colour sets. To model
computation, we use transitions’ ability to inspect and change token colours. To
enforce synchronisation rules, we rely on synchronisation places and global places
for detecting the inactivity of data-driven elements.

6.6.3 CPN Representation of Component Model Elements

In this section, we describe the principles of modelling component model elements
using CPN. We also show some example CPN models to illustrate our discussion.
For simplicity, we do not yet consider synchronisation rules; these are discussed
in Section 6.6.4. The interested reader can find more details in Appendix A.1.

Components
CPN models of components express: (i) their interface (data and control ports),

(ii) their computation, and (iii) the way their execution is triggered.
For example, Figure 6.27 shows the CPN model of a control-driven component

with the input data port x and the output data port y that realises the function
y = 3 ∗ x.

Each data port is represented as a pair of places: one for data values (whose
colour set corresponds to the data type of the port) and one for restricting the
port’s capacity to one value (uses ‘colour-less’ tokens of the type UNIT). Di-
rectionality of a port is determined by the direction of the connected arcs. For
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Figure 6.27: CPN Model of a Control-driven Component

example, the output data port y is represented as two places: y and yEmpty in
Figure 6.27.

Each control port is also modelled using two places: one for incoming con-
trol flow and one for outgoing control flow; both have the token colour Control.
There is no need for extra places enforcing the capacity of control places since
there is always just one control token in the system (which models one control
thread). For instance, see ControlIn and ControlOut representing the control port
in Figure 6.27.

Computation – transformation from input data (and state) to output data
(and state) – can only be represented as a transition in CPN models. All input
and output data ports (i.e., pairs of the places that represent them) are connected
to the transition, whose associated data binding element becomes enabled when
all inputs arrive and output ports are empty (and thus writeable). When the
binding element occurs, the token colours representing input data and the token
colours denoting the emptiness of output ports are removed; at the same time,
new token colours are added to the output data places and to the places denoting
the emptiness of input ports. The computation in our example control-driven
component is represented by the x*3 transition connected to the four places cor-
responding to the ports x and y.

The way a component’s execution is triggered depends on its type. The
control-driven component in our example is triggered by the arrival of the control
token if it also has all data inputs ready. This is modelled by the control input
place ControlIn being an input place of the computation transition. When all
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data inputs and the input control place fill, the transition can occur, which fills
output data places, updates the capacity places and also emits a control token
to the output control place. To skip computation, the model has an additional
transition (in general, there is one such a transition for each data input), NoData,
which can occur when control arrives and the input port is empty (i.e., xEmpty
has a token).

Data Connectors
CPN models of data channels represent buffers and data transfer between data

ports; CPN models of data coordinators represent data flow routing. Their in-
terfaces comprise pairs of places corresponding to the data ports between which
they route data.

Data channels, such as the unbounded FIFO in Figure 6.28a, are modelled
using two pairs of places representing source and target data ports, a place repre-
senting the channel’s buffer and two transitions – one for reading the source port
and another for writing to the target port. Our example FIFO channel transfers
data between two integer data ports. The place representing the channel’s buffer,
Buffer, contains always one token colour which is a list of integers. The ReadPort
transition adds the new value at the end of the list; WritePort removes the first
value from the list.

Data coordinators have even simpler CPN models: they only comprise pairs
of places, corresponding to their input and output ports, and a single transition
which routes data between ports according to the inscriptions on its outgoing
arcs. Figure 6.28b illustrates this on a model of a data switch.

Control Connectors
CPN models of control connectors represent control flow routing. Their inter-

faces comprise pairs of places corresponding to control ports, control parameters
and, possibly, input data ports.

For example, a binary sequencer (see Figure 6.28c) is modelled by three pairs
of places, corresponding to its control port and two control parameters. Its se-
quencing behaviour is realised by means of three transitions. Note that the model
is partitioned into several unconnected parts; the connected graph of control flow
of a system is formed during CPN model composition (Section 6.6.5).



6.6. COLOURED PETRI NET FORMALISATION 133

(a) Unbounded FIFO

(b) Data Switch

(c) Sequencer

Figure 6.28: CPN Models of Connectors
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6.6.4 CPN Representation of Synchronisation Rules

CPN models discussed in Section 6.6.3 lack (for simplicity) synchronisation be-
tween the concurrent flows of tokens representing control and data, and they thus
behave non-deterministically. To achieve deterministic behaviour of CPN models
representing systems constructed in our component model, we have translated
the synchronisation rules identified in Section 6.5.6 into CPN. In this section, we
explain the basic principles of representing synchronisation rules in CPN. The
interested reader can find more details in Appendix A.2.

The resulting formalisation comprises (i) a single synchronisation CPN sub-
net, which realises the reactive execution cycle and provides necessary synchro-
nisation mechanisms, and (ii) modifications of the CPN models of individual
component model elements presented in Section 6.6.3 to use the provided syn-
chronisation mechanisms. In this section, we give a brief overview of both of these
aspects.

Reactive Execution Cycle
The synchronisation CPN sub-net partitions system execution into cycles. Fig-

ure 6.29 shows a simplified schema of the part of the CPN sub-net that models
this. The execution cycle begins with one token colour in the place CycleStart-

Figure 6.29: Schema of the CPN Synchronisation Sub-net for Execution Cycles

State. The StartCycle transition starts an iteration of the control loop and data
flow by placing tokens to ControlFlowStartState and DataFlowStartState, respec-
tively. The control flow iteration is modelled by the control token that leaves
the synchronisation sub-net, traverses the control connectors’ hierarchy and ends
up in ControlFlowEndState. Likewise, the end of data-driven computation and
data transfer in a cycle is denoted by the presence of the token colour true in
DataflowIdleState. At this point, the EndCycle transition moves the token back to
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CycleStartState to start a new cycle.

Detecting Idle Data Flow
The middle part of the synchronisation sub-net (omitted in Figure 6.29 for

simplicity) deals with data-driven computation and data transfer. It thus rep-
resents the data-driven scheduler. The key synchronisation mechanism there is
the detection of idle data flow. This corresponds to the system state in which no
data-driven component model entity (including data connectors) can execute due
to missing data inputs; in other words, all data emitted by source components in
that cycle have been processed. The mechanism is used (i) for detecting the end
of an execution cycle and (ii) for modelling the synchronisation rules related to
prioritising data flow over control flow (see (SR4) and (SR5) in Section 6.5.6).

The basic idea is to keep track for each data-driven entity whether it can be
scheduled for execution, i.e, whether it has enough inputs to compute (or transfer
data in the case of data connectors). If none of the data-driven entities in a system
can be scheduled for execution, the system has reached the data flow idle state.

This is realised in CPN by every data-driven entity having a so-called syn-
chronisation place with a single token colour, indicating whether the entity can
be scheduled for execution (busy) or not (idle). At the beginning of an exe-
cution cycle, the synchronisation sub-net distributes busy token colours to all
data-driven entities. Data-driven entities are responsible for updating the token
colours in their synchronisation places from busy to idle, while the synchronisa-
tion sub-net monitors these places and enters the data flow idle state when they
are all idle. The mechanism allows data-driven entities to acquire the busy token
colour repeatedly during an execution cycle to execute multiple times. This is
represented by the place Restart defined within the synchronisation sub-net but
globally accessible from the CPN models of data-driven entities. For complete-
ness, Appendix A.2 shows an example of a complete synchronisation sub-net.

The impact of this solution on the CPN models of component model elements
is described below.

Modification of CPN Models of Component Model Elements
As a result of the introduction of the synchronisation sub-net, the CPN models

of component model elements from Section 6.6.3 need changing to incorporate
the additional synchronisation mechanism.
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Data-driven entities need to incorporate the mechanism for the data flow
idle state detection. Therefore, their CPN models have an extra synchronisation
place, and they also include the Restart place from the synchronisation sub-net.
They wait for the busy token colour to compute and change it to idle after the
computation finishes. Additionally, if the execution can result in scheduling an-
other data-driven entity for execution, they set the marking in Restart to {true}.
They have additional transitions to change the token colour from busy to idle in
the case they cannot compute because of missing inputs.

The CPN models of control-driven components and control-switched data-
driven components need modifying to realise the synchronisation rules that pri-
oritise data flow over control flow. In particular, they need to wait for any inputs
computable in the current cycle before they skip the computation during trigger-
ing or switch the execution state to disabled. We have realised this by making
them wait for the data flow idle state. This does not exactly implement the deci-
sion procedure from Section 6.5.6, because they wait for more data-driven entities
than the synchronisation rules require. However, it does not affect correctness,
only the efficiency, which does not matter for our purposes of formalisation.

6.6.5 Composition of CPN Models

In this section, we describe the mechanism for composing CPN models of com-
ponent model elements to form the CPN models of systems. The composition of
CPN models is driven by the structure of composition defined by system archi-
tecture. To realise composition in CPN, we use their mechanism for hierarchical,
modular model construction.

Hierarchical CPN Model Composition
Each CPN model in Section 6.6.3 forms a CPN sub-net (page) with an interface

comprising of places tagged with In, Out or I/O labels (port places). A page can
be instantiated in another CPN model as a transition (substitution transition);
the places connected to the transition (socket places) correspond to the page’s
port places. A socket place and a port place can be linked if they have the same
colour set, and the socket place connects to the substitution transition via an
arc with the direction corresponding to the type of the port place (towards the
transition for an In port place, and away from the transition for an Out port
place). The two corresponding places have always the same marking. Figure 6.30
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illustrates the terminology: the port places A, B, C, D and E correspond to the
socket places K, L, M, N and O, respectively.

(a) Page (b) Substitution Transition

Figure 6.30: Hierarchical CPN Model Composition

Pages are composed by instantiating them as substitution transitions in the
same model and by sharing some of the socket places among pages so that one
socket place corresponds to several port places in different pages.

Composing CPN Models of a System
Pages modelling our component model elements are composed in the same

manner; they only need to respect system architecture to avoid some invalid con-
figurations. For example, two CPN models of components must not be composed
directly but via a CPN of a data channel. Appendix A.3 shows a resulting CPN
model of the sample system from Figure 6.31.

Additionally, we identified several configurations for which the page compo-
sition is not enough: multiple outgoing channels from a single data port and
multiple control parameters connected to a single control port. To represent the
behaviour required in our component model, the composition requires adding
several extra transitions and places in the system model.

Finally, a CPN model of a system is composed with the synchronisation sub-
net specialised for that system. The specialisation amounts to adjusting the
number of synchronisation places to equal the number of data-driven elements in
the system.

6.6.6 Verifying Deterministic System Execution

One of the advantages of formalising our execution semantics in CPN is the
ability to verify certain system properties by using existing tools. In this section,
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Figure 6.31: Architecture of a Sample System

we illustrate how model checking can verify deterministic behaviour of a system.
We have constructed CPN models of several simple systems and experimented

with existing methods for simulation and verification. In particular, we have used
CPNTools [96] to perform an exhaustive state space search of several CPN system
models to confirm their deterministic behaviour.

For example, see the following excerpt of analysis results. The tool checked
the state space of the CPN model of the system from Figure 6.31 with a fixed
input of the length two. That is, it completely searched through the state space
corresponding to two execution cycles.

State Space

Nodes: 59856 Arcs: 363943 Secs: 825 Status: Full

Home Markings: Dead Markings: Dead Transition Instances:

[59856] [59856] TRComponentXPlus2’NoData 1

TRComponentXTimes3’NoData 1

Apart from the size of the state space and search time, the output shows several
markings (states of the net) with special properties. A home marking is a state
reachable from every state in the state space; a dead marking is a state with
no enabled transitions. In the output, we see one home marking, named 59856,
which is at the same time a dead marking. The closer inspection reveals that the
marking 59856 corresponds to the final state of the system (that is why it is also
dead) with correctly computed outputs. The system behaves deterministically,
because there is just one such marking; i.e., the CPN model eventually transitions
to the only final state from all its possible states.



Chapter 7

Composite Connectors

Our component model has been designed to fulfil the characteristics suitable for
representing interaction patterns. Chapter 6 shows how the model separates
the interaction and computation specification, and allows explicit and separate
modelling of control flow and data flow in system architecture. In this chapter, we
introduce the mechanism for composing connectors in our component model. The
products of connector composition – composite connectors – are the component
model abstractions that represent interaction patterns in our approach [110].

In Section 7.1, we introduce composite connectors as the means for defining
interaction patterns in our model. Section 7.2 defines the structure of composite
connectors: their interface, constituent elements and their ways of composition.
Section 7.3 defines the run-time behaviour of composite connectors. Section 7.4
concludes the chapter by discussing the representation of stateful interaction pat-
terns and the reusability of composite connectors.

7.1 Overview

In our component model, composite connectors are the abstraction for repre-
senting interaction patterns. They define interaction in terms of incoming and
outgoing flows of control and data. The interaction defined by a composite con-
nector is determined by the structure of its composition; it is derived from the
simpler interactions of its constituent connectors.

Composite connectors have a first-class architectural representation distinct
from that of components. Their role in system architecture is to compose compo-
nents interacting according to the interaction pattern they represent. They have

139
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well-defined interfaces, which enables them to be reused in different systems via
a repository.

7.1.1 An Illustrative Example

To illustrate the role of composite connectors in our approach, we refactor the
architecture of the window controller system depicted in Figure 6.2 on page 93
so that the interaction part of the system will be represented using a composite
connector.

The system controls the movement of a car window by issuing commands
to the window motor. The SensorProcessor component either prevents the motor
from moving, if the window cannot move further in the direction requested by the
user, or triggers one of the two control-driven components to move the window
in the respective direction.

Figure 7.1: The Conditional Trigger Strategy Interaction Pattern

We can generalise the interaction between the three components in Figure 6.2
into an interaction pattern. Let us call it Conditional Trigger Strategy. The pat-
tern (see its schema in Figure 7.1) delegates processing of input data (inputs in the
figure) to one of a number of available computations (Strategy1, . . . , Strategyn)
by routing the data to the computation selected by the strategyId index and
by triggering the computation. The delegation is conditional: it only happens if
condition = true.

The interaction pattern can be represented as a composite connector in our
model and deployed into the window controller architecture instead of the control
and data connectors in Figure 6.2. The resulting architecture is depicted in
Figure 7.2.

The Conditional Trigger Strategy composite connector encapsulates the inter-
action defined by the pattern in a single, reusable architectural entity, interfacing
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Figure 7.2: Window Controller System with a Composite Connector

participating components. The connected components Motor up and Motor down
correspond to the Strategy1 and Strategy2 participants of the interaction pat-
tern. The data inputs of the pattern (condition, strategyId and inputs) come
from SRC and SensorProcessor. The behaviour of the system remains unchanged.

The aim of this chapter is to define the interface, possible composition struc-
ture and behaviour of composite connectors in our component model.

7.2 Structure

In this section, we describe the structure of composite connectors. We start
with their interface (Section 7.2.1) and then discuss how they are composed (Sec-
tion 7.2.2).

7.2.1 Interface

The interface of a composite connector specifies points of interaction between
the connector and entities it coordinates; it is used for composing the composite
connector with its coordinatees in a system architecture. The interface comprises
(see the schema in Figure 7.3): at most one control port, zero or more control
parameters, and zero or more required data ports.

The control port and parameters are the same entities that form part of control
connectors’ interfaces: a control port is an entry point for the control flow coming
from a superior coordinator; control parameters are exit points for the control
flow coordinating subordinate entities. Required data ports are dedicated to
data flow: required output ports are entry points of data flowing to a composite
connector, whereas required input ports are exit points for data flowing out of a
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Figure 7.3: Schema of a Composite Connector’s Interface

composite connector.
Required data ports differ from data ports that form part of the interface of

components or data coordinators (hence different graphical notation). Data ports
are places that store components’ inputs or outputs; required data ports rather
correspond to placeholders for data ports, such as ends of data channels. During
connector instantiation, they are identified with data ports, but on their own they
do not contain any value. For example, a data channel could be modelled using
two required data ports, one output and one input (see Figure 7.4b as opposed to
the data channel representation, shown in Figure 7.4a, presented in Chapter 6);
conversely, the data flow interface of a composite connector is a generalisation of
a data channel, with multiple input and output required ports.

(a) A Link between Component Ports (b) A Composite Connector

Figure 7.4: Data Channel Representations

A required data port specifies a constraint on a data port that can be identified
with it. The constraint determines (i) the data type and (ii) directionality of any
such data port.

7.2.2 Composition

Because we represent interaction patterns in terms of control flow and data flow,
we use the basic elements of control flow and data flow from our component model
– control and data connectors – to build up composite connectors. At the same
time, interaction patterns can be complex; we therefore need a way to compose
composite connectors in a hierarchical fashion to represent such complex patterns.
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In this section, we describe how we construct composite connectors (i) by com-
posing data connectors, (ii) by composing control connectors, (iii) by composing
data and control connectors, and (iv) by composing composite connectors.

Composing Data Connectors
Data channels (see Section 6.3) define a unidirectional data flow between an

output data port and an input data port; data coordinators define some dynamic
data flow routing behaviour. Composite connectors generalise both: they can
define data flow between many data ports, having more inputs and outputs, with
complex routing behaviour.

To build more complex data flows, we can compose data connectors in two
ways: (i) by aggregating data channels, and (ii) by means of data coordinators.

The first method aggregates data channels so that they become contained
inside a composite connector. Each of the aggregated channels connects a required
output port to a required input port of their parent connector. The resulting
data flow of the composite connector is a union of data flows defined by the
channels. For example, see the composite connector created by aggregating two
FIFO channels in Figure 7.5a, which defines data flows from the required output
ports a and b to the required input ports c and d.

(a) Aggregation (b) Using a Data Coordinator

Figure 7.5: Composing Data Connectors

The second way involves using a data coordinator, such as a data switch, to
compose several data channels, each of which connects a required port of the
parent composite connector to a port of the data coordinator. The resulting
data flow is a dynamic data routing pattern (defined by the data coordinator) of
data flows with particular buffering and access policies (defined by the composed
channels). Figure 7.5b shows an example of a composite connector comprising
four FIFO channels composed by a data switch; the resulting connector directs
the data flow coming through its source port b either to the sink c or d, depending
on the values from the source port a.
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Composing Control Connectors
Each control connector defines a basic control flow pattern coordinating its

control parameters. These control patterns can be composed to form complex
coordination hierarchies, as described in Section 6.4. We can use the same com-
position mechanism to construct composite connectors; we just need to specify
their interfaces and the relation to composed control connectors.

Figure 7.6: Composing Control Connectors

Given a hierarchy of control connectors composed by connecting their control
ports and control parameters (see Figure 7.6), we need to delegate an uncon-
nected control port and control parameters to become part of the interface of the
composite connector: the control port of the top-most connector in the hierarchy
(with no parent) will be delegated to become the control port of the composite
connector, as will be the unconnected control parameters of constituent connec-
tors.

Composing Data and Control Connectors
To represent coordination patterns, composite connectors should comprise both

control flow and data flow. Hence, they can contain both data connectors and
control connectors composed either by aggregating a control connector and a data
connector or by connecting a data connector to the data input port of a control
connector.

Aggregation is the way of composition in which a control connector and a
data connector do not interact. They just happen to be contained in the same
composite connector because of their participation in one interaction pattern.
They form part of the composite connector’s control and data flow. For example,
see the FIFO channel, going from data to the lower port of the data switch, being
aggregated with the selector connector within the Trigger-Strategy connector
(Figure 7.7).
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Figure 7.7: The Trigger-Strategy Composite Connector

The latter type of composition makes data flow and control flow interact by
a data connector feeding data to a control connector that needs the data for
its control routing decisions. In Figure 7.7, we can see a FIFO channel feeding
the data from the required output port strategy to the data port of the selector
connector.

The Trigger-Strategy composite connector (Figure 7.7) realises an interaction
pattern that coordinates triggering of two control-driven components, taking the
same input. Only one component is triggered via control parameters c1, c2 at a
time based on strategy, after the data switch supplies its input from data. The
two components represent two different strategies for processing the data, hence
the name of the connector. Intuitively, we can see that this interaction pattern
forms the part of the Conditional Trigger Strategy pattern (introduced in Sec-
tion 7.1.1); their exact relation can be formulated using the notion of composite
connector composition, discussed below.

Composing Composite Connectors
Complex interaction patterns often consist of other simpler patterns that are

useful in their own right. To enable the construction of such composite patterns
as well as to handle the complexity of connector design, our composite connectors
can be composed in a hierarchical fashion.

An existing composite connector can thus be used in the definition of a new
composite connector by composing with other entities. The composition can be
realised via its control port and parameters or via identifying its required port
with a data port of some entity inside the new composite connector1. Alter-
natively, an unconnected interface element of a composite sub-connector can be

1The only entities with data ports that can be composed within a composite connector are
data coordinators and control connectors with inputs.
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propagated to form part of the interface of its parent composite connector.

Figure 7.8: The ‘Conditional Trigger-Strategy’ Composite Connector

For example, Figure 7.8 shows the control port of Trigger-Strategy composed
with the control parameter of the guard connector and its two required out-
put data ports composed with data guards. The required input data ports of
Trigger-Strategy are propagated to become the required data ports of the parent
connector, which means that the constraints (type and directionality) on data
ports of the inner connector are now enforced by the parent connector. Like-
wise, control parameters c1 and c2 are propagated to the interface of the parent
connector. The resulting behaviour of Conditional Trigger-Strategy only triggers
components via c1, c2 if condition = true.

7.3 Execution Semantics

In this section, we define the run-time behaviour of composite connectors to be
able to fully define the behaviour of the systems in which they are instantiated.

A composite connector consumes flows of data and control via its input in-
terface elements (required output data ports and a control port) and enforces
a particular interaction pattern by producing flows of data and control via its
output interface elements (required input data ports and control parameters).
To describe the observable behaviour of a composite connector therefore amounts
to describing the relationships between input and output flows of the connector’s
interface elements.

In Section 7.3.1, we describe the run-time behaviour of two example connec-
tors introduced earlier in this chapter, Trigger-Strategy and Conditional Trigger-
Strategy. Section 7.3.3 defines the behaviour of composite connectors by their
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recursive transformation to basic connectors, whose behaviour has been defined
in Chapter 6.

7.3.1 Examples

Let us detail the behaviour of the composite connectors Trigger-Strategy and
Conditional Trigger-Strategy, whose structure we have seen earlier in this chapter
(Figures 7.7 and 7.8).

The behaviour of state-less interaction patterns – patterns for which the rela-
tionships between their input and output flows are always the same, irrespective
of the internal state of an ongoing interaction – can be described using a table,
such as Table 7.1 for Trigger-Strategy. The table captures the dependencies of
the control and data flowing through output interface elements on the control
and data flowing through input interface elements.

Output
Element

Emits When ...
strategy data control port

c1 control = 0 receives control
i1 data = 0 is present
c2 control = 1 receives control
i2 data = 1 is present

Table 7.1: Behaviour of Trigger-Strategy

The control parameter c1 of Trigger-Strategy emits a control signal when the
strategy required port contains 0 and the control port receives control. Indeed,
the selector connector inside the composite connector (see Figure 7.7) only routes
control to c1 if both of the conditions hold. The required input port i1 produces
a datum if there is a datum at the data required port and strategy contains 0,
which makes the internal data switch route the datum from data to i1. The flows
output via c2 and i2 have similar dependencies on input flows: strategy just has
to contain 1 instead of 0.

Table 7.2, capturing the behaviour of Conditional Trigger-Strategy, differs
from Table 7.1 by having an additional column representing the dependency of
all output elements on the added required output port condition, which has to
be true in order for the output elements to emit control or data.

A composite connector’s output flow can appear as soon as the input flows on
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Output
Element

Emits When ...
condition strategy data control port

c1 control = true = 0 receives control
i1 data = true = 0 is present
c2 control = true = 1 receives control
i2 data = true = 1 is present
any nothing = false

Table 7.2: Behaviour of Conditional Trigger-Strategy

which it depends arrive. For instance, Table 7.1 shows that the output data flows
i1, i2 of Trigger-Strategy can deliver data inputs to a coordinated control-driven
component as soon as the input flows strategy and data arrive, without waiting
for control. That is, there is no additional synchronisation between input and
output flows, other than that between the flows that depend on each other.

As a result, composite connectors generally comprise some independent data
flow routing and control flow routing parts, i.e., parts which do not interact
with each other (composed by aggregation), as exemplified by Trigger-Strategy.
The execution semantics prevents any race conditions by prioritising data flow
(any data computable in the current execution cycle arrive before control, see
Section 6.5).

To achieve the correct behaviour of our example patterns, their users must
ensure that input data arrive as many times as control signals within an execution
cycle. If control arrives when there is a missing data input that is not computable
in the current execution cycle, it waits in the connector indefinitely, which results
in stalling the program execution; if there are more data inputs than incoming
control signals, the data accumulate in the buffers of data channels, which may
lead to the coordinated components processing old inputs (coming from previous
execution cycles). Note that this issue is unrelated to the lack of synchronisation
of input and output flows; it forms part of the pattern’s intended usage and should
be properly documented.

7.3.2 Composite Connectors’ Run-time Behaviour

Composite connectors are built up from other composite connectors and basic
connectors whose behaviour is well-defined (see Section 6.5). To define the be-
haviour of composite connectors, we describe how we compose the behaviour of
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their constituents.

Firstly, the behaviour of composite connectors, composed of basic data and
control connectors only, is equivalent to the behaviour of the composition of these
basic connectors without being encapsulated within a composite connector (see
Sections 6.4.1 and 6.5). This is because composite connectors, unlike components,
do not impose any additional synchronisation on their input and output flows.

Composite connectors do not impose any additional synchronisation on their
input or output control and data flows, because it would be too restrictive. Un-
like component execution, which transforms component inputs and can therefore
happen only after the inputs arrive, the behaviour of a composite connector may
be more complex; different data and control flows comprising the interface of a
composite connector can be active at different times to model some interaction
patterns, such as a dialogue. In addition, if synchronisation between some flows
is required, the component model already contains the means for control flow and
data flow synchronisation: not only the afore-mentioned component execution,
but also the data flow synchronisation imposed by data coordinators and the
synchronisation of control flow and data flow imposed by guards and selectors.

The behaviour of composite connectors composed of other composite connec-
tors can be defined recursively by decomposing the connector composition hier-
archies from their leaves up to their roots. To be more precise, we define in the
following section a behaviour-defining transformation, called semantic decompo-
sition, from systems containing composite connectors to behaviourally equivalent
systems without composite connectors.

7.3.3 Semantic Decomposition

Semantic decomposition is a transformation that eliminates all occurrences of
composite connector instances in a given system and replaces them with con-
stituent control and data connectors, thereby defining the behaviour of the origi-
nal system as equivalent to the behaviour of the resulting system. It is important
to realise that the transformation does not, by any means, undermine the first-
class status of composite connectors in architecture as its sole purpose is to define
behaviour.

It can be defined as a function taking an old system as its parameter and
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producing the new system with composite connector instances eliminated:

semanticDecomposition : System→ System.

The transformation iterates through the component model entities comprising the
given system and copies the entities other than composite connector instances to
the resulting system.

When it encounters a composite connector composed of basic connectors only,
it essentially removes a composite connector’s interface elements and directly re-
places the connector instance with its constituent sub-connectors. Figure 7.9
illustrates the transformation with an example of a Trigger-Strategy instance.
Figure 7.9a shows the instantiated connector together with entities it is con-
nected to (the dashed rectangles A–E). To decompose the composite connector,
we remove required data ports by identifying them with the component ports
to which they are connected. We also remove control port and parameters from
the composite connector’s interface and connect their counterparts to the uncon-
nected control ports and parameters inside the composite connector.2 Figure 7.9b
depicts the result of the decomposition for our example connector.

(a) Connector Instance (b) Decomposed Instance

Figure 7.9: Semantic Decomposition of Trigger-Strategy

For a composite connector comprised of other composite connectors, the trans-
formation needs to be applied recursively, starting at the leaves of the connector’s
composition hierarchy and traversing up towards the top-level instance. Fig-
ure 7.10 illustrates this with an instance of Conditional Trigger-Strategy. Fig-
ure 7.10a shows the instantiated connector together with entities it is connected

2This is trivially achieved in our graphical notation by deleting the composite connector’s
boundary. In fact, however, it is completely analogous to what happens with required data
ports.
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to. Figure 7.10b shows the result of semantic decomposition applied to the con-
stituent Trigger-Strategy instance. The second application of semantic decompo-
sition results in a design completely free of composite connectors (Figure 7.10c).
Notice that the connector instance in Figure 7.10c corresponds to the connector
composition of the Window Controller System’s architecture in Figure 6.2 on
page 93, because they represent the same interaction.

(a) Connector Instance (b) Semi-decomposed Instance

(c) Decomposed Instance

Figure 7.10: Semantic Decomposition of Conditional Trigger-Strategy

7.4 Discussion

In this section, we discuss composite connectors’ capability to model stateful
interactions and their reuse potential.

7.4.1 State

In this section, we discuss how a special class of interactions – stateful interactions
– can be represented using composite connectors in our component model.
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Some interaction patterns exhibit stateful behaviour: the interaction (par-
ticular control and data exchanges between interacting entities) changes as the
interaction progresses; each such change can be associated with the change of
the interaction’s state. Conceptually, a state corresponds to a tuple of values of
some internal variables that determine the current behaviour of the interaction
and whose changes denote the state change of the interaction.

For example, an interaction with several distinct phases in each of which data
and control flow differently is stateful. Consider a dialogue between two entities:
in every odd phase, the first entity speaks/writes while the second listens/reads,
and their roles reverse in every even phase. The state of the dialogue can be
represented by a simple boolean variable, whose value flips every time the speaker
changes.

Composite connectors in our model do not provide explicit state modelling,
which can be found in automata-based behaviour models, such as BIP [13]; nor
do they support modelling of the state by means of state variables inside of a
composite connector. Each state change would require computation to change
the values of the state variables, and that would break the strict separation be-
tween computation (carried out by components) and interaction (carried out by
connectors) in our component model.

To represent a stateful interaction pattern, one can externalise the state
change to be performed by a connected component. The values of state vari-
ables then determine control and data flow routing performed by the connector
representing the pattern. For example, Figure 7.11 illustrates this method on a
composite connector realising a dialogue, a simple request-response interaction
pattern between two entities.

Figure 7.11: The ‘ABA’ Dialogue Composite Connector

Let us call the two interacting entities A and B. The entities are triggered in
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the following sequence: A→B→A. Data follow control flow in the same sequence.
The interaction has two states that determine whether A’s output is routed to B
or out of the connector at the end of the interaction. The connector externalises
the state keeping and state modification to another component, S, which outputs
the current state used by the connector for correct data routing. The interaction
starts by supplying the input data coming from dlgInput to A via inputa and by
triggering A. Then S is triggered to supply the current state, based on which A’s
output is routed via the data switch to B. B is triggered next and its result is fed
back to A (via outputb and inputa), which processes it during its next triggering.
The second triggering of S yields a new value of the state, which this time routes
the A’s output out of the connector via dlgOutput.

However, state externalisation creates a tight coupling between the state-
changing component and the connector. In the above example, any deviation
of the component S’s behaviour from the expected one (outputting the alternat-
ing sequence of 0s and 1s) would break the routing behaviour of the connector.
This limitation could be resolved by a suitable state representation within the
connector and state-based control and data routing, see Section 11.4.2.

7.4.2 Reusability

Reusability of interaction patterns has been one of the goals of introducing com-
posite connectors to our component model. In this section, we assess the reusabil-
ity potential of composite connectors and identify directions for its further im-
provement, which are realised in the following chapter.

The separate specification of interaction (by composite connectors) and com-
putation (by components) allows us to reuse these two aspects independently,
which leads to an increased reuse potential for composite connectors compared to
entities that mix both aspects in their specification, such as components in com-
ponent models based on endogenous composition mechanisms (see Section 4.4.4).

Furthermore, composite connectors lack any direct dependencies on coordi-
nated components’ types since their interfaces only prescribe incoming and out-
going data flows and control flows. This loose coupling between coordinators
and coordinatees3 helps increase connectors’ reusability as it widens the scope of
possible contexts in which they can be used.

3Nevertheless, there are cases, such as the aforementioned state-changing components, in
which coordinated components are expected to exhibit certain behaviour.
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However, the interface of composite connectors described in this chapter ex-
hibits unnecessary rigidity; in particular

• required data ports constrain the connected ports to have a specific type,

• required data ports correspond to a single data flow,

• the number of a composite connector’s interface elements is fixed.

To understand why the above constraints are undesirable, let us consider
the Trigger-Strategy connector described earlier in the chapter (see Figure 7.7).
Both of its required output ports, strategy and data, specify a single data flow
of values of a specific type (the integer type in this case). For the data coming
from strategy, it is indeed necessary, because the selector connector determines to
which of the control parameters c1, c2 it should forward control according to those
data values. On the other hand, no sub-connector interprets the data entering
the connector via data: the data switch only routes them to i1 or i2 without
interpreting their values, which makes the specification of the required data type
of data unnecessary.

Additionally, because one required data port transports a single flow of values,
data limits the applicability of the connector to components with a single integer
input, rendering the connector unusable for components with other input data
type or with multiple inputs.

Finally, the Trigger-Strategy connector is limited to coordinating two control-
driven components, while the interaction pattern it represents leaves the number
of possible coordinated components open. To coordinate more components would
require the creation of a new composite connector with a different interface (and
with only slightly different composition structure).

The rigidity of composite connectors’ design narrows down the number of con-
texts in which they can be instantiated, thereby lowering their reuse potential. To
overcome these issues, we need to treat composite connectors stored in a reposi-
tory more like templates, parametrisable during their instantiation in particular
reuse contexts, to achieve higher variability. This extension to further increase
reuse potential of composite connectors is the subject of the next chapter.



Chapter 8

Composite Connector Templates

An abstraction for interaction patterns should be a reusable template, stored
in a repository, and instantiated in different contexts each time the interaction
pattern it represents is needed. However, composite connectors presented so far
rather correspond to pattern instances than to pattern templates.

In this chapter, we define a new form of composite connectors – composite
connector templates – designed to represent interaction patterns’ solution tem-
plates. They are stored in a repository for reuse, and they are instantiated by
parametrisation into many different composite connector instances that all con-
form to the same interaction pattern.

In Section 8.1, we distinguish between connector templates and connector
instances by describing their different roles in the connector life cycle. The chapter
is focused on connector templates: we describe their interface (Section 8.2), their
composition structure (Section 8.3) and their instantiation process (Section 8.4).
In Section 8.5, we discuss their impact on connector reuse and some alternatives
to the presented parametrisation mechanisms.

8.1 Composite Connector Life Cycle

In this section, we distinguish between composite connector templates and com-
posite connector instances by examining the life cycle of composite connectors.

Since composite connectors in our model are reusable artefacts, their life cycle
comprises two distinct phases: one in which they are being developed, an instance
of development for reuse, and one in which they are being reused, an instance of
development with reuse. In accordance with Lau and Wang [75], we refer to these

155
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as design phase and deployment phase, respectively. The boundary between the
phases is formed by the repository (see Figure 8.1), which (i) stores composite
connectors deposited at the end of their design phase; and (ii) retrieves the stored
connectors for reuse in the deployment phase.

A composite connector’s form is different in each of the phases as it caters for
different functions and plays a different role. Consequently, we distinguish three
conceptually different entities associated with composite connectors: a compos-
ite connector template, a composite connector design instance and a composite
connector deployed instance. Their role in the composite connector life cycle is
depicted in Figure 8.1 and described below.

Figure 8.1: Composite Connector Life Cycle

In the design phase, a composite connector is constructed to represent a par-
ticular interaction pattern. The product of the design phase is a connector tem-
plate, which is stored in the repository to be reused. A connector template defines
the interaction enforced by the pattern, but it also represents different variants
prescribed by the pattern’s solution template to support different instantiation
contexts. That is, the interface and composition structure of a connector tem-
plate are parametrisable: some of their aspects are expressed as variables whose
values need to be fixed in the deployment phase for reuse in a particular context.

In the deployment phase, a connector is retrieved from the repository and
takes the form of an instance of the connector template. Since an instance can be
used for two different purposes, we distinguish two different kinds of connector
instances: deployed instances and design instances.

A deployed connector instance is used to enforce interaction among a partic-
ular set of connected components or connectors in the context of its deployment,
which can be a system or a connector template under construction. Unlike con-
nector templates, the interface and composition structure of deployed connector
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instances are fixed since each instance represents only one particular variant of the
many variants defined by the template. The instantiation amounts to selecting
specific values for the parameters defined by the connector template. For exam-
ple, Conditional Trigger-Strategy deployed in the Window Controller system in
Figure 7.2 on page 141 is a deployed connector instance.

A design connector instance can only be deployed into the context of another
connector template that reuses the interaction pattern realised by the instanti-
ated connector. Such instantiation occurs in the design phase of the constructed
connector, hence the instance’s name. A design instance does not immediately
coordinate any components or connectors as a deployed instance; instead, it is a
means of composition of the instantiated connector template and the template
of the connector under construction. Thus, unlike deployed instances, design
instances may keep the parameters defined by their template free (not fixed).
Later, in the deployment phase of the connector under construction, the process
of fixing a particular variant of its deployed instance will also fix a particular
variant of all design instances contained in its template.

8.2 Interface

In this section, we give an overview of what comprises the interface of composite
connector templates.

A connector template is a reusable asset, stored in a repository, representing
an interaction pattern. It does not interact with other entities in a system; it is
the role of its instances to compose other component model entities in order to
enforce the interaction pattern represented by the template. The interface of a
connector template is used to derive interfaces of its instances.

The interface of connector templates comprises required data ports, a control
port, and control parameters to represent input and output flows of control and
data; additionally, it may contain multiports and roles. Multiports enable a
number of data flows to be merged and transported along a single data path
through a composite connector; the number of data flows merged by a multiport
can differ among different instances of a connector template. Roles are named
groups of other interface elements that can be multiplied a different number of
times in the interfaces of different template instances. They allow the interface
and composition structure of different instances of the same connector template
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to vary.
Table 8.1 enumerates possible interface elements of connector templates, their

properties and types of those properties. They are described further in this
section.

Entity Property Property Type
Required Port Required type Data type id

Required directionality {input, output}
SameTypeAs Required port

Required Multiport Required directionality {input, output}
SourceMultiport Required multiport

Control Port
Control Parameter
Role Name Text

Ports Set of required ports, multi-
ports and control parameters

Multiplicity Integer interval
Role data Set of required ports

Table 8.1: Entities Comprising Connector Templates’ Interfaces

To illustrate the interface specification of a connector template, Figure 8.2
shows the interface of the connector template representing the Trigger Strategy
interaction pattern, whose deployed instance is depicted in Figure 7.7 on page 145.
The interface comprises one control port and control parameter, one required out-
put port of the integer type (strategy), used for choosing the Strategy component
to be triggered and sent inputs, and a pair of required multiports for transport-
ing inputs to the selected component. The multiport d transports the same data
flows that are connected to the data multiport, which is signified by the Source-
Multiport property. Additionally, the template defines the role Strategy, which
aggregates interface elements c and d, communicating with Strategy components.
The role’s multiplicity [2,+∞) determines that these interface elements should
be multiplied in the interface of an instance of this template at least twice. The
deployed instance of this connector template in Figure 7.7 on page 145 has the
multiplicity of this role set to two.

In the following subsections, we go through different kinds of connector tem-
plate interface elements in detail.
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Figure 8.2: Interface of the Trigger-Strategy Connector Template

8.2.1 Required Data Ports

Required data ports in a connector template’s interface specify what data can
flow in and out of the template’s instances since they become part of instances’
interface. A required data port specifies the directionality of the data flow (input
or output). It also defines the required data type of the flow. This can be either
specified directly by naming the data type or indirectly by referring to another
required data port that transports the data of the same type (via the SameTypeAs
property in Table 8.1).

The different ways of specifying required data types are suitable for different
kinds of data flowing through connector instances. We can distinguish between
two kinds of data entering a composite connector – decision data and passing
data. Decision data are used by a connector to route control or other data
through the connector. Ultimately, they are consumed by a control connector
with a data input (selector or guard) or a data coordinator, and their value
determines the routing decision. Passing data, on the other hand, only flow
through a connector, routed in accordance with the connector’s semantics and
particular values of decision data. Unlike decision data, passing data eventually
leave the connector. For example, the data flowing through required output port
strategy in Trigger Strategy’s interface in Figure 8.2 are decision data, because
they are used by the connector to choose the Strategy component and they do
not leave the connector. The data flowing through the connector’s multiports
data and d are passing data.

A connector instance needs to know the exact types of its decision data since
it interprets the data, it does not need so much information about passing data
as it only transports them, without interpreting their values. Thus, the data
type of decision data should be specified directly by name, whereas the data type
of required input and output ports transporting passing data can be specified
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indirectly by the ports referring to each other via the SameTypeAs property.
The indirect way of data type specification increases the reuse potential of

connector templates since the type specification is not fixed in the template;
instead, it can vary among the template’s instances while still maintaining type
safety (see Section 8.4.3).

8.2.2 Required Multiports

Required multiports are connector template interface elements that, like required
data ports, specify entry and exit places for data flows in the template’s instances.
However, they can be used to represent passing data only. They allow a variable
number of data flows to be merged and transported along a single data path1

defined in a connector template. The merged data flows (identified by their
source data ports) become template parameters to be fixed during instantiation.

In a connector template, multiports do not prescribe any particular type;
instead, required input multiports are associated with the corresponding required
output multiports that feed them the passing data using the SourceMultiport
association. Figure 8.2 illustrates this with Trigger-Strategy: the required input
multiport d is associated with the required output multiport data, which signifies
that these two multiports transport the same set of data flows in each instance
of the template.

In deployed connector instances, multiports can be connected to multiple
ports. A required output multiport can be connected to multiple output data
ports to merge (multiplex) their data flows; the corresponding required input
multiport is connected to the same number of input data ports, splitting (demul-
tiplexing) the merged data flow and additionally directing each of the constituent
data flows to a particular input port (selected by the designer).

Figure 8.3a schematically shows the multiport binding of a deployed instance
of Trigger-Strategy. The required output multiport data merges two data flows
coming from output ports e, f , which is denoted by connecting e and f with data.
The binding of a corresponding (associated via sourceMultiport) required input
multiport i1 not only consists of specification of the target component input ports
(connected ports g and h), but it also specifies which data flow should each target
port receive: g receives data from e, and h from f .

1By a data path, we mean a sequence of data connectors transporting a data flow.
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More formally, the binding of a required output multiportmo to several output
data ports o1, ..., ok corresponds to a set of pairs {(mo, o1), ..., (mo, ok)}; and the
binding of a required input multiport mi being fed data from mo (i.e. (mi,mo) ∈
sourceMultiport) to input ports i1, ..., ik corresponds to a set {(mi, i1, od(1)), . . . ,
(mi, ik, od(k))}, where d : {1, ..., k} → {1, ..., k} is a permutation of indices repre-
senting the designer’s selection of which data flow (identified by the index of its
source output port) should be routed to which target input port. The d mapping
has the following semantics: d(a) = b means that the data flow originating in oa

should be routed by the connector to the input port ib.

(a) Deployed Instance with Multiports (b) Equivalent Instance without Multiports

Figure 8.3: Multiports in Trigger-Strategy Instances

It should be noted that we have not defined multiports as part of deployed
composite connector instances in Chapter 72: Figure 8.3a thus shows an invalid
composite connector instance. However, we can map composite connectors with
multiports into a subset of our component model for which the behaviour is
already defined. Such a semantics-defining mapping (similar to the semantic
decomposition of composite connectors in Section 7.3) takes a connector template
and multiport binding information associated with a connector instance, and
produces a composition of data and control connectors that defines the behaviour
of that particular instance.

Figure 8.3b shows the result of the mapping of the Trigger-Strategy instance
in Figure 8.3a to a connector definition without multiports with equivalent be-
haviour. Multiports have been decomposed into several required ports according
to the number of connected ports (two in this case); each required port is respon-
sible for transporting only one of the data flows multiplexed by its corresponding

2We have done so for simplicity; in our prototype implementation, multiports are valid
interface elements of deployed connector instances.
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multiport. Moreover, the data paths inside the connector template have been
duplicated as well so that they now transport only streams of values of basic data
types.

8.2.3 Control Ports and Parameters

Control ports and parameters in a connector template’s interface specify how
control flows in and out of the template’s instances since they become part of
instances’ interface. There is at most one control port and zero or more control
parameters per composite connector template. Unlike data flow, control flow is
untyped in our model, which diminishes the opportunities for parametrisation.
As a result, no additional properties of these interface elements can be specified,
and they retain their semantics described in Section 7.2.1.

8.2.4 Roles

The mechanism of roles parametrises certain structural aspects of connector tem-
plates; it enables creating a variety of instances of the same template with different
interfaces and internal composition structure, which increases the reuse potential
of composite connectors in our model. The mechanism is inspired by the roles
in pattern solution templates (hence the name), which specify minimal expected
behaviour of entities that can participate in a pattern (see Section 3.3).

In the context of composite connector templates, we define a role as a group
of required data ports and control parameters. A role forms an interface between
instances of the connector and the role’s participants; that is, a role expresses the
constraint on participants by defining interface elements through which partici-
pants interact with the connector. Crucially, a variable number of participants
can be assigned to play a given role during a connector’s instantiation, which
allows us to have composite connectors with variable interfaces.

Additionally, a role has a name and multiplicity, an integer interval specifying
how many times the role can be instantiated (multiplied) within a connector
instance. Every participant needs to be distinguished so that the connector can
route control or data to it, based on some values of the connector’s decision data.
Therefore, each role also specifies which required output ports (corresponding to
incoming decision data) identify participants of that role (see Table 8.1).
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To instantiate a connector template, the developer needs to specify partici-
pants for each role contained in the connector template. A participant information
comprises the role that the participant plays, and the decision data values iden-
tifying the participant. The interface of a connector instance contains as many
copies of required ports and control parameters as there are participants of the
role that aggregates them.

For example, the interaction pattern realised by Trigger-Strategy allows choos-
ing between possibly many strategies. Each strategy corresponds to a control-
driven component that receives input data and is triggered by the connector. To
express the above constraint on participants in the interface of Trigger-Strategy,
the Strategy role (see Figure 8.2) aggregates part of the connector’s interface ded-
icated for communication with strategy components – the required input port d
and control parameter c. Its multiplicity determines that each connector instance
should have at least two participants, each of which is identified by a value of the
integer type (strategy’s required type).

Figure 8.4: A Trigger-Strategy Instance’s Interface

Figure 8.4 shows the interface of an instance of the template from Figure 8.2.
During instantiation, two participants of the Strategy role have been specified:
one to be selected when strategy = 1 and another one to be selected when
strategy = 2. As a result, the ports aggregated by the Strategy role have been
duplicated in the connector’s interface for each of the role’s participant.

8.3 Composition Structure

A connector template comprises: (i) an interface that defines how its instances
interact with other model entities (see Section 8.2), and (ii) composition of con-
trol and data connectors that realise a particular interaction pattern. Unlike the
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composition structure of deployed instances described in Section 7.2.2, connector
templates parametrise their composition structure so that it can be instantiated
differently in different deployment contexts to support variant behaviours of con-
nector instances.

To parametrise the composition structure of connector templates, we use the
mechanism of roles (see Section 8.2.4). When a connector template is instantiated,
the specification of participants for each role not only guides the instance’s inter-
face creation but also the transformation of the template’s composition structure
into the composition structure of the instance.

A connector template is composed of variable and fixed constituent elements,
according to whether they are affected by the instantiation transformation. Fixed
elements are not associated with any role; variable elements must be associated
with some role defined in the template’s interface. There exist two ways in which
an element can vary during instantiation: either it can be duplicated multiple
times or its ‘arity’ (the number of ports in its interface and its internal structure)
changes. A connector template comprises design connector instances for the parts
that change their arity during instantiation and deployed connector instances for
the parts whose structure does not change (whether they are multiplied during
instantiation or not).

All basic connectors (Section 6.3) and composite connectors (Chapter 7) de-
scribed in earlier chapters correspond to deployed connector instances and can
be composed within connector templates in the way presented in Section 7.2.2.
In Section 8.3.1, we extend the concept of design connector instances to data
coordinators and control connectors (not only composite connectors as described
in Section 8.1), and we discuss how to compose connector templates from both
kinds of connector instances. In Section 8.3.2, we explain how to compose con-
nector templates from existing connector templates. Finally, Section 8.3.3 lists
some structural constraints on the design of connector templates, given by the
instantiation mechanism.

8.3.1 Design Instances of Basic Connectors

Design instances of data coordinators and control connectors possess most of the
characteristics of composite connector design instances (see Section 8.1): (i) they
are instantiated in a connector template; (ii) they may keep some parameters
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unassigned and propagate them as parameters of the template they are instan-
tiated in; and (iii) all their unassigned parameters are fixed during instantiation
of the template that contains them (i.e., they effectively become deployed in-
stances). Unlike design composite connector instances, their parameters are not
defined in their template, since there is none, but they have only one such pa-
rameter, defined directly in the component model: arity.

Arity denotes the number of specific interface elements (ports or control pa-
rameters) of a connector (see Table 8.2 for details). If the arity of a design instance
is left unassigned in the definition of a connector template, the design instance
can vary among the template’s instances, which helps to realise restructuring part
of the instantiation transformation.

Graphical
Notation

Connector
Type Parametrised by

Selector Number of control parameters (c) & decision
data values associated with each of them

Sequencer Number of control parameters (c) & their se-
quencing indices

Data Join Number of input data ports (i) & decision
data values associated with each of them

Data Switch Number of output data ports (o) & decision
data values associated with each of them

Table 8.2: Summary of Design Instances of Basic Connectors

Table 8.2 gives an overview of design instances of basic connectors. Design
instances of selector and sequencer are parametrised by the number of their con-
trol parameters and by the additional information to determine the exact control
flow (the values for selecting a particular control parameter in the case of selectors
and sequencing indices for control parameters in the case of sequencers). Design
instances of data join and switch are parametrised by the number of their input
and output data ports, respectively, as well as with values of decision data used
by a data coordinator to select a respective input or output port. We do not
define design instances of data channels since they are treated differently by the
template instantiation procedure (see Section 8.4)
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Design connector instances in a connector template are associated with a
role from the template’s interface. The participant information supplied during
instantiation of the template is used to set the arity of the template’s design
instances (effectively converting them to deployed instances).

Design connector instances are composed by the same means as their deployed
counterparts (Section 7.2.2) since they have the same interface elements – data
ports, control ports and control parameters.

Figure 8.5: Trigger-Strategy Template with Variability

Example
To illustrate composition of design connector instances within a connector tem-

plate, we show the connector template of Trigger-Strategy in Figure 8.5. The
template has the same interface as in Figure 8.2, with the role Strategy defining
the interface for participating Strategy components. It is composed of design in-
stances of data switch and selector, defining control and data flow routing within
the template, and of four data channels, defining data flow within the template.
Both design instances are associated with the Strategy role.

8.3.2 Composing Connector Templates

To reuse interaction patterns stored in a repository as connector templates in
the definition of a new connector template, one needs to create a new connector
template by composing instances of the reused templates. That is, connector
instances are a means for connector template composition. An existing connector
template can be instantiated into the context of a template under construction
as either a deployed connector instance or a design connector instance.

Deployed composite connector instances have their interface and composition
structure fixed. The composition of these instances follows the principles de-
scribed in Section 7.2.2. For example, Conditional Trigger-Strategy template in
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Figure 7.8 composes a deployed instance of Trigger-Strategy.
On the other hand, design connector instances still have some of their tem-

plate parameters – such as a port’s data type or interface elements associated with
an uninstantiated role – unassigned. Fixed parts of a design instance’s interface
can be composed with other entities inside the new template or propagated to
the template’s interface in the same way as interfaces of deployed instances. Vari-
able parts of its interface have some restrictions on which other elements inside
the new template they can be connected to; however, their unassigned variabil-
ity parameters have to be always propagated to the interface level of the new
template.

Example
To illustrate the composition of a design connector instance within a connec-

tor template, we show the connector template of Conditional Trigger-Strategy
(introduced in Section 7.1.1) in Figure 8.6. It contains a design instance of the
Trigger-Strategy connector template from Figure 8.5. The Trigger-Strategy tem-
plate defines two kinds of variability parameters: multiports and roles. Because
none of its parameters has been fixed during instantiation of the design instance,
they propagate to the Conditional Trigger-Strategy template. The Strategy role
is directly propagated by connecting its associated ports to the corresponding
ports of the new template (c, d). Additionally, one of the ports aggregated by the
role is a multiport. This is propagated to the interface of the new template as
well. The propagation entails establishing the sourceMultiport relation between d
and data.

Figure 8.6: The Conditional Trigger-Strategy Template

Let us consider the three kinds of template parameters defined in Section 8.2
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– generic types, multiports and roles – and discuss how they can be propagated
via design connector instances to the interface of the new template.

Generic Types
They are represented by the sameTypeAs relation between pairs of required data

ports in a connector template. In the simplest case, a pair associated with the
relationship in the interface of a design instance is connected to a corresponding
pair of ports in the interface of the new template, as shown in Figure 8.7a, which
results in the propagation of the relationship. More formally: if a, b are required
ports of a design connector instance, (a, b) ∈ sameTypeAs, c, d are required ports
of the new template, a is connected to c and b is connected to d, then the interface
of the new template contains the constraint (c, d) ∈ sameTypeAs.

(a) Direct Propagation (b) Indirect Propagation

Figure 8.7: Propagating Generic Types from Design Instances

In general, the ports of a design instance associated via sameTypeAs can be
connected to the ports of other connectors comprising the new template as long
as they are not treated as decision data. In this case (illustrated by Figure 8.7b),
there exists a set A of required output ports of the new template ({c, d}) that can
(directly or indirectly) supply data to the required output port of the associated
pair (a), as well as a set B of required input ports of the new template ({e, f})
that can (directly or indirectly) receive data from the required input port of
the associated pair (b). The sameTypeAs relation between the required input
and output ports of the design instance is propagated to the level of the new
template interface by creating the sameTypeAs association between all elements
of Cartesian product A×B.

Multiports
Pairs of multiports in a connector template are associated using another bi-

nary relation, sourceMultiport. The relation propagates from required multiports
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of design instances to required multiports of the new template, similarly to same-
TypeAs. In particular, the case of direct propagation (analogous to Figure 8.7a) is
the same; see the multiport propagation in Figure 8.6. The case of indirect prop-
agation is simpler due to different semantics of the two relations. Because each
required input multiport must have exactly one corresponding source multiport,
required input multiports connected to the design instance’s required input mul-
tiport b (the set B) can only have one required output multiport in the template
interface as their source multiport. Consequently, the required output multiport
a in the design instance’s interface can be connected to only one corresponding
multiport in the templates interface (the singleton set A). The relation is then
propagated to the pairs comprising B × A.

Roles
Roles that have not been instantiated in the interface of a design instance

propagate to the interface of the new template. The required data ports and
control parameters comprising such a role may be either connected directly to
the corresponding interface elements of the new connector template, or indirectly
via a control or data path comprising deployed instances3.

Uninstantiated roles can propagate to the interface of the new template un-
changed (see Figure 8.6); alternatively, their constituting ports can become ag-
gregated to form a subset of a new role defined at the interface level of the new
template. The latter case amounts to composition of roles – a role in a parent
connector template can compose roles of several of its composite sub-connectors4.
Participant information for the new role will be used to construct participant in-
formation for the composed roles during instantiation of the new template.

Figure 8.8 illustrates the role composition. Connector templates X and Y

define roles of the same name. The templates are composed by means of their
design instances in the new template (the right-most one in the figure). Instead
of being directly propagated to the interface level of the new template, the roles
are being composed by a new role XY simply by being connected to the interface
elements associated with that role. Participants of the role XY will be used to
construct participants for the roles X and Y ; therefore, both X and Y will be
instantiated using the same number of participants. It is the designer’s responsi-
bility to ensure that multiplicity and role data of a new composite role conform

3Section 8.3.3 explains the limitation forbidding the nesting of design instances.
4Role composition is not yet supported in our prototype tool.
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to the constraints of its composed roles.

Figure 8.8: Role Composition

8.3.3 Constraints

To complete the discussion on the structure of connector templates, we sum-
marise the rules that designers need to comply with for the instantiation process
to be able to create template instances correctly. These restrictions stem from
the properties of the instantiation process (Section 8.4), and specifically its part
dealing with creating composition structure of a new instance. Their list follows:

• Design instances of data coordinators or control connectors have to be as-
sociated with the role whose instantiation fixes their arity.

• Design instances have to be (indirectly) connected to the interface elements
of its associated role to propagate their variability parameters to the inter-
face level of the new template.

• Deployed instances of data coordinators and control connectors have to be
associated with a role in order to be duplicated during instantiation.

• There can be at most one design instance on every data or control path in
a connector template.

Let us explain the meaning of the last rule. A data path corresponds to a
sequence of adjacent data connector instances or composite connector instances,
starting from a required output port and ending at a required input port; a control
path is a sequence of adjacent control connector instances or composite connector
instances, starting from the control port and ending at a control parameter of the
template. The rule prevents, e.g., a situation in which a design selector instance
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S has a design sequencer instance T as its child. Assume that S is associated with
role a instantiated with s participants, T is associated with role b instantiated
with t participants, and that T ’s parameter is propagated to the interface of
its containing template. In our scenario, providing s participants to the role b
would result in creating s× t copies of T ’s control parameter, instead of expected
s copies, which violates the principles of interface instantiation of a connector
template from Section 8.2. The rule prevents these cases.

8.4 Instantiation

Instantiation of a connector template is the process of (i) creating a connector
instance from the template based on instantiation information and (ii) connect-
ing the instance to other component model entities to integrate the interaction
pattern, realised by the connector template, into the context of its instantiation.

The former corresponds to a transformation that, given instantiation infor-
mation and a connector template, produces an instance of the template – its
interface and composition structure. The latter corresponds to the process of
composing the instance with other model elements, carried out by the designer
in a modelling tool and assisted by automated connection constraint checking.

In this section, we give a complete overview of the instantiation process of con-
nector templates. We first illustrate the process with examples in Section 8.4.1.
Further, we describe the three processes that comprise instantiation: (i) creating
the interface (Section 8.4.2), (ii) connecting the interface elements to other ele-
ments and associated constraint checking (Section 8.4.3), and (iii) creating the
internal composition structure (Section 8.4.4).

8.4.1 Overview

In this section, we give an overview of how the instantiation transforms the in-
terface and composition structure of a template to the interface and composition
structure of its instances. We show examples of deployed instances of connector
templates to illustrate the instantiation process.

To instantiate a connector template as a deployed instance, the designer needs
to specify participant information for every role defined by the template. Each
participant specifies its role and so-called participant data, a decision data value
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that identifies the participant as a target for routing control and data (see Sec-
tion 8.2.4). The number of participants of a certain role must fall within the
multiplicity interval defined by the role.

This information is used to generate the instance’s interface from the tem-
plate’s interface. The instance’s interface contains all interface elements of its
template. The interface elements not associated with any role in the template
appear once in the instance’s interface; the elements associated with a role are
multiplied as many as times as there are participants for that role specified during
instantiation.

The composition structure of the instance is generated from the template’s
composition structure in a similar manner. Connector instances in the template
not associated with any role are copied to the instance’s structure. The connector
instances associated with some role are transformed by instantiation depending
on their type: deployed instances are duplicated according to the number of par-
ticipants of their role; design instances are recursively transformed so that their
interface and composition structure is fixed based on the associated participant
information. The transformation also traces data and control paths and dupli-
cates them if necessary.

Figure 8.9: A Trigger-Strategy Instance

Figure 8.9 shows the result of instantiating the Trigger-Strategy template
(see Figure 8.5) with three participants of the Strategy role. The interface of the
instance changed accordingly: ports c, d from the template are multiplied thrice.
In the instance’s composition structure, design instances from the template have
been set the arity equal to the number of participants of the Strategy role and have
thus become deployed instances. Each of the selector’s control parameters has
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been annotated with the participant data of the respective participant so that
the selector’s control routing behaviour is fully defined. Likewise, the output
ports of the data switch have been annotated with the decision data values of
corresponding participants.

Figure 8.10: A Conditional Trigger-Strategy Instance

To illustrate the recursive nature of composition structure generation, Fig-
ure 8.10 shows a deployed instance of Conditional Trigger-Strategy (see the tem-
plate in Figure 8.6). The Strategy role has been instantiated with two partici-
pants. The design Trigger-Strategy instance has become a deployed instance –
with its interface and composition structure recursively transformed – after all of
its variability parameters have been fixed using the instantiation information of
its parent template.

To instantiate a connector template as a design instance, not all roles have to
be provided with participants. Parts of the interface of a design instance associ-
ated with such uninitialised roles are identical to the corresponding parts of the
template’s interface; parts of the interface associated with initialised roles (with
participants) are instantiated as in the case of deployed instances. The unini-
tialised roles are propagated to the interface of the parent connector template.
The composition structure of design instances is not generated during their in-
stantiation, because not enough information is available at that time. Instead,
their composition structure is generated when their parent connector template is
being instantiated as a deployed instance, as exemplified by the Trigger-Strategy
instance in Figure 8.10.
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8.4.2 Interface Creation

In this section, we specify a procedure that creates the interface of a connector
template instance based on the participant information supplied by the designer.
The procedure is executed after a connector template is chosen to be instantiated
from the repository. The pseudocode of the procedure follows:

procedure CreateInstanceInterface(c, participants)
template← template of c

for all element ∈ interface elements of template do
role← role associated with element

roleParticipants← {p ∈ participants|p.role = role}
if roleParticipants = ∅ then . No role, or an unitialised one.

Add a copy of element to c’s interface
else . An initialised role.

for all p ∈ roleParticipants do
Add a copy of element to c’s interface

end for
end if

end for
end procedure

The procedure iterates through the elements of the interface of c’s template;
each element is either copied to the interface of the new instance, if there is
no role associated with it or the designer has decided – when creating a design
instance – not to initialise the associated role with any participant, or duplicated
as many times as there are participants of its associated role.

8.4.3 Connecting Instance Interface

To complete the integration of the interaction pattern represented by a connector
template into the context of its instantiation, the designer needs to connect the
instance’s interface elements to other model elements’ interfaces. This activity
is supported by the connection constraint checking process, which triggers its
checking routine whenever an instance’s interface elements are connected to or
disconnected from other model elements. The routine checks whether the con-
nected interface elements comply with the constraints imposed by the connector
template – checking data types and directionality of ports; the result (a boolean)
can be used to prevent a connection from being created or it can be displayed to
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the designer as an error.
The rules for connecting interface elements of a composite connector instance

are as follows:

• A required data port can be connected to one or more5 component data
ports of the right type and directionality, or to a required data port of
a connector template with the same constraint (if instantiated within the
template).

• A required output multiport can be connected to many component data
ports, or to a required output multiport of a connector template (if instan-
tiated within the template).

• A required input multiport can be connected to the same number of com-
ponent data ports (of the same types and opposite directionality) as its
corresponding output multiport, or to a required input multiport of a con-
nector template (if instantiated within the template).

• A control port can be connected to one or more control parameters, or to a
control port of a connector template (if instantiated within the template).

• A control parameter can be connected to one control port, or to a control
parameter of a connector template (if instantiated within the template).

Type checking of required data ports amounts to checking that the data type
of the connected port equals the required data type of the required port if the
type is specified directly. If generic type specification is used, the data types of
the ports connected to an instance’s ports in the same equivalence class of the
sameTypeAs relation should be the same.

8.4.4 Composition Structure Creation

In this section, we describe the transformation that generates the composition
structure of a deployed connector instance from the connector template and in-
stantiation information to fully define the connector’s behaviour at run-time.

5The semantics of multiple component ports connected to a single required data port depends
on the directionality: a required output port consumes the data from one non-deterministically
chosen port of the connected ports; a required input port copies data to all connected ports.
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We formulate it as a procedure CreateComposition that takes a deployed
connector instance dc and the instance’s participants as its inputs and creates the
internal composition structure of the instance. We assume that the interface of
the instance has already been created using the CreateInstanceInterface.
The following pseudocode gives a high-level description of the procedure:
1: procedure CreateComposition(dc, participants)
2: t← template of dc

3: map← ∅ . Maps template elements to their instance copies
4: partMap← ∅ . Maps instance elements to a corresponding participant or ∅

5: deployedNoRole← deployed instances of control connectors, data coordinators
and composite connectors, with unassigned role

6: for all x ∈ deployedNoRole do
7: copy x from t to dc, update map and partMap accordingly
8: end for

9: roles← roles defined by t

10: for all role ∈ roles do
11: roleParticipants← {a ∈ participants|a.role = role}
12: p← |roleParticipants|
13: for all y ∈ deployed instances in t of any type, associated with role do
14: copy y from t to dc p times, update map and partMap accordingly
15: end for
16: designNoCC ← design instances in t of non-composite connectors,

associated with role

17: for all z ∈ designNoCC do
18: deploy z with arity p from t to dc, update map and partMap accordingly
19: end for
20: end for

21: for all c ∈ design instances in t of composite connectors do
22: d ← create a deployed instance of c in dc, update map and partMap ac-

cordingly
23: ct← template of c

24: dp← gather participants for roles defined by ct from participants

25: CreateInstanceInterface(d, dp)
26: CreateComposition(d, dp) . Recursive call to create composition of d
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27: end for

28: for all a ∈ data channels, control parameters, and identity connections in t do
29: sources← map(the source of a) . A non-empty set of elements from dc

30: targets← map(the target of a)
31: for all (s, t) ∈ sources× targets do
32: if (partMap(s) = ∅ ∨ partMap(t) = ∅)∨partMap(s) = partMap(t) then
33: Create a copy of a in dc from s to t

34: end if
35: end for
36: end for
37: end procedure

The procedure first copies deployed connector instances (other than data chan-
nels) not associated with any role (and thus not multiplied in the instance) from
the template to the instance (lines 5-8). It then copies deployed instances of con-
nectors (other than data channels) associated with some role as many times as
there are participants of the role (lines 10-15). Design instances of non-composite
connectors (other than data channels) are converted to deployed instances, their
arity is set to the number of participants of their associated role (lines 17-19).

Further, design composite connector instances are transformed (lines 20-26):
each design instance is converted to a deployed one, with its interface initialised by
the procedure described earlier in this section (CreateInstanceInterface);
the recursive call (line 26) creates the composition structure of the new deployed
connector instance.

Finally, all connections (comprising data channels, control parameters and
identity connections) from the template are created in the instance (lines 28-
36). Since some of the entities have been copied to the instance multiple times,
there can be multiple connections created for a single connection in the template.
The procedure iterates through each connection in the template and duplicates
the connection between every copy of the connection’s source and every copy of
the connection’s target if they correspond to the same participant or at least
one of them is not associated with any role. This condition correctly deals with
all possible combinations of design or deployed instances, with or without roles,
under the following assumptions: (i) a connection between two design instances
is forbidden, and (ii) a connection cannot connect entities associated with two
different roles.
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In the pseudocode, map and partMap, which are being built throughout the
execution of the procedure, help us determine what instance elements correspond
to a template element and what participant corresponds to an instance element,
respectively.

8.5 Discussion

In this section, we discuss the impact of connector templates on connector reuse
in Section 8.5.1 and possible alternatives to the realisation of template parametri-
sation mechanisms in Section 8.5.2.

8.5.1 Reuse

Connector templates further increase the reuse potential of connectors in our com-
ponent model by parametrising their various aspects. In particular, they address
the shortcomings of composite connector instances in representing interaction
patterns identified in Section 7.4.2:

• they allow some required data ports to have generic data types, while still
maintaining type safety of instance composition,

• they introduce an interface element type (multiports) representing a set of
data flows and

• they allow connector instances to vary their interface and composition struc-
ture (and thus behaviour) by means of the role mechanism.

The structural variability of reusable abstractions is not common in component-
based software development. Components, the dominant reuse abstractions in
component-based software development, are mostly viewed as black boxes. They
comprise a public interface and hidden implementation, which defines their be-
haviour and is essentially a piece of software, often provided in the compiled bi-
nary form, written in some programming language. Because of the black box na-
ture of their implementation, component interface and implementation are fixed
and cannot vary across their instances.

Unlike black-box components, whose behaviour is defined by opaque imple-
mentation, our composite connectors are fully defined as compositions of simpler
component model elements. This enables their flexible instantiation, which can
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even affect their compositional structure. As a result, connectors can be instan-
tiated in a greater variety of contexts, i.e., they have greater reuse potential than
corresponding black-box components.

8.5.2 Alternative Parametrisation Mechanisms

In this section, we discuss possible alternative realisations of the template parametri-
sation mechanisms of generic types, multiports and structural variability.

Generic Data Types
The proposed mechanism is similar to the type parametrisation mechanism

found in programming languages such as Java or C++, in which the definition
of a class and its members may contain type variables that are fixed during class
instantiation (at run-time) and that represent a similar type constraint. Indeed,
it would be possible to use the type variable mechanism. However, there is
no difference in expressiveness, provided that we allow the sameTypeAs relation
between any two required ports, and the approach using model associations has
a simpler meta-model realisation.

Multiports
A possible alternative solution to the problem of multiplexing several data

flows would be to extend the type system to include composite data types, such
as arrays or records. That would also lead to extending the set of model elements
by operators for multiplexing and demultiplexing of simple streams to complex
ones and back. However, using statically typed arrays or records in a connector
template definition would not be enough: arrays require homogeneous constituent
elements, while records have a fixed number of elements, which would limit the
reuse of connector templates in the same way as the solution without multiports.

During binding multiports to data ports, the multiport mechanism effectively
dynamically creates a composite type with elements of varied types addressable by
names (of originating data ports), in a type-safe manner. The closest alternative,
feasible in static type systems, would be to represent a multiport in a template
using a type variable, which would be assigned a composite type in the template’s
instance.
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Structural Variability
The presented solution to the variable composition structure of composite con-

nectors relies on a single instantiation transformation, common to all connector
templates. This solution does not make connector template design overly com-
plex, and it allowed us to parametrise the structure of most connector templates
on which we evaluated our method. However, it is by no means the only solution.

One alternative would be to have such a transformation procedure specific
to each template: the designer of a template would deposit both a template
and its instantiation procedure in the repository. The degree of variability of the
template would depend on its instantiation procedure, which could be customised
to the represented interaction pattern. Certainly, this could lead to more flexible
instantiation. On the other hand, since instantiation would be template-specific,
the template would become an obsolete (constant) parameter, which could lead
– in the extreme case – to designers only storing instantiation procedures in the
repository. If the transformation was written in some generic transformation (or
even programming) language, our aim of designing the behaviour of interaction
patterns by composing component model elements would be defeated.

The presented solution to the structural variability of templates and its afore-
mentioned variant can be seen as two extremes of a wider spectrum; the former
being common to all templates, the latter being template-specific. Another option
would be to create a domain-specific language for this purpose, with constructs
reusable across many connector templates, but with the ability to be attached
and customised to a particular template. However, to develop useful constructs
of such a language systematically would require substantial research involving the
analysis of a large number of patterns, which is out of the scope of this thesis.



Chapter 9

Model-driven Implementation

To evaluate and experiment with our approach, we have implemented a prototype
tool. It allows designers to create components and composite connectors, deposit
them in a repository and deploy them to compose systems conforming to our
component model.

This chapter illustrates how we used various model-driven techniques to im-
plement our prototype; in particular, instantiation of composite connectors is a
novel application of model transformations in the context of component-based
software development.

In Section 9.1, we give an overview of the prototype tool from the designer’s
perspective. Section 9.2 briefly describes the underlying meta-model. The use of
model transformations in the prototype is explained in Section 9.3. Section 9.4 de-
scribes how the execution semantics is implemented in the simulator. The chapter
concludes with the discussion of alternative ways of defining model transforma-
tions and of some performance issues in Section 9.5.

9.1 Prototype Tool Overview

The prototype tool allows one to design and simulate systems conforming to our
component model. Designers can design and implement components and con-
nectors, reuse them by means of repositories to compose systems, and validate
system behaviour by simulation. The tool supports the connector life cycle (con-
nector templates and two kinds of their instances) and variability parameters of
connector templates described in Chapter 8.

The main development activities are supported by the following modules:
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component editor, connector template editor, repository, system architecture ed-
itor and simulator. The modules are integrated to form one design environment,
centred around the repository module (see Figure 9.11). We used the Eclipse
Platform as an integration platform; individual modules were realised as (sets of)
plug-ins extending the core platform.

Figure 9.1: Modules Comprising The Prototype Tool

In the remainder of this section, we describe the function of individual modules
from the designer’s perspective.

Component Editor
The component editor allows the definition of components by means of a tex-

tual, domain-specific language. The language can specify both a component’s
interface, in terms of ports, and behaviour, by defining arithmetic expressions for
computing values of output ports from the values of input ports and state vari-
ables2. An example of a component defined in the editor is shown in Figure 9.2.

Figure 9.2: Component Editor

Connector Template Editor
This graphical editor serves to define connector templates – their interface
1The solid arrows in the figure denote components and connectors being deposited in, and

retrieved from, the repository.
2If more complex behaviour is required, designers can develop components as Java classes

implementing a particular interface.
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and internal composition structure. For example, the Trigger-Strategy template
in the editor is shown in Figure 9.3. The editor has a palette of interface ele-
ments and component model elements that can be composed within a composite
connector (on the right in the figure); it is also integrated with the repository,
from which existing connector templates can be instantiated into the currently
designed connector template (see the bottom left view in the figure).

Figure 9.3: Connector Template Editor

Repository
The repository module manages available repositories that contain components

and connector templates. Users can explore the contents of the repositories,
deposit components or connector templates in them, and instantiate selected
entities into the connector template editor and the system editor. The repositories
view is shown on the left side of Figure 9.3.

System Architecture Editor
This graphical editor enables the designer to construct systems in our model

by composing deployed instances of component model elements using data and
control connectors. Visually, it is similar to the connector editor: it has the
palette of component model elements that can be composed within a system, and
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it is also integrated with the repository module, from which existing connector
templates and components can be instantiated into the currently designed system.
Figure 9.4 shows a purely data-driven system in the editor.

Figure 9.4: System Architecture Editor

Simulator
The simulator executes a well-defined system, constructed in the system archi-

tecture editor, in accordance with the execution semantics defined in Section 6.5.
After the simulation terminates, it displays the report showing inputs and outputs
generated by the simulated system (see the bottom-left tab in Figure 9.4).

To develop the plug-ins, we have used model-driven frameworks from the
Eclipse Modelling Project [119]: Eclipse Modelling Framework (EMF) for meta-
modelling (see Section 9.2), Graphical Modelling Framework for building graph-
ical editors based on EMF meta-models (the connector template and system
editors) and XText for building the component specification language and the as-
sociated component editor. We have also experimented with Henshin for defining
model-to-model transformations using graph rewriting rules (Section 9.5.1).
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9.2 Meta-Model

In this section, we describe the meta-model underlying the model-driven imple-
mentation of our prototype tool.

Meta-modelling is a key activity in model-driven software engineering; in gen-
eral, it aims to create models of some aspects of a software system under devel-
opment, which are used to generate (skeletons of) software artefacts comprising
that software system. In our prototype tool, we use meta-modelling to define the
structure of our component model, out of which the skeletons of implementation
of various editors are automatically generated.

In our implementation, the meta-model is defined using the ECore language,
which provides a number of concepts well-known from object-oriented structural
modelling: classes, attributes and inter-class associations. The ECore meta-model
forms one of the inputs to the following automated transformations:

• code generation of the meta-model entities (by EMF),

• code generation of the connector template graphical editor (by GMF),

• code generation of the system architecture graphical editor (by GMF) and

• code generation of the component editor (by XText).

Structurally, ECore meta-models form trees, class hierarchies defined by con-
tainment (by the composition association). They can have modular structure by
being further subdivided into packages.

The meta-model representation of our component model in our prototype
tool comprises three top-level packages: component, connector and system. The
component package contains the structural descriptions of components and com-
ponent instances, their interface elements and some basic data types shared by
other two packages. The connector package is further subdivided into three pack-
ages – cctemplate, design and deployment – defining connector templates and
basic connector types, their design and deployed instances, respectively. Finally,
the system package defines the concept of a system, the root of the meta-model’s
class hierarchy.

Since the meta-model defines the structure of our component model in accor-
dance with Chapters 6, 7 and 8, we do not discuss it in detail in this section.
The interested reader can find the ECore representation of the meta-model for
reference in Appendix B.
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For illustration, we only show a small excerpt from the meta-model as a class
diagram in Figure 9.5. It depicts the part of the meta-model defining the binding
of a required port of a connector template’s deployed instance.

Figure 9.5: Port Binding in Deployed Composite Connector Instances

Deployed connector instances are modelled by the class DeployedComposite-
Connector inheriting from CompositeConnector, the common ancestor of both
kinds of instances that crucially contains a reference to the CompositeConnector-
Template class. This meta-modelling pattern for representing commonalities be-
tween design and deployed instances of a component model entity via a common
abstract class is used throughout the meta-model.

Notice that the meta-model differentiates between the interface of an instance
and the interface of a connector template: whereas templates comprise required
ports (RequiredPortInstance), their deployed instances have (the same number of)
port bindings. Each port binding refers to its corresponding required port (via
the inner association) and to the entity to which that required port is connected
for this particular instance (not shown in Figure 9.5). The relation between port
bindings and required ports is analogous to that of actual and formal parameters
of a procedure. In the discussion of interfaces of composite connector templates
in Chapter 8, we have ignored this difference for the sake of clarity, but the
meta-model does not allow such imprecision.

The PortBinding class is abstract (its name is set in italics) and has three
concrete sub-classes. This represents the fact that there are different kinds of
required ports of connector templates, which require different binding informa-
tion. SinglePortBinding holds the binding information of ordinary required ports;
OutMultiPortBinding and InMultiPortBinding encapsulate binding information for
multiports of respective directionality.



9.3. APPLICATION OF MODEL TRANSFORMATIONS 187

9.3 Application of Model Transformations

A model transformation is ‘an automated process that takes one or more mod-
els as input and produces one or more target models as output, while follow-
ing a set of transformation rules.’ [102]; it is assumed that the models involved
conform to some meta-models, which are used to define transformation rules.
In model-driven engineering, model transformations can play many roles: they
can maintain consistency between models, refine abstract specification models to
more concrete implementation models, perform refactoring, implement migration
between database schemas, etc.

In our prototype tool, we use model transformations

• to construct interfaces of instantiated connector templates,

• to construct composition structure of instantiated connector templates,

• to convert instances of composite connectors with multiports to their equiv-
alents without multiports, and

• to decompose instances of composite connectors to composition of basic
connectors.

All of the above transformations are endogenous; i.e., their input and output
models conform to the same meta-model, that of our component model (Ap-
pendix B). The former two transformations help realise the variability of connec-
tor templates; the latter two transformations convert more high-level models to
their low-level counterparts that exhibit the same behaviour so that the simulator
operates on a simplified version of a system (see Section 9.4.1).

In our prototype tool, transformation rules comprising the above model trans-
formations are implemented in a general programming language (Java), using the
object-oriented representation of the meta-model generated by EMF to modify
the transformations’ input models and produce the output models.

Alternatively, model transformations can be implemented by means of spe-
cialised model transformation languages. We have experimented with such lan-
guages based on graph rewriting to define and to formalise model transformations
in our prototype tool. We have shown that it is possible (see Section 9.5.1), but
we did not use these languages to implement model transformations in our pro-
totype due to the increased size and complexity of their specification compared
to Java.
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9.4 Simulator

The simulator simulates the execution of systems designed in the system archi-
tecture editor; it takes a system’s architecture description and simulator configu-
ration3, and runs the system in accordance with the model’s execution semantics.
A simulator configuration (i) associates sources and sinks in the system specifica-
tion with input and output files, and (ii) initialises the state of some component
model elements, such as component execution states or the contents of some data
channels. Once the user terminates the simulation, the simulator updates the
Simulation Results view with the summary of values that were input to and out-
put by the simulated system. The simulator also saves the system’s outputs to
the files associated with the sinks, and prints the trace of system execution for
debugging purposes.

We use the term ‘simulation’ rather than ‘execution’ to stress that systems are
not being compiled or deployed to any target execution (hardware or software)
platform. The simulator interprets a system architecture description and executes
the Java code of its constituent components in order to simulate the system’s
behaviour. Its aim is to validate the run-time behaviour of designed systems.

In this section, we describe what transformations a system representation
undergoes before simulation (Section 9.4.1), and we give an overview of the im-
plementation of the execution semantics in our prototype (Section 9.4.2).

9.4.1 System Preprocessing

A system architecture description is preprocessed in several steps before the sys-
tem simulation starts. The flowchart in Figure 9.6 gives an overview of these
steps. First, a system architecture undergoes a series of model transformations
that simplify the system’s description. Based on the description, the run-time
representation of the system is constructed, which is then used by the interpreter
to simulate the system’s behaviour. Let us describe these steps in more detail.

Model Transformations Simplifying a System’s Description
Before it is further processed by the simulator, a system architecture description

undergoes three model transformations (Section 9.3), all of which are related to
3In the prototype, the configuration information is specified directly in the architecture

editor.
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Figure 9.6: System Architecture Preprocessing for Simulation

composite connectors. The first one fully creates the composition structure of
connector template instances (Section 8.4.4); the second one removes multiports
and replaces them with sets of single ports (Section 8.2.2); the third one removes
the instances of connector templates altogether by decomposing them into basic
connectors (Section 7.3.3). The result of the simplifying transformations is a
system description of simpler structure and equivalent behaviour, which simplifies
the design of other parts of the simulator.

Run-time System Representation
The classes defined in the meta-model (Appendix B) represent the design-time

structure of our component model. To interpret a system architecture at its
run-time, the simulator contains a set of classes that extend their meta-model
counterparts with (i) additional run-time state and (ii) the implementation of
their run-time behaviour in accordance with the component model’s semantics.

For instance, run-time components specify Java classes implementing their ex-
ecution behaviour, run-time control-switched data-driven components addition-
ally keep their execution state (enabled/disabled), data ports have associated
state determining whether they are full or empty, and run-time data connectors
implement the semantics specified by their design-time counterparts (FIFOs, non-
destructive read channels).

Due to the simplifying model transformations, not all meta-model entities
have their run-time counterparts.

Interpreter
The interpreter takes a run-time system model and simulates the system’s
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behaviour by running the control thread and data flow scheduler on the system
model in accordance with the execution semantics of our component model, as
defined in Section 6.5. Section 9.4.2 describes the implementation of the execution
semantics in more detail.

9.4.2 Implementation of Execution Semantics

The implementation of execution semantics in the prototype’s interpreter mod-
ule respects the principles laid out in Section 6.5: there are two schedulers, the
control thread and data-driven scheduler, performing tasks summarised in Fig-
ure 6.25; the schedulers are synchronised by splitting the execution into a series
of execution cycles and additional synchronisation rules ensuring deterministic
system behaviour (Section 6.5.6). There are two main decisions to be taken to
implement these principles: the threading model and the execution synchronisa-
tion mechanism.

Threading Model
The threading model determines the number of threads and allocates to each

thread the tasks to carry out. A possible straightforward implementation of the
control thread and data-driven scheduler (Figure 6.25) is to dedicate one thread
to each of them. However, that does not exploit the potential of data-driven
computation to be parallelised.

In our prototype, we opted for a threading model schematically depicted in
Figure 9.7: the control thread is realised by one thread, but the data-driven
scheduler is implemented by a pool of threads (of a constant configurable size, not
necessarily three as in the figure). Each request for a data-driven computation,
i.e., computation carried out by a data-driven component or a data coordinator,
is submitted to the thread pool, managing a queue of computation requests,
from which unoccupied threads get their computation jobs. Thus, a thread in
the thread pool can sequentially perform computation for multiple component
model elements within one execution cycle, as suggested by discrete segments
of the squiggly lines representing threads in the figure. The synchronisation of
execution is managed by yet another thread, the master scheduler, which re-starts
the two schedulers at the beginning of each execution cycle and waits for both of
them to finish at the end of an execution cycle; it also spawns and destroys the
scheduler’s threads at the beginning and at the end of the simulation, respectively.
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Figure 9.7: Threading Model Implemented in the Simulator

Execution Synchronisation Mechanism
There are several synchronisation mechanisms between the threads. They can

be split into two groups: (i) the synchronisation between execution cycles and
(ii) the synchronisation of the threads within an execution cycle. The former is
enforced by the master scheduler; the latter amounts to the control thread waiting
for missing data inputs of control connectors, of control-driven components before
skipping their triggering and of control-switched data driven components before
disabling them.

An important primitive used in the realisation of both kinds of synchronisa-
tion in our prototype is a global shared integer variable (with synchronised multi-
thread accesses), active, that denotes the number of active data-driven compu-
tations (i.e., single invocations of data-driven components or data coordinators
that have been submitted for execution to the thread pool of the data-driven
scheduler but have not been executed yet). It is incremented each time before
a computation request is submitted to the thread pool and decremented after a
request has been processed. The master scheduler uses the variable to determine
the inactivity of the data-flow scheduler at the end of an execution cycle, and the
control thread uses it to detect whether a missing data input can be computed
in the current execution cycle. The other aforementioned synchronisation mech-
anisms are implemented by active waiting (the master scheduler waiting for the
control thread) and by passive waiting realised by means of condition variables
(the control thread waiting for control connectors’ inputs).

The following pseudocode illustrates the working of the master scheduler. It
is defined as a function that takes a run-time model of a system to be simulated
and returns the number of simulated execution cycles.
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1: function MainScheduler(system)
2: Create the control thread ct and data-driven scheduler’s thread pool tp.
3: cycle← 0
4: while the simulation not terminated by the user do
5: active← 0 . Active data-driven computations
6: Submit computation requests to tp for all data-driven entities

in system with all inputs present.
7: Wake ct. . ct and tp execute the current cycle now ...
8: Wait until active = 0 and ct has finished one iteration.
9: cycle← cycle + 1
10: end while
11: Kill ct and tp.
12: return cycle

13: end function

The initialisation of the simulation (lines 2-3) is followed by the main simu-
lation loop (lines 4-10) that needs to be terminated by the user (the execution
semantics defines non-terminating systems). Each cycle of the loop corresponds
to an execution cycle. Each cycle starts by setting the synchronised global vari-
able active to zero. Initial scheduling of data-driven computation and waking
the control thread follow. At that moment, the control thread and the threads of
the data-driven scheduler perform all the computation comprising the execution
cycle. The master scheduler waits for both of them to finish, and it then pro-
ceeds to another execution cycle (denoted by incrementing the cycle variable at
line 9). After the simulation has been terminated, the threads are killed and the
simulation ends (lines 11-12).

9.5 Discussion

In this section, we discuss alternative ways of defining model transformations in
Section 9.5.1, and we note some performance issues in Section 9.5.2.

9.5.1 Model Transformations as Graph Rewriting Systems

In this section, we introduce an alternative way of defining model transformations
as graph rewriting systems and discuss the outcomes of our experiment with
implementing model transformations in our prototype using this formalism.
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In our prototype, we have implemented model transformations in a general,
object-oriented programming language (Java). Alternatively, model transforma-
tions can be implemented in languages based on graph rewriting. Not only do
graph rewriting techniques define model transformations, but they also provide
a framework to formalise them since they themselves have formal semantics. In
particular, we investigated Henshin [8], because it is well integrated into the EMF
ecosystem.

A graph rewriting system comprises a set of rules; each rule has the form of
L → R, where L and R are sub-graphs, and represents an atomic modification
of an input graph G in which a sub-graph of G isomorphic with L is replaced
by R. A graph transformation corresponds to a series of applications of graph
rewriting rules. In the context of model transformations, graphs comprise nodes
with attributes (corresponding to meta-model classes) and edges (corresponding
to inter-class associations); rewriting rules can also express modification of node
attributes (hence the term attributed graph grammars).

Henshin is an implementation of such an attributed graph grammar. In addi-
tion, it has a graphical syntax for rules. Each rule is represented as an annotated
class diagram that combines elements of both sides of the rule; each class and
association in the diagram is annotated by one of several kinds of annotations –
«preserve», «create», «delete», etc. An annotation determines on which side of
the rule a particular element is: elements annotated with «preserve» are in both
L and R (and thus preserved by an application of the rule), elements annotated
with «create» are only in R (i.e., created by an application of the rule) and ele-
ments annotated with «delete» are only in L (removed by an application of the
rule).

Having analysed the pseudocode of the transformation creating composition
structure of connector template instances (Section 8.4.4), we identified several
kinds of Henshin rules that correspond to atomic modifications performed by the
transformation: (i) rules that copy deployed data coordinators, control connec-
tors and connector template instances with no assigned role to the new template,
(ii) rules that multiply deployed instances associated with a role in the new tem-
plate, (iii) rules that deploy design instances of data coordinators, control con-
nectors and composite components, and (iv) rules that create data channels and
control parameters in the new template. We have defined a rule of each kind
in Henshin to evaluate its feasibility for defining model transformations in our
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prototype (see the examples of transformation rules in Appendix C).
Compared to the imperative pseudocode, the coordination of these rules’ ap-

plication may be simpler; in particular, there is no need for recursion, which is
used in the imperative implementation of our transformation. This is because the
matching of sub-graphs on the left hand side of rules contains an implicit loop,
which traverses an input graph in search of an isomorphic sub-graph. Henshin
additionally provides a rich set of control flow primitives (such as sequencing,
branching and looping), called transformation units, determining the order in
which rules are applied.

On the other hand, the number and complexity of rules in the Henshin specifi-
cation of a model transformation grows substantially with the size of the underly-
ing meta-model. For instance, we had to construct many structurally similar rules
for the cases in which an abstract meta-model class has many concrete sub-classes.
As a result, we have decided not to fully implement model transformations in our
prototype tool using Henshin.

9.5.2 Simulation Performance

In this section, we discuss some performance considerations of the simulator’s
prototype implementation. Although the primary goal of the simulator is to vali-
date the behaviour of designed systems and its performance is thus of a secondary
importance, we have made some observations useful for future implementation of
the run-time environment for systems designed in our component model.

Firstly, the choice of the execution semantics of a component model influences
the performance of systems designed in that model significantly. In our model,
the data-driven execution semantics of some model elements has a positive impact
on system performance since data-driven computation has a huge potential for
parallelisation: once a data-driven entity has all its inputs – which is the minimum
synchronisation requirement any computation can have – it can be executed.
On the other hand, any synchronisation impacts system performance negatively,
because it implies waiting. The control-driven and data-driven nature of our
component model exhibits some inherent degree of synchronisation, which further
increases due to the additional requirement of deterministic system behaviour and
the realisation of execution as a series of execution cycles.

Another factor determining a system’s performance is the quality of the im-
plementation of the run-time environment itself. In implementing our prototype,
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we have made some decisions that trade off possible performance gains for sim-
plicity. For instance, waiting for missing data inputs that are computable within
the current execution cycle (see Section 6.5.5) before skipping triggering or dis-
abling a component has instead been implemented by waiting for all data-driven
computation to cease (active = 0). Although the implemented variant yields
correct system behaviour4, it may result in worse performance than waiting for
inputs coming from entities comprising the production set of a given input port
(a set of entities that can directly or indirectly provide a value to an input port,
computed by the ProductionSet procedure from Section 6.5.6).

4A similar approach has been used in the formalisation of the execution semantics in Sec-
tion 6.6



Chapter 10

Case Study: Mode Switching
Pattern for Reactive Systems

In this chapter, we demonstrate how interaction patterns can be represented
as composite connectors and how they can be used to develop systems in our
component model.

We have chosen reactive control systems as our evaluation domain for its
close fit with the idea of interaction patterns separate from the definition of
computation. In particular, we focus on reactive control systems with modes –
systems whose operation is at any one time driven by one of several strategies
that can be switched between dynamically at run-time.

In Section 10.1, we define the Mode Switching interaction pattern, introduced
in Section 3.4, as a connector template in our component model. In Section 10.2,
we use the template to develop a particular reactive control system – climate
control in a car.

10.1 Defining Mode Switching Pattern as a Com-
posite Connector

In this section, we develop a connector template realising the Mode Switching
interaction pattern described in Section 3.4. The template’s interface will be
based on the pattern’s participants, while the pattern’s behaviour will determine
the template’s composition structure.

196
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10.1.1 Interface

Roles define entities that interact together in a pattern. In a sense, they define
a pattern’s interface. It is not surprising then that we use the roles of the Mode
Switching interaction pattern to construct the interface of a connector template
realising the pattern: for every role, we specify required data ports and control
parameters through which the participants of that role interact with the connector
template. To make the specified interface elements as general as possible (and
thus maximise the reuse of the template), we use the parametrisation mechanisms
defined in Chapter 8 – generic types, multiports and roles.

Figure 10.1: Interface of the Modes Connector Template

The interface of the connector template, called Modes, is depicted in Fig-
ure 10.1, and Table 10.1 details its elements. We structure its description accord-
ing to the Mode Switching pattern’s roles (see Section 3.4.3):

Role Interface Element
Name Type Data Type Role

Modes Provider
change req. out. boolean –
oldMode req. out. int –
newMode req. out. int –

Inputs Provider data out. multi. – –

Mode
c control par. – Strategy
d in. multi. – Strategy
outIn req. out. – ModeOutputs

Outputs Consumer outOut req. in. – ModeOutputs

Table 10.1: Interface Elements of the Modes Connector Template
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Modes Provider
The Modes Provider participant interfaces with the connector through three

required output ports: change, oldMode and newMode. The first one, of the
boolean type, indicates whether the current mode has just been changed; the sec-
ond and third ones, both of the integer type, input the old and the new modes,
respectively. One can see that change is true iff oldMode = newMode; however,
because composite connectors do not perform computation, which includes ex-
pression evaluation, our connector relies on an external component (the Modes
Provider) to perform the evaluation instead. Likewise, the actual determining
of the new mode is a function of the current mode and system inputs, and, as
computation, it has been delegated to an external component, communicating
through newMode.

Inputs Provider
The data inputs for the current Mode component are transferred through the

required output multiport data. This allows us to parametrise the input interface
of Mode components in the template, since particular data ports (and their types)
will be specified during the instantiation of the template.

Mode
The interface for Mode components comprises three interface elements: the

control parameter c, the required input multiport d and the required input port
outIn. c and d are responsible for delivering inputs to a Mode component: a
control signal for activation or deactivation through c and data inputs for the
active Mode component via d. d delivers a set of data flows fed to the connector
via the data multiport (i.e., data is the source multiport of d). Both c and d

are aggregated in a role, called Strategy, and can thus be multiplied during the
instantiation of Modes. The number of participants of the role should be set to
the number of Mode components (which equals the number of system modes), so
that each Mode component is connected to its own copy of c and d.

The required output port outIn collects outputs of the active Mode compo-
nent. It is aggregated (together with outOut) in another role, calledModeOutputs.
The number of the role’s participants should match the number of output data
ports of Mode components. Unlike Mode components’ inputs, their outputs are
collected by a set of required output ports shared by all Mode components. Be-
cause there is at most one active Mode component at a time, outputs’ order
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cannot be destroyed by this non-deterministic configuration (several component
output ports being connected to a single required port).

As a result, Mode components do not have to have the same interface: each
Mode component can select a subset of data flows transported by d and output
its results to a subset of the copies of outIn.1 Additionally, Mode components
can have other inputs and outputs, not dealt with by the Modes connector.

Outputs Consumer
The required input port outOut forms the interface for component(s) collecting

outputs of the active Mode component. As mentioned above, it is associated with
the ModeOutputs role and will be therefore copied during instantiation. The
number of copies will be equal to the size of the set union of all output data ports
of all Modes components. The data types of the copies of the port have to equal
the data types of the ports connected to the corresponding outIn port, which is
expressed by the template’s additional constraint sameTypeAs(outIn, outOut)
(see Section 8.2.1 for the definition of the sameTypeAs association).

10.1.2 Composition Structure

The composition structure of the Modes connector template realises the Mode
Switching pattern’s behaviour (Section 3.4). The composition structure of Modes
is hierarchical since the template reuses the Trigger-Strategy connector template
(Figure 8.5). Trigger-Strategy can be reused since the Modes ’s behaviour dealing
with redirecting inputs and sending control signals to Mode components bears
similarity with the behaviour of Trigger-Strategy. However, Trigger-Strategy can-
not be reused as is, it needs to be adapted to suit the context of the Modes
connector template. We adapt it by composition within another connector tem-
plate, called Activation-Strategy, which is in turn composed within the Modes
connector template.

Figure 10.2 shows the composition hierarchy of the Modes connector tem-
plate. In our description, we proceed in a top-down manner, starting with the
composition structure of the Modes connector template.

1Notice that, if we used multiports for collecting Mode components’ outputs, they could not
be shared by all Mode components but would have to be copied for each of them, making the
connector’s interface more complex.
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Figure 10.2: The Composition Hierarchy of the Modes Connector Template

Figure 10.3: The Modes Connector Template

The Modes Connector Template
The control flow part of the Modes connector template (Figure 10.3) switches

the currently active Mode component only if the current mode changes. That
is realised by the guard control connector at the top of the template’s control
hierarchy, connected to the change required port. If the mode change occurs, the
sequencer carries out the two activities comprising mode switching: firstly, the
selector connector chooses the Mode component corresponding to the old Mode
to be disabled; secondly, the Mode component corresponding to the new mode is
enabled.

The selector is instantiated as a design instance, associated with the Strategy
role (indicated by the star symbol). Consequently, its arity will be fixed at the
template’s instantiation time and set to the number of participants of the Strategy
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role, which equals the number of Mode components composed by the Modes
connector.

Enabling of the new Mode component is delegated to the design instance of
Activation-Strategy. As the selector, the Activation-Strategy instance is associ-
ated with the Strategy role. Its two interface elements associated with the role,
delegated to the interface level of the Modes template, are thus copied for each
Mode component. The control parameter c sends control to enable the Mode
component corresponding to the new mode.

FIFO data channels and data coordinators route the incoming decision data
(change, oldMode and newMode) to the control and data routing connectors.
Although the primary concern is to deliver the decision data to their targets, it is
also important to decide when the data should not be delivered. For instance, the
data guard ensures that the design selector only receives its data input if it is going
to be triggered by the sequencer (i.e., when change = true), and thus prevents
the selector from reading an old oldMode value that would have otherwise been
accumulated in the adjacent FIFO data channel during the execution cycles in
which change = false.

The Active-Strategy instance routes data flows – aggregated by multiports
– from the required output multiport data to the required input multiport d of
the active Mode component. The outputs of the active Mode component are
collected by the FIFO data channel transferring data from outIn to outOut. To
transfer each output of the Mode component, the channel will be duplicated
during instantiation as many times as the ports it connects.

The Activation-Strategy Connector Template
This template adapts Trigger-Strategy to the context of the Modes connector.

Trigger-Strategy coordinates a set of control-driven components: in every cycle,
it triggers one of them (selected by the value of the strategy required port) and
routes the data flows aggregated by the datamultiport to the selected component.
In the Modes connector template, Activation-Strategy is responsible for sending
the control signal to a control-switched data-driven component only if the mode
change occurs. However, since this is ensured by the top-level guard connector in
Modes, the control flow structure of Trigger-Strategy (Figure 8.5) can be reused
unchanged. Likewise, the routing of incoming data flows from data to d (of
the component selected by strategy) suits the aim of delivering inputs to the
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active Mode component in Modes. As a result, the interface elements of Trigger-
Strategy responsible for this routing behaviour (c, d and data) and the associated
Strategy role are directly delegated to the interface level of Activation-Strategy
(see Figure 10.4 and Table 10.2).

Figure 10.4: The Activation-Strategy Connector Template

Name Type Data Type Role
condition required output port boolean –
strategy required output port int –
data required output multiport – –
c control parameter – Strategy
d required input multiport – Strategy

Table 10.2: Interface Elements of the Activation-Strategy Connector Template

Trigger-Strategy is designed so that the decision data determining the se-
lected component should be passed to the required port strategy as many times
as the selected control-driven component is being triggered (typically, once per
execution cycle). This constraint must be fulfilled by every context into which
Trigger-Strategy is deployed. However, if we deployed Trigger-Strategy directly
into the context of the Modes connector template, the constraint would be vio-
lated: Trigger-Strategy would receive control signal only if the mode changes, but
the strategy selection data would come more frequently, even if the mode had not
changed. This would result in the strategy selection values being accumulated in
the buffer of the FIFO data channel within the Trigger-Strategy instance, and it
would lead to choosing the newly active Mode component based on old decision
data. To prevent this discrepancy in frequencies of incoming control signals and
the corresponding decision data, the data guard in Activation-Strategy only lets
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the decision data enter the Trigger-Strategy instance if the mode has changed
(condition = true).

On the other hand, the aggregated data flow from data must be delivered
to the active Mode component at all times, regardless of the coming control
signal. Consequently, the direct delegation between data and its counterpart in
Trigger-Strategy is correct. Note that deploying Conditional Trigger-Strategy
(Figure 8.6) instead of Activation-Strategy within Modes would be incorrect for
the same reason.

10.2 Climate Control System

In this section, we develop an example system to illustrate using the Modes con-
nector in a system development. The example system is a climate control system
for cars, which we adapted from the case study realised by Labbani et al. [69]

10.2.1 System Requirements

The climate control system is a reactive software system controlling the climate
in a car. It regulates the temperature in a car by controlling the speed of a venti-
lation fan and the input power (and indirectly the temperature) of a car heater.
The user operates the system through the control panel shown in Figure 10.5.
The panel contains three buttons (Mode, Up and Down) and two displays show-
ing two variables controlled by the system – the current value of the heater’s
input power (in %) and the current speed of the ventilation fan (in rotations per
minute).

Figure 10.5: The Climate Controller Device

Apart from the inputs from the control panel, the system also senses the
current temperature inside the car. Figure 10.6 gives an overview of all inputs
and outputs of the system. The system takes four inputs: three booleans for the
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control panel’s buttons (true when a corresponding button is pressed, false oth-
erwise), and an integer representing the actual temperature in the car measured
by a sensor. The system outputs two values: heater input power and ventila-
tion fan speed. The system is sent inputs periodically and produces outputs in
response, with the same frequency.

Figure 10.6: Inputs and Outputs of the Climate Control System

The system operates in one of three modes: Auto-Ventilation, Manual Tem-
perature and Manual Ventilation. Once started, the system enters the Auto-
Ventilation mode. The user changes modes cyclically in the order given by Fig-
ure 10.7 by pressing the Mode button. In each mode, the system’s strategy for
computing outputs and interpretation of inputs is different.

Figure 10.7: Modes of the Climate Control System

In the Manual Temperature mode, the system sets the input power of the
heater according to the value set by the user via the control panel (the Up and
Down buttons increase or decrease the set value by 1%, respectively) and keeps
it regardless of the real temperature in the car. In the Manual Ventilation mode,
the system only sets the ventilation fan’s speed (set by the user in rpm using
the Up and Down buttons). In the Auto-Ventilation mode, the system adjusts
both controlled variables automatically to achieve and maintain the user-set tem-
perature (set using the Up and Down buttons) inside the car – the higher the
difference between the set and actual temperatures, the higher the heater’s input
power and fan speed. The functionality of the system’s modes is summarised in
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Table 10.3.

Mode User sets System controls
Variable Range Heater Fan

Auto-Ventilation cabin temperature in ◦C [10, 30] 3 3

Manual Temperature heater input power in % [0, 100] 3 5

Manual Ventilation fan speed in rpm [0, 1000] 5 3

Table 10.3: Functionality of the Climate Control System’s Modes

10.2.2 System Design

From the system requirements given in Section 10.2.1, it is clear that the climate
control system is a reactive control system with multiple modes. We can therefore
apply the Mode Switching interaction pattern to separate its mode switching
logic from the computation carried out in different modes. In our component
model, this amounts to deploying the Modes connector template into the system’s
architecture.

The Modes connector creates the basic coordination structure of the climate
control system, into which we plug components that correspond to participants of
the Mode Switching interaction pattern (Section 3.4). To design the system archi-
tecture, we first design for each of the pattern’s participants their corresponding
representation in our component model. We then instantiate the Modes con-
nector template, connect it with the entities corresponding to participants and
finalise the system architecture.

We define the following components to act as the Mode Switching pattern’s
participants:

Inputs Provider A component that feeds the Modes connector (and the whole
system) with inputs can be represented in our component model as a source
component. We therefore create a new source component, named SOURCE,
with four output ports mode, up, down and carTemp, which correspond to
system inputs (see Table 10.4 for the interface details of the components
designed in this section).

Outputs Consumer Likewise, our component model provides sink components
for collection of system outputs. We create two sink components – TMP
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Component Port Name Port Type Data Type

SOURCE

mode output boolean
down output boolean
up output boolean

carTemp output integer

ModeChanger

change input boolean
currentMode input integer
outNewMode output integer

oldMode output integer

AutoVentilation

up input boolean
down input boolean

carTemperature input integer
tIn input integer
tOut output integer
rpm output integer
tmp output integer

ManualTemperature
ManualVentilation

up input boolean
down input boolean
value input integer
output output integer

TMP tmp input integer
RPM rpm input integer

Table 10.4: Component Interfaces in the Climate Control System

and RPM – to represent the Outputs Consumer participant, because the
system does not produce all its outputs in each mode. One sink component
for both outputs would only consume them if both were available, which
might result in some missing outputs at the end of system execution.

Modes Provider The component realising the Modes Provider participant pro-
vides the new and previous modes to the Modes connector. We implement
it as the data-driven component ModeChanger. It takes the current mode
and the information whether that mode is going to change (coming from the
Mode button), and it computes the two modes. The component (see Fig-
ure 10.8) basically implements the state transition diagram in Figure 10.7,
which defines the modes of the climate control system and transitions be-
tween the modes. ModeChanger is a state-less component, and will later
require the addition of a buffered data channel to keep the current mode
information.
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component ManualControl {
in up: boolean,
in down: boolean,
in value : int ,
out output: int
{

if (up) output = value + 1
else if (down) output = value − 1
else output = value

}
}

component ModeChanger {
in change: boolean,
in currentMode: int ,
out oldMode: int,
out outNewMode: int
{

outNewMode = if (change) {
(currentMode + 1) % 3

} else {
currentMode

}
oldMode = currentMode

}
}

component AutoVentilation {
in up: boolean,
in down: boolean,
in carTemperature: int ,
in tIn : int ,
out rpm: int ,
out tOut: int ,
out tmp: int
{

if (up) tOut = tIn + 1
else if (down) tOut = tIn − 1
else tOut = tIn

if (carTemperature < tOut) {
rpm = 1000
tmp = 100

} else {
rpm = 0
tmp = 0

}
}

}

Figure 10.8: Definition of Components in the Climate Control System

Mode The system functionality in each mode is realised as a control-switched
data-driven component of the same name. The AutoVentilation component
is the most complex one: firstly, it keeps the user-set cabin temperature and
updates it when the Up or Down button is pressed; secondly, it computes the
heater input power tmp and fan speed rpm from the user-set temperature
and the current cabin temperature carTemperature. The other two modes
are realised by two instances (ManualTemperature and ManualVentilation) of
the ManualControl component. They compute the new value of the variable
they control, based on its old value and the state of the Up and Down
buttons. All components are implemented as stateless (see Figure 10.8),
i.e., without internal variables, and thus will have to have NDR-1 data
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channels added to some of their ports to keep the values of their controlled
variables.

To instantiate the Modes connector template, we need to specify its instanti-
ation information. It comprises the specification of the participants of the roles
ModeOutput and Strategy, defined by the pattern. The ModeOutput role should
be instantiated for every output data flow produced by Mode components. In
the climate control system, the Mode component produces two such outputs, the
heater temperature and fan speed. Consequently, we can instantiate this role
using two participants; because the role does not define any role data, the instan-
tiation information for this role is complete. The Strategy role is instantiated
using three participants: one for each system mode. Figure 10.9 shows the Mode
connector instance as well as all participants. Some of the required ports of the
instance, such as outIn and outOut, have been renamed to suit the context of
the climate control system.

Figure 10.9: The Modes Connector Instance in the Climate Control System

The next step is to connect the interface elements of the Modes connector
instance to the data ports of the components we have defined earlier. Here, the
only interesting aspect is choosing which data ports should be aggregated by
the data multiport. The general guidance is that it should be the data ports
providing inputs to the Mode components. In the climate control system, these
are at least the up and down ports of SOURCE, which are inputs to all three
Mode components. However, we might also aggregate the data flow coming from
carTemp, although only AutoVentilation consumes it. Ultimately, the choice is
the responsibility of the designer.
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Finally, the climate control system architecture (Figure 10.10 shows its graph-
ical representation exported from our prototype tool) can be completed by adding
the remaining data and control connectors. For the reader’s convenience, the ad-
ditions are numbered from 1© to 7© and are tagged in Figure 10.10. Note that
the graphical syntax in the tool slightly differs from the symbols introduced for
component model elements earlier in the thesis; Figure 10.11 shows the meaning
of individual symbols used in Figure 10.10.

Figure 10.11: Key to the Graphical Syntax of the Prototype Tool

ModeChanger needs to be fed its inputs by data channels: a FIFO for the
change input port 1©, and an NDR-1 channel for the currentMode input port
2©. The NDR-1 channel realises a common design pattern in our model. It
connects a component’s output port to its input port, and thus stores the result
of the last component’s execution to be fed as an input to the next component
execution – it effectively adds state to a state-less component. The channel has
to be initialised, so that there is a valid initial state. Thus, channel 2© has the
default value of 0, denoting the Auto-Ventilation mode. Likewise, NDR-1 data
channels 3©, 4© and 5© follow the same pattern: channel 3© keeps the internal
car temperature, channel 4© keeps the heater’s input power and channel 5© keeps
the ventilation fan speed.

AutoVentilation gets the current car temperature from SOURCE via the FIFO-1
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channel 6©. The channel with capacity one was chosen so that AutoVentilation
always processes the most up-to-date value coming from the source (old values
cannot accumulate in the buffer when the system operates in one of the other
two modes).

Lastly, the Loop control connector 7© has been added to the top of the control
connector hierarchy and connected to the Modes connector instance to realise
the system’s looping behaviour. To complete the architecture description of the
climate control system, Table 10.5 summarises the initial state of the stateful
component model entities comprising the system.

Entity State Value
NDR-1 channel 2© Initial mode 0
NDR-1 channel 3© Initial car temperature 20
NDR-1 channel 4© Initial heater temperature 0
NDR-1 channel 5© Initial fan speed 0
AutoVentilation Execution State Enabled
ManualTemperature Execution State Disabled
ManualVentilation Execution State Disabled

Table 10.5: Initial States of the Climate Control System’s Entities

10.2.3 System Validation

To validate the behaviour of a system designed in our prototype tool, users can
compare the expected system behaviour to the behaviour simulated according to
the execution semantics of our component model. In this section, we test the be-
haviour of the climate control system, constructed in the previous section, against
the expected behaviour of a particular test scenario: we create the scenario, pre-
pare the necessary inputs to the simulator and compare the simulated results for
the scenario with the expected ones.

To test the climate control system’s behaviour thoroughly, we design the test
scenario that covers the functionality of the system in all its modes. Essentially,
we need to list system inputs and corresponding system outputs for several reac-
tive cycles. The inputs comprise the state of the Up, Down and Mode buttons
and readings from the sensor measuring the temperature of the car’s cabin; the
outputs are the heater’s input power and ventilation fan speed.
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Inputs Internal States Outputs
mode up down carTemp newMode t1 t2 s rpm tmp

False False True 10 AV 19 0 0 1000 100
False False True 11 AV 18 0 0 1000 100
True False False 12 MT 18 0 0 – 0
False True False 13 MT 18 1 0 – 1
True False False 14 MV 18 1 0 0 –
False True False 15 MV 18 1 1 1 –
False True False 16 MV 18 1 2 2 –
True False False 17 AV 18 1 2 1000 100
False False False 18 AV 18 1 2 0 0
False False False 19 AV 18 1 2 0 0

Table 10.6: A Test Scenario for the Climate Control System

In this test scenario, we model the following sequence of button presses (one
per cycle): Down→ Down→Mode→ Up→Mode→ Up→ Up→Mode, and
increasing values of the sensor measurements (starting at 10◦C). Additionally,
we include input data for two more cycles in which no buttons are pressed but
the internal temperature changes. Table 10.6 shows the expected outputs of the
climate control system for these inputs together with some internal states to help
explain the output values. Each row corresponds to one execution cycle. The
values in the Inputs column are data produced by SOURCE (hence the names).
The Internal States column contains the current mode newMode, the user-set
temperature of the car’s cabin t1, the user-set input power to the heater t2 (in
%) and the user-set fan speed s. The values in the Outputs column show the
expected system outputs.

The simulator simulates the behaviour of a given system, based on the sys-
tem’s architecture and simulator configuration. The configuration comprises
(i) the initial states of stateful entities from the system’s architecture, (ii) the
association of source and sink components with the files that the simulator uses
for feeding inputs to and collecting outputs from the system, and (iii) the contents
of the input files themselves.

The simulator produces three kinds of outputs: (i) it saves system outputs in
the output files specified in the simulator configuration, (ii) it produces system
execution trace for debugging purposes, and (iii) it displays a graphical window
summarising the results of the simulation in terms of inputs and outputs.
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Having created the input files corresponding to the test scenario defined in
Table 10.6, we executed the simulation and got the summary with simulation re-
sults shown in Figure 10.12. Comparing the simulation results with the expected
results (Table 10.6), we see that the system has produced the expected results,
and we can therefore conclude that the system behaves correctly in this particular
test scenario.

Figure 10.12: Outputs of the Simulation
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Discussion

In this chapter, we compare our approach with several strands of related ap-
proaches, and we give the overall evaluation of the conducted research against
the research goals stated in Chapter 1.

In Section 11.1, we evaluate the benefits and drawbacks of the connector
representation of interaction patterns in our approach with their component rep-
resentations in current component models. In particular, we focus on component-
based approaches in the reactive control system domain, the domain of our case
study.

Composite connectors in our component model represent certain coordina-
tion behaviour; they thus form a coordination language. In Section 11.2, we
compare composite connectors with relevant coordination languages to establish
their unique characteristics.

Our approach aims to make some design patterns (interaction patterns) first-
class artefacts in design and implementation, with a first-class architectural repre-
sentation and well-defined behaviour. Section 11.3 analyses a number of existing
approaches in a wider context of software engineering that also formalise design
pattern solutions.

Finally, Section 11.4 gives an overall evaluation of the research conducted
in this thesis with respect to our initial research goals. We also discuss the
limitations of our approach.

214
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11.1 Interaction Patterns in Component Models

In this section, we assess the benefits and drawbacks of the connector represen-
tation of interaction patterns in our approach by comparison with alternative
interaction pattern representations in other component models.

To evaluate the selected component models, we have designed a system archi-
tecture for our case study, the climate control system (see Section 10.2), in each
component model and examined how the Mode Switching interaction pattern can
be represented there. The resulting architectures are shown in Appendix D.

Due to the focus of our case study, we have mostly selected component mod-
els used in the domain of control systems. In particular, we have chosen Pro-
Com, Scade, Simulink and UML 2.0. UML 2.0 is not domain-specific but it
has been included to represent a large group of control-driven component models
with operation-based component interfaces using the request-response interaction
style. Despite the limited scope, the comparison still covers various component
model characteristics, as identified in the initial survey of existing component
models in Section 5.3.1.1

In Sections 11.1.1-11.1.4, we discuss the interaction pattern representation in
the compared component models. Section 11.1.5 summarises our findings.

11.1.1 ProCom

ProCom (see Section 4.6.2) has connectors that can model the routing behaviour
of interaction patterns in terms of control flow and data flow as our model.
However, because ProCom lacks support for composite connectors, interaction-
defining connections and connectors have to be composed within composite com-
ponents together with other subcomponents (as Figure D.1 shows). Therefore,
interaction patterns cannot be represented in ProCom as first-class entities dis-
tinct from components.

In some cases, the behaviour of an interaction pattern can be represented by a
composite component comprised of connectors only [25]. For example, Figure 11.1
shows two such composite components. In our case study, the component in Fig-
ure 11.1a could trigger the component corresponding to the current mode and

1Component-based approaches based on the exogenous coordination mechanism are dis-
cussed in Section 11.2.
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route input data to Mode components; the component in Figure 11.1b could col-
lect Mode components’ outputs. The two components could be further combined
to form one composite component by being exposed as independent services of
the composite.

(a) Distributing Control and Data Inputs (b) Collecting Outputs

Figure 11.1: ProCom Components Encapsulating Connectors Only

However, in general it is not possible to aggregate any interaction pattern
within a ProCom composite component. This is caused (i) by ProSave’s inabil-
ity to compose control sequencing behaviour, and (ii) by the strict execution
semantics of ProSave components.

ProSave expresses control sequencing by means of its control connection. If
two components are to be triggered sequentially, the output trigger port of the
first component must be connected to the input trigger port of the second com-
ponent. Sequencing of three components has to be expressed by two connections,
as shown in Figure 11.2a. This makes it impossible to fully encapsulate sequenc-
ing within a composite component – the coordinated components would always
have to have their output trigger port connected to the right port of the coor-
dinating composite component. By contrast, control sequencing in our model
can be fully encapsulated within a composite connector by means of a sequencer
(Figure 11.2b).

(a) ProCom (b) Our Model

Figure 11.2: Comparison of Control Sequencing
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Services of ProSave components execute atomically, according to the read-
execute-write semantics. Once a service’s input trigger port receives a control
signal, the service’s input data ports are read, the service executes and, once
the execution has finished, the results are written to output data ports and a
control signal appears at the service’s output trigger port. Such semantics is
unsuitable for interaction patterns that involve waiting of some kind (e.g., an
interaction pattern representing a dialogue, a two-way exchange of data between
two components) – atomic execution of ProSave component rules out any waiting
during a service invocation.

Consequently, some interaction patterns have to be represented in ProCom as
composite components that mix coordination (connectors and connections) with
computation (subcomponents), which negatively impacts their reuse.

11.1.2 Scade

Because Scade (see Section 4.6.3) has no connectors, interaction patterns have
to be represented as components. Interaction patterns can be represented either
using Scade’s state machines or by combination of data connections and data
routing components (see Appendix D.2 for examples of both).

State machines in Scade are syntactic sugar: their behaviour can be defined
by several if-else statements or by manipulating clocks of their states’ output
flows [34]. Their observable behaviour therefore corresponds to that of an or-
dinary Scade component. They are often used in top-down hierarchical system
design, in which states are identified first and refined later.

A state machine can represent an interaction pattern’s instance: its states
represent computations and state transitions represent the control flow aspect
of interaction (the data flow aspect is represented by data connections). Such a
representation of patterns precludes separate reuse of patterns’ interaction parts,
because they cannot be separated from the definition of computation in states
and thus cannot exist as stand-alone entities.

However, Scade can separate the definition of interaction and computation
since it is, like ProCom, based on the pipe-and-filter interaction style. The ben-
efits of such separation for Scade designs have been noted by Labbani et al. [69]

In this approach, interaction patterns are represented by data connections and
data routing components. Still, patterns cannot be reused, because their elements
cannot be composed into entities that could exist and be reused in their own right.
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Furthermore, because control flow cannot be modelled explicitly, Scade lacks the
expressiveness required for rich interaction modelling.

11.1.3 Simulink

The Simulink (see Section 4.6.4) representation of interaction patterns is similar to
that of Scade: an interaction pattern corresponds to a number of data connections
and data-routing Simulink blocks. However, Simulink can express more complex
interactions than Scade due to its richer palette of modelling constructs. For
example, it can mimic control flow by means of so-called triggered and enabled
subsystems (Appendix D.3 gives some examples of these).

Although Simulink’s features that mimic control flow increase the expressive-
ness of interaction pattern modelling, it still cannot be considered as full-fledged
control flow modelling support. Semantically, all inter-component connections
represent data flow. The fact that some blocks interpret some inputs as ‘con-
trol signals’, which enable or trigger outputs’ production, does not prevent other
blocks from interpreting the same signal as data. Simulink has no special type
for control flow. In fact, the data type specification of data flows in Simulink is
optional. On the one hand, this gives certain flexibility to Simulink designs; on
the other hand, run-time type errors may occur.

Additionally, Simulink has some features that simplify data flow modelling.
It supports vector signals, which comprise the tuples of values of the same scalar
type. Signals can be also composed using special blocks (called bus creators and
muxes) into composite signals to simplify the graphical data flow models (so that
one line represents multiple data flows) or to create hierarchical data structures.
Composite signals have to be decomposed to the constituent primitive signals
before they can be connected to a block.2

11.1.4 UML 2.0

Since the UML 2.0’s connector set is fixed and not composable, interaction pat-
terns can only be represented as components.

UML 2.0 lacks the ability to model interaction in terms of control flow and
data flow directly in the architecture diagram. The assembly connectors only

2Several selected Simulink blocks, such as Memory, are exempt from this rule.
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signify the fact that some of the services from the provided interface of one com-
ponent (callee) are used to implement some services from the provided interface
of the other component (caller) via the connected required port. However, the in-
teraction is fully defined within the code of the caller component, never explicitly
in the architecture diagram. The only information related to the inter-component
communication, apart from implementation, is the interface signatures associated
with component ports, which partially specify data flow in terms of data param-
eters and return values of all the interface services. Nevertheless, this does not
define data flow fully as it cannot be discerned which services from the interface
specification are actually called and in what order. Control flow definition is
missing completely.

Because the exact behaviour of an interaction pattern is defined in the im-
plementation of a component that coordinates other components, the component
pattern representation has dependencies on particular interfaces of coordinated
components. In general, this may negatively impact reuse, since it is not just the
data types of incoming and outgoing data but also the names of operations, the
order of their parameters and interface names, which must match in order for the
pattern to be reusable.

11.1.5 Summary

None of the compared component models is able to represent interaction patterns
as first-class component model entities different from components. Consequently,
interaction patterns need to be represented as components, indistinguishable from
any other computation in system architecture. In this section, we summarise
our findings on component representations of interaction patterns among the
compared component models. In particularly, we focus on their expressiveness
and reuse potential.

Expressiveness of Component Representations of Interaction Patterns
The expressiveness of a particular representation of interaction patterns de-

pends on (i) whether it supports explicit modelling of control flow and data flow,
(ii) the execution semantics of the underlying component model, and (iii) whether
the representation is compositional in nature. Table 11.1 summarises the relevant
characteristics of the compared component models.
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Component
Model

Control
Flow

Data
Flow

Execution
Semantics

Compositional
Representation

ProCom 3 3 control-driven 5

Scade 5 3 data-driven 3

Simulink partially 3 data-driven 3

UML 2.0 5 5 control-driven 5

Our approach 3 3
control-driven
and data-driven 3

Table 11.1: Expressiveness of Interaction Pattern Representations

The ability to model control flow and data flow explicitly increases the ex-
pressiveness of an interaction pattern representation. In UML 2.0, which lacks
explicit control flow and data flow modelling, interaction patterns end up being
absent from the system architecture, largely defined in the implementation of
atomic components. Although both Simulink and Scade do not model control
flow, Simulink has more expressive power compared to Scade, because some of
its blocks (e.g., enabled and triggered subsystems) mimic control flow modelling.
ProCom and our approach model both flows explicitly.

The execution semantics of a component model also affects the expressiveness
of its interaction pattern representation. Data-driven models, such as Scade, can-
not model control flow explicitly. A more subtle example of this is ProCom, which
is control-driven but models both flows; however, since the only component execu-
tion mechanism is triggering, it cannot express more complex interaction patterns
involving disabling/enabling components as faithfully as our model. Likewise, al-
though some Simulink blocks have a ‘control port’, control flow does not have a
first-class modelling status in Simulink: it cannot be distinguished in architec-
ture from data flow, and blocks can freely interpret ‘control values’ as data and
can read and change the data without any restrictions. That is, Simulink is not
expressive enough because of its data flow only nature. In general, the richer
execution semantics of a component model (such as the hybrid control- and data-
driven semantics in our model), the more expressive pattern representation the
model supports.

Another important characteristic of an interaction pattern representation is
whether it is compositional. Compositional representations, in which complex
patterns are defined as composition of simpler patterns, allow us to define pat-
terns explicitly in software architecture. Furthermore, compositional pattern
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representations help to tackle the complexity of pattern definitions by making
them hierarchical. Ultimately, compositional patterns are decomposed into basic
building blocks that are simple, and thus easy to understand, pieces of behaviour
defined implicitly at the component model level.

In our comparison, Scade and Simulink allow interaction patterns to be rep-
resented compositionally (albeit as components), as does our model. ProCom’s
representation is not fully compositional, because its atomic components, which
can be part of a composite component representing an interaction pattern, are
defined in code; on the other hand, its connectors can be composed to form more
complex flows. Interaction patterns in UML 2.0 are entirely defined in the im-
plementation of atomic components since composite components delegate their
functionality to subcomponents; consequently, interaction patterns are hidden
from architecture.

Reusability of Component Representations of Interaction Patterns
Reuse of most component representations of interaction patterns is limited,

compared to our approach. ProCom has to represent some interaction patterns
as composite components with subcomponents that define specific (and thus
non-reusable) participant behaviour. Likewise, patterns represented as Scade
state machines cannot be reused, because all components defining participant
behaviour are inseparable from the state machine definition. UML 2.0 compo-
nents representing patterns have unnecessary dependencies on the exact interface
signature (names of operations, interfaces and the order of operation parameters),
compared to port-based approaches (including ours).

Apart from dependencies, the variability of pattern representations is another
factor that impacts their reuse potential. In general, component representations
offer less variability than our composite connectors, thereby lowering reusability.

To assess the variability of different interaction pattern representations, we
examine the following variability aspects: (i) independence of interface defini-
tions on specific types, (ii) the ability to abstract multiple data flows into one in
the pattern definition, and (iii) support for structural variability. Our approach
addresses all of them (see Section 8.2): the sameTypeAs relation abstracts from
specific types, multiports allow aggregating multiple data flows, and the mecha-
nism of roles gives us some structural variability.
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Component
Model

Generic
Types

Flow
Aggregation

Variable
Structure

ProCom 5 5 5

Scade 3 3 5

Simulink 3 3 3

UML 2.0 3 3 5

Our approach 3 3 3

Table 11.2: Variability of Connector Representations

Table 11.2 summarises the variability of connector representations in all com-
pared component models. ProCom components lack any variability support.
Most models allow component interfaces to be abstracted from specific types:
UML 2.0 operations can contain type parameters, Scade supports so-called poly-
morphic nodes that use type parameters in their interface definitions, and Simulink
subsystem ports can inherit their type from the subsystem’s parameter or from
the type of connected data flow.

In our approach, the type system only defines primitive data types, and we use
multiports to abstract multiple data flows of primitive values into an aggregate
data flow. Alternatively, a type system with composite data types and type
parameters that can be set to these types achieves a similar result. UML 2.0,
Scade and Simulink take this alternative approach. UML 2.0 can define composite
data types (e.g., classes containing several attributes of primitive types), Scade
and Simulink support arrays and structured types (called buses in Simulink).

Finally, the only model – except for our model – supporting any form of
structural variability in our comparison is Simulink. It features a special sub-
system, called Variant Subsystem, whose interface is associated with multiple
implementations. It also contains a mechanism that maps combination of values
of certain model parameters (called control variables) to these implementations.
The behaviour of a variant subsystem is fixed before simulation: only the vari-
ant subsystem implementation that corresponds to the values of control variables
in that system is used for simulation. Unlike our approach, each variant imple-
mentation has to be created manually. Therefore, our approach scales better if
pattern variants can be defined using the role mechanism (and thus generated
automatically).
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11.2 Exogenous Coordination Languages

Composite connectors in our model effectively define a coordination language that
controls the execution of computation encapsulated in components. It therefore
seems meaningful to compare our approach with other coordination languages
used in component-based software development.

Coordination languages are based on the distinction of computation and co-
ordination as two orthogonal aspects of system behaviour [47] (see Section 3.1).
They can be classified into endogenous and exogenous [4] (see Section 4.4.4). In
this section, we only discuss exogenous coordination languages, which allow the
existence of separate coordinating entities and are thus able to represent interac-
tion patterns.

Coordination languages are further categorised as data-oriented or control-
oriented [93]. Data-oriented approaches coordinate entities by means of shared
data space or by controlling their mutual data exchanges (these are sometimes
called dataflow-oriented [6]). Control-oriented approaches focus on coordinating
the flow of control between entities.

In our comparison, we include at least one model used in component-based
software development from both categories. As representatives of control-oriented
coordination languages, we have chosen the X-MAN component model and WS-
BPEL, a language for web service orchestration. As a representative of data-
oriented coordination languages, we have chosen Reo. In our comparison, we
focus on the abilities of compared coordination languages to represent interaction
patterns. Because some of the languages in this category are not full-fledged
component models (Reo, in particular), we do not compare them based on their
implementation of our case study; instead, we analyse their properties through
small illustrative examples.

In Sections 11.2.1, 11.2.2 and 11.2.3, we analyse X-MAN, WS-BPEL and Reo,
respectively. Section 11.2.4 summarises our findings.

11.2.1 X-MAN

In X-MAN [74] (see Section 4.6.5), one can define solutions of some design pat-
terns as composite connectors with constraints [70].
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Example
For illustration, we show the definition of the Observer pattern in X-MAN

(see Figure 11.3). Since X-MAN connectors coordinate components in terms of
control flow, the composite connector realising the Observer pattern focuses on
the control coordination aspect of the pattern’s solution. The composite connec-
tor (the rounded rectangle in the figure) comprises two connectors, a pipe and a
cobegin, and is able to compose three components, be means of its parameters:
one represents the subject role in the pattern (denoted S in the figure) and the
other two represent observers (O1 and O2). The connector first invokes S, collects
its output and delivers it to O1 and O2 (the behaviour defined by the pipe); the
observers are then concurrently invoked (by the cobegin connector)to process the
data coming from S.

Figure 11.3: A Connector Representation of Observer in X-MAN

The pattern representation in X-MAN also contains additional constraints,
specified in an OCL-like language. The constraint specification consists of a pre-
condition, which has to be fulfilled by components before they can be composed
by the composite connector, and a postcondition, which specifies some properties
of the resulting composition. For the Observer pattern, the constraint is shown in
Figure 11.4. The precondition (lines 1-5) requires that the subject (S) has some
operations in its interface which return some outputs and that the two observers
contain operations that can take these outputs as part of their input parame-
ters. The postcondition (lines 7-10) specifies the flow of data from S to input
parameters of operations of the two observers (only the case of O1 is shown).

Analysis
Compared to our approach, X-MAN composite connectors do not explicitly

model data flow and are thus less expressive. Although the constraints, which
also form part of the pattern definition, can define some elements of data flow (as
shown in Figure 11.4), they cannot define the routing of input and output data
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1 −− precondition :
2 let M, M1: Set(Method)
3 M1 = S.methods(all)−>select(m:Method | m.Post implies (length(m.output) > 0))
4 M = M1−>select (m1:Method | O1.methods−>exists (m2:Method |

m2.input−>includes(m1.output)) and O2.methods−>exists(m3:Method |
m3.input−>includes(m1.output))

5 M−>size() >0
6
7 −− postcondition (the part for O2 is analogous and was omitted )
8 let pos: Integer
9 pos = O1.methods(invoke).input−>indexOf(S.methods(invoke).output)

10 O1.methods(invoke).input(pos .. (pos + length(S.methods(invoke).output))) . value =
S.methods(invoke).output.value

Figure 11.4: The Observer Connector Constraint

fully. The reason is that, unlike our approach, composite connector interfaces
are not typed and the interfaces of composed components are therefore unknown
when the connector is defined. Furthermore, the constraint language has not
been defined fully, and its semantics is thus unclear. Another advantage of our
approach in pattern modelling is its ability to model control flow and data flow
independently due to its control-driven and data-driven execution semantics. Fi-
nally, X-MAN connectors have fixed structure, which negatively impacts their
reuse potential.

11.2.2 WS-BPEL

WS-BPEL [61] (see Section 4.6.6) can represent interaction patterns by means of
WS-BPEL processes.

A WS-BPEL process coordinates several web services by means of a work-
flow and exports the resulting functionality as new composite web services. The
specification of a process is an XML document comprising (i) the definition of
so-called partner links to WSDL interfaces of the coordinated web services and
of the new composite services, (ii) the declaration of variables, (iii) the speci-
fication of the main process workflow and, optionally, (iv) the specification of
asynchronous event handlers.

Example
The following code shows an abridged specification of an example WS-BPEL

process that coordinates two web services:
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1 <process name="BuyRecommendedProduct" ... >
2 <partnerLinks>
3 <partnerLink name="client" ... />
4 <partnerLink name="recommenderService" ... />
5 <partnerLink name="shoppingService" ... />
6 </partnerLinks>
7 <variables>
8 <variable name="RecommenderResponse" messageType=.../>
9 <variable name="ShoppingRequest" messageType=.../>
10 <variable name="ClientId" messageType=.../>
11 </variables>
12 <sequence>
13 <receive partnerLink="client" ... operation="buyRecommendedProduct"

variable="ClientId" createInstance="yes"/>
14 <invoke partnerLink="recommenderService" ... operation="recommendProduct"

outputVariable="RecommenderResponse" />
15 <assign><copy>
16 <from>bpel:doXslTransform(’Tx.xsl’, $RecommenderResponse, $ClientId)</from>
17 <to variable="ShoppingRequest"/>
18 </copy></assign>
19 <invoke partnerLink="shoppingService" ... operation="buy"

inputVariable="ShoppingRequest"/>
20 <reply partnerLink="client" partnerLink="client" ...

operation="buyRecommendedProduct"/>
21 </sequence>
22 </process>

The process, called BuyRecommendedProduct, sequences invocations to a prod-
uct recommendation service and a product shopping service to yield a composite
web service that buys a currently recommended product for the client. It defines
three partner links (two for the coordinated web services and one for the inter-
face of the composite service; lines 2-6), three variables for manipulating services’
inputs and outputs (lines 7-11) and the main workflow (lines 12-21).

The workflow is defined by control flow constructs composing built-in WS-
BPEL activities. Thus, WS-BPEL is a control-oriented coordination language.
The example shows a sequence activity that executes nested activities in sequence.
The workflow starts when a client invokes the buyRecommendedProduct operation
from the composite web service’s interface (line 13). It follows by invoking the
product recommendation service’s operation recommendProduct (line 14). The
output of the service is then transformed using an XSL transformation to the



11.2. EXOGENOUS COORDINATION LANGUAGES 227

input for the shopping service (lines 15-18), which is invoked subsequently (line
19). The workflow ends by the reply activity (line 20), which terminates the
processing of the client’s original request.3

Analysis
The repertoire of control flow constructs in WS-BPEL is richer than in our

model. In addition to sequencing, branching and looping, concurrent execution
of activities is supported.

Data flow is modelled differently than in our approach. WS-BPEL models
data flow indirectly by assignments to mutable variables. Variables can store
inputs and outputs of web service invocations; the receive and invoke activities
receive them from or send them to web services, respectively. The variables
declared directly within the process element are globally accessible within the
process, which makes it challenging to avoid race conditions during simultaneous
updates of their values by concurrently running activities. On the other hand, in
our approach, data flow is modelled directly by data channels and is more akin
to the functional programming style in nature since it avoids global, mutable
variables; instead, data channels move immutable values locally between channel
ends.

Another difference between WS-BPEL and our approach lies in the level of
separation of computation and interaction. While composite connectors in our
model define data flow and control flow only, WS-BPEL processes can contain
some computation. The previous example contains the call to an XSL transfor-
mation (line 16) to compute a new value of the variable ShoppingRequest from
the output of the recommendation service, stored in the RecommenderResponse
variable.

Compared to our approach, WS-BPEL processes have smaller potential to
be reused as stand-alone interaction patterns. Firstly, like other operation-based
approaches, they depend on operation names and exact data types of all inputs
and outputs. Secondly, unlike our connectors, they cannot be directly composed;
there is no concept of composition of WS-BPEL processes. They can only be
composed indirectly via the web services they define, but this, e.g., precludes
using a repository of WS-BPEL processes to create a new process.

3The example contains no asynchronous event handlers – activities triggered by an occur-
rence of some event. Here, we only focus on coordination imposed by the main workflow.
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Other Workflow Modelling Languages
As its name suggests, WS-BPEL orchestrates web services to model and execute

business processes. It therefore belongs to a wider family of so-called workflow
modelling languages. Here, we briefly mention this related area. However, full
comparison with these approaches is out of the scope of this thesis.

A workflow is an automation of a business process [59]; it defines a set of
activities that various participants carry out and information that participants
exchange in order to contribute to some business goal. In general, workflows can
describe more than software systems, because some workflow activities may be
carried out by humans, and thus go beyond pure computation.

The two main application domains of workflow modelling are business pro-
cess modelling, from which workflow originated, and scientific workflow mod-
elling. WS-BPEL is the de facto standard in business process modelling4 [11];
other languages, such as YAWL [1], have smaller industrial acceptance. Scientific
workflow systems, such as Taverna [89] and Kepler [78], are used for the modelling
and execution of computationally expensive experiments.

11.2.3 Reo

Reo [5, 6] (see Section 4.6.7) can represent interaction patterns by means of Reo
connectors.

As mentioned in Section 4.6.7, Reo connectors consist of data channels com-
posed by means of nodes. Nodes join several channel ends and actively move data
among the connected channels while they can. A node connecting non-empty sets
of sink ends I and source ends O non-deterministically chooses a datum from a
data channel whose end lies in I and copies the datum to all of the channels
whose ends are in O, but only if all the receiving channels can accept the datum.
Nodes that have either I or O empty read data from or write data to outside of
the connector in which they are defined; they therefore form connector interfaces.

Examples
Figure 11.5 shows two example Reo connectors. The connector in Figure 11.5a

comprises only one synchronous data channel and two nodes (a and b), which
form the interface of the connector. A synchronous channel has a sink and source

4There exists a WS-BPEL extension for coordinating human activities to help model general
workflows [66].
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ends and no internal buffer; it forces a writer and a reader of the channel to
synchronise (i.e., to wait until both are ready) in order to exchange a datum.
The node a passes data from the writer (other connector or component) to the
channel; the node b passes data from the channel to the reader. Nodes propagate
synchronisation constraints of their adjacent channels.

(a) One-Channel Connector (b) Ternary Sequencer

Figure 11.5: Examples of Reo Connectors

Figure 11.5b shows a less trivial Reo connector that enforces the sequencing
behaviour among entities connected via its three interface nodes (a, b and c). The
connector comprises seven nodes, four synchronous channels and three FIFO-1
channels. A FIFO-1 channel has the buffer of the size one; reads of a full channel
and writes to an empty channel are executed immediately, whilst reads of an
empty channel and writes to a full channel result in blocking (i.e., waiting for
the channel’s buffer to change). The left-most FIFO-1 channel is initialised with
the datum o. The connector coordinates the three connected entities by having
them read the datum o in sequence. First, only the inner node e can perform
some activity, because its connected sink end belongs to a channel that contains
data. The node e can take o and copy it to the two channels, whose source
ends are connected to e, only if both channels can be written to. The FIFO-
1 channel connecting e and f can accept a datum since it is empty. However,
the synchronous channel connecting e and a can only be written to if the entity
connected to a is ready to read the written value. The node e thus has to wait
until that happens before it can act. After the entity connected to a becomes
ready, e atomically removes the datum o from the FIFO-1 and copies it to both
writeable adjacent channels. The situation then repeats for the node f, which
ensures that the entity connected to b is sent o second. The node g then has to
wait for two synchronous channels (going to c and d) to become writeable before
it copies o to the entity connected to c and back to the left-most FIFO-1 channel.
After that, the connector re-enters the state depicted in Figure 11.5b.



230 CHAPTER 11. DISCUSSION

Analysis
The examples illustrate what assumptions Reo makes about component be-

haviour: (i) coordinated components are active (e.g., have their own thread of
control) and (ii) they call operations on connectors’ interface nodes, which is how
their execution is coordinated. For example, after the component connected to
the node a of the connector in the Figure 11.5a issues the writing operation, it will
be blocked until the component connected to the node b issues the corresponding
reading operation.

The Reo’s assumption of active components contrasts with the assumption of
passive components in our model. This has significant consequences on how con-
nectors – and thus representations of interaction patterns – in both approaches
differ. Reo connectors model data flow and enforce waiting between active com-
ponents via synchronisation constraints. Connectors in our approach model data
flow and control flow, which trigger execution of passive components. As a re-
sult, the two approaches take opposing strategies for component coordination:
whereas Reo coordinates components by blocking their active execution in some
order, our model coordinates components by triggering their execution in some
order (from their default, passive state).

This explains the lack of synchronous data channels in our model (conversely,
Reo defines more kinds of data channels than our model since Reo’s data channels
can be synchronous and have both channel ends of one type). Synchronisation
constraints, enforced by synchronous data channels in Reo, are dealt with in
our model (i) by control flow constructs (e.g., sequencing), (ii) by component
execution semantics (e.g., waiting for all inputs before a data-driven component
can be executed), and (iii) by global synchronisation rules (e.g., a control-driven
component needs to wait for all inputs computable in the current execution cycle
before it can skip triggering).

Finally, Reo’s focus on composition of active components results in control
flow being hidden inside components (which are not specified in Reo). On the
other hand, our approach can model all control flow in a system explicitly, because
it relies on passive components and because it is a full-fledged component model.
This gives us more opportunities for interaction pattern modelling.
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11.2.4 Summary

In this section, we summarise the results of comparison of our approach with other
coordination languages used in component-based software development. We focus
on expressiveness and reusability of various interaction pattern representations.

Expressiveness
Although all of the examined coordination languages are exogenous, and thus

able to separate computation and interaction, their ability to define interaction
patterns varies. The most distinguishing characteristic of our approach, compared
to other coordination languages, is the equal emphasis on control flow and data
flow modelling, enabled by the underlying control-driven and data-driven execu-
tion semantics. Compared to control-oriented coordination languages, data flow
is modelled explicitly and directly using data channels, rather than implicitly in
X-MAN or indirectly via re-writing shared variables in WS-BPEL. Compared to
data-oriented languages, represented here by Reo, control flow is explicit, rather
than hidden inside active components whose data exchanges are coordinated by
Reo connectors.

X-MAN’s composite connectors can define the control flow aspect of interac-
tion patterns, but they lack expressiveness due to their inability to define data
flow completely.

WS-BPEL has more control flow constructs than our approach as it supports
concurrent control flows. It also allows data flow to be defined, albeit indirectly
via shared variables; this gives rise to race conditions in the presence of concur-
rency.

Reo’s connectors can model data flow aspects of interaction patterns, but
they lack control flow modelling capabilities. In fact, Reo connectors also impose
synchronous constraints on their coordinatees, which play the opposite role to
control flow in our approach; however, unlike our approach, these two aspects
– data flow definition and synchronous constraints – are not separated and are
indistinguishable at the architectural level.

Reusability
X-MAN composite connectors can be reused via repositories; on the other hand,

their reuse potential is decreased by low variability (no generic types, composite
data flows or structural variability).
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WS-BPEL processes cannot be reused directly via repositories since they are
not compositional and thus cannot be reused for construction of other processes.
They can only be reused indirectly via web services they define, which can be
coordinated by another WS-BPEL process. Unlike our approach, web service
reuse is limited by the dependency of their coordinators on operation names and
order of their parameters. Web services also lack structural variability, which
further decreases their reuse potential.

Reo connectors can be reused via repositories and are highly variable (includ-
ing dynamic structural variability [67]). Unlike our approach, Reo connectors
are suitable for coordinating active components, which makes them suitable for
representing different kinds of interaction patterns than our approach.

11.3 Approaches to Formalising Pattern Solu-
tions

Design patterns (see Section 3.2) are wide-spread form of capturing and reusing
design knowledge. However, they have a number of shortcomings (see Sec-
tion 3.2.4) that thwart the reuse of pattern solutions in current mainstream design
(e.g., UML) and implementation (e.g., Java) notations. As a result, a significant
body of software engineering research addresses some shortcomings in the defini-
tion and usage of design pattern solutions. Our approach also falls in this category
as it formalises solutions of interaction patterns as composite connectors and thus
enables their design and implementation reuse.

We have conducted a literature survey of these approaches. Section 11.3.1
describes the surveyed methods; Section 11.3.2 evaluates how they contribute to
system development with patterns and compares them to our approach to show
its novelty and advancement on the state of the art in this area.

11.3.1 Groups of Surveyed Approaches

In our literature survey, we have included various methods that address some
of the mentioned inadequacies of design patterns and their usage by defining
pattern solutions formally and making them first-class entities in design or im-
plementation. We have excluded methods that formalise other pattern parts than
solution, such as problem description, in order to keep focus on techniques that
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assist developers during design and implementation with patterns.
Altogether, we have surveyed more than thirty approaches. For brevity, we

do not describe each method individually; instead, we have grouped similar ap-
proaches and describe each group. Additionally, Appendix E contains examples
of methods from every category. We have identified the following groups ac-
cording to how they represent pattern solutions: logic constraints, diagrammatic
constraints, design transformations, reusable implementations and composition
operators.

Logic Constraints
There are many methods proposing formal specification languages for pattern

solutions based on first-order or temporal logic [14, 116, 115, 38, 85, 46, 41,
20, 107, 108]. In general, they define a language to model the structural or
behavioural aspects of object-oriented designs and then specify design patterns
as predicates over entities defined in that modelling language. The predicates
take entities corresponding to pattern participants as their parameters, and they
define constraints that the participants have to fulfil in order to comply with the
pattern. Appendix E.1 gives an example of the Observer pattern specified in
BPSL (Balanced Pattern Specification Language) [116].

Diagrammatic Constraints
Another group of approaches model pattern solutions using some custom di-

agrammatic notations [76, 50, 43, 80, 40, 62]. They also define constraints on
participating entities as the previous group of methods, but they define partici-
pants and their relations diagrammatically. This representation better lends itself
to deriving design models of pattern instances.

Diagrammatic constraints and logic constraints groups may overlap. In our
survey, there is one approach (LePUS3 [46]) that specifies patterns using diagram-
matic notation that directly translates to a set of logic formulae. However, unlike
other approaches in the diagrammatic constraints group, pattern specification
diagrams in LePUS3 are not used to derive design models of pattern instances.

For example, Role-based Modelling Language (RBML) [43] represents pat-
terns using customised UML diagrams that define a family of designs rather than
a single design as traditional UML diagrams. Appendix E.2 gives an example of
the Observer pattern specified in RBML.
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Design Transformations
These methods [31, 57, 39] focus on formalising the process of pattern applica-

tion rather than on formalising a pattern solution as such. They define pattern
application as a transformation that maps a design model exhibiting some of the
problems that the pattern solves to a design model which conforms to the pattern.
In other words, they formalise pattern application as a refactoring that improves
some quality of the input design model by re-arranging (renaming, adding and
removing) the elements of the input model according to the pattern. Transforma-
tions correspond to (anti-pattern, pattern) pairs. Appendix E.3 gives an example
of the Composite pattern specified in SLAM-SL.

Reusable Implementations
These approaches attempt to achieve code reuse of pattern solutions. They

therefore formalise pattern solutions by encoding them in some programming
language. Typically, they rely on various techniques that extend the basic reper-
toire of object-oriented language features (classes, inheritance and polymorphism)
to yield pattern implementations variable enough to be instantiated in different
contexts

The techniques encountered in our survey include abstract aspects in As-
pectJ [52], Eiffel classes [9], Haskell higher-order datatype-generic operators [49],
Scala abstract and generic types [90], nested classes [88] and traits [95], static
meta-programming techniques [37], reflection in Java [92], and several program-
ming languages specialised on implementing design patterns [21, 42, 2]. Ap-
pendix E.4 gives an example of the Observer pattern implemented in AspectJ.

Composition Operators
These methods represent pattern solutions as composite connectors in the con-

text of component-based software development. Our approach belongs to this
category. The only other approach we are aware of is that of Lau et al. [70], in
which pattern solutions are defined as X-MAN composite connectors with con-
straints (see Section 11.2.1).
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11.3.2 Analysis

In this section, we analyse the surveyed methods to evaluate how they contribute
to system development with patterns. Again, we abstract from individual ap-
proaches and use the groups presented in the previous section in our analysis. In
particular, we focus on how the composition operator group of approaches, which
contains our method, compares with other groups.

To assess how particular groups of methods help in system development with
patterns, we analyse several criteria. Firstly, we establish whether they specify
pattern solutions as stand-alone entities with concrete identity and representa-
tion. Secondly, we assess their ability to contribute to the main development
stages of design and implementation; i.e., whether they produce any design or
implementation artefacts that can be directly used in system development. Fi-
nally, we consider whether they define any particular development process in
whose context they should be used. Table 11.3 summarises our findings.

Group of Approaches PSS DA IA IDP
Logic constraints 3 5 5 5

Diagrammatic constraints 3 3 5 5

Design transformations 5 5 5 5

Reusable implementations 3 5 3 5

Composition operators 3 3 3 3

PSS Pattern solution specification
DA Design artefacts (re)usable in system development
IA Implementation artefacts (re)usable in system development

IDP Integration with a development process

Table 11.3: Comparison of Approaches Formalising Pattern Solutions

Approaches defining pattern solutions as logic constraints specify pattern so-
lutions mostly in the form of predicates. They can be used for mining patterns in
reverse engineering existing legacy systems, checking compliance of some design
with a design pattern’s solution or for some reasoning about patterns (e.g., about
composition of patterns). However, they cannot be directly used in the design
or implementation stages of system development. Because they do not focus on
system construction, the details of any particular system development process are
irrelevant to them.
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Methods specifying pattern solutions as diagrammatic models can derive de-
sign models (such as UML diagrams) corresponding to pattern instances. None
of the methods provides any means for generating implementation artefacts from
the design models. Generally, none of the approaches in this category considers
the wider context of the underlying development process, including the issue of
how to integrate the generated design models of pattern instances with design
models for the rest of the system.

Approaches that express pattern application as transformations of design
models do not formalise pattern solutions themselves; they only define how a
certain design configuration can be changed to another one that conforms to a
pattern. However, the definition of these initial design configurations is problem-
atic as it can never be complete. None of the surveyed methods in this group
demonstrated feasibility on any non-trivial design configuration. By their defini-
tions, these methods do not produce any design or implementation artefacts in
the first place; they can only transform existing ones.

Approaches implementing pattern solutions using various programming lan-
guage constructs, such as abstract aspects [52] or higher-order operators [49],
produce artefacts that can be directly used in system implementation. However,
they fail to identify a suitable representation of pattern solutions in design models,
and thus lack links to other phases of system development process. Furthermore,
programming languages cannot impose all of the constraints specified by pattern
solutions, which would be better represented in more high-level design models.

Finally, the last group of methods define pattern solutions as composition
operators in the context of component-based software development. Since they
are represented by composite connectors, entities defined within a component
model, they have a first-class status in system architecture (as design artefacts),
but they also possess a behaviour definition that enables them to be (re)used
as implementation artefacts. Moreover, component-based software development
has a well-defined development process (see Section 4.1) into which they are
integrated. Unlike most methods in other groups, these methods are not object-
oriented and thus cannot express every object-oriented design pattern.

To sum up, the approaches in our survey vary considerably in their focus and
are therefore applicable only to certain parts of system development. However,
this endangers the adoption of these approaches as eventually they have to be in-
tegrated into some development process to become useful in system development.
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Composition operators have the advantage of the integration into the component-
based development process, which inherently spans design and implementation
stages by the means of component model abstractions.

11.4 Overall Evaluation of Conducted Research

This section evaluates the research reported in this thesis with respect to our
research goals. In Section 11.4.1, we argue that all our main research goals have
been achieved. The limitations of our approach are discussed in Section 11.4.2.

11.4.1 Achievement of Research Goals

The research presented in this thesis has been guided by the three goals stated
in Chapter 1, which refine our research hypothesis. Here, we argue that all these
goals have been achieved, and we support our argument by summarising the main
results of the research conducted to achieve each of the goals.

For convenience, we include our research goals here again. They are as follows:

• to identify suitable component model characteristics (i.e., characteristics of
components and composition mechanisms) for expressing interaction pat-
terns separately from computation,

• to survey existing component models in order to establish their conformance
with such characteristics, and

• to either adapt an existing component model or to develop a new compo-
nent model with such characteristics so that interaction patterns can be
represented as composite connectors – explicit in system architecture and
reusable across many systems – in that component model.

Suitable Model Characteristics
In Chapter 5, we have identified the following six characteristics that a com-

ponent model suitable for expressing interaction patterns as connectors should
possess: (i) an explicit architectural representation of connectors, (ii) the ability
to define new connectors, (iii) separate specification of interaction and computa-
tion, (iv) explicit control flow and data flow modelling, (v) composable connectors,
and (vi) separate control flow and data flow modelling.
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Some of these characteristics are essential and directly follow from the overall
aim of our research to represent interaction patterns as connectors. Thus, they
form a minimal set of properties that any approach pursuing the given aim must
exhibit. Namely, these are the characteristics (i) and (ii), which postulate first-
class connectors, and the characteristic (iii), which demands the separation of
modelling computation and interaction concerns between components and con-
nectors.

However, none of these essential characteristics addresses how the interaction
is modelled; this is addressed by the remaining characteristics. They express our
observations of what makes good interaction modelling. As such, their choice
is specific to our approach and they are its distinguishing characteristics. The
characteristic (v) demands the composable nature of interaction specifications in
order to increase reuse potential of interaction connectors by not only reusing their
instances but also their definitions in construction of more complex connectors.
The characteristics (iv) and (vi) formulate the basics of interaction modelling in
our approach – using the well-established modelling abstractions of control flow
and data flow that are both explicit and without any dependencies on each other.

To evaluate these characteristics directly (particularly the non-essential ones)
is impossible due to their informal nature. However, their usefulness can be seen
in how they helped us in surveying existing component models and subsequently
in creating our own component model with connectors representing interaction
patterns.

Survey of Existing Component Models
The second goal of our research is to survey the existing component models in

order to find out whether there exists any component model that would exhibit
the aforementioned characteristics and would thus be suitable to represent inter-
action patterns as connectors. We have conducted such a survey, whose results
are presented in Chapter 5.

The main outcome of the survey is that none of the surveyed models exhibits
all the desired characteristics for expressing interaction patterns. Consequently,
we have developed a new component model to base our approach on, complying
with all of the characteristics (see the next subsection).

The survey is comprehensive in its scope as it combines component models
identified by two recent and highly cited component model surveys by Lau and
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Wang [75] and Crnkovic et al. [36]. To analyse the compliance of a particular
component model with the identified characteristics, we have drawn from the
contents of the two survey papers as well as the original publications about the
model to double check our results. Therefore, we believe that the analysis pre-
cisely captures the state of the art in current component models.

Additionally, besides establishing non-existence of an approach fully suitable
for our purposes, the survey brings some insights into current component models,
with respect to the analysed properties. Firstly, a large proportion of current
component models (about two thirds) lack the ability to express and define con-
nectors in system architectures. Secondly, composition mechanisms separating
computation and interaction, namely exogenous composition and the pipe-and-
filter composition style, are in minority in current component models, with the
majority being based on the procedure call composition mechanism (the request-
response interaction style). Thirdly, even the models that separate computation
and coordination do not represent interaction in terms of control flow and data
flow explicitly and without any constraints between the two flows.

Definition of the New Component Model and Composite Connectors
Following the result of the survey, which found no existing component model

fully compliant with the required characteristics, we have developed a new com-
ponent model designed to comply with the characteristics, according to our third
research goal. Table 11.4 illustrates the compliance of our component model with
the required characteristics.

We have defined (i) the structure of components, connectors and systems by
means of a meta-model, and (ii) the run-time behaviour of systems constructed
in the model (i.e., the model’s execution semantics) in Chapter 6.

To be able to represent interaction patterns in our model, we have defined com-
posite connectors, both their structure and behaviour (given by a transformation
of a composite connector into a composition of basic connectors), in Chapter 7;
we further refined them to increase pattern reuse in Chapter 8 by splitting con-
nectors into two entities – reusable templates and context-specific instances –
and by defining an instantiation transformation for creating the latter from the
former.

To evaluate the feasibility of the above definitions, we have implemented a
prototype tool, which allows design and simulation of systems developed in our
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3/ 5 Characteristic Justification
3 an explicit architectural

representation of connectors
connectors present in architecture

3 the ability to define new
connectors

by connector composition

3 separate specification of in-
teraction and computation

components specify computation, con-
nectors specify interaction

3 explicit control flow and
data flow modelling

control and data connectors

3 composable connectors connector composition defined
3 separate control flow and

data flow modelling
possible due to the control-driven and
data-driven execution semantics

Table 11.4: Compliance of Our Component Model with the Desired Characteris-
tics

component model (see Chapter 9). The tool has been used to model the mode-
switching pattern, a real-world example of an interaction pattern from the domain
of reactive control systems, and the climate control system, in which the pattern’s
instance coordinates mode switching (Chapter 10). The execution semantics has
been formalised using Coloured Petri Nets; this gives us an unambiguous and
precise description, which can be also used to reason about some of the properties
of system execution (see Section 6.6).

Further evaluation by qualitative comparison with related work in this chapter
confirms that the unique capabilities of our approach that correspond to the
desired characteristics – explicit control flow and data flow modelling without any
of the flows dominating, loose coupling of connector interfaces and the variability
of connector templates – result in an interaction pattern representation that is
more expressive and more reusable than the state of the art in component-based
software development.

Moreover, the connector representation of patterns has been shown superior
to other approaches to formalising pattern solutions, because pattern solutions
in our approach have first-class status throughout design and implementation
stages of the system development life cycle: they are explicit in system archi-
tecture as connectors, which are also the abstractions that define their run-time
behaviour. Other approaches, not based on component-based development, lack
such an abstraction that would bind pattern representations in multiple develop-
ment phases.
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Known limitations of our approach are discussed in Section 11.4.2; possible
further research directions extending the work presented in this thesis can be
found in Section 12.3.

11.4.2 Limitations of Our Approach

Since the research presented in this thesis has been conducted within a limited
period of time and with a limited amount of resources, it is necessarily incomplete
and lacking in a number of aspects. In this section, we discuss known limitations
of our approach. We have grouped them into four categories: (i) structural def-
inition of our component model, (ii) its execution semantics, (iii) representation
accuracy of interaction patterns and (iv) prototype implementation.

Structural Definition of Our Component Model
The structural definition of our model (that is, its meta-model) could be further

extended in a number of ways. In particular, we are aware of the absence of hier-
archical components, of data stores and of state-based routing within composite
connectors.

Hierarchical components (also called composite components) are defined as
compositions of several other components. They are an established means for
tackling scalability and complexity in component-based software development.
However, since our research has primarily focused on composition mechanisms
represented by composite connectors (which can be hierarchically composed),
the definition of composite components is missing in the current version of our
component model. Moreover, defining composite components in our component
model is non-trivial due to having multiple component types. Although com-
position of only control-driven components or data-driven components is quite
straightforward (and could be done analogously to X-MAN or Scade), compos-
ing control-switched data-driven components is less obvious (How should their
execution state be composed?) as is the composition of components of differ-
ent types (What would be the resulting component type of a composition of a
data-driven and a control-driven component?). Analysis and resolution of such
questions requires further research.

Our component model in its current version lacks any representation of data
stores – entities whose only role is to hold some data and provide access (reads
or writes) to them to other entities. There exist other component model entities
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that encapsulate state, but storing state is not their main responsibility.
Firstly, components can be stateful, but they primarily represent computation

and thus enforce some constraints that are unnecessary for a generic data store.
For instance, a component does not execute (consume incoming data) until all of
its input providers (writers) have data ready.

Secondly, data channels are stateful, because they have internal buffers (of
various sizes and access policies). However, they transfer data between one writer
and one reader, which does not suffice to fully model a data store with m readers
and n writers.

(a) A Composite Connector (b) Its Semantics

Figure 11.6: Connector Representation of Data Store (3 Readers and 2 Writers)

Thirdly, composite data connectors are stateful as they comprise data chan-
nels. They alleviate the limitation of data channels, and they can model m
readers and n writers scenarios. For example, Figure 11.6a shows a composite
connector, comprising a single data channel, that realises the case of two writers
and three readers, by connecting its required ports a and b to two output ports
and three input ports, respectively. Semantically, the configuration is equivalent
to the one depicted in Figure 11.6b, in which the channel is instantiated for each
writer-reader pair. This also removes the above-mentioned component constraint
since writers can produce data at different times. However, the behaviour of
the configuration of data channels in Figure 11.6a is non-deterministic as it re-
lies on the non-deterministic selection of several incoming values at the reader
ports R1, R2, R3. Introducing explicit data stores with other access policies would
significantly affect the execution semantics and requires further investigation.

Another state-related limitation affects composite connectors. Modelling of a
stateful interaction pattern by delegating the computation of its state changes to
a component that feeds the current state to the composite connector representing
the pattern creates the tight coupling between the component and the connector
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(see Section 7.4.1). This is caused by representing state using data values: state
changes in this representation correspond to data value transformations (i.e.,
computation), which can only be carried out by components. However, some
alternative ways of representing state within connectors might eliminate the need
for state-changing components in representing stateful interaction patterns.

For example, control connectors in a composite connector maintain some im-
plicit state, which corresponds to the location of the control signal in the con-
nector’s control hierarchy. A binary sequencer, for instance, has three implicit
states: one for when control is not present, one for control triggering its first
parameter and one for control triggering its second parameter; the state changes
as control flows through the sequencer. Using this implicit state for data flow
and control flow routing would enable some stateful interaction patterns (e.g.,
the ABA dialogue pattern in Section 7.4.1) to be defined fully within a composite
connector. The extension of composite connectors along these lines has been left
as a future work.

Execution Semantics
We have seen how the structural definition of a component model is affected

by various aspects of execution semantics. Here, we discuss the limitations of the
execution semantics of our model (beyond the technical limitations discussed in
Section 6.5.7), as described in Section 6.5. In particular, we discuss (i) its domain-
specificity, (ii) its performance problems and (iii) the single-threaded nature of
control flow.

Firstly, the execution semantics of our component model is specific to the
domain of reactive control systems. The concept of synchronous execution cy-
cles and synchronisation rules enforcing deterministic system behaviour5 match
the characteristics of system execution in this domain. Nevertheless, system ex-
ecution characteristics in other domains necessarily differ, which may result in
sub-optimal properties that systems from other domains exhibit when executed
according to our execution semantics.

For example, data-intensive processing systems prioritise performance (data
throughput). Thus, an execution model supporting asynchronous parallel data
processing would be more suitable than splitting execution into synchronous cy-
cles.

5This holds provided that a system is composed of a deterministic sub-set of the component
model.
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Secondly, the current execution semantics exhibits some performance limi-
tations, as the above example illustrates. Execution split into execution cycles
adds a global synchronisation constraint: at the end of each execution cycle,
all components stop executing as they have either no more input data to process
(data-driven components) or the control loop iteration has finished (control-driven
components). On the one hand, this allows us to have the hybrid execution se-
mantics, which maximises the expressiveness of interaction modelling in terms of
control flow and data flow; on the other hand, it results in poorer performance.
Particularly, data-driven components have high performance potential due to the
easily parallelisable and asynchronous nature of their execution.

Thirdly, control flow coordination is single-threaded and limited to one itera-
tion of the main loop per execution cycle. This may seem to be a limiting factor,
compared to other component models allowing multi-threaded execution (most of
them rely on component implementation to deal with threading). However, this
design decision leads to a single control coordination hierarchy, which simplifies
system architecture. Furthermore, data-driven components may be executed con-
currently in our current execution semantics, playing the role of multiple threads
of control in control-driven component models.

Representation Accuracy of Interaction Patterns
Representing interaction patterns as composite connectors in our component

model necessarily fails to capture interaction patterns in their entirety. The main
limitations associated with the pattern representation in our approach are as
follows:

Composite connectors in our approach only represent pattern solutions. We
intentionally avoid modelling other pattern parts, because they are hard to for-
malise and – unlike pattern solutions – do not define any reusable design artefacts,
which could be embodied in a component model.

Some aspects of pattern solutions cannot be represented in our component
model. This is inevitable since we use our component model (a single formalism)
to model pattern solutions coming from various other contexts. For instance,
some object-oriented patterns involve dynamic creation or destruction of objects,
which cannot be represented in the context of our model that is based on static
architecture. Likewise, aspects of pattern solutions relying on inheritance cannot
be expressed in the component-based setting.
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We cannot specify constraints between participants. Constraints are only de-
fined in terms of types associated with interface elements of composite connectors,
but this fails to capture the constraints unrelated to the coordination behaviour
realised by the connectors.

An example of such a constraint might be the requirement that some pattern
participants cannot exchange data with each other. These participants end up
being represented as components. But because only the data ports that interact
with the pattern’s coordination behaviour (i.e., the ports connected with the
composite connector representing the pattern) are checked for type conformance,
other data ports of the participant components can be connected in an arbitrary
way, which may violate the requirement.

Prototype Implementation
The main purpose of the prototype implementation is to practically demon-

strate our approach. Since the focus of our research is on component-based de-
sign, the prototype tool does not support deployment of designed systems to any
hardware or software platform. It only allows designing systems in our compo-
nent model, designing composite connectors and simulating system behaviour.
Furthermore, many aspects of the prototype would need to be improved if the
tool was to go beyond its research prototype status (e.g., the efficiency of the
simulator and the component definition language).



Chapter 12

Conclusion

This thesis reports on our research in the area of component-based software engi-
neering. In particular, our research focuses on high-level component composition
mechanisms. Currently prevalent approaches to component-based development
rely on primitive composition mechanisms, such as procedure calls, which are un-
able to model complex interactions separately from computation defined within
components. This leads to software architectures in which computation and in-
teraction are both mostly defined in components; interaction and computation
are thus indistinguishable in software architecture and cannot be reused indepen-
dently. To tackle these shortcomings, our research aims to define composition
mechanisms – represented in software architecture as connectors, distinct from
computation-defining components – that are able to encapsulate complex inter-
actions. In this thesis, we investigate the possibility to base the definition of such
composition mechanisms on interactions among participants within some design
patterns.

To this end, we have identified a number of component model characteristics
suitable for modelling interaction separately from computation. We have defined
a new component model that conforms to these characteristics. We have defined
composite connectors in this model that can encapsulate interaction and can be
reused via repositories in different contexts, independently of components. To
evaluate the feasibility of our approach, we have developed a prototype tool and
carried out a case study from the reactive control system domain. We have also
compared our approach with related component models, coordination languages
and pattern solution formalisations for further evaluation.

The main contribution of our research lies in the novel way of representing

246



12.1. CONTRIBUTIONS 247

interaction by means of composite connectors in our component model, which
makes interaction patterns architecturally explicit and reusable. Comparison
with the related work shows that our approach improves the state of the art
in component-based interaction modelling. Other contributions of our work to
existing knowledge in component-based software development include the analysis
of interaction representations in current component models, the novel control-
driven and data-driven execution semantics of our model and the novel way of
increasing reuse of composite connectors through their structural variability. Our
research contributions are further detailed in Section 12.1. Section 12.2 discusses
the limitations of our work. We conclude in Section 12.3 by outlining interesting
future research directions building on the research reported in this thesis.

12.1 Contributions

In this section, we highlight the contributions of our research to the current
body of knowledge. They mainly fall into the area of component-based software
engineering, but there are also contributions in the wider context of software
engineering.

In Chapter 5, we have identified suitable component model characteristics for
separating the specification of interaction and computation in system architec-
ture and for having stand-alone composite connectors representing interaction
patterns. The survey of existing component models confirmed that they repre-
sent a novel set of component model design criteria with unique focus on separate
interaction modelling. The survey itself contributed to the knowledge of existing
component models by analysing them with respect to these criteria.

These conceptual contributions have been materialised into the main techni-
cal contributions of this thesis in Chapters 6, 7 and 8. We have defined (even
formally) the structure and execution semantics of the new component model,
complying with the aforementioned characteristics, in Chapter 6. To be able
to compose control flow and data flow elements comprising interaction patterns,
we have defined composite connectors in that component model in Chapter 7.
To further increase their reusability, we have defined several variability mecha-
nisms for their instantiation from a repository in Chapter 8. Comparison with
related component-based approaches showed that the composite connectors in
the new component model enhance the state of the art in interaction modelling
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in component-based development by their expressiveness (both control flow and
data flow are explicit) and by supporting separate reuse of interaction through
their variability (particularly, the structural variability is novel). This is the main
result of our research as it directly confirms our research hypothesis. Further, the
control-driven and data-driven execution semantics of our model is novel; it im-
proves the expressiveness of interaction modelling by removing any unnecessary
dependencies between control flow and data flow, imposed by one being the dom-
inant execution trigger over the other.

Additionally, the survey of pattern solution formalisation approaches in Chap-
ter 11 contributed to existing knowledge by analysing how these methods support
various phases of software development life cycle. The results suggest that – unlike
most approaches which are confined to a single development phase – component-
based approaches to pattern formalisation, such as ours, can represent patterns in
both design and implementation phases, because they rely on component model
abstractions that bridge these two phases.

12.2 Limitations

We also need to consider the main limitations of this work.
Firstly, some parts of the new component model definition are domain-specific.

Particularly, the execution semantics is geared towards the domain of reactive
control systems. The case study proving the feasibility has also been carried out
in this domain only. The obtained results may thus not hold in other domains
with significantly different requirements.

Secondly, the definition of the new component model is primarily focused on
modelling the behavioural aspect of interaction patterns, which leaves some other
aspects of interaction patterns unexplored. For example, dynamic architecture
reconfiguration is not supported, which means that related interaction patterns
cannot be represented. Likewise, extra-functional aspects of interaction patterns
have not been investigated.

Thirdly, due to the informal nature of design patterns (and thus interaction
patterns), it is impossible to design any formal representation that can be con-
sidered complete, in the sense of capturing a particular pattern’s solution fully
or in the sense of being able to capture all patterns. Therefore, the interaction
pattern representation in our approach cannot be considered complete.
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12.3 Future Work

The research reported in this thesis raises a number of new research ideas. In
this section, we outline some future research directions that would extend the
presented research to overcome some of its limitations and to widen the scope of
its application. We first discuss possible extensions of our component model as a
whole; we then narrow our focus on its control-driven and data-driven execution
semantics and composite connectors.

Component Model Extensions
As pointed out in Section 12.2, our component model could be extended in

a number of ways beyond the pure behaviour modelling, which was the focus
of this thesis. This could improve various properties of software architectures
constructed in our model. For example, hierarchical component composition
improves the scalability of software architectures; extra-functional modelling ca-
pabilities increase the predictability of software architectures with respect to the
modelled properties, such as performance or reliability; dynamic reconfiguration,
i.e., the ability to change software architecture at run-time, increases architec-
ture’s adaptability. All these component model extensions would affect how inter-
action is represented, and it would be interesting to examine their implications.
However, the choice of needed component model extensions depends on a partic-
ular domain; the research here should be therefore driven by the need to model
systems in specific domains.

Control-driven and Data-driven Execution Semantics
The control-driven and data-driven execution semantics of our component

model also raises interesting research questions. Again, requirements on sys-
tem execution, such as the need for high performance or deterministic system
behaviour, vary in different domains and could drive experimenting with the cur-
rent execution semantics.

Furthermore, it would be interesting to investigate the applicability of the
control-driven and data-driven coordination in the wider family of coordination-
based approaches, for example, to perform orchestration in service-oriented archi-
tectures or to act as a workflow modelling language. Barker and van Hemert [11]
observed the divide of workflow languages into control flow-oriented, used for
business process modelling, and data-flow-oriented, used for scientific workflow
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modelling; it seems interesting to examine whether a control-driven and data-
driven coordination language based on our component model could unify these
approaches.

Another intriguing possible research direction would be to investigate the
application of our model’s control-driven and data-driven component modelling
capabilities to architecture modelling of today’s heterogeneous parallel systems.
These systems are deployed to run on control flow dominated CPUs (central
processing units) and data flow oriented GPGPUs (general-purpose graphics pro-
cessing units). Modules running on CPUs are specified in a different language and
executed differently from those running on GPGPUs. Could a component-based
control-driven and data-driven approach, such as ours, be used to holistically
design architectures of such systems?

Composite Connectors
Finally, composite connectors themselves can be explored further beyond their

interaction pattern representation emphasised in this thesis. The existing struc-
tural variability mechanism based on roles and participants does not have the full
expressiveness of a generic transformation language and thus may be insufficient
for representing some variations of some pattern solutions. This motivates the
research into more expressive variability mechanisms. The challenge here is to
balance their expressiveness and ease of use for composite connector designers.

One might employ the variable nature of our composite connectors for other
purposes than their instantiation from a repository. For example, if they were
able to vary at run-time, the evolution of a system during dynamic reconfigu-
ration might be guided by the permissible variants of composite connectors. As
a result, system evolution would be restricted by the combined variants of com-
posite connectors in a system and thus easier to verify compared to unrestricted
approaches to dynamic reconfigurations.

Another possibility would be to use variability in composite connectors to de-
fine reference architectures in software product line engineering. Software product
line engineering aims to develop a family of related software systems, rather than
single systems. The product family is defined by a number of models. For ex-
ample, a feature model defines the features of products in the family and their
dependencies. The most important model is the reference architecture, which de-
fines architectures of all products in a given family. Composite connectors with
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variable structure would play the role of variation points in a reference architec-
ture; variants of each composite connector would be mapped to features in the
product family. However, their variability parameters would not be fixed during
instantiation from a repository into a reference architecture but later during the
derivation of a product architecture from selected product features. That is, a ref-
erence architecture would become a product architecture after all of its composite
connectors’ variants were fixed according to the product’s selected features.
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Appendix A

CPN Formalisation of Execution
Semantics

In this appendix, we present some additional material on the formalisation of our
component model’s execution semantics.

A.1 Component Model Elements

In this section, we show CPN models of most component model elements. For
simplicity, they do not represent synchronisation rules.

A.1.1 Components

Source and Sink Components
Source and sinks have CPN models comprising their data ports, a place storing

the data for each data port and a transition that moves data (token colours)
between the two. Figure A.11 shows an example of a source and sink components
with one data port of the integer type. Note that we use the CPN’s ability to
define and manipulate token colours for complex data types – each token colour
of the type ListInt represents a list of integers; the transition’s occurrence then
either removes the first element of the list (Source) or adds an element at the end
of the list (Sink).

1The labels In, Out, I/O in the net denote port places used during composition of CPN
models (Section 6.6.5).
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(a) Source (b) Sink

Figure A.1: CPN Models of Source and Sink Components

Data-driven Components
The CPN model of a data-driven component consists of a single transition

(realising the component’s computation), a pair of places for each data port and,
optionally, a place for each state variable. The example in Figure A.2a depicts a
component (with one input and one output data port) that increases the values of
its inputs by two. Notice how the inscription on one of the outgoing arcs defines
the data transformation of the input. Figure A.2b shows a stateful component
summing all its inputs; the place Sum holding the state (the sum of inputs already
processed) is initialised to zero, and it is read and written during every transition
occurrence.

(a) Stateless Component (b) Stateful Component

Figure A.2: CPN Models of Data-driven Components

Control-driven Components
See Figure 6.27 in Section 6.6.3.

Control-switched Data-driven Components
They have the most complex execution triggering mechanism, and their CPN

models are thus most complex. Apart from the computation transition and places
for data ports, control port and state, a CPN model of a control-switched data-
driven component contains its execution state – enabled or disabled – represented
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by a pair of places, only one of which contains a token colour at any one time.
The arrival of control always moves the token colour from the currently filled
place to the other place, thereby switching the component’s state. Computation
can happen whenever data inputs are available and the Enabled place contains a
token colour (Figure A.3).

Figure A.3: CPN Model of a Control-switched Data-driven Component

A.1.2 Connectors

Data Channels
They are modelled using two pairs of places representing source and target

data ports, a place representing the channel’s buffer and two transitions – one for
reading the source port and another for writing to the target port. Figure A.4
shows the CPN models of basic channel types (apart from FIFO, which is shown
in Figure 6.28a) transferring data between two integer data ports. They differ in
the definition of the buffer place and its adjacent arcs. The NDR channel’s buffer
has the INT (integers) colour set and always contains one value: the initial one
is determined by the initial marking, every occurrence of the ReadPort transition
rewrites the value and any occurrence of WritePort copies the value to the target
data port keeping the buffer’s contents unchanged. The FIFO-N channel has
the buffer place of the list of integers type, always containing one token colour;
ReadPort adds the new value at the end of the list after removing the last value
from the list if buffer is about to overflow, whereas WritePort removes the first
value in the list.



270 APPENDIX A. CPN FORMALISATION OF EXECUTION SEMANTICS

(a) NDR Channel (b) FIFO with Capacity N

Figure A.4: CPN Models of Data Channels

Data Coordinators
See Figure 6.28b in Section 6.6.3.

Control Connectors
Control Connectors’ CPN models comprise representations of their interface

elements (pairs of places corresponding to control ports, control parameters and,
possibly, an input data port) and their control routing functionality (several tran-
sitions). Figure A.5 lists CPN models of control connector types.

A loop’s model (Figure A.5a) is the simplest – it contains two Control places
representing incoming and outgoing parts of its only control parameter and a
transition whose occurrence accepts and emits a single token colour, thereby
modelling start of an iteration of the loop.

A binary sequencer is shown in Figure 6.28c in Section 6.6.3.
The models of a binary guard and selector (Figures A.5b and A.5c) contain

pairs of places for a control port, control parameters and their input data port.
In both cases, a single transition models the selection behaviour; but while the
guard can return control straight back (see the arc from Guard to ControlOut),
the selector returns control only after it has returned from the selected control
parameter, via ControlBack1 or ControlBack2.
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(a) Loop (b) Guard

(c) Selector

Figure A.5: CPN Models of Control Connectors

A.2 Synchronisation Rules

Figure A.6 shows the synchronisation CPN sub-net for a system with two source
components and three data flow entities. The execution cycle begins with one to-
ken colour in the place CycleStartState, taken by the StartCycle transition, which
starts an iteration of the control loop by placing a Control token to ControlFlow-
StartState and invokes source components via their synchronisation places. The
execution then continues by invoking the rest of data flow entities (StartDF) until
data flow becomes idle (DataflowIdleState has marking {true}) and control loop it-
eration finishes (ControlFlowFinalState contains the control token), at which point
the EndCycle transition moves the token back to CycleStartState to start a new
cycle.

The middle part of the sub-net realises the mechanism of detecting idle data
flow (data computation and data transfer); it relies on synchronisation places
(tagged with I/O in the figure) and global places Restart and DataflowIdleState,
whose markings are changed by data flow entities (data channels, coordinators
and data-driven components). The idea is that every data flow entity has its
own place with the colour set Sync that contains a single token colour, indicating
whether the entity can be scheduled for execution (busy) or not (idle). Initially,
all synchronisation places contain the busy token colour (added by StartCycle for
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Figure A.6: CPN Sub-net for Synchronisation

sources and by StartDF for other entities); as the execution progresses, each data
flow entity takes the busy token from its synchronisation place, performs any
action if it can (e.g., if its inputs are available), and puts the idle token back
to its synchronisation place; additionally, if the current action of an entity (e.g.,
component execution) can result in scheduling another data flow entity for execu-
tion, the entity sets the marking in Restart to {true}. When all synchronisation
tokens become idle, their tokens are removed (EatIdleTokens) and if there is any
chance of further data flow scheduling (the marking of Restart is {true}), the
synchronisation places are again filled with busy tokens by RestartDF, and the
process repeats; if, however, the marking of Restart is {false}, the system has
reached DataflowIdleState.

Figure A.7 shows CPN models of two data flow entities to illustrate the impact
of the idle data flow detection mechanism. Compared to their counterparts from
Section A.1, the models additionally contain synchronisation places (Sync), places
referring to the global place Restart from the synchronisation sub-net (RestartDF)
and the transitions named Skip1, Skip2 that occur when an entity cannot perform
any action. A FIFO (Figure A.7a) cannot read its source port or write its target
port when the source port is empty and the internal buffer is empty, or the target
port is full. Notice that either of the FIFO’s actions can trigger further data flow,
hence RestartDF being set to true. A data switch (Figure A.7b) cannot perform
its routing action when any of its input ports is empty (Skip1, Skip2); the routing
can trigger further data flow execution.

To realise (SR4) and (SR5), we need to change the CPN models of control-
driven and control-switched data-driven components so that they wait for any
inputs computable in the current cycle, before they skip computation during
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(a) FIFO

(b) Data Switch

Figure A.7: CPN Models of Two Entities with Synchronisation
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triggering or switch the execution state to disabled.

Figure A.8: CPN Model of a Control-driven Component with Synchronisation

A CPN model of a control-driven component is depicted in Figure A.8. The
waiting behaviour is expressed by the NoData transition waiting for DataflowI-
dleState to become true. Another change is setting the global Restart state (from
Figure A.6) to true during a component’s execution, as it may trigger further
data flow computation. The execution also causes DataflowIdleState to become
false; this allows the ReEvalDFIdle transition in the synchronisation sub-net from
Figure A.6 to trigger data flow execution after the data flow idle state has been
reached.

Figure A.9 shows an updated CPN model of a control-switched data-driven
component. Since it is data-driven, its model has undergone the same changes as
models in Figure A.7: addition of the synchronisation place, of the transitions that
may occur when a component cannot perform any activity (Skip1 and Skip2) and
of RestartDF being set to true during its computation. Additionally, the transition
for disabling the component waits for DataflowIdleState to become true.

A.3 CPN Model of An Example System

To illustrate the composition of CPN models, we use a simple system, whose
architecture is depicted in Figure 6.31. The CPN model of the system is shown
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Figure A.9: CPN Model of a Control-switched Data-driven Component with
Synchronisation

in Figure A.10. Rectangles with double border are substitution transitions corre-
sponding to pages of component model elements. Notice the similarity between
CPN system models and system architectures due to the chosen composition
mechanism. Also, note that this CPN model is not deterministic since it is not
composed with the synchronisation sub-net. The deterministic version would
not be legible in print, due to many arcs joining synchronisation places and the
synchronisation sub-net.
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Appendix B

Meta-Model

In this appendix, we present a simplified1 version of our prototype tool’s meta-
model, specified in the ECore language2:
package system : system = ’http://system.hybridmodel.ac.uk/1.0’
{

class System extends component::WithComments
{

property components : component::ComponentInstance[∗] { ordered composes };
property sinks : component::Sink[∗] { derived transient volatile };
property sources : component::Source[∗] { derived transient volatile };
property coordinators : connector::deployment::DeployedDataCoordinator[∗] { ordered composes };
property controlConnectors : connector::deployment::DeployedControlConnector[∗] { ordered

composes };
property dataConnectors : connector::DataConnector[∗] { ordered composes };

}
}

package component : component = ’http://component.hybridmodel.ac.uk/1.0’
{

class Component extends Nameable,WithComments
{

property imports : Import[∗] { ordered composes };
property body : xtext::XExpression { ordered composes };
property ports : DataPort[∗] { ordered composes };
property states : ComponentState[∗] { ordered composes };

}
class Import
{

attribute importedNamespace : String[?] { ordered };
}

1For brevity, we omitted OCL invariants and derivation expressions.
2Note that the multiplicity of a property or an attribute is denoted by a single character in

square brackets: [*] means at least zero, [?] means zero or one, and [+] means at least one;
otherwise, ECore’s syntax is quite self-explanatory.
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enum DataType { serializable }
{

literal int ;
literal string = 1;
literal boolean = 2;
literal double = 3;
literal undefined = −1;

}
abstract class Nameable
{

attribute name : String[?] { ordered };
}
class DataPort extends Nameable
{

attribute type : DataType[?] { ordered };
attribute direction : DataPortDirection[?] { ordered };

}
abstract class ComponentInstance extends Nameable
{

property component : Component[?] { ordered };
property ports : PortInstance[∗] { ordered composes };

}
class EDComponentInstance extends ComponentInstance,ControlComposable
{

attribute initiallyEnabled : Boolean[?] { ordered };
}
class DataComponentInstance extends ComponentInstance;
class Sink extends ComponentInstance
{

attribute filename : String [?] { ordered };
}
class Source extends ComponentInstance
{

attribute filename : String [?] { ordered };
}
class TRComponentInstance extends ComponentInstance,ControlComposable;
abstract class ControlComposable { interface };
class SingletonPort extends PortInstance,DataPort;
enum DataPortDirection { serializable }
{

literal IN;
literal OUT = 1;

}
class PortInstance
{

property port : DataPort[?] { ordered };
attribute portName : String[?] { ordered derived readonly transient volatile }

}
abstract class WithComments
{

attribute comment : String[?] { ordered };
}
class ComponentState extends Nameable
{
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attribute type : DataType[?] { ordered };
property defaultValue : xtext::XExpression { ordered composes };

}
}

package connector : connector = ’http://connector.hybridmodel.ac.uk/1.0’
{

package design : design = ’http://design.connector.hybridmodel.ac.uk/1.0’
{

abstract class DesignControlConnector
{

property controlParameter : cctemplate::RequiredControlComposable { ordered };
}
class DesignSequencer extends DesignControlConnector,Sequencer;
class DesignSelector extends DesignControlConnector,Selector;
abstract class DesignDataCoordinator
{

property controlData : component::SingletonPort { ordered composes };
property inData : component::SingletonPort { ordered composes };
property outData : component::SingletonPort { ordered composes };

}
class DesignDataJoin extends DataJoin,DesignDataCoordinator;
class DesignDataSwitch extends DesignDataCoordinator,DataSwitch;
class DesignDataGuard extends DataGuard,DesignDataCoordinator;
class DesignCompositeConnector extends CompositeConnector
{

property portBindings : DesignPortBinding[∗] { ordered composes };
property controlPortBindings : DesignControlPortBinding[∗] { ordered composes };

}
class DesignPortBinding
{

property inner : cctemplate::RequiredPortInstance[?] { ordered };
property outer : cctemplate::RequiredPortInstance[?] { ordered };
attribute name : String[?] { ordered derived readonly transient volatile }

}
class DesignControlPortBinding
{

property inner : cctemplate::RequiredControlComposable[?] { ordered };
property outer : cctemplate::RequiredControlComposable[?] { ordered };
attribute name : String[?] { ordered derived readonly transient volatile }

}
}

package deployment : deployment = ’http://deployment.connector.hybridmodel.ac.uk/1.0’
{

abstract class DeployedControlConnector
{

property parameters : ControlParameter[+] { ordered composes };
}
class ControlParameter
{

attribute order : ecore :: EInt[?] { ordered };
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property controlTarget : component::ControlComposable[?] { ordered };
}
class DeployedLoop extends DeployedControlConnector,Loop;
class DeployedGuard extends Guard,DeployedControlConnector;
class DeployedSelector extends DeployedControlConnector,Selector;
class DeployedSequencer extends DeployedControlConnector,Sequencer;
class DeployedCompositeConnector extends DeployedControlConnector,CompositeConnector
{

property portBindings : PortBinding[∗] { ordered composes };
property controlPortBindings : ControlPortBinding[∗] { ordered composes };
property participants : Participant [∗] { ordered composes };

}
abstract class DeployedDataCoordinator
{

property controlData : component::SingletonPort[?] { ordered composes };
}
class DeployedDataGuard extends DeployedDataCoordinator,DataGuard
{

property inData : component::SingletonPort { ordered composes };
property outData : component::SingletonPort { ordered composes };

}
class DeployedDataSwitch extends DataSwitch,DeployedDataCoordinator
{

property inData : component::SingletonPort { ordered composes };
property outData : component::SingletonPort[+] { ordered composes };

}
class DeployedDataJoin extends DeployedDataCoordinator,DataJoin
{

property inData : component::SingletonPort[+] { ordered composes };
property outData : component::SingletonPort { ordered composes };

}
abstract class PortBinding
{

property inner : cctemplate::RequiredPortInstance[?] { ordered };
attribute name : String[?] { ordered derived readonly transient volatile }
property participant : Participant [?] { ordered };

}
class ControlPortBinding
{

property inner : cctemplate::RequiredControlComposable[?] { ordered };
property outer : component::ControlComposable[?] { ordered };
attribute name : String[?] { ordered derived readonly transient volatile }
property participant : Participant [?] { ordered };

}
class ParticipantData
{

attribute value : String [?] { ordered };
property type : cctemplate::RoleData[?] { ordered };

}
class Participant
{

property data : ParticipantData[∗] { ordered composes };
property role : cctemplate::Role[?] { ordered };
attribute order : ecore :: EInt { ordered };
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}
class SinglePortBinding extends PortBinding
{

property outer : component::PortInstance[?] { ordered };
}
class InMultiPortBinding extends PortBinding
{

property outer : PortInstanceMapping[+] { ordered composes };
}
class OutMultiPortBinding extends PortBinding
{

property outer : component::PortInstance[+] { ordered };
}
class PortInstanceMapping
{

property from : component::PortInstance { ordered };
property to : component::PortInstance { ordered };
attribute name : String[?] { ordered derived readonly transient volatile }

}
}

package cctemplate : cctemplate = ’http://cctemplate.connector.hybridmodel.ac.uk/1.0’
{

class CompositeConnectorTemplate extends component::Nameable,component::WithComments
{

property requiredPorts : RequiredPortInstance[∗] { ordered composes };
property subConnectors : DataConnector[∗] { ordered composes };
property controlSubconnectors : ComposableControlConnector[∗] { ordered composes };
property coordinators : DataCoordinator[∗] { ordered composes };
property requiredControlPorts : RequiredControlComposable[∗] { ordered composes };
property roles : Role[∗] { derived readonly transient volatile }
property ownRoles : Role[∗] { composes };
attribute constraint : String [?] { ordered };

}
class RequiredPortInstance extends component::Nameable,component::PortInstance
{

attribute reqType : component::DataType[?] { ordered };
property sameTypeAs : RequiredPortInstance[?] { ordered };
attribute reqDirection : component::DataPortDirection { ordered };
property role : Role[?] { ordered };
attribute multiPort : Boolean[?] { ordered };

}
class RequiredControlComposable extends component::Nameable,component::ControlComposable
{

property role : Role[?] { ordered };
}
class Role extends component::Nameable
{

property config : RoleData[∗] { ordered composes };
attribute multiplicityLowerBound : ecore::EInt[?] = ’1’ { ordered };
attribute multiplicityUpperBound : ecore::EInt[?] = ’1’ { ordered };

}
class RoleData extends component::Nameable
{



282 APPENDIX B. META-MODEL

property dataSpec : RequiredPortInstance[?] { ordered };
}

}
abstract class ControlConnector;
abstract class DataConnector;
abstract class Loop extends ControlConnector;
abstract class ComposableControlConnector extends ControlConnector,component::ControlComposable
{

property associatedRole : cctemplate::Role[?] { ordered };
}
abstract class Guard extends ComposableControlConnector
{

property condition : component::SingletonPort { ordered composes };
}
abstract class Selector extends ComposableControlConnector
{

property selection : component::SingletonPort { ordered composes };
}
abstract class Sequencer extends ComposableControlConnector;
class AtomicDataConnector extends DataConnector
{

attribute type : AtomicDataConnectorType[?] { ordered };
attribute initialValue : String [?] { ordered };
property source : component::PortInstance { ordered };
property target : component::PortInstance { ordered };
attribute initialValueType : component::DataType[?] { ordered };

}
enum AtomicDataConnectorType { serializable }
{

literal FIFO;
literal FIFO1 = 1;
literal NDR1 = 2;

}
abstract class CompositeConnector extends DataConnector,ComposableControlConnector
{

property template : cctemplate::CompositeConnectorTemplate[?] { ordered };
attribute name : String[?] { ordered derived readonly transient volatile }

}
abstract class DataCoordinator
{

property associatedRole : cctemplate::Role[?] { ordered };
}
abstract class DataJoin extends DataCoordinator;
abstract class DataSwitch extends DataCoordinator;
abstract class DataGuard extends DataCoordinator;

}



Appendix C

Model Transformations in
Henshin

In this appendix, we show sample Henshin transformation rules that show the
feasibility of defining (and formalising) model transformations in our prototype
tool using graph rewriting systems. In particular, we present several rules defin-
ing some steps of the transformation that creates the composition structure of
deployed connector instances (see Section 8.4.4).

Figure C.1 shows rules realising the deployment of a data switch design in-
stance.1 The deployDataSwitch rule takes a role as its input parameter, finds an
instance of a design data switch associated with that role and creates its cor-
responding deployed data switch instance. The ports of the design instance are
reconnected to belong to the deployed instance, and the design instance is deleted.
The newly created deployed data switch and its output data port are output as
parameters ds and outPort of the rule, respectively. Additionally, a new instance
of the Henshin built-in class Trace is created, its name attribute is set to the name
of the role, and it is returned via the counter parameter; its purpose is to help
distinguish ports associated with different participants (the role of the partMap
mapping from the transformation’s pseudocode).

The duplicateOutports rule adds another output port to ds. More interestingly,
it also creates an instance of Trace that maps the original output port outPort
to its newly created duplicate (realisation of the map mapping from the transfor-
mation’s pseudocode) and tags the new port by means of yet another instance

1For simplicity, both presented transformations are in-place replacements, and we also do
not show all attribute values.
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Figure C.1: Transformation Rules for Deploying a Design Data Switch

of Trace to associate it with a participant corresponding to the tag. We see that
counter serves as a counter variable in this process.

To deploy a design data switch instance, the deployDataSwitch rule has to be
applied first, followed by p applications of duplicatePorts and by the destroy rule
removing the counter instance. This coordination is defined by the sequential
and iterated transformation units at the bottom-right of Figure C.1.

The rule addDataChannel in Figure C.2 uses the mapping created by duplicate-
Outports (and other rules) to construct data channels between ports of duplicated
entities. In particular, it creates a new instance of a data channel between two
port instances that are mapped from a pair of port instances connected with
a data channel. The AtomicDataConnector class with the «forbid» stereotype
represents a negative matching condition; i.e., a sub-graph does not match the
left hand side of the rule if there exists a match of the elements annotated with
«forbid». In this case, the constraint ensures that no data channel will be created
between a pair of ports already connected with a data channel. Additionally,
the rule only allows the ports that are tagged by the same participant tag to be
connected by a data channel (see the two Trace instances at the bottom). If we
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Figure C.2: Transformation Rule for Duplicating Data Channels

compare the constraints expressed by the rule with the condition on line 32 in
the transformation’s pseudocode in Section 8.4.4, we see that the rule does not
deal with all possible cases. The cases in which at least one of the ports to be
connected is not associated with any role (and therefore has no participant tag)
have to be solved by other rules.

One application of the rule creates one new data channel. To duplicate all
data channels, the rule (together with other rules solving complementary cases)
has to be applied repeatedly until no more applications of the rule are possible
(its left-hand side cannot be matched against the input graph). Henshin provides
the Loop transformation unit for this purpose – see createDataChannels at the
bottom-right of Figure C.2.



Appendix D

Climate Control System Design
in Other Component Models

In this appendix, we show the architectures of the climate control system (the
system we used in our case study in Chapter 10) constructed in the four com-
ponent models with which we compared our approach in Section 11.1: ProCom,
Scade, Simulink and UML 2.0.

D.1 ProCom

Figure D.1 shows a composite component realising the climate control system
in ProCom. It models the behaviour of the system in one reactive cycle (one
iteration of the loop in Figure 10.10). The component consists of four atomic
subcomponents, whose names and roles correspond to the components in the cli-
mate control system’s architecture created in our model (Figure 10.10). However,

Figure D.1: Climate Control Component in ProCom
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there are some differences in component semantics. Unlike our model, ProSave
has only one type of components that are control-triggered (as our control-driven
components). As a result, the components modelling the system’s functionality
in one of its three modes (ManualTemperature, ManualVentilation and AutoVenti-
lation) have to be triggered each time the system is in the respective mode and
their parent composite component receives control. This simplifies the required
control flow and data flow routing: it leads to the behaviour equivalent to that
of the Trigger-Strategy interaction pattern (see Figure 8.5).

The interaction pattern in Figure D.1 is represented by six connectors: Selec-
tion chooses a subcomponent to be triggered; Data forks distribute inputs to all
Mode components1; Control Or aggregates control outputs of the Mode compo-
nents (i.e., waits for the active Mode component to finish); and Data Ors aggregate
Mode components’ outputs.

D.2 Scade

We present two Scade implementations of the climate control system that illus-
trate two different component representations of interaction patterns in Scade.

Figure D.2 shows the first implementation. The system is represented by a
composite component comprised of three subcomponents that correspond to the
three modes of the climate control systems. The subcomponents’ behaviour is
similar to their counterparts in ProCom and our model. Their parent composite
component is defined as a Scade state machine with three states corresponding
to the three system modes. Each of the subcomponents is used to process their
parent component’s inputs when their respective state is active.

An alternative Scade implementation of the climate control system, shown in
Figure D.3, separates the definition of interaction and computation. The sep-
aration is possible, because Scade, like ProCom, is based on the pipe-and-filter
interaction style. Even the resulting architectures are similar (compare Figure D.3
with Figure D.1).

The composite component that constitutes the climate control system contains

1Connections in ProCom have no buffers and we assume that old data on component ports
are overwritten to ensure that Mode components process up-to-date inputs.
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Figure D.2: Climate Control Component as a State Machine in Scade

Figure D.3: Climate Control Component with Separate Mode Switching in Scade
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four subcomponents: ModeSM for computing the new mode and three other com-
ponents implementing the system’s behaviour in each of its modes. The subcom-
ponents are composed by means of data connections. Additionally, their outputs
are merged by two ‘case’ operators (the two darker rectangles in Figure D.3).
Unlike our model, subcomponents cannot be disabled and thus produce results
all the time; the system outputs the results selected by the case operators.

D.3 Simulink

A Simulink subsystem implementing the behaviour of one reaction of the climate
control system is depicted in Figure D.4. The implementation is very similar
to the Scade one (compare with Figure D.3): the three subsystems realising the
system modes’ functionality as well as the subsystem computing the current mode
have the same data ports; a similar mechanism is used to merge the outputs of
the mode components to obtain the system’s outputs; and the mode switching
interaction pattern is represented by means of a number of data connections and
Simulink blocks.

However, the interaction pattern’s implementation in Simulink embodies more
complex behaviour than in the Scade’s implementation, where it just distributes
inputs to all mode components and selects the output of the one that corresponds
to the current mode. Since we have represented mode components as enabled sub-
systems (note the square wave icons within the component boxes in Figure D.4),
we can also model the active subsystem selection. This is realised by splitting the
output data flow of ModeChanger, which corresponds to the current mode, and
testing whether its value equals the respective mode value; the results of these
tests (outputs of the blocks R1, R2, and R3) are passed to Enabled ports of the
mode components and determine whether a given subsystem computes its out-
puts. This also makes the two switches (Switch and Switch1) logically redundant,
because just one subsystem is enabled at any one time; however, they cannot
be removed due to the Simulink’s constraint of only one incoming signal to an
output port (see ports tmp and rpm in the figure).

Figure D.5 shows a Simulink implementation of the ManualTemperature com-
ponent, which is an example of an enabled subsystem (note the Enable port in the
upper-left part of the figure). The component also contains a special ‘Memory’
block, named temp, which delays outputting of its current input until the next
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Figure D.5: ManualTemperature in Simulink

simulation step – effectively modelling the internal state of the subsystem (the
currently set temperature).

D.4 UML 2.0

Figure D.6 shows a representation of the mode switching pattern within a UML
2.0 composite component, implementing the functionality of the climate control
system in one reactive cycle. Because we designed the component to maximally
separate computation and interaction, it consists of three subcomponents re-
sponsible for the functionalities of the three modes of operation of the system,
a subcomponent computing the next active mode and a subcomponent, called
ModeSwitcher, that realises the mode switching interaction pattern. In fact, the
design conforms to the Mediator design pattern [44], with ModeSwitcher playing
the role of the mediator and other subcomponents playing the role of Colleagues.

The ModeSwitcher component, which represents the mode switching interac-
tion pattern, has one provided port and one required port for each component it
coordinates. Since it is responsible for distributing and collecting data from all
the coordinated components, the signature of its regulate service aggregates all
the manipulated data. Its provided port is delegated to become the provided port
of the whole climate control composite component. The exact behaviour of the
pattern is defined in the implementation of the component, shown in Figure D.7
(as pseudocode).
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interface IAutoVentilation {
regulate (up: bool, down: bool, carTemp: int) : int_pair

}
interface IManualControl {

regulate (up: bool, down: bool): int
}
interface IModeChanger {

nextMode(mode: bool): int
}
interface IClimateControl {

regulate (mode: bool, up: bool, down: bool, carTemp: int) : int_pair
}

Figure D.6: Climate Control Component in UML 2.0

component ModeSwitcher {
requires auto : IAutoVentilation
requires temp : IManualControl
requires vent : IManualControl
requires changer : IModeChanger
provides IClimateControl {

regulate (mode: bool, up: bool, down: bool, carTemp: int) : int_pair {
nextMode = changer.nextMode(mode)
switch (nextMode) {

case 0: return auto. regulate (up, down, carTemp)
case 1: return int_pair(temp.regulate(up, down), null)
case 2: return int_pair(null , vent. regulate (up, down))

}
}

}
}

Figure D.7: Implementation of ModeSwitcher



Appendix E

Examples of Design Pattern
Formalisation Techniques

In this appendix, we give examples of methods formalising design pattern solu-
tions, which we analysed in Section 11.3. We present one example for each group
of approaches identified in Section 11.3.1.

E.1 Logic Constraints

BPSL (Balanced Pattern Specification Language) [116] uses first-order logic to
describe structural aspects of patterns and temporal logic of actions to define
behaviour of pattern participants. BPSL pre-defines sets of entities comprising
object-oriented designs (classes, attributes and methods) and relations describing
their structural relationships (e.g., Defined-in(attribute, class) or Reference-to-
one (class1, class2)). The behavioural part of patterns si defined in terms of
temporal relations and a set of actions that specify changes to the temporal
relations in time.

For instance, in the Observer pattern, the Attached(subject, listener) tempo-
ral relation denotes that the listener is registered in the list of entities receiving
updates when the subject’s state changes; the actions Attach(subject, listener)
and Detach(subject, listener) add or remove the pair (subject, listener) to/from
the relation.

A pattern is defined as a formula of the following form:

∃(x1, . . . , xn)(∧iRi

∧
∨jAj),

293
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where x1, . . . , xn denote pattern parameters – classes, methods and other entities
comprising the pattern specification; Ri denote structural and temporal relations
among pattern parameters; and Aj are actions that modify the temporal relations
in time. For example, the formula in Figure E.1 defines the Observer pattern.

∃ subject, observer ∈ Classes

∃ subject-state, observer-state ∈ Attributes

∃ attach, detach, notify, get-state, set-state,

update ∈Methods

∃ o, s ∈ Objects

∃ d ∈ V alues
Defined-in(subject-state, subject)∧

Defined-in(observer-state, observer)∧
Defined-in(attach, subject)∧
Defined-in(detach, subject)∧
Defined-in(notify, subject)∧

Defined-in(set-state, subject)∧
Defined-in(get-state, subject)∧
Defined-in(update, observer)∧

Reference-to-one(observer, subject)∧
Reference-to-many(subject, observer)∧

Argument(observer, attach)∧
Argument(observer, detach)∧

Invocation(set-state, notify)∧
Invocation(notify, update)∧

Invocation(update, get-state)∧

Instance(s, subject)∧
Instance(o, observer)∧

Attached(subject[0 . . . 1], observer[∗])∧
Updated(observer[∗], subject[0 . . . 1])

∨
Attach(s, o) :

¬Attached(s, o)→ Attached′(s, o)
∨

Detach(s, o) :
Attached(s, o)→ ¬Attached′(s, o)

∨
Notify(s, d) :

true→
(¬Updated′(s, observer)∧

s.subject-state′ = d)
∨

Update(s, o) :
Attached(s, o) ∧ ¬Updated(s, o)→

(Updated′(s, o)∧
o.observer-state′ = s.subject-state)

Figure E.1: The Observer Pattern Specified in BPSL

E.2 Diagrammatic Constraints

Role-based Modelling Language (RBML) [43] represents patterns using customised
UML diagrams. Traditional UML diagrams are meant to represent a single de-
sign (e.g., a class diagram models a set of particular classes). However, pattern
solutions define a family of complying designs (of pattern instances). RBML
addresses this shortcoming of UML diagrams in modelling pattern solutions by
introducing the concepts of roles. Roles semantically correspond to sets of design
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elements of the same type (e.g., sets of classes or associations), whose elements
are unknown at the time when roles are created. By including roles in a UML
diagram, RBML yields a ‘meta-diagram’ representing a number of designs that
correspond to different sets of design elements assigned to the roles present in the
meta-diagram. RBML specifies pattern solutions using these meta-diagrams and
Object Constraint Language.

|Subject 1..*

|SubjectState: |DataType 1..*

|Attach(|o: |Observer) 1..*
|Notify() 1..*
|GetState(): |DataType 1..*

|Observer 1..*

|ObserverState: |DataType 1..1

|Update(|s : |Subject) 1..1

|Observes   1..*

context |Subject inv:
     self.isAbstract = false

context |Subject::|Attach(|obsv: |Observer)
     pre: self.|Obs -> excludes(|obsv)
     post: self.|Obs = self.|Obs@pre -> including(|obsv)

|Obs 1..1

Figure E.2: An RBML Meta-class Diagram

Figure E.2 depicts the structural description of the Observer pattern using
a meta-class diagram. All entities in the diagram with ‘|’ prepended to their
name are roles. Each role also has an associated multiplicity, which denotes
the admissible size of the set of design elements associated with the role. For
instance, |Subject is a role that can be associated with at least one class, |Notify
is a role that can be associated with at least one method, etc. It is easy to see
how the RBML meta-class diagram in the figure (representing the structural part
of the pattern solution) can be instantiated into a number of UML class diagrams
(particular instances of the pattern solution).

E.3 Design Transformations

Herranz et al. [57] define patterns as class operators in SLAM-SL, an object-
oriented specification language. Figure E.3 shows an excerpt from the definition
of a transformation introducing the Composite design pattern. The operator is
defined as the method apply in the class Composite, which takes a set of classes
(denoted as leaves in the code) as its parameter. The input classes have to
fulfil the precondition (line 4) – they have to be a non-empty set and must have
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1 class Composite inherits DPattern <Unit >
2 public observer apply ([ Class ]) : [ Class ]
3 let common_meths = {m with cl in leaves | m in cl methods } with m in cl . methods
4 pre (not leaves isEmpty ) and (not common_meths isEmpty )
5 call apply ( leaves )
6 post result = [component, composite] + [c\inheritance<−(component) with c in leaves]

Figure E.3: Transformation Introducing the Composite Pattern in SLAM-SL

some method declarations in common – before the operator can be applied. The
approach relies on reflection to inspect and modify the input design models.
In our example, the operator creates two new classes (variables component and
composite, whose definitions are not shown but conform to the Composite pattern)
and modifies the input classes to inherit from component.

E.4 Reusable Implementations

We give an example of the Observer implementation in AspectJ (an aspect-
oriented extension of Java) by Hannemann and Kisczales [52]. The basic idea
of the approach is that a pattern solution’s implementation usually crosscuts
code of multiple classes (participants). Pattern solutions are thus defined as ab-
stract aspects; instantiated patterns are concrete aspects that extend the abstract
aspects. Figure E.4 shows the abstract aspect defining the generic part of Ob-
server’s solution. The participant roles are represented as interfaces (lines 2-3).
The aspect also implements the subject’s management of registered observers
via a hash map (lines 5-8) and declares abstract pointcuts1 (line 10) and meth-
ods (line 11) to be defined by the concrete aspects corresponding to particular
pattern instances. Finally, it defines an after advice which injects calls to the
updateObserver method in all locations specified by the subjectChange pointcut.

Figure E.5 gives an example of a concrete aspect, called ConcreteObserver,
representing a particular instance of the Observer pattern. The aspect extends
the abstract aspect defined in Figure E.4. It associates concrete classes (Point and
Screen) with pattern roles by making them implement the interfaces defined by the
parent aspect (lines 2-3) and defines the inherited abstract pointcut subjectChange
and the method updateObserver. The pointcut is set to all code locations from

1In AspectJ terminology, a pointcut denotes a set of code locations (joinpoints) in which an
aspect can change behaviour using so-called advices.
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1 public abstract aspect ObserverProtocol {
2 protected interface Subject { }
3 protected interface Observer { }
4
5 private WeakHashMap perSubjectObservers ;
6 protected List getObservers (Subject s) { ... }
7 public void addObserver (Subject s , Observer o) { ... }
8 public void removeObserver (Subject s , Observer o) { ... }
9

10 abstract protected pointcut subjectChange (Subject s);
11 abstract protected void updateObserver (Subject s , Observer o);
12 after (Subject s) : subjectChange (s) { /∗ for each observer , call updateObserver ∗/ }
13 }

Figure E.4: Abstract Aspect Realising the Observer Pattern in AspectJ

which the setColour method is called, and the method is defined to refresh the
registered screen observers if a point’s colour changes (not shown in the code).

1 public aspect ColorObserver extends ObserverProtocol {
2 declare parents : Point implements Subject ;
3 declare parents : Screen implements Observer ;
4 protected pointcut subjectChange (Subject s):
5 call (void Point. setColour(Colour)) && target(s);
6 protected void updateObserver (Subject s , Observer o) { ... }
7 }

Figure E.5: Concrete Aspect Realising an Observer Instance



Appendix F

Rationale for Our Component
Model’s Design

In this appendix, we motivate various design choices made in the process of
defining our component model by explicitly tracing high-level design objectives
that led to these choices. The information presented in this appendix helps the
reader to quickly understand the rationale for the features of our component
model, without having to read the detailed motivation presented in the main
body of this thesis.

We analyse the component model’s design in terms of (i) its objectives, (ii) its
principles (high-level strategies for realising the design objectives), and (iii) the de-
cisions that correspond to particular features of the resulting component model.
We link these entities to allow for an easy tracing between them.

The main design objective (see objective #1 in Table F.1) corresponds to the
main goal of our research – to come up with first-class abstractions for interaction
patterns that would be reusable in the context of component models. Other
design objectives either support the main objective (#2 and #3) or result from
our decisions to limit the scope of our research to a particular domain (#4) and
to define our component model fully, in a way that would make it possible to
implement the prototype tool capable of designing and simulating systems in our
model (#5).

Design principles (see Table F.2) elaborate on the design objectives; they are
strategies applied when defining particular areas of the component model. They
mostly correspond to the characteristics identified in Section 5.2 (principles A-G).
Additionally, there are principles that refer to the domain-specificity of some parts

298
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ID Design Objective
1 First-class abstractions suited for interaction patterns
2 Modelling interaction across a wide range of systems (from data-driven

to control-driven systems)
3 Scalable architecture modelling
4 Focus on reactive control software systems
5 Practical implementation of the component model designer and simulator

Table F.1: Design Objectives

of the component model (H) and that refine the objective of defining practical
implementation of the component model (I and J).

ID Design Principle Objectives
1 2 3 4 5

A Explicit architectural representation of connectors 5

B The ability to define new connectors 5 5

C Separate specification of interaction and computa-
tion

5

D Explicit control flow and data flow modelling 5 5 5

E Hierarchical composition of connectors 5 5 5

F Separate control flow and data flow modelling 5 5

G Design generic connectors to increase their reuse po-
tential

5 5

H Relevant parts of the component model can be spe-
cific to the domain of reactive control systems

5

I Easily testable systems 5

J Define simplified, but working, solutions for the parts
of the model the deeper development of which is out
of the scope of this thesis

5

Table F.2: Design Principles

Finally, Table F.3 traces which design principles led to particular design de-
cisions in defining the features of our component model.
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