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Abstract

Bayesian Methods for Gene Expression Analysis from
High-Throughput Sequencing data

Peter Glaus
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2014

We study the tasks of transcript expression quantification and differential
expression analysis based on data from high-throughput sequencing of the tran-
scriptome (RNA-seq).

In an RNA-seq experiment subsequences of nucleotides are sampled from a
transcriptome specimen, producing millions of short reads. The reads can be
mapped to a reference to determine the set of transcripts from which they were
sequenced. We can measure the expression of transcripts in the specimen by
determining the amount of reads that were sequenced from individual transcripts.

In this thesis we propose a new probabilistic method for inferring the expres-
sion of transcripts from RNA-seq data. We use a generative model of the data
that can account for read errors, fragment length distribution and non-uniform
distribution of reads along transcripts. We apply the Bayesian inference approach,
using the Gibbs sampling algorithm to sample from the posterior distribution of
transcript expression. Producing the full distribution enables assessment of the
uncertainty of the estimated expression levels.

We also investigate the use of alternative inference techniques for the tran-
script expression quantification. We apply a collapsed Variational Bayes algo-
rithm which can provide accurate estimates of mean expression faster than the
Gibbs sampling algorithm.

Building on the results from transcript expression quantification, we present
a new method for the differential expression analysis. Our approach utilizes the
full posterior distribution of expression from multiple replicates in order to detect
significant changes in abundance between different conditions. The method can

9



be applied to differential expression analysis of both genes and transcripts.

We use the newly proposed methods to analyse real RNA-seq data and pro-
vide evaluation of their accuracy using synthetic datasets. We demonstrate the
advantages of our approach in comparisons with existing alternative approaches
for expression quantification and differential expression analysis.

The methods are implemented in the BitSeq package, which is freely dis-
tributed under an open-source license. Our methods can be accessed and used
by other researchers for RNA-seq data analysis.
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Chapter 1

Introduction

It took almost 15 years, 20 research centres and billions of dollars to sequence

99% of DNA using Sanger sequencing in the Human Genome Project (Human

Genome Sequencing Consortium International, 2004). Since the beginning of the

project, advancement of technology produced new, faster and cheaper ways of

sequencing. Next Generation Sequencing (NGS) technologies, also referred to as

High-Throughput Sequencing (HTS) or Massive Parallel Sequencing, now allow

sequencing a human genome in a few weeks, with costs well under one hundred

thousand dollars. Apart from the direct application of exploring the genomic

code, the high speed and low cost of the new technologies enabled a range of

new scientific approaches in genomics, transcriptomics, metagenomics and other

related fields.

High-throughput sequencing of the transcriptome (RNA-seq) is one of the

major applications of NGS. In an RNA-seq experiment, RNA molecules are ex-

tracted from a sample, reverse-transcribed into complementary DNA, which is

sequenced by a high-throughput sequencing device. RNA-seq can be used for

discovering which transcripts are present in a sample and also for the key task

of measuring their expression — the abundance of transcript molecules within a

sample. The high reproducibility, large dynamic range and ability to detect novel

splice variants make RNA-seq an attractive alternative to previously used tech-

nologies such as microarrays. Here we study the problem of transcript expression

quantification through sequencing and related challenges of analysis of RNA-seq

data.

14



1.1. OBJECTIVES OF THIS THESIS 15

1.1 Objectives of this thesis

The aim of this thesis is to investigate probabilistic methods for the analysis of

RNA-seq data using Bayesian approaches. We focus on the quantification of tran-

script and gene expression levels using high-throughput sequencing technologies

and comparison of abundance estimates between different conditions.

The quantification of transcript expression levels from RNA-seq data cannot

be solved exactly in most cases. The process of high-throughput sequencing is a

random process that samples small pieces of evidence of the molecules being anal-

ysed. Despite the high reproducibility of experiments, the RNA-seq data contains

random effects and errors. The similarity of alternative transcript sequences can

lead to situations which make the exact quantification difficult or impossible and

necessitate probabilistic approaches.

The differential expression analysis is a direct extension of the expression

quantification task. To detect effects that are truly caused by various conditions,

uncertainty of the abundance estimates as well as natural abundance fluctuations

have to be considered within the analysis.

In these kinds of problems, probabilistic methods provide a natural frame-

work for dealing with the uncertainty. We apply the Bayesian approaches which

represent variables in the form of probability distributions and provide ways for

manipulating the distributions in further analysis.

We summarise the goals of this research project in the following four points:

1. Create a method for quantification of transcript expression from RNA-seq

data, which will provide accurate expression estimates as well as a measure

of uncertainty for the estimates.

2. Investigate efficient inference algorithms that can be used for estimating

transcript expression and accommodate constantly increasing size of RNA-

seq data.

3. Study the use of probabilistic methods for detecting abundance changes,

while accounting for biological fluctuations and leveraging the uncertainty

measure of expression estimates.

4. Provide implementation of the expression quantification and differential ex-

pression analysis methods that can be used by bioinformaticians and other

researchers performing RNA-seq data analysis.
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1.2 Structure of the thesis

In the rest of this chapter we provide an overview of high-throughput sequencing

and RNA-seq as well as a review of related approaches used for RNA-seq data

analysis. We look at the NGS technologies currently being used, the properties

of the data being generated and the applications of high-throughput sequenc-

ing. Then we introduce the RNA-seq procedure for sequencing the transcriptome

and define the problems of expression quantification and differential expression

analysis. We also include a short review of related methods for expression esti-

mation, differential expression analysis and other applications of RNA-seq. The

final section provides an overview of the Bayesian principles used in this thesis.

In Chapter 2 we propose a probabilistic approach for transcript expression

quantification. We describe the generative model, alignment likelihood calcula-

tion and non-uniform read distribution bias correction method used in our ap-

proach. Standard and collapsed versions of the Gibbs sampling algorithm are

used for inference of the posterior distribution of expression.

In the results section we examine output produced by our approach. We

evaluate the accuracy of expression quantification using synthetic data and real

data with validation. We also provide comparison of our method with other

state-of-the-art methods for expression quantification.

In Chapter 3 we present a novel method for differential expression analysis

that builds upon our expression quantification procedure presented in Chapter

2. The differential expression analysis method uses expression estimates from

replicated samples to assess the biological variance. The novelty of the method is

in the use of entire posterior distribution produced by our quantification method.

This enables propagation of uncertainty from the quantification stage into the

differential expression analysis results.

We present the workings of our method and also evaluate its performance. We

use synthetic data for evaluation as it enables comparison against known ground

truth. Comparison with alternative differential expression analysis approaches is

provided as well.

In Chapter 4 we investigate the use of alternative inference approaches for the

expression estimation problem. Instead of using the Gibbs sampling algorithm,

we apply a Variational Bayes approximate inference procedure to estimate the

expression levels of transcripts. The alternative inference method provides a high
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level of accuracy in terms of mean estimate, with much shorter run time.

We compare the results obtained by the Variational Bayes inference with

those produced by Gibbs sampling in order to assess the effectiveness of the

approximative inference. We also evaluate the inference method independently

using synthetic data with known ground truth expression.

In Chapter 5 we conclude the thesis by summarizing the presented contri-

butions. Furthermore, we outline possible extensions of our work and new ap-

proaches building on the methods presented in this thesis.

1.3 High-throughput sequencing

With the aim of reducing cost and increasing throughput of Sanger sequencing,

various platforms have been developed that are referred to as next, or second,

generation sequencing devices. The improvement was brought by means of great

parallelisation of the sequencing process of a single sample.

While every NGS platform uses specific mechanisms during the sequencing

process, they all share common traits of high-throughput sequencing. The most

important one is that instead of producing one complete sequence of analysed

sample, the output consists of millions of short reads, or tags. The reads are

randomly sampled nucleotide-subsequences of the original molecules present in

the sample. The length of the reads is shorter than those produced by Sanger

sequencing, ranging from 25 base pairs (bp) up to 400bp, with only the newest

pyrosequencing devices being able to produce reads of length 700bp. This property

of the high-throughput sequencing technologies output poses new challenges for

analysis of this kind of data.

The ability to sequence vast amounts of molecules at low cost prompted re-

searchers to experiment with applying NGS to a wide variety of tasks. These

range through de-novo genome assembly, nucleotide variation detection, protein

binding analysis and transcriptome quantification.

Additionally, NGS revolutionised the field of Bioinformatics, the novel ap-

plications of sequencing as well as the short-read high-throughput properties of

the data require new computational approaches for the analysis. First of all,

the shear amount of generated data would make any kind of analysis impossible

without modern computing technologies. Processing this kind of datasets can

be time consuming as well as storage intensive. Secondly, the sequence being
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Figure 1.1: Outline of high-throughput sequencing protocol In the first
phase of the protocol: molecules are fragmented and size selected (a), the frag-
ments are attached to a carrier such as a glass slide (b) and the attached molecules
are amplified through polymerase chain reaction (PCR) (c). In the second phase
consisting of multiple cycles, fluorescent markers are attached to the molecules
and photographed (d). The last phase is the base calling process in which the
imaged colors of each spot are translated into sequences of bases (e).

analysed must be recovered from these short reads either through alignment or

through assembly. Errors within reads, repetitive regions of the genome, single

nucleotide polymorphisms and complexity of genomic sequences make this task

very challenging.

1.3.1 Platforms for next generation sequencing

Each proprietary NGS platform has its own technological procedure. The most

common platforms used are the Genome Sequencer FLX by 454 Life Sciences

and Roche, Genome Analyzer by Illumina and SOLiD developed by Applied

Biosystems. Even though all these procedures are different, they can be described

in terms of three separate phases (Metzker, 2010). An outline of the sequencing

process is depicted in Figure 1.1.

The first phase entails preparing a sequence library, in which the DNA se-

quence of interest must be shredded into shorter sequences of roughly equal size.

These sequences have to be attached to a specific carrier, enabling parallel se-

quencing of a thousand to million molecules. Preparing the library may also

include sequence amplifications, where the molecules are amplified to increase

signal strength in later procedures.
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read length throughput
(bp) (reads)

GS FLX 700 1M
HiSeq 2000 100 6G
SOLiDv4 50 1.4G

Table 1.1: Comparison of read length and maximal throughput of most
common sequencing platforms. Data reported by Liu et al. (2012).

In the second phase the molecules are sequenced using chemical reactions. Se-

quencing usually entails multiple cycles of adding fluorescent markers and imag-

ing resulting molecules. In each cycle a complementary nucleotide carrying a

marker is attached, the molecules are photographed and the marker is removed.

Nucleotides are distinguished based on the observed colour spectrum. Modern

platforms are able to sequence only a small number of nucleotides resulting in

very short sequences ranging from 25bp to 700bp in length, depending on the

sequencing technology.

The last phase is the data analysis. Resulting colour spectra have to be

translated into sequences of bases which can be used for further investigation.

Produced short reads have to be either aligned to an existing reference genome or

assembled de-novo. Further steps are dependent on the type of experiment being

carried out.

The main interest of this report are the methods for analysing data obtained in

the last phase of NGS experiment. However, it is very important to appreciate the

whole process of generating a dataset. Understanding the sequencing procedure

and its limitations and possible errors enables us to create methods which make

use of this knowledge and produce results of higher accuracy.

Pyrosequencing

Technology provided by 454 Life Sciences/Roche was the first widely available,

next generation sequencing platform (Mardis, 2008). It uses pyrosequencing to

determine nucleotide sequences.

The library preparation is based on emulsion polymerase chain reaction (PCR)

(Shendure and Ji, 2008). Molecules are broken into smaller sizes and attached to

beads. The beads with molecules are inserted into droplets in which the molecules

can be amplified via PCR. After purification the molecules are deposited into

Picotiter Plate (PTP) wells in which the main chemical process takes place.
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The second phase consists of addition of beads with enzymes to the PTP wells.

Afterwards a nucleotide solution causing bioluminescence is applied to the PTP

and the light emission caused by chemical reaction is recorder by CCD camera.

For this approach it is difficult to distinguish longer continuous regions of same

base which can cause errors in resulting sequence (Mardis, 2008).

Genome Sequencer FLX by 454/Roche is able to produces the longest reads

out of the Second generation platforms, see Table 1.1. However, the number of

reads sequenced is in the order of hundreds of thousands and cost of sequencing

per base pair is the highest out of currently applied NGS technologies (Wall et al.,

2009).

Sequencing via reversible termination

Sequencing using cyclic reversible termination was introduced by Solexa in Genome

Analyzer 1G, which was later acquired by Illumina. In this case the sequences

are attached to a glass slide, also called a flow cell, on which they are amplified

by the use of bridge PCR (Metzker, 2010). Separated clusters of molecules are

formed on the flow cell, which are ready to be sequenced.

The sequencing proceeds in cycles in which universal primers are used to

attach a complementary nucleotide with fluorescent dye to every molecule. The

addition of a single nucleotide is achieved by termination of DNA synthesis. After

the imaging step determines the nucleotide using total internal reflection fluores-

cence, cleavage removes the 3’ blocking group. The number of such cycles is

dependent on desired read length. A base caller determines the base of each nu-

cleotide and estimates quality of the call. The most probable error for this kind

of procedure is a base substitution (Shendure and Ji, 2008).

The first generation Genome Analyzer was capable of producing tags of length

around 25bp to 36bp. The read length of current generation devices, HiSeq 2000,

increased substantially up to 150bp reads. The number of generated reads is now

of the order of billions of short sequences per run.

Sequencing using ligation

Support oligonucleotide ligation detection (SOLiD) is a sequencing platform de-

veloped by Applied Biosystems (AB). The preparation is based on emulsion PCR

similar to Genome Sequencer FLX, with the exceptions that in SOLiD the beads

are attached to a glass plate (Metzker, 2010).
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The sequencing process makes use of DNA ligation instead of PCR. The DNA

ligase is used to attach a universal complementary primer. After observation of

fluorescent marker, cleavage removes the ligase with dye. This process can be

applied to every fifth position in the sequence. The whole cycle is restarted

by removing the extended primer and starting the whole process shifted by one

nucleotide.

The method uses two base probes which provide information about two neigh-

bouring bases, thus each base is encoded twice providing less error prone results.

SOLiD produces specific colour space encoding of sequences which can be either

translated into regular base-pair encoding or it can be used for higher precision

alignment.

While the reads produced by this platform are usually 50bp long, the number

of reads is close to that of HiSeq devices and the base error rate is lower (Liu

et al., 2012).

Other methods

More recently introduced sequencing devices are HeliScope by Helicos Bioscience,

Personal Genome Machine by Ion Torrent and RS by Pacific Biosciences.

The HeliScope uses a single molecule sequencing approach with high sensitiv-

ity fluorescence instead of amplification of molecules. It avoids the amplification

step which can introduce errors and biases (Metzker, 2010).

The Personal Genome Machine employs a novel approach, using a semicon-

ductor detector instead of fluorescent imaging. It detects the changes in pH due

to proton release during synthesis (Quail et al., 2012). As the name suggests, it is

aimed to be a benchtop device with lower acquiring cost while providing a novel

way of sequencing approach.

In 2010, Pacific Bioscience introduced its single-molecule real-time sequencing

device RS. It is regarded as Third Generation Sequencing due to the avoidance of

PCR during the preparation and sequencing of molecules in real time. The RS is

able to read long continuous sequences of molecules resulting in variable length,

with mean read length up to 2566bp (Liu et al., 2012). While being a promis-

ing future technology, at the moment, the error rate is higher and sequencing

throughput is lower than NGS devices.

Other promising technology suitable for the third generation sequencing is

nanopore sequencing where a molecule driven through a suitable nanopore would
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change the ionic current through the nanopore (Branton et al., 2008). The char-

acteristic change in ionic current can then be used to identify individual bases.

However, this kind of device has not been released yet and the technology is still

under development.

An intriguing alternative approach to NGS is the G.007 Polonator using se-

quencing by ligation similar to the SOLiD devices (Shendure and Ji, 2008). It

was aimed to be developed as an open source platform providing low cost access

to sequencing. Unfortunately it falls behind the commercial devices in terms of

the read length and throughput (Metzker, 2010).

1.3.2 Applications of high-throughput sequencing

The technology of high-throughput sequencing was originally designed to study

and explore genomic sequence. Except for the improved throughput and reduced

cost, there are two properties shared by the NGS technologies that enabled its

use in other areas. Firstly, as long as the sample provided consists of fragments of

DNA molecules, the origin of the molecules does not matter. This, for example

enables analysis of RNA through transformation of RNA into complementary

DNA (cDNA). Secondly, the molecules present in the sample are fragmented and

sampled almost uniformly, enabling their quantification by read count. Note that

while biases have been reported in the sequencing output, these biases tend to

be systematic and thus can be accounted for with a careful analysis, see Section

1.5.2.

Here we present an example of different applications of NGS technologies

applied to genomic, proteomic and transcriptomic problems. These are the most

common applications of NGS and hopefully provide an overview of the spectrum

of problems that can be addressed by this technology. Many other variations

of these approaches and combinations of high-throughput sequencing with other

experimental methods have been reported.

De-novo discovery

De-novo discovery is the basic way to study unknown genomic sequences. Apart

from well studied model organisms, e.g. human, domestic mouse or C. elegans, the

majority of species have unknown genome. In de-novo sequencing, the unknown
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genome is sequenced by the high-throughput sequencing technology. The result-

ing reads then have to be assembled into consecutive chromosomal sequences.

This can be done by looking for long-enough overlaps of reads.

Assembling the short reads generated by NGS in an efficient way while ac-

counting for errors occurring in the sequencing output requires novel algorith-

mic approaches. While many methods still rely on the longer reads produced

by Sanger sequencing, new techniques that successfully use high-throughput se-

quencing for this task have been presented (Zerbino and Birney, 2008; Simpson

et al., 2009; Miller et al., 2010; Li et al., 2010c; Simpson and Durbin, 2012).

For de-novo discovery it is preferable to use technology that produces long

reads as it enables longer overlaps of reads and disambiguates short repetitive

regions. The sample might have to be sequenced multiple times in order to pro-

duces sufficient read coverage as high sequencing depth is also necessary. While

the majority of genomic sequence can be assembled through the use of NGS, long,

repetitive regions and duplicated sequence are limitations of this approach (Alkan

et al., 2011). A comparison and evaluation of some of the currently used appli-

cations for de-novo assembly of NGS data was done by Salzberg et al. (2012).

Analysis of genetic variation

Even for known genomes, studying variations between individuals is important.

For example, most human genomic sequence is shared by every individual and

only around 2% bases vary 1. Changes at these bases are referred to as Single Nu-

cleotide Polymorphisms (SNPs) and are the fundamental way individuals within

one species differ.

The variations of genomic code and their relation to traits are highly re-

searched topics. Apart from SNPs, other variation such as sequence insertions

and deletions (indels) are also important. While some variants are known to be

directly responsible for genetic disorders, others might have indirect relation to

important changes in phenotype.

NGS can be directly applied to the SNP and indel discovery problem in known

genomes. Given a reference genome of the sample being sequenced, reads gener-

ated by the high-throughput sequencing are firstly aligned to the reference. The

1Build #138 of the database of genetic variations, dbSNP (Sherry, 2001), lists 62.7M varia-
tions.
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alignment can be described as the simple problem of finding positions of sub-

strings within long reference string made much harder by sequencing errors and

the variations themselves. We describe the alignment process in greater detail in

Section 1.4.4. Once the reads are aligned to the reference, base variations sup-

ported by multiple reads are selected as SNP candidates. Nielsen et al. (2011)

reviews common software packages available for SNP detection from aligned NGS

reads.

Unlike the case of de-novo assembly, the length of NGS reads does not play

an important role for SNP discovery as the alignment is a much easier task.

Nevertheless, high sequencing coverage is important for discriminating between

sequencing errors and true variations. Low error rate, especially in terms of base

substitution, is also desired, even though it can be substituted by increased depth

of sequencing.

Protein — DNA interactions discovery

Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) is a method

for exploring protein — DNA interactions through discovering the binding sites of

proteins, such as transcription factors and histones. A protein of interest is mixed

with chromatin treated by a chemical reagent, enabling formation of cross-links

with binding sites. Chromatin is then sonicated into smaller fragments, followed

by the immunoprecipitation, a process of adding a protein specific antibody to

isolate protein with bound DNA. After purification of immunoprecipitated chro-

matin, the cross-links are reversed separating the protein from DNA, which is

quantified through the use of sequencing.

The immunoprecipitated chromatin is sequenced with a high-throughput se-

quencing device, producing reads that have to be aligned to the reference. Because

the isolation in ChIP is not complete, the method only enables enrichment of the

binding sites instead of direct selection. As the reads align to the entire genome,

the binding sites have to be identified through searching for enriched regions, also

referred to as peaks. Detecting peaks that correspond to true binding sites is the

most difficult part of the analysis.

For a review of the ChIP-seq methodology, its advancements and caveats

please refer to one of (Park, 2009; Pepke et al., 2009; Hoffman and Jones, 2009).

More detailed evaluation of accuracy and precision of previously published algo-

rithms can be found in (Laajala et al., 2009; Wilbanks and Facciotti, 2010).
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Sequencing of RNA

While all previous applications were primarily targeted at the analysis of ge-

nomic DNA, high-throughput sequencing can be also used to study molecules of

RNA. RNA molecules present in cells can be extracted and reverse-transcribed

into complementary DNA (cDNA), which is then sequenced and analysed by

high-throughput sequencing technology. The application of NGS technologies for

sequencing RNA is commonly known as RNA-seq and is described in detail in

Section 1.4.

1.4 RNA-seq

1.4.1 Transcriptome

Information encoded in the DNA defines all living organisms. The most important

part of the information is stored in the form of genes, which are sub-sequences

of the DNA serving as source code for all other molecules being created. The

information stored in genes is copied, or transcribed, to molecules of RNA by

RNA polymerase enzymes. While some of the molecules serve regulatory function

and others serve as a basis for building proteins, the sum of all RNA present in

the cell is the transcriptome.

As the genetic code is constant, the differentiation of cells and tissues is done

via regulating the use of the genetic code. This is done on several levels, one being

the regulation of transcription. Analysis of the transcriptome provides a key step

in the exploration of regulatory functions of living organisms, deciphering of gene

functions and detection of genetic disorders.

The transcriptome consists of different types of RNA molecules: messenger

RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), micro RNA

(miRNA) and other ‘non-coding’ RNA. The mRNA is the only RNA that is

translated into proteins which are the main building blocks of living organisms,

hence is referred to as the coding RNA and its genes are called coding genes.

While most studies of the transcriptome focus on the mRNA as it is the pre-

cursor for proteins, analysis of non-coding RNA is important for understanding

many other cellular mechanisms.

Different transcripts of the same gene are often referred to as isoforms of the

gene. Despite being from the same genetic locus, their function can vary. A small
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Figure 1.2: Illustration of transcription. The gene encoded on a specific
strand of the DNA is transcribed into precursor RNA (pre-mRNA). The final
transcripts are formed by a splicing mechanism which removes introns from the
sequence. The splicing mechanism can also remove parts of coding sequences or
entire exons, resulting in multiple transcripts of a single gene.

change in a mRNA can lead to a protein with different function being translated.

Most genes, especially the coding genes, consist of smaller units: exons and

introns. Exons carry important information about the gene’s product while the

function of introns has not yet been fully explained. Transcription of genes into

RNA has two functionally separate steps which can happen concurrently. First

the gene is copied into precursor RNA (pre-mRNA) 2 which is then spliced into

the actual transcript of RNA. The process is outlined in Figure 1.2. During the

process of splicing, all the introns and in many cases also part of the exons are

spliced out of the original sequence. A gene can be spliced in more than one way,

thus leading to the creation of multiple transcripts — different RNAs originating

from a single gene.

1.4.2 RNA-seq for expression level quantification

We say that a gene is expressed when it is being transcribed and we refer to

the abundance of its transcripts within a sample by the term expression level.

The gene expression level can be used as a proxy measurement of its activity

despite the fact that the abundance of transcripts does not imply their actual

use. Nevertheless, high abundance of transcripts signifies some increased activity,

while no transcript molecules directly imply gene’s idleness.

The expression of genes in cells and tissues have been of great interest to

2The abbreviation pre-mRNA is used for referring to all primary transcripts, not just those
of mRNA as the name might suggest.
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scientists in various areas. Thanks to the properties of NGS technologies, se-

quencing the transcriptome can be directly used to measure the abundance of

RNA molecules. Unlike previous methods, NGS produces reads along the entire

length of transcripts and thus can be used to detect gene isoforms. This enables

the use of RNA-seq to measure expression levels of transcripts.

The main premise of transcript expression level quantification based RNA-

seq is following. Under ideal conditions the expected number of reads, E[Cm],

that are sequenced from a transcript m, is directly proportional to the number

of fragments of that transcript within a sample.

E[Cm] = D · (F · θm), (1.1)

where D is a constant representing sequencing depth, F is the total number of

fragments and θm is the relative proportion of fragments of transcript m. The

number of fragments of a transcript, (F · θm), is directly proportional to the

number of molecules multiplied by its effective length. Here the effective length

expresses the number of different fragments that can be generated from a tran-

script, which can be calculated as l
(eff)
m = lm− lf +1, where lm is the length of the

transcript and lf is the length of a fragment. So under ideal conditions, assuming

a constant fragment length, we can express the expected number of reads of a

transcript in terms of abundance and length as follows

(F · θm) = K · l(eff)
m · (abundancem),

E[Cm] = D ·K · l(eff)
m · (abundancem),

(1.2)

whereK is a constant that scales the number of produced fragments and abundancem

denotes the abundance of molecules of transcript m within a sample. Given the

number of reads sequenced from a transcript, we can use Equation 1.2 to calculate

the transcript abundance. Note that the constant factor D ·K is unknown and

thus it is impossible to quantify absolute abundances using RNA-seq. We can

either estimate proportional abundances or abundances under specific sequencing

output.

The ideal conditions in this case refer to a process in which fragments are

sampled uniformly along transcripts and reads are sequenced uniformly from all

fragments. While the ideal conditions are not practically achievable, the great

amount of sequenced reads enable accurate approximation of abundance through
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Figure 1.3: Example of the ambiguity of reads’ alignments caused by
transcripts sharing multiple exons. Reads above a transcript were sequenced
form that transcript. The colour denotes to which group of transcript would reads
align. Most of the reads (black) align to all three transcripts, blue reads align to
the first and second transcripts, purple reads align only to the second transcript
and green reads align to the first and third transcripts.

assuming the equality given in Equation 1.2. Furthermore, techniques for cor-

recting systematic biases caused by the fragmentation and sequencing processes

have been proposed and are discussed in more detail in Section 1.5.2.

Transcript ambiguity

The main difficulty of quantifying transcript expression levels is that the exact

origin of reads is lost. While the majority of the sequenced reads can be aligned

to a unique position within the genome, this does not determine the actual tran-

script of origin. Reads mapping to an exon could have originated from any tran-

script that contains that exon. Therefore the number of reads sequenced from a

transcript cannot be learned directly from the sequenced reads due to transcript

ambiguity.

We illustrate the problem in Figure 1.3 using three transcripts of a single

gene. Multiple exons are shared between the transcripts leading to many reads

with ambiguous origin. This ambiguity is in most cases either resolved based

on other reads providing extra evidence of the transcript abundance, or modeled

within a probabilistic framework that considers the joint distribution of the data.

Nevertheless, there are cases for which exact quantification is impossible. Lacroix

et al. (2008) proved that even under the ideal conditions, with sufficient coverage,

some transcripts cannot be distinguished using just the RNA-seq reads.

In this thesis we address the problem of quantifying transcript expression using

Bayesian probabilistic modelling. We propose a model over all the observed reads

and their alignments. Using Bayesian inference methods, we can infer the poste-

rior distribution over transcript expression. Providing a full posterior distribution

instead of just point estimate provides information about the uncertainty of the

estimated expression level. Transcripts that are difficult, or even impossible, to
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quantify exactly will be associated with a posterior distribution of expression

level with high variance. On the other hand, transcripts from genes with a single

transcript or multiple transcripts with high coverage will have lower variance in

their posterior estimate. Our transcript expression quantification approach and

its results are presented in detail in Chapter 2.

Gene expression levels

In many cases the abundance of all gene products is of interest. We and others

(Trapnell et al., 2013) have proposed that the best way to quantify gene expres-

sion is by estimating transcript expression first and then add up abundances of

appropriate transcripts to produce gene expression.

Many reports estimate gene expression using RNA-seq reads directly, without

transcript-level quantification. There are two basic approaches that can be used

for counting reads that map to a certain gene. One uses the union method and

adds up reads of all constitutive exons. In this case the effective length of the

counting region is a mixture of the effective lengths of the underlying transcripts,

l(eff)
g ∝

∑
m∈g

θm · l(eff)
m . (1.3)

The union approach is suitable for genes with a single transcript or when it

is known that the gene is being spliced in the same way throughout the analysis.

However, once the gene can be spliced into transcripts of varying length, this

measure is inconsistent as the effective length of the counting region changes.

Wang et al. (2010c) compared the union approach of gene expression estima-

tion with adding up isoform expression. They showed that estimating isoform

expression levels and adding those together leads to better estimates of gene

expression with lower uncertainty.

The alternative is to use the intersect approach in which only reads mapping

to exons shared by all gene’s transcripts are being counted. Thus the effective

length is a mixture of proportional effective lengths of the intersect sequence

within transcripts,

l(eff)
g ∝

∑
m∈g

θm · l(eff)
(i,m) . (1.4)

Assuming uniform read coverage, the effective lengths of the intersect sequence

within transcripts are equal, hence the method provides unbiased measure of the
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abundance of gene products. However, for genes with many different transcripts

the intersect sequence can be relatively short, leading to the majority of data

being discarded. In such cases, abundance estimates for low-covered genes or

long genes with short intersect sequence can be adversely affected.

Another problem arises with biased distributions of reads along transcripts,

when the effective lengths of the sequence can vary depending on transcript and

surrounding exons.

Measures of expression levels

The most basic measure for RNA-seq gene expression is the read count measure

(C), where each gene or transcript is characterized by the number of reads that

align to that particular gene. While this is a natural way of looking at the result

of sequencing process, it is not optimal for comparison of gene expression as read

count is proportional to sequence length as was discussed above.

A second difficulty with expression level measured in read counts arises in

comparisons of independently sequenced samples. Two samples sequenced to a

different depth will have a different total number of reads reported hence varying

counts per gene. This can be avoided by adjusting the counts so that the total

number of reads is the same, or by applying a more advanced normalisation

method, for details see Section 3.3.

Mortazavi et al. (2008) introduced the RPKM measure or the ‘Reads Per

Kilobase of length per Million reads sampled’. This metric adjusts for varying

sequencing depth and gene length in order to make the expression of genes com-

parable within and between samples. It is straightforward to compare expression

levels of two genes within one sample as well as to compare the same gene repre-

sented by various transcripts between two conditions.

The calculation of a gene’s RPKM is a simple addition of RPKM of its tran-

scripts. The RPKM of each transcript has already been adjusted by the effective

length of the transcript, hence the sum of each transcripts’ RPKM is a consistent

measure of the abundance of gene products despite alternative splicing.

Trapnell et al. (2010) use the term FPKM, or ‘fragments per kilobase of length

per million reads sampled’, to distinguish analysis containing paired-end reads,

in which pairs of reads are sequenced from both ends of one fragment.

Another form of normalized proportional measure is the relative abundance
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of transcript fragments, here denoted by θ, which can be expressed as

θm =
Cm
N
, (1.5)

for a read count of transcript m, and total read count N =
∑M

m=1Cm. While this

is not a suitable measure for genes due to the length ambiguity, it can be used for

transcripts as it characterizes each transcript by the proportion of its fragments

within the original sample. This is a natural way of looking at the expression

from a generative view used in a generative probabilistic model.

Given a transcript m and its effective length l
(eff)
m conversion between the

measures is straightforward,

RPKMm =
Cm

l
(eff)
m /103 ·N/106

=
θm

l
(eff)
m

· 109. (1.6)

Differential expression analysis

Comparing expression estimates from different samples is an important stage of

many research studies. Whether the samples are from different tissues, treatments

or time points, the task is always the same, to find genes that exhibit different

expression patterns between conditions. We refer to this task as the Differential

Expression (DE) analysis.

There are various levels at which samples from different conditions can be

compared. One can compare the abundance of all gene products, study alterna-

tive splicing patterns between conditions or look at the abundances of transcripts.

In each of the settings, the problem is to identify significant differences between

the conditions.

The matter of significance is important when performing either kind of DE

analysis (Auer and Doerge, 2010; Fang and Cui, 2011). It is essential that DE

analysis is able to distinguish significant changes of expression between conditions

from the fluctuations of expression within one condition. There are two parts of

the expression level fluctuations, the technical variance and biological variance.

The technical variance usually refers to the measurement error due to the

technology being used. In the case of sequencing it is the effect of random sam-

pling of reads as well as the limitations of expression estimation method due

to insufficient coverage or transcript ambiguity mentioned above. The technical

variance can be overcome by improving the technology being used, for example
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by increasing the coverage through higher depth or multiple sequencing runs, or

by increasing the read length which can help distinguish ambiguous transcripts.

The second source of fluctuations is the biological variance of expression levels

caused by natural changes of the abundances of gene products which fluctuates

within cells and tissues. This variability is independent of the technology being

used and cannot be avoided. It can only be accounted for when deciding whether

the observed difference is significant or not.

The extent of biological variance depends on the gene or transcript of inter-

est (Anders and Huber, 2010). While some genes have stable expression levels

within a condition, other genes might have significant variations of expression

levels within condition. The biological variance can be assessed by performing

the analysis on multiple replicates of each condition, also referred to as biolog-

ical replication. Biological replication has been previously used in DE analysis

based on other technologies such as microarrays (Dudoit et al., 2002) and it is

essential for RNA-seq based DE analysis as well (Fang and Cui, 2011). Through

the analysis of biological replicates, it is possible to determine the extent of the

biological variation of individual transcripts and account for these fluctuations

when determining the significance of changes between conditions.

We propose a novel approach for the DE analysis using Bayesian inference

that can be used for detecting changes in both transcript and gene expression

levels between multiple conditions. The method, presented in Chapter 3 uses

results from our expression estimation procedure which includes estimate of the

technical variance of each transcript. The technical variance within each sample is

combined with results from multiple biological replicates to assess the significance

of changes in expression level between conditions.

Alternative ways of expression level quantification

The most common technology used for gene expression analysis before NGS are

microarrays. A microarray is a lab on chip type of assay that uses a 2D matrix

consisting of tens of thousands of probes, which are designed to bind to specific

molecules. After the sample is put on to the array, the array is scanned in order to

determine intensities at each probe. The intensities correspond to the amount of

bound molecules and thus can be used to measure the abundance of the molecules

within a sample.

Microarray technology provides a widespread approach for gene expression
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studies albeit having many drawbacks. The nature of microarray design limits

its use and properties of results. The probes have to be prepared to match the

molecules of interest, prohibiting the discovery of new transcripts and genes. The

microarray probes bind only with a specific sequence tag of genes and thus there

is no way of distinguishing between different transcripts binding to the same tag.

Another disadvantage of this technology is that the signal is produced via imaging

of fluorescent dyes. This produces a continuous signal that is harder to compare

between samples and can be easily saturated. While microarrays can have up to

tens of thousands probes on each array, measuring expression level of transcripts

of organisms with more than one hundred thousand transcripts would require

multiple arrays to be used.

To eliminate some of the disadvantages of microarray, methods such as Serial

Analysis of Gene Expression (SAGE), Cap Analysis Gene Expression (CAGE)

and Massively Parallel Signature Sequencing (MPSS) using Sanger sequencing

were developed (Wang et al., 2009). The main principle of these methods is to

assay only one short sequence, or tag, from each molecule. Instead of sequencing

the whole gene, only the tags are being sequenced, thus reducing the cost of

the sequencing. In contrary to microarrays, SAGE and similar methods avoid

problems with saturation and require no molecule-specific probes. However, it is

still not possible to study expression of individual gene transcripts with this type

of methods as many transcripts can share the same tag.

1.4.3 RNA-seq protocol

All of the current NGS devices are capable of sequencing molecules of DNA.

To enable the analysis of the transcriptome, RNA molecules have to be reverse-

transcribed into cDNA which can be analysed by a sequencing device. Here

we provide an overview of the preparation process of RNA molecules before the

actual sequencing. Understanding this process is important for RNA-seq data

analysis and expression level quantification as it can create biases that are only

specific to sequencing of RNA (Hansen et al., 2010).

(1) Selection

An RNA-seq experiment begins with the extraction of all RNA from a studied

tissue. This could be RNA from the nucleus, cytosol or from the entire cell. Most
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RNA-seq experiments focus on the protein coding genes, hence follow with the

isolation of mRNA. The mRNA molecules are polyadenylated, i.e. the 3’ end is

followed by a sequence of Adenine nucleotides, also referred to as poly-A tails.

The tails are used to extract the molecules with complementary poly-T sequence

attached to plates or magnetic beads (Wang et al., 2009). This, however, extracts

also the long non-coding RNA which has the poly-A tail as well.

Other methods have been developed for studying a broader spectrum of RNA

sequences. Instead of selecting molecules with poly-A tails it is possible to remove

ribosomal sequences which form over 90% of RNA within cell (Wilhelm and

Landry, 2009). Ribosomal RNA (rRNA) contains highly conserved sub-sequences

which can be used to separate rRNA using beads with complementary nucleotide

sequences. Removal of the rRNA increases the proportion of mRNA and non

coding RNA within the sample and enables their sequencing with sufficient depth.

(2) Reverse transcription and fragmentation

The molecules of RNA are converted into cDNA through the means of reverse

transcription (RT) and fragmented. The first strand synthesis of RT has to be

initiated by a primer attached to the RNA. In the case of mRNA poly-T primer

sequence can be used to bind to the poly-A tail. Otherwise random primers, which

bind anywhere along RNA, can be used. Subsequently second strand synthesis is

used to create the complementary second strand of cDNA.

As most current technologies only sequence relatively short ends of molecules,

the transcripts are typically sheared into smaller fragments. With the use of

random primers, it is possible to fragment the RNA molecule before RT. In cases

where this is not desired or poly-T primer is being used, fragmentation is applied

to the cDNA molecules after RT.

The choice of a fragmentation methodology and primer affects the distribu-

tion of reads. The use of poly-T primer can lead to bias towards 3’ end of a

transcript due to incomplete first strand synthesis (Wilhelm and Landry, 2009).

RNA fragmentation on the other hand causes under-representation of both ends

of transcripts (Wang et al., 2009). Random primers can similarly cause bias

towards reads originating from certain positions (Hansen et al., 2010).

Reverse transcription transforms a single strand of RNA into double stranded

cDNA molecules with one strand being equivalent of the RNA and the other

being reverse complement. In a standard protocol this process loses the strand
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association of the original molecules (Wilhelm and Landry, 2009). Alternative

preparation protocols which preserve the strandedness can be applied when the

information is needed for further analysis. Review and comparison of preparation

protocols that preserve the strand information can be found in Levin et al. (2010).

(3) Addition of adaptors and primers

To enable processing of the sample by a sequencing device, platform specific

adaptors and sequencing primers have to be attached to the cDNA molecules.

The adaptors are used to enable attachment of molecules to a support and to

enable clonal amplification, while primers are used for initiation of the sequencing

process.

Most current devices enable attachment of two sequencing primers to each

fragment and sequencing each of its ends. This is so called pair-end sequencing

as the reads are reported in the form of paired tags or mates. While the tags can

be treated independently, each as a separate read, using the pairing information

is useful for downstream analysis, especially isoform deconvolution and quantifi-

cation. For this reason we tend to refer to the paired tags as to one paired read

and always treat them jointly.

As the sequencing primers are attached to each strand of cDNA, the two

mates of a paired read are sequenced one from each strand. This means that

while one mate will align to the transcript sequence, the other read will have

complementary sequence. Also, due to the sequencing reaction starting from the

primers attached to fragment’s ends, one read is reversed in terms of transcript

orientation.

For strand specific protocols, the paired reads will always align to the reference

transcripts in the same order. For example in dUTP protocol this is achieved

by firstly sequencing the strand which was generated by first strand synthesis.

With respect to the transcript sequence the first mate will always be reverse

complement located downstream of the second mate, while the second mate will

align concordantly with transcript.

(4) Sequencing and base calling

After attachment of primers and adaptors, the cDNA can be processed by the

sequencing device. The actual process of sequencing for the three most popular

platforms is outlined in Section 1.3.1. Except for the Ion Torrent, the NGS devices



36 CHAPTER 1. INTRODUCTION

obtain actual sequence of each read using imaging of fluorescent markers attached

to each nucleotide, a process which is also called base calling.

In addition to the base calls for each nucleotide, modern sequencing platforms

can also estimate the likelihood of error for each call. These are reported as quality

scores, usually in form of Phred format.

The resulting output of each RNA-seq experiment is then a number of reads,

usually of the order of millions. Each read is represented by a sequence of bases

and a sequence of quality scores of the same length. In the case of paired-end

sequencing, the tags from one fragment are reported as a pair of two reads.

1.4.4 Read alignment

Alignment of reads is the process of searching for positions within a reference

genome or transcriptome where the read sequence aligns, or matches, with the

reference sequence. For most subsequent analyses, the reads generated by an

RNA-seq experiment have to be aligned. Only in cases when the reference, in

the form of a transcriptome or a genome, is unknown or incomplete do the reads

have to be assembled instead.

Alignment, also called mapping, produces a set of alignments for each read.

These are positions where the read matches the reference perfectly or with some

number of differences such as mismatches between individual bases. The differ-

ences are usually caused by sequencing errors or by variation of the sequencing

sample from the reference, i.e. SNP or insertion or deletion. In very rare cases

can a read be mapped to an incorrect location with only few mismatches. Most

reads can be matched uniquely to a single position in the reference sequence. The

mapping position determines the sequence and location which was sequenced for

that particular read.

Genomic alignment

The adoption of NGS methods required development of new approaches for read

alignment. Methods designed for processing reads for Sanger sequencing, such as

BLAT (Kent, 2002), were not designed to work with the type of data produced

by NGS devices. The sequences are very short in comparison with the reference,

they usually contain base mismatches and other variations and most importantly,

the amount of sequences is orders of magnitude higher.
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All current aligners use indexing in order to speed-up the alignment process.

Indexing the sequences allows fast retrieval of candidate positions which can then

be evaluated more closely for each read. While some aligners, such as MAQ (Li

et al., 2008), index the reads that are to be aligned, most aligners pre-index the

reference sequence. The former strategy can be more effective as more time can

be spent on indexing which is done once per reference.

There are two main types of indexing used at the moment. One group of

algorithms uses hashing based indexes, where k-mers or seeds are indexed in

a hash table. The following algorithms use hashing indexes: BFAST, GASST,

NextGenMap, PerM, SOAPv1, SHRiMP 2, Stampy (Homer et al., 2009; Rizk and

Lavenier, 2010; Sedlazeck et al., 2013; Chen et al., 2009; Li et al., 2008; David

et al., 2011; Lunter and Goodson, 2011).

The second approach uses suffix tries combined with FM-indexes (Ferragina

and Manzini, 2000) and the Burrows-Wheeler transform (Burrows and Wheeler,

1994) for searching within the index. Example algorithms in this group are

Bowtie, Bowtie 2, BWA, SOAP2 (Langmead et al., 2009; Langmead and Salzberg,

2012; Li and Durbin, 2009; Li et al., 2009b).

A detailed methodology review of NGS alignment methods was written by

Li and Homer (2010). Each method has its own advantages and drawbacks and

with so many available it can be difficult to choose the correct tool. Most users

are usually concerned with the performance of the aligner and its run time re-

quirements. Ruffalo et al. (2011) provide a comparison of six popular alignment

tools and look at the performance dependence on base errors and indels. Another

comparison of thirteen popular aligners was conducted by Lindner and Friedel

(2012), who also try to estimate the optimal set of parameters for each method

and provide more detailed performance measure in terms of precision, recall and

F-measure.

Splice-aware alignment

All of the above mentioned aligners are designed for exact alignment of reads

to the genome while allowing for a certain number of variations. This kind of

approach works well for genomic NGS reads and a subset of reads from RNA-seq

experiment. However, as RNA-seq produces short reads from the transcriptome,

reads that span splice junctions will not align with the genomic reference.

Splice aligners are designed specifically for mapping transcriptomic reads to
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genomic reference, taking into account splice junctions. On the one hand, there

are splice aligners such as GSNAP or STAR (Wu and Nacu, 2010; Dobin et al.,

2013), which use own alignment algorithms that handle junction reads directly.

On the other hand, some splice aligners build upon one of the previously men-

tioned genomic aligners while providing extra functionality that handles the junc-

tions. MapSplice developed by Wang et al. (2010a) divides reads into shorter sub

parts and uses Bowtie to align them to the reference. Even if one of the sub parts

is from a splice junction and cannot be aligned, other sub parts will be aligned

and can be extended up to a exon boundary. A similar approach was taken by

Au et al. (2010) in SpliceMap, where each read is divided into 25bp parts and

each part is mapped individually using Bowtie or another genomic aligner.

An alternative approach was presented in QPALMA (De Bona et al., 2008),

which uses vmatch (Abouelhoda et al., 2002) to align exonic reads, then uses

these reads to predict exon sequences. Based on the exonic sequences and known

splice junctions, the algorithm predicts new splice junctions which are used for

mapping of the rest of the reads. TopHat (Trapnell et al., 2009; Kim et al., 2013)

improves this approach by using Bowtie as a more efficient alignment algorithm

and omitting the predictive step. Instead of predicting the splice junctions, all

possible junctions are assembled and used for alignment of reads. This process

can be further simplified if annotation of exon boundaries does exist.

Grant et al. (2011) present an evaluation framework and splice read generator

for comparing splice alignment algorithms. They use this framework for com-

parison of previously published algorithms and evaluation of a newly proposed

approach, RUM. RUM exploits the speed of Bowtie for initial alignment to the

genome and transcriptome and subsequently aligns unmapped reads using BLAT.

It performs similarly to the best current approaches with relatively low run-time

complexity.

Transcriptome alignment

Many RNA-seq experiments involve organisms with a known reference genome,

which is well annotated in terms of gene locations, exon boundaries and transcript

isoforms. In these cases, it is usually much more convenient to align reads to the

transcriptome sequence directly.

Aligning RNA-seq reads to the transcriptome simplifies alignment by avoiding

the necessity of handling junction reads. Moreover, the transcriptome is an order
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of magnitude smaller than the genome, making the alignment much faster.

The transcriptome reference can be download as a cDNA sequence from a

repository provided by Ensembl (Flicek et al., 2013), or constructed by the Table

Browser maintained by UCSC (Karolchik et al., 2004; Kuhn et al., 2013). This

reference represents sequences of cDNA as they are sequenced, which avoids the

entire complication with spliced alignments. Genomic aligners can be used di-

rectly to align all the reads. Only a fraction of reads, which may come from yet

un-annotated splice junctions, novel genes or intronic sequences will fail to align.

The number of such reads depends on the completeness of the annotation and

selection protocol.

There is a caveat that has to be considered when using genomic alignment

algorithms to align RNA-seq reads directly to the transcriptome. As opposed

to junction reads that were difficult to align to the genome, now exonic reads

will have multiple alignments. Most exons and also some splice junctions can

be shared by multiple transcript isoforms of the same gene and in such cases

reads from these sections will align equally to all those isoforms. Downstream

methods that make use of the alignments, such as RSEM (Li et al., 2010a) or

the method presented in Chapter 2, require all these alignments. Not all genomic

aligners have the option of reporting multiple alignments per read, some aligners

discard ambiguously mapped reads while some report only alignments with the

best alignment score. With the correct optional setting, aligners such as Bowtie,

Bowtie 2, SOAP 2 and SHRiMP can report multiple alignments per read.

In some cases, the transcriptome alignments are required by downstream anal-

ysis, but the annotation might be incomplete or nonexistent. Then it is possible

to use a splice-aware alignment combined with a program for transcript assembly

to create a new transcriptome and subsequently align to the newly assembled

reference.

Overall there are numerous choices available in terms of alignment algorithm.

Fonseca et al. (2012) presented an overview of both genomic aligners and splice-

aware alignment algorithms, which is being updated at http://wwwdev.ebi.ac.

uk/fg/hts_mappers/. While performance evaluation of more than 60 aligners

would be impossible, the authors provide a useful comparison in terms of capa-

bilities and features. As an example, narrowing the choice of mappers that would

be useful for analysis presented in this report can be much easier by selecting

aligners that can output multiple alignments per read, align paired-end reads

http://wwwdev.ebi.ac.uk/fg/hts_mappers/
http://wwwdev.ebi.ac.uk/fg/hts_mappers/
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and provide output in the SAM format.

1.5 Related work

1.5.1 Initial evaluations of RNA-seq technology

The first studies involving NGS of RNA assessed the possibilities of using NGS

for analysis and exploration of the transcriptome. Weber et al. (2007) used Py-

rosequencing to study the transcriptome of Arabidopsis. The authors report very

deep coverage of genes by the 541852 sequenced tags in two runs. Moreover, they

report reads mapping to un-annotated parts of genome that could lead to discov-

ery of new genetic loci and new transcripts. The authors propose the possibility of

using NGS for gene expression level quantification and comparison. They further

compare expression levels obtained by Pyrosequencing with microarray analysis,

reporting a correlation of 0.45. While the correlation is relatively low, it can be

caused by the fact that two distinct technologies are being used (Weber et al.,

2007).

Pyrosequencing was also used in one of the first studies of the Drosophila tran-

scriptome (Torres et al., 2008). The study compares high-throughput sequencing

of 3’ fragments obtained by reverse transcription with restriction enzyme and ran-

dom fragments sheared by nebulisation. While the former results in biases due to

various fragment length, the latter produces a similar distribution of fragments

for all genes. The observed technical reproducibility of expression level measure-

ments was comparable to that of microarrays suggesting usefulness of NGS for

for this type of analysis (Torres et al., 2008).

The use of RNA-seq for Single Nucleotide Variation (SNV) detection and

simple differential expression analysis was reported by Sugarbaker et al. (2008).

The authors study variants in expressed genes of pleural and lung cancer. Four

samples of malignant pleural mesotheliomas (MPMs), two samples of pulmonary

adenocarcinoma (ADCA) and a normal lung tissue were sequenced using Py-

rosequencing technology. Multiple read coverage is used to detect variants in

the transcribed genes leading to identification of 15 nonsynonymous variations in

the MPM which are within genes that could be related to cancer. The authors

further use simple log ratio test for expression of six transcripts that are known

to have different abundance in MPM and ADCA. The log ratios of expression
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obtained by RNA-seq correspond to previously observed ratios by real-time PCR

and microarrays.

The above mentioned studies used Pyrosequencing most likely due to local

availability of the technology. After 2008, the majority of studies use sequencing

by synthesis by Illumina or SOLiD sequencing devices. The read length of the

latter approaches is much shorter than produced by Pyrosequencing, but the two

to three orders of magnitude higher number of reads eventually produces much

higher coverage, improving the reproducibility of the RNA-seq expression level

quantification applications.

Nagalakshmi et al. (2008) explore the RNA of yeast using sequencing by syn-

thesis. Two fragmentation methods were used with two technical replicates and

two biological replicates each, resulting in a total of almost 30 million 35bp reads.

The authors present the applicability of RNA-seq technology for exploration of

gene features and extending the known annotation, as well as for abundance

quantification.

The mapped reads are used for more precise estimation of 5’ and 3’ ends of

genes by locating the sudden changes of read coverage. Despite existing gene

annotation the precise definition of the ends was lacking. Furthermore, the au-

thors estimate gene expression by looking at the median coverage signal in a 30bp

window located upstream of the 3’ codon. 34 genes were validated using quan-

titative PCR with a reported correlation of 0.98. The technical and biological

reproducibility of the abundance quantification using RNA-seq was also very high

with 0.99 and 0.93 to 0.95 Pearson correlation coefficient respectively.

Technical reproducibility of gene expression measurements was systematically

evaluated by Marioni et al. (2008), who sequenced samples from human liver

and kidney tissues using Illumina’s sequencing by synthesis. Each sample is

represented by seven technical replicates, sequenced in two separate runs, in two

different concentrations. This enables examination of the effects of using various

lanes, runs and concentrations on the expression level measurements.

Gene abundances are estimated by counting uniquely mapped reads to gene’s

exons. Variation across lanes is reported for a small fraction of genes, resulting in

a high Spearman correlation coefficient 0.96. The majority of genes have expres-

sion varying within the range of Poisson variance as it is theoretically expected.

For samples sequenced at different concentrations the variance is increased for a

higher number of genes.
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The study further includes differential gene expression analysis with compari-

son to microarray technology and validation by quantitative PCR. The microarray

technology was used to analyse the same two samples, reporting 8113 genes at

FDR 0.1% out of which 81% were reported as differentially expressed (DE) by

sequencing as well. Out of the genes reported as DE by just one of the methods, a

sample of 11 genes was assayed by qPCR showing higher DE validation for genes

reported by RNA-seq

The authors use a Poisson model of the count data to compare the two condi-

tions. While the technical variance can be well estimated using a Poisson distribu-

tion for the majority of genes, the model omits natural biological variation within

conditions due to the lack of biological replicates. Biological variance represents

intrinsic abundance fluctuations that can cause false positive DE calls.

The report further proposes an exploratory analysis, in which previously un-

mapped reads are divided into two sub-reads of varying lengths and aligned to the

ends of known exons. This enabled mapping junction reads, provided evidence

for un-annotated splice events and demonstrated the usefulness of RNA-seq for

splice variant discovery.

Another report assessing the viability of RNA-seq for gene expression mea-

surements and splice variant detection was presented by Mortazavi et al. (2008).

Here samples from mouse brain, liver and muscle tissues were assayed using se-

quencing by synthesis, producing 41-52 million short, 25bp, reads. The paper

further introduces an application called ERANGE for estimating gene expression

and detecting novel expressed sites. Mortazavi et al. (2008) introduce the RPKM

expression measure, standing for Reads Per Kilobase of exon length per Million

mapped reads, that was widely adopted as it attempts to represent expression in

sequencing depth and gene length independent way. The relation of RPKM to

read count is described in Equation 1.6.

In ERANGE the initial abundance of genes is estimated from uniquely map-

ping reads with multi-mapped reads being reassigned afterwards to the most

probable position, also called the rescue method. It further detects junction

reads by aligning unmapped reads to a reference of all known splice junctions

and assigns them to appropriate genes. All reads assigned to a gene are then

used to compute and report the RPKM value. The report shows that including

the multi mapped reads improves expression level correlation with microarrays.

Apart from handling spliced reads and reads mapping to multiple locations,
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ERANGE also looks for unmapped reads forming clusters outside annotated re-

gions, which are signs of potential unannotated exons and splice sites. This way

Mortazavi et al. (2008) were able to detect 596 novel candidate transcripts.

Morin et al. (2008) shift the focus on exons and apart from assessing gene

abundance they survey exon-specific expression levels as well. To account for

ambiguously mapping reads, the idea of mappability is proposed, which can be

viewed as a score of uniqueness of a certain region. For each base mappability is

calculated as the fraction of reads that would map uniquely out of all potential

reads covering that base. The average mappability of an exon or gene is then

used to divide true coverage based on unique alignments to calculate corrected

coverage.

The exon coverage was validated by comparison with a custom tiling mi-

croarray. For 3908 internal exons, the Spearman correlation was 0.713, which

as the authors note is comparable with correlation observed between alterna-

tive microarrays. The assessment of technical reproducibility again showed very

low technical variation between sequencing runs, with 0.976 correlation of exon

expression levels between replicates.

Similarly to previously mentioned studies, this report also includes exploratory

analysis of novel splicing events, assessment of transcriptional start and termi-

nation sites, and single nucleotide polymorphisms. The authors also propose the

idea of using RNA-seq for assaying allele-specific expression and demonstrate the

possibility of fusion gene discovery by documenting reads spanning exons from

independent gene loci.

All of the methods mentioned above that attempt quantification of expression

levels focus on the abundance of genes. The reports acknowledge the fact that not

all reads are aligned unambiguously and either resort to discarding multi-mapped

reads or use some kind of correction as the rescue method used by Mortazavi et al.

(2008) or mappability correction implemented by Morin et al. (2008). Despite the

fact that these methods might improve the estimation accuracy, they are more of

an ad-hoc solution.

The main drawback of these methods when it comes to expression level quan-

tification is that they ignore the fact that reads originate from various transcripts

of different lengths. As we have already discussed in Section 1.4.2, the length of

a molecule directly affects the number of reads produced from a transcript and

thus affects the expression of a gene. The methods above use the approach, which
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counts reads from all constitutive exons of a genes. This approach can lead to

spurious results in the differential expression analysis, hence combining expres-

sion levels of transcripts to estimate gene abundance should be used (Trapnell

et al., 2013).

1.5.2 Methods for expression level quantification by RNA-

seq

Several methods have been proposed directly addressing the problem of RNA-

seq data quantification. The expression is quantified on the level of transcript

isoforms of genes, which can be easily added up to calculate the total gene ex-

pression.

There are two ways of looking at the quantification problem, one is in terms

of direct estimation, or optimisation, whereas the other perspective looks at the

quantification in terms of probabilistic inference. While the former can provide

an exact formulation of the problem and possibly faster algorithms, the latter

approaches provide a better framework for including the inherent uncertainty of

the observed data.

Non-probabilistic approaches

A similar idea to the notion of mappability proposed by Morin et al. (2008) is

used in the NEUMA approach (Lee et al., 2011). NEUMA or Normalisation

by Expected Uniquely Mappable Area (EUMA) combines the use of uniquely

mapping reads with normalisation to estimate the expression level of transcripts.

The EUMA can be thought of as effective length or a normalisation factor and is

pre-calculated for every transcript by simulating all possible reads within some

constrained fragment length range from all transcripts. The simulated reads are

aligned to the transcriptome and the counts of reads unique to isoform, C
(su)
lfm

, are

recorded for each fragment length lf . EUMA is the expected number of unique

reads given an experimentally observed fragment length distribution

EUMAm =
∑
lf

P (lf )C
(su)
lfm

. (1.7)

The actual reads are aligned to a transcriptome reference, discarding all reads

with multiple alignments and counting the unique reads per transcript, C
(u)
m . The
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Figure 1.4: Read counting bins and corresponding indicator matrix. (a)
Transcripts of a single gene are split into bins for counting reads. The bin bound-
aries are set so that every bin is either completely contained or omitted in each
transcripts. Note the bin 4 will contain only reads mapping to splice junction
between first and third exons. (b) The allocation of bins to transcripts is denoted
in an indicator matrix, also referred to as design matrix.

expression level is expressed in terms of FVKM (Fragments per Virtual Kilobase

Per Million sequenced reads), which is a similar measure to the RPKM described

earlier, and is simply calculated as

FV KMm =
C

(u)
m

EUMAm/103 ×N/106
. (1.8)

The EUMA and unique reads can be similarly calculated for genes and the same

approach can be applied to estimate gene expression levels.

The IsoformEx method addresses the transcript expression level estimation in

terms of constrained optimisation (Kim et al., 2011). The overlapping clusters of

transcripts are divided into slices, which can be either exons or splice junctions,

and represent regions which are shared by a unique set of transcripts. An indicator

matrix A is used, where Aim = 1 denotes slice i being part of transcript m. Based

on reads aligned to a genome reference, expression level in RPKM is calculated

for each slice. The estimation of expression ϑ for the overlapping cluster is then

posed as a non-negative weighted optimisation

arg min
ϑ
||WATϑ−Wϑslice||22 ;ϑ ≥ 0 , (1.9)

where a weight matrix is introduced to increase the importance of discriminative

slices, which are exons or junctions specific to a particular transcript. The prob-

lem is identifiable and has a unique solution when the indicator matrix A is full

rank. In cases when the matrix is rank-deficient, the problem can be solved for a
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subset of linearly independent rows, setting the rest to 0. According to Kim et al.

(2011) the observed frequency of clusters with a rank-deficient indicator matrix

was below 2%, when analysing a human MCF7 cell line. The report does neither

address the problem of biased read distribution nor the use of paired-end reads.

Li et al. (2011a) propose a linear model similar to the definition of the op-

timisation problem proposed by Kim et al. (2011). The model, implemented

in the SLIDE method, is applied to individual genes for isoform discovery and

quantification. The gene is again split into regions, referred to as bins, reads

are counted for each bin and the read counts are normalised. The model uses

a non-binary design matrix F which can be thought of as a combination of the

indicator matrix A and the weight matrix W from the previous definition. Here

the design matrix Fim defines the conditional likelihood of observing a read in

the bin i given transcript m and can incorporate fragment length and positional

biases. The normalised bin count of bin i is expressed as

Ci =
M∑
m=1

Fimθm + εi, (1.10)

where θm is the proportion of transcript m within its gene and εi is an error term.

In case of isoform discovery, the model is unidentifiable and the authors use sparse

estimation by Lasso regression (Tibshirani, 1996). For expression estimation, the

model is identifiable and is solved by non-negative least squares optimisation.

The rQuant method proposed by Bohnert et al. (2009); Bohnert and Rätsch

(2010) formulates the same problem in terms of quadratic programming optimisa-

tion. Instead of dividing genes into slices, the coverage is assessed per nucleotide.

The model includes a bias correction term Dpm defining the read density at po-

sition p of transcript m. In case of uniform read distribution, D becomes binary

indicator matrix. Basic definition of the problem is similar to those above:

ϑ = arg min
ϑ

∑
p∈P

(
Cp −

M∑
m=1

Dpmϑm

)
. (1.11)

The read density matrix term, D, can be further parametrised and estimated

during the optimisation process.



1.5. RELATED WORK 47

Count-based models

Count-based models originate from an idea very similar to that of Kim et al.

(2011). Reads are counted for certain regions or slices and the counts are used

to estimate the expression of transcripts which contain the regions. Unlike the

constrained optimisation approach used in IsoformEx, the following methods use

probabilistic models based on the Poisson distribution to describe the relationship

between expression levels and observed counts.

Jiang and Wong (2009) assume a uniform distribution of reads along genes

and exons, in which case the number of reads coming from the exon follows a

binomial distribution. They approximate the binomial distribution by a Poisson

distribution and propose a statistical model for the observed data. The model

does not account for reads mapped to multiple gene loci and thus only has to

model the transcript proportions within each gene. For multiple transcript iso-

forms of a gene, the expression index of isoforms, ξ, is defined as ξm = θm/lm,

where θm would be the proportion of transcript fragments within a gene (similar

to Equation 1.5) and lm is the length of an isoform.

The exon read count Ce is modeled as a Poisson random variable representing

number of reads sequenced from all transcripts containing that exon,

Ce ∼ Poisson

(
leN

M∑
m=1

Aemξm

)
, (1.12)

where Aem ∈ {0, 1} is an indicator variable describing whether exon e belongs

to transcript m. The read count for a gene is then just the sum of exon read

counts. As well as proposing a maximum likelihood estimation approach which

produces point estimates of ξ, they also use importance sampling to sample from

the posterior distribution of ξ given the data.

This model is further extended by Wu et al. (2011) into N-URD (Non-Uniform

Read Distribution model) to account for non-uniform biases observed in sequenc-

ing data. Here the authors estimate a Global Bias Curve that captures the overall

read distribution along genes. The Global Bias Curve estimates positional bias

and is learned from reads mapping to single-isoform genes. It is applied to the

model through down-weighting of exons within genes, modelling the bias on the

exon scale. They also use the notion of Local Bias Curve, which is just an alterna-

tive way of denoting gene read count as a mixture of exon read counts described
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by a Poisson distribution, which includes local gene-specific biases learned during

the estimation.

An alternative way of using the Poisson distribution to model read counts

from exons and transcripts was proposed by Richard et al. (2010). The model is

implemented in the POEM method for transcript expression quantification, CASI

method for detection of alternative exon usage within condition and DASI method

for detection of alternative exon usage between samples from two conditions.

The POEM method is further extended in the MMSEQ application, which

focuses on transcript expression level quantifications, and haplotype-specific tran-

script expression inference (Turro et al., 2011). The Poisson distribution is again

used to model the number of reads coming from a transcript within a specific

region. Most regions correspond to exons or junctions, however they are defined

more loosely as partitions of transcriptome for which all reads only align to a

single partition. This enables the use of reads mapping to multiple genes as these

reads will just belong to a region which contains transcripts from both genes. It

similarly enables defining separate regions for different haplotypes. For a region

i and transcript m, the reads coming from the region are modeled as

Xim ∼ Poisson (bliAimµm) , (1.13)

where b is a normalisation constant, li is the length of the region, Aim is the

allocation indicator and µm is the expression of transcript. However the per-

transcript counts from a transcripts are unobserved, the only observed variable

being the total count Ci. The relation of the total count and counts coming from

transcripts is given by multinomial distribution

(Xi1, . . . , XiM) ∼ Mult (Ci, φi1, . . . , φiM) , (1.14)

φim =
Aimµm∑M
m′ Aim′µm′

, (1.15)

in which reads are assigned proportionally based on the expression µm. The µm

can again be regarded as a proportional measure of the number of molecules,

expressed as µm = θm/lm.

The MMSEQ and POEM models vary from that of Wu et al. (2011) in im-

proved, probabilistic, assignment of reads within a region using the Multinomial

distribution. MMSEQ further provides more flexibility in the definition of shared



1.5. RELATED WORK 49

regions and as the newest of all methods also accepts paired-end read data. MM-

SEQ enables correcting expression estimates for bias if effective lengths of tran-

scripts are provided, where an effective length is a proportional measure of the

number of reads generated from a molecule.

The MMSEQ application implements an Expectation Maximization (EM) al-

gorithm for initial Maximum Likelihood estimation of the expression µ and sub-

sequently uses Bayesian inference with a Gamma prior over the expression. Gibbs

sampling is used to estimated the expected value of µ and Monte Carlo standard

errors. The authors further show that the Bayesian estimate improves accuracy

over the Maximum Likelihood.

All of the models based on count information use the Poisson distribution to

model observed counts for a certain region. This requires summarization of the

reads in terms of counts per region, which loses the information about individual

reads and the qualities of their alignments. This can be prevented by use of

a weighting scheme for individual reads when computing the counts, however

this approach has not yet been implemented. The read bias correction imposes

similar problem. Once the reads are summarized into counts, the bias can only

be accounted for on the level of exons, or regions.

The obvious advantage of the count-based models is the computational speed-

up. The available sequencing depth has steadily increased over last few years,

resulting in experiments with billions of reads. These models avoid the necessity

of dealing with individual reads in the actual inference process.

Generative models

The main distinction of the following set of methods is that they model the gener-

ative process of sequencing for each individual read. All current high-throughput

sequencing technologies sequence millions of reads simultaneously, in parallel.

Starting from the RNA molecules, the process of fragment preparation and se-

quencing is the same for each read. Overall, we can assume that generation of

each read is conditionally independent of other reads, conditioned on some fac-

tors. The main factor is the initial mix of RNA molecules which determines the

likelihood of a read being from a certain transcript isoform. The other factors

that are shared between the reads are the properties of the actual protocol such

as fragmentation biases, priming biases and fragment length filtering. The con-

ditional independence of high-throughput sequencing of reads is utilized by the
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generative models.

The RSEM model (RNA-seq by Expectation Maximization) was one of the

first to use a generative model of reads (Li et al., 2010a; Li and Dewey, 2011). The

input of the model are all alignments of reads mapped against the transcriptome

sequence. The model is parametrised by θ, the relative abundance of fragments

and defines the likelihood of the data as

P (g, s,o, R|θ) =
N∏
n=1

P (gn|θ)P (sn|gn)P (on|gn)P (rn|gn, sn, on), (1.16)

where R is the set of N reads, g is the vector indicating transcript of origin for

each read and s,o are vectors of position and strand of each read, respectively.

Note that only reads are observed and the vectors describing each read are latent

variables. The probability of a read being from a transcript, P (gn|θ), is defined

as a multinomial distribution parametrized by θ. The authors further define an

empirical read start position distribution model for P (sn|gn) and read observa-

tion likelihood P (rn|gn, sn, on) based on base mismatches. In accordance with

the model, every read can originate from any arbitrary transcript and position,

however for practical reasons only transcripts and positions reported by mapping

algorithm are considered as otherwise the likelihood is negligible.

The RSEM method reports the maximum likelihood estimate of the expression

parameter θ which is calculated by the EM algorithm. The method was later

extended to include a Gibbs Sampling algorithm, which is used for sampling

from the Bayesian posterior distribution (Li and Dewey, 2011). The posterior is

obtained by introducing a non-informative prior over θ in the form of a Dirichlet

distribution. The sampler is initiated by the maximum likelihood estimate and

is used for inferring the posterior mean estimate and credibility intervals. The

updated version also enabled the use of paired-end reads, which was not possible

in the first version.

Nicolae et al. (2011) presented IsoEM a method using the same generative

model principle as RSEM. Unlike RSEM, IsoEM can handle reads aligned against

transcriptome as well as genomic alignments. The model is enhanced to account

for paired-end data and also includes read weighting scheme similar to the one

proposed by Hansen et al. (2010). The weighting scheme accounts for sequence

specific biases such as that caused by random hexameter priming (Hansen et al.,
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2010), but does not account for positional biases. IsoEM also reports the maxi-

mum likelihood estimate obtained by the EM algorithm, which is speeded-up by

grouping reads with equivalent alignments.

Cufflinks is a tool for transcript assembly, isoform discovery, as well as isoform

quantification (Trapnell et al., 2010, 2013). For the quantification of expression

levels it uses a similar model to RSEM, enhanced by the ability to use the frag-

ment length information from paired-end reads. However, in Cufflinks the model

is only used to disambiguate transcripts within a genomic locus. The reads map-

ping to multiple genomic loci are assigned according to the rescue method that

was described earlier and originally used by Mortazavi et al. (2008). Cufflinks

estimates the maximum a posteriori (MAP) estimate of the expression in Frag-

ments Per Kilobase of length per Million reads (FPKM) which is equivalent of

RPKM for the case of paired-end reads. The read likelihood model of Cufflinks

was improved by Roberts et al. (2011) to account for both sequence and positional

biases.

The same model, with different inference algorithm, is used in the eXpress

method (Roberts and Pachter, 2013). To account for the ever increasing size

of sequencing data, the method uses an online EM algorithm to infer the maxi-

mum likelihood estimate of expression levels. Instead of iterating over the reads

multiple times until reaching convergence, eXpress relies on the great number of

reads and works on a stream of reads, using each read only once to update the

expression estimate.

Nariai et al. (2013) also use a generative model, but apply a Variational Bayes

(VB) inference method. The probabilistic model is based on RSEM with slight

modifications. The model assumes uniform read distribution, but enables better

handling of read errors, insertions and deletions. Furthermore, the read likelihood

parametrisation is inferred in the initial iteration of VB inference. The approxi-

mate VB inference enables good estimation of the posterior mean, as the authors

further demonstrate, and VB necessitates fewer iterations than EM algorithm

before convergence.

The MISO method proposed by Katz et al. (2010) uses a generative model

which assumes a uniform read distribution. The model is only applied to reads

mapping to unique positions within the genome and the multi-mapping reads

are discarded. Instead of quantifying the transcript expression levels, MISO es-

timates either the relative proportion of alternatively spliced exons or it can
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estimate relative expression of isoforms within a gene locus. MISO applies a

Bayesian inference approach using hybrid Markov chain Monte Carlo algorithm.

The algorithm combines the Metropolis-Hastings algorithm with a Gibbs sampler

to sample from the posterior distribution over the expression parameter.

The generative models provide a fine grained control over individual reads

where each alignment is weighted by its likelihood, which can account for errors

and biases. Furthermore, when the model is applied over all reads such as in

RSEM or IsoEM, it intrinsically handles reads mapping to multiple gene loci as

there is no distinction between transcripts of single or multiple genes. The natural

drawback of this method is the computational complexity which scales with the

number of reads in the sample.

A probabilistic generative model is also the basis of the expression estimation

procedure presented in this report. The model, together with Gibbs sampling

inference procedure is presented in Chapter 2. We also a present fast inference

method in form of a collapsed Variational Bayes algorithm in Chapter 4.

Sequencing biases

Assuming a uniform distribution of reads along fragments simplifies the problem

of expression quantification. However, biased read distributions were reported in

both DNA and RNA sequencing.

Dohm et al. (2008) specifically analyse biases and errors in DNA sequencing

by Illumina’s sequencing by synthesis. The report shows biases towards regions

with higher GC content, higher distribution of base errors close to read ends and

base errors preceded by specific sequences.

In the case of RNA-seq, the extraction and preparation of RNA have further

effects on the final read distribution, which have been reported in some of the

earliest studies using RNA-seq. Mortazavi et al. (2008) observed biased repre-

sentation and under-representation of certain sites in random priming of cDNA,

which were reduced by fragmentation of the RNA. In other protocols, higher

representation of 3’ ends over 5’ ends was observed, most likely due to enrich-

ment of 3’ sequence in the purification step and poly-T priming (Nagalakshmi

et al., 2008). Conversely, over-representation of 5’ ends was reported by Morin

et al. (2008), who also reported under-representation of inner exons in respect to

terminal exons, which can be avoided by sonicating the random primed cDNA.

While some biases can be avoided with improvements of the sequencing protocol,
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the read distribution in most experiments is still not uniform. The importance of

non-uniform read distribution for accurate expression quantification led to reports

specifically focused on the exploring the biases and methods for their correction.

Hansen et al. (2010) investigated sequence specific biases occurring in Il-

lumina’s sequencing by synthesis. The report analyses multiple independent

datasets that were sequenced on Illumina’s Genome Analyser and confirms con-

sistent patterns in nucleotide frequencies. The patterns are observed at the be-

ginning of reads, with up to the first 13 nucleotides being affected. These effects

are caused by random hexameter priming used for reverse transcription. Com-

parison with DNA and ChIP-seq sequencing datasets, that do not contain these

biases, further confirms a cause specific to the RNA-seq protocol.

The authors further consider a read weighting scheme that can be used to

adjust observed read counts in order to generate more uniform transcript cov-

erage. The weights are calculated using estimated proportions of heptamers for

each position along a read sequence. For a read starting with heptamer h, the

weight is a fraction of frequency of the heptamer at the last 6 positions over its

frequency at first two positions. Instead of counting reads over a region, the sum

of their weights is calculated and used as the read count.

The advantage of this method is its applicability to quantification models that

are built on top of counts of read per region. However, one has to be careful when

applying this method in cases when the model relies on the Poisson properties

of the count data. While this method addresses the problem of what we refer

to as sequence specific bias, there are also position specific biases which result in

increased coverage of certain regions of transcripts.

The sequence specific biases are analysed also in the report by Li et al. (2010b).

Here the authors use multiple adaptive regression trees to learn the sequence

dependent sequencing preferences based on highly expressed genes. The model is

subsequently used to adjust transcript expression levels by dividing it by the sum

of sequencing preferences of each transcript. The sum of sequencing preferences

can be thought of as the effective length of a transcript or a proportional measure

of the output of reads from a transcript.

Position specific bias was considered by Howard and Heber (2010). The report

analyses data sequenced using sequencing by synthesis with RNA fragmentation

by sonication and data sequenced using pyrosequencing, where the cDNA was

fragmented by nebulisation. Both datasets show biased read distribution along
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transcripts. While the first data show under-representation of both ends of tran-

scripts, the latter data show over-representation of 5’ end and a spike in coverage

before the 3’ end. These results show protocol dependent effects that have to be

estimated on a per-experiment basis.

The authors presented a count based method for transcript quantification sim-

ilar to that of Jiang and Wong (2009) improved by accounting for non-uniform

read coverage of transcripts. They use kernel density estimation (KDE) to model

the read coverage based on empirical distribution of reads mapping to well anno-

tated transcripts. The coverage density is then used to weight mapping likelihoods

of reads assigned to shared regions.

The N-URD expression estimation model by Wu et al. (2011) mentioned above

similarly accounts for overall positional biases. The Global Bias Curve empirically

estimates coverage along transcripts. It is then used to adjust the per-exon read

counts that are used for expression inference.

As an improvement to the Cufflinks suite for transcript discovery and expres-

sion quantification, Roberts et al. (2011) proposed a bias correction method that

aims to account for both sequence specific and positional biases. Here the like-

lihood of each alignment is adjusted by a bias weight normalised by the sum of

bias weights over the length of a fragment. The bias weight itself contains two

factors: the positional preference weight and the sequence specific weight.

The bias model is empirically estimated using only the uniquely mapping

reads. While the positional and sequence specific biases can confound each other,

the model is simplified and the two biases are learned independently.

For sequence specific bias a variable length Markov model is used to estimate

the likelihood of observing a read from a position depending on 21 surrounding

nucleotides. This is calculated as the ratio of the observed frequency of specific

nucleotides over the frequency of the nucleotides under a uniform model where

each position is sequenced with the same probability.

The positional bias weight is computed for fixed number of bins along tran-

scripts, again as a ratio of observed frequency of reads from a specific bin over

the frequency under a uniform model.

The bias weights are parameters of the model that have to be inferred as they

are expression dependent. However, Roberts et al. (2011) report that the bias

weights change marginally after initial expression estimation. Hence it is possible

to resort to an approximation where the bias weights are estimated with respect
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to expression levels inferred assuming uniform read distribution and subsequently

used to infer corrected expression levels.

Further details of this bias correction approach are presented in Section 2.2.5.

1.5.3 Differential expression analysis methods

One of the main reason to quantify expression levels is to enable a comparison

of various conditions in terms of significant differences in gene expression. The

comparison of expression levels between different conditions can reveal gene func-

tions and the mechanisms controlling their transcription. The DE analysis has

been studied from various perspectives. One can either consider a gene locus as

a unit of interest, focus on exon usage or compare the abundances of particular

transcripts.

Gene level analysis

The most common comparison of abundances is performed on the gene level. The

abundance of a gene can be summarized by the number of reads aligning to the

gene and these are compared between conditions.

The Poisson distribution has been widely used for modelling the expression

within a single experiment. However, due to its variance always being equal to

the mean, it cannot account for over-dispersion caused by biological variations

of abundances within one condition. The negative binomial distribution provides

a natural extension to the Poisson distribution with a better control over the

variance and was originally applied for DE analysis of SAGE data (Robinson and

Smyth, 2008).

Models based on the negative binomial distribution were proposed in multiple

methods for RNA-seq DE analysis. edgeR (Robinson et al., 2010), DESeq (An-

ders and Huber, 2010) and baySeq (Hardcastle and Kelly, 2010) all use negative

binomial distribution to model the read count of a gene g within a single replicate

r,

C(r)
g ∼ NB(N (r)θ(c)

g , φ(r)
g ), (1.17)

which is parametrized by its mean N (r)θ
(c)
g and the dispersion parameter φ

(r)
g ,

where the variance of the distribution is V ar(C
(r)
g ) = N (r)θ

(c)
g (1 + N (r)θ

(c)
g φ

(c)
g ).

Here c denotes a particular condition, N (r) is the total number of reads for exper-

iment r, θ(c) is the relative abundance of gene within condition c. These methods
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differ in the ways they handle the dispersion and call differential expression.

The edgeR method uses conditional maximum likelihood to estimate a gene-

specific dispersion parameter φg, which is shared through all the replicates. The

differential expression is then determined using an exact test previously described

by Robinson and Smyth (2008).

In DESeq the authors propose the use of smooth function ν(c) that is shared

by all genes and defines the dispersion in terms of relative expression as φ
(c)
q =

ν(c)
(
θ
(c)
g

)
(θ

(c)
g )2

. Here the differential expression is again assessed using exact test similar

to edgeR and the one proposed by Robinson and Smyth (2008).

In baySeq, the parameters of the negative binomial distributions are shared

within equivalence classes. If a gene is not differentially expressed, the observed

counts for that gene come from one equivalence class, hence having the same

parameters. For differentially expressed genes the replicates from conditions that

differ belong to different equivalence classes and have independent parameters

θ
(c)
g and φ

(c)
g . An Empirical Bayes procedure is used to calculate the posterior

probabilities of models defining the equivalence classes.

Apart from the negative binomial model, alternative methods have been pro-

posed as well. The DEGseq method (Wang et al., 2010b) uses Binomial dis-

tribution to model the counts and tests for differential expression based on the

observation that the log fold change, conditioned on the log mean expression, ap-

proximately follows Normal distribution. However, the method does not address

the problem of biological variation mentioned earlier.

Auer and Doerge (2011) proposed a two staged Poisson model (TSPM) ap-

proach, which uses Poisson distribution with quasi-likelihood approach to account

for over-dispersion. The method firstly filters out low expressed genes in the first

stage and then assesses the differential expression for the genes that have sufficient

expression.

The performance of TSPM method as well as edgeR, DESeq and baySeq is

compared in a report by Kvam et al. (2012). More general review of tools for

RNA-seq analysis and an overview of some of the early DE analysis methods can

be found in (Oshlack et al., 2010).

As we have mentioned above, these methods use the counts of reads mapping

to a particular gene to detect differentially expressed genes. They assume that the

data can be approximated by the Poisson model with additional dispersion due to
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biological variation. However, genes undergo splicing which can result in various

transcripts with varying lengths. The fact that genes can have different lengths

in different conditions, or that the relative proportions of gene’s transcripts can

vary cannot be accounted for in these models.

Analysis of splicing events

As RNA-seq experiments sample entire transcripts it is possible to analyse exon

usage and the variation in splicing events. Unlike the methods mentioned above,

which only compare the abundance of genes within a sample, one can study the

variation in splicing events of individual genes.

Singh et al. (2011) proposed a method based on Flow difference metric (FDM)

which compares the splicing variations of genes between conditions. Instead of

relying on annotation and quantifying individual transcripts, the method uses a

weighted splice graph representation of mapped reads. A component of the graph

corresponds to a non-overlapping transcribed region with transcription start and

end sites being the nodes of the graph. Edges correspond to either exons or

junctions and are weighted by the amount of reads mapping to them.

The authors proposed the FDM to measure the splicing activity of a gene

within condition and use a non-parametric test for the hypothesis that the FDM

of two conditions are significantly different. This approach does not allow care-

ful examination of splice variants present in each sample, but it can determine

whether the splicing of a gene is different or not.

Splicing of genes can be also examined in terms of the cassette exons. These

are exons that have switch like behaviour of either being included within a tran-

script sequence or being excluded during splicing. The Multivariate Analysis of

Transcript Splicing (MATS) method proposed by Shen et al. (2012) is aimed at

detecting changes in the cassette exon usage between conditions.

Here the authors use read counts of junctions to calculate the exon inclusion

level. The reads mapping to the junction of particular exons with other upstream

or downstream exons are counted as the exon’s inclusion reads, I. On the other

hand, the reads mapping to junction of surrounding exons are counted as exon

skipping reads, S. The exon inclusion level is defined as the ratio of inclusion

reads over all related reads, φ̂ = I/(I + S). The exon inclusion level is used to

construct a prior distribution for overall splicing similarity, which can be subse-

quently combined with a Binomial model of read counts to infer the posterior
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distribution of alternative splicing of genes.

Similarly to the FDM method, MATS enables the detection of alternative

splicing between conditions. Additionally it enables a comparison of individual

exon usage. The downside of this method is that it only relies on the reads

mapping to junctions of exons. While the method does not directly use a bias

correction approach, the report suggests using weighted counts based on of the

previously mentioned techniques.

The DEXSeq method similarly focuses on the differences in exon usage be-

tween various conditions (Anders et al., 2012). Gene loci are split into bins with

unique alignments and the analysis is carried out using the per-bin read counts.

The reads spanning junctions of bins are assigned to both bins and junctions

overlapping exons are not considered as evidence of exclusion. The approach is

very similar to that of DESeq tool for gene DE analysis, previously proposed by

Anders and Huber (2010), co-authors of DEXSeq.

The bin read count is modeled by a negative binomial distribution with mean

equal to the product of the library size and the relative proportion of fragments

from the bin. The bin’s relative proportion of fragments is a product of the

following factors: gene expression, expected fraction of reads within the gene

mapping to the bin, fold change of the gene between conditions and condition

specific effect on bin’s abundance. The last two factors are condition specific and

can be used to assess the DE of a particular gene and to estimate the difference

in bin usage between conditions.

Most of the bins equal to single exons, however the authors do not address

the case when one exon contains multiple bins. Another downside of this method

is that it considers exons independently, and as authors note themselves, in cases

when multiple exons exhibit DE it can be indistinguishable whether the change

is caused by alternative splicing or difference in abundance.

The above mentioned approaches for analysis of alternative splicing can be

used to detect when a gene is being spliced differently between conditions. While

MATS and DEXSeq also quantify the exon usage, none of these methods is de-

signed for comparing changes in the abundance of particular isoforms or tran-

scripts. Nevertheless, their advantage lies in the fact they do not rely on correct

annotation of transcripts and only need splice-aware alignment of reads.
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Transcript level analysis

Differential expression analysis of transcripts provides the most detailed assess-

ment of the differences between conditions. While gene level analysis can be

confounded by varying splicing, exon level analysis only provides evidence of dif-

ferences in the splicing process. The following approaches use RNA-seq data to

determine the significant changes in abundances of particular gene transcripts.

These approaches fall into two categories, the first type of methods uses

aligned reads as an input, and the expression levels of transcripts in individ-

ual samples can be only latent variables of the model. The second type relies on

an additional transcript quantification tool and uses transcript expression levels

from individual experiments as an input for the analysis.

Zheng and Chen (2009) proposed a method for DE analysis using either

RNA-seq read coverages or probe intensities obtained by tiling microarrays. The

Bayesian Analysis of Splicing Isoforms (BASIS) method is based on hierarchi-

cal probabilistic model of observed changes in expression. The expression of a

‘probe’, which can be either microarray probe or read coverage of a genomic po-

sition is defined as a mixture of expressions of transcripts that ‘cover’ the probe.

Instead of defining a model of the observed coverage, the authors use the multi-

nomial Normal distribution to model the difference of probe coverage between

conditions. A Markov chain Monte Carlo algorithm is used to sample from the

posterior distribution of model parameters.

This method uses the Normal distribution to model the difference of expres-

sion. While this might be a good choice for intensities of probes, it is not suitable

for modelling differences in discrete read counts. Furthermore, the method does

not address read distribution biases that can skew the observed read coverage.

However, the most important disadvantage of the approach is that it does not al-

low to include biological replicates that would enable assessment of the biological

variability.

Drewe et al. (2013) proposed two complementary methods for transcript dif-

ferential expression analysis in an application called rDiff. In the case of a known

annotation, a parametric model based on a negative binomial distribution of ob-

served counts is used. For cases when the exact transcript annotation is unknown

a non-parametric approach using kernel maximum mean discrepancy can be ap-

plied.
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The parametric approach relies on ‘alternative regions’ which are regions

within genes that are unique to single transcript. The statistical test considers

each region independently to determine whether a transcript containing that re-

gion is differentially expressed. The null hypothesis is that there is no differential

expression and that counts observed in replicates of each condition are realized

from a negative binomial distribution with the same parameters. Based on the

negative binomial model a p-value of the observed counts under the null hypoth-

esis can be calculated for each region. The Bonferroni correction method is used

to combine p-values from multiple regions into a single p-value of a transcript.

The rDiff method uses biological replicates to estimate the variance of nor-

malised counts. Observed empirical variance of normalised counts is processed by

local regression producing a mapping between mean normalised read count and

biological variance.

The Cufflinks application suite for transcript assembly and quantification also

includes the Cuffdiff method for differential expression assessment (Trapnell et al.,

2010, 2013). The transcript expression inferred by Cufflinks algorithm is used in a

negative binomial model that accounts for over-dispersion, similarly to the DESeq

method by Anders and Huber (2010). Here authors acknowledge the ambiguity

of read assignments in transcript quantification that makes it inappropriate to

use negative binomial distribution over transcript read counts. They propose the

use of beta negative binomial mixture based on subsets of transcripts that share

mapped reads. This enables estimation of expression levels as well as variance

and covariance of expression between transcripts.

The parameters of the beta negative binomial mixture for each condition

are calculated exactly based on moments of the distribution. Two-sided test

statistic of log ratio of gene expression divided by variance is used to assess

gene level differential expression. To assess the significance of changes in relative

proportions of transcripts authors use square root of Jensen-Shanon divergence

of the relative abundances in two conditions as a test statistic. The p-value is

calculated empirically by sampling from the distributions of relative abundances

under the null hypothesis of no DE.

EBSeq method uses estimated transcript read counts combined with negative

binomial model to detect differentially expressed transcripts and genes (Leng

et al., 2013). The report suggests using estimated read counts from RSEM,

Cufflinks or any other quantification method as an input. The read count of
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a transcript m within a single replicate r is modeled by the negative binomial

with mean µ
(r)
m = n(r)ρm(1− q(c)

m )/q
(c)
m and variance (σ

(r)
m )2 = µm(r)/(q

(c)
m ), where

n(r) is a replicate specific normalisation constant and ρm is a transcript specific

parameter shared over all conditions. The model assumes a beta distribution

prior over the condition specific parameter q
(c)
m ∼ Beta(α, βG), with constant

hyperparameter α and varying hyperparameter βG, dependent on the number of

splice variants belonging to the same gene.

The method uses empirical Bayes inference procedure where the maximum

likelihood estimates of hyperparameters are inferred from the model using the EM

algorithm. The hyperparameter estimates are subsequently used in the inference

of the posterior distribution of differential expression, i.e. the probability of

q
(c1)
m 6= q

(c2)
m .

1.5.4 Other applications of RNA-seq

RNA-seq can be used in various types of studies, with the most obvious applica-

tion being replacement of the microarray technology in gene expression related

research. For some types of experiments, such as splice variation discovery, the

sequencing based approach is much more convenient. With the sufficient depth

of sequencing, multiple-fold coverage of the underlying sequence can be obtained.

This enables transcriptome analysis of species that have not been annotated or

might even have unknown genome.

De-novo assembly

Similarly to whole genome sequencing, RNA-seq can be applied to organisms with

an unknown genome. The transcripts have to be assembled de-novo using just

the short reads. While the task is very similar there are differences that have to

be considered. Firstly, the transcriptome does not contain long repetitive regions

as are found in genome. The transcriptome is also an order of magnitude shorter

than genomic sequence. On the other hand, isoforms of the same gene can be

very similar making it hard to distinguish between them. Lastly, unlike genome

sequencing, the coverage of transcripts is uneven, depending on their abundance.

While transcripts of one gene might be highly covered, low expressed transcripts

are hard to identify.

Tools specifically designed for de-novo discovery of transcripts are available,
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e.g. Trans-ABySS (Robertson et al., 2010) and Velvet (Zerbino and Birney, 2008).

Transcript discovery using the reference genome

A much simpler and more common task is the identification of new transcripts by

RNA-seq for organisms with a known genome. Instead of assembling the reads to

continuous sequence, the genomic sequence is used as a reference and most of the

reads can be aligned to the genome. However, reads providing most information

about gene isoforms are reads that span splice junctions.

Reads from exon junctions, or ‘junction reads’, cannot be aligned to the ge-

nomic sequence because the reference contains also introns which were spliced out.

These reads have to be aligned by first aligning only smaller parts of the reads.

Once a part of a read is matched to a position within reference, the alignment

can be extended as long as the read matches reference, the rest of the read has

to be re-aligned as it is part of a different exon. The spliced alignments provide

two-fold information. Firstly they mark exactly exon boundaries and secondly

they tell us which exons are being spliced together.

Once the reads are aligned, consecutive sequences covered by reads are iden-

tified as exons. Some genes can also be identified based on groups of exons that

are positioned close to each other. Finally, using the identified exons and the in-

formation gained from the spliced reads, a set of all potential transcripts can be

constructed. Exact identification of true transcripts is in most cases impossible.

While some applications report all possible transcripts (Guttman et al., 2010)

and leave the user to assess their validity, other applications try to identify the

smallest set of transcripts explaining all the reads (Trapnell et al., 2010).

In transcript discovery the use of paired-end reads can provide additional

information that can help deciphering various gene isoforms. The mates of a

paired-end read were sequenced from one fragment which was size selected. This

means that the reads are from the same transcript and have to be aligned within

a certain distance of each other. Paired-end reads from fragments spanning a

junction thus provide the same kind of information as junction reads except for

exact exon boundaries.

Transcript discovery is a well studied problem with many existing applications

such as the popular Cufflinks suite (Trapnell et al., 2010), Scripture (Guttman

et al., 2010), Trinity (Grabherr et al., 2011) or IsoLasso (Li et al., 2011b).
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Even for annotated organisms, new isoforms of genes are still being discov-

ered. The annotation provides the advantage of a well defined exons and their

boundaries, which simplifies the alignment. However, for a set of n exons, there

are 2n−1 potential splice variants and the problem of selecting the correct subset

of isoforms still preserves. Some tools such as Cufflinks can use previously an-

notated transcripts and propose new transcripts only for reads that do not align

with existing annotation (Trapnell et al., 2010). On the other hand, SLIDE (Li

et al., 2011a) depends solely on reads and annotation.

For a review of methods for transcript discovery please refer to Martin and

Wang (2011) and Garber et al. (2011).

Fusion gene detection

Similarly to discovering splice isoforms of genes, RNA-seq can be used for de-

tecting fusion genes. These are transcripts that were created by fusion of exons

of different genes. These transcripts occur in various types of cancer and their

discovery is important for further detection and understanding of various types

of cancer (Maher et al., 2009).

Allele specific expression

Most higher organisms have multiple copies, or alleles, of each gene, due to hav-

ing two or more of each chromosome. RNA-seq can be used to identify allele

specific transcripts and quantify them (Turro et al., 2011; Skelly et al., 2011).

Condition specific prevalence of a certain allele is an interesting problem which

can be transformed to the problem of transcriptome quantification. Instead of

deciphering transcripts which differ in splice variation, one has to distinguish

between transcripts with similar sequence that differ just in several SNPs.

1.5.5 Bayesian inference

Probabilistic modeling

Bayesian inference encompasses methods of statistical inference that rely on the

application of Bayes’ theorem to update beliefs based on observed evidence.

Bayes’ theorem

P (ψ|Data) =
P (Data|ψ)P (ψ)

P (Data)
, (1.18)



64 CHAPTER 1. INTRODUCTION

relates our belief of some unknown parameter ψ after observing evidence Data to

our prior belief of ψ, the likelihood of the Data given ψ and the overall likelihood

of the observed Data. We use the following terms when describing the model:

• P (ψ|Data) is the posterior distribution, or our belief of ψ after observing

the Data;

• P (Data|ψ) is the likelihood of the observed Data given the parameter ψ;

• P (ψ) is the prior distribution expressing our initial belief of ψ;

• P (Data, ψ) = P (Data|ψ)P (ψ) is the joint likelihood of the observed Data
and parameters ψ;

• P (Data) is the marginal likelihood of the Data, expressing the overall prob-

ability of observing the Data based on our model irrespective of the param-

eter ψ.

The marginal likelihood can be also viewed as a marginalization of the joint

likelihood P (Data) =
∫

dψ P (Data, ψ).

The key concept of Bayesian inference is that all parameters are represented

by probability distributions. This is unlike alternative frequentist approaches in

which a single value of a parameter is estimated, with an additional measure

of certainty. The use of probability distributions and Bayes’ theorem provide

a natural framework for combining the certainty of our beliefs and propagating

them throughout the inference. The inferred distributions can be used in further

analysis or simply summarized by their moments.

Model inference

The inference procedure starts by defining a probabilistic model of the observed

Data, which defines the likelihood of the data in terms of the unknown parameter,

P (Data|ψ). We then select a prior distribution over the model parameters, P (ψ),

which can either represent some information we have about the parameters or

provide an uninformative base distribution for the parameters. After defining the

model and selecting a prior, we can apply Bayes’ theorem to derive the posterior

distribution over ψ,

P (ψ|Data) =
P (Data|ψ)P (ψ)∫
dψ P (Data|ψ)P (ψ)

. (1.19)
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While this approach can be universally applied to any kind of model and

prior, the marginal likelihood in the denominator is in most cases intractable.

The marginal likelihood serves as a normalisation constant as it is not a function

of the parameter ψ. In cases when the marginal likelihood is not tractable, we

can derive a proportional version of the posterior distribution, without knowing

the normalisation,

P (ψ|Data) ∝ P (Data|ψ)P (ψ) , (1.20)

and use an approximate inference method to infer the parameters. There are

two main classes of approximate inference, asymptotic approximation methods

represented by the Markov chain Monte Carlo algorithms and deterministic ap-

proximations, which approximate the posterior with tractable probability distri-

butions.

Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) algorithm refers to a set of meth-

ods which enable generating samples from a desired distribution using a Markov

chain. The Markov chain is a random process, or a sequence of random variables

x1,x2, . . . , in which the next state xn+1 only depends on the current state xn:

P (xn+1|xn,xn−1, . . . ,x1) = P (xn+1|xn). (1.21)

If a Markov chain is irreducible and aperiodic, it converges to a marginal distribu-

tion P (xn). Through careful selection of the transition probability P (xn+1|xn),

we can ensure that the marginal distribution P (xn) is some desired distribution

of our choice.

Metropolis-Hastings

In the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)

a sample or state of the Markov chain at step t, xt, is first generated from a

proposal distribution Q(x∗|xt−1) conditioned on the last sample xt−1. The newly

proposed sample is then accepted as a new sample xt with acceptance probability

paccept. In case of a rejection, the last sample xt−1 is used again as a sample from

the Markov chain. Hastings (1970) showed that setting the acceptance probability

to

paccept = min

(
1,

P (x∗)Q(xt−1|x∗)
P (xt−1)Q(x∗|xt−1)

)
(1.22)
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ensures that the samples of the Markov chain will converge to the desired distri-

bution P (x). Importantly, paccept contains the ratio of the two posteriors, which

means that the normalisation constant cancels out, thus we can sample from P (x)

using its proportional expression as in Equation 1.20.

Selecting the right proposal distribution for Metropolis-Hastings algorithm is

very important. The ideal case is to use the posterior distribution, which leads

to all samples being accepted, because paccept = 1. However, we resort to this

algorithm when we are not able to sample from the true posterior, thus need

a different way of proposing new samples. Metropolis et al. (1953) originally

proposed the use of a symmetric proposal distribution, such as the Normal distri-

bution centered around last sample xt−1. Such a procedure is also referred to as

the Random walk MCMC. The symmetric distribution simplifies the acceptance

probability into the ratio of posteriors:

paccept = min

(
1,

P (x∗)

P (xt−1)

)
. (1.23)

Gibbs sampling

The Gibbs sampling algorithm (Geman and Geman, 1984), is a special case

of a Metropolis-Hastings algorithm. Here conditional distributions of individual

parameters are used to propose new values of the parameters:

Q(x∗|xt−1) =
K∏
k=1

P (x∗k|x∗1, . . . , x∗k−1, x
t−1
k+1, . . . , x

t−1
K ). (1.24)

Given the above proposal, the acceptance probability of a sample is always 1,

hence all samples are accepted, providing a great advantage to the Gibbs sampling

algorithm. Nevertheless, in order to use the Gibbs sampling, one has to derive

conditional distributions over the parameters in a tractable form of some standard

probability distribution.

Convergence of MCMC

MCMC represents an asymptotic approximative algorithm, because it con-

verges to the desired distribution asymptotically. As we can only run MCMC for

a finite number of iterations, convergence of the algorithm has to be monitored in

order to ensure sufficient convergence to the marginal distribution. Furthermore,

due to the Markov property of the generated samples, the sequence of samples
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usually exhibits a certain level of autocorrelation. This means that despite con-

vergence and sampling from the desired distribution, a small number of samples

might not properly represent the full distribution. Various techniques for moni-

toring convergence and assessing the quality of generated samples can be found

in related literature (Gilks et al., 1995; Gelman et al., 2004).

Deterministic approximative inference

While the MCMC algorithm asymptotically samples from the true posterior, en-

suring convergence of the algorithm can be prohibitively computationally expen-

sive. In such cases, deterministic approximate inference methods can be used

instead. These methods use standard parametric probability distributions to ap-

proximate the intractable posterior distribution of the model.

We apply the approach of Variational optimisation, also known as the Varia-

tional Bayes (Bishop, 2006), to the expression quantification problem in Chapter

4. For details about alternative approaches such as the Laplace approximation or

Expectation Propagation, please refer to appropriate literature (Bishop, 2006).



Chapter 2

Inferring transcript expression

In this chapter we address the problem of transcript expression quantification

from RNA-seq data defined in Section 1.4.2. In brief, given a set of reads that

were sequenced from an unknown mixture of transcript molecules we want to

infer the abundance of the molecules within the sample.

We propose a probabilistic generative model of the RNA-seq data similar to

that of Li et al. (2010a). The model is based on the known sequencing process

and assumes conditional independence of reads, conditioned on a fixed set of

transcripts and their unknown abundance. The model accounts for paired-end

reads, fragment length distribution, base errors and read distribution biases by

estimating the likelihood of each alignment.

We use a Bayesian inference approach and derive a posterior distribution over

the expression parameter θ. The exact posterior is not analytically tractable,

hence we apply the Gibbs sampling algorithm to generate samples from the dis-

tribution. The inferred distribution can either be used in the downstream analysis

or can be summarized by calculating the mean expression.

The model is evaluated using both synthetic and real RNA-seq data. We

examine the properties of the posterior distribution and assess the accuracy of

the inferred expression. Finally, a comparison with other state-of-the-art methods

used for transcript expression quantification is presented.

68
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2.1 Probabilistic model of RNA-seq

2.1.1 Relative proportion of transcript fragments

The model of the observed RNA-seq data is defined with respect to the main

unknown parameter θ = (θ1, . . . , θM), the relative proportion of transcript frag-

ments. The use of the relative proportion of transcript fragments is more con-

venient for us than defining the model in terms of relative abundance of entire

molecules. The relation between the abundance of transcript molecules and the

number of its fragments is expressed by the effective length of a transcript, l
(eff)
m .

The effective length, which depends on the length of a transcript, fragment length

distribution and sequencing biases, is defined later in Section 2.2.6.

θ can be also viewed as the normalised per-transcript read count and can be

easily transformed into alternative measures. Given the effective length l
(eff)
m and

the total number of reads N , we can transform the inferred θ into read count or

RPKM as follows:

Cm = θm ×N, (2.1)

RPKMm =
θm

l
(eff)
m

× 109. (2.2)

2.1.2 Read-centric view of the sequencing process

In order to introduce the generative model we take an alternative view of the

sequencing procedure from the perspective of a single read. Each read is gen-

erated by an independent random process and the high-throughput sequencing

technology can perform millions of these processes simultaneously.

P (transcript|θ)

P (fragment|transcript)

P (read|fragment)

Figure 2.1: Diagram of sequencing as an independent process generating
a single read.

The random process of sequencing a single read is schematically outlined in

Figure 2.1. Each read is sequenced from one of the fragments within the sample,

while not all of the fragments are necessarily sequenced. At this point we do

not consider how the transcripts were fragmented, we only consider the number
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of fragments from each transcript and the fact that the relative proportion of

fragments is θ, the unknown parameter that represents expression.

Starting from a sample consisting of fragments of all the molecules, one of the

fragments is selected with a probability P (fragment|θ). As we outline in Figure

2.1, this probability can be further divided into two factors

P (fragment|θ) = P (fragment|transcript)P (transcript|θ).

In the first step, all fragments from a particular transcript are chosen with a

probability proportional to θ, which is given by a Categorical distribution. Sub-

sequently a particular fragment is chosen from all the fragments of this transcript

with a probability P (fragment|transcript). If we assume that transcripts fragment

uniformly along their length, then the probability of choosing a fragment starting

at a specific position is equal to 1/(lm − lfr + 1), where lm is the length of the

transcript and lfr is the length of the fragment. Reads observed in most RNA-seq

experiments do not have a uniform distribution, meaning that transcripts tend to

be fragmented at some positions more often than at others. We discuss the inclu-

sion of a read-distribution bias model in the probability P (transcript|fragment)

in section 2.2.

Once the fragment has been chosen, the actual read is sequenced from one

of its ends with a probability P (read|fragment) that models the probability of

base mismatches and other errors observed within the data. In case of paired-end

reads, both ends of the fragment are sequenced resulting in two mates.

The probability of observing a single read given θ can be written as:

P (read|θ) = P (transcript|θ)P (fragment|transcript)P (read|fragment), (2.3)

with the important property of factorization into the probability of choosing a

transcript and the probability of generating a read from the transcript. We use

this property in the formal generative model of the data described in the following

section.

2.1.3 Generative probabilistic model

We describe the model in Figure 2.2(a) using the standard plate notation. Sequencing

generates N reads, which are the data we observe, denoted by random variables
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In

θ θact

Zact
n

N
rn

(a)

znm

θ

N
rn

M

(b)

Figure 2.2: Graphical model of the sequencing process. Observed reads
(rn) are conditionally independent of expression (θ), given their assignment to
transcripts (In or zn). (a) representation with explicit noise model and indicator
variable In used for read assignments (b) noise transcript is included with the
other transcripts, binary allocation vector zn is used for read assignments.

R = {r1, . . . , rN}. Each read is sequenced from a particular transcript and we use

an indicator variable I = (I1, . . . , IN); In ∈ {0, . . . ,M} to specify this assignment.

The main parameter of interest is θ, which denotes the relative proportions of

transcript fragments in the sample. The reads are conditionally independent of

θ given the latent variable I = (I1, . . . , IN).

The model further defines a noise parameter θact. As some of the reads might

be of low quality or have ambiguous alignments with low probability, the noise

parameter governs a probability of assigning these reads to a noise transcript.

Another latent variable Zact = (Zact
1 , . . . , Zact

N ) is introduced to indicate whether

a read is assigned to noise Zact
n = 0⇒ In = 0 or whether it is assigned to one of

the transcripts Zact
n = 1⇒ In ∈ {1, . . . ,M}.

The joint likelihood of the model is

P (R, I,Zact,θ, θact) = P (θ)P (θact)
N∏
n=1

(
P (rn|In)P (In|θ, Zact

n )P (Zact
n |θact)

)
.

(2.4)

The noise indicator variable can have values 1 and 0 and determines whether a

read is assigned to one of the transcripts or to the noise transcript, and follows

a Bernoulli distribution with the parameter θact. Given that Zact
n = 1 the read is

assigned to one of the transcripts, which is equivalent to ‘choosing a transcript’,
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or P (transcript|θ) as described in the Section 2.1.2. The probability of choos-

ing a specific transcript is proportional to the abundance of fragments of that

transcript, leading to the indicator variable In being distributed according to a

Categorical distribution with a parameter vector θ. The likelihood of observing

a particular read given its assignment to a transcript, P (rn|In), is discussed in

detail in Section 2.2.

We define weak conjugate prior distributions over the model parameters θ

and θact using a symmetric Dirichlet distribution with hyperparameter αdir =

(αdir, . . . , αdir) and Beta distribution with hyperparameters αact and βact respec-

tively.

The following equations summarize the probability distributions of the model

parameters and latent variables:

P (In|θ, Zact
n ) =

0 ;Zact
n = 0

Cat(In|θ) ;Zact
n = 1

, (2.5)

P (Zact
n |θact) = Bern(Zact

n |θact), (2.6)

P (θ) = Dir(αdir), (2.7)

P (θact) = Beta(αact, βact). (2.8)

We use explicit modelling of the noise through the noise indicator Zact
n and

Beta distributed noise parameter θact. Note that marginal univariate distribution

for a single component of a Dirichlet distributed vector is the Beta distribution.

Hence including the noise parameter in the vector θ and treating it as another

transcript would result in an equivalent model. We depict the simplified model

in Figure 2.2(b). This alternative definition is used in the Variational Bayes

inference presented in Chapter 4.

2.2 Likelihood of read observation

In this section, we focus on estimating the likelihood of observing a read, given

that we know a transcript of its origin m, P (rn|In = m). As described in Section

2.1.2, this likelihood can be viewed as the joint product of the likelihood of

selecting a specific fragment and the likelihood of sequencing the actual read:

P (fragment|transcript)P (read|fragment).
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A particular focus is given to non-uniform read distribution biases in contrast

with uniform read distribution biases, which affect the distribution of fragments

or P (fragment|transcript).
Every read can be characterized by its position within transcript p, the strand

to which it aligns s and its sequence rn. As we show later, the only viable positions

worth considering are those where the read actually aligns to the transcriptome,

however for the moment p can be any arbitrary position within a transcript.

2.2.1 Single-end vs. paired-end reads

Depending on the type of sequencing used, the data consists of either single-end

reads or paired-end reads. In the first case, only one of the ends of a fragment

is sequenced. In the second case, each read has two mates, which are the result

of sequencing both ends of a fragment. We can look at the pair of mates as one

long read with unknown sequence in the middle that provides us with some extra

information. Firstly, the alignment of the paired read will be more selective, as

both ends have to come from the same transcript and secondly, it will provide us

with information about the fragment’s length.

Single-end reads In the case of single-end reads, the only information that we

know about the fragment of a read’s origin is the position of one of its ends and

the lower bound on its length. The read was sequenced from one of fragment’s

ends, thus the starting position of a read p determines one end of a fragment.

We also know that the transcript is at least as long as the read, hence the lower

bound on fragment’s length.

Given that we determined the read’s transcript of origin In = m, we model the

likelihood of the observation as a joint likelihood of selecting a strand s, choosing

a fragment end at position p and the likelihood of read sequence generation, given

the reference sequence seqmps,

P (rn|In = m) = P (s|m)P (p|m)P (rn|seqmps). (2.9)

Paired-end reads The paired-end reads cover both ends of fragments, which

are in most cases length-selected before sequencing, thus providing a relatively

narrow distribution of possible lengths. This distribution can be known before-

hand and be part of the RNA-seq data description, or it can be inferred from the
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data itself from uniquely aligned reads. Given the unique mappings of reads, the

distances of their further ends are the lengths of the sequenced fragments.

We will denote rn as being a pair of variables describing the individual reads,

rn = (r
(1)
n , r

(2)
n ). Length of a fragment, denoted by l, is the distance of the

furthest ends of mates in terms of transcript coordinates. For a given transcript

In = m, the probability of observing paired reads (r
(1)
n , r

(2)
n ) is determined by

the probability of the read being sequenced from a specific strand s at a specific

position p with a specific insert length l and the probability of reporting the reads

after sequencing the reference sequences (seq
(1)
mlps, seq

(2)
mlps),

P (r(1)
n , r(2)

n |In = m) = P (s|m)P (l|m)P (p|l,m)P (r(1)
n |seq

(1)
mlps)P (r(2)

n |seq
(2)
mlps) .

(2.10)

2.2.2 Strandedness

Current sequencing protocols are either strand specific or un-stranded. In the

first case a specific strand is sequenced first and all reads will originate from that

strand. We can say that the probability of observing a read aligning to the correct

strand is always one

P (s = 1|m) = 1 . (2.11)

A small fraction of alignments will match also to the incorrect strand, however

the likelihood of this alignment being correct is difficult to evaluate. For this

reason it is preferable to filter these alignments before the estimation, during the

alignment stage.

On the other hand, un-stranded protocols can produce reads aligning to either

strand with equal probability and thus the probability of observing a read from

either strand is equal:

P (s = 1|m) = P (s = 0|m) = 0.5 . (2.12)

As long as alignments to the incorrect strand are filtered for strand specific pro-

tocols, the likelihood of observing a read from a specific strand P (s|m) does not

play a role in our model. Even though we include this term in equations 2.9 and

2.10 for completeness, we leave it out from further calculations.
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Figure 2.3: Empirical fragment length distribution and approximation
through Log-Normal distribution.

2.2.3 Fragment length distribution

Because of the fragmentation protocol and fragment length filtering applied in

sequencing protocols, the variance of lengths of sequenced fragments is small.

The read fragment length distribution plays an important role in deconvolution

of RNA-seq read alignments. For example, a read pair aligning to two transcripts

that differ in sequence length between the two ends will have much higher proba-

bility of alignment to a transcript for which the ends are separated by a distance

that is more likely according to the fragment length distribution. Despite the

fragmentation process and filtering being universal for all transcripts, the maxi-

mal length of a fragment is limited by the maximal length of a transcript, hence

we use the term P (l|m) for the probability of observing a fragment of a specific

length.

We approximate the probability distribution of fragment lengths by a Log-

Normal distribution. An example of the empirical distribution of fragment lengths

based on uniquely mapping reads and Log-Normal approximation is presented

in Figure 2.3. For every transcript, we simply assume that the probability of

fragment length in a range [0, lm] is proportional to a Log-Normal probability

density, while for lengths above the transcript length lm it is 0. We calculate the

probability of fragment length l given the transcript m by normalising the Log-

Normal probability with Log-Normal cumulative density. As the fragment lengths

are integers, we calculate the cumulative density by summing over all possible

fragment lengths. For a transcript of length lm the probability of observing a
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fragment of length l bases is

P (l|m) =

1

lσlen
√

2π
exp

(
−(log l − µlen)2

2σ2
len

)
lm∑
k=1

1

kσlen
√

2π
exp

(
−(log k − µlen)2

2σ2
len

) , (2.13)

with µlen and σlen being the parameters of Log-Normal distribution.

In some cases, the actual distribution, or at least its mean and variance are

provided with the data itself. However, in most cases this information is missing

and thus has to be inferred from the data. In a strict Bayesian approach, the

parameters of the distribution would be treated as latent parameters of the model.

In our case, we decided not to include these parameters in the model in order

to simplify the inference process. The parameters are estimated empirically and

the fact that there is great deal of data makes this approach feasible. Given the

distribution of fragment lengths from N (1) uniquely mapping paired reads, we use

Maximum Likelihood estimation for the Log-Normal distribution parameters:

µ̂
(ML)
len =

∑N(1)

i=1 log li
N (1)

,

σ̂
2(ML)
len =

∑N(1)

i=1 (log li − µ̂(ML)
len )2

N (1)
.

(2.14)

2.2.4 Likelihood of read sequence observation

The reads reported by the sequencer are obtained by a process which is sub-

ject to experimental errors. The proportion of wrongly identified bases in high-

throughput sequencing is relatively low and improving, however sequencing errors

do occur. The majority of data generated by sequencers is provided in Fastq for-

mat that contains read sequences as well as base quality scores. The scores, in so

called Phred format, provide an estimate of reliability for each base.

The quality QPhred encodes the probability of the base being incorrect, perr:

QPhred = −10 log10 perr,

perr = 10−QPhred/10.
(2.15)

We use this score to evaluate the probability of observing read sequence with
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all its base mismatches given the underlying sequence of the reference transcrip-

tome seqmlps. The coordinates m, l, p, s encode the transcript, fragment length,

fragment start position and strand, respectively. For a read of length lr, the

probability of observing its sequence is calculated as

P (r(1)
n |seqmlps) =

lr∏
i=1

(
δ(r

(1)
n,i = seqmlps,i)(1− perr,i)+

δ(r
(1)
n,i 6= seqmlps,i)perr,i

)
,

(2.16)

and equivalently for second paired read or for single-end case.

Accounting for the probability of read sequence generation enables inclusion

of alignments with base mismatches in a sound way. Mismatches that are due

to low sequencing quality have lesser effect on the likelihood than mismatches

with high quality score. Hence alignment with extra mismatch on a base with

high quality score will have much lower likelihood than alignment without the

mismatch.

There is an exception in cases where a read covers a Single Nucleotide Poly-

morphism (SNP), in which case the base will not match the reference despite a

high quality score. Again, a more complex model of the data could model the

likelihood of such a scenario given all the reads. However, SNP detection and

correction of the reference can be easier dealt with in the data processing stage

using tools specifically designed for the task, such as SOAPsnp or GATK (Li

et al., 2009a; DePristo et al., 2011).

2.2.5 Read distribution and fragmentation bias

The probability of sequencing a given position is in general given by

P (p|In = m, l) =
bm(p, l)∑lm−l+1

q=1 bm(q, l)
, (2.17)

where bm(p, l) denotes the bias in sequencing a fragment of length l from a partic-

ular position p of a transcript m. For some data, it is viable to assume a uniform

read distribution. In such case the bias bm(p, l) is constant which reduces the

probability of sequencing position p to

P (p|m, l) = 1/(lm − l + 1) (2.18)
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Figure 2.4: Diagram of a sequenced fragment. In most protocols the paired-
end read’s mates originate from ends of a fragment, with 3’ mate being from the
complementary reference strand.

depending only on transcript and fragment lengths. In the case of single end

reads, the fragment length l is replaced by read length lr.

The uniform read distribution assumption is in many cases incorrect. It has

previously been stated by many studies that depending on the sequencing protocol

and the properties of the transcriptome, the read distribution can be far from

uniform (Howard and Heber, 2010; Wu et al., 2011; Li et al., 2010b; Roberts

et al., 2011). The non-uniformities can be caused by sequence properties such as

GC content, fragmentation bias as well as inclination to sequence specific regions

of transcript molecules.

In order to account for the non-uniform read distribution, we applied a bias

correction model introduced by Roberts et al. (2011). We selected this model as

it seemed to be the most comprehensive and provided good empirical results. It

divides the bias into two separate parts: the sequence specific bias and a position

specific bias.

Given the properties of our generative model of RNA-seq data, it is easily

extendible to incorporate the bias model proposed by Roberts et al. (2011). As-

suming the parameters of the model are known, the bias model is used in form

of a correction in the read alignment likelihood calculation. Similarly, any other

read distribution model, which can be evaluated in terms of the likelihood of

sequencing a position given transcript, fragment length and strand, P (p|mls),
could be used instead.

On the other hand, the bias model parameters are usually unknown and have

to be inferred from the data. Inference of the bias model parameters with the data
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Figure 2.5: Variable length Markov model for sequence specific fragmen-
tation bias. The nodes represent bases around the fragment start site, with the
grey node being the first base of a fragment. Arrows mark conditional dependents
of following bases.

is difficult and computationally expensive. We follow the approach of Roberts

et al. (2011) in learning the bias model parameters a priori using an initial coarse

estimate of the expression levels and fixing the bias model for the remaining

inference.

Non-uniform read distribution bias model

In this section, we describe the implementation of a read distribution bias model

which was originally presented by Roberts et al. (2011). Under this model, the

bias for a given position of a transcript m and fragment of length l is the product

of individual biases of both paired mates,

bm(p, l) = bs,5m (e5)bs,3m (e3)bp,5m (e5)bp,3m (e3), (2.19)

where bs,5m (e5) and bs,3m (e3) are the sequence specific biases for 5’ and 3’ ends of the

fragment, respectively, and bp,5m (e5) and bp,3m (e3) are the corresponding positional

biases.

Sequence specific bias We use variable length Markov models to capture the

sequence specific bias for each end. The structure of the models, presented in

Figure 2.5, is the same as that of Roberts et al. (2011). The bias of one mate is

given as a product of probabilities of individual bases,

bs,5m (e5) =
21∏
n=1

ψ5,R
n,πn

ψ5,U
n,πn

, (2.20)

based on 21 probabilities ψ5
n,πn from 8 bases before and 12 bases after the read

starting position. Here ψ5,R refers to the biased and ψ5,U to a uniform model, n

is a node or a position, πn are the parents of node n and ψ5
n,πn is the probability

of base X at node (or position) n given the bases observed on parent nodes πn.
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The model has 744 parameters in all, with each node having 0, 1 or 2 parents as

in the model of Roberts et al. (2011).

The parameters are estimated from empirical frequencies using reads with a

single alignment. As the transcripts with high expression produce more reads,

we weight every read by the inverse expression of its transcript in order to avoid

overfitting to the biases of highly expressed transcripts. For a read r aligning

to transcript m we increase appropriate probabilities ψ5,R by 1/θm, where θm

is an initial coarse expression, estimated with uniform read distribution model

beforehand. In the contrasting uniform model for all K = lm − l + 1 possible

positions of fragment of length l, the appropriate probabilities ψ5,U are increased

by 1
θmK

. The model for 3’ end, bs,3m (e3), is implemented similarly.

Position specific bias In addition to the sequence specific bias, there is a

model for positional bias within the transcript:

bp,5m (e5) =
ωRlm,e5/lm
ωUlm,e5/lm

, (2.21)

where ωl,p is the probability for starting position within transcript of length lm

on position p. The probabilities are modelled within 5 transcript length bins and

20 bins of relative position. The probabilities are again estimated from empirical

frequencies of reads with single alignments weighted by the inverse expression

1/θ.

2.2.6 Effective length computation

We have introduced the concept of effective length in Section 1.4.2. It is the

measure of the amount of reads that can be produced from a specific transcript

molecule, which depends on the transcript length, fragment size distribution and

read distribution non-uniformities. As our model infers expression in terms of θ,

the relative proportion of transcript fragments, effective lengths are necessary for

converting θ into RPKM or a measure of molecules instead of fragments.

For single-end reads the fragment length distribution is unknown, unless pro-

vided with the sequencing data. In such case, we can use the read length as a

lower bound on the fragment length and approximate the effective length of a

transcript of length lm by the number of positions from which a read could have
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been sequenced:

l(eff)
m = lm − lr + 1, (2.22)

where lr is the read length.

For paired-end data the distribution of fragment sizes can be estimated em-

pirically based on uniquely mapping reads. In such case the effective length can

be estimated as the sum of all possible positions for all fragment lengths weighted

by the likelihood of the fragment length,

l(eff)
m =

lm∑
lf=1

P (lf |m)(lm − lf + 1). (2.23)

This expression assumes uniform distribution of fragments along transcripts as

the term (lm − lf + 1) counts every possible position of the fragment of length lf

equally.

Finally, in cases with known or empirically estimated read distribution bias

model, we can extend Equation 2.23 by weighting each position with a bias weight.

The effective length is then estimated as

l(eff)
m =

lm∑
lf=1

P (lf |m)

lm−lf+1∑
p=1

bm(p, lf ), (2.24)

where bm(p, lf ) is the bias weight of position p within transcript m defined by

Equation 2.19.

2.2.7 Probability of read being generated by noise

In the previous sections we covered the evaluation of the likelihood of a read

originating from an actual transcript. In our model, we want to allow for some

of the reads to be discarded and not assigned to any transcript. These could

be for example either low quality reads or reads with alignments that are too

ambiguous. For this purpose, we allow some of the reads to be assigned to an

artificial noise transcript. Thus we have to define the likelihood of observing a

read originating from noise, P (rn|In = 0) or simple P (rn|noise).
We again resort to an empirical approach in which we use the likelihoods of a

read’s alignments to true transcripts, P (rn|In > 0). We assume that the aligner

reported all mappings of the read with up to X base errors. The noise transcript
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is then modeled as a hypothetical mapping with K > X base mismatches, for a

fixed constant K. In other words, we expect that increasing the aligner’s limit

X might yield additional mapping to an unknown transcript, hence the read is

assigned to noise in such case.

The P (rn|noise) is calculated by penalising the least probable alignment with

extra base errors. Taking an alignment to a transcript with the lowest probability,

m̆ = argmin
m

P (rn|m), we calculate the probability of the noise alignment using the

same position, fragment length and strand, while adding more base mismatches

to the observed sequence,

P (rn|noise) = P (s|m̆)P (l|m̆)P (p|l, m̆)P (r(1)K
n |seq(1)

m̆lps)P (r(2)K
n |seq(2)

m̆lps), (2.25)

where r
(1)K
n denotes the sequence of first mate of paired end read rn with K total

base errors. The additional base mismatches are added towards the end of the

read sequence as those bases usually have the lowest quality score anyway.

2.3 Inference via Markov chain Monte Carlo

Section 2.1 detailed the probabilistic model for an RNA-seq dataset. Applying

Bayes’ theorem to the joint likelihood (Equation 2.4), yields the posterior distri-

bution over model parameters and latent variables:

P (I,Zact,θ, θact|R) =
P (θ)P (θact)

∏N
n=1 (P (rn|In)P (In|θ, Zact

n )P (Zact
n |θact))

P (R)
.

(2.26)

The marginal likelihood of the data P (R) is intractable, hence we have to resort

to an approximate inference of the model parameters. A natural choice is to

use a Markov chain Monte Carlo (MCMC) algorithm, which enables drawing

samples from the posterior distribution without the need to evaluate the marginal

likelihood. Thanks to the conjugacy of prior distributions over parameters, we

can use Gibbs sampling and Collapsed Gibbs sampling approaches which are

described in Sections 2.3.2 and 2.3.3 below.

2.3.1 Computing read observation likelihoods

Computationally efficient inference of this method is enabled by two factors.

Firstly, as can be seen from the graphical representation in Figure 2.2(a), the
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likelihood of observing a read rn is conditionally independent of model parameters

given read’s assignment In. Secondly and most importantly, the likelihood of read

observation has to be considered only for transcripts and positions for which an

alignment has been found.

Every read could have possibly originated from any transcript, and as noted

earlier, every read could have possibly originated from any position of a tran-

script. The fact that a position has not been reported as a read’s alignment

means that the read differs by at least k + 1 bases, where k is the number of

allowed mismatches. Therefore, the probability of a read being from a transcript

with no reported alignments or from a position which has not been reported is

vanishingly small in comparison with the probability of the read originating from

one of the reported alignments. Hence we only evaluate the read observation like-

lihood, P (rn|In = m), for transcripts to which the read aligns, and only consider

positions, lengths and strands (p, l, s) of valid alignments.

Conditional independence of the read observation likelihood allows pre-computing

of all the likelihoods before applying the MCMC algorithm. Given a reference

sequence and all the alignments (which contain read sequence, transcript identi-

fier, strand, position fragment length in case of paired reads) a sparse matrix is

computed. The matrix has one row per transcript and one column per read and

a position [m,n] contains the likelihood of read rn originating from transcript m.

In an exceptional case when a read has more valid alignments to a transcript, it

would be a sum of observation likelihoods of all those alignments.

2.3.2 Gibbs Sampling

In Section 1.5.5 we introduced the Gibbs Sampling algorithm (Geman and Ge-

man, 1984). The main principle of the algorithm is that sampling from a posterior

distribution of all parameters is achieved via iterative sampling from conditional

distributions of individual parameter vectors. To sample the (t + 1)-th sample

from the posterior distribution, we use parameters sampled in the previous iter-

ation and sample from following conditional distributions:

Zact(t+1) ∼ P (Zact(t+1)|I(t),θ(t), θ
act

(t), R),

I(t+1) ∼ P (I(t+1) |Zact(t+1),θ(t), θ
act

(t), R),

θ(t+1) ∼ P (θ(t+1) |I(t+1),Z
act

(t+1), θ
act

(t), R),

θact(t+1) ∼ P (θact(t+1) |I(t+1),Z
act

(t+1),θ(t+1), R).

(2.27)
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Before we evaluate the conditional distributions, we further simplify the in-

ference by marginalizing out the latent variable Zact. We are mostly interested

in parameter θ, thus we do not need to sample Zact and, as we will show, inte-

grating out Zact will not make sampling from conditional distributions of other

parameters intractable. The algorithm samples from the following posterior dis-

tribution:

P (I,θ, θact|R) =
∑
Zact

P (I,θ, θact|Zact, R)P (Zact)

∝ P (θ)P (θact)
∏

n;In 6=0

(
P (rn|In)Cat(In|θ)θact

)
∏

n;In=0

(
P (rn|noise)(1− θact)

)
.

(2.28)

A detailed derivation of this formula can be viewed in Section A.1 of the appendix.

We derive the conditional distributions from Equation 2.28 using the basic

probabilistic rule,

P (α|β,R) =
P (α, β|R)

P (β|R)
∝ P (α, β|R)β, (2.29)

which states that the conditional distribution of α given all other parameters is

proportional to the joint likelihood taken as a function of α.

The derived conditional distributions are

P (In|θ, θact, R) = Cat(In|φn),

φn0 = P (rn|noise)(1− θact)/Z(φ)
n ,

m 6= 0;φnm = P (rn|m)θmθ
act/Z(φ)

n ,

Z(φ)
n = P (rn|noise)(1− θact) +

∑M
m=1P (rn|m)θmθ

act,

P (θ|I, θact, R) = Dir(θ|(αdir + C1, . . . , α
dir + CM)),

P (θact|I,θ, R) = Beta(θact|αact +N − C0, β
act + C0),

Cm =
∑N

n=1δ(In = m).

(2.30)

These are all in a form of standard probability distributions, thus making it

straightforward to sample the parameters. Also note that θ and θact are condi-

tionally independent given I and thus only the counts of read assignments, C,

are necessary when sampling these variables.
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2.3.3 Collapsed Gibbs Sampling

Collapsing is the process of marginalizing out latent variables, which improves

the convergence speed of a Gibbs sampler (Liu, 1994). Griffiths and Steyvers

(2004) introduced Collapsed Gibbs Sampling for Latent Dirichlet Allocation, a

hierarchical probabilistic model similar to our generative model of an RNA-seq

experiment. Using a similar approach, we marginalize θact and θ and sample only

the assignments of reads to transcripts I. However, θ is the main parameter of

interest, thus we will have to sample θ from the conditional distribution given I

(see Equation 2.30), when generating the output samples.

Following from Equation 2.28, we first integrate the posterior over all possible

values of θact,

P (I,θ|R) =

∫ 1

0

dθactP (I,θ|θact, R)P (θact)

∝ P (θ)
∏

n;In 6=0

(P (rn|In)Cat(In|θ))
∏

n;In=0

P (rn|noise)

Γ(αact + C+)Γ(βact + C0),

(2.31)

where C+ =
∑M

m=1Cm = N − C0 and Γ is the Gamma function. Now we can

further integrate over all values of θ to obtain conditional posterior distribution

of read assignments:

P (I|R) =

∫
θ

dθP (I|θR)P (θ)

∝
∏

n;In 6=0

P (rn|In)
∏

n;In=0

P (rn|noise)
∏M

m=1 Γ(αdir + Cm)

Γ(Mαdir + C+)

Γ(αact + C+)Γ(βact + C0).

(2.32)

As we integrated out θ and θact, the individual assignments of reads, In, are no

longer conditionally independent. This is not a problem though, as the principle

of Gibbs sampler is in the sampling of individual parameters conditioned on the

rest. Instead of considering the vector I as single parameter, we can look at each

read individually and sample assignment for each read given the current state of

the other reads, i.e. other assignments. From Equation 2.32, the assignment of
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the n-th read conditioned on the rest follows a Categorical distribution:

P (In|I(−n), R) = Cat(In|φ∗
n),

φ∗n0 = P (rn|noise)(βact + C
(−n)
0 )/Z(φ∗)

n ,

m 6= 0;φ∗nm = P (rn|m)(αact + C
(−n)
+ ) (αdir+C

(−n)
m )

(Mαdir+C
(−n)
+ )

/Z(φ∗)
n ,

C(−n)
m =

∑
i 6=nδ(Ii = m),

C
(−n)
+ =

∑
i 6=n δ(Ii > 0) .

(2.33)

Hence in order to sample a single MCMC sample from the posterior distribution,

we iteratively sample a transcript assignment for every read. After re-assigning

all the reads, we can sample θ based on the read counts per transcript.

2.3.4 Convergence checking

The Markov chain Monte Carlo sampler is guaranteed to sample from the desired

distribution if an infinite number of samples is produced. For practical applica-

tions, we want to approximate this by producing as few samples as necessary.

Also, the initial samples are affected by random initialization of the variables.

Hence, estimation and assessment of the samples’ convergence is an important

part of the MCMC sampling. We follow principles covered by Gilks et al. (1995)

and Gelman et al. (2004).

Burn in

To overcome the bias of starting position it is natural to discard the first samples,

which are referred to as burn-in. The usual choice when generating L samples

is to consider the first half as burn-in and discard it. If the convergence of the

resulting sequence is not satisfactory, L more samples are produced and all L

initial samples are discarded. However, in our case, the process of doubling the

number of samples is no longer feasible after a few iterations, due to the large

number of parameters being inferred.

Thinning

When the number of generated samples is too large, keeping all the samples

is infeasible. This is especially true in cases such as ours when the parameter

being sampled, θ, can have more than hundred thousand individual scalar values.
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Thinning is the process of sub-sampling the set of generated samples by keeping

only every k-th sample.

Apart from saving space, thinning also has another advantage. Despite all

samples being correctly sampled from the posterior distribution, consecutive

draws generated by MCMC are usually correlated. By thinning the sequence

of samples we also reduce the correlation of consecutive samples.

Multi-chain comparison

The most important part of surveying posterior samples is the convergence as-

sessment. We do this by running multiple independent sampling algorithms, or

chains. Each chain starts by random initialization of the variables and will even-

tually sample from the true posterior. By comparing distributions generated by

individual chains, we can draw conclusions on their convergence. As all chains

start with different parameters, the initial samples will be different. However, if

the initial bias has been overcome and all chains are sampling from the posterior,

the distribution of the samples will be similar.

To assess the overall convergence, we used the R̂ statistic described by Gelman

et al. (2004). It is based on the comparison of within (W ) and between (B)

sequence variance of K sequences each having L samples: θk,l. Within sequence

variance is the average sample variance for each sequence:

W =
1

K

K∑
k=1

(
1

L− 1

L∑
l=1

(θk,l − θ̄k,∗)2

)
,

θ̄k,∗ =
1

L

L∑
l=1

θk,l.

(2.34)

Between sequence variance is the variance of chain means given by

B =
L

K − 1

K∑
k=1

(θ̄k,∗ − θ̄∗,∗)2,

¯θ∗,∗ =
1

K

K∑
k=1

θk,∗.

(2.35)

Using these variances, the marginal posterior variance of the parameter can
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be estimated by

v̂ar(θ|R) =
L− 1

L
W +

1

L
B. (2.36)

The R̂ estimates the possible scale reduction of the marginal posterior variance

R̂ =

√
v̂ar(θ|R)

W
. (2.37)

As it was stated by Gelman et al. (2004), the limit of R̂ is 1 for L→∞, and thus

values of all scalar parameters being close to 1 can be acceptable as a convergence

criterion, with 1.1 being regarded as sufficiently close in most cases.

The R̂ estimate is intended for scalar variables that are normally distributed.

We use marginal distributions of transcript expression θm and apply logit trans-

formation. Using the transformed expression we calculate R̂ estimate for each

transcript independently.

Iterative sample generation

A simple scheme involving the R̂ statistic for convergence checking relies on an

iterative increase of the number of generated samples. The process is repeated

until the convergence criterion is met.

At the beginning, 2×L samples are generated, L samples being discarded as

burn-in and L samples used for assessing the convergence using the R̂ statistic.

In case of a sufficiently small R̂, the L samples are considered as the true samples

from the posterior distribution.

If, on the other hand, the convergence is not sufficient, the L samples are

discarded. In this case, the 2 × L samples are now considered burn-in and a

new 2 × L samples are generated. The process is repeated with the first half

being always discarded and the amount of samples kept and used for convergence

verification being doubled. As mentioned earlier, thinning can be applied if the

amount of samples is unnecessarily large for further applications.

Estimating the effective number of independent samples

Gelman et al. (2004) provide a way to approximate the number of independent

draws from the posterior distribution. Using the marginal posterior variance esti-

mate v̂ar(θ|R) and between chain variance B, the number of effective independent
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samples is

L(eff) = KL
v̂ar(θ|R)

B
. (2.38)

We use this idea in order to provide a more efficient sampling scheme. The

number of samples that are to be recorded and used, L(r) is usually predetermined.

We use K independent chains and start by sampling L burn-in samples and L

samples in order to generate first estimate of v̂ar(θ|R). While R̂ is greater than

1, the variance is expected to improve with producing more samples. This means

that we can use current estimate of v̂ar(θ|R) in order to estimate how many draws

from each chain have to be sampled in order to produce L(r) effective independent

samples. Substituting L(r) into Equation 2.38 instead of L(eff):

L =
L(r)B

Kv̂ar(θ|R)
, (2.39)

L is the estimated number of samples that have to be sampled from each chain in

order to produce L(r) effective independent draws from the posterior distribution.

This approach of deciding the number of necessary samples does not increase

the burn-in and only scales the number of draws from each chain. This is desired

in most cases, as the chains have converged, but only need to produce sufficient

number of samples to cover the entire distribution.

2.4 Results and evaluation

We evaluate the proposed model and inference procedures using both artificial

and real RNA-seq data. We apply our method to a simple ‘toy’ example gener-

ated from the model and to synthetic RNA-seq reads sampled based on the true

sequencing process. The artificial data provide the advantage of known ground

truth that enables exact assessment of the accuracy of our method. On the other

hand, we analyse two real RNA-seq datasets that fully capture the complexity

of the sequencing data, but lack means for full validation of the accuracy of our

results.

The presented method and inference algorithms were implemented in the

BitSeq application. BitSeq is implemented in C++ as a standalone application

consisting of individual programs for data preparation, expression inference and

manipulation of the results. We have also created an R interface, which is part of

the Bioconductor project (Gentleman et al., 2004) and enables the use of BitSeq
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Figure 2.6: Exon structure of toy transcriptome reference. The reference
consists of six transcripts from three different genes which are distinguished by
three different fill patterns. Reads from vertically aligned exons of one gene are
mapped to all transcripts containing those exons.

gene transcript length µ C(D = 1) θ

1 t1.1 5 6 30 0.33
1 t1.2 4 1 4 0.04
1 t1.3 3 4 12 0.13
2 t2.1 4 2 8 0.09
2 t2.2 3 7 21 0.23
3 t3.1 3 5 15 0.17

Table 2.1: Pre-defined expression levels for toy reference data. Length l
depends on the number of exons, µ is the abundance of molecules, C is the read
count for a given depth D and θ is the relative proportion of fragments.

from within the R environment. In the comparisons with alternative methods,

we use the name BitSeq to refer to the model and inference procedure presented

above.

2.4.1 Analysis of ‘toy’ example

We demonstrate the workings of the inference methods using a simple example

with a toy reference dataset and perfectly uniform distribution. The reference

structure is depicted in Figure 2.6. It consists of three genes with three, two and

one transcripts respectively. The transcripts consist of exons of unit length which

are shared by transcripts within one gene.

We assigned an absolute expression µ to every transcript which can be thought

of as a number of molecules of that transcript. For a sequencing depth D, D reads

are ‘sequenced’ from each exon of each molecule, hence the relative proportion of

fragments θ is constant. Table 2.1 shows the pre-defined values.
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Figure 2.7: Estimation accuracy on toy data for various sequencing
depths. The estimated mean expression is compared against the ground truth
relative proportions of fragments.

Instead of sampling the reads, we directly generated the alignments and their

probabilities based on transcript length. A read from a transcript of length l has

probability 1/l of coming from that transcript. As an example, a read coming

from the first exon of the transcript t1.1 has following alignment probabilities.

transcript t1.1 t1.2 t1.3 t2.1 t2.2 t3.1
P (read|transcript) 0.20 0.25 0.33 0 0 0

We generated alignments for depths D = 1, 3, 10, 20. For depth D = 1, 138

alignments of 90 reads were generated, while for higher depths these are just

respective multiples. Subsequently, we used the MCMC algorithm to generate

1000 samples from the posterior distribution of θ.

The comparison of the mean estimated expression against ground truth from

Table 2.1 is shown in Figure 2.7. The expression levels of transcripts of second

and third genes are almost perfectly estimated even for the lowest depth D = 1.

The transcripts of the first gene are harder to distinguish due to many exons being

shared. Note that none of the reads generated from transcripts t1.2 and t1.3 have

unique alignments, all are either shared between these two transcripts or with

transcript t1.1. Despite this difficulty, due to correct alignment probability and

perfectly uniform coverage, the inference algorithm provides accurate estimate of

expression levels for high-enough sequencing depth.
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Figure 2.8: Posterior probability densities of expression of six toy tran-
scripts smoothed by kernel density estimation. The solid lines represent
results for data generated with depth D = 20, dashed lines represent data gener-
ated with depth D = 1. Vertical dotted lines mark ground truth expression for
each transcript.

The posterior distributions of transcript expression levels inferred for depths

1 and 20 are shown in Figure 2.8. We smoothed the histogram of MCMC samples

by kernel density estimation with Gaussian kernel. The increased number of reads

due to higher depth clearly reduces the variance of the expression estimates.

We can further investigate the ambiguity of transcripts t1.2 and t1.3 and

the effect of shared reads on their expression level estimates. Figure 2.9 shows

four density plots of expression samples generated by the MCMC algorithm for

four datasets with varying depth. The figures similarly show higher variance of

expression of both transcripts for lower sequencing depth. Increasing sequencing

depth lowers the uncertainty, hence variance decreases.

Most importantly, for all four depths clear anti-correlation of the expression

levels can be observed. Higher expression of one of the transcripts implies lower

expression of the other transcript. This is caused by ambiguous reads being

alternatively assigned to one of the transcripts.

Analysis of the example dataset demonstrates the ability to estimate accurate

expression levels for transcripts provided sufficient read coverage. In this exam-

ple the reads were generated uniformly along the transcripts and the alignment

probabilities correspond to the exact likelihood of read generating from an exon.

While these ‘perfect’ conditions are never reached in real data analysis, we show

in following experiments that they are not required to provide accurate expression

estimates for most transcripts.
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Figure 2.9: Density plots of expression samples of transcripts t1.2 and
t1.3 for varying depth levels of the data. The expression is reported as θ,
the relative proportion of fragments. The true expression level of both transcripts
is marked with a red x.

2.4.2 Analysis of RNA-seq data from microRNA target

identification study

We analysed RNA-seq data from a previously published microRNA target iden-

tification study by Xu et al. (2010). We used this data to examine transcript

expression quantification using our probabilistic model as well as for the differen-

tial expression analysis method presented in Chapter 3. The dataset consists of

two conditions, with two biological replicates each and multiple technical repli-

cates.

We aligned the data to the UCSC NCBI37/hg19 knownGene transcriptome

reference (Hsu et al., 2006; Meyer et al., 2013) using the Bowtie alignment
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Figure 2.10: Posterior distribution of expression levels of three tran-
scripts of gene Q6ZMZ0. The posterior distribution is represented in form of
a histogram of expression samples converted into Log RPKM expression measure.
The dashed lines mark the mean expression for each transcript.

tool (Langmead et al., 2009).

Within gene correlations of transcript expression

Here we focus on the expression estimates for three transcripts of a single gene

Q6ZMZ0. Within the knownGene annotation, the gene has three different tran-

scripts, uc010oho.1, uc001bwm.3 and uc010ohp.1. The inferred posterior distri-

bution of expression converted into Log RPKM is plotted in Figure 2.10.

According to the observed reads and our inference procedure all three tran-

scripts of the gene are present within the sample. However, the posterior distribu-

tion of transcripts shows anti-correlations between individual transcripts similar

to those in the example shown in Figure 2.9. This is due to the ambiguity of

reads aligning to multiple transcripts of a single gene. The pairwise density plots

of posterior distributions of transcript expression are shown in Figure 2.11.

The expression estimates of transcript pairs uc011oho.1, uc010ohp.1 (Figure

2.11(a)) and uc001bwm.3, uc010ohp.1 (Figure 2.11(c)) are negatively correlated.

This means that the model is unable to decide from which transcript some reads

originated and the posterior distribution captures all viable assignments. When

more reads are assigned to one of the transcripts its expression level increases

and conversely, the expression level of the other transcript decreases.

The transcript sequence profile in Figure 2.12(b) clearly demonstrates the

similarity of the transcripts that causes higher uncertainty when inferring the

transcript expression levels. The transcripts share all but two constitutive se-

quences, the third exon and 3’ untranslated region (UTR), which are specific
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(a) (b) (c)

Figure 2.11: Pairwise density plots of posterior distributions of tran-
script expression levels. Each figure shows density plot of expression distri-
bution for pair of transcripts of a single gene based on the samples produced
by the MCMC inference algorithm. While transcript pairs in (a) and (c) show
anti-correlation of estimated expression levels, there is no observable correlation
between expression levels of transcripts in (b).

to the first and second transcripts, respectively. Only the first two transcripts

which differ in both exon and UTR do not clearly show correlation of estimated

expression levels.

The anti-correlations of the expression samples do not have biological signifi-

cance. They can only indicate similarity of transcripts in the reference annotation

and the fact that the probabilistic model cannot distinguish between transcripts.

This information can be further used in the downstream analysis. Firstly, tran-

scripts that are correlated have increased variance of expression levels which can

avoid false positive differential expression calls. Secondly, highly correlated tran-

scripts can be treated jointly, decreasing the variance of the joint transcript and

enabling differential expression comparison of the joint transcript.

Transcript expression level variances

Correct estimation of deviations in expression levels is important for the detection

of DE transcripts and genes. We use the dataset published by Xu et al. (2010) to

examine the variances present in RNA-seq expression quantification experiments.

As the dataset contains both technical and biological replicates we can compare

the expression level deviations caused by technical noise and intrinsic fluctuations

of transcript abundances.

Figure 2.13 shows the standard deviation of transcript expression level poste-

rior MCMC samples as a function of the mean expression level of the transcript.
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(a) Transcript sequence profile.

uc010oho.1

uc001bwm.3

uc010ohp.1

(b) Splice variant model.

Figure 2.12: Exon model of transcripts of gene Q6ZMZ0. (a) transcript
sequence profile obtained from the UCSC genome browser (Kuhn et al., 2013). In
this annotation, transcript uc001bwm.3 has different 3’ untranslated region and
transcript uc010oho.1 has extra nucleotides at the end of second exon. As the
second change cannot be distinguished in the UCSC genome browser diagram,
we provide schematic splice variant model highlighting the differences (b).
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Figure 2.13: Comparison of standard deviation of posterior samples
within single run and combined data of technical replicates and bi-
ological replicates. The plot shows mean Log RPKM expression of transcripts
on the x-axis and averaged standard deviation of the Log RPKM expression on
the y-axis. The standard deviation is a sliding average over groups of transcripts
with similar expression in order to highlight its dependents on the expression.
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The MCMC samples were converted into Log RPKM expression measure, which

we use as an input to the DE analysis method presented in Chapter 3. We

compare the standard deviation for samples within one experiment, between two

technical replicates and between two biological replicates. In order to calculate

the standard deviation between replicates we took the square root of variance

which was estimated by computing the root mean square distance between sam-

ples. Plotted values are averaged for a sliding window of similarly expressed

transcripts.

The MCMC sample variation captures the intrinsic estimation variance in

the “within-experiment” case and includes both the random sampling noise and

ambiguity of transcript sequences. The technical variance includes a contribution

due to re-sequencing of a single biological sample while the biological variance

includes a contribution due to natural fluctuations of abundances of transcripts

within condition.

Similarly to previous results of Anders and Huber (2010), we observe signifi-

cant biological variation within conditions. With higher expression the variance

of the expression level estimation decreases, as can be expected due to greater evi-

dence in form of increased coverage of reads. At high expression levels the variance

associated with technical replicates approaches the level of the within-experiment

variance. On the other hand, the biological variance becomes relatively more sig-

nificant for transcripts with high expression level. Without consideration of the

biological differences, the high confidence in expression level estimates of these

transcripts will lead to false differential expression calls.

It can be further observed that the within-experiment variance has a signif-

icant contribution to the replicate variance (technical and biological) at lower

expression levels. Therefore the intrinsic variance due to mapping ambiguity and

limited read depth, as estimated by our MCMC expression estimation proce-

dure, will provide useful information for assessing replicate variance in this low

expression regime.

2.4.3 Analysis of RNA-seq data from the ENCODE project

We also analysed RNA-seq reads sequenced and published by the ENCODE con-

sortium (Djebali et al., 2012), consisting of eight technical replicates, downloaded

from the Short Read Archive (NCBI, 2010), accession number SRX159824. The

data was produced by sequencing human embryonic stem cell line (H1-hESC)
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with Illumina Genome Analyser, using a paired-end sequencing protocol. Here

we focus on results for one replicate (SRR521478) containing 24.3 million read

pairs. We mapped the reads using Bowtie (Langmead et al., 2009) to the Gen-

code reference (Harrow et al., 2012), producing 62M alignments of 14.5M reads.

The Gencode reference is a curated set of human genes and transcripts containing

20720 genes with 94917 transcripts.

Transcript and gene expression levels

We analysed the reads using our probabilistic model with non-uniform read dis-

tribution correction. The resulting mean expression levels of transcripts are pre-

sented in Figure 2.14, showing large expression range for the top highly expressed

transcripts. While our model infers expression in terms of θ, the relative propor-

tion for fragments, it is more natural to look at expression in terms of the number

of observed reads. We multiplied θ by the total number of mapped reads in order

to produce the estimated counts per transcript.

We further examined the variance of the estimated expression levels by looking

at the sample variance of inferred marginal distributions of transcript expression.

Figure 2.15 shows the relationship between mean expression level and variance.

Certain number of transcripts exhibit only the Poisson variance of random sam-

pling, in which case the variance is equal to the mean of the distribution. The rest

of transcripts have much higher variance of transcript expression due to ambiguity

of transcripts.

Except for transcript expression levels, many researchers are primarily inter-

ested in the gene expression, or the abundance of entire loci. We can simply

calculate the gene expression by summing expression levels of individual tran-

scripts of each gene. Figure 2.16 shows a histograms of gene expression measured

in estimated counts. The gene counts cannot be directly transformed into the

abundance of molecules as the effective length of a gene is not well defined. Nev-

ertheless, counts are natural way of looking at the results of sequencing process.

As we convert the entire posterior distributions of transcript expression levels

into gene expression levels, we can again investigate the variance of marginal

distributions of gene expression levels. The mean-variance relationship of gene

expression levels is shown in Figure 2.17. In accordance with our expectations,

the gene expression variance is lower than the transcript expression variance.

This further confirms that the transcript expression variance is inflated by the
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Figure 2.14: Histograms of mean transcript expression levels in counts.
The entire range is split into two histograms: (a) majority of transcripts have esti-
mated read count below 104, we use logarithmic y-axis, (b) the top 127 expressed
transcripts are spread over a large expression range.
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Figure 2.15: Mean-variance relationship of estimated counts. We use scat-
ter plot and density plot to show the dependence between mean and variance of
the inferred transcript expression levels. The transcript expression level variance
is at least as high as the mean expression due to random sampling, and is further
increased due to read ambiguity.
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Figure 2.16: Histograms of mean gene expression levels in counts. The
entire range is split into two histograms: (a) majority of genes have estimated
read count below 104, we use logarithmic y-axis, (b) the top 170 expressed genes
are spread over large expression range.
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Figure 2.17: Mean-variance relationship of estimated gene counts. We
use scatter plot and density plot to show the dependence between mean and
variance of the converted gene expression levels. The variance of gene expression
is lower than the transcript expression variance presented above.
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Figure 2.18: Histogram of within-gene relative expression of transcripts.

ambiguity which leads to correlations between transcripts. Adding expression of

correlated transcripts decreases the variance of the sum.

Lastly we examined the within-gene relative expression of transcripts. Figure

2.18 shows the histogram of the proportional measure of genes’ splice variants.

The reference annotation contains 5119 genes with single transcript. These tran-

scripts have relative expression 1.0 and form the majority of the peak at 1.0

within the histogram.

The mean-variance relationship of the within-gene proportions of transcripts

is presented in Figure 2.19. Transcripts that are highly represented within a gene

and transcripts with very low relative expression exhibit the lowest variance. In

the case of mid-expressed transcripts, other splice variants of the same gene are

present and ‘compete’ for the reads, causing increased variance.

RPKM expression

RPKM, or reads per kilobase of transcript length per million of sequenced reads,

is an alternative measure that is proportional to the abundance of molecules

as it is adjusted by the effective length of transcripts. It also provides a basic

normalisation approach using the total number of sequenced reads.

We used Log RPKM samples of transcript (or gene) expression as an input to

our differential expression analysis method. Here we show the expression levels of

transcripts converted into Log RPKM. Figure 2.20 shows histogram of the mean
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Figure 2.19: Mean-variance relationship of within-gene relative expres-
sion of transcripts. We use density plot to show the dependence between mean
and variance of the converted within-gene relative expression levels.
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Figure 2.20: Histogram of mean transcript expression levels in Log
RPKM.
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Figure 2.21: Mean-variance relationship of estimated transcript Log
RPKM. RPKM conversion and subsequent logarithm transform the shape of
the posterior distributions of expression. The logarithm transform stabilises the
variance of expression levels.

Log RPKM expression.

Computing the Log RPKM involves dividing θ by the effective length, mul-

tiplying by a constant and taking the logarithm of the result. Both division by

the length and logarithm transform the variance of the resulting samples. The

effect is demonstrated in Figure 2.21 showing mean-variance relationship for Log

RPKM samples.

Correlations between transcripts

In Section 2.4.2 we examined correlations between transcript expression levels

inferred from the Xu et al. (2010) dataset. While we used different reference

sequence for the analysis, both knownGene and Gencode reference used here

contain equivalent three transcripts.

The Gencode equivalent for the knownGene gene Q6ZMZ0 is denoted as

ENSG00000116514.12 and similarly has three different transcripts. The tran-

scripts are equivalent to the knownGene transcripts, with mapping denoted in
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Table 2.2. The only difference is that in the Gencode annotation all three tran-

scripts have a distinct 3’ UTR.

gene Q6ZMZ0 ENSG00000116514.12

transcript
uc010oho.1 ENST00000373456.7
uc001bwm.3 ENST00000356990.5
uc010ohp.1 ENST00000235150.4

Table 2.2: Mapping of transcripts from knownGene to Gencode anno-
tations.

Figure 2.22 shows pairwise density plots of the three transcripts’ expression

samples, based on the H1-hESC data. The anti-correlation between transcripts

ENST00000373456.7 and ENST00000235150.4 is not apparent, however there is

distinct anti-correlation between expression levels of transcripts ENST00000356990.5

and ENST00000235150.4. Note that while in the knownGene reference transcripts

uc010oho.1 and uc010ohp.1 shared the same 3’ UTR, the 3’ UTR of the equivalent

transcripts ENST00000373456.7 and ENST00000235150.4 differs in Gencode an-

notation. This can explain the missing anti-correlation pattern in Figure 2.22(a).

While the previous example used the Log RPKM expression, which resulted

in more pronounced anti-correlation pattern, here we use the read count which

does not involve length adjustment and log transformation. Furthermore, the

read count measure corresponds to the read-transcript assignments within the

probabilistic model.

2.4.4 Evaluation against qRT-PCR

Exact evaluation of estimation accuracy on real RNA-seq data is difficult. There

are many published RNA-seq datasets available for analysis, but the true expres-

sion for most of them is unknown. One option is to use quantitative reverts-

transcription PCR (qRT-PCR) for measuring abundance of molecules of certain

transcripts within sample (Roberts et al., 2011). While qRT-PCR is believed to

be a more accurate measurement of the abundance, it is rarely used for more

than a few hundred transcripts as it is laborious and costly.

For the evaluation of bias correction effects as well as comparison with other

methods we used paired-end RNA-seq data from the Microarray Quality Con-

trol (MAQC) project (Shi et al., 2006), Short Read Archive accession number
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Figure 2.22: Pairwise density plots of posterior distribution of tran-
script expression levels based on H1-hESC data. Three transcripts of
single gene are compared in density plots showing distribution of transcript ex-
pression measured in read counts. The transcripts are compared in the same
order as equivalent transcripts in Figure 2.11.

SRA012427. 907 transcripts in this dataset were also analysed by TaqMan qRT-

PCR, out of which 893 matched our reference annotation. We used RefSeq ref-

Gene transcriptome annotation, assembly NCBI36/hg18 in order to keep results

consistent with the qRT-PCR data as well as previously published comparisons

by Roberts et al. (2011). The reads were aligned using Bowtie (Langmead et al.,

2009).

The dataset contains three technical replicates generated by three sequencing

runs of the same library. The replicates were analysed separately and the resulting

estimates for each method were averaged together to obtain the final expression
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Bias model Method Average Rep. 1 Rep. 2 Rep. 3

uniform ∗ 0.758 0.757 0.758 0.759
uniform † 0.767 0.767 0.766 0.767
bias corrected ∗ 0.756 0.755 0.756 0.757
bias corrected † 0.765 0.764 0.764 0.765
bias corrected ‡ 0.801 0.801 0.795 0.804

Table 2.3: Effects of the effective length normalisation of expression
levels with respect to qRT-PCR abundance measurement. The results
are presented in terms of Pearson R2 correlation coefficient of the 893 transcripts’
expression level estimates obtained by BitSeq v0.4 and TaqMan qRT-PCR results.
Three different methods of effective length normalisation were applied: ∗ – using
actual transcript length, † – using effective length accounting for fragment length
distribution, ‡ – using effective length accounting for fragment lengths and read
distribution bias. For each method we present values for average expression taken
over all three replicates as well as for each technical replicate separately.

estimates. We calculated the squared Pearson correlation coefficient (R2) of the

qRT-PCR results with the averaged expression as well as with each technical

replicate.

Effective length adjustment

The qRT-PCR reports expression in terms of molecule abundance while our model

represents the expression in terms of the relative expression of fragments, θ. To

make the results comparable, θ has to be either converted into RPKM or nor-

malised by transcript length. In case of BitSeq, the major improvement of ac-

curacy originates from the use of correct effective length normalization. Using

the bias corrected effective length for this conversion leads to higher correlation

with the qRT-PCR. This means that using an expression measure adjusted by

the effective length, such as RPKM, is more suitable for DE analysis than nor-

malised read counts especially in cases when the read biases could differ between

replicates.

We demonstrate the effects of the effective length normalisation in Table 2.3.

We compared three different methods of length normalisation in combination

with uniform and bias corrected expression estimates. In the first approach (∗),
the expression is adjusted just by the length of a transcript. This default method

produces the poorest correlation with the qRT-PCR results.
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Method Read distribution Average Rep. 1 Rep. 2 Rep. 3

BitSeq uniform 0.767 0.767 0.767 0.767
BitSeq bias corrected 0.798 0.800 0.794 0.800

Cufflinks uniform 0.758 0.758 0.759 0.757
Cufflinks bias corrected 0.786 0.785 0.785 0.785
RSEM uniform 0.763 0.762 0.762 0.764
RSEM bias corrected 0.763 0.762 0.762 0.764
MMSEQ uniform 0.761 0.760 0.760 0.762
MMSEQ bias corrected 0.799 0.799 0.793 0.802

Table 2.4: Comparison of expression estimation accuracy against Taq-
Man qRT-PCR data and the effect of non-uniform read distribution
models. The correlation of expression estimates with 893 matching transcripts
analysed by qRT-PCR is reported using Pearson’s R2 coefficient. Correlation for
each replicate, as well as the averaged expression levels were calculated for all
methods using both uniform and non-uniform read distribution model.

The second approach (†) uses effective length computed based on the frag-

ment length distribution observed from paired-end reads assuming uniform reads

distribution, as defined in Equation 2.23.

The best result for this dataset yields the last approach (‡), which uses effec-

tive length dependent on the fragment length distribution as well as read distri-

bution bias weights (see Equation 2.24). As expected, bias corrected estimates

of θ normalised by lengths that do not account for non-uniform read distribution

show poorer accuracy than the uniform estimates (rows 3 and 4 vs. 1 and 2).

On the other hand, bias corrected expression estimates adjusted by the bias cor-

rected effective length result in the best correlation with the qRT-PCR expression

measurements.

Comparison with alternative quantification methods

The effects of correcting for read distribution biases are presented in Table 2.4

together with a comparison of three alternative transcript expression estimation

methods: Cufflinks 2.1.1 (Trapnell et al., 2013), MMSEQ v0.9.18 (Turro et al.,

2011) and RSEM v1.1.14 (Li and Dewey, 2011). MMSEQ and RSEM similarly use

Bowtie to align the reads to the reference transcriptome, in case of Cufflinks the

reads are aligned to genomic reference using splice-aware alignment tool TopHat

(Trapnell et al., 2009).

Our results show that using uniform read distribution model yields similar
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level of accuracy for all four methods, with BitSeq performing slightly better

than the other three methods. Correcting for read distribution bias can further

improve the expression estimates.

Here BitSeq, Cufflinks and MMSEQ use the same method for read distribu-

tion bias correction and provide improvement over the uniform model similar to

improvements previously reported by Roberts et al. (2011). We were not able to

use the default bias correction provided by MMSEQ due to an error in an external

R package mseq used for estimation of transcript effective lengths. Instead, we

provided the MMSEQ package with effective lengths computed by BitSeq bias

correction algorithm in order to produce the results for this comparison. The

bias correction of mseq package itself was already compared against Cufflinks on

the same dataset showing slightly worse accuracy and less improvement (Roberts

et al., 2011).

The RSEM package uses its own method for bias correction based on the

relative position of fragments, which in this case did not improve the expression

estimation accuracy for the selected transcripts.

2.4.5 Evaluation on synthetic data with uniform read dis-

tribution

For further evaluation of the accuracy of our estimation method we used syn-

thetic data generated based on observed properties of previously analysed RNA-

seq datasets. The synthetic data provides the great advantage of known ground

truth expression and can be easily generated through simulation of the sequencing

process. It also captures the main difficulty of transcript expression quantifica-

tion, that is the ambiguity of transcripts. As reads are sampled randomly along

entire reference transcripts, many reads will align back to multiple transcripts as

in a real RNA-seq experiment.

The downside of simulated data is that it is difficult to replicate the read

distribution biases. The biases towards sequencing specific fragments can be

caused by various factors of RNA sample preparation and NGS technology and

their causes are still not fully documented. In this section we use simulated data

that was generated by uniform sampling of reads along transcripts without any

kind of bias.
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Synthetic data generation

The reads were generated from the UCSC NCBI37/hg19 knownGene transcript

annotation (Hsu et al., 2006; Meyer et al., 2013), consisting of 27297 genes with

77614 transcripts in total. The initial expression levels were based on expression

estimates from the Xu et al. (2010) dataset. The dataset was further used to esti-

mate the fragment size distribution for paired-end reads lf ∼ LogNorm(5.32, 0.12)

and to estimate the empirical distribution of Phred quality scores of individual

bases. A sequence of quality scores was generated for each read and base substi-

tutions were added with the probability given by the Phred score of each base.

Fragments were assigned to transcripts according to a multinomial distribu-

tion parametrised with the ground truth relative expression of transcript frag-

ments (θ). Fragment positions within transcripts were sampled uniformly from

all possible position given a fragment length. 10 million fragments were sampled

in total, with reads generated in pairs from both ends of each fragment.

Estimation accuracy

The synthetic reads were aligned to the UCSC knownGene transcriptome refer-

ence using Bowtie (Langmead et al., 2009) and transcript expression levels were

estimated using BitSeq. We again include comparison with three other methods

for transcript expression quantification: Cufflinks 2.1.1 (Trapnell et al., 2013),

MMSEQ v0.9.18 (Turro et al., 2011) and RSEM v1.1.14 (Li and Dewey, 2011).

All methods were used without the read distribution bias correction, as the data

was generated through uniform sampling of fragment positions within transcripts.

We evaluated the accuracy of the four methods in terms of correlation with the

known ground truth in three different expression measures. Firstly, we compared

the transcript RPKM as an absolute transcript expression measure. Secondly, we

used relative within-gene expression of transcripts which expresses the relative

proportion of a transcript within transcripts of the same gene. Finally we com-

pared the gene RPKM, calculated by adding up the transcript expression levels

for each gene.

The results in form of Pearson’s R2 correlation coefficient are presented in

Table 2.5. We can see that our model, MMSEQ and RSEM provide very high

correlation with the known ground truth for both transcript and gene absolute

expression. For the relative within-gene expression levels, BitSeq is more accurate

than the other methods. In spite of providing slightly better results in the absolute
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Measure (cutoff)
transcript relative relative gene

Method (1) (10) (100) (1)

BitSeq 0.994 0.945 0.963 0.994

Cufflinks 0.826 0.829 0.897 0.838
RSEM 0.995 0.876 0.946 0.996
MMSEQ 0.997 0.886 0.948 0.998

Table 2.5: The R2 correlation coefficient of estimated expression levels
and the ground truth. Three different expression measures were used: ab-
solute transcript expression, relative within-gene transcript expression and gene
expression. Comparison includes only sites with at least 1 read per transcript for
transcript expression, either 10 or 100 reads pre gene for within-gene transcript
expression and at least 1 read per gene for gene expression.

measure, RSEM and MMSEQ show worse correlation in the relative within-gene

measure as they tend to assign zero expression to some transcripts within one

gene. This is most likely caused by the use of Maximum Likelihood parameter

estimates as the starting point for the Gibbs sampling algorithm.

We further present density scatter plots of expression estimates plotted against

the known ground truth in Figure 2.23. BitSeq overestimates expression for a

fraction of transcripts, however, this is largely the effect of the RPKM transfor-

mation and the use of uniform prior αdir = 1. The prior distribution assigns a

pseudo-count of one read per transcript, leading to non-zero expression for all

transcripts. The subsequent length normalisation in RPKM measure results in

increased RPKM of weakly-expressed short transcripts. Nevertheless, the high

variance of expression levels for such transcripts signifies the uncertainty of such

estimate and prevents from false positive differential expression calls.

In Figure 2.23 we can further observe high level of underestimation of tran-

script expression levels in Cufflinks, RSEM and MMSEQ results which are avoided

when using BitSeq.

2.4.6 Comparison of sampling algorithms

We implemented two variations of Gibbs sampling algorithm, standard Gibbs

sampling and collapsed Gibbs sampling. The standard Gibbs sampling algorithm

samples the read assignment I, relative expression θ and noise parameter θact

from conditional distributions in each iteration. The collapsed Gibbs sampling
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Figure 2.23: Comparison of expression estimates using 10M simulated
paired-end reads with known expression. Our model implemented in BitSeq
(a), Cufflinks (b), RSEM (c) and MMSEQ (d) are compared in terms of the
absolute transcript expression. The expression estimates were converted into
RPKM for each transcript and compared against the ground truth using density
scatter plots with logarithmic scale. RPKM below 10−3 was changed to 10−3 in
order to fit within the plot.

algorithm, is derived from ‘collapsed’ model. In the collapsed model, the rela-

tive expression θ and noise parameter θact are marginalised, leaving just the read

assignments. In each iteration, individual read assignments are sampled from

conditional distributions conditioned on all other assignment. The relative ex-

pression θ is only sampled when output is being generated. The marginalization

of θ and θact leads to faster convergence of the algorithm.

We investigate the convergence advantage of the collapsed sampler on the

RNA-seq data from H1-hESC cell line generated by the ENCODE consortium

(Djebali et al., 2012). Briefly, the data contains 14.5M mapped read pairs with
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62.3M alignments. The read alignment likelihoods were estimated using the non-

uniform read distribution model.

We ran both standard Gibbs sampler and collapsed Gibbs sampler using six

parallel Markov chains. Starting with 100 samples as burn-in and generating 100

samples for convergence checking, the number of generated samples is doubled

in following iterations up-to top limit of 50K samples. Convergence is evaluated

by the R̂ statistic of marginal distributions of transcript expression levels, as

described in Section 2.3.4.

The convergence of both methods dependent on time is shown in Figure 2.24.

While the majority of transcripts converge within very few iterations (Figure

2.24(a)), we want as many transcripts to converge as possible. In the second

panel we show the mean of the ten highest R̂ values over all transcripts. We

can observe from both figures that while the standard Gibbs sampler has slightly

faster run time in terms of constant number of iterations, it needs more than twice

as many iterations to reach comparable level of convergence. The collapsed Gibbs

sampler converges much faster than the standard method and thus decreases the

number of necessary iterations.

2.4.7 Evaluation of computational requirements

Our inference procedure uses the Gibbs sampling algorithm for generating sam-

ples from the posterior distribution. Such approach can lead to computationally

expensive calculations due to slow convergence and time used for generation of

every sample. Thanks to efficient implementation and parallelisation, our appli-

cation can process 100 million paired-end reads in just under 30 hours using 4

CPUs and 8.5GB of memory. Given that the data acquisition for a single exper-

iment lasts multiple days, the computational cost necessary for the analysis can

be neglected.

Further evaluation of time and memory requirements of the inference algo-

rithm are presented in sections 4.2.1, 4.2.3 and 4.2.4.



2.4. RESULTS AND EVALUATION 115

5m 20m 1h 6h 1d
Time

88

90

92

94

96

98

100

%
 c

o
n
v
e
rg

e
d
 (

R
-h

a
t<

1
.1

)

Collapsed Gibbs

Standard Gibbs

(a)

5m 20m 1h 6h 1d
Time

1

2

3

4

5

6

7

M
e
a
n
 o

f 
1

0
 h

ig
h
e
st

 R
-h

a
t

Collapsed Gibbs

Standard Gibbs

(b)

Figure 2.24: Convergence evaluation of Gibbs sampler and collapsed
Gibbs sampler. The convergence is evaluated using the R̂ statistic, results
being averaged over five runs using the standard deviation for errorbars. (a) the

percentage of converged transcripts, based on R̂ < 1.1, (b) mean R̂ of 10 least
converged transcripts.
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2.5 Summary

We have developed a novel application for transcript expression level quantifi-

cation from RNA-seq data. The method is based on a generative probabilistic

model of the data and uses Bayesian methodology to infer the expression given

a set of observed reads. The probabilistic model considers read errors, fragment

lengths and read distribution biases when calculating probabilities for individual

alignments. We use the Gibbs sampling algorithm to generate samples from the

posterior distribution of transcript expression levels.

The major advantage of our method is that it infers the full posterior distri-

bution of expression levels. The posterior can be summarized by its mean value,

while variance and percentiles can be used to assess the certainty of our estimate.

We can further look at the anti-correlations between individual expression levels,

which reflect the similarity of respective transcripts. Lastly, in the next chapter

we introduce a novel differential expression analysis approach which utilises the

full posterior distribution of transcript expression levels.

The evaluations on real and simulated RNA-seq data showed high accuracy

of the expression estimates. We compared our approach with alternative meth-

ods for transcript abundance quantification showing comparable accuracy with

other state-of-the-art applications, while providing a reliable approach for read

distribution bias correction.



Chapter 3

Detecting changes in transcript

expression

In this chapter we present a new approach for differential expression analysis. The

aim of the DE analysis is to compare gene and transcript abundances between

two or more conditions in order to identify those that exhibit significant changes

of abundance between conditions.

We propose a probabilistic model of estimated transcript expression from

different conditions. The model relies on data from biological replicates within

a condition to estimate the natural fluctuations of abundances due to differences

in the underlying biological and experimental conditions.

The novelty of this approach is that it uses inferred posterior distributions

of transcript expression instead of just a single point estimate. Hence the confi-

dence of the expression estimate can be included when determining significance

of expression changes. The method uses samples from the posterior distribution

generated by the expression quantification algorithm presented in Chapter 2.

In our analysis, we are primarily interested in changes of expression of tran-

scripts, e.g. specific gene isoforms. However, our method can be equally applied

to gene-level DE analysis, using combined expression of associated transcripts.

Probability of positive log ratio When comparing expression of two con-

ditions we are provided with MCMC samples from the posterior distribution of

expression of each transcript. As the posterior does not have an analytic form

we will use the MCMC samples for the comparison in order to utilize the full

posterior. We will use the expression ϑ
(c1)
m,n to denote the n-th MCMC expression

117
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samples of the m-th transcript of condition c1. For now ϑ will generally denote

expression level, without specifying the measure we are using, which could be ei-

ther proportion of transcript fragments θ, RPKM or some other representation

of transcript expression.

We use a one-sided Bayesian test for DE that has been previously used in

microarray DE analysis (Hein and Richardson, 2006; Liu et al., 2006). Liu et al.

(2006) refer to it as the Probability of Positive Log-Ratio (PPLR) statistic, which

we adopted in this work as well. For a transcript m, the PPLR is defined as

PPLRm = P

(
log

ϑ
(c1)
m

ϑ
(c2)
m

> 0

∣∣∣∣R
)

= P
(
ϑ(c1)
m > ϑ(c2)

m |R
)

(3.1)

and provides a simple way of expressing the probability of expression in one sam-

ple being higher than the expression in the other sample, so called up-regulation.

Furthermore, PPLR can be easily estimated by comparing two sets of MCMC

samples by following expression:

E[PPLRm] =
1

N

N∑
n=1

δ
(
ϑ(c1)
m,n > ϑ(c2)

m,n

)
, (3.2)

we use PPLRm for shorthand notation.

The main advantage of using PPLR for determining significance of DE is

that it assesses the entire distributions of the estimated expression. Consider

an example in Figure 3.1. While the average log fold change, ̂logFC, of both

examples is the same, PPLR in the first example (3.1(a)) is lower than PPLR in

the second example (3.1(b)), where it is close to 1. The lower DE significance

of the first example is what we would expect as the uncertainty of expression

estimates is increased.

Biological variance In order to produce reliable estimates of differential ex-

pression we have to account for biological variance, the fluctuation of expression

levels of transcripts and genes within the same condition (Auer and Doerge, 2010).

These occur naturally as the abundance of transcript molecules in cells and tis-

sues varies and were reported in microarray DE analysis as well (Dudoit et al.,

2002).

The biological variance is transcript and condition dependent and thus cannot
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(a)

C1C2

logFC
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Figure 3.1: Illustrative example of using PPLR vs log fold change for
DE testing. In both cases, the difference between mean expression of the two
conditions is the same, leading to the same average log fold change. PPLR is
different for each example: (a) PPLR is decreased due to the overlap of the
two distributions, (b) PPLR is close to 1 as the two distributions have minimal
overlap.

be accounted for a priori. For this reason it is essential to perform DE analy-

sis using biological replicates. Unlike technical replicates, which involve multiple

sequencings of the same sample or even the same library, biological replication

means analysis of multiple independent samples from the same condition. With

biological replicates it is possible to assess the amount of variation within each

condition and account for it when selecting functional changes of transcript ex-

pression.

3.1 Probabilistic model of Differential Expres-

sion

We propose a probabilistic model of expression gathered from replicates of each

condition in order to infer per-condition mean expression levels. This model

enables us to assess the biological variance observed from replicates of each con-

dition and account for it before calling differentially expressed transcripts. We

use a hierarchical Log-Normal model of transcript expression levels observed in

replicates of multiple conditions. To simplify the derivation, we consider a log-

arithmic transformation of expression levels, denoting ym = log ϑm, and use a

Normal model over ym.

As the expression levels in RPKM or other measure are always positive, we

apply the log transformation. This enables the use of the Normal distribution to

model the expression dependence and further allows the use of conjugate prob-

abilistic model. The logarithmic transformation also stabilises the variance of
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Figure 3.2: Graphical model of transcript expression estimates with bi-
ological variance from multiple conditions. For replicate r, condition c
and transcript m, the observed log-expression level y

(cr)
m is normally distributed

around the normalised condition mean expression µ
(c)
m +n(cr) with biological vari-

ance 1/λ
(c)
m . The condition mean expression µ

(c)
m for each condition is normally

distributed with overall mean expression µ
(0)
m and scaled variance 1/(λ

(c)
m λ0). The

inverse variance, or precision λ
(c)
m , for a given transcript m follows a Gamma dis-

tribution with expression-dependent hyperparameters αG, βG, which are constant
for a group of transcripts G with similar expression.

expression levels, which leads to more stable estimates of the condition specific

expression.

Graphical representation of the model is depicted in Figure 3.2. The model

assumes expression samples from C conditions with Rc replicates per condition.

The log-expression from replicate r, y
(cr)
m is assumed to be distributed according to

a normal distribution with condition mean expression µ
(c)
m and condition specific

precision λ
(c)
m . The expression of every transcript in each replicate is normalised

by a replication specific constant n(cr) which allows for additional adjustment of

varying sequencing library size. The normalisation constant can be estimated

prior to probabilistic modeling using, for example, a quantile based method of

Robinson and Oshlack (2010) or any other suitable technique.

The condition mean expression of each condition is normally distributed with

mean µ
(0)
m and scaled precision λ

(c)
m λ0. The overall mean transcript expression

µ
(0)
m is empirically estimated before application of the model. Instead of using

separate parameter for the precision of condition mean expression, we chose to

use the scaled within-condition precision. This simplifies the model in terms of

number of parameters and relates the biological variance and variation between

conditions. With increased biological variance within one condition we expect
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to observe higher variance between conditions. The scaling factor is kept as a

parameter of the inference procedure with default value set to λ0 = 2.

The prior distribution over per-transcript, condition-specific precision λ
(c)
m is

a Gamma distribution with hyperparameters αG, βG, which are fixed for a group

of transcripts with similar expression level, G. We detail the hyperparameter

inference in Section 3.2.1.

We summarize the model definition in the following expressions outlining the

probability distributions over the parameters:

y(cr)
m ∼ Norm(µ(c)

m + n(cr), 1/λ(c)
m ), (3.3)

µ(c)
m ∼ Norm(µ(0)

m , 1/(λ0λ
(c)
m )), (3.4)

λ(c)
m ∼ Gamma(αG, βG). (3.5)

As it is impossible to relate various transcripts in terms of their differential ex-

pression, we apply the model on per-transcript basis. On the other hand, we

have observed that the significance of biological variance is expression dependent

with similar effects over all transcripts. To use the shared information about

biological variance, we use expression dependent hyperparameters for the prior

distribution over precision. The model considers each transcript independently

and does not put any relation on transcripts from one gene or other closely re-

lated genes, but uses hyperparameters αG and βG, that are inferred for a specific

group of transcripts of similar expression.

The independence assumption does not affect transcripts’ individual differen-

tial expression calls. However, as the expression levels of certain transcript can

be correlated, it can lead to underestimation of overall false discovery rate as we

discuss later.

The DE model is conjugate and therefore the inference can be carried out

exactly, making the whole process computationally tractable.

Technical noise propagation The marginal distribution of expression for one

replicate cannot be always well approximated by a Log-Normal distribution. This

is due to intrinsic technical noise, originating from discrete assignments of reads

to transcripts in the probabilistic model and the sequencing technology. For an

illustration, please see Figures 2.10 or 3.3(a) depicting the marginal posterior

distributions of transcript expression.
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We propagate the technical noise without the restraint of parametric proba-

bility distribution by the novel approach of applying the DE model to individual

MCMC samples. The posterior samples obtained by MCMC sampling during the

transcript expression analysis can be considered as pseudo-data. We construct

a pseudo-data vector using a single MCMC sample for each replicate across all

conditions. The posterior distribution over per-condition means is inferred for

each pseudo-data vector using the model in Figure 3.2. We then use Bayesian

model-averaging to combine the evidence from each pseudo-data vector and de-

termine the probability of differential expression. This effectively regularizes our

variance estimate in the case that the number of replicates is low. As shown in

Section 3.4.1 this provides improved control of error rates for weakly expressed

transcripts where the technical variance is large.

3.2 Model inference

The model depends on the expression level dependent hyperparmeters αG and

βG and mean expression µ
(0)
m . The µ

(0)
m represents a broad estimate of average

expression of transcript m. We calculate it by taking mean over all replicates from

every condition using log-transformed MCMC samples of transcript expression,

µ(0)
m =

C∑
c=1

Rc∑
r=1

N∑
n=1

log ϑ(cr)(n)
m + n(cr). (3.6)

We use the overall mean expression to divide transcripts into groups with sim-

ilar expression. The number of groups is parameter of the inference procedure

with default setting of 200 groups. Both technical and biological variance change

with expression. While technical variance decreases for transcripts with higher

expression level, the differences over biological replicates are more pronounced.

We demonstrated this effect already in Chapter 2 in Figure 2.13, which compares

the averaged variance of Log RPKM expression of single sample, technical repli-

cates and biological replicates. The significance of biological variance increases

for highly expressed transcripts.

The transcripts are grouped based on µ
(0)
m and we infer the hyperparameters

αG, βG jointly for the whole group. Once the hyperparameters are estimated, the

inference of condition mean expression can be carried out independently for each

transcript.
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3.2.1 Inference of expression dependent priors

We build upon the observation of biological variance being expression dependent.

The variance of expression levels of higher-expressed transcripts are increased

above the technical variance of the sampling process. To capture this depen-

dence, we use expression-dependent hyperparameters over precision of the Nor-

mal distribution. The hyperparameters are inferred from the model (Figure 3.2)

by marginalizing over condition mean expression and condition specific precision.

Firstly, the overall expression given by µ
(0)
m of all transcripts is divided into

bins of equal expression range. Transcripts are assigned to these bins based

on their expression µ
(0)
m forming groups of transcripts with similar expression.

The inference of hyperparameters for group G is carried out jointly for all MG

transcripts using pseudo-data vectors consisting of individual MCMC samples

from all replicates.

We use vague uninformative prior over the hyperparameters in the form of a

uniform distribution.

The posterior distribution over the hyperparameters does not have a tractable

analytic form. In the derivation, we omit the normalisation constant and only

express the posterior in terms of proportionality:

P (α, β|y) ∝ P (α, β)P (y|α, β)

∝
MG∏
m=1

C∏
c=1

P (ycm|α, β)

∝
MG∏
m=1

C∏
c=1

∫
dλ(c)

m P (λ(c)
m |α, β)

∫
dµ(c)

m P (µ(c)
m |λ(c)

m )
Rc∏
r=1

P (y(cr)
m |λ(c)

m , µ
(c)
m )

∝
MG∏
m=1

C∏
c=1

βα

Γ(α)

Γ(α +Rc)(
β + 1

2

(
λ0µ

(0)
m

2
+ y

2(c+)
m − (λ0µ

(0)
m +y

(c+)
m )2

λ0+Rc

))α+Rc
, (3.7)

y(c+)
m =

Rc∑
r=1

y(cr)
m ,

y2(c+)
m =

Rc∑
r=1

y(cr)
m

2
.
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Applying the Random walk Markov chain Monte Carlo

Due to the intractable normalisation constant of the posterior distribution of hy-

perparameters, we have to resort to the use of approximate inference algorithms.

We use Markov chain Monte Carlo (MCMC) to produce samples from the poste-

rior of each group of transcripts. In this case, we are not able to use conditional

distributions of individual parameters and thus cannot use the Gibbs sampler

algorithm. We apply the Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings, 1970), which was introduced in Section 1.5.5.

We implement the approach of Random walk MCMC, using a Normal distri-

bution with reflective bound at 0 as a proposal for both αG and βG, which can

only be positive. Following from Equation 3.7, the acceptance of newly proposed

α∗G and β∗G given previous samples αt−1
G and βt−1

G is

paccept = min

1,
M∏
m=1

C∏
c=1

(β∗G)α
∗
G

(βt−1
G )α

t−1
G

Γ(αt−1
G )

Γ(α∗G)

Γ(α∗G +Rc)

Γ(αt−1
G +Rc)

(
βt−1
G + Ymc

)αt−1
G +Rc

(β∗G + Ymc)α
∗
G+Rc

 ,

(3.8)

Ymc =
1

2

(
λ0µ

(0)
m

2
+ y2(c+)

m − (λ0µ
(0)
m + y

(c+)
m )2

λ0 +Rc

)
.

To assess the quality of a proposal distribution, it is important to monitor

the acceptance rate of proposed samples. High acceptance rate signifies a con-

servative proposal that does not explore the full parameter space (Gelman et al.,

2004). On the other hand, very low acceptance rate results in stationary Markov

chain as the newly proposed samples are rejected too often. For Random walk

MCMC with Normal distribution as the proposal distribution, 0.44 is an opti-

mal acceptance rate for single variable sampling, while an acceptance rate close

to 0.234 is optimal for high-dimensional multivariate case (Roberts et al., 1997;

Sherlock and Roberts, 2009).

We proceed with the inference as follows, the variables αG
0, βG

0 are initialized

from a uniform distribution over broad interval starting at 0. After burn-in phase

of the algorithm, we generate fixed number of samples from the Markov chain and

inspect the acceptance rate. If the acceptance rate is within expected range, the

desired number of samples is generated using the current proposal distribution.

In case of very high acceptance rate, the variance of the proposal distribution is

increased. On the other hand, in case of low acceptance rate, the variance of the
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proposal distribution is decreased. After adjusting the proposal distribution we

generate a new set of samples, while observing the acceptance rate. We repeat

this procedure until reaching a proposal distribution with a desirable acceptance

rate.

Smoothing of hyperparameter distribution

The MCMC algorithm described above produces samples of αG and βG for each

group of transcripts G within the same expression range. These distributions

vary even for groups of transcripts with similar expression. As a consequence,

two transcripts with small difference in expression that were put into two distinct

groups will have distinct distributions of hyperparameters. In order to overcome

this discontinuity and also to avoid sampling from an empirical distribution of

hyperparameters, we use smoothing.

We apply a non-parametric smoothing procedure Lowess (Cleveland, 1979).

Each hyperparameter is smoothed separately using all samples generated by the

MCMC algorithm. The smoothing is done with respect to expression, where

each sample from a given group of transcripts is assigned the average expression

of that group. Using this method, we obtain smoothed sequences of αG and βG

with one pair of hyperparameters per group of transcripts. While alternative

smoothing algorithms could have been applied, the Lowess algorithm is sufficient

for ensuring that transcripts with similar mean expression level are used with

similar hyperparameters.

The expression-dependent hyperparameters are used to share common behav-

ior of variance between various transcripts. Adjustments to the Lowess smoothing

and transcript grouping produce slight variations in the smoothed hyperparam-

eter sequence. However, as the relation between expression and significance of

biological variance is consistent, these changes have limited effect on the final

differential expression calls.

3.2.2 Per sample estimation from Normal-Gamma model

The inference of the model is straightforward due to the conjugacy of the Normal

model with Gamma distributed prior over precision. The model is applied to the

pseudo-data vectors of MCMC expression samples using one sample per replicate,

ym = (y
(1,1)
m , y

(1,2)
m , . . . , y

(C,RC)
m ). We use Bayes’ theorem to derive the posterior
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over vectors of condition mean expression and condition specific variance for a

particular pseudo-data vector:

P (µm,λm|ym) ∝ P (ym|µm,λm)P (µm)P (λm), (3.9)

P (µm,λm|ym) ∼
C∏
c=1

Gamma
(
λ(c)
m

∣∣∣ am,c, bm,c)Norm
(
µ(c)
m

∣∣∣mm,c, p
−1
m,c

)
, (3.10)

am,c = αG +
Rc

2
,

bm,c = βG +
1

2

(
λ0µ

(0)
m

2
+ y2(c+)

m − (λ0µ
(0)
m + y

(c+)
m )2

λ0 +Rc

)
,

mm,c =
λ0µ

(0)
m + y

(c+)
m

λ0 +Rc

,

pm,c = λ(c)
m (λ0 +Rc).

For detailed derivation please refer to Section A.2. The factorization of the poste-

rior distribution enables sampling of the precision and mean sequentially. All con-

dition specific precisions λm are sampled from C independent Gamma distribu-

tions with parameters ac and bc. The precision parameters are then used to sample

condition specific means from C independent Normal distribution parametrised

as above.

The inference for transcript m is carried out as follows. Given its over-

all mean expression µ
(0)
m , we select precision hyperparameters αG and βG from

the smoothed sequence obtained during the hyperparameter estimation step de-

scribed above. The MCMC expression samples from all replicates are divided

into the pseudo-data vectors and for each pseudo-data vector a sample from the

posterior distribution is generated based on Equation 3.10.

3.2.3 Differential expression evaluation

We presented a probabilistic model of differential transcript expression and the in-

ference for this model. By applying the model to expression estimates of multiple

conditions we infer condition mean expression of transcripts of every condition,

µ
(c)
m = {µ(c)(s)

m |s = 1 . . . S}. By comparing the distributions of µ
(c)
m in different

conditions we can draw conclusions about expression changes of transcript m.

Firstly, we compute the PPLR introduced at the beginning of this chapter.

The probability of up-regulation of transcriptm in first condition can be expressed
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in terms of the PPLR,

PPLRm =
1

S

S∑
s=1

δ
(
µ(c1)(s)
m > µ(c2)(s)

m

)
. (3.11)

Conversely, the probability of down-regulation is just 1− PPLRm.

Subsequently we can rank the transcripts based on their estimated PPLR

values. Setting a threshold αsig, we can select all transcripts with PPLRm >

1− αsig and PPLRm < αsig as being differentially expressed.

Apart from the evaluation of significance of DE, researchers are also interested

in changes of expression represented by the log fold change FCm. We can similarly

estimate the expected log fold change between two conditions using the samples

of condition mean expression,

E[FCm] =
1

log(2)

1

S

S∑
s=1

µ(c1)(s)
m − µ(c2)(s)

m . (3.12)

The condition mean expression is already in log-scale, thus for calculating the

fold change we can simply subtract the estimates. We divide the result by log(2)

as the log fold change is usually reported using base 2 logarithm.

3.3 Normalising expression from multiple ex-

periments

In order to perform differential expression analysis, the RNA-seq samples should

be sequenced with equivalent sequencing depth. This can be problematic as vari-

ous conditions and replicates might be sequenced with changes in the preparation

protocol, at different times and even in different laboratories. To make these kind

of samples comparable, the expression estimates have to be normalised.

Expression levels reported in the RPKM measure are already normalised by

the total sequencing output. This kind of normalisation is not always suffi-

cient (Bullard et al., 2010). A large increase in expression level of a long transcript

can affect the read distribution of the sequencing output. As more reads will be

generated from one transcript, the relative proportions of other transcripts will

decrease despite their constant expression.
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The previously proposed normalisation methods were all applied to gene ex-

pression measured in read counts. Bullard et al. (2010) proposed normalisation

procedure using quantile based normalisation, where the read count is normalised

by the upper-quartile of the gene count. Robinson and Oshlack (2010) used

Trimmed Mean of M-values (TMM), where M-value refers to the log ratio be-

tween two samples.

Both of these methods, as well as other approaches (Anders and Huber, 2010;

Hansen et al., 2012), compare the distributions of read counts of genes and pro-

duce a multiplicative scaling factor for adjusting the total read count in each

experiment. This makes the approaches universally interchangeable and enables

us to use them in our differential expression model as well.

Applying normalisation methods

The proposed differential expression model (Figure 3.2) uses log expression sam-

ples measured in RPKM as an input. The model includes sample-specific nor-

malisation constants n(rc) for each replicate of each condition. In order to use

one of the existing methods, we first have to convert the mean expression levels

of each replicate into estimated counts. The methods output a scaling factor for

library size of each replicate, s(cr). To apply the factor to expression estimates

in RPKM, we have to divide the RPKM expression by the scaling factor. Hence

the normalisation constant used in our model is calculated as

n(cr) = − log s(cr), (3.13)

and is used as an additive term, since the model works in logarithmic space.

We also have to consider the fact that the original methods were devised for

gene counts normalisation, whereas our model works with transcript expression

level. While we can use counts to represent transcript expression, the higher

variability of transcript expression might affect the use of some of these methods,

which usually rely on stable expression of most of the transcripts. An alternative

is to calculate per-gene read counts and subsequently use them as an input for

normalisation method to calculate the scaling factor. As the scaling factor applies

to the library size it can be applied to both transcript and gene expression.
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3.4 Results

We apply the proposed probabilistic inference to both real and synthetic RNA-

seq datasets. While we can use real data from the microRNA target study to

demonstrate the use of our method, there is no way of validating the results. We

use synthetic data to evaluate the performance of our approach.

In each case we analyse data consisting of two conditions with biological repli-

cates in each condition. Individual replicates are analysed with transcript expres-

sion quantification method presented in Chapter 2. The quantification method

draws samples from the posterior distribution of transcript expression, which are

converted into Log RPKM and used as an input for our probabilistic DE analysis.

For the purpose of validation with synthetic data, we use an empirical ap-

proach for setting the initial ground truth expression of transcripts, with the

emphasis on preserving realistic expression levels with realistic biological fluctu-

ations within each condition. While the approach is dependent on measurements

from real datasets, it provides independent ground for comparing our method

with alternative DE approaches.

The DE analysis methodology is implemented in the BitSeq application for

transcript expression inference and DE assessment.

3.4.1 Analysis of real data

DE analysis example on a single transcript

We use data from the study by Xu et al. (2010) to demonstrate the DE analysis

procedure using our model. In the report, the authors study the transcriptomic

targets regulated by micro-RNA miR-155. miR-155 is one of the most highly

implicated microRNAs related to hematologic and other cancers (Xu et al., 2010).

The study compares two conditions, one being Burkitt’s lymphoma Mutu cell line

infected with miR-155 retrovirus, while the other is Burkitt’s lymphoma Mutu

cell line infected with control retrovirus. The data was downloaded from the

Short Read Archive (NCBI, 2010), accession number SRP001880.

We selected this dataset, because it contains technical and biological repli-

cation for both studied conditions. We observed significant difference between

biological and technical variance of expression estimates, see Figure 2.13 pre-

sented earlier. Furthermore, the prominence of biological variance increases with
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(a) (b)

(c) (d)

Figure 3.3: Comparison of the DE model to naive approach for combin-
ing replicates within a condition. Single transcript, uc001avk.2, of the Xu
et al. (2010) dataset is assessed. (a) Initial posterior distributions of transcript
expression levels for two conditions (labeled C0, C1), with two biological repli-
cates each (labeled R0, R1). (b) Mean expression level for each condition using
the naive approach for combining replicates. The posterior distributions from
replicates are joined into one dataset for each condition. (c) Inferred posterior
distribution of mean expression level for each condition using our probabilistic
model. (d) Distribution of differences between conditions from both approaches
show that the naive approach leads to overconfident conclusion.



3.4. RESULTS 131

transcript expression level. We illustrate how BitSeq handles biological repli-

cates to account for this variance in Figure 3.3, by showing the modelling process

for one example transcript given only two biological replicates for each of two

conditions.

Figure 3.3(a) shows histograms of expression level samples produced in the

first stage of our pipeline. BitSeq probabilistically infers condition mean expres-

sion levels using all replicates. For comparison, we used a naive way of combining

two replicates by combining the posterior distributions of expression into a sin-

gle distribution. The resulting posterior distributions for both approaches are

depicted in Figures 3.3(b) and 3.3(c).

The probability of differential expression for each transcript is assessed by

computing the difference in posterior expression distributions of the two condi-

tions. Resulting distributions of differences for both approaches are portrayed in

Figure 3.3(d) with obvious difference in the level of confidence. The naive ap-

proach reports high confidence of up-regulation in the second condition, with the

probability of positive log ratio (PPLR) being 0.995. When biological variance is

being considered by inferring the condition mean expression, the significance of

differential expression is decreased to PPLR 0.836.

3.4.2 Evaluation on synthetic data

Unlike the problem of transcript expression quantification, realistic evaluation

of DE analysis performance is difficult. There are no well established RNA-seq

datasets that would contain at least two conditions with biological replicates,

having known or validated differentially expressed transcripts. Therefore, we

have to use synthetic data to evaluate and compare various methods.

In the transcript expression simulation, we are simulating known procedure

of high-throughput sequencing. On the other hand, the properties which are im-

portant for DE analysis are unknown. These are the natural fluctuations within

conditions and true changes of abundance between conditions. While it is possi-

ble to measure these properties with sequencing or alternative technologies, they

depend on specific conditions and transcripts, making their replication very dif-

ficult.

Here we use our own simulation procedure based on observed expression levels

and variations in biological replicates.
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Simulating differential expressed data

We created an empirical method for simulating datasets with two conditions

and biological replicates based on the estimated expression levels from Xu et al.

(2010) dataset. The aim of the procedure is to generate ground truth transcript

expression levels for each replicate of each condition. We define the differential

expression in terms of changes in transcript abundance instead of considering just

entire genes. Once the ground truth transcript expression is set, we can generate

reads with an arbitrary RNA-seq read simulator.

The synthetic data is generated with transcripts having the same mean ex-

pression and biological variance as was observed in the real data. We use the

mean expression over all replicates of all conditions to set the initial transcript

expression. Subsequently, we select a certain fraction of transcripts to be differ-

entially expressed. These transcripts are chosen randomly and their expression is

increased or decreased by a fold change, which is either fixed or selected randomly

from a pre-defined range. This defines the base expression for each condition. As

we also have to create the biological replicates, we use the observed differences of

transcript expression between replicates of each condition to simulate expression

changes within each condition.

Using the ground truth expression levels, we generate RNA-seq reads using

our own simulation procedure described in Section 2.4.5. However, an alternative

RNA-seq simulation could have been used in similar fashion.

Here we use only 7537 transcripts from chromosome 1 to enable a smaller

dataset and more efficient analysis, allowing for multiple validation runs. Ap-

proximately a third of transcripts are set to be DE in each run, with half being

up-regulated and half being down-regulated. After adding the biological varia-

tions to the base expression levels, we simulated 500K single-end reads from each

replicate.

Evaluation

Using artificially simulated data with a predefined set of differentially expressed

transcripts, we evaluated our approach and compared it with four other meth-

ods commonly used for differential expression analysis. DESeq v1.6.1 (Anders

and Huber, 2010), edgeR v2.4.3 (Robinson et al., 2010), baySeq v1.8.1 (Hard-

castle and Kelly, 2010) were designed to operate on the gene level and Cuffdiff

v1.3.0(Trapnell et al., 2010) on the transcript level. Despite not being designed
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for this purpose, we also consider the first three gene-level methods in this com-

parison as the use case is very similar and all are well established methods used

for DE. We used transcript expression estimates from BitSeq stage 1 as an in-

put for all methods except Cuffdiff, which has its own expression quantification

pipeline based on TopHat and Cufflinks. We converted the relative expression

of fragments into the expected read counts by simply multiplying it by the to-

tal number of aligned reads. We used default settings for each of the methods

according to the provided manual or vignette.

The methods are compared using ROC plots based on the known DE tran-

scripts. Figure 3.4(a) shows the overall results of the five methods generated by

averaging over 5 runs. Only transcripts with at least one generated read per repli-

cate on average were included in individual comparisons. All runs use the same

mean expression and biological fluctuations, which were generated by the above

mentioned procedure. The runs differ in the choice of DE transcripts and the

respective expression fold change which was selected randomly from the interval

(1.5, 3.5).

We have also included Precision-Recall plot of the same results in Figure

3.4(b). Here precision, or positive predictive value, is plotted against recall, or

true positive rate.

From both plots we can see that BitSeq is the most accurate method; baySeq,

edgeR and DESeq provide comparable level of accuracy; with Cuffdiff further

behind. In terms of DE analysis, we are usually interested only in the results

with low false positive rate. Hence we focus our further ROC comparisons on

regions up to 0.2 FPR, which are relevant for DE experiments.

We further compare the effectiveness of the methods with respect to the ex-

pression level. Figure 3.5 shows the same results with transcripts split into three

groups based on the pre-set expression levels. BitSeq’s advantage is especially

clear for lower expression levels (Figures 3.5(a), 3.5(b)). The overall performance

here is fairly low, because of high level of biological variance. For highest ex-

pressed transcripts (Figure 3.5(c)), DESeq and edgeR show slightly higher true

positive rate than BitSeq and baySeq, especially at larger false positive rates.

In the last comparison presented in Figure 3.6, we compare the accuracy of

these methods with respect to the fold change of differentially expressed tran-

scripts. We again restrict the figures to the area with false positive rate below

0.2 which in our opinion is the most important in terms of applicability. Instead
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Figure 3.4: Evaluation of transcript level DE analysis using artificial
dataset, comparing BitSeq with alternative approaches. (a) ROC curves
averaged over 5 runs with different sets of DE transcripts; standard deviation
depicted by error bars. (b) Precision-Recall curves for the same results.
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Figure 3.5: DE performance comparison with respect to varying expres-
sion levels. The curves are averaged over 5 runs with different set of transcripts
being differentially expressed by fold change uniformly distributed in the interval
(1.5, 3.5). We discarded transcripts without any reads initially generated as these
provide no signal. Transcripts were divided into 3 equally sized groups based on
the mean generative read count: (a) [0, 3), (b) [3, 19) and (c) [19,∞).

of using randomly selected fold change, all differentially expressed transcripts are

either up-regulated or down-regulated by a constant fold change. The increase

of fold change clearly improves the performance of the methods as we expected.

BitSeq and baySeq have consistently better results than the other methods except

for the lowest fold change 1.5, in which baySeq has the lowest true positive rate

and edgeR with DESeq outperform BitSeq in half of the spectrum.

In all of our DE experiments, Cuffdiff, despite being designed for transcript

level analysis, performs worse out of the 5 compared algorithm. Our data also

shows that for most parts, the DESeq and edgeR methods produce very similar

results in terms of accuracy. This could be explained by the fact that the methods

use similar model based on negative binomial distribution with the same infer-

ence procedure, while having different approach of accounting for the biological

variance.

We have to note, that even though we tried to simulate the data in way to

resemble real RNA-seq experiments, the DE analysis proved to be rather difficult

for all methods being compared. A possible cause for this could be high biological
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Figure 3.6: DE performance comparison with respect to various levels
of expression fold change. The figures focus on the most relevant region with
false positive rate below 0.2, and showing the y-axis up to true positive rate 0.65.
The sub figures show results for varying expression fold change: 1.5 (a), 2.0 (b),
2.5 (c), 3.0 (d) and 5.0 (e).
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Accept null Accept alternative Sum

Null true U V m0

Alternative true T S m1

Sum W R m

Table 3.1: Multiple testing outcomes. The possible outcomes of performing
m multiple hypothesis tests. S is the number of true positives; V is the number
of false positives, or Type I error; and T is the number of false negatives, or Type
II error.

variance within replicates or poor read coverage of some of the transcripts.

3.4.3 Estimating False Discovery Rate

The differential expression analysis method uses multiple hypothesis testing to

evaluate the probability of DE for individual transcripts and genes. In multiple

hypothesis testing it is often useful to control the rate of false positives within

the results. Moreover, in many studies, the significance threshold is determined

based on an acceptable proportion of false positives. We applied the positive

False Discovery Rate (pFDR) method for controlling the number of false positive

proposed by Storey (2002). The pFDR is an alternative formulation to the False

Discovery Rate (FDR) proposed by Benjamini and Hochberg (1995) often used in

traditional frequentist hypothesis testing. Storey (2003) argues for the use of the

pFDR instead and provides Bayesian interpretation of the multiple hypothesis

testing error.

Given a significance region Γ and possible outcomes described in Table 3.1

the pFDR is defined as

pFDR(Γ) = E

[
V (Γ)

R(Γ)

∣∣∣∣R(Γ) > 0

]
. (3.14)

Storey (2003) showed that for test statistics T1, . . . , TM and hypothesesH1, . . . , HM

assuming that random variables (Ti, Hi) are i.i.d., the pFDR can be estimated by

pFDR(Γ) = P (H = 0|T ∈ Γ) =
∑
i;Ti∈Γ

E[δ(Hi = 0)]. (3.15)

He further defined a q-value, an analogue to the p-value used for determining the
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Figure 3.7: False positive rate evaluation on synthetic dataset. Figure
shows true FPR of transcripts selected based on the q-value. The value is averaged
over 5 runs, using standard deviation as errorbars.

FDR. The q-value for test statistic t is defined as

q(t) = inf
{Γ;t∈Γ}

pFDR(Γ), (3.16)

hence the q-value estimates the strength of the test statistic t with respect to the

pFDR (Storey, 2003).

In terms of DE analysis, the null hypothesis means no change of expression,

while the alternative hypothesis signifies differentially expressed gene or tran-

script. In our case, the output is the PPLR, a one-sided test for up-regulation,

which cannot be used directly for controlling the pFDR of DE testing. To con-

trol the pFDR for DE, we calculate q-value for both PPLR and inverse PPLR

iPPLRm = 1− PPLRm, which denotes the probability of down-regulation. For

a desired pFDR threshold α, we select all transcripts with either of the q-values

below α.

We applied this procedure to synthetic data generated by the procedure pre-

sented in previous section. As we know which transcripts are truly DE, we can

calculate the actual proportion of false positives between transcripts that were

selected as DE by our method. For comparison, we include DESeq, edgeR and

Cuffdiff, which also provide a q-value for controlling the proportion of false dis-

coveries.
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Results of the evaluation are presented in Figure 3.7. We can see that BitSeq

underestimates the q-value with respect to the true rate of false positives. On

the other hand, all other methods provide very conservative estimates of the false

positive rate and hence decrease the potential power of the DE test. In this case,

the use of both our and alternative method’s q-values for selecting significant DE

transcripts is questionable.

The underestimation of the actual false positive rate can be caused by the

fact that the DE tests are not fully independent. While the final stage of DE

analysis applies the model to individual transcripts, the transcripts share the ex-

pression dependent hyperparameters. Furthermore, as we have shown earlier, the

expression levels can be highly correlated. Wrong quantification of one transcript

affects other transcripts within a gene, causing correlated false positive calls for

transcripts of a single gene.

3.5 Summary

In this chapter we have presented a probabilistic inference method for differential

expression analysis of transcripts and genes. Input for the method are marginal

posterior distributions of individual transcript expression levels. We use the ex-

pression inferred by our transcript expression quantification method presented in

Chapter 2, however, other methods that could output a full posterior distribution

can be used instead.

The probabilistic DE model is based on a Log-Normal model of observed

expression and accounts for biological variance through the use of expression

estimates from multiple biological replicates. Instead of assuming a certain para-

metric form of the within-sample transcript expression distribution, we apply the

model to pseudo-data vectors of individual samples across replicates. Applying

the model to the pseudo-data vectors of MCMC samples yields samples from the

posterior distribution of condition mean expression for each condition. We use

the probability of positive log ratio to test for up-regulation and down-regulation

of individual transcripts, producing ranking of the most likely DE transcripts.

We evaluated the method on synthetic data with a known set of differen-

tially expressed transcripts. In comparison with other alternative approaches,

our method outperforms transcript level DE tool Cuffdiff as well as methods de-

signed for gene DE analysis. Our method shows greater accuracy especially in
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case of low and medium expressed transcripts.

We have examined the use of pFDR method for estimating the false posi-

tive rate for a certain significance threshold. The pFDR in our case does not

seem to be well calibrated and requires further study of advanced approaches

accounting for correlated transcripts. Note that the other methods included in

our comparison also showed poorly calibrated estimates of false positive rate.



Chapter 4

Applying deterministic

approximate inference methods

In Chapter 2 we presented a Bayesian probabilistic model for transcript expression

quantification. We applied the Markov chain Monte Carlo algorithm to infer the

posterior distribution of expression, as the exact form of the distribution is not

analytically tractable. The MCMC algorithm, once it has converged, enables

us to sample from the true posterior distribution without knowing the marginal

likelihood. However for large datasets, the time complexity of the algorithm

becomes its major drawback.

The size of RNA-seq experiments continually increases with improvements

in the sequencing technology. In the MCMC algorithm, the number of samples

necessary to ensure the convergence of the Markov chains and to capture the

full posterior increases as the number of reads grows and makes the problem

more complex. Furthermore, the time complexity of generating one sample scales

linearly with the number of alignments which is directly related to the number of

sequenced reads. The constant growth of sequencing datasets escalates the need

for more efficient inference methods within the Bayesian framework.

Here we present a Variational Bayes inference approach for transcript expres-

sion quantification. The Variational Bayes approach is a deterministic approx-

imate inference method which, in most cases, provides computationally more

efficient inference for Bayesian probabilistic models. In the Variational Bayes

inference approach the posterior probability distribution is approximated by a

tractable distribution q which can be usually derived from the model by as-

suming additional independence between parameters. The distribution q is then

141
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optimised in terms of minimisation of the divergence from the true posterior

distribution.

This chapter is a result of collaboration with James Hensman. Methodology

of the Variational Bayes inference algorithm presented in this chapter was pro-

posed and derived by James Hensman and combines the previous model proposed

by Peter Glaus presented in Chapter 2 and collapsed Variational Bayes with con-

jugate gradient optimisation approach presented in Hensman et al. (2012). The

algorithm, with further computational optimisations and parallelisation was im-

plemented by Peter Glaus, who also carried out the experiments and comparisons

presented in Section 4.2.

4.1 Variational Bayes inference

The inference method presented here is based on the probabilistic generative

model of RNA-seq outlined in Figure 2.2. The model can be described in terms

of a mixture model in which data is derived from a mixture of different tran-

scripts, the mixture components, with each read originating from one compo-

nent. Each component is defined by a specific probability distribution over the

data it generates. Although reads originate from only one component they may

map to multiple related components, resulting in some ambiguity in their assign-

ment. Transcript expression levels are model parameters (mixture component

proportions) that have to be inferred from the mapped read data. Due to their

probabilistic nature, the mixture models can fully account for multiple mapping

reads, complex biases in the sequence data, sequencing errors, alignment quality

scores and prior information on the insert length in paired-end reads.

The probabilistic model is shown using standard directed graphical notation

in Figure 4.1. To facilitate the derivations the model is simplified through exclu-

sion of the noise-specific parameters θact and Zact
n . Instead a noise transcript is

added and treated as one of the known transcripts. Here θ0 is equivalent of the

noise parameter θact and represents the proportion of reads that could not have

been assigned to any known transcript with enough certainty. As the marginal

univariate distribution of the Dirichlet distribution is the Beta distribution (used

for θact) and the model variables are conjugate, the model is the same as that

in Chapter 2 used with MCMC, subject to a slight reformulation of the prior

parameters.
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Figure 4.1: Graphical model of the RNA-seq mixture problem used in
Variational Bayes inference. Given a known transcriptome and observed
reads R, the inference problem is for θ through the latent variables Z.

We further replaced the indicator vector In ∈ {0, . . . ,M};n = 1 . . . N that

assigns reads to transcripts with a binary indicator matrix znm ∈ {0, 1}, which is

more common in the mixture model literature. Here zn is the allocation vector

of read rn and Z denotes the collection of all allocations. T denotes the set of

transcripts, using Tm to refer to transcript m and P (rn |Tm) = P (rn | In = m)

to denote the likelihood of read rn originating from transcript m as defined in

Section 2.2.

We focus on the mixture part of the analysis, assuming that the model which

associates reads to transcripts, P (rn |Tm), is known. Following the approach from

Chapter 2, we compute this part of the model a priori, with parameters estimated

from uniquely aligned reads.

4.1.1 The generative model

The generative model for an RNA-seq assay is as follows. We assume that the

experiment consists of a pile of RNA fragments, where the abundance of frag-

ments from transcript m in the assay is θm. Fragments are then sequenced in

these proportions, so that the prior probability of any fragment corresponding to

transcript m is θm. Introducing the allocation vector zn for each read, we can

write

P (Z|θ) =
N∏
n=1

K∏
k=1

θznmk , (4.1)
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where znm ∈ {0, 1} is a binary variable which indicates whether the nth fragment

came from the mth transcript (znm = 1) and is subject to
∑M

m=0 znm = 1.

We note that both θ and Z are variables to be inferred, with θ the main

object of interest as it is the relative proportion of transcripts’ fragments, which

can be transformed into alternative expression measure as described in Section

1.4.2. The variables Z are latent variables, whilst they are not of interest directly,

inference of these variables is essential in order to infer θ.

The final part of our model is to specify a prior belief in the vector θ. To

make our approximations tractable, we again use a conjugate prior, which in this

case is a Dirichlet distribution,

P (θ) ∼ Dir(ao), (4.2)

where αom represents our prior belief in the values of θm and α̂o =
∑M

m=1 α
o
m. We

use a weak but proper prior αom = 1; m = 0 . . .M . A priori, we assume that the

concentrations are all equal, but with large uncertainty.

4.1.2 Approximate inference

We are interested in computing the posterior distribution for the mixing pro-

portions, P (θ |R,T) ∝
∑

Z P (R |T,Z)P (Z |θ)p(θ). Variational Bayes involves

approximating the posterior probability density of all the model parameters with

another distribution q,

q(θ,Z) ≈ P (θ,Z|R,T). (4.3)

The approximation is optimised by minimising the Kullback-Leibler (KL) diver-

gence between q(θ,Z) and P (θ,Z|R,T). To make the VB approach tractable,

some factorisations need to be assumed in the approximate posterior. In the case

of the current model, we assume that the posterior probability of the transcript

proportions factorises from the alignments:

q(θ,Z) = q(θ)q(Z). (4.4)

Further factorisations in q(Z) occur due to the simplicity of the model, revealing

q(Z) =
∏N

n=1 q(zn).

We write the approximate distribution for q(Z) using the parameters φnm,



4.1. VARIATIONAL BAYES INFERENCE 145

which denotes the approximate posterior probability of znm = 1:

q(Z) =
N∏
n=1

M∏
m=1

φznmnm . (4.5)

We need not introduce parameters for q(θ) since it will arise implicitly in our

derivation in terms of φ.

The objective function

Approximate inference is performed by optimisation: the parameters of the ap-

proximating distribution are changed so as to minimise the KL divergence. Whilst

the KL divergence is not computable, it is possible to derive a lower bound on

the marginal likelihood, maximisation of which minimises the KL divergence (see

e.g. Bishop, 2006). Here we derive a collapsed lower bound which is dependent

only on the parameters of q(Z), with the optimal distribution for q(θ) arising

implicitly for any given q(Z).

First we construct a lower bound on the conditional log probability of the

reads R given the transcript concentrations θ and the known transcriptome T:

lnP (R |T,θ) = ln

∫
P (R |Z,T)P (Z |θ) dZ

≥ Eq(Z)

[
lnP (R |Z,T) + lnP (Z |θ)− ln q(Z)

]
≥

N∑
n=1

M∑
m=1

φnm
(

lnP (rn |Tm) + ln θm − lnφnm
)

= L1(θ),

(4.6)

where the first line follows from Jensen’s inequality in a similar fashion to standard

VB methods. We have denoted this conditional bound L1(θ), which is still a

function of θ. In order to generate a bound on the marginal likelihood, P (R |T),

we need to remove this dependence on θ which we do in a Bayesian fashion, by

substituting L1(θ) into the following Bayesian marginalisation:

P (R |T) =

∫
P (R |T,θ)P (θ) dθ

≥
∫

exp{L1(θ)}P (θ) dθ.

(4.7)

Solving this integral and taking the logarithm gives us our final bound which
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equates to

lnP (R |T) ≥ L =
N∑
n=1

M∑
m=1

φnm
(

lnP (rn |Tm)− lnφnm
)

+ ln Γ(α̂o)− ln Γ(α̂o +N)−
M∑
m=1

(
ln Γ(αom)− ln Γ(αom + φ̂m)

)
,

(4.8)

where φ̂m =
∑N

n=1 φnm and we also have that the approximate posterior distri-

bution for θ is a Dirichlet distribution with parameters αom + φ̂m.

4.1.3 Optimisation

Having established the objective function as a lower bound on the marginal like-

lihood, all that remains is to optimise the variables of the approximating dis-

tribution q(Z,θ). The dimensionality of this optimisation is rather high and

potentially rather difficult. Optimisation in standard VB is usually performed by

an EM like algorithm, which performs a series of convex optimisations in each

of the factorised variables alternately. We refer to this procedure as VBEM or

steepest gradient optimisation.

In our formulation of the problem, we only need to optimise the parameters

of the distribution q(Z), which we do by a gradient-based method. Taking a

derivative of (4.8) with respect to the parameters φ gives

∂L
∂φnm

= lnP (rn |Tm)− lnφnm + ψ(αom + φ̂m), (4.9)

where ψ is the digamma function. To avoid constrained optimisation we re-

parameterise φ as γ:

φnm =
eγnm∑M

m′=1 e
γnm′

(4.10)

and it is then possible to optimise the variables γ using a standard gradient-based

optimiser.

Geometry

Information geometry concerns the interpretation of statistical objects in a ge-

ometric fashion. Specifically, a class of probability distributions behaves as a

Riemannian manifold with curvature given by the Fisher information. Amari
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(1998) showed that the direction of the steepest descent on a such a manifold is

given by the natural gradient:

∇̃L = G−1∇L , (4.11)

where G is the Fisher information matrix. Since we are performing optimisation

of the distribution q(Z), we can make use of the natural gradient in computing

a search direction. For our problem, we assume that the N ×M matrix Z has

been transformed into a NM vector, and the Fisher information corresponding

to γnm, γn′m′ is given by

G[m,n,m′, n′] =


φnm − φ2

nm, if n = n′ and m = m′

−φnmφnm′ , if n = n′ but m 6= m′

0, otherwise.

(4.12)

We note that this structure is block-diagonal, and that each block can be easily

inverted using the Sherman-Morrison identity, giving an analytical expression for

G−1, and thus making the natural gradient very fast to compute. This differenti-

ates our method from previous natural gradient-based methods for VB (Honkela

et al., 2010), along with our use of the collapsed method.

The optimisation of the variational parameters then proceeds as follows. Fol-

lowing random initialisation, a unit step is taken in the natural gradient direction.

Subsequent steps are subject to conjugate gradients (see Honkela et al., 2010). If

the conjugate gradient step should fail to improve the objective we revert to a

VBEM update, which is guaranteed to improve the bound. The conjugate gra-

dient is computed either by Hestenes-Stiefel (HS) method (Hestenes and Stiefel,

1952) or by Fletcher-Reeves (FR) nonlinear conjugate gradient method (Fletcher

and Reeves, 1964). For comparison of the two approaches, see results in Section

4.2.3.

Truncation

The optimisation described above has N ×M free parameters for optimisation,

one to align each read to each transcript. However, for most read-transcript

pairs, P (rn |Tm) will be negligibly small. Similarly to the approach used in the

MCMC inference, we truncate the values of P (rn |Tm) to zero if read rn does not

align to transcript m. Examining the objective function (4.8) we see that we can
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also set φnm to zero for these truncated alignments (using the convention that

0 ln(0) = 0) and thus also γnm = −∞ for the same. This truncation dramatically

reduces the computational load of our algorithm, reducing the dimensionality of

the optimisation space as well as reducing the number of operations needed to

compute the objective.

4.1.4 The approximate posterior

Having fitted our model, we may wish to propagate the posterior distribution

through a second set of processing, for example to identify differential expressed

transcripts as in Chapter 3. Whilst it may be desirable to solve both stages

together in a Bayesian framework, the size of the problem generally forbids this,

therefore we propose the use of either a moment-matching or sampling procedure

to propagate q(θ) through further analysis. The approximate posterior q(θ) is a

Dirichlet distribution, whose marginals have the following useful properties:

E
[
θm

]
=
αom + φ̂m
α̂o +N

, (4.13)

var[θm] = (αom + φ̂m)(α̂o +N − αom − φ̂m)C, (4.14)

cov[θm, θ
′
m] = −(αom + φ̂m)(αom′ + φ̂m′)C, (4.15)

with C = (α̂o +N)−2(α̂o +N + 1)−1.

This approximate posterior is somewhat inflexible, in that it cannot express

arbitrary covariances between the transcripts. This arises from the factorising

assumption amongst the assignment of reads to transcripts: reads are assigned

independently in the variational method and their dependence cannot be mod-

elled. This is reflected in the results section where we show empirically that the

VB approximation leads to an underestimation of the variance. Nonetheless, this

simplifying assumption leads to reasonable levels of accuracy in terms of mean ex-

pression, and gives significant benefit in terms of speed increase. Note that most

applications using expression level estimates only rely on the mean expression

estimate without consideration of the full posterior.
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Measure (cutoff)
transcript relative relative gene

Method (1) (10) (100) (1)

BitSeq VB 0.994 0.941 0.961 0.994

BitSeq MCMC 0.994 0.945 0.963 0.994
TIGAR 0.998 0.944 0.963 0.999

Table 4.1: The R2 correlation coefficient of estimated expression levels
and ground truth on synthetic data using VB inference. Three different
expression measures were used: absolute transcript expression, relative within-
gene transcript expression and gene expression. Comparison includes sites with
at least 1 read per transcript for transcript expression, either 10 or 100 reads per
gene for within-gene transcript expression and at least 1 read per gene for gene
expression.

4.2 Results and comparison with MCMC

We evaluate the accuracy of our inference approach using both synthetic and

real data. The synthetic data enables comparison against known ground truth,

whilst for the real data where the ground truth is unknown, we compare the VB

method with a very long run of MCMC. We then return to the synthetic data in

a comparison of differential expression analysis using the BitSeq pipeline.

4.2.1 Inference accuracy and performance on synthetic

data

We use the same synthetic data as we have used in Section 2.4.5 to evaluate

the accuracy of the MCMC method in comparison with three other transcript

expression quantification tools. The expression is evaluated in three different

measures: transcript expression, transcript within-gene relative proportions and

gene expression. Here we additionally include TIGAR (Nariai et al., 2013), a

recent method using generative probabilistic model with VB inference algorithm.

The Pearson R2 correlation of the expression estimates with known expres-

sion levels are presented in Table 4.1 We see that in each measure, the variational

approximation to the posterior performs almost as well as the MCMC imple-

mentation. TIGAR performs comparably to both BitSeq methods, though the

differences are small.

On this relatively small dataset with 10 million simulated reads, the compu-

tational cost is significant for BitSeq and TIGAR (see Table 4.2). The MCMC
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Synthetic (10m reads) Real (100m reads)
time memory time memory

Method (mins) (GB) (mins) (GB)

BitSeq VB 21 2.4 310 26.4
BitSeq MCMC 503 0.6 1769 8.5
TIGAR 509 8.2 n/a ∼80
Cufflinks 30 0.6 146 3.2

Table 4.2: Comparison of run time and memory requirements for
MCMC, VB and alternative VB implementation in TIGAR. Smaller,
synthetic, data was analysed on single CPU, while 4 CPUs were used for the real
data consisting of 100m reads. Analysis was done on a computing node with Intel
Xeon X5690, 3.47GHz CPU with 12.3MB cache.

version of BitSeq required 503 minutes, and TIGAR required 509 minutes. It

is perhaps against the conventional wisdom that the Gibbs sampling procedure

should be faster than TIGAR’s variational method, and these differences may

be due in part to the implementation, though we find the Gibbs procedure to

be efficient in the next section also. We used single threaded mode for BitSeq

as TIGAR does not provide explicit parallelisation option and seems to be using

only one CPU.

The variational version of BitSeq, using the contemporary collapsed procedure

defined above, takes significantly less time than either the BitSeq-MCMC method

or TIGAR’s VB at only 21 minutes. This represents a substantial difference

that makes the approach attractive in circumstances where results are demanded

quickly.

4.2.2 Analysis of RNA-seq data from the ENCODE project

We analyse RNA-seq reads downloaded from Short Read Archive (NCBI, 2010),

experiment SRX110318, run SRR387661, generated by the ENCODE consortium

(Djebali et al., 2012). Library extracted from cytosol of human bone marrow

tissue affected by leukemia (K562) was sequenced by Illumina Genome Analyzer

II, generating 124.8 million read pairs, 76 bp long. We mapped the reads using

Bowtie 2.0.6 (Langmead and Salzberg, 2012) to a reference transcriptome using

140869 known coding sequences from Ensembl human cDNA, release 70 (Flicek

et al., 2013). 98.8 million reads were mapped to the reference, with 5 mappings

per read on average.
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Figure 4.2: Comparison of the first two moments of the approximate
posterior expression in counts per transcript. The posterior distribution
inferred by VB method is compared against the MCMC posterior distribution:
(a) posterior mean (R2 correlation is 0.999) (b) posterior standard deviation, the
VB method significantly underestimates the posterior variance (σ2).

Our main potential concern in using the variational method is the quality of

approximation to the posterior. Figure 4.2 shows a comparison of the variational

posterior with a ground truth computed by MCMC. We conclude that the VB

method consistently provides very accurate estimates of the posterior mean across

the whole range of expression levels. The Pearson R2 correlation coefficient of

mean expression levels of transcripts is 0.999. The estimates of posterior variance

are less consistent: for a fraction of transcripts the variances are underestimated,

sometimes rather severely.

We show the relationship between posterior mean and variance of transcript

expression samples obtained by the two methods in Figure 4.3. We converted the

inferred expression into estimated read counts per transcript. Here we can see

that VB only estimates the Poisson variance of random sampling1, which explains

the underestimation of variance in comparison with MCMC which samples from

the true posterior. Figure 4.3(a) shows that while expression estimates of some

transcripts only exhibit the Poisson variance, the expression estimates of many

transcripts vary more due to the multi-mapping reads.

1The variance of a Poisson distributed random variable is equal to the mean of the distribu-
tion.
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Figure 4.3: Mean-variance relationship of the approximate posterior ex-
pression in counts per transcript. (a) posterior distribution sampled by
MCMC algorithm (b) Dirichlet distribution with parameters inferred by the VB
algorithm.

The run time and memory requirements necessary for the analysis of this

data are presented in Table 4.2. In this case, both inference methods were used

in multi threaded setting facilitating 4 CPUs of the computing node with Intel

Xeon 3.47GHz CPUs. Please note, both times include the same pre-processing

stage which estimates likelihood for each alignment while accounting for non-

uniform read distribution bias, which takes 162 minutes. If we subtract this

time, then the actual convergence time for VB is significantly lower at 2.5 hours

when compared to the collapsed MCMC at 26.8 hours. The memory requirements

of our VB inference implementation were three times as high as for MCMC, but

still proved feasible.

The memory requirements of TIGAR prohibited its use on this data set. Ex-

trapolating linearly, we estimate that TIGAR would require 80GB of system

memory to run, which is an infeasible resource for most practitioners. Indeed,

Nariai et al. (2013) demonstrated their algorithm on data sets no larger than 4.5

million reads. For comparison, at the time of writing the Illumina website lists

the HiSeq 2500 machine as capable of producing 3 billion reads in a single run.

We conclude that the novel variational method proposed here significantly

outperforms the other methods in terms of computational time, and performs

very well in estimating the mean of the posterior. If estimation of the expression

level is all that is required, then it would seem that the VB method suffices.
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Figure 4.4: Scaling of the parallelised VB inference. We compare the run
time of the VB inference on the K562 data with 98.8M mapped reads, with
respect to the number of CPUs used. One through twelve Xeon 2.50GHz CPUs
were used for assessment of the parallelisation efficiency. Perfect scaling curve is
included for reference.

However, downstream methods which make use of uncertainty in the transcript

quantification (such as the differential expression analysis proposed in BitSeq)

may suffer from the poor approximation in terms of posterior variance.

Parallelisation

Our implementation of the Variational Bayes inference enables parallel compu-

tation of the natural gradients. We used the K562 data to assess the scaling of

the parallelised computation on multiple CPUs. Here we used a computing node

with two 6-core Xeon 2.50GHz CPUs with 15.4MB cache.

In Figure 4.4 we show the run time of the algorithm when using one through

twelve CPUs. We include a curve for ideal case with perfect scaling calculated by

dividing the run time for one CPU by the number of CPUs used. It is clear that

using more than six CPUs provides minimal improvements, on the other hand,

the use of more than one CPUs can dramatically decrease the run time of the

algorithm.
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Figure 4.5: Convergence comparison of MCMC and VB compared
against long run of MCMC. We compare collapsed Gibbs sampling, stan-
dard Gibbs sampling, VB with Hestenes-Stiefel optimisation, VB using steepest
descent optimisation (VBEM) and VB with Fletcher-Reeves optimisation. Ex-
pression estimates obtained by a very long run of MCMC are used as a ground
truth and the average root mean square error over 10 runs was calculated, two
standard deviations are used as error bars. The VB methods showed negligible
differences in convergence over several randomised initializations.

4.2.3 Convergence comparison

We further investigate convergence properties of MCMC and VB in terms of

mean expression with respect to number of iterations and computational time.

We use a subset of the data described in the previous section restricted to 8713

transcripts of chromosome 19. As the true expression is unknown, we use a long

run of MCMC as the ground truth for mean expression estimates. Running the

inference methods for certain number of iterations, we record the run time and

calculate Root Mean Square Error (RMSE) of estimated expression.

The convergence of the variational methods and the Gibbs sampling proce-

dures is shown in Figure 4.5. We compare collapsed Gibbs sampling, standard

Gibbs sampling, VB with HS conjugate gradient optimisation, standard VB us-

ing steepest gradient ascent optimisation and VB with FR nonlinear conjugate

gradient optimisation.
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Our implementation of VB converges first in about 2 minutes. Surprisingly,

some runs of collapsed MCMC converge to better estimates even faster than

standard VB, which takes around 10 minutes. However, as MCMC is a stochastic

method, an estimate that is consistently better than the results obtain by VB

can be obtained after 900 minutes.

We can clearly see that the FR method outperforms the HS methods on

this dataset. Furthermore, both conjugate gradient optimisations provide major

improvement over the standard VBEM implementation.

4.2.4 Efficiency of the VB inference with respect to se-

quencing depth

Here we look at the accuracy and efficiency of the VB algorithm when using

different sized datasets. While we have shown high correlation of the mean ex-

pression estimates produced by VB and MCMC, we are interested whether this

correlation depends on the number of reads within a dataset.

Here we use the same RNA-seq data, produced by the ENCODE consortium

by sequencing K562 cell line, as we have used before. However, we have changed

the preparation step by aligning to the Gencode reference sequence (Harrow et al.,

2012), instead of the Ensembl reference. The Gencode reference is evidence-

based and contains a more conservative set of only 94917 transcripts from 20720

genes. 97.0 million reads were mapped to the reference, with an average of 3.4

alignments per read. After computing the likelihoods for each alignments in the

pre-processing step of our analysis, we sub-sampled the dataset. Given the 97

million mapped reads, we randomly sampled datasets consisting of 1, 5, 10, 20, 40,

60 and 80 million reads, simulating varying sequencing depth of the experiment.

Excluded reads had all their alignments discarded, while we kept all alignments

of the non-excluded reads.

We analysed the different sized datasets with both MCMC and VB approaches

and compared the mean transcript expression estimates. For all ‘sequencing

depths’ the Pearson R2 correlation of the transcript mean expression estimates

was above 0.9999.

We have also analysed the run time performance of the algorithms with respect

to the number of reads. Using the sub-sampled data avoids differences due to

various concentrations and biases, enabling objective comparison. In Figure 4.6
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Figure 4.6: Run time dependency of inference algorithms for various
sizes of sequencing input. We used four Xeon 2.50GHz CPUs to run the
inference algorithms: (a) collapsed Gibbs sampler (b) Variational Bayes using
FR conjugate gradient optimisation.

we show the run time of the two inference methods depending on the number of

mapped reads. The run time of the MCMC algorithm scales almost linearly with

the number of reads. On the other hand, the run time of the VB algorithm seems

to grow more than just by a linear increase.

4.2.5 Using approximate posteriors in differential expres-

sion analysis

We have shown that the variational method performs well in estimating the mean

of the transcript expression, but underestimates the variance for a substantial

fraction of transcripts. Here we investigate the effects of this underestimation on
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Figure 4.7: Comparison of ROC curves for DE analysis of synthetic data
using BitSeq with MCMC posterior, BitSeq with approximate poste-
rior (VB) and Cufflinks. Transcripts were split into three equal-sized groups
based on the average true read count: low expression transcripts [1, 3.75), inter-
mediate expression transcripts [3.75, 26.38) and high expression transcripts above
26.38. The ROCs are averaged over 5 independent analyses with different tran-
scripts being differentially expressed, with two standard deviations as error bars.
Using BitSeq with MCMC inference yields better and more stable performance.

a differential expression analysis between two replicated conditions.

In order to compare to a ground truth, we return to the synthetic data consist-

ing of two conditions with two replicates each, which was previously introduced

in Chapter 3. Expression of one third of transcripts was changed in one of the

conditions, with fold change being uniformly selected from interval [1.5, 3.5].

We use expression estimates obtained by MCMC and VB inference methods

in combination with BitSeq differential expression analysis procedure. For com-

parison, we also compare against alternative approach using Cuffdiff (Trapnell

et al., 2013). Figure 4.7 shows ROC characteristics of the different approaches

for transcripts grouped into three groups based on initial mean expression. We

can see that using MCMC expression estimates on average outperforms the use

of VB estimates in terms of True Positive Rate.

BitSeq differential expression analysis estimates the Probability of Positive

Log Ratio (PPLR) for each transcript. PPLR close to 1 signifies high probabil-

ity of up-regulation, whereas values close to 0 mean high probability of down-

regulation. The PPLR is then used for ranking transcripts in terms of differential
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Figure 4.8: Kernel density estimate of transcripts’ Probability of Posi-
tive Log Ratio obtained by BitSeq differential expression analysis. The
PPLR was estimated using BitSeq DE analysis based on expression estimates ob-
tained by MCMC and VB inference algorithms. The distribution of transcripts’
PPLR was smoothed using Gaussian kernel density estimator. Using expression
estimates from VB inference method results in more extreme values of transcripts’
PPLR.

expression likelihood and selecting significant differences. In Figure 4.8 we show

smoothed distribution of transcripts’ PPLR produced by BitSeq when used with

either MCMC or VB expression estimates. Due to the underestimation of vari-

ance in the VB inference approach, the resulting PPLR tends to more extreme

values in terms of differential expression likelihood.

4.2.6 Combining Variational Bayes with Gibbs sampling

Previous results show that while Variational Bayes inference underestimates the

variance, it can provide reliable estimates of mean expression levels much faster

than MCMC algorithm. We can use this property of VB to improve efficiency of

MCMC by combining these two algorithms.

First of all, the Markov chains are in our case initialised randomly from the

prior distribution followed by burn-in phase. The purpose of burn-in phase is for

the chains to converge to the posterior distribution, thus all samples from burn-in

are discarded. Initialising chains from the posterior distribution inferred by VB

algorithm enables us to shorten the burn-in.

The second improvement is based on the idea that while assignment of some

reads is ambiguous, many reads can be easily assigned to a specific transcript.
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Figure 4.9: A comparison of the first two moments of the posterior
distribution inferred by the hybrid VB-MCMC algorithm. The posterior
distributions of transcript expression levels in counts sampled by the hybrid VB-
MCMC method and a long run of MCMC are compared in terms of: (a) posterior
mean (R2 correlation is 0.999) (b) posterior standard deviation.

The VB algorithm optimises the approximate distribution through the variable

φ, where φnm expresses the posterior probability of znm = 1, e.g. the probability

that the read rn originates from transcript m. Reads that have φnm close to 1

for certain transcript m can be assigned to that transcript and do not have to be

re-sampled in every iteration of Gibbs sampling.

Here we applied the second approach mentioned above to improve computa-

tional efficiency of MCMC algorithm. We analysed the dataset used in Section

4.2.2 which contains 98.8M paired-end reads and was generated by ENCODE

consortium. After running the VB inference, we used the posterior distribution

to initialise chains and assigned reads with high assignment likelihoods to a fixed

transcript based on φ. We used 0.999 as the threshold over φnm to select reads

that were assigned to a single transcript, resulting in 35.3M fixed reads out of

98.8M total. We followed the VB with collapsed Gibbs sampling applied to the

rest of the reads combined with counts of the fixed reads.

Figure 4.9 shows the first two moments of the inferred posterior distribution

compared with distribution obtained by a long run of MCMC. Except for the few

outliers, the hybrid VB-MCMC algorithm produces posterior distribution with

correctly estimated mean and variance.
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The run time of the method without the pre-processing stage was 1391 min-

utes, compared with the 1607 minutes required by the MCMC algorithm (see

Table 4.2). While this saves 3.6 hours out of 26.8 hours for the MCMC algo-

rithm, the speed-up is not as significant as we would hope to achieve. Initialising

MCMC with VB estimate and shortening the burn-in period could potentially

save extra 2-3 hours of run time on this relatively big dataset. Furthermore the

high memory usage (around 26GB) is still required due to VB optimisation.

4.3 Summary and related work

We have presented a variational method for transcript expression level inference

from RNA-seq data. Building on previous work using MCMC and advances in

VB with conjugate gradient optimisation, we have presented a fast approximate

inference method. We have shown that the mean of the approximate posterior

inferred by VB provides equivalent level of accuracy as mean inferred by MCMC

algorithm.

The VB inference provides an efficient alternative to the MCMC approach

with almost 10 fold speed up on large RNA-seq dataset, with realistic memory

requirements. For applications in which only the point estimate of expression is

required, VB algorithm is a major improvement.

Our VB method can also benefit from parallel processing, in that one of the

expensive computations – taking logarithms and exponents to convert between φ

and γ can be parallelised. Preliminary runs show good speed-up for this method

on a multiple-core machine, where this loop can be tightly parallelised.

We have compared our method with recently published VB inference in the

TIGAR approach (Nariai et al., 2013). We conclude that while TIGAR showed

slightly improved accuracy in our comparison, the TIGAR implementation re-

quires large amounts of memory, and does not offer a significant improvement

over Gibbs sampling in terms of time efficiency. Furthermore, TIGAR at the

moment does not provide means of accounting for read distribution bias and as-

sumes uniform read distribution. While this is not a problem on simulated data

with reads sampled uniformly, for real datasets accounting for these biases has

been shown to improve accuracy (Roberts et al., 2011).

Our experimental results showed that the VB inference leads to underestima-

tion of posterior variance. This can be explained by the independence assumption
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in the approximate distribution q(θ,Z). While this does not affect accuracy of

our method in terms of mean expression, methods that use whole posterior dis-

tribution will be affected. Comparisons of DE analysis based on VB posterior

showed that the variational approximation does not work as well as Gibbs sam-

pling, though it does offer some improvement over the Cuffdiff method.

We explored the alternative of using VB optimisation to improve the efficiency

of MCMC algorithm. Our preliminary analysis showed good results in terms of

the mean and variance accuracy of the posterior distribution of transcript expres-

sion levels. However the relatively modest improvements in run time efficiency

do not provide sufficient justification for this approximation at the moment.

Related work

Our major concern of the current VB inference is the underestimation of the pos-

terior variance. A recent work by Papastamoulis et al. (2013) further extends the

VB inference method presented here. In the report, the inference method avoids

the independence assumption in q(θ,Z) and applies stochastic approximation al-

gorithm to infer the posterior distribution. This leads to improved assessment

of uncertainty of the final estimate in form of more realistic posterior variance.

The new approach further uses the posterior in form of a Generalized Dirichlet

distribution which can capture the correlation between variables observed in the

empirical posterior of MCMC (see Section 2.4.2).

Furthermore, the report proposes improved bound on the marginal likelihood

used in the VB optimisation. Except for its implications for the inference algo-

rithm, marginal likelihood can be used for model selection. This can be exploited

in future applications relying on marginal likelihood for selecting between differ-

ent bias models or choosing a correct set of splice variants.



Chapter 5

Conclusion

5.1 Accomplished results

In this thesis we have presented novel probabilistic approaches for transcript

and gene expression quantification and differential expression analysis. We have

shown that they provide accurate results, comparable with alternative methods

with the advantage of a certainty measure in form of a full posterior distribution

over the inferred parameters.

The research project presented within this thesis spans at least three major

scientific fields. Biology, for understanding genetics and principles of the high-

throughput sequencing. Statistics, used in probabilistic modelling and Bayesian

inference. And lastly, Computer science, providing means for effective implemen-

tations of the novel methods and principles of software engineering. Here we

provide an overview of the initial objectives and evaluate their fulfillment.

Method for transcript expression quantification based on RNA-seq

data, providing accurate results with estimate of uncertainty

We have developed a new method for transcript expression level estimation from

high-throughput sequencing data. The method uses a probabilistic generative

model of the observed reads and extends previously published models by Li et al.

(2010a) and Nicolae et al. (2011). The model accounts for read errors, paired-end

read fragment lengths and non-uniform read distributions.

Given empirically estimated likelihoods of alignments, the method uses full

Bayesian inference procedure. While the exact posterior distribution of expression

levels is intractable, due to the use of a conjugate model, we can apply the Gibbs

162
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sampling algorithm. The convergence of the sampling algorithm is monitored

by using multiple parallel chains and comparing the within chain and between

chain variances. Samples from the posterior distribution of transcript expression

can be transformed into alternative measure of expression such as RPKM, or

combined into gene expression. Thanks to generating full posterior distribution

of expression estimates, a level of certainty of the estimates can be assessed either

from the full distribution or by its variance and percentiles. The full posterior

additionally enables detection of correlations between highly similar transcripts.

Our evaluations on real RNA-seq data show good correlation with qRT-PCR

validation, which can be further improved by using the non-uniform read distri-

bution bias model. Using synthetic data, we showed that our method provides

highest level of accuracy when estimating the within-gene proportions of tran-

scripts and provides results on a par with alternative approaches in terms of

absolute transcript and gene expression levels.

Efficient inference algorithms for RNA-seq data analysis and transcript

expression quantification

Considering data with thousands of transcripts and hundred millions of read

alignments, the use of a sampling algorithm can lead to unusable implementations.

First of all, we have improved the standard Gibbs sampling algorithm by using the

collapsed model. The collapsed Gibbs sampler, while having comparable speed

per iteration, uses around half of the iterations of the standard Gibbs sampler to

reach the same level of convergence in terms of the marginal posterior variance

estimate. This can half the run time of the algorithm for a given convergence

level.

Secondly, through optimised implementation and use of parallelisation we

have created efficient application that can process and analyse data with almost

hundred million mapped read pairs within 30 hours. Given that sequencing of

the data takes several days, we consider this to be within acceptable time frame

for the analysis.

Lastly, we have developed an alternative inference technique for the tran-

script expression estimation problem in form of a Variational Bayes algorithm.

The Variational Bayes inference is based on approximation of the posterior distri-

bution with other, tractable, distribution and minimising the divergence between

the posterior and approximation. It provides a faster alternative for estimating
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the mean expression, with up to 10 fold speed up in comparison with the col-

lapsed Gibbs samples. However, the estimate is penalised by underestimation of

the true variance of the posterior distribution.

Probabilistic method for transcript-level differential expression analy-

sis accounting for biological variance and using expression with uncer-

tainty measure

Building on the results of our transcript expression quantification approach we

have created a new method for differential expression analysis that uses input

in form of probability distribution of expression levels. At the time being, all

other methods either take as an input read alignments or use a point estimate

of expression. Furthermore, most commonly used methods rely on read counts

in combination with either Poisson or Negative-Binomial model. While these

can be used for transcript expression, we argued that read counts should not be

used for gene level DE analysis because of varying effective lengths of genes. Our

approach uses Log-Normal model with the input of expression samples in the

RPKM measure and can be applied to both transcript and gene level analysis.

Our method relies on the use of biological replicates for estimation of transcript-

specific abundance fluctuations within condition. The use of biological replication

and assessment of biological variance is important for determining the true con-

dition dependent changes. This has been the norm for microarray DE analysis

and applies the same way to RNA-seq.

We have evaluated our method on artificial dataset and provided a comparison

with alternative DE methods. We have shown improved performance in DE

detection of transcripts. However, we acknowledge the need for a better way of

validating DE analysis approaches, either through improved simulation of data

or through extensively validated real RNA-seq datasets.

Usable implementation available to other researchers

All of the methods in this thesis have been implemented with intent of providing

useful application for other researchers. The tools are part of the BitSeq package

which is freely distributed under permissive open-source license, Artistic License

2.0, with exception of external libraries that are distributed under various other

open-source licenses. While most of the analysis can be performed on a standard
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desktop computer, we advise the use of a dedicated computing node for the

analysis of larger datasets.

The package is mainly implemented in C++ with two alternative versions. The

first version is distributed as a standalone compilable source code for GNU Linux

and Unix based operating systems. This version provides individual command

line programs for inference and data manipulation. The second version is part

of the Bioconductor project and provides interface between the command line

binaries and the R environment for statistical computing.

5.2 Research output

The work presented within this thesis led to several scientific publications, a

software implementation and conference presentations.

Publications:

• P. Glaus, A. Honkela, and M. Rattray. Identifying differentially expressed

transcripts from RNA-seq data with biological variation. Bioinformatics,

28(13):1721–8, July 2012.

• J. Hensman, P. Glaus, A. Honkela, and M. Rattray. Fast Approximate

Inference of Transcript Expression Levels from RNA-seq Data. (In prepa-

ration), 2013.

• P. Papastamoulis, J. Hensman, P. Glaus, and M. Rattray. Improved Vari-

ational Bayes inference for transcript expression estimation. Statistical

Applications in Genetics and Molecular Biology, (Accepted), 2013.

Software package BitSeq, available as:

• C++, command line: http://code.google.com/p/bitseq/

• R, Bioconductor: http://bioconductor.org/packages/release/bioc/html/

BitSeq.html

Selected presentations:

21.7.2013 Peter Glaus. Identifying differentially expressed transcripts from

RNA-seq data with biological variation. ISMB/ECCB, Berlin, 2013.

http://code.google.com/p/bitseq/
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
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1.6.2012 Peter Glaus. Bayesian Inference of Transcripts from Sequencing data.

SeqAhead workshop, Uppsala, 2012.

15.7.2011 Peter Glaus. Estimating differential expression of transcripts with

RNA-seq by using Bayesian inference. HitSeq, Vienna, 2011.

5.3 Future work

We have presented completed methods for transcript expression quantification

and DE analysis which can be applied to real life analysis of RNA-seq datasets.

However, thanks to the broad range of problems associated with these tasks, there

are multiple paths for future research and development of this project.

Transcript expression quantification

One of the important future research directions of the transcript expression quan-

tification problem is the improvement of Variational Bayes inference techniques.

We have already mentioned current work by Papastamoulis et al. (2013), which

improves the Variational inference. Papastamoulis et al. (2013) propose various

modifications to the current VB inference through the use of approximate dis-

tributions without the assumption of independence between expression and read

assignments; providing a better bound for marginal likelihood; and using Gener-

alized Dirichlet distribution to approximate the posterior. These advancements

can lead to faster inference method than the collapsed Gibbs sampling, without

the loss in form of underestimated variance.

Moreover, the Variational Bayes approximations are also interesting because

they provide a bound on the marginal likelihood. As we have noted earlier, in

the Bayesian framework the marginal likelihood can be used for model selection,

enabling comparison of different priors (see Nariai et al., 2013), or choosing be-

tween different read bias distribution models. Its most interesting application is

the comparison of different splicing annotations. The estimated marginal likeli-

hood can be used to choose a splicing model that describes the data the best.

Methods presented here were specifically designed for data generated by the

Second generation sequencing technologies. With the rise of single cell sequenc-

ing (Brennecke et al., 2013) and the third generation of sequencing technologies

(Branton et al., 2008; Schadt et al., 2010), new data will require different kind
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of analysis. For example, the single-molecule real-time sequencing is capable of

sequencing reads up to length of 10kb, however with a much lower base accuracy

(Shin et al., 2013). While long reads can resolve the issue of similar transcripts,

probabilistic models similar to those proposed here can be used to account for

the base errors within reads.

Differential expression analysis

As we have discussed in Chapter 3, False Discovery Rate is often used to select

significance threshold when it comes to DE calls. While we have investigated use

of the pFDR measure, it tends towards underestimation of the true number of

false positive calls. More careful investigation of the pFDR estimation method

might yield better calibrated results.

Our differential expression model can be applied to both transcript and gene

RPKM expression. However, the model is not applicable to the within-gene

relative expression of transcripts, due to different range of values and variance

dependence. For detecting changes of splicing patterns within genes a new method

has to be developed which will account for the relative expression and variance

affected by the abundance of the particular transcript, its gene and other splice

variants.

There are also several directions of extending the existing DE model itself.

One possibility lies in integrating the quantification step with the differential

expression analysis. As this would involve joint expression estimation of multiple

experiments, using sampling algorithms would be computationally impossible.

However, the Variational methods provide efficient alternative and could be used

for inference instead of Gibbs sampling.

Another alternative involves extension of the model in order to enable multi-

factor analysis that involves comparison of multiple conditions that can be grouped

into factors. As an example, it could be a comparison of normal condition and

treatment, both at two different time points. Our model does allow joint DE

analysis of all conditions and time points, however it only provides pairwise com-

parison of samples. Additional level of hierarchy in the model could allow more

complex comparisons such as changes between time points irrespective of condi-

tion.
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Inference and implementation

In chapter 4 we have presented a hybrid inference method, which combined the

Variational Bayes inference algorithm with Gibbs sampling in order to improve

the run time of the sampling algorithm. The method uses VB to estimate initial

expression with subsequent stable assignment of subset of reads that have high

posterior likelihood of assignment to a single transcript. We showed that the

method provides more accurate estimate of variance as well shorter run time

than Gibbs sampling. However, we would like to improve the speed-up of the

algorithm through finding better ways of combining the two inference methods.

An alternative way of improving the speed of the Gibbs sampler could be

through the application of similar technique as was used for speeding up the

Gibbs sampling in the Latent Dirichlet Allocation (LDA) (Porteous et al., 2008).

LDA is a method used for assigning documents to unobserved topics using gen-

erative model (Blei et al., 2003). The probabilistic model used in our expression

estimation approach can be viewed as a subset of the model used for LDA. Por-

teous et al. (2008) showed an alternative assignment process within the collapsed

Gibbs sampler that avoids calculation of all assignment likelihoods and provides

dramatic speed-up for the LDA. It would be interesting to investigate whether a

similar technique could be used for speeding up the collapsed Gibbs sampler used

in our application.

We have developed an application for quantifying transcript expression and

DE analysis, which is intended for use by other researchers. A certain portion of

our future efforts has to be aimed at maintaining the application. This involves

improving the usability of the application and providing documentation and sup-

port for other researchers using the application. Similarly, it is also important

to accommodate future trends in RNA-seq, sequencing datasets and use cases of

the high-throughput sequencing technology.
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E. Turro, S.-Y. Su, A. Gonçalves, L. J. M. Coin, S. Richardson, and A. Lewin.

Haplotype and isoform specific expression estimation using multi-mapping

RNA-seq reads. Genome Biology, 12(2):R13, January 2011.

P. K. Wall, J. Leebens-Mack, A. S. Chanderbali, A. Barakat, E. Wolcott, H. Liang

et al. Comparison of next generation sequencing technologies for transcriptome

characterization. BMC genomics, 10:347, January 2009.



182 BIBLIOGRAPHY

K. Wang, D. Singh, Z. Zeng, S. J. Coleman, Y. Huang, G. L. Savich et al.

MapSplice: accurate mapping of RNA-seq reads for splice junction discovery.

Nucleic Acids Research, 38(18):e178, October 2010a.

L. Wang, Z. Feng, X. Wang, X. Wang, and X. Zhang. DEGseq: an R package for

identifying differentially expressed genes from RNA-seq data. Bioinformatics,

26(1):136–138, 2010b.

X. Wang, Z. Wu, and X. Zhang. Isoform abundance inference provides a more

accurate estimation of gene expression levels in RNA-seq. Journal of Bioinfor-

matics and Computational Biology, 8(supp01):177–192, December 2010c.

Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for tran-

scriptomics. Nature Reviews. Genetics, 10(1):57–63, January 2009.

A. P. M. Weber, K. L. Weber, K. Carr, C. Wilkerson, and J. B. Ohlrogge. Sam-

pling the Arabidopsis transcriptome with massively parallel pyrosequencing.

Plant physiology, 144(1):32–42, May 2007.

E. G. Wilbanks and M. T. Facciotti. Evaluation of algorithm performance in

ChIP-seq peak detection. PloS one, 5(7):e11471, January 2010.

B. T. Wilhelm and J.-R. Landry. RNA-Seq-quantitative measurement of expres-

sion through massively parallel RNA-sequencing. Methods (San Diego, Calif.),

48(3):249–57, 2009.

T. D. Wu and S. Nacu. Fast and SNP-tolerant detection of complex variants and

splicing in short reads. Bioinformatics, 26(7):873–81, April 2010.

Z. Wu, X. Wang, and X. Zhang. Using non-uniform read distribution models

to improve isoform expression inference in RNA-Seq. Bioinformatics, 27(4):

502–8, February 2011.

G. Xu, C. Fewell, C. Taylor, N. Deng, D. Hedges, X. Wang et al. Transcriptome

and targetome analysis in MIR155 expressing cells using RNA-seq. RNA, 16

(8):1610–22, August 2010.

D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Research, 18(5):821–9, May 2008.



BIBLIOGRAPHY 183

S. Zheng and L. Chen. A hierarchical Bayesian model for comparing transcrip-

tomes at the individual transcript isoform level. Nucleic Acids Research, 37

(10):e75, June 2009.



Appendix A

Derivations

A.1 Transcript expression model

We provide detailed derivations of the posterior distribution over the model pa-

rameters and the conditional distributions used in the Gibbs sampling algorithms.

First we derive the posterior distribution over I,θ, θact with marginalization of

the noise indicator Zact, which is then used in both standard and collapsed Gibbs

algorithms.

P (I,θ, θact|R) =
∑
Zact

P (I,Zact,θ, θact|R)

∝ P (θ)P (θact)
∑
Zact

N∏
n=1

P (rn|In)P (In|θ, Zact
n )P (Zact

n |θact)

∝ P (θ)P (θact)
N∏
n=1

∑
Zactn =0,1

P (rn|In)P (In|θ, Zact
n )P (Zact

n |θact)

∝ P (θ)P (θact)
N∏
n=1

(
δ(In > 0)P (rn|In)Cat(In|θ)θact+

δ(In = 0)P (rn|noise)(1− θact)
)

∝ P (θ)P (θact)
∏

n;In 6=0

(
P (rn|In)Cat(In|θ)θact

)
∏

n;In=0

(
P (rn|noise)(1− θact)

)
.

(A.1)
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A.1.1 Standard Gibbs sampler

P (α|β,R) =
P (α, β|R)

P (β|R)
∝ P (α, β|R)β (A.2)

We can use the rule A.2 applied to the posterior distribution given in Equa-

tion A.1 to derive the proportional form of the conditional distributions for each

parameter. The conditional distributions are then used in the Gibbs sampler

algorithm to sample the individual parameters in an iterative fashion.

For the read allocations I, the allocations of individual reads are conditionally

independent given θ and θact, P (I|θ, θact, R) =
∏N

n=1 P (In|θ, θact, R), hence we

can derive the conditional distribution for a single allocation:

P (In|θ, θact, R) ∝

(
P (θ)P (θact)

∏
n;In 6=0

(
P (rn|In)Cat(In|θ)θact

)
∏

n;In=0

(
P (rn|noise)(1− θact)

))
θ,θact,I−n

∝ δ(In > 0)P (rn|In)Cat(In|θ)θact+

δ(In = 0)P (rn|noise)(1− θact)

∝ δ(In > 0)P (rn|In)θInθ
act + δ(In = 0)P (rn|noise)(1− θact),

(A.3)

where we use a shorthand notation for the Categorical distribution, P (In =

m|θ) = θIn . The conditional distribution has the form of the Categorical dis-

tribution with parameters φ defined below:

P (In|θ, θact, R) = Cat(In|φn),

φn0 = P (rn|noise)(1− θact)/Z(φ)
n ,

m 6= 0;φnm = P (rn|m)θmθ
act/Z(φ)

n ,

Z(φ)
n = P (rn|noise)(1− θact) +

∑M
m=1P (rn|m)θmθ

act.

(A.4)
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The conditional distributions for θ and θact are derived in a similar fashion.

P (θ|I, θact, R) ∝

(
P (θ)P (θact)

∏
n;In 6=0

(
P (rn|In)Cat(In|θ)θact

)
∏

n;In=0

(
P (rn|noise)(1− θact)

))
I,θact

∝ P (θ)
∏

n;In 6=0

Cat(In|θ)

∝
M∏
m=1

(θm)α
dir

∏
n;In 6=0

θIn

∝
M∏
m=1

(θm)α
dir

M∏
m=1

(θm)Cm =
M∏
m=1

(θm)α
dir+Cm ,

(A.5)

where Cm =
∑N

n=1 δ(In = m) denotes the number of reads allocated to transcript

m. Thanks to conjugacy of the Categorical-Dirichlet model, the conditional pos-

terior distribution over θ has the form of a Dirichlet distribution,

P (θ|I, θact, R) = Dir(θ|αdir + C1, . . . , α
dir + CM). (A.6)

Lastly, for θact we have

P (θact|I,θ, R) ∝

(
P (θ)P (θact)

∏
n;In 6=0

(
P (rn|In)Cat(In|θ)θact

)
∏

n;In=0

(
P (rn|noise)(1− θact)

))
I,θ

∝ P (θact)
∏

n;In 6=0

θact
∏

n;In=0

(1− θact)

∝ (θact)α
act−1(1− θact)βact−1(θact)

∑M
m=1 Cm(1− θact)C0

∝ (θact)α
act+N−C0−1(1− θact)βact+C0−1,

(A.7)

which has the form of a Beta distribution with parameters αact + N − C0 and

βact + C0.
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A.1.2 Collapsed Gibbs sampler

The collapsed Gibbs sampler is based on a collapsed model, with certain param-

eters marginalized out. In our case, in order to retain posterior in a usable form,

we integrate over θact and θ and sample the read allocations I. We first integrate

over θact:

P (I,θ|R) =

∫ 1

0

dθact P (I,θ, θact|R)

∝
∫ 1

0

dθact P (θ)P (θact)
∏

n;In 6=0

(
P (rn|In)Cat(In|θ)θact

)
∏

n;In=0

(
P (rn|noise)(1− θact)

)
∝ P (θ)

∏
n;In 6=0

P (rn|In)Cat(In|θ)
∏

n;In=0

P (rn|noise)∫ 1

0

dθact P (θact)(θact)C+(1− θact)C0

∝ P (θ)
∏

n;In 6=0

P (rn|In)Cat(In|θ)
∏

n;In=0

P (rn|noise)∫ 1

0

dθact (θact)α
act+C+(1− θact)βact+C0

∝ P (θ)
∏

n;In 6=0

P (rn|In)Cat(In|θ)
∏

n;In=0

P (rn|noise)

Γ(αact + C+)Γ(βact + C0)

Γ(αact + βact +N)
,

(A.8)

where C+ =
∑M

m=1Cm denotes the number of non-noise allocations. While the

read allocations were conditionally independent given θ and θact, after integrat-

ing out θact we loose the conditional independence. The posterior distribution

does not factorize into independent factors for each read, because it contains the

terms C+ and C0, which denote the total number of allocations to real and noise
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transcripts respectively. We follow with marginalization of θ

P (I|R) =

∫
dθ P (I,θ|R)

∝ Γ(αact + C+)Γ(βact + C0)∫
dθ P (θ)

∏
n;In 6=0

P (rn|In)Cat(In|θ)
∏

n;In=0

P (rn|noise)

∝ Γ(αact + C+)Γ(βact + C0)
∏

n;In 6=0

P (rn|In)
∏

n;In=0

P (rn|noise)

∫
dθ

M∏
m=1

(θm)α
dir−1

∏
n;In 6=0

θIn

∝ Γ(αact + C+)Γ(βact + C0)
∏

n;In 6=0

P (rn|In)
∏

n;In=0

P (rn|noise)

∫
dθ

M∏
m=1

(θm)α
dir+Cm−1

∝ Γ(αact + C+)Γ(βact + C0)
∏

n;In 6=0

P (rn|In)
∏

n;In=0

P (rn|noise)∏M
m=1 Γ(αdir + Cm)

Γ(
∑M

m=1 α
dir + Cm)

.

(A.9)

We cannot use this posterior distribution directly as it does not have a form of

any standard probability distributions. However we apply the principle of Gibbs

sampler and sample individual parameters, in this case allocations of single reads,

conditioned on the other allocations. The conditional posterior distribution of

single allocation is given below

P (In|I(−n), R) ∝
(
P (In, I

(−n)|R)
)
I(−n)

∝ δ(In = 0)

(
P (rn|noise)Γ(αact + C

(−n)
+ )Γ(βact + C

(−n)
0 + 1)∏M

m=1 Γ(αdir + C
(−n)
m )

Γ(Mαdir + C
(−n)
+ )

)
+

δ(In > 0)

(
P (rn|In)Γ(αact + C

(−n)
+ + 1)Γ(βact + C

(−n)
0 )

Γ(αdir + C
(−n)
In

+ 1)
∏

m>0;m 6=In Γ(αdir + C
(−n)
m )

Γ(Mαdir + C
(−n)
+ + 1)

)
,

(A.10)
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with C
(−n)
m =

∑
i 6=n δ(Ii = m) denoting the counts based on the other allocations

and C
(−n)
+ defined accordingly. We now use the ‘factorial’ property of the Gamma

function, Γ(x+ 1) = xΓ(x), to simplify the conditional distribution:

P (In|I(−n), R) ∝ δ(In = 0)

(
P (rn|noise)Γ(αact + C

(−n)
+ )Γ(βact + C

(−n)
0 )

(βact + C
(−n)
0 )

∏M
m=1 Γ(αdir + C

(−n)
m )

Γ(Mαdir + C
(−n)
+ )

)
+

δ(In > 0)

(
P (rn|In)Γ(αact + C

(−n)
+ )Γ(βact + C

(−n)
0 )

(αact + C
(−n)
+ )

(αdir + C
(−n)
In

)
∏M

m=1 Γ(αdir + C
(−n)
m )

(Mαdir + C(−n))Γ(Mαdir + C
(−n)
+ )

)
∝ δ(In = 0)

(
P (rn|noise)(βact + C

(−n)
0 )

)
+

δ(In > 0)

(
P (rn|In)(αact + C

(−n)
+ )

(αdir + C
(−n)
In

)

(Mαdir + C
(−n)
+ )

)
,

(A.11)

where the decomposed Gamma functions no longer depended on the current allo-

cation In and thus can be left out of the proportional expression. The conditional

posterior distribution has the form of a Categorical distribution with parameters

φ∗n:

P (In|I(−n), R) = Cat(In|φ∗
n),

φ∗n0 = P (rn|noise)(βact + C
(−n)
0 )/Z(φ∗)

n ,

m 6= 0;φ∗nm = P (rn|m)(αact + C
(−n)
+ )

(αdir + C
(−n)
m )

(Mαdir + C
(−n)
+ )

/Z(φ∗)
n ,

Z(φ∗)
n = P (rn|noise)(βact + C

(−n)
0 )+

M∑
m=1

P (rn|m)(αact + C
(−n)
+ )

(αdir + C
(−n)
m )

(Mαdir + C
(−n)
+ )

.

(A.12)

A.2 Differential expression model

A.2.1 Hyperparameter estimation

For the differential expression model, we do not use fixed hyperparameters for

all transcripts. Instead, we capture the dependence of the biological variance
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by using expression dependent hyperparameters. These are inferred from the

model for groups of transcripts with similar mean expression. We now derive

the posterior distribution of the hyperparameters αG and βG for a given set of

transcripts G. We use a uniform prior over the hyperparameters which restricts

the hyperparameters within certain bounds, but can be otherwise ignored from

the derivation.

P (αG, βG|y) ∝ P (αG, βG)P (y|αG, βG)

P (αG, βG|y) ∝ Uniform(αG)Uniform(βG)P (y|αG, βG)

P (αG, βG|y) ∝ P (y|αG, βG)

We follow with derivation from the likelihood:

P (αG, βG|y) ∝ P (y|αG, βG)

∝
MG∏
m=1

C∏
c=1

P (ycm|αG, βG)

∝
MG∏
m=1

C∏
c=1

∫
dλ(c)

m P (λ(c)
m |αG, βG)P (ycm|λ(c)

m )

∝
MG∏
m=1

C∏
c=1

∫
dλ(c)

m P (λ(c)
m |αG, βG)

∫
dµ(c)

m P (µ(c)
m |λ(c)

m )P (ycm|λ(c)
m , µ

(c)
m )

∝
MG∏
m=1

C∏
c=1

(∫
dλ(c)

m P (λ(c)
m |αG, βG)

∫
dµ(c)

m P (µ(c)
m |λ(c)

m )
Rc∏
r=1

P (y(cr)
m |λ(c)

m , µ
(c)
m )

)

∝
MG∏
m=1

C∏
c=1

(∫
dλ(c)

m

βG
αG

Γ(αG)
λ(c)
m

αG−1+Rc+1
2 exp

(
−λ(c)

m βG
)

∫
dµ(c)

m exp

(
−λ

(c)
m λ0

2

(
µ

(c)
m − µ(0)

m

)2
)

Rc∏
r=1

exp

(
−λ

(c)
m

2

(
y

(cr)
m − µ(c)

m

)2
))

∝
MG∏
m=1

C∏
c=1

(∫
dλ(c)

m
βG

αG

Γ(αG)
λ

(c)
m

αG−1+Rc+1
2 exp

(
−λ(c)

m βG

)
∫

dµ(c)
m exp

(
−λ

(c)
m

2

(
λ0µ

(0)
m

2
+ y

2(c+)
m − (λ0µ

(0)
m +y

(c+)
m )2

λ0+Rc
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+(λ0 +Rc)
(
µ

(c)
m − λ0µ

(0)
m +y

(c+)
m

λ0+Rc

)2
)))

∝
MG∏
m=1

C∏
c=1

(∫
dλ(c)

m
βG

αG

Γ(αG)
λ

(c)
m

αG−1+Rc
2 exp

(
−λ(c)

m (βG + Ymc)
)

∫
dµ(c)

m

√
λ

(c)
m (λ0 +Rc) exp

(
−λ

(c)
m (λ0+Rc)

2

(
µ

(c)
m − λ0µ

(0)
m +y

(c+)
m

λ0+Rc

)2
))

∝
MG∏
m=1

C∏
c=1

(
βG

αG

Γ(αG)

Γ(αG +Rc)

(βG + Ymc)αG+Rc∫
dλ(c)

m
(βG+Ymc)αG+Rc

Γ(αG+Rc)
λ

(c)
m

αG−1+Rc
2 exp

(
−λ(c)

m (βG + Ymc)
))

∝
MG∏
m=1

C∏
c=1

(
βG

αG

Γ(αG)

Γ(αG +Rc)

(βG + Ymc)αG+Rc

)
, (A.13)

where we use the following shorthand notations:

y(c+)
m =

Rc∑
r=1

y(cr)
m , (A.14)

y2(c+)
m =

Rc∑
r=1

y(cr)
m

2
, (A.15)

Ymc =
1

2

(
λ0µ

(0)
m

2
+ y2(c+)

m − (λ0µ
(0)
m + y

(c+)
m )2

λ0 +Rc

)
. (A.16)
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A.2.2 Model inference

The inference from the DE model can be carried out exactly as the Normal-

Gamma model over pseudo-data vector of logged expression samples is conjugate.

Detailed derivation of the posterior over condition specific precision λ
(c)
m and mean

µ
(c)
m yields posterior distributions in form of a Gamma and Normal distributions

respectively:

P (µm,λm|ym) ∝ P (ym|µm,λm)P (µm)P (λm)

∝
C∏
c=1

P (ycm|µ(c)
m , λ

(c)
m )P (µ(c)

m )P (λ(c)
m )

∝
C∏
c=1

P (µ(c)
m )P (λ(c)

m )
Rc∏
r=1

P (y(cr)
m |µ(c)

m , λ
(c)
m )

∝
C∏
c=1

(
λ(c)
m

αG−1
exp

(
−βGλ(c)

m

)√
λ

(c)
m exp

(
−λ

(c)
m λ0

2
(µ

(c)
m − µ(0)

m )2
)

Rc∏
r=1

√
λ

(c)
m exp

(
−λ

(c)
m

2
(y

(cr)
m − µ(c)

m )2
))

∝
C∏
c=1

(
λ(c)
m

αG− 1
2

+Rc
2 exp

(
−λ(c)

m βG
)

exp
(
−λ

(c)
m

2

(
λ0µ

(c)
m

2
−

2λ0µ
(c)
m µ

(0)
m + λ0µ

(0)
m

2
+
∑Rc

r=1(y
(cr)
m − µ(c)

m )2
)))

∝
C∏
c=1

(
λ(c)
m

αG− 1
2

+Rc
2 exp

(
−λ(c)

m βG
)

exp

(
−λ

(c)
m

2

(
λ0µ

(0)
m

2
+ y

2(c+)
m −

(λ0µ
(0)
m +y

(c+)
m )2

λ0+Rc
+ (λ0 +Rc)

(
µ

(c)
m − λ0µ

(0)
m +y

(c+)
m

λ0+Rc

)2
)))

∝
C∏
c=1

(
λ(c)
m

αG− 1
2

+Rc
2 λ(c)

m

− 1
2

exp
(
−λ(c)

m

(
βG + 1

2

(
λ0µ

(0)
m

2
+ y

2(c+)
m − (λ0µ

(0)
m +y

(c+)
m )2

λ0+Rc

)))
√
λ

(c)
m exp

(
−λ

(c)
m (λ0+Rc)

2

(
µ

(c)
m − λ0µ

(0)
m +y

(c+)
m

λ0+Rc

)2
))

=
C∏
c=1

Gamma
(
λ(c)
m

∣∣∣ am,c, bm,c)Norm
(
µ(c)
m

∣∣∣mm,c, p
−1
m,c

)
.

(A.17)
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The parameters of the final Gamma and Normal distributions over precision and

mean of transcript m and condition c are listed below:

am,c = αG +
Rc

2
, (A.18)

bm,c = βG +
1

2

(
λ0µ

(0)
m

2
+ y2(c+)

m − (λ0µ
(0)
m + y

(c+)
m )2

λ0 +Rc

)
, (A.19)

mm,c =
λ0µ

(0)
m + y

(c+)
m

λ0 +Rc

, (A.20)

pm,c = λ(c)
m (λ0 +Rc). (A.21)


