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Abstract

The University of Manchester
Alexander Anthony Schofield
A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy in the Faculty of Engineering and Physical Sciences
Simulation of Colour Evolution in QCD Scattering Processes
26/09/2013

We investigate the effects of colour evolution in QCD scattering pro-
cesses and how these can be implemented in both analytical and numerical
approaches. We split this in to four parts where each part is given in one
chapter.

In the first chapter we give a brief summary of the important aspects
of QCD which are needed as a basis for the rest of the investigation. In
addition to this, we describe different sets of formalisms for handling
colour within interactions. We then give a brief review of the components
of a Monte-Carlo event generator.

In the second chapter we review previous work by the author on
jet vetoes and their implementation in the Monte-Carlo event generator
Herwig++. We describe the analytical method for studying jet vetoes
and then discuss the differences between this method and that which is
used in the original parton shower of Herwig++. Once this is done we
make changes to both the analytical approach and Herwig++ in order to
investigate these differences. We then show the results for an improved
parton shower as a result of this investigation.

In the third chapter we consider the effects of tuning the parameters
within Herwig++. We investigate what parameters are likely to have the
most changes to observables given the modifications made in the previous
chapter. We then produce seven tunes to different sets of observables and
discuss said tunes.

In the fourth and final chapter we discuss the effects of sub-leading
colour within the analytical approach and in a potential numerical setup.
We discuss a set of potential algorithms for implementing sub-leading
colour within a standalone parton shower.
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1 Quantum Chromodynamics

1.1 Introduction

In order to interpret the results at experiments such as the Large Hadron

Collider and Tevatron we must have a thorough understanding of the

underlying theory which contains the relevant interactions that are occur-

ing. Establishing a connection between the theoretical predictions and

experimental observables is the goal of particle physics phenomenology.

To make this connection there are two different approaches. The first

is the analytical calculation, where the theory is applied to calculating

a specific observable. While it is in theory possible to calculate any

observable to an arbitrary level of precision, once the final state of said

observable becomes complex the analytical calculation can become un-

wieldy. One area where the analytical calculations are especially effective

is the study of high energy jets. When calculating an observable with a

large number of final-state particles approximations are normally used to

simplify the computation.

The second is the numerical approach, where a set of algorithms

built on physical principles or models is used to study a wide array of

phenomena. There are various numerical approaches, such as lattice QCD

or Monte-Carlo event generators. In this chapter and those that follow we

will focus on the latter. These event generators excel at simulating events

with large amounts of soft radiation, which is what we generally observe

from QCD interactions. Since these numerical approaches need to have a

well defined algorithm it is not possible, with our current understanding

of QCD, to completely contain the analytical approach within our event

generators.
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1.2 QCD Lagrangian

Quantum chromodynamics is the theory of the strong force that dictates

the interactions between quarks and gluons. These quarks and gluons

form the hadrons which are observed in nature. The symmetries of the

force can be expressed in terms of a Lagrangian as

LQCD = ψ̄i(iγ
µ(Dµ)ij −mδij)ψj − 1

4
GA
µνG

µν
A . (1.1)

Here, and throughout this chapter, we use the notation that any repeated

index is summed over. The lower case indices i and j run from 1 to Nc,

where Nc is the number of colours, and the upper case indices A run from

1 to N2
c − 1. The first term in the Lagrangian contains the dynamics

of the quark fields. It differs from QED only in the fact that there are

now colour indices and the covariant derivative contains a colour mixing

matrix. The covariant derivative (Dµ)ij for QCD is given by

(Dµ)ij = δij∂µ − igsAAµTAij . (1.2)

The second term in the Lagrangian contains the dynamics of the gluon

fields. These again differ in the fact that they carry a colour index for

the gluons. The field strength tensor GA
µν for QCD is

GA
µν = ∂µA

A
ν − ∂νAAµ − gsfABCABµACν . (1.3)

From this expression we can see that compared to QED there is an

important difference here. When we combine the two field strength

tensors we find that gluons are able to have self interactions. That is

giving quarks a non-Abelian symmetry over colours requires that the

gluons themselves carry colour. This leads to different phenomenological

behaviour than QED. The two new interaction vertices in QCD are shown

12



in Figure 1.

In these equations ψ is the quark field, AAµ is the gluon field, gs is the

strong charge, TAij and fABC are generators for the colour group which

will be discussed in a later section.

Figure 1: Left: Three gluon interaction vertex. Right: Four gluon

interaction vertex.

1.3 The strong coupling

We define a coupling constant for QCD in terms of the colour charge gs

as

αs =
g2
s

4π
. (1.4)

In addition to the colour, QCD also differs in the strength of the coupling.

At scales around the mass of the Z boson the strong coupling constant is

of order 10−1, which is much greater than the electromagnetic coupling.

A 1-loop calculation of the gluon self-coupling allows us to write the

coupling at any scale q within the perturbative regime as

αs(q) =
αs(mz)

1 + αs(mz)blog( q
2

m2
z
)
, (1.5)

where b is given by

b =
33− 2nf

12π
, (1.6)
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where nf is the number of flavours accessible at the given scale. This

formula differs from that of QED by the sign in the denominator. As the

scale increases the coupling weakens which allows quarks and gluons to

behave as free particles. This is the phenomenon known as asymptotic

freedom. Conversely at low energies the coupling is stronger, which results

in the binding of quarks within hadrons.

Due to the coupling of QCD being generally larger than that of QED

we observe much more radiation in the form of gluons than photons when

partons are scattered in an interaction. The enhancement to the coupling

in the low energy regime results in a large amount of soft radiation being

produced.

1.4 Perturbation Theory

Interactions in high energy physics can be thought of in terms of Feynman

diagrams. The Feynman diagram with the least number of interactions

contributing to a given final state is referred to as the Born, hard or leading

order (LO) process. At energies which are low, but still high enough that

the αs allows predictive power, this hard process is approximately what

will be observed in nature. However, as the energies are increased, the

possibility for additional emissions and colour exchanges occurs. We refer

to these additional processes as higher order terms as their cross section

will always be proportional to the hard cross section multiplied by at least

one power of the coupling constant. These higher order terms can also be

expressed in terms of Feynman diagrams. The total cross section σTij;kl

for a process with initial-state particles i, j and final-state particles k, l

can be written as

σTij;kl = σHij;klΣ
∞
n=0α

n
sA

(n)
ij;kl = σHij;kl +O(αs). (1.7)

14



Naively we see that we can expand in powers of the coupling constant

in order to achieve an arbitrary amount of precision when calculating

the cross section. However the coefficients A
(n)
ij;kl for higher orders will

generally contain many complex diagrams which are difficult to compute.

The number of diagrams contributing to a given order grows rapidly as

the order increases. These higher order diagrams do not contain only real

emission but also virtual colour exchanges.

For inclusive measurements, such as the total cross section, the higher

order terms will be proportional only to powers of αs and constant nu-

merical factors. For exclusive measurements, where certain configurations

of final states are rejected by the analysis, the higher order terms will

also in general be proportional to large logarithms of the ratio of the

hard and soft scales. We define the hard scale as being proportional to

some maximum value related to the hard process. One potential choice

could be the average transverse momentum of the two hardest jets. The

soft scale can be regarded as the minimum value of some parameter at

which the analysis still makes sense. While this is highly dependent on

the analysis, one possible choice is the maximum transverse momentum

allowed for an extra jet between the two hardest jets.

At low values of the soft scale each term can be as important as the

last, limiting the predictive power of a truncated perturbative expansion.

In order to handle these smaller values for the soft scale another method

must be used to regain predictive power. This method, which is known

as a resummation, will be explained in a later section.

While Feynman diagrams are useful for visualizing what is occuring in

a process they are much more than that. Each line and vertex represents

the mathematical factors used in calculating the amplitude for the process

displayed.
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1.4.1 Soft and Collinear Limits

In QCD most emissions1 can be thought of as arising from colour connected

dipoles. Each of these dipoles will contribute a factor to the overall cross

section. For a colour connected pair {i, j} with momenta pi and pj

emitting a gluon with momentum k the contribution is

Dij = Ωij
pi · pj

(pi · k)(pj · k)
, (1.8)

where the factor Ωij is present to indicate that different dipoles can have

different colour prefactors. There are clearly singularities in this dipole

when k is collinear with either of the two emitting partons or k → 0. After

integrating over the additional phase space generated by this emission we

still have the problematic singularities.

In order to remove these singularities we need to also consider in-

teractions where an additional gluon is exchanged within the process,

rather than emitted. These are referred to as virtual interactions or

colour exchanges. These virtual interactions contain loops over internal

parton momenta which are divergent at exactly the same point, but the

poles they generate are equal and opposite to those of the real emission.

When the virtual exchanges are combined with the real emissions the

singularities are removed. For inclusive observables what remains will

be terms in αs. For exclusive observables the large logarithms outlined

above are formed. This is because there will be a miscancellation where

virtual interactions can occur in certain phase space regions where real

emission cannot.

It is possible for the emitted gluon to be both collinear and soft, which

results in a double logarithm. After one additional emission on top of the

1In addition to the emission of a gluon from a quark or gluon there is also the

interaction where a gluon splits into a quark and anti-quark pair.
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hard process the cross section will have the general form

σ = σH(1 + αs(c1L
2 + c2L+ c3)), (1.9)

where L is the large logarithm and ci are the coefficients. The argument

of the logarithms will depend on the choice of the observable. These

arguments will in general be proportional to the energies of emitted

particles and the angle between the emitter and emitted particles.

1.4.2 Resummation

While a fixed order expansion as outlined above is effective at describing a

few additional emissions, it becomes difficult to calculate for higher orders.

When a high number of emissions are involved a different approach is

required. Instead of calculating each order in turn we can instead look at

the general properties that arise in each order. If we take the result which

we obtain for the first correction to the hard process and exponentiate

it then we will have a first approximation for an all orders result for the

cross section. This exponentiation can be justified by considering strong

ordering. Each time there is an emission it will be at a scale much less

than that of previous emissions. Hence it will be unable to resolve the

previous emissions and see the process as it was before any emissions.

Roughly speaking, this cross section will be of the form

σr = σHeαs(c1L
2+c2L+c3). (1.10)

For observables at an e+e− collider this formula is exact. For pp or

pp̄ interactions additional prefactors are required in order to correctly

describe the physical behaviour. This approximation can be improved by

matching the coefficients to higher order expansions.
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1.4.3 Eikonal limit

Using the full Feynman rules gives the best description of the behaviour

of both hard and soft emissions. However the calculational complexity

involved with using the full rules can become problematic at higher orders.

Most processes will have at most a few hard emissions and many more soft

emissions. Hence working in an approximation valid for soft emissions

can provide relevant results to many observables. A convenient approach

for treating these soft emissions is the eikonal limit.

In the eikonal limit we assume that all of the components of the

four-momentum k of an emitted particle are far less than any of the

momenta belonging to the particles in the hard scattering pi,

k � pi. (1.11)

We now look at what happens when we have a single emission from one

of the hard particles. When the emitter is a quark this can be written in

terms of Feynman rules as

(�p+��k −m)

(p+ k)2 −m2
(iγµTA)u(p) =

iTA

(p+ k)2 −m2
(2(pµ + kµ)− γµ��k)u(p).

(1.12)

Now using the above assumption, this becomes

ipµTA

k · p u(p). (1.13)

Thus in the eikonal limit the emission amplitude is proportional to the

velocity or, in the massless case, the direction of the emitter. This simpli-

fied Feynman rule reduces the complexity of the analytical calculation

significantly.
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1.5 Colour evolution

The colour structure in QCD evolves through the interaction of quarks

and gluons. The Feynman rule for the interaction between quarks and

gluons is

− igsγαTAik . (1.14)

The Feynman rule has two separate structures. The first structure is the

kinematic or Lorentz structure which is contained in the γα. This term

is irrelevant for considerations of colour evolution. Therefore the only

new part of this Feynman rule relative to QED is the SU(3) triplet colour

generator TAik .

We will first consider the case where the gluon connects two different

quark lines. The colour factor in this case is

TAikT
A
jl . (1.15)

From the properties of the SU(Nc) generators we can rewrite this expres-

sion in terms of Kronecker deltas by using the Fierz identity,

TAikT
A
jl = 1

2
δilδjk −

1

2Nc

δikδjl. (1.16)

Figure 2: The colour line decomposition of an exchanged gluon.

Each Kronecker delta represents the flow of colour along a quark line.

This is shown in Figure 2. By connecting a gluon between two colour lines

we generate two new sets of colour lines with different relative weights.

Since colour is not an observable quantity, we must sum and average over

all possible sets of colour lines when calculating observables.
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The extension of the above process to gluon-gluon interactions is

slightly more complicated. The two types of gluon-gluon interactions are

three and four gluon vertices. The colour structure of the Feynman rule

for the triple gluon vertex is

ifABC = 2Tr[TATBTC ]− 2Tr[TBTATC ], (1.17)

where A, B and C are the colour indices of the gluons. For the triple gluon

interaction the complexity arises because there are two unique ways of

connecting the quark lines generated by three gluons. The second equality

states that the colour structure of a triple gluon vertex can be decomposed

into two quark traces. Each of these two quark traces will have a unique

colour flow. The colour line representation of the anti-symmetric three

gluon coupling is shown in Figure 3.

Figure 3: The colour line representation of the anti-symmetric three gluon

coupling.

The four gluon interaction is more complicated than the three gluon

interaction. This is because it is not possible to separate the colour

structure from the Lorentz structure. The four gluon vertex has the
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Feynman rule

−ig2
sf

XACfXBD(gαβgγδ − gαδgβγ)

−ig2
sf

XADfXBC(gαβgγδ − gαγgβδ)

−ig2
sf

XABfXCD(gαγgβδ − gαδgβγ), (1.18)

where A, B, C and D are the colour indices of the external gluons, X

is a colour index which is summed over, α, β, γ and δ are the Lorentz

indices of the external gluons and gµν is the spacetime metric. It is not

possible to separate the kinematics from the colour structures in this case.

However, each of the three separate colour structures can be interpreted

as a product of two triple gluon vertices, which can be represented by one

of the three tree level Feynman diagrams for gluon-gluon scattering.

Each of these colour structures therefore has four possible colour flows

and hence each four gluon vertex contains twelve possible colour flows.

However it turns out that each colour flow appears in two structures.

Hence there are only six unique colour flows.

1.5.1 Leading colour

Often dealing with the full colour structure of QCD is unwieldy, especially

when trying to implement such structure in a numerical algorithm. To

remove some of the complexities one can use the approximation that the

number of colours is large and retain only the leading terms in colour. We

will refer to this as the leading colour or large Nc approximation. From

the above equations, we can approximate that

TAikT
A
jl ∼ 1

2
δilδjk. (1.19)

However, one needs to be careful to consider what truly corresponds to

the leading colour limit. If we naively remove all terms we believe are
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sub-leading then it is possible to remove leading terms as well. A simple

example of this is the exchange of colour between two colour lines. The

colour factor for this is

TAii T
A
jj = 0. (1.20)

since the colour generators are traceless. However if we use the leading

colour expression for the colour generators we obtain

(TAii T
A
jj)Nc→∞ = 1

2
Nc. (1.21)

A better approach is to let Nc be a variable and perform any calculations

using the full colour structure. Once the calculation is complete we can

let the number of colours approach infinity. Any result obtained can then

be implemented in a numerical algorithm with the guarantee that we are

correctly treating the leading colour limit.

1.6 Colour states and evolution

In this section we consider a convenient formalism for expressing the colour

structure of a hard process and how it changes under the subsequent

evolution. Any matrix element can be expanded in terms of colour basis

states Ci as

M = AiCi, (1.22)

where Ai are the Lorentz structures which form the coefficients of the

colour basis states. The colour basis states Ci contain different possible

configurations of colour lines connecting the external particles. For a set

of external particles with equivalent colour representations {j, k, l,m} we

can write any of the Ci in terms of Kronecker deltas as

Ci = ωi1δjkδlm + ωi2δjlδkm + ωi3δjmδkl, (1.23)
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where the ωij factors are functions of Nc and depend on the choice of basis.

In order to preserve the direction of colour lines some of the factors ωij

must be zero if all of the hard partons are quarks or anti-quarks. Even if

the colour representations of the external particles differs, for instance if

we have both quarks and gluons, it is possible to construct a basis in a

similar form to that above.

Any observable quantity, such as the cross section, will be proportional

to the matrix element squared,

MM † = AiA
†
j(Ci · C†j ) = Tr[HS], (1.24)

where we have defined the hard Lorentz matrix as

Hij = AiA
†
j, (1.25)

and the colour metric as

Sij = Ci · C†j . (1.26)

The colour metric contains a sum (average) over final (initial) colour lines

as indicated by the inner product. The explicit value of an element Sij is

obtained by combining the two states Ci and Cj into a full diagram and

calculating the colour factor.

The advantage of the above formalism is that evolving the colour

becomes simple. In the eikonal limit we assume that any emission does

not change the kinematics of the hard process. Hence any emission of

a gluon will only change the colour of the hard process. The emission

will also not change the dimensionality of the colour space. The colour

structure is purely contained in the colour metric S. The colour metric

Sij is calculated by tracing over the combination of the relevant colour

states. The hard Lorentz matrix Hij is obtained by calculating the spin

traces that occur as prefactors to the colour states. The formalism above
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covers only the initial colour structure of the process. The change to the

colour structure after an unresolved exchange can be written as

S̄ = −ξ(Γ†S + SΓ), (1.27)

where Γ is a colour evolution matrix, often referred to as the anomalous

dimension, and ξ is defined as

ξ =

∫
dt

t

2α(t)

π
, (1.28)

where α(t) is the strong coupling and t is the scale involved, generally

taken to be transverse momentum. The specific form of the anomalous

dimension depends on the process in question. After the sum over an

arbitrary number of emissions tending towards infinity the colour structure

becomes

S̃ = e−ξΓ
†
Se−ξΓ, (1.29)

where Γ is the colour evolution due the emission of a single gluon.

1.7 Colour emission and exchanges

While the kinematics of real emissions and virtual colour exchanges

are different, their colour structures are in fact the same. This is a

necessity in order to get the cancellations that remove the singularities

from the calculations. The colour structure resulting from a possible

colour exchange from a hard process is shown in Figure 4. The upper

diagram shows the kinematical cut where the gluon is put on-shell. This

corresponds to the real emission diagram. The lower diagram shows the

kinematical cut where the gluon is left virtual. This corresponds to the

virtual exchange of colour. In both cases the colour factor for the diagram

is the same. It is independent of the kinematical cut.
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Figure 4: Kinematical cuts for one gluon exchange.

1.8 Colour bases

In order to calculate an observable using QCD one needs to fix the colour

basis states. At the end of the calculation the observable quantity will

be independant of the basis chosen. Thus we can choose the basis that

is most convenient for the specific calculation. In the next two sections

we will consider two bases which are convenient for the analytical and

numerical approaches respectively.

1.8.1 Orthonormal basis

When one is performing a calculation it is often advantageous to choose

a basis with orthonormal states. This way any inner product between

two different basis states will be zero, often significantly reducing the
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computation required. In terms of the above formalism, this basis is

defined by the condition

Sij = δij. (1.30)

The disadvantage to these bases is that often the states themselves

are complicated. While the actual computation of the relevant matrices

can be implemented numerically, when one wants to study the leading

colour limit the amount of work needed is fairly significant, owing to the

complicated basis states.

An example of an orthonormal basis is that for qg → qg. Defining the

incoming colour lines as {i, B} and the outgoing colour lines as {k,D}

we can write the basis states ei for this as

e1 = δikδ
BD, (1.31)

e2 =
√

2ifBDFT Fki , (1.32)

e3 =

√
2Nc√

(N2
c − 4)

dBDFT Fki . (1.33)

Figure 5: The three orthogonal basis states for qg → qg. The normaliza-

tion factors are omitted.

A diagrammatic representation of these basis states is given in Figure 5.

The prefactors guarantee that the states are normalized to unity. The
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third term here is proportional to the colour structure of the symmetric

gluon coupling. This coupling does not occur in tree-level perturbation

theory, here it is just used as a convenient way of writing

dABC = 2Tr[TATBTC ] + 2Tr[TBTATC ]. (1.34)

Figure 6: The colour line representation of the symmetric three gluon

coupling.

The colour line representation of the symmetric three gluon coupling is

shown in Figure 6. It is also used to project out specific colour states

when combined with the anti-symmetric gluon coupling. The first colour

structure is the singlet exchange. This structure does not occur in any

leading order QCD hard process, but is reachable by the exchange of

colour lines in the subsequent evolution. The other two basis states

contain multiple colour structures.

1.8.2 Colour flow basis

We define the colour flow basis as that which is spanned by the minimal

set of simplest possible colour structures. The details of this basis are

described in Refs. [1, 2]. This is the basis used in MADGRAPH [3]. Each

element of the relevant matrices is simple to calculate, but the basis is
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no longer orthogonal and therefore the metric is no longer equivalent to

the Kronecker delta. This adds complications when calculating the other

quantities, such as the anomalous dimension. However, this is offset by

the fact that the simple colour states are often related to each other by

symmetries, reducing the number of required computations.

The colour flow basis is more suited to numerical implementation than

the orthogonal basis. This is because when we are running a simulation

we are considering one fixed colour structure being evolved, rather than

averaging over all possible colour states as in the analytical calculation.

The colour flow basis also has advantages when performing the analytical

calculation. Many of the basis states can be related by interchanging the

various partons, reducing the number of elements of the various matrices

that need to be calculated.

An example of a colour flow basis is that for qg → qg. Defining the

incoming colour lines as {i, B} and the outgoing colour lines as {k,D}

we can write the basis states Ci for this as

C1 = δikδ
BD, (1.35)

C2 =
2Nc√
N2
c − 1

TBimT
D
mk, (1.36)

C3 =
2Nc√
N2
c − 1

TDimT
B
mk. (1.37)

A diagrammatic representation of these basis states is given in Figure 7.

The first colour structure is the singlet exchange, as in the orthonormal

basis. The other two basis states are the remaining unique colour assign-

ments possible with two quarks and two gluons. The soft metric SCFqg→qg
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Figure 7: The three colour flow basis states for qg → qg. The normaliza-

tion factors are omitted.

for this basis is

SCFqg→qg =


1 1√

(N2
c−1)

1√
(N2

c−1)

1√
(N2

c−1)
1 1

(N2
c−1)

1√
(N2

c−1)

1
(N2

c−1)
1

 . (1.38)

1.8.3 Relating the bases

The two bases can be related by a transformation matrix. Since we have

complicated colour structures the transformations are not trivial rotations,

except in the leading colour limit. The transformation between the colour

flow and orthonormal basis is


C1

C2

C3

 =


1 0 0

1√
N2
c−1

Nc√
2(N2

c−1)

√
N2
c−4

2(N2
c−1)

1√
N2
c−1

− Nc√
2(N2

c−1)

√
N2
c−4

2(N2
c−1)




e1

e2

e3

 . (1.39)

1.8.4 Special Case: gg → gg

While we have outlined above that one can obtain the colour states of

a basis by finding all possible ways of connecting external colour lines,
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there is one special case that we need to consider. For gg → gg there are

two possible vertices that we can use to construct states. We can either

directly connect the gluons or we can connect the gluons to a quark loop.

Since the resulting states are simpler we will only consider the quark loop

method here, but it is possible to construct a set of basis states with the

three gluon symmetric and anti-symmetric vertices [4].

There are three unique ways of connecting the gluons without any

vertices. These are the s, t and u channel singlets. In addition to these

there are six ways of connecting the four external gluons with a quark

loop that differ from the singlets. Three of these states are identical to

another state apart from the direction of the internal quark loop. From a

symmetry perspective these states must be averaged over and hence the

true states are a sum of the two with opposite loop directions. Thus only

six states are needed to describe gg → gg at leading order. In the colour

flow basis these states are

C1 = δACδBD, (1.40)

C2 = δADδBC , (1.41)

C3 = δABδCD, (1.42)

C4 = DTr[TATCTDTB + TBTDTCTA], (1.43)

C5 = DTr[TATCTBTD + TDTBTCTA], (1.44)

C6 = DTr[TATDTCTB + TBTCTDTA], (1.45)

where D is a normalisation factor given by,

D =

√
8N2

c (N2
c − 1)

(N4
c − 2N2

c + 6)
. (1.46)

We have neglected the states similar to C4 to C6 but with a minus signs

intead of the plus signs. These states do not occur in the hard processes
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and in fact decouple from the six states listed above [5]. Hence they do

not affect physical observables in any way. It should be noted that in the

case of Nc = 3 we find that it is possible to express one of these states in

terms of the other five [6]. This results in an overcomplete basis if we use

six basis states and take the limit. However, it is perfectly acceptable to

use six basis states with general Nc, in fact it is required.

1.9 Numerical Simulation of QCD

While the analytical resummation can give a good picture of the physical

phenomena, often a numerical approach is required. The most common

approach for numerically simulating high energy physics is to use a

Monte-Carlo event generator. The most popular event generators in

use at the moment are Herwig++ [7–9], PYTHIA6 [10], PYTHIA8 [11]

and SHERPA [12]. An event generator consists of several components,

each corresponding to a physical model. The first component is a hard

process generator, which chooses the hard process of an interaction with

a probability given by QCD calculations. The hard process is then

evolved by allowing the partons to split. In addition to the primary hard

scattering additional lower energy scatters may also be generated. When

all processes have been generated and evolved the final coloured partons

are then converted in to colourless hadrons by a hadronization mechanism.

A schematic representation of the processes within the event generator is

given in Figure 8.

In this section we will discuss the parts of the generator with regards

to only QCD 2 → 2 scattering processes. Many more processes can be

simulated in the most popular event generators, but these are assumed

to be less affected by any changes in the parton shower evolution.

An in-depth review of event generators is given in Ref. [13].
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Figure 8: A schematic representation of an event generator.

1.9.1 Hard Process

The hard process is selected by using random numbers with all possible

processes weighted by their physical phase space, PDF and kinematic

factors. In addition to selecting the flavours of the partons involved

in the interaction, the colour structure of the hard process needs to be

considered.

The purpose of assigning the colour structures in the hard process is

to determine the maximum scales used in the parton shower. While in

the analytical approach it is allowed for the amplitude and conjugate to

have different colour structures, this is difficult to implement numerically.

If we simply removed the non-diagonal colour structures then we would

not reproduce the correct cross section for the hard process. Instead, we

choose a different approach first used in Ref. [14]. Utilizing the previous

formalism, we can define a new hard matrix

H̄ij = δij(SiiHii +
∑
k 6=i

SikHik), (1.47)
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where indices are not summed over unless explicitly stated. This form of

the hard matrix guarantees the condition

Tr[H̄] = Tr[HS]. (1.48)

The colour structure i is then chosen using the kinematic weight H̄ii.

While the full colour structure, taking in to account the differences above,

is used for the hard process, the evolution of colour without making any

further approximations is extremely complicated. The methods used for

dealing with some of the terms which are sub-leading in colour will be

explained in the Chapter 4. Current implementations do not include

sub-leading colour terms, they merely assume that the colour structure

is constant and described by colour lines connecting partons which do

not change under the consequent evolution in the parton shower. That

is, they assume that the anomalous dimension matrix is diagonal in the

colour flow basis.

1.9.2 Parton Shower

Once the hard process has been decided, we need to simulate the radiation

generated by the scattering of colour lines.

There are three different approaches to the parton shower. The first

approach, which we will refer to as the traditional parton shower, considers

each of the partons in the hard process to evolve independently. Each of

the splittings produces children that are on-shell but have undetermined

momentum. At the end of the splittings for a parton the necessary

information to determine the momenta of all of the children is obtained.

At this point, since all final-state partons produced in the splitting are

on-shell it is possible to evolve another of the partons from the hard

process. This is the approach used by Herwig++. The second approach,

which we will call a dipole shower, considers colour connected dipoles to
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split, rather than the individual partons. In this approach one dipole will

split in to two dipoles, and each parton involved will be on-shell at all

times. This has the advantage over the parton shower that the shower

can be stopped at any time and all particles will be physical. This is the

approach used by SHERPA. A third approach, which we will refer to as a

hybrid shower, behaves like the parton shower, in that it treats individual

partons as splitting, but properly sets particles on shell by adding a colour

connected recoil particle, like in the dipole approach. This is the approach

used by PYTHIA8. In this section we will focus on how the parton and

hybrid showers evolve the partons from the hard process.

Evolution is handled by defining a scale t proportional to the virtuality,

transverse momentum or some other measure of hardness of a given

kinematical setup. The initial scale ti is determined from the hard process.

It is usually related to the virtuality or transverse momentum of colour

connected pairs of partons. The parton shower is an evolution in the

variable t, from ti down to a final scale tf . The final scale tf is typically

chosen to be around 1 GeV, which is where the assumptions used in

the parton shower are no longer valid. As the scale is evolved there is a

probability of radiation at the given scale t.

The parameters for the next splitting are solved by equating the

Sudakov factor ∆(t, tn), which describes the probability of non-emission

between scales t and tn, to a random number R1 in the range [0,1],

∆(t, tn) = R1, (1.49)

where ∆(t, tn) for final-state splittings is given by

∆(t, tn) = exp

(
−
∫ t

tn

1

2π

dt′

t′

∫ ε+

ε−

αs(z, t
′)P (z, t′)dz

)
, (1.50)

where P (z, t′) is a splitting kernel which contains all possible methods
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of splitting the current parton or dipole. The limits of the momentum

fraction z, denoted ε±, in Herwig++ are obtained by solving

z(1− z)t2 = −m2
ij +

m2
i

z
+

m2
j

(1− z)
− p2

t

z(1− z)
, (1.51)

where mij is the mass of the splitting parton, mi and mj are the masses of

the partons produced by the splitting and pt is the transverse momentum.

In principle, depending on the form of the splitting kernel and expression

used for αs, it may be possible to solve this expression analytically.

However, the complicated boundaries on z makes such a solution difficult.

In practice, we instead define overestimate functions αovers and P over(z)

such that the above expression can be solved. The overestimates used are

simplified versions of the DGLAP splitting kernels [15–17]. Using these

overestimates we can define

I(z) =

∫
P over(z), (1.52)

and therefore obtain the solution for the next scale

tn = tRδ
1, (1.53)

where δ is defined as

δ =
2π

αovers

1

(I(ε+)− I(ε−))
. (1.54)

To completely describe a splitting we also need two additional parameters.

We choose the first to be the energy fraction z, which is the fraction of

momentum which the primary child parton gains from the parent. The

value of z is obtained by solving

∫ z

ε−

P (z′)dz′ = R2

∫ ε+

ε−

P (z′)dz′, (1.55)
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where R2 is another random number in the range [0,1]. As above, we

use the same overestimate of the splitting kernel in order to analytically

rearrange for z

z = I−1(R2I(ε+) + (1−R2)I(ε−)), (1.56)

where I−1(x) is the inverse function of the integration I(z). In order to

recover the correct splitting probabilities we need apply a veto to the

splitting. After finding values for t and z we veto the splitting if

R3 >
P (z, t)

Pover(z)
, (1.57)

R4 >
αs(z, t)

αovers

, (1.58)

where R3 and R4 are random numbers in the range [0,1]. The final

parameter we need is the azimuthal angle of the transverse momentum

generated in the splitting. It is usually chosen with a random number R5

in the range [0,1], as

φ = 2πR5. (1.59)

The actual colour structure of splittings in the shower is determined using

the leading colour limit. For q → qg and g → qq̄ the colour assignment

from the parent to the children particles is unique. For g → gg there are

two possibilities which are shown in Figure 9. Depending on the scales

involved one of the two possibilities may be the physically correct choice,

or it is possible that neither is preferred and a random choice is more

appropriate. This is discussed in more detail in Chapter 2.

The parton shower continues evolving partons until they reach a

minimum scale. One choice of minimum scale is to require that the

transverse momentum generated in a splitting is greater than 1 GeV.

Since it is difficult to experimentally distinguish two partons with very
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Assignment one Assignment two

Figure 9: The two possible colour line assignments in g → gg.

small relative transverse momentum there is no need to continue with the

shower at that point.

1.9.3 Multiple Interactions

As the energies and luminosities of the beams in a collider increase it

is possible for interactions to involve multiple scatterings. There are

two kinds of multiple interactions that can occur. The first is multiple

scatterings involving different protons. Essentially many separate events

happen at the same beam crossing. In general very few of the multiple

scatterings will be interesting, so removing the less important events from

a more important event is often required. If we had a perfect detector

then it would be possible to separate out all of these events. Since this is

a purely experimental phenomena it is not included in event generators.

The second type of multiple scattering is one where two beam particles

interact multiple times with each other. It is unlikely that a high scale

interaction will be accompanied by additional scatterings with comparable

scales. Unlike the previous case these are part of the underlying theory

and not due to the limitations of detectors. In order to correctly simulate

the phenomenology these additional scatterings must be included in the

event generator [18–21].

37



1.9.4 Hadronization

The parton shower generates the high multiplicity events we observe in

the experimental data. However, we have never observed a free quark

or gluon in any experiment. Instead we have only observed colourless

hadrons. There must be some mechanism that transforms these partons

in to the colourless hadrons observed in particle detectors. Since these

transformations involve the low energy particles at the end of the shower

we cannot calculate the mechanism perturbatively. Instead we must

rely on physically inspired models to describe the transition. There

are currently two different models used, one based on colour connected

clusters [22] and one based on colour strings [23].

At the end of the parton shower there will be a mixture of quarks, anti-

quarks and gluons in the final state. In the cluster model any remaining

gluons are first transformed into quark and anti-quark pairs. All of the

colour connected quark and anti-quark pairs form an intermediate object,

which is referred to as a cluster. All of the connections between the colour

lines were formed in the parton shower. These colour lines determine the

properties of the clusters and the distribution of the final-state hadrons.

In recent versions of Herwig++ a colour reconnection model has been

added to the hadronization process [24]. In this model the colour lines

assigned in the parton shower can be changed when certain criteria are

met.

1.10 Conclusion

While there are still aspects of QCD which require further study we

understand enough to make high precision predictions for experimentally

observable quantities. These predictions are made using both theoretical

calculations and numerical simulations. However, the current algorithms

used in the numerical simulation of QCD lack much of the complexity
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of colour contained within the analytical approach. In order for the

numerical approach to remain precise enough to accurately predict future

experimental results we must begin to implement this missing behaviour.

In the next three chapters we will outline how changing the algorithms

used and performing a tuning may improve the predictive power of our

event generators.
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“Parton Fragmentation and String Dynamics,” Phys.Rept. 97 (1983)

31–145.

[24] S. Gieseke, C. Rohr, and A. Siodmok, “Colour reconnections in

Herwig++,” Eur.Phys.J. C72 (2012) 2225, arXiv:1206.0041

[hep-ph].

41

http://dx.doi.org/10.1088/1126-6708/2008/07/076
http://arxiv.org/abs/0803.3633
http://dx.doi.org/10.1088/1126-6708/2004/03/053
http://arxiv.org/abs/hep-ph/0402078
http://dx.doi.org/10.1140/epjc/s2004-02084-y
http://dx.doi.org/10.1140/epjc/s2004-02084-y
http://arxiv.org/abs/hep-ph/0408302
http://dx.doi.org/10.1007/JHEP01(2010)035
http://arxiv.org/abs/0911.1909
http://arxiv.org/abs/0911.1909
http://dx.doi.org/10.1016/0550-3213(84)90333-X
http://dx.doi.org/10.1016/0370-1573(83)90080-7
http://dx.doi.org/10.1016/0370-1573(83)90080-7
http://dx.doi.org/10.1140/epjc/s10052-012-2225-5
http://arxiv.org/abs/1206.0041
http://arxiv.org/abs/1206.0041


2 Jet Vetoes and Herwig++

2.1 Introduction

In the previous chapter we discussed the colour structure of QCD and

how it impacts phenomenology. In this chapter we will consider one

particular implementation of QCD in a theoretical model. The model we

will consider is the parton shower described in Chapter 1.

In this chapter we will look at an experimental observable known

as gaps-between-jets. This observable is important to investigate due

to its dependence on wide-angle radiation. Thus predictions for this

observable from an event generator will be highly dependent on the

physics implemented in the parton shower.

In addition to general interest in the observable we should also look

into the odd behaviour found in Ref. [1]. In this paper it was shown that

the results for the parton shower in Herwig++ [2–4] for this observable

did not match the leading colour analytical calculation. Instead, it seemed

to match the full colour analytical calculation, which includes effects that

are not included in the parton shower. This odd behaviour clearly needs

to be investigated.

Furthermore, the colour structure of this observable is the same as

more complex processes, such as the production of a Higgs boson plus

two jets. By studying this observable it is possible that we can reduce

the QCD background encountered when looking for such processes [5] or,

at least, the uncertainty on its prediction.

The discussions in the chapter are mostly taken from Ref. [6].

2.2 Gaps Between Jets - Analytical Approach

To study the behaviour of the event generator we should consider a specific

observable which is heavily dependent on the implementation of QCD in
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the parton shower. One such observable is where we set a requirement

that there is a limited amount of radiation in a specific region of phase

space. This observable is commonly referred to as “gaps-between-jets” or

dijet production with a rapidity gap. This observable has been studied by

many groups [1,7–9] and measured at HERA [10–12], the Tevatron [13–15]

and the LHC [16]. The process is shown in Figure 10. For this observable

the restricted region is the phase space between either the two hardest

jets or the most forward and backward jets. In this chapter we will only

consider the case where the phase space is bound by the two hardest jets.

We will refer to this region of phase space as the “gap”.

The observable is defined in terms of three quantities. The first is

the size of the rapidity gap Y . As the rapidity gap increases there is

a larger amount of phase space between the two hard jets. As a result

of this there is a greater possibility of emissions between the two hard

jets. The second quantity is the hard scale Q. We choose to define this

as the average transverse momentum of the two hardest jets. Increasing

the value of this scale will allow more energy to be radiated in to the

restricted region. The final parameter is the veto scale Q0. An event with

a gap is one which has no jets with transverse momentum above the veto

scale in the region bounded by the two hardest jets.

We can use the colour basis formalism outlined in Chapter 1. The

resummed partonic cross section has the form

σGap = Tr[He−ξΓ
†
Se−ξΓ], (2.1)

where S is the colour metric, H is the hard matrix, Γ is the anomalous

dimension and ξ is defined by

ξ =

∫ Q

Q0

dkt
kt

2αs(kt)

π
' 2αs

π
log( Q

Q0
), (2.2)
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Jet 1

Jet 2

Rapidity gap

Proton 1

Proton 2

Figure 10: Dijet production with a rapidity gap. The black lines represent

the partonic interaction and those with arrows can be quarks, antiquarks

or gluons. The blue gluon represents a virtual exchange which occurs

in the analytical calculation but not in the parton shower. The purple

gluons represent wide-angle radiation that enters the rapidity gap. The

green gluons represent small-angle radiation that is just able to reach

the rapidity gap. The red gluons are small-angle radiation that does not

enter the gap.

where we have assumed that the strong coupling αs is constant for

illustrative purposes. This expression can be modified to include the

running coupling. In this equation we see that limiting the amount of

radiation allowed in the gap has generated a large logarithm of the ratio

of the hard scale of the boundary jets and the veto scale. This is a result

of the miscancellation between the virtual correction, which is allowed to

exchange gluons of any energy in the gap, and the real emission, which is

limited to energies below the veto scale.

The actual hard matrices and soft metric depend on the partonic

process. The total resummed partonic cross section will be the sum

of the cross sections for each of the individual QCD 2 → 2 scattering

processes. For this observable the anomalous dimension can be written
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in the form [17]

Γ = 1
2
Y t2

t + iπt1 · t2 + 1
4
ρ(t2

3 + t2
4). (2.3)

Here t2
t is the colour exchange across the gap and ti are the colour

generators for the four different hard partons i. The first term is due to

wide-angle radiation emitted into the gap. As the gap size is increased

there is a greater possibility of radiation and therefore a reduction in the

overall gap cross section. The second term is from virtual exchanges of

colour between the initial or final state partons. These colour exchanges

cannot be observed but do change the overall colour structure of the

event. The third term is a small effect where small-angle radiation is able

to make it in to the gap. The magnitude of this term depends on the

definition of jets used. The factor ρ is given by

ρ = log

(
sinh(Y +R)

sinh(R)

)
− Y, (2.4)

where R is the jet radius. The elements of the anomalous dimension for

any arbitrary colour basis can be calculated using

Γij =
∑
k

S−1
ik 〈Ck | Γ | Cj〉. (2.5)

An example diagram used to calculate the elements is shown in Figure 11.

The example is for an on-diagonal element of qq → qq. This diagram only

corresponds to the element of the anomalous dimension in the orthonormal

basis. It must be multiplied by the inverse of the soft metric in order to

get the true anomalous dimension in a general basis.

The cross section outlined above is correct only at the partonic level.

To generate the true cross section it must be convoluted with the parton

distribution functions (PDFs). However it is possible to choose the
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Figure 11: Left: The colour diagram for the t1 · t2 term. Right: The colour

diagram for the t1 · t3 term, which is contained in t2t . The exchanged

gluon is shown in red.

variables in such a way that the PDFs can be shuffled into a luminosity

pre-factor multiplying the cross section. The full resummed gap cross

section can then be written as

σH(Q,Q0, Y ) =
∑
i

Li(Q, Y )σGap,i(Q,Q0, Y ). (2.6)

where the sum is over all possible QCD 2→ 2 interactions and Li(Q, Y )

is a factor dependent on the PDFs involved in process i.

To calculate the values of H, S and Γ we choose to work in the colour

flow basis and let Nc be a variable. This way it will be possible to work

in both the Nc → 3 and Nc →∞ limits using the same calculation.

2.3 Parton shower differences

The algorithms used in the parton shower have been discussed in Chapter 1.

In this section we will discuss how the implementation of colour in the

parton shower differs from that of the analytical calculation. The specific

parton shower that we will consider is that of Herwig++. However, our

discussion here also applies to the parton shower in PYTHIA 6 [18].

The parton shower is formulated mostly in terms of the leading colour

approximation. There is one sub-leading colour effect which is included,
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which is the colour charge of the quark being CF rather than 1
2
Nc. No

other sub-leading effects are included in the parton shower and these will

be discussed in Chapter 4.

The parton shower is an evolution in a scale from some initial scale

down to a smaller cut-off scale. The scale in Herwig++ is related to the

angle between, and energies of, a colour connected pair of partons. More

details on this are given in Ref. [19]. The initial scale of the parton shower

is determined by the colour structure of the hard process. The final scale

of the parton shower is usually fixed to a value of the order 1 GeV.

For quarks and anti-quarks there is only one colour or anti-colour

line respectively and therefore only one possible choice of scale. For

gluons there are two possible scales since the two colour lines are always

connected to different partons in leading colour QCD 2→ 2 interactions 1.

Since the two scales may be quite different it is important that there is a

method for determining which one should be used.

In the default implementation one of the two colour lines is chosen at

random. Each colour line has a fifty percent chance of being chosen. In

QCD 2 → 2 interactions in the leading colour limit at least one of the

colour lines attached to the gluon will cross the gap and therefore be able

to emit wide-angle radiation. Each gluon can therefore be connected to

either two wide-angle lines or a wide-angle line and a small-angle line.

Examples of the two cases are shown in Figure 12. In addition to these

two colour structures shown for gg → gg there is also a third one which

has a similar number of lines crossing the gap as the right diagram.

In the first case it is not very important which of the two lines is

picked since the scales will generally be similar for small-angle scatterings

1In the case of the colour singlets the colour lines of the gluon are always attached

to one other gluon in the event. In this case both scales would be the same. It is

possible that neither line will cross the gap which will result in minimal radiation in

to the gap. The effects of these singlets will be discussed in Chapter 4.
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Figure 12: Left: Each gluon is connected to two wide-angle colour lines.

Right: Each gluon is connected to one wide-angle colour line and one

small-angle colour line. Here we have assumed that the scattering is

small-angle.

and therefore generate similar behaviour. In the second case the choice of

line is more important. This case is shown in Figure 13. If the wide-angle

line is chosen then radiation has the possibility to be produced in the

gap with a colour factor Nc. This is twice as much radiation per gluon

as we would expect. If the small-angle line is chosen instead then no

wide-angle radiation will be produced at all. After averaging over the

two or four gluons in the 2 → 2 process this model should on average

produce the right amount of radiation at wide-angles. However, there is

still the possibility that we will end up with more or less radiation than

is predicted from analytical calculations.

When the parton shower generates a splitting of the form g → gg

there is ambiguity in how the colour lines are distributed. The parton

shower evolves partons rather than colour lines. Since the gluon has a

colour and an anti-colour line we must determine which of the two to

attach radiation to. The leading colour structure for the splitting is shown

in Figure 14. It is not clear from this diagram which of the two lines has

emitted a new gluon. The default implementation chooses the emitter at

random from one of the two colour lines. Each of the two colour lines has

a fifty percent chance of being chosen.

It is important to note that the random choice of initial hard colour

lines does not occur in dipoles or dipole-inspired parton showers such
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N
c

N
c

Figure 13: Left: The partner with the largest scale is chosen, which

results in wide-angle radiation being produced with a colour factor Nc.

Right: The partner with the smaller scale is chosen, which results in only

small-angle radiation produced with a colour factor Nc. The blue and

red lines represent the colour connections to the higher scale and lower

scale partners respectively. The bold lines are those of the gluon and the

fainter lines are those of the two partners.

Large N
c

Figure 14: Colour line representation of g → gg splitting in the leading

colour limit.

as SHERPA [20], MATCHBOX [21], VINCIA [22] and PYTHIA 8 [23].

Hence it is very important to study these effects so that Herwig++ is

able to compete with these event generators.

2.4 Analytical Modification

2.4.1 Analytical “parton shower” model

It is important to understand how the different assumptions within the

parton shower will have an effect on experimental observables. From a

qualitative point of view we could guess that, depending on which colour
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line is chosen to set the scale, there could be more or less radiation per

event than intended. In order to have a quantitative understanding of

the relative sizes of these effects we need a more mathematical approach.

To this end we will modify our analytical approach in such a way

that it includes the effects outlined in the previous section. We will

consider two analytical models. Both analytical models will treat the

colour structure of the hard process in the same way as Herwig++. The

hard matrices of the analytical calculation will be modified in the way

outlined in Chapter 1. Both analytical models will work in the leading

colour limit apart from the quark colour charge which will remain CF .

The difference between the two analytical models will be in the resum-

mation, specifically in the form of the anomalous dimension. Since the

colour structure of the parton shower is fixed by the hard process we will

assume that the off-diagonal elements of the anomalous dimension vanish,

as is true in the leading colour limit. All that remains is to determine

what values the on diagonal terms should take. In the first model the

colour factors in the anomalous dimension from the analytical model will

be retained, but will be treated in the leading colour limit. In the second

model the colour factors in the anomalous dimension will be derived from

the behaviour of the parton shower.

The parton shower works in the leading colour limit. In this limit

quarks can be regarded as a colour line and gluons can be regarded as a

colour and an anti-colour line. The anomalous dimension has contributions

arising from the radiation of gluons from the quarks and gluons in the

hard process. The anomalous dimension can be written as

Γ = Γρ +
∑
q

Γq +
∑
g

Γg ←→ e−Γ = e−Γρe−
∑
q Γqe−

∑
g Γg . (2.7)

Here we have assumed that the anomalous dimension is diagonal, which

is true when using the colour flow basis in the leading colour limit. The
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factor Γρ is a suppression factor to the total cross section due to collinear

radiation just making it in to the gap. The effect from this factor is

usually much smaller than the suppression due to wide-angle radiation in

the other terms. The factors Γq and Γg represent the contributions from

quarks and gluons respectively. For every colour line crossing the gap a

factor

Γi = 1
4
CiY (2.8)

is added to the anomalous dimension, where Ci is equal to CF if the

colour line is attributed to a quark or 1
2
Nc if the colour line is attributed

to a gluon2.

There are two ways in which we can implement the 50-50 choice of

hard colour lines for a gluon in the hard process. The first method is to

double the size of the anomalous dimension for every gluon in the hard

process and add every possible combination of the anomalous dimension.

For gg → gg this results in 96 possible anomalous dimension values. A

more elegant method is to make the approximation

e−2Γg ' 1
2
(1 + e−4Γg), (2.9)

which is true to first order in Γg. This way we see that there will be no

emission from gluons half the time and twice as much wide-angle radiation

the other fifty percent of the time. For the process gg → gg there are

four gluons. If we let the rapidity gap become extremely large this results

in a cross section proportional to the factor

e−2Γρ(1
2

+ 1
2
e−4Γg)4 → 1

16
e−ξCAρ ' 1

16

(
Q

Q0

)−2αsCAρ
π

, (2.10)

2We consider the colour lines separately for each parton. The actual radiation from

a colour line crossing the gap will be the sum of the colour factors of the two partons

that is connected by said line.
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where in the last equality we have assumed that the strong coupling is

constant. Clearly this factor is non-zero, even for arbitrarily large gaps.

This is the behaviour that a singlet exchange would generate. Since

singlet exchanges are not included in the parton shower, this is unwanted

behaviour. We will refer to this behaviour as a “quasi-singlet”. The

correct analytical formalism has a resummed cross section proportional to

e−2Γρe−8Γg ∼
∑
i

(
Q

Q0

)−2αsCA(ρ+AiY )
π

. (2.11)

Here Ai is always greater than zero as some lines must cross the gap in

the leading colour limit. As a result the resummed cross section vanishes

much more quickly at high rapidity gaps, which is expected.

2.4.2 Partonic Fractions

To visualize the different behaviour in the parton shower we will now look

at how the different processes contribute to the resummed cross-section.

We will define a quantity called the partonic fraction ωi as the ratio of a

resummed gap cross section for one process i, σri , to the total resummed

gap cross section as

ωi =
σri∑
i σ

r
i

. (2.12)

The partonic fractions for pp interactions with beam energies of 7 TeV,

Y = 1 and Q = 500 GeV are shown in Figure 15. The upper plot shows

the behaviour of the analytical model in the leading colour limit and the

lower plot shows the analytical model with the modifications from the

parton shower. The processes with the highest cross sections are those

with poles in the t and u channel. The processes with only s channel

poles will only have minor contributions. Since the rapidity gap is small

we should see similar behaviour for both the analytical and parton shower

models. We can see that for high Q0 this is indeed the case, but for lower
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Q0 there are some deviations between the two models. We can see that

in the analytical model the gg → gg partonic fraction falls off slightly

faster than in the parton shower model. The difference at this rapidity

gap size is quite minimal. To look into this deviation further, we will now

consider the case of a more extreme rapidity gap.

The partonic fractions for pp interactions with beam energies of 7 TeV,

Y = 5 and Q = 500 GeV are shown in Figure 16. It is clear that at the

greater Q0 values the two approaches appear to be roughly equal.

We would expect that as the Q0 cutoff is lowered the processes with

more colour exchanged across the gap should have a faster reduction in

the cross section than those with less colour exchanged. This is because

the dominant term in the anomalous dimension is proportional to t2tY .

For processes with with only quarks or anti-quarks only two colour lines

can cross the gap. Similarly, processes which are a mix of gluons and

quarks can only have two colour lines crossing the gap.

Interactions with four gluons in the hard process have a possibility

that four colour lines can cross the gap. This possibility is shown on the

left of Figure 12. For small-angle scatterings all four colour lines will

cross the gap. However, this term is also suppressed kinematically at

small angles as it is proportional to a u-channel pole. In the opposite

case, where we have scatterings at almost 180 degrees, only two colour

lines will cross the gap for this term. Hence this configuration where four

colour lines cross the gap is only important when the soft scale reaches

unrealistically small values.

But this is not what happens in the analytical model of the parton

shower. Instead the processes with more gluons tend to have a slower

reduction in cross section than those with only quarks. This is due to the

configurations where gluons can choose colour partners on the same side

of the gap, reducing the amount of radiation produced.
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Figure 15: Partonic fractions of the resummed cross section as a function

of veto scale for Y=1, Q=500 GeV. The upper plot is the analytical

model in the leading colour limit. The lower plot is the analytical model

of Herwig++, which contains the changes to colour evolution outlined

previously. The PDF sets used are MSTW08lo [24].
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Figure 16: Partonic fractions of the resummed cross section as a function

of veto scale for Y=5, Q=500 GeV. The upper plot is the analytical

model in the leading colour limit. The lower plot is the analytical model

of Herwig++, which contains the changes to colour evolution outlined

previously. The PDF sets used are MSTW08lo.
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2.4.3 Energy-momentum conservation

One difference between the analytical approach and the parton shower

that we have not yet considered is energy and momentum conservation.

In the traditional parton shower energy and momentum are not conserved

exactly at each splitting. Instead, once all of the children of a hard parton

have been evolved down to the minimum scale the energy and momentum

are recalculated so that each parton is on shell.

In the analytical approach we are using the eikonal model. As such,

we have assumed that each emission from the hard partons carries no

momentum at all. This is clearly different than the parton shower. To

include the full effects of energy and momentum conservation would be

difficult as we could no longer use the eikonal formalism.

Rather than modify the hard matrices, we consider the additional

energy required in order to have an extra emission inside the gap. This

would modify the energy fractions xi used in the PDFs. The most

general form would be to allow an emission of an additional gluon with

any transverse momentum kt less than the gap limit. The new energy

fractions xi would be of the form

x1,2 = x1,2 +
kte
±(y′+

y
2

)

√
s

. (2.13)

This form makes the analytical calculation much more difficult as trans-

verse momentum is no longer split from the PDFs. Instead we consider

the maximum effect of one unresolved emission, which is taking kt = Q0.

The new energy fractions become

x1,2 = x1,2 +
Q0e

±Y+y
2√

s
. (2.14)

It is important to note that as long as Q is much greater than Q0 this

shift in energy would not be large,
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x1,2

x1,2

= 1 +O
(
Q0

Q

)
. (2.15)

This method of imposing energy and momentum conservation is only a

basic approximation. It can be an overestimate of the effects of a single

emission or an underestimate of the effects of multiple emissions inside

the gap. A similar approach was also used in Ref. [25].

The effects of imposing the basic energy and momentum conservation

modification outlined above are shown in Figure 17. The gradient is much

steeper at low Q0 when energy and momentum conservation is included.

This is because when only low energy emissions are allowed inside the

gap the factors x are barely changed, but when high energy emissions are

allowed the PDFs give a major suppression.

2.5 Parton shower modification

Having shown that the current parton shower has unrealistic behaviour

for low values of the soft scale, we must now make a modification to our

algorithms. To implement better behaviour we propose the following

changes.

The first change is that the highest scale colour line will always be

chosen to set the scale of the parton shower. This guarantees that there

is always a possibility of wide-angle radiation if there are colour lines

crossing the gap. The parton shower will then proceed with the evolution,

but with half the normal colour factor (1
2
Nc) since only one colour line

can emit. Once the evolution scale is below that of both hard colour lines

it is possible for both colour lines to emit and the colour factor is restored

to Nc.

In addition to the changes regarding scales and colour factors there

is also an additional change. Whenever radiation is emitted it will be

attached to the correct lines. For wide-angle emissions only the wide-angle
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Figure 17: Effects of partial energy-momentum conservation in the ana-

lytical calculation on the gg → gg gap fraction. The implementation of

energy-conservation increases the gap fraction for low Q0, as observed in

the transition from black to red and green to blue respectively.
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line will be allowed to emit. For small-angle emissions the colour line

will be picked from one of the two possibilities with a 50-50 chance. A

possible radiation pattern emerging from this new behaviour is shown in

Figure 18.

N
c

N
c

1

2

Figure 18: The new radiation pattern for the modified Herwig++ parton

shower. The blue and red lines represent colour connections to the higher

and lower scale partners respectively. The bold lines are those of the

gluon and the fainter lines are those of the two partners.

2.6 Results

Now that we have implemented our changes in the parton shower we

can see the impact that it has on phenomenology. We will specifically

consider the gaps between jets observable as outlined previously. For

these results we use the MSTW08lo PDF set [24] and use SISCONE [26]

via FastJet [27] with cone radius R=0.4 and overlap parameter 0.5 for

jet finding. This is done in order to make a comparison to the original

analysis [1] which highlighted the problems that we have been investigating.

Multiple interactions are turned off for all of these results. The event

generator used is Herwig++ 2.5.2 with modifications to include the new

colour evolution.

We will first check that the behaviour of our implementation is correct.

In order to do this we will need to run Herwig++ without the hadroniza-
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tion model. This is required since the analytical approach only represents

the parton shower and does not include hadronization corrections. We

will look at gg → gg gap fractions since these are the processes which are

most impacted by the changes we have made. The results are shown in

Figure 19. These results include the energy and momentum conservation

modifications to the analytical calculation.

We can see that there is a clear difference between the numerical

results and the analytical calculation. However, there are some differences

between the parton shower and the analytical approach that we have

still not included. Instead of trying to include additional effects, we can

instead look at ratios of these curves instead to see if we have implemented

the correct changes. The results are in Figures 20 and 21. The ratios

show that we do indeed have the correct implementation.

Now that we have established that our implementation is correct we

can look at the effects of our modification to hadronization. This is

shown in Figure 22. We see that the gap fraction increases at lower Q0

values in both cases when hadronization is included. However, with the

modification we see a greater increase relative to the unmodified version.

This is due to wide-angle radiation no longer being attached to small-angle

lines, resulting in less hadrons being produced in the wide-angle region.

Having studied the effects of the two modifications that we have made

we can now show our final results for the gap cross section. This was our

original motivator for the study. This is shown in Figure 23. We include

a run from Herwig++ 2.3.0 in order to verify the behaviour previously

shown in Ref. [1].

It is clear that Herwig++ 2.5.2 fits better without our modification to

the colour evolution than with it. The unmodified result almost matches

the expected Forshaw-Keates-Marzani result [1], while the modified result

is consistently lower. In order to get the correct behaviour from our event
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Figure 19: The gap fraction as a function of Q0. The red and black curves

are the numerical results with and without the modifications to the colour

evolution. The green and blue curves are the analytical results with and

without the modifications to the colour evolution, both including the

modifications to account for energy-momentum conservation described in

Section 2.4.3.

61



 / GeV0Q
0 20 40 60 80 100 120 140

M
od

ifi
ed

 / 
U

nm
od

ifi
ed

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

by Herwig++ 2.5.2
Herwig++ 2.5.2 with the colour evolution modification divided

modification divided by the analytical model without the modification
Analytical model of the parton shower with the colour evolution

 ) 2gg->gg Gap Fraction Ratios (Q = 500 GeV, Y = 3, S =  (14 TeV) 

Figure 20: The ratio of the colour evolution modified gg → gg gap

fractions to those without modifications for Herwig++ 2.5.2 (black) and

the analytical model of the parton shower (red).

 / GeV0Q
0 20 40 60 80 100 120 140

N
um

er
ic

al
 / 

A
na

ly
tic

al

0

1

2

3

4

5
Herwig++ 2.5.2 divided by the analytical model of the parton shower

the analytical model of the parton shower with the same modification
Herwig++ 2.5.2 with the colour evolution modification divided by

 ) 2gg->gg Gap Fraction Ratios (Q = 500 GeV, Y = 3, S =  (14 TeV) 

Figure 21: The ratio of Herwig++ 2.5.2 to the analytical model of the

parton shower with the colour evolution modification (black) and without

(red).

62



 / 
G

eV
0

Q
0

20
40

60
80

10
0

12
0

14
0

Hadronization / No hadronization

1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

di
vi

de
d 

by
 H

er
w

ig
++

 2
.5

.2
 w

ith
 th

e 
co

lo
ur

 e
vo

lu
tio

n 
m

od
ifi

ca
tio

n
H

er
w

ig
++

 2
.5

.2
 w

ith
 th

e 
co

lo
ur

 e
vo

lu
tio

n 
m

od
ifi

ca
tio

n 
an

d 
ha

dr
on

iz
at

io
n

H
er

w
ig

++
 2

.5
.2

 w
ith

 h
ad

ro
ni

za
tio

n 
di

vi
de

d 
by

 H
er

w
ig

++
 2

.5
.2

 )
 

2
gg

->
gg

 G
ap

 F
ra

ct
io

n 
R

at
io

s 
(Q

 =
 5

00
 G

eV
, Y

 =
 3

, S
 =

 (
14

 T
eV

) 

Figure 22: The ratio of the gg → gg gap fraction generated by Herwig++

with hadronization to that generated by Herwig++ without hadronization.
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generator we may now have to retune the parameters of some of our

models to incorporate the effects of our new evolution method.

2.7 Conclusion

It is important that the algorithms in our event generators implement the

correct physics. While this is not always possible due to the complexity

of the algorithms involved we should ensure that the implementation of

any physics that we do include is done correctly.

We have shown in this chapter that, by changing how the scales are

chosen at the start of the parton shower, there are potential changes to

the results of observables predicted by the event generator. These changes

will hopefully allow our event generator to give a better description of

QCD. These changes are included as an option as part of the newest

version of Herwig++ [4].

Having implemented our change to the parton shower it is important

that we now attempt to retune our models in the event generator to see

if it is possible to get a better representation of physics. We will do this

in Chapter 3.
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3 Tuning for Wide-Angle Radiation

3.1 Introduction

As we reach unprecedented levels of precision in experiments the uncer-

tainties in numerical simulations need to be considered.

The results from simulations of collider physics will in general have

both statistical and systematic errors, much like the experimental data.

Statistical errors occur when an insufficient number of events is generated.

These errors can be reduced by generating a larger set of events.

What we call systematic errors here are those which are due to the

parameters of the physical models used in the event generator. Monte-

Carlo event generators are reliant on physically inspired models, rather

than directly on physical theory. The full physical theories may either

be not completely understood, as is the case in the non-perturbative

stage where partons become the final hadrons, or there may not exist an

algorithm by which the full physics can be reasonably implemented. In

order to provide a better representation of the experimental data these

models often have variable parameters. By tuning these parameters we

should be able to get a reasonable amount of predictive power.

The systematic errors can be estimated by varying the model parame-

ters and observing how these changes manifest in relevant experimental

observables. There are also other systematic errors which cannot be

estimated, such as physical effects which are simply missing from the

models. Additionally, uncertainties arising from the choice of parton

distribution functions (PDFs) can also appear in these errors.

In Chapter 2 we discussed a modification to the parton shower which

may require a tuning to be performed. We split the whole tuning process

into the following steps.

• Identify which analyses are dependent on the changes we have made.
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• Identify which tuning parameters will give noticeable changes to

those analyses (but do not neglect their impact on others) and find

an appropriate range to vary them in.

• Identify the number of events required to reasonably remove statis-

tical errors in these analyses, taking in to account the variance of

parameters.

• Generate a large number of runs with randomly chosen values for

said parameters in an appropriate range.

• Use these runs to find a best fit to experimental data and take that

as the new tune.

• Improve the tune by comparing to further analyses, if possible.

It is possible to tune by hand when we only have one or two parameters,

but when we consider that we may have three or more parameters which

are correlated this quickly becomes unfeasible. To deal with this problem,

we shall use the program Professor [1].

3.2 General Tuning Considerations

3.2.1 Models within the event generator

A general event generator can be separated into multiple different parts.

The first part is the hard matrix element generator, which generally runs

on physically calculated quantities rather than a model. There are some

ambiguities however as there are different ways of treating the quark

masses.

Once the hard process has been selected by the matrix element gen-

erator it is showered by a parton shower using the DGLAP splitting

kernels [2–4] with at most a few parameters. For our purposes the most

important parameter in the shower is the strong coupling constant αs. In
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addition to the shower parameters it is also possible to choose a different

evolution scale. If the evolution scale is correctly implemented3 then there

should be, within the accuracy of the shower, no consequence to changing

between virtuality, transverse momentum or any other choice of scale.

Once the partonic phase of the evolution is complete the partons are

transformed in to hadrons using a hadronization mechanism. The actual

point at which the partonic evolution stops is usually a parameter of

the chosen event generator. Since the behaviour contained within the

hadronization mechanism is non-perturbative we must use a physically

inspired model. This model will in general contain many variable param-

eters. These parameters will determine the multiplicities of the different

variants of hadrons. Since these parameters are not fixed by theoretical

methods we can vary them to obtain a better match to experimental

observables. However, we expect that there will be some correlation

between the parameter determining the end of the partonic evolution and

some of the parameters of the hadronization mechanism.

In addition to the main hard process, there may also be additional

interactions which need to be generated. These are handled by a multiple

interaction model.

3.2.2 Selection of tuning parameters

If we had infinite computational time then the best approach would be

to vary all possible parameters to find the best tune. However since this

is not the case we need to only choose the parameters which we believe

will have the largest effect on the relevant observables. Professor works

by modelling the response of an event generator to changes in parameter

on a bin-by-bin basis. It does so by creating a quadratic or cubic model

3The evolution scale is correctly implemented if it takes in to account colour

coherence. If virtuality is chosen as the evolution scale then a veto on radiation outside

angular ordered regions must be used [5].
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of bin response to the parameter changes. The minimum number of runs,

R needed to perform a tuning with cubic interpolation is [1]

R = 1 +N + 1
2
N(N + 1) + 1

3!
N(N + 1)(N + 2), (3.1)

where N is the number of parameters to vary. Given that each run may

consist of over 10 million events at a rate of at most 100 events per second

on a modern CPU we can see that increasing the number of parameters

greatly increases the computational time required. However, to properly

estimate the systematic errors we need to vary as many parameters

as possible. An adequate compromise in this situation is to have 3-5

parameters. We must therefore identify the most important parameters

to vary in our tune.

3.2.3 Statistics

To correctly observe the effects of changing parameters we need to min-

imise any error arising due to a lack of statistics. In the event generator

this corresponds to generating enough events. One measure of whether we

have enough events is observing how predictions change under varying the

of the number of events. A simple way of doing this is to keep doubling the

number of events generated. If there is no change in an observable under

this doubling then the current statistics is enough for said observable. Of

course the statistics required for each observable and even individual bins

of the analyses may differ. In this case we need to determine which bins

can be properly predicted with a reasonable number of events.

There are two approaches to generating the required statistics. The

first is to simply operate with no cuts in the kinematical variables of the

hard process and have the generator create events purely according to

the natural weights. While this will generally give the most accurate

representation of the output of the event generator it could take a very
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long time to generate the required statistics. In the higher energy regions,

or equivalently high rapidity and transverse momentum regions, the PDFs

will be significantly smaller than in the lower energy region. In order to

populate the high energy region an unreasonable amount of events will

likely need to be generated.

The alternative second approach is to generate events in different kine-

matic slices. These kinematic slices can be of varying energies, transverse

momenta or rapidities. These can then be combined either according to

their individual cross sections or used in separate plots with similar kine-

matic requirements. This approach allows much more efficient generation

of the rarer parts of phase space.

However, one needs to be careful when comparing the second approach

to experimental data. This is because the cuts can only be applied to the

hard process. When the shower, hadronization and multiple interaction

mechanisms have been run the kinematics of the final-state particles may

no longer correspond to the same cuts. Similarly, events which did not

make the cut before those mechanisms may lie in the region of interest after

them. Thus one should not just use cuts exactly the same as experiment,

but instead with some leeway. For a thorough investigation of statistics

one should also look into how varying the amount of leeway impacts on

the event generator output. We should note that the upper limit of the

kinematical region is usually irrelevant, as long as it contains the full

region of interest. This is because any regions with larger transverse

momentum or larger rapidity final state particles than the region of

interest are naturally suppressed and will only form a small fraction of

the events generated, assuming that the probability of such events falls

with total energy.
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3.2.4 Tuning procedure

The ideal tuning procedure is given in the following list:

• Generate n sets of events, each with a different set of parameters.

• Choose a set of analyses to tune to.

• Determine the event generator response to the parameter changes.

• Find the best possible tune, given the above data.

3.3 Tuning for wide-angle radiation

3.3.1 Summary of changes

The changes we have made are given in detail in both Chapter 2 and

in Ref. [6]. They have been made to the parton shower in the event

generator Herwig++ [7–9].

There are two changes that we have made to the colour evolution.

The first is a change in how the initial scale of a gluon is chosen at the

start of the parton shower. In the leading colour limit a gluon has two

colour lines. Each of these lines is connected to a different parton. Hence

there are two possible choices of scale for each gluon.

In the new approach the largest scale is always chosen. This ensures

that if there are colour lines crossing the gap there is always a possibility

of wide-angle radiation. However, it is possible that only one of the

colour lines will cross the gap. In this situation, the colour factor used

to generate radiation is halved to 1
2
Nc. Once the scale has been evolved

down below that of the second colour line the original colour factor of

Nc is recovered as both lines are now able to radiate. As our previous

studies have shown, this results in fewer events with minimal wide-angle

radiation than the previous algorithm.
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The second change is that wide-angle emissions are now only connected

to wide-angle colour lines. In the original algorithm each gluon emitted

was connected randomly to one of the two colour lines. This resulted in

incorrect behaviour when the hadronization mechanism was run. It was

possible that small-angle colour lines could be connected to wide-angle

radiation, resulting in a larger number of hadrons being produced in the

wide-angle region. The new algorithm only assigns radiation to the lines

with scales above the current evolution scale. This results in a reduction

in hadrons produced in the wide-angle regions as colour lines are no longer

incorrectly pulled across the gap.

While the two changes are opposite in effect we find that the first

change tends to have a much greater effect than the second. From an

experimental perspective it is impossible to separate out the two effects

since the observed final state is always hadrons. In the generator itself we

can turn off the hadronization mechanism but we shouldn’t expect that

the results would exactly match experimental measurements in that case.

3.3.2 Selection of relevant tuning parameters

We expect that the changes outlined above will only be noticeable in

very high energy scatterings. This is because the strength of the effect is

proportional to Y Log[ Q
Q0

], where Y is the size of the gap between the two

hardest jets, Q is the average transverse momentum of the two hardest

jets and Q0 is the limit on the transverse momentum of any radiation

between the two hardest jets. In order to minimize the impact of the

underlying event a large value of Q0 is desired. Thus, in order to maximize

the effects of our changes we must have high energy scatterings in order

to maximize the values for Y and Q.

With this expectation we choose to ignore the parameters of the

multiple interaction model, since these additional scatterings are often at
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much lower energy than the original. Thus we only need to look at the

parameters of the shower and the hadronization model.

In the parton shower the main parameter that we are concerned with

is the strong coupling constant αs. We know that almost all processes

will strongly depend on the coupling constant. Since the modification we

have made is for QCD 2→ 2 scattering processes this is a parameter that

should be varied.

In addition to the strong coupling constant, we should also consider

varying parameters proportional to the minimum scales allowed in a

splitting. These parameters define the transition between the perturbative

parton shower and the non-perturbative hadronization mechanism. If we

are varying parameters in the hadronization mechanism then it seems like

there may be a correlation between said parameters and the minimum

scales allowed. Such a correlation should be studied in order to provide

the best tune possible.

In the hadronization mechanism there are a total of 25 parameters

and 5 switches. Since we are mainly interested in QCD 2→ 2 scattering

processes we do not really need to consider the various flavours of the

hadrons and quarks. As a result the above can be reduced to 7 parameters

and 3 switches.

The fastest way to gauge the effects of varying the parameters is

to choose an observable which is highly dependent on the wide-angle

radiation. To that end we chose the gap fractions for average transverse

momenta of the bounding jets greater than 200 GeV and rapidity gaps

in the region 4 ≤ Y ≤ 5. The gap fraction is the fraction of events

which do not contain any jets with transverse momentum greater than

Q0 between the two bounding jets. While higher transverse momenta

and rapidity gaps can be reached at the LHC there is not sufficient

statistics to accurately see how varying parameters changes the results.
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The parameters were typically varied at their extremes and at some points

in the middle of the possible ranges.

After the tests we found that the five most important parameters are

AlphaMZ, cutoffKinScale, PSplitLight, ClPowLight, and ClMaxLight.

3.3.3 Interpretation of parameters

The parameter AlphaMZ corresponds physically to the strong coupling

constant at the scale of the mass of the Z boson. This controls the overall

normalization of the coupling constant. Increasing the coupling constant

results in more radiation and hence more jets. Since this affects almost

all analyses we should only let it vary a small amount.

The parameter cutoffKinScale is related to the minimum allowed

virtuality of the gluon. The hadronization mechanism in Herwig++

requires that all gluons at the end of the shower are decayed in to quark

and anti-quark pairs. Since quarks are treated as having masses this

requires that the gluon have a minimum virtuality at the end of the

shower in order for it to be able to decay. The minimum gluon virtuality

Qg is defined as

Qg = max

(
δ − amq

b
, c

)
, (3.2)

where δ is cutoffKinScale, mq is the mass of a quark and a, b and c are

tuning parameters. For light mass quarks we can therefore see that Qg is

proportional to cutoffKinScale.

The factors ClPowLight, ClMaxLight and PSplitLight are used in

the hadronization mechanism. When the perturbative shower finishes

what remains is a set of coloured partons. All of the gluons are decayed

into quark and anti-quark pairs. The resultant partons then form colour

singlet clusters by pairing colour connected quark and anti-quark pairs.

However, these clusters can have masses orders of magnitudes higher than

most common hadrons. The mass of a cluster M formed by partons with
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momenta p1,2 and masses m1,2 is

M = (p1 + p2)2. (3.3)

These clusters are decayed in the model if

MClpow ≥ ClClpowmax + (m1 +m2)Clpow . (3.4)

From this expression we can see that if we increase ClPowLight we will get

more clusters produced as M always has the greatest value. Similarly, a

smaller ClMaxLight can increase the number of clusters produced, which

results in a greater spread of resulting hadrons and possibly more jets.

When a cluster decays it will split into two more clusters. This is

done by either popping a quark and antiq-uark pair out of the vacuum or

occasionally a diquark and anti-diquark pair. Assuming that there is the

quark and anti-quark pair popped from the vacuum then the masses of

the new clusters clusters M1,2 produced in the splittings are given by

M1 = m1 + (M −m1 −mq)R
1/P
1 , (3.5)

M2 = m2 + (M −m2 −mq)R
1/P
2 , (3.6)

where mq is the mass of the quark popped from the vacuum to form

the new cluster. Here P refers to PSplitLight and the Ri are random

numbers in the range 0 to 1. Decreasing PSplitLight results in higher

mass clusters being produced and therefore more splittings. This results

in more hadrons, but each of the hadrons will have lower energy.

Once the clusters reach low enough masses they become the hadrons

which are observed in the detector and the hadronization mechanism

terminates.
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Parameter Default Min Max
AlphaMZ 0.12 0.11 0.13
cutoffKinScale 2.65 2.00 5.00
PSplitLight 1.20 0.50 3.50
ClPowLight 1.28 0.50 3.50
ClMaxLight 3.15 0.50 3.50

Table 1: Default values for parameters and the range of variance for tunes.

3.3.4 Parameter ranges

We should look at the possible ranges for the values of said parameters

and their effects upon observables. To look at the observable response

we vary the parameters at their extrema and around the default. The

default parameter values in the current Herwig++ tune and the regions

used in the tune are given in Table 1. The results for the five parameters

are shown in Figures 24-28.

Figure 24 shows the variance of generator output when the parameter

AlphaMZ is varied between 0.100 and 0.135. The end-points are chosen

by the limits of the event generator. At low Q0 there is quite a large

dependance on the value of the strong coupling.

Figure 25 shows the variance of generator output when the parameter

cutoffKinScale is varied between 0.5 GeV and 10.0 GeV. The distri-

bution is fairly independent of the gluon virtuality cut up to a value of

5.0 GeV. At a value of 10.0 GeV the gap fraction is universally higher

than the other values. We would expect that there should be no difference

in results from this range of variance as cutoffKinScale is always lower

than Q0. The different results observed at a value of 10.0 GeV is likely

due to less emissions at the edges of the gap, which results in fewer jets

in the gap and therefore a higher gap fraction. The experimental results

are matched fairly well within the range bound by the other values.

In Figure 26 we show the generator response to varying the parameter

PSplitLight from a value of 0.1 to a value of 9.9. For small values the
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Figure 24: Gap fraction as a function of veto scale Q0 for the kinematical

region 210 ≤ Q ≤ 240 and 4 ≤ |∆y| ≤ 5. The rapidity gap is bounded by

the two hardest jets. The points are ATLAS data [10]. The histograms

show the generator output for varying values of AlphaMZ.

distribution is roughly the same. However, as we increase the value to

the upper limit set by the generator we find that we are now unable to

match the experimental results. Hence we must constrain the values used

in the tune to smaller values.

Next we show Figure 27 which contains the generator response to

varying the parameter ClPowLight from a value of 0.1 to 9.9. When

varying the parameter over large values the distribution is unchanged,

except at very low values. Hence we need to set a limit on the lowest

possible value allowed in the tune.

Finally we show Figure 28 which contains the generator response

to varying the parameter ClMaxLight from a value of 0.1 to 9.9. The
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Figure 25: Gap fraction as a function of veto scale Q0 for the kinematical

region 210 ≤ Q ≤ 240 and 4 ≤ |∆y| ≤ 5. The rapidity gap is bounded by

the two hardest jets. The points are ATLAS data. The histograms show

the generator output for varying values of cutoffKinScale.

distribution is unchanged under the varying of this parameter. However,

we will include this parameter in the tune as it appears in the same

equation as ClPowLight.

While this approach allows us to observe the effects of varying single

parameters, it does not suggest how we could change all five parameters

in order to get the best tune. We will need a more systematic approach

in order to do this. This is what is provided by the program Professor.

3.3.5 Selection of relevant analyses

Only observables sensitive to wide-angle radiation will be affected by our

modification. Additionally, since our changes have only been made to the
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Figure 26: Gap fraction as a function of veto scale Q0 for the kinematical

region 210 ≤ Q ≤ 240 and 4 ≤ |∆y| ≤ 5. The rapidity gap is bounded by

the two hardest jets. The points are ATLAS data. The histograms show

the generator output for varying values of PSplitLight.

radiation from hard gluons, we can rule out any observable which cannot

be generated with gluons in the hard process. Thus we should mainly

consider QCD 2 → 2 scattering processes at the LHC. From previous

simulations we have found that the energies at the Tevatron are not

sufficient to see a difference between the two approaches. Hence we will

concentrate mainly on the currently available LHC data.

The main analyses that we are considering are the measurements of

dijet production with a veto on additional central jet activity [10] and

dijet azimuthal decorrelations [11, 12]. In the ATLAS measurement of

dijet production with a veto, there is a restriction applied to the amount

of radiation allowed in the region between either the two hardest jets or
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Figure 27: Gap fraction as a function of veto scale Q0 for the kinematical

region 210 ≤ Q ≤ 240 and 4 ≤ |∆y| ≤ 5. The rapidity gap is bounded by

the two hardest jets. The points are ATLAS data. The histograms show

the generator output for varying values of ClPowLight.

the most forward and most backward jet. We define the hardest jets as

those with the highest transverse momentum and the most forward and

backward jets as those with the highest and lowest rapidity respectively4.

At the lowest order in QCD there will only be two jets in the process.

Thus this observable is directly dependent on the implementation of QCD

radiation in the parton shower. Wide-angle radiation from the hard

process has a chance of landing in the gap between the two jets. It is also

possible for small-angle radiation to just make it into the gap.

In both Chapter 2 and in Ref. [6] we have shown that the gap fraction

4Since rapidity is not positive definite when we say lowest rapidity we actually

mean most negative.
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Figure 28: Gap fraction as a function of veto scale Q0 for the kinematical

region 210 ≤ Q ≤ 240 and 4 ≤ |∆y| ≤ 5. The rapidity gap is bounded by

the two hardest jets. The points are ATLAS data. The histograms show

the generator output for varying values of ClMaxLight.

as a function of the veto scale is very sensitive to the form of the evolution,

at least for pure gluon processes at 14 TeV. This observable was described

at length in Chapter 2.

Next we consider the other main observable which is dijet azimuthal

decorrelations. These analyses at both ATLAS and CMS look at the

difference in angle between the two hardest jets in an event. At the

lowest order in QCD the two jets should be back-to-back. Thus if we

see any departure from this we find that it is entirely due to radiation

from the hard process. Any wide-angle radiation will cause a difference

between the lowest order result and that which is experimentally measured.

Importantly we should note that while the parton shower generates much
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of the softer radiation correctly, it will not generate the correct behaviour

when it comes to hard jets. Thus even a re-tune of the parton shower

and hadronization mechanism should not be able to neccesarily match

the experimental results for very hard three-jet configurations.

In addition to the main analyses, we can also include an additional

set of analyses detailed in Refs. [13–18] since these analyses can run at

the same time as those above for minimal computational cost.

The comparison of Herwig++ results to the experimental data is

handled by the program RIVET [19].

3.3.6 Statistics

To perform the tuning we will split our runs into sets of different energy

regions. This will allow us to generate the required statistics for the

analyses of choice with a reasonable computational time. In terms of the

actual data sets we have decided that running one million events in each

of the energy regions offers the best convergence to time ratio and also

allows us to merge different energy sets in a much easier way.

Figure 29 shows the convergence of statistics for a gap fraction in the

high energy region. Here we choose a kinematic slice with Q ≥ 200GeV

and no restriction on rapidity. This region is hard to populate as it has

both a high average transverse momentum and a large rapiditity gap. For

event numbers of less than one million the event generator prediction

is unstable and dependent on the number of runs and the seed of the

random number. Above one million events run there is no change in

behaviour. Hence running more than one million events is unnecessary

for this observable.

For this observable we could have obtained the same result with fewer

events if we had restricted the rapidity region to approximately that of

the experimental analysis. This would be the most convenient method if
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we only had one analysis to consider. However, when we have multiple

analyses we would have to perform a run for each of the analyses with

the correct kinematical slice. In addition to this, there may be analyses

that do not choose a specific rapidity. For these we would have to find

the correct way to combine the results of the different slices.

Due to these added complications we choose to only restrict one

kinematic variable in the hard process as it makes merging different

slices much simpler. Which method ultimately requires less statistics to

generate the correct output will need further study.
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Figure 29: Gap fraction as a function of veto scale Q0 for the kinematical

region 210 ≤ Q ≤ 240 and 4 ≤ |∆y| ≤ 5. The rapidity gap is bounded by

the most forward and backward jets. The points are ATLAS data. The

histograms are Herwig++ responses with different statistics ranging from

100,000 events to 5,000,000 events.
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3.3.7 Tuning approach

Having decided upon the variables required and analyses which are most

important we now need to begin our tuning. The first step is to generate

all of the data needed for the tuning. Since we are looking at potentially

billions of events, the only logical place that can provide the required

computational power is the LHC computing grid. Our final data set is 80

choices of parameter with 23 million events each.

3.3.8 Improving with additional data

While we are mainly focused on LHC observables, we should also look at

how the Tevatron and e+e− results vary with our tunes. While most of

the Tevatron and e+e− results were unchanged by our modification to the

colour evolution of the parton shower they may not remain unchanged

under a tuning. We can also go a step further and attempt to tune to

observables at these two colliders.

3.4 Tunes

We currently have the event generator’s responses for 80 sets of parameters

for both LHC and e+e− observables. The observables used in each

run are given in Table 2. For all of these runs we have turned on

both hadronization and multiple interactions. In order to have a cubic

interpolation for 5 different parameters we need the event generator’s

responses for at least 56 sets of parameters. As we have 80 event generator

responses we should be able to use this cubic interpolation to provide the

best fit.

The PDF set used is the default Herwig++ choice of MRST [20].

Since we only used one PDF set for our tuning we are unable to estimate

the full systematic errors due to the choice of PDF.
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Analysis Observable Tune
1 2 3 4 5 6 7

Ref. [10] All 1.0 1.0 1.0 1.0 1.0 0.0 1.0
Ref. [10] (d04-5)-* 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Ref. [10] *-y02 1.0 1.0 0.0 1.0 1.0 0.0 1.0
Ref. [10] (d19-25)-* 1.0 1.0 0.0 1.0 1.0 0.0 1.0
Ref. [10] (d30-36)-* 1.0 1.0 0.0 1.0 1.0 0.0 1.0
Refs. [11, 12] All 0.0 0.0 0.0 1.0 1.0 0.0 1.0
Ref. [11] *-(y08-09) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Refs. [13–18] All 0.0 0.0 0.0 0.0 1.0 0.0 1.0
Refs. [21–33] All 0.0 0.0 0.0 0.0 0.0 1.0 1.0

Table 2: Observable weights for the various tunes. The symbol * denotes

the sum of all possible observables matching that pattern. Brackets

indicate the sum of the range of analyses with.

3.4.1 Tune 1: Gaps Between Jets with no bins excluded

In this tune we focus on only the main observable, which is the gaps

between jets measurements. This tuning should provide the best possible

match to the observable that is of greatest interest to us. Since there

are quite a few analyses with varying transverse momentum and rapidity

regions this should also give a fairly good general tune for wide-angle

radiation.

3.4.2 Tune 2: Gaps Between Jets with higher bins excluded

Since we had to limit our statistics in the generated runs we do not

believe that we will be able to match some of the experimental data.

Additionally, we believe that it may not be possible to describe some of

the higher energy regions as these are where corrections due to hard jets

become important. Furthermore, some of the experimental data seems

to be extremely limited by statistics in the high energy regions. As such

we choose to tune only to the bins that we believe we have a reasonable

chance of predicting.
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3.4.3 Tune 3: Gaps Between Jets without forward and back-

ward observables

It is not only statistics that limit our ability to predict observables. The

lack of hard radiation generated by the parton shower makes it unreliable

for predicting observables where the bounding jets are not those of the hard

process. In this tune we choose to match to analyses where the bounding

jets are those which correspond to the highest transverse momentum jets

only.

3.4.4 Tune 4: Gaps Between Jets and Dijets

While tuning to only one experimental analysis will give the best fit to that

set of observables, we must be careful that we do not obtain a tune which

does not fit any other data. As such we must consider simultaneously

tuning to other observables. The other two most important experimental

analyses were the dijet azimuthal decorrelation measurements. As noted

in the previous section, these analyses also contain regions that we are

unable to correctly predict, either due to a lack of statistics or missing

high energy jet physics.

3.4.5 Tune 5: All LHC analyses with some bins excluded

Rather than just matching to selective analyses, we should check to see

what happens when we tune to all possible relevant observables. In this

tune we attempted to match to all the possible LHC analyses for QCD

2→ 2 scattering processes.

3.4.6 Tune 6: Pure e+e− Tune

In this tune we attempt to match our event generator output to only e+e−

annihilation observables. It is believed that this should give a similar tune

to the current one, since we have not modified any behaviour which occurs
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in e+e− events. Of course, there are many different ways to tune. The

final results will depend on the choice of weights for different observables.

The analyses that we are tuning to are detailed in Refs. [21–33].

3.4.7 Tune 7: e+e− and LHC Tune

Extending our methodology from Tune 5 we can attempt to simultaneously

tune to both LHC and e+e− data.

3.5 Results

Having discussed the motivation for our different tunes we will now discuss

the results for said tunes.

3.5.1 Correlations

While some of the parameters we are tuning should be independent, it

is possible that there are correlations. What we have found is that the

correlations are highly dependent on the choice of analyses that we tune

to. In Figure 30 we show the correlations for Tune 4. In this case there

are a number of correlations and anti-correlations between most of the

parameters. From this we might conclude that tuning to specific physical

processes can lead to lots of correlations between the parameters.

Next we have Figure 31 which shows the correlations for Tune 6. We see

that by tuning to a different set of observables, this time e+e− processes,

we have a different set of correlations. Some are still the same, such as

the strong correlation between ClMaxLight and ClPowLight which occur

in the same equation. Many correlations have become anti-correlations

and vice versa.

Finally, we have Figure 32 which shows the correlations for Tune 7.

In this tune we match to both LHC and e+e− processes. By including a

larger set of observables the majority of the correlations have disappeared.
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While some parameters may be correlated on one observable, they may

have no correlation or be anti-correlated on another, as observed with the

previous tunes. Only the parameters which are strongly correlated in all

cases remain correlated for this tune.

AlphaMZ

ClMaxLight

ClPowLight

PSplitLight

cutoffKinScale

cutoffKinScale

PSplitLight

ClPowLight

ClMaxLight

AlphaMZ

1.0

0.8

0.6

0.4

0.2
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0.2

0.4

0.6

0.8

1.0

Cij

Figure 30: Correlations between parameters of Tune 4 for the minimised

results. Highly correlated parameters have values close to one, uncorre-

lated parameters have a value of zero and anti-correlated parameters have

values close to minus one.

3.5.2 Tune values

The parameter values for the tunes outlined above are given in Tables 3

and 4. The χ2 values are shown for Refs. [10–18].

We can clearly see that each of these tunes gives a fairly different set

of parameters and they all tend to be different than the current tune.

The values of αs chosen in the tunes spans a much smaller range than

that allowed in the tuning process. Clearly αs ∼ 0.12 is preferred for the

current data.

The first two tunes, which differ only in the removal of a few high
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Figure 31: Correlations between parameters of Tune 6 for the minimised

results. Highly correlated parameters have values close to one, uncorre-

lated parameters have a value of zero and anti-correlated parameters have

values close to minus one.

energy observables, are extremely similar. The difference between tunes 5

and 7 is also especially notable. The inclusion of e+e− data has shifted the

combined tune to be extremely similar to that of pure e+e−. Additionally,

this full tune is now very similar to that of the default tune, at least in

the shower parameters.

It it clear from the χ2 values that, for a general fit, the default

implementation without the colour evolution modification is the best

choice. The best tunes with colour evolution for a general fit are the

default tune and tune 5. We would expect that tune 5 would give the

best overall result for LHC observables as these are what it is matched to.

By matching to LEP observables as well we find that tune 7 gives worse

results for observables than tune 5 in general.

The first three tunes only do well for predictions of observables in

Refs. [10] and [15]. For tune 3 we can see that, by removing matching to
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Figure 32: Correlations between parameters of Tune 7 for the minimised

results. Highly correlated parameters have values close to one, uncorre-

lated parameters have a value of zero and anti-correlated parameters have

values close to minus one.

forwards and backwards observables that cannot be predicted accurately

by the parton shower, the results are generally better for most observables.

The Herwig++ event generator as a whole, regardless of tune, does

particularly poorly for Refs. [13], [14] and [18]. In Ref. [13] the observables

involve both large energies and configurations with three hard jets, which

are problematic for the parton shower. For Ref. [14] there seems to be

an issue with the overall normalization for the cross sections. The actual

shape of the observables is still predicted fairly well. Finally, Ref. [18]

does extremely poorly in all cases. This is again due to higher numbers

of hard jets as well as high energies.

3.5.3 Resulting plots

In Figure 33 we show the results for the gap fraction in a high energy

event region where the bounding jets are chosen to be the two hardest in
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Parameter Default Tune 1 Tune 2 Tune 3 Tune 4
AlphaMZ 0.120 0.118 0.118 0.121 0.122
cutoffKinScale 2.65 4.61 4.35 4.00 3.18
PSplitLight 1.20 3.34 3.47 3.47 2.01
ClPowLight 1.28 1.39 1.56 2.51 1.89
ClMaxLight 3.15 1.81 1.99 2.27 2.71
χ2 / d.o.f.

Ref. [10] 5.51 3.90 3.90 4.23 4.66
Ref. [10] (No F/B) 2.38 3.11 3.14 2.96 3.24
Ref. [11] 3.29 14.7 14.8 12.7 10.8
Ref. [12] 3.11 25.6 26.8 21.2 17.8
Ref. [13] 11.6 21.3 21.4 19.6 18.0
Ref. [14] 30.1 31.3 32.5 32.6 29.9
Ref. [15] 1.24 0.74 0.80 0.76 1.44
Ref. [16] 8.56 585 660 606 53.6
Ref. [17] 5.81 48.5 48.0 38.4 30.6
Ref. [18] 2642 2431 2474 2503 2586

Table 3: Parameters and fit quality for the various tunes. The default tune

is the normal tune used for Herwig++ 2.5.2. The default fit values are

without the colour evolution modification. The χ2 values are calculated

by comparing to the observables with the weights from tune 5, except for

Ref. [10] (No F/B) which uses the weights from tune 3. The weights for

these tunes are given in Table 2.

the event. We can see that regardless of the tune we are able to match the

experimental data quite well. The default tune is the worst at predicting

this observable. Tunes 1-5 and 7 are all matched to this analysis. Tune 6

is independent of this analysis.

Next, we have Figure 34 where we show the results for the gap fraction

in a high energy event region where this time the jets bounding the gap are

those which are the most forward and backward. Here we can see that the

results are dependent on the tune of the generator. We see that it is not

possible with our current tuning methodology to match the experimental

results. Since almost 40% of the events in this region of phase space

have a central jet with transverse momentum greater than 200 GeV it is
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Parameter Default Tune 5 Tune 6 Tune 7 Default (E)
AlphaMZ 0.120 0.121 0.118 0.117 0.120
cutoffKinScale 2.65 3.56 2.47 2.60 2.65
PSplitLight 1.20 1.57 1.30 1.26 1.20
ClPowLight 1.28 0.730 0.683 0.621 1.28
ClMaxLight 3.15 3.28 2.36 2.12 3.15
χ2 / d.o.f.

Ref. [10] (All) 5.51 4.40 4.48 4.30 4.72
Ref. [10] (No F/B) 2.38 3.11 3.29 3.44 3.16
Ref. [11] 3.29 11.8 12.3 13.2 11.0
Ref. [12] 3.11 18.8 21.0 22.8 17.6
Ref. [13] 11.6 18.7 19.4 20.2 18.3
Ref. [14] 30.1 29.5 30.7 31.5 31.5
Ref. [15] 1.24 1.14 2.48 2.79 2.45
Ref. [16] 8.56 12.8 8.03 7.76 8.51
Ref. [17] 5.81 33.2 34.5 38.2 29.6
Ref. [18] 2642 2600 2636 2628 2628

Table 4: Parameters and fit quality for the various tunes. The default

tune is the normal tune used for Herwig++ 2.5.2. The default fit values

are without the colour evolution modification. The default (E) fit values

are with the colour evolution modification. The χ2 values are calculated

by comparing to the observables with the weights from tune 5, except for

Ref. [10] (No F/B) which uses the weights from tune 3. The weights for

these tunes are given in Table 2.

perhaps not too surprising that this observable is not predicted well by the

parton shower. In order to correctly match this observable hard three-jet

events must be generated prior to the parton shower. When Herwig++

is combined with POWHEG [34] this observable can be predicted with

much better accuracy [10].

We find that the default tune gives the worst results. We can see that

the default tune without the colour evolution modification is particularly

bad at predicting the observables with forwards and backwards boundary

jets by look at Tables 3 and 4. When these observables are removed the

χ2 value reduces from 5.51 to 2.38, which is lower than that of any of
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Figure 33: Gap fraction as a function of veto scale Q0 for the kinematical

region 210 ≤ Q ≤ 240 GeV and 4 ≤ |∆y| ≤ 5. The rapidity gap is

bounded by the two hardest jets. The dots represent experimental data

and the histograms represent the generator responses with the specified

tunes. The new tunes are with the colour evolution modification while

the default tune is without said modification.

the other tunes. Tunes 1-2, 4-5 and 7 are all matched to this analysis.

Tunes 3 and 6 are independent of this analysis.

Our third plot, Figure 35, shows the results for the dijet azimuthal

correlations in the region 200 GeV ≤ Q ≤ 300 GeV. It is clear that we

are still unable to match the results of experiment on this observable.

However, we find that in this case the default tune is still the closest. Of

our tunes it is difficult to tell which performs best. Tunes 4-5 and 7 are

all matched to this analysis. Tunes 1-3 and 6 are independent of this

analysis.
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Figure 34: Gap fraction as a function of veto scale Q0 for the kinematical

region 210 ≤ Q ≤ 240 GeV and 4 ≤ |∆y| ≤ 5. The rapidity gap is

bounded by the most forward and backwards jets. The dots represent

experimental data and the histograms represent the generator responses

with the specified tunes. The new tunes are with the colour evolution

modification while the default tune is without said modification.

Our final plot, Figure 36, shows the charged hadron multiplicity as a

function of rapidity. We can see that the accuracy of the event generator

is highly dependent on the choice of tune. Tunes 5 and 7 are both

matched to this analysis. Tunes 1-4 and 6 are independent of this analysis.

Tunes 1-3 do especially poorly in this case.

3.6 Conclusion

With the ever increasing precision of both analytical calculations and

experimental data it is important that we understand the errors involved
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Figure 35: Dijet azimuthal correlations in the region 200 GeV ≤ Q ≤

300 GeV. The dots represent experimental data and the histograms

represent the generator responses with the specified tunes. The new

tunes are with the colour evolution modification while the default tune is

without said modification.

in our event generators. By looking at the generator responses to varying

model parameters we can get a good handle on the possible systematic

errors for any prediction.

It is important that whenever we add new physics into one or more

of the models of an event generator we perform a re-tune of the relevant

parameters.

Of course, it is not possible to make complete predictions when we

have incomplete models within our event generators. In the next chapter

we will discuss how we can improve the parton shower by adding some of

the currently missing physics.
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represent experimental data and the histograms represent the generator

responses with the specified tunes. The new tunes are with the colour
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The histograms for Tunes 1 and 2 overlap.
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4 Treatment of Sub-Leading Colour in Event

Generators

4.1 Introduction

We have seen in the previous sections that there are many ways in which

we can improve the results of event generators. The implementation

of missing physics should, at least after a tune, give improved results.

The re-tune is a necessity as new physics will create new behaviour in

the generator. This was discussed at length in the previous chapter.

As outlined previously there are a number of sub-leading colour terms

which are neglected in order to obtain reasonable algorithms for numerical

implementation. Implementing some of these terms brings our generators

more in accordance with what happens in nature and should also allow

us to better predict experimental observables.

However, there are many sources of sub-leading colour in all of the

parts of the event generator. The best way to proceed is to find which of

these terms will have the largest impact on the predictions for experimental

observables. Once the most important missing physics has been identified

we can devise a set of new algorithms containing the desired physical

behaviour. With the algorithm at hand we can then go to work producing

parts of an event generator running on these new algorithms. This will be

the first attempt to improve the colour description within the generator.

In this chapter we will mainly consider the sub-leading colour missing

from the parton shower as we expect that this will have the largest effect

on any experimental observable.
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4.2 Sources of Sub-Leading Colour

In order to improve the shower we must first identify the different sources of

sub-leading colour and their relative impacts on experimental observables.

We will begin with the treatment of colour within the eikonal approach,

since it contains much of the colour structure used in the current parton

showers. Once that has been considered we will then look into other

possible sources of missing colour.

4.2.1 Colour in the eikonal approach

In the first chapter we were able to form a model of colour where the

initial kinematics and the colour evolution were decoupled into separate

matrices. The kinematic structure was contained in the hard matrix

H and the colour structure contained in the colour metric S and the

anomalous dimension Γ. The general forms of these matrices are

H = Hd +Ho, (4.1)

S = Sd + So, (4.2)

Γ = Γd + Γo + iΓid + iΓio, (4.3)

where the subscripts d and o represent on and off diagonal respectively

and the superscript i indicates the imaginary part. In this section we

will focus on the application of the eikonal model to gaps between jets

phenomenology and consider only the colour flow basis, as this is the

most important for numerical implementation.

4.2.1.1 The hard matrix H

For QCD 2 → 2 interactions at leading order all of the hard matrix

elements will be proportional to poles in the s, t, or u channels. Events

of interest will contain high s values as these are the highest energy
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events which will produce the most radiation. The majority of events will

therefore be those with low t or u or, equivalently, small angle scatterings.

In order to have a simple evolution algorithm which gives the correct

hard cross section, the hard matrix is redefined in the way described in

Chapter 1

H̄ij = δij(SiiHii +
∑
k 6=i

SikHik). (4.4)

Recall that the evolution in the eikonal approach has the form

HS → He−ξΓ
†
Se−ξΓ. (4.5)

By modifying the hard matrix in the way suggested we have introduced

errors in the full colour evolution. Each of the colour flows is evolved by

a different factor than in the analytical calculation.

4.2.1.2 The soft metric S

The soft metric contains colour factors which arise from the forming

of colour lines from an amplitude and a conjugate. The on-diagonal

factors are when the amplitude and conjugate are the same state and the

off-diagonal are when the states differ. The normalization of the states

are typically chosen such that the on-diagonal factors are all unity. With

this choice of normalization we find that the leading colour order of these

terms are

Sd = 1, (4.6)

So = O(N−1
c ). (4.7)

4.2.1.3 The on-diagonal real anomalous dimension Γd

The real on-diagonal elements of the anomalous dimension are those which

are responsible for the reduction in gap cross section as the number of
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emissions increase. They arise from the miscancellation between the real

emission and virtual exchange due to the rapidity gap. The effects of these

terms are included in the parton shower. However, there are sub-leading

terms in the coefficient of these elements which are not included. There

is one source of sub-leading colour which is included with these terms,

and that is the different colour charges used for quarks and gluons. The

different colour charges are included in order to ensure that the correct

coefficient for the double logarithm is generated. The leading terms of

the on-diagonal anomalous dimension are

Γd = O(Nc). (4.8)

4.2.1.4 The off-diagonal real anomalous dimension Γo

The off-diagonal elements of the anomalous dimension change one colour

state into another and suppress the gap cross section. They can arise

from both real emissions and virtual colour exchanges. These are not

included in the parton shower. The leading terms of the off-diagonal

anomalous dimension are

Γo = O(1). (4.9)

Previous investigations using the analytical model of the parton shower

detailed in Ref. [1] have shown that these terms have minimal effects on

the overall cross section.

4.2.1.5 The imaginary parts of the anomalous dimension Γi

The imaginary parts of the anomalous dimension are responsible for

changing the colour state of either the amplitude or conjugate without

a suppression to the cross section. They arise from virtual exchanges

of colour between two initial state or two final state hard partons. The

on-diagonal imaginary parts do not change the colour structure at all and
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have no physical consequence. This can be understood as the fact that

the redefinition of the anomalous dimension

Γij → Γ̄ij = Γij + iβδij (4.10)

does not change the cross section, where β is any real number. Neither of

these two contributions to the anomalous dimension are included in the

parton shower. The leading terms of the imaginary anomalous dimension

are

Γio = O(1). (4.11)

Note that since the on-diagonal imaginary terms have no physical conse-

quence their power of Nc is irrelevant.

4.2.2 Other sources of Sub-Leading Colour

While the eikonal approach is useful for treating colour when the emissions

are soft, it does not contain the full picture with regards to colour. In

the eikonal approach it is assumed that any additional emissions do not

affect the kinematics of the hard process. We assume that the scale of

each emission is negligible compared to that of any previous emission or

interaction. Any emission of a gluon prior to the latest emission will be

viewed as an indistinguishable part of the hard process. From this, in our

eikonal approach we have assumed that all gluons are actually emitted

from the initial hard partons. In real interactions all of the partons

emitted at all scales will affect the colour evolution. They will be able to

form dipoles which emit in addition to the initial hard partons. This is

one of the differences between the parton shower and the eikonal model.

In the parton shower all particles are evolved, rather than just the initial

partons.

When we go beyond the eikonal model we need to consider the higher
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dimensionality of colour space that is required. There are a set number of

unique ways to connect the colour lines of four partons. As we increase

the number of partons involved in the hard process then the number of

colour structures present grows rapidly.

4.2.3 Relative sizes of effects

A naive approach to estimating the phenomenological impact of the

different sub-leading colour effects would be to look at the power of Nc

as stated above. However as we have stated above the actual effects of

the different terms are different. From previous work we have found that

the real off-diagonal terms have very little impact on the overall result.

The imaginary off-diagonal terms are however very important. This is

because they allow the transition between the colour structures which

are available in the hard process and the colour singlet states. These

colour singlets states present the possibility of very low levels of radiation

occuring in an event. This will be very important, especially when it

comes to the study of gaps between jets. One could say that the effect of

changing the colour structure is important enough that it counteracts the

lower colour prefactor. In addition to these changes the imaginary terms

are always multiplied by a factor of π, which is able to counter a power

of Nc.

4.3 Other sub-leading colour implementations

4.3.1 Plätzer-Sjödahl Approach

Plätzer and Sjödahl have implemented emission from sub-leading colour

dipoles in a dipole shower, as detailed in Refs. [2]. In this approach they

attempt to include emission from dipoles which are not colour connected

in the leading colour structure. We will henceforth refer to this approach

as the Plätzer-Sjödahl (PS) approach.
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In the PS approach the probability of emitting from a dipole at the

next step in the evolution Pi,j for a dipole {i, j} is proportional to

Pi,j(p
2
t , z; pi, pj) = Ki,j(p

2
t , z; pi, pj)Ci,j, (4.12)

where Ki,j is a kinematical factor and Ci,j contains the colour structure

of the splitting. The full colour factor is defined as

Ci,j =
−1

T 2
i

〈Mn|Ti · Tj|Mn〉
〈Mn|Mn〉

, (4.13)

where |Mn〉 are the basis states for n partons and Ti is the colour generator

for parton i. Physically this can be thought of as an emission from parton

j in the amplitude and parton i in the conjugate amplitude. The basis

used in the PS approach is that of the colour flow basis. In the leading

colour limit this factor becomes

CLC
i,j =

1

1 + ωi
βi,j (4.14)

where ωi is 1 if i is a gluon or zero otherwise and βi,j is zero unless the

partons i and j are colour-connected. In this limit the PS approach

reproduces the results of the traditional dipole shower.

The PS approach however is capable of going beyond the leading

colour limit. At each point in the colour evolution a colour basis for the

current set of partons can be constructed and the colour factors Ci,j can

be determined exactly. This allows the colour factors of dipoles with

sub-leading colour factors, which are neglected in the traditional dipole

shower, to be calculated.

The PS dipole shower works in the same way as a traditional dipole

shower but allows the possibility that dipoles with sub-leading colour could

be the next ones that emit. By calculating the transverse momentum of
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the next splitting for all possible dipoles the sub-leading colour effects of

the real anomalous dimension can be included.

In comparison to the eikonal approach above, the PS approach focuses

on generating the full colour factors in the real part of the anomalous

dimension. The PS approach also contains colour effects not present in

the eikonal approach. Since the full colour basis is calculated for the exact

number of partons at each step the effects of the additional partons in the

basis are included. This approach does not include the effects contained

in the imaginary parts of the anomalous dimension.

The PS approach is currently limited in that it is only able to be

applied to e+e− → qq̄ events. It has been implemented in a numerical

code and results have been obtained for LEP observables. The numerical

code was used to show that the results for most LEP observables were

only modified by at most a few percent [2].

4.3.2 Nagy-Soper Approach

Nagy and Soper have generated a significant amount of analytical progress

on sub-leading colour in showers, as shown in Refs. [3–6]. We will hereafter

refer to this approach as the Nagy-Soper (NS) approach.

In this section we will focus on the latest results [6] in which a

viable algorithm for going beyond the leading colour limit has been

presented. The NS approach works by considering colour amplitudes as

being composed of two types of objects, open strings and closed strings.

The most basic open string is a colour connection between a quark and an

anti-quark. Here, by anti-quark, we actually mean an anti-quark in the

same temporal state (initial or final) or a quark in the opposite temporal

state. Complexity can be added to the open string by attaching gluons to

the colour line. A closed string is an open string in which the two ends

are attached.
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It is important to note that this string formalism is identical to the

colour flow basis. In Chapter 1 the colour flow basis for qg → qg process

is described in terms of open and closed strings and the colour flow basis

for the gg → gg process is described in terms of closed strings5.

One of the advantages of this colour string formalism is that g → gg

splittings can always be expressed as two simpler q → qg splittings. As a

result of this any splitting will just result in the insertion of gluons on

strings and the creation or combination of strings.

The NS approach works in what they call the LC+ approximation. In

this approximation they are able to generate the full colour factors for the

soft and collinear and the collinear logarithms. Since they do not include

the full effects of virtual colour exchanges they are unable to generate the

correct colour factor for the soft logarithms.

The LC+ approximation is designed to be applied to a dipole shower.

This approximation is defined as follows. We consider the emission of a

gluon k from the dipole {i, j}. The colour generators are modified to be

Ti|Mn〉 → C(j, k)Ti|Mn〉. (4.15)

The additional factor C(j, k) is taken to be one only if the partons j and

k are colour connected in the state |Mn+1〉 and zero otherwise. Here, we

defined partons j and k to be colour connected if they are adjacent on a

colour string.

While the NS approach is able to keep sub-leading colour terms it

comes at a price. Each event has a weight factor associated with it. This

weight is changed each time there is a splitting and depends on the colour

factors involved in said splitting. It is also possible that these weights

can be negative.

5The singlet terms in both cases can be expressed in terms of closed strings. Rather
than just attaching the initial and final state gluons together, a quark loop is placed
between.
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While there is a discussion of the imaginary terms of the anomalous

dimension there is no algorithm presented which can treat a changing

colour structure during the evolution of the parton shower.

It is important to note that there is currently no code available that

shows the results of the NS algorithms. However, a code based on these

algorithms is said to be currently in development [6].

4.4 Colour Exchanges: General Consideration

In order to implement colour exchanges in an event generator we need

to allow the colour structure to change. Additionally, in order to have a

proper implementation, we need to have separate amplitude and conjugate

colour structures. Allowing both of these conditions greatly increases the

complexity of the algorithm.

Rather than work with the established generators like Herwig++ [7–9],

we instead start with a stand-alone proof of concept in order to isolate

the effects of different changes to the event generator. This new event

generator will operate a hybrid shower, due to the advantages this shower

methodology has over the parton shower.

4.4.1 Competing processes

In the original parton shower there is only one possible action that can

happen at any given scale t. A parton can either split at the scale t or

continue unchanged. When we add in colour exchanges we also have

the possibility of one of the two colour structures changing at a scale t.

Borrowing from the eikonal analytical resummation model we can view

the colour exchange as being a competing process to a parton splitting.

The scales for the different processes are calculated separately using their

respective probabilities. The process with the highest scale is the one

which is chosen to occur.
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4.4.2 Concept of Evolution Time

The evolution in the parton shower depends on the concept of a time.

This time is generally regarded as the time since the hard process occured.

It is usually related to the virtuality. The higher virtuality interactions

occur at earlier times, and the partons which are almost on-shell are

evolved only at the very end of the shower. The actual implementation of

time depends on the choice of the shower mechanism. There is a different

behaviour for the parton shower relative to the hybrid and dipole showers.

4.4.2.1 Parton shower time evolution

In the current generation of event generators the evolution time is consid-

ered to be a property of each particle as it transitions through the shower.

The highest evolution time is set by the colour connections in the hard

process. Each evolution time is completely separate and each parton can

be evolved separately, barring energy-momentum conservation concerns.

In Herwig++ one of the partons in the hard process is chosen at random

and then it and all its children are evolved until the minimum time is

reached. Once this is done another hard parton is chosen until all of the

partons in the process have been completely evolved. It is important to

note that it is possible for evolution times of different partons evolved

later to be greater than that of earlier ones owing to this random choice.

An example of final state evolution demonstrating the different times in

the parton shower is given in Figure 37.

In this particular example there are five different splittings at times

denoted by ti for the i-th splitting respectively. From the parton shower

algorithm we are guaranteed that the times obey

t1 ≥ t2, (4.16)

t3 ≥ t4 ≥ t5. (4.17)

114



t

t

t

t

t
1

3

2

4

5

Figure 37: An example of a final state evolution in the parton shower.

The symbols ti represent the time of a given splitting i.

However, there is no guarantee that t3 will be less than t1. This means

that interactions that occur at higher evolution times can be generated

earlier than those at lower times, purely due to the random choice of the

hard parton which is chosen to be evolved initially.

4.4.2.2 Dipole shower time evolution

In a dipole shower such as SHERPA [10], the highest time dipole is

chosen to evolve first. Since energy and momentum are conserved at each

interaction it is possible to switch between dipoles at any point in order to

continue the evolution. Any dipoles which have times below the minimum

are no longer evolved. An example of final state evolution demonstrating

the different times in the dipole shower is given in Figure 38.

In this example two dipoles undergo four splittings at times t1 to t4.

However in this case it is guaranteed that the evolution times obey

t1 ≥ t2 ≥ t3 ≥ t4. (4.18)
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Figure 38: An example of a final state evolution. The symbols ti represent

the time of a given splitting i. Since the times of the two dipoles are

interleaved the upper dipole can evolve before the lower one can be evolved

a second time.

4.4.2.3 Hybrid time evolution

In the hybrid approach, used in PYTHIA 8 [11], each of the partons has

their own shower time as in the parton shower. However, the kinematics

are reconstructed after each splitting in a method similar to the dipole

method. This allows any of the partons to be chosen to evolve at any

given time. The choice of PYTHIA 8 is that the final state evolution is

performed first and then any initial evolution is done.

In the hybrid shower we will also get splittings like that shown in

Figure 37. However in this case it is possible to always evolve the parton

which has the lowest evolution time due to the conservation of energy
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and momentum.

4.4.2.4 Challenges

When colour exchanges are added, there exist interactions which can

change the structure of the whole event, and hence modify the times of

all partons. Thus it no longer makes sense to consider each parton as

being able to be evolved separately. Instead, in our implementation only

the highest time parton can evolve. In order to implement a universal

time system we need to use either a hybrid or dipole shower. For the

stand-alone program we choose to use the hybrid shower, as this is closer

to Herwig++ than the dipole shower.

To correctly implement colour exchanges we must allow the amplitude

and conjugate to have different colour structures. This results in differing

scales depending on which of the two is chosen in a given stage of the

evolution. Any algorithm aiming to fully implement these colour changes

must take the effects of this change into account.

4.4.3 Variable colour structure

In a traditional parton shower, the colour structure is viewed as a solid

frame to which additional radiation is attached. In terms of colour

structure this is exactly what happens in the leading colour limit of the

eikonal picture. To improve the parton shower implementation we can

begin to borrow additional properties from this picture. Rather than

attempting to implement all of the sources of sub-leading colour at once,

we will begin with minimal changes.

The first change is to allow the colour frame to change. We define

the colour frame as the colour structure of the hard process. Later on

we will refer to these as junctions. To get the correct physical picture we

will need to allow the colour frames of the amplitude and conjugate to
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differ. This is because any exchange of colour will only change the colour

structure of either the amplitude or the conjugate and not both.

If the colour frames of the amplitude and conjugate differ then it

is possible for partons to have a different scale in each. There is no

exact physical reasoning for when to choose between the amplitude and

conjugate. We make the choice that at the beginning of each loop of the

shower we should choose one of the two randomly. Once the amplitude or

conjugate is chosen, it is retained throughout that iteration of the loop.

Any colour exchanges will only be able to change the chosen frame.

4.5 Colour Exchanges: Phenomenological Model

In this section we will consider a phenomenological model of colour

exchanges for a parton shower. The goal of this model is attempt to

improve the parton shower by implementing variable colour structures.

The full QCD behaviour is far too complex to try to implement all at

once. Instead, we will consider a much simpler model where the colour

structure of the hard process is mostly separated from the evolution. By

doing this we can leave most of the structure of the parton shower intact

while adding in new physics.

This model has been adapted into a numerical algorithm and imple-

mented in a program as a stand-alone parton shower. However, this

program is still not at a stage where meaningful results can be produced.

4.5.1 Overview

In this section we outline the generator behaviour as a whole, before more

details on each of the parts is given in the subsequent sections. The flow

of the overall program is shown in Figure 39. The algorithm acts on

two main objects. These objects are particles and events. All of the

physical behaviour is modelled through the interactions between these
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two objects.
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Figure 39: The overall flow of the algorithm.

The particle object contains the properties associated with a physical

particle. All particles i will have a set of momenta pi chosen in a particular

common frame. All of the particles within the algorithm are partons

and therefore have colour lines {ci, c̄i} associated with them. These colour

lines connect them to other partons. Each parton will have one or two

partners. The maximum scales t of these particles are given by the

virtuality associated with a particle i and its partner j

t = 2pi · pj, (4.19)
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where we have assumed that all partons are massless. The particles

also carry a scale ratio Ri, which is the ratio of their current interaction

scale to their maximum possible interaction scale.

An event is a container for one specific high energy collision. Initially

it will contain the set of particles involved in the hard interaction. After

every splitting more particles will be added to the event. The event

also contains the current colour structures of the amplitude and conjugate

amplitude. By doing this we can separate any complicated colour changes

from the particles and consider them independently.

Within the algorithm we consider the colour structures to be a set of

connections that map one colour line to another within the hard process.

Different colour structures connect the colour lines in the hard process in

different ways. We will call one specific configuration of connections a

junction. The junction J(i, Cj) maps the colour line i to the colour line k

to which it is connected in the hard process through the colour structure

Cj. The junction is the map

J(i, Cj) = k. (4.20)

An example of this map for one of the colour structures of gg → gg is

shown in Figure 40. The full list of junction values is given in Table 5.

While in this example the junction is only connecting initial colour lines

to final ones, it is possible that colour lines from the same temporal state

can be connected together as well.

i 1 2 3 4 5 6 7 8
J(i, C) 5 8 7 6 1 4 3 2

Table 5: An example of a junction values for gg → gg.

The behaviour of the algorithm can be customized with a set of inputs

at run-time. These inputs control whether colour exchanges can occur,
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Figure 40: An example of a junction for gg → gg.

whether to use a separate amplitude and conjugate amplitude, as well as

many other properties.

4.5.2 Input stage

The program itself contains no methods for generating a realistic hard

process. Instead, events need to be generated first with MADGRAPH [12].

These are considered as a set of momenta and flavours for the incoming

and outgoing particles. It is also possible for the colour structures to be

read directly from MADGRAPH. This is left as an option to the end user.

4.5.3 Initial Colour Selection

If the colour is not read in from MADGRAPH then it is chosen at this

point. The choice of colour structure is obtained by using kinematical

weights. At this point we consider all processes to have the same colour

structure for both the amplitude and the conjugate amplitude. In order

to generate the correct cross section we make the approximations that

were outlined in Chapter 1.

In the hard process there are N colour lines. The value of N depends

on the process involved. Each quark or anti-quark has one colour line,

while each gluon has two. The partons in the hard process are assigned

colour line values from 1 to N .
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4.5.4 The Main Loop

Once an event has been selected it must now be evolved with the parton

shower. The flow of the parton shower is shown in Figure 41. The parton

shower is composed of multiple runs of the main loop. Each run through

the main loop contains a choice of amplitude and the possibility of either

a splitting or a colour exchange.

Start main
evolution

loop

Choose am-
plitude or
conjugate
amplitude.

Can any
partons

be
evolved?

End

Find next
parton

to evolve

Splitting
or colour

ex-
change?

Determine
mode of
splitting

Set
kinematics,
colour lines
and scales

Set new
colour

structure

no

yes

splitting

exchange

Figure 41: The main event loop for the new parton shower algorithm.
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4.5.5 Choice of Amplitude

At the start of the loop the algorithm will make a choice of whether

to use the colour structure in the amplitude or the colour structure in

the conjugate amplitude. With our current implementation the colour

structures will be the same at the start of the parton shower. However,

after colour exchanges, these may differ. This means that particles may

have different scales depending on which of these two amplitudes are

chosen.

There is no restriction on how the algorithm makes the choice of using

the amplitude or conjugate amplitude. The probability of choosing either

one of those can be equal, or it can be weighted by the kinematics of the

hard process if desired. The current implementation chooses either the

amplitude or conjugate amplitude with equal probability using a random

number.

If the colour structure in the chosen amplitude differs from that of the

previous run through the loop then the scales t of all partons connected

to the hard process need to be changed. The partons which are connected

to the hard process are those which have colour lines with values less

than or equal to N . If we define the scale of a particle in colour structure

Ci to be ti, then we choose the scale tj in colour structure Cj to be

tj =
ti
tmi
tmj = Rtmj , (4.21)

where tmi and tmj are the maximum scales for the particle in colour

structures i and j respectively. We preserve the ratio of the current

scale to the maximum scale when the colour structure changes. This is

the default behaviour. We also include another possible behaviour that
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restricts the scale to only decrease under a colour structure change

tj = min

(
ti
tmi
tmj , ti

)
. (4.22)

The choice of which of these two behaviours to use is left to the end user.

4.5.6 Choice of Interaction

Once the amplitude has been chosen the scales for each of the partons

in the initial and final state are determined. The default choice of scale

for a parton is the virtuality between said parton and its partners. A

quark or anti-quark will only have one partner and therefore one scale

per colour structure. Since gluons have two colour lines there is the

possibility of being connected to two different partons, which results in

two different scales per colour structure. The greater of the two scales

sets the maximum possible scale of interaction.

The next step in the algorithm is to determine the next scale of

interaction. This is done by checking what the next interaction scale is

for each parton in both the initial and final states. For each parton there

are two different kinds of interaction of which they can be involved in.

The first is a splitting, which is where a parton will split in to two other

partons. This is treated in the same way as any other parton shower

algorithm which accounts for a recoiling parton. The scale of the next

splitting ts is given by solving

Rs = exp

(
−αos

∫ tr

ts

dt

t

∫ z+

z−
dzP o(z)

)
, (4.23)

where tr is the scale of the parton prior to this stage of evolution, αos is

a constant overestimate depending on the event in question, P o(z) are

overestimates of the DGLAP splitting kernels [13–15] and Rs is a random

number in the range [0,1]. This expression is solved with an analytical
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rearrangement similar to that described in Chapter 1.

The second method of interaction is a colour exchange, where a virtual

gluon is exchanged between two partons. We make the simplifying choice

that only partons which have colour lines connected to the hard process

can make these exchanges. The scale of the next colour exchange te is

given by solving

Re = exp

(
−λαos

∫ tr

te

dt

t

∑
j

|Im(Γji)|
)
, (4.24)

where Γji is the anomalous dimension element, i is the index of the current

colour structure of the chosen amplitude, λ is a colour strength correction

factor and Re is a random number in the range [0,1]. The values of

the anomalous dimension are not positive-definite. In order to obtain a

reasonable probability for colour exchanges we have taken the absolute

value of the elements instead.

The colour strength factor λ requires further discussion. Our current

approach only allows partons connected to the hard process to exchange

colour through virtual gluons. A more realistic approach would allow

colour exchanges between any of the partons involved in the evolution.

This is far too complex for implementation within our current algorithm.

Instead we add the colour strength factor λ which is meant to take in

to account the effects of such additional exchanges. We treat λ as a

parameter which is not fixed, but variable in order to match experimental

observables.

Since we have made a number of assumptions in order to have a

reasonable algorithm this is only a very crude model of colour exchanges.

A better algorithm might take into account weights for events from the

negative values of the anomalous dimensions, or allow colour exchanges

between all partons.

The next interaction scale of the parton i, ti, is now defined as the
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greater of the two possible scales ts and te

ti = max(ts, te). (4.25)

The parton with the largest interaction scale is evolved next. The method

of interaction is given by that which provided the larger scale.

In subsequent passes through this section there will be a mix of partons

which already have their next scales set, as well as new partons or partons

which were involved in the previous splitting or exchange. The partons

which don’t have their next scale set use the above methodology to gain

their next scale. The parton with the greatest scale is then chosen to

evolve.

4.5.7 Splitting

If a parton p is chosen to split then it will behave as in the normal hybrid

shower. With our hybrid shower we consider the splitting of a parton p

with a colour connected recoiler parton r,

p+ r → p′ + q + r′. (4.26)

The first step is to determine the type of splitting which occurs. This

determines both the flavours and the colours of the children p′ and q

produced by the splitting.

For a final-state quark there is only one possible splitting, which is

where a quark will emit a gluon. We will however treat this as two separate

splittings, one where the gluon takes the majority of the momenta of the

parent quark and one where the gluon instead takes the majority. These

two cases only differ by how their scale is set.

For an initial-state quark there are two possibilities for splitting. Since

we are considering backwards evolution, the quark that is splitting was
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either generated by a gluon or another quark. These two splittings have

different colour assignments and scales, as well as PDF factors.

For a final-state gluon there are again two possibilities. The gluon

can either split in to two gluons or it can produce a quark-antiquark pair.

The colour assignment for the quark-antiquark production mode is trivial.

For the two gluons there are two possible colour assignments. However,

only one of these colour assignments will be possible as the colour line

which connects the parton with the recoiler must be the one to split.

For an initial-state gluon the two possibilities are the same as the

quark, but reversed. The gluon could have either been produced through

emission from a quark or through the splitting of another gluon. Again,

these different combinations will have different colour and PDF factors

associated.

The weight Wi of a particular splitting i can be defined as

Wi =
Pi∑
j Pj

(4.27)

where the factors Pi contain an integration over the splitting kernels and

PDFs. The mode of splitting is chosen randomly from all possible modes

using these weights.

Once the mode of splitting has been decided the kinematics must then

be constructed. The kinematics for this process are independent of the

flavours of the partons. The kinematics only depend on the temporal

states of the splitting parton and the recoiler. One particular choice of

parameterization for the kinematics is

p′ = αp+ βr + γkt, (4.28)

q = χp+ δr + ωkt, (4.29)

r′ = ξr. (4.30)
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The values of the parameters for the different temporal states are given

in Table 6. Here v is the virtuality, which is the same as the scale in the

default implementation, and s is defined as the maximum virtuality of

the splitting parton and recoiler pair

s = 2p · r. (4.31)

State α β γ χ δ ω ξ
FS/FS z (1− z)v/s 1 (1− z) zv/s −1 (1− v/s)
FS/IS z (1− z)v/s 1 (1− z) zv/s 1 (1 + v/s)
IS/FS 1/z (1− z)v/s 1/z 1/z − 1 zv/s 1/z (1 + v/s)
IS/IS 1/z (1− z)v/s 1/z 1/z − 1 zv/s −1/z (1− v/s)

Table 6: Kinematic properties for splittings with the four possible temporal

state combinations.

In order to have the correct splitting probabilities while using the

simplified splitting kernels we must apply vetoes. There will be vetoes

for αs, the kernel overestimates and, if we have an initial-state splitting,

the PDFs. We must also use an additional veto for angular ordering as

we are using virtuality as our evolution time. If the splitting is vetoed

then the parton is set to evolve again, but with a maximum scale equal

to the scale of the splitting.

The colour line assignment during splitting is important. This is

because the connections of the colour lines determine scales. For quark

splittings there is only one possible assignment of colour lines. For gluon

splittings there are however two possible ways of assigning the colour

lines. The colour lines are assigned in Table. 7.

Once the splitting has occured, the scales of all partons evolved must

be changed. This does not only include the parton that split, but also

the recoiling parton and all of the partons which those two are colour

connected to. The scales of the children ti,j are related to that of the
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Splitting Type cq c̄q cq̄ c̄q̄ c1
g c̄1

g c2
g c̄2

g

FS q → qg n - - - cp n - -
IS q → qg n - - - n cp - -
FS q → gq n - - - cp n - -
IS q → gq - - - n cp n - -
FS g → qq̄ cp - - c̄p - - - -
IS g → qq̄ cp - c̄p - - - - -
FS g → q̄q cp - - c̄p - - - -
IS g → q̄q - cp - c̄p - - - -
FS g → gg - - - - cp n n c̄p
FS g → gg - - - - n c̄p cp n
IS g → gg - - - - cp n c̄p n
IS g → gg - - - - n c̄p n cp

Table 7: All possible colour line assignments. ci denotes the colour line of

parton i while c̄i denotes the anti-colour line of the same parton. If a new

colour line is generated in the splitting it is referred to as n. For initial

state g → qq̄ and g → q̄q the first child is the initial state (anti-)quark

and the second child is the final state (anti-quark).

parent t by

ti = zt, (4.32)

tj = (1− z)t. (4.33)

4.5.8 Colour Exchange

If a parton is chosen to produce a colour exchange then we must consider

what happens to the colour structure. In our algorithm we have previously

made a choice of amplitude or conjugate amplitude for the colour structure.

Only the colour structure which was chosen can be modified by a colour

exchange. The probability Pij of transitioning to a state Cj from state

Ci is given by

Pij =
|Im(Γji)|∑
k |Im(Γki)|

(4.34)
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The new colour state is chosen from the potential set of colour states {Cj}

with weights given by the above probabilities. If the colour structure has

changed then the connections between partons in the hard process are

now different. This is shown in Figure 42. This will result in different

scales for partons which are connected to the hard process through their

colour lines. The partons which are not connected to the hard process

will be left unchanged.

Colour exchange

Figure 42: A colour exchange resulting in the change of a junction. The

rest of the event is unchanged.

4.5.9 End of the loop

Once a colour exchange, splitting or veto has occured the current loop of

evolution has ended. If there are no more partons which can be evolved

at this point then the shower will terminate.
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4.5.10 End of the shower

The shower terminates when all possible interactions are below a shower

cutoff value, which we define to be 1 GeV. At this point the event consists

as a set of initial and final state partons with their respective momenta and

flavours, as well as the colour structures of the amplitude and conjugate

amplitude. Since we include no hadronization mechanism there is no

problem if the final colour structures differ. However, if we were to include

a hadronization mechanism we would a method for choosing one of the

two colour structures. One possibility is simply to select one of the two

colour structures at random. An alternative method would be to allow the

shower to continue, but with only colour exchanges allowed. Once the two

colour structures match, this extension of the shower would terminate.

The final events are not weighted in any way, regardless of whether the

final colour structures of the amplitude and conjugate amplitude match.

The output of the shower is handled by HepMC [16] and stored as data

files.

4.5.11 Example event

In order to give a clearer explanation of the algorithm we will now consider

one specific event that might occur. This is shown in Figure 43. In this

example we consider qq → qq interactions, which only have two colour

states, and restrict ourselves to just the evolution of the final state. Prior

to the parton shower, denoted as loop pass 0, the colour structures of the

amplitude and conjugate amplitude are the same and no evolution has

yet occured. There are only two quarks in the final state.

The first stage of evolution from the parton shower is in loop pass 1.

At the start of this loop the colour structure in the amplitude is chosen.

The evolution mode of choice is a splitting, which in this case is q → qg.

The gluon is represented as a pair of colour and anti-colour lines. This
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Figure 43: A simplified example of an event within the algorithm. The

event shown here is for a qq → qq interaction where only the final-state

partons are allowed to evolve. The red boxes denote which amplitude is

being used within the evolution section. Zigzag lines are used to indicate

colour exchanges. The evolution time grows with distance from left to

right.

stage of the evolution ends with a two quarks and a gluon in the final

state.

The next stage of evolution is in loop pass 2. This time the colour

structure for the conjugate amplitude is chosen. The evolution choice

this time is a colour exchange, which is denoted as a zigzag line on the

diagram. The colour exchange may or may not result in a change of the

colour structure of the conjugate amplitude. This stage of the evolution

ends with two quarks and a gluon in the final state.

The third stage of evolution is in loop pass 3. Again, the colour
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structure for the conjugate amplitude is chosen. However, we see that the

previous colour exchange did in fact change the colour structure into the

only other possible state, which is that of a colour singlet. This means

that the scales for the partons connected to the hard process, which for

the final state are the quark at the top and the gluon at the bottom, need

to have their scales re-evaluated. Once these scales have been determined

there is another q → qg interaction. This stage of the evolution ends with

a two quarks and two gluons in the final state.

The subsequent loop passes repeat behaviour which has already been

described in the previous passes. In loop pass 4, the colour structure of

the amplitude is chosen and a q → qg interaction occurs. In loop pass

5, the colour structure of the amplitude is chosen again and a colour

exchange occurs. Looking at loop pass 6, it is clear that this colour

exchange has resulted in the move to a singlet state, this time for the

amplitude. Finally, we have another colour exchange, this time using the

colour structure of the conjugate amplitude.

This example shows the general behaviour of the algorithm. At each

stage either the colour structure of either the amplitude or conjugate

amplitude is chosen. A method for evolution, either a splitting or colour

exchange, is then chosen. The splittings are stored within the evolution

part and are separate from the colour structures stored in the amplitudes.

The colour exchanges have a possibility of changing the colour structures

within the amplitudes.

4.6 Implementation in regular parton showers

While the approach outlined above explains how we might implement basic

colour exchanges in a stand-alone code, it will not work for implementation

in the normal parton shower. This is because it is not possible to have

the universal time, as outlined above. Instead we consider an alternative
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algorithm here, which may give the same results.

Before the parton shower is run we will generate the colour exchanges.

This is done by running the parton shower but with splittings replaced

by colour exchanges. The scale at which each colour exchange occurs

is recorded. Additionally, we will randomly choose whether to use the

colour structure of the amplitude and conjugate amplitudes over a given

time scale. How this choice is made, and the time scales involved, are left

to the implementation of the algorithm. The simplest method would be

to choose randomly between the colour structure of the amplitude and

conjugate amplitude, as is done in the standalone algorithm. The time

scale could be determined by viewing the changing of the amplitude and

conjugate as competiting processes and determining which of the two will

perform a colour exchange first. Once the colour structures for different

scales have been determined the parton shower is run as usual, but with

colour structures varying with scale as determined above.

This method is however not without flaws. Every time the colour

structure changes, so do the scales involving the hard partons. As such,

it would be possible to move to an earlier time than the colour change by

changing the colour. Any such use of this model must address this flaw.

This is solved in the standalone implementation by only allowing scales

to decrease under a colour structure change.

Creating an implementation within existing generators will be an im-

portant step for phenomenology. While a proof of concept can outline the

importance of including these effects, it will lack the full predictive power

of the established event generators. Having two different implementations,

one in the standalone shower and one in a traditional parton shower,

allows us to cross-check the results of said implementations. While the

two implementations may not give identical results, we might expect that

they would give a similar trend for most observables. By studying these
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trends we could check if our algorithms are correctly implemented within

the numerical codes.

4.7 Conclusion

We have seen in this chapter that there are a large number of sub-leading

colour corrections which are not present in any current event generator.

While not all of these have a major impact on phenomenology, some may

have great importance at the currently accessible and future energies

provided by colliders. The impact of these sub-leading terms requires a

great deal of future study. In this chapter we have made the first step

towards a greater understanding of these sub-leading effects.

Though we have a set of viable algorithms for numerical implemen-

tation, there is not yet a fully working code that is able to demonstate

their impact.

References

[1] A. Schofield and M. H. Seymour, “Jet vetoing and Herwig++,”

JHEP 1201 (2012) 078, arXiv:1103.4811 [hep-ph].

[2] S. Plätzer and M. Sjödahl, “Subleading-Nc improved Parton

Showers,” arXiv:1206.0180 [hep-ph].

[3] Z. Nagy and D. E. Soper, “Parton showers with quantum

interference,” JHEP 0709 (2007) 114, arXiv:0706.0017 [hep-ph].

[4] Z. Nagy and D. E. Soper, “Parton showers with quantum

interference: Leading color, spin averaged,” JHEP 0803 (2008) 030,

arXiv:0801.1917 [hep-ph].

135

http://dx.doi.org/10.1007/JHEP01(2012)078
http://arxiv.org/abs/1103.4811
http://arxiv.org/abs/1206.0180
http://dx.doi.org/10.1088/1126-6708/2007/09/114
http://arxiv.org/abs/0706.0017
http://dx.doi.org/10.1088/1126-6708/2008/03/030
http://arxiv.org/abs/0801.1917


[5] Z. Nagy and D. E. Soper, “Parton showers with quantum

interference: Leading color, with spin,” JHEP 0807 (2008) 025,

arXiv:0805.0216 [hep-ph].

[6] Z. Nagy and D. E. Soper, “Parton shower evolution with subleading

color,” JHEP 1206 (2012) 044, arXiv:1202.4496 [hep-ph].
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5 Final Conclusion

We have shown throughout this thesis that the treatment of colour,

both in the analytical and numerical approaches to simulating scattering

processes, is important for predicting experimental observables. Within

Herwig++ the old approach to colour line choices for the splitting of

gluons resulted in unphysical behaviour. By modifying this approach we

were able to better match the analytical approach.

Having made the changes to the colour implementation of Herwig++,

we then moved on to investigating how this had affected the optimal tune

of the model parameters. We observed that the changes we had made

opened up a possibility for a number of tunes to be used, but in general

these did not depart significantly from the currently used tune when it

came to using them to predict experimental observables.

We have also explained how the implementation of sub-leading colour

effects may have an impact on the final state of the parton shower. The

true impact of a full implementation of sub-leading colour effects is still

unknown and requires further investigation.
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