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Abstract

This thesis provides a study on stochastic models of financial markets
related to problems of asset pricing and hedging, optimal portfolio managing
and statistical changepoint detection in trends of asset prices.

Chapter 1 develops a general model of a system of interconnected stochas-
tic markets associated with a directed acyclic graph. The main result of
the chapter provides sufficient conditions of hedgeability of contracts in the
model. These conditions are expressed in terms of consistent price systems,
which generalise the notion of equivalent martingale measures. Using the
general results obtained, a particular model of an asset market with trans-
action costs and portfolio constraints is studied.

In the second chapter the problem of multi-period utility maximisation
in the general market model is considered. The aim of the chapter is to
establish the existence of systems of supporting prices, which play the role of
Lagrange multipliers and allow to decompose a multi-period constrained util-
ity maximisation problem into a family of single-period and unconstrained
problems. Their existence is proved under conditions similar to those of
Chapter 1.

The last chapter is devoted to applications of statistical sequential meth-
ods for detecting trend changes in asset prices. A model where prices are
driven by a geometric Gaussian random walk with changing mean and vari-
ance is proposed, and the problem of choosing the optimal moment of time
to sell an asset is studied. The main theorem of the chapter describes the
structure of the optimal selling moments in terms of the Shiryaev–Roberts
statistic and the posterior probability process.
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List of notations

R the set of real numbers

R+ the set of non-negative real numbers

𝐿1 the space of all integrable functions on a measure space

𝐿∞ the space of all essentially bounded functions on a measure

space

𝑋* the positive dual cone of a set 𝑋 in a normed space

P | F the restriction of a measure P to a 𝜎-algebra F

𝑥+ max{𝑥, 0}

𝑥− −min{𝑥, 0}

I{𝐴} the indicator of a statement 𝐴 (I{𝐴} = 1 if 𝐴 is true,

I{𝐴} = 0 if 𝐴 is false)

𝒯𝑡+ the set of all successors of a node 𝑡 in a graph 𝒯

𝒯𝑡− the set of all predecessors of a node 𝑡 in a graph 𝒯

𝒯− the set of all nodes in a graph 𝒯 with at least one successor

𝒯+ the set of all nodes in a graph 𝒯 with at least one predecessor

N (𝜇, 𝜎2) Gaussian distribution with mean 𝜇 and variance 𝜎2

Φ the standard Gaussian cumulative distribution function

(Φ(𝑥) = 1√
2𝜋

∫︀ 𝑥

−∞ 𝑒−𝑦2/2𝑑𝑦)

a.s. “almost surely” (with probability one)

i.i.d. independent and identically distributed (random variables)
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Introduction

This thesis provides a study on stochastic models of financial markets.

Questions of derivatives pricing and hedging, optimal portfolio managing

and detection of changes in asset prices trends are considered.

The first range of questions – hedging and pricing of derivative securities –

has been studied in the literature since 1960s. The celebrated Black–Scholes

formula [3] for the price of a European option was one of the first fundamental

results in this direction. Derivative securities (or contingent claims) play an

important role in modern finance as they allow to implement complex trading

strategies which reduce the risk from indeterminacy of future asset prices.

One of the main questions in derivatives trading consists in determining

the fair price of a derivative, which satisfies both the seller and the buyer.

The Black–Scholes formula provides an explicit answer to this question in the

model when asset prices are modelled by a geometric Brownian motion. Later

this result was extended to a wider class of market models. The development

of the derivatives pricing theory has resulted in that nowadays the volume

of derivatives traded is much higher than the volume of basic assets [41].

The second range of questions considered in the thesis concerns consump-

tion-investment problems, where a trader needs to manage a portfolio of as-

sets choosing how much to consume in order to maximise utility over a period

of time. Questions of this type were originally studied in relation to models

of economic growth, where the objective is to find a trade-off between goods

produced and consumed with the aim of the optimal development of the econ-

omy. One of the first results in the financial context was obtained by Merton

[42], who provided an explicit solution of the consumption-investment prob-

lem for a model when asset prices are driven by a geometric Brownian motion.

There have been several extensions of Merton’s result which include factors

like transaction costs, possibility of bankruptcy, general classes of stochastic

processes describing asset prices, etc. (see e. g. [4, 10, 36, 44]).
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The third part of the thesis contains applications of sequential methods

of mathematical statistics to detecting changes in asset prices trends. The

mathematical foundation of the corresponding statistical methods – the the-

ory of changepoint detection (or disorder detection) – was laid in the papers

by W. Shewhart, E. S. Page, S.W. Roberts, A.N. Shiryaev, and others in

1920-1960s, and initially was applied in questions of production quality con-

trol and radiolocation. Recently, these methods have gained attention in

finance.

The main results of the thesis generalise the classical theory to advanced

market models. We obtain results that broaden the models available in the

literature and reflect several important features of real markets that have

not been studied earlier in the corresponding fields.

The rest of the introduction provides a detailed description of the prob-

lems considered in the thesis.

Asset pricing and hedging

Consider the classical model of a stochastic financial market, which op-

erates at discrete moments of time 𝑡 = 0, 1, . . . , 𝑇 , and where 𝑁 assets are

traded. The stochastic nature of the market is represented by a filtered

probability space (Ω,F , (F𝑡)
𝑇
𝑡=0,P), where each 𝜎-algebra F𝑡 in the filtra-

tion F0 ⊂ F1 ⊂ . . .F𝑇 describes random factors that might affect the

market at time 𝑡.

The prices of the assets at time 𝑡 are given by F𝑡-measurable strictly

positive random variables 𝑆1
𝑡 , 𝑆

2
𝑡 , . . . , 𝑆

𝑁
𝑡 . Asset 1 is assumed to be riskless

(e. g. cash deposited with a bank account) with the price 𝑆1
𝑡 ≡ 1 (after being

discounted appropriately), while assets 𝑖 = 2, . . . , 𝑁 are risky with random

prices.

An investor can trade in the market by means of buying and selling assets.

A trading strategy is a sequence 𝑥0, 𝑥1, . . . , 𝑥𝑇 of random 𝑁 -dimensional

vectors, where each 𝑥𝑡 = (𝑥1𝑡 , . . . , 𝑥
𝑁
𝑡 ) is F𝑡-measurable and specifies the
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portfolio held by the investor between the moments of time 𝑡 and 𝑡+1. The

coordinate 𝑥𝑖𝑡 (𝑖 = 1, . . . , 𝑁) is equal to the amount of physical units of asset

𝑖 in the portfolio.

An important class of trading strategies consists of self-financing trading

strategies, which have no exogenous inflow or outflow of money. Namely, a

trading strategy (𝑥𝑡)𝑡6𝑇 is called self-financing if

𝑥𝑡−1𝑆𝑡 = 𝑥𝑡𝑆𝑡 for each 𝑡 = 1, . . . , 𝑇,

where the left-hand side is the value of the old portfolio (established “yester-

day”), and the right-hand side is the value of the new portfolio (established

“today”). The equality is understood to hold with probability one.

The central question of the derivatives pricing and hedging theory con-

sists in finding fair prices of derivative securities (or contingent claims). A

derivative is a financial instrument which has no intrinsic value in itself,

but derives its value from underlying basic assets [15]. Derivative securities

include options, futures, swaps, and others (see e. g. [31]).

As an example, consider a standard European call option on asset 𝑖, which

is a contract that allows (but does not oblige) its buyer to buy one unit of

asset 𝑖 at a fixed time 𝑇 in the future for a fixed price 𝐾. The seller incurs

a corresponding obligation to fulfil the agreement if the buyer decides to

exercise the contract, which she does if the spot price 𝑆𝑖
𝑇 is greater than 𝐾

(thus receiving the gain 𝑆𝑖
𝑇 −𝐾). In order to obtain the option, the buyer

pays the seller some premium, the price of the option, at time 𝑡 = 0 .

Another example is a European put option, which is a contract giving its

buyer the right to sell asset 𝑖 at a fixed time 𝑇 for a fixed price 𝐾. If the

buyer exercises the option (which happens whenever 𝐾 > 𝑆𝑖
𝑇 ), she receives

the gain 𝐾 − 𝑆𝑖
𝑇 .

Mathematically, contracts of this type can be identified with random

variables 𝑋 representing the payoff of the seller to the buyer at time 𝑇 . For

example, 𝑋 = (𝑆𝑇 −𝐾)+ for a European call option, and 𝑋 = (𝐾 − 𝑆𝑇 )
+

for a European put option.

It is said that a self-financing trading strategy (𝑥𝑡)𝑡6𝑇 (super)hedges a

12



derivative 𝑋 if

𝑥𝑇𝑆𝑇 > 𝑋 a.s.,

i. e. the seller who follows the strategy (𝑥𝑡)𝑡6𝑇 can fulfil the payment asso-

ciated with the derivative with probability one. The minimal value 𝑥 of the

initial portfolio 𝑥0 is called the (upper) hedging price of 𝑋 and is denoted

by 𝒞(𝑋):

𝒞(𝑋) = inf{𝑥 : there exists (𝑥𝑡)𝑡6𝑇 superhedging 𝑋 such that 𝑥0𝑆0 = 𝑥}.

The price 𝒞(𝑋) is the minimal value of the initial portfolio that allows

the seller to fulfil her obligations (provided that the infimum in the definition

is attained; see [61, Ch. VI, S 1b-c]). On the other hand, if she could sell the

derivative for a higher price ̃︀𝒞 > 𝒞(𝑋), it would be possible to find a trading

strategy which delivers her a free-lunch – a non-negative and non-zero gain

by time 𝑇 , for which the buyer has no incentive to agree.

The central result of the asset pricing and hedging theory states that in

a market without arbitrage opportunities the price of a contingent claim can

be found as the supremum of its expected value with respect to equivalent

martingale measures.

It is said that a self-financing trading strategy (𝑥𝑡)𝑡6𝑇 realises an arbitrage

opportunity in the market if

𝑥0𝑆0 = 0, 𝑥𝑇𝑆𝑇 > 0 and P(𝑥𝑇𝑆𝑇 > 0) > 0.

A probability measure ̃︀P, equivalent to the original measure P (̃︀P ∼ P),

is called an equivalent martingale measure (EMM), if the price sequence 𝑆 is

a ̃︀P-martingale, i. e. E
̃︀P(𝑆𝑖

𝑡 | F𝑡−1) = 𝑆𝑖
𝑡−1 for all 𝑡 = 1, . . . , 𝑇 , 𝑖 = 1, . . . , 𝑁 .

The set of all EMMs is denoted by P(P).

These two notions express some form of market efficiency. The absence

of arbitrage opportunities means that there is no trading strategy with zero

initial capital, which allows to obtain a non-zero gain without downside

risk (a free lunch) at time 𝑇 . The existence of an equivalent martingale

measure allows to change the underlying measure P, preserving the sets of

zero probability, in a way that the assets have zero return rates.
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Theorem. Equivalent martingale measures exist in a market if and only

if there is no arbitrage opportunities.

In a market without arbitrage opportunities, the price of a contingent

claim 𝑋 such that E
̃︀P|𝑋| <∞ for any ̃︀P ∈ P(P) can be found as

𝒞(𝑋) = sup̃︀P∈P

E
̃︀P𝑋.

Remark. In the case when there is only one equivalent martingale mea-

sure (the case of a complete market), 𝒞(𝑋) = E
̃︀P𝑋. It turns out that a

complete market has a simple structure – the 𝜎-algebra F𝑇 is purely atom-

istic with respect to P and consists of no more that 𝑁𝑇 atoms. Note that in

continuous time, however, there exist examples of complete markets where

F𝑇 is not purely atomistic (e. g. the model of geometric Brownian motion).

The above theorem is referred to as the Fundamental Theorem of Asset

Pricing and the Risk-Neutral Pricing Principle (see e. g. [24, 61]). It con-

stitutes the core of the classical derivatives pricing theory. However it does

not take into account several important features of real markets, which are

necessary to consider when applying the theory in practice. The present the-

sis addresses these issues and develops a model that includes the following

improvements.

1. Transaction costs and portfolio constraints. The act of buying or

selling assets in a real market typically reduces the total wealth of a trader

(due to broker’s commission, differences in bid and offer prices, etc.). As

a result, an investor may need to limit the number of trading operations in

order not to lose too much money on transaction costs. Real markets also set

constraints on admissible portfolios in order to prevent market participants

from using too risky trading strategies. For example, such constraints can

be expressed in a form of a margin requirement, which obliges investors to

choose only those strategies that allow to liquidate their portfolios if prices

move unfavourably.

Both transaction costs and portfolio constraints limit investor abilities,

and thus, generally, increase hedging prices. These aspects have already been
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considered in the literature, but for the most part separately. One can point,

e.g., to the monograph by Kabanov and Safarian [33] discussing transaction

costs, the papers by Jouini, Kallal [32] and Evstigneev, Schürger, Taksar [22]

dealing with portfolio constraints, and the references therein.

It turns out that under the presence of transaction costs and portfolio

constraints, the problem of pricing contingent claims has a solution simi-

lar to the classical model. Namely, the price of a contingent claim can be

found as the supremum of its expected value with respect to consistent price

systems, which are vector analogues of equivalent martingale measures (see

Chapter 1 for details). However, the existence of consistent price systems

in a market with transaction costs and portfolio constraints becomes a con-

siderably difficult question, and, generally, requires conditions stronger than

the absence of arbitrage opportunities. Several stronger conditions have been

introduced in the literature which guarantee the existence of consistent price

systems, thus allowing to price contingent claims. Their formulations can be

found in e.g. [22, 33].

2. Hedging with risk. The classical superhedging condition requires

that the seller of a derivative chooses a trading strategy that covers the

payment with probability one, i. e. without any risk of non-fulfilling her

obligation. However, it may be acceptable for the seller to guarantee the

required amount of payment only with some (high) level of confidence – for

example, in unfavourable outcomes she may use exogenous funds, which is

compensated by a higher gain in favourable outcomes.

This is especially important when the volume of trading is large, so not

the result of every single deal is important, but only the average result of a

large number of them. Weakening the superhedging criterion can possibly

reduce derivatives prices and lead to a potential gain while maintaining an

acceptable level of risk of unfavourable situations.

An approach of hedging with risk, used in the thesis, is based on replac-

ing the superhedging condition with a general principle requiring that the

difference between the required payment and the portfolio used to cover it

belongs to a certain set of acceptable portfolios (the exact formulation will
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be given in Chapter 1). The superhedging condition is a particular case of

this model.

This approach has already been used in the literature. Especially, much

attention has been devoted to hedging with respect to coherent and convex

risk measures (see e. g. the papers [7, 9], where it is called the no good deals

pricing principle).

3. Multimarket trading. The framework developed in the thesis is

capable of modelling a system of interconnected markets associated with

nodes of a given acyclic directed graph. The nodes of the graph represent

different trading sessions that may be related to different moments of time

and/or different asset markets. In particular, the standard model of a single

market can be represented by the graph being the linearly ordered set of

moments of time, while the general case allows to consider the problem of

distributing assets between several markets, which may operate at the same

or different moments of time.

We also consider contracts with payments at arbitrary trading sessions

(not only the terminal ones), which broadens the range of possible financial

instruments. This also makes the model potentially applicable not only in

finance, but in other areas, e.g. it can be used in insurance, where an insurer

receives a premium at time 𝑡 = 0 and needs to manage a portfolio in order

to be able to cover claims occurring randomly.

The above features of real markets have been studied in the literature

for the most part separately. In the thesis a new general model is proposed,

which incorporates all of them. The central result of the first chapter for the

new model is the hedging criterion formulated in terms of consistent price

systems – direct analogues of equivalent martingale measures. We prove their

existence and show that a contract is hedgeable if and only if its value with

respect to any consistent price system is non-negative. In order to obtain

the result, we systematically use the idea of margin requirements which limit

allowed leverage of admissible portfolios. This differs from the standard

approach based on the absence of arbitrage. However, margin requirements

always present in one form or another in any real market, which makes our
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approach fully justified from the applied point of view.

The model is based on the framework of von Neumann – Gale dynamical

systems introduced by von Neumann [68] and Gale [25] for deterministic

models of a growing economy, and later extended by Dynkin, Radner and

their research groups to the stochastic case. A model of a financial market

based on von Neumann – Gale systems was also proposed in the paper [11]

for the case of a discrete probability space (Ω,F ,P) and a linearly ordered

set of moments of time.

In the thesis this framework is extended to financial market models, which

have several important distinctions from models of growing economies.

Optimal trading strategies

In the second chapter the problem of finding trading strategies that max-

imise the utility function of an investor over a period of time is studied.

In the financial literature, problems of this type are commonly referred

to as consumption-investment problems, and there exists a large number of

results in this area. The subject of our research is the optimal investment

problem for the general model proposed in Chapter 1. The goal is to obtain

conditions for the existence of supporting prices, which allow to reduce a

multi-period constrained maximisation problem of investor’s utility function

to a family of single-stage unconstrained problems. Supporting prices play

the role similar to that of Lagrange multipliers.

The problem of utility maximisation and existence of supporting prices

plays a central role in the von Neumann – Gale framework of economic

growth. The setting of the problem and the main results there consist in the

following.

A von Neumann – Gale system is a sequence of pairs of random vectors

(𝑥𝑡, 𝑦𝑡) 𝑡 = 0, 1, . . . , 𝑇 , such that (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 for some given sets 𝒵𝑡, and

𝑥𝑡 6 𝑦𝑡−1. In the financial interpretation, a vector 𝑥𝑡 can be regarded as

a portfolio of assets held before a trading session 𝑡, and 𝑦𝑡 as a portfolio
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obtained during the session. The inequality 𝑥𝑡 6 𝑦𝑡−1 means that there is

no exogenous infusion of assets (but disposal of assets is allowed). The sets

𝒵𝑡 can describe the self-financing condition, portfolio constraints, etc.

In models of economic growth vectors 𝑥𝑡 describe amounts of input com-

modities for a production process with output commodities 𝑦𝑡. The sets 𝒵𝑡

consist of all possible production processes and the condition 𝑥𝑡 6 𝑦𝑡−1 re-

flects the requirement that the input of any production process should not

exceed the output of the previous one.

Suppose that with each set 𝒵𝑡 a real-valued utility function 𝑢𝑡(𝑥𝑡, 𝑦𝑡) is

associated and interpreted as the utility from the production process with

input commodities 𝑥𝑡 and output commodities 𝑦𝑡. Let 𝑥0 be a given vector of

initial resources. Then the problem consists in finding a production process

𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡6𝑇 , represented by a von Neumann – Gale system, such that

𝑥0 = 𝑥0 and which maximises the utility

𝑢(𝜁) :=
𝑇∑︁
𝑡=0

𝑢𝑡(𝑥𝑡, 𝑦𝑡).

This is a constrained maximisation problem of the function 𝑢(𝜁) over

all sequences 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡6𝑇 with (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 satisfying the constraints

𝑥𝑡 6 𝑦𝑡−1. Under some assumptions the solution 𝜁* of the problem exists,

and, moreover, there exist random vectors 𝑝𝑡, 𝑡 = 0, . . . , 𝑇 + 1 such that

𝑢(𝜁*) >
𝑇∑︁
𝑡=0

(︀
𝑢𝑡(𝑥𝑡, 𝑦𝑡) + E[𝑦𝑡𝑝𝑡+1 − 𝑥𝑡𝑝𝑡]

)︀
+ E𝑥0𝑝0

for any sequence (𝑥𝑡, 𝑦𝑡)𝑡6𝑇 with (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡. Thus 𝜁* solves the uncon-

strained problem of maximising the right hand side of the above inequality.

Moreover, in order to maximise the right-hand size it is sufficient to max-

imise each term 𝑢𝑡(𝑥𝑡, 𝑦𝑡) + E[𝑦𝑡𝑝𝑡+1 − 𝑥𝑡𝑝𝑡] independently. Gale [26] noted

the great importance of results of this type by saying that it is “the single

most important tool in modern economic analysis both from the theoretical

and computational point of view”.

The aim of the second chapter is to obtain similar results for our model

of interconnected financial markets. The main mathematical difficulty here
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consists in that in our model portfolios (𝑥𝑡, 𝑦𝑡) may have negative coordi-

nates (corresponding to short sales), unlike commodities vectors in models

of economic growth. The key role in establishing the main results of the

second chapter will be played by the assumption of margin requirements.

The existence of supporting prices will be proved under a condition on the

size of the margin.

Detection of trend changes in asset prices

The third part of the thesis studies statistical methods of change detection

in trends of asset prices. We consider a model, where prices initially rise, but

may start falling at a random (and unknown) moment of time. The aim of

an investor is to detect this change in the prices trend and to sell the asset

as close as possible to its highest price.

It will be assumed that the price of an asset is represented by a geometric

Gaussian random walk 𝑆 = (𝑆𝑡)
𝑇
𝑡=0 defined on a probability space (Ω,F ,P),

whose drift and volatility coefficients may change at an unknown time 𝜃:

𝑆0 > 0, log
𝑆𝑡

𝑆𝑡−1
=

⎧⎨⎩𝜇1 + 𝜎1𝜉𝑡, 𝑡 < 𝜃,

𝜇2 + 𝜎2𝜉𝑡, 𝑡 > 𝜃,
for 𝑡 = 1, 2, . . . , 𝑇,

where 𝜇1, 𝜇2, 𝜎1, 𝜎2 are known parameters, 𝜉𝑡 ∼ N (0, 1) are i.i.d. normal

random variables with zero mean and unit variance, and 𝜃 is the moment of

time when the probabilistic character of the price sequence changes.

In order to model the uncertainty of the moment 𝜃, it will be assumed

that 𝜃 is a random variable defined on (Ω,F ,P), but an investor can observe

only the information included in the filtration F = (F𝑡)
𝑇
𝑡=0, F𝑡 = 𝜎(𝑆𝑢;𝑢 6

𝑡), generated by the price sequence, and cannot observe 𝜃 directly. The

distribution law of 𝜃 is known, and 𝜃 takes values 1, 2, . . . , 𝑇 with known

probabilities 𝑝𝑡 > 0, so that
𝑇∑︀
𝑡=1

𝑝𝑡 6 1. The quantity 𝑝𝑇+1 = 1−
𝑇∑︀
𝑡=1

𝑝𝑡 is the

probability that the change of the parameters does not occur until the final
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time 𝑇 and 𝑝1 is the probability that the logarithmic returns already follow

N (𝜇2, 𝜎2) since the initial moment of time.

By definition, a moment 𝜏 when one can sell the asset should be a stopping

time of the filtration F, which means that {𝜔 : 𝜏(𝜔) 6 𝑡} ∈ F𝑡 for any

0 6 𝑡 6 𝑇 . The notion of a stopping time expresses the idea that the

decision to sell the asset at time 𝑡 should be based only on the information

available from the price history up to time 𝑡, and does not rely on future

prices. The class of all stopping times 𝜏 6 𝑇 of the filtration F is denoted

by M.

The problem we consider consists in maximising the power or logarithmic

utility from selling the asset. Namely, let 𝑈𝛼(𝑥) = 𝛼𝑥𝛼 for 𝛼 ̸= 0 and

𝑈0(𝑥) = log 𝑥. For an arbitrary 𝛼 ∈ R we consider the optimal stopping

problem

𝑉𝛼 = sup
𝜏∈M

E𝑈𝛼(𝑆𝜏 ).

The problem consists in finding the value 𝑉𝛼, which is the maximum expected

utility one can obtain from selling the asset, and finding the stopping time

𝜏 *𝛼 at which the supremum is attained (we show that it exists).

The study of methods of detecting changes in probabilistic structure

of random sequences and processes (called disorder detection problems or

changepoint detection problems) began in the 1950-1960s in the papers by

E. Page, S. Roberts, A.N. Shiryaev and others (see [45, 46, 49, 57–59]); the

method of control charts proposed by W.A. Shewhart in the 1920s [55] is

also worth mentioning.

A financial application of changepoint detection methods was considered

in the paper [2] by M. Beibel and H.R. Lerche, who studied the problem

of choosing the optimal time to sell the asset in continuous time, when the

asset price process 𝑆 = (𝑆𝑡)𝑡>0 is modelled by a geometric Brownian motion

whose drift changes at time 𝜃:

𝑑𝑆𝑡 = 𝑆𝑡[𝜇1I(𝑡 < 𝜃) + 𝜇2I(𝑡 > 𝜃)]𝑑𝑡+ 𝜎𝑆𝑡𝑑𝐵𝑡, 𝑆0 > 0,

where 𝐵 = (𝐵𝑡)𝑡>0 is a standard Brownian motion on a probability space

(Ω,F ,P), and 𝜇1, 𝜇2, 𝜎 are known real parameters. The paper [2] assumes
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that 𝜃 is an exponentially distributed random variable with a known param-

eter 𝜆 > 0 and is independent of 𝐵. An investor looks for the stopping time

𝜏 * of the filtration generated by the process 𝑆 that maximises the expected

gain E𝑆𝜏 (the time horizon in the problem is 𝑇 = ∞, i. e. 𝜏 can be un-

bounded). By changing the parameters 𝜇1, 𝜇2, 𝜎 one can solve the problem

of maximising E𝑆𝛼
𝜏 for any 𝛼 except 𝛼 = 0.

Beibel and Lerche show that if 𝜇1, 𝜇2, 𝜎 satisfy some relation, then the

optimal stopping time 𝜏 * can be found as the first moment of time when the

posterior probability process 𝜋 = (𝜋𝑡)𝑡>0, 𝜋𝑡 = P(𝜃 6 𝑡 | F𝑡), exceeds some

level 𝐴 = 𝐴(𝜇1, 𝜇2, 𝜎, 𝜆):

𝜏 * = inf{𝑡 > 0 : 𝜋𝑡 > 𝐴}.

In other words, the optimal stopping time has a very clear interpretation:

one needs to sell the asset as soon as the posterior probability that the change

has happened exceeds a certain threshold. An explicit representation of 𝜋𝑡

through the observable process 𝑆𝑡 is available (see e. g. [47, Section 22]).

In the paper [14] the conditions on 𝜇1, 𝜇2, 𝜎 were relaxed and it was

shown that the result holds for all possible values of the parameters (except

some trivial cases). Also, the optimal threshold was found explicitly as

𝐴 = 𝐴′/(1 + 𝐴′), where the constant 𝐴′ = 𝐴′(𝜇1, 𝜇2, 𝜎, 𝜆) is the unique

positive root of the (algebraic) equation

2

∫︁ ∞

0

𝑒−𝑎𝑡𝑡(𝑏+𝛾−3)/2(1 + 𝐴′𝑡)𝛾−𝑏+1)/2𝑑𝑡

= (𝛾 − 𝑏+ 1)(1 + 𝐴′)

∫︁ ∞

0

𝑒−𝑎𝑡𝑡(𝑏+𝛾−1)/2(1 + 𝐴′𝑡)(𝛾−𝑏−1)/2𝑑𝑡

with the parameters

𝑎 =
2𝜆

𝜈2
, 𝑏 =

2

𝜈

(︂
𝜆

𝜈
− 𝜎

)︂
, 𝛾 =

√︀
(𝑏− 1)2 + 4𝑐,

where

𝜈 =
𝜇2 − 𝜇1

𝜎
, 𝑐 =

2(𝜆− 𝜇2)

𝜈2
.

The paper [56] studied the problem of maximising the logarithmic utility
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from selling the asset with finite time horizon 𝑇 (but still assuming that 𝜃

is exponentially distributed, so the parameters do not change until the end

of the time horizon with positive probability). The solution was based on

an earlier result of the paper [28]. It was shown that the optimal stopping

time can be expressed as the first moment of time when 𝜋𝑡 exceeds some

time-dependent threshold:

𝜋𝑡 = inf{𝑡 > 0 : 𝜋𝑡 > 𝑎*(𝑡)},

where 𝑎*(𝑡) is a function on [0, 𝑇 ], dependent on 𝜆, 𝜇1, 𝜇2, 𝜎. The authors

showed that it can be found as a solution of some nonlinear integral equation.

They also briefly discussed the optimal stopping problem for the linear utility

function with a finite time horizon, and reduced it to some two-dimensional

optimal stopping problem for the process 𝜋𝑡, but did not provide its explicit

solution.

The problem on a finite time horizon was solved in the paper [69] by

M.V. Zhitlukhin and A.N. Shiryaev for the both logarithmic and linear

utility functions, provided that 𝜃 is uniformly distributed on [0, 𝑇 ] (however,

the solution can be generalised to a wide class of prior distributions of 𝜃). In

each problem, the optimal stopping time can be expressed as the first time

when the value of 𝜋𝑡 exceeds some function ̃︀𝑎*(𝑡) characterised by a certain

integral equation. These equations can be solved numerically by “backward

induction” as demonstrated in the paper.

This result was used by A.N. Shiryaev, M.V. Zhitlukhin and W.T.

Ziemba in the research [66] on stock prices bubbles of Internet related com-

panies. The method of changepoint detection was applied to the daily closing

prices of Apple Inc. in 2009–2012 and the daily closing values of NASDAQ-

100 index in 1994–2002. These two assets had spectacular runs from their

bottom values and dramatic falls after reaching the top values, thus being

good candidates to be modelled by processes with changepoints in trends.

For specific dates of entering the market, the method provided exit points at

approximately 75% of the maximum value of the NASDAQ-100 index, and

90% of the maximum price of Apple Inc. stock.
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The aim of the third chapter of the thesis is to solve the optimal stopping

problem for a geometric Gaussian random walk with a changepoint in dis-

crete time and a finite time horizon for an arbitrary prior distribution of 𝜃.

It will be shown that the optimal stopping time can be expressed as the first

moment of time when the sequence of the Shiryaev–Roberts statistic (which

is obtained from the posterior probability sequence by a simple transforma-

tion) exceeds some time-dependent level. This result is similar to the results

available in the literature for the case of continuous time. However it allows

to consider any prior distribution of 𝜃 (not only exponential or uniform) and

can be used in models where also the volatility coefficient 𝜎 changes.

A backward induction algorithm for computing the optimal stopping level

is described in the chapter. Using it, we present numerical simulations of

random sequences with changepoints and obtain the corresponding optimal

stopping times.
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Chapter 1

Multimarket hedging with risk

The results of this chapter extend the classical theory of asset pricing and

hedging in several directions. We develop a general model including transac-

tion costs and portfolio constraints and consider hedging with risk, which is

“softer” than the classical superreplication approach. These aspects of the

modelling of asset markets have already been considered in the literature,

but for the most part separately. One can point, e.g., to the monograph by

Kabanov and Safarian [33] discussing transaction costs, the papers by Jouini

and Kallal [32] and Evstigneev, Schürger and Taksar [22] dealing with portfo-

lio constraints and the studies by Cochrane and Saa-Requejo [9] and Cherny

[7] involving hedging with risk. However, up to now no general model re-

flecting all these features of real financial markets has been proposed.

Another novel aspect of this study is that, in contrast with the conven-

tional theory, we consider asset pricing and hedging in a system of intercon-

nected markets. These markets (functioning at certain moments of discrete

time) are associated with nodes of a given acyclic directed graph. The model

involves stochastic control of random fields on directed graphs. Control prob-

lems of this kind were considered in the context of modelling economies with

locally interacting agents in the series of papers by Evstigneev and Taksar

[16–20].

In the case of a single market – when the graph is a linearly ordered set

of moments of time – the model extends the one proposed by Dempster,

Evstigneev and Taksar [11]. The approach of [11] was inspired by a paral-

lelism between dynamic securities market models and models of economic

growth. The underlying mathematical structures in both modelling frame-

works are related to von Neumann-Gale dynamical systems (von Neumann

[68], Gale [25]) characterised by certain properties of convexity and homo-
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geneity. This parallelism served as a conceptual guideline for developing the

model and obtaining the results.

The main results of the chapter provide general hedging criteria stated

in terms of consistent price systems, generalising the notion of an equivalent

martingale measure. Existence theorems for such price systems are counter-

parts of various versions of the well-known Fundamental Theorem of Asset

Pricing (Harrison, Kreps, Pliska and others). However, the assumptions we

impose to obtain hedging criteria are substantially distinct from the standard

ones. We systematically use the idea of margin requirements on admissible

portfolios, setting limits for the allowed leverage. Such requirements are

present in one form or another in all real financial markets. Being fully jus-

tified from the applied point of view, they make it possible to substantially

broaden the frontiers of the theory.

The chapter is organised as follows. In Section 1.1 we introduce the gen-

eral model. In Section 1.2 we state and prove the main results. Section 1.3

contains examples of general hedging conditions, and Section 1.4 explains the

connection between consistent price systems and equivalent martingale mea-

sures. By using the general results obtained, we study a specialised model

of a stock market in Section 1.5. Several auxiliary results from functional

analysis are assembled in Sections 1.6 and 1.7.

A shortened version of this chapter was published in the paper [23].

1.1 The model of interconnected markets and the hedging

principle

Let (Ω,F ,P) be a probability space and 𝐺 a directed acyclic graph with

a finite set of nodes 𝒯 . The nodes of the graph represent different trading

sessions that may be related to different moments of time and/or different

asset markets. With each 𝑡 ∈ 𝒯 a 𝜎-algebra F𝑡 ⊂ F is associated describing

random factors that might affect the trading session 𝑡.

A measurable space (Θ,J , 𝜇) with a finite measure 𝜇 is given, whose
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points represent all available assets. If Θ is infinite, the model reflects the

idea of a “large” asset market (cf. Hildenbrand [30]). For each 𝑡 ∈ 𝒯 , a real-

valued (P⊗ 𝜇)-integrable (F𝑡 ⊗ J )-measurable function 𝑥 : Ω× Θ → R is

interpreted as a portfolio of assets that can be bought or sold in the trading

session 𝑡. The space of all (equivalence classes of) such functions with the

norm ‖𝑥‖ =
∫︀
|𝑥|𝑑(P⊗ 𝜇) is denoted by 𝐿1

𝑡 (Ω×Θ) or simply 𝐿1
𝑡 . The value

𝑥(𝜔, 𝜃) of a function 𝑥 represents the number of “physical units” of asset 𝜃

in the portfolio 𝑥. Positive values 𝑥(𝜔, 𝜃) are referred to as long positions,

while negative ones as short positions of the portfolio.

If 𝜉 is an integrable real-valued measurable function defined on some

measure space, by E𝜉 we denote the value of its integral over the whole space

(when the measure is a probability measure, E𝜉 is equal to the expectation

of 𝜉).

For a subset 𝑇 ⊂ 𝒯 we denote by 𝐿1
𝑇 (Ω×Θ), or simply 𝐿1

𝑇 , the space of

functions 𝑦 : 𝑇 ×Ω×Θ → 𝑅 with finite norm ‖𝑦‖ =
∑︀
𝑡∈𝑇

∫︀
|𝑦(𝑡, 𝜔, 𝜃)|𝑑(P⊗𝜇).

Where it is convenient, we represent such functions as families 𝑦 = (𝑦𝑡)𝑡∈𝑇

of functions 𝑦𝑡(𝜔, 𝜃) = 𝑦(𝑡, 𝜔, 𝜃).

The symbols 𝒯𝑡− and 𝒯𝑡+ will be used to denote, respectively, the sets of

all direct predecessors and successors of a node 𝑡 ∈ 𝒯 , and 𝒯−, 𝒯+ will stand,

respectively, for the set of all nodes having at least one successor and the

set of all nodes having at least one predecessor (so that 𝒯− =
⋃︀
𝑡∈𝒯

𝒯𝑡− and

𝒯+ =
⋃︀
𝑡∈𝒯

𝒯𝑡+). For the convenience of further notation we define 𝐿1
𝑡+ = 𝐿1

𝒯𝑡+

for each 𝑡 ∈ 𝒯−, and 𝐿1
𝑡− = 𝐿1

𝒯𝑡− for each 𝑡 ∈ 𝒯+.
In a trading session 𝑡 ∈ 𝒯− one can buy and sell assets and distribute

them between trading sessions 𝑢 ∈ 𝒯𝑡+. This distribution is specified by a

set of portfolios 𝑦𝑡 = (𝑦𝑡,𝑢)𝑢∈𝒯𝑡+ ∈ 𝐿1
𝑡+, where 𝑦𝑡,𝑢 is the portfolio delivered

to the session 𝑢.

Trading constraints in the model are defined by some given (convex)

cones 𝒵𝑡 ⊂ 𝐿1
𝑡 ⊗ 𝐿1

𝑡+, 𝑡 ∈ 𝒯−. A trading strategy 𝜁 is a family of functions

𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯− such that

(𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 for each 𝑡 ∈ 𝒯−.
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Each function 𝑥𝑡 represents the portfolio held before one buys and sells assets

in the session 𝑡. For 𝑡 ∈ 𝒯−, the function 𝑦𝑡 = (𝑦𝑡,𝑢)𝑢∈𝒯𝑡+ specifies the

distribution of assets to the sessions 𝑢 ∈ 𝒯𝑡+.
Let 𝑦𝑡− =

∑︀
𝑢∈𝒯𝑡−

𝑦𝑢,𝑡 denote the portfolio of assets delivered to a trading

session 𝑡 from other sessions (𝑦𝑡− := 0 if 𝑡 is a source, i.e. has no predecessors).

In each session 𝑡 ∈ 𝒯 , the portfolio 𝑦𝑡− − 𝑥𝑡 can be used for the hedging of a

contract (we define 𝑥𝑡 = 0 if 𝑡 is a sink, i.e. 𝑡 /∈ 𝒯−). By definition, a contract

𝛾 is a family of portfolios

𝛾 = (𝑐𝑡)𝑡∈𝒯 , 𝑐𝑡 ∈ 𝐿1
𝑡 ,

where 𝑐𝑡 stands for the portfolio which has to be delivered – according to

the contract – at the trading session 𝑡. The value of 𝑐𝑡(𝜔, 𝜃) can be negative;

in this case the corresponding amount of asset 𝜃 is received rather than

delivered. The notion of a contract encompasses contingent claims, derivative

securities, insurance contracts, etc.

Assume that a non-empty closed cone 𝒜 ⊂ 𝐿1
𝒯 is given. We say that a

trading strategy 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯− hedges a contract 𝛾 = (𝑐𝑡)𝑡∈𝒯 if

(𝑎𝑡)𝑡∈𝒯 ∈ 𝒜, where 𝑎𝑡 = 𝑦𝑡− − 𝑥𝑡 − 𝑐𝑡. (1.1)

Each 𝑎𝑡 represents the difference between the portfolio 𝑦𝑡− − 𝑥𝑡 delivered at

the session 𝑡 by the strategy 𝜁 and the portfolio 𝑐𝑡 that must be delivered

according to the contract 𝛾. The cone 𝒜 is interpreted as the set of all

risk-acceptable families of portfolios. If 𝒜 is the cone of all non-negative

functions, then 𝜁 is said to superhedge (superreplicate) 𝛾. General cones 𝒜
make it possible to consider hedging with risk.

A contract is called hedgeable if there exists a trading strategy hedging it.

The main aim of our study is to characterise the class of hedgeable contracts.

Let 𝐿∞
𝑡 = 𝐿∞

𝑡 (Ω×Θ) denote the space of all essentially bounded F𝑡⊗J -

measurable functions 𝑝 : Ω×Θ → R, and 𝒜+ = 𝒜∖(−𝒜) stand for the set of

strictly risk-acceptable families of portfolios (if 𝛼 ∈ 𝒜+, then 𝛼 is acceptable

but −𝛼 is not acceptable).

The characterisation of hedgeable contracts will be given in terms of (mar-
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ket) consistent price systems that are, by definition, families 𝜋 = (𝑝𝑡)𝑡∈𝒯 of

functions 𝑝𝑡 ∈ 𝐿∞
𝑡 (Ω×Θ) satisfying the properties

E𝑥𝑡𝑝𝑡 >
∑︁
𝑢∈𝒯𝑡+

E𝑦𝑡,𝑢𝑝𝑢 for each (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 and 𝑡 ∈ 𝒯−, (1.2)

∑︁
𝑡∈𝒯

E𝑎𝑡𝑝𝑡 > 0 for each 𝛼 = (𝑎𝑡)𝑡∈𝒯 ∈ 𝒜+. (1.3)

Property (1.2) means that it is impossible to obtain strictly positive ex-

pected profit E(
∑︀

𝑢∈𝒯𝑡+
𝑦𝑡,𝑢𝑝𝑢 − 𝑥𝑡𝑝𝑡), which is computed in terms of the prices

𝑝𝑡, in the course of trading, as long as the trading constraints are satisfied.

Condition (1.3) is a non-degeneracy assumption, saying that the expected

value of any strictly risk-acceptable family of portfolios is strictly positive.

Throughout the chapter, we suppose that the cone 𝒜 satisfies the follow-

ing assumption.

Assumption (A). 𝒜+ ̸= ∅ and there exists 𝜋 = (𝑝𝑡)𝑡∈𝒯 , 𝑝𝑡 ∈ 𝐿∞
𝑡 ,

satisfying (1.3).

The assumption states that there exists an 𝐿1
𝒯 -continuous linear func-

tional strictly positive on 𝒜+ ̸= ∅. Its existence for any closed 𝒜 with

𝒜+ ̸= ∅ can be established, e.g., when 𝐿1
𝒯 (Ω× Θ) is separable (see Remark

1.6 in Section 1.6).

Our main results, given in the next section, provide conditions guaran-

teeing that the following principle holds.

Hedging principle. The class of consistent price systems is non-empty,

and a contract (𝑐𝑡)𝑡∈𝒯 is hedgeable if and only if
∑︀
𝑡∈𝒯

E𝑐𝑡𝑝𝑡 6 0 for all consis-

tent price systems (𝑝𝑡)𝑡∈𝒯 .

The hedging principle states that a contract is hedgeable if and only if its

value in any consistent price system is non-positive. This principle extends

various hedging (and pricing) results available in the literature (cf. e.g. [61,

Ch. V.5, VI.1], [33, Ch. 2.1, 3.1–3.3]).

Note that unlike the classical frictionless asset pricing and hedging theory,

we do not aim to find the price of a contract – in the general model it may be

unclear what can be called the price of a contract (for example, there may be
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no “basic” asset in terms of which the price can be expressed, or, due to the

possible presence of transaction costs, a portfolio may have different bid and

offer prices). However, if one chooses a particular method of computing the

price of a portfolio, then the price of a contract can be found as the infimum

over the set of the prices of the initial portfolios of trading strategies hedging

this contract. Consequently, the problem of establishing the validity of the

hedging principle can be considered to be more general than the problem of

finding contracts prices.

We conclude this section by several remarks about the properties of con-

sistent price systems.

Remark 1.1. It is useful to observe that condition (1.3) implies that

the price of any risk-acceptable family of portfolios is non-negative with

respect to any consistent price system, i. e. E𝛼𝜋 :=
∑︀
𝑡∈𝒯

E𝑎𝑡𝑝𝑡 > 0 for any

consistent price system 𝜋 = (𝑝𝑡)𝑡∈𝒯 and any 𝛼 = (𝑎𝑡)𝑡∈𝒯 ∈ 𝒜. Indeed,

suppose the contrary: E𝛼𝜋 < 0 for some 𝜋 and 𝛼. Consider any 𝛼′ ∈ 𝒜+.

Then 𝑟𝛼+ 𝛼′ ∈ 𝒜+ for any real 𝑟 > 0, while E(𝑟𝛼+ 𝛼′)𝜋 < 0 for all 𝑟 large

enough, which contradicts condition (1.3).

Remark 1.2. The interpretation of a consistent price system (𝑝𝑡)𝑡∈𝒯 as a

system of prices is justified if each 𝑝𝑡 is strictly positive (𝑝𝑡 > 0, P⊗𝜇-a.s.). A
simple sufficient condition for that is when the cone 𝒜 contains all sequences

(𝑎𝑡)𝑡∈𝒯 of non-negative functions 𝑎𝑡 and does not contain any sequence of

non-positive 𝑎𝑡 except the zero one. Another mild condition is provided by

the following proposition.

Proposition 1.1. Each 𝑝𝑡 is strictly positive if the following two condi-

tions hold:

(a) for any 𝑡 ∈ 𝒯− and 0 6 𝑥𝑡 ∈ 𝐿1
𝑡 , P(𝑥𝑡 ̸= 0) > 0, there exists 0 6 𝑦𝑡 ∈

𝐿1
𝒯𝑡+, P(𝑦𝑡 ̸= 0) > 0, such that (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡;

(b) for any 𝑡 ∈ 𝒯 ∖ 𝒯− and 0 6 𝑎𝑡 ∈ 𝐿1
𝑡 , P(𝑎𝑡 ̸= 0) > 0, we have (𝑎′𝑢)𝑢∈𝒯 ∈

𝒜+ if 𝑎′𝑡 = 𝑎𝑡 and 𝑎
′
𝑢 = 0 for 𝑢 ̸= 𝑡.

In other words, (a) means that it is possible to distribute a non-negative

non-zero portfolio 𝑥𝑡 into non-negative portfolios 𝑦𝑡,𝑢 at least one of which
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is non-zero; and (b) means that a sequence of portfolios with only one non-

zero portfolio 𝑎𝑡, where 𝑡 is a sink node, is strictly risk-acceptable if 𝑎𝑡 is

non-negative.

Proof. Denote by 𝒯 𝑘 the set {𝑡 ∈ 𝒯 : 𝜅(𝑡) = 𝐾 − 𝑘}, where 𝐾 is the

maximal length of a directed path in the graph and 𝜅(𝑡) is the maximal

length of a directed path emanating from a node 𝑡. The sets 𝒯 0, 𝒯 1, . . . , 𝒯 𝐾

form a partition of 𝒯 such that if there is a path from 𝑡 ∈ 𝒯 𝑘 to 𝑢 ∈ 𝒯 𝑛,

then 𝑘 < 𝑛. Also, note that 𝒯 − = 𝒯 0 ∪ 𝒯 1 ∪ . . . ∪ 𝒯 𝐾−1.

The proposition is proved by induction over 𝑘 = 𝐾,𝐾−1, . . . , 0. For any

𝑡 ∈ 𝒯 𝐾 and 𝑎𝑡 as in (b), from (1.3) we have E𝑎𝑡𝑝𝑡 > 0, so 𝑝𝑡 > 0. Suppose

𝑝𝑠 > 0 for any 𝑠 ∈
⋃︀
𝑛>𝑘

𝒯 𝑛. Then for arbitrary 𝑡 ∈ 𝒯 𝑘−1, according to (a), for

any 0 6 𝑥𝑡 ∈ 𝐿1
𝑡 , P(𝑥𝑡 ̸= 0) > 0, we can find 0 6 𝑦𝑡 ∈ 𝐿1

𝒯𝑡+ such that P(𝑦𝑡 ̸=
0) > 0 and (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡. Inequality (1.2) implies E𝑥𝑡𝑝𝑡 >

∑︀
𝑢∈𝒯𝑡+

E𝑦𝑡,𝑢𝑝𝑢 > 0,

and hence 𝑝𝑡 > 0.

Remark 1.3. Some comments on the relations between the above frame-

work and the von Neumann – Gale model of economic growth [1, 21, 25, 68]

are in order.

In the latter, elements (𝑥𝑡, 𝑦𝑡) in the cones 𝒵𝑡, 𝑡 = 1, 2, . . ., are interpreted

as feasible production processes, with input 𝑥𝑡 and output 𝑦𝑡. Coordinates of

𝑥𝑡, 𝑦𝑡 represent amounts of commodities. The cones 𝒵𝑡 are termed technology

sets. The counterparts of contracts in that context are consumption plans

(𝑐𝑡)𝑡. Sequences of 𝑧𝑡 = (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, 𝑡 = 1, 2, . . ., are called production plans.

The inequalities 𝑦𝑡−1 − 𝑥𝑡 > 𝑐𝑡, 𝑡 = 1, 2, . . . (analogous to the hedging condi-

tion (1.1)) mean that the production plan (𝑧𝑡) guarantees the consumption

of 𝑐𝑡 at each date 𝑡. Consistent price systems are analogues of sequences of

competitive prices in the von Neumann – Gale model.
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1.2 Conditions for the validity of the hedging principle

This section contains the formulations and the proofs of the general results

related to the model described in the previous section.

We will use the notation 𝑥+ = max{𝑥, 0}, 𝑥− = −min{𝑥, 0}. We write

“a.s.” if some property holds for P⊗ 𝜇-almost all (𝜔, 𝜃). We say that a set

𝒜 ⊂ 𝐿1 is closed with respect to 𝐿1-bounded a.s. convergence if for any

sequence 𝛼𝑖 = (𝑎𝑖𝑡)𝑡∈𝒯 ∈ 𝒜 such that sup𝑖 ‖𝛼𝑖‖ < ∞ and 𝛼𝑖 → 𝛼 a.s., we

have 𝛼 ∈ 𝒜. In particular, this implies the closedness of 𝒜 in 𝐿1 because

from any sequence converging in 𝐿1 it is possible to extract a subsequence

converging with probability one.

Theorem 1.1. The hedging principle holds if the cones 𝒜 and 𝒵𝑡, 𝑡 ∈
𝒯−, are closed with respect to 𝐿1-bounded a.s. convergence and there exist

functions 𝑠1𝑡 ∈ 𝐿∞
𝑡 , 𝑠2𝑡,𝑢 ∈ 𝐿∞

𝑡 , 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+, with values in [𝑠, 𝑠], where

𝑠 > 0, 𝑠 > 1, and a constant 0 6 𝑚 < 1 such that for all 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+,
(𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, and (𝑎𝑟)𝑟∈𝒯 ∈ 𝒜, the following conditions are satisfied:

(a) E𝑥𝑡𝑠
1
𝑡 > E𝑦𝑡,𝑢𝑠

2
𝑡,𝑢;

(b) 𝑚E𝑦+𝑡,𝑢𝑠
2
𝑡,𝑢 > E𝑦−𝑡,𝑢𝑠

2
𝑡,𝑢;

(c) 𝑚E𝑥+𝑡 𝑠
1
𝑡 > E𝑥−𝑡 𝑠

1
𝑡 ;

(d) E𝑎𝑡𝑠
1
𝑡 > 0.

The functions 𝑠1𝑡 (𝜔, 𝜃) and 𝑠
2
𝑡,𝑢(𝜔, 𝜃) can be interpreted as some systems of

asset prices. Condition (a) means that in the course of trading the portfolio

value cannot increase “too much”, at least on average. In specific examples,

this assumption follows from the condition of self-financing. Conditions (b)

and (c) express a margin requirement, saying that the total short position

of any admissible portfolio should not exceed on average 𝑚 times the total

long position (cf. e.g. [29]). Condition (d) states that the expectation of the

value (in terms of the price system 𝑠1𝑡 ) of any portfolio in a risk-acceptable

family is non-negative.

The proof of the theorem is based on a lemma. Below we denote by ℋ
the set of all hedgeable contracts.
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Lemma 1.1. For any 𝜋 = (𝑝𝑡)𝑡∈𝒯 , 𝑝𝑡 ∈ 𝐿∞
𝑡 , such that E𝛼𝜋 > 0 for every

𝛼 ∈ 𝒜+, the following conditions are equivalent:

(i) 𝜋 is a consistent price system;

(ii) E𝛾𝜋 6 0 for any contract 𝛾 ∈ ℋ.

Proof. (i)⇒(ii). Suppose 𝛾 = (𝑐𝑡)𝑡∈𝒯 ∈ ℋ and consider a trading strat-

egy (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 − hedging the contract 𝛾.

Then (𝑎𝑡)𝑡∈𝒯 ∈ 𝒜, where 𝑎𝑡 = 𝑦𝑡− − 𝑥𝑡 − 𝑐𝑡 (recall that 𝑦𝑡− := 0 if 𝑡 is a

source and 𝑥𝑡 := 0 if 𝑡 is a sink), and so the following formula is valid:

0 6
∑︁
𝑡∈𝒯

E𝑎𝑡𝑝𝑡 =
∑︁
𝑡∈𝒯

E

[︂ ∑︁
𝑢∈𝒯𝑡−

𝑦𝑢,𝑡𝑝𝑡 − 𝑥𝑡𝑝𝑡

]︂
−
∑︁
𝑡∈𝒯

𝑐𝑡𝑝𝑡

=
∑︁
𝑡∈𝒯−

E

[︂ ∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢𝑝𝑢 − 𝑥𝑡𝑝𝑡

]︂
−

∑︁
𝑡∈𝒯

𝑐𝑡𝑝𝑡 6 −
∑︁
𝑡∈𝒯

E𝑐𝑡𝑝𝑡,

where we put 𝑦𝑢,𝑡 := 0 if 𝒯𝑡− = ∅, i. e. 𝑡 is a source node. In the above chain

of relations, the first inequality holds by virtue of (1.3) and Remark 1.1,

the second equality obtains by changing the order of summation (and inter-

changing ”𝑡” and ”𝑢”),∑︁
𝑡∈𝒯

∑︁
𝑢∈𝒯𝑡−

E𝑦𝑢,𝑡𝑝𝑡 =
∑︁
𝑢∈𝒯−

∑︁
𝑡∈𝒯𝑢+

E𝑦𝑢,𝑡𝑝𝑡 =
∑︁
𝑡∈𝒯−

∑︁
𝑢∈𝒯𝑡+

E𝑦𝑡,𝑢𝑝𝑢,

and the last inequality follows from (1.2). Consequently, (ii) holds.

(ii)⇒(i). Fix 𝑡 ∈ 𝒯− and suppose (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 for some arbitrary (𝑥𝑡, 𝑦𝑡),

where 𝑦𝑡 = (𝑦𝑡,𝑢)𝑢∈𝒯𝑡+.

Consider the trading strategy 𝜁 ′ = (𝑥′𝑡, 𝑦
′
𝑡)𝑡∈𝒯− with 𝑥′𝑢 = 𝑦′𝑢 = 0 for 𝑢 ̸= 𝑡

and 𝑥′𝑡 = 𝑥𝑡, 𝑦
′
𝑡 = 𝑦𝑡. Define a contract 𝛾 = (𝑐𝑡)𝑡∈𝒯 by

𝑐𝑡 = −𝑥𝑡, 𝑐𝑢 = 𝑦𝑡,𝑢 for 𝑢 ∈ 𝒯𝑡+, 𝑐𝑢 = 0 for 𝑢 /∈ {𝑡} ∪ 𝒯𝑡+.

Then we have 𝑦′𝑣− − 𝑥′𝑣 − 𝑐𝑣 = 0 for all 𝑣 ∈ 𝒯 . Indeed, for 𝑣 = 𝑡, we have

𝑦′𝑡− − 𝑥′𝑣 − 𝑐𝑣 = 0 − 𝑥𝑡 + 𝑥𝑡 = 0. If 𝑣 = 𝑢 ∈ 𝒯𝑡+, then 𝑦′𝑣− − 𝑥′𝑣 − 𝑐𝑣 =

𝑦𝑡,𝑢 − 0 − 𝑦𝑡,𝑢 = 0. If 𝑣 ̸= 𝑡 and 𝑣 /∈ 𝒯𝑡+, then 𝑦′𝑣− = 𝑥′𝑣 = 𝑐𝑣 = 0.
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Consequently, 𝜁 ′ hedges 𝛾, and so 𝛾 ∈ ℋ. By virtue of (ii), we have

0 >
∑︁
𝑣∈𝒯

E𝑐𝑣𝑝𝑣 = −E𝑥𝑡𝑝𝑡 +
∑︁
𝑢∈𝒯𝑡+

E𝑦𝑡,𝑢𝑝𝑢,

which implies that 𝜋 is a consistent price system.

Proof of Theorem 1.1. In order to prove the theorem, we first show

that ℋ is closed in 𝐿1
𝒯 and ℋ ∩ 𝒜+ = ∅, and then apply a version of the

Kreps-Yan theorem and its corollary (Propositions 1.4 and 1.5 in Section 1.6)

to the cones ℋ and 𝒜.

Step 1. Let us show that there exists a constant 𝐶 such that for any

(𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+, it holds that

‖𝑥𝑡‖ 6 𝐶E𝑥𝑡𝑠
1
𝑡 and ‖𝑦𝑡,𝑢‖ 6 𝐶‖𝑥𝑡‖.

Define ̃︀𝐶 = (1 +𝑚)/(1−𝑚). Then we have

̃︀𝐶E𝑥𝑡𝑠1𝑡 = ̃︀𝐶[︂ 1̃︀𝐶 · E𝑥+𝑡 𝑠1𝑡 +
(︂
1− 1̃︀𝐶

)︂
· E𝑥+𝑡 𝑠1𝑡 − E𝑥−𝑡 𝑠

1
𝑡

]︂
> ̃︀𝐶[︂ 1̃︀𝐶 · E𝑥+𝑡 𝑠1𝑡 +

(︂
1

𝑚

(︂
1− 1̃︀𝐶

)︂
− 1

)︂
· E𝑥−𝑡 𝑠1𝑡

]︂
> E𝑥+𝑡 𝑠

1
𝑡 + E𝑥−𝑡 𝑠

1
𝑡 = ‖𝑥𝑡𝑠1𝑡‖ = E|𝑥𝑡||𝑠1𝑡 |

> ‖𝑥𝑡‖𝑠,

(1.4)

where the first inequality follows from the fact that E𝑥+𝑡 𝑠
1
𝑡 ≥ 𝑚−1E𝑥−𝑡 𝑠

1
𝑡

according to (c), the second holds because ̃︀𝐶((1− 1/ ̃︀𝐶)/𝑚− 1) = 1, and the

last is valid because 𝑠1𝑡 ≥ 𝑠.

Further, we have

𝑠‖𝑦𝑡,𝑢‖ 6 ̃︀𝐶E𝑦𝑡,𝑢𝑠2𝑡,𝑢 6 ̃︀𝐶E𝑥𝑡𝑠1𝑡 ≤ ̃︀𝐶‖𝑥𝑡𝑠1𝑡‖ ≤ ̃︀𝐶‖𝑥𝑡‖𝑠,
where the first inequality is proved similarly to the one for 𝑥𝑡 (replace in the

above argument 𝑥𝑡 by 𝑦𝑡,𝑢, 𝑠
1
𝑡 by 𝑠2𝑡,𝑢 and use (b) instead of (c)), and the

second inequality follows from (a). Consequently, the sought-for constant

𝐶 can be defined as

𝐶 =
̃︀𝐶 · 𝑠
𝑠

.
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Step 2. Let us prove that ℋ is closed in 𝐿1
𝒯 . Consider a sequence of

hedgeable contracts 𝛾𝑖 = (𝑐𝑖𝑡)𝑡∈𝒯 ∈ ℋ, 𝑖 = 1, 2, . . ., such that 𝛾𝑖 → 𝛾 in 𝐿1
𝒯

as 𝑖→ ∞, where 𝛾 = (𝑐𝑡)𝑡∈𝒯 . We have to show 𝛾 ∈ ℋ.

Let 𝒯 𝑘 = {𝑡 ∈ 𝒯 : 𝜅(𝑡) = 𝐾 − 𝑘} be the sets introduced in the proof of

Proposition 1.1 (i. e. 𝐾 denotes the maximal length of a directed path in the

graph and 𝜅(𝑡) is the maximal length of a directed path emanating from 𝑡).

Let 𝜁 𝑖 = (𝑥𝑖𝑡, 𝑦
𝑖
𝑡)𝑡∈𝒯− be trading strategies hedging 𝛾𝑖. We will prove the

following assertion:

sup
𝑖

‖𝑥𝑖𝑡‖ <∞ and sup
𝑖

‖𝑦𝑖𝑡,𝑢‖ <∞, 𝑢 ∈ 𝒯𝑡+, (1.5)

for each 𝑡 ∈ 𝒯−.
To this end we will prove by induction with respect to 𝑘 = 0, . . . , 𝐾 − 1

that (1.5) is valid for all 𝑡 ∈ 𝒯 𝑘. We first note that if sup𝑖 ‖𝑦𝑖𝑡−‖ < ∞
for some node 𝑡 of the graph, then (1.5) is true for this node. Indeed, put

𝑎𝑖𝑡 = 𝑦𝑖𝑡− − 𝑐𝑖𝑡 − 𝑥𝑖𝑡. Then (𝑎𝑖𝑡)𝑡∈𝒯 ∈ 𝒜 because 𝜁 𝑖 hedges 𝛾𝑖, and so E𝑎𝑖𝑡𝑠
1
𝑡 > 0

by virtue of (d). Therefore

‖𝑥𝑖𝑡‖ 6 𝐶E𝑥𝑖𝑡𝑠
1
𝑡 = 𝐶E(𝑦𝑖𝑡− − 𝑐𝑖𝑡)𝑠

1
𝑡 − 𝐶E𝑎𝑖𝑡𝑠

1
𝑡 6 𝐶𝑠 · (‖𝑦𝑖𝑡−‖+ ‖𝑐𝑖𝑡‖),

and so sup𝑖 ‖𝑥𝑖𝑡‖ <∞ and sup𝑖 ‖𝑦𝑖𝑡,𝑢‖ 6 𝐶 sup𝑖 ‖𝑥𝑖𝑡‖ <∞.

Having this in mind, we proceed by induction. For 𝑡 ∈ 𝒯 0 we have 𝑦𝑖𝑡− = 0

since any 𝑡 ∈ 𝒯 0 is a source. Thus (1.5) is valid for all 𝑡 ∈ 𝒯 0. Suppose we

have established (1.5) for all 𝑡 in each of the sets 𝒯 0, 𝒯 1, . . . , 𝒯 𝑘. Consider

any 𝑡 ∈ 𝒯 𝑘+1, where 𝑘 + 1 < 𝐾. We have sup𝑖 ‖𝑦𝑖𝑡−‖ < ∞ because all the

predecessors of the node 𝑡 belong to one of the sets 𝒯 0, 𝒯 1, . . . , 𝒯 𝑘. This

implies, as we have demonstrated, the validity of (1.5) for the node 𝑡. Thus

(1.5) holds for all 𝑡 ∈ 𝒯−.
Step 3. By the Komlós theorem (Proposition 1.6), there exists a subse-

quence 𝜁 𝑖1, 𝜁 𝑖2, . . . Cesàro-convergent a.s. to some 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯−, i.e. for

each 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+ we have ̃︀𝑥𝑗𝑡 := 𝑗−1(𝑥𝑖1𝑡 + . . . + 𝑥
𝑖𝑗
𝑡 ) → 𝑥𝑡 ∈ 𝐿1

𝑡 a.s. and̃︀𝑦𝑗𝑡,𝑢 := 𝑗−1(𝑦𝑖1𝑡,𝑢 + . . .+ 𝑦
𝑖𝑗
𝑡,𝑢) → 𝑦𝑡,𝑢 ∈ 𝐿1

𝑢 a.s. Then 𝜁 is trading strategy since

𝒵𝑡 are closed with respect to 𝐿1-bounded a.s. convergence.

Moreover, 𝜁 hedges 𝛾 because ̃︀𝑎𝑗𝑡 := ̃︀𝑦𝑗𝑡−−̃︀𝑥𝑗𝑡 −̃︀𝑐𝑗𝑡 (with ̃︀𝑐𝑗𝑡 = 𝑗−1(𝑐𝑖11 + . . .+
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𝑐
𝑖𝑗
𝑡 )) converge a.s. to 𝑎𝑡 = 𝑦𝑡− − 𝑥𝑡 − 𝑐𝑡, and sup𝑗 ‖̃︀𝑎𝑗𝑡‖ < ∞ for each 𝑡 ∈ 𝒯 ,

which implies (𝑎𝑡)𝑡∈𝒯 ∈ 𝒜 since 𝒜 is closed with respect to 𝐿1-bounded a.s.

convergence. Thus ℋ is a closed cone in 𝐿1
𝒯 .

Step 4. Let us show that

ℋ ∩𝒜+ = ∅,

which can be interpreted as the absence of arbitrage opportunities.

Suppose there exists 𝛾 = (𝑐𝑡)𝑡∈𝒯 ∈ ℋ ∩ 𝒜. Consider a trading strategy

𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯− hedging the contract 𝛾. We claim that in this case 𝑥𝑡 =

𝑦𝑡,𝑢 = 0 for all 𝑡 ∈ 𝒯− and 𝑢 ∈ 𝒯𝑡+.
Indeed, proceeding by induction over 𝒯 0, . . . , 𝒯 𝐾−1, suppose 𝑦𝑡− = 0 for

each 𝑡 ∈ 𝒯 𝑘. By virtue of Step 1,

‖𝑥𝑡‖ 6 𝐶E𝑥𝑡𝑠
1
𝑡 6 𝐶E(𝑦𝑡− − 𝑐𝑡)𝑠

1
𝑡 = −𝐶E𝑐𝑡𝑠1𝑡 ≤ 0

for any 𝑡 ∈ 𝒯 𝑘. Hence ‖𝑥𝑡‖ = 0 for each 𝑡 ∈ 𝒯 𝑘. Furthermore, ‖𝑦𝑡,𝑢‖ 6

𝐶‖𝑥𝑡‖ = 0 for each 𝑢 ∈ 𝒯𝑡+, and so 𝑦𝑡− = 0 for each 𝑡 ∈ 𝒯 𝑘+1. Therefore,

𝑥𝑡 = 𝑦𝑡,𝑢 = 0, which implies 𝛾 ∈ (−𝒜) by the definition of hedging, meaning

that ℋ ∩𝒜+ = ∅.
Step 5. Applying Proposition 1.4 to the cones ℋ and 𝒜 in the space 𝐿1

𝒯 ,

we obtain the existence of a family 𝜋 = (𝑝𝑡)𝑡∈𝒯 , 𝑝𝑡 ∈ 𝐿∞
𝑡 , such that E𝛼𝜋 ≤ 0

for any 𝛼 ∈ ℋ and E𝛾𝜋 > 0 for any 𝛾 ∈ 𝒜+. According to Lemma 1.1, 𝜋 is

a consistent price system, so the class of such price systems is non-empty.

Step 6. If a contract 𝛾 is hedgeable, we have E𝛾𝜋 6 0 for any consistent

price system 𝜋 according to the implication (i)⇒(ii) in Lemma 1.1.

To prove the converse, suppose E𝛾𝜋 6 0 for some contract 𝛾 and any

consistent price system 𝜋. Observe that any 𝜋 = (𝑝𝑡)𝑡∈𝒯 , 𝑝𝑡 ∈ 𝐿∞
𝑡 , such

that E𝛼𝜋 > 0 for any 𝛼 ∈ 𝒜+ and E𝛾′𝜋 6 0 for any 𝛾′ ∈ ℋ is a consistent

price system according to the implication (ii)⇒(i) in Lemma 1.1. Therefore,

E𝛾𝜋 ≤ 0 for any such 𝜋 and the given 𝛾. By virtue of Proposition 1.5, this

implies 𝛾 ∈ ℋ.

The next result provides a version of Theorem 3.1 with other assumptions.
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Theorem 1.2. The hedging principle holds if the cones 𝒜 and 𝒵𝑡, 𝑡 ∈ 𝒯−,
are closed in 𝐿1, for any (𝑎𝑡)𝑡∈𝒯 ∈ 𝒜 we have 𝑎𝑢 = 0, 𝑢 ∈ 𝒯−, and there

exist functions 𝑠1𝑡 ∈ 𝐿∞
𝑡 , 𝑠2𝑡,𝑢 ∈ 𝐿∞

𝑡 , 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+, with values in [𝑠, 𝑠]

(where 𝑠 > 0, 𝑠 > 1), and a constant 0 6 𝑚 < 1 satisfying conditions

(a′) 𝑥𝑡𝑠
1
𝑡 > 𝑦𝑡,𝑢𝑠

2
𝑡,𝑢 a.s.;

(b′) 𝑚𝑦+𝑡,𝑢𝑠
2
𝑡,𝑢 > 𝑦−𝑡,𝑢𝑠

2
𝑡,𝑢 a.s.

Remark 1.4. The condition 𝑎𝑢 = 0, 𝑢 ∈ 𝒯−, for any (𝑎𝑡)𝑡∈𝒯 ∈ 𝒜, means

that a contract should be hedged exactly at all the intermediate trading

sessions and it should be hedged with risk (in a risk-acceptable manner) at

all the terminal trading sessions – those trading sessions that are represented

by sink nodes of the graph.

Proof of Theorem 1.2. The proof is conducted along the lines of the

proof of Theorem 1.1. First we show that |𝑦𝑡,𝑢| 6 𝐶|𝑥𝑡| a.s. for all 𝑡 ∈ 𝒯−,
𝑢 ∈ 𝒯𝑡+, where the constant 𝐶 = ̃︀𝐶 · (𝑠/𝑠) with ̃︀𝐶 = (1 +𝑚)/(1−𝑚).

Indeed, with probability one it holds that

𝑠|𝑦𝑡,𝑢| 6 ̃︀𝐶𝑦𝑡,𝑢𝑠2𝑡,𝑢 6 ̃︀𝐶𝑥𝑡𝑠1𝑡 6 ̃︀𝐶|𝑥𝑡𝑠1𝑡 | 6 ̃︀𝐶|𝑥𝑡|𝑠,
where the first inequality is proved similarly to (1.4), and the second inequal-

ity follows from (a′).

In order to prove the closedness of ℋ, consider any 𝛾𝑖 = (𝑐𝑖𝑡)𝑡∈𝒯 ∈ ℋ
converging in 𝐿1

𝒯 to 𝛾 = (𝑐𝑡)𝑡∈𝒯 . For trading strategies 𝜁 𝑖 = (𝑥𝑖𝑡, 𝑦
𝑖
𝑡)𝑡∈𝒯−

hedging 𝛾𝑖, using the induction over 𝒯 𝑘, we prove that sup𝑖 ‖𝑥𝑖𝑡‖ < ∞,

sup𝑖 ‖𝑦𝑖𝑡,𝑢‖ <∞ and the sequences 𝑥𝑖𝑡, 𝑦
𝑖
𝑡,𝑢 are uniformly integrable.

Indeed, if sup𝑖 ‖𝑦𝑖𝑡−‖ < ∞ and 𝑦𝑖𝑡− is uniformly integrable for any 𝑡 ∈ 𝒯 𝑘

then 𝑥𝑖𝑡 = 𝑦𝑖𝑡− − 𝑐𝑖𝑡 is uniformly integrable and sup𝑖 ‖𝑥𝑖𝑡‖ <∞. Consequently,

sup𝑖 ‖𝑦𝑖𝑡−‖ < ∞ and 𝑦𝑖𝑡− is uniformly integrable for any 𝑡 ∈ 𝒯 𝑘+1, because

|𝑦𝑖𝑡,𝑢| 6 𝐶|𝑥𝑖𝑡| a.s.
By using the Komlós Theorem, we find a subsequence 𝜁 𝑖𝑗 Cesàro-conver-

gent a.s. to some 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯−, and hence convergent in 𝐿1 because 𝑥𝑖𝑡 and

𝑦𝑖𝑡,𝑢 are uniformly integrable. Since 𝒵𝑡 are closed in 𝐿𝑡, 𝜁 is a trading strategy.

It hedges 𝛾 because ̃︀𝑎𝑗𝑡 := ̃︀𝑦𝑗𝑡−− ̃︀𝑥𝑗𝑡 −̃︀𝑐𝑗𝑡 converge in 𝐿1 to 𝑎𝑡 = 𝑦𝑡−−𝑥𝑡− 𝑐𝑡 as
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they are uniformly integrable and a.s. convergent, and the cone 𝒜 is closed

in 𝐿1
𝒯 . Thus ℋ is closed in 𝐿1

𝒯 .

Furthermore, ℋ ∩ 𝒜+ = ∅ because if there exists 𝛾 = (𝑐𝑡)𝑡∈𝒯 ∈ ℋ ∩ 𝒜
then for a trading strategy (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯− hedging 𝛾, we have 𝑥𝑡 = 𝑦𝑡,𝑢 = 0

for all 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯 +
𝑡 (this is proved by induction over 𝒯 𝑘 using that

𝑥𝑡 = 𝑦𝑡− − 𝑐𝑡, 𝑐𝑡 = 0 for each 𝑡 ∈ 𝒯−, and |𝑦𝑡,𝑢| 6 𝐶|𝑥𝑡| a.s.). This implies

𝛾 ∈ (−𝒜) by the definition of hedging. To complete the proof it remains to

apply Propositions 1.4 and 1.5 to the cones ℋ and 𝒜.

Remark 1.5 (on the no-arbitrage hypothesis). The central role in the

classical theory of asset pricing and hedging is played by the no-arbitrage

hypothesis, which postulates that arbitrage opportunities do not exist. This

assumption is rather natural since it is thought that in real markets arbi-

trage opportunities are quickly eliminated by market forces. Perhaps, it is

even more important from the point of view of constructing mathematical

models of financial markets, as the absence of arbitrage is equivalent to the

existence of equivalent martingale measures (in the frictionless framework),

which allows to apply the risk-neutral principle for pricing contingent claims.

In the frictionless model, the validity of the no-arbitrage hypothesis de-

pends on the probabilistic structure of the random process (or sequence)

which describes the evolution of asset prices. Consequently, processes that

allow arbitrage opportunities are usually considered as inadequate models of

a market.

However, as follows from the results of this chapter, the presence of arbi-

trage opportunities can also be caused by inadequate trading constraints in a

model. Indeed, the classical frictionless approach allows unlimited short sales

and borrowings from the bank account, which is certainly impossible in real

trading. On the other hand, the introduction of margin requirements elimi-

nates arbitrage opportunities under the conditions of Theorems 1.1 and 1.3

(see Step 4 in the proof of Theorem 1.1) and implies the validity of the

hedging principle.

This fact has important implications for modelling financial markets since

the introduction of margin requirements allows to consider price processes
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that describe important market features, but allow arbitrage.

One example of such a process is fractional geometric Brownian motion.

Unlike the standard geometric Brownian motion, it exhibits long-range de-

pendence – a property typically observed in real asset prices. However, it

is well-known that this process admits arbitrage opportunities in the fric-

tionless model [51, 60]. Moreover, even its approximation by binary random

walks constructed on a finite probability space is not arbitrage-free [67].

Thus, consideration of market models with margin requirements can pos-

sibly allow to use a wider class of stochastic processes describing asset prices

and broaden the frontiers of the theory.

1.3 Risk-acceptable portfolios: examples

In this section we provide examples of cones 𝒜 of risk-acceptable families

of portfolios defined in terms of their liquidation values.

Suppose for each 𝑡 ∈ 𝒯 there is an operator 𝑉𝑡 : 𝐿
1
𝑡 (Ω × Θ) → 𝐿1(Ω),

where 𝑉𝑡(𝑎𝑡)(𝜔) is interpreted as the liquidation value of the portfolio 𝑎𝑡 in

the trading session 𝑡, and a closed cone 𝐴𝑡 ⊂ 𝐿1
𝑡 (Ω) interpreted as a cone of

risk-acceptable liquidation values.

Define

𝒜 = {(𝑎𝑡)𝑡∈𝒯 ∈ 𝐿1
𝒯 : 𝑉𝑡(𝑎𝑡) ∈ 𝐴𝑡 for all 𝑡 ∈ 𝒯 }.

According to this definition, a family of portfolios is acceptable if the liqui-

dation value of each portfolio is acceptable. In order to guarantee that 𝒜 is a

closed cone in 𝐿1, it is sufficient to assume that for each 𝑡 ∈ 𝒯 the following

conditions are satisfied:

(i) 𝑉𝑡(𝑟𝑎𝑡) = 𝑟𝑉𝑡(𝑎𝑡), 𝑉𝑡(𝑎𝑡 + 𝑎′𝑡) > 𝑉𝑡(𝑎𝑡) + 𝑉𝑡(𝑎
′
𝑡) for any real 𝑟 > 0 and

𝑎𝑡, 𝑎
′
𝑡 ∈ 𝐿1

𝑡 ,

(ii) the cone 𝐴𝑡 contains all non-negative F𝑡-measurable integrable random

variables,

(iii) there exists a constant 𝑐 such that ‖𝑉𝑡(𝑎𝑡) − 𝑉𝑡(𝑎
′
𝑡)‖ 6 𝑐‖𝑎𝑡 − 𝑎′𝑡‖ for

any 𝑎𝑡, 𝑎
′
𝑡 ∈ 𝐿1

𝑡 .
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The cone𝒜 is closed with respect to 𝐿1
𝒯 (Ω×Θ)-bounded a.s. convergence,

if, additionally, the following two conditions hold:

(iv) 𝑉𝑡(𝑎
𝑛
𝑡 ) → 𝑉𝑡(𝑎𝑡) a.s. whenever 𝑎

𝑛
𝑡 → 𝑎𝑡 a.s., 𝑛→ ∞, and 𝑎𝑛𝑡 , 𝑎𝑡 ∈ 𝐿1

𝑡 ;

(v) the cone 𝐴𝑡 is closed with respect to 𝐿1
𝑡 (Ω)-bounded a.s. convergence.

A natural example of a liquidation value is

𝑉𝑡(𝑎𝑡)(𝜔) =

∫︁
Θ

𝑎𝑡(𝜔, 𝜃)𝑆𝑡(𝜔, 𝜃)𝜇(𝑑𝜃),

where the function 𝑆𝑡 ∈ 𝐿∞
𝑡 (Ω × Θ) represents asset prices at the trading

session 𝑡. In other words, the liquidation value of a portfolio is equal to its

value in terms of the prices 𝑆𝑡.

More generally, one can define

𝑉𝑡(𝑎𝑡)(𝜔) =

∫︁
Θ

[︀
𝑎+𝑡 (𝜔, 𝜃)𝑆𝑡(𝜔, 𝜃)− 𝑎−𝑡 (𝜔, 𝜃)𝑆𝑡(𝜔, 𝜃)

]︀
𝜇(𝑑𝜃),

where 𝑆𝑡, 𝑆𝑡 ∈ 𝐿∞
𝑡 (Ω × Θ), 𝑆𝑡 6 𝑆𝑡, are bid and ask asset prices. It is

easy to see that this liquidation value operator satisfies above conditions (i)

and (iii). If the asset space (Θ,J , 𝜇) is finite, it also satisfies (iv).

We provide three examples of cones 𝐴𝑡 of risk-acceptable liquidation val-

ues and show that they are closed with respect to 𝐿1(Ω)-bounded a.s. con-

vergence or in 𝐿1, and E𝑣 > 0 for each 𝑣 ∈ 𝐴𝑡 ∖ {0}, i.e. any non-zero

risk-acceptable liquidation value is strictly positive on average.

1. Superhedging. Define

𝐴1 = {𝑣 ∈ 𝐿1 : 𝑣 ≥ 0 a.s.},

i. e. each risk-acceptable value is non-negative with probability one, which

is the classical approach to hedging (see e. g. [24, 61]). Clearly, 𝐴1 is closed

under 𝐿1-bounded a.s.-convegence and E𝑣 > 0 for any 𝑣 ∈ 𝐴1 ∖ {0}.

Superhedging is a comparatively strong assumption, which requires to

fulfil contract obligations with probability one. In the next two examples we

deal with weaker approaches to hedging: the cones 𝐴2 and 𝐴3 introduced

below are larger than the cone 𝐴1.
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2. Acceptable Sharpe ratio. The Sharpe ratio of a non-constant

random variable 𝑣 ∈ 𝐿2 is defined by E𝑣/
√
Var 𝑣. For a given number 𝜆 > 0

define the cone

𝐴2 = {𝑣 ∈ 𝐿1 : ∃𝑢 ∈ 𝐿2, 𝑢 6 𝑣, E𝑢 > 𝜆
√
Var 𝑢}.

In other words, a liquidation value is acceptable if it exceeds a random vari-

able with the Sharpe ratio not less than 𝜆.

Clearly E𝑣 > 0 for any 𝑣 ∈ 𝐴2 ∖ {0}. Let us show that 𝐴2 is closed with

respect to 𝐿1-bounded a.s. convergence. Suppose 𝑣𝑛 ∈ 𝐴2, E|𝑣𝑛| 6 𝛼 < ∞
and 𝑣𝑛 → 𝑣 a.s. Take 𝑢𝑛 ∈ 𝐿2 such that 𝑢𝑛 6 𝑣𝑛, E𝑢𝑛 > 𝜆

√
Var 𝑢𝑛. Then

𝜆
√
Var 𝑢𝑛 6 𝛼 and the sequence 𝑢𝑛 is bounded in the 𝐿2-norm. Since the

ball in 𝐿2 is weakly compact, we can find a subsequence 𝑢𝑛𝑘 → 𝑢 weakly in

𝐿2. Then we obtain

E𝑢 = lim
𝑘→∞

E𝑢𝑛𝑘 > 𝜆 lim inf
𝑘→∞

√
Var 𝑢𝑛𝑘 > 𝜆

√
Var 𝑢,

where the last inequality follows from the weak lower semi-continuity of

the norm. Using the Komlós theorem, we find a subsequence 𝑢𝑛𝑘𝑙 such

that ̃︀𝑢𝑙 ≡ 𝑙−1(𝑢𝑛𝑘1 + . . . + 𝑢𝑛𝑘𝑙 ) → ̃︀𝑢 a.s. Then 𝑣 > ̃︀𝑢 and ̃︀𝑢 = 𝑢, since

EIΓ𝑢 = lim𝑙 EIΓ̃︀𝑢𝑙 = EIΓ̃︀𝑢 for each measurable set Γ, where the former is

valid because 𝑢𝑛𝑘 → 𝑢 weakly and the latter is true because the sequence ̃︀𝑢𝑙
is uniformly integrable (bounded in 𝐿2) and converges to ̃︀𝑢 a.s. Thus 𝑣 ∈ 𝐴2.

3. Acceptable average value at risk. The average value at risk at a

level 𝜆 of a random variable 𝑣 ∈ 𝐿1 is defined by the formula

AV@R𝜆(𝑣) = sup
𝑞∈𝑄𝜆

E(−𝑞𝑣),

where 𝑄𝜆 is the set of all random variables 0 6 𝑞 6 1/𝜆 such that E𝑞 = 1.

In other words, AV@R𝜆(𝑣) is the maximal expected value of (−𝑣) under

all probability measures absolutely continuous with respect to the original

measure such that the density does not exceed 1/𝜆 (see [24, Ch. 4] for details).

Consider the cone

𝐴3 = {𝑣 ∈ 𝐿1 : AV@R𝜆(𝑣) 6 0},
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where 𝜆 ∈ (0, 1) is a given number. According to this definition of 𝐴3, the

average value at risk at the level 𝜆 of each acceptable liquidation value is

non-positive (i. e. such a liquidation value is not risky in terms of AV@R𝜆).

To show that E𝑣 > 0 for any 𝑣 ∈ 𝐴3 we use the representation

AV@R𝜆(𝑣) = −
∫︁ 1

0

𝑞𝑣(𝜆𝑠)𝑑𝑠,

where 𝑞𝑣(𝑠) = inf{𝑞 : P(𝑣 ≤ 𝑞) > 𝑠} is the quantile function of 𝑣 (see [24,

Ch. 4]). If 𝑣 is non-constant, we have

AV@R𝜆(𝑣) > −
∫︁ 1

0

𝑞𝑣(𝑠)𝑑𝑠 = −E𝑣,

and so E𝑣 > 0 for a non-constant 𝑣 ∈ 𝐴3 ∖ {0}. But if 𝑣 ∈ 𝐴3 ∖ {0} is

constant, then necessarily 𝑣 > 0, and so E𝑣 > 0.

Finally observe that the cone 𝐴3 is closed in 𝐿1. Indeed, if 𝑣𝑛 ∈ 𝐴3 and

𝑣𝑛 → 𝑣 in 𝐿1, then E(−𝑞𝑣) = lim𝑛 E(−𝑞𝑣𝑛) 6 0 for any random variable

0 6 𝑞 6 1/𝜆 such that E𝑞 = 1, consequently, AV@R𝜆(𝑣) ≤ 0.

1.4 Connections between consistent price systems and

equivalent martingale measures

The notion of a consistent price system generalises the notion of an equiv-

alent martingale measure – the cornerstone of the classical stochastic finance.

To see this, consider the model of a frictionless market of 𝑁 assets rep-

resented by a linear graph 𝐺 with nodes 𝑡 = 0, 1, . . . , 𝑇 , where asset 1 is a

riskless asset with the discounted price 𝑆1
𝑡 ≡ 1 at each trading session 𝑡, and

assets 𝑖 = 2, . . . , 𝑁 are risky with the discounted prices 𝑆𝑖
𝑡 > 0 being F𝑡-

measurable random variables (the space of assets (Θ,J , 𝜇) here is simply

Θ = {1, 2, . . . , 𝑁}, J = 2Θ, 𝜇{𝜃} = 1 for each 𝜃 ∈ Θ).

It is assumed that the 𝜎-algebras F𝑡 form a filtration, i. e. F𝑡 ⊂ F𝑡+1 for

each 𝑡 = 0, . . . , 𝑇 − 1, and each F𝑡 is completed by all F -measurable sets of

measure 0.
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Denoting 𝑆𝑡 = (𝑆1
𝑡 , . . . , 𝑆

𝑁
𝑡 ), introduce the cones

𝒵𝑡 =

{︂
(𝑥𝑡, 𝑦𝑡) ∈ 𝐿1

𝑡 ⊗ 𝐿1
𝑡 :

𝑁∑︁
𝑖=1

𝑥𝑖𝑡𝑆
𝑖
𝑡 >

𝑁∑︁
𝑖=1

𝑦𝑖𝑡𝑆
𝑖
𝑡 a.s.

}︂
,

𝒜 =

{︂
(0, . . . , 0, 𝑎𝑇 ) : 𝑎𝑇 ∈ 𝐿1

𝑇 ,

𝑁∑︁
𝑖=1

𝑎𝑖𝑇𝑆
𝑖
𝑇 > 0 a.s.

}︂
.

The cones 𝒵𝑡 define self-financing trading strategies (with free disposal),

i. e. the values of their portfolios do not increase in the course of trading.

According to the definition of 𝒜, a contract (𝑐0, . . . , 𝑐𝑇 ) is hedgeable, if there

exists a trading strategy that pays exactly 𝑐𝑡 at each trading session 𝑡 < 𝑇

and pays not less than 𝑐𝑇 at the session 𝑇 (the superhedging approach).

Since it is assumed that F𝑡 form a filtration and are complete, we have

𝐿𝑡 ⊂ 𝐿𝑡+1 for each 𝑡 = 0, . . . , 𝑇 − 1, so this model is a particular case of the

general model (in the general model 𝑦𝑡 ≡ 𝑦𝑡,𝑡+1 ∈ 𝐿𝑡+1).

Recall that a probability measure ̃︀P defined on (Ω,F ) and equivalent to

the original probability measure P (̃︀P ∼ P) is called an equivalent martingale

measure if the sequence 𝑆0, 𝑆1, . . . , 𝑆𝑇 is a ̃︀P-martingale, which means that

E
̃︀P(𝑆𝑖

𝑡 | F𝑡−1) = 𝑆𝑖
𝑡−1 a.s. for all 𝑡 = 1, . . . , 𝑇 , 𝑖 = 1, . . . , 𝑁 .

Consistent price systems and equivalent martingale measures in the model

at hand are connected by the following properties.

Proposition 1.2. 1) If ̃︀P is an equivalent martingale measure, then the

sequence of 𝑝𝑡 = 𝜆𝑡𝑆𝑡, where 𝜆𝑡 = E(𝑑̃︀P/𝑑P | F𝑡), is a consistent price

system, provided that 𝑝𝑡 ∈ 𝐿∞
𝑡 .

2) If (𝑝0, . . . , 𝑝𝑡) is a consistent price system, then the measure ̃︀P defined

by 𝑑̃︀P = (𝑝1𝑇/E𝑝
1
𝑇 )𝑑P is an equivalent martingale measure.

Proof. To keep the notation concise, let us denote by 𝑥𝑡𝑆𝑡 and 𝑦𝑡𝑆𝑡 the

corresponding scalar products of the vectors 𝑥𝑡, 𝑦𝑡, 𝑆𝑡.

1) If (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 then 𝑥𝑡𝑆𝑡 > 𝑦𝑡𝑆𝑡 and consequently EP𝑝𝑡𝑥𝑡 > EP𝑝𝑡𝑦𝑡.

Also EP𝑝𝑡𝑦𝑡 = EP𝑝𝑡+1𝑦𝑡, because the sequence 𝑝𝑡 is a P-martingale as follows

from the formula (see e. g. [63, Chapter II, S 7])

EP(𝜆𝑡𝑆𝑡 |F𝑡−1) = 𝜆𝑡−1E
̃︀P(𝑆𝑡 |F𝑡−1). (1.6)

42



Thus EP𝑝𝑡𝑥𝑡 > EP𝑝𝑡+1𝑦𝑡. It is also clear that E𝑝𝑇𝑎𝑇 > 0 for any 𝑎𝑇 such

that 𝑎𝑇𝑆𝑇 > 0 and P(𝑎𝑇𝑆𝑇 ̸= 0) > 0, so (𝑝0, . . . , 𝑝𝑇 ) satisfies the definition

of a consistent price system.

2) Observe that the following relations hold:

E(𝑝𝑡+1 | F𝑡) = 𝑝𝑡 for 𝑡 = 0, . . . , 𝑇 − 1, 𝑝𝑡 = 𝑝1𝑡𝑆𝑡 for 𝑡 = 0 . . . , 𝑇.

The first one follows from (1.2) with (𝑥𝑡, 𝑥𝑡) ∈ 𝒵𝑡 for 𝑥𝑡 = (0, . . . ,±IΓ, . . . , 0)

and an arbitrary Γ ∈ F𝑡. The second one for 𝑡 = 0, . . . , 𝑇 − 1 follows from

(1.2) taking (𝑥𝑡, 0) ∈ 𝒵𝑡, 𝑥𝑡 = (±𝑆𝑖
𝑡IΓ, 0, . . . ,∓IΓ, . . . , 0) with an arbitrary

Γ ∈ F𝑡, and for 𝑡 = 𝑇 it follows from (1.3) taking 𝑥𝑇 ∈ 𝐿1
𝑇 of the same form

such that (0, . . . , 𝑥𝑇 ) ∈ 𝒜. Using (1.6) with 𝜆𝑡 = 𝑝1𝑡 , we obtain that 𝑆𝑡 is ã︀P-martingale, so ̃︀P is an equivalent martingale measure.

1.5 A model of an asset market with transaction costs and

portfolio constraints

We consider a market where 𝑁 assets are traded at trading sessions 𝑡 ∈ 𝒯 .

Assets 𝑖 = 2, . . . , 𝑁 represent stock and asset 𝑖 = 1 cash (deposited with a

bank account). The model we deal with in this section is a special case of

the general one where Θ = {1, 2, . . . , 𝑁} and 𝜇(𝑖) = 1 for each 𝑖 ∈ Θ. We

assume that the 𝜎-algebras F𝑡 associated with the nodes of the graph are

such that F𝑡 ⊂ F𝑢 for any 𝑡 ∈ 𝒯− and 𝑢 ∈ 𝒯𝑡+ (i. e. the “information” does

not decrease along the paths in the graph), and each F𝑡, 𝑡 ∈ 𝒯 , is completed

by all F -measurable sets of measure 0.

For each trading session 𝑡 ∈ 𝒯 , we are given F𝑡-measurable essentially

bounded non-negative random variables 𝑆𝑖
𝑡 6 𝑆

𝑖

𝑡, 𝑖 = 2, . . . , 𝑁 , representing

bid and ask stock prices, and 𝐷𝑖
𝑡 ≤ 𝐷

𝑖

𝑡, 𝑖 = 2, . . . , 𝑁 , representing dividend

rates for long and short stock positions1. The bid and ask price vectors are

1It is assumed that a short seller pays the dividends on the amount of stock sold short to the
lender of stock. Dividend rates for long and short positions may be different – for example, when
some assets pay dividends in a currency different from asset 1 and there is a bid-ask spread in
the exchange rates.
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denoted by 𝑆𝑡 = (1, 𝑆2
𝑡 , . . . , 𝑆

𝑁
𝑡 ) and 𝑆𝑡 = (1, 𝑆

2

𝑡 , . . . , 𝑆
𝑁

𝑡 ). We assume each

𝑆𝑖
𝑡 is bounded away from zero (i.e. 𝑆𝑖

𝑡 ≥ 𝑆 for a constant 𝑆 > 0).

For each 𝑡 ∈ 𝒯−, F𝑡-measurable essentially bounded non-negative random

variables 𝑅𝑡,𝑢 6 𝑅𝑡,𝑢, 𝑢 ∈ 𝒯𝑡+, are given, which describe interest rates for

lending and borrowing cash between the sessions 𝑡 and 𝑢.

We write 𝑥𝑡(𝜔) = (𝑥1𝑡 (𝜔), . . . , 𝑥
𝑁
𝑡 (𝜔)) for portfolios of assets represented

by functions 𝑥𝑡(𝜔, 𝑖) in 𝐿
1
𝑡 (Ω×Θ), where 𝑥𝑖𝑡(𝜔) = 𝑥𝑡(𝜔, 𝑖). We define |𝑥𝑡| =∑︀

𝑖 |𝑥𝑖𝑡|, 𝑥
+
𝑡 = ((𝑥1𝑡 )

+, . . . , (𝑥𝑁𝑡 )
+) and 𝑥−𝑡 = ((𝑥1)−, . . . , (𝑥𝑁𝑡 )

−). If 𝑥, 𝑦 are

𝑁 -dimensional vectors, we denote by 𝑥𝑦 the scalar product 𝑥𝑦 =
∑︀

𝑖 𝑥
𝑖𝑦𝑖.

For a trading strategy (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯−, the dividends

𝑑𝑡(𝑥𝑡) =
𝑁∑︁
𝑖=2

[︀
(𝑥𝑖𝑡)

+𝐷𝑖
𝑡 − (𝑥𝑖𝑡)

−𝐷
𝑖

𝑡

]︀
are received on each portfolio 𝑥𝑡 at each session 𝑡 ∈ 𝒯−. Negative values

of 𝑑𝑡(𝑥𝑡) mean that the corresponding amounts should be returned rather

than received. After the dividend payments, the portfolio 𝑥𝑡 (with the div-

idends added) is rearranged by buying and selling assets, subject to the

self-financing trading constraint, to a family of portfolios ̃︀𝑦𝑡 = (̃︀𝑦𝑡,𝑢)𝑢∈𝒯𝑡+,
where ̃︀𝑦𝑡,𝑢 ∈ 𝐿1

𝑡 . The feasible pairs (𝑥𝑡, ̃︀𝑦𝑡) form the cone

̃︀𝒵𝑡 =

{︂
(𝑥𝑡, ̃︀𝑦𝑡) : 𝑥𝑡 ∈ 𝐿1

𝑡 , ̃︀𝑦𝑡,𝑢 ∈ 𝐿1
𝑡 and(︂

𝑥𝑡 −
∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︂+

· 𝑆𝑡 + 𝑑𝑡(𝑥𝑡) >

(︂
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︂−

· 𝑆𝑡 a.s.

}︂
.

The above inequality represents the self-financing condition: its left-hand

side is equal to the amount of cash obtained from selling assets and receiving

dividends, and its right-hand side is the amount of cash paid for buying

assets. We denote by 𝑦𝑡 = 𝑦𝑡(̃︀𝑦𝑡) the family of portfolios (𝑦𝑡,𝑢)𝑢∈𝒯𝑡+ whose

positions are given by

𝑦1𝑡,𝑢 = ̃︀𝑦1𝑡,𝑢 + 𝑟𝑡,𝑢(̃︀𝑦𝑡,𝑢) and 𝑦𝑖𝑡,𝑢 = ̃︀𝑦𝑖𝑡,𝑢, 𝑖 = 2, . . . , 𝑁,

where

𝑟𝑡,𝑢(̃︀𝑦𝑡,𝑢) = (̃︀𝑦1𝑡,𝑢)+𝑅𝑡,𝑢 − (̃︀𝑦1𝑡,𝑢)−𝑅𝑡,𝑢
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is the interest paid on cash held between the trading sessions 𝑡 and 𝑢.

Random F𝑡-measurable closed cones2 𝑌𝑡,𝑢 : Ω → 2R
𝑁

, 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+,
specifying portfolio constraints are given. It is assumed that each cone 𝑌𝑡,𝑢(𝜔)

contains all non-negative vectors in R𝑁 . Trading strategies are defined in

terms of the cones (𝑡 ∈ 𝒯−)

𝒵𝑡 = {(𝑥𝑡, 𝑦𝑡) : 𝑦𝑡 = 𝑦𝑡(̃︀𝑦𝑡), (𝑥𝑡, ̃︀𝑦𝑡) ∈ ̃︀𝒵𝑡, 𝑦𝑡,𝑢 ∈ 𝑌𝑡,𝑢 a.s.}. (1.7)

Portfolios 𝑦𝑡,𝑢 are obtained from ̃︀𝑦𝑡,𝑢 by adding interest to the 1st (bank

account) position. Only those portfolios 𝑦𝑡,𝑢 are admissible that satisfy the

constraint 𝑦𝑡,𝑢 ∈ 𝑌𝑡,𝑢 a.s.

Note that we assume 𝑦𝑡 are F𝑡-measurable, which can be explained by

that “the portfolio for tomorrow should be obtained today”. Since the 𝜎-

algebras F𝑡 are such that F𝑡 ⊂ F𝑢 whenever 𝑢 ∈ 𝒯𝑡+ and are completed

by all sets of measure 0, we have 𝐿1
𝑡 ⊂ 𝐿1

𝑢 for 𝑢 ∈ 𝒯𝑡+, and so the model at

hand can be included into the framework described in Section 1.1 (where,

generally, 𝑦𝑡,𝑢 ∈ 𝐿1
𝑢).

Also note that the class of trading strategies defined by the cones 𝒵𝑡 in

(1.7) excludes the possibility of bankruptcy, i. e. a trading strategy cannot in-

terrupt at an intermediate node of the graph. Nevertheless, the model allows

the modeling of the possibility that a trader does not fulfil the obligations

of a contract through the notion of hedging with risk.

We consider cones of risk-acceptable families of portfolios 𝒜 given by

𝒜 =
⨂︀
𝑡∈𝒯

𝒜𝑡, where for each 𝑡 ∈ 𝒯

𝒜𝑡 = {0} or 𝒜𝑡 =
{︀
𝑎𝑡 ∈ 𝐿1

𝑡 : 𝑎
+
𝑡 𝑆𝑡 − 𝑎−𝑡 𝑆𝑡 + 𝑑𝑡(𝑎𝑡) ∈ 𝐴𝑡

}︀
(1.8)

with some given cones 𝐴𝑡 ⊂ 𝐿1
𝑡 (Ω) interpreted as cones of risk-acceptable

liquidation values (see Section 1.3). It is assumed that 𝒜𝑡 ̸= {0} for all sink

nodes 𝑡 /∈ 𝒯−, and for each 𝑡 ∈ 𝒯 , where 𝒜𝑡 ̸= {0}, the cone 𝐴𝑡 contains all

non-negative integrable random variables and E𝑣 > 0 for any 𝑣 ∈ 𝐴𝑡 ∖ {0}.
2A random F𝑡-measurable closed cone in R𝑁 is a mapping 𝑌 : Ω → 2R

𝑁

such that 𝑌 (𝜔) is a
closed cone in R𝑁 for each 𝜔 ∈ Ω, and {𝜔 : 𝑌 (𝜔) ∩𝐾 ̸= ∅} ∈ F𝑡 for any open set 𝐾 ⊂ R𝑁 . See
Appendix 1 for details.
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Let us prove an auxiliary proposition regarding the structure of the cones

𝒜𝑡 that will be used below.

Proposition 1.3. Suppose 𝒜𝑡 ̸= {0} is a cone of form (1.8) and 𝑝𝑡 ∈ 𝐿∞
𝑡

is a random vector such that

(a) 𝑝1𝑡 > 0,

(b) 𝑆𝑖
𝑡 +𝐷𝑖

𝑡 6 𝑝𝑖𝑡/𝑝
1
𝑡 6 𝑆

𝑖

𝑡 +𝐷
𝑖

𝑡 a.s. and 𝑆
𝑖
𝑡 +𝐷𝑖

𝑡 < 𝑝𝑖𝑡/𝑝
1
𝑡 < 𝑆

𝑖

𝑡 +𝐷
𝑖

𝑡 a.s. on

the set {𝜔 : 𝑆𝑖
𝑡 +𝐷𝑖

𝑡 < 𝑆
𝑖

𝑡 +𝐷
𝑖

𝑡}, 𝑖 = 2, . . . , 𝑁 ,

(c) E𝑣𝑡𝑝
1
𝑡 > 0 for any 𝑣𝑡 ∈ 𝐴𝑡 ∖ {0}.

Then E𝑎𝑡𝑝𝑡 ≥ 0 for each 𝑎𝑡 ∈ 𝒜𝑡 and E𝑎𝑡𝑝𝑡 > 0 for each 𝑎𝑡 ∈ 𝒜+
𝑡 .

Proof. For any 𝑎𝑡 ∈ 𝒜𝑡 ̸= {0} we have 𝑎𝑡𝑝𝑡/𝑝
1
𝑡 > 𝑎+𝑡 𝑆𝑡 − 𝑎−𝑡 𝑆𝑡 + 𝑑𝑡(𝑎𝑡),

consequently, 𝑎𝑡𝑝𝑡/𝑝
1
𝑡 ∈ 𝐴𝑡, and so E𝑎𝑡𝑝𝑡 = E(𝑎𝑡𝑝𝑡/𝑝

1
𝑡 )𝑝

1
𝑡 > 0.

Suppose E𝑎𝑡𝑝𝑡 = 0. Then 𝑎𝑡𝑝𝑡/𝑝
1
𝑡 = 𝑎+𝑡 𝑆𝑡 − 𝑎−𝑡 𝑆𝑡 + 𝑑𝑡(𝑎𝑡) = 0, which

implies that 𝑎𝑖𝑡 = 0 a.s. on the set {𝜔 : 𝑆𝑖
𝑡 + 𝐷𝑖

𝑡 < 𝑆
𝑖

𝑡 + 𝐷
𝑖

𝑡}, 𝑖 = 2, . . . , 𝑁 .

Then in this case (−𝑎𝑡) ∈ 𝒜𝑡, and so E𝑎𝑡𝑝𝑡 > 0 for any 𝑎𝑡 ∈ 𝒜+
𝑡 .

The above proposition guarantees that the cone 𝒜 in the model at hand

satisfies assumption (A) with 𝜋 = (𝑝𝑡)𝑡≤𝑇 ,

𝑝1𝑡 = 1, 𝑝𝑖𝑡 = (𝑆𝑖
𝑡 +𝐷𝑖

𝑡 + 𝑆
𝑖

𝑡 +𝐷
𝑖

𝑡)/2 for 𝑖 = 2, . . . 𝑁.

Let 𝑅 be a constant such that 𝑅 ≤ (1 + 𝑅𝑡,𝑢)/(1 + 𝑅𝑡,𝑢) a.s. for all

𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+. We say that the market model at hand satisfies a margin

requirement if there exists a constant 𝑀 such that 0 6 𝑀 < 𝑅 and for

almost each 𝜔 ∈ Ω we have (cf. conditions (b) and (c) in Theorem 1.1)

𝑀̃︀𝑦+𝑡,𝑢𝑆𝑡(𝜔) > ̃︀𝑦−𝑡,𝑢𝑆𝑡(𝜔) for any 𝑦𝑡,𝑢 ∈ 𝑌𝑡,𝑢(𝜔), 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+, (1.9)

where

̃︀𝑦1𝑡,𝑢 =
(𝑦1𝑡,𝑢)

+

1 +𝑅𝑡,𝑢(𝜔)
−

(𝑦1𝑡,𝑢)
−

1 +𝑅𝑡,𝑢(𝜔)
, ̃︀𝑦𝑖𝑡,𝑢 = 𝑦𝑖𝑡,𝑢 for 𝑖 = 2, . . . 𝑁.

Inequality (1.9) requires that the total short position of any portfoliõ︀𝑦𝑡,𝑢 does not exceed on average 𝑀 times the total long position, and can

be interpreted as a weak form of a margin requirement. Note that margin
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requirements in real markets have a more complex structure, and, in partic-

ular, differentiate initial margin (the amount that should be collateralized

in order to open a position) and maintenance margin (the amount required

to be kept in collateral until the position is closed). Such additional limi-

tations typically imply (1.9) with some constant 𝑀 and can be modeled by

appropriate cones 𝑌𝑡,𝑢.

The following theorem establishes the validity of the hedging principle for

a stock market with a margin requirement.

Theorem 1.3. The hedging principle is valid for a stock market with a

margin requirement if at least one of the following conditions is satisfied:

(i) for each 𝑡 ∈ 𝒯 such that 𝒜𝑡 ̸= {0}, the cone 𝐴𝑡 is closed with respect to

𝐿1
𝑡 (Ω)-bounded a.s. convergence, and 𝑆𝑖

𝑡 + 𝜀 < 𝑆
𝑖

𝑡 a.s. for some 𝜀 > 0

and all 𝑡 ∈ 𝒯−, 𝑖 = 2, . . . , 𝑁 ;

(ii) 𝒜𝑡 = {0} for all 𝑡 ∈ 𝒯−.

Proof. In order to prove the theorem we will apply Theorem 1.1 if (i)

holds and Theorem 1.2 if (ii) holds. Observe that the cones 𝑍𝑡 are closed

with respect to 𝐿1-bounded a.s. convergence. The cone 𝒜 is closed with

respect to 𝐿1-bounded a.s. convergence if (i) holds and it is closed in 𝐿1 if

(ii) holds.

Define random vectors 𝑠1𝑡 , 𝑠
2
𝑡,𝑢 ∈ 𝐿∞

𝑡 by

𝑠11𝑡 = 1, 𝑠21𝑡,𝑢 =
1

1 +𝑅𝑡,𝑢

, 𝑠1𝑖𝑡 =
𝑆𝑖
𝑡 + 𝑆

𝑖

𝑡

2
+𝐷

𝑖

𝑡, 𝑠2𝑖𝑡,𝑢 =
𝑆𝑖
𝑡 + 𝑆

𝑖

𝑡

2
for 𝑖 > 2.

Then for any (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 we have

0 6

(︂
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︂+

· 𝑆𝑡 + 𝑑𝑡(𝑥𝑡)−
(︂
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︂−

· 𝑆𝑡

6 𝑥𝑡𝑠
1
𝑡 −

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢𝑠
2
𝑡,𝑢.

From the margin requirement it follows that 𝑦𝑡,𝑢𝑠
2
𝑡,𝑢 > 0 for each 𝑡 ∈ 𝒯−,

𝑢 ∈ 𝒯𝑡+, which implies that condition (a) in Theorem 1.1 and condition (a′)

in Theorem 1.2 are fulfilled.
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Suppose (i) holds. To verify conditions (b) and (c) in Theorem 3.1, take

0 6 𝑚 < 1 such that 𝑚 >𝑀/𝑅 and 𝑚𝜀/2 > (1−𝑚)max𝑡,𝑖(𝑆
𝑖

𝑡 +𝐷
𝑖

𝑡) a.s. It

is straightforward to check that 𝑚𝑦+𝑡,𝑢𝑠
2
𝑡,𝑢 >𝑀̃︀𝑦+𝑡,𝑢𝑆𝑡 and 𝑦

−
𝑡,𝑢𝑠

2
𝑡,𝑢 6 ̃︀𝑦−𝑡,𝑢𝑆𝑡 for

any (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, and so 𝑚𝑦+𝑡,𝑢𝑠
2
𝑡,𝑢 − 𝑦−𝑡,𝑢𝑠

2
𝑡,𝑢 > 0, as follows from the margin

requirement. Thus condition (b) holds.

In order to check (c), put ̂︀𝑥𝑡 = (𝑥2𝑡 , . . . , 𝑥
𝑁
𝑡 ) and observe that 𝑥+𝑡 𝑠

1
𝑡 −

𝑥−𝑡 𝑠
1
𝑡 > |̂︀𝑥𝑡|𝜀/2 for any (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 by virtue of the choice of 𝑠1𝑡 . Then

𝑚𝑥+𝑡 𝑠
1
𝑡 − 𝑥−𝑡 𝑠

1
𝑡 = 𝑚(𝑥+𝑡 𝑠

1
𝑡 − 𝑥−𝑡 𝑠

1
𝑡 )− (1−𝑚)𝑥−𝑡 𝑠

1
𝑡

> 𝑚|̂︀𝑥𝑡|𝜀/2− (1−𝑚)𝑥−𝑡 𝑠
1
𝑡 > |̂︀𝑥𝑡|(𝑚𝜀/2− (1−𝑚)max

𝑖
(𝑆

𝑖

𝑡 +𝐷
𝑖

𝑡)) > 0.

The second inequality is a consequence of the fact that if 𝑥1𝑡 < 0 then 𝑥−𝑡 𝑠
1
𝑡 ≤

|̂︀𝑥𝑡|max𝑖(𝑆
𝑖

𝑡+𝐷
𝑖

𝑡), as it follows from the inequality 𝑥+𝑡 𝑆𝑡−𝑥−𝑡 𝑆𝑡+𝑑𝑡(𝑥𝑡) ≥ 0,

which in turn can be obtained by combining the self-financing condition and

the margin requirement. Thus condition (c) in Theorem 3.1 holds.

Condition (d) is valid because if 𝒜𝑡 ̸= {0} then for any 𝑎𝑡 ∈ 𝒜𝑡 we have

𝑎𝑡𝑠
1
𝑡 > 𝑎+𝑡 𝑆𝑡 − 𝑎−𝑡 𝑆𝑡 + 𝑑𝑡(𝑎𝑡), which yields 𝑎𝑡𝑠

1
𝑡 ∈ 𝐴𝑡 and E𝑎𝑡𝑠

1
𝑡 ≥ 0. Thus

condition (i) implies the hedging principle by virtue of Theorem 3.1.

If assumption (ii) is satisfied, then condition (b′) holds with 𝑚 = 𝑀/𝑅

(which can be proved in the same way as above), and so the hedging principle

is valid in view of Theorem 3.3.

The next theorem provides a characterisation of consistent price systems

in the model with a margin requirement. It extends the results of the papers

[11, 53], which considered finite probability spaces and markets with linear

time structure.

We denote by 𝑌 *
𝑡,𝑢(𝜔) the positive dual cone of 𝑌𝑡,𝑢(𝜔), i.e. 𝑌

*
𝑡,𝑢(𝜔) = {𝑞 ∈

R𝑁 : 𝑞𝑦 > 0 for all 𝑦 ∈ 𝑌𝑡,𝑢(𝜔)}.

Theorem 1.4. In the stock market model with a margin requirement, a

sequence (𝑝𝑡)𝑡∈𝒯 , 𝑝𝑡 ∈ 𝐿∞
𝑡 , is a consistent price system if and only if each

𝑝𝑡 > 0 and the following conditions hold.

(i) For every 𝑡 ∈ 𝒯 such that 𝒜𝑡 ̸= {0} we have

E𝑣𝑝1𝑡 > 0 for any 𝑣 ∈ 𝐴𝑡 ∖ {0}
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and

𝑆𝑖
𝑡 +𝐷𝑖

𝑡 <
𝑝𝑖𝑡
𝑝1𝑡
< 𝑆

𝑖

𝑡 +𝐷
𝑖

𝑡 a.s. on the set {𝜔 : 𝑆𝑖
𝑡 +𝐷𝑖

𝑡 < 𝑆
𝑖

𝑡 +𝐷
𝑖

𝑡}

for all 𝑖 = 2, . . . , 𝑁 .

(ii) There exist F𝑡-measurable random variables 𝑆𝑖
𝑡 ∈ [𝑆𝑖

𝑡, 𝑆
𝑖

𝑡], 𝐷
𝑖
𝑡 ∈ [𝐷𝑖

𝑡, 𝐷
𝑖

𝑡],

𝑡 ∈ 𝒯 , 𝑖 = 2, . . . , 𝑁 , such that

𝑝𝑖𝑡 = (𝑆𝑖
𝑡 +𝐷𝑖

𝑡)𝑝
1
𝑡 . (1.10)

(iii) There exist F𝑡-measurable random variables 𝐵𝑡,𝑢 ∈ [1/(1+𝑅𝑡,𝑢), 1/(1+

𝑅𝑡,𝑢)] and random vectors 𝑞𝑡,𝑢 ∈ 𝑌 *
𝑡,𝑢 a.s., 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+, such that

E(𝑝1𝑢 | F𝑡) = 𝐵𝑡,𝑢𝑝
1
𝑡 − 𝑞1𝑡,𝑢, E(𝑝𝑖𝑢 | F𝑡) = 𝑆𝑖

𝑡𝑝
1
𝑡 − 𝑞𝑖𝑡,𝑢, 𝑖 > 2. (1.11)

Proof. Suppose the conditions listed above are satisfied for a sequence

(𝑝𝑡)𝑡∈𝒯 , 0 < 𝑝𝑡 ∈ 𝐿∞
𝑡 . Put 𝑆𝑡 = (1, 𝑆2

𝑡 , . . . , 𝑆
𝑁
𝑡 ), 𝑆′

𝑡,𝑢 = (𝐵𝑡,𝑢, 𝑆
2
𝑡 , . . . , 𝑆

𝑁
𝑡 ),

𝐷𝑡 = (0, 𝐷2
𝑡 , . . . , 𝐷

𝑁
𝑡 ). Then for any (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 we have

E

[︂
𝑥𝑡𝑝𝑡 −

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢𝑝𝑢

]︂
= E

[︂
𝑥𝑡𝑝𝑡 −

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢E(𝑝𝑢 | F𝑡)

]︂
= E

[︂(︂
𝑥𝑡(𝑆𝑡 +𝐷𝑡)−

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢𝑆
′
𝑡,𝑢

)︂
𝑝1𝑡

]︂
+

∑︁
𝑢∈𝒯𝑡+

E𝑦𝑡,𝑢𝑞𝑡,𝑢

> E

[︂(︂(︁
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︁𝑆𝑡 + 𝑥𝑡𝐷𝑡

)︂
𝑝1𝑡

]︂
> E

[︂(︂(︁
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︁+

𝑆𝑡 −
(︁
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︁−
𝑆𝑡 + 𝑑𝑡(𝑥𝑡)

)︂
𝑝1𝑡

]︂
> 0,

and so condition (1.2) involved in the definition of a consistent price system

holds. Condition (1.3) follows from Proposition 1.3. Thus, (𝑝𝑡)𝑡∈𝒯 is a

consistent price system.

Let us prove the converse statement. Suppose (𝑝𝑡)𝑡∈𝒯 is a consistent

price system. It can be proved by induction over the sets 𝒯 𝐾 , 𝒯 𝐾−1, . . . , 𝒯 0

(see their definition in the proof of Proposition 1.1) that each 𝑝𝑡 is strictly

positive.

Indeed, for any 𝑡 /∈ 𝒯− any non-negative 0 ̸= 𝑎𝑡 ∈ 𝐿1
𝑡 belongs to 𝒜+

𝑡
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(according to the assumption on p. 45), and so E𝑎𝑡𝑝𝑡 > 0 by virtue of (1.3),

which implies 𝑝𝑡 > 0 for 𝑡 /∈ 𝒯−. Suppose 𝑝𝑢 > 0 for all 𝑢 ∈ 𝒯 >𝑘 and

consider some 𝑡 ∈ 𝒯 𝑘−1. Take arbitrary non-negative 0 ̸= 𝑥𝑡 ∈ 𝐿1
𝑡 and let

𝑦𝑡 = (𝑦𝑡,𝑢)𝑢∈𝒯𝑡+ with 𝑦𝑡,𝑢 = 𝑥𝑡 for some 𝑢 ∈ 𝒯𝑡+ and 𝑦𝑡,𝑠 = 0 for 𝑠 ̸= 𝑢. Since

(𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, from (1.2) we obtain E𝑥𝑡𝑝𝑡 > E𝑥𝑡𝑝𝑢 > 0, which proves the

strict positivity of 𝑝𝑡.

For any 𝑡 ∈ 𝒯 where 𝒜𝑡 ̸= {0}, the first part of condition (i) can be

obtained by applying (1.3) to (𝑎𝑢)𝑢∈𝑇 ∈ 𝒜+ with 𝑎𝑢 = 0, 𝑢 ̸= 𝑡, and 𝑎𝑡 =

(𝑣, 0, . . . , 0) for any 𝑣 ∈ 𝐴𝑡 ∖ {0}.
In order to check the second part, suppose 𝑝𝑖𝑡/𝑝

1
𝑡 < 𝑆𝑖

𝑡+𝐷
𝑖
𝑡 on a set Γ ∈ F𝑡,

P(Γ) > 0, for some 𝑖 ≥ 2. Consider 𝑎𝑡 = (𝑎1𝑡 , . . . , 𝑎
𝑁
𝑡 ) with 𝑎

1
𝑡 = −(𝑆𝑖

𝑡+𝐷
𝑖
𝑡)IΓ,

𝑎𝑖𝑡 = IΓ and 𝑎𝑗𝑡 = 0 for 𝑗 ̸= 1, 𝑖. We have 𝑎𝑡 ∈ 𝒜𝑡 and E𝑎𝑡𝑝𝑡 < 0, which

contradicts (1.3). Thus 𝑝𝑖𝑡/𝑝
1
𝑡 > 𝑆𝑖

𝑡 +𝐷𝑖
𝑡, and similarly, 𝑝𝑖𝑡/𝑝

1
𝑡 6 𝑆

𝑖

𝑡 +𝐷
𝑖

𝑡.

If for the set Γ′ = {𝜔 : 𝑆𝑖
𝑡+𝐷

𝑖
𝑡 = 𝑝𝑖𝑡/𝑝

1
𝑡 < 𝑆

𝑖

𝑡+𝐷
𝑖

𝑡}, we have P(Γ′) > 0, we

can define 𝑎𝑡 as above (with Γ′ in place of Γ) and obtain that 𝑎𝑡 ∈ 𝒜+
𝑡 but

E𝑎𝑡𝑝𝑡 = 0, which is a contradiction. Hence 𝑝𝑖𝑡/𝑝
1
𝑡 > 𝑆𝑖

𝑡 + 𝐷𝑖
𝑡, and similarly,

𝑝𝑖𝑡/𝑝
1
𝑡 < 𝑆

𝑖

𝑡 +𝐷
𝑖

𝑡 a.s. on the set {𝜔 : 𝑆𝑖
𝑡 +𝐷𝑖

𝑡 < 𝑆
𝑖

𝑡 +𝐷
𝑖

𝑡}, which proves the

second part of (i).

Let us verify conditions (ii) and (iii). First we show that for almost each

𝜔 ∈ Ω there exist 𝑆𝑖
𝑡(𝜔), 𝐷

𝑖
𝑡(𝜔), 𝐵𝑡,𝑢(𝜔), 𝑞𝑡,𝑢(𝜔) satisfying (1.10)–(1.11), and

then it will be shown that they can be chosen in the F𝑡-measurable way.

For 𝑡 ∈ 𝒯−, consider the cones defining the self-financing condition:

𝑀𝑡(𝜔) =

{︂
(𝑥, 𝑦) ∈ R𝑁(1+|𝒯𝑡+|) :(︁

𝑥𝑡 −
∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︁+

· 𝑆𝑡(𝜔) + 𝑑𝑡(𝜔)(𝑥𝑡) >
(︁
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

̃︀𝑦𝑡,𝑢)︁−
· 𝑆𝑡(𝜔)

}︂
.

Property (1.2) implies the following inclusion for each 𝑡 ∈ 𝒯−:(︀
𝑝𝑡,−E[(𝑝𝑢)𝑢∈𝒯𝑡+ | F𝑡]

)︀
∈
(︀
𝑀𝑡 ∩ (R𝑁 × 𝑌𝑡)

)︀*
where we denote 𝑌𝑡 = {(𝑦𝑡,𝑢)𝑢∈𝒯𝑡+ : 𝑦𝑡,𝑢 ∈ 𝑌𝑡,𝑢}. It can be verified that for

almost all 𝜔, the cone 𝑀𝑡(𝜔), 𝑡 ∈ 𝒯−, is positively dual to the set 𝑀 ′
𝑡(𝜔)
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consisting of all pairs (𝑝,−𝑞) ∈ R𝑁(1+|𝒯𝑡+|) such that

𝑝1 = 1, 𝑝𝑖 = 𝑆𝑖 +𝐷𝑖, 𝑖 > 2,

𝑞1𝑢 = 𝐵𝑢, 𝑞𝑖𝑢 = 𝑆𝑖, 𝑖 > 2, for 𝑢 ∈ 𝒯𝑡+,

with some 𝐵𝑢 ∈ [1/(1 + 𝑅𝑡,𝑢(𝜔)), 1/(1 + 𝑅𝑡,𝑢(𝜔))], 𝑆
𝑖 ∈ [𝑆𝑖

𝑡(𝜔), 𝑆
𝑖

𝑡(𝜔)], 𝐷
𝑖 ∈

[𝐷𝑖
𝑡(𝜔), 𝐷

𝑖

𝑡(𝜔)]. Since𝑀
′
𝑡(𝜔) is closed, we have𝑀

*
𝑡 (𝜔) = cone(𝑀 ′

𝑡(𝜔)), which

implies 𝑀*
𝑡 (𝜔) ∩ ({0} × 𝑌 *

𝑡 (𝜔)) = {0}, and so(︀
𝑀𝑡 ∩ (R𝑁 × 𝑌𝑡)

)︀*
=𝑀*

𝑡 + {0} × 𝑌 *
𝑡

by virtue of Proposition 1.7. Thus, we obtain the existence of 𝐵𝑡,𝑢(𝜔), 𝑆
𝑖
𝑡(𝜔),

𝐷𝑖
𝑡(𝜔), 𝑞𝑡,𝑢(𝜔) satisfying (1.10), (1.11) for 𝑡 ∈ 𝒯−. In a similar way we obtain

the existence of 𝑆𝑖
𝑡(𝜔), 𝐷

𝑖
𝑡(𝜔) satisfying (1.10) for 𝑡 /∈ 𝒯−.

It remains to show that 𝐵𝑡,𝑢, 𝑆
𝑖
𝑡 , 𝐷

𝑖
𝑡, 𝑞𝑡,𝑢 can be chosen F𝑡-measurably.

For 𝑡 ∈ 𝒯− consider the closed cones

𝑉
(1)
𝑡 (𝜔) =

{︀
(𝐵, 𝑆,𝐷, 𝑞) : 𝑆𝑖 ∈ [𝑆𝑖

𝑡(𝜔), 𝑆
𝑖

𝑡(𝜔)], 𝐷
𝑖 ∈ [𝐷𝑖

𝑡(𝜔), 𝐷
𝑖

𝑡(𝜔)], 𝑖 > 2,

𝐵𝑢 ∈ [1/(1 +𝑅𝑡,𝑢(𝜔)), 1/(1 +𝑅𝑡,𝑢(𝜔))], 𝑢 ∈ 𝒯𝑡+
}︀
,

𝑉
(2)
𝑡 (𝜔) =

{︀
(𝐵, 𝑆,𝐷, 𝑞) : 𝑝𝑖𝑡(𝜔) = (𝑆𝑖 +𝐷𝑖)𝑝1𝑡 (𝜔), 𝑖 > 2,

E(𝑝1𝑢 | F𝑡)(𝜔) = 𝐵𝑢𝑝
1
𝑡 (𝜔)− 𝑞1𝑢, 𝑢 ∈ 𝒯𝑡+,

E(𝑝𝑖𝑢 | F𝑡)(𝜔) = 𝑆𝑖𝑝1𝑡 (𝜔)− 𝑞𝑖𝑢, 𝑖 > 2, 𝑢 ∈ 𝒯𝑡+
}︀

𝑉
(3)
𝑡 (𝜔) =

{︀
(𝐵, 𝑆,𝐷, 𝑞) : 𝑞𝑢 ∈ 𝑌 *

𝑡,𝑢(𝜔), 𝑢 ∈ 𝒯𝑡+
}︀
.

These cones consist of families (𝐵, 𝑆,𝐷, 𝑞) of vectors 𝐵 = (𝐵𝑢)𝑢∈𝒯𝑡+ ∈ R|𝒯𝑡+|,

𝑆 = (𝑆𝑖)𝑖>2 ∈ R𝑁−1, 𝐷 = (𝐷𝑖)𝑖>2 ∈ R𝑁−1, 𝑞 = (𝑞𝑖𝑢 | 𝑢 ∈ 𝒯𝑡+, 𝑖 > 1} ∈
R𝑁 |𝒯𝑡+| satisfying the corresponding conditions. One can see that they are

F𝑡-measurable: 𝑉
(1)
𝑡 is the volume bounded by F𝑡-measurable hyperplanes,

𝑉
(2)
𝑡 is the intersection of F𝑡-measurable hyperplanes, and 𝑉

(3)
𝑡 is positively

dual to F𝑡-measurable closed cone {0}×𝑌𝑡,𝑢 (see Remark 1.7). Consequently,

their intersection is also F𝑡-measurable, so there exists a measurable selection

from it (Proposition 1.8), which provides the sought-for 𝑆𝑖
𝑡 , 𝐷

𝑖
𝑡, 𝐵𝑡,𝑢, 𝑞

𝑖
𝑡,𝑢.

Condition (ii) for 𝑡 = 𝑇 can be proved in a similar way.
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1.6 Appendix 1: auxiliary results from functional analysis

In this appendix we provide several results from functional analysis used

in this and the next chapters.

Let (𝐵,ℬ, 𝜂) be a measurable space with a finite measure 𝜂. Let 𝐿1 and

𝐿∞ be the spaces of all (equivalence classes of) integrable and essentially

bounded functions with the norms ‖ · ‖1 and ‖ · ‖∞, respectively. We put

E𝑥 :=
∫︀
𝑥𝑑𝜂 for any 𝑥 ∈ 𝐿1. For a cone 𝒜, we denote 𝒜+ = 𝒜 ∖ (−𝒜).

Proposition 1.4 (a version of the Kreps-Yan theorem). Let ℋ and 𝒜 be

closed cones in 𝐿1 such that 𝒜+ ̸= ∅, −𝒜 ⊂ ℋ, 𝒜+∩ℋ = ∅ and there exists

𝑞 ∈ 𝐿∞ satisfying E𝑞𝑥 > 0 for all 𝑥 ∈ 𝒜+. Then there exists 𝑝 ∈ 𝐿∞ such

that E𝑝𝑥 > 0 for all 𝑥 ∈ 𝒜+ and E𝑝𝑥 6 0 for all 𝑥 ∈ ℋ.

Proof. If 𝒜 ∩ (−𝒜) = {0} (i.e. 𝒜+ = 𝒜 ∖ {0}), the proposition follows

from a result by Rokhlin: see Theorem 1.1 in [52]. In the general case,

consider the closed cones

𝒜𝑛 = {𝑥 ∈ 𝒜 : E𝑞𝑥 > 𝑛−1‖𝑥‖}.

Then 𝒜𝑛 ∩ (−𝒜𝑛) = {0}, and by applying Rokhlin’s theorem to ℋ and 𝒜𝑛,

we find 𝑝𝑛 ∈ 𝐿∞ such that E𝑝𝑛𝑥 > 0 for any 𝑥 ∈ 𝒜𝑛 ∖ {0} and E𝑝𝑛𝑥 6 0 for

all 𝑥 ∈ ℋ. Without loss of generality it may be assumed that ‖𝑝𝑛‖∞ = 1.

Then the proposition holds with 𝑝 =
∞∑︀
𝑛=1

2−𝑛𝑝𝑛.

Remark 1.6. Note that if the space 𝐿1 is separable, there always exists

𝑞 ∈ 𝐿∞ such that E𝑞𝑥 > 0 for all 𝑥 ∈ 𝒜+ ( ̸= ∅), and Proposition 1.4 follows

from Theorem 5 in [8]. In a non-separable 𝐿1, there might exist pointed

cones 𝒜 without functionals 𝑞 ∈ 𝐿∞, see Section 1.7.

Proposition 1.5. Let ℋ and 𝒜 be closed cones in 𝐿1 such that 𝒜+ ̸= ∅,
−𝒜 ⊂ ℋ, 𝒜+ ∩ ℋ = ∅ and there exists 𝑞 ∈ 𝐿∞ such that E𝑞𝑥 > 0 for all

𝑥 ∈ 𝒜+. Then for any 𝑦 ∈ 𝐿1 the following conditions are equivalent:

(a) 𝑦 ∈ ℋ;

(b) E𝑝𝑦 6 0 for any 𝑝 ∈ 𝐿∞ such that E𝑝𝑥 > 0 for all 𝑥 ∈ 𝒜+ and E𝑝𝑥 6 0

for all 𝑥 ∈ ℋ.
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Proof. Clearly (a) implies (b). To prove the converse implication suppose

𝑦 ̸∈ ℋ. By separating the point 𝑦 from the closed convex set ℋ, we construct

𝑝1 ∈ 𝐿∞ such that E𝑝1𝑦 > 0 and E𝑝1𝑥 6 0 for all 𝑥 ∈ ℋ. Since ℋ ⊃ −𝒜,

we have E𝑝1𝑥 > 0 for all 𝑥 ∈ 𝒜.

According to Proposition 1.4, there exists 𝑝2 ∈ 𝐿∞ such that E𝑝2𝑥 6 0

for any 𝑥 ∈ ℋ and E𝑝2𝑥 > 0 for any 𝑥 ∈ 𝒜+. By choosing 𝜆 > 0 large

enough, we get E𝑝𝑦 > 0 for 𝑝 = 𝜆𝑝1 + 𝑝2. On the other hand, E𝑝𝑥 > 0 for

all 𝑥 ∈ 𝒜+ and E𝑝𝑥 6 0 for all 𝑥 ∈ ℋ. A contradiction.

Proposition 1.6 (Komlós theorem, [38]). Let {𝑥𝜆}𝜆∈Λ be a family of

functions in 𝐿1 such that sup𝜆∈Λ ‖𝑥𝜆‖1 <∞. Then there exists 𝑥 ∈ 𝐿1 and a

sequence 𝑥𝜆𝑛 such that any its subsequence 𝑥𝜆𝑛𝑘 Cesàro converges to 𝑥 a.s.,

i. e. 𝑘−1(𝑥𝜆𝑛1 + . . .+ 𝑥𝜆𝑛𝑘 ) → 𝑥 a.s.

For the reader’s convenience, we provide an auxiliary (known) result used

in Theorem 1.4. For a cone 𝐴 ⊂ R𝑛 we denote by 𝐴* its positive dual cone,

i. e. 𝐴* = {𝑝 ∈ R𝑛 : 𝑝𝑎 > 0 for all 𝑎 ∈ 𝐴}. It is well known that 𝐴** = 𝐴 for

any closed cone 𝐴 ⊂ R𝑛.

Proposition 1.7. Let 𝐴 and 𝐵 be closed cones in R𝑛 such that 𝐴* ∩
(−𝐵*) = {0}. Then (𝐴 ∩𝐵)* = 𝐴* +𝐵*.

Proof. It is straightforward to prove that (𝐴 ∩𝐵)* ⊃ 𝐴* +𝐵*. In order

to prove (𝐴 ∩ 𝐵)* ⊂ 𝐴* + 𝐵*, observe that 𝐴 ∩ 𝐵 ⊃ (𝐴* + 𝐵*)*. Indeed, if

𝑥 ∈ (𝐴* + 𝐵*)* then 𝑝𝑥 > 0 for any 𝑝 ∈ 𝐴*, so 𝑥 ∈ 𝐴** = 𝐴, and, similarly,

𝑥 ∈ 𝐵. Consequently, (𝐴∩𝐵)* ⊂ (𝐴*+𝐵*)** = 𝐴*+𝐵*, where we use that

𝐴* + 𝐵* is closed because 𝐴* and 𝐵* are closed and 𝐴* ∩ (−𝐵*) = {0}, see
[50, Corollary 9.1.3].

In the rest of the appendix we provide results on random measurable sets

which were used in Section 1.5.

Let (Ω,F ,P) be a complete probability space and𝑋 a complete separable

metric space endowed with the Borel 𝜎-algebra B(𝑋). By definition, a

(closed) random set 𝑍 on (Ω,F ,P) is a set-valued mapping 𝑍 : Ω → 2𝑋

from Ω to the family of all subsets of 𝑋 such that 𝑍(𝜔) is closed a.s.
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A random set 𝑍 is called measurable if for any open set 𝐺 ⊂ 𝑋

{𝜔 : 𝑍(𝜔) ∩𝐺 ̸= ∅} ∈ F .

A measurable function 𝜉 : Ω → 𝑋 is called a measurable selection of a

random set 𝑍 if 𝜉(𝜔) ∈ 𝑍(𝜔) a.s.

The following propositions assemble properties of measurable random

sets. Their proofs can be found in [6, Ch. III] and [43, Ch. 2].

Proposition 1.8. For a set-valued mapping 𝑍 : Ω → 2𝑋 such that 𝑍(𝜔)

is closed and non-empty a.s. the following conditions are equivalents:

(a) 𝑍 is measurable;

(b) for any 𝑥 ∈ 𝑋 the distance 𝑑(𝑥, 𝑍(𝜔)) is a measurable function from

(Ω,F ) to (R,B(R));

(c) there exists a sequence {𝜉𝑛}𝑛>0 of measurable selections of 𝑍 such that

𝑍(𝜔) = cl{𝜉𝑛(𝜔), 𝑛 > 0} a.s.;

(d) {𝜔 : 𝑍(𝜔) ∩𝐵 ̸= 0} ∈ F for any 𝐵 ∈ B(𝑋);

(e) Graph(𝑋) = {(𝜔, 𝑥) ∈ Ω×𝑋 : 𝑥 ∈ 𝑍(𝜔)} ∈ F ⊗ B(𝑋).

Proposition 1.9. Any countable intersection 𝑍(𝜔) =
⋂︀
𝑛>0

𝑍𝑛(𝜔) of mea-

surable random sets 𝑍𝑛, 𝑛 > 0, is also measurable.

Remark 1.7. 1) If 𝑍(𝜔) = {𝑥 ∈ R𝑛 : 𝑥 · 𝑝(𝜔) = 𝑎(𝜔)} is a random

hyperplane in R𝑛 (possibly, 𝑍(𝜔) = R𝑛 or 𝑍(𝜔) = ∅ for some 𝜔), where

𝑝 : Ω → R𝑛 is a measurable vector, and 𝑎 : Ω → R is random variable, then

𝑍 is measurable. This follows from that the distance between any point

𝑥 ∈ R𝑛 and this hyperplane is a measurable function of 𝑝(𝜔) and 𝑎(𝜔).

2) For a random measurable set 𝑍 in R𝑛, which is non-empty a.s., its

positively dual cone 𝑍*(𝜔) = {𝑝 ∈ R𝑛 : 𝑝 · 𝑥 > 0 for any 𝑥 ∈ 𝑍(𝜔)} is also

measurable. Indeed, let {𝜉𝑛}𝑛>0 be a sequence of measurable selections of 𝑍

such that 𝑍 = cl{𝜉𝑛, 𝑛 > 0} a.s. Then 𝑍𝑛(𝜔) = {𝑝 ∈ R𝑛 : 𝑝 · 𝜉𝑛(𝜔) > 0} are

measurable random sets, and hence 𝑍* =
⋂︀
𝑛>0

𝑍𝑛 is also measurable.
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1.7 Appendix 2: linear functionals in non-separable 𝐿1

spaces

The aim of this appendix is to provide an example3 of a non-separable

space 𝐿1 that contains a pointed non-empty cone 𝒜 such that there is no

linear functional 𝑝 ∈ 𝐿∞ strictly positive on 𝒜 ∖ {0}. This example shows

that assumption (A) imposed in Section 1.1 is essential.

Let (Ω,F ,P) be a probability space, where Ω is the space of all func-

tions 𝜔 : [0, 1] → R, F is the product of a continuum of copies of the Borel

𝜎-algebra B on R, and P is the probability measure on F such that the

(canonical) random variables 𝜉𝑡(𝜔) := 𝜔(𝑡), 𝑡 ∈ [0, 1], have standard Gaus-

sian distribution (𝜉𝑡 ∼ N (0, 1)) and are independent.

Let 𝒜 be the closed convex cone in 𝐿1 = 𝐿1(Ω,F ,P) spanned on the

system of random variables 𝜉𝑡.

First we prove that the cone 𝒜 is pointed, i. e. 𝒜∩ (−𝒜) = {0}. Indeed,
suppose the contrary: there exists a non-zero random variable 𝑍 ∈ 𝐿1, a

sequence 𝜉𝑡1, 𝜉𝑡2, . . . of distinct random variables 𝜉𝑡𝑖, and two sequences

𝐴𝑘 =
𝑘∑︁

𝑖=1

𝑎𝑘𝑖 𝜉𝑡𝑖, 𝐵𝑘 =
𝑘∑︁

𝑖=1

𝑏𝑘𝑖 𝜉𝑡𝑖

of non-negative linear combinations of 𝜉𝑡𝑖 such that

𝐴𝑘 → 𝑍, 𝐵𝑘 → −𝑍 (in 𝐿1).

This implies

𝐶𝑘 :=
𝑘∑︁

𝑖=1

𝑐𝑘𝑖 𝜉𝑡𝑖 → 0 (in 𝐿1) for 𝑐𝑘𝑖 := 𝑎𝑘𝑖 + 𝑏𝑘𝑖 . (1.12)

Since 𝜉𝑡𝑖 are independent and standard Gaussian, 𝐶𝑘 is a Gaussian random

variable with zero expectation and variance 𝑣𝑘 =
∑︀𝑘

𝑖=1(𝑐
𝑘
𝑖 )

2. Thus E|𝐶𝑘| =√
𝑣𝑘 · E|𝑋|, where 𝑋 ∼ N (0, 1). According to (1.12), E|𝐶𝑘| → 0, and

3The idea of this example was suggested by Prof. W. Schachermayer, [54].
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consequently,

0 = lim
𝑘→∞

𝑣𝑘 = lim
𝑘→∞

𝑘∑︁
𝑖=1

(𝑎𝑘𝑖 + 𝑏𝑘𝑖 )
2 > lim

𝑘→∞

𝑘∑︁
𝑖=1

(𝑎𝑘𝑖 )
2,

where the last inequality holds because 𝑎𝑘𝑖 ≥ 0 and 𝑏𝑘𝑖 ≥ 0. Therefore

E𝐴2
𝑘 =

𝑘∑︁
𝑖=1

(𝑎𝑘𝑖 )
2 → 0,

which implies that E|𝐴𝑘| → 0, and hence 𝑍 = 0. This is a contradiction

meaning that 𝒜 is a pointed cone.

Now we prove that there are no continuous linear functionals on 𝐿1 which

are strictly positive on 𝒜 ∖ {0}. Suppose the contrary: such a functional 𝜋

exists. Let 𝑝 be a function in 𝐿∞ such that ⟨𝜋, 𝑦⟩ = E𝑝𝑦, 𝑦 ∈ 𝐿1.

It is well-known that any F -measurable function 𝑝 on Ω can be repre-

sented in the form

𝑝 = 𝑓(𝜉𝑡1, 𝜉𝑡1, . . .),

where {𝑡1, 𝑡2, . . .} is a countable subset of [0, 1] and 𝑓(·, ·, . . .) is a measurable

function on the product of a countable number of copies of (R,B). Consider

any 𝑡 /∈ {𝑡1, 𝑡2, ...}. The random variable 𝜉𝑡 is independent of 𝜉𝑡1, 𝜉𝑡1, ... and

hence independent of 𝑝. Consequently,

E𝑝𝜉𝑡 = E𝑝 · E𝜉𝑡 = 0,

which is a contradiction.
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Chapter 2

Utility maximisation in multimarket

trading

In this chapter we continue studying the general model of interconnected

markets described in the previous chapter and consider the question of choos-

ing optimal trading strategies in this model. We propose a problem where a

trader needs to manage a portfolio of assets choosing the level of consump-

tion and allocating her wealth between the assets in the way that maximises

the utility from trading. The main result of the chapter provides conditions

for the existence of supporting prices, which allow to decompose the multi-

period constrained utility maximisation problem and to reduce it to a family

of single-period unconstrained problems.

Problems of utility maximisation in multi-period trading have been widely

studied in the literature (typically for the “linear” time structure; see e.g.

[1, 10, 13, 25, 42]). The most closely related model to our research is the

framework of von Neumann – Gale random dynamical systems introduced

by von Neumann [68] and Gale [25, 27] for the deterministic case and later

extended to the stochastic case by Dynkin, Radner and others (see e.g. [1,

12, 13, 48, 50]). Originally, this framework addressed utility maximisation

problems in models of a growing economy, where a planner needs to choose

between consumption of commodities and using them for further production.

Our model extends results of the von Neumann – Gale framework to financial

markets. The main conceptual difference between financial and economic

models consists in the possibility of short sales, when a trader may borrow

assets from the broker. Mathematically this is expressed in that coordinates

of portfolio vectors may be negative, while in economic models commodity

vectors are typically non-negative.
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Similarly to Chapter 1, in order to obtain the main results, we system-

atically use the idea of margin requirements on admissible portfolios, which

limit allowed leverage. As it has already been mentioned, requirements of

this type present in one form or another in all real financial markets and thus

are fully justified from the applied point of view. We prove the existence of

supporting prices in a market with a margin requirement under a condition

on the size of the margin.

The chapter is organised as follows. In Section 2.1 we describe the gen-

eral problem of utility maximisation in the multimarket model and establish

the existence of optimal trading strategies which deliver maximum values of

utility functionals. In Section 2.2 we prove the main result on the existence

of supporting prices in the model. Section 2.3 contains an application of the

general result to a specific model of an asset market with transaction costs

and portfolio constraints. In Section 2.4 we construct two examples of natu-

ral market models, where supporting prices do not exist. Section 2.5 provides

an auxiliary result from convex analysis, the Duality Theorem, which plays

the central role in the proof of the existence of supporting prices.

2.1 Optimal trading strategies in the model of

interconnected asset markets

In this chapter we use the general market model of Chapter 1, slightly

modifying it to allow consideration of utility maximisation problems.

It is assumed that a system of interconnected markets is described by

a probability space (Ω,F ,P), a directed acyclic graph 𝐺 with a finite set

of nodes 𝒯 , which are interpreted as different trading sessions, a family of

𝜎-algebras F𝑡, 𝑡 ∈ 𝒯 , representing random factors affecting each trading

session, and a measurable space of assets (Θ,J , 𝜇) with a finite measure 𝜇.

The meaning of these objects is the same as in Chapter 1.

For a subset 𝑇 ⊂ 𝒯 we denote by 𝐿1
𝑇 = 𝐿1

𝑇 (Ω × Θ) the space of all

integrable functions 𝑦 : 𝑇 ×Ω×Θ → 𝑅, and let 𝐿1
𝑡+ = 𝐿1

𝒯𝑡+ for each 𝑡 ∈ 𝒯−.
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To keep further notation concise, we define 𝐿1
𝑡+ := {0} for each sink node

𝑡 /∈ 𝒯− (which can be interpreted as that no distribution of assets is done in

terminal trading sessions).

Trading constraints in the model are defined by some given (convex) cones

𝒵𝑡 ⊂ 𝐿1
𝑡⊗𝐿1

𝑡+, 𝑡 ∈ 𝒯 . In this chapter, from the beginning, we assume that 𝒵𝑡

are closed with respect to 𝐿1-bounded a.s.-convergence, and, hence, are also

closed in 𝐿1 (which follows from the fact that from any sequence converging

in 𝐿1 it is possible to extract a subsequence converging with probability one).

A trading strategy 𝜁 is a family of functions 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 such that

(𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 for each 𝑡 ∈ 𝒯 .

For each 𝑡 ∈ 𝒯−, the function 𝑥𝑡 represents the portfolio held before one buys

and sells assets in the session 𝑡 and the function 𝑦𝑡 = (𝑦𝑡,𝑢)𝑢∈𝒯𝑡+ specifies the

distribution of assets to the sessions 𝑢 ∈ 𝒯𝑡+. If 𝑡 /∈ 𝒯− (i. e. 𝑡 is a sink

node), 𝑥𝑡 ∈ 𝐿1
𝑡 specifies the terminal portfolio obtained in this session, and

𝑦𝑡 := 0 by the definition of 𝐿1
𝑡+. Note that in Chapter 1 trading strategies are

indexed by 𝑡 ∈ 𝒯−, while in this chapter we also take into account terminal

pairs (𝑥𝑡, 0) for sink nodes 𝑡 /∈ 𝒯−.
The definition of a contract in the market is the same as in Chapter 1: it

is a family of portfolios

𝛾 = (𝑐𝑡)𝑡∈𝒯 , 𝑐𝑡 ∈ 𝐿1
𝑡 ,

where 𝑐𝑡 stands for the portfolio which has to be delivered – according to

this contract – in the trading session 𝑡.

In this chapter we will consider only exact hedging (replication) of con-

tracts, and will say that a trading strategy 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 hedges a contract

𝛾 = (𝑐𝑡)𝑡∈𝒯 if

𝑥𝑡 = 𝑦𝑡− − 𝑐𝑡 for each 𝑡 ∈ 𝒯 ,

where 𝑦𝑡− :=
∑︀

𝑠∈𝒯𝑡−
𝑦𝑠,𝑡 for 𝑡 ∈ 𝒯+ is the amount of assets delivered to the

trading session 𝑡, and 𝑦𝑡− := 0 for a source node 𝑡 ̸∈ 𝒯+. In terms of the

previous chapter, the set of families of risk-acceptable portfolios is 𝒜 = {0}.
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Suppose that with each 𝑡 ∈ 𝒯 , a utility function 𝑢𝑡 : 𝐿
1
𝑡 × 𝐿1

𝑡+ → R is

associated. The utility of a trading strategy 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 is defined by

𝑢(𝜁) =
∑︁
𝑡∈𝒯

𝑢𝑡(𝑥𝑡, 𝑦𝑡).

Further, it is assumed that each function 𝑢𝑡 is upper semi-continuous

(with respect to the topology induced by the norm in 𝐿1) and concave, and,

hence, 𝑢 is also upper semi-continuous and concave.

If 𝑡 is not a sink node (i. e. 𝑡 ∈ 𝒯−), the utility function 𝑢𝑡 measures the

gain obtained from rearranging a portfolio 𝑥𝑡 into a family of portfolios 𝑦𝑡.

A simple example of such a function is

𝑢
(1)
𝑡 (𝑥𝑡, 𝑦𝑡) = E 𝑓

(︂∫︁
Θ

(︁
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢

)︁
𝑆𝑡𝑑𝜇

)︂
(2.1)

for a function 𝑆𝑡 = 𝑆𝑡(𝜔, 𝜃) of asset prices and a deterministic utility function

𝑓 : R → R. Here, the utility of a pair (𝑥𝑡, 𝑦𝑡) is equal to the expected 𝑓 -utility

of the monetary gain from selling assets and buying new ones.

A more sophisticated model is

𝑢
(2)
𝑡 (𝑥𝑡, 𝑦𝑡) = E𝑓

(︂∫︁
Θ

[︁(︁
𝑥𝑡−

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢

)︁+

𝑆𝑡−
(︁
𝑥𝑡−

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢

)︁−
𝑆𝑡

]︁
𝑑𝜇

)︂
, (2.2)

where 𝑆𝑡 6 𝑆𝑡 are bid and ask price functions.

If 𝑡 /∈ 𝒯−, the value of 𝑢𝑡(𝑥𝑡, 𝑦𝑡) with 𝑦𝑡 ≡ 0, represents the utility of a

terminal portfolio 𝑥𝑡 and can be also defined, for example, by formulae (2.1)

or (2.2), putting 𝑦𝑡,𝑢 := 0.

Remark 2.1. It is worth mentioning that the model proposed is able

to include the case when one receives a gain from just holding assets, not

necessarily consuming them. This circumstance was especially important

in von Neumann – Gale models of a growing economy, where additional

utility can be obtained from availability of goods whose consumption does

not reduce their quantity (e.g. housing, works of art, etc.). The approach

can also be used to model irrationalities in people’s actions, e. g. when the

valuation of additional gain or loss depends on the current wealth (such as
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the endowment effect, see [34]).

In the financial setting, a typical example is a gain obtained from dividend

payments. The corresponding utility function can be of the form

𝑢
(3)
𝑡 (𝑥𝑡, 𝑦𝑡) = E 𝑔

(︂∫︁
Θ

𝑥𝑡𝐷𝑡𝑑𝜇

)︂
+ E 𝑓

(︂∫︁
Θ

(︁
𝑥𝑡 −

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢

)︁
𝑆𝑡𝑑𝜇

)︂
,

where 𝐷𝑡 = 𝐷𝑡(𝜔, 𝜃) is a function of dividend rates and 𝑔 is some determin-

istic utility function.

If 𝛾 is a hedgeable contract (there exists at least one trading strategy

hedging it), by 𝑈(𝛾) we denote the supremum of the utilities of all trading

strategies hedging 𝛾, i. e.

𝑈(𝛾) := sup{𝑢(𝜁) | 𝜁 hedges 𝛾}.

A trading strategy ̂︀𝜁 is called an optimal trading strategy for 𝛾 if 𝑢(̂︀𝜁) =
𝑈(𝛾), i. e. 𝜁 maximises the utility from trading with the contract 𝛾.

Remark 2.2. Note that 𝑈 is a concave function. Indeed, if 𝛾 = 𝛼𝛾1 +

(1 − 𝛼)𝛾2 for hedgeable contracts 𝛾1, 𝛾2 and 𝛼 ∈ [0, 1], then for any 𝜀 > 0

there exist trading strategies 𝜁1, 𝜁2 hedging 𝛾1, 𝛾2 such that 𝑈(𝛾𝑖) 6 𝑢(𝜁𝑖)+𝜀.

Consequently, 𝜁 = 𝛼𝜁1 + (1− 𝛼)𝜁2 hedges 𝛾 and

𝑈(𝛾) > 𝑢(𝜁) > 𝛼𝑢(𝜁1) + (1− 𝛼)𝑢(𝜁2) > 𝛼𝑈(𝛾1) + (1− 𝛼)𝑈(𝛾2)− 𝜀.

Passing to the limit 𝜀→ 0, we obtain 𝑈(𝛾) > 𝛼𝑈(𝛾1) + (1− 𝛼)𝑈(𝛾2).

The next theorem states that conditions (a), (b) of Theorem 1.1 guarantee

the existence of optimal trading strategies for hedgeable contracts.

Theorem 2.1. Suppose there exist functions 𝑠1𝑡 , 𝑠
2
𝑡,𝑢 ∈ 𝐿∞

𝑡 , 𝑡 ∈ 𝒯−, 𝑢 ∈
𝒯𝑡+, with values in [𝑠, 𝑠], where 𝑠 > 0, 𝑠 > 1, and a constant 0 6 𝑚 < 1

such that for all 𝑡 ∈ 𝒯 , 𝑢 ∈ 𝒯𝑡+, (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 the following conditions are

satisfied:

(a) E𝑥𝑡𝑠
1
𝑡 > E𝑦𝑡,𝑢𝑠

2
𝑡,𝑢;

(b) 𝑚E𝑦+𝑡,𝑢𝑠
2
𝑡,𝑢 > E𝑦−𝑡,𝑢𝑠

2
𝑡,𝑢.

Then an optimal trading strategy exists for any hedgeable contract.
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The functions 𝑠1𝑡 , 𝑠
2
𝑡,𝑢 can be interpreted as some systems of asset prices

in the same way as in Theorem 1.1.

Proof. Let 𝛾 be a hedgeable contract, we need to show that there exists

a trading strategy ̂︀𝜁 hedging 𝛾 such that 𝑢(̂︀𝜁) = 𝑈(𝛾).

As follows from the proof of Theorem 1.1, there exists a constant 𝐶

(namely, 𝐶 = (1 + 𝑚)/(1 − 𝑚) · 𝑠/𝑠) such that ‖𝑦𝑡,𝑢‖ ≤ 𝐶‖𝑥𝑡‖ for any

(𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+, which implies that the set of all trading

strategies hedging 𝛾 is bounded in 𝐿1.

Take a sequence of strategies 𝜁 𝑖 hedging 𝛾 such that 𝑢(𝜁 𝑖) → 𝑈(𝛾). By

using the Komlós theorem (see Proposition 1.6), we find a subsequence 𝜁 𝑖𝑗

Cesàro-convergent a.s. to some ̂︀𝜁 (i. e. ̂︀𝜁𝑗 := 𝑗−1(𝜁 𝑖1 + . . .+ 𝜁 𝑖𝑗) → ̂︀𝜁). Since
the cones 𝒵𝑡 are closed with respect to 𝐿1-bounded a.s.-convergence, ̂︀𝜁 is a

trading strategy and it hedges 𝛾. Then we find

𝑢(̂︀𝜁) > lim sup
𝑗→∞

𝑢(̂︀𝜁𝑗) > lim sup
𝑗→∞

1

𝑗

𝑗∑︁
𝑘=1

𝑢(𝜁 𝑖𝑘) = 𝑈(𝛾),

where in the first inequality we use that 𝑢 is upper semicontinuous, and in

the second inequality we use that 𝑢 is concave. Thus ̂︀𝜁 is the sought-for

trading strategy.

Remark 2.3. Under the conditions of the theorem, the set of all hedge-

able contracts is a closed cone in 𝐿1
𝒯 , as follows from the proof of Theorem 1.1.

2.2 Supporting prices: the definition and conditions of

existence

In this section we introduce the central notion of the chapter, a system

of supporting prices for a hedgeable contract, and provide conditions which

guarantee its existence.

Further we always assume that cones 𝒵𝑡 and utility functions 𝑢𝑡 satisfy
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the following natural conditions of monotonicity :

if (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, then (𝑥′𝑡, 𝑦𝑡) ∈ 𝒵𝑡 for any 𝑥
′
𝑡 ∈ 𝐿1

𝑡 such that 𝑥′𝑡 > 𝑥𝑡, (2.3)

𝑢(𝑥′𝑡, 𝑦𝑡) > 𝑢(𝑥𝑡, 𝑦𝑡) for any 𝑥𝑡, 𝑥
′
𝑡 ∈ 𝐿1

𝑡 , 𝑦𝑡 ∈ 𝐿1
𝑡+ such that 𝑥′𝑡 > 𝑥𝑡, (2.4)

where here and below all inequalities for random variables are understood to

hold with probability one.

These two properties imply that if 𝛾 = (𝑐𝑡)𝑡∈𝒯 , 𝛾
′ = (𝑐′𝑡)𝑡∈𝒯 are two

hedgeable contracts and 𝛾′ 6 𝛾 (𝑐′𝑡 6 𝑐𝑡 for each 𝑡 ∈ 𝒯 ), then 𝑈(𝛾′) > 𝑈(𝛾),

i. e. a contract with a smaller amount of payments provides greater utility.

Indeed, if 𝛾 can be hedged by a trading strategy 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 , then 𝛾
′ can

be hedged by 𝜁 ′ = (𝑥′𝑡, 𝑦𝑡)𝑡∈𝒯 with 𝑥′𝑡 = 𝑥𝑡 + 𝑐𝑡 − 𝑐′𝑡, and 𝑢(𝜁
′) > 𝑢(𝜁).

Moreover, (2.3) implies that any non-positive contract 𝛾 = (𝑐𝑡)𝑡∈𝒯 (i. e.

a contract according to which one does not make any payment, but only

receives assets) is hedgeable, e. g. by the strategy 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 with 𝑥𝑡 = 𝑐𝑡,

𝑦𝑡 = 0.

A family of functions (𝑝𝑡)𝑡∈𝒯 , 𝑝𝑡 ∈ 𝐿∞
𝑡 , is called a system of support-

ing prices for a hedgeable contract 𝛾 = (𝑐𝑡)𝑡∈𝒯 if for any family of pairs

(𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 , (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, it holds that

𝑈(𝛾) >
∑︁
𝑡∈𝒯

[︂
𝑢𝑡(𝑥𝑡, 𝑦𝑡) + E

(︁ ∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢𝑝𝑢 − 𝑥𝑡𝑝𝑡 − 𝑐𝑡𝑝𝑡

)︁]︂
, (2.5)

where 𝑦𝑡,𝑢𝑝𝑢 := 0 for a sink node 𝑡.

The financial interpretation of supporting prices is that E[
∑︀

𝑢 𝑦𝑡,𝑢𝑝𝑢−𝑥𝑡𝑝𝑡]
is equal to the expected profit from choosing the pair (𝑥𝑡, 𝑦𝑡), where E𝑥𝑡𝑝𝑡

is interpreted as the expected cost of the portfolio 𝑥𝑡 in the session 𝑡 and

E
∑︀

𝑢 𝑦𝑡,𝑢𝑝𝑢 is the expected cost of the portfolios 𝑦𝑡,𝑢 in the “future” sessions

𝑢 ∈ 𝒯𝑡+. The quantity E𝑐𝑡𝑝𝑡 is the expected cost of the portfolio 𝑐𝑡 delivered

according to the contract.

Observe that each 𝑝𝑡 is non-negative – otherwise for 𝑥𝑡 = 𝑟𝑝−𝑡 , 𝑦𝑡 = 0 we

have (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, but the right-hand side of (2.5) exceeds the left-hand side

for a large real 𝑟 > 0. Moreover, each 𝑝𝑡 is strictly positive (𝑝𝑡(𝜔, 𝜃) > 0 a.s.)

if 𝑢𝑡(𝑟IΓ, 0) → +∞ whenever 𝑟 → +∞ for any set Γ ∈ F ⊗ J of strictly
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positive measure (otherwise take 𝑥𝑡 = 𝑟I(𝑝𝑡 = 0), 𝑦𝑡 = 0 to obtain the same

contradiction).

The following theorem provides sufficient conditions for the existence of

supporting prices for non-positive contracts in the general model. A par-

ticular asset market model with transaction costs and portfolio constraints

will be studied in the next section. Note that even in natural market models

supporting prices may not exist for contracts whose portfolio positions can

be positive. An example will be provided in Section 1.5.

Theorem 2.2. Supporting prices exist for any contract 𝛾 6 0 if condi-

tions (a), (b) of Theorem 2.1 and the following three conditions hold:

(c) if (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 for some 𝑡 ∈ 𝒯−, then (𝑥𝑡, 0) ∈ 𝒵𝑡 and (𝑦𝑡,𝑢, 0) ∈ 𝒵𝑢 for

each 𝑢 ∈ 𝒯𝑡+;

(d) there exists a constant 𝐴 such that if (𝑥𝑡, 𝑦𝑡), (𝑥
′
𝑡, 0) ∈ 𝒵𝑡 for some 𝑡 ∈

𝒯−, then there exists 𝑦′𝑡 such that (𝑥′𝑡, 𝑦
′
𝑡) ∈ 𝒵𝑡 and ‖𝑦𝑡−𝑦′𝑡‖ 6 𝐴‖𝑥𝑡−𝑥′𝑡‖;

(e) there exists a constant 𝐵 such that if (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 and (𝑥′𝑡, 𝑦
′
𝑡) ∈ 𝒵𝑡 for

some 𝑡 ∈ 𝒯 , then |𝑢𝑡(𝑥𝑡, 𝑦𝑡)− 𝑢𝑡(𝑥
′
𝑡, 𝑦

′
𝑡)| 6 𝐵(‖𝑥𝑡 − 𝑥′𝑡‖+ ‖𝑦𝑡 − 𝑦′𝑡‖).

Condition (c) can be interpreted as a “safety” requirement meaning that

it should be possible to liquidate a portfolio at any time. Condition (d) is a

continuity property of the cones 𝒵𝑡 and condition (e) is a Lipschitz-continuity

property of the utility functions.

In order to prove the theorem, we first establish an auxiliary result show-

ing that the steepness of the function 𝑈 is bounded from above at any con-

tract 𝛾 6 0 (see Section 2.5 for the definitions of the steepness and a support

of a function). This will allow us to apply the Duality theorem to obtain a

support for 𝑈 , which will provide a system of supporting prices.

We will use the notation ℋ for the closed cone of all hedgeable contracts.

Lemma 2.1. If conditions (a)–(e) are satisfied, the steepness of the func-

tion 𝑈 : ℋ → R is bounded from above at any contract 𝛾 6 0.

Proof. Let 𝐾 denote the maximal length of a directed path in the graph.

Assuming, without loss of generality, that 𝐴 > 1, we will show that for any

64



non-positive contract 𝛾 = (𝑐𝑡)𝑡∈𝒯 , and any hedgeable contract 𝛾′ = (𝑐′𝑡)𝑡∈𝒯

we have 𝑈(𝛾′)− 𝑈(𝛾) 6 𝐵(2𝐴)𝐾+1‖𝛾′ − 𝛾‖.
Observe that it is sufficient to consider only the case 𝛾′ 6 𝛾, because

for 𝛾′′ = min(𝛾, 𝛾′) we have 𝑈(𝛾′′) > 𝑈(𝛾′) according to (2.3)–(2.4) and

‖𝛾′′ − 𝛾‖ 6 ‖𝛾′ − 𝛾‖.
Let 𝜀 = 𝛾 − 𝛾′ (i. e. 𝜀 = (𝜀𝑡)𝑡∈𝒯 , where 𝜀𝑡 = 𝑐𝑡 − 𝑐′𝑡) and 𝜁

′ = (𝑥′𝑡, 𝑦
′
𝑡)𝑡∈𝒯

be a trading strategy at which 𝑈(𝛾′) is attained. Using assumptions (c)–(d)

we will construct a trading strategy 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 hedging 𝛾 such that∑︁
𝑡∈𝒯

‖𝑥′𝑡 − 𝑥𝑡‖ 6 (2𝐴)𝐾‖𝜀‖,
∑︁
𝑡∈𝒯

‖𝑦′𝑡 − 𝑦𝑡‖ 6 𝐴(2𝐴)𝐾‖𝜀‖.

Let 𝜅(𝑡) denote the maximal length of a directed path emanating from a

node 𝑡 ∈ 𝒯 . Define the sets 𝒯 𝑘 := {𝑡 ∈ 𝒯 : 𝜅(𝑡) = 𝐾 − 𝑘}, 𝑘 = 0, . . . , 𝐾,

which form a partition of 𝒯 such that if there is a path from 𝑡 ∈ 𝒯 𝑘 to

𝑠 ∈ 𝒯 𝑛, then 𝑘 < 𝑛. Note that 𝒯 0 contains only source nodes, and 𝒯 𝐾 is

the set of all the sink nodes. Put also 𝒯 6𝑘 =
⋃︀
𝑛6𝑘

𝒯 𝑛, 𝒯 >𝑘 =
⋃︀
𝑛>𝑘

𝒯 𝑛.

Let us show by induction that for each 𝑘 6 𝐾 it is possible to find a

family of pairs (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, 𝑡 ∈ 𝒯 6𝑘, such that for each 𝑡 ∈ 𝒯 6𝑘

𝑥𝑡 = 𝑦𝑡− − 𝑐𝑡 (2.6)

and ∑︁
𝑡∈𝒯 6𝑘

‖𝑥′𝑡 − 𝑥𝑡‖ 6 (2𝐴)𝑘
∑︁
𝑡∈𝒯 6𝑘

‖𝜀𝑡‖, ‖𝑦′𝑡 − 𝑦𝑡‖ 6 𝐴‖𝑥′𝑡 − 𝑥𝑡‖. (2.7)

For 𝑘 = 0 we can find such a family of pairs for each 𝑡 ∈ 𝒯 0 by defining

𝑥𝑡 = −𝑐𝑡, and using assumption (d) choosing 𝑦𝑡 such that (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡

and ‖𝑦′𝑡 − 𝑦𝑡‖ 6 𝐴‖𝑥′𝑡 − 𝑥𝑡‖ (observe that (𝑥𝑡, 0) ∈ 𝒵𝑡 because 𝑐𝑡 6 0 and

monotonicity assumption (2.3) holds).

If a family (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, 𝑡 ∈ 𝒯 6𝑘, satisfying (2.6)–(2.7), is found for some

𝑘 < 𝐾, define 𝑥𝑡 = 𝑦𝑡− − 𝑐𝑡 for each 𝑡 ∈ 𝒯 𝑘+1, where 𝑦𝑡− = 0 if 𝑡 is a source
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node, and 𝑦𝑡− =
∑︀

𝑠∈𝒯𝑡−
𝑦𝑠,𝑡 otherwise. Then

∑︁
𝑡∈𝒯 6𝑘+1

‖𝑥′𝑡 − 𝑥𝑡‖ 6
∑︁

𝑡∈𝒯 6𝑘+1

(‖𝑦′𝑡− − 𝑦𝑡−‖+ ‖𝜀𝑡‖)

6
∑︁
𝑡∈𝒯 6𝑘

‖𝑦′𝑡 − 𝑦𝑡‖+
∑︁

𝑡∈𝒯 6𝑘+1

‖𝜀𝑡‖

6 𝐴(2𝐴)𝑘
∑︁
𝑡∈𝒯 6𝑘

‖𝜀𝑡‖+
∑︁

𝑡∈𝒯 6𝑘+1

‖𝜀𝑡‖ 6 (2𝐴)𝑘+1
∑︁

𝑡∈𝒯 6𝑘+1

‖𝜀𝑡‖.

Observe that (𝑥𝑡, 0) ∈ 𝒵𝑡 for 𝑡 ∈ 𝒯 𝑘+1 according to assumption (2.3) because

(𝑦𝑡−, 0) ∈ 𝒵𝑡 as follows from (c), and 𝑐𝑡 6 0. Consequently, using (d) it is

possible to find 𝑦𝑡, 𝑡 ∈ 𝒯 𝑘+1, such that (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, ‖𝑦′𝑡 − 𝑦𝑡‖ 6 𝐴‖𝑥′𝑡 − 𝑥𝑡‖.
Proceeding by induction, we find a family 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 satisfying (2.6)–

(2.7) for 𝑘 = 𝐾. Then from (2.6) it follows that 𝜁 is a trading strategy

hedging the contract 𝛾. From (2.7) and property (e) if follows that 𝑢(𝜁 ′) −
𝑢(𝜁) 6 𝐵(2𝐴)𝐾+1‖𝜀‖, which proves the lemma.

Proof of Theorem 2.2. Consider any contract 𝛾 6 0. According to

Proposition 2.1 (see Section 2.5), there exists a support of the function

𝑈 : ℋ → R at 𝛾, and so there exists 𝑝 = (𝑝𝑡)𝑡∈𝒯 , 𝑝𝑡 ∈ 𝐿∞
𝑡 , such that

𝑈(𝛾′)− 𝑈(𝛾) 6 E[(𝛾 − 𝛾′)𝑝] for any 𝛾′ ∈ ℋ

(𝑝 can be taken as the negative of the support).

Take any family 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡∈𝒯 such that (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 for each 𝑡 ∈ 𝒯 .

This family is a trading strategy hedging the contract 𝛾′ = (𝑐′𝑡)𝑡∈𝒯 with

𝑐′𝑡 = 𝑦𝑡− − 𝑥𝑡. Consequently

𝑈(𝛾) > 𝑈(𝛾′) + E[(𝛾′ − 𝛾)𝑝] > 𝑢(𝜁) + E[(𝛾′ − 𝛾)𝑝]

=
∑︁
𝑡∈𝒯

𝑢𝑡(𝑥𝑡, 𝑦𝑡) +
∑︁
𝑡∈𝒯

E[(𝑐′𝑡 − 𝑐𝑡)𝑝𝑡]

=
∑︁
𝑡∈𝒯

𝑢𝑡(𝑥𝑡, 𝑦𝑡) +
∑︁
𝑡∈𝒯

E[(𝑦𝑡− − 𝑥𝑡 − 𝑐𝑡)𝑝𝑡].
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Rearranging the terms in the second sum,

∑︁
𝑡∈𝒯

E[(𝑦𝑡− − 𝑥𝑡 − 𝑐𝑡)𝑝𝑡] = E

[︂∑︁
𝑡∈𝒯

∑︁
𝑠∈𝒯𝑡−

𝑦𝑠,𝑡𝑝𝑡

]︂
− E

[︂∑︁
𝑡∈𝒯

[(𝑥𝑡 + 𝑐𝑡)𝑝𝑡]

]︂
= E

[︂∑︁
𝑡∈𝒯

∑︁
𝑢∈𝒯𝑡+

𝑦𝑡,𝑢𝑝𝑢

]︂
− E

[︂∑︁
𝑡∈𝒯

[(𝑥𝑡 + 𝑐𝑡)𝑝𝑡]

]︂
,

we obtain (2.5), which shows that (𝑝𝑡)𝑡∈𝒯 is a system of supporting prices.

2.3 Supporting prices in an asset market with transaction

costs and portfolio constraints

In this section we prove the existence of supporting prices in a model of

an asset market proposed in Section 1.1 (and modified in a way to fit the

general model of Section 2.1).

Recall that the model considers a market of 𝑁 assets represented by a

probability space (Ω,F ,P), a directed acyclic graph 𝐺 with a finite set of

nodes 𝒯 , 𝜎-algebras F𝑡 associated with the nodes of the graph, and the finite

space of assets (Θ,J , 𝜇), where Θ = {1, . . . , 𝑁}, J = 2Θ, 𝜇{𝑖} = 1 for

each 𝑖 = 1, . . . , 𝑁 . It is assumed that F𝑡 ⊂ F𝑢 for any 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+, and
each 𝜎-algebra F𝑡 is completed by all F -measurable sets of measure 0.

Asset 𝑖 = 1 is interpreted as cash (deposited with a bank account) and

assets 𝑖 = 2, . . . , 𝑁 as stock. For each 𝑡 ∈ 𝒯 , the bid and the ask stock

prices are denoted by 𝑆𝑖
𝑡 6 𝑆

𝑖

𝑡 and the dividend rates for long and short stock

positions are denoted by 𝐷𝑖
𝑡 6 𝐷

𝑖

𝑡. Random variables 𝑅𝑡,𝑢 6 𝑅𝑡,𝑢 stand for

the interest rates for lending and borrowing cash between the sessions 𝑡 ∈ 𝒯−
and 𝑢 ∈ 𝒯𝑡+.

For each 𝑡 ∈ 𝒯− random F𝑡-measurable closed cones 𝑌𝑡,𝑢(𝜔), 𝑢 ∈ 𝒯𝑡+, are
given and describe portfolio constraints. We define the cones 𝒵𝑡 by formula

(1.7) for 𝑡 ∈ 𝒯−, and for sink nodes 𝑡 /∈ 𝒯− we let

𝒵𝑡 =
{︀
(𝑥𝑡, 0) ∈ 𝐿1

𝑡 ⊗ {0} : 𝑥+𝑡 𝑆𝑡 + 𝑑𝑡(𝑥𝑡) > 𝑥−𝑡 𝑆𝑡 a.s.
}︀
,
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which consists of pairs (𝑥𝑡, 0), where the portfolio 𝑥𝑡 has non-negative liqui-

dation value with probability one.

It is assumed that the market satisfies margin requirement (1.9),

𝑀̃︀𝑦+𝑡,𝑢𝑆𝑡(𝜔) ≥ ̃︀𝑦−𝑡,𝑢𝑆𝑡(𝜔) for any 𝑦𝑡 ∈ 𝑌𝑡,𝑢(𝜔), 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+,

where 𝑀 is a constant such that 0 6𝑀 < 𝑅 with 𝑅 ≤ (1+𝑅𝑡,𝑢)/(1+𝑅𝑡,𝑢).

Theorem 2.3. 1) In the model of a stock market with a margin require-

ment, an optimal trading strategy exists for any hedgeable contract 𝛾.

2) If the constant 𝑀 satisfies the inequality

𝑀 6
min

{︁
ess inf

𝜔,𝑖

𝑆𝑖
𝑢+𝐷𝑖

𝑢

𝑆𝑖
𝑡
, ess inf

𝜔
(1 +𝑅𝑡,𝑢)

}︁
max

{︁
ess sup

𝜔,𝑖

𝑆
𝑖
𝑢+𝐷

𝑖
𝑢

𝑆
𝑖
𝑡

, ess sup
𝜔

(1 +𝑅𝑡,𝑢)
}︁ , 𝑡 ∈ 𝒯−, 𝑢 ∈ 𝒯𝑡+, (2.8)

and the utility functions 𝑢𝑡, 𝑡 ∈ 𝒯 , satisfy assumption (e) of Theorem 2.2,

then a system of supporting prices exists for any contract 𝛾 6 0.

Inequality (2.8) requires that the margin should be large enough (equiv-

alently, the constant 𝑀 should be small enough), which protects a trader if

the price change in an unfavourable way: it will be seen in the proof that

this inequality implies the validity of condition (c) in Theorem 2.2.

Proof. In the proof of Theorem 1.3 conditions (a), (b) of Theorem 1.1,

and, hence, of Theorem 2.1, were verified for the random vectors 𝑠1𝑡 , 𝑠
2
𝑡,𝑢 ∈ 𝐿∞

𝑡

with

𝑠11𝑡 = 1, 𝑠21𝑡,𝑢 =
1

1 +𝑅𝑡,𝑢

, 𝑠1𝑖𝑡 =
𝑆𝑖
𝑡 + 𝑆

𝑖

𝑡

2
+𝐷

𝑖

𝑡, 𝑠2𝑖𝑡,𝑢 =
𝑆𝑖
𝑡 + 𝑆

𝑖

𝑡

2
for 𝑖 > 2.

Thus, the first claim follows from Theorem 2.1.

Now we prove the second claim by verifying conditions (c)–(d) of Theo-

rem 2.2. In order to verify (c), observe that if (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡 for some 𝑡 ∈ 𝒯−
then ∑︁

𝑢∈𝒯𝑡+

(̃︀𝑦+𝑡,𝑢𝑆𝑡 − ̃︀𝑦−𝑡,𝑢𝑆𝑡) > 0

as follows from the margin requirement. Summing this inequality with the

self-financing condition and using the superlinearity (concavity and positive
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homogeneity) of the function 𝑥 ↦→ 𝑥+𝑆𝑡 − 𝑥−𝑆𝑡, we obtain 𝑥+𝑡 𝑆𝑡 + 𝑑𝑡(𝑥𝑡) >

𝑥−𝑡 𝑆𝑡, i. e. (𝑥𝑡, 0) ∈ 𝒵𝑡.

Using the notation 𝑆𝑡 = (1, 𝑆2
𝑡 , . . . , 𝑆

𝑁
𝑡 ), 𝑆𝑡 = (1, 𝑆

2

𝑡 , . . . , 𝑆
𝑁

𝑡 ) for the price

vectors, and 𝐷𝑡 = (0, 𝐷2
𝑡 , . . . , 𝐷

𝑁
𝑡 ), 𝐷𝑡 = (0, 𝐷

2

𝑡 , . . . , 𝐷
𝑁

𝑡 ) for the dividend

rates vectors, we obtain the following chain of inequalities for all 𝑡 ∈ 𝒯−,
𝑢 ∈ 𝒯𝑡+:

𝑦+𝑡,𝑢(𝑆𝑢 +𝐷𝑢) > ̃︀𝑦+𝑡,𝑢𝑆𝑡 ·min

{︂
ess inf

𝜔,𝑖

𝑆𝑖
𝑢 +𝐷𝑖

𝑢

𝑆𝑖
𝑡

, ess inf
𝜔

(1 +𝑅𝑡,𝑢)

}︂

>𝑀̃︀𝑦+𝑡,𝑢𝑆𝑡 ·max

{︂
ess sup

𝜔,𝑖

𝑆
𝑖

𝑢 +𝐷
𝑖

𝑢

𝑆
𝑖

𝑡

, ess sup
𝜔

(1 +𝑅𝑡,𝑢)

}︂

> ̃︀𝑦−𝑡,𝑢𝑆𝑡 ·max

{︂
ess sup

𝜔,𝑖

𝑆
𝑖

𝑢 +𝐷
𝑖

𝑢

𝑆
𝑖

𝑡

, ess sup
𝜔

(1 +𝑅𝑡,𝑢)

}︂
> 𝑦−𝑡,𝑢(𝑆𝑢 +𝐷𝑢),

where in the second inequality we used (2.8) and in the third inequality we

used the margin requirement. This implies (𝑦𝑡,𝑢, 0) ∈ 𝒵𝑢 and proves the

validity of condition (c).

Let us prove condition (d) for the constant 𝐴 defined by

𝐴 = ̃︀𝐴 ess sup
𝜔,𝑡,𝑢

(1 +𝑅𝑡,𝑢), where ̃︀𝐴 =

(︂
𝑆 +𝐷

𝑆

)︂2

· 1 +𝑀

1−𝑀
.

If |̃︀𝑦𝑡(𝜔)| 6 ̃︀𝐴|𝑥𝑡(𝜔) − 𝑥′𝑡(𝜔)| for some 𝜔 ∈ Ω, define 𝑦′𝑡(𝜔) = 0, otherwise

let 𝑦′𝑡(𝜔) = 𝜆(𝜔)𝑦𝑡(𝜔), where 0 < 𝜆(𝜔) 6 1 is such that |̃︀𝑦𝑡(𝜔) − ̃︀𝑦′𝑡(𝜔)| =̃︀𝐴|𝑥𝑡(𝜔)− 𝑥′𝑡(𝜔)|. Observe that in the latter case we have

(1− 𝜆(𝜔))|̃︀𝑦+𝑡 (𝜔)| > |𝑥𝑡(𝜔)− 𝑥′𝑡(𝜔)| · ̃︀𝐴 𝑆

(1 +𝑀)𝑆
(2.9)

as is possible to obtain from the margin requirement: indeed, |̃︀𝑦−𝑡,𝑢| 6 |̃︀𝑦+𝑡 | ·
𝑀𝑆/𝑆, so ̃︀𝐴|𝑥𝑡 − 𝑥′𝑡| = |̃︀𝑦𝑡 − ̃︀𝑦′𝑡| = (1− 𝜆)|̃︀𝑦𝑡| 6 (1− 𝜆)|̃︀𝑦+𝑡 |(1 +𝑀𝑆/𝑆) a.s.

on the set {𝜔 : |̃︀𝑦𝑡(𝜔)| > ̃︀𝐴|𝑥𝑡(𝜔)− 𝑥′𝑡(𝜔)|}, which implies (2.9).

Then on the set {𝜔 : |̃︀𝑦𝑡(𝜔)| 6 𝐴|𝑥𝑡(𝜔)− 𝑥′𝑡(𝜔)|} we have

(𝑥′𝑡 − ̃︀𝑦′𝑡)+𝑆𝑡 − (𝑥′𝑡 − ̃︀𝑦′𝑡)−𝑆𝑡 + 𝑑𝑡(𝑥
′
𝑡) = 𝑥′+𝑡 𝑆𝑡 − 𝑥′−𝑡 𝑆𝑡 + 𝑑𝑡(𝑥

′
𝑡) > 0.
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On its complement we find

(𝑥′𝑡 − ̃︀𝑦′𝑡)+𝑆𝑡 − (𝑥′𝑡 − ̃︀𝑦′𝑡)−𝑆𝑡 + 𝑑𝑡(𝑥
′
𝑡)

> (𝑥𝑡 − ̃︀𝑦𝑡)+𝑆𝑡 − (𝑥𝑡 − ̃︀𝑦𝑡)−𝑆𝑡 + 𝑑𝑡(𝑥𝑡) + (𝑦𝑡 − ̃︀𝑦′𝑡)+𝑆𝑡 − (𝑦𝑡 − ̃︀𝑦′𝑡)−𝑆𝑡

+ (𝑥𝑡 − 𝑥′𝑡)
+𝑆𝑡 − (𝑥𝑡 − 𝑥′𝑡)

−𝑆𝑡 + 𝑑𝑡(𝑥
′
𝑡 − 𝑥𝑡)

> (1− 𝜆(𝜔))(̃︀𝑦+𝑡 𝑆𝑡 − ̃︀𝑦−𝑡 𝑆𝑡)− |𝑥𝑡 − 𝑥′𝑡|(𝑆 +𝐷) > 0.

The first inequality follows from that 𝑥′𝑡 − ̃︀𝑦′𝑡 = 𝑥𝑡 − ̃︀𝑦𝑡 + ̃︀𝑦𝑡 − ̃︀𝑦′𝑡 + 𝑥′𝑡 − 𝑥𝑡

and the functions 𝑥 ↦→ 𝑥+𝑆𝑡 + 𝑥−𝑆𝑡 and 𝑥 ↦→ 𝑑𝑡(𝑥) are superlinear. The

second inequality is valid because (𝑥𝑡− ̃︀𝑦𝑡)+𝑆𝑡− (𝑥𝑡− ̃︀𝑦𝑡)−𝑆𝑡+𝑑𝑡(𝑥𝑡) > 0 for

(𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, 𝑦
′
𝑡(𝜔) = 𝜆(𝜔)𝑦𝑡(𝜔), and (𝑥𝑡−𝑥′𝑡)+𝑆𝑡−(𝑥𝑡−𝑥′𝑡)−𝑆𝑡 > −|𝑥𝑡−𝑥′𝑡|𝑆.

In the last inequality we use that ̃︀𝑦+𝑡 𝑆𝑡 − ̃︀𝑦−𝑡 𝑆𝑡 > (1−𝑀)̃︀𝑦+𝑡 𝑆𝑡 according to

the margin requirement, and apply (2.9).

Consequently, using that 𝑦′𝑡,𝑢 ∈ 𝑌𝑡,𝑢 a.s. as follows from the construction

of 𝑦′𝑡, we get (𝑥
′
𝑡, 𝑦

′
𝑡) ∈ 𝒵𝑡 and |̃︀𝑦′𝑡 − ̃︀𝑦𝑡| 6 ̃︀𝐴|𝑥′𝑡 − 𝑥𝑡|, so |𝑦′𝑡 − 𝑦𝑡| 6 𝐴|𝑥′𝑡 − 𝑥𝑡|,

which proves the validity of (d), and completes the proof of the theorem.

2.4 Examples when supporting prices do not exist

We provide two examples, when supporting prices do not exist for certain

hedgeable contracts. In the first example we consider a market with the

margin requirement, where𝑀 is not small enough, and in the second example

we consider a contract with positive coordinates. These examples show that

the assumptions of Theorem 2.3 cannot be relaxed.

In the both examples we let 𝐺 be the linear graph with the nodes 𝑡 =

0, 1 (i. e. the graph 0 → 1) and the probability space (Ω,F , 𝑃 ) consist of

Ω = [0, 1], the Borel 𝜎-algebra F on Ω, and the Lebesgue measure P. We

assume F0 is the trivial 𝜎-algebra (i. e. it consists of all sets of probability 0

and 1) and put F1 = F . In the model, two assets are traded in the market
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with the prices 𝑆𝑡 = (𝑆1
𝑡 , 𝑆

2
𝑡 ), 𝑡 = 0, 1, given by

𝑆1
0 = 1/2, 𝑆1

1(𝜔) =

⎧⎨⎩3, 0 6 𝜔 < 1/2,

1, 1/2 6 𝜔 6 1,

𝑆2
0 = 1/2, 𝑆2

1(𝜔) = 1 + 𝜔.

The cones 𝒵𝑡 are defined by

𝒵0 = {(𝑥, 𝑦) : (𝑥− 𝑦)𝑆0 > 0, 𝑀𝑦+𝑆0 > 𝑦−𝑆0},

𝒵1 = {(𝑥, 𝑦) : 𝑥𝑆1 > 0, 𝑦 = 0},

where 𝑀 > 0. The utility functions are

𝑢0(𝑥, 𝑦) = (𝑥− 𝑦)𝑆0, 𝑢1(𝑥, 𝑦) = E[(𝑥− 𝑦)𝑆1].

Example 1. Suppose 𝑀 > 1/2. Consider the contract 𝛾 = (𝑐0, 𝑐1) with

𝑐0 = (−1, 0), 𝑐1 = (0, 0). Let us show that 𝑈(𝛾) = 5/2. Indeed, for any

trading strategy 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡=0,1 hedging 𝛾 we have

𝑥10 − 𝑦10 + 𝑥20 − 𝑦20 > 0, 𝑦10 + 2𝑦20 > 0,

where the first inequality is the self-financing condition of the cone 𝒵0 and

the second inequality follows from that if (𝑦0, 0) ≡ (𝑥1, 0) ∈ 𝒵1 for a constant

vector 𝑦0 then 𝑦10𝑆
1
1 + 𝑦20𝑆

2
1 > 0, which is possible only if 𝑦10 + 2𝑦20 > 0 since

𝑆1
1(𝜔) = 1, 𝑆2

1(𝜔) = 2 for 𝜔 = 1.

If 𝜁 hedges 𝛾, we have 𝑥10 = 1, 𝑥20 = 0, so

𝑦10 + 𝑦20 6 1, 𝑦10 + 2𝑦20 > 0.

Multiplying the first inequality by 2 and subtracting the second one multi-

plied by 1/2 we obtain 3𝑦10/2 + 𝑦20 6 2. On the other hand, for any constant

vectors 𝑥, 𝑦 we have

𝑢0(𝑥, 𝑦) = (𝑥1 + 𝑥2 − 𝑦1 − 𝑦2)/2

𝑢1(𝑦, 0) = 𝑦1E𝑆1
1 + 𝑦2E𝑆2

1 = 2𝑦1 + 3𝑦2/2,

so 𝑢(𝜁) = 𝑢0(𝑥0, 𝑦0) + 𝑢1(𝑦0, 0) = 1/2+ 3𝑦10/2+ 𝑦20 6 5/2. Thus 𝑈(𝛾) 6 5/2.
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The value 5/2 is attained at the strategy with 𝑥0 = (1, 0), 𝑦0 = 𝑥1 = (2,−1),

𝑦1 = (0, 0), which hedges 𝛾 if 𝑀 > 1/2 as one can verify.

Suppose there exist supporting prices 𝑝0, 𝑝1 for the contract 𝛾. Then for

any (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, 𝑡 = 0, 1, we have

5/2 = 𝑈(𝛾) > 𝑢0(𝑥0, 𝑦0) + 𝑢1(𝑥1, 𝑦1)− (𝑐0 + 𝑥0)𝑝0 + E[(𝑦0 − 𝑥1)𝑝1]. (2.10)

Take the following (𝑥𝑡, 𝑦𝑡):

𝑥0 = (1, 0), 𝑦0 = (2 + 𝜀,−1− 𝜀),

𝑥1 = (2 + 𝜀+ 𝑓𝜀,−1− 𝜀), 𝑦1 = (0, 0),

where 𝜀 ∈ (0, 2𝑀 − 1] is an arbitrary number and the function 𝑓𝜀 = 𝑓𝜀(𝜔)

is given by

𝑓𝜀(𝜔) = 𝜀 · I{𝜔 > 1/(1 + 𝜀)}

It is straightforward to check that (𝑥0, 𝑦0) ∈ 𝒵0 and (𝑥1, 𝑦1) ∈ 𝒵1.

Observe that 𝑢0(𝑥0, 𝑦0) = 0, 𝑢1(𝑥1, 𝑦1) = E[(2 + 𝜀+ 𝑓𝜀)𝑆
1
1 − (1 + 𝜀)𝑆2

1 ] >

(2 + 𝜀)E𝑆1
1 − (1 + 𝜀)E𝑆1

2 = (2 + 𝜀) · 2 − (1 + 𝜀) · (3/2) = 5/2 + 𝜀/2, and

E(𝑦0 − 𝑥1)𝑝1 = −𝐸𝑓𝜀𝑝11, so from (2.10) we have

5/2 > 5/2 + 𝜀/2− E𝑓𝜀𝑝
1
1.

However, since 𝑝1 ∈ 𝐿∞
1 , there is a constant 𝑝 such that |𝑝11| 6 𝑝 a.s., so

−E𝑓𝜀𝑝1 > −𝑝E𝑓𝜀 = −𝑝𝜀2/(1 + 𝜀), i.e.

5/2 > 5/2 + 𝜀/2− 𝑝 · 𝜀2/(1 + 𝜀),

which is impossible for 𝜀 > 0 small enough. The contradiction means that

supporting prices do not exist.

Example 2. Let now 𝑀 > 0 be arbitrary (in particular, when 𝑀 = 0,

the markets forbids short sales). Consider the contracts 𝛾𝜀 = (𝑐0, 𝑐
𝜀
1) with

𝑐0 = (−2, 0), 𝑐𝜀1 = (0, 1 + 𝑓𝜀), where 𝜀 ∈ [0, 1/2] is an arbitrary number and

𝑓𝜀 is the function from Example 1.

Let us show that 𝑈(𝛾𝜀) = 5/2 − 𝜀 − E𝑓𝜀𝑆
2
1 . Indeed, for any trading
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strategy 𝜁 = (𝑥𝑡, 𝑦𝑡)𝑡=0,1 hedging 𝛾𝜀 we have

𝑦10 + 𝑦20 6 2, 𝑦10 + 2(𝑦20 − 1− 𝜀) > 0,

where the first inequality follows from the self-financing condition of the cone

𝒵0, and the validity of the second inequality follows from that 𝑆1
1(𝜔) = 1,

𝑆2
1(𝜔) = 2 for 𝜔 = 1.

Multiplying the first inequality by 2 and subtracting the second one mul-

tiplied by 1/2 we obtain 3𝑦10/2 + 𝑦20 6 3− 𝜀. Consequently,

𝑢(𝜁) = 𝑢0(𝑥0, 𝑦0) + 𝑢1(𝑥1, 𝑦1) = 𝑢0(𝑥0, 𝑦0) + 𝑢1(𝑦0 + 𝑐𝜀1, 0)

= 1− (𝑦10 + 𝑦20)/2 + E𝑦10𝑆
1
1 + E(𝑦20 − 1− 𝑓𝜀)𝑆

2
1

= 3𝑦10/2 + 𝑦20 − 1/2− E𝑓𝜀𝑆
2
1

6 5/2− 𝜀− E𝑓𝜀𝑆
2
1 ,

so 𝑈(𝛾) 6 5/2− 𝜀− 𝑂(𝜀2), where 𝑂(𝜀2) = E𝑓𝜀𝑆
2
1 = (2𝜀2 + 3𝜀3/2)/(1 + 𝜀)2.

Observe that the value 5/2 − 𝜀 − E𝑓𝜀𝑆
2
1 is attained at the trading strategy

with 𝑥0 = (2, 0), 𝑦0 = (2− 2𝜀, 2𝜀), 𝑥1 = (2− 2𝜀, 2𝜀− 1− 𝑓𝜀), 𝑦1 = (0, 0).

If supporting prices existed, we would have

𝑈(𝛾𝜀) > 𝑢0(𝑥0, 𝑦0) + 𝑢1(𝑥1, 𝑦1) + (𝑐0 − 𝑥0)𝑝0 + E(𝑦0 − 𝑥1 + 𝑐𝜀1)𝑝1

for any (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡, 𝑡 = 0, 1.

Take 𝑥0 = 𝑦0 = (2, 0), 𝑥1 = (2,−1), 𝑦1 = (0, 0), which satisfy (𝑥𝑡, 𝑦𝑡) ∈ 𝒵𝑡,

and give

5/2− 𝜀−𝑂(𝜀2) > 5/2− E𝑓𝜀𝑝1.

As it was shown in Example 1, we have E𝑓𝜀𝑝1 = 𝑂(𝜀2), so the above inequal-

ity is impossible for 𝜀 > 0 small enough, implying that supporting prices do

not exist in the model.
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2.5 Appendix: geometric duality

Let 𝐿 be a normed linear space and 𝐿* its dual. Let 𝑓 be a real-valued

concave function defined on a convex set 𝑋 ⊂ 𝐿.

The steepness of 𝑓 from a point 𝑥 ∈ 𝑋 to a point 𝑥′ ∈ 𝑋, 𝑥′ ̸= 𝑥, is

defined by

𝑠𝑥(𝑥
′) =

𝑓(𝑥′)− 𝑓(𝑥)

‖𝑥′ − 𝑥‖
.

An element 𝑝 ∈ 𝐿* is called a support of the function 𝑓 at a point 𝑥 ∈ 𝑋 if

𝑓(𝑥′)− 𝑓(𝑥) 6 𝑝 · (𝑥′ − 𝑥) for any 𝑥′ ∈ 𝑋.

The set of all supports of 𝑓 at 𝑥 is denoted by Σ𝑥 (which may be empty).

For a given 𝑥 ∈ 𝑋, consider the two problems:

(1) the primal problem:

find sup
𝑥′∈𝑋∖{𝑥}

𝑠𝑥(𝑥
′);

(2) the dual problem:

find inf
𝑝∈Σ𝑥

‖𝑝‖.

The following theorem connects the primal and the dual problems and

plays an important role in many questions of convex analysis.

Proposition 2.1 (The Duality Theorem, [26]). The set Σ𝑥 is not empty

if and only if 𝑠𝑥(𝑥
′) is bounded from above. In this case, if 𝑥 is not a point

where 𝑓 attains its global maximum, the values of the two problems are equal.
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Chapter 3

Detection of changepoints in asset prices

In this chapter applications of sequential statistical methods to detecting

trend changes in asset prices are considered. We propose a model where one

holds an asset and wants to sell it before a fixed time 𝑇 . The price of the

asset initially increases but may start decreasing at an unknown moment of

time. The problem consists in detecting this change in the trend in order to

sell the asset for a high price.

The solution will be based on methods of changepoint (or disorder) de-

tection theory. The optimal moment of selling the asset will be represented

as the first moment of time when some statistic (the Shiryaev-Roberts statis-

tic or, equivalently, the posterior probability process), constructed from the

price sequence, exceeds a certain time-dependent threshold.

The mathematical theory of changepoint detection started developing in

1920-1950s in connection with problems of production quality control and

radiolocation (see a survey in [65]). Later it was also applied in the financial

context (see e. g. [62]). Changepoint detection methods can be divided into

the two groups: Bayesian and minimax methods. In the Bayesian setting, a

changepoint (a moment of disorder) is an unobservable random variable with

a known prior distribution, while in the minimax setting it is an unknown

parameter. In this chapter we follow the Bayesian approach.

The problem we consider was previously studied in [2, 14, 56] in the case

of continuous time when the evolution of an asset price is described by a

geometric Brownian motion, which changes its value of the drift coefficient at

an unknown moment of time (from a “favourable” value to an “unfavourable”

one). The result we obtain extends the results available in the literature to

the case of discrete time. Moreover, unlike the majority of previous results,

which assume the changepoint is exponentially distributed, we do not impose
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any assumption on its prior distribution.

The first section of the chapter describes the model of asset prices with

changepoints. In Section 3.2 we introduce the basic statistics and formulate

the main theorem, which is proved in Section 3.3. Section 3.4 contains results

of numerical simulations.

3.1 The problem of selling an asset with a changepoint

We propose a model describing the price 𝑆 of an asset at moments of time

𝑡 = 0, 1, . . . , 𝑇 driven by a geometric Gaussian random walk with logarithmic

mean and variance (𝜇1, 𝜎1) up to an unknown moment of time 𝜃 and (𝜇2, 𝜎2)

after 𝜃. The moment 𝜃 will be interpreted as the point when the trend of the

asset changes from a favourable value to an unfavourable one, and is called

a changepoint (or a moment of disorder1).

Let 𝜉 = (𝜉𝑡)
𝑇
𝑡=1 be a sequence of i.i.d. (independent and identically dis-

tributed) standard normal random variables defined on a probability space

(Ω,F ,P) and let the sequence 𝑆 = (𝑆𝑡)
𝑇
𝑡=0 be defined by its logarithmic

increments as follows:

𝑆0 = 1, log
𝑆𝑡

𝑆𝑡−1
=

⎧⎨⎩𝜇1 + 𝜎1𝜉𝑡, 𝑡 < 𝜃,

𝜇2 + 𝜎2𝜉𝑡, 𝑡 > 𝜃,
for 𝑡 = 1, 2, . . . , 𝑇,

where 𝜇1, 𝜇2 ∈ R, 𝜎1, 𝜎2 > 0 are known numbers, 𝜃 ∈ {1, 2, . . . , 𝑇 + 1} is an

unknown parameter. The equality 𝑆0 = 1 means that the prices are measured

relative to the price at time 𝑡 = 0 and does not reduce the generality of the

model.

We follow the Bayesian approach and assume that 𝜃 is a random variable

defined on (Ω,F ,P), independent of the sequence 𝜉𝑡 and taking values in

the set {1, 2, . . . , 𝑇 + 1} with known prior probabilities 𝑝𝑡 = P(𝜃 = 𝑡). The

value 𝑝1 is the probability that the changepoint appears from the beginning

1The term “disorder” comes from applications of the theory in production quality control
problems, where 𝜃 can represent the moment of equipment breakage (a disorder) and increase of
defective products.
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of the sequence 𝑆𝑡 , and 𝑝𝑇+1 is the probability that the changepoint does

not appear within the time horizon [0, 𝑇 ]. The prior distribution function of

𝜃 is denoted by 𝐺(𝑡) =
∑︀
𝑢6𝑡

𝑝𝑢.

Let 𝑈𝛼 : R+ → R, 𝛼 6 1, be the family of functions defined as follows2:

𝑈𝛼(𝑥) = 𝛼𝑥𝛼 for 𝛼 ̸= 0, 𝑈0(𝑥) = log 𝑥.

The problem considered in this chapter consists in finding the moment of

time 𝜏 which maximises the utility from selling the asset provided one holds

it at time 𝑡 = 0 and needs to sell it by 𝑡 = 𝑇 .

Let F = (F𝑡)
𝑇
𝑡=0, F𝑡 = 𝜎(𝑆𝑢; 𝑢 6 𝑡), be the filtration generated by the

price sequence 𝑆. By definition, a moment 𝜏 when one sells the asset should

be a stopping time of the filtration F, i. e. 𝜏 should be a random variable

taking values in the set {0, 1, . . . , 𝑇} such that {𝜔 : 𝜏(𝜔) 6 𝑡} ∈ F𝑡 for any

𝑡 = 0, . . . , 𝑇 . The class of all stopping times 𝜏 6 𝑇 of F is denoted by M.

The notion of a stopping time reflects the concept that a decision to sell the

asset at time 𝑡 should be based only on the information obtained from the

“historical” prices 𝑆0, 𝑆1, . . . , 𝑆𝑡 and should not rely on the “future” prices

𝑆𝑡+1, 𝑆𝑡+2, which are unknown at time 𝑡.

Mathematically, the problem of optimal selling of the asset with respect

to the utility function 𝑈𝛼 is formulated as the optimal stopping problem

𝑉𝛼 = sup
𝜏∈M

E𝑈𝛼(𝑆𝜏 ). (3.1)

Its solution consists in finding the value 𝑉𝛼 and the optimal stopping time

𝜏 *𝛼, at which the supremum is attained (if such a stopping time exists).

It will be assumed that

𝜇1 > −𝛼𝜎
2
1

2
, 𝜇2 < −𝛼𝜎

2
2

2
. (3.2)

In this case the sequence (𝑢𝛼𝑡 )
𝑇
𝑡=0, 𝑢

𝛼
𝑡 = 𝑈𝛼(𝑆𝑡), is a submartingale3 when

2These functions are from capital growth theory and are known to maximize long run asymp-
totic growth of wealth; see [5, 37, 40]. 𝑈0(𝑥) corresponds to the full Kelly strategy and 𝑈𝛼(𝑥),
𝛼 < 0, correspond to fractional Kelly strategies blending cash with the optimal full Kelly portfolio.

3A random sequence (𝜁𝑡)
𝑇
𝑡=0 is called a submartingale (resp., a supermartingale or amartingale)

with respect to a filtration (F𝑡)
𝑇
𝑡=0 if E(𝜁𝑡 | F𝑡−1) > 𝜁𝑡−1 (resp., E(𝜁𝑡 | F𝑡−1) 6 𝜁𝑡−1 or

E(𝜁𝑡 | F𝑡−1) = 𝜁𝑡−1) for each 𝑡 = 1, . . . , 𝑇 .
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the logarithmic returns of 𝑆 are i.i.d. N (𝜇1, 𝜎
2
1) random variables, and

a supermartingale when they are i.i.d. N (𝜇2, 𝜎
2
2) random variables. In

the former case, the value of 𝑢𝑡 increases on average as 𝑡 increases, so it

is profitable to hold the asset, and in the latter case the average value of

𝑢𝑡 decreases meaning that one needs to sell the asset as soon as possible.

Consequently, the random variable 𝜃 represents the moment of time when

holding the asset becomes unprofitable. Note that 𝜃 is not measurable with

respect to F𝑡 (except the trivial case when 𝜃 is a constant random variable),

which can be interpreted as the unobservability of the changepoint.

It is also reasonable to assume that 𝑝1 > 0 — otherwise it is clear that

one should never stop at time 𝑡 = 0 (i. e. the optimal stopping time 𝜏 *𝛼 > 1),

and the problem can be reduced to the smaller time horizon 𝑡 = 1, 2, . . . , 𝑇 .

Nevertheless, the result of the main theorem in the next section will be still

valid if 𝑝1 = 0.

3.2 The structure of optimal selling times

In order to formulate the main result of the chapter, introduce auxiliary

notation. Let 𝑋 = (𝑋𝑡)
𝑇
𝑡=1 denote the logarithmic returns of the prices:

𝑋𝑡 = log
𝑆𝑡

𝑆𝑡−1
, 𝑡 = 1, . . . , 𝑇.

On the space (Ω,F𝑇 ) introduce the family of probability measures P𝑢,

𝑢 = 1, . . . , 𝑇+1, generated by the sequence 𝑆 with the value of the parameter

𝜃 ≡ 𝑢. Following the standard notation of the changepoint detection theory,

let4 P∞ ≡ P𝑇+1, and denote by P𝑡 = P | F𝑡, P
𝑢
𝑡 = P𝑢 | F𝑡 the restrictions

of the corresponding measures to the 𝜎-algebra F𝑡.

4Typically, P∞ denotes the measure when there is no change in the probability law of the
observable sequence on the whole time horizon (i. e. the change “occurs” at time 𝑡 = ∞). Since
in the problem considered the time horizon is finite, this measure has the same meaning as P𝑇+1.
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Introduce the Shiryaev–Roberts statistic 𝜓 = (𝜓𝑡)
𝑇
𝑡=0:

𝜓0 = 0, 𝜓𝑡 =
𝑡∑︁

𝑢=1

𝑑P𝑢
𝑡

𝑑P∞
𝑡

𝑝𝑢 for 𝑡 = 1, . . . , 𝑇.

Using that the density 𝑑P𝑢
𝑡 /𝑑P

∞
𝑡 is given by the formula

𝑑P𝑢
𝑡

𝑑P∞
𝑡

=

(︂
𝜎1
𝜎2

)︂𝑡−𝑢+1

· exp
(︂ 𝑡∑︁

𝑖=𝑢

[︂
(𝑋𝑖 − 𝜇1)

2

2𝜎21
− (𝑋𝑖 − 𝜇2)

2

2𝜎22

]︂)︂
, 𝑢 6 𝑡,

𝑑P𝑢
𝑡

𝑑P∞
𝑡

= 1, 𝑢 > 𝑡,

it is straightforward to check that 𝜓𝑡 satisfies the following recurrent formula:

𝜓𝑡 = (𝑝𝑡 + 𝜓𝑡−1) ·
𝜎1

𝜎2
exp

(︂
(𝑋𝑡 − 𝜇1)

2

2𝜎21
− (𝑋𝑡 − 𝜇2)

2

2𝜎22

)︂
, 𝑡 = 1, . . . , 𝑇. (3.3)

Define recurrently the family of functions 𝑉𝛼(𝑡, 𝑥) for 𝛼 6 1, 𝑡 = 𝑇, 𝑇 −
1, . . . , 0, 𝑥 > 0 as follows. For 𝛼 = 0 let

𝑉0(𝑇, 𝑥) ≡ 0,

𝑉0(𝑡, 𝑥) = max
{︀
0, 𝜇2(𝑥+ 𝑝𝑡+1) + 𝜇1(1−𝐺(𝑡+ 1)) + 𝑓0(𝑡, 𝑥)

}︀
,

where the function 𝑓0(𝑡, 𝑥) is given by

𝑓0(𝑡, 𝑥) =

∫︁
R
𝑉0

(︂
𝑡+ 1,

(︀
𝑝𝑡+1 + 𝑥) · 𝜎1

𝜎2
exp

(︂
(𝑧 − 𝜇1)

2

2𝜎21
− (𝑧 − 𝜇2)

2

2𝜎22

)︂)︂
× 1

𝜎1
√
2𝜋

exp

(︂
−(𝑧 − 𝜇1)

2

2𝜎21

)︂
𝑑𝑧.

For 𝛼 ̸= 0 define

𝑉𝛼(𝑇, 𝑥) ≡ 0,

𝑉𝛼(𝑡, 𝑥) = max
{︀
0, 𝛼𝛽𝑡

[︀
(𝛾 − 1)(𝑥+ 𝑝𝑡+1) + (𝛽 − 1)(1−𝐺(𝑡+ 1))

]︀
+ 𝑓𝛼(𝑡, 𝑥)

}︀
,

where

𝛽 = exp

(︂
𝛼𝜇1 +

𝛼2𝜎21
2

)︂
, 𝛾 = exp

(︂
𝛼𝜇2 +

𝛼2𝜎22
2

)︂
,
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and

𝑓𝛼(𝑡, 𝑥) =

∫︁
R
𝑉𝛼

(︂
𝑡+ 1, (𝑝𝑡+1 + 𝑥) · 𝜎1

𝜎2
exp

(︂
(𝑧 − 𝜇1)

2

2𝜎21
− (𝑧 − 𝜇2)

2

2𝜎22

)︂)︂
× 1

𝜎1
√
2𝜋

exp

(︂
−(𝑧 − 𝜇1 − 𝛼𝜎21)

2

2𝜎21

)︂
𝑑𝑧.

Below it will be shown that 𝑉𝛼(𝑡, 𝑥) + 𝛼 represents the maximal expected

gain one can obtain from selling the asset if the observation is started as time

𝑡 with the value of the Shiryaev–Roberts statistic equal to 𝑥. In particular,

the value 𝑉𝛼 in problem (3.1) is equal to 𝑉𝛼(0, 0) + 𝛼.

The main result of the chapter consists in the following theorem about

the structure of optimal stopping times.

Theorem 3.1. The following stopping time is optimal in problem (3.1):

𝜏 *𝛼 = inf{0 6 𝑡 6 𝑇 : 𝜓𝑡 > 𝑏*𝛼(𝑡)}, (3.4)

where the stopping boundary 𝑏*𝛼(𝑡), 𝑡 = 0, . . . , 𝑇 , is given by

𝑏*𝛼(𝑡) = inf{𝑥 > 0 : 𝑉𝛼(𝑡, 𝑥) = 0}.

The value 𝑉𝛼 of problem (3.1) is equal to 𝑉𝛼(0, 0) + 𝛼.

The theorem states that the optimal stopping time is the first moment of

time when the Shiryaev–Roberts statistic exceeds the time-dependent thresh-

old 𝑏*𝛼(𝑡). In order to find the function 𝑏*𝛼(𝑡) numerically, one first computes

the functions 𝑉𝛼 and then finds their minimal non-negative roots.

Note that it is also possible to express the optimal stopping time through

the posterior probability process 𝜋 = (𝜋𝑡)
𝑇
𝑡=0 defined as the conditional prob-

ability

𝜋𝑡 = P(𝜃 6 𝑡 | F𝑡).

Indeed, by the generalised Bayes formula (see e. g. [39, S 7.9]) we have

𝜋𝑡 =

𝑡∑︁
𝑢=1

𝑑P𝑢
𝑡

𝑑P𝑡
𝑝𝑢

𝑇+1∑︁
𝑢=1

𝑑P𝑢
𝑡

𝑑P𝑡
𝑝𝑢

, 1− 𝜋𝑡 =

𝑇+1∑︁
𝑢=𝑡+1

𝑑P𝑢
𝑡

𝑑P𝑡
𝑝𝑢

𝑇+1∑︁
𝑢=1

𝑑P𝑢
𝑡

𝑑P𝑡
𝑝𝑢

=
(1−𝐺(𝑡))

𝑑P∞
𝑡

𝑑P𝑡
𝑇+1∑︁
𝑢=1

𝑑P𝑢
𝑡

𝑑P𝑡
𝑝𝑢

.
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This implies

𝜓𝑡 =
𝜋𝑡

1− 𝜋𝑡
(1−𝐺(𝑡)), 𝜋𝑡 =

𝜓𝑡

𝜓𝑡 + 1−𝐺(𝑡)
.

Consequently, the optimal stopping time in problem (3.1) can be equivalently

represented in the form

𝜏 *𝛼 = inf{0 6 𝑡 6 𝑇 : 𝜋𝑡 > ̃︀𝑏*𝛼(𝑡)}, where ̃︀𝑏*𝛼(𝑡) = 𝑏*𝛼(𝑡)

𝑏*𝛼(𝑡) + 1−𝐺(𝑡)
.

This representation provides a clear interpretation of the optimal stopping

time: one should sell the asset as soon as she becomes sufficiently confident

that the disorder has already happened, which quantitatively means that the

posterior probability 𝜋𝑡 exceeds the threshold ̃︀𝑏*𝛼(𝑡).

3.3 The proof of the main theorem

The proof of the theorem will be given in two steps. First, problem (3.1)

will be reduced to an optimal stopping problem for the Shiryaev–Roberts

statistic 𝜓 with respect to a new probability measure on (Ω,F𝑇 ). Then we

show that 𝜓𝑡 is a Markov sequence with respect to this measure and apply

methods of Markovian optimal stopping theory to the problem.

Step 1. On the measure space (Ω, F𝑇 ) introduce the family of probability

measures Q𝛼, 𝛼 6 1, such that the logarithmic returns 𝑋𝑡, 𝑡 = 1, . . . , 𝑇 , are

i.i.d 𝒩 (𝜇1 + 𝛼𝜎21, 𝜎
2
1) random variables under Q𝛼. In particular, Q0 ≡ P∞.

For 𝑡 = 1, . . . , 𝑇 , the explicit formula for the density 𝑑P𝑡/𝑑Q
𝛼
𝑡 , where Q𝛼

𝑡 =

Q𝛼 | F𝑡, is given by the formula

𝑑P𝑡

𝑑Q𝛼
𝑡

=
𝑑P𝑡

𝑑Q0
𝑡

· 𝑑Q
0
𝑡

𝑑Q𝛼
𝑡

=

(︂𝑇+1∑︁
𝑢=1

𝑑P𝑢
𝑡

𝑑P∞
𝑡

𝑝𝑢

)︂
· 𝑑Q

0
𝑡

𝑑Q𝛼
𝑡

=

(︂ 𝑡∑︁
𝑢=1

𝑑P𝑢
𝑡

𝑑P∞
𝑡

𝑝𝑢 +
𝑇+1∑︁

𝑢=𝑡+1

𝑝𝑢

)︂
· exp

(︂
𝛼𝜇1𝑡+

𝛼2𝜎21
2

𝑡− 𝛼

𝑡∑︁
𝑢=1

𝑋𝑖

)︂

= (𝜓𝑡 + 1−𝐺(𝑡))𝛽𝑡 · exp
(︂
−𝛼

𝑡∑︁
𝑢=1

𝑋𝑖

)︂
.
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We show that for any stopping time 𝜏 ∈ M it holds that

E𝑈0(𝑆𝜏 ) = EQ0

[︂ 𝜏∑︁
𝑡=1

[︀
𝜇2𝜓𝑡 + 𝜇1(1−𝐺(𝑡))

]︀]︂
, (3.5)

E𝑈𝛼(𝑆𝜏 ) = 𝛼EQ𝛼

[︂ 𝜏∑︁
𝑡=1

𝛽𝑡−1
[︀
(𝛽 − 𝛽/𝛾)𝜓𝑡 + (𝛽 − 1)(1−𝐺(𝑡))

]︀]︂
+ 𝛼 for 𝛼 ̸= 0,

(3.6)

where EQ𝛼

denotes the expectation with respect to Q𝛼. Here and below, we

define
𝜏∑︀

𝑡=1
[. . .] = 0 if 𝜏 = 0.

In order to prove (3.5), observe that

E𝑈0(𝑆𝜏 ) = E
𝜏∑︁

𝑡=1

𝑋𝑡 = EQ0

[︂
𝑑P𝜏

𝑑Q0
𝜏

𝜏∑︁
𝑡=1

𝑋𝑡

]︂
= EQ0

[︂
(𝜓𝜏 + 1−𝐺(𝜏))

𝜏∑︁
𝑡=1

𝑋𝑡

]︂
.

Using the “discrete version” of the integration by parts formula,

𝑎𝑡𝑏𝑡 =
𝑡∑︁

𝑠=1

𝑎𝑠Δ𝑏𝑠 +
𝑡∑︁

𝑠=1

𝑏𝑠−1Δ𝑎𝑠 + 𝑎0𝑏0, (3.7)

valid for any sequences 𝑎𝑡 and 𝑏𝑡 with the notation Δ𝑎𝑠 = 𝑎𝑠 − 𝑎𝑠−1, Δ𝑏𝑠 =

𝑏𝑠 − 𝑏𝑠−1, we obtain

E𝑈0(𝑆𝜏 ) = EQ0

[︂ 𝜏∑︁
𝑡=1

(𝜓𝑡 + 1−𝐺(𝑡))𝑋𝑡 +
𝜏∑︁

𝑡=1

𝑡−1∑︁
𝑠=1

𝑋𝑠(𝜓𝑡 − 𝜓𝑡−1 − 𝑝𝑡)

]︂
. (3.8)

The sequence 𝜓𝑡 + 1 − 𝐺(𝑡) is a martingale with respect to the measure

Q0 since it is the sequence of the densities 𝑑P𝑡/𝑑Q
0
𝑡 . This implies that the

expectation of the second sum in the above formula is zero. Indeed, we have

EQ0

[︂ 𝜏∑︁
𝑡=1

𝑡−1∑︁
𝑠=1

𝑋𝑠(𝜓𝑡 − 𝜓𝑡−1 − 𝑝𝑡)

]︂

= EQ0

[︂𝑇+1∑︁
𝑡=1

𝑡−1∑︁
𝑠=1

EQ0[︀
𝑋𝑠(𝜓𝑡 − 𝜓𝑡−1 − 𝑝𝑡)I(𝑡 6 𝜏) | F𝑡−1

]︀]︂
= 0,

where we use that 𝑋𝑠 and I(𝑡 6 𝜏) are F𝑡−1-measurable random variables,
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so they can be taken out of the conditional expectation, and

EQ0

(𝜓𝑡 − 𝜓𝑡−1 − 𝑝𝑡 | F𝑡−1) = 0, 𝑡 = 1, . . . , 𝑇,

as follows from that 𝜓𝑡 + 1−𝐺(𝑡) is a martingale.

For the first sum in (3.8) we have

EQ0

[︂ 𝜏∑︁
𝑡=1

(𝜓𝑡 + 1−𝐺(𝑡))𝑋𝑡

]︂

= EQ0

[︂𝑇+1∑︁
𝑡=1

EQ0(︀
(𝜓𝑡 + 1−𝐺(𝑡))𝑋𝑡I(𝑡 6 𝜏) | F𝑡−1

)︀]︂
= EQ0

[︂ 𝜏∑︁
𝑡=1

[︀
EQ0

(𝑝𝑡 + 𝜓𝑡−1)𝜇2 + 𝜇1(1−𝐺(𝑡))
]︀]︂

= EQ0

[︂ 𝜏∑︁
𝑡=1

[𝜇2𝜓𝑡 + 𝜇1(1−𝐺(𝑡))]

]︂
.

In the second equality we use that I(𝑡 6 𝜏) is an F𝑡−1-measurable random

variable and it can be taken out of the conditional expectation, 𝑋𝑡 is indepen-

dent of F𝑡−1, so EQ0

[(1−𝐺(𝑡))𝑋𝑡 | F𝑡−1] = (1−𝐺(𝑡))EQ0

𝑋𝑡 = (1−𝐺(𝑡))𝜇1,
and, as follows from (3.3),

EQ0

(𝜓𝑡𝑋𝑡 | F𝑡−1) = (𝑝𝑡 + 𝜓𝑡−1)
𝜎1
𝜎2

EQ0

[︂
𝑋𝑡 exp

(︂
(𝑋𝑡 − 𝜇1)

2

2𝜎21
− (𝑋𝑡 − 𝜇2)

2

2𝜎22

)︂]︂
= (𝑝𝑡 + 𝜓𝑡−1)𝜇2.

In the third equality we use the representation

EQ0

[︂ 𝜏∑︁
𝑡=1

(𝑝𝑡 + 𝜓𝑡−1)

]︂
= EQ0

[︂𝑇+1∑︁
𝑡=1

EQ0(︀
𝜓𝑡 | F𝑡−1

)︀
I(𝑡 6 𝜏)

]︂

= EQ0

[︂𝑇+1∑︁
𝑡=1

EQ0(︀
𝜓𝑡I(𝑡 6 𝜏) | F𝑡−1

)︀]︂
= EQ0

[︂ 𝜏∑︁
𝑡=1

𝜓𝑡

]︂
.

This proves formula (3.5).
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Let us prove (3.6). We have

E𝑈𝛼(𝑆𝜏 ) = 𝛼E exp

(︂
𝛼

𝜏∑︁
𝑡=1

𝑋𝑡

)︂
= 𝛼EQ𝛼

[︂
𝑑P𝜏

𝑑Q𝛼
𝜏

exp

(︂
𝛼

𝜏∑︁
𝑡=1

𝑋𝑡

)︂]︂
= 𝛼EQ𝛼[︀

(𝜓𝜏 + 1−𝐺(𝜏))𝛽𝜏
]︀

= 𝛼EQ𝛼

[︂ 𝜏∑︁
𝑡=1

[︀
(𝜓𝑡 + 1−𝐺(𝑡))(𝛽𝑡 − 𝛽𝑡−1) + 𝛽𝑡−1(𝜓𝑡 − 𝜓𝑡−1 − 𝑝𝑡)

]︀]︂
+ 𝛼,

where in the third equality we use the formula for the conditional density

𝑑P𝑡/𝑑Q
𝛼
𝑡 , and in the last equality we use formula (3.7). Using representation

(3.3), it is possible to verify the following expression for the conditional

expectation EQ𝛼

(𝜓𝑡 | F𝑡−1):

EQ𝛼

(𝜓𝑡 | F𝑡−1) =
𝛾

𝛽
(𝜓𝑡−1 + 𝑝𝑡) for 𝑡 = 1, . . . , 𝑇. (3.9)

To check that the right-hand side (𝑅𝐻) of above expression for E𝑈𝛼(𝑆𝜏 ) co-

incides with the right-hand side (𝑅𝐻) of (3.6), we show that their difference

is equal to zero:

(𝑅𝐻)− (𝑅𝐻) = 𝛼EQ𝛼

[︂ 𝜏∑︁
𝑡=1

𝛽𝑡−1(𝜓𝑡𝛽/𝛾 − 𝜓𝑡−1 − 𝑝𝑡)

]︂

= 𝛼EQ𝛼

[︂𝑇+1∑︁
𝑡=1

𝛽𝑡−1(𝜓𝑡𝛽/𝛾 − 𝜓𝑡−1 − 𝑝𝑡)I(𝑡 6 𝜏)

]︂

= 𝛼EQ𝛼

[︂𝑇+1∑︁
𝑡=1

EQ𝛼[︀
𝛽𝑡−1(𝜓𝑡𝛽/𝛾 − 𝜓𝑡−1 − 𝑝𝑡)I(𝑡 6 𝜏) | F𝑡−1

]︀]︂

= 𝛼EQ𝛼

[︂𝑇+1∑︁
𝑡=1

𝛽𝑡−1(EQ𝛼

(𝜓𝑡 | F𝑡−1)𝛽/𝛾 − 𝜓𝑡−1 − 𝑝𝑡)I(𝑡 6 𝜏)

]︂
= 0,

where in the fourth equality we use that 𝜓𝑡−1 and I(𝑡 6 𝜏) are F𝑡−1-

measurable random variables, so their conditional expectations coincides

with themselves, and apply (3.9). This proves (3.6).

Step 2. For convenience of further notation, let 𝐹𝛼(𝑡, 𝜓) denote the terms

in the sums in (3.5)–(3.6):

𝐹0(𝑡, 𝑥) = 𝜇2𝑥+ 𝜇1(1−𝐺(𝑡)),

𝐹𝛼(𝑡, 𝑥) = 𝛼𝛽𝑡−1[(𝛽 − 𝛽/𝛾)𝑥+ (𝛽 − 1)(1−𝐺(𝑡))].
(3.10)
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Representations (3.5)–(3.6) allow to reduce problem (3.1) to the optimal

stopping problems for the Shiryaev–Roberts statistic 𝜓

𝑉𝛼 = sup
𝜏∈M

EQ𝛼

[︃
𝜏∑︁

𝑢=1

𝐹𝛼(𝑢, 𝜓𝑢)

]︃
+ 𝛼,

so that the optimal stopping times in these problems will be also optimal in

problem (3.1).

Let M𝑡 denote the class of all stopping times 𝜏 of the filtration F such

that 𝜏 6 𝑡. In particular, M𝑇 = M.

According to the results of [64, Ch. II, S 2.15], the Shiryaev–Roberts statis-
tic is a Markov sequence with respect to the filtration F under each measure

Q𝛼, 𝛼 6 1, since 𝜓𝑡 is a function of 𝜓𝑡−1 and 𝑋𝑡, while 𝑋𝑡 form a sequence

of independent random variables. Following the general theory of optimal

stopping of Markov sequences (see e. g. [47, Ch. I]), introduce the family of

the value functions 𝑉𝛼(𝑡, 𝑥) for 𝑡 ∈ {0, 1, . . . , 𝑇}, 𝑥 > 0:

𝑉𝛼(𝑡, 𝑥) = sup
𝜏∈M𝑇−𝑡

EQ𝛼

[︃
𝜏∑︁

𝑢=1

𝐹𝛼(𝑡+ 𝑢, 𝜓𝑢(𝑡, 𝑥))

]︃
, (3.11)

where 𝜓(𝑡, 𝑥) = (𝜓𝑢(𝑡, 𝑥))
𝑇−𝑡
𝑢=0 is a sequence of random variables defined by

the recurrent formula

𝜓0(𝑡, 𝑥) = 𝑥,

𝜓𝑢(𝑡, 𝑥) = (𝑝𝑡+𝑢 + 𝜓𝑢−1(𝑡, 𝑥)) ·
𝜎1
𝜎2

exp

(︂
(𝑋𝑢 − 𝜇1)

2

2𝜎21
− (𝑋𝑢 − 𝜇2)

2

2𝜎22

)︂
with 𝑋1, 𝑋2, . . . being i.i.d. 𝒩 (𝜇1 + 𝛼𝜎21, 𝜎

2
1) random variables with respect

to the measure Q𝛼. The sums in the definition of 𝑉𝛼(𝑡, 𝑥) are equal to zero

if 𝜏 = 0, which, in particular, means that 𝑉𝛼(𝑇, 𝑥) = 0 for any 𝑥 > 0.

The functions 𝑉𝛼(𝑡, 𝑥) represent the maximal possible gain in the optimal

stopping problem if the observation starts at time 𝑡 with the value of the

Shiryaev–Roberts statistic 𝑥. From formulae (3.5)–(3.6), it follows that orig-

inal problem (3.1) corresponds to 𝑡 = 0, 𝑥 = 0, so the optimal stopping time

for 𝑉𝛼(0, 0) will be the optimal stopping time in (3.1), and 𝑉𝛼 = 𝑉𝛼(0, 0)+𝑎.

The well-known result of the optimal stopping theory for Markov se-
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quences (see [47, Theorem 1.8]) states that the value functions 𝑉𝛼(𝑡, 𝑥) satisfy

the following Wald–Bellman equations for 𝑡 = 0, . . . , 𝑇 − 1:

𝑉𝛼(𝑡, 𝑥) = max
{︀
0, EQ𝛼

[𝐹𝛼(𝑡+ 1, 𝜓1(𝑡, 𝑥)) + 𝑉𝛼(𝑡+ 1, 𝜓1(𝑡, 𝑥))]
}︀
. (3.12)

Here, 0 is the gain from instantaneous stopping in the problems at hand.

Using that 𝑋𝑡 are i.i.d N (𝜇1+𝛼𝜎
2
1, 𝜎

2
1) random variables with respect to Q𝛼

and computing the expectations EQ𝛼

[. . . .] in the above equation, we obtain

that the functions 𝑉𝛼(𝑡, 𝑥) satisfy the recurrent relations on p. 79.

From [47, Theorem 1.7] it follows that the optimal stopping time in prob-

lem (3.1) is the first moment of time when 𝜓𝑡 enters the stopping set 𝐷𝛼:

𝐷𝛼 = {(𝑡, 𝑥) : 𝑉𝛼(𝑡, 𝑥) = 0}, 𝜏 *𝛼 = inf{𝑡 > 0 : (𝑡, 𝜓𝑡) ∈ 𝐷𝛼}.

In order to prove representation (3.4), we show that for fixed 𝑡 and 𝛼, the

function 𝑥 ↦→ 𝑉𝛼(𝑡, 𝑥) is continuous and non-increasing, and there exists 𝑥

such that 𝑉𝛼(𝑡, 𝑥) = 0. The non-increasing follows from that 𝜓𝑢(𝑡, 𝑥1) >

𝜓𝑢(𝑡, 𝑥2) whenever 𝑥1 > 𝑥2, and the coefficients 𝜇2 and 𝛼𝛽𝑡(1 − 1/𝛾) are

negative in the formulae for 𝐹0(𝑡, 𝑥) and 𝐹𝛼(𝑡, 𝑥) respectively as follows from

the assumption 𝜇2 < −𝛼𝜎22/2 (see (3.2)).

In order to prove the continuity of 𝑥 ↦→ 𝑉𝛼(𝑡, 𝑥), we show by induction

over 𝑡 = 𝑇, 𝑇 − 1, . . . , 0 that for arbitrary 0 6 𝑥1 6 𝑥2 it holds that

𝑉𝛼(𝑡, 𝑥1)− 𝑉𝛼(𝑡, 𝑥2) 6 𝑐𝛼𝑡 (𝑥2 − 𝑥1) (3.13)

with the constants

𝑐𝛼𝑡 =

⎧⎨⎩|𝜇2|(𝑇 − 𝑡), 𝛼 = 0

𝛼𝛽𝑡(1− 𝛾𝑇−𝑡), 𝛼 ̸= 0.

For 𝑡 = 𝑇 the claim is valid, because 𝑉𝛼(𝑇, 𝑥) = 0 for all 𝑥 > 0. Suppose it

holds for some 𝑡 = 𝑠 and consider 𝑡 = 𝑠 − 1. From the formulae on p. 79 it
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follows that

𝑉𝛼(𝑠− 1, 𝑥1)− 𝑉𝛼(𝑠− 1, 𝑥2)

6

⎧⎨⎩|𝜇2|(𝑥2 − 𝑥1) + 𝑓0(𝑠− 1, 𝑥1)− 𝑓0(𝑠− 1, 𝑥2), 𝛼 = 0,

𝛼𝛽𝑠−1(1− 𝛾)(𝑥2 − 𝑥1) + 𝑓𝛼(𝑠− 1, 𝑥1)− 𝑓𝛼(𝑠− 1, 𝑥2), 𝛼 ̸= 0.

Further, using the induction assumption for 𝑡 = 𝑠, we find

𝑓𝛼(𝑠− 1, 𝑥1)− 𝑓𝛼(𝑠− 1, 𝑥2) 6
∫︁
R

𝑐𝛼𝑠 (𝑥2 − 𝑥1)

𝜎2
√
2𝜋

exp

(︂
(𝑧 − 𝜇1)

2

2𝜎21
− (𝑧 − 𝜇2)

2

2𝜎22

)︂
× exp

(︂
(𝑧 − 𝜇1 − 𝛼𝜎21)

2

2𝜎21

)︂
𝑑𝑧 = 𝑐𝛼𝑠 (𝑥2 − 𝑥1)

𝛾

𝛽
.

Combining it with the previous inequality we find for 𝛼 = 0

𝑉𝛼(𝑠− 1, 𝑥1)− 𝑉𝛼(𝑠− 1, 𝑥2) 6 (𝑥2 − 𝑥1)(|𝜇2|+ 𝑐𝛼𝑠 ) = 𝑐𝛼𝑠−1(𝑥2 − 𝑥1)

and for 𝛼 ̸= 0

𝑉𝛼(𝑠− 1, 𝑥1)− 𝑉𝛼(𝑠− 1, 𝑥2) 6 (𝑥2 − 𝑥1)(𝛼𝛽
𝑠−1(1− 𝛾) + 𝑐𝛼𝑠 𝛾/𝛽)

= 𝑐𝛼𝑠−1(𝑥2 − 𝑥1),

which proves the claim. Since 0 6 𝑉𝛼(𝑡, 𝑥1)− 𝑉𝛼(𝑡, 𝑥2) because 𝑥 ↦→ 𝑉𝛼(𝑡, 𝑥)

is a non-increasing function, we obtain that it is continuous.

Finally by induction over 𝑡 = 𝑇, 𝑇 − 1, . . . , 0 we prove that there exists a

root 𝑟𝛼,𝑡 of the function 𝑥 ↦→ 𝑉𝛼(𝑡, 𝑥). For 𝑡 = 𝑇 this is true since 𝑉𝛼(𝑇, 𝑥) = 0

for all 𝑥 > 0. Suppose there exists a root for 𝑡 = 𝑠 > 0. Then for 𝑡 = 𝑠− 1

and 𝑥→ +∞ we have

EQ𝛼

𝑉𝛼(𝑠, 𝜓1(𝑠− 1, 𝑥)) 6 sup
06𝑦6𝑟𝛼,𝑠

𝑉𝛼(𝑠, 𝑦) ·Q𝛼{𝜓1(𝑠− 1, 𝑥) 6 𝑟𝛼,𝑠} → 0

since 𝑦 ↦→ 𝑉𝛼(𝑠, 𝑦) is a continuous function and, hence, bounded on the

segment [0, 𝑟𝛼,𝑠], while Q𝛼{𝜓1(𝑠 − 1, 𝑥) 6 𝑟𝛼,𝑠} → 0 for 𝑥 → +∞ as follows

from the definition of 𝜓1(𝑡, 𝑥). On the other hand, 𝐹𝛼(𝑠 − 1, 𝑥) → −∞
as 𝑥 → +∞, which follows from that, according to the assumption 𝜇2 <

−𝛼𝜎22/2 (see (3.2)), the coefficients 𝜇2 or 𝛼𝛽𝑡−1(𝛽 − 𝛽/𝛾) in front of 𝑥 in

formula (3.10) are negative respectively in the case 𝛼 = 0 or 𝛼 ̸= 0. Then
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from (3.12) we obtain the existence of the root 𝑟𝛼,𝑠−1.

This completes the proof of the theorem.

Remark 3.1. Assumption 𝜇2 < −𝛼𝜎22/2 was used in the proof of the

theorem to show that the functions 𝑥 ↦→ 𝑉𝛼(𝑡, 𝑥) have non-negative roots.

Assumption 𝜇1 > −𝛼𝜎21/2 is not necessary for the proof, but if it does not

hold, then problem (3.1) becomes trivial: from the recurrent formula for

𝑉𝛼(𝑡, 𝑥) it is easy to see that 𝑉𝑎(𝑡, 𝑥) = 0 for all 𝑡 = 0, 1, . . . , 𝑇 , 𝑥 > 0, so the

optimal stopping time 𝜏 *𝛼 = 0.

Remark 3.2. Let us provide another proof of the continuity of the func-

tions 𝑥 ↦→ 𝑉𝛼(𝑡, 𝑥), which directly uses their definition (3.11) without relying

on the recurrent formulae.

Observe that for arbitrary 0 6 𝑥1 6 𝑥2 it holds that

0 6 𝑉𝛼(𝑡, 𝑥1)− 𝑉𝛼(𝑡, 𝑥2) = 𝑉𝛼(𝑡, 𝑥1)− EQ𝛼

[︂𝜏*𝛼(𝑡,𝑥2)∑︁
𝑢=1

𝐹𝛼(𝑡+ 𝑢, 𝜓𝑢(𝑡, 𝑥2))

]︂

6 EQ𝛼

[︂𝜏*𝛼(𝑡,𝑥2)∑︁
𝑢=1

[︀
𝐹𝛼(𝑡+ 𝑢, 𝜓𝑢(𝑡, 𝑥1))− 𝐹𝛼(𝑡+ 𝑢, 𝜓𝑢(𝑡, 𝑥2))

]︀]︂

6

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑇−𝑡∑︁
𝑢=1

EQ0[︀
𝜇2(𝜓𝑢(𝑡, 𝑥1)− 𝜓𝑢(𝑡, 𝑥2))

]︀
, 𝛼 = 0,

𝑇−𝑡∑︁
𝑢=1

𝛼EQ𝛼[︀
𝛽𝑡+𝑢(1− 1/𝛾)(𝜓𝑢(𝑡, 𝑥1)− 𝜓𝑢(𝑡, 𝑥2))

]︀
, 𝛼 ̸= 0,

where 𝜏 *𝛼(𝑡, 𝑥) = inf{𝑢 > 0 : (𝑡 + 𝑢, 𝜓𝑢(𝑡, 𝑥)) ∈ 𝐷𝛼}. From the definition of

𝜓(𝑡, 𝑥), using (3.9), we obtain

EQ𝛼

(𝜓𝑢(𝑡, 𝑥1)− 𝜓𝑢(𝑡, 𝑥2)) = EQ𝛼[︀
EQ𝛼

(𝜓𝑢(𝑡, 𝑥1)− 𝜓𝑢(𝑡, 𝑥2)) | F𝑢−1

]︀
=
𝛾

𝛽
EQ𝛼

(𝜓𝑢−1(𝑡, 𝑥1)− 𝜓𝑢−1(𝑡, 𝑥2)).

By induction we find EQ𝛼

(𝜓𝑢(𝑡, 𝑥1)− 𝜓𝑢(𝑡, 𝑥2)) = (𝛾/𝛽)𝑢(𝑥1 − 𝑥2), so

0 6 𝑉𝛼(𝑡, 𝑥1)− 𝑉𝛼(𝑡, 𝑥2) 6

⎧⎨⎩|𝜇2|(𝑇 − 𝑡)(𝑥2 − 𝑥1), 𝛼 = 0,

𝛼𝛽𝑡(1− 𝛾𝑇−𝑡)(𝑥2 − 𝑥1), 𝛼 ̸= 0,

which implies that the functions 𝑥 ↦→ 𝑉𝛼(𝑡, 𝑥) are continuous.
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3.4 Numerical solutions

In this section we describe a method how the functions 𝑉𝛼(𝑡, 𝑥) and the

optimal stopping boundaries 𝑏*𝛼(𝑡) can be found numerically and consider

several examples which illustrate the structure of random walks with change-

points and the structure of the stopping boundaries.

In order to find the functions 𝑉𝛼(𝑡, 𝑥) and 𝑏*𝛼(𝑡) numerically we take a

partition of R+ by points {𝑥𝑛}∞𝑛=0, 𝑥𝑛 = 𝑛Δ, where Δ > 0 is a param-

eter, and compute the values 𝑉 𝛼(𝑡, 𝑥𝑛) approximating 𝑉𝛼(𝑡, 𝑥𝑛) and 𝑏
*
𝛼(𝑡)

approximating 𝑏*𝛼(𝑡) by backward induction over 𝑡 = 𝑇, 𝑇 − 1, . . . , 0.

For 𝑡 = 𝑇 , let 𝑉 𝛼(𝑇, 𝑥𝑛) = 0 for each 𝑛 > 0. Suppose 𝑉 𝛼(𝑠, 𝑥𝑛), 𝑛 > 0,

are found for some 𝑠 > 0. In order to find 𝑉 𝛼(𝑠 − 1, 𝑥𝑛), 𝑛 > 0, define for

any 𝑥 > 0

𝑉 𝛼(𝑠, 𝑥) =
∞∑︁
𝑛=0

𝑉 𝛼(𝑠, 𝑥𝑛)I{𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1)}

and compute the values 𝑉 𝛼(𝑠 − 1, 𝑥𝑛), 𝑛 > 0, by formulae on p. 79 with

𝑉 𝛼(𝑠, 𝑥) in place of 𝑉𝛼(𝑠, 𝑥) in the formulae for 𝑓𝛼(𝑠, 𝑥). This can be done

in a finite number of steps, since after we find 𝑛 such that 𝑉 𝛼(𝑠 − 1, 𝑛) =

0 then 𝑉 𝛼(𝑠 − 1, 𝑛′) = 0 for all 𝑛′ > 𝑛. Proceeding by induction over

𝑡 = 𝑇, 𝑇 − 1, . . . , 0 we find all the values 𝑉 𝛼(𝑡, 𝑥𝑛), 𝑛 > 0. Then for each

𝑡 = 0, . . . , 𝑇 define 𝑏
*
𝛼(𝑡) = 𝑥𝑛0(𝛼,𝑡), where 𝑛0 = 𝑛0(𝛼, 𝑡) is the smallest

number 𝑛0 such that 𝑉 𝛼(𝑡, 𝑥𝑛0) = 0.

Let us show that the computational errors of the method (i. e. the differ-

ences 𝑉 𝛼(𝑡, 𝑥) − 𝑉𝛼(𝑡, 𝑥) and 𝑏
*
𝛼(𝑡) − 𝑏*𝛼(𝑡)) can be estimated by quantities

proportional to Δ. It will be assumed that the integral in the formulae for

𝑓𝛼(𝑡, 𝑥) and the elementary functions in the formulae for 𝑉 𝛼(𝑡, 𝑥) can be

computed exactly (or with negligible errors), so the computational errors

appear only due to the approximation of 𝑉𝛼(𝑡, 𝑥) by the functions 𝑉 𝛼(𝑡, 𝑥).

Introduce the constants 𝐶𝑡
𝛼, 𝑡 = 0, 1, . . . , 𝑇 :

𝐶𝛼
𝑡 =

𝑇∑︁
𝑠=𝑡

𝑐𝛼𝑠 =

⎧⎪⎪⎨⎪⎪⎩
|𝜇2|

(𝑇 − 𝑡)(𝑇 − 𝑡+ 1)

2
, 𝛼 = 0,

𝛼

(︂
𝛽𝑇+1 − 𝛽𝑡

𝛽 − 1
− 𝛽𝑇+1 − 𝛾𝑇+1(𝛽/𝛾)𝑡

𝛾 − 𝛽

)︂
, 𝛼 ̸= 0.
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Theorem 3.2. 1) For all 𝑡 = 0, 1, . . . , 𝑇 , 𝑥 > 0, the estimate holds:

0 6 𝑉 𝛼(𝑡, 𝑥)− 𝑉𝛼(𝑡, 𝑥) 6 𝐶𝛼
𝑡 Δ.

2) For 𝑡 = 0, 1, . . . , 𝑇 , the functions 𝑏*𝛼(𝑡), 𝑏
*
𝛼(𝑡) satisfy the inequalities

𝑏
*
0(𝑡)−

(︂
𝐶0

𝑡

|𝜇2|
+ 2

)︂
Δ 6 𝑏*0(𝑡) 6 𝑏

*
0(𝑡),

𝑏
*
𝛼(𝑡)−

(︂
𝐶𝛼

𝑡

𝛼𝛽𝑡(1− 𝛾)
+ 2

)︂
Δ 6 𝑏*𝛼(𝑡) 6 𝑏

*
𝛼(𝑡), 𝛼 ̸= 0.

Proof. 1) The proof of the first statement is conducted by induction

over 𝑡 = 𝑇, 𝑇 − 1, . . . , 0. For 𝑡 = 𝑇 the estimate is true because 𝑉𝛼(𝑡, 𝑥) =

𝑉 𝛼(𝑡, 𝑥) = 0. Suppose it holds for 𝑡 = 𝑠 and let us prove it for 𝑡 = 𝑠− 1.

According to the recurrent formulae on p. 79, 0 6 𝑉 𝛼(𝑠−1, 𝑥)−𝑉𝛼(𝑠−1, 𝑥)

because 0 6 𝑉 𝛼(𝑠, 𝑥) − 𝑉𝛼(𝑠, 𝑥) for all 𝑥 > 0 as follows from the inductive

assumption.

Let 𝑛(𝑥) denote the largest 𝑥𝑛 not exceeding 𝑥. Then for 𝑥 > 0 we have

𝑉 𝛼(𝑠− 1, 𝑥)− 𝑉𝛼(𝑠− 1, 𝑥)

=
[︀
𝑉 𝛼(𝑠− 1, 𝑥)− 𝑉 𝛼(𝑠− 1, 𝑥𝑛(𝑥))

]︀
+
[︀
𝑉 𝛼(𝑠− 1, 𝑥𝑛(𝑥))− 𝑉𝛼(𝑠− 1, 𝑥𝑛(𝑥))

]︀
+
[︀
𝑉𝛼(𝑠− 1, 𝑥𝑛(𝑥))− 𝑉𝛼(𝑠− 1, 𝑥)

]︀
6 0 + 𝐶𝛼

𝑠 Δ+ 𝑐𝛼𝑠−1Δ = 𝐶𝛼
𝑠−1Δ,

where we use that the difference in the second line equals zero according to

the definition of 𝑉 𝛼, the difference in the fourth line is estimated from above

by 𝑐𝛼𝑠−1(𝑥− 𝑥𝑛(𝑥)) 6 𝑐𝛼𝑠−1Δ according to (3.13), and for the third line we use

the inequality

𝑉 𝛼(𝑠− 1, 𝑥𝑛(𝑥))− 𝑉𝛼(𝑠− 1, 𝑥𝑛(𝑥)) 6 𝑓𝛼(𝑠− 1, 𝑥𝑛)− 𝑓𝛼(𝑠− 1, 𝑥𝑛)

6
∫︁
R

𝐶𝛼
𝑠 Δ

𝜎1
√
2𝜋

exp

(︂
−(𝑧 − 𝜇1 − 𝛼𝜎21)

2

2𝜎21

)︂
𝑑𝑧 = 𝐶𝛼

𝑠 Δ,

where the function 𝑓𝛼 is defined by the same formula as 𝑓𝛼, but with 𝑉 𝛼 in

place of 𝑉𝛼. The inequalities obtained prove the inductive step and, conse-

quently, prove statement 1 of the theorem.
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2) Fix 𝛼 6 1. Observe that 𝑏*𝛼(𝑡) 6 𝑏
*
𝛼(𝑡) because 𝑉 𝛼(𝑡, 𝑥) > 𝑉𝛼(𝑡, 𝑥) for

all 𝑡 = 0, 1, . . . , 𝑇 , 𝑥 > 0.

Let us prove the lower inequalities. First, suppose for some 𝑡 6 𝑇 there

exists a non-negative integer number 𝑘 such that

𝑥𝑛0(𝑡)−1 − 𝑥𝑘 >

⎧⎪⎪⎨⎪⎪⎩
𝐶0

𝑡

|𝜇2|
Δ, 𝛼 = 0,

𝐶𝛼
𝑡

𝛼𝛽𝑡(1− 𝛾)
Δ, 𝛼 ̸= 0

(3.14)

(since 𝛼 is fixed, it is omitted in the notation 𝑛0(𝛼, 𝑡)). Let 𝑘(𝑡) denote the

largest such integer number. Observe that for any 0 6 𝑘1 6 𝑘2 < 𝑛0(𝑡) it

holds that

𝑉 𝛼(𝑡, 𝑥𝑘1)− 𝑉𝛼(𝑡, 𝑥𝑘2) >

⎧⎨⎩|𝜇2|(𝑥𝑘2 − 𝑥𝑘1), 𝛼 = 0,

𝛼𝛽𝑡(1− 𝛾)(𝑥𝑘2 − 𝑥𝑘1), 𝛼 ̸= 0,
(3.15)

as follows from the definition of 𝑉 𝛼(𝑡, 𝑥𝑘) by the formulae on p. 79. As a

consequence,

𝑉𝛼(𝑡, 𝑥𝑘(𝑡)) > 𝑉 𝛼(𝑡, 𝑥𝑘(𝑡))− 𝐶𝛼
𝑡 Δ > 𝑉 𝛼(𝑡, 𝑥𝑘(𝑡))− 𝑉 𝛼(𝑡, 𝑥𝑛0(𝑡)−1)− 𝐶𝛼

𝑡 Δ > 0,

where in the first inequality we use statement 1, in the second inequality we

use that 𝑉 𝛼 > 0, and in the last one we apply (3.14)–(3.15). This implies

𝑏*𝛼(𝑡) > 𝑥𝑘(𝑡). Using that 𝑘(𝑡) is the largest integer number satisfying (3.14),

we see that

𝑥𝑘(𝑡) >

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑛0(𝑡)−1 −

(︂
𝐶0

𝑡

|𝜇2|
+ 1

)︂
Δ, 𝛼 = 0,

𝑥𝑛0(𝑡)−1 −
(︂

𝐶𝛼
𝑡

𝛼𝛽𝑡(1− 𝛾)
+ 1

)︂
Δ, 𝛼 ̸= 0.

Consequently, if for some 𝑡 6 𝑇 there exists a non-negative integer number

satisfying (3.14), the lower inequality in statement 2 holds for this 𝑡 because

𝑥𝑛0(𝑡)−1 = 𝑏
*
𝛼(𝑡)−Δ.

In the opposite case, we have 𝑥𝑛0(𝑡)−1 6 𝐶0
𝑡Δ/|𝜇2| if 𝛼 = 0 and 𝑥𝑛0(𝑡)−1 6

𝐶𝛼
𝑡 Δ/(𝛼𝛽

𝑡(1 − 𝛾)) if 𝛼 ̸= 0, which also implies the validity of statement 2,

since 𝑏*𝛼(𝑡) > 0.
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Now we provide examples of the solutions found numerically for certain

values of the parameters. We let 𝑇 = 100, the moment of disorder 𝜃 be

uniformly distributed in the set {1, 2, . . . , 101}, and consider the values of

the parameters 𝜇1 = −𝜇2 = 2/𝑇 , 𝜎1 = 𝜎2 = 1/
√
𝑇 . The choice of the

parameters 𝜇1, 𝜇2 of order 1/𝑇 and the choice of 𝜎1, 𝜎2 of order 1/
√
𝑇 is due

to that, as follows from the invariance principle (see e. g. [35, Theorem 12.9]),

such a random walk with disorder converges weakly to a Brownian motion

with disorder on [0, 1] as 𝑇 → ∞, which presents interest in view of the

results of the papers [2, 14, 56].

Figure 1 shows the optimal stopping boundaries for the Shiryaev–Roberts

statistic in the problem with the above values of the parameters and 𝛼 =

1, 0,−1
2 ,−1. A larger value of 𝛼 corresponds to a higher boundary.

Figure 2 presents the optimal stopping boundaries for the posterior prob-

ability process. Similarly, higher boundaries are obtained for larger values

of 𝛼 = 1, 0,−1
2 ,−1.

Figures 3 and 4 show the value functions 𝑉0(𝑡, 𝑥) for the Shiryaev–Roberts

statistic and ̃︀𝑉0(𝑡, 𝑥) = 𝑉0(𝑡, 𝑥/(𝑥 + 1 − 𝐺(𝑡)) for the posterior probability

process, where 𝑡 = 10, 20, 30, . . . , 90. Higher lines correspond to smaller

values of 𝑡.

On Figure 5 we provide three sample paths of the geometric Gaussian

random walk with changepoints at 𝜃 = 25, 50, 75. These paths are con-

structed from the same realisation of the sequence 𝜉𝑖 of i.i.d N (0, 1) random

variables, but with the three different values of 𝜃.

The corresponding paths of the Shiryaev-Roberts statistic and the opti-

mal stopping boundary 𝑏*0(𝑡) are shown on Figure 6. The optimal stopping

times 𝜏 * = 46, 57, 75 (respectively, for 𝜃 = 25, 50, 75) are found as the first

moments of time the Shiryaev-Roberts statistic crosses the boundary.
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Figure 1. Stopping boundaries 𝑏*𝛼(𝑡) for the Shiryaev–Roberts statistic for
𝛼 = 1, 0,−1

2 ,−1 (higher lines correspond to larger values of 𝛼).

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

b~
α
(t

)

Figure 2. Stopping boundaries ̃︀𝑏*𝛼(𝑡) for the posterior probability process for
𝛼 = 1, 0,−1

2 ,−1 (higher lines correspond to larger values of 𝛼).
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Figure 3. Value functions 𝑉0(𝑡, 𝑥) for the Shiryaev–Roberts statistic for
𝑡 = 10, 20, . . . , 90 (higher lines correspond to smaller values of 𝑡).
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Figure 4. Value functions ̃︀𝑉0(𝑡, 𝑥) for the posterior probability process for
𝑡 = 10, 20, . . . , 90 (higher lines correspond to smaller values of 𝑡).
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Figure 5. Sample paths of the random walk with changepoints 𝜃 = 25, 50, 75.
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Figure 6. Paths of the Shiryaev–Roberts statistic with 𝜃 = 25, 50, 75.
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