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This thesis examines two important physical phenomena that occur when solid fuels
are exposed to external radiative heating: (1) the pyrolysis process in reaching ignition
conditions and (2) the natural convection around one or more radiatively heated fuel
samples. A vegetation fire (bushfire, wildfire, or forest fire) preheating the vegetation
which is in its path is a particular example which occurs in nature. However there
are many more applications where modelling the pyrolysis process and/or the natural
convection is of practical use.

For the pyrolysis phenomena, a one-dimensional time dependent pyrolysis model
is proposed. The mathematical model is solved numerically and results are used to
analyse the influence of the size of a wood-based fuel sample, the heating rate it is
exposed to, and its initial moisture content in the process of the sample reaching the
conditions where it can produce enough pyrolysate vapour to support a flame (flash
point). In many pyrolysis models in the open literature it is assumed that the fuel
samples are dry. In the present study it is found that the initial moisture content has
a marked effect for a fuel sample reaching its flash point.

For the convection phenomena, a two-dimensional steady model, which explores
the natural convection around one or more solid fuels, is also presented. The flame
front is represented by a radiating panel. This means that the solid fuels receive a
non-uniform heating rate depending on their geometry and location in relation to the
panel. Changes in temperature and velocity profiles are monitored for varying heating
rates and sample sizes (or, equivalently, the Rayleigh number Ra). Additionally, in the
case of multiple fuel samples, changes in the distance between the fuels is also taken
into account. For multiple fuels in arbitrary locations it is possible that one sample will
block some of the radiation from the panel from reaching another sample. This means
that the fuel sample will receive a reduced heating rate. This reduction in heating is
also incorporated in the natural convection model.

Both the pyrolysis and natural convection models are solved numerically using the
finite element software package COMSOL Multiphysics. A comparison of COMSOL is
performed with benchmark solutions provided by the open literature. A good agreement
in the numerical results is observed.
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Chapter 1

Introduction

An understanding of the fundamentals of vegetation fires (bushfires, wildfires, and

forest fires) is particularly important in terms of suppression efforts. These large scale

fires can occur all over the world, in a variety of vegetal fuels, where the climate is

moist enough to allow the growth of vegetation supplemented by extended periods of

hot, dry weather. They can occur naturally (lightning strikes or following volcanic

eruptions) or through human activity (arson, neglected camp fires, etc). Their effects

are potentially fatal to nearby plants and animals, even humans. They can also have a

significant economic impact [1].

Suppressing large scale fires is usually very difficult as access for fire-fighting

machinery is limited. An effective strategy is to create firebreaks (gaps in vegetation

which limits the fuel supply to the fire). These can be created by cutting down the

vegetation or even burning it well before the large fire arrives. Using these suppression

techniques requires good predictions of how a fire front will develop. Understanding

the physical and chemical processes involved, and analysing fire related phenomena,

can lead to accurate physical fire spread models [2].

Fire spread models based on the physics and chemistry of combustion and heat

transfer [3, 4] involve finding the solution of a system of partial differential equations.

These models give an insight into a number of vegetation fire variables such as spread

rates, fuel consumption, volatile gas production, and ignition estimates [5–11].

The aim of this thesis is to model two physical phenomena that occur during a

vegetation fire: (1) the pyrolysis process of vegetation reaching the point of ignition

conditions and (2) the natural convection around the vegetation due to radiant heating.

9



CHAPTER 1. INTRODUCTION 10

The pyrolysis and natural convection models are described in Chapters 2 and 4

respectively.

Numerical results for the pyrolysis model are analysed in Chapter 3. In Chapter

5, the numerical method for solving natural convection problems is compared with

literature for isothermal and uniformly heated bodies. The natural convection model,

which incorporates a non-uniform heating rate, is solved and the results are analysed

in Chapter 6.

The pyrolysis model involves the uniform heating of a vegetal fuel sample which

leads to the thermal degradation of the fuel. This degradation leads to moisture

evaporation and to pyrolysis processes which produce flammable vapour. Ignition

conditions are met when the external gaseous mixture is composed of a certain amount

of flammable vapour which allows piloted ignition (e.g. a lit match, lightning strike,

ember, etc). Estimating the when a flammable mixture is obtained for various initial

fuel moisture contents, sample sizes, and heating rates is of interest.

The natural convection model involves the study of flow around two-dimensional

bodies subjected to a non-uniform heating rate. A flame approaching vegetation in its

path will heat one side of the vegetation more than the other. The heating rate around

the vegetation can be calculated based on geometric consideration. In the natural

convection study, the interaction between multiple fuel samples will be considered. The

flow and temperature fields are analysed for various sample sizes, heating rates, sample

distances, and arrays.

Before describing the pyrolysis and natural convection processes in more detail it is

worth introducing the fundamentals of heat transfer.

1.1 Heat transfer

Heat transfer is the transfer of thermal energy from one physical system to another.

There are many texts describing the fundamentals of heat transfer [12, 13]. The three

main modes of heat transfer are conduction, convection, and radiation. These forms

of heat transfer will be present for both the pyrolysis and natural convection models.

Phase-change heat transfer [14] will be incorporated in the pyrolysis model.

Heat transfer through conduction is the transfer of thermal energy between solids
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due to a temperature gradient. This can be described by

q = −k∇T (1.1)

where q [W/m2] is the heat flux, k [W/m K] is the thermal conductivity, and T [K]

represents the temperature. Equation 1.1 is Fourier’s law for the conduction of heat.

This is an empirical law which states that the heat transfer through a material is

proportional to the change in temperature and to the area along the path of the heat

flow. There is a minus sign in the equation because heat flows from a higher temperature

to a lower temperature. The thermal conductivity, k, is a material property and in

general varies in temperature and pressure so that k = k(T, P ). The heat conduction

taking place within the vegetal fuel sample will be modelled for both the pyrolysis and

natural convection studies. The sample will receive heat on its surface which will be

conducted through the solid. The surrounding air will also conduct some heat although

heat transfer in the air is dominated by convection.

Heat transfer through convection is the movement of molecules in fluids (i.e. liquid

and gas states), it cannot occur in solids since motion can not take place. Heat

convection takes place through the net displacement of a fluid, which transports the

heat content in a fluid through the fluid’s own velocity. The term convection is also used

for the heat dissipation from a solid surface to a fluid where the temperature difference

across a boundary layer [15] describes the flux. Convection can be described as either

forced or natural (or a mixture of both). In forced convection the fluid movement

results from external surface forces (e.g. wind). However in natural convection the

temperature differences in the fluid result in density differences. The heavier (more

dense) fluid will fall whereas the lighter (less dense) fluid will rise resulting in a buoyant

flow. Forced convection effects are neglected in this thesis with the emphasis on

modelling the natural convection flow (section 1.3).

Radiation is the heat transfer mechanism which allows bodies to exchange heat

from a distance without making contact. It takes place in the form of electromagnetic

waves which are mainly in the infrared region. Heat transfer by radiation does not

require the presence of a medium as the electromagnetic waves will also transfer energy

in a vacuum. If radiation reaches a surface then part of it is reflected from the body

and the other part penetrates into the body [16]. Let ρ be the ratio of the reflected

radiation and the incident radiation which represents the reflectivity. Similarly let α
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be the ratio of the absorbed radiation and the incident radiation which represents the

absorptivity. Finally let τ be the ratio of the transmitted radiation and the incident

radiation which represents the transmissivity. Then

ρ+ α + τ = 1.

Most solids and liquids absorb almost all the heat radiation which penetrates the

surface so that τ is negligible. In this case

ρ+ α = 1.

An object which absorbs all the radiation which falls on to its surface is known as a

black body so that

α = 1.

Now consider the walls of a hollow space with a solid body situated within this space.

The temperature at the walls of the hollow space and the body temperature may be

the same. Then the heat which is radiated by the body must be equal to the heat

which is radiated from the wall and absorbed by the body. If this was not the case

then the second law of thermodynamics would be violated since heat would be created

or lost in an isolated system. Let e denote the heat radiated per unit time from a unit

surface [W/m2]. This is called the emissive power. If the body in question was a black

body with e = eb then the heat radiated from the walls and impinging the black body

must be eb as well. If we consider a general body with absorptivity α 6= 1 (i.e. not a

black body) then the body will absorb αeb. The emissive power must be the same so

that

e = α eb.

This is known as the Kirchhoff law. The ratio of the emissive power e and the emissive

power of a black body eb is known as the emissivity ε so that

e

eb
= ε = α.

For a black body the radiative heat flux q [W/m2] is proportional to the fourth power

of absolute temperature of the body T [K] so that

q = ς T 4 (1.2)
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where ς = 5.6703× 10−8 [W/(m2K4)]. Equation (1.2) is the Stefan-Boltzmann equation

and ς is the Stefan-Boltzmann constant of proportionality. However, a black body

does not exist in the real world (that is, a body will never absorb all the radiation

that falls on its surface) which is why we introduce the emissivity 0 ≤ ε ≤ 1. The

Stefan-Boltzmann equation for variable emissivities is

q = ες T 4.

Phase-change heat transfer occurs when a substance changes its state in a system.

In the pyrolysis model, a liquid-vapour phase-change occurs when moisture within the

vegetal fuel sample will evaporate. This means that liquid water will change to water

vapour (gas) when the vegetal fuel sample receives external heating. This form of heat

transfer will be neglected in the natural convection model but will be incorporated in

the pyrolysis model.

1.2 Pyrolysis in vegetal fuels

Pyrolysis is the decomposition of organic material at high temperatures relative to

the ambient. As the vegetal fuel is heated, endothermic reactions take place before

the ignition stage. Very few reactions occur as the temperature is increased from the

ambient up to 100◦C. At approximately 100◦C, any moisture in the fuel is evaporated

into the ambient air. Significant pyrolysis begins to take place at higher temperatures

(about 200◦C) when chemical bonds of the fuel begin to break. Solid char is produced

as well as volatile gases. Significant char production can create a char layer which

acts as a thermal insulator for the vegetal fuel. The char layer can reach high surface

temperatures allowing the surface to react with oxygen in the air which can lead to

glowing ignition [17]. Flaming combustion occurs when enough flammable volatile

gases are released to form a mixture that can pilot ignite (e.g. with the aid of a lit

match or contact with any nearby flame).

In most pyrolysis models the full reaction scheme is replaced by a few dominant

overall reactions [18]. This approach simplifies the model and although this will not

capture the exact processes by which pyrolysis occurs, when good reaction schemes

are chosen, the model can be used to predict the main features of pyrolysis. In a
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mathematical model of pyrolysis of vegetal fuels, solutions to conservation equations

are required. These partial differential equations have the form

∂c

∂t
+∇ · (D∇c) = NR

where c is the variable of interest, D is the diffusivity, and NR is the net rate of

production. The conservation equations are applied to mass, momentum, energy, and

species which gives rise to a system of coupled partial differential equations which

usually require numerical methods for their solution. In the pyrolysis of vegetal fuels

the net rate of production/consumption is due to the chemical reactions creating or

consuming mass, momentum, or energy. These chemical reactions occur when molecules

collide with enough kinetic energy to overcome the repulsive forces and break up the

molecular structure of the fuel. This gives rise to an activation energy, EA, which is a

threshold value below which the molecules do not have enough energy for reactions

to occur. The Arrhenius law can be used to model the chemical reactions. This

temperature dependant law makes use of the activation energy in order to predict the

reaction rate so that

ω = Ae−(EA/RT )

where ω is the reaction rate, A is the pre-exponential factor which incorporates the

frequency of molecular collisions, R is the gas constant, and T is the temperature. The

Arrhenius law is widely used as it has been verified to have good accuracy for most

chemical reactions which are temperature dependant [19].

The vegetal fuel is usually modelled as a porous medium, that is, a material

consisting of solid matrix with interconnected empty sites or pores [20]. The porosity,

ϕ say, is defined as the fraction of the total volume of the medium that is occupied by

the pores so that the fraction that is occupied by the solid is 1− ϕ.

In this thesis, a pyrolysis model is presented (Chapter 2) which incorporates

evaporation, charring, and fast pyrolysis processes in the external radiant heating of a

vegetal fuel sample. The aim is to analyse and provide an estimate of when a flammable

mixture, capable of piloted ignition, forms for various geometries, fuel sample sizes,

heating rates, and initial moisture contents.

A natural convection model for the non-uniform heating of multiple fuel samples is

presented in addition to this pyrolysis model (Chapter 4).
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1.3 Natural convection around solid vegetal fuel

samples

Natural convection is the buoyancy-induced fluid motion which results from the fluid

density differences interacting with gravity. These density differences may be a result of

temperate gradients, differences in the concentration of chemical species, phase changes,

and other effects. In the present natural convection study, it is the temperature gradient

which will result in the fluid (air) density differences. There are many different kinds of

buoyancy-induced flows as they depend on the geometry and boundary conditions [21].

The fluid motion and temperature fields coupled so that they must be considered

together. Motion of the fluid is initially laminar at short distances from, say, a heated

body (e.g. external radiant heating of a vegetal fuel). However, the flow will transition

to turbulence at larger distances from the body and eventually become turbulent. The

surrounding flow field is of interest in the present study since ignition will occur near

the vegetal fuel body. Therefore it is assumed that the flow will be laminar [15].

Assuming that the fluid density ρ depends on the fluid temperature T and a

gravitational field g (a vector) exists then a local region of lower density will produce

an upward force B. This buoyancy force results in the motion of the fluid. In two

dimensional space (x, y), gravity is assumed to act vertically downwards so that g = −gj,

where j is the unit vector in the positive y-direction and g is the acceleration due to

gravity.

The main dimensionless parameters that arise in natural convection problems are

the Prandtl number Pr and Rayleigh number Ra [15]. The Prandtl number is the ratio

of kinematic viscosity ν to thermal diffusivity κ

Pr =
ν

κ
.

Values of Pr will vary depending on the type of fluid and its ambient temperature.

Typical values of Pr are about 0.015 for mercury, 7 for water, and 0.7 for air. In the

present study, the fluid under consideration will be air so that Pr will be 0.7 unless

otherwise stated. The Raleigh number gives a measure of how much the heat transfer

is dominated by convection. When Ra is below a critical value, Racr say, for the fluid

then heat transfer is said to be dominated by conduction from the body into the fluid.
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For Ra > Racr, heat transfer is dominated by convection. The Raleigh number can be

defined as

Ra =
gβl3

νκ
(T − T0)

where T is the fluid temperature, T0 is the ambient temperature, β is the thermal

expansion coefficient (1/T for ideal gases), and l is the length scale (e.g. diameter of

the body). The Rayleigh number is the key parameter in the present natural convection

problem as it will vary for different sample sizes and heating rates.

In the natural convection part of the thesis (Chapter 4 onwards), it is assumed that

vegetal fuels will receive non-uniform external radiative heating. This approach models

a flame front preheating a fuel sample of particular shape and size. The heating rate

around a fuel sample will depend on the view factor [22]. This is the proportion of

thermal radiation which leaves the flame and impinges the surface of the fuel. The

view factor will vary depending on how much of the flame a point on the fuel surface

can ‘see’. Incorporating this non-uniform radiative heating in the natural convection

model will give a more realistic representation of the temperature and flow field around

vegetal fuel sample in forest fire conditions.

1.4 Numerical solution procedure

The pyrolysis and natural convection models are solved using the commercial software

package COMSOL Multiphysics. This software is based on the finite element method

which includes packages to model topics of fluid dynamics coupled with heat transfer

[23].

The geometry of the problem can be specified using the in-built drawing capabilities

of COMSOL. Simple objects (squares, circles, rectangles, . . . ), lines, and points can be

specified. Within the geometry, coupled partial differential equations and appropriate

boundary and initial conditions are specified. A mesh is generated based on the geometry

which can be tuned to be finer on certain boundaries by specifying the ‘maximum

element size’ option. This is a key feature in obtaining convergence, particularly for

natural convection problems, as the mesh needs to be sufficiently fine around the

solid in order to resolve the temperature gradients. Adjustments can also be made

in the solver settings in order to solve the nonlinear Navier-Stokes equations coupled
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with heat transfer. The choice of solver, relative and absolute tolerance values, and

initial solution have a significant effect on whether the solution will converge. It may

be necessary to use numerical continuation [24] by solving a simplified problem (e.g.

reduced heating rate) in order to provide a good initial solution when simulating the

full problem.

In-built post-processing tools exist in COMSOL which allow point, line, and surface

plots. In analysing results for various parameters, it is useful to export relevant data

to software which is designed to deal with its numerical analysis (e.g. Matlab [25]).

1.5 Overview of thesis

• Chapter 1 - Introduction - The motivation for investigating pyrolysis and natural

convection phenomena, particularly for gaining an insight into fire dynamics,

is discussed. Also, the basics of pyrolysis, chemical reactions, heat and mass

transfer, and natural convection are explained.

• Chapter 2 - Onset of ignition in vegetal fuels - The literature relevant to

the pyrolysis phenomenon is reviewed. A pyrolysis model is presented which

incorporates evaporation, charring, and fast pyrolysis processes. An estimate of

the time taken to reach flammable mixture is also presented.

• Chapter 3 - Numerical results for pyrolysis model - Numerical results, using

COMSOL Multiphysics, are presented. Variations in geometry, heating rate, fuel

sample size, and initial fuel moisture content are explored.

• Chapter 4 - Natural convection with radiative heating - The literature relevant

to the natural convection phenomenon is reviewed. Nondimensional governing

equations are presented. The non-uniform radiative heating rate is derived along

with an approach to deal with shadowing effects.

• Chapter 5 - Natural convection test problems - Natural convection test problems

are solved using COMSOL Multiphysics. The numerical results are compared

with the relevant literature in order to test COMSOL’s suitability in accurately

solving natural convection flow problems.
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• Chapter 6 - Steady solutions are obtained for the natural convection around fuel

samples subjected to nonuniform radiative heating. Problem parameters are the

sample size, heating rate, and the distance between the samples. Temperature

and velocity profiles are presented.

• Chapter 7 - Steady solutions are obtained for the natural convection around fuel

samples for configurations where shadowing effects are present.

• Chapter 8 - Conclusions of both the pyrolysis and natural convection studies are

discussed and the possibilities for further study.



Chapter 2

Onset of ignition in vegetal fuels

In this chapter, literature which is relevant to the pyrolysis process for vegetal fuels is

reviewed (section 2.1), the governing equations for the pyrolysis model are presented

(section 2.2), and a method for estimating the time taken to reach a flammable mixture

is suggested (section 2.3).

In producing a good pyrolysis model a suitable chemical kinetic scheme must be

chosen. A variety of schemes from the literature are summarised and existing pyrolysis

models are reviewed. Typical model equations are also outlined. Various vapourisation

models are outlined with particular emphasis on Di Blasi’s relatively comprehensive

model [26].

After the literature review, a one-dimensional time dependant model for the

pyrolysis of an external radiatively heated vegetal fuel sample is presented. This

model incorporates evaporation, charring, and fast pyrolysis chemical reactions. The

model allows flake-like, cylindrical, and spherical vegetal fuels as the geometry. The

fuel sample size, heating rate, and initial fuel moisture content are parameters of the

problem. A simple approach is taken in estimating when a flammable mixture is formed

in the external gas phase. The aim of the model is to obtain general results and not to

delve into specialised chemical kinetics, vegetation orientation, and thermal shrinkage

effects [27].

19
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2.1 Pyrolysis literature

A large amount of experimental and theoretical research of the pyrolysis of vegetation-

based fuels has been carried out in the literature [27]. A variety of theoretical approaches

to pyrolysis modelling exist. Algebraic and analytical models usually ignore most of the

chemical and physical processes involved in pyrolysis in order to reduce the complexity

of the problem with the goal of obtaining a closed form solution for the rate of fuel

pyrolysis [28]. The solutions provided to these models usually have a limited range of

applicability. There are also integral based models which utilise numerical procedures to

obtain temperature profiles and fuel pyrolysis rates [29]. These models include many of

the chemical and physical processes which are ignored in most algebraic and analytical

models. However, they assume a critical pyrolysis temperature criterion which means

that the role of chemical kinetics in the overall thermal degradation process is neglected.

When modelling the transient heating of a vegetal fuel the temperature ranges from

ambient (300 K) to around 1000 K.

For relatively low temperatures (300–600 K) the pyrolysis process in the sample

depends mainly on the chemical kinetics. However for larger temperatures the process

depends less on the chemical kinetics and more on the diffusion of species within the

sample [18]. Therefore, in a comprehensive model, it is important to account for the

chemical kinetics as well as the diffusion processes.

2.1.1 Chemical kinetic schemes

Vegetal fuels are composed of cellulose, hemicellulose, lignin, and other extractives

with cellulose making up around half of most vegetation species [30]. There is large

diversity in vegetal fuels but, generally, more than half of the mass of the fuel species

is composed of cellulose. Therefore many of the chemical kinetics of cellulose pyrolysis

are applicable to all vegetal fuel types [31].

The first chemical kinetic model that managed to take into account some of the

complexity of cellulose pyrolysis was developed in the seminal papers by Broido and his

collegues [32–34]. Later, the generally accepted kinetic model of Bradbury et al. [35]

simplified Broido’s reaction network by omitting some of the solid forming reactions.

This simplified reaction scheme is known as the Broido-Shafizadeh model (Figure
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2.1) and is frequently used in pyrolysis models. In this kinetic model, the pyrolysis

Volatiles (Wv)

Cellulose (WCell)
ka // Active Cellulose (Wa)

kc ++VVVVVVVVVVVVVVVVVV

kv
33hhhhhhhhhhhhhhhhhh

Char (Wc) + Gases (Wg)

Figure 2.1: Three reaction Broido-Shafizadeh model proposed by Bradbury et al. [35].

reactions that take place at relatively low temperatures (less than 300◦C) are assumed

to lead to the formation of an ‘active cellulose’ (Wa). Upon further heating the active

cellulose then decomposes by two competitive reactions, one which produces volatile

species (Wv) and the other producing solid char (Wc) and other gases (e.g. CO, CO2

and H2O). The charring reaction is dominant at low temperatures with the reaction

producing volatiles being dominant at higher temperatures. The chemical reaction

rates ki with i ∈ {A,V,C} are modelled by applying the Arrhenius law

ki = Aie
−Ei/RT

where R is the universal gas constant. The pre-exponential factor Ai and activation

energy Ei are constants which are chosen based on experimental observations [36].

Varhegyi and Jakab [37] simplified the Broido-Shafizadeh scheme by omitting

the Cellulose → Active Cellulose reaction. Their experimental results were better

represented when this reaction was omitted in the kinetic scheme.

2.1.2 Pyrolysis models

The pyrolysis of vegetal fuels involves many physical phenomena. These include heat

transfer through conduction, heat due to chemical reactions, convection of gaseous

species, build-up of gaseous species within the fuel and the increase in pressure within,

and vaporisation of moisture. Certain assumptions need to be made on computational

grounds and also for keeping the generality of the model’s applicability.

Velocity and pressure

The velocity u = (u, v, w) and pressure P of gaseous species within a heated vegetal

fuel sample can be described by Darcy’s law and the ideal gas law respectively [20].
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Assuming the vegetal fuel can be modelled using one spatial dimension, r, so that there

is only one nonzero component of the velocity u = (u, 0, 0), then Darcy’s equation is

reduced to [38]

u = −K
µ

∂P

∂r
.

The permeability, K, of the fuel sample is a measure of the sample’s ability to allow a

fluid to flow through it under a total pressure gradient [39]. The viscosity of the fluid

within the fuel sample, µ, is a measure of the fluid’s resistance to deformation (e.g.

water is considerably more viscous than air). Darcy’s law can be used to calculate the

mass flux of a gaseous mixture g since

mg = −ρg
K

µ

∂P

∂r

= ρgu

where mg is the mass flux and ρg is the density of the gaseous mixture g respectively

[40].

The ideal gas law is an equation of state

P =
ρgRT

Mg

where R is the gas constant and T is the temperature. The mean molecular weight of

a gaseous mixture can be calculated as

1

Mg

=
∑
i

yi
Mi

where yi and Mi are the mass fraction and molecular weight of gaseous species i

respectively.

Moisture evaporation

The vegetal fuel moisture content affects the vegetal temperature history due to

the evaporation process [41]. It has been noted [42] that if moisture evaporation is

not accounted for then the temperature results are overestimated. There are a few

basic ways to model the evaporation of water from a heated vegetal fuels sample.

Saastamoinen and Richard [43] use a relatively simple model where the drying front of

the fuel is assumed to be infinitely thin and the phase change between liquid water to

steam occurs at a constant temperature (100◦C). Chan et al. [42] model the drying
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as an additional reaction using an Arrhenius expression with a suitable choice of the

activation energy and pre-exponential factor based on experimental results. Alves and

Figueiredo [44] and Bilbao et al. [45] use an algebraic expression for the temperature

as a function of moisture content.

Di Blasi [26] applies a more detailed model of the drying process. The transport of

bound and capillary water in the porous sample is taken into account. Her model focuses

on the drying process. Therefore it is assumed that there is no thermal degradation of

the solid at the temperatures needed for driving out the moisture in the fuel samples.

Moisture in vegetal fuels can exist as bound water in the solid, free (liquid state) water

in the pores, and water vapour in the pores [46]. Di Blasi formulates conservation

equations for bound water, free water, and water vapour. The flow of gas and liquid are

described by Darcy’s law. For moisture contents greater than the fibre saturation point

(typically around 30% for vegetal fuels) the Clausius-Clapeyron equation characterises

the transition of water in its liquid state to its gaseous state. For moisture contents

below the fibre saturation point, experimental studies show the vapour pressure is

reduced which depends on the temperature and moisture content. The latent heat

of vapourisation of capillary water (liquid water which exists within the pores of the

sample) is constant (2260 kJ/kg). Bound water is the very thin layer of water which is

chemically bound to the sample. Experiments by Siau [46] suggest that the latent heat

of vaporisation of bound water depends on the moisture content. An iterative method

for calculating the water vapour density is used in the numerical solution [26].

Typical conservation equations and model assumptions

Pyrolysis models are described by a number of conservation equations which include

mass (solid, liquid, and gas), momentum (liquid and gas), and energy. The conservation

equations depend on the the modelled species and chemical reactions. For example, by

applying the Broido-Shafizadeh chemical kinetic model for cellulose pyrolysis (Figure

2.1) the solid species conservation equations are

∂ WCell

∂t
= −ka (2.1)

∂ Wa

∂t
= ka − (kv + kc) (2.2)

∂ Wc

∂t
= µckc (2.3)
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where µc is the mass-ratio between char and cellulose in the slow pyrolysis reaction kc

(about 0.35 [47]). The cellulose is consumed in order to produce an ‘activated cellulose’

which means that the temporal evolution of cellulose is driven by the activation reaction

ka (Equation 2.1). The activated cellulose is produced according to the activation

reaction ka and consumed by both the volatile species reaction kv and the charring

reaction kc (Equation 2.2). Finally, char is produced by a fraction µc of the slow

pyrolysis reaction kc (Equation 2.3).

In deriving a typical comprehensive one-dimensional pyrolysis model, the following

assumptions are made:

• The fuel sample is modelled as a porous medium but changes in its structure (e.g.

thermal swelling/shrinkage, formation of cracks, etc) during the pyrolysis process

are ignored.

• For each component of the fuel sample, pyrolysis follows a first-order Arrhenius

law.

• The temperature of the fuel sample is in thermal equilibrium with the liquids

and gases within the sample.

• Movement of liquids and gases in the fuel sample is governed by Darcy’s law.

Based on the considerations highlighted in this section, a one-dimensional pyrolysis

model, which incorporates drying, charring, and fast pyrolysis reaction, can be

formulated. This model can also give an estimate of when a flammable mixture

forms around the vegetal fuel sample.

2.2 Pyrolysis model

A model for the thermal degradation of vegetal fuel samples is developed in this chapter.

Understanding this phase of a forest fire is important when attempting to provide good

physical fire spread models [2]. The aim of the model is to include drying, charring,

and fast pyrolysis processes for a given external radiant heat flux and fuel sample size

in order to estimate when a flammable mixture is formed.

A vegetal fuel sample is considered to be subjected to a uniform constant external

radiant heat flux at its surface resulting in the vaporisation of the moisture within the
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sample and the production of solid char and flammable vapour. The gaseous species

convect through the fuel sample, which acts as a porous medium, and escape into

an external gas phase. For this time dependent model, with one symmetrical spatial

dimension, the emerging fuel and water vapour are considered to mix by diffusion with

the surrounding air. If the concentration of the flammable vapour becomes high enough

to exceed its lean flammability limit then any nearby flame is able to initiate a piloted

ignition of a flame around the vegetation. That is, the vegetation reaches a form of

flash point. For flammable liquids, the flash point is the temperature at which the air

around the evaporating surface of the liquid contains fuel vapour that exceeds the lean

flammability limit so that a premixed flame would be able to travel through it. This

concept is extended in this study to flammable vapour emerging from the solid and

mixing symmetrically with the surrounding air. This is modelled in a simplified way in

order to capture the essence of the processes involved in the phenomenon.

A time dependant model is presented in this chapter which examines the nature

of the flash point in a typical vegetal fuel sample. The geometry of the sample takes

the form of either a solid slab of thickness 2a (e.g. disc-like objects such as a leaf), a

cylinder of radius a (e.g. a stalk of grass) or a spherical sample of radius a (e.g. a seed)

(see Figure 2.2). There is one independent spatial variable r so that the vegetal sample

receives a uniform heating rate of J kW/m2 on its surface at r = a. The parameters for

dimension, radius, heating rate, and moisture content all affect the progress towards the

flash point. Results are obtained for variations in these parameters. A nomenclature

for this problem is presented in Table 2.1 due to the number of solid and gaseous

species, and chemical reactions that are modelled.

There are various constants in the current heat and mass transfer problem many

of which relate to the material and thermal properties of the solid vegetation and its

products following pyrolysis. Table 2.2 shows the approximate values of the constants

used in the model [48, 49]. The latent heat of vaporisation can be approximated as

Lw ≈ 2260 J/g however a more accurate expression for the latent heat of vapourisation

which depends on the moisture content w of the solid vegetation sample is [44]

Lw ≈ 2260×max
{

1, 1.48− 5.79w + 26.7w2 − 42.4w3
}

J/g.
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Figure 2.2: Pyrolysate vapour generated by the heating of vegetation with radius a.
Sample is subjected to constant heat flux J kW/m2 and the pyrolysate mass flux is
m kg/(m2s). Vegetal geometry can take the form of a slab, cylinder, or sphere.

2.2.1 Chemical reactions

There are many reactions which take place in the pyrolysis and combustion of vegetation.

However the reactions which produce flammable fuel vapour and water vapour are

of particular interest. When a sufficient amount of fuel vapour is released then a

flame is produced subject to an ignition source (lean flammability limit). The role

of the moisture in the sample of vegetation in reaching the lean flammability limit

will be explored. Hence the model will consist of three main reactions which are of

interest: solid vegetal fuel producing flammable fuel vapour (fast pyrolysis), vegetation

producing solid char and some water vapour (slow pyrolysis or charring), and water

evaporating into water vapour in the gas phase. The pyrolysis and water evaporation

rates are given by the following relations

Fast pyrolysis: G→ F : ωf = ρgτ
−1
c exp

(
βf(1− Tc/T )

)
Charring: G→ C + V : ωc = ρcτ

−1
c exp

(
βc(1− Tc/T )

)
Vapourisation: W→ V : ωv = ρwτ

−1
w

(
1− RTρv

MvϕPvb

)
where, as a rough estimate for modelling purposes, it can be taken that τc ≈ 30 mins,

Tc ≈ 553 K (290◦C), βf ≈ 52, βc ≈ 32 and τw ≈ 1
8

s. Here τc is a typical time scale

for both pyrolysis reactions at the crossover temperature T = Tc. The exponential

factor of the charring reaction is less than the exponential factor for the fast pyrolysis

reaction (Table 2.2) because the fast pyrolysis reaction is dominant over the charring
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G dry vegetation F fuel vapour
W absorbed water V water vapour
C char A air
ϕ porosity %i intrinsic density of species i
ρi = (1− ϕ)%i : overall density of solid i ρi = ϕ%i : overall density of pore gas i
v = ϕu : ‘Darcy’ or mean flux velocity %̂i ‘pure’ density of condensed phase i
u mean gas velocity ρs = ρg + ρc + ρw : overall solid density
ui velocity of species i ρg = ρf + ρv + ρa : overall pore-gas density
u′i = ui − u : diffusive velocity of i ρ = ρs + ρg : overall density
m = ρgu : mass flux in porous-medium m = %gv : mass flux in external gas
di porous-medium diffusivity of i ∈ {F, V} yi = ρi/ρg : mass-fraction of pore gas i
Di mass-diffusivity of external gas i yi = %i/%g : mass-fraction of external gas i
K permeability Mi molar mass of species i
l grain scale ni = MA/Mi − 1 : molar mass difference of i
T gas absolute temperature P absolute pressure
θ solid absolute temperature R universal gas constant
T porous medium absolute temperature Pvb saturated water-vapour pressure in wood
ωf fast pyrolysis rate G→ F ωv water vapourisation rate W→ V
ωc slow pyrolysis rate G→ C + V µc mass-ratio (C : G) in slow pyrolysis
βf thermal sensitivity of fast pyrolysis βc thermal sensitivity of slow pyrolysis
Tc pyrolysis crossover temperature τc pyrolysis time scale at crossover
Eg energy density of gaseous species Es energy density of condensed species
cpi specific heat of gas i ci specific heat of solid i
Lw latent heat of water vapourisation Tb boiling point of water (373.15 K)
−Qf energy of fast-pyrolysis reaction Tp pyrolysis reference temperature ≈ 600 K
hi specific enthalpy of species i q overall energy flux
qg total energy flux in the gas phase q′s condensed-phase conductive energy flux
q′g gas-phase conductive energy flux λ overall thermal conductivity
λg overall gas thermal conductivity λs overall condensed thermal conductivity
κi thermal diffusivity of species i νi kinematic viscosity of gas i
hx gas-solid heat-exchange factor w = ρw/ρg : moisture content
ς Stefan-Bolztmann radiative constant J heat received radially by sample

Table 2.1: Nomenclature for pyrolysis study.

reaction for temperatures greater than Tc. Also ∂/∂t is the partial derivative with

respect to time. It is assumed that water will evaporate to reach its saturated water

vapour pressure Pvb over the time scale τw, which is set to be a reasonable value for

numerical convergence. The fast pyrolysis and charring reactions follow the Arrhenius

law where τ−1c is the pre-exponential factor.

The porosity of the vegetal fuel sample is defined as

ϕ = 1− ρg/%̂g − ρc/%̂c − ρw/%̂w (2.4)

where %̂i represents the pure density of species i ∈ {G,C,W} (object made up of

species i only). Equation (2.4) represents the fact that the porosity of the vegetal fuel

sample will change depending on how much the densities of the vegetation, char, and

water vary from their pure densities. Hence the porosity will change as the vegetation

is pyrolysed and the water is being evaporated.
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cg = 2.5 J/g K cc = 1 J/g K cw = 4.2 J/g K
cpf = 1 J/g K cpv = 1.9 J/g K cpa = 1 J/g K
κg = 10−3 cm2/s κc = 10−3 cm2/s κg = 1/700 cm2/s
κf = 0.2 cm2/s κv = 3/13 cm2/s κa = 2/9 cm2/s
Mf = 50 g/mol Mv = 18 g/mol Ma = 29 g/mol
%̂g = 1 g/cm3 %̂c = 2.2 g/cm3 %̂w = 1 g/cm3

df = 0.2 cm2/s dv = 3/13 cm2/s R = 8.3145 J/K mol
βc = 32 βf = 52 Qf = 340 J/g
τc = 3000 s τw = 1/100 s µc = 1/3
Tc = 553 K κg = 2/9 cm2/s Lw = 2260 J/g

Table 2.2: Approximate values of constants and their units of measurement for the current
pyrolysis study.

The model for the vapourisation of water is based on the saturated water vapour

pressure (measured in pascals Pa) in wood with a moisture content w [26]

Pvb ≈ Pvs × exp

(
min

{
0,

[(
T − 301

65

)2

− 3.54

](
1 +

48.5− T
1484

)92w
})

having a saturated water vapour pressure of free water of Pvs. A simple formula for

the latter is

Pvs ≈ Pa exp

(
13.336

(
1− Tb

T

)
− 1.75

(
1− Tb

T

)2
)

where Pa is the standard atmospheric pressure at sea level of Pa = 101325 Pa and

Tb is the boiling point of water (about 373 K). This simple formula was fitted using

MAPLE and found to provide a close fit to the Goff-Gratch formula [50]. The relative

difference is below 0.5% for a temperature range of 0◦C - 230◦C and below 1/100 %

for the temperature range 18◦C to 110◦C. Pvb represents the saturated water vapour

pressure of the water which is bound to the solid and is used by Di Blasi [26] and w

is the moisture content of the vegetal fuel sample. The ratio of the vapour pressure

of bound water and water vapour Pvb/Pvs is plotted against the temperature T for

various moisture contents w in Figure 2.3. An increase in the moisture content in the

sample gives Pvb ≈ Pvs at lower temperatures.

2.2.2 Governing equations

The governing equations for modelling the heat and mass transport for a radially heated

sample are the conservation equations for mass, energy, and species. A basic form of a
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Figure 2.3: Plot of the vapour pressure (Pvb/Pvs) when Pvb 6= Pvs against the temperature
T for various moisture contents w.

conservation equation of any property, ψ (x, t) say, which is measured as a quantity

per unit volume and varies with space x = (x, y, z) and time t is

∂ψ

∂t
+∇ · (flux of ψ) = (net rate of production per unit volume)

where the ‘flux of ψ’ is the amount of quantity which flows through a unit area per

unit time.

Porous vegetation model equations

The mass and species conservation equations within the fuel sample are (using a

subscript t to denote ∂/∂t)

ρgt = −ωf − ωc (2.5)

ρct = µcωc (2.6)

ρwt = −ωv (2.7)

ρft +∇ · ρfu = ∇ · ρf df∇yf + ωf (2.8)

ρvt +∇ · ρvu = ∇ · ρv dv∇yv + ωv + (1− µc)ωc (2.9)

ρgt +∇ · ρgu = ωf + ωv + (1− µc)ωc (2.10)



CHAPTER 2. ONSET OF IGNITION IN VEGETAL FUELS 30

where µc is the fraction of the solid vegetation which is converted to char in the charring

reaction; the rest is converted to water vapour. The gas densities, mass fractions, and

mass diffusivities are defined as ρg = ρf + ρv + ρa, yi = ρi/ρg and di respectively. Here

yi is the mass fraction of gas i ∈ {F,V} in the porous vegetation and di is the mass

diffusivity of species i ∈ {F,V}. The mean gas velocity is u so that

(ρf + ρv + ρa) u = ρfuf + ρvuv + ρaua

where ui represents the velocity of species i ∈ {F,V,A}. Equations (2.5)–(2.7)

represent conservation equations for the non-gaseous species of vegetation, char, and

water (in its liquid state which is assumed to be bound to the solid vegetation as in

[26]) whereas Equations (2.8)–(2.10) represent conservation equations for the gaseous

species of pyrolysate vapour, water vapour, and air. In the case of the gaseous species,

Fick’s law of diffusion is applied [3] which states that the flux of species i ∈ {F,V,A}

moves from regions of high concentration to regions of lower concentration with a

magnitude which is proportional to the spatial gradient of the mass fraction. That is

Fi = −di∇yi, i ∈ {F,V,A}

where Fi is the flux of species i ∈ {F,V,A}. The constant diffusion coefficient di

depends on the properties of the gaseous species. Substituting ρf = yfρg, ρv = yvρg,

and ρa = (1− yf − yv) ρg into the pore gas equations will make them independent of

the individual species densities ρf and ρv so that Equation (2.8) and Equation (2.9)

become

ρg yft + ρgu · ∇yf = ∇ · ρg df∇yf + (1− yf)ωf − yf (ωv + (1− µc)ωc)

ρg yvt + ρgu · ∇yv = ∇ · ρg dv∇yv + (1− yv) (ωv + (1− µc)ωc)− yvωf

respectively. The problem under consideration consists of a single sample of vegetation

(Figure 2.2) in the form of either a solid slab of thickness 2a (e.g. a leaf), a cylinder

of radius a (e.g. a stalk of grass), or a sphere of radius a (e.g. a seed). Hence the

equations can be simplified further since the gradient and divergence operators can be

reduced to

∇f = fr

∇ · F =
1

rN
(
rNf

)
r

=
N

r
f + fr
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with F = f(r)r̂ being an arbitrary function where r is the radial spatial coordinate

and r̂ is a unit vector in the radial direction. The subscript r denotes differentiation

with respect to r. Values of N determine the geometry of the sample with N = 0

representing the case of an infinite slab, N = 1 represents an infinite cylindrical sample,

and N = 2 represents a spherical sample [3]. The gaseous mass flux can be defined

as m = ρgu. It is assumed that the fuel vapour, water vapour, and air have the same

diffusion coefficient. That is they diffuse in a similar manner so that df = dv = da = d.

Hence the conservation equations for the gaseous species reduce to

ρg ρft +myfr =
d

rN
(
rNρg yfr

)
r

+ (1− yf)ωf − yf (ωv + (1− µc)ωc)

ρg ρvt +myvr =
d

rN
(
rNρg yvr

)
r

+ (1− yv) (ωv + (1− µc)ωc)− yvωf

ρgt +
1

rN
(
rNm

)
r

= ωf + ωv + (1− µc)ωc.

In the latter equation, it will be assumed that gases are driven out of the porous vegetal

fuel almost immediately as they are formed (due to the chemical reactions). Therefore

the term ρgt will be negligible.

The equation of state in the porous vegetation is

ρg =
ϕMaP

RT (1 + yfnf + yvnv)
(2.11)

where Ma is the molar mass of air, ni = Ma/Mi−1 represents the molar mass difference

of species i ∈ {F,V} from that of air, and T is the porous medium absolute temperature.

This is the ideal gas law

P =
%gRT

Mg

where %g is the pure density of the gaseous species. The ideal gas law has been

rearranged in the form of Equation (2.11) so that it is independent of the mass fraction

of air ya by applying the relations

yf + yv + ya = 1,

1

Mg

=
yf
Mf

+
yv
Mv

+
ya
Ma

and

ρg = ϕ%g.
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The conservation of energy equation is given by

∂Es

∂t
+
∂Eg

∂t
+∇ · q = 0 (2.12)

where Es = ρghg + ρchc + ρwhw is the energy density of the condensed species (solid

vegetation, char, and water) and Eg = ρfhf + ρvhv + ρaha is the energy density of the

gaseous species (fuel vapour, water vapour, and air). The specific enthalpy of species

i ∈ {G,C,W,F,V,A} is denoted by hi. Finally q is the overall energy flux. The

specific enthalpies are defined to be

hg = cg (θ − Tp) (2.13)

hc = ccθ − hc0 (2.14)

hw = cw (θ − Tb)− LW (2.15)

hf = cpf (T− Tp) +Qf (2.16)

hv = cpv (T− Tb) (2.17)

ha = cpaT (2.18)

where ci is the specific heat capacity of the condensed species i ∈ {G,C,W} and cpi

is the specific heat capacity of the gaseous species i ∈ {F,V,A}. The gas absolute

temperature is denoted by T and θ is the solid absolute temperature. Also Tb is the

standard boiling point of water (100◦C or 373 K) at sea level and Tp is chosen to

represent a pyrolysis reference temperature (≈ 300◦C or 573 K). The heat absorbed

due to the fast pyrolysis reaction G → F, at the temperature Tp, is denoted by Qf.

The charring reaction is treated as thermally neutral. The energy flux q = q′s + qg can

be split up into the condensed phase conductive energy flux q′s and the total gas phase

energy flux qg so that

q′s = −λs∇θ

qg = ρfhfuf + ρvhvuv + ρahaua + q′g

where q′g = −λg∇T is the gas phase conductive energy flux. The overall thermal

conductivities of the condensed phase and gas phase are λs and λg respectively with ui

representing the velocity of species i ∈ {F,V,A}. Equation (2.12) can be split into an

energy equation for the condensed species

Est +∇ · q′s = hx (T− θ) (2.19)
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and an energy equation for the gaseous species

Egt +∇ · qg = hx (θ − T) (2.20)

where hx is the gas-solid heat-exchange factor. Equation (2.19) can be written as

[ρgcg (θ − Tp) + ρc (ccθ + hc0) + ρw (cw (θ − Tb)− Lw)]t

+∇ · q′s = hx (T− θ)

and applying the product rule for differentiation reduces the energy equation for the

condensed species to

ρgcg
∂θ

∂t
+ ρccc

∂θ

∂t
+ ρwcw

∂θ

∂t
+ hg

∂ρg
∂t

+ hc
∂ρc
∂t

+ hw
∂ρw
∂t

+∇ · q′s = hx (T− θ) .

The mass conservation equations can be applied to give

(ρgcg + ρccc + ρwcw)
∂θ

∂t
− hgωf − hwωv + (µchc − hg)ωc

+∇ · q′s = hx (T− θ) . (2.21)

Similarly Equation (2.20) can be written as

[ρf (cpf (T− Tp) +Qf) + ρvcpv (T + Tb) + ρa (cpaT)]t

+∇ · (ρf (cpf (T− Tp) +Qf) uf + ρvcpv (T− Tb) uv + ρacpaTua)

+∇ · q′g = hx (θ − T)

and applying the product rule of differentiation reduces the energy equation for the

gaseous species to

ρfcpf
∂T

∂t
+ ρvcpc

∂T

∂t
+ ρacpw

∂T

∂t
+ hf

∂ρf
∂t

+ hv
∂ρv
∂t

+ ha
∂ρa
∂t

+hf∇ · ρfuf + hv∇ · ρvuv + ha∇ · ρaua + ρfcpfuf · ∇T + ρvcpvuv · ∇T + ρacpaua · ∇T

+∇ · q′g = hx (θ − T) .

Defining the diffusive velocity of species i ∈ {F,V,A} as u′i = ui + u and applying the

mass conservation equations gives the energy conservation equation for gaseous species
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as

(ρfcpf + ρvcpc + ρacpa)
∂T

∂t
+ (ρfcpf + ρvcpc + ρacpw) u · ∇T

+ (ρfcpfu
′
f + ρvcpcu

′
v + ρacpau

′
a) · ∇T

+hvωv + hfωf + (1− µc)hcωc

+∇ · q′g = hx (θ − T) . (2.22)

In order to simplify Equations (2.21) and (2.22) it is necessary to make certain

assumptions about the physics of this particular heat and mass transfer problem. It is

expected that the temperature difference between the solid absolute temperature and

the gas absolute temperature will be small. That is the solid phase and gas phase are

in thermal equilibrium so that

θ ≈ T ≈ T

everywhere in the porous fuel sample [20]. This assumption is reasonable for small and

samples with low porosity (i.e. almost solid). From this assumption the change in the

specific enthalpy of water and water vapour is simplified

hv − hw = cpv (T− Tb)− cw (θ − Tb) + Lw

≈ (cpv − cw) (T − Tb) + Lw.

Further assuming that nearly all the vapourisation of water takes place near the boiling

point (i.e. T ≈ Tb) then

(hv − hw)ωv ≈ Lwωv.

Again this is a reasonable assumption if the heating rate is sufficient to heat the sample

to the boiling point quickly. Similarly

hf − hg = cpf (T− Tp)− cg (θ − Tp) +QF

≈ (cpf − cg) (T − Tp) +Qf.

and assuming that pyrolysis occurs mainly around the temperature Tp, then

(hf − hg)ωf ≈ Qfωf.

It is also fair to assume that the contribution to the energy equation from the charring

reaction, ωc, will be small compared to the other reactions so that

(hv − hg + µc (hc − hv))ωc ≈ 0.
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The overall energy flux can be simplified to

q = q′s + qg = − (λs∇θ + λg∇T)

≈ − (λs∇T + λg∇T ) = −λ∇T.

Recall that

(ρf + ρv + ρa) u = ρfuf + ρvuv + ρaua.

It follows that the mass-weighted diffusion velocity ρfu
′
f + ρvu

′
v + ρau

′
a is zero by

definition. If the gaseous specific heats are not very different then it is fair to assume

that

ρfcpfu
′
f + ρvcpcu

′
v + ρacpau

′
a ≈ 0,

or at least we assume that the contribution of these diffusive velocities to energy flow

is small compared with the other contributions. Applying these assumptions and using

the fact that the density of the condensed species is much larger than the density of

the gaseous species [20]

ρfcpf + ρvcpc + ρacpa � ρgcg + ρccc + ρwcw.

gives the much simplified energy conservation equation in the porous medium as

(ρgcg + ρccc + ρwcw)
∂T

∂t
+ (ρfcpf + ρvcpv + ρacpa) u · ∇T + Lwωv +Qfωf

= ∇ · λ∇T. (2.23)

To summarise, the model equations applicable in the porous medium are the mass

conservation equations

∂tρg = −ωf − ωc

∂tρc = µcωc

∂tρw = −ωv

ρg∂tyf +myfr = (1− yf)ωf − yf (ωv + (1− µc)ωc)

ρg∂tyv +myvr = (1− yv) (ωv + (1− µc)ωc)− yvωf(
rNm

)
r

= rN (ωf + ωv + (1− µc)ωc) ,

and energy conservation

rρc
∂T

∂t
+ (rcgm+ (1−N)λ)Tr = (rλTr)r − rLwωv − rQfωf
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with

ρc = ρgcg + ρccc + ρwcw + ρgcg and cg = yfcpF + yvcpV + yacpA .

The ideal gas law can be written as

ρg =
ϕPMa

RT (1 + yfnf + yvnv)

and the mean gas velocity is

u =
m

ρg
.

The chemical reaction rates for fast pyrolysis, slow pyrolysis, and vapourisation of

water are modelled as

ωf = ρgτ
−1
c exp (βf(1− Tc/T ))

ωc = ρgτ
−1
c exp (βc(1− Tc/T ))

ωv ≈ τ−1w ρw

(
1− RTρv

MvϕPvb

)
respectively.

The governing equations in the porous medium of the solid fuel sample have been

presented. The external gas equations with boundary and initial conditions also need

to be determined for a complete pyrolysis model.

External gas equations

In the external gas phase, model equations for %f, %v, %g, v, and T are applicable, where

%i is the intrinsic density of species i ∈ {F,V, g}, v is the velocity, and T is the

temperature in the external gas phase. It is assumed that there are no condensed

species in the external gas phase, only air, water vapour, and pyrolysis vapour.

The model equations in the external gas phase includes the mass conservation

equations

%g
∂yf
∂t

+

(
m− N

r
%gDf

)
yFr = (%gDfyfr)r

%g
∂yv
∂t

+

(
m− N

r
%gDv

)
yvr = (%gDvyvr)r(

rNm
)
r

= 0,

in which the term ∂%g/∂t is neglected in the continuity equation, in comparison with

flow divergence. This would also be the result of a constant density assumption as it is
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often found to provide good results in combustion theory, even when density changes

are small. The energy conservation equation in the external gas phase is

%gcg
∂T

∂t
+

(
cgm−

N

r
λg

)
Tr = (λgTr)r

with

λg = %g
(
yfcpfκf + yvcpVκv + yacpaκa

)
cg = yfcpf + yvcpv + yacpa .

The equation of state is again the ideal gas law

%g =
PMa

RT (1 + yfnf + yvnv)

and the mass flux of the external gas is

m = %gv.

The governing equations for the combustion of a vegetal fuel sample and the

convection of the gaseous species have been presented for both the porous medium and

external gas phase. It is necessary to apply relevant boundary and initial conditions

before the problem can be solved numerically.

Boundary and initial conditions

Initially (t = 0) the vegetal sample and its surrounding air are at ambient temperature

T = T = T0 ≈ 300 K.

The vegetal sample will be made up of dry vegetation G and some initial fuel moisture

content w0 so that

ρg = ρg0 ≈ 500 kg/m3 ρw = w0 ρg0 ≈ 500w0 kg/m3

ρc = ρc0 = 0 kg/m3 ρf = ρf0 = 0 kg/m3

ϕ = ϕ0 = 1− ρg0

%̂g
− ρw0

%̂w
.

Initial saturated water vapour pressure in the vegetal sample will be evaluated at

T = T0 and w = w0 so that

Pvb = Pvb0 ≈ Pvs0 × exp

([(
T0 − 301

65

)2

− 3.54

](
1 +

48.5− T0
1484

)92w0
)

Pa
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with

Pvs = Pvs0 ≈ Pa exp

(
13.336

(
1− Tb

T0

)
− 1.75

(
1− Tb

T0

)2
)

Pa.

Initially there is no flammable vapour within the porous medium or in the external gas

yf = yf0 = 0 yf = yf0 = 0.

The initial mass fraction of water vapour in the porous medium and in the external

gas, assuming it is in equilibrium with the solid, can be calculated from the ideal gas

law so that

yv = yv0 =
Mv ϕ0 Pvb0

RT0 ρg0

yv = yv0 =
Mv Pvs0

RT0 %g0
.

In reality, at ambient temperatures, the values of yv0 and yv0 are very small.

The centre of an infinite slab of thickness 2a (N = 0), infinite cylinder of radius a

(N = 1) or a sphere of radius a is located at r = 0. At this point, symmetry conditions

apply so that

Tr = ρgr = ρcr = ρwr = yfr = yvr = 0.

Also the mass flux at the point r = 0 must be zero

m = 0.

As r → ∞ it is expected that the external gas temperature reaches the ambient

temperature

T = T0 ≈ 300 K

and the gaseous mixture is composed of air only so that, in the far field

yf = yv = 0.

Interface conditions between the solid vegetation phase and the external gas phase

of the flow (r = a) are necessary to close the pyrolysis model. Continuity conditions

are applicable for temperature

T = T

mass flux

m = m
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energy flux

cgmT − λTr + J − ς T 4 = cgmT− λgTr

flammable vapour flux

myf = myF − %Dfyfr

and water vapour flux

myv = myv − %Dvyvr .

The radiation heat flux at the surface of the sample is denoted as J and ς is the

Stefan-Bolztmann radiative constant.

The boundary and initial conditions have been presented for the governing equations.

This time dependant problem can now be solved numerically, however, in order to

estimate a flash point in the external gas phase, it is important to approximate when a

mixture of flammable vapour, water vapour, and air is capable of supporting a flame.

2.3 Finding the flash point

As the sample of vegetation is degraded and pyrolysed it releases fuel and water vapour

into the external gas phase which is initially made up of air. However the fuel vapour

and water vapour will mix with the air which consists mainly of nitrogen (N2) and

oxygen (O2). The conditions at which this mixture is capable of supporting a flame

need to be estimated. The mass of air is mainly made up of the sum of the mass of O2

and N2 in the air with ratio O2 : N2 ≈ 7 : 23. Any carbon dioxide (CO2) produced

by burning needs to be considered along with the fuel vapour (F), water vapour (V),

oxygen (X), and nitrogen.

The lean flammability limit for a mixture of cellulose flammable vapour and air is

not known at the present time. However, it can be estimated that the flame temperature

would need to exceed a minimum value of about Tx ≈ 1150 K (as for methanol) in

order for oxidation reactions to sustain a flame.

The specific enthalpy hi in the external gas phase for species i ∈ {F,V,X,N,CO2}

are given by

hf = hf0 + cpfT

hv = hv0 + cpvT



CHAPTER 2. ONSET OF IGNITION IN VEGETAL FUELS 40

hx = hx0 + cpxT

hn = hn0 + cpnT

hco2 = hCO20 + cpCO2
T

where specific heat estimates for high temperatures are [51]

cpf ≈ 1 J g−1 K−1

cpx ≈ 1.05 J g−1 K−1

cpn ≈ 1.15 J g−1 K−1

cpv ≈ 2.28 J g−1 K−1

cpCO2
≈ 1.19 J g−1 K−1.

The latter four estimates agree with those provided in the NIST-JANAF tables [51]

while the value of cpf is a rough estimate, consistant with the values for cpx , cpn , and

cpCO2
. In keeping with approximating the fuel vapour as simply CH2O and taking

the threshold flammability temperature to be that of alcohol, results are expected to

provide reasonably good estimates rather than being precise.

The oxidation of typical carbohydrate fuel vapour (CH2O say) produces CO2 and

H2O, i.e. CH2O(30) + O2(32) → CO2(44) + H2O(18) where the numbers in the

brackets denote the molecular mass of the preceding object.

When there is an excess of air in the air-fuel stoichiometric ratio the oxidation is

said to be fuel lean [19]. Similarly, when there is an excess of fuel in the stoichiometric

ratio the oxidation is said to be fuel rich. Hence for fuel lean (excess of air) oxidation,

the energy content before and after the reaction is [52](
yfcpf + yvcpv + ya

(
7

30
cpx +

23

30
cpn

))
T + yf

(
hf0 +

16

15
hx0 −

3

5
hv0 −

22

15
hCO20

)
=

((
yv +

3

5
yf

)
cpv +

22

15
yfcpCO2

+

(
7

30
ya −

16

15
yf

)
cpx +

23

30
yacpn

)
Tf

(2.24)

and for fuel rich (excess of fuel) oxidation(
yfcpf + yvcpv + ya

(
7

30
cpx +

23

30
cpn

))
T +

7

32
ya

(
hf0 +

16

15
hx0 −

3

5
hv0 −

22

15
hCO20

)
=

((
yf −

7

32
ya

)
cpf +

(
yv +

21

160
ya

)
cpv +

77

240
yacpCO2

+
23

30
yacpn

)
Tf

(2.25)
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where Tf is the temperature after the adiabatic chemical reaction with T being the

temperature before the chemical reaction. Rearranging Equation (2.24) gives

Tf =

(
yfcpf + yvcpv + ya

(
7
30
cpx + 23

30
cpn
))

T + yf
(
hf0 + 16

15
hx0 − 3

5
hv0 − 22

15
hCO20

)
ya
(

7
30
cpx + 23

30
cpn
)

+ yvcpv + yf
(
3
5
cpv + 22

15
cpCO2

− 16
15
cpn
)

and Equation (2.25) gives

Tf =

(
yfcpf + yvcpv + ya

(
7
30
cpx + 23

30
cpn
))

T + 7
32
ya
(
hf0 + 16

15
hx0 − 3

5
hv0 − 22

15
hCO20

)
yfcpf + 23

30
yacpn + yvcpv + yf

(
3
5
cpv + 22

15
cpCO2

− cpf
) .

It is estimated that the mixture reaches its flash point when Tf > Tx where the

‘crossover’ temperature Tx ≈ 1150 K.

Measuring heat of chemical reactions using oxygen calorimetry [3, 51] suggests that

hf0 +
16

15
hx0 −

3

5
hv0 −

22

15
hCO20 ≈ 14 kJ/g (2.26)

so that for fuel lean and fuel rich oxidation the mixture temperatures can be estimated

to be

TfL ≈
(
yfcpf + yvcpv + ya

(
7
30
cpx + 23

30
cpn
))

T + 14yf

ya
(

7
30
cpx + 23

30
cpn
)

+ yvcpv + yf
(
3
5
cpv + 22

15
cpCO2

− 16
15
cpn
)

TfR ≈
(
yfcpf + yvcpv + ya

(
7
30
cpx + 23

30
cpn
))

T + 49
16
ya

yfcpf + 23
30
yacpn + yvcpv + yf

(
3
5
cpv + 22

15
cpCO2

− cpf
)

respectively. It can be noted that specific heats on the numerators of these formulae

will be dominated by that of nitrogen. Hence the uncertainty in the value of cpf should

change things in a relatively minor way.

2.4 Summary of the pyrolysis model

The pyrolysis model consists of chemical reactions for fast pyrolysis, charring (slow

pyrolysis), and water evaporation

ωf = ρgτ
−1
c exp (βf(1− Tc/T )) , (2.27)

ωc = ρgτ
−1
c exp (βc(1− Tc/T )) , (2.28)

ωv ≈ τ−1w ρw

(
1− RTρv

MvϕPvb

)
, (2.29)

conservation equations in the porous vegetation

∂tρg = −ωf − ωc, (2.30)
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∂tρc = µcωc, (2.31)

∂tρw = −ωv, (2.32)

ρg∂tyf +myfr = (1− yf)ωf − yf (ωv + (1− µc)ωc) , (2.33)

ρg∂tyv +myvr = (1− yv) (ωv + (1− µc)ωc)− yvωf, (2.34)(
rNm

)
r

= rN (ωf + ωv + (1− µc)ωc) , (2.35)

rρc
∂T

∂t
+ (rcgm+ (1−N)λ)Tr = (rλTr)r − rLwωv − rQfωf, (2.36)

and conservation equations in the external gas

%g
∂yf
∂t

+

(
m− N

r
%gDf

)
yFr = (%gDfyfr)r , (2.37)

%g
∂yv
∂t

+

(
m− N

r
%gDv

)
yvr = (%gDvyvr)r , (2.38)(

rNm
)
r

= 0, (2.39)

and

%gcg
∂T

∂t
+

(
cgm−

N

r
λg

)
Tr = (λgTr)r . (2.40)

The ideal gas law in the porous vegetation and external gas is

ρg =
ϕPMa

RT (1 + yfnf + yvnv)
(2.41)

and

%g =
PMa

RT (1 + yfnf + yvnv)
(2.42)

respectively.

Initial conditions (t = 0) are

T = T = T0 ≈ 300 K,

ρg = ρg0 ≈ 500 kg/m3, ρw = w0 ρg0 ≈ 500w0 kg/m3,

ρc = ρc0 = 0 kg/m3, ρf = ρf0 = 0 kg/m3,

ϕ = ϕ0 = 1− ρg0

%̂g
− ρw0

%̂w
,

Pvb = Pvb0 ≈ Pvs0 × exp

([(
T0 − 301

65

)2

− 3.54

](
1 +

48.5− T0
1484

)92w0
)

Pa,
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Pvs = Pvs0 ≈ Pa exp

(
13.336

(
1− Tb

T0

)
− 1.75

(
1− Tb

T0

)2
)

Pa,

yf = yf0 = 0, yf = yf0 = 0,

yv = yv0 =
Mv ϕ0 Pvb0

RT0 ρg0
,

yv = yv0 =
Mv Pvs0

RT0 %g0
.

Conditions at the centre of the vegetation sample (r = 0) are

Tr = ρgr = ρcr = ρwr = yfr = yvr = m = 0.

Conditions at considerable distances from the vegetation sample r →∞ are

T = T0 ≈ 300 K

and

yf = yv = 0.

Conditions on the surface of the vegetation sample (r = a) are

T = T,

m = m,

cgmT − λTr + J − ςT 4 = cgmT− λgTr,

m yf = myF − %Dfyfr ,

and

myv = myv − %Dvyvr .

The parameters of the model are the vegetation sample geometry (N), sample size

(a mm), heating rate (J kW/m2), and initial fuel moisture content (w0). The pyrolysis

model is solved numerically for the a range of parameter values. The time evolution of

vegetation and gas fractions, and temperature, are analysed. Additionally, an estimate

of the time taken for a flammable mixture to form can be made by calculating the fuel

lean and fuel rich oxidation temperatures

TfL ≈
(
yfcpf + yvcpv + ya

(
7
30
cpx + 23

30
cpn
))

T + 14yf

ya
(

7
30
cpx + 23

30
cpn
)

+ yvcpv + yf
(
3
5
cpv + 22

15
cpCO2

− 16
15
cpn
) (2.43)
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and

TfR ≈
(
yfcpf + yvcpv + ya

(
7
30
cpx + 23

30
cpn
))

T + 49
16
ya

yfcpf + 23
30
yacpn + yvcpv + yf

(
3
5
cpv + 22

15
cpCO2

− cpf
) . (2.44)

respectively. If the minimum value of TfL and TfR is greater than the crossover

temperature Tx ≈ 1150 then it is assumed that a flammable mixture has formed in the

external gas.

This pyrolysis model can now be solved numerically. The finite element software

COMSOL Multiphysics is used to solve this problem. Governing equations, boundary

and initial conditions, expressions, and constants are specified. After a mesh is

generated, the model can be solved provided there are no convergence issues [23].



Chapter 3

Numerical results for pyrolysis

model

The numerical results for surface temperature, solid and gas profiles, estimate of flash

point location and time, and mass flow rates are presented in this section. The fuel

sample size, fuel geometry, initial moisture content, and heating rate are parameters of

the problem. The aim is to determine how these parameters affect the onset of ignition

in vegetal fuels.

� ��� ��� ��� ��� ���

���

�

���

���

���

Figure 3.1: Temperature at depth 1 mm (dashed line) and 14 mm (solid line) for a slab
(N = 0). Heating rate is 20 kW/m2, sample size is 15 mm, and initial moisture content

is 15.3%.

The model has been tested against the experiments of Shen et al. [53]. A slab

45
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of 15 mm thickness was exposed to a heating rate of 20 kW/m2 at its surface. The

initial fuel moisture content was calculated to be 15.3% of the mass of dry vegetation.

Figure 3.1 shows the temperature at depths 1 mm (dashed line) and 14 mm (solid line).

The depth is measured from the heated surface of the slab. These temperature results

are found to be in good agreement with the experiments of Shen et al. [53].

3.1 Profiles for vegetation, water, char, fuel vapour,

water vapour, and air

Figures 3.2–3.5 show the profiles, at the predicted flammability time, for vegetation,

water, char, fuel vapour, water vapour, and air at fixed heating rates 20 kW/m2,

40 kW/m2, 60 kW/m2, and 80 kW/m2 respectively. These profiles are presented for

the infinite slab, infinite cylinder, and spherical sample geometries. Initial fuel moisture

contents (MC) of 0%, 30%, and 60% of the mass of dry vegetation are considered with

each row of profiles being calculated at a specific value for MC. Fuel samples have a

half-width/radius of 1 mm and 5 mm. The vertical scale range for the nondimensional

profiles is [0, 1]. Vegetation, water (liquid), and char densities are normalised by the

initial vegetation density. These profiles are plotted in the left segment of each profile

plot which represents the porous vegetation phase. Mass fractions of fuel vapour, water

vapour, and air are plotted, on a different, much larger scale, in the right segment of

each profile plot which represents the external gas phase. The colours of each curve

represent the species written below the figures.

Profiles in Figure 3.2 are for a heating rate of 20 kW/m2. For the infinite slab

geometry, all the liquid water in the sample is evaporated by the time that flammable

conditions are reached, even with relatively large initial moisture contents. Very little

vegetation is consumed in the formation of a flammable mixture when there is a

negligible amount of moisture in the sample. At appreciable moisture contents, a good

deal of the vegetation is consumed in order to form a flammable mixture. This mixture

is located at some distance from the surface of the slab as its immediate surroundings

are diluted by the water vapour which is mixed with the flammable vapour. The

estimated time taken to reach the flash point increases for larger initial moisture

contents and sample sizes. This is to be expected from the findings of pyrolysis models
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in the open literature where temperature profiles are found to decrease with large fuel

moisture contents and sample sizes.

The cylindrical sample reaches its flash point sooner than the slab due to its larger

surface area, allowing a greater capacity to receive heat, and the larger external volume

in which gaseous mixing occurs. The flash point location remains relatively close to

the cylinder for fine samples. The flash point location is pushed away from the surface

of the cylinder for larger samples of nonzero initial moisture contents (this will be

discussed later). For appreciable initial moisture contents the cylinder consumes less

vegetation and produces less char than the slab before reaching its flash point. The

larger cylinder also retains some liquid water at the estimated pyrolysis time. The

spherical sample reaches the flash point earlier than the cylinder and retains the flash

point location (where a flammable mixture forms) closer to its surface as well. Again

this is consistent with experimental and numerical temperature profile results in the

open literature. Compared to the cylinder, the sphere consumes less vegetation and

retains more of its initial moisture. Vegetal fuel samples reach flammability conditions

more readily at higher heating rates. Vegetation consumption and char production are

reduced and the sample retains more of its initial moisture at the estimated flash point

time.

Figures 3.6–3.8 show the char fraction, at the estimated flash point time, against the

normalised half-width/radius for the slab, cylinder, and sphere geometries respectively.

The char fraction is defined as the density of the char in the fuel normalised against

the vegetation density. Sample sizes of 2 mm and 4 mm, heating rates of 20 kW/m2

and 40 kW/m2, and initial fuel moisture contents of 0%, 30%, and 60% are presented.

The surface of a fuel sample, regardless of the geometry, is located at r/a = 1 with the

centre located at r/a = 0.

The results show that more char is produced, at the estimated flash point time, for

weaker heating rates and larger initial fuel moisture contents. This is to be expected

from the pyrolysis modelling used here since char production is dominant over fast

pyrolysis when the fuel sample is exposed to lower heating rates. The moisture in the

fuel sample delays the onset of flammability and keeps the temperature down for longer

allowing more char to be produced. For a 2 mm slab, with 60% initial fuel moisture

content, exposed to a 20 kW/m2 heating rate, char is produced throughout the sample.
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Figure 3.6: Slab (N = 0) char fraction at flammability.
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Figure 3.7: Cylinder (N = 1) char fraction at flammability.
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This is not the case with cylindrical and spherical fuels at the same heating rate as the

time to flammability is shorter and the surface-area-to-volume ratio is larger compared

to the slab geometry which allows thermal radiation to impinge a larger surface area.

This means that the cylindrical sample will heat more rapidly than the slab with the

spherical sample heating even quicker than the cylinder. Consequently the cylinder

and sphere will form a flammable mixture sooner than a slab so that char production

is reduced.

3.2 Fuel surface temperature

Figure 3.9 shows the surface temperature of slabs of different half-width a, subjected

to various heating rates, with the moisture content assumed to be 15% of the dry

vegetation. The surface temperature is plotted against the time from t = 0 up to the

estimated flammability time which is the time taken to reach an estimated flammable

mixture.

The surface temperature is increased more quickly for larger heating rates due to

the higher temperature gradient. The temperature increases very quickly up to around

100◦C when the moisture begins to evaporate. The surface temperature of the slab,

at the estimated flash point time, is around 350◦C–550◦C depending on the heating

rate. This is quite a large temperature range which suggests that the notion of a fixed

ignition temperature is an oversimplification when predicting the ignition of vegetal

fuels. Therefore integral based pyrolysis models [29] must restrict the range of the

problem parameters (e.g. moisture content, sample size, heating rate, etc.) so that

their model can produce satisfactory results.

Surface temperature plots for slab, cylinder, and sphere geometries are shown in

Figure 3.10. The sample size is a = 5 mm and the heating rate is 40 kW/m2 in all the

plots. The initial fuel moisture content is fixed for each plot.

Cylindrical fuel samples heat more rapidly compared to slabs, and spherical samples

heat still more quickly, due to the increased surface-area-to-volume ratio. Spherical

fuels form a flammable mixture sooner, and at a lower surface temperature, than the

cylinder and slab fuels.

An increase in the initial fuel moisture content results in larger surface temperatures
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Figure 3.9: Slab surface temperature up to the time of flammability, for various heating
rates and half-width a, against time t. Moisture content set at 15% of dry vegetation.
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Figure 3.10: Surface temperature against time up to the time of flammability for slab,
cylinder, and sphere geometries. Initial fuel moisture content is (a) 0%, (b) 20%, (c) 40%,
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at the flash point. This is due to the increased time taken to reach the flash point

which means that the fuel sample is heated for a longer period of time resulting in

larger surface temperatures.

3.3 Estimate of position and time of the flash point
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Figure 3.11: Estimate of position and time of the flash point for the slab (N = 0). Sample
surface located at r = a.

Figures 3.11–3.13 show the estimated positions of, and time taken to reach, the

flash point against the initial moisture content for slab, cylinder, and sphere geometries

respectively. Heating rates of 20 kW/m2 and 60 kW/m2, and sample sizes of 1 mm

and 5 mm are considered.
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Figure 3.12: Estimate of position and time of the flash point for the cylinder (N = 1).
Sample surface located at r = a.
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Figure 3.13: Estimate of position and time of the flash point for the sphere (N = 2).
Sample surface located at r = a.
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For the slab geometry, the estimated time taken to reach a flammable mixture

increases monotonically with the moisture content as does the location, from the centre

of the fuel sample, of the mixture. An increase in the sample size results in an increase

in the flash point time and distance whereas increasing the heating rate results in a

reduction in the flash point time and its distance from the centre of the fuel sample.

Larger fuel samples contain more moisture so that an increased amount of water

vapour is formed to dilute the pyrolysis vapour and air mixture, hence reducing the

flammability.

For the cylindrical geometry, the flash point time continues to increase monotonically

with an increase in initial moisture content. However, for relatively small heating rates

and sample radii, the location of the flammable mixture remains close to the surface

of the sample. When comparing results to the slab geometry, it is noticeable that

the flash point time is reduced since the surface-are-to-volume ratio is larger for the

cylinder and mixing takes place more readily in the external gases.

The time taken to reach a flammable mixture is further reduced in the spherical

sample case relative to the cylinder since its surface-area-to-volume ratio is greater

than even the cylinder and the external volume for gaseous mixing is further increased.

3.4 Mass flux at the surface

Figures 3.14–3.16 show both fuel and water vapour mass flow rates as a function of

time for slab, cylinder, and sphere geometries respectively. These plots are not stopped

at the time of flammability. Sample sizes are either 2 mm or 4 mm, heating rate is

20 kW/m2 or 40 kW/m2, and the initial moisture content is 0%, 30%, or 60% of the

dry fuel mass. The results reveal that for appreciable sample sizes, heating rates, or

initial moisture contents, the drying and pyrolysis processes overlap. This explains

the difficulty in igniting wet vegetal fuels since the water vapour dilutes the pyrolysis

products in the external gas phase.

Initial fuel moisture, if any, evaporates when the temperature of the fuel sample

reaches about 100◦C. For small fuel samples and low heating rates, the evaporation

process can be dominant over pyrolysis so that hardly any pyrolysis products are

formed until the fuel moisture is evaporated. This is evident from the slab fuel results
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Figure 3.14: Mass flux for the fuel and water vapour at the surface of the slab (N = 0).
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Figure 3.15: Mass flux for the fuel and water vapour at the surface of the cylinder (N = 1).
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Figure 3.16: Mass flux for the fuel and water vapour at the surface of the sphere (N = 2).
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(Figure 3.14) for a = 2 mm and J = 20 kW/m2.

Evaporation and pyrolysis processes will occur simultaneously for stronger heating

rates. Larger vegetal fuel samples will heat up more quickly as the heat impinges a

larger surface area. Also the cylindrical and spherical fuels will heat more rapidly, even

at the same heating rate, due to the increased surface-area-to-volume ratio compared

to a slab of vegetal fuel. Therefore the overlap between pyrolysis and evaporation is

more pronounced in large cylindrical and spherical fuel samples.

Water vapour is produced even when there is zero initial moisture content in the

fuel sample. The reason for this is that the charring reaction produces gases which

includes water in its vapour form. For appreciable initial fuel moisture contents, the

production of pyrolysis vapour is delayed by the evaporation process.

3.5 Conclusions

Using a simplified model for the fuel pyrolysis, gaseous mixing, and conditions for

flammability, the onset of ignition in vegetal fuels, of slab, cylinder, and sphere

geometries, has been investigated for varying external radiant heating rates, fuel sample

sizes, and initial fuel moisture contents. Drying, charring, and fast pyrolysis processes

have been included in order to estimate when, and where, a flammable mixture is

formed.

The geometry of the vegetal fuel plays a crucial role in its thermal degradation.

Cylinder and sphere like fuels will heat up much more rapidly than slab like fuels due to

their larger surface-area-to-volume ratio. The larger external volume in these cases also

speeds up the process of gaseous mixing which leads to a flammable mixture. Initial

fuel moisture content delays the flash point time. The evaporated moisture dilutes

the external gas mixture which can push away the location of the flash point. Char

production is dominant over lower temperatures/heating rates. The temperature at

the flash point time is around 350◦C–550◦C. This large temperature range suggests

that using a fixed value of ignition temperature is an oversimplification.

In nature, an isolated vegetal fuel would not be encountered. It is more common

the have a line, or array, of fuels and vapour mixing from multiple sources would

act together in a two or three dimensional flow field. The heating rate would not be
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uniform as it would depend on the geometry of the fuel sample and radiative source.

In the next chapter, a two dimensional natural convection model is developed which

will take into account the buoyant airflow from multiple fuel samples.



Chapter 4

Natural convection with radiative

heating

The role of moisture content of a fuel particle in reaching the flash point was explored in

Chapter 2. A one dimensional time-dependent model was introduced which incorporated

vapourisation, charring, and fast pyrolysis reactions. Although this reveals some issues

related to the onset of flaming in heated vegetation the model is too simple to capture

all of the processes that must occur in reality. A two dimensional natural convection

around vegetal fuel bodies model is presented in this chapter which will allow for a

more realistic interaction of the flow around a solid fuel sample in either reducing or

enhancing the heating of the vegetation.

Cylindrical fuel samples are taken to be exposed to radiant heat from an external

panel. Heat conduction within the solid and the resulting natural convection are

modelled. The model consists of Navier-Stokes and conservation of energy equations

with the ideal gas law as the equation of state in the air domain. The conduction

equation is applicable in the solid domain.

The radiating panel, which mimics the characteristics of a nearby radiating flame

front, is assumed to be positioned sufficiently far way from the solid fuel so that the

flow around the panel does not affect the solid. That is, the solid fuels will not receive

any convective, or conductive, heat from the panel source. The heat received by a point

on a fuel sample from the panel can be approximated using geometrical arguments

based on view factors [22].

For multiple fuel samples in arbitrary locations, it is possible that some of the

67
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radiation from the panel will be blocked by one sample from reaching another. This

shadowing contribution can also be approximated using geometrical arguments based

on the calculation of view factors (section 4.3).

Although vapourisation and pyrolysis reactions are not included in this part of the

work, the model does provide insight into the role of natural convection in modifying

the heating process that would lead to these reactions.

4.1 Natural convection literature

The study of natural convection flow around two-dimensional bodies in an infinite

domain has been studied, under steady-state conditions, experimentally, analytically,

and numerically for over 50 years [54, 55]. In recent years, such flows around cylindrical

geometries have been studied due to their range of industrial applications [56].

At moderately large values of the Rayleigh number (104 < Ra < 108), the flow

is laminar and forms a boundary layer around the cylinder [57–60]. Boundary-layer

equations can be solved for this problem by assuming that curvature effects and the

pressure difference across the boundary layer are negligible [61, 62]. However, the

assumption of negligible curvature effects is valid for large Ra when the boundary layer

thickness is much smaller than the radius of curvature of the body [63]. For moderate

values of Ra (e.g. of order 102) the assumption of negligible curvature effects produces

appreciable errors.

Kuehn and Goldstein [57] numerically solved the complete Navier-Stokes and energy

equation for laminar natural convection around a solitary horizontal cylinder which is

maintained at a constant surface temperature (isothermal). Wang et al. [58] solved

the same problem using a different numerical method. They also solved the case

when the cylinder is maintained at a constant heating rate. The steady dimensionless

equations were derived using the Boussinesq approximation [15]. This assumes that

density differences in the governing equations are small except in the buoyancy term of

the momentum equation. Saitoh et al. [59] attempted to obtain benchmark solutions

for the steady natural convection problem around an isothermal horizontal circular

cylinder for the Rayleigh number range 103 ≤ Ra ≤ 105.

In the present natural convection model, fluid density will be assumed to vary with
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temperature. A non-uniform heating rate, based on the geometric considerations, will

be incorporated in the model. The fuel samples will receive heat from a radiating

rectangular heat source which represents a fire front. This approach is based on the

experimental study by Cohen and Finney [64] where wood-based fuel samples were

exposed to heat from a radiating panel at a rate of 41 kW/m2. Fuel samples of 1 mm

and 12 mm width were considered and the radiating panel was 486 mm wide and

375 mm high. The fuel sample was placed 10 cm from the panel which was deemed to

be a sufficient distance from buoyant flow around the panel.

The governing equations for the natural convection around horizontal cylindrical

fuels sample will be presented in the next section. The non-uniform heating rate will

be calculated based on the a setup similar to that presented in the experiments of

Cohen and Finney [64].

4.2 Governing equations for the natural convection

flow around a horizontal fuel sample subjected

to non-uniform radiative heating

The model will incorporate the flow around the solid fuel sample and the heat conduction

taking place within the solid. It is assumed that the fuel sample is sufficiently far away

from the radiating panel so that the natural convection taking place around the panel

does not affect the solid [64]. That is, the heat transfer from the panel to the solid

is dominated by radiation from the panel being absorbed by the fuel sample. This

overcomes the problem of having to model the flow around the radiating panel. In the

experiments of Cohen and Finney [64] a panel radiating 41 kW/m2 of heat was placed

10 cm away from the solid. This distance was deemed sufficiently far away from the

solid so that the flow around the panel did not interfere with the solid fuel sample.

The heat conduction equation will model the heat transfer taking place in the solid

sample. For the air flow the conservation equations for mass, momentum, and energy

hold. The boundary conditions will include radiative heat transfer from the panel and

the conductive heat exchange with the sample’s surroundings.
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For the solid domain the heat conduction equation is

ρscs
∂Θ

∂t
= ∇ · λs∇Θ (4.1)

where ρs [kg/m3]1 is the density of the solid, cs [J/(kg K)] is the specific heat capacity

of the solid, Θ [K] is the solid temperature, t [s] is time, and λs [W/(K m)] is the solid

thermal conductivity. For the air domain the mass balance is

∂ρ

∂t
+∇ · ρu = 0 (4.2)

where ρ = ρ (T ) [kg/m3] is the density of the air (T [K] is the air temperature) and

u [m/s] is the flow velocity. The density varies with temperature in general. The

momentum balance is

ρ

(
∂u

∂t
+ u · ∇u

)
= F−∇P +∇ · τ

where P [N/m2] is the pressure and F [N/m3] is the body force. The viscous stress

tensor τ [N/m2] can be written as

τ = η
(
∇u +∇uᵀ − 2

3
(∇ · u) I

)
where η [N·s/m2] is the dynamic viscosity [65]. The pressure P may be broken down

into the hydrostatic pressure Ph and the dynamic pressure, which is the pressure due

to the motion of the fluid, Pd so that

P = Ph + Pd

where Ph = −ρ0 gy and ρ0 is the density of the ambient air. The body force F is just

the force due to gravity so that

F = −ρg j

where j is the unit vector pointing in the vertical or positive y-direction. Hence the

momentum equation may be written as

ρ

(
∂u

∂t
+ u · ∇u

)
+∇Pd = ∇ · τ + g (ρ0 − ρ) j.

The energy equation is

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · λ∇T (4.3)

1Contents of the square brackets [.] give the units of the preceding quantity.
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where cp [J/(kg K)] is the specific heat capacity at constant pressure of the air and

λ [W/(K m)] is the thermal conductivity of the air. Finally the equation of state is the

ideal gas law

P = ρRaT

where Ra = R/Ma ≈ 287 J/(kg K) is the specific gas constant and the mean molecular

mass of air is Ma ≈ 29 g/mol. If it is assumed that the pressure variations about the

ambient pressure of ρ0Ra T0 are negligibly small (Boussinesq approximation), then the

density difference term in the momentum equation can be written independently of

the pressure as [21]

ρ0 − ρ =
P

RaT0
− P

RaT
=

P

RaT

(
T

T0
− 1

)
=

ρ

T0
(T − T0) .

Rearranging this equation gives the density as

ρ =
ρ0

1 + T−T0
T0

(4.4)

and the momentum equation can be rewritten as

ρ

(
∂u

∂t
+ u · ∇u

)
+∇Pd = ∇ · τ +

gρ (T − T0)
T0

j. (4.5)

Solid

Air

-

Figure 4.1: Solid sample receives incident heat flux of J [kW/m2] on the boundary. Part of
this heat is conducted by the solid and part of it is conducted in the air. The solid will also

reradiated some of the heat it receives. Directions of arrows indicate directions of heat
transfer, either towards or away from the interface.

There are six unknown quantities (u = (u, v), Pd, ρ, T , and Θ) and six equations

(Equations (4.1)-(4.5) where the momentum equation is composed of x and y components

and uniformity in the z-direction means that the velocity in this direction is w = 0).

Initially (t = 0) it is assumed that u = v = Pd = 0 and T = Θ = T0. Far away from

the cylinder (r →∞) u = v = Pd = 0, and T = T0. On the solid boundary the no slip
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Figure 4.2: Geometric properties of the solid sample being heated by the radiation from
the parallel rectangular panel. The unit vector n̂ = (− sinϑ, cosϑ, 0) is the outward normal
at a particular point on the rod surface and the angle ϑ represents the angle between the

tangent plane at the point on the rod with outward normal n̂ and the x-axis.

condition is applicable so that u = 0 and continuity of temperature implies T = Θ.

Also the solid body is exposed to a radiant heat flux from a parallel heating panel so

that the conservation of energy on the cylinder surface (Figure 4.1) gives

λ∇T · n̂ + J = λs∇Θ · n̂ + ες
(
T 4 − T 4

0

)
where the outward pointing normal at a point on the rod surface is n̂ (Figure 4.2)

where

n̂ = (cos (ϑ+ π/2) , sin (ϑ+ π/2) , 0) = (− sinϑ, cosϑ, 0) .

Also J0
[
W/m2] is the incident heat flux, ε is the emissivity, and ς

[
W/m2K4

]
is the

Stefan-Boltzmann constant. The air and solid thermal conductivities are λ = ρcpκ

and λs = ρscκs respectively. The angle ϑ represents the angle between the tangent

plane at a point on the rod and the x-axis. This angle determines whether the point

on the surface of the fuel sample is visible from the radiating panel as only objects

above the tangent plane are visible from the point. There is an isotropic radiant heat

flux J0 emitted by a vertical rectangular panel (486 mm × 375 mm in the experiments

of Cohen and Finney [64]) which is parallel to the fuel sample at a distance xB. A
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visible element dA = (−1, 0, 0) dy dz at a position r = (xB, y, z) on the panel (as

measured from a point on the fuel sample with normal vector n̂) subtends the solid

angle dA = −dA · r/4πr3 about the point. The solid angle is the fractional surface

area of a sphere of unit radius. This gives the energy flux per unit surface area arriving

at the point as

dJ = 4J0
n̂ · r
r

dA =
J0
π
xB

y cosϑ− xB sinϑ

(x2B + y2 + z2)2
dy dz.

If the visible panel runs from z = zA to z = zB and y = yA to y = yB then the radiative

power per unit area received at the point on the fuel sample is

J =
J0
π
xB

∫ yB

yA

∫ zB

zA

y cosϑ− xB sinϑ

(x2B + y2 + z2)2
dz dy.

Assuming that the panel is very long (relative to its height) effectively means that

zA → −∞ and zB → +∞. Introducing the parameter ζ so that

ζ2 =
z2

x2B + y2
⇒ dζ =

dz√
x2B + y2

then the power received is

J =
J0
π
xB

∫ yB

yA

y cosϑ− xB sinϑ

(x2B + y2)3/2

∫ ∞
−∞

dζ

(1 + ζ2)2
dy =

J0
2
xB

∫ yB

yA

y cosϑ− xB sinϑ

(x2B + y2)3/2
dy

using the fact that the value of the infinite integral with respect to ζ is π/2. Introducing

another parameter η = y/xB gives

J =
J0
2

∫ yB/xB

yA/xB

η cosϑ− sinϑ

(1 + η2)3/2
dη.

Let the angles θA and θB represent the lowest and highest visible points on the panel

as seen from the point on the fuel sample where the tangent angle is ϑ (Figure 4.2),

then tan θA = yA/xB and tan θB = yB/xB. Hence,

J =
J0
2

[
η sinϑ+ cosϑ

(1 + η2)1/2

]tan θA
tan θB

where the limits have been switched to account for the minus sign. Using trigonometric

identities for tanα and cosα for some angle α gives

J =
J0
2

(cos(θA − ϑ)− cos(θB − ϑ)) .
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This formula is based on assuming that the angles θA and θB are between zero and π

so that the bottom and top of the panel are both visible. When this is not the case

the values of θA − ϑ and θB − ϑ can be replaced as follows

θA − ϑ→ min{π,max[0, θA − ϑ]} and θB − ϑ→ max{0,min[π, θB − ϑ]}

so that J = J0 × ψ(ϑ) with

ψ(ϑ) =
1

2
[cos(min{π,max[0, θA − ϑ]})− cos(max{0,min[π, θB − ϑ]})] .

This formula is now valid for any value of ϑ whether or not any part of the panel is

visible. If the fuel sample is very thin in relation to the size of the panel and its distance

from the sample, then the angles θA and θB do not vary significantly between the

different points on the surface of the rod. The heat flux boundary condition becomes

λ∇T · n̂ + J0 ψ(ϑ) = λs∇Θ · n̂ + ες
(
T 4 − T 4

0

)
. (4.6)

4.2.1 Nondimensionalisation

Equations (4.1)–(4.6) are in dimensional form. The following scalings are applied for

the nondimensionalisation

t = tc t, r = l r, u =
l

tc
u, τ =

η0
tc
τ

Pd =
ρ0 l

2

t2c
P , ρ = ρ0 ρ, cp = cp0 cp

η = η0 η, λ = λ0 λ, λs = λs0 λs

T = T0 + (Tc − T0) T , Θ = T0 + (Tc − T0) Θ.

After substituting the above scales into Equations (4.1)–(4.6), rearranging the equations,

and dropping the bar notation, the following nondimensional governing equations, with

the heat flux boundary condition, are obtained

∂Θ

∂t
=

[
κs0tc
l2

]
∇ · λs∇Θ

∂ρ

∂t
+∇ · ρu = 0

ρcp

(
∂T

∂t
+ u · ∇T

)
=

[
κ0tc
l2

]
∇ · λ∇T
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ρ

(
∂u

∂t
+ u · ∇u

)
+∇P =

[
ν0tc
l2

](
∇ ·
(
∇u +∇uᵀ − 2

3
(∇ · u) I

)
+

[
gltc
ν0

(Tc − T0)
T0

]
ρ T j

)
[
λs0
λ0

]
λs∇Θ · n−λ∇T · n̂ =[

lJ0
λ0 (Tc − T0)

](
ψ(ϑ)−

[
εςT 4

0

J0

]((
1 +

[
Tc − T0
T0

]
T

)4

− 1

))

where κ0 = λ0/ρ0cp0 and κs0 = λs0/ρscs [m2/s] are air and solid thermal diffusivities

respectively, and ν0 [m2/s] is the viscosity of ambient air. Nondimensionalising the

equation of state and dropping the bar notation gives

ρ =
1

1 +
(
Tc−T0
T0

)
T
.

It is useful to select values for the characteristic temperature Tc and characteristic time

scale tc such that [
lJ0

λ0 (Tc − T0)

]
= 1 =⇒ Tc =

lJ0
λ0

+ T0,[
κ0tc
l2

]
= 1 =⇒ tc =

l2

κ0
,

and to define the nondimensional parameters as

Pr =

[
ν0tc
l2

]
=
ν0
κ0

Ra =

[
gltc (Tc − T0)

ν0T0

]
=

gl3

ν0κ0

(Tc − T0)
T0

AT =

[
Tc − T0
T0

]
Bλ =

[
λs0
λ0

]
=
ρscsκs0
ρ0cp0κ0

Cκ =

[
κs0tc
l2

]
=
κs0
κ0

DR =

[
εςT 4

0

J0

]
where Pr and Ra are the Prandtl and Rayleigh numbers respectively. Using the fact

that Tc = T0 + lJ0/λ0 the Rayleigh number can be rewritten as

Ra =
gJ0l

4

ν0λ0κ0T0
.
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The nondimensional governing equations for the natural convection around a fuel

sample exposed to radiative heating can now be written as

∂Θ

∂t
= Cκ∇ · λs∇Θ (4.7)

∂ρ

∂t
+∇ · ρu = 0 (4.8)

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · λ∇T (4.9)

ρ =
1

1 + ATT
(4.10)

ρ

(
∂u

∂t
+ u · ∇u

)
+∇P = Pr

(
∇ ·
(
∇u +∇uᵀ − 2

3
(∇ · u) I

)
+ Ra ρ T j

)
(4.11)

with the heat flux boundary condition

Bλ λs∇Θ · n̂− λ∇T · n̂ = ψ(ϑ) +DR

(
1− (1 + ATT )4

)
. (4.12)

The approximate physical properties of solid wood and air at ambient temperature

(300 K) are [18, 46, 66]

cs0 ≈ 2,500 J/(kg K) ρs0 ≈ 1,000 kg/m3 κs0 ≈ 10−7 m2/s

λs0 ≈ 1/4 W/(m K) cp0 ≈ 1,000 J/ (kg K) ρ0 ≈ 1.2 kg/m3

κ0 ≈ 2.2× 10−5 m2 s−1 λ0 ≈ 1/40 W/(m K) ν0 ≈ 1.6× 10−5 m2/s

η0 ≈ 1.8× 10−5 Pa s ε ≈ 6/7 ς ≈ 5.67× 10−8 J/(m2 K4 s).

Applying the above approximations allows an estimate for the nondimensional parameters

Pr =

[
ν0tc
l2

]
=
ν0
κ0
≈ 0.7

AT =

[
Tc − T0
T0

]
= β (Tc − T0) =

lJ0
λ0T0

≈ 40 lJ0
T0

Ra =

[
gltcβ (Tc − T0)

ν0

]
=
gβl3 (Tc − T0)

ν0κ0
=

gl3

ν0κ0
AT ≈ (3000 l)3AT

Bλ =

[
λs0
λ0

]
=
ρs0cs0κs0
ρ0cp0κ0

≈ 10

Cκ =

[
κs0tc
l2

]
=
κs0
κ0
≈ 1/222

DR =

[
εςT 4

0

J0

]
≈ 400

J0

where l is measured in metres [m], T0 is in kelvin [K], and J0 is in watts per square

metre [W/m2].
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The nondimensional governing equations for mass, momentum, and energy conservation,

together with the ideal gas law, have been presented (Equations (4.7)–(4.11)). The

model equation include the solid conduction process as well as the natural convection

around the fuel sample. The heat flux boundary condition (Equations (4.12)) includes

the radiative heat received from a hot panel with heat loss due to reradiation and

conduction also addressed.

The radiating panel has been assumed to be infinitely long, with the justification

that the flame front in a forest fire is likely to be much larger than the vegetation in

its path. A view factor based on a finite radiating panel can be calculated for when

the large flame front approximation is unrealistic.

4.2.2 Finite radiating panel

For a panel with finite length (i.e. finite zA and zB), an approximate approach is to use

the same formula as before but with an effective value for J0 that is reduced as a result

of the smaller solid angle subtended by the panel. Though the panel is assumed to be

finite it is, in reality, much larger than the fuel sample. The panel is being considered

as finite in order to better represent the heat received by the fuel sample. For the case

that is symmetric in z, such that zB = −zA = xζB say, the radiative power is

J =
J0
π

∫ yB/x

yA/x

η cosϑ− sinϑ

(1 + η2)3/2

∫ ζB/
√

1+η2

0

2 dζ

(1 + ζ2)2
dη.

The double integral cannot be calculated directly but it can be envisaged that the

radiating panel is split into n segments and a mean inclination angle is calculated

for each segment. There is a radiative contribution from each segment so that if the

radiating panel is composed of N segments then the heat received at a point (x, y) on

the surface of the cylinder is approximately

J ≈ J1 + J2 + · · ·+ Jn + · · ·+ JN

where

Jn =
2J0
π

∫ yn/xB

yn−1/xB

η cosϑ− sinϑ

(1 + η2)3/2

∫ ζn

0

dζ

(1 + ζ2)2
dη.

Here yn is the value of y at the top of the nth radiating panel segment and yn−1 is the

bottom. The mean inclination angle in the nth segment may be approximated by

ζn ≈
1

6

(
zB/xB

(1 + tan2 θn)
1/2

+
4zB/xB

(1 + tan2 ((θn + θn−1) /2))
1/2

+
zB/xB

(1 + tan2 θn−1)
1/2

)
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where zB and xB are constant, and θn−1 and θn are angles from the x-axis to the lowest

and highest points on the nth panel segment respectively so that tan θn−1 = yn−1/xB

and tan θn = yn/xB. This formula is analogous to the weighted mean value of the

quadratic fit of a function f(t)

f(t) = f1 +
1

2
(f2 − f0) t+

1

2
(f2 + f0 − 2f1) t

2

to the points f(−1) = f0, f(0) = f1, and f(1) = f2 which is

1

2

∫ 1

−1
f(t)dt =

1

6
(f0 + 4f1 + f2)

over the interval t ∈ [−1, 1] (Simpson’s rule [67]). Applying such a mean inclination

angle gives the heat received from the nth panel segment as

Jn =
J0
π

[
η sinϑ+ cosϑ

(1 + η2)1/2

]tan θn−1

tan θn

[
ζ

1 + ζ2
+ arctan ζ

]ζn
0

.

Applying trigonometric identities for tanα and cosα for some angle α gives the power

received as

Jn =
J0
π
Kn [cos(θn−1 − ϑ)− cos(θn − ϑ)]

with the constant

Kn =
ζn

1 + ζ
2

n

+ arctan ζn.

Taking into account all the possible conditions when the edges are either visible or not

visible from the point on the fuel sample, the following replacements can be applied, as

before,

θn−1 − ϑ→ min{π,max[0, θn−1 − ϑ]} and θn − ϑ→ max{0,min[π, θn − ϑ]}

so that

Jn =
2J0Kn

π
ψn(ϑ)

where

ψn(ϑ) =
1

2
[cos(min{π,max[0, θn−1 − ϑ]})− cos(max{0,min[π, θn − ϑ]})] .

If the fuel sample is very thin in relation to the size of the panel and its distance from

the sample is sufficiently large then the angles θn−1 and θn do not vary significantly
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between the different points on the surface of the fuel sample. Let us consider the case

when the inclination angle is approximated using only one panel segment so that

J ≈ J1

where

J1 =
2J0K1

π
ψ1(ϑ).

The constant K1 is defined to be

ζ1

1 + ζ
2

1

+ arctan ζ1,

where the mean inclination angle is

ζ1 ≈
1

6

(
zB/xB

(1 + tan2 θ1)
1/2

+
4zB/xB

(1 + tan2 ((θ1 + θ0) /2))
1/2

+
zB/xB

(1 + tan2 θ0)
1/2

)
and

ψ1(ϑ) =
1

2
[cos(min{π,max[0, θ0 − ϑ]})− cos(max{0,min[π, θ1 − ϑ]})]

where θ0 = arctan(y0/xB) and θ1 = arctan(y1/xB). Here y0 and y1 are the values of y

at the bottom and top of the radiating panel respectively and zB is the half-width of

the panel. The length xB is the horizontal distance of the panel from the fuel sample

(constant). In order to calculate the radiant heat flux the dimensions of the radiating

panel (y0, y1, xB, and zB) need to be known. In most of the calculations carried out,

the panel dimension is such that y0 = −200 mm, y1 = 200 mm, xB = 100 mm, and

zB = 250 mm (this panel has similar dimensions to that of Cohen and Finney [64])2. It

follows that θ0 = arctan(−2) ≈ −63◦ and θ1 = arctan(2) ≈ 63◦. The nondimensional

radiant heat flux can be plotted against the angle ϑ (Figure 4.3). The two segment

case will give a better approximation for the radiative power

J ≈ J1 + J2

where

J1 =
2J0K1

π
ψ1(ϑ)

J2 =
2J0K2

π
ψ2(ϑ).

2The same results would arise if all of y0, y1, xB, and zB were to be increased or decreased by
exactly the same factor.
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The panel height spans from y = y0 to y = y2 with the midpoint y1 = (y0 + y2)/2. Also

K1 =
ζ1

1 + ζ
2

1

+ arctan ζ1

K2 =
ζ2

1 + ζ
2

2

+ arctan ζ2

where

ζ1 ≈
1

6

(
zB/xB

(1 + tan2 θ1)
1/2

+
4zB/xB

(1 + tan2 ((θ1 + θ0) /2))
1/2

+
zB/xB

(1 + tan2 θ0)
1/2

)

ζ2 ≈
1

6

(
zB/xB

(1 + tan2 θ2)
1/2

+
4zB/xB

(1 + tan2 ((θ2 + θ1) /2))
1/2

+
zB/xB

(1 + tan2 θ1)
1/2

)
.

The functions

ψ1(ϑ) =
1

2
[cos(min{π,max[0, θ0 − ϑ]})− cos(max{0,min[π, θ1 − ϑ]})]

ψ2(ϑ) =
1

2
[cos(min{π,max[0, θ1 − ϑ]})− cos(max{0,min[π, θ2 − ϑ]})]

where

θ0 = arctan(y0/xB) θ1 = arctan(y1/xB) θ2 = arctan(y2/xB).

Again if the dimensions of the radiating panel and its location are known (i.e. y0, y2,

zB, and xB are given) then the radiant heat flux can be plotted against ϑ. This method

can be extended to any number of panel segments n.

The radiant heat flux Jn is plotted against the angle ϑ for n = 1, 2, 4, 8 in Figure 4.3

for a panel spanning −200 ≤ y ≤ 200 and −250 ≤ z ≤ 250, in mm, and located

100 mm away from the solid fuel (xB = 100 mm). Figure 4.3 also shows the absolute

relative percentage change between Jn and J8 as

100×
∣∣∣∣ Jn − J8max (J8)

∣∣∣∣
for n = 1, 2, 3. Using just a single panel to approximate the inclination angle still

gives good accuracy (< 1% relative difference with J8) although a marked increase in

accuracy is observed when using four panel segments to approximate the inclination

angle (about 0.1% relative difference with J8). Therefore, for the numerical simulations

(Chapters 6 and 7), four panel segments will be applied when determining the radiant

heat flux received by the solid sample.
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Figure 4.3: (a) Radiant heat flux against the angle ϑ from the x-axis to the tangent at a
point on the rod where the panel is split into 1, 2, 4, and 8 segments. The dimensions of the

panel are y0 = −200 mm, yn = 200 mm, xB = 100 mm, and zB = 250 in all cases. (b)
Absolute relative error from successive increase in panel segments.

4.3 Multiple fuel samples

The governing equations already derived will be valid for the case when multiple fuel

samples are heated radiatively so that the following equations hold in the air domain

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · λ∇T

ρ

(
∂u

∂t
+ u · ∇u

)
+∇P = Pr

(
∇ ·
(
∇u +∇uᵀ − 2

3
(∇ · u) I

)
+ Ra ρ T j

)
∂ρ

∂t
+∇ · ρu = 0

ρ =
1

1 + ATT

and in the solid domain the heat conduction equation is

∂Θ

∂t
= Cκ∇ · λs∇Θ

Initially there is no flow and the temperature is ambient so that u = 0 and T = Θ = 0.

At distances much further away from the fuel samples there will also be no flow and

ambient temperature so that u = 0 and T = 0. The heat flux boundary condition is

Bλ λs∇Θ · n̂− λ∇T · n̂ = ψ(ϑ) +DR

(
1− (1 + ATT )4

)
.
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However, for horizontally aligned fuel samples, it is possible that a sample will

block some of the radiation from the panel from reaching another. This reduction in

the heating rate can be calculated using the geometry of the fuel samples. For the

present study, it will be assumed that the fuel samples are circular cylinders in order

to simplify the calculation of the reduction in heating due to the shadowing effects.

4.3.1 Reduced heating due to shadowing effects

For multiple cylindrical fuel samples in arbitrary locations it is possible that one cylinder

might block some of the radiation from the panel from reaching another cylinder. Any

point (x, y) on a cylinder, for which the tangent angle is ϑ, needs to be considered in

relation to any other cylinder Ck with centre (xk, yk) and radius a (Figure 7.1). Let

Figure 4.4: Shadowing effect for a point (x, y) on a cylinder due to the presence of cylinder
Ck which blocks some of the radiation from the panel. Figure is not to scale as the radiating
panel is assumed to be much further away than cylinder Ck when modelling the heat transfer.

the distance between the point (x, y) and the centre of Ck be S(x, y) so that

S2 = (xk − x)2 + (yk − y)2 .

If α is the angle subtended between the line from (x, y) to (xk, yk) and from (x, y) to a

point on Ck where the line is tangential then from basic trigonometry

sinα = a/S.
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The angle β between the horizontal and the line joining the centres of the cylinders

satisfies

tan β =
yk − y
xk − x

.

With θA and θB marking the angles to the lowest and highest points on the distant

radiating panel respectively, the cylinder Ck blocks radiation from the panel between

the angles

γA = min {θB,max [θA, β − α]} and γB = max {θA,min [θB, β + α]}

for which the angles γA and γB are equal if there is no shadowing. The shadowing may

be considered as representing a panel of negative radiative intensity −J0 which would

cancel out the shielded part of the original radiation from the panel.

Treated as a single radiating panel, the negative radiative contribution arriving at

the point (x, y) can therefore be expressed as

J̃k = −J0 ×
2

π

(
ζ̃k

1 + ζ̃k
+ arctan(ζ̃k)

)
× ψ̃k(ϑ)

with

ζ̃k ≈
1

6

(
zB/xB

(1 + tan2 γA)
1/2

+
4zB/xB

(1 + tan2 ((γA + γB) /2))
1/2

+
zB/xB

(1 + tan2 γB)
1/2

)

and

ψ̃k(ϑ) =
1

2
[cos (min {π,max [0, γA − ϑ]})− cos (max {0,min [π, γB − ϑ]})) .

The terms γA and γB, as well as ϑ will, in general, vary for different points (x, y) on

the surface of the cylinder.

If there is blocking by multiple cylinders (for, say, k = 1, 2, etc.) then additional

contributions will arise for each corresponding value of k. However particular care

must be taken not to double up the effect when one of these cylinders already partly

falls within the shadow of another. It is worth exploring whether this approach of

taking the blocking of radiation into account gives results significantly different to

when shadowing effects are neglected. The most simple case of shadowing is when only

one cylinder blocks some of the radiation from the panel from reaching another.
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4.3.2 Single cylinder shadowing

Consider the case of a cylinder C receiving a reduced heating rate from a radiating

panel due to the presence of cylinder C1. The cylinders, with equal nondimensional

radii a, are assumed to be aligned at the same vertical height with a centre-to-centre

distance of D (Figure 7.2). Recall that l = 2a mm is the cylinder diameter. Let

Figure 4.5: Cylinder C1 blocks some of the radiation from the panel from reaching cylinder
C. The centre-to-centre distance between the cylinders is D and the diameter is 2a = l mm.

SD = D/l be the nondimensional centre-to-centre distance between the two cylinders C

and C1. Varying the parameter SD would alter the degree of radiation which is blocked

by C1 from reaching cylinder C as described by the mean inclination angle ζ̃1 and the

view factor ψ̃1(ϑ). Let xB, yB, and zB be the lengths, in mm, of the cylinder C to the

radiating panel, the radiating panel half-height, and the cylinder half-width respectively.

For now, let xB = 100 mm, yB = 200 mm, and zB = 250 mm, dimensions which are

similar to the panel used in the experiments of Cohen and Finney [64]. Any panel in

which all of the lengths xB, yB, and zB increase by the same factor generates the same

radiative field around the cylinders. The radiating panel is assumed to be composed of

four segments as before but the negative contribution due to the shadowing is modelled

as a single segment. This approach is favoured in order to simplify the reconciliation

of the overlap between the shadowing angles and the panel angles.
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The total radiation received at a point (x, y) on the surface of cylinder C is

JTotal = J + J̃1

where J denotes radiation received as though cylinder C1 does not shadow C and J̃1 is

the negative contribution due to the presence of C1 which blocks some of the radiation

reaching C.
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Figure 4.6: Full radiation J (dashed line) and negative radiation −J̃1 normalised with
incident heat flux J0 kW/m2 around cylinder C for various nondimensional centre-to-centre

distances SD. In polar coordinates, r = a and θ varies.

Figure 4.6 is a plot of the functions J and −J̃1 which shows the significance of the

shadowing contribution for the nondimensional centre-to-centre distances SD. These

two functions quantify the amount of heat received and radiation blocked on the

surface of cylinder C respectively. The surface of the cylinder can be described in polar

coordinates so that (r, θ) = (a, θ) where π ≤ θ ≤ π and θ = 0 represents the rightmost

point of cylinder C as shown on Figure 7.2. For large values of SD the shadowing effects

become negligible. However as SD → 1 the shadowing becomes more pronounced.

Therefore shadowing effects will be taken into account as the current model assumes

that the centre-to-centre distance SD is small compared to the distance between the

panel and fuel samples xB. It would be realistic to take order one values for SD.
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4.3.3 Shadowing from multiple cylinders

When there are more than two cylinders being heated, it is possible that more than

one cylinder will block the radiation from the panel reaching another cylinder. It is

also possible that there could be an overlap in the negative radiation contribution. In

this case it is important to avoid doubling up the shadowing effect.

Figure 4.7: 3 × 3 square array of cylinders. The cylinders are labelled analogously to the
entries of a matrix.

Consider a 3×3 regular square array of cylinders with a nondimensional centre-to-centre

distance of SD between orthogonally adjacent cylinders (Figure 7.16). The cylinders

have been labelled analogously to the entries of a matrix so that cylinder Cij is located

in the ith row and jth column. In this scenario, there could be as many as five cylinders

blocking radiation from the panel and potentially a doubling up effect when one of the

cylinders already falls within the shadow of another.

Cylinders Ci3, for i = 1, 2, 3, will receive the full radiation from the panel as there

are no cylinders blocking the path from the panel to the cylinders. Cylinders Ci2
will receive a reduced heating rate because of the presence of cylinders Ci3 which is

analogous to the 2× 3 array case. However, for cylinders Ci1 there will be some overlap

of radiation contributions.

Again, applying xB = 100 mm, yB = 200 mm, and zB = 250 mm, dimensions which
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(a) C11 (b) C21

(c) C31

Figure 4.8: Shadowed regions for cylinders Ci1 with i = 1, 2, 3 with SD = 2 against the
points on the cylinder surface located at an angle θ to the horizontal. The blocking

contribution is from cylinders C1j , C2j , and C3j with j = 1, 2 are denoted by the red, black,
and blue lines respectively. Solid lines denote cylinders Ci2 and dashed lines are for cylinders

Ci3. There is partial overlapping in the shadowing.
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are similar to the panel used in the experiments of Cohen and Finney [64], the shadowed

regions are shown in Figure 4.8 for cylinders Ci1 and a centre-to-centre distance of

SD = 2. The cylinder in the final column and the same row as Ci1, which happens

to be cylinder Ci3, will not contribute to the blocking of the radiation as cylinder Ci2
will supersede it in terms of its contribution towards blocking the radiation from the

panel. It would be cumbersome to calculate the heating rate around cylinders Ci1 in

this manner as for SD ≤ 2 there will be regions of overlap in the shadowing.

(a) C11 (b) C21

(c) C31

Figure 4.9: Shadowed regions for cylinders Ci1 with i = 1, 2, 3 with SD = 3 against the
points on the cylinder surface located at an angle θ to the horizontal. The blocking

contribution is from cylinders C1j , C2j , and C3j with j = 1, 2 are denoted by the red, black,
and blue lines respectively. Solid lines denote cylinders Ci2 and dashed lines are for cylinders

Ci3. There is no partial overlapping in the shadowing.
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Figure 4.9 shows the shadowed regions on cylinders Ci1 with i = 1, 2, 3 but this

time with SD = 3. This is much easier to implement as the overlap regions are

complete (there is no partial overlapping) so that it is easy to simply omit the blocking

contribution of a cylinder.

(a) C11 (b) C21

(c) C31

Figure 4.10: Shadowed regions for cylinders Ci1 with i = 1, 2, 3 with SD = 2.2 ≈ SDc

against the points on the cylinder surface located at an angle θ to the horizontal. The
blocking contribution is from cylinders C1j , C2j , and C3j with j = 1, 2 are denoted by the red,
black, and blue lines respectively. Solid lines denote cylinders Ci2 and dashed lines are for

cylinders Ci3. There is very little partial overlapping in the shadowing.

Since partial overlapping occurs for smaller nondimensional spacings SD, and it has

been shown that partial overlapping occurs for SD = 2 but not for SD = 3, then it

is expected that there will be a critical spacing, SDc with 2 < SDc < 3, which is the
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minimum cylinder spacing for which there is no partial overlapping. This critical value

of SD for which there is no partial overlapping in the blocking has been calculated to

be SDc ≈ 2.2 (2 significant figures) for a 3× 3 regular square array. Very little partial

overlapping in the shadowing is observed with SD = 2.2 (see Figure 4.10). When solving

the numerical simulations for multiple fuel samples (Chapter 6) the nondimensional

critical centre-to-centre distance SDc will be calculated and results will be obtained

only for values of SD greater than SDc .

4.4 Summary of natural convection model

Governing equations have been presented for the natural convection around radiatively

heated fuel samples. These equations consist of the Navier-Stokes, energy balance, and

ideal gas law equations in the air domain

∂ρ

∂t
+∇ · ρu = 0

ρ

(
∂u

∂t
+ u · ∇u

)
+∇P = Pr

(
∇ ·
(
∇u +∇uᵀ − 2

3
(∇ · u) I

)
+ Ra ρ T j

)
ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · λ∇T

The nondimensional ideal gas law is

ρ =
1

1 + ATT

and the heat conduction equation in the solid domain(s) is

∂Θ

∂t
= Cκ∇ · λs∇Θ.

Initially there is no flow and ambient temperature in the solid and air domains. Far

away from the solid fuel samples the temperature is again ambient and there is no flow.

On the surface of the fuel samples there is continuity of temperature and the no slip

condition holds as well as the heat flux boundary condition

Bλ λs∇Θ · n̂− λ∇T · n̂ = ψ(ϑ) +DR

(
1− (1 + ATT )4

)
.

This condition incorporates the heat received from the radiating panel, reradiation of

the heat, and the conduction into the air and solid(s). A closed analytical form of the
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heat received from the panel is not achieved for a finite radiating panel. Therefore,

the panel is partitioned into segments where a mean inclination angle is calculated in

each segment in order to approximate the heat received by a sample from the radiating

panel. Using four panel segments to approximate this heating rate results in a relative

difference below about 1% compared with partitioning the panel into eight segments.

Nondimensionalising the governing equations gives rise to a Prandtl number Pr,

Rayleigh number Ra, heating intensity AT , ratio of solid and air thermal conductivities

Bλ, and a reradiation factor DR. The Prandtl number for the present study will remain

constant with Pr = 0.7 corresponding to the case when the fluid is air. Parameters Ra

and AT vary with sample size and heating rate whereas DR only varies with a change

in the heating rate. The parameter Bλ does not vary with sample size or the heating

rate, and for wood-based samples it has a value of about 10.

The governing equations are valid for the heating of multiple fuel samples as well

as for a single sample. However, for samples in arbitrary locations, it is possible that a

sample might block some of the radiation from the panel from reaching another fuel

sample. In this case, a negative radiation contribution can be calculated from the

geometry of the array of circular cylinders. This negative contribution cancels out an

appropriate part of the original radiation to calculate the heat received by a shadowed

sample. When more than one cylinder is blocking the radiation from reaching another,

it is possible that there will be a partial overlap in the shadowing contributions towards

a point on the surface of a cylinder. A critical cylinder spacing SDc can be calculated

which will be the minimum spacing for which there is no partial overlapping in the

shadowing contributions.

In Chapters 6 and 7, these governing equations will be solved for varying sample

sizes, heating rates, and, for multiple fuel samples, distances between the solids. For

simplicity however, situations with partial overlapping will be avoided. Before that

though, test problems for natural convection flows will be solved using COMSOL

Multiphysics in order to verify the accuracy of the finite element software (Chapter

5). These test problems will include the natural convection around an isothermal

cylinder study [57] and the uniform heating case [58]. Results obtained from COMSOL

Multiphysics are compared with the literature.



Chapter 5

Natural convection test problems

Natural convection test problems are solved using COMSOL Multiphysics. In section 5.2,

numerical results are verified by comparing the available results from literature for

constant temperature (isothermal) [57] and uniform heat flux [58] boundary conditions

for the natural convection around a circular cylinder. A test problem for the case when

solid conduction is incorporated with the natural convection flow [68] is also solved using

COMSOL. In the first test case, the natural convection around an isothermal horizontal

circular cylinder in an infinite domain is explored and the results are compared with

the benchmark solutions obtained by Saitoh et al. [59]. The second test problem is

the same as the first except that the cylinder is not isothermal but is subjected to a

constant heat flux. This problem is more relevant to the present study as the cylinder

is subjected to a radiant heat flux from a panel. However, the heat received from

the panel is non-uniform (Chapter 4). Heat transfer rates for the uniform heating

problem will be compared with [58]. Finally the third test problem explores the case

of a conducting cylinder where it is assumed that the cylinder is in an enclosure. This

problem was studied by House et al. [68] and it is a useful problem in that it will test

the continuity conditions in the solid phase (cylinder) with the fluid phase.

In section 5.3, natural convection test problem involving multiple bodies are solved,

again using COMSOL Multiphysics. The first test problem deals with two vertically

aligned isothermal cylinders [69]. Numerical results for more than two vertically aligned

cylinders are also presented [70]. Finally, numerical results for horizontally aligned

isothermal cylinders are presented [71].

In section 5.1, the nondimensional Nusselt number [72] is introduced. This number

92
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can be calculated at the end of a simulation and compared with the literature to test the

accuracy of the numerical solution. Once heat transfer rates are shown to be in good

agreement with the test problems then solving the problem of natural convection around

a conducting cylinder subjected to radiant heating can be undertaken in confidence. All

the test problems in this section use a steady state analysis and apply the Boussinesq

approximation [15, 21].

5.1 Nusselt number

In natural convection problems, information for the heat transfer characteristics is

usually presented using the Nusselt number Nu [72]. This nondimensional number is

the ratio of convective and conductive heat transfer across a boundary. For small value

of Nu (i.e. Nu ∼ O(100)) the flow is laminar with turbulence usually associated with

Nu ∼ O(102). It is common to compare local and average Nusselt number values when

solving natural convection test problems [59].

The local Nusselt number is defined to be the ratio of the convective heat transfer

to the conductive heat transfer at a point on a boundary. This can be written as

Nu =
hl

λ0

with l and λ0 the characteristic length scale and thermal conductivity of the fluid

respectively. The SI units are [m] for l and [W/(m K)] for λ0. The convective heat

transfer coefficient h [W/(m2 K)] is defined to be

h =
Q

A(T − T0)

with heat flow Q [W], heat transfer surface area A [m2], fluid temperature T [K] and

ambient fluid temperature T0 [K]. The heat flow per unit area on a heated surface will

be Q/A = −λ0∇T · n̂ (the minus sign is due to the convention that the normal vector

is pointing outwards from the body) or, an average value of this quantity so that the

heat transfer coefficient on the isothermal boundary is

h = −λ0∇T · n̂
T − T0

.

Nondimensionalising with T = T0 +(Tc−T0)T̄ , where Tc is a characteristic temperature
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and defining ∇ = ∇̄/l, reduces the Nusselt number to

Nu = −λ0
l

(Tc − T0)∇T · n̂
(Tc − T0)T

l

λ0

= −∇T · n̂
T

.

Finally, by dropping the bar notation, the nondimensional local Nusselt number on the

surface of a heated body is

Nu = −∇T · n̂
T

.

For an isothermal body, the temperature is constant. Therefore, without loss of

generality, the temperature can be taken as T = 1. Then, the local Nusselt number on

the surface of an isothermal body is

NuT = −∇T · n̂

which can provide a local value at any point on the surface. Averaging over the surface

produces the averaged Nusselt number NuT .

For a uniform heat flux boundary, the gradient of temperature will be constant.

Again, without loss of generality, this gradient can be taken as −∇T · n̂ = 1. The local

Nusselt number on the surface of a uniformly heated boundary is

NuJ =
1

T

which again can be averaged over the surface to give the averaged Nusselt number NuJ .

Finally, recall that the heat flux boundary condition in Chapter 4 was

Bλ λs∇Θ · n̂− λ∇T · n̂ = ψ(ϑ) +DR

(
1− (1 + ATT )4

)
.

Rearranging this equation gives the local Nusselt number on the surface of the cylinder

as

Nuψ = −∇T · n̂
T

=
ψ(ϑ) +DR

(
1− (1 + ATT )4

)
−Bλ λs∇Θ · n̂

λT

for which averaging can also be performed to give Nuψ.

Relevant Nusselt numbers will be used to analyse the natural convection flow. In the

present chapter, the local Nusselt number on the boundary will be NuT for isothermal
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bodies and NuJ for uniform heat flux on the surface. In Chapter 6, the governing

equation presented in Chapter 4 will be solved and the Nusselt number Nuψ will be

used to analyse the flow properties.

5.2 Single fuel sample

In this section, three test problems for the natural convection around a single cylinder

are solved numerically, using COMSOL Multiphysics. These test problems are for the

natural convection flow around (1) an isothermal horizontal cylinder (2) Uniformly

heated (constant heat flux) horizontal cylinder and (3) a conducting square cylinder in

an enclosure.

The first two test problems will test the the accuracy of COMSOL Multiphysics

against the works of Kuehn and Goldstein [57] and Wang et al. [58] respectively. These

two problems assume the Boussinesq approximation. This approximation, combined

with the relatively simple heating boundary conditions, means that there are only two

nondimensional parameters; Prandtl number (Pr) and Rayleigh number (Ra). The

fluid medium is assumed to be air so that the Prandtl number remains as the constant

Pr = 0.7. Therefore, the only parameter in the problem is the Rayleigh number. This

parameter is defined slightly differently in the two test problems due to the contrasting

heating boundary conditions. For the isothermal cylinder, the temperature of the body

is known and the Rayleigh number can be defined as [57]

RaT =
gβl3 (Tb − T0)

ν0κ0

where l is the cylinder diameter, Tb is the temperature of the body, and β is the

thermal coefficient of volumetric expansion (β = 1/T0). The subscript for the Rayleigh

number is to highlight that this definition is for the constant temperature cylinder. For

a uniformly heated cylinder, the Rayleigh number is defined as [58]

RaJ =
gβl4Jb
ν0λ0κ0

where Jb is the constant heating rate received on the surface of the cylinder. This

version of Ra is referred to as the modified Rayleigh number [58]. The subscript for

the Rayleigh number is to highlight that this definition is for the constant heating rate

problem. Numerical results are obtained for a range of Rayleigh numbers.
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Solid conduction is not modelled in either of these natural convection problems.

This is the reason why the test problem explored by House et al. [68] is also solved.

The natural convection problem is quite different to the previous two. The geometry of

the body is a square cylinder. The fluid domain is still air so that Prandtl number still

remains constant. However, rather than the body being placed in an infinite medium, it

is now centred in an enclosure. The body receives heat from a hot enclosure wall. The

ratio of solid and air thermal conductivities Bλ is an additional parameter (Rayleigh

number being the other) of the model which arises due to the solid conduction in the

cylinder.

These three test problems are solved using COMSOL Multiphysics for variations in

the Rayleigh number and results are compared with the literature.

5.2.1 Natural convection flow around an isothermal horizontal

cylinder

Exit

Entry Entry

Symmetry
line 

Figure 5.1: Schematic of natural convection around an isothermal cylinder. The problem is
symmetric about the vertical y-axis. Outer boundary conditions are dealt in two parts; flow

coming into the domain (entry) and flow leaving the domain (exit). The change from
entry/exit is located at the points (r, θ) = (D/2,±π/6).

The first test problem to verify the validity of COMSOL Multiphysics is modelling

the natural convection around an isothermal horizontal cylinder in an infinite domain

(Figure 5.1). Kuehn and Goldstein [57] numerically solve the Navier-Stokes equations
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coupled with the energy equation (using the Boussinesq approximation) for a wide

range of Rayleigh numbers for which they found good agreement with experimental

results. Saitoh et al. [59] presented benchmark solutions to this problem which were

compared with Wang et al. [58] as well as Kuehn and Goldstein [57]. The aim is to

reproduce the results obtained in Saitoh et al. [59] using COMSOL in order to validate

the solvers capabilities in solving natural convection problems.

The natural convection flow around an isothermal cylinder is symmetric about

the vertical y-axis. The infinite air domain is dealt with using the inflow/outflow

boundary conditions. The change from flow entry to exit is located at the points

(r, θ) = (D/2,±π/6), where D is the diameter of the domain [57].

Assuming that the flow is steady and flow properties are constant then using the

Boussinesq approximation the nondimensional governing equations reduce to

∇ · u = 0 (5.1)

u · ∇u +∇P = Pr∇2 u + Pr RaT j (5.2)

u · ∇T = ∇2T (5.3)

where the Rayleigh number Ra is a parameter of the problem and Pr = 0.7 corresponds

to the Prandtl number of air. The cylinder has diameter l and the domain has diameter

D. There is no solid conduction equation as the circular cylinder is assumed to be

isothermal. The boundary conditions on the solid boundary are the no slip and constant

temperature conditions

u = 0, T = 1, at ∂ΩSolid

where Ω = ΩAir + ΩSolid is the whole computation domain and ∂ denotes the boundary

of the domain. In order to model the infinite air domain in COMSOL Multiphysics,

a fictitious outer boundary concentric to the circular cylinder is assumed. A similar

approach to Ma et al. [73] is used for the outer boundary where it is treated in two

parts. A part where the fluid (air) enters the domain and a part which allows the flow

to exit. It is assumed that the tangential velocity on the outer boundary is zero since

the fluid is either coming in (entry) to the domain or going out (exit) (Figure 5.1). In

other words, the flow is normal to the outer boundary. The boundary conditions for
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the entry and exit are

u · t = 0 T = 0 τ · n = 0

u · t = 0 ∇T · n = 0 τ · n = 0

respectively on ∂ΩAir. Here t and τ are the tangent vector and stress tensor respectively.

The normal stress is zero because the outer boundary is interpreted to be a fluid-fluid

boundary with no change of fluid properties. Fluid at ambient temperature enters the

domain so that T = 0 at the entry. The temperature of the fluid leaving the domain is

unknown, however it can be imposed that the change in the temperature of the fluid

arriving at the exit and the temperature at the exit is zero so that ∇T · n = 0.

Solutions to the governing equations (Equations 5.1–5.2) have been obtained for the

range 0.37 ≤ Ra ≤ 105 using COMSOL Multiphysics. The outer boundary is assumed

to be 40 times the solid cylinder diameter so that D = 40l. Rayleigh number Ra is the

parameter in the problem which is defined to be Ra = gβl3 (Tc − T0) /κν.

Figure 5.2 shows the isotherms and streamlines around the circular horizontal

cylinder for Rayleigh numbers Ra = [0.37, 10, 103, 105]. At Ra = 0.37 (as studied

numerically and experimentally by Fujii et al. [74]) and Ra = 10 the flow is upward

with heat being convected away from the cylinder and upwards into the plume. At

large Rayleigh numbers (Ra = 103 and Ra = 105) a boundary layer forms around the

cylinder, the thickness of which decreases as the Rayleigh number is increased.

Table 5.1: Local and average Nusselt numbers for isothermal circular cylinder compared
with the benchmark results of Saitoh et al. [59].

Ra θ = 0◦ 90◦ 180◦ Nu

103 Present 3.782 3.363 1.217 3.011
Saitoh et al. [59] 3.813 3.374 1.218 3.024

104 Present 5.960 5.389 1.533 4.809
Saitoh et al. [59] 5.995 5.410 1.534 4.826

105 Present 9.752 8.813 1.984 7.939
Saitoh et al. [59] 9.675 8.765 1.987 7.898

Table 5.1 shows the local and averaged Nusselt numbers from the present method

compared to the benchmark solutions of Saitoh et al. [59]. The local Nusselt number is
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Figure 5.2: Isotherms (left) and streamlines (right) for (a) Ra = 0.37, (b) Ra = 10,
(c) Ra = 103, and (d) Ra = 105. The Prandtl number remains constant (Pr = 0.7).
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the ratio of the convective heat transfer to the conductive heat transfer at a point on

the boundary. The average Nusselt number is simply the integral of the local Nusselt

numbers on a boundary divided by the length of the boundary. In the case of the

isothermal cylinder the local and average Nusselt numbers on the cylinder boundary

are

Nu = −∇T · n

Nu =
1

πd

∮
Nu dS

where S is measured around the surface of the cylinder. The calculated local and

average Nusselt numbers (Table 5.1) are in good agreement with those of Saitoh et al.

[59] as the maximum relative error is below 1%.

5.2.2 Uniform heat flux and the importance of modelling the

solid conduction

Consider again the natural convection problem but this time the circular cylinder is

taken to inject a constant heat flux J0 W/m2. Solid conduction is not included in the

model so that the nondimensional heat flux boundary condition is

∇T · n = 1 on ∂ΩSolid

is the nondimensional boundary condition on the surface of the solid horizontal

cylinder. The governing equations are the same as the isothermal cylinder test problem

(Equations 5.1–5.3) with Prandtl number Pr = 0.7 and the modified Rayleigh number

Ra∗ =
gβJ0l

4

ν0λ0κ0

is a parameter of the problem. Recall that the Rayleigh number was defined to be

Ra =
gl3

νκ

Tc − T0
T0

in the isothermal cylinder problem [57]. Taking the characteristic temperature to be

Tc =
lJ0
λ0

+ T0

gives the modified Rayleigh number as above. Solid conduction is not modelled.

This case is explored by Wang et al. [58] (as well as the isothermal cylinder case)

for Ra∗ = [106, 107, 108].
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(a) (b)

Figure 5.3: Isotherms (left) and streamlines (right) for (a) Ra∗ = 106 and (b) Ra∗ = 108.
The Prandtl number remains constant (Pr = 0.7).

Streamlines and isotherms for Ra∗ = 106 and Ra∗ = 108 are plotted in Figure 5.3.

As with the case of the isothermal cylinder the boundary layer thickness reduces as the

modified Rayleigh number Ra∗ is increased.

The local nusselt number on a point on the solid body is defined to be [72, 75]

Nu =
hl

λ0

where, rather than using the earlier arguments, the local heat transfer coefficient on

the solid surface is

h =
J0

T − T0
,

and since all the quantities are dimensional and taking the characteristic temperature

as

Tc =
lJ0
λ0

+ T0

the Nusselt number reduces to

Nu =
1

T

which is the same as the earlier formula for NuJ .

Local and average Nusselt numbers are listed in Table 5.2. It should be noted

that the results presented in Wang et al. [58] are not benchmark results. Having
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Table 5.2: Local and average Nusselt numbers.

Ra∗ θ = 0◦ 90◦ 180◦ Nu

106 Present 9.72 9.24 5.28 8.80
Wang et al. [58] 9.87 9.24 5.02 8.88

107 Present 14.90 14.15 7.61 13.53
Wang et al. [58] 15.02 14.04 7.23 13.56

108 Present 23.12 21.90 10.98 20.99
Wang et al. [58] 23.12 21.92 10.87 21.00

said that their results for the isothermal cylinder were in good agreement with Saitoh

et al. [59] so it should be expected that the uniform heat flux results are reasonable.

The streamlines, isotherms, and local and average Nusselt number results are in good

agreement with Wang et al. [58] .

Consider the case when solid conduction is taken into account as well as the natural

convection around the conducting body. The equation for solid conduction

∇2Θ = 0

must be solved in addition to the Boussinesq equations for the air. The boundary

condition on ∂ΩSolid is of constant heating rate and continuity of temperature

Bλ∇Θ · n−∇T · n = 1

T = Θ.

The ratio of thermal conductivities is taken to be Bλ = 10. This value is typical of

wood-based fuel samples.

Figure 5.4 shows the surface temperature around the cylinder for the case when

solid conduction is taken into account compared with the no solid conduction model.

The angles θ = 0◦ and θ = 180◦ represent the bottom and the top of the cylinder

respectively. Prandtl number Pr = 0.7 and Rayleigh number Ra = 106. The maximum

solid temperature (at θ = 180◦) drops by about 25% when the solid conduction is

modelled.

Table 5.3 shows the change in the Nusselt number and shear stress when solid



CHAPTER 5. NATURAL CONVECTION TEST PROBLEMS 103

0 30 60 90 120 150 180
0.1

0.12

0.14

0.16

0.18

0.2

θ (degrees)

T̄

 

 

No conduction

Solid conduction

Figure 5.4: Surface temperature of the cylinder from θ = 0 (bottom) to θ = 180◦ (top).
The temperature range is significantly wider when heat conduction into the cylinder is not

modelled for Ra = 106 and Pr = 0.7.

conduction is modelled. The stress tensor can be written in index notation [76] as

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

where δij is the Kronecker delta

δij =

 0, if i 6= j

1, if i = j

and the summation convention is used. Hence the nondimensional shear stress is

τxy =
∂u

∂y
+
∂v

∂x

so that the average shear stress around the conducting cylinder is

τxy =
1

2π

∫ 2π

0

∣∣∣∣∂u∂y
∣∣∣∣+

∣∣∣∣∂v∂x
∣∣∣∣ , dϑ.

There is a decrease in the Nusselt number and an increase in the shear stress when the

solid conduction is modelled with the largest changes occurring for large Ra. Modelling

the solid conduction then affect the thermal and flow properties of natural convection,

particularly for large bodies and/or strong heating rates.

5.2.3 Conducting square cylinder in an enclosure

The importance of modelling the conduction process was highlighted in the previous

subsection. However, it is worth testing the solid conduction model here as well.
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Table 5.3: Averaged Nusselt numbers and averaged shear stresses around the cylinder
surface for Prandtl number Pr = 0.7 and Rayleigh number Ra = 106. Subscript c denotes

values when solid conduction modelled with Bλ = 10. The average Nusselt number
percentage decrease and averaged shear stress percentage increase when solid conduction is

also shown.

Ra∗ Nu Nuc % decrease τ τ c % increase

10−1 0.745 0.740 0.7 0.662 0.665 0.5
100 0.972 0.956 1.7 1.990 2.014 1.2
101 1.322 1.279 3.4 6.293 6.437 2.2
102 1.859 1.772 4.9 20.94 21.65 3.3
103 2.674 2.530 5.6 72.89 75.87 3.3
104 3.915 3.706 5.6 263.2 274.6 4.1
105 5.835 5.550 5.1 978.2 1019 4.0

House et al. [68] explore the case of the heating of a square cylinder in a finite domain

(enclosure). Nevertheless, since the heat transfer rates for natural convection in an

infinite domain have been verified, the problem in an enclosure can be solved to make

sure that the solid conduction coupled with natural convection gives the expected

results.

The governing equations in the air domain are the same as mentioned in the

isothermal and uniform heating cases (Equations 5.1–5.3). The Prandtl number is

slightly different (Pr = 0.71) [68] but is still representative of air. The Rayleigh number

Ra is, again, a parameter of the problem but the geometry and the boundary condition

are fundamentally different.

Figure 5.5 shows the new geometry and enclosure boundary conditions. The top

and bottom boundaries of the enclosure are adiabatic so that ∇T · n = 0 there. The

hot and cold sides of the enclosure have T = 1 and T = 0 nondimensional temperature

conditions respectively. The governing equations in the air domain are the same as

those used for the isothermal and uniformly heated cylinder case but now the solid

conduction is also modelled. The nondimensional energy equation in the solid body is

∇ ·Bλ∇θ = 0

where θ is the temperature in the solid domain and Bλ is the ratio of the thermal

conductivity of the solid body to the air. House et al. [68] explore a variety of values for

Bλ which represents a change of material of the solid body (the Prandtl number remains
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Figure 5.5: Geometry and boundary conditions for the conducting solid body in an
enclosure House et al. [68].

constant at Pr = 0.71 so that the fluid is always air). Continuity of temperature and

conservation of energy-flux boundary conditions are applicable on the solid boundary

so that

T = θ

and

∇T · n = Bλ∇θ · n.
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Figure 5.6: Isotherms and streamlines for the solid body in an enclosure. Rayleigh number
is Ra = 105 and Bλ = 5.



CHAPTER 5. NATURAL CONVECTION TEST PROBLEMS 106

Figure 5.6 shows the isotherms for solid and air temperature, and the streamlines

for Ra = 105 and Bλ = 5. The enclosure width is twice the width of the square body.

These plots are in good agreement with House et al. [68].

Table 5.4: Average Nusselt number comparison for Ra = 105 and various Bλ.

Bλ Nu

0.2 Present 4.6231
House et al. [68] 4.6257

1 Present 4.5032
House et al. [68] 4.5061

5 Present 4.3185
House et al. [68] 4.3221

Table 5.4 shows the comparison in the average nusselt number

Nu = −
∫ 1

0

∂θ

∂x
dy

on the hot enclosure boundary. The values of Nu calculated in the present study are

in very good agreement with House et al. [68] with a maximum relative error of less

than 0.1%.

Now that the test problems of isothermal cylinder, uniform heating rate, and solid

body conduction have been verified using COMSOL Multiphysics, the problem of the

natural convection around a conducting cylinder subjected to a non-uniform radiative

heating rate can be studied numerically (Chapter 6). Before that though, test problems

for multiple bodies will also be solved and compared to the relevant literature.

5.3 Multiple fuel samples

Test problems for the natural convection flow around multiple bodies are solved in this

section. Temperature and velocity fields, with average Nusselt number values, will be

compared with the relevant literature.

Experimental [77, 78] and numerical [69, 79–81] studies for the natural convection

around two vertically aligned cylinders has been undertaken in recent years. Chouikh

et al. [80] and Cianfrini et al. [69] study the natural convection around two vertically
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aligned isothermal cylinders. The natural convection heat transfer on the upstream

cylinder will be affected by the downstream cylinder. This vertically aligned cylinders

configuration approach can be extended. Corcione [70] presented numerical results

for the natural convection flow around a vertical array of up to six cylinders. When

solving the problem presented in Chapter 4, vertically aligned cylinders will present

little shadowing contributions. It is the horizontal alignment of cylinders which results

in a significant amount of radiative heat being blocked.

Numerical solutions to the natural convection around horizontally aligned cylinders

has been solved in the literature. Cianfrini et al. [71] study the flow around two1

isothermal cylinders set side-by-side (horizontal alignment).

These test problems for the natural convection around multiple cylinders will be

solved numerically using COMSOL Multiphysics.

5.3.1 Two parallel cylinders vertically aligned

The natural convection flow around two vertically aligned parallel cylinders is explored.

Numerical results are presented for isothermal cylinders so that temperature fields,

velocity fields, and Nusselt numbers can be compared with numerical and experimental

results in the literature.

The case of vertically aligned isothermal cylinders has been studied both experimentally

and numerically in the literature. Chouikh et al. [80] study the flow around two vertically

aligned horizontal isothermal cylinders of the same size. Cianfrini et al. [69] also consider

isothermal cylinders and also investigate the case when the upper cylinder is adiabatic

as well as exploring cylinders of unequal diameters. Isotherms, streamlines, and velocity

fields are presented as well as average Nusselt numbers for both the bottom and upper

cylinders.

Consider two horizontal cylinders of equal dimensions (diameter l mm) aligned

vertically so that one is above the other. Let S be the vertical distance between the

two cylinders. A parameter SL = S/l (S and l both measured in mm) can be defined

to denote the distance between the two cylinders. For example, if SL = 0 then the

cylinders will be just touching each other and if SL = 1 then the distance between the

top of the bottom cylinder and the bottom of the upper cylinder is l mm. In order to

1Cianfrini et al. [71] consider up to a row of ten isothermal cylinders.
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obtain results which are comparable to the literature, it is assumed that the cylinders

are isothermal and the flow properties (viscosity, thermal conductivity, and specific

heat capacity of the surrounding) are constant which is consistent with the Boussinesq

approximation.

Conservation equations for mass, momentum, and energy describe the flow in the

air domain along with the Boussinesq approximation so that the nondimensional fluid

equations are the Boussinesq equations (Equations 5.1–5.3). The two cylinders are

isothermal so that T = 1 everywhere in the two solid cylinders. The Prandtl number is

set to Pr = 0.7 and the Rayleigh number is a parameter of the problem. The outer

boundary conditions are the same as before so that the conditions on the entry and

exit are

u · t = 0 T = 0 σ · n = 0

and

u · t = 0 ∇T · n = 0 σ · n = 0

respectively. The no slip condition is applicable on the solid isothermal cylinders so

that u = 0 on both the cylinders surfaces.

Figure 5.7 shows the isotherms and velocity field for Ra = 102 and Ra = 104 with

the vertical distance between the cylinders being one cylinder diameter so that SL = 1.

It is clear that the boundary layer thickness is smaller for larger Rayleigh numbers.

These profiles are consistent with the results obtained in Chouikh et al. [80].

The Nusselt number Nu on the solid boundaries is defined to be

Nu = −∇T · n|r=0.5

so that the average Nusselt number

Nu =
1

2π

∫ 2π

0

Nu dθ = − 1

2π

∫ 2π

0

∇T · n|r=0.5 dθ

where r is measured from the centre of the cylinder and r = 0.5 is the surface of the

cylinder.

Table 5.5 shows the Nusselt number results compared to the numerical results of

Cianfrini et al. [69] and the experimental results of Sparrow and Niethammer [82].

These average Nusselt numbers show a good agreement with the literature results.
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(c) Ra = 102 (SL = 4) (d) Ra = 104 (SL = 4)

Figure 5.7: Isotherms and velocity field for Ra = 102 and Ra = 104 for two vertically
aligned horizontal cylinders of the same diameter at constant temperature. The distance

between the cylinders for (a) and (b) is one cylinder diameter so that SL = 1. For (c) and
(d) it is four cylinder diameters (SL = 4).
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Table 5.5: Comparison with literature results of the ratio of average Nusselt number of the

top cylinder Nutop with the single isothermal cylinder Nu1.

Ra Nutop/Nu1(SD = 1)
2× 104 Present 0.798

Cianfrini et al. [69] 0.810
Sparrow and Niethammer [82] 0.82

6× 104 Present 0.832
Cianfrini et al. [69] 0.844
Sparrow and Niethammer [82] 0.85

5.3.2 Multiple vertically aligned cylinders

The natural convection around multiple (more than two) vertically aligned cylinders is

explored here. This problem was solved numerically by Corcione [70]. The Boussinesq

approximation is applied and it is assumed that the cylinders are in an infinite air

domain so that Pr = 0.71. The Rayleigh number is a parameter of the problem. Hence

the governing equations are again the Boussinesq equations (Equations 5.1–5.3). The

cylinders are isothermal so that the temperature is constant everywhere in the cylinders

so that T = 1 on the cylinders surfaces. Also the no slip condition is applicable on

the cylinders so that u = 0 on the cylinders surfaces. Conditions on the outer ‘infinite’

boundary depend on whether the flow enters the domain or leaves it. The conditions

on entry and exit of the outer domain are

u · t = 0 T = 0 σ · n = 0

and

u · t = 0 ∇T · n = 0 σ · n = 0

respectively. Recall that SL was defined to be the distance between the top of the

bottom cylinder and the bottom of the upper cylinder. Corcione [70] prefers to seek

changes to the centre-to-centre distance D say. Define the ratio of the centre-to-centre

distance D to the diameter of the cylinders (it is assumed that the cylinders are of

equal dimensions) l as DL = D/l. Observing the changes in the flow properties as the

Rayleigh number Ra and DL vary are of interest.

Isotherms and velocity fields are presented in Figure 5.8 and Figure 5.9 for various

Rayleigh numbers Ra and cylinder spacings of DL = 2 and DL = 8 respectively. It is

already known that the boundary layer thickness decreases for larger Ra. However
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(a) Ra = 102. (b) Ra = 104.

Figure 5.8: Isotherms and velocity field for four cylinders spaced so thatDL = 2. Isotherms
start from T = 0.1 up to T = 0.9 with a step size of 0.1 and the problem is symmetric

about x = 0.
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(a) 1st − 2nd. (b) 2nd − 3rd. (c) 3rd − 4th.

Figure 5.9: Isotherms and velocity field for four cylinders spaced so thatDL = 8 with
Ra = 102. Isotherms start from T = 0.1 up to T = 0.9 with a step size of 0.1 and the

problem is symmetric about x = 0.
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(b) Ra = 103
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Figure 5.10: Distribution of the ratios Nui/Nu0 against the cylinder number. The
upstream cylinder is represented by i = 1 and the furthest downstream cylinder is

represented by i = 4.
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it is observed that the flow around the upper cylinders is greater than the the flow

around the bottom cylinder. Plots of the Nusselt number ratios Nui/Nu0, where the

subscript i is the cylinder number and Nu0 is the average Nusselt number for a single

cylinder at a particular value of Ra, are shown in Figure 5.10 for Ra ∈ {102, 103, 104}

and DL ∈ {2, 8, 20}. This figure highlights whether the interactions of the ith cylinder

with the upstream and downstream cylinders (where applicable) either enhances or

degrades the heat transfer performance relative to that of the single cylinder. The heat

transfer characteristics of the single isothermal cylinder is presented in section 5.2. The

average Nusselt number for the bottom cylinder is approximately equal to that of the

single cylinder so that

Nu1 ≈ Nu0

for all Rayleigh numbers Ra and separation distances DL considered. The largest

difference between Nu1 and Nu0 is observed for smaller separation distances particularly

when Ra is relatively low. These results are in good agreement with Corcione [70].

5.3.3 Horizontally aligned cylinders

The natural convection around horizontally aligned isothermal cylinders is explored

here. Farouk and Guceri [83] and Bello-Ochende and Bejan [84] numerically solve the

problem of a row of an infinite number of isothermal horizontal cylinders for laminar

regimes (Farouk and Guceri [83] also solve for the turbulent regime). The Boussinesq

approximation is applied and effects of varying cylinder spacing and Rayleigh number

are explored. Symmetry of the flow can be exploited in order to solve the problem

numerically. However this symmetry will not be present in the radiatively heated

cylinders so it will be more worthwhile to consider a finite number of cylinders.

Cianfrini et al. [71] study the steady laminar free convection in air from parallel

circular cylinders set side-by-side. Simulations are carried out for a row of 10 cylinders

with varying centre-to-centre distances and Rayleigh numbers. The equations of motion

and boundary conditions remain the same as that of isothermal vertically aligned

cylinders which were stated in the beginning of this section. All that has changed is

the geometry of the problem (namely the horizontal alignment instead of vertical).

The governing equations are the Boussinesq equations (Equations 5.1–5.3) with the
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boundary conditions at the exit and entry of the outer domain as

u · t = 0 T = 0 σ · n = 0

and

u · t = 0 ∇T · n = 0 σ · n = 0

respectively. The 10 cylinders are isothermal so that T = 1 and u = 0 on the surface

of the cylinders. The Prandtl number is set to Pr = 0.71 which is consistent with air

properties (this is the value used by Cianfrini et al. [71]). Let DL be the horizontal

centre-to-centre distance between the cylinders (it is assumed that the cylinders are

equidistant).

Figure 5.11: Isotherms with T = 0.2, 0.4, and 0.6 contours for Ra = 103 and DL = 3.

Isotherms for Ra = 103 and DL = 3 are shown in Figure 5.11 with contours

T = 0.2, T = 0.4, and T = 0.6. The hot plumes from each cylinder merge into a single

large plume due to the fluid flowing upwards through the array of cylinders being

entrained by the plume.

The ratio of average Nusselt numbers Nu/Nu0 against the Rayleigh number Ra are

plotted in Figure 5.12 for DL = 1.4. Here Nu0 is the average Nusselt number for a

single isothermal horizontal cylinder in an infinite domain at the same Rayleigh number

as that for Nu. For medium to large Ra the heat transfer performance of the outermost

cylinders (C1 and C10) is about the same as that of the single isothermal cylinder in

an infinite fluid medium.
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Figure 5.12: Nusselt number ratios Nu/Nu0 for cylinders C1–C10 with varying Rayleigh
numbers Ra with DL = 1.4.
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Figure 5.13: Nusselt number ratios Nui/Nu0 for the ith cylinder and Ra = 103.
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The Nusselt number ratio Nui/Nu0 for the ith cylinder is plotted for a range of

centre-to-centre distances DL and Ra = 103 in Figure 5.13. The amount of heat

exchanged by the inner cylinders increases for cylinders closer towards the middle of the

row due to the lack of lateral entrainment into the plume above the central cylinders

since the air is already hot either side of these central cylinders. These results are in

good agreement with Cianfrini et al. [71].

5.4 Conclusions

Test problems for the steady natural convection around cylinders have been solved

numerically using COMSOL Multiphysics. These test problems include isothermal and

uniformly heated cylinders suspended in an infinite medium [57–60]. A model which

includes the solid conduction, as studied by House et al. [68], is also solved. Numerical

results for temperature fields, velocity fields, and average Nusselt numbers were in

good with the literature for isolated cylinders.

Numerical results for multiple isothermal cylinders have also been obtained. These

include problems where the cylinders have a vertical and horizontal configuration.

Again, the temperature and flow profiles, as well as the average Nusselt numbers, were

in good agreement with the literature for a range Rayleigh numbers of Ra and cylinder

spacings.

Having found satisfactory results for the test problems, the natural convection

model for the non-uniform radiant heating of fuel samples (Chapter 4) can be solved

numerically using COMSOL Multiphysics.



Chapter 6

Numerical results for horizontal

cylinders

The numerical procedure for solving natural convection problems has been verified for

external flows around isothermal and uniformly heated bodies (Chapter 5). In this

chapter the equations for natural convection around a conducting cylinder subjected

to non-uniform radiative heating from an external panel is solved numerically using

COMSOL Multiphysics. The governing equations, together with the boundary conditions,

were presented in Chapter 4. Configurations where shadowing effects are not present is

the focus of this chapter1.

In section 6.1 the single cylinder configuration is explored. Numerical solutions for

the simplified problem of constant flow properties (i.e. constant viscosity and thermal

conductivity of air) without the reradiation effect are obtained and compared with the

full steady problem (with variable flow properties). The sample diameter and incident

heating rate are parameters of the problem.

The vertically aligned parallel cylinders configuration is explored in section 6.2.

For two vertically aligned cylinders (one cylinder located directly above another) the

flow from the upstream cylinder will affect the flow around downstream cylinder. The

distance between the cylinders, in addition to the sample size and heating rate, is a

parameter for the multiple cylinders configuration.

Temperature and velocity fields, local and average Nusselt numbers, and shear stress

values are presented when analysing the heat transfer characteristics of the natural

1Chapter 7 deals with configurations where shadowing effects are present.

118
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convection flow around the cylinders.

Details of any pyrolysis and ignition are not addressed here. Instead, the way in

which natural convection can limit the degree of heating and the maximum temperature

achieved at steady state are examined. Situations in which temperatures stay well

below that for pyrolysis at flammability conditions (about 300◦C) are unlikely to lead

to ignition. Situations in which surface temperatures are significantly higher are more

likely to lead to flammability conditions.

6.1 Flow around a horizontal cylinder

In this section the equations for natural convection around a conducting cylinder

subjected to radiative heating derived in section 4.2 are solved numerically using

COMSOL Multiphysics. The ability of COMSOL Multiphysics to solve natural

convection problems has been verified by solving test problems of constant temperature

(isothermal) and uniform heat flux for the circular cylinder as well as a case of solid

conduction (Chapter 5) where a good agreement with the literature [57–59, 68] was

found.

In deriving the governing equations (Chapter 4) the geometry of the natural

convection problem was arbitrary. However, in this chapter, it is imposed that the body

is a horizontal circular cylinder. This geometry is analogous to that of the problem

presented in Kuehn and Goldstein [57] as well as in much of the literature on natural

convection around a solid in an infinite domain [58, 59].

The case of constant flow properties, together with the Boussinesq approximation,

is solved before the case of variable flow properties is explored in order to compare

changes in the heat transfer rate around the horizontal cylinder. The importance of

modelling the reradiation is also highlighted. This heat transfer effect is found to be

particularly influential for larger Rayleigh numbers.

The temperature and velocity profiles for a range of sample sizes and heating rates

are of interest in order to analyse when a fuel sample can pilot ignite. Nusselt number

and shear stress values will also be analysed as they too give an insight to the heat

transfer and flow properties.
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6.1.1 Constant flow properties (reradiation neglected)

The steady nondimensional governing equations for the radiant non-uniform heating

around a horizontal cylinder for constant fluid properties (except for the density in the

buoyancy term) together with the heat flux boundary condition on the solid cylinder

surface are

u · ∇T = ∇2T

u · ∇u +∇P = Pr∇2u + Pr RaT j

∇ · u = 0

∇2Θ = 0

Bλ∇Θ · n̂−∇T · n̂ = ψ(ϑ).

These are the Boussinesq equations together with solid conduction and an anisotropic

heating rate with heat loss through conduction into the air. The reradiation of heat into

the air from the cylinder is neglected for now in order to reduce the number of problem

parameters. This natural convection problem is similar to that of the uniformly heated

cylinder studied by Wang et al. [58] except that in this case the cylinder is subjected to

non-uniform heating determined by the ψ(ϑ) term in the heat flux boundary condition

and, clearly, cylindrical symmetry is not maintained. The view factor ψ is defined for

a panel which is located 100 mm away, in the x-direction, from the horizontal cylinder

and is 500 mm wide and 400 mm high emitting an incident radiation heat flux of

J0 W/m2. A similar configuration is used in the experiments of Cohen and Finney

[64]. Their experimental configuration subjected wood-based sample (1mm and 12 mm

thickness) to a radiant heating rate of J0 = 41 kW/m2 from a panel.

The Prandtl number is assumed to be constant so that Pr = 0.7 (corresponding to

air) and the ratio of thermal conductivities of wood and air is Bλ = 10 [66]. Only the

modified Rayleigh number

Ra =
gβJ0l

4

ν0λ0κ0

remains as a parameter of the problem. Large Ra implies that the cylinder diameter l

is large and/or the heating rate J0 is large.

Table 6.1 lists the the average Nusselt number and shear stress around the conducting

horizontal cylinder for a range of Ra. There are about 8× 103 mesh elements in the
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Table 6.1: Average Nusselt number Nu and shear stress τxy around a conducting horizontal
cylinder.

Ra Domain radius L/l Nu τxy

10−1 20 0.662 0.392
10−1 30 0.663 0.400
10−1 60 0.665 0.402
10−1 80 0.663 0.405
100 30 0.842 1.181
101 30 1.109 3.681
102 30 1.514 12.09
103 30 2.135 41.59
104 30 3.095 148.3
105 20 4.579 543.8
105 30 4.589 543.7
105 40 4.590 543.6

domain where the grid is refined near the cylinder. A range of domain radii L mm

are explored for Ra = 10−1 and Ra = 105. Good accuracy (i.e. less than 1% relative

change when increasing the domain size) is observed when the nondimensional air

domain radius is L/l = 30 for Ra = 10−1 and L/l = 20 for Ra = 105. It is useful to use

a fixed value for the nondimensional domain size for computation purposes. It seems

that L/l = 30 is a good choice as it gives consistent results for heat transfer and shear

stress when compared to results at larger outer domain radii.

Recall that the Nusselt number is Nuψ = −∇T/T so that the average Nusselt

number is

Nuψ =
1

2π

∫ 2π

0

Nu dϑ.

The Nusselt number gives a measure of the importance of convection compared to

conduction in the heat transfer problem. A large Nusselt number means that convective

heat transfer is the dominant form of heat transfer [72]. The flow is unsteady when the

Nusselt number approaches about 100 [4]. Clearly convective heat transfer becomes

more dominant for larger Rayleigh numbers Ra as is shown in the results from Table 6.1.

Also recall from Chapter 4 (section 4.2) that the nondimensional shear stress tensor is

defined as

τ = ∇u +∇uᵀ − 2

3
(∇ · u) I .

The viscosity is not present in the definition of the shear stress since in applying the
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Boussinesq approximation it is assumed that the viscosity is constant. The stress tensor

can be written in index notation [76] as

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

where δij is the Kronecker delta

δij =

 0, if i 6= j

1, if i = j

and the summation convention is used. Hence the nondimensional shear stress is

τxy =
∂u

∂y
+
∂v

∂x

so that the average shear stress around the conducting cylinder is

τxy =
1

2π

∫ 2π

0

∣∣∣∣∂u∂y
∣∣∣∣+

∣∣∣∣∂v∂x
∣∣∣∣ dϑ.

Table 6.1 shows that the average shear stress around the cylinder increases for larger

Ra. Again this is to be expected as the flow speed around the cylinder will increase for

hotter cylinders.

Isotherms and streamlines are plotted in Figure 6.1 for selected values of modified

Rayleigh numbers Ra. The asymmetry about the vertical y-axis results from the

non-uniform radiative heating of the cylinder due to the radiating panel being located

to the right of the horizontal cylinder sample. Both the isotherms and streamlines

move closer to the cylinder for larger Ra. This means that the thermal boundary layer

thickness becomes relatively small for larger Rayleigh numbers causing the shear stress

to increase. This results in a larger rate of heat loss into the stronger flow around the

cylinder at larger Rayleigh numbers.

6.1.2 Effects of reradiation

The heat flux boundary condition is now modified in order to take into account the

reradiation of heat from the cylinder into the air. The boundary condition now becomes

Bλ∇Θ · n̂−∇T · n̂ = ψ(ϑ)−DR

(
(1 + ATT )4 − 1

)
.

Assuming that the incident heat flux from the radiating panel J0 is constant at

40 kW/m2 then

DR =
εςT 4

o

J0
≈ 2

5J0
=

1

100
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(a) Ra = 10−1 (b) Ra = 10−1 (c) Ra = 102 (d) Ra = 102

(e) Ra = 105 (f) Ra = 105

Figure 6.1: Isotherms (figures (a), (c), and (e)) and streamlines (figures (b), (d), and (f))
for various modified Rayleigh numbers Ra.
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AT =
Tc − T0
T0

=
lJ0
λ0T0

≈ 2 lJ0
15
≈ 1.54× Ra1/4.

The relative error in approximating AT with 1.54 × Ra1/4 is less than 0.03% when

J0 = 40 kW/m2. Hence the boundary condition on the cylinder can be approximated

as

Bλ∇Θ · n̂−∇T · n̂ = ψ(ϑ)− 1

100

((
1 + 1.54× Ra1/4 T

)4
− 1

)
.

Writing the boundary condition in this way ensures that the modified Rayleigh number

Ra is still the only parameter of the problem since J0 is held constant. A change in Ra

can be then interpreted as a change in the size of the cylinder only, since the heating

rate has been imposed (J0 = 40 kW/m2).

Table 6.2: Average Nusselt number and shear stress for selected values of Ra with
J0 = 40 kW/m2.

No Reradiation Reradiation Included Relative Difference (%)
Ra l (mm) Nu τxy Nu τxy Nu τxy
10−1 0.194 0.662 0.400 0.657 0.383 1 4
100 0.381 0.842 1.181 0.828 1.101 2 7
101 0.772 1.109 3.681 1.076 3.276 3 11
102 1.605 1.514 12.09 1.439 10.10 5 16
103 7.243 2.135 41.59 1.978 32.16 8 23
104 15.53 3.095 148.3 2.775 105.0 12 29
105 33.40 4.589 543.7 3.957 349.5 16 36

Table 6.2 lists the average Nusselt numbers Nu and shear stresses τxy, to four

significant figures, for a range of modified Rayleigh numbers Ra. A comparison, listing

the relative percentage difference (nearest %), is made between the results obtained

with and without the reradiation of heat into the surrounding air being modelled. It

can be seen that reradiation increases the average Nusselt number and decreases the

shear stress rate.

The effect of reradiation is of course to reduce the net rate of heat absorption and

so, in turn, the heat transfer to the air, thus lowering the temperature of the cylinder.

With Nuψ defined as the average value of −∇T · n this causes an increase in Nuψ.

Reduced temperature also reduces the effects of buoyancy so that one would expect

the shear stress to decrease around the cylinder due to the reduced temperature

difference. This is evident from the results in Table 6.2. Clearly reradiation has a

significant role in the heating and flow profile of the cylinder and must be included in

the model in order to produce meaningful results.
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(a) Ra = 10−1 (b) Ra = 10−1 (c) Ra = 102 (d) Ra = 102

(e) Ra = 105 (f) Ra = 105

Figure 6.2: Isotherms (figures (a), (c), and (e)) and streamlines (figures (b), (d), and (f))
for various modified Rayleigh numbers Ra. Effects of reradiation are modelled and the

heating rate is assumed to be constant (J0 = 40 kW/m2).
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Figure 6.3: Surface temperature T (◦C) at θ = 90◦ (the point on the cylinder most exposed
to the heating from the radiant panel) for different modified Rayleigh numbers Ra.

Comparison between modelling with and without reradiation is made. Heating rate is fixed
at J0 = 40 kW/m2.

Figure 6.2 shows the isotherms and streamlines for various modified Raleigh numbers

Ra for the case when reradiation is modelled. These profiles do not seem to differ much,

in a visual sense, compared to those of the constant flow properties case presented

in Figure 6.1 although some differences can be seen. The isotherms are normalised

to the range of temperatures so that they are not the same as those used in Figure

6.1. The temperature difference is more clearly represented in Figure 6.3. This plot

shows the temperature at the surface of the cylinder at the point θ = 90◦, which is the

point most exposed to the radiant panel, against the modified Rayleigh number Ra. It

is assumed that the heating rate is constant so that J0 = 40 kW/m2. Modelling the

reradiation gives rise to significantly lower surface temperatures obtained compared

with the case when reradiation is not modelled. Changes in the temperature are small

for small Ra (e.g. about 10◦C for Ra = 1) but become more significant for large Ra (e.g.

about 300◦C for Ra = 105). Assuming that significant pyrolysate vapour is produced

when T ≈ 300◦C then results for the case when reradiation is not modelled (Figure

6.3) suggest that the circular cylinder could ignite when Ra ≈ 101. However when the

reradiation is modelled it is suggested that Ra ≈ 102 before the cylinder can support a



CHAPTER 6. NUMERICAL RESULTS FOR HORIZONTAL CYLINDERS 127

flame.

6.1.3 Temperature dependent flow properties

The results obtained so far assume constant flow properties except for variations in

density in the buoyancy term which is a requirement for there to be any flow. However

most fluids (like air) have temperature dependent properties such as viscosity η, thermal

conductivity λ, and specific heat capacity cp as well as the density itself. Therefore

when the temperature differences in the fluid domain are large, assuming constant flow

properties could lead to considerable errors. It is suggested in Gray and Giorgini [85]

that the Boussinesq approximation is valid for temperature differences of up to 28.8◦C

where the ambient temperature is 15◦C. This range is restrictive so it is worth examining

the effects of temperature dependent flow properties in the natural convection around

a horizontal cylinder.

Recall from section 4.2 that the steady nondimensional equations with variable flow

properties are

ρcpu · ∇T = ∇ · λ∇T

ρu · ∇u +∇P = Pr (∇ · τ + Ra ρ T j)

∇ · ρu = 0

ρ =
1

1 + ATT

∇ · λs∇Θ = 0

with the heat flux boundary condition

Bλ λs∇Θ · n̂− λ∇T · n̂ = ψ(ϑ) +DR

(
1− (1 + ATT )4

)
.

Assuming that the thermal conductivity of the solid cylinder is constant, so that λs = 1,

then the solid conduction equation reduces to Laplace’s equation for the solid phase

temperature Θ

∇2Θ = 0

and the heat flux boundary condition reduces to

Bλ∇Θ · n̂− λ∇T · n̂ = ψ(ϑ) +DR

(
1− (1 + ATT )4

)
.
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Also recall that the stress tensor is

τ = η

(
∇u +∇uᵀ − 2

3
(∇ · u) I

)
.

The flow properties of density, viscosity, thermal conductivity, and specific heat capacity

are assumed to vary with temperature so that

ρ = ρ(T ) η = η(T ) λ = λ(T ) cp = cp(T ).

The flow density is ρ = 1/(1 + ATT ). It is suggested in Hernández and Zamora [86]

that the temperature dependant functions for viscosity and thermal conductivity can

be approximated as

η =
(1 + ATT )3/2

1 + ATT/ (1 + C1/T0)

λ =
(1 + ATT )3/2

1 + ATT/ (1 + C2/T0)

where C1 = 0.36T0 and C2 = 0.66T0 are constants chosen in such a way as that λ and

η correspond to the properties of air. The ambient temperature is T0 = 300 K.

0 100 200 300 400 500
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

T (◦C)

η

(a) η = (1+ATT )3/2

1+ATT/(1+C1/T0)

0 100 200 300 400 500
1

1.2

1.4

1.6

1.8

2

2.2

2.4

(b) λ = (1+ATT )3/2

1+ATT/(1+C2/T0)

Figure 6.4: Temperature dependant functions for viscosity (η) and thermal
conductivity (λ) compared with data, shown as asterisks, from The Engineering Toolbox [87].

The ambient temperature is T0 = 300 K.

Figure 6.4 shows the functions η(T ) and λ(T ) against the temperature together

with data points from The Engineering Toolbox [87] which shows that the functions
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are in fairly good agreement with the data. The specific heat capacity cP varies

by less than 7% between the temperature range of 20◦C to 400◦C. Therefore it is a

sufficient approximation to assume that the specific heat remains constant, taking

cP = 1 everywhere.

The parameters of the problem are the Raleigh number Ra = Ra(l, J0), heating

intensity AT = AT (l, J0), and reradiation number DR = DR(l, J0) where l is the length

scale and J0 is the heating rate. Prandtl number Pr is also, strictly speaking, a

parameter of the problem. However, it is the heating rate and sample size that will

vary in the present study and the Prandtl number does not depend on either l or J0

(Pr = ν0/κ0). Therefore, for the present study, the Prandtl number Pr will remain

constant.

The only parameter of the Boussinesq problem without reradiation was the Rayleigh

number Ra which can be interpreted as a change in the cylinder size and/or the

heating rate. However when assuming variable flow properties and reradiation the

nondimensional temperature range AT and reradiation factor DR are introduced.

Therefore when analysing the numerical results it would be more meaningful, and

manageable, if changes in l and J0, which lead to changes in Ra, AT , and DR, are

explored.

The approximate physical properties of solid wood and air at ambient temperature

(300 K) are [18, 46, 66]

cs0 ≈ 2.500 J/(kg K) ρs0 ≈ 1, 000 kg/m3 κs0 ≈ 10−7 m2/s

λs0 ≈ 1/4 W/(m K) cp0 ≈ 1, 000 J/(kg K) ρ0 ≈ 1.2 kg/m3

κ0 ≈ 2.2× 10−5 m2/s λ0 ≈ 1/40 W/(m K) ν0 ≈ 1.6× 10−5 m2/s

η0 ≈ 1.8× 10−5 Pa s ε ≈ 6/7 ς ≈ 5.67× 10−8 J/(m2 K4 s).

After applying these approximations to wood and air properties at ambient temperature

conditions, the nondimensional parameters of the natural convection model can be

approximated as (see section 4.2)

Pr =
ν0
κ0
≈ 0.7, Bλ =

[
λs0
λ0

]
≈ 10, DR =

[
εςT 4

0

J0

]
≈ 400

J0

AT =
Tc − T0
T0

=
lJ0
λ0T0

≈ 40 lJ0
T0
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Ra =
gl3 (Tc − T0)
ν0κ0T0

=
gl3

ν0κ0
AT ≈ (3000 l)3AT .

Comparison with constant flow properties model

Table 6.3: Average Nusselt numbers Nu (Nuconst corresponds to constant η and λ) for
various sized cylinders (diameter l mm) for constant heating rate J0 = 40 kW/m2. The

approximate percentage change is also tabulated.

l (mm) Ra (2 S.F.) Nu Nuconst % difference
1 1.4 ×102 1.044 1.359 30
2 2.3 ×103 1.432 1.932 35
4 3.7 ×104 2.050 2.841 39
8 5.9 ×105 3.050 4.495 47
12 3.0 ×106 3.911 6.021 54
16 9.4 ×106 4.707 7.365 56

Table 6.4 shows the average Nusselt numbers for the temperature dependent viscosity

and thermal conductivity model compared with the constant flow properties model.

Particularly for large cylinders (corresponding to large Rayleigh numbers Ra) the

difference is significant (over 50% for Ra ∼ 106). The average Nusselt number is

always larger for the constant viscosity and thermal conductivity model. This suggests

that there is a greater convective heat transfer so that the cylinder is losing heat

more readily compared to the temperature dependent flow properties model. A model

which incorporates temperature dependent flow properties then would predict ignition

conditions for smaller samples.

This highlights the importance of considering temperature dependent flow properties,

particularly for larger Rayleigh numbers Ra, in order to obtain more accurate results.

Since both the viscosity and thermal conductivity of the surrounding air increase

with temperature, the cylinder loses heat more readily compared to the case when it

is assumed that η and λ as constant (taking the values for viscosity and thermal

conductivity at ambient air temperature). The average surface temperature on

the cylinder therefore is less than that predicted by the constant flow properties

model. Both viscosity and thermal conductivity increase monotonically as the air

temperature increases from its ambient value (Figure 6.4). The increased viscosity

at larger temperatures suggest that the convective flow will be reduced (since the air

‘thickness’ is reduced [65]).



CHAPTER 6. NUMERICAL RESULTS FOR HORIZONTAL CYLINDERS 131

Comparison with experimental study [64]

Experiments in [64] indicated that a 1 mm sample did not ignite when exposed to a

41 kW/m2 heating rate from a radiating panel but a 12 mm sample subjected to the

same heating rate did ignite. The numerical simulation based on the fuller model just

outlined helps to show the reason for this.
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(b) l = 12 mm

Figure 6.5: Isotherms (◦C) at heating rate J0 = 41 kW/m2 for (a) l = 1 mm and
(b) l = 12 mm.

Figure 6.5 shows the isotherms for the 1 mm and 12 mm samples with an incident

heating rate of J0 = 41 kW/m2. Clearly the surrounding air around the 12 mm sample

is considerably (over a 100◦C) hotter than the air surrounding the 1 mm sample.

Typically a wooden sample produces enough pyrolysate vapour to support a flame

when the surface temperature is around 350–550◦C (Chapter 3).

Figure 6.6 shows the surface temperature in ◦C of the the 1 mm and 12 mm samples,

with J0 = 41 kW/m2, for varying angle θ which is measured from the cooler side of the

sample in an anticlockwise direction. This means that θ = π/2 is the bottom of the

cylinder and θ = 3π/2 is the top of the cylinder. The average surface temperature T s
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Figure 6.6: Surface temperature around the 1 mm and 12 mm samples, with J0 = 41
kW/m2, in ◦C. The angle θ is measured from the cooler side of the sample in an

anticlockwise direction so that θ = π/2 is the bottom of the cylinder and θ = 3π/2 is the top
of the cylinder.

can be calculated as

T s =
1

πl

∫ πl

0

T |r=0.5 dθ.

Hence T s|l=1mm = 258.8◦C and T s|l=12mm = 352.0◦C to one decimal place. These are

steady state calculations, but they do indicate that the 1 mm sample would not be

heated sufficiently to pyrolyse while the temperature of the 12 mm sample would rise

above 350◦C so that significant pyrolysis should be expected.

Table 6.4: Average Nusselt numbers Nu (Nuconst corresponds to constant η and λ) for
various sized cylinders (diameter l mm) for constant heating rate J0 = 40 kW/m2. The

approximate percentage change is also tabulated.

l (mm) Ra (2 S.F.) Nu Nuconst % difference
1 1.4 ×102 1.044 1.359 30
2 2.3 ×103 1.432 1.932 35
4 3.7 ×104 2.050 2.841 39
8 5.9 ×105 3.050 4.495 47
12 3.0 ×106 3.911 6.021 54
16 9.4 ×106 4.707 7.365 56
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Results for single cylinder in an infinite air domain
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(b) J0 = 20 kW/m2
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(c) J0 = 40 kW/m2
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Figure 6.7: Maximum and average surface temperatures T (◦C) around a horizontal
cylinder against a range of sample sizes l for various heating rates J0.

Figure 6.7 shows the maximum and average surface temperatures T (◦C) around

a horizontal cylinder against a range of sample sizes l for various heating rates J0

(10 kW/m2, 20 kW/m2, 40 kW/m2, and 80 kW/m2). This range of heating rates is

typical of a wildfire flame front as well as the fuel sample thickness l. For relatively small

heating rates (about 10 kW/m2) both the maximum and average surfaces temperatures

are below 250◦C regardless of the sample size. Assuming that significant pyrolysate

vapour is produced when the temperature of any part of a fuel sample exceeds about
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300◦C, this suggests that a heating rate of around 10 kW/m2 is too weak for a fuel

sample to produce enough vapour for ignition to take place. At moderate heating

rates (J0 = 40 kW/m2) the maximum temperature exceeds 350◦C when the sample

diameter is greater than 2 mm. The average surface temperature is less than 300◦C

for small sample sizes (l < 2 mm). The experiments conducted by Cohen and Finney

[64] suggest that a small fuel sample (l = 1 mm) would not produce enough pyrolysate

vapour whereas a larger fuel sample (l = 12 mm) subjected to the same heating rate

(J0 = 41 kW/m2 in their experiments) did pilot ignite. The present numerical results

are consistent with their findings.

Figure 6.8 shows the temperature profiles, velocity field, and streamlines for l = 2

mm, J0 = 20 kW/m2 and l = 4 mm, J0 = 40 kW/m2. Solid temperature profiles have a

similar pattern although they differ significantly in magnitude with a difference between

the maximum temperature of almost 200◦C. The difference between the maximum

and minimum solid temperature is larger for the larger sample which is exposed to

a stronger heating rate. The exposed side of the cylinder (right-hand side) would

be expected to produce pyrolysate vapour much more quickly than the ‘hidden’ side

(left-hand side) of the cylinder.

The natural convection flow entrains fluid from its surroundings and drives it

upwards. Figure 6.9 shows the magnitude of the velocity |u| in m/s against the

nondimensional vertical distance from the centre of the cylinder y. The velocity is zero

at the top of the cylinder surface (y = 0.5) and increases monotonically.

The stronger flow around the larger and hotter cylinder would convect the pyrolysate

vapour more quickly which would dilute a potentially flammable mixture with air. This

would reduce the chances of the production of a flammable mixture which, in turn,

would reduce the possibility of ignition, although none of these issues in the progress

towards flaming are examined here. However, it is envisaged that the strongly nonlinear

increase in the rate of pyrolysis with temperature is likely to dominate, compared with

rising buoyant flow, the chances of the production of a flammable mixture.
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Figure 6.8: Temperature profiles, velocity field, and streamlines for the non-uniform
heating of a single circular cylinder in an infinite air domain.
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Figure 6.9: Magnitude of of velocity |u| m/s against the nondimensional vertical distance
from the centre of the cylinder y. Blue: l = 2 mm and J0 = 20 kW/m2. Red : l = 4 mm and

J0 = 40 kW/m2.

6.2 Vertically aligned parallel cylinders

In this section the natural convection flow around two cylinders, heated radiatively

from an external panel, is explored. The numerical results for the two isothermal

cylinders configuration (Chapter 5) were found to be in good agreement with the

literature [69, 80]. The geometry remains the same, namely two parallel horizontal

cylinders that are vertically aligned, however they are not isothermal but subjected to

a non-uniform radiant heating rate (Chapter 4). The conservation equations in the air

domain are the Navier-Stokes equations and conservation of energy equations. The

heat conduction equations is applicable in the two solid cylinders. It is assumed that

the thermal conductivity and viscosity vary with air temperature. The specific heat

capacity does not vary significantly with temperature so it is assumed to be constant.

Hence the governing equations are

ρu · ∇T = ∇ · λ∇T

ρu · ∇u +∇P = Pr (∇ · τ + Ra ρ T j)

∇ · ρu = 0

ρ =
1

1 + ATT

∇2Θb = 0
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∇2Θu = 0

where the subscripts b and u denote the bottom (upstream) and upper (downstream)

cylinders respectively. The heat flux boundary condition is applicable to both the

upstream and downstream cylinder so that

Bλ∇Θb · n̂− λ∇T · n̂ = ψ(ϑ) +DR

(
1− (1 + ATT )4

)
Bλ∇Θu · n̂− λ∇T · n̂ = ψ(ϑ) +DR

(
1− (1 + ATT )4

)
.

Recall that the viscosity and thermal conductivity are temperature dependant and

defined to be [86]

η =
(1 + ATT )3/2

1 + ATT/ (1 + C1/T0)

λ =
(1 + ATT )3/2

1 + ATT/ (1 + C2/T0)

where C1 = 0.36T0 and C2 = 0.66T0 are constants chosen so that η and λ correspond

to air. Also the nondimensional parameters can be written as functions of sample size

l mm and heating rate J0 kW/m2

Pr =
ν0
λ0
≈ 0.7

AT =

[
Tc − T0
T0

]
=
Tc − T0
T0

=
lJ0
λ0T0

≈ 40 lJ0
T0

Ra =
gβl3 (Tc − T0)

ν0λ0
=

gl3

ν0λ0
AT ≈ (3000 l)3AT

Bλ =

[
λs0
λ0

]
=
ρs0cs0κs0
ρ0cp0κ0

≈ 10

DR =

[
εςT 4

0

J0

]
≈ 400

J0

which correspond to the properties of wood and air. Again conditions for the entry

and exit of the outer boundary are

u · t = 0 T = 0 σ · n = 0

and

u · t = 0 ∇T · n = 0 σ · n = 0

respectively.
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Figure 6.10: Isotherms and velocity field for the case of l = 1 mm and 16 mm with
J0 = 40kW/m2. Distance between the cylinders is l mm so that SD = 1.
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Figure 6.10 shows isotherms and the velocity field for the case when the length

scale is l = 1 mm and l = 16 mm with the heating rate J0 = 40 kW/m2. The range

of sample sizes and the heating rate are representative of typical wildfire vegetation

and fire intensities [2, 88]. Isotherms for constant values of T/T0 are shown where the

units for both T and T0 are ◦C, so that T/T0 = 1 corresponds to T = 26.85◦C, since

the ambient temperature

T0 = 300 K = (300− 273.15)◦C.

The isotherms together with the velocity field show that the downstream cylinder is

hotter than the upstream cylinder. This is due to the downstream cylinder being

surrounded by air which has been entrained primarily from the air which has passed

over the upstream cylinder. A thin boundary layer is observed for l = 16 mm where

the effects of the non-uniform heating term ψ(θ) are evident from the asymmetry of the

isotherms near the cylinders. Higher temperatures are attained for the larger cylinders.

Figure 6.11 shows the temperature and velocity profiles for sample size l = 8 mm and

distance between the cylinders SD = 1 for (a) J0 = 20 kW/m2 and (b) J0 = 80 kW/m2.

The maximum temperature obtained occurs around the downstream cylinder with

temperatures around 610 K and 962 K for a heating rate of J0 = 20 kW/m2 and

J0 = 80 kW/m2 respectively. The flow field appears to be the same. However, the

magnitude in the velocity is larger when the samples are exposed to a stronger incident

heat flux. This feature is illustrated in Figure 6.12 where the vertical velocity v m/s

is plotted against the nondimensional horizontal distance x from the centre of the

downstream cylinder. The velocity is zero on the boundary of the cylinder (no-slip

condition) and tends to zero as x→ 0. However, for cylinders subjected to a strong

heating rate the vertical component of velocity is greater than that of cylinders exposed

to more modest heating rates.

Table 6.5 shows the average Nusselt numbers (three decimal places) for the upper

(downstream) and bottom (upstream) cylinders. These numbers are divided by the

average Nusselt number for the solitary cylinder scenario. The distance between the

two cylinders is l mm. Hence the distance between the cylinders increases as the length

scale l increases. For every l the corresponding Rayleigh number Ra is also listed (2

significant figures) as Ra only depends on the length scale l and heating rate, which
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Figure 6.11: Temperature profiles, velocity fields, and streamlines for two vertically aligned
cylinders with SD = 1.
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Figure 6.12: Vertical velocity v [m/s] against the nondimensional distance x from the
centre of the downstream cylinder. Heating rates considered are J0 = 20 kW/m2 (blue) and

J0 = 80 kW/m2 (red).

Table 6.5: Ratio of Nusselt number for bottom cylinder and single cylinder (Nub/Nu1), and

the upper cylinder with the single cylinder (Nuu/Nu1) with J0 = 40 kW/m2.

l (mm) Ra (2 S.F.) Nub/Nu1 Nuu/Nu1

1 1.4 ×102 0.872 0.627
2 2.3 ×103 0.905 0.641
4 3.7 ×104 0.953 0.659
8 5.9 ×105 0.983 0.679
12 3.0 ×106 0.992 0.691
16 9.4 ×106 0.994 0.694

is constant, J0. Conductive heat transfer is more dominant at smaller length scales l

with convective heat transfer being dominant at larger length scales.

Figure 6.13 shows the temperature profiles, velocity field, and streamlines for

(a) SD = 0.5 and (b) SD = 2. The samples size and heating rate remain constant at

l = 2 mm and J0 = 40 kW/m2 respectively. For close cylinder spacings, the downstream

cylinder is more exposed to the wake of the upstream cylinder. The upstream cylinder

acts as a forced convection field [4] for the cylinder above it, resulting in stronger

convection currents. The close cylinder spacing means that the temperature difference

between the bottom cylinder and the air above it is reduced.

This means that the heat transfer between the cylinders is dominated by convection
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Figure 6.13: Temperature profiles, velocity fields, and streamlines for two vertically aligned
cylinders. Heating rate and sample size are fixed. Distance between the samples is

(a) SD = 0.5 and (b) SD = 2.
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Figure 6.14: Average Nusselt number ratios against distance SD between the upstream
and downstream cylinders. Cylinder diameter and heating rate are l = 2 mm and

J0 = 40 kW/m2 respectively.

which is evident from the reduced average Nusselt number at close cylinder spacings

(Figure 6.14). At larger cylinder spacings, the heat transfer performance of the upstream

cylinder approaches that of the single isolated cylinder (section 6.1.3). The temperatures

attained by the cylinders is increased when they are closer together with a maximum

temperature of about 672 K when SD = 0.5 and 654 K when SD = 2, a relative increase

of about 3%.

6.3 Conclusions

Steady solutions for the natural convection around cylinders subjected to a non-uniform

heating rate have been obtained. The governing equations for mass, momentum,

and energy, presented in Chapter 4 were solved using COMSOL Multiphysics for

non-shadowing configurations.

Variable flow properties and reradiation effects are found to have an appreciable

effect on the temperature and flow around an isolated cylinder in an infinite domain.

Therefore, it is argued that reradiation effects, together with variable air thermal
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conductivity and viscosity, need to be included in the model.

Numerical simulations are carried out for a similar configuration to that of the

experimental studies of Cohen and Finney [64]. The experimental setup involved

exposing wood-based particles to an incident heating rate of J0 = 41 kW/m2 from a

radiating panel. The pyrolysis model results (Chapter 3) suggest that a wooden sample

produces enough pyrolysate vapour to support a flame when the surface temperature is

around 350–550◦C. The present natural convection model suggests that the temperature

around a 1 mm sample is well below this threshold. The surface temperature for much

of the 12 mm sample exceeds 350◦C and reaches a maximum temperature of over

500◦C. This suggests that a 12 mm sample, receiving radiant heating of 41 kW/m2,

will produce enough pyrolysate vapour to support a flame. However, for the 1 mm

sample, the surface temperature is too low for pyrolysis reactions to take place.

For the single isolated cylinder, the surface temperature increases as the sample size

and heating rate increase. Surface temperatures remain well below 350◦C at a heating

rate of 10 kW/m2 even when the sample diameter is relatively large (l = 16 mm). For

large fuel samples the difference between the maximum and minimum temperatures

is large. Therefore, it is expected that the side exposed to the radiating panel2 will

produce pyrolysate vapour much more quickly than the unexposed side. Larger fuel

samples also have a stronger flow around them compared to smaller samples exposed

to the same heating rate. This suggests that the pyrolysate vapour around large

fuel samples would convect more quickly which would dilute a potentially flammable

mixture with air, thus reducing the possibility of ignition.

Numerical results have also been obtained for two vertically aligned cylinders

exposed to a radiant heat flux. These results show that, for close cylinder spacings,

the downstream cylinder is hotter than the upstream cylinder. This is due to the

downstream cylinder being surrounded by air which has been entrained primarily from

the air which has passed over the upstream cylinder. For close cylinder spacings, the

downstream cylinder is more exposed to the wake of the upstream cylinder. This

is analogous to the upstream cylinder acting as a forced convection field for the

cylinder above it which results in stronger convection currents. It is expected, from the

solid temperature profile results of the natural convection model, that close sample

2This is the side of the cylinder where the maximum surface temperature is located.
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spacings would increase the chances of flammability, particular for the cylinder which

is downstream of the rising buoyant flow. However, the flow is stronger around hotter

cylinders which would dilute a potentially flammable mixture with air. This would

reduce the possibility of the production of a flammable mixture. However, it is envisaged

that the strongly nonlinear increase in the rate of pyrolysis with temperature is likely

to dominate in affecting the chance of flammability conditions.



Chapter 7

Numerical results for shadowing

effects

The mathematical procedure for calculating the amount of radiation blocked from one

cylinder in reaching another was presented in Chapter 4 (section 4.3). For multiple

cylinders in arbitrary locations it is possible that one cylinder might block some of

the radiation from the panel from reaching another cylinder. Any point (x, y) on a

cylinder, for which the tangent angle is ϑ, needs to be considered in relation to any

other cylinder Ck with centre (xk, yk) and radius a (Figure 7.1).

The blocked radiation is expressed as a negative radiative contribution arriving at

the point (x, y) and can therefore be expressed as

J̃k = −J0 ×
2

π

(
ζ̃k

1 + ζ̃k
+ arctan(ζ̃k)

)
× ψ̃k(ϑ)

with

ζ̃k ≈
1

6

(
zB/xB

(1 + tan2 γA)
1/2

+
4zB/xB

(1 + tan2 ((γA + γB) /2))
1/2

+
zB/xB

(1 + tan2 γB)
1/2

)
and

ψ̃k(ϑ) =
1

2
[cos (min {π,max [0, γA − ϑ]})− cos (max {0,min [π, γB − ϑ]})) .

The cylinder Ck blocks radiation from the panel between the angles

γA = min {θB,max [θA, β − α]} and γB = max {θA,min [θB, β + α]}

for which the angles γA and γB are equal if there is no shadowing. Angles γA and γB, as

well as ϑ will, in general, vary for different points (x, y) on the surface of the cylinder.

146
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Figure 7.1: Shadowing effect for a point (x, y) on a cylinder due to the presence of cylinder
Ck which blocks some of the radiation from the panel. Figure is not to scale as the radiating
panel is assumed to be much further away from cylinder Ck when modelling the heat transfer.

If there is blocking by multiple cylinders (for, say, k = 1, 2, etc.) then additional

contributions will arise for each corresponding value of k. However particular care

must be taken not to double up the effect when one of these cylinders already partly

falls within the shadow of another. It is worth exploring whether this approach of

taking the blocking of radiation into account gives results significantly different to

when shadowing effects are neglected. The most simple case of shadowing is when one

cylinder blocks some of the radiation from the panel from reaching another.

7.1 Single cylinder shadowing

Consider the case of a cylinder C receiving a reduced heating rate from a radiating

panel due to the presence of cylinder C1. The cylinders, with equal nondimensional

radii a, are assumed to be aligned in a row with a centre-to-centre distance of D

(Figure 7.2). Recall that l = 2a mm is the cylinder diameter. Let SD = D/l be the

nondimensional centre-to-centre distance between the two cylinders C and C1. The

two cylinders are in contact when SD = 1. Varying the parameter SD would alter

the degree of radiation which is blocked by C1 from reaching cylinder C as described

by the mean inclination angle ζ̃1 and the view factor ψ̃1(ϑ) (Chapter 4). Let xB, yB,
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Figure 7.2: Cylinder C1 blocks some of the radiation from the panel from reaching cylinder
C. The centre-to-centre distance between the cylinders is D and the diameter is 2a = l mm.

and zB be the lengths, in mm, of the cylinder C to the radiating panel, the radiating

panel half-height and the cylinder half-width respectively. For now let xB = 100 mm,

yB = 200 mm, and zB = 250 mm, dimensions which are similar to the panel used in the

experiments of Cohen and Finney [64]. Any panel in which each of the lengths xB, yB,

and zB increase by some factor generates the same radiative field around the cylinders.

The importance of assuming variable, as opposed to constant, flow properties was

established in Chapter 4. Therefore it will be assumed that the viscosity and thermal

conductivity vary with temperature

η =
(1 + ATT )3/2

1 + ATT/ (1 + C1/T0)

λ =
(1 + ATT )3/2

1 + ATT/ (1 + C2/T0)

with C1 = 0.36T0 and C2 = 0.66T0 constants which correspond to air [86], and T0 is

the ambient temperature (300 K). Recall that the heating intensity is

AT = (Tc − T0)/T0 = lJ0/λ0T0.

The radiating panel is assumed to be composed of four segments as before but the

negative contribution due to the shadowing is modelled as a single negative contribution.
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This approach is favoured in order to simplify the reconciliation of the overlap between

the shadowing angles and the panel angles.

The total radiation received at a point (x, y) on the surface of cylinder C is

JTotal = J + J̃1

where J denotes radiation received as though cylinder C1 does not shadow C and J̃1 is

the negative contribution due to the presence of C1 which blocks some of the radiation

reaching C.
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Figure 7.3: Full radiation J (solid) and negative radiation −J̃1 (dashed) normalised with
incident heat flux J0 kW/m2 around cylinder C with SD = 2.

Figure 7.3 is a plot of the functions J and −J̃1 which shows the significance of the

shadowing contribution for the nondimensional centre-to-centre distance SD = 2. For

large values of SD the shadowing effects become negligible. However as SD → 1 the

shadowing becomes more pronounced.

Figure 7.4 shows a comparison between the isotherms, in ◦C, when shadowing effects

are, and are not, taken into account (SD = 2) as well as the isotherms for the single

cylinder case. The surrounding air is hotter when cylinders are closer together due

to the increased drag on the flow around and in between the cylinders. This reduces

the cooling effect of the surrounding air flow. When shadowing effects are included
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Figure 7.4: Isotherms (◦C) (a) without shadowing effects, (b) with shadowing effects
modelled, and (c) for the single isolated cylinder. The length scale is l = 1 mm with SD = 2.

The incident heating rate is J0 = 40 kW/m2.

a reduced surrounding air temperature is visible, particularly around the shadowed

cylinder C.

Figure 7.5 gives a comparison of the surface temperature. A significant reduction

in temperature is observed around cylinder C when shadowing effects are taken into

account. The surface temperature around cylinder C1 is reduced only slightly when

shadowing effects are taken into account even though the heating rate for C1 is unchanged

as the cylinder receives the full radiation from the panel. The reduction is due to the

decreased heat transfer between cylinders C and C1 (Figure 7.6) since the temperature

around C is significantly reduced when shadowing effects are modelled.

These numerical results which model the blocking of radiation from reaching a

cylinder suggest that significant changes in the temperature and velocity profile are

observed. The shadowing contribution is more pronounced when the cylinder bodies

are closer together (SD → 1). These results suggest that shadowing effects need to be

taken into account particularly for small values of SD.

Figure 7.7 shows the local Nusselt number for two horizontally aligned cylinders,

of diameter l = 1 mm, subjected to an incident heat flux of J0 = 40 kW/m2, with
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Figure 7.5: Comparison of surface temperature T in ◦C around C (red), C1 (blue) and the
single cylinder (black) when shadowing effects are (dashed) and are not (solid) modelled.

The length scale l = 1 mm and the incident heating rate J0 = 40 kW/m2.
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Figure 7.6: Comparison of local Nusselt number around C (red), C1 (blue) and the single
cylinder (black) when shadowing effects are (dashed) and are not (solid) modelled. The

length scale is l = 1 mm and the incident heating rate is J0 = 40 kW/m2.
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Figure 7.7: Local Nusselt number for two horizontally aligned cylinders C (red) and C1
(blue). Heating rate and sample size are fixed (l = 1 mm and J0 = 40 kW/m2). Distance

between the samples is (a) SD = 1.2 and (b) SD = 5.

nondimensional centre-to-centre distance of (a) SD = 1.2 and (b) SD = 5. Figure 7.8

shows the corresponding temperature and velocity profiles.

It is clear that for close cylinder spacings the heat transfer between the cylinders is

dominated by conduction. For cylinder C the local Nusselt number drops significantly

(Figure 7.7) around the region that is shadowed from cylinder C1. This suggests that the

flow and temperature in that particular shadowed region are reduced. This behaviour

could be conducive for ignition purposes. The reduced flow, with the close cylinder

spacing, would allow pyrolysates from both cylinders C and C1 to mix with air close to

the surface without being strongly diluted by the air.

The surface temperature around cylinder C1 is increased by about 50◦C when the

cylinder spacing is reduced to SD = 1.2 from SD = 5 (Figure 7.9). Such a large change

in the temperature around the sample can make a large difference in the rate at which

pyrolysate vapour is produced (Chapter 3). At large cylinder spacings, the heat transfer

is dominated by convection. This means that the cylinders are mostly losing heat due

to the flow around them rather than heat being conducted to the surrounding air.

Figure 7.10 shows the vertical velocity v m/s measured along a horizontal line

moving right from the centre of cylinder C1. This is the cylinder which is fully exposed

to the radiating panel. This flow is stronger when the cylinders are close together.

This reveals a mixed set of conditions affecting the chance of ignition. The should

act to increase the rate of pyrolysate production while the increased flow rate would
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Figure 7.8: Temperature profiles, velocity fields, and streamlines for two horizontally
aligned cylinders. Heating rate and sample size are fixed. Distance between the samples is

(a) SD = 1.2 and (b) SD = 5.
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Figure 7.9: Surface temperature around cylinder C1 for SD = 1.2 (red) and SD = 5 (blue).
Heating rate is J0 = 40 kW/m2 and sample diameter is l = 1 mm.
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Figure 7.10: Vertical velocity v against horizontal distance from the centre of cylinder C1
for SD = 1.2 (red) and SD = 5 (blue). Heating rate is J0 = 40 kW/m2 and sample diameter

is l = 1 mm.
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tend to dilute the pyrolysates more strongly. Of these two effects, the strongly nonlinear

increase in the rate of pyrolysis with temperature is likely to dominate.

7.2 Regular grid of cylinders

In the previous section, shadowing effects were explored when one cylinder blocks some

of the radiative heat, from the panel, in reaching an adjacent cylinder. The effect of

radiation being blocked by more than one cylinder from reaching another is modelled in

this section. As a starting point, the heating of a regular square 2× 2 grid of cylinders

Figure 7.11: A 2 × 2 array of cylinders. The cylinders are labelled analogously to the
entries of a matrix [89].

is explored (see Figure 7.11) for various nondimensional centre-to-centre distances SD.

In a 3× 3 array, or larger, the added problem of overlapping shadowing contributions

is present when the cylinders are sufficiently close together.



CHAPTER 7. NUMERICAL RESULTS FOR SHADOWING EFFECTS 156

7.2.1 2 × 2 array

Cylinders C11 and C21 receive a reduced heating rate from the radiating panel due to

the presence of cylinders C12 and C22 which block some of the radiation from the panel.

The nondimensional centre-to-centre distance between orthogonally arranged adjacent

cylinders on a square grid is SD and the maximum and minimum angles from a cylinder

to the panel are θA and θB respectively. It is assumed that the size of the array is

small compared to the distance between the radiating panel and array of cylinders.

Numerical results for a panel with dimensions 200 mm × 250 mm and a distance 100

mm from the array of cylinders have been obtained.
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Figure 7.12: Average Nusselt number ratios against the nondimensional centre-to-centre
distance SD. Sample size is l = 1 mm and the heating rate is J0 = 40 kW/m2.

Figure 7.12 shows the average Nusselt number ratios Nu/Nu0 against the centre-to-

centre nondimensional distance SD. The sample size and heating rate are l = 1 mm

and J0 = 40 kW/m2 respectively. Recall that the Nusselt number for the non-uniform
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heating rate used in the present study is

Nuψ = −∇T · n̂
T

=
ψ(ϑ) +DR

(
1− (1 + ATT )4

)
−Bλ λs∇Θ · n̂

λT
.

In order to compare results with the natural convection around a single cylinder, the

average Nusselt number around a cylinder Cij, where i, j ∈ {1, 2} is normalised by the

average Nusselt number of the single cylinder Nu0.

Figure 7.13 shows temperature profiles, velocity fields, and streamlines for SD = 2

and SD = 4. The heating rate is J0 = 40 kW/m2 and the sample size is l = 1 mm.

Cylinder C12 attains the largest temperature mainly due to the hot buoyant air that

has flowed over cylinder C22. It also, like cylinder C22, receives the full radiation from

the panel. Larger solid and air temperatures are obtained for smaller values of SD

which suggests that closer sample spacings better encourage ignition conditions.

Figure 7.14 shows the vertical velocity v plotted against the horizontal distance

measured to the right from the centre of cylinders C22 and C12 for SD = 2 and SD = 4.

The vertical flow on the hotter side of the downstream cylinder (C12) is stronger

compared to that of the upstream cylinder (C22). The vertical flow is also stronger for

SD = 2 compared with SD = 4. To some extent this stronger flow would act to dilute

any pyrolysate vapours produced. This would inhibit the production of a flammable

mixture.

Figure 7.15 shows the vertical velocity v against horizontal distance from the

centre of cylinders C21 and C11 for SD = 2 and SD = 4. Again, the heating rate is

J0 = 40 kW/m2 and sample diameter is l = 1 mm. At x = 0.5 there is no flow as a

consequence of the no slip boundary condition. For SD = 2, at x = 1.5 there is also no

flow. This is due to the presence of cylinders C12 and C22 so that the no slip condition

is again imposed. Similarly, for SD = 4, the presence of cylindersC12 and C22 means

that there is no flow at x = 3.5. Vertical flow in-between the cylinders is much stronger

at SD = 4 as is the flow between the downstream cylinders. The vertical flow between

the downstream cylinders for SD = 4 is actually stronger than the flow on the hotter

side of cylinder C12 at SD = 2.
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Figure 7.13: Temperature profiles, velocity fields, and streamlines for a 2× 2 array of
horizontally aligned cylinders. Heating rate is J0 = 40 kW/m2 and sample size is l = 1 mm.
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Figure 7.14: Vertical velocity v against horizontal distance from the centre of cylinders
C22 (blue) and C12 (red) for SD = 2 (solid) and SD = 4 (dashed). Heating rate is

J0 = 40 kW/m2 and sample diameter is l = 1 mm.
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Figure 7.15: Vertical velocity v against horizontal distance from the centre of cylinders
C21 (blue) and C11 (red) for SD = 2 (solid). Heating rate is J0 = 40 kW/m2 and sample

diameter is l = 1 mm.
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Figure 7.16: A 3 × 3 square array of cylinders. The cylinders are labelled analogously to
the entries of a matrix [89].

7.2.2 3 × 3 array

A regular square grid of nine cylinders (Figure 7.16) with a centre-to-centre distance

of SD receiving heat from a radiating panel is solved numerically. The same labelling

convention used for the 2× 2 array is applied. In this scenario, there could be as many

as five cylinders blocking radiation from the panel and potentially a doubling up effect

when one of the cylinder already falls within the shadow of another.

Cylinders Ci3, for i = 1, 2, 3, will receive the full radiation from the panel as there

are no cylinders blocking the path from the panel to the cylinders. Cylinders Ci2
will receive a reduced heating rate because of the presence of cylinders Ci3 which is

analogous to the 2× 2 array case. However, for cylinders Ci1 there will be some overlap

of radiation contributions.

Recall that Figure 4.8 showed the shadowed regions on cylinders Ci1 with i = 1, 2, 3

and SD = 3. This is much easier to implement as the overlap regions are complete, there

is no partial overlapping, so that it is easy to simply omit the blocking contribution of

a cylinder. The critical value of SD for which there is no partial overlapping in the
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blocking is SDc ≈ 2.2.

Results have been obtained for a range of nondimensional orthogonally arranged

centre-to-centre distances SD on a square lattice. The Navier-Stokes equations coupled

with the energy equation are solved assuming variable flow properties (variable density,

viscosity, and thermal diffusivity).

Figure 7.17 (a) shows the temperature, in ◦C, of the cylinders and the surrounding

air, together with the velocity vector field and streamlines. The heating rate is

J0 = 40 kW/m2 and sample diameter is l = 1 mm. Cylinder C13 is the hottest whereas

C31 attains the coolest temperatures. Recall that cylinders Ci3, with i ∈ {1, 2, 3}, will

receive the full radiation from the panel differing from the rest of the cylinders which

receive reduced heating due to shadowing effects. In addition to the full radiation

impinging C13, additional convective heating is present due to the hot buoyant air rising

from cylinders C33 and C23. Cylinder C31 receives reduced heating due to shadowing and

does not have the assistance of convective heating from below. Cylinder C21 benefits

from the buoyant heating from C31 but receives even less radiation from the panel as

the shadowed regions are more prominent compared to C31. This results in a more

uniform temperature distribution around cylinder C21.

For comparison Figure 7.17 (b) shows the temperature, velocity field, and streamlines

for SD = 4. The heating rate is J0 = 40 kW/m2 and sample diameter is l = 1 mm.

The cylinders have the same dimensions as before but the distance between them is

now greater. The maximum and minimum temperatures achieved by the cylinders are

reduced due to the cylinder spacing giving rise to a reduction of heat transfer between

the cylinders. Cooling air from below is also able to flow more freely through the array.

However cylinders which are shadowed receive a larger amount of radiation due to

the cylinder spacing allowing more radiation to impinge on the partially shadowed

cylinders. This is most clearly evident when observing the solid temperature profiles of

C11 comparing with the SD = 2 configuration.

Figure 7.18 shows the average Nusselt number ratios for cylinders Ci3, where

i ∈ {1, 2, 3}. The average Nusselt number is normalised with that of the single cylinder

case at the same Rayleigh number Ra in order to show the extent to which the

interaction between the surrounding cylinders degrades the heat transfer performance

relative to the single cylinder case [71]. Cylinder C33 is almost unaffected by the
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Figure 7.17: Temperature profiles, velocity fields, and streamlines for an array of 3× 3
horizontally aligned cylinders. Heating rate is J0 = 40 kW/m2 and sample size is l = 1 mm.
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Figure 7.18: Average Nusselt number ratios for cylinders Ci3, where i ∈ {1, 2, 3}. Sample
diameter is l = 1 mm and heating rate is J0 = 40 kW/m2.

surrounding cylinders for large cylinder spacings which is evident from the fact that

N̄u33/N̄u0 → 1 for large SD. For smaller SD the heat transfer rate reduces as the

buoyant flow cannot completely pass the narrow spaces above resulting in a larger

stagnation region at the bottom of a cylinder [69].

Figure 7.19 shows the vertical velocity v against the horizontal distance to the right

from the centre of a particular cylinder. Again the heating rate is J0 = 40 kW/m2

and the sample diameter is l = 1 mm. The vertical velocity is measured between the

cylinders. These results suggest that flow is significantly stronger for larger cylinder

spacings. Buoyant flow is slightly increased around cylinders C12 and C22 compared the

flow around cylinders C11 and C21. This can be attributed to the additional reduction

in heating around cylinders C11 and C21 due shadowing effects. This means that the

solid temperature around these cylinders is reduced which means the flow around them

will also tend to be reduced.
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Figure 7.19: Vertical velocity v against horizontal distance from the centre of a particular
cylinder. Heating rate is J0 = 40 kW/m2 and sample diameter is l = 1 mm.
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7.3 Conclusions

The effects of reduced heating due to surrounding cylinders blocking radiation from

the panel has been analysed. Geometrical arguments have been used together with an

effective ‘negative’ panel to quantify the extent of shadowing on a particular cylinder.

For a 2× 2 array only adjacent cylinders can potentially block incoming radiation

from the panel. For larger arrays, however, there can be a doubling up effect on the

shadowing contribution so a suitable minimum cylinder spacing is required to avoid this

situation in the numerical simulations. Larger cylinder temperatures and surrounding

air temperatures are achieved for smaller cylinder spacings. This can be attributed

to the surrounding cylinders having a greater insulating effect when they are closer

together. For larger cylinder spacings there is less shadowing. This results in larger

heating rates for partially blocked cylinders. However the cylinders lose heat more

readily due to the increased cylinder spacing.

This insulating effect is increased for larger arrays of cylinders. Cylinders closest

to the radiating panel receive the full radiative heat. Cylinders far away from the

panel receive less radiative heat from the panel since, potentially, up to five cylinders

can block radiation from reaching these cylinder for a 3 × 3 array. Close cylinder

spacings gives rise to an increase in the conductive heat transfer between the cylinders.

For larger cylinder spacings the heat transfer between the cylinders is dominated by

convection.

For the two vertically aligned cylinders (Chapter 6) a close cylinder spacing results

in an increase of the temperature and flow around the cylinders. However, this may not

be the case in arrays of cylinders since an increase in the distance between the samples

allows more radiation from the panel to reach cylinders that are partially shadowed.

There is also strong vertical flow between the cylinders when the centre-to-centre

distance is large. Therefore, there is a complicated interaction between solid temperature

and buoyant flow speed which would affect the production of a potentially flammable

mixture.



Chapter 8

Conclusions

Two important physical phenomena, the pyrolysis process and natural convection, which

occur when solid vegetal fuels are exposed to radiative heating have been examined.

A one-dimensional time dependent model is presented for the pyrolysis process and a

two-dimensional steady model for the natural convection phenomenon.

A simplified model for the fuel pyrolysis, gaseous mixing, and conditions for

flammability, the onset of ignition in vegetal fuels, of slab, cylinder, and sphere

geometries, has been presented. Numerical results, using the finite element software

COMSOL Multiphysics, are obtained for varying external radiant heating rates, fuel

sample sizes, and initial fuel moisture contents. Drying, charring, and fast pyrolysis

processes have been included in order to estimate when and where a flammable mixture

is formed. The geometry of the vegetal fuel sample plays a crucial role in its thermal

degradation when exposed to radiant heating on its surface. Cylinder and sphere like

fuels heat up more rapidly than slab like fuels due to their larger surface-area-to-volume

ratio. The larger external volume in these geometries also speeds up the process of

gaseous mixing which leads to a more rapid generation of a flammable mixture. Initial

fuel moisture content delays the flash point time. The evaporated moisture dilutes the

oxygen and fuel in the external gas mixture and can push away the location of the

flash point. Char production is dominant at lower temperatures/heating rates. The

temperature at the flash point time is found to be around 350◦C–550◦C for the range

of parameters that have been explored. This large temperature range suggests that

using a fixed value of ignition temperature, which is the approach typically adopted in

integral based models [29], is an oversimplification. There are, however, limitations in

166
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the applicability of the pyrolysis model as studied here towards wildfire flammability

conditions. For a typical wildfire an isolated vegetal fuel would not be encountered.

It is more common to have a line, or array, of fuels and vapour mixing from multiple

sources would act together in a buoyant two or three dimensional flow field. The

heating rate would not be uniform as it would depend on the geometry of the fuel

sample and radiative source.

A two-dimensional natural convection model has been presented which takes into

account non-uniform heating, multiple fuel samples, and shadowing effects. Pyrolysis

processes have been neglected in this natural convection model in order to focus on

temperature and flow behaviour. The suitability of COMSOL Multiphysics in solving

simpler natural convection problems [57–60, 68–71] was explored prior to solving the

full problem presented in this thesis. Numerical results were found to be in good

agreement with the literature for isothermal and uniform heating conditions.

For the full natural convection problem, variable flow properties and reradiation

effects are found to have an appreciable influence on the temperature and flow around

an isolated cylinder in an infinite domain. Numerical simulations were carried out

for a similar configuration to that of the experimental studies of Cohen and Finney

[64]. The experimental setup involved exposing wood-based particles to an incident

heating rate of J0 = 41 kW/m2 from a rectangular radiating panel. The numerical

results for the pyrolysis model (Chapter 3) suggest that a wooden sample can produce

enough pyrolysate vapour to support a flame if the surface temperature rises above

about 350◦C. The natural convection model used here suggests that the temperature

around a 1 mm sample is cooled by the induced airflow to well below this threshold

temperature. The surface temperature for much of a 12 mm sample exceeds 350◦C,

reaching a maximum temperature of over 500◦C. This suggests that a 12 mm sample,

receiving radiant heating of 41 kW/m2, will, almost certainly, produce the necessary

pyrolysate vapour to support a flame. However, for the 1 mm sample, the surface

temperature remains too low for pyrolysis reactions to take place.

For the single isolated cylinder, the surface temperature increases as the sample size

and heating rate increase. Surface temperatures remain well below 350◦C at a heating

rate of 10 kW/m2 even when the sample diameter is relatively large (l = 16 mm). For

large fuel samples the difference between the maximum and minimum temperatures
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is large. Therefore, it is expected that the side exposed to the radiating panel will

produce pyrolysate vapour much more quickly than the unexposed side. Larger fuel

samples also have a stronger flow around them compared to smaller samples exposed

to the same heating rate. This suggests that the pyrolysate vapour around large

fuel samples would be convected away more quickly which would tend to dilute the

concentration of fuel vapour thus reducing the possibility of ignition. Therefore, there

is a complicated interaction between solid temperature and buoyant flow speed which

would affect the production of a potentially flammable mixture. However, the strongly

nonlinear increase in the rate of pyrolysis with temperature is likely to dominate in

affecting the chance of flammability conditions, ensuring that a flame could be created

at some stage as the heating rate or sample size is increased.

Numerical results have also been obtained for two vertically aligned cylinders

exposed to a radiant heat flux. These results show that, particularly for close cylinder

spacings, the downstream (or uppermost) cylinder is hotter than the upstream (or

lower) cylinder. This is due to the downstream cylinder being surrounded by hotter

air which has been entrained primarily from the air which has passed over the already

heated upstream cylinder. For close cylinder spacings, the downstream cylinder is more

exposed to the wake of the upstream cylinder. It is expected, from the solid temperature

profile results of the natural convection model, that close sample spacings would increase

the chances of flammability, particular for the cylinder which is downstream of the

rising buoyant flow, even though the flow is stronger around hotter cylinders which

again would tend to dilute a potentially flammable mixture with air.

The effects of reduced heating due to surrounding cylinders blocking radiation from

the panel is also incorporated in the natural convection model. Geometrical arguments

have been used together with an effective ‘negative’ radiant panel to quantify the

extent of shadowing on a particular cylinder. For a 2× 2 array only adjacent cylinders

can potentially block incoming radiation from the panel. For larger arrays, however,

there can be a doubling up effect on the shadowing contribution so that a suitable

minimum cylinder spacing has restricted the range of calculations carried out in order

to avoid this situation in the numerical simulations. Larger cylinder temperatures and

surrounding air temperatures are observed for smaller cylinder spacings. This can be

attributed to the more restricted airflow due to the surrounding cylinders having a
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greater insulating effect when they are closer together. For larger cylinder spacings there

is less shadowing. This results in larger heating rates for partially blocked cylinders.

However the cylinders lose heat more readily due to the increased convective heat

transfer. Cylinders far away from the panel receive less radiative heat from the panel

since, potentially, up to five cylinders can block radiation from reaching these cylinder

in a 3 × 3 array. Close cylinder spacings give rise to an increase in the conductive

heat transfer through the air between the cylinders. For larger cylinder spacings the

heat transfer between the cylinders is dominated by buoyant convection. For the two

vertically aligned cylinders (Chapter 6) a close cylinder spacing results in an increase

in the temperature and flow around the cylinders. However, this may not be the case

in arrays of cylinders since an increase in the distance between the samples allows more

radiation from the panel to reach cylinders that are partially shadowed. There is also

stronger vertical flow between the cylinders when the centre-to-centre distance is larger.

This suggests that, for larger fuel arrays packed closer together, flammable conditions

are more likely to occur than for smaller arrays of fuel cylinders of the same diameter.

The pyrolysis process and natural convection flow have been dealt with separately

in this thesis. An extension to this research could be made by combining these two

models. This would take the form of a two-dimensional time dependent pyrolysis model

which incorporates buoyant fluid flow, non-uniform heating, and shadowing effects.

A model which incorporates both the pyrolysis and natural convection processes has

been studied by Kwon et al. [90]. However, their work focuses on closed domains and

a single dry fuel sample. The study could also be extended by managing the doubling

up effect on the shadowing contribution for close cylinder spacings so that temperature

and flow results for more closely-spaced cylinders could be analysed. Finally, the study

could also be extended to radiant heating of fuel samples of non-circular cross sections,

such as square, rectangular, or any other relevant shape that represents vegetal fuel

samples.
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