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In this thesis, we consider the deformation of shell structures defined as thin three-
dimensional elastic bodies. These can be modelled using a lower-dimensional the-
ory but the governing partial differential equation of thin shells contains fourth-order
derivatives which require C1-continuity in their solutions. Consequently, both the
unknown and its first derivatives have to be continuous.

Employing a finite element method in our study suggests that the C1-finite ele-
ment representation of the shell solution has to be employed. Therefore, appropriate
interpolation functions defined on a typical finite element are studied on both straight
and curvilinear boundary domains.

Our study of C1-finite element representations shows that the Bell triangular finite
element which is derived from the quintic polynomials is more appropriate than the bi-
cubic Hermite rectangular element as it converges faster and provides higher accuracy
on domains with straight boundaries. However, when the physical boundary is curved,
a straight-line approximation is not exact and the performance of the Bell triangular
element decreases in terms of both accuracy and convergence rate. To retain a con-
vergence rate and accuracy of the solution of a C1-problem on a curvilinear boundary
domain, the C1-curved triangular finite element is introduced. It is proved to show
superiority in both convergence rate and accuracy when solving the C1-problem on a
curved boundary domain.

Furthermore, numerical comparisons between the solutions obtained from the lin-
ear and nonlinear governing equations with the linear constitutive law are also reported
here. These comparisons confirm that the solutions obtained from the linearised gov-
erning equation agree with those of the nonlinear when a loading is small and they
start to disagree when the loading becomes larger.
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Chapter 1

Introduction

1.1 Motivations

In this thesis, we study the solution of problems in the thin-shell theory by the

finite element method. An elastic body is defined to have the physical property that

the material can return to its original shape after applied forces are removed. A shell

is a three-dimensional elastic body whose thickness is small compared to the other two

dimensions. Although the deformation of a shell arising in response to given loads can

be accurately captured by directly solving the three-dimensional elastic equations, the

shell theory provides a dimensional reduction of the problem.

When a shell is thin, it is reasonable to approximately define the geometry of the

shell structure by only its middle surface of a cross section. Therefore, a system of

differential equations defined on the middle surface that can effectively capture the

displacement and stress of the thin-shell arising in response to applied forces will be

the desired thin-shell model.

There are many assumptions that can be used with characteristics of a typical

shell. However, when it comes to a thin-shell problem, a widely used assumption

in dimensional reduction is the Kirchhoff-Love assumption [2]. The assumption states

that a vector that is normal to the undeformed body has to be normal and unstretched

after deformation. Both the transverse shear and normal stresses are neglected. The

Kirchhoff-Love assumption has proved successful in practice and is widely employed

in many engineering applications ([27], [83]).

Elasticity is the study of how solid objects deform and become internally stressed

15



CHAPTER 1. INTRODUCTION 16

due to a prescribed external force. The external force applied on a specified area is

defined as stress which result in a deformation of a material. When a material changes

as a consequence of stress, the strain tensor has to be considered to provide the relative

amount of its deformation. The relationship between stress and strain is the so-called

constitutive law which can be either linear or nonlinear. The linear relationship is

called Hooke’s law and the small strain is the most important assumption to make the

relation linear.

In this thesis, the shell kinematics will be studied within the framework of thin-

shell elasticity with the linear constitutive law. Its governing equation will be presented

with more detailed descriptions in Chapter 3. Here, for a brief description of our thin-

shell finite element implementations, the following form of the variational principle

formulation is presented.

0 =

∫∫
Ω

F

(
u,
∂u

∂ξi
,
∂2u

∂ξi∂ξj
, δu, δ

∂u

∂ξi
, δ

∂2u

∂ξi∂ξj

)
dΩ, (1.1)

where u, ∂u
∂ξi
, ∂2u
∂ξi∂ξj

, i, j = 1, 2, represent the unknown and its first- and second-order

derivatives, respectively. Furthermore, δ(·) denotes the variation of a function which

represents an admissible change in the function at a fixed value of the independent

variables [40].

From the equation (1.1), we can see that the first-order derivatives, ∂u
∂ξi

, and the

second-order derivatives of the unknown, ∂2u
∂ξi∂ξj

, appear in the governing equation of

a thin shell. To ensure the integral is well defined, the unknown u, its first, and

second derivatives have to be square integrable over the domain. Hence, the unknown

u belongs to a C1-family [78].

In many applications of the continuum mechanics especially thin-shell elasticity,

the finite element method has been commonly used for decades. The finite element

method is a numerical technique for finding approximate solutions of partial differential

equations (PDEs) as well as integral equations. The general idea of the finite element

method is that a given domain is represented by a collection of simple domains called

finite elements.

In each finite element, the solution of the PDE is approximated by a polynomial

of a fixed degree. This polynomial is called a shape function or a basis function in the

finite element method. Its construction employs ideas from the interpolation theory.
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Most classical shape functions that have been employed are in the Lagrange- and

Hermite-family polynomials.

Lagrange polynomials may be employed to approximate a solution that requires

only C0-continuity, whereas Hermite polynomials can be used to provide C1-continuity

in the approximate solution. Further details on Lagrange and Hermite polynomials

can be found in [40], [60].

The choice of shape functions depends on the nature of the desired differential

equation. Some equations require an inter-element continuity of only the unknown

field, some require an inter-element continuity of both the unknowns and their deriva-

tives. In this thesis, the finite element method will be studied with thin-shell problems

whose governing equation contains the second-order derivatives of the displacement,

as in (1.1). Therefore, the continuity conditions between the finite elements have to be

imposed for both the displacements and their derivatives to ensure that the solution

of the shell remains continuous. Hence, the Hermite-family polynomials have to be

considered.

Regarding the shape of a finite element in two dimensions, either rectangular or

triangular elements can be used to discretise a two-dimensional domain into pieces

— called finite elements. In order to approximate functions defined on these finite

elements, approximation or shape functions are derived so that they are associated

to the shape of an element. Shape functions defined over typical elements have been

studied by many researchers to satisfy the C1-continuity in the solution of the C1-

problem. Examples of such an element in two-dimensional space can be found in [28],

[41] for quadrilateral elements and in [38], [43], [54], [71] for a triangular elements.

In many engineering applications, the geometric boundary of a problem is not

always straight. Also, many C1-finite elements have straight sides for both rectangular

and triangular elements. Representing a curved boundary domain with a series of

straight-sided elements exhibits limitations in a convergence rate and accuracy in the

finite element method. These were presented in the studies of [56], [50], [63], [65],

where using straight-sided triangles to approximate a curved boundary domain was

proved to illustrate poor accuracy and slow convergence.

Consequently, many researchers have developed and improved further finite ele-

ments in order to deal with the C1-problems on a curved boundary. The main goal
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of this development is to retain the rate of convergence and accuracy. Also, a curved

boundary can be accurately approximated by an improved element.

1.2 Objective

The goal of this thesis is to understand and address problems about higher-order

finite elements and boundary approximations for the thin-shell theory with the linear

constitutive law. Emphasis will be placed on implementational aspects concerning

topics like the performance of elements and the geometric representation of a circular

domain. Also, we will consider problems related to computations of thin beams and

shells in order to provide an understanding of a dimensional reduction. This is one of

the motivations in a numerical simulation to represent the body with its intrinsically

lower-dimensional space.

1.3 Finite element method in practice

In order to implement a problem, the finite element method works on each finite

element to systematically construct the approximation functions of the solution of a

problem. This will turn the desired PDE into an approximating system of equations.

Then, this system are numerically solved using standard numerical techniques. More

details on the finite element method can be found in [40], [60], [61], [78].

In the finite element method, there are steps involved as follows.

1.3.1 Discretisation

A discretisation is the first step in the finite element method. The given (complex) do-

main is represented by the finite element mesh. After this stage, the domain of interest

is discretised by the typical elements and thus constitutes of many finite elements and

nodes.

In the discretisation, the choice of element type, number of nodes and elements

have to be analysed. The number of nodes and elements will play an essential role

in minimising error of the solution. However, the greater number of both nodes and

elements can be expensive in computational time.
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1.3.2 Consideration of approximation functions

In the finite element method, the solution approach is based on a technique of rep-

resenting by a finite set of basis functions. Therefore, we have to determine a set

of functions to approximate quantities of interest that define over a particular finite

element.

Before we determine approximation functions, the finite element model of the de-

sired equation has to be considered. In solid mechanics, the finite element model

of a problem can be developed either from the principle of virtual work or from the

differential equations.

In this study, the finite element model of a thin-elastic problem will be developed

from the principle of virtual displacement which will be derived in chapter 3. This

model will be the governing equation that allows us to determine a functional space

for both the solution and the approximation functions.

In order to obtain a finite element solution in this study, we exploit the Galerkin

method which allows us to represent the solution with a finite set of global shape

functions. Note that in the finite element method, it is often convenient to define

local shape functions, ψj, on the reference element where the numerical integration is

defined. Also, these local shape functions are parametrised by the local coordinates,

si, of the reference element. Therefore, a finite element solution can be expressed as

u(xk(si)) =
n∑

j=1

Ujψj(si), i = 1, 2, (1.2)

where Uj is discrete unknown coefficients determining the solution at node j in an

element and n is the total number of shape functions defined on the reference ele-

ment. Also, the d-order derivatives of the finite element solution on each element is

represented by
∂du

∂xdm
(xk(si)) =

n∑
j=1

Uj
∂dψj

∂xdm
(xk(si)). (1.3)

From (1.2) and (1.3), we have that the variation for the finite element solution and

its derivatives can be expressed as

δu(xk(si)) =
n∑

j=1

δUjψj(si), (1.4)
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and,

δ

(
∂du

∂xdm
(xk(si))

)
=

n∑
j=1

δUj
∂dψj

∂xdm
(xk(si)). (1.5)

Note that, in order to determine the derivatives of the local shape functions ψj with

respect to the global coordinates xm, the Jacobian mapping will be employed to relate

between the derivatives with respect to the global and local coordinates. This will be

explained more in details in the next section.

After substituting the finite element solutions and its derivatives with their varia-

tions into the finite element model (the governing equation), the shape functions and

the solution space can be determined. In the finite element method, a choice of shape

functions plays an essential role in an implementation in order to obtain a high ac-

curacy solution. The family of Lagrange and Hermite shape functions are the most

two famous which we will consider in this study. More details on both Lagrange and

Hermite shape functions can be found in Appendix A.

1.3.3 Geometric approximation

From the definition of shape functions, they are usually expressed over an interval of a

numerical integration. Therefore, transformation of the geometry and the variables of

the differential equation from the problem coordinates x have to be defined over the

local coordinates s where the numerical integration is defined. Each element, Ωe, of

the finite element mesh, Ω, is transformed to the local-coordinated element, only for

the purpose of numerically evaluating the integrals.

The transformation between the physical and local coordinates can be expressed

as

xk(si) =
n∑

j=1

Xkjψj(si), i = 1, 2, (1.6)

where Xkj are nodal positions of kth coordinate at element node j and ψj(si) are

shape functions associated with element node j approximating geometry. They are

parametrised by the local coordinates si and defined over the reference element. Also,

n is the number of nodes in the reference element.

Since the parametric shape functions are parametrised by local coordinates while

unknowns and their derivatives are based on global ones, their evaluation in the global

coordinates of the value, u(x) and its derivatives, ∂du
∂xd

k
(x) are required. By applying
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the chain rule, the first and second derivatives with respect to the global coordinates

can now be evaluated as
∂u

∂xk
=

∂u

∂sj

∂sj
∂xk

, (1.7)

∂2u

∂xh∂xk
=

∂2u

∂si∂sj

∂si
∂xh

∂sj
∂xk

+
∂2sj

∂xh∂xk

∂u

∂sj
. (1.8)

Note that the summation convention over the local coordinate sj, j = 1, 2, is used.

In order to evaluate these derivatives with respect to the global coordinates, the

Jacobian mapping is employed to transform from the local to the global coordinates.

It is defined as a matrix of the first derivatives of (1.6) and can be expressed as

Jkj =
∂xk
∂sj

=
n∑

l=1

Xkl
∂ψl

∂sj
(s). (1.9)

By substituting the derivatives of the parametric approximation and the Jacobian

mapping in (1.3) and (1.9) into (1.7) and (1.8), we have

∂u

∂xk
=

(
n∑

l=1

Ul
∂ψl

∂sj
(s)

)[
J −1

]
jk
, (1.10)

and,

∂2u

∂xh∂xk
=

(
n∑

l=1

Ul
∂2ψl

∂si∂sj
(s)

)[
J −1

]
ih

[
J −1

]
jk
+
∂[J −1]jk
∂xh

(
n∑

l=1

Ul
∂ψl

∂sj
(s)

)
.

(1.11)

Since we expressed all quantities by the local coordinates s and the shape functions

are considered on the local-coordinated element, this turns the approximations to an

element level.

Also, the integration over the element have to be transformed in order to perform

in the local coordinates as ∫∫
Ωe

(...)dx =

∫ 1

−1

∫ 1

−1

(...)Ĵ ds, (1.12)

where

Ĵ = det(Jkj) (1.13)

is the determinant of the Jacobian mapping between the global coordinates and the

local coordinates.

In general, these geometric shape functions do not have to be the same as para-

metric shape functions. In the finite element method, the degree of geometric shape
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functions can be defined to be lower or higher than the degree of polynomials for

parametric shape functions. The idea of using a lower degree in geometric shape func-

tions is known as the subparametric scheme while using the higher is the so-called

superparametric scheme.

Regarding the subparametric scheme, the linear shape function is widely used to

minimise some difficulties in an implementation. As we can see from (1.8), the second-

order derivatives of the unknown u with respect to the global coordinates involve

also the second-order derivatives of the mapping from local to global coordinates.

Therefore, the C1-geometric shape functions is required to approximate geometry in

order to assure the existence of the second-order derivatives. Using the linear shape

function can thus eliminate the effect of the second-order derivatives term out of the

evaluation of the unknown’s derivatives. However, the linear geometric approximation

can be less accurate when we deal with complex domains as we will illustrate in

Chapter 6.

Contrary to the subparametric and superparametric scheme, the isoparametric

scheme is the idea in which the same degree of polynomial is utilised in both geomet-

ric and parametric shape functions. One big advantage of this scheme is that more

accuracy of the geometry approximation is obtained when a non-polygon domain is

concerned.

1.3.4 Numerical integration

In the finite element method, partial differential equations are usually transformed

to a weak formulation which is an integral form and can be obtained by moving all

terms to one side of the equation, introducing a weight-residual function, and then

integrating through the domain (see [40], [78]). Exact evaluation of the integral is

not always possible because of the complexity of the equation. Therefore, a numerical

integration is taken into account when a finite element implementation is performed.

Several formula are presented and designed to exactly integrate complete polyno-

mials of a given degree. The accuracy of an approximation depends on a choice of

integration schemes, i.e. number of Gauss points and weights. Therefore, the degree of

precision and the number of Gauss points and weights must be determined so that the

function under an integral can be accurately approximated. The formula of various
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degree of precision for integration schemes defined over a rectangle and a triangle can

be found in [21], [40], [53].

Gaussian quadrature in 1D

The 1D-Gaussian quadrature has been specified as∫ 1

−1

f(ξ)dξ ≈
r−1∑
i=0

f(ξi)wi (1.14)

where r is the number of integral points, wi are the weight factors, ξi ∈ [−1, 1] are

the integral points. The r-point Gaussian quadrature formula exactly integrates all

polynomials of degree 2r − 1 or lower [40].

To approximate an integral in a two-dimensional space using a Gaussian quadra-

ture, one-dimensional quadrature schemes are set up in each direction. Consider the

function f(ξ1, ξ2) which depends on the two variables ξ1 and ξ2 defined to contain in

the surface of interest, Ω.

Gaussian quadrature in 2D for a rectangular element

An integration on a square element usually relies on tensor products of the one-

dimensional formula illustrated in (1.14). It normally expresses on [−1, 1] × [−1, 1]

square element. Thus, two-dimensional integral on an arbitrary rectangular element

yields the approximation as follows∫ 1

−1

∫ 1

−1

f(ξ1, ξ2)dξ2dξ1 ≈
∫ 1

−1

I∑
i=1

wif(ξ1, ξ
(i)
2 )dξ1

≈
I∑

i=1

J∑
j=1

wiwjf(ξ
(i)
1 , ξ

(j)
2 ),

(1.15)

where a quadrature scheme with I Gauss points and weights is firstly employed in the

ξ2 direction (ξ
(i)
2 and wi, respectively) followed by a scheme with J Gauss points and

weights for the ξ1 direction (ξ
(j)
1 and wj, respectively).

Gaussian quadrature in 2D for a triangular element

In two-dimensional integrals on triangles, the quadrature scheme will express the for-

mula in terms of triangular coordinates as∫∫
Ω

f(ξ1, ξ2)dξ1dξ2 ≈ Ae

I∑
i=1

wif(λ
i
1, λ

i
2, λ

i
3), (1.16)
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where wi is the weight associated with the point i and Ae denotes the area of the

triangle. Furthermore, (λi1, λ
i
2, λ

i
3) are the area coordinates or barycentric coordinates

of the point i in the triangle described as follows.

Figure 1.1: The geometry of the reference triangle which has three nodes at vertices.

The barycentric coordinates of the point p in the triangle illustrated in Fig. 1.1

are simply defined to be ratios of triangle areas as,

λ1 =
A1

A
, λ2 =

A2

A
, λ3 =

A3

A
, (1.17)

where the area A is the area of total triangle, and the areas Aj, j = 1, 2, 3 are sub-

areas. These ratios of areas form dimensionless coordinates in the plane defined by

points x1,x2,x3 which are vertices of the triangle illustrated in Fig. 1.1.

A barycentric combination of three points takes the form: p = λ1x1 + λ2x2 + λ3x3

where λ1 + λ2 + λ3 = 1. Thus, the three vertices of the triangle have barycentric

coordinates as

x1 ≡ (1, 0, 0), x2 ≡ (0, 1, 0), x3 ≡ (0, 0, 1). (1.18)

1.3.5 Assembly of element equations

Since an implementation works on each element in the finite element method, equations

are systematically constructed at this stage to approximate the solution of a PDE. The

problem is reduced to a finite set of nonlinear residuals by choosing a finite number

of weight, or test, functions in the weak form. This system of equations can be solved

using an iterative method. In this study, the Newton method will be our selected

numerical technique:

Um+1
j = Um

j +∆Uj, j = 1, ..., N, (1.19)
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Jij∆Uj = −ri for i = 1, ..., N, (1.20)

where Um
j are the values of the unknown at node j in the mth iteration, Jij denotes

the global Jacobian of derivatives and ri is the global residuals vector. Also, N denotes

the number of unknowns in the finite element mesh.

In general, the set of deviations ∆Uj; j = 1, ..., N at each iteration m is used to

improve the new approximation to the solution of the system from the initial guess U0
j .

The approximate solution at the (m+1)th iteration can be computed by (1.19). In the

iteration method, the residuals ri are evaluated using the solution from the previous

iteration. The iteration is continued until the convergence criteria is satisfied. For

additional details, see [40].

Each element will provide a contribution to the residuals for which the test function

is non-zero over the element. The residuals reki of the element ek corresponding to the

ith test function can be obtained by using Gaussian quadrature discussed in section

1.3.4. Furthermore, the Jacobian matrix Jek
ij evaluated in element ek corresponding to

the ith test function can be obtained as follow

Jek
ij =

∂reki
∂Uj

for i, j = 1, ..., n. (1.21)

The residuals, reki , and the Jacobian matrix, Jek
ij , obtained from the weak formu-

lation, which is an integral form of a given PDE, are in element-level. Therefore, the

residuals and the Jacobian matrices in each element have to be assembled to obtain

the global system of algebraic equations. For instance, the Jacobian matrix and the

residuals for K 2-node elements in one dimension can be connected in series as the

following forms:

J =



Je1
11 Je1

12

Je1
21 Je1

22 + Je2
11 Je2

12

Je2
21 Je2

22 + Je3
11 Je3

12

Je3
21 Je3

22 + Je4
11

. . .

JeK
22


, (1.22)
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r =



re11

re12 + re21

re22 + re31
...

r
eK−1

2 + reK1

reK2


. (1.23)

For further details on the assembly scheme, see [40], [78].

1.3.6 The finite element solutions and post-processing

Now, at this stage, the residual and the Jacobian matrices develop a system of equa-

tions as follow ∑
Jij∆Uj = −ri for i = 1, ..., N, (1.24)

where Jij denotes the global Jacobian of derivatives and ri is the global residual which

can be obtained from (1.22) and (1.23), respectively. Also, N denotes the number of

nodes in the finite element mesh.

This system of equations will be solved iteratively. With a linear problem, this is

a special case for which Newton’s method converges in one step. The solutions to this

system are the set of deviation ∆Uj; j = 1, ..., N where Uj is the nodal values in a

finite-element mesh. We have that some of these values of Uj can be determined from

the boundary conditions and other constraints which have to be imposed before an

implementation. Hence, only some values of Uj are unknowns and have to be specified

an initial guess.

After we obtained the nodal values, Uj, in the mesh, the finite element solution

and its derivatives throughout the domain can be computed by using equations (1.2)

and (1.3).

1.4 Outline

This thesis is organised into seven chapters. Followed by this chapter, literature re-

view is detailed in chapter 2. In chapter 3, the elasticity mechanics will be elaborated

where the concepts and notations will be provided. Also, we will describe the shell
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kinematics and present the basic shell mathematical model within the framework of

the linear constitutive law. From the general frame work in chapter 3 where the gov-

erning equations with the linear theory of beams and shells are presented in a general

geometry, chapters 4 and 5 will consider a thin beam and a thin shell, respectively,

in the straight and the curved geometries. Furthermore, the finite element implemen-

tations and comparison results between the linear and nonlinear governing equations

will be illustrated in chapter 4 for a beam and chapter 5 for a shell.

Besides the topic of the consistency between the linear and nonlinear governing

equations with a small strain performed in chapters 4 and 5, a finite element im-

plementation of a C1-problem on a curvilinear boundary is considered in chapter 6.

Finally, we conclude the thesis by chapter 7. Directions for future work are also pre-

sented there.



Chapter 2

Literature review

2.1 A C1-finite element with a straight boundary

domain

In this section, we present a perspective review of C1-finite elements with a straight

boundary domain regarding the constructions of the continuously differentiable in-

terpolation functions where the functions themselves and their first derivatives are

continuous between elements. Firstly, we will present an intuitive idea to construct

C1-interpolation functions in one dimension. This will follow by ideas in constructing

those defined in two dimensions for both rectangular and triangular elements.

Regarding a one-dimensional domain, the construction of C1-continuous interpo-

lation functions is very straightforward. Since an unknown is parametrised by only

one-dimensional coordinate, the C1-continuity can be imposed by constraining both

the unknown and the first derivative at the boundary between elements, which is a

single point in each case. The cubic Hermite element is a well-known element that is

constructed with this idea. This element consists of two degrees of freedom of both

the unknown and its first derivative at nodes. Hence, there are in total 4 degrees of

freedom defined on an element. This element has been used successfully in problems

of bending of beams [60].

However, ensuring the continuity of both unknown and its derivatives (or normal

slope) along element edges is difficult to achieve in a two-dimensional space. One

reason for this is that both the unknown and its normal slope have to be uniquely

28
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defined along the boundary of such an element. When a node-based element is con-

cerned, three nodal parameters of unknown value and its first derivatives have to be

prescribed at corner nodes in order to enforce the C1-continuity.

The well-known Zienkiewicz triangle, introduced by Bazeley et al. [33] in 1966,

is an example of the C1-element that employed the intuitive idea of specifying three

degrees of freedom of both unknown and its first derivatives at nodes. This element

has in total 9 degrees of freedom where each vertex contains the unknowns and two

rotational slopes.

Unfortunately, the Zienkiewicz triangle came with one big disadvantage. When

general meshes were concerned, the numerical results showed that the obtained solu-

tions from the finite element method using the Zienkiewicz triangle did not converge

to the exact solution as the mesh was refined. Typically, this is a situation when an

element does not pass a patch test. Note that, we say that the element passes the

patch test if the finite element solutions converge to the exact solution for any patch

of elements. In constructing an arbitrary patch, it is important to use an irregular

geometry since some elements pass the patch test in certain special configurations but

not others.

In 1965, the study of B.M. Irons [12] justified the failure of [33] by showing that

these simple elements were firstly based on low order polynomials for the displace-

ment field and, secondly, they were non-conforming. Non-conforming in this context

means that the mixed second-order derivative is not always the same in neighbouring

elements and, specifically, it has different values at shared vertices. These may cause

convergence problems and unreliable finite approximations. A reader may refer to

chapter 5 for more details.

Regarding the study of B.M. Irons, many researchers like P.G. Bergan [66] in 1980

and B. Specht [14] in 1988 tried to overcome the failure of the patch test by proposing a

new set of polynomials. However, only B. Specht successfully constructed the element

that passed the patch test. His element was proposed by using a new set of quartic

polynomial to define the shape functions. However, the moderate accuracy of solutions

could be obtained from this element.

To deal with different values of the mixed derivatives at shared vertices, Bogner
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et al. [28] in 1966 proposed a bicubic quadrilateral element which included the mix-

derivative as one of the nodal parameters at nodes. This element, called the Bogner-

Fox-Schmidt element, had 16 degrees of freedom comprising of the unknown, the first

derivatives and the mixed second derivative at corner nodes.

The Bogner-Fox-Schmidt element has been widely used with success. Prescribing

an additional mix-derivative degree of freedom at the corner nodes in the element

removed the problem of incompatibility of continuous functions at nodes. However,

it has two main disadvantages. The first is that only structured mesh can be applied

with this element. The second is that the normal slopes do not match continuously

along boundaries when elements meet with different angles.

To circumvent the restriction of structured mesh in the Bogner-Fox-Schmidt, tri-

angular elements have been taken into account. The reason for this is that rectangular

elements are somewhat limited in their boundary shape applicability, whereas trian-

gular elements can be used to represent almost any shape of boundary.

One way to deal with the second disadvantage is to constrain the mid-side node

degree of freedom. This can be done by either using a macro-element or using higher

order derivatives degrees of freedom. In what follows, we expand on these two ap-

proaches and people who developed them.

There are two kinds of element that can be used to construct a macro-element:

quadrilateral and triangle. The quadrilateral macro-element was first introduced in

1968 by B. Fraeijs de Veubeke and G. Sander [10]. Two key triangular macro-elements

were constructed by R. W. Clough and J. L. Tocher in 1966 [71] and M.J.D. Powell

and M.A. Sabin in 1977 [54].

In the construction of the quadrilateral macro-element, B. Fraeijs de Veubeke and

G. Sander employed cubic polynomials as shape functions. These shape functions were

defined over each four triangular regions delimited by the edges of the quadrilateral

and its diagonals. The way they defined degrees of freedom at nodes was similar to

that of the Bogner-Fox-Schmidt element. The results showed that it satisfied con-

tinuity of unknowns and slopes at the interfaces and also showed good convergence

characteristics.

The triangular element developed by R. W. Clough and J. L. Tocher was con-

structed by using cubic polynomials. It had in total 9 degrees of freedom consisting of
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both unknown and its derivatives at each vertex. Note that this element was defined

similarly to that of Zienkiewicz but the shape functions were defined over the sub-

triangles. The element produced excellent results and was named the HCT element,

after Hsieh, Clough and Tocher. Also, it provided nice C1-continuity of the solutions.

It is worth noting that in the early stage of the C1-element construction, the third-

order (or cubic) polynomials gained popularity as shape functions for providing a C1-

continuity over the finite elements. Both complete and non-complete cubic polynomials

were employed in the C1-element constructions. In two dimensions a complete nth

degree polynomial is given by

Pn(x, y) =
n∑

k=0

αi,jx
iyj, i+ j ≤ k, (2.1)

where i and j are permuted accordingly, and αi,j are coefficients. The number of terms

in the nth degree complete polynomial is equal to (n + 1)(n + 2)/2. However, there

were some attempts to construct interpolation functions with lower order polynomials

such as quadratic polynomials [46], [54].

In 1971, L. Morley introduced what is now known as the Morley triangle [46] which

had the lowest possible number of degrees of freedom to provide C1-continuity. The

shape functions were defined by using the quadratic polynomials with 6 degrees of

freedom in total. Unfortunately, the Morley triangle came with a disadvantage. It

did not converge for certain meshes and for general second order elliptic problems as

illustrated in [73].

In 1977, M.J.D. Powell and M.A. Sabin [54] introduced the PSH (Powell-Sabin-

Heindl) macro-element. Its shape functions were the piecewise quadratic defined over

subtriangles. There are variations of the PSH macro-element classified by the number

of subelements where 6 subelements are the minimal case. In general, the PSH ele-

ment comes with 9 degrees of freedom corresponding to function values and the first

derivatives at each vertex but an additional value of the mid-normal derivative can

be introduced. The results showed that the PSH macro-elements were applicable to

arbitrary shaped meshes.

A common advantage of aforementioned macro-elements is that they can greatly

reduce the total number of degrees of freedom defined on an element and the compu-

tation time. However, these elements did not show reliable convergence behaviour for
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some problems like gradient elasticity, see [63].

According to all discussions above, the degree of polynomials employed as a shape

function were lower than or equal to cubic. This resulted in an inadequacy of terms in

polynomial that employed to constrain the C1-continuity along element boundaries.

Also, lower rate of convergence can be seen. Therefore, using higher number degrees

of freedom is another way to ensure the C1-continuity along the boundary element

and also to enhance the rate of convergence.

In 1966, R.W. Clough and C.A. Felippa [15] proposed an element with quadratic

slope variation with 12 degrees of freedom defined over a triangle. The accuracy of

the solutions by using this element were much improved compared to that of elements

with lower number degrees of freedom discussed before.

In 1968, J. H. Argyris et al. [38] introduced a 21-dof triangular element. The

element was constructed by using the complete fifth-order polynomial interpolations

including all second derivatives at vertices and constraining normal derivatives at mid-

side nodes. This element resulted in excellent accuracy and higher rate of convergence

which was quintic. However, having normal derivatives at mid-side nodes as a degree

of freedom made the element more difficult to impose boundary conditions.

Later on in 1969, K. Bell [43] introduced a reduced version of the Argyris element.

It had 18 degrees of freedom with shape functions defined by a complete quartic and

some terms from a quintic polynomials. The Bell element was constructed in order to

neglect the normal derivatives at mid-side nodes in order to make the element more

practical to implement. Eliminating the mid-side nodes degrees of freedom can effect

only small loss of accuracy and a slightly drop of the convergence rate to be quartic.

These features of the Bell element made it very attractive to use. More details can be

seen later in Chapter 5.

There are still many more finite elements with different degrees of freedom and

different sets of polynomials that provide C1-continuity (see [4], [5], [11], [17], [29],

[30], [44], [62]). However, the Argyris and the Bell triangles seem to be two well-known

C1-triangular elements that are widely used in many applications. One reason for their

popularity is that very good accuracy and high rate of convergence are demonstrated

from using the quartic and quintic shape functions.

In overall, we have that including higher order derivatives degrees of freedom can
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make a finite element impractical. Even though a quartic or quintic element provides

better accuracy and higher rate of convergence, the difficulties from imposing boundary

conditions and physical interpretation make an element less attractive. Therefore,

simple elements which have the unknown and its slopes derivative only as degrees of

freedom at nodes are still of interest to many researchers.

2.2 A C1-finite element with a curved boundary do-

main

It is worth noting that certain C1-finite elements mentioned previously successfully

satisfied the requirements of high accuracy and good convergence. Examples can be

seen in [38], [43], [54], [71]. These elements were proved to obtain excellent results for

a problem with straight boundary domains.

However, there are many engineering applications dealing with problems on a

curved boundary domain. Such problems have been solved by many researchers with

a common idea of approximating the curved edge with a series of straight-edged el-

ements. Even though the straight-element approximation of the curved edge gives a

fairly good accuracy, it is well known and is shown by many authors that such an

approximation limit a convergence rate. Numerical evidences for this were given in

some literature ([31], [56], [57], [65]).

In order to obtain the same accuracy and the same rate of convergence, several ways

have been tried and proposed. In [16], [52], [57], [58], [59], special purpose elements

were developed in order to be applicable with the second-order problems and in [7],

[18], [56], [47] for the fourth-order problems.

Unfortunately, the methods derived for the second-order problems are not suitable

for the fourth-order problems. The requirement of C1-continuity makes the construc-

tion of a curved finite element in the fourth-order problem more difficult than one of the

second order. When the fourth-order problem is implemented on a curved boundary,

the use of C1-curved finite elements is required .

In principle, there are two approaches to improve the accuracy of boundary approx-

imation in the C1-curved finite element: isoparametric and subparametric schemes.
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2.2.1 Isoparametric scheme

An isoparametric scheme is the idea to represent parametric and geometric spaces by

the same set of interpolation functions. Using higher degree of polynomial functions,

rather than linear, to approximate the geometry is the crucial idea that improves

accuracy in this scheme.

In 1973, R. Scott [70] presented an idea of the isoparametric method. In his study,

a 2D finite element was studied with the mapping approximating the boundary was

of any arbitrary order. However, it seemed rather impossible to extend this procedure

to 3D elements.

In 1986, M. Lenoir [55] generalised the isoparametric idea developed by R. Scott

to an arbitrary n-dimensional domain where the optimal error estimates for the finite

element solutions of second-order elliptic problems were obtained.

Unfortunately, none of the elements constructed by Scott [70] and Lenoir [55] could

be developed any further to represent an arbitrarily curved edge.

Recently, a study by P. Fischer [65] suggested big disadvantages of the linear geo-

metric aprroximation in C1-elements: poor geometric approximation and the restric-

tion in the convergence behavior. In this study, numerical comparisons between various

C1-triangular elements with different degrees of interpolation functions illustrated the

convergence restriction. With the linear geometry approximation to a curved bound-

ary, it can also be seen that no visible difference in the convergence rates among

elements. This result did not conform with the expectation that a higher polynomial

order of element would show a better result.

In order to improve the isoparametric C1-finite elements, the construction of meshes

play an important role. Since the C1-continuity is required in the fourth-order problem,

meshes that represented the geometry need to be smooth. Therefore, the construction

of isoparametric C1-smooth mesh have to be developed. There are two key researchers

that are noteworthy in this direction: P. Fischer et al. [64] and J. Petera and J.

Pittman [41].

In the study of Petera and Pittman in 1994 [41], the mesh was constructed relating

to the bilinear reference geometry. The algorithm was described by the minimisation

of the quadratic expression with respect to the generalised coordinates.

In 2009, P. Fischer et al. [64] proposed another mesh construction by minimising
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the values of the second-order derivatives of a generalised nodal position. The idea

concerning these second-order derivatives comes from their observation that the varia-

tion of tangent vectors are of highest value along the points where non-smooth initial

mesh with differently oriented elements meet.

Note that both studies of Petera and Pittman [41] and Fischer [64] applied their

mesh constructions on the quadrilateral Bogner-Fox-Schmidt element.

The disadvantage of the mesh construction algorithm presented by P. Fischer [64]

is the requirement of geometric boundary conditions for the minimisation problem.

This makes the algorithm of Petera and Pittman [41] easier to implement than the

one in Fischer’s [64]. On the other hand, the advantage of the Fischer algorithm [64]

for the mesh construction is that it gives higher quality meshes. This opposes to the

result obtained from Petera and Pittman which, relatively, has a poor quality of mesh.

Also, the Fischer method results in more accurate solutions than those of Petera and

Pittman as illustrated in [64].

The performance and applicability of a numerical method of these isoparametric

elements is also presented in the study given by A. Zervos et al. [8]. Nevertheless, it

is noteworthy that only the isoparametric quadrilateral Boxner-Fox-Schmidt element

is considered in most of isoparametric literature.

Due to the good ability of isoparametric meshes in a curved boundary approxi-

mation, P. Fischer [63] extended the isoparametric idea further from a quadrilateral

element to a triangular element. In the Appendix of his thesis, Fischer tried to con-

struct the C1-continuous isoparametric finite elements by using the optimisation algo-

rithm presented by himself [64] to smooth the mesh and applying it to the triangular

Bell element. This was the first time that isoparametric triangular elements with

unstructured meshes were used to solve a fourth-order problem.

In his construction of the isoparametric triangular Bell elements, he employed the

“Lagrange parameters”to construct the shape of triangles by introducing some condi-

tions to an angle at nodes. The mesh optimization proposed in [64] was applied to

smooth the domain geometry. The finite element implementations of the triangular

Bell element showed that nice C1-continuous solutions with good accuracy were ob-

tained. These nice results were obtained when boundaries of the domain were convex.
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However, when a more complex geometry, a plate with a hole at the centre, was dis-

cretised, small discontinuities of the solutions occurred within the mesh construction

at the semicircular boundary of the hole. This was resulted from using the “Lagrange

parameters”to construct the shape of the triangles. Unfortunately, an optimally con-

ditioned system of equations cannot be obtained and it can be satisfied up to only a

small numerical error. Therefore, this leads to an error in the solution.

Besides the difficulties in the mesh construction, the use of isoparametric triangular

elements introduces second-order derivatives for the interpolation of the geometry

which increases the complexity of the boundary interpolation. The construction of

an isoparametric C1-continuous function is not so easy and hence only little work has

been done in the field of isoparametric C1-finite elements.

2.2.2 Subparametric scheme

In the classical subparametric element, the domain of interest is represented by a linear

approximation. Using such a linear mapping between the reference and physical ge-

ometry has the advantage of minimising the complexity of the boundary interpolation

as the mapping is affine. However, it still does not solve the problem of poor boundary

approximation of the curved boundary. In order to provide an accurate approximation

of the curved boundary, one curve-sided element can be used.

The curved finite element constructions were initially developed for dealing with

the second-order problems (in the work of Olson and Lindberg [52], and Zlamal [57]).

Later on, these constructions were extended further to be applicable to the fourth-

order problem (in the work of Zenisek [7], Qing and Li [34], Mansfield [44], Chernuka

[56], and Bernadou [48]).

In 1969, Olson and Lindberg [52] developed annular and circular sector finite ele-

ments in the second-order problem that permitted the exact representation of circular

boundaries. But, this element could not be developed any further to represent an

arbitrarily curved edge.

In 1973, Zlamal [57] presented the transformation from the reference triangle to

the physical triangle, for the second-order problem, that could approximate a curved

boundary. This transformation was defined by including the nonlinear mapping only

for the side of the reference triangle associated with the curved boundary and keeping
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the transformation of the other two sides to be linear. It was employed only along the

curved part of the boundary.

The disadvantage of Zlamal’s element was that the transformation was restricted

to the second-order problem. However, it was still suitable for solving boundary value

problems with an arbitrary boundary. The numerical results given in the study of Zla-

mal showed a remarkable improvement in accuracy. Therefore, these curved elements

were very promising as we can get the same order of accuracy as when the original

boundary is a polygon. The proof of the approximation theorem and error bounds for

a model problem concerning the order of accuracy can be found in [58], [59].

Overall, the work of M. Zlamal ([57], [58], [59]) was an achievement in the con-

struction of a curved finite element for the second order problems.

In 1972, M. W. Chernuka et al. [56] worked on a similar element for the fourth-

order problem. In order to consider circular and elliptical plate bending problems with

curved boundaries, they modified each triangle to include one curved and two straight

edges. In their study, the polynomial space was defined over the original triangle with

no modification in the shape functions.

A disadvantage of this element was that the areas of integration changed and were

extended over the additional curved area. This additional area of integration from

the extended curve made the method even more difficult when complicated integrands

were involved. This made the method unpopular and impractical, even though the

results obtained from this method gave excellent accuracy and good convergence rate.

The method used by Chernuka et al. was similar but independently developed from

Zlamal’s. The next four methods introduced here are variations of Zlamal’s method

in [57], [58], and [59] but for the fourth-order problems.

In 1978, Mansfield [44] presented a method which reduced the effect of the extension

of the area integration referred to. His method was a combination of Zlamal’s idea of

separating the coordinate transformation and the definition of the C1-finite elements

on the standard triangle. Later on, this method was modified and generalised to

Cm-elements by Zenisek [7].

A common disadvantage of both Mansfield and Zenisek’s methods was that they

provide the solution on the approximate but not the real domain. Hence, the ap-

proximate solution they provided was not satisfy the boundary conditions of the real
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domain.

In 1993, M. Bernadou [48] constructed another curved finite elements compatible

with the Argyris triangle and the Bell triangle. He employed a similar idea to that

of M.W. Chernuka et al. [56] and Zlamal [57] where a triangle was modified to have

one curved side. Each curved finite element was constructed in correspondence with a

reference element which makes this method very straightforward to work in numerical

integration. On the other hand, working on the reference element was more compli-

cated than the corresponding straight finite elements. The shape functions used more

degrees of freedom to define the curved element in order to be compatible with the

Argyris or the Bell triangle.

The detailed description of how to implement such curved C1-elements and some

numerical results can be found in [49], [50], [51].

In 1996, G. Qing and L. Li [34] extended M. Bernadou’s work further to modify

and construct more efficient and accurate curved C1-finite elements which satisfy given

boundary conditions on the approximate boundary.

The curved finite elements constructed in both [34] and [48] were quite powerful

in approximating the fourth-order problems on curved boundary domains and, in

both, the associate curved elements retained the convergence rate with good accuracy.

Nevertheless, the implementation of the curved C1-finite element is more expensive

than using just straight finite elements as will show later on in chapter 6 and can

alternatively be found in [34], [49]. This, in my opinion, might be what limits the use

of these elements and motivates some developments from different approaches.

2.3 Alternative methods of C1 problems dealing

with a straight boundary domain

Due to the complexity of C1-finite element constructions, many alternative approaches

have been introduced to implement problems which require the derivatives continuity.

These approaches are developed in order to obtain interpolation functions without

requirements of the C1-continuity. Meshless (or meshfree) methods, penalty parame-

ters, Lagrange multipliers are examples of alternative methods when dealing with the

implementation of the fourth order problem on the straight boundary domain.
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Meshless or meshfree methods is defined to directly use the geometry of the simu-

lated domain for calculations as oppose to the traditional finite element method that

relied on a grid or a mesh. The discretisation for this method is usually based on a

set of nodes.

The construction of the shape functions in the meshless method is flexible with a

help of the weight functions. The constructed shape functions consist of only nodal

displacements degrees of freedom where their continuity is primarily governed by the

continuity of the weight function. Therefore, the accuracy of the method can be easily

optimised by the choice of the weight functions and thus the numerical approach is

greatly simplified.

Examples in this regime are as follows. The Meshless Local Petrov-Galerkin

Method (MLPG), was introduced by Z. Tang et al. [85] for higher-order problems.

In another study by H. Askes and E. C. Aifantis [36], linear gradient elasticity was

modelled with the Element Free Galerkin Method (EFG). P. Krysl et al. [68] applied

the Element-Free Galerkin (EFG) method to thin (Kirchhoff) plates.

In the penalty method, a penalty parameter is introduced to form a series of uncon-

strained problems by adding this parameter to the constrained function. The selection

of the penalty parameter is arbitrary and depends on the smoothness of the original

problem. Since the penalty method is of C0-continuity, it is much simpler than C1

finite element methods. Examples of this method applied to the fourth order problems

can be found in the studies of S. C. Brenner and L. Y. Sang [73] and I. Babuska and

M. Zlamal [37].

Regarding the Lagrange multiplier method, it is usually used to enforce the essen-

tial boundary conditions in other approaches like the meshless method for instance.

Examples can be found in the studies by P. Krysl and T. Belytschko [68] and Shu et

al. [42].

All of the studies mentioned in [36], [37], [42], [68], [85], provide good quality ap-

proximate solutions. Also, these methods can reduce complexity of using higher order

derivatives degrees of freedom required in C1-element so that numerical treatment

such as boundary conditions can be simplified.

However, these alternatives come along with different numerical problems. One of

their disadvantages is that a high number of degrees of freedom has to be used for the



CHAPTER 2. LITERATURE REVIEW 40

additional approximation fields. This is the consequence of their shape functions are,

by definitions, of higher continuity and carry only nodal value. Therefore, many nodal

values have to be defined on an element to be ensure the C1-continuity.

Even though these methods can reduce complexity of using higher order deriva-

tives degrees of freedom required in C1-element, they involve another drawback in

some problems like the thin shell. The difficulties of undesired physical results are

encountered when using C0-elements for example shear and membrane locking.

Shear and membrane locking are physical phenomena that describe a stiffening

effect in finite element method. An inadequate representation of certain deformations

results in making the elements behave too stiff. Hence, the implementation often

illustrates poor performance and can lead to wrong results.

2.4 Alternative methods of C1 problems dealing

with a curved boundary domain

Regarding a C1-finite element with a curved boundary domain, many efforts have been

undertaken to improve a boundary approximation and to overcome the limitation of

convergence rate. We note that a finite element mesh, which is an approximation of

the geometry, can in many situations create errors in numerical results. To overcome

this geometric error, isogeometric analysis and Subdivision surfaces are two alternative

approaches that have been employed by many authors.

The isogeometric framework has been introduced by T.J.R. Hughes, et al. in 2005

[79]. Owing to an important role in engineering designs of Computer Aided Design

(CAD) to approximate the complex geometry, Hughes and his colleagues adopted the

functions that employed in the CADs geometric description to use for the analysis.

These functions typically are B-splines or nonuniform rational B-splines (NURBS)

functions. Therefore, in the isogeometric analysis (IGA) presented by Hughes et al.,

those basis functions that represent the geometry become a basis for the solution space

of variational formulations of the problem as well.

Subdivision surfaces are another research scheme that has been employed to pro-

duce smooth curves and surfaces for many years. The idea of the method is that each

finer mesh is obtained from a coarse mesh by using a recursively subdivision scheme.
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Many schemes have been proposed and employed which, in turn, lead to limit surfaces

with different smoothness characteristics. The most often employed schemes are from

C. Loop [19] and E. Catmull [24] since they are closely related to splines and gener-

ate C2-continuous surfaces over arbitrary meshes. However, the subdivision surfaces

was recently emerged with finite element analysis by F. Cirak et al. [26]. Their work

is based on the framework of the Kirchhoff-Love theory of thin shells with Loop’s

subdivision scheme. The interpolation functions are described locally by quartic box

splines.

Even though these methods arise as an alternative of the finite element method,

they have some drawbacks. Non-locality is one disadvantage of the subdivision sur-

faces. In this scheme, the interpolation of displacement field over one element depends

not only on the nodal values of the element nodes but also depends on those from the

nodes of neighbouring elements. This was described in the work of F. Cirak et al. [26].

Unlike the curved C1-elements, the elements constructed from both the isogeometric

and subdivision schemes have just the nodal value prescribed at nodes. This makes the

methods more difficult to handle when dealing with boundary conditions of clamped

edge problems as derivatives are involved.

On the other hand, these methods also provide advantages over the curved C1-

finite elements. Both the isogeometric analysis and subdivision surfaces decrease a

number of degrees of freedom used in the finite element implementation. Only the

unknown values are carried at nodes. As a consequence, this reduces the coding and

computational time which is relatively costly in the curved C1-implementation. Also,

no nodal rotations are used in the interpolation of these alternative methods as opposed

to the C1-elements that have many degrees of freedom including first and higher order

derivatives and are difficult to implement. Moreover, numerical tests demonstrate the

high accuracy and optimal rate of convergence for both schemes. Evidence can be

found in the numerical study in [26], [79].

Regarding their simplicity of carrying only the unknown value at nodes, many en-

gineering applications employ these alternative approaches. Examples are in problems

of linear and nonlinear static and dynamic analysis of thin-wall structures, fluid me-

chanics, fluid structure interaction and others (see [22], [23], [67], [75], [77], [82], [27]).

Moreover, some works have been extended from the idea of initial work to obtain more
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accurate results and to generalise an idea. Recently, in the isogeometric analysis, Y.

Bazilevs et.al. [83] altered a basis function to be T-spline function in order to gener-

alise the method from using NURBS. In T-spline isogeometric analysis which defined

similarly as NURBS, reducing the number of superfluous control points in NURBS

is the generalise idea to allow local refinements in the mesh. The accuracy of results

obtained from the isogeometric T-spline is good in all cases in their study.



Chapter 3

Mechanics of a thin-elastic material

with a small strain

3.1 Introduction

An elastic material is defined to have a physical property that the material can return

to its original shape after applied forces (stress) are removed. A shell is defined as a

thin three-dimensional elastic body where the thickness, h, is smaller compared to the

other two dimensions. Many analyses of thin shells neglect the effect of the transverse

shear and follow the theory of Kirchhoff-Love. This theory states that a normal vector

of the undeformed mid-surface remains normal to the deformed mid-surface throughout

the deformation and it deforms inextensionally.

Employing the Kirchhoff-Love assumption in a shell theory intends to reduce the

dimension of a shell from the three-dimensional to the two-dimensional theory. There-

fore, the shell governing equation which is derived from the principle of virtual dis-

placement can be reduced to two-dimensional space. This is a result of allowing the

integration in the coordinate perpendicular to the mid-surface to be carried out an-

alytically. Therefore, all quantities can be expressed only on the two Lagrangian

coordinates of the mid-surface.

Since the elastic material under consideration is a thin shell, the structure can

experience large deflections and rotations, although strains and stresses may remain

small. In such thin bodies, an assumption for small strains is employed to simplify

43
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excessive deflections. This has been done by employing the linear (or Hookean) con-

stitutive equation to represent the stress components as a linear function of all strain

components.

In section 3.2, we will firstly introduce shell kinematics, where quantities in the

undeformed and deformed configurations will be defined. Next, the concept of stress

and the linear (or Hookean) constitutive law will be discussed in section 3.3. Also, the

dimensional reduction of the governing equations will be derived afterwards in this

section by applying the Kirchhoff-Love assumption and using only the mid-surface

coordinates. Finally, section 3.4 closes this chapter with the linearisation of the gov-

erning equations with a small strain for a beam and a shell as you will see in section

3.4.1 and 3.4.2, respectively.

3.2 Deformation

In this section, the general theory for the deformation of an elastic material will be

presented first. This will begin by introducing an elastic material which is parametrised

by three-dimensional coordinate lines ξj; j = 1, 2, 3. The kinematics of a shell with the

Kirchhoff-Love assumption will be discussed afterwards so that all shell’s quantities is

rather expressed by two-dimensional coordinates on the midplane.
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Figure 3.1: Geometry of an elastic material in the undeformed and deformed configu-
rations.

Let r = r(ξj) = xk(ξj)ek, and R = R(ξj) = Xk(ξj)ek, denote the position vectors

of any point in the undeformed and deformed configurations of an elastic material,
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respectively, and ek are usual bases of Cartesian coordinates as depicted in Fig. 3.1.

These positions are parametrised by the coordinate ξj. Therefore, the corresponding

base vectors in the undeformed and deformed configurations can be defined as

gj = r,j = xk,jek,

Gj = R,j = Xk,jek,
(3.1)

respectively. Note that the comma preceding the subscript j signifies partial differen-

tiation with respect to the coordinate ξj.

Throughout this study, the convention of summation over indices is used. A Latin

index represents any of the numbers 1, 2, 3 (1, 2) to the number of material’s dimen-

sion and a Greek index represents the numbers 1, 2 (1) to the number of material’s

dimension minus one. Also, the lowercase and the uppercase letters will be use for all

quantities associated with the undeformed and deformed configurations, respectively.

The base vectors in (3.1) are tangential to the associated coordinate line ξj. There-

fore, they are called tangent base vectors and also known as the covariant base vectors.

However, there is another set of base vectors which is normal to the coordinate surfaces.

Let us define the normal base vectors gj and Gj such that

gi · gj = Gi ·Gj = δij, (3.2)

where gj andGj denote normal base vectors to coordinate surface ξj of the undeformed

and deformed configurations, respectively. These normal base vectors are also known

as the contravariant base vectors. Also, δij denotes the Kronecker delta illustrating

unity when indices i = j.

In general, these tangent and normal base vectors are not unit vectors. It can be

seen from (3.2) that the contravariant base vectors gj are perpendicular to the two

covariant base vector gi, i ̸= j. Furthermore, the tangent base vector gi can be written

as a linear combination of the contravriant base vectors gj as

gi = gijg
j, (3.3)

and vice versa

gi = gijgj, (3.4)

where the gij and g
ij are second order tensors.
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The derivatives of a tangent base vector in accordance with (3.1) is

gi,j ≡
∂gi

∂ξj

=
∂2r

∂ξi∂ξj

=
∂2xk
∂ξi∂ξj

ek,

(3.5)

where xk is a k-th component of a position vector r in the direction of the vector ek.

Since the derivatives are assumed to be continuous, we have

gi,j = gj,i.

Furthermore, the vectors gi,j can be expressed as a linear combination of the base

vectors gk or gk as

gi,j = Γijkg
k = Γk

ijgk, (3.6)

where the coefficients are defined by

Γijk = gk · gi,j, Γk
ij = gk · gi,j. (3.7)

The coefficients Γijk and Γk
ij are known as the Christoffel symbols of the first and

second kind, respectively [35]. Note that the symbol is symmetric in two lower indices,

that is

Γk
ij = gk · gi,j

= gk · gj,i

= Γk
ji.

(3.8)

Similarly, Γijk = Γjik.

An infinitesimal line element ds in the undeformed configuration is given by

ds = r,jdξj = gjdξj, (3.9)

and the square of its length is

(ds)2 = dr · dr

= gidξi · gjdξj

= gi · gjdξidξj

= gijdξidξj.

(3.10)
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Similarly, the infinitesimal line element dS and the square of its length in the deformed

configuration are defined as

dS = R,jdξj = Gjdξj,

(dS)2 = Gidξi ·Gjdξj

= Gi ·Gjdξidξj

= Gijdξidξj.

(3.11)

We have that the coefficients gij = gi · gj and Gij = Gi · Gj are components of

the undeformed and deformed metric tensors, respectively. These components are

fundamental in differential geometry as they provide the measure of length along the

ξj coordinate line when i ̸= j. Also, a component where i ̸= j determines the angle

between ξi and ξj line elements in a coordinate system.

Furthermore, an infinitesimal area element dai which is perpendicular to the coor-

dinates line ξi in the undeformed and deformed configurations are given by

dai = |r,j × r,k|dξjdξk, (i ̸= j ̸= k),

= |gj × gk|dξjdξk, (i ̸= j ̸= k),

=
√
g
√
g(ii)dξjdξk, (i ̸= j ̸= k),

(3.12)

dAi = |R,j ×R,k|dξjdξk, (i ̸= j ̸= k),

= |Gj ×Gk|dξjdξk (i ̸= j ̸= k),

=
√
G
√
G(ii)dξjdξk, (i ̸= j ̸= k),

(3.13)

where g = det(gij) and G = det(Gij). Hence, infinitesimal area elements in the mid-

plane surface ξ3 = const in the undeformed and deformed configurations are given

by

da3 = |g1 × g2|dξ1dξ2,

=
√
g
√
g(33)dξ1dξ2,

=
√
gdξ1dξ2,

(3.14)

dA3 = |G1 ×G2|dξ1dξ2,

=
√
G
√
G(33)dξ1dξ2,

=
√
Gdξ1dξ2,

(3.15)

respectively.
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An infinitesimal volume element dv in the undeformed and deformed configurations

are defined by

dv = r,1 · (r,2 × r,3)dξ1dξ2dξ3

= g1 · (g2 × g3)dξ1dξ2dξ3

=
√
gdξ1dξ2dξ3,

(3.16)

dV = R,1 · (R,2 ×R,3)dξ1dξ2dξ3

= G1 · (G2 ×G3)dξ1dξ2dξ3

=
√
Gdξ1dξ2dξ3.

(3.17)

The deformation of a body is determined by the displacement field u which can

be determined from the difference between the referenced position r(ξi) and a new

position R(ξi) as

u(ξi) = R(ξi)− r(ξi). (3.18)

To determine a component of a displacement field, either the Cartesian or the

tangential base vectors can be considered as its basis. In our study, we determine a

component of a displacement field as a linear combination of the base vectors. Thus,

a displacement vector u can be written as

u = u(ξi) = uk(ξi)g
k = uk(ξi)gk, (3.19)

where uk and uk is a k-th component of the displacement u in the direction of the

base vector gk and gk, respectively.

Since the deformation of a body is manifested by the extension of coordinate lines

and the distortion of angles between coordinate lines, the measurement of those ge-

ometrical quantities can provide some information of how the body deforms. In the

initial system, extensions and distortions are determined by the metric tensor gij while

those of the deformed system are considered by the metric tensor Gij. Therefore, a

strain tensor which is the measurement of the deformation can be mathematically

defined as

ϵij =
1

2
(Gij − gij). (3.20)

This is the so-called Green-Lagrange strain tensor which considers from the difference

between the undeformed and deformed metric tensors gij and Gij.
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To develop a mathematical description of a deformation of a three-dimensional

shell, we consider a shell geometry illustrated in Fig. 3.2. From the thinness feature of

a shell, its geometry is allowed to specify by the two-dimensional reference surface and

its thickness. We can choose the coordinate ξ3 = 0 to be the shell’s mid-surface and the

reference surface. Therefore, we have that two coordinates ξ1 and ξ2 are located on the

reference surface where the third coordinate ξ3 is normal to the reference surface. The

upper and lower surfaces of the shell have the coordinates ξ3 = h/2 and ξ3 = −h/2,

respectively, where h is the thickness of the shell.
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Figure 3.2: A shell geometry.

Let r0(ξα), and R0(ξα), denote the position vectors of any point on the mid-surface

of the undeformed and deformed configurations, respectively, which are parametrised

by the mid-surface coordinates ξα, α = 1, 2,. From the Kirchhoff-Love theory, the

position of the undeformed and deformed configurations of any point on the body can

be written in terms of those positions on the midplane coordinates and its thickness

as

r(ξj) = r0(ξα) + ξ3n̂(ξα), (3.21)

and

R(ξj) = R0(ξα) + ξ3N̂(ξα), (3.22)

where n̂ and N̂ denote the unit normals to the midplane surface of undeformed and

deformed configurations, respectively, and can be computed as

n̂ =
g1 × g2

|g1 × g2|
,

N̂ =
G1 ×G2

G1 ×G2

.

(3.23)
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The Kirchhoff-Love shell assumption is very useful to represent the displacement

throughout the elastic body by a quantity on the midplane surface. Therefore, the thin

body of consideration will employ the differential geometry on the reference midplane

surface to represent the entire body’s deformation.

Before we will represent quantities in the shell by using the Kirchhoff-Love shell

assumption, let us consider quantities on the midplane ξ3 = 0. We have that all

quantities of the undeformed, deformed and displacement of a material point on the

shell’s midplane can be expressed by

r(ξj) = r0(ξα),

R(ξj) = R0(ξα),

u(ξj) = u0(ξα).

(3.24)

Also, the corresponding base vectors to the coordinate lines ξα on the midplane are

given by

r,β(ξj) = r0,β(ξα) ≡ tβ,

R,β(ξj) = R0
,β(ξα) ≡ Tβ,

(3.25)

for the undeformed and deformed coordinate line β on a mid-surface, respectively.

By (3.21) and (3.22), the corresponding tangent base vectors at an arbitrary ma-

terial point in a shell are

gα = r,α = r0,α + ξ3n̂,α,

= r0,α + ξ3t3,α,

= tα + ξ3t3,α,

(3.26)

Gα = R,α = R0
,α + ξ3N̂,α,

= R0
,α + ξ3T3,α,

= Tα + ξ3T3,α,

(3.27)

for the undeformed and deformed configurations, respectively.

The derivative of the base vector t3 with respect to the midplane coordinate ξα

can be considered by decomposing into the midplane base vector as

t3,α = −bαβtβ = −bβαtβ, (3.28)

where

bαβ = bβα = −tβ · t3,α, (3.29)
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and

bβα = bαγt
γβ = −tβ · t3,α, (3.30)

are the covariant and mixed variance curvature tensors of the undeformed midplane,

respectively. In the deformed configuration, the derivative of the base vector T3,α can

be considered similarly as

T3,α = −BαβT
β = −Bβ

αTβ, (3.31)

where

Bαβ = Bβα = −Tβ ·T3,α, (3.32)

and

Bβ
α = BαγT

γβ = −Tβ ·T3,α, (3.33)

are the covariant and mixed variance curvature tensors of the deformed midplane,

respectively. With (3.28) and (3.31), the off-midplane base vectors gα in (3.26) and

Gα in (3.27) can be written as

gα = tα − ξ3bαβt
β = tα − ξ3b

β
αtβ, (3.34)

Gα = Tα − ξ3BαβT
β = Tα − ξ3B

β
αTβ, (3.35)

respectively.

Next, we consider the components of the off-midplane metric tensor gij and Gij of

the undeformed and deformed configurations. We have that

gαβ = tαβ − 2ξ3tαβ + (ξ3)
2bαγb

γ
β,

gα3 = 0 and g33 = 1.
(3.36)

The last line obtains from the fact that the base vector g3 is normal to the mid-surface’s

base vectors and it is a unit vector. Also, the components of the off-midplane metric

tensor Gij in the deformed configuration is given by

Gαβ = Tαβ − 2ξ3Tαβ + (ξ3)
2BαγB

γ
β ,

Gα3 = 0 and G33 = 1.
(3.37)

According to the Kirchhoff-Love assumption, the deformation of the midplane fully

determines the deformation of the entire shell. Hence, the strain tensor ϵij can be
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expressed in terms of the change of the midplane metric and curvature tensors during

the deformation as in (3.38). This can be worked out by a straightforward algebra

from (3.20), (3.36), and (3.37).

ϵαβ = γαβ + ξ3καβ + (ξ3)
2κ̄αβ, (3.38)

where

γαβ =
1

2
(Tαβ − tαβ) , (3.39)

is the midplane strain tensor and

καβ = −(Bαβ − bαβ), (3.40)

is the bending tensor and the last tensor κ̄αβ is given by

κ̄αβ =
1

2
(Bγ

αBβγ − bγαbβγ). (3.41)

3.3 The governing equation of a thin-shell material

with a small strain

In this section, we will formulate the governing equation of a thin shell from the

principle of virtual displacements based on the assumption of a small strain. The

concept of virtual displacement is based upon the principle variations of work and

energy which states that, at the equilibrium, the strain energy changed due to a small

virtual displacement (internal forces) is equal to the work done by the (external) forces

in moving through the virtual displacement (see [1], [35]). Therefore, to derive the

governing equation of a thin shell, the equilibrium equation of the internal and external

forces has to be considered.

Previously in section 3.2, we introduced the concept of strain to describe the de-

formation of a point in a body. Before we will derive the governing equation of a

thin shell, let us now introduce the concept of stress which can be described as the

distribution of forces interacting on a body. The stress vector σi is defined as follow

σi = lim
∆S→0

∆F

∆Si

, (3.42)

where ∆F is a force acting on the elemental area ∆Si which is normal to the coordinate

line ξi. Furthermore, the stress vector σi can be decomposed into components σij in
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the direction of a unit vector of the ξj coordinate line. These components σij are called

the physical components of the stress vector.

In general, the stress vector σi can be decomposed into either the base vectors of

the undeformed or the deformed configurations. For instance, a component σij in the

direction of a defomed based vector Ĝj can be expressed by

σi = σijĜj

= σij Gj√
G(jj)

,
(3.43)

where both Ĝ1, Ĝ2 are tangent to the surface and Ĝ3 is normal.

Likewise, the force ∆F can be associated with either the deformed or the unde-

formed area element. However, in a small-strain regime, the undeformed area element

is our choice to formulate the principle of virtual displacements as there is no signifi-

cantly different between the undeformed and the deformed configurations.

Now, let us consider the governing equation of a thin shell. Since the principle of

virtual work is employed, the work done by both the internal and external forces has

to be considered. Therefore, we will determine the virtual work done by the internal

and external forces separately.

Firstly, we consider the virtual work done by the internal force. For a steady

deformation, the force acting on the undeformed area element which is normal to the

coordinate line ξi is given by

Fi = σida(i). (3.44)

After decomposing the stress vector by using (3.43) and using the definition of area

element (3.12), we have

Fi = σijĜjda(i),

= σij Gj√
G(jj)

√
g
√
g(ii)dξkdξl, (i ̸= k ̸= l)

≈ σijGj
√
gdξkdξl, (i ̸= k ̸= l),

(3.45)

where σij denotes the 2nd Piola-Kirchhoff stress tensor. Note that the last line can be

obtained as there is no significantly different between the undeformed and deformed

area. This is a consequence of the small strain assumption.

For the infinitesimal volume dv, the variation of the strain energy dδΠinternal during

a virtual displacement δu is done by internal forces Fi and body forces b, and is given
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by

dδΠinternal = d(Fi · δu) + ρbdv · δu,

= Fi · d(δu) + dFi · δu+ ρbdv · δu,

= Fi · (δu),idξi + Fi
,idξi · δu+ ρbdv · δu,

= Fi · (δu),idξi,

(3.46)

where ρ denotes the material density. Note that the second and the third terms in the

third line cancel out at equilibrium.

Expressing Fi with (3.45) in (3.46) and integrating through the equation, we have

that the virtual work expended by stresses per volume is

δΠinternal =

∫
Ω

σijGj · (δu),i
√
gdξ1dξ2dξ3. (3.47)

Considering the following with the fact that the undeformed base vector gi are

independent of the displacement gives

δu = δR− δr,

(δu),i = (δR),i − (δr),i,

= δGi.

(3.48)

Therefore, the virtual work done by internal forces (3.47) can be rewritten as

δΠinternal =

∫
Ω

σijGj · δGi
√
gdξ1dξ2dξ3

=

∫
Ω

1

2

(
σijGj · δGi + σjiGi · δGj

)√
gdξ1dξ2dξ3

=

∫
Ω

σijδϵij
√
gdξ1dξ2dξ3.

(3.49)

where δϵij denotes the variation of Green’s strain tensor. Note that the second line

comes from the symmetry property of the stress tensor.

Since the elastic material under consideration is a thin shell, the strain remains

small even the material undergoes large displacement. Therefore, the linear (or Hookean)

constitutive equation is utilised to represent the relationship between stress and strain.

This linear (or Hookean) constitutive law states that every stress component is a linear

function of all strain components and can be calculated by using the Taylor expansion

as follow

σij = σij
0 + Eijklϵkl +O(ϵ2), (3.50)
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where σij is the ij-th component of a stress tensor, σij
0 is a pre-stress tensor, and ϵkl

denotes the kl-th component of a strain tensor. Furthermore, Eijkl is the plane stress

stiffness fourth-order tensor and is given by

Eijkl =
E

2(1 + ν)

(
gikgjl + gilgjk +

2ν

1− ν
gijgkl

)
, (3.51)

with the Poisson’s ratio ν [81].

In a thin-shell regime, the Kirchhoff-Love assumption is exploited. Therefore, the

stress σ3i on the shell surface ξ3 = ±h
2
are approximately zero throughout the body.

This is the consequence of the assumption that shear stresses are neglect and normal

vector to the surface is unstretched, i.e. no normal stress. Also, we assume that the

initial state is stress free so that a pre-stress tensor σij
0 vanishes. These allow the

constitutive equation (3.50) to be expressed by plane stresses as

σαβ = Eαβδγϵδγ . (3.52)

With the assumption of a small strain on a thin shell, the Hookean constitutive

equation is employed together with the fact from the Kirchhoff-Love assumption that

the strain ϵ3j on the shell’s surface are zero. Hence, the variational work done by

internal forces (3.49) becomes,

δΠinternal =

∫
Ω

(Eαβδγϵαβ)δϵδγ
√
gdξ1dξ2dξ3. (3.53)

It can be seen that the assumption of Kirchhoff-Love allows all quantities to express

with the midplane coordinates. Therefore, the integration in the coordinate perpendic-

ular to the mid-surface, i.e. ξ3, to be carried out analytically. Also, all quantities can

be expressed only on the two Lagrangian coordinates, ξ1, and ξ2, of the mid-surface.

Hence, (3.53) becomes

δΠinternal =

∫
∂Ω

{∫ h/2

−h/2

(
Eαβδγϵαβδϵδγ

)√
gdξ3

}
dξ1dξ2

= δ

∫
∂Ω

{
1

2

∫ h/2

−h/2

Eαβδγϵαβϵδγ
√
g/adξ3

}
√
adξ1dξ2,

(3.54)

where a denotes the determinant of the undeformed metric tensor tij defined on the

midplane. Note that the plane stress stiffness Eαβδγ is given by (3.51). It is a function

of the undeformed metric tensor gαβ which describes off-midplane points in a shell.
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Also, the strain tensor ϵαβ under the integration is off-midplane. Hence, expressing the

strain tensor ϵαβ and the undeformed metric tensor gαβ by their corresponding mid-

plane fields as in (3.36) and (3.38) allows the integration with respect to the coordinate

line ξ3 can be carried out analytically. Therefore, we have that

1

2

∫ h/2

−h/2

Eαβδγϵαβϵδγ
√
g/adξ3 =

1

2
hẼαβδγ

(
γαβγδγ +

1

12
h2καβκδγ

)
, (3.55)

where the plane stress stiffness tensor on the midplane is given by

Ẽαβδγ = Eαβδγ|ξ3=0 =
E

2(1 + ν)

(
tαδtβγ + tαγtβδ +

2ν

1− ν
tαβtδγ

)
. (3.56)

Substituting the equation (3.55) back into (3.54) gives

δ

∫
∂Ω

{
1

2

∫ h/2

−h/2

Eαβδγϵαβϵδγ
√
g/adξ3

}
√
adξ1dξ2

= δ

∫
∂Ω

{
1

2
hẼαβδγ

(
γαβγδγ +

1

12
h2καβκδγ

)}√
adξ1dξ2

=

∫
∂Ω

hẼαβδγ

(
γαβδγδγ +

1

12
h2καβδκδγ

)√
adξ1dξ2.

(3.57)

Therefore, (3.53) becomes

δΠinternal =

∫
∂Ω

hẼαβδγ

(
γαβδγδγ +

1

12
h2καβδκδγ

)√
adξ1dξ2. (3.58)

Next, let us consider the virtual work done by an external force f̂ during a virtual

displacement. Normally, this external force acts on the deformed surface ξ3 = ±h/2

whose area element is described as in (3.15). If the body forces are neglect, the virtual

work done by external forces is given by

δΠexternal =

∫∫ (
f̂ · δu

)√
Adξ1dξ2,

=

∫∫ (
f̂ · δR

)√
Adξ1dξ2.

(3.59)

In the small-strain regime, an area element between the undeformed and deformed

configurations are indistinguishable. Hence, the external force is preferable to express

on the area element of the undeformed midplane which is related with that of the

deformed midplane as

f
√
A = f̂

√
a, (3.60)

where f denotes the external force expressed on the area element of the undeformed

midplane. Therefore, we can express the external work on the mid-plane surface as

δΠexternal =

∫∫ √
A

a
(f · δR)

√
adξ1dξ2. (3.61)
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From the principle of virtual work which states that the work done by internal

forces have to be equal to the work done by external forces at equilibrium, therefore,

Πinternal − Πexternal = 0.

Combining (3.58) and (3.61) gives the equation that governs the deformation of a thin

shell as follow∫∫ {
Ẽαβδγ

(
γαβδγαβ +

1

12
h2καβδκαβ

)
− 1

h

√
A

a
(f · δR)

}
√
adξ1dξ2 = 0. (3.62)

3.4 The linear theory

In this section, we will derive a linearisation of the governing equation (3.62) with a

small strain in two-dimensional and three-dimensional spaces. The linearisation of a

beam governing equation which is in two dimensions will be considered first and that

of shell which is in higher dimensions will be determined afterwards.

3.4.1 Linearisation of a beam governing equation

A beam is a two-dimensional elastic material which has a very small thickness as

illustrated in Fig. 3.3. Two kinds of elastic beam are considered in our study of

the linearisation: straight and curved beams. Fig. 3.3a illustrates a straight beam

where the curvature tensor is zero, unlike a curved beam shown in Fig. 3.3b where

the curvature tensor is nonzero.

 

x

y

xi2

xi1

r
r0

(a) straight beam

 

x

y

r

r0

xi1

xi2

(b) curved beam

Figure 3.3: Graphical geometries of beams with straight and curved shape.

The deformation of both straight and curved beams can be constructed from a

one-dimensional midplane coordinate by employing the Kirchhoff-Love assumption.
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The derivation of their governing equations can be obtained similarly as described in

(3.62) but the integration has to be taken over a line element rather than an area

element.

In this section, we firstly consider a static beam in a general geometry. The govern-

ing equation (3.62) is modified to have just one intrinsic coordinate, say ξ, as expressed

in (3.63). This equation is a nonlinear governing equation for a thin shell that un-

dergoes large displacements where all quantities is nonlinear and can be obtained as

expressed in section 3.2.∫ L

0

(
γδγ +

1

12
h2κδκ− 1

h

√
A

a
f · δR

)
√
adξ = 0. (3.63)

After a linearisation of the governing equation for a general beam is obtained, some

specifications will be introduced to obtain the linear version of the governing equation

for a straight and a curved beam. However, these linear versions will be considered

later on in chapter 4 with a finite element implementation.

To obtain a linear version of (3.63) for a beam in a general shape, all terms under

the integral have to be linearised with the assumption of a small displacement. Since

a loading applied to the beam is small under the small-displacement regime, a small

loading and a small displacement field can be represented respectively by, for some

ϵ << 1,

f = ϵf̃ , and, u = ϵũ, (3.64)

where (̃·) represents a quantity whose magnitude is large. With this assumption, the

nonlinear terms are neglected as we will illustrate next. This is the result of the

magnitude in nonlinear terms are of order ϵ2 which is very small so that those terms

should not have any contribution to the equations.

Since a loading f is applied to the undeformed beam in the normal direction, all

terms in the governing equation are preferable to be considered in tangential and

normal components. At each point in a beam, tangential and unit normal vectors are

defined as

t =
∂r

∂ξ
, and, n̂ =

1

|ez × t|
(ez × t), (3.65)

respectively. Note that, throughout this study, the normal vector is outward to the

surface. Since tangential and unit normal vectors depend on an undeformed position
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r, they are different at points. The tangential and normal vector are perpendicular to

each other. However, the tangential vectors are not unit in this consideration.

Now, let us consider the vector r = r(ξ) which is a position vector of the undeformed

configuration. Since it is preferable to consider all terms in tangential and normal

coordinates, a displacement u which is the unknown field in our beam problems can

be decomposed as follow

ϵũ = u = (u1t+ u2n̂) (3.66)

where u1 and u2 are displacements in tangential and normal directions, respectively.

For the deformed configuration, a position vector is defined as

R = r+ ϵũ, (3.67)

and, its first-order and second-order derivatives are, respectively,

∂R

∂ξ
=
∂r

∂ξ
+
∂ϵũ

∂ξ
= t+ ϵ

∂ũ

∂ξ
, (3.68)

and,
∂2R

∂ξ2
=
∂2r

∂ξ2
+
∂2ϵũ

∂ξ2
=
∂t

∂ξ
+ ϵ

∂2ũ

∂ξ2
. (3.69)

Next, we will use the assumptions (3.64) to linearise all terms in the governing

equation (3.63). In order to obtain the linear version of the strain and bending tensors,

the associated metric tensor and the curvature tensor have to be linearised. We have

that the linearisation of the metric tensor in an undeformed configuration can be

considered as

a =
∂r

∂ξ
· ∂r
∂ξ

= t· t, (3.70)

and, that of a deformed configuration is

A =
∂R

∂ξ
· ∂R
∂ξ

=
∂r

∂ξ
· ∂r
∂ξ

+ 2
∂r

∂ξ
· ∂ϵũ
∂ξ

+O(ϵ2)

≈ a+ 2t· ∂u
∂ξ
.

(3.71)

The curvature of the beam’s centreline before and after the deformation can be

represented by

b = n̂· ∂
2r

∂ξ2
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and

B = N̂· ∂
2R

∂ξ2
,

respectively.

Note that the first-order and the second-order derivatives of a displacement in

(3.68), (3.69), and (3.71) still have components in Cartesian coordinates. To determine

their components in tangential and normal directions, we have

∂u

∂ξ
= uα

∂tα
∂ξ

+
∂uα

∂ξ
tα

=
∂uα

∂ξ
tα + uα

[(
∂tα
∂ξ

· tβ
)
tβ

]
,

=

[
∂uα

∂ξ
+ uβ

(
∂tβ
∂ξ

· tα
)]

tα,

=Mαtα,

(3.72)

and, the first-order derivative of the displacement u can be obtained as

∂2u

∂ξ2
=Mα

∂tα
∂ξ

+
∂Mα

∂ξ
tα

=Mα

(
∂tα
∂ξ

· tβ
)
tβ +

∂Mα

∂ξ
tα

=Mα

(
∂tα
∂ξ

· tβ
)
tβ +

[
∂2uα

∂ξ2
+
∂uβ

∂ξ

(
∂tβ
∂ξ

· tα
)
+ uβ

∂

∂ξ

(
∂tβ
∂ξ

· tα
)]

tα

=

[
Mβ

(
∂tβ
∂ξ

· tα
)
+
∂2uα

∂ξ2
+
∂uβ

∂ξ

(
∂tβ
∂ξ

· tα
)
+ uβ

∂

∂ξ

(
∂tβ
∂ξ

· tα
)]

tα

= Pαtα,

(3.73)

where t1, t2, are based vectors in tangential and normal directions, respectively. In the

study of a beam, we set t1 ≡ t denotes tangential vector to the undeformed midplane

and t2 ≡ n̂ denotes the unit normal to the undeformed midplane.

After the linearisation of the metric tensor in both the undeformed and deformed

configurations together with the derivatives in tangential and normal components are

obtained, the Green strain tensor can be approximated by (see (3.20))

γ =
1

2
(A− a)

≈ t· ∂u
∂ξ

=

[
u1
(
∂t

∂ξ
· t
)
+
∂u1

∂ξ
+ u2

(
∂n̂

∂ξ
· t
)]

t· t

= a(ξ)

[
u1
(
∂t

∂ξ
· t
)
+
∂u1

∂ξ
+ u2

(
∂n̂

∂ξ
· t
)]

,

(3.74)
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and its variation is

δγ =
∂γ

∂uα
δ(uα) +

∂γ

∂
(

∂uα

∂ξ

)δ(∂uα
∂ξ

)

=

[
a(ξ)

(
∂t

∂ξ
· t
)]

δ(u1) + [a(ξ)] δ

(
∂u1

∂ξ

)
+

[
a(ξ)

(
∂n̂

∂ξ
· t
)]

δ(u2).

(3.75)

For the beam curvature in the undeformed configuration b, we have

b = n̂· ∂
2r

∂ξ2
= n̂· ∂t

∂ξ
, (3.76)

where n̂ = 1
|ez×t|(ez × t) is the unit vector and normal to the undeformed midplane.

Then (3.76) becomes,

b =
1

|ez × t|
(ez × t)· ∂t

∂ξ
. (3.77)

Before we will consider the linearised bending tensor in the deformed configurations,

the unit normal vectors N̂ has to be linearised. Now, let us consider the deformed

normal vector which can be obtained as

N = ez ×
∂R

∂ξ
,

= ez ×
(
t+ ϵ

∂ũ

∂ξ

)
,

= (ez × t) +

(
ez × ϵ

∂ũ

∂ξ

)
.

(3.78)

Considering in tangential and normal directions gives

N =

 0

a(ξ)

+ ϵ

 −M2

M1

 ,

=

 −ϵM2

a(ξ) + ϵM1

 ,

(3.79)

where a is an arc-length along the material line ξ defined as the determinant of (3.70)

and it is parametrised by ξ. Also, the modulus of the normal vectorN can be computed

as follow

|N| = | (ez × t) +

(
ez × ϵ

∂ũ

∂ξ

)
| =

√
a2(ξ) + 2ϵa(ξ)M1 +O(ϵ2). (3.80)

where M1 and M2 are displacement gradients in tangential and normal directions

defined in (3.72).
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Thus, the linearised unit normal vector N̂ is considered as

N̂ =
1√

a2(ξ) + 2ϵa(ξ)M1 +O(ϵ2)

 −ϵM2

a(ξ) + ϵM1


≈ 1

a

 0

a(ξ)

+ ϵ

1
a

 −M2

M1

− a

a3
M1

 0

a(ξ)

+O(ϵ2)

≈ n̂+ ϵ

1
a

 −M2

M1

− 1

a2
M1

 0

a(ξ)

 ,
(3.81)

where the modulus of a normal vector in the last line can be obtained by employing

Taylor expansion about ϵ = 0. Thus, the linear version of the deformed curvature B

can be obtained as follows

B = N̂· ∂
2R

∂ξ2

= N̂·
(
∂t

∂ξ
+ ϵ

∂2ũ

∂ξ2

)
= N̂· ∂t

∂ξ
+ ϵN̂· ∂

2ũ

∂ξ2

≈ n̂· ∂
2r

∂ξ2
+ ϵ

1
a

 −M2

M1

− 1

a2
M1

 0

a(ξ)

 ·

 ∂t
∂ξ
· t

∂t
∂ξ
· n̂

+ ϵn̂·Nαtα +O(ϵ2)

≈ b+

1
a

 −M2

M1

− 1

a2
M1

 0

a(ξ)

 ·

 ∂t
∂ξ
· t

∂t
∂ξ
· n̂

+ P2.

(3.82)

After substituting M1,M2 and P2 defined in (3.72) and (3.73), the linearised bending
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tensor κ becomes

κ = b−B

= −

1
a

 −M2

M1

− 1

a2
M1

 0

a(ξ)

 ·

 ∂t
∂ξ
· t

∂t
∂ξ
· n̂

− P2

=
M2

a

(
∂t

∂ξ
. t

)
− P2

= −
[(

∂

∂ξ

(
∂t

∂ξ
· n̂
)
+

(
∂t

∂ξ
. t

)(
∂t

∂ξ
· n̂
)
+

(
∂n̂

∂ξ
· n̂
)(

∂t

∂ξ
· n̂
))

u1

+
∂2u2

∂ξ2
+ 2

(
∂t

∂ξ
· n̂
)
∂u1

∂ξ
+ 2

(
∂n̂

∂ξ
· n̂
)
∂u2

∂ξ

+

(
∂

∂ξ

(
∂n̂

∂ξ
· n̂
)
+

(
∂t

∂ξ
· n̂
)(

∂n̂

∂ξ
· t
)
+

(
∂n̂

∂ξ
· n̂
)2
)
u2

]

+

[
1

a

(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
)]

u1 +

[
1

a

(
∂t

∂ξ
· t
)]

∂u2

∂ξ
+

[
1

a2

(
∂t

∂ξ
· t
)2
]
u2

=

[
− ∂

∂ξ

(
∂t

∂ξ
· n̂
)
−
(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
)
−
(
∂n̂

∂ξ
· n̂
)(

∂t

∂ξ
· n̂
)

+
1

a

(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
)]

u1 − 2

(
∂t

∂ξ
· n̂
)
∂u1

∂ξ

+

[
− ∂

∂ξ

(
∂n̂

∂ξ
· n̂
)
−
(
∂t

∂ξ
· n̂
)(

∂n̂

∂ξ
· t
)
−
(
∂n̂

∂ξ
· n̂
)2

+
1

a2

(
∂t

∂ξ
· t
)2
]
u2

+

[
−2

(
∂n̂

∂ξ
· n̂
)
+

1

a

(
∂t

∂ξ
· t
)]

∂u2

∂ξ
− ∂2u2

∂ξ2
.

(3.83)

Thus, the variations of the linearised bending tensor is as follows

δκ =
∂κ

∂uα
δuα +

∂κ

∂
(

∂uα

∂ξ

)δ(∂uα
∂ξ

)
+

∂κ

∂
(

∂2uα

∂ξ2

)δ(∂2uα
∂ξ2

)

=

[
− ∂

∂ξ

(
∂t

∂ξ
· n̂
)
−
(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
)
−
(
∂n̂

∂ξ
· n̂
)(

∂t

∂ξ
· n̂
)

+
1

a

(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
)]

δu1 − 2

(
∂t

∂ξ
· n̂
)
δ

(
∂u1

∂ξ

)
+

[
− ∂

∂ξ

(
∂n̂

∂ξ
· n̂
)
−
(
∂t

∂ξ
· n̂
)(

∂n̂

∂ξ
· t
)
−
(
∂n̂

∂ξ
· n̂
)2

+
1

a2

(
∂t

∂ξ
· t
)2
]
δu2

+

[
−2

(
∂n̂

∂ξ
· n̂
)
+

1

a

(
∂t

∂ξ
· t
)]

δ

(
∂u2

∂ξ

)
− δ

(
∂2u2

∂ξ2

)
.

(3.84)

Finally, we will consider the governing equation (3.63) in terms of variation of

the displacement vector u and its derivatives in tangential and normal components.

Also, the linear version of the governing equation will be obtained by substituting all
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linearised terms into (3.63). In order to do this, let us consider each term under the

integral separately. Regarding the first term, we have

γδγ =

{
a(ξ)

[
u1
(
∂t

∂ξ
· t
)
+
∂u1

∂ξ
+ u2

(
∂n̂

∂ξ
· t
)]}

δγ

=

{(
a2(ξ)

[
u1
(
∂t

∂ξ
· t
)
+
∂u1

∂ξ
+ u2

(
∂n̂

∂ξ
· t
)])(

∂t

∂ξ
· t
)}

δu1

+

{
a2(ξ)

[
u1
(
∂t

∂ξ
· t
)
+
∂u1

∂ξ
+ u2

(
∂n̂

∂ξ
· t
)]}

δ

(
∂u1

∂ξ

)
+

{(
a2(ξ)

[
u1
(
∂t

∂ξ
· t
)
+
∂u1

∂ξ
+ u2

(
∂n̂

∂ξ
· t
)])(

∂n̂

∂ξ
· t
)}

δu2.

(3.85)

Next, the second term can be obtained as

1

12
h2κδκ

=
1

12
h2κ

[
− ∂

∂ξ

(
∂t

∂ξ
· n̂
)
−
(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
)
−
(
∂n̂

∂ξ
· n̂
)(

∂t

∂ξ
· n̂
)

+
1

a

(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
)]

δu1 − 1

6
h2κ

(
∂t

∂ξ
· n̂
)
δ

(
∂u1

∂ξ

)
+

1

12
h2κ

[
− ∂

∂ξ

(
∂n̂

∂ξ
· n̂
)
−
(
∂t

∂ξ
· n̂
)(

∂n̂

∂ξ
· t
)
−
(
∂n̂

∂ξ
· n̂
)2

+
1

a2

(
∂t

∂ξ
· t
)2
]
δu2

− 1

12
h2κ

[
−2

(
∂n̂

∂ξ
· n̂
)
+

1

a

(
∂t

∂ξ
· t
)]

δ

(
∂u2

∂ξ

)
− 1

12
h2κδ

(
∂2u2

∂ξ2

)
,

(3.86)

and, the last term gives

1

h

√
A

a
ϵf̃ · δR =

1

h

√
A

a
ϵf̃ · δu. (3.87)

Since A = a+ ϵγ, we have that
√

A
a
=
√

1 + ϵγ
a
. Applying the binomial expansion

gives
√
1 + ϵγ

a
≈ 1. Next, the Taylor expansion about ϵ = 0 gives

1

h

√
A

a
ϵf̃ · δu ≈ 1

h

√
1 +

γ

a
ϵf̃ . δu

≈ 1

h
f · δu.

(3.88)

After substitute equations (3.85), (3.86), and (3.87) back into (3.63), separating the

displacement in each direction will give us two governing equations for the tangential

and normal displacements. Thus, the linearised governing equation (3.63) in tangential
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direction can be expressed as

0 =

∫ L

0

{[
−1

h
f1 + a2

(
∂t

∂ξ
· t
)(

u1
(
∂t

∂ξ
· t
)
+
∂u1

∂ξ
+ u2

(
∂n̂

∂ξ
· t
))

+
1

12
h2κ

(
− ∂

∂ξ

(
∂t

∂ξ
· n̂
)
−
(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
)
−
(
∂n̂

∂ξ
· n̂
)(

∂t

∂ξ
· n̂
)

+
1

a

(
∂t

∂ξ
· t
)(

∂t

∂ξ
· n̂
))]

δ(u1)

+

[
a2
(
∂t

∂ξ
· t
)
u1 + a2

∂u1

∂ξ
+ a2u2

(
∂n̂

∂ξ
· t
)

− 1

6
h2κ

(
∂t

∂ξ
· n̂
)]

δ

(
∂u1

∂ξ

)}√
adξ,

(3.89)

and the linearised governing equation in normal direction is given by

0 =

∫ L

0

{[
−1

h
f 2 + a2

(
∂n̂

∂ξ
· t
)(

u1
(
∂t

∂ξ
· t
)
+
∂u1

∂ξ
+ u2

(
∂n̂

∂ξ
· t
))

+
1

12
h2κ

(
− ∂

∂ξ

(
∂n̂

∂ξ
· n̂
)
−
(
∂t

∂ξ
· n̂
)(

∂n̂

∂ξ
· t
)
−
(
∂n̂

∂ξ
· n̂
)2

+
1

a2

(
∂t

∂ξ
· t
)2
)]

δu2

− 1

12
h2κ

[
−2

(
∂n̂

∂ξ
· n̂
)
+

1

a

(
∂t

∂ξ
· t
)]

δ

(
∂u2

∂ξ

)
− 1

12
h2κδ

(
∂2u2

∂ξ2

)}√
adξ.

(3.90)

From the governing equations of a beam, both the nonlinear equation (3.63) and

the linear one (3.89), (3.90), will be implemented and compared in chapter 4. Also, the

equation in the specific form of the straight and the curved geometry will be presented.

3.4.2 Linearisation of a shell governing equation

In the previous section, it can be seen that a beam which is a two-dimensional body

can be modelled by an equation defined on a one-dimensional domain. In this section,

the idea of linear theory will be generalised to a shell which is a three-dimensional

elastic material with a very small thickness as illustrated in Fig. 3.4.

There are two kinds of elastic shell that will be considered in our study of the lin-

earisation: straight and curved shells as shown in Fig. 3.4a and Fig. 3.4b, respectively.

However, the linearisation of the governing equation for a straight and a curved shell

will be considered afterwards in chapter 5 with a finite element implementation.

In this section, we consider the linearisation of the governing equation of a static

shell in general shape. We will show how an elastic shell can be modelled by equations
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Figure 3.4: Graphical geometries of shell with straight and curved shape.

defined on a two-dimensional domain. Similar to the beam problem considered in

section 3.4.1, a small displacement will be assumed in order to eliminate certain terms

of lesser order of magnitude with respect to the thickness of the shell. This is to obtain

a new equation which may be viewed as a simplification of the governing equation of

a three-dimensional elasticity.

Since a shell is a three-dimensional elastic body, the governing equation of a static

shell with zero pre-stress can be obtained from (3.62) as∫∫
Ω

{
Ẽαβγδ

(
γαβδγγδ +

1

12
h2καβδκγδ

)
− 1

h

√
A

a
f · δR

}
√
adξ1dξ2 = 0, (3.91)

where Ẽαβγδ represents the plane stress stiffness tensor defined on the mid-surface and

can be computed by

Ẽαβγδ =
E

2(1 + ν)

(
tαγtβδ + tαδtβγ +

2ν

1− ν
tαβtγδ

)
, (3.92)

where ν denotes the Poisson’s ratio [35]. This equation is a governing equation for a

nonlinear theory where all quantities are nonlinear and can be obtained as expressed

in section 3.2.

In order to obtain a linearised version of the governing equation of the shell defor-

mation, all terms in the equation (3.91) have to be linearised. Similar to a beam, a

small displacement is assumed. Therefore, we have that ∀ϵ << 1,

f = ϵf̃ , u = ϵũ. (3.93)

The equation (3.93) will play an essential role in considering the linearisation of the

governing equation (3.91).
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In order to obtain the strain tensor, the linear version of undeformed and deformed

metric tensor have to be determined. The undeformed covariant metric tensor of the

mid-surface is then expressed as

aαβ = tα· tβ. (3.94)

and, the linear version of the deformed metric tensor can be considered as follows

Aαβ = Tα·Tβ

=
∂R

∂ξα
· ∂R
∂ξβ

=
∂

∂ξα
(r+ ϵũ)· ∂

∂ξβ
(r+ ϵũ)

= aαβ + ϵ
∂r

∂ξα
· ∂ũ
∂ξβ

+ ϵ
∂r

∂ξβ
· ∂ũ
∂ξα

+O(ϵ2)

≈ aαβ + (u,α · tβ + u,β · tα),

(3.95)

where u is a displacement vector. The determinants of the covariant metric tensor in

undeformed and deformed shell are a and A, respectively and can be calculated by the

determinant of the associated metric tensors.

Note that, in general, the undeformed and deformed metric tensor for a shell body

is a three dimensional matrix. Since the Kirchhoff-Love assumption has been used,

the normal to the surface remains normal after the deformation. Hence, t3α = tα3 =

t3· tα = 0. Also, the normal vector is unstretched and unit, i.e. t33 = 1,.

As mentioned in section 3.4.1, it is preferable to consider a deformation of the shell

in the tangential and normal directions. Therefore, a displacement u on the midplane

which is parametrised by the two-dimensional coordinates can be decomposed into two

tangential and normal components as

u = ujtj. (3.96)

where the covariant base vectors t1, t2 are tangent in direction of coordinate lines ξ1, ξ2,

respectively, and t̂3 is a unit normal vector to the undeformed mid-surface. Coefficients

uj, j = 1, 2, 3 are associated components of a displacement u in two tangential and

one normal directions.

In the governing equation of a shell deformation, not just the displacement field but

its first and second derivatives are concerned. Thus, we will consider all derivatives in
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the tangential and normal coordinate system. Now, let us consider the first derivatives

of u in tangential and normal directions with respect to coordinate lines ξα, α = 1, 2.

Decomposing in the tangential and normal components gives

∂u

∂ξα
=
∂uj

∂ξα
tj + uj

∂tj
∂ξα

=
∂uj

∂ξα
tj + uj

[(
∂tj
∂ξα

· ti
)
ti

]
=

[
∂uj

∂ξα
+ ui

(
∂ti
∂ξα

· tj
)]

tj

=
(
uj,α + uiΓj

iα

)
tj

= uj|αtj

(3.97)

where Γj
iα =

(
∂ti
∂ξα

· tj
)
denotes Christoffel symbol of the second kind and the quantity

uj|α = (uj,α + uiΓj
iα) is the j-component of α-derivative of a displacement u.

Next, the second derivative of the displacement u in tangential and normal direc-

tions can be obtained as

∂2u

∂ξ2α
= uj|α

∂tj
∂ξα

+
∂uj|α
∂ξα

tj

= uj|αΓi
jαti +

(
uj,αα + uk

∂Γj
kα

∂ξα
+
∂uk

∂ξα
Γj
kα

)
tj

=

(
ui|αΓj

iα + uj,αα + uk
∂Γj

kα

∂ξα
+
∂uk

∂ξα
Γj
kα

)
tj,

(3.98)

and the mixed derivative is

∂2u

∂ξα∂ξβ
= uj|α

∂tj
∂ξβ

+
∂uj|α
∂ξβ

tj

= uj|αΓi
jβti +

(
uj,αβ + uk

∂Γj
kα

∂ξβ
+
∂uk

∂ξβ
Γj
kα

)
tj

=

(
ui|αΓj

iβ + uj,αβ + uk
∂Γj

kα

∂ξβ
+
∂uk

∂ξβ
Γj
kα

)
tj.

(3.99)

After we consider the derivatives of the displacement in the tangential and normal

components and the linear version of the undeformed and deformed metric tensors are

obtained, the linearised strain tensor is expressed as follows

γαβ =
1

2
(Aαβ − aαβ) ≈

1

2
(u,α · tβ + u,β · tα) =

1

2

(
uj|αtj· tβ + uj|βtj· tα

)
=

1

2

(
uβ|α + uα|β

)
,

(3.100)
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and the linear version of its variation is

δγαβ =
∂γαβ
∂ui

(
δui
)
+
∂γαβ
∂ui,β

(
δui,β

)
=

1

2

(
δuα,β + δuβ,α +

(
Γα
iβ + Γβ

iα

)
δui
)
.

(3.101)

Before we will consider for the linearised bending tensor, the unit normal vectors

t̂3 and T̂3 for the undeformed and deformed configurations have to be linearised. Now,

consider first the unit normal to the middle surface of the undeformed configuration

which is defined by

n̂ = t̂3 =
t1 × t2
|t1 × t2|

. (3.102)

with the associated curvature tensor is specified as follow

bαβ = n̂· r,αβ. (3.103)

Next, the linear version of the unit normal vector T̂3 for a deformed configuration

has to be determined. Consider,

T3 = T1 ×T2

=

(
t1 + ϵ

∂ũ

∂ξ1

)
×
(
t2 + ϵ

∂ũ

∂ξ2

)
= (t1 × t2) +

(
t1 × ϵ

∂ũ

∂ξ2

)
+

(
ϵ
∂ũ

∂ξ1
× t2

)
+O(ϵ2)

≈ t3 + ϵ

[(
t1 ×

∂ũ

∂ξ2

)
+

(
∂ũ

∂ξ1
× t2

)]
.

(3.104)

where the modulus equals to

|T3| ≈
√
a2 + 2ϵ (t3·L) +O(ϵ2),

and L =
(
t1 × ∂ũ

∂ξ2

)
+
(

∂ũ
∂ξ1

× t2

)
.

Now, to make the normal vector to be unit, we have to divide the normal vector

T3 by its magnitude. With the help of Taylor’s expansion, the unit normal T̂3 can be

described as

T̂3 ≈ t̂3 + ϵ

[
1

a
L− t3·L

a2
t3

]
. (3.105)

Thus a curvature tensor for a deformed shell is calculated by

Bαβ = T̂3·
∂2R

∂ξα∂ξβ

= T̂3.
∂

∂ξβ

(
tα + ϵ

∂ũ

∂ξα

)
= T̂3·

∂tα
∂ξβ

+ ϵT̂3·
∂ũ2

∂ξαξβ
.

(3.106)
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Since tangential and normal components of a curvature tensor has to be consider,

the second derivatives of the displacement field and also the derivatives of tangential

base vector have to be decomposed in the tangential and normal directions. Therefore,

substituting the equation (3.99) into (3.106) gives

Bαβ = T̂3·Γj
αβtj + ϵT̂3·

(
ui|αΓj

iβ + uj,αβ + uk
∂Γj

kα

∂ξβ
+
∂uk

∂ξβ
Γj
kα

)
tj. (3.107)

After substituting (3.105) into (3.107), we have

Bαβ = t̂3·Γαβ + ϵ

[
1

a
L− t̂3·L

a2
t̂3

]
·Γαβ

+ ϵ̂t3·

(
ui|αΓj

iβ + uj,αβ + uk
∂Γj

kα

∂ξβ
+
∂uk

∂ξβ
Γj
kα

)
tj +O(ϵ2)

≈ bαβ +

[
1

a
LjΓ

j
αβ −

L3

a2
Γ3
αβ

]
+

(
ui|αΓ3

iβ + u3,αβ + uk
∂Γ3

kα

∂ξβ
+
∂uk

∂ξβ
Γ3
kα

)
.

(3.108)

Hence, the linearised bending tensor can be obtained as

καβ = bαβ −Bαβ

≈ −
[
1

a
LjΓ

j
αβ −

L3

a2
Γ3
αβ

]
−
(
ui|αΓ3

iβ + u3,αβ + uk
∂Γ3

kα

∂ξβ
+
∂uk

∂ξβ
Γ3
kα

) (3.109)

where Lj is defined as in (3.104) but decomposes in tangential and normal directions

which can be described as

L =


a12u

3|2 − a22u
3|1

−a11u3|2 + a21u
3|1

a11u
2|2 − a12u

1|2 + a22u
1|1 − a21u

2|1

 . (3.110)

Finally, we substitute all linearised terms of the strain tensor, γαβ, in (3.100) and

the bending tensor, καβ, in (3.109) and their variations back into the following shell

governing equation

0 =

∫∫
Ω

Ẽαβγδ

{
γαβδγγδ +

1

12
h2καβδκγδ

}
− 1

h
f · δu

√
adξ1dξ2. (3.111)

Writing into a variational equation for each displacement direction, displacements in

two tangential and one normal direction are obtained. Note that the third term of

forcing function can be linearised with the help of Taylor’s and Binomial expansion as

described in section 3.4.1.
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Therefore, the linearised equation for a displacement u in tangential direction in

the coordinate ξ1 is

0 =

∫∫
−1

h
f1δu1 + Ẽαβγδ

{[
1

2
γαβ(Γ

δ
1γ + Γγ

1δ) +
1

12
h2καβ(−Γk

1δΓ
3
kγ)

+
1

12
h2καβ

(
−1

a
Γ1
δγ

(
a12Γ

3
12 − a22Γ

3
11

)
− 1

a
Γ2
δγ

(
−a11Γ3

12 + a21Γ
3
11

)
+

(
1

a2
− 1

a

)
Γ3
δγ

(
a11Γ

2
12 − a12Γ

1
12 + a22Γ

1
11 − a21Γ

2
11

))]
δu1

+

[
γαβ −

1

12
h2καβΓ

3
1δ

]
δu1,γ

−
[
1

12
h2καβΓ

3
1γ

]
δu1,δ +

1

12
h2καβ

[(
1

a2
− 1

a

)
Γ3
δγa22

]
δu1,1

− 1

12
h2καβ

[(
1

a2
− 1

a

)
Γ3
δγa12

]
δu1,2

}√
adξ1dξ2.

(3.112)

Also, the linearised equation for a displacement u in tangential direction in the coor-

dinate ξ2 is

0 =

∫∫
−1

h
f2δu2 + Ẽαβγδ

{[
1

2
γαβ(Γ

δ
2γ + Γγ

2δ) +
1

12
h2καβ(−Γk

2δΓ
3
kγ)

+
1

12
h2καβ

(
−1

a
Γ1
δγ

(
a12Γ

3
22 − a22Γ

3
21

)
− 1

a
Γ2
δγ

(
−a11Γ3

22 + a21Γ
3
21

)
+

(
1

a2
− 1

a

)
Γ3
δγ

(
a11Γ

2
22 − a12Γ

1
22 + a22Γ

1
21 − a21Γ

2
21

))]
δu2

+

[
γαβ −

1

12
h2καβΓ

3
2δ

]
δu2,γ

−
[
1

12
h2καβΓ

3
2γ

]
δu2,δ +

1

12
h2καβ

[(
1

a2
− 1

a

)
Γ3
δγa11

]
δu2,2

− 1

12
h2καβ

[(
1

a2
− 1

a

)
Γ3
δγa21

]
δu2,1

}√
adξ1dξ2.

(3.113)
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And, the linearised equation for a displacement u in normal direction to the unde-

formed surface is

0 =

∫∫
−1

h
f3δu3 + Ẽαβγδ

{[
1

2
γαβ(Γ

δ
3γ + Γγ

3δ) +
1

12
h2καβ(−Γk

3δΓ
3
kγ)

+
1

12
h2καβ

(
−1

a
Γ1
δγ

(
a12Γ

3
32 − a22Γ

3
31

)
− 1

a
Γ2
δγ

(
−a11Γ3

32 + a21Γ
3
31

)
+

(
1

a2
− 1

a

)
Γ3
δγ

(
a11Γ

2
32 − a12Γ

1
32 + a22Γ

1
31 − a21Γ

2
31

))]
δu3

−
[
1

12
h2καβΓ

3
3δ

]
δu3,γ −

[
1

12
h2καβΓ

3
3γ

]
δu3,δ

− 1

12
h2καβδu

3
,δγ +

1

12
h2καβ

[(
Γ2
δγa11 − Γ1

δγa12
) 1
a

]
δu3,2

+
1

12
h2καβ

[(
Γ1
δγa22 − Γ2

δγa21
) 1
a

]
δu3,1

}√
adξ1dξ2.

(3.114)

Similar to a beam, the shell governing equation for both the nonlinear (3.91) and

the linear (3.112), (3.113), and (3.114), will be implemented and compared in chapter

5 with a finite element method. The equation in the specific form of the straight and

the curved geometry will be also presented.



Chapter 4

Finite element method for beam

governing equations

4.1 Introduction

This chapter will be concerned with the finite element implementations of a beam prob-

lem in order to show that its linearised governing equations with the linear constitutive

law can describe a beam’s behaviour within a small deformation. The Kirchhoff-Love

assumption plays an important role to derive its dimension-reduced governing equa-

tions as we already discussed in chapter 3. The general form of the linearised governing

equation for a beam is as follow (see chapter 3 for details)

∫ L

0

(
γδγ +

1

12
h2κδκ− 1

h
f · δu

)√
adξ = 0. (4.1)

Note that the intrinsic coordinate ξ is used to parametrise all beam’s quantities. All

strain tensor γ, bending tensor κ, and their variation, δγ, δκ are linearised and ex-

pressed as (3.74), (3.83), (3.75), (3.84), respectively. Also, δu and f denotes, respec-

tively, a virtual displacement and an external force expressed on the area element of

the undeformed midplane.

In the equation (4.1), a linearisation of the governing equation is for a beam in a

general geometry. In this chapter, the governing equation will be specific to a straight

and a curved beam. Section 4.2 will start a beam implementation with the straight

beam problem whose domain of interest has a zero curvature while section 4.3 will

illustrate the curved beam problem whose domain of interest has a non-zero curvature.

73
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To perform a finite element implementation of the straight beam in section 4.2,

its deformation’s governing equation will be decomposed into two governing equations

for the tangential and normal directions. In section 4.2.1, we will illustrate that the

order of differential equations that govern displacements in tangential and normal

directions are different. Therefore, different order of continuity is required in their

weak formulations. Furthermore, we will see that the tangential governing equation is

of second order and contains the first-order derivative of the tangential displacement

in the weak formulation. Unlike the tangential displacement, the normal governing

equation is of fourth order and contains the second-order derivative of the normal

displacement in its weak form. Therefore, the continuity of both the displacement and

its derivative is required in the implementation of the normal displacement while only

the continuity of the displacement is required in the tangential displacement.

Next, in section 4.2.2, there will be three subsections describing the finite element

representations of both tangential and normal displacements. Two interpolations will

be considered in this study: Lagrange and Hermite family functions. In a Lagrange-

type interpolation function, the solution for a field variable being approximated can

retain C0-continuity while the Hermite interpolation provides C1-continuity in the

solution.

In the first two subsections of section 4.2.2, both theoretical and numerical investi-

gations will be performed to determine the appropriate finite element representations

for the tangential displacement. Examination of the terms in its weak form will in-

dicate that either the Lagrange or the Hermite functions can be used to approximate

the tangential displacement as only C0-continuity is required in the weak form.

In order to consider the appropriate interpolation function for the solution of the

second-order PDE, the number of conditions needed to be specified at boundaries for

each interpolation will have to be determined from its weak formulation associated

with each interpolation. Since there is a derivative defined as a degree of freedom in

the Hermite interpolation, its consistency with the natural boundary condition is con-

cerned. Therefore, various specifications at boundaries for the Hermite interpolation

will be numerically illustrated in order to check the consistency and to consider for

the appropriateness.
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Section 4.2.2 ends with the finite element representation for the normal displace-

ments where the appropriate interpolation for the fourth-order differential equation is

determined.

After the finite element formulation that capable of modelling the Biharmonic-

type (the fourth-order PDE) and Poisson-type (the second-order PDE) equations are

selected, numerical comparisons between the linear and nonlinear governing equations

will be described in section 4.2.3 for a straight beam. This is to show that with

a small deformation the linearised governing equation can describe behaviours for a

zero-curvature beam.

Since the straight beam has a zero curvature, its governing equation cannot be

a representative for a thin-beam behaviour in general. Therefore, implementations

for the deformations of the curved beam by the finite element method have to be

considered. Their specific form of the linearised governing equations will be derived in

section 4.3.1. It will be seen that the weak formulations for the tangential and normal

directions required the same C0- and C1-continuity, respectively, as in the straight

beam. Therefore, the same formulation that capable of modelling the displacements

in tangential and normal directions in the straight beam will be required establishing

practical means of approximation for a curved beam in the finite element method.

Numerical results will be shown in section 4.3.2 in order to conclude the comparison

between the linear and nonlinear governing equations in a general non-zero curvature

of a beam within a small-strain regime.

4.2 Finite element method for a straight beam

In this chapter, we will start a beam problem with a straight beam. Let consider

a straight beam under consideration extends from x = 0 to x = 1 with y-direction

initially at y = 0 as shown in Fig. 4.1. The beam is subjected to constant forces which

act in the normal direction to it. Also, the beam is clamped at both ends which means

that u(0) = 0 = u(1) and u′(0) = 0 = u′(1) are applied into the problem.
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x

y

xi2

xi1

r
r0

Figure 4.1: The geometrical description of a straight beam with loads in normal di-
rection.

4.2.1 The linearised governing equation

Now, the specific form of the linearised governing equation for a straight beam will be

derived. All formula and definitions were expressed in section 3.4.1 where u1 and u2

denote a displacement in tangential and normal directions, respectively.

At the initial position of the straight beam, we have r =

 ξ

0

 where ξ is the

intrinsic coordinate lies between [0, 1]. The metric tensor in the undeformed configu-

ration can be expressed as

a =
∂r

∂ξ
· ∂r
∂ξ

=

 1

0

 ·

 1

0

 = 1, (4.2)

and, that of the deformed configuration can be obtained from (3.71) as,

A ≈ 1 + 2
∂u1

∂ξ
. (4.3)

The beam curvature tensors in the undeformed and deformed configurations are ex-

pressed as

b = 0,

B ≈ ∂2u2

∂ξ2
.

(4.4)

Hence, the linear version of the strain and bending tensors and their associated vari-

ations for the straight beam can be computed as (3.74), (3.75), (3.83), and (3.84) in
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Chapter 3 as

γ ≈ ∂u1

∂ξ
,

δγ ≈ δ

(
∂u1

∂ξ

)
,

κ ≈ ∂2u2

∂ξ2
,

δκ ≈ δ

(
∂2u2

∂ξ2

)
.

(4.5)

Now, the linearised governing equation for a straight line beam will be considered

in terms of variation of the displacement vector u and its derivatives in tangential

and normal components. Substituting all linearised terms into (4.1), the governing

equation for a straight line beam is

0 =

∫ L

0

{
−1

h
f 1δ(u1) +

(
∂u1

∂ξ

)
δ

(
∂u1

∂ξ

)
+

[
−1

h
f 2

]
δ(u2) +

1

12
h2
∂2u2

∂ξ2
δ

(
∂2u2

∂ξ2

)}
dξ,

=

∫ L

0

{
−1

h
f 1δ(u1) +

∂u1

∂ξ
δ

(
∂u1

∂ξ

)
+

[
−1

h
f 2

]
δ(u2)− 1

12
h2
∂3u2

∂ξ3
δ

(
∂u2

∂ξ

)}
dξ

+
1

12
h2
∂2u2

∂ξ2
δ

(
∂u2

∂ξ

) ∣∣∣L
0
,

=

∫ L

0

{[
−1

h
f 1 − ∂2u1

∂ξ2

]
δ(u1) +

[
−1

h
f2 +

1

12
h2
∂4u2

∂ξ4

]
δ(u2)

}
dξ

+
∂u1

∂ξ
δ(u1)

∣∣∣L
0
+

1

12
h2
∂2u2

∂ξ2
δ

(
∂u2

∂ξ

) ∣∣∣L
0
− 1

12
h2
∂3u2

∂ξ3
δ(u2)

∣∣∣L
0
,

(4.6)

where, the second and the third equations obtained from integrations by parts.

Comparing (4.6) with (3.89) and (3.90) which are the governing equations in the

tangential and normal displacements for a beam in general shape, respectively, we can

see that there are some terms missing which make (4.6) a lot more simpler. This is a

consequence of having a zero curvature in the straight undeformed domain as shown

in (4.4).

Next, we would like to show that our obtained linearised governing equations for

a straight beam is correspond to the Euler-Bernoulli equation. Note that our beam of

consideration is static. From (4.6), the PDEs for a displacement u of a straight line

beam is given by
1

12
h2
∂4u2

∂ξ4
− 1

h
f 2 = 0, (4.7)



CHAPTER 4. FINITE ELEMENT METHOD FOR A BEAM 78

for the normal displacement, and

∂2u1

∂ξ2
+

1

h
f 1 = 0, (4.8)

for the tangential displacement.

Since (4.7) and (4.8) are obtained by non-dimensionalising all length on some

length scale L, by scaling the applied force on the beam’s effective Young’s modulus

Eeff = E
1−ν2

so that the dimensional and non-dimensional variables are related by

Λ2 = L2ρ
T 2Eeff

, (4.9)

h = Lh⋆, (4.10)

where T denotes some timescale T for non-dimensionalising time. Note that we use

Λ = 1 as the default value in all solid mechanics equations and asterisks are used to

label those dimensional quantities.

Hence, the dimensional form of (4.7) becomes

1

12
h2
∂4u2

∂ξ4
=

1

h
f 2

1h2

12Λ2

∂4u2

∂ξ4
=

1

hΛ2
f2

1h⋆2T 2E

12ρ(1− ν2)

∂4u2

∂ξ4
=

T 2E

ρL3h⋆(1− ν2)
f2

1h⋆2E

12(1− ν2)

∂4u2

∂ξ4
=

E

L3h⋆(1− ν2)
f 2,

(4.11)

and that of (4.8) becomes,

∂2u1

∂ξ2
= −1

h
f1

1

Λ2

∂2u1

∂ξ2
= − 1

Λ2h
f 1

E

(1− ν2)

∂2u1

∂ξ2
= − E

Lh⋆(1− ν2)
f 1,

(4.12)

which correspond to the Euler-Bernoulli equation for a static beam.

Therefore, the partial differential equation that governs the displacement in tan-

gential direction is of second order as shown in (4.8). Also, the partial differential

equation that governs the displacement in normal direction is of fourth order as shown

in (4.7).
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4.2.2 Finite element representations for C0- and C1-continuous

solutions

To implement the tangential and normal displacements by the finite element method,

the formulation should be capable of modelling the coupled equations between the sec-

ond and the fourth order. From (4.7) and (4.8), we have that the transverse (normal)

deflection of a straight beam in the linear elasticity theory is governed by a fourth-

order differential equation and a tangential displacement is governed by a second-order

differential equation.

It can be seen from (4.6) that the weak formulation of the normal displacement’s

governing equation contains the second-order derivative. In order to make the integral

exists, the second-order derivative has to be square-integrable. Also, from the dif-

ferentiability of the first-order derivative, the existence of the second-order derivative

requires the first-order derivative to be continuous. Hence, by Sobolev’s theorem [78],

the normal displacement are C1. This means that both the normal displacement itself

and its first-order derivative are required to be continuous between elements.

To approximate the normal displacement, a C1-continuous interpolation function

has to be considered in order to ensure the continuity of the derivative in the finite

element method. Since the Hermite element provides the continuity between elements

for both the unknown and its first derivative, it is sufficient to represent the normal

displacement with Hermite-family functions as we will describe more in details later

in this section.

However, an interpolation function approximating the solution of the tangential

displacements does not require a continuity for its derivative. As seen in (4.6), the

first-order derivative is the highest order under the integral which requires only the

displacement in the tangential direction, u1, itself to be continuous. When Lagrange

polynomials are employed as shape functions, the resulting approximation is contin-

uous between elements. Therefore, the tangential displacement can be approximated

by either Hermite-type or Lagrange-type interpolation functions.

To identify an appropriate set of shape functions to approximate the solution of

the second-order differential equation, theoretical and numerical investigations will be

illustrated later on in the next two subsections. This is to establish practical means of
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approximation for beam and shell problems in finite element method in the linearised

governing equations.

Finite element representation of the second-order partial differential equa-

tion

Now, let us determine the suitable shape function for the second-order partial differen-

tial equation which is the governing equation for the tangential displacement expressed

as follow
d2u

dξ2
+

1

h
f = 0. (4.13)

In order to do this, we will begin by considering the weak formulation of (4.13) which

is expressed as

0 =

∫ 1

0

{(
d2u

dξ2
+

1

h
f

)
δ(u)

}
dξ. (4.14)

After integrating the weak formulation in (4.14) by parts, the following equation

is obtained with the boundary term appearing as follow

0 =

∫ 1

0

{(
−1

h
f

)
δ(u) +

(
du

dξ

)
δ

(
du

dξ

)}
dξ −

[
du

dξ
δ(u)

]1
0

. (4.15)

Without loss of generality, we assume that the domain of interest is discretised into

N − 1 pieces with N nodes in the mesh (two nodes per element). To illustrate the

appropriate shape function for an unknown variable u of the second-order equation,

two families of shape function: Lagrange and Hermite families, are considered.

In this case for 2-node elements, the linear shape function will be considered for

the Lagrange family while the cubic shape function will be considered for the Hermite

family. Therefore, we have that the solution u(ξ), its derivative du
dξ
, and their variations

can be represented by a set of shape functions which associated with the kth node in

the mesh as

u(ξ) =
N∑
k=1

Ukψk(ξ), δu(ξ) =
N∑
k=1

δUkψk(ξ),

du

dξ
(ξ) =

N∑
k=1

Uk
dψk

dξ
(ξ), δ

(
du

dξ
(ξ)

)
=

N∑
k=1

δUk
dψk

dξ
(ξ),

(4.16)
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for the linear Lagrange shape function and

u(ξ) =
N∑
k=1

2∑
l=1

Uklψkl(ξ), δu(ξ) =
N∑
k=1

2∑
l=1

δUklψkl(ξ),

du

dξ
(ξ) =

N∑
k=1

2∑
l=1

Ukl
dψkl

dξ
(ξ), δ

(
du

dξ
(ξ)

)
=

N∑
k=1

2∑
l=1

δUkl
dψkl

dξ
(ξ),

(4.17)

for the cubic Hermite shape function. Note that Uk denotes the nodal value associated

at node kth for the Lagrange interpolations and Ukl denotes the nodal value associated

at node k with l position type for the Hermite interpolations. The reader may refer

to Appendix A for their definitions and properties.

Next, the implemented equation for the second-order equation using the linear

Lagrange and the cubic Hermite interpolation will be considered. After substituting

the approximations of the variations back into (4.15), we have

0 =

∫ 1

0

(
du

dξ

N∑
k=1

δUk
dψk

dξ
(ξ)− 1

h
f(ξ)

N∑
k=1

δUkψk(ξ)

)
dξ −

[
du

dξ

N∑
k=1

δUkψk(ξ)

]1
0

,

=
N∑
k=1

δUk

(∫ 1

0

(
du

dξ

dψk

dξ
− 1

h
f(ξ)ψk(ξ)

)
dξ −

[
du

dξ
ψk(ξ)

]1
0

)
,

(4.18)

for the linear Lagrange shape function, and

0 =

∫ 1

0

(
du

dξ

N∑
k=1

2∑
l=1

δUkl
dψkl

dξ
(ξ)− 1

h
f(ξ)

N∑
k=1

2∑
l=1

δUklψkl(ξ)

)
dξ

−

[
du

dξ

N∑
k=1

2∑
l=1

δUklψkl(ξ)

]1
0

,

=
N∑
k=1

2∑
l=1

δUkl

(∫ 1

0

(
du

dξ

dψkl

dξ
− 1

h
f(ξ)ψkl(ξ)

)
dξ −

[
du

dξ
ψkl(ξ)

]1
0

)
,

(4.19)

for the cubic Hermite shape function. These equations must be zero for any values

δUk and δUkl, i.e.,

0 =
N∑
k=1

δUkrk(U1, U2, ..., UN),

0 =
N∑
k=1

2∑
l=1

δUklrkl(U11, U12, ..., UN1, UN2).

(4.20)

Therefore, for any nonzero value of the coefficients δUk; k = 1, ..., N , and δUkl; k =

1, ..., N ; l = 1, 2, we have that

0 = rk(U1, U2, ..., UN) =

∫ 1

0

(
du

dξ

dψk

dξ
− 1

h
f(ξ)ψk(ξ)

)
dξ −

[
du

dξ
ψk(ξ)

]1
0

, (4.21)
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and,

0 = rkl(U11, U12, ..., UN1, UN2) =

∫ 1

0

(
du

dξ

dψkl

dξ
− 1

h
f(ξ)ψkl(ξ)

)
dξ −

[
du

dξ
ψkl(ξ)

]1
0

,

(4.22)

for the linear Lagrange and the cubic Hermite shape functions, respectively. Note that,

in the present case, the global coordinate is considered in order to specify conditions

at the boundaries 0 and 1 for the Poisson equation.

After substituting the approximation of the solution (4.16) into (4.21) and (4.17)

into (4.22), we have

0 = rk(U1, U2, ..., UN) =

∫ 1

0

(
N∑
l=1

Ul
dψl

dξ

dψk

dξ
− 1

h
f(ξ)ψk(ξ)

)
dξ −

[
du

dξ
ψk(ξ)

]1
0

,

(4.23)

for the Lagrange shape function, and

0 = rkl(U11, U12, ..., UN1, UN2)

=

∫ 1

0

(
N∑

m=1

2∑
n=1

Umn
dψmn

dξ

dψkl

dξ
− 1

h
f(ξ)ψkl(ξ)

)
dξ −

[
du

dξ
ψkl(ξ)

]1
0

,
(4.24)

for the Hermite shape function, respectively.

From (4.23), the discrete form of the equation becomes

0 = rk =

∫ 1

0

(
U1
dψ1

dξ

dψk

dξ
+ UN

dψN

dξ

dψk

dξ
+

N−1∑
l=2

Ul
dψl

dξ

dψk

dξ
− 1

h
f(ξ)ψk(ξ)

)
dξ

−
[
du

dξ
ψk(ξ)

]1
0

.

(4.25)

On the other hand, employing the cubic Hermite function as an approximation

function in (4.24) gives

0 = rkl =

∫ 1

0

(
U11

dψ11

dξ

dψkl

dξ
+ U12

dψ12

dξ

dψkl

dξ
+ UN1

dψN1

dξ

dψkl

dξ
+ UN2

dψN2

dξ

dψkl

dξ

+
N−1∑
m=2

2∑
n=1

Umn
dψmn

dξ

dψkl

dξ
− 1

h
f(ξ)ψkl(ξ)

)
dξ −

[
du

dξ
ψkl(ξ)

]1
0

.

(4.26)

These equations (4.25) and (4.26) are the implemented equations in the finite

element method for the Poisson equation using the Lagrange and the Hermite inter-

polation, respectively. It can be seen from those two equations that there exists the

condition for du
dξ

appeared in the boundary terms
[
du
dξ
ψk(ξ)

]1
0
and

[
du
dξ
ψkl(ξ)

]1
0
in the



CHAPTER 4. FINITE ELEMENT METHOD FOR A BEAM 83

implemented equations which need to be taken care. This boundary condition is the

so-called natural boundary condition.

Note that Neumann boundary conditions or other boundary conditions prescribing

derivatives are usually called natural boundary conditions because they follow directly

from the weak formulation and are not explicitly imposed. It can be seen later on that

the natural boundary conditions impose no constraints on a continuity of functions

but rather alter the implemented equation. On the other hand, the essential boundary

conditions must be imposed explicitly in the problem’s formulation. In the clamped

beam problem, the essential boundary conditions are u = 0 at both boundaries.

Examination of the terms in (4.25) indicates that two conditions at the bound-

aries have to be considered for the Lagrange functions, U1, UN , while four boundary

conditions, U11, U12, UN1, UN2 are needed for the Hermite functions as shown in (4.26).

Therefore, specifications on the boundary conditions will play an essential role on the

consistency between the finite element solution and the natural boundary condition.

To elaborate the effect of boundary specifications for each interpolation, two main

cases are considered − relaxing the unknown degree of freedom at one end and pinning

the unknown degree of freedom at both ends. In the first case, we will relax the

unknown degree of freedom at one end, says at ξ = 0, i.e., we prescribe the value of

u(1) = α. Hence, UN = α for the Lagrange interpolation and UN1 = α for the Hermite

interpolation. Now, (4.25) and (4.26) become, for k = 1, ..., N − 1 and l = 1, 2,

0 = rk =

∫ 1

0

(
U1
dψ1

dξ

dψk

dξ
+ α

dψN

dξ

dψk

dξ
+

N−1∑
l=2

Ul
dψl

dξ

dψk

dξ
− 1

h
f(ξ)ψk(ξ)

)
dξ

+
du

dξ
(0)ψk(0),

(4.27)

and,

0 = rkl =

∫ 1

0

(
U11

dψ11

dξ

dψkl

dξ
+ U12

dψ12

dξ

dψkl

dξ
+ α

dψN1

dξ

dψkl

dξ
+ UN2

dψN2

dξ

dψkl

dξ

+
N−1∑
m=2

2∑
n=1

Umn
dψmn

dξ

dψkl

dξ
− 1

h
f(ξ)ψkl(ξ)

)
dξ +

du

dξ
(0)ψkl(0),

(4.28)

respectively.

Now, let us consider the consistency between the natural boundary condition du
dξ

at ξ = 0 and the nodal value U12 which is associated with the unknown derivative at

ξ = 0. For the Lagrange interpolation function, if another given boundary condition
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du
dξ

at ξ = 0 is zero, there is no contribution of the natural boundary condition into

the implemented equation. But if we have non-zero derivative, du
dξ
(0) ̸= 0, the natural

boundary condition du
dξ
(0) must be included in the implemented equation as in (4.27).

However, we don’t have to worry about the consistency with the natural boundary

condition in this case since there is no derivative degree of freedom defined in the

Lagrange shape functions.

For the Hermite interpolation function, we can similarly perform as described in

the Lagrange interpolation function. However, since there is the derivative degree of

freedom defined in the Hermite interpolation function, the consistency between the

natural boundary condition du
dξ
(0) and the nodal value U12 has to be concerned. In

this case, knowing the values u(1) and du
dξ
(0) still gives another two additional values,

U11, UN2, to be taken care. Numerical results for the specification of these two degrees

of freedom will be illustrated in the next subsection.

Regarding the second case of the boundary specifications, we will pin the unknown

degree of freedom at both ends of the boundary. In this case, the unknown u have

been imposed to some values, say u(0) = α, u(1) = β. Hence, U1 = α,UN = β for

the Lagrange interpolation and U11 = α, UN1 = β for the Hermite interpolation. Now,

the implemented equation for the Poisson problem using the Lagrange interpolations

becomes, for k = 2, ..., N − 1,

0 = rk =

∫ 1

0

(
α
dψ1

dξ

dψk

dξ
+ β

dψN

dξ

dψk

dξ
+

N−1∑
l=2

Ul
dψl

dξ

dψk

dξ
− 1

h
f(ξ)ψk(ξ)

)
dξ. (4.29)

Similarly, the implemented equation for the Poisson problem using the Hermite

interpolations, (4.26), becomes, for r12, rN2, and rkl; k = 2, ..., N − 1, l = 1, 2,

0 = rkl =

∫ 1

0

(
α
dψ11

dξ

dψkl

dξ
+ U12

dψ12

dξ

dψkl

dξ
+ β

dψN1

dξ

dψkl

dξ
+ UN2

dψN2

dξ

dψkl

dξ

+
N−1∑
m=2

2∑
n=1

Umn
dψmn

dξ

dψkl

dξ
− 1

h
f(ξ)ψkl(ξ)

)
dξ.

(4.30)

However, there are still two additional values U12 and UN2 that have to be specified

at the boundaries for the Hermite interpolation. These are values associated with the

derivative degree of freedom which will be determined as part of the solution. Since

there is no natural boundary conditions in this case, using the Hermite interpolation

functions to approximate the unknown for the Poisson equation is not problematic as

we will numerically show in the next section.
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Numerical implementations of solving the Poisson equation with the Her-

mite interpolation

In this section, we will solve the Poisson equation by using the Hermite interpolation.

The objective is to check the consistency between the finite element solution obtained

from the Hermite interpolation and the specified natural boundary conditions. The

numerical results from different cases of boundary specifications as discussed in the

previous section will be illustrated.

Let consider the following Poisson equation

d2u

dξ2
+

1

h
f(ξ) = 0, ξ ∈ [0, 1], (4.31)

where h = 1 and f(ξ) = −(4ξ2+2)e(ξ
2+6) with the following boundary conditions. For

the boundary condition specifications in case 1 explained in (4.27) and (4.28), we have

u(1) = 1096.63,
du

dξ
(0) = 0, (4.32)

and those in case 2 explained in (4.29) and (4.30) are

u(0) = 403.4288, u(1) = 1096.63. (4.33)

The exact solution for (4.31) with boundary conditions in both cases is

u(ξ) = e(ξ
2+6). (4.34)

Therefore, its first derivative is

u′(ξ) = 2ξe(ξ
2+6). (4.35)

As mention previously, using the Hermite interpolation functions to approximate

the solution of the second-order differential equation will introduce additional deriva-

tive degrees of freedom at boundaries. In order to implement the Poisson equation

(4.31) using the Hermite interpolation in the finite element method, the implemented

equations (4.28) and (4.30) will be considered for case 1 and case 2, respectively. Note

that the finite element implementations for all cases in this section are done using 100

elements in the mesh.

Firstly, we consider the first case where the unknown degree of freedom is pinned

at one boundary and free at the other end. In this Poisson problem, the boundary
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conditions are u(1) = 1096.63 and du
dξ
(0) = 0. Now, we still have another two additional

degrees of freedom to specify. If we constrain the unknown degree of freedom at the

boundary ξ = 0, this situation will refer to case 2 which will be discussed later on. But

if we specify a value to the derivative degree of freedom at ξ = 1, the equation system

will be over-constrained. Therefore, we will let the unknown u(0) and the derivative

du
dξ
(1) degrees of freedom be free.

case u(x = 0) u(x = 1) u′(x = 0) u′(x = 1) Energy-norm error
1 free pinned pinned free 7.66697× 10−7

2 pinned pinned pinned pinned 1.03397× 10−7

2 pinned pinned free free 7.66622× 10−7

Table 4.1: Specifications of boundary conditions at both ends with energy-norm error
obtained from the solution associated with each case.

Fig. 4.2 illustrates that the finite element solution for the derivative degree of free-

dom at ξ = 0 is consistent with the natural boundary condition, du
dξ
(0) = 0. Moreover,

the obtained finite element solution and the exact solution for the derivative degrees of

freedom are consistent along the mesh with very small differences. As can be seen in

Table 4.1, the obtained error for this case is in order of 10−7. Note that error computes

in Table 4.1 obtained from the energy norm which can be expressed as

∥uexact − uFE∥m =

(∫ m∑
i=0

∣∣∣∣diuexactdxi
− diuFE

dxi

∣∣∣∣2dx
)1/2

, (4.36)

where 2m is the order of the differential equation being solved.

In order to illustrate the derivative specifications for case 2 using the Hermite inter-

polation, two cases of derivatives degree of freedom at boundaries will be determined.

The first case is that the derivative degrees of freedom are pinned and specified to the

exact solution at both ends while the second case is to relax the boundary conditions

by letting the derivative degrees of freedom to be free at both ends.

The goal in case 2 is to show that the specification of the two additional values U12

and UN2 for the derivative degree of freedom at the boundaries does not matter since

there is no contribution from the natural boundary condition to the implemented

equation as shown in (4.30). Validations can be found in Table 4.1. Comparisons

between the finite element solution and the exact solution of the derivative degrees
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Figure 4.2: (4.2a) The comparison between the finite element solution and the exact
solution of the derivative degrees of freedom. (4.2b) Differences between the exact and
the finite element solutions of the derivative degrees of freedom. These are computed
under Case 1 with the boundary conditions that u(1) = 1096.63 and du

dξ
(0) = 0.

of freedom for both cases show the consistency with very small differences as seen in

Figs. 4.3 and 4.4.

Regarding error between subcases of case 2, Table 4.1 illustrates that there is little

distinction between different cases of the derivative specifications. These confirm that

there is no contribution from the natural boundary condition.

Hence, employing the Hermite interpolation to approximate the solution of the

second-order equation with the Dirichlet boundary conditions can be a promising way

to do in the finite element method as no further information requires in order to specify

the derivative degree of freedom. However, ones have to be aware that the implemented

equation in the finite element method for the Neumann boundary value problem can

be altered to satisfy the consistency with the natural boundary conditions.

Unlike the Hermite function, the implemented equation for the Lagrange interpo-

lation can be kept very simple as there is no unnecessary degree of freedom included.
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Figure 4.3: (4.3a) The comparison between the finite element solution and the exact
solution of the derivative degrees of freedom. (4.3b) Differences between the exact and
the finite element solutions of the derivative degrees of freedom. These are computed
under Case 2 with the derivative degrees of freedom are specified at both ends.

Consequently, there is no concern about the consistency between the natural bound-

ary conditions and the derivative degrees of freedom. Therefore, it is better to employ

the Lagrange interpolation to approximate the solution of the second-order differential

equation.

Finite element representation of the fourth-order partial differential equa-

tion

In an area of continuum mechanics, especially in linear elastic theory, not only the

Poisson-type equation but the Biharmonic-type equation might be concerned as it is

the governing equation for the normal displacement. The normal governing equation

which is the Biharmonic-type equation can be described as follow (see 4.7)

1

12
h2
d4u

dξ4
− 1

h
f(ξ) = 0, (4.37)
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Figure 4.4: (4.4a) The comparison between the finite element solution and the exact
solution of the derivative degrees of freedom. (4.4b) Differences between the exact and
the finite element solutions of the derivative degrees of freedom. These are computed
under Case 2 with the derivative degrees of freedom are free at both ends.

where its weak formulation after integration by parts twice is

0 =

∫ 1

0

{(
−1

h
f

)
δ(u) +

1

12
h2
d2u

dξ2
δ

(
d2u

dξ2

)}
dξ +

d3u

dξ3
δu
∣∣∣1
0
− d2u

dξ2
δ

(
du

dξ

) ∣∣∣1
0
. (4.38)

Similar to the second-order equation, the boundary terms appearing in (4.38) have

to be determined from boundary conditions. In order to consider approximate func-

tions for the solution of (4.37), we will simplify the implemented equation by applying

homogeneous boundary conditions for the unknown and its derivatives at both ends.

Therefore, δu = 0, δ
(

du
dξ

)
= 0 at the boundaries and we can employ (4.38) to develop

the implemented equation for the Biharmonic equation with no boundary terms.
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Substituting the approximation of the variations of the unknown u and its deriva-

tives (4.17) back into (4.38), we have

0 =

∫ 1

0

(
1

12
h2
d2u

dξ2

N∑
k=1

2∑
l=1

δUkl
d2ψkl

dξ2
− 1

h
f(ξ)

N∑
k=1

2∑
l=1

δUklψkl(ξ)

)
dξ

=
N∑
k=1

2∑
l=1

δUkl

[∫ 1

0

(
1

12
h2
d2u

dξ2
d2ψkl

dξ2
− 1

h
f(ξ)ψkl(ξ)

)
dξ

=
N∑
k=1

2∑
l=1

δUklrkl(U11, U12, ..., UN1, UN2).

(4.39)

Therefore, for any value of the coefficients δUkl; k = 1, ..., N ; l = 1, 2, we have that

0 = rkl(U11, U12, ..., UN1, UN2) =

∫ 1

0

(
1

12
h2
d2u

dξ2
d2ψkl

dξ2
− 1

h
f(ξ)ψkl(ξ)

)
dξ. (4.40)

After substituting the approximation of the solution into (4.40), the implemented

equation for the Biharmonic-type equation is obtained as

0 = rkl(U11, U12, ..., UN1, UN2)

=

∫ 1

0

(
1

12
h2
d2u

dξ2
d2ψkl

dξ2
− 1

h
f(ξ)ψkl(ξ)

)
dξ,

=

∫ 1

0

(
1

12
h2

N∑
m=1

2∑
n=1

Umn
d2ψmn

dξ2
d2ψkl

dξ2
− 1

h
f(ξ)ψkl(ξ)

)
dξ.

(4.41)

It can be seen from (4.41) that global basis functions approximating the solution

have to be continuous with nonzero derivatives up to order two. Also, in order to make

the integral exists, the value and its derivative have to be continuous and constrained

at nodes. This results in having two unknowns per nodes which gives a total of

four conditions in an element that have to be specified. Therefore, the appropriate

polynomial used to interpolate an unknown variable u in this type of equation has to

be cubic. Moreover, the interpolation function that used in an approximation of u

have to be continuous for both values and its derivative between elements.

Since the Hermite family of shape functions is associated with u and du
dξ
, the conti-

nuity of both unknowns required in (4.41) can be assured. Moreover, a cubic Hermite

element will have four degree of freedoms per element, two at each node for u and

du
dξ
, which allows us to specify conditions for the implementation of the fourth-order

problem.

Recall that the cubic Lagrange interpolation functions are derived from interpo-

lating a function but not its derivatives. Even though a cubic Lagrange element have
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four unknowns of the dependent variable, there is no derivative degree of freedom to

ensure the C1-continuity. Since the slope of the dependent variable is also required by

the weak form to be continuous between nodes, the cubic Lagrange interpolation of u

is not suitable in the finite element approximation of du
dξ
.

In conclusion, to implement a finite element method, it has been found that the

Lagrange interpolation is preferable to approximate the solution in the case of the

second-order equation as we illustrated theoretically in the first subsection and nu-

merically in the second subsection of section 4.2.2. Moreover, the third subsection

of section 4.2.2 elaborated that the Hermite interpolation should be employed to ap-

proximate the solution of the fourth-order equation. Therefore, our finite element

implementations in this thesis will employ this mix-formulation to obtain the solu-

tions of linearised beam and shell problems which govern by the coupled equations

between the second and the fourth order differential equation.

4.2.3 Numerical comparisons between the Kirchhoff-Love lin-

ear and nonlinear governing equations

In this section, implementations of the linearised governing equation for the straight

beam will be discussed and compared with the nonlinear equations that associate with

the problem.

Regarding the linear-theory implementations, there are two formulations to be

compared. The first one is the Hermite formulation which employed the Hermite

interpolation functions as a shape function for both tangential and normal displace-

ments. The other formulation is the mixed formulation which employs the Lagrange

interpolation for a tangential displacement and the Hermite interpolation for a normal

displacement. This is to illustrate that the Lagrange shape function shall be employed

to approximate the tangential displacement which governs by the second-order par-

tial differential equation. Therefore, numerical comparisons will be made between the

solutions obtained from the two formulation schemes as well as the solutions of the

linear and the nonlinear equations.

In order to perform a finite element implementation, the domain of interest will be

first discretised. Since we are going to consider the straight beam in this section, the
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given one-dimensional domain is divided into a set of line elements being of length he

as illustrated in Fig. 4.5.

In this problem, the choice of number of nodes and elements is chosen to have 100

elements with 201 nodes in the mesh. This is a result from using 3-node elements

which employ a quadratic Lagrange shape function to approximate the tangential

displacement.
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Figure 4.5: Finite element discretisation of one-dimensional domains: a straight line
beam.

In order to perform the Gaussian integration, the degree of precision and the num-

ber of Gauss points and weights must be determined so that the function under an

integral can be accurately approximated. Since the cubic polynomial is the highest

order of the considered interpolation functions, it can be seen from the governing equa-

tion (4.6) that the highest order of function in the beam element under the integral

between the second- and the fourth-order equations is quartic. Therefore, the 3-point

rule is specified and defined as in Table 4.2. Note that the r number of weights wi and

the integral points ξi can be accurately approximated a polynomial of degree 2r − 1

[40].

Points i ξi Weights wi

0 -0.7745966692 0.8888888889
1 0 0.5555555555
2 0.7745966692 0.8888888889

Table 4.2: A tabular of weights and Gauss points used in the Gauss quadrature for an
integral approximation when r = 3.

Next, we will consider boundary conditions that will be specified in tangential

and normal displacements for the beam with a clamped support. As the beam is
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clamped at both ends, the displacement in tangential direction has to be specified

so that u1(ξ = 0) = 0 and u1(ξ = 1) = 0. To determine boundary conditions for

the normal displacement, there are two degrees of freedom to be concerned at nodes;

the displacement value and its derivative. Since the beam is clamped, we have that

both value and its derivative have to be set to zero at both boundaries 0 and 1, i.e.,

u2(ξ = 0) = 0, u2
′
(ξ = 0) = 0 and u2(ξ = 1) = 0, u2

′
(ξ = 1) = 0.

After we have specified boundary conditions, the linear governing equation (4.6) is

solved numerically using a finite-element method in Oomph-lib [53] while the nonlinear

governing equation can be formulated from (3.63). Note that there is no initial stress

and constant external forces are uniformly distributed in normal direction to a beam.

Within a small-deformation regime, the load applied in the normal direction to both

linear and nonlinear equations is small and the same. It equals to 1.0e− 8.

The finite element solutions obtained from the linear and nonlinear equations is

indistinguishable as can be seen in Fig. 4.6a and Fig. 4.6b. The error obtained by the

maximum norm between the linear and nonlinear equations for f = 1× 10−8 is in the

order of 10−7 which is so small that it is effectively zero. In these figures, deformed

positions are compared and they can be computed as

R(ξ) = r(ξ) + u(ξ). (4.42)

Since we consider the positions in the Cartesian coordinate system, the tangential and

normal displacement, u1 and u2, have to be considered in the same coordinate sys-

tem. The transformation of the tangential and normal displacements to the Cartesian

coordinate system can be done by

ux = u1t1 + u2n̂1,

uy = u1t2 + u2n̂2,
(4.43)

where ti, n̂i; , i = 1, 2, denote components of the tangent, t, and the unit normal, n̂,

vectors, respectively. After substituting (4.43) back into (4.42), deformed positions in

the Cartesian coordinate system are obtained.

Next, we will investigate how the magnitude of a loading term will effect on the

solution of the linear and nonlinear equations. To appreciate this, the external forces

that applied to the beam in the normal direction are varied and increased from 0 by

1.0e− 8 for 21 steps.
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Figure 4.6: Comparisons between the deformed positions obtained from nonlinear and
linear equations of a straight line beam with a clamped support at the end points with
the same constant loads = 1.0e− 8 applied in normal direction.

Figure 4.7 depicts the finite element solutions of displacements obtained from the

linear and nonlinear beam equations compared with the analytic solution. It can

be seen that solutions obtained from both the Hermite and the mixed formulation

of the linearised beam give better accuracy than the nonlinear solutions as they are

consistent with the analytic solutions. Furthermore, when a loading is small, the

solutions obtained from linear and nonlinear equations agree. They start to disagree

when loading becomes larger. For the straight beam, the maximum displacement

which the linear and nonlinear equations still agree with 0.01% relative error is 3.12%

of the thickness.

Regarding the comparison between the mixed and the Hermite formulations, it

can be seen from Fig. 4.8 that the error between them is effectively zero. This has

proved that there is no contribution from the natural boundary condition into the

implemented equation for the Hermite formulation when boundary conditions for the

value are pinned at both ends. Therefore, the Hermite formulation can be employed

for the clamped support problem.

4.3 Finite element method for an elastic ring

In the previous section, we consider the straight beam whose undeformed configuration

has a zero curvature. Even though the solutions obtained from the linear and nonlinear
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Figure 4.7: Comparisons between displacements obtained from different implemen-
tations together with the analytic solution for a deformed straight line beam with
different loads.
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Figure 4.8: Comparisons between absolute error obtained from the difference between
solutions of the mixed and Hermite formulations and the analytic solution for a de-
formed straight beam with different loads.

governing equations for the straight beam agree when a force is small, it still can not

be concluded that the thin-beam behaviour can be described by the linear governing

equation within a small-deformation regime. This is a consequence of some missing

terms from the governing equations of a general shape expressed in (3.89) and (3.90)

when comes to the straight beam. Hence, we will consider the beam whose domain of

interest has a non-zero curvature in this section in order to investigate the consistency

between the linear and nonlinear solutions.
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4.3.1 The linearised governing equation

In this section, an elastic ring is considered. It is a curved beam whose initial geometry

is a unit circle. To implement the deformation of an elastic ring in this study, the

symmetric assumption is applied since the quarter of a unit circle is considered as

illustrated in Fig. 4.9. Therefore, intrinsic coordinate ξ (which can be thought as an

angle) extends from 0 to π
2
. The elastic ring is subjected to the constant loads which

is normally distributed.

Figure 4.9: The geometrical description of an elastic ring with loads in normal direc-
tion.

The initial positions of an elastic ring are r =

 cos(ξ)

sin(ξ)

 , ξ ∈ [0, π/2]. The

linear version of the metric tensors in the undeformed and deformed configurations

are, respectively,

a =
∂r

∂ξ
· ∂r
∂ξ

=

 − sin(ξ)

cos(ξ)

 ·

 − sin(ξ)

cos(ξ)

 = 1, (4.44)

and, from (3.71),

A = 1 + 2t· ∂u
∂ξ
. (4.45)

The linear version of the beam curvature tensor in the undeformed and deformed

configurations are

b = n̂· ∂
2r

∂ξ2
,

B = b+

(
2
∂u1

∂ξ
+ u2 − ∂2u2

∂ξ2

)
.

(4.46)
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Therefore, the linearised strain and bending tensors and their variations can be com-

puted from (3.74), (3.75), (3.83), and (3.84) as

γ = a

(
∂u1

∂ξ
+ u2

)
,

δγ = aδ

(
∂u1

∂ξ

)
+ aδ

(
u2
)
,

κ = 2
∂u1

∂ξ
+ u2 − ∂2u2

∂ξ2
,

δκ = 2δ

(
∂u1

∂ξ

)
+ δu2 − δ

(
∂2u2

∂ξ2

)
(4.47)

Thus, the linearised governing equation for an elastic ring displacement in tangen-

tial direction is,

0 =

∫ L

0

{[
−1

h
f1

]
δu1 +

[
a2
∂u1

∂ξ
+ a2u2

+
1

6
h2
(
2
∂u1

∂ξ
+ u2 − ∂2u2

∂ξ2

)]
δ

(
∂u1

∂ξ

)}√
adξ

=

∫ L

0

{
−1

h
f1 − a2

∂2u1

∂ξ2
− a2

∂u2

∂ξ
− 1

3
h2
∂2u1

∂ξ2

− 1

6
h2
∂u2

∂ξ
+

1

6
h2
∂3u2

∂ξ3

}
δu1

√
adξ

+

[
a2
∂u1

∂ξ
+ a2u2 +

1

6
h2
(
2
∂u1

∂ξ
+ u2 − ∂2u2

∂ξ2

)]
δ(u1)

∣∣∣L
0
,

(4.48)

where the last equation is obtained from the integration by parts. Since the clamped

boundaries are applied at both ends, the boundary term appeared in the last line

vanishes.

Now, we will consider the partial differential equation obtained from the tangential

governing equation (4.48). We have that the PDE for a displacement in tangential

direction u1 of an elastic ring is given by

a

h
f 1 = −

(
1 +

1

3

(
h

a

)2
)
∂2u1

∂ξ2

−

(
1 +

1

6

(
h

a

)2
)
∂u2

∂ξ
+

1

6

(
h

a

)2
∂3u2

∂ξ3
.

(4.49)

Also, the linearised governing equation for an elastic ring displacement in normal
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direction is expressed as

0 =

∫ L

0

{[
−1

h
f2 + a2

∂u1
∂ξ

+ a2u2 +
1

6
h2
∂u1

∂ξ
+

1

12
h2u2

− 1

12
h2
∂2u2

∂ξ2

]
δu2 +

[
−1

6
h2
∂u1

∂ξ
− 1

12
h2u2 +

1

12
h2
∂2u2

∂ξ2

]
δ

(
∂2u2

∂ξ2

)}√
adξ

=

∫ L

0

{
−1

h
f2 + a2

∂u1

∂ξ
+ a2u2 +

1

6
h2
∂u1

∂ξ
+

1

12
h2u2

− 1

12
h2
∂2u2

∂ξ2
− 1

6
h2
∂3u1

∂ξ3
− 1

12
h2
∂2u2

∂ξ2
+

1

12
h2
∂4u2

∂ξ4

}
δu2

√
adξ

+

[
−1

6
h2
∂u1

∂ξ
− 1

12
h2u2 +

1

12
h2
∂2u2

∂ξ2

]
δ

(
∂u2

∂ξ

) ∣∣∣L
0

−
[
−1

6
h2
∂2u1

∂ξ2
− 1

12
h2
∂u2

∂ξ
+

1

12
h2
∂3u2

∂ξ3

]
δ(u2)

∣∣∣L
0
,

(4.50)

where, the last equation obtained from the integration by parts twice. Since the

clamped boundaries are applied at both ends, all boundary terms appeared in the last

line vanish. Similarly, the PDE for a displacement in normal direction u2 of an elastic

ring can be obtained as

a

h
f2 =

(
1 +

1

6

(
h

a

)2
)
∂u1

∂ξ
− 1

6

(
h

a

)2
∂3u1

∂ξ3

+

(
1 +

1

12

(
h

a

)2
)
u2 − 1

6

(
h

a

)2
∂2u2

∂ξ2
+

1

12

(
h

a

)2
∂4u2

∂ξ4
.

(4.51)

Note that the partial differential equations that govern displacements in both tan-

gential and normal directions for the curved beam are more complicated than those

of the straight beam. We can notice that the equations (4.48) and (4.50) are coupled

between displacements in both directions. This is unlike the straight case that each

governing equation is for the displacement in each direction. Therefore, the displace-

ment in both directions has to be solved simultaneously for the curved beam.

Although the highest order of derivative in the normal governing equation shown

in (4.7) and (4.51) is the same (quartic), the highest order derivative of the tangential

governing equation in the curved beam case is of order 3 (see (4.49)) while that of the

straight beam is of order 2 (see (4.8)). The higher order derivative in the tangential

equation of the curved case is a result of having a non-zero curvature in the undeformed

configuration.

Regarding the weak formulation for the curved beam, it can be seen from (4.48)

and (4.50) that the finite element representations for displacements in both directions
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are the same as in the straight case. Since the weak formulation of the normal gov-

erning equation (4.50) for the curved beam contains the variation of the second-order

derivative of the normal displacement, the Hermite interpolation is employed to en-

sure the C1-continuity. Also, (4.48) suggests that only C0-continuity is required in

order to make the integral exists as the integral contains only the variation of the

first derivative of the tangential displacement. Therefore, the Lagrange interpolation

function is employed to approximate the tangential displacement for the curved beam.

Similar to the straight beam, the mixed formulation will be employed to implement

the governing equations of the curved beam.

4.3.2 Numerical comparisons between the Kirchhoff-Love lin-

ear and nonlinear governing equations

Similar to section 4.2.3 for a straight beam, implementations of the linearised curved

beam equations will be discussed and compared with the nonlinear equations that

associate with the problem. Also, the Hermite and the mixed formulations of linear

equations will be illustrated in order to validate the conclusion on the appropriate

interpolation for a tangential displacement.

Firstly, the domain of interest will be discretised. Since we are going to consider a

curved beam in this section, the given one-dimensional domains are divided into a set

of line elements being of length he as illustrated in Fig. 4.10. In the implementations

of the curved beam problem, the choice of number of nodes and elements and the

numerical integration are chosen to be the same as in the straight beam case.
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Figure 4.10: Finite element discretisation of one-dimensional domains: a curved beam.

Next, comparisons between nonlinear and linear governing equations for an elastic



CHAPTER 4. FINITE ELEMENT METHOD FOR A BEAM 100

ring are illustrated. Since only a quarter circular domain is implemented, both bound-

aries are assumed for a symmetry. Therefore, a displacement in normal direction is set

to be free but its slope of the beam is pinned to be zero. A displacement in tangential

direction is adjusted in such a way that both the positions are fixed (and so is the slope

of the beam, in Hermite formulation) at end points so that a beam satisfies symmetric

conditions at both ends.
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(a) Displacements in x-direction obtained from
Nonlinear eqn
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(b) Displacements in y-direction obtained from
Nonlinear eqn
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(c) Displacements in x-direction obtained from
Linear eqn
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Figure 4.11: Displacements in x and y-direction between nonlinear and linear equations
for a deformed curved beam after different loads have been applied from fn̂ = 0 to
fn̂ = 1× 10−5.

Fig. 4.11 depicts displacement in x- and y-directions of an elastic ring with nor-

mally distributed loads from fn̂ = 0 to fn̂ = 1 × 10−5. It can be seen that the

displacement in x- and y-directions are symmetric which introduces that the beam

deforms axisymmetrically. Note that the transformation of the tangential and normal

displacement to the Cartesian coordinate system can be done by (4.43).

Furthermore, Fig. 4.12 illustrates that a displacement obtained from the linear
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governing equations increases when a load increases and it varies linearly with a load.

Also, when a load increases, the results obtained from the linear and the nonlinear

governing equations start to disagree. They agree only when applied loads are small.

These results agree with those of the straight beam. For the elastic ring, the maximum

displacement which the linear and nonlinear equations still agree is 1% of the thickness.
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Figure 4.12: Comparisons between different implementations for a deformed curved
beam with different loads.

In Fig. 4.12, the results between the two formulations of linear, nonlinear beams

and the analytic solutions for an elastic ring displacement are also compared. We have

that both formulations of linearised beam give better solutions than the nonlinear

solutions as they are consistent with the analytic solution.

To compare a difference between the results obtained from the Hermite and the

mixed formulations of linear equations, we will investigate from the absolute error

between them and the analytic solution. Fig. 4.13 illustrates that the difference

between the linear solutions obtained from the mixed and the Hermite are quite small

which is consistent with the straight beam’s result when the value degree of freedom

is pinned at both ends.

Note that the analytic solution for an elastic ring can be obtained from the following

expression

uexact = −(R− r) =
fn̂
Eeff

1

h
, (4.52)

where R and r denote the deformed and undeformed radius of an elastic ring [3].

Equation (4.52) gives the relation between the radius of the deformed beam and the

applied force in normal direction.



CHAPTER 4. FINITE ELEMENT METHOD FOR A BEAM 102

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−8

a
b
s
o
lu

te
 e

rr
o
r

loads

Mix formulation

Hermite formulation

Figure 4.13: Comparisons between absolute error obtained from the difference between
two different implementations; Mixed and Hermite,and the analytic solution for a
curved beam with different loads.

4.4 Summary

In this chapter, finite element implementations of the classical beam theories in both

linear and nonlinear governing equations with the linear constitutive law have been

illustrated and compared. There are two kinds of beam geometry considered; a straight

and a curved beam.

From section 4.2 and section 4.3, it can be seen that numerical comparisons between

the linear and nonlinear governing equations corresponded for both cases of the straight

and the curved beam. The linear and nonlinear solutions agree when a loading is small

and start to disagree when a loading is large. This suggests that within a small-strain

regime, the linear governing equation can be used to describe behaviours of a thin-

beam when a displacement is small. Furthermore, an applied load should be in the

range that gives displacements not greater than, approximately, 1-3% of the thickness.

Regarding the comparison between the linear solutions obtained from the mixed

and the Hermite configurations, Figs. 4.8 and 4.13 showed that there were no sig-

nificantly different between them. This is because there is no contribution from the

natural boundary conditions as the clamped support problems are considered.

However, it is reasonable to continue using the mixed formulation scheme in the

implementations of the linear beam problems and the rest of this study. The underlying

reason is that using Hermite functions for the second-order differential equation gives
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extra conditions for the derivative at boundaries that have to be concerned about the

consistency with the natural boundary conditions. Also, the implemented equation

for the finite element method has to be altered so that the consistency can be satisfied

as illustrated in section 4.2.2. Therefore, Hermite polynomials are not of the correct

order for the interpolation of a C0-continuous solution.

Also, the theoretical investigation in section 4.2.2 suggested that Lagrange interpo-

lation is suitable for an representation of the second-order differential equation. This

is because there is no derivative degree of freedom defined in the Lagrange shape func-

tions which have to be concerned with the natural boundary conditions. Therefore,

the consistency between them is no longer an issue in this case.



Chapter 5

Finite element method for shell

governing equations

5.1 Introduction

In this chapter, we will consider a thin shell which is defined as a thin three-dimensional

elastic body. Similar to a thin beam, many analyses of thin shells also neglect the effect

of transverse shear and follow the theory of Kirchhoff-Love. In Chapter 3, we consid-

ered the linearisation of the governing equation of a static shell in a general geometry

where, in this chapter, we will consider the specific examples of a straight and a curved

shell in sections 5.2 and 5.3, respectively. Also, the finite element implementations will

be presented with their solutions.

Similar to a thin beam, the main objective for the finite element implementations

of a straight and a curved shell in this chapter is that, with a small deformation,

the linearised governing equations can be employed to describe deformations of a

thin-elastic body. This is to generalise the method to a thin-shell theory in order to

illustrate its capability in higher dimension.

It will be seen in section 5.2.1 that the governing equations for the displacements

in tangential directions needs C0-continuity and that of normal direction requires C1-

continuity. These orders of continuity are the same as those of the straight beam for

the associated directions. Hence, Lagrange shape functions are taken into account for

the tangential displacements and the Hermite family is needed to approximate the

normal displacement as suggested in section 4.2.

104
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Regarding the Hermite shape functions in two-dimensional spaces, either rectangu-

lar or triangular elements can be used to define functions assuring the C1-continuity.

In a rectangular element, the most well-known shape functions are the bicubic Her-

mite functions. There are many well-known shape functions defined over a triangular

element to assure C1-continuity. Some of the elements like the Argyris [38] and the

Bell [43] are constructed with higher degree of polynomials in order to obtain C1-

continuity and, also, achieve higher rate of convergence. However, they come with a

drawback of greater computational time. Hence, the Hsieh-Clough-Tocher (HCT) [71],

the Powell-Sabin-Hsieh (PSH) [54] elements, and the one presented by C.A. Felippa

[15] are introduced in order to decrease the computational time by using lower degree

of polynomials. Unfortunately, their rates of convergence decrease compared to those

of the Argyris and Bell elements.

In section 5.2.2 of this chapter, the numerical comparison between two families

of C1-conforming finite elements defined over a rectangle and a triangle will be de-

termined. The bi-cubic Hermite functions will be our choice of shape functions for a

rectangular elements and the Bell shape functions will be employed for a triangular

element.

To appreciate the performance of the Hermite and the Bell elements, section 5.2.2

will illustrate numerical results from solving the two-dimensional Biharmonic equation

with the finite element method. Note that we use the Biharmonic equation as it

requires the same C1-continuity in the approximation as in the governing equation of

the normal displacement.

After the appropriate interpolations for the normal displacement in the shell prob-

lem are selected, the governing equations with the linear constitutive law of a flat

plate will be implemented in section 5.2.3. This is to compare between the solutions

obtained from the linear and nonlinear governing equations of a thin shell. The solu-

tions obtained from those two equations will be checked for the consistency in order

to validate the range of the linearised equation within a small-deformation regime for

a zero-curvature case.

Similar to implementations of thin beams, the governing equations of a zero-

curvature geometry cannot be a representative for a shell behaviour in general. The

governing equations of a circular tube, whose undeformed geometry has a non-zero
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curvature, will be derived in section 5.3.1. In order to conclude the comparison be-

tween the governing equation with the linear and nonlinear governing equations for

a thin-elastic body, implementations for the curved shell deformations by the finite

element method have to be considered. Numerical results will be shown in section

5.3.2.

To summarise, section 5.4 elaborates the discussions and conclusions of this chap-

ter.

5.2 Finite element method for a flat plate

In this section, we will consider a deformation of a flat plate which is subjected to a

pressure loading on its upper surface as illustrated in Fig. 5.1. The loads applied on

a body are uniformly distributed in the normal direction. The boundary conditions

in this problem are two clamped boundaries, ξ1 = 0, ξ1 = 1, and two free edges,

ξ2 = 0, ξ2 = 1, as shown in the figure. The length of the plate in both directions is 1.

 

Fn

0 1

1

Figure 5.1: The geometry of the square plate with two clamped edges and two free
edges. Forces applied to a body are uniform in normal direction.

5.2.1 The linearised governing equation

In this section, the governing equation for a flat plate will be derived. All formula and

definitions used in this section were expressed in section 3.4.2 of chapter 3. Similar to

a beam problem in chapter 4, the shell deformations are decomposed in the tangential

and normal coordinate system in our study. The deformation are parametrised by two

intrinsic coordinates defined on the mid-plane surface. Hence, a deformation of the

shell can be decomposed into two tangential and normal components as

u = ujtj, (5.1)
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where the vector t1, t2 are tangential base vectors in direction of coordinate lines ξ1, ξ2,

respectively, and t̂3 is a unit normal vector to the undeformed mid-surface. Coefficients

uj, j = 1, 2, 3 are the associated components of a displacement u in two tangential and

one normal directions.

Before the specific form of the governing equation for the flat plate will be consid-

ered, the linear versions of the shell kinematics have to be determined first. For a flat

plate, we have the undeformed geometry of a flat plate is expressed by r = (ξ1, ξ2, 0)
T

where ξ1 and ξ2 are intrinsic coordinates on the mid-surface lies between [0, 1]. Hence,

the associated tangential and normal vectors are as follows

t1 = (1, 0, 0)T ,

t2 = (0, 1, 0)T ,

n̂ = t̂3 = (0, 0, 1)T .

(5.2)

The covariant metric tensor in the undeformed configuration can be computed from

(3.94) as

aαβ = tα· tβ. (5.3)

and, that of the deformed configuration can be obtained from (3.95) as,

Aαβ = aαβ + uα|β + uβ|α (5.4)

where uα|β, α, β = 1, 2, denote the components of the first derivatives in the tangential

and normal coordinate system as described in (3.97). We have that the determinant

of the covariant metric tensor in the undeformed configuration for the flat plate equals

to a = 1.

The linearised Green strain tensor for the flat plate, which determined from the

differences between the undeformed and deformed metric tensors as seen in (3.100), is

γαβ =
1

2
(uα|β + uβ|α) =

1

2
(uα,β + uβ,α) (5.5)

where the last terms come from (3.97) and the fact that ∂ti
∂ξα

= 0, ∀i, α, for the flat

plate. Hence, its variation is

δγαβ = δuα,β. (5.6)

Next, we consider the linearised curvature tensor for the flat plate which is specified

by (3.103) as

bαβ = n̂· r,αβ = 0. (5.7)
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Now, it can be seen that the undeformed configuration for the flat plate has a zero cur-

vature since r,αβ = ∂tα
∂ξβ

= 0,∀α, β. Also, the deformed curvature tensor is determined

from (3.108) as

Bαβ = bαβ +

[
1

a
LjΓ

j
αβ −

L3

a2
Γ3
αβ

]
+

(
ui|αΓ3

iβ + u3,αβ + uk
∂Γ3

kα

∂ξβ
+
∂uk

∂ξβ
Γ3
kα

)
,

= bαβ + u3,αβ,

(5.8)

where Lj; j = 1, 2, 3, are the three components of L defined in (3.110). Note that

the last line comes from the definition of the Christoffel symbol of the second kind

Γj
iα =

(
∂ti
∂ξα

· tj
)
which equals to zero for all i, j, α, since ∂ti

∂ξα
= 0 for the flat plate.

Hence, the linearised bending tensor for the flat plate can be calculated from (3.109)

as

καβ = bαβ −Bαβ = −u3,αβ. (5.9)

Substituting the strain tensor, γαβ, in (5.5) and the bending tensor, καβ, in (5.9)

and their variations back into the shell governing equation, (3.91), gives the linear

version of the governing equation for the flat plate in each displacement direction as

follows

0 =

∫∫ [
−1

h
f1

]
δu1 + Ẽαβγδ

{
[γαβ] δu

1
,γ

}
dξ1dξ2, (5.10)

for a displacement u in tangential direction in the coordinate ξ1, and

0 =

∫∫ [
−1

h
f2

]
δu2 + Ẽαβγδ

{
[γαβ] δu

2
,γ

}
dξ1dξ2, (5.11)

for a displacement u in tangential direction in the coordinate ξ2, and

0 =

∫∫ [
−1

h
f 3

]
δu3 + Ẽαβγδ

{[
1

12
h2u3,αβ

]
δu3,δγ

}
dξ1dξ2. (5.12)

for a displacement u in normal direction to the undeformed surface.

Similar to the straight beam elaborated in section 4.2, it can be seen that the flat

plate has a zero curvature in the undeformed configuration. Therefore, the govern-

ing equations contain no coupled term between displacements as those of the straight

beam. Each equation governs displacement in each direction. Furthermore, it can

be seen that the tangential displacement governing equations, (5.10) and (5.11), can
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be obtained from a second-order equation and require only C0-continuity as the in-

tegral contains only the first-order derivative of the tangential displacements. Hence,

Lagrange shape functions are utilised to approximate the tangential displacements as

suggested in section 4.2.1.

The governing equation (5.12) suggests that the shape functions for the normal dis-

placement have to be C1-continuous functions. This is a result of having the second-

order derivative in the integral equation. Therefore, as suggested in section 4.2.1,

Hermite shape functions will be employed to approximate the displacement and its

derivative in normal direction in order to assure the C1-continuity in the implementa-

tions of this chapter.

5.2.2 A comparison between the Bell triangular and the Her-

mite rectangular elements: a Biharmonic equation as a

case study

In the finite element method applied to two-dimensional problems, the domain of

interest can be discretised by many different types of element as long as they can

accurately represent the geometry. Rectangular and triangular elements are popular

and the most employed. However, triangular elements have been used in a wider range

of applications than a rectangular one because of their superiority over rectangles in

representing domains of complex shape.

In this section, finite element implementation will be focused on the comparison

between two selected C1-interpolations defined over rectangular and triangular ele-

ments. Since the derivatives are included in the definitions of the C1-functions, with

the same number of nodes on the element, different degrees of polynomial and num-

bers of degrees of freedom can be used to define different kinds of finite element. The

reference domains that used to define the C1-interpolations also play an essential role

in their rate of convergence. Therefore, it is worth comparing the rate of convergence

between the different C1-interpolations defined on different reference domains.

Note that the implementation use later in this chapter will be the subparametric

scheme, i.e. the geometry is approximated by the linear Lagrange interpolation and

the unknowns are approximated by the choice of C1-interpolations defined over the
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typical elements. Also, in both rectangular and triangular elements, the domain of

interest will be discretised by those elements which invariably have straight sides.

Now, let consider the Biharmonic equation used in this study. It is mathematically

expressed as follow

D4u(xi) =
∂4u

∂x41
+ 2

∂4u

∂x21∂x
2
2

+
∂4u

∂x42
= 0, xi ∈ ℜ, (5.13)

and the exact solution

u(x1, x2) = cos(x1)e
x2 , (5.14)

which will be imposed at boundaries with a combination of Dirichlet and Neumann

boundary conditions. The domain of interest is rectangle with 0 ≤ x1 ≤ 2 and

0 ≤ x2 ≤ 1.

In order to formulate the finite element implementation for the Biharmonic equa-

tion, the weak formulation can be obtained similarly to that of one-dimensional equa-

tion described in (4.38). Rather than considering the line integral as described in 1D-

problem, the residual form of the differential equation, (5.13), and its shape functions

have to be considered over the 2D-domain, Ω = {(x1, x2)|0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1}.

Therefore, the weak or residual form of (5.13) can be expressed as

0 = rk =

∫∫
Ω

(
N∑
l=1

Ul
∂2ψl

∂x21

∂2ψk

∂x21
+ 2

N∑
l=1

Ul
∂2ψl

∂x21

∂2ψk

∂x22
+

N∑
k=1

Ul
∂2ψl

∂x22

∂2ψk

∂x22

)
dx1dx2

+

∫
∂Ω

{
(∇3u · n)ψk −∇2u(∇ψk · n)

}
d∂Ω,

(5.15)

where n denotes a normal vector and ∇n denotes the differential operator for the nth-

order derivatives. Since a combination of Dirichlet and Neumann boundary conditions

is applied along boundaries, the boundary terms appearing in (5.15) vanish.

It can be seen from (5.15) that the weak formulation of the Biharmonic equation

contains second-order derivative of a shape function. As explained in section 4.2.2,

a C1-continuous shape function has to be considered to approximate the Biharmonic

solution in order to ensure the continuity of the first-order derivatives in the finite

element method.
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The C1-rectangular element

In this section, we will describe the continuously differentiable shape functions defined

on two-dimensional rectangular elements. The most famous one is the bicubic Hermite

element. Its shape functions can be simply constructed from tensor products of the

one-dimensional functions as shown in Appendix A.2.

To approximate an unknown u using a two-dimensional bicubic Hermite basis, the

four quantities of the unknown value u, its first derivatives ∂u
∂s1
, ∂u
∂s2

and the mixed

derivative ∂2u
∂s1∂s2

must be defined at each element node. Hence, the approximation can

be obtained from the linear combination between the bicubic Hermite shape functions

and the 16 nodal values defined over the element. Note that the bicubic shape functions

are parametrised by the reference coordinates defined in (1.3.4). Furthermore, the

mesh grid used in the C1-rectangular element must be nicely oriented and regular.

The C1-triangular element

In the finite element analysis, defining C1-shape functions over a triangular element

is not straightforward and comes with a concern. Since there are two types of deriva-

tives degrees of freedom; a derivative with respect to global coordinates and to local

coordinates, the global derivative directions at adjacent elements within the descrip-

tion of the element might not be consistent. This is the result from parametrising

shape functions with local coordinates. Also, under the Jacobian of mapping between

global and local coordinates, the shape function values and their derivatives perform

differently.

Next let us consider a cubic triangle with the degrees of freedom configuration

illustrated in Fig. 5.2, for an example. This configuration uses the six nodes partial

derivatives of u along the side directions. These partials are briefly called side slopes.

To appreciate the difficulties in attaining C1-continuity on triangular elements,

now consider two connected cubic triangles illustrated in Fig. 5.3 with degrees of

freedom described above. The figure shows that the displacement values u1 and u2

match without problems because their direction is shared. However, the side slopes

do not match. This will be even worst if more elements at a corner are considered.

Hence, the main difficulty is that the shape function’s derivatives along the element

boundaries of two adjacent elements do not give a consistent direction.
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Figure 5.2: Degrees of freedom configurations for expressing the displacement u over
a triangle.

Figure 5.3: Degrees of freedom of two adjacent triangles.

To enforce the global C1-continuity between finite elements, many researchers have

been proposed interpolating functions that satisfy the C1-continuity with different de-

grees of freedom defined on a triangle. For example, the well-known Argyris triangle

has 21 degrees of freedom including all second derivatives with complete fifth-order

polynomial interpolation functions [38]. Similar to the Argyris element, the Bell el-

ement [43] has 18 degrees of freedom with the normal derivatives at mid-side nodes

neglected.

Since higher degree of polynomial gives higher degree of freedom, this comes with

greater computational time. Hence, many researchers have been tried to derive a C1-

element with fewer degree of freedom in order to reduce computational time. However,

with their lower degree of polynomial and fewer degree of freedom, these elements are
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not successful as smaller rate of convergence is obtained compared to those elements

employing higher degree of freedom like the Argyris and the Bell elements [63].

Since the Biharmonic equation which is governed by the fourth-order partial dif-

ferential equation is considered in this study, the minimum polynomial expansion of

the unknown to achieve the C1-continuity in two dimensions is quintic. This is a con-

sequence of constraining 6 parameters of the value along the line and its first-order

derivatives at each end of the line. Hence, a quintic polynomial is considered for a

construction of shape functions. Choices of a triangular element can be either the

Argyris element or the Bell element.

The derivations of the Argyris shape functions can be found in many literature. The

derivation can be found from M. Bernadou and J. Boisserie [50]. Another works for the

Argyris element is from [74]. Recently, V. Dominguez and F.J. Sayas [80] proposed

an algorithm to evaluate the basis functions of this element and their derivatives.

However, further computations still need in an implementation for the Argyris element

as no explicit shape functions are defined.

Regarding the Bell element, the explicit form of shape functions for the Bell element

was shown by G. Kämmel [32]. In his book, all shape functions are stated clearly

without requiring further derivation. This is much more easier to use than the Argyris

element which still requires some efforts on the computation of its shape functions.

Moreover, the Bell element has fewer degrees of freedom than the Argyris element

which can reduce the cost of computation. However, having fewer degrees of freedom

in the Bell element still attains high rate of convergence and is easier to provide physical

interpretation of a problem. Therefore, our C1-triangular element will be based on the

Bell’s basis functions.

Before we will present the Bell shape functions, let us first mention the local coor-

dinates used in the reference triangle. Similar to the rectangular element, it is often

convenient to define a shape function on the reference element where the numerical

integration is defined. In two dimensional space, the reference triangle that will be

used to define the local coordinates s1, s2 lies in the unit triangle, {(s1, s2)|0 ≤ s1, s2 ≤

1, s1 + s2 = 1}. To express a coordinate in a triangle, it is easier to work with an area

coordinated system or the Barycentric coordinates as presented in section 1.3.4.
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The Bell shape functions
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Figure 5.4: (Top) The description of all parameters utilised within the definition of the
Bell shape functions where Lj denotes the length of the side opposite to the vertex j.
(Bottom) The Bell element with 18 degrees of freedom; the values uj, first derivatives
uxj, uyj, and all second derivatives uxxj, uxyj, uyyj, at vertex j; j = 1, 2, 3.

Now, let us introduce the Bell element which is derived from the quintic polynomial

with 18 degrees of freedom [43]. The element comprises three nodes with six degrees

of freedom of u, ux, uy, uxx, uxy, uyy at each corner node. The graphical description of

the Bell element is shown in Fig. 5.4.

The shape functions of Bell element are parametrised by area coordinates, λj. The

subscripts ik of the shape functions ψik mean that they are evaluated at node i with

kth degree of freedom where k = 1 denotes degree of freedom that corresponds to

the unknown value, k = 2, 3 correspond to the first derivatives with respect to the

first and second global coordinates, k = 4, 5 correspond to the second derivatives with

respect to the first and second global coordinates, and k = 6 corresponds to the mixed

derivative.

Unlike the Lagrangian interpolation functions, the Bell shape functions are derived

by interpolating nodal derivatives as well as nodal displacements. Also, they have to

satisfy the properties that ψi1 = 1 at node i and ψi1 = 0 at other nodes. Furthermore,

all of the first and the second derivatives of ψi1 = 0 at all nodes. Also, ∂xψi2 = 1 at

node i and ∂xψi2 = 0 at other nodes. Similarly for the first derivative with respect to y,

we have that ∂yψi3 = 1 at node i and ∂yψi3 = 0 at other nodes. These shape functions
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associated with the first derivatives are zero at all nodes for ψim, ∂xxψim, ∂yyψim,

∂xyψim,∀m = 2, 3. Moreover, ∂xxψi4(xk) = δik, ∂yyψi5(xk) = δik, and ∂xyψi6(xk) = δik.

Furthermore, these shape functions associated with the second derivatives are zero

at all nodes for ψim, ∂xψim, and ∂yψim, ∀m = 4, 5, 6. The Bell shape functions are

mathematically expressed as

ψ11(λ1, λ2, λ3) =λ
5
1 + 5λ41(λ2 + λ3) + 10λ31(λ2 + λ3)

2 + 30λ21λ2λ3(l3λ2 + l′2λ3)

ψ12(λ1, λ2, λ3) =3b1λ
2
1λ2λ3(λ2 − λ3) + λ31(b3λ2 − b2λ3)(λ1 + 4λ2 + 4λ3)

+ 15λ21λ2λ3(b3l3λ2 − b2l
′
2λ3)

ψ13(λ1, λ2, λ3) =− 3c1λ
2
1λ2λ3(λ2 − λ3)− λ31(c3λ2 − c2λ3)(λ1 + 4λ2 + 4λ3)

− 15λ21λ2λ3(c3l3λ2 − c2l
′
2λ3)

ψ14(λ1, λ2, λ3) =1/2λ31(b
2
3λ

2
2 + b22λ

2
3) + λ21λ2λ3(−b2b3λ1 + b3b1λ2 + b1b2λ3)

+ 5/2λ21λ2λ3(b
2
3l3λ2 + b22l

′
2λ3)

ψ15(λ1, λ2, λ3) =1/2λ31(c
2
3λ

2
2 + c22λ

2
3) + λ21λ2λ3(−c2c3λ1 + c3c1λ2 + c1c2λ3)

+ 5/2λ21λ2λ3(c
2
3l3λ2 + c22l

′
2λ3)

ψ16(λ1, λ2, λ3) =b1c1λ
2
1λ2λ3(λ1 + λ2 + λ3) + b2c2λ

2
1λ3(λ2λ3 − λ3λ1 − λ1λ2 − λ22)

+ b3c3λ
2
1λ2(λ2λ3 − λ3λ1 − λ1λ2 − λ23)− 5λ21λ2λ3(b2c2l

′
2λ3 + b3c3l3λ2).

(5.16)

Note that these shape functions are associated with the first node with its 6 degrees

of freedom. Shape functions at another two nodes can be obtained by performing

a cyclic permutation of the Barycentric coordinates in (5.16) [32]. The parameters

bi, ci, ∀i = 1, 2, 3 appearing in the equations can be obtained from

b1 = x3 − x2, b2 = x1 − x3, b3 = x2 − x1,

c1 = y2 − y3, c2 = y3 − y1, c3 = y1 − y2,
(5.17)

where xi, yi; i = 1, 2, 3, are components of a vertex xi.

Regarding the first-order and second-order derivatives, we have that they can be

obtained by the help of chain rule as

∂ψij

∂xα
=
∂ψij

∂λl

∂λl
∂xα

,

∂2ψij

∂xα∂xβ
=

∂2ψij

∂λm∂λn

∂λm
∂xα

∂λn
∂xβ

+
∂2λl

∂xα∂xβ

∂ψij

∂λl
.

(5.18)
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And, the derivatives of the area coordinates with respect to the global coordinates are

as follows.
dλ1
dx

=
c1
2A

,
dλ2
dx

=
c2
2A

,
dλ3
dx

=
c3
2A

dλ1
dy

=
b1
2A

,
dλ2
dy

=
b2
2A

,
dλ3
dy

=
b3
2A

.
(5.19)

Note that the derivatives of all basis functions in the Bell element are with respect

to the global coordinate system, unlike the bicubic Hermite functions that defined

by the local coordinates on a rectangle. This can ensure the C1-continuity between

triangular elements in the global coordinates.

Numerical results obtained from using both the Bell triangular and the

Hermite rectangular elements

In order to do the finite element implementations, the domain of interest will be first

discretised. Number of nodes defined on the typical element can be different depends

on the degree of polynomial and the degrees of freedom that define the shape functions.

As can be seen in the previous two subsections, even though both the Hermite and the

Bell element define by having the same two nodes per side, the degree of polynomial

defined over the Bell triangular element is however greater than that of the Hermite

rectangular element. This is because the Bell element is defined by using more degrees

of freedom at a node.

Similar to the one-dimensional case, the number of nodes and elements will play an

essential role in minimising the error of the solution. However, the greater number of

elements can be expensive in computational time. In this problem, different number

of elements will be chosen in order to investigate the convergence rate and the compu-

tational time for both the Hermite and Bell elements. Comparisons will be depicted

afterwards.

In this problem, the Biharmonic equation will be considered in the rectangle domain

with 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 1. After the discretisation, the domain of interest

constitutes of the typical elements and many finite nodes as illustrated in Fig. 5.5a

for the Hermite rectangles and Fig. 5.5b for the Bell triangles. Furthermore, the

structured mesh is employed in this study so that the element size can be easily

computed.

To perform the numerical integration, a Gaussian quadrature associated with each
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Figure 5.5: The discretisation of the domain of interest with 4 elements in x1-direction
and 2 elements in x2-direction.

element in two-dimensional space is considered in this problem. Similar to the one-

dimensional problem, the accuracy of an approximation depends on the choice of

number of Gauss points and weights. The degree of precision, i.e. the number of

Gauss points and weights, must be determined so that the function under an integral

can be accurately approximated.

In this finite element implementation of the two-dimensional Biharmonic equation,

the highest order of polynomial under the integral is considered from (5.15). Since

the bicubic Hermite element, which is of degree 3 in each direction, is employed on

a rectangle, we have that their second-order derivatives are linear in both directions.

Considering the mix-derivative term, we have that the interpolation is biquadratic

which gives the highest order of function under the integral to be quartic. Hence,

16-node scheme is employed to provide 2D Gaussian integration scheme for the Bi-

harmonic implementation using the bicubic Hermite interpolations. Note that this

integration scheme can integrate the polynomial exactly up to order 7 which is suit-

able for our implementation on a rectangle. Sixteen-point weights and evaluation

points for integration on rectangles can be found in [21], [53].

Next, we consider a Gaussian quadrature on a triangular element. Since the Bell

shape functions are employed and they are of order 5, their second-order derivatives

are then of order 3 and the highest order of function under the integral is 6 (see (5.15)).

Therefore, 2D Gaussian integration scheme defined on a triangle is 13-node scheme

which can integrate up to seventh-order polynomials exactly. Weights and evaluation

points for integration on triangles are also shown in [21], [53].

Note that the numerical integration schemes for both Hermite and the Bell elements

are chosen to have the same order of an exact representation in order to have a fair
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comparison.

Now, let us consider the boundary conditions that have to be imposed at boundaries

for the bicubic Hermite and the Bell elements. The Bell element has, in total, 18

degrees of freedom with 6 degrees of freedom in each node. The 6 degrees of freedom

incorporate the value of unknown field, the first derivative with respect to the first and

second global coordinates, and the second derivatives with respect to the first, second,

and mixed derivative (see 5.16).

Since we consider the Biharmonic equation with the Dirichlet boundary conditions,

we have that the physical conditions that allow to be pinned on boundaries are the

value and the normal derivatives. However, there is no normal derivative defined as a

degree of freedom to be specified for the Bell shape function. Therefore, the first-order

derivatives have to be imposed instead and the boundary specification can be worked

out from the normal derivative on that boundary. Furthermore, the values of the

unknown and the first-order derivatives that have to be specified on the boundaries of

the domain for the Bell element can be obtained from

u(x1, x2) = cos(x1)e
x2 ,

ux1(x1, x2) = − sin(x1)e
x2 ,

ux2(x1, x2) = cos(x1)e
x2 .

(5.20)

For the rest of degrees of freedom associated with the second-order derivatives, we set

them to be unpinned and consider them as parts of the solution.

The Hermite rectangular element has, in total, 16 degrees of freedom with 4 degrees

of freedom each node. The 4 degrees of freedom incorporate the value of unknown field,

the first derivative with respect to the first and second coordinates, and the mixed

derivatives. Unlike the Bell element, the derivatives defined on the Hermite element

are with respect to the local coordinates, s1, s2. Hence, the transformation from the

global derivatives to the local derivatives have to be done to ensure the consistency

with the definition as shown in (1.7).

Therefore, the physical conditions specified on the boundaries of the domain for

the Hermite element can be determined similarly as those of the Bell element and their
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values can be obtained as follows,

u(x1, x2) = cos(x1)e
x2

us1(x1, x2) = − sin(x1)e
x2(0.5

lx1

nx1

),

us2(x1, x2) = cos(x1)e
x2(0.5

lx2

nx2

),

(5.21)

where nx1 and nx2 are the number of elements in x1- and x2-directions. Also, lx1

and lx2 denote the length of the domain in x1- and x2-directions. Furthermore, the

mix-derivative degree of freedom can be taken care as parts of the solutions.

Note that, in the implementation of the Hermite rectangular and Bell triangu-

lar elements, all of the degrees of freedom are pinned on every boundary. Also, the

subparametric scheme will be considered. The triangular Bell functions and the Her-

mite rectangular functions are employed to interpolate unknowns, while the geometry

is approximated by the linear Lagrange functions which are of lower order than the

unknown fields.

In order to compare errors and the rate of convergence between the Hermite and

the Bell element, we uniformly vary a number of element in both x1- and x2-directions

in such a way that the same element size is obtained in both directions. Since the

length in x1-direction is twice longer than that in x2-direction, we choose the number

of element in x1-direction to be doubled so that the element size, h, can be computed

easily by h =
lx1
nx1

=
2lx2
2nx2

=
lx2
nx2

. Error utilised in the comparison is the L2-norm error

which is mathematically described as

∥uexact − uFE∥ =

(∫∫
Ω

|uexact − uFE|2 dΩ
)1/2

, (5.22)

where uexact, uFE denote the exact and the finite element solutions, respectively.

Regarding the solutions and errors obtained from the finite element solutions from

the Bell and the Hermite elements and the exact solution, it can be seen from Figs.

5.6b and 5.6c that the obtained finite element solutions agree with the exact solutions

for all over the domain. The absolute value of the error between the exact solutions

and the solutions obtained from both types of element are quite small as illustrated in

Figs 5.6d and 5.6e. However, the Bell element give more accurate solutions than the

Hermite element as the obtained error is smaller. Note that, in the implementations of

Fig. 5.6, the numbers of degree of freedom are chosen to be similar for the comparison
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Figure 5.6: Comparisons between solutions and errors obtained from finite element
method based on Bell and Hermite elements and the exact solution. Figures are
generated using the trimesh function in MatLab.

where the Hermite implementation has 24 dofs and the Bell implementation has 54

dofs.

In order to compare results between the Bell and the Hermite elements, Tables 5.1

and 5.2 show L2-norm error obtained from solving the Biharmonic equation (5.13) by

the Hermite and the Bell element, respectively. It can be seen that the comparison
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Number of Time L2-norm
h element in x2 element in x1 DOF (sec) error
0.5 2 4 24 0.03 9.62768× 10−4

0.2 5 10 174 0.17 6.32615× 10−5

0.1429 7 14 354 0.35 2.24402× 10−5

0.1 10 20 744 0.86 7.48137× 10−6

0.05 20 40 3084 3.20 9.01978× 10−7

0.01 100 200 79404 158.02 7.30985× 10−9

Table 5.1: L2-error obtained from solving the Biharmonic equation with various num-
ber of the Hermite rectangular elements.

Number of Time L2-norm
h element in x2 element in x1 DOF (sec) error
0.5 2 4 54 0.18 1.53941× 10−5

0.2 5 10 306 1.22 3.23022× 10−7

0.1429 7 14 594 2.43 7.94788× 10−8

0.1 10 20 1206 5.01 1.84613× 10−8

0.05 20 40 4806 20.48 1.14555× 10−9

0.01 100 200 120006 1264.74 1.86896× 10−12

Table 5.2: L2-error obtained from solving the Biharmonic equation with various num-
ber of the Bell triangular elements.

is not straightforward. It is not easy to compare both types of finite element with

the same number of elements as different numbers of degree of freedom are defined

in the mesh for the Bell and the Hermite elements. However, we can perform a fair

comparison by choosing the specific error and determining the obtained number of

element and the computational time for the typical elements.

Regarding the comparison, the error is chosen to be order of 10−7. We can see

from Table 5.1 that the Hermite element used 3084 degrees of freedom and spent

3.20 seconds. With the same error, the Bell element used 306 degrees of freedom and

spent 1.22 seconds to reach the error as can be seen from Table 5.2. Therefore, the

Bell element is less time-consuming than the Hermite element to achieve the same

accuracy.

Furthermore, it can be seen that as the numbers of elements increase, errors ob-

tained from both the Hermite and the Bell elements decrease. With the same element

size h, the L2-norm errors obtained from the Bell element are smaller than those ob-

tained from the Hermite element. However, the computational time of the Bell element
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is more expensive.

In order to appreciate the convergence rate of the Hermite and the Bell elements,

the L2-norm errors are plotted versus element sizes h. Fig. 5.7 illustrates that as the

element size decreases, error decreases and the error obtained from the Bell element

decreases faster than those of the Hermite element. Also, the Bell element gives higher

accuracy than that of the Hermite element at the same element size, h.
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Figure 5.7: A comparison of the rate of convergence between the Bell triangular and
the Hermite rectangular elements.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−30

−25

−20

−15

−10

−5

X: −0.6931
Y: −6.946

X: −0.6931
Y: −11.08

X: −4.605
Y: −18.73

X: −4.605
Y: −27.01

log(h)

lo
g(

L2 −
no

rm
 e

rr
or

)

Hermite element
Bell element

Figure 5.8: A log-plot comparison of the rate of convergence between the Bell trian-
gular and the Hermite rectangular elements.

Fig. 5.8 illustrates the log plots between the L2-norm error and the element sizes.

The plots show that the rate of convergence for the Bell element is 4.0706 while the

rate of convergence of Hermite element is 3.0134. These rates of convergence can be

computed from the slopes of the linear lines. Furthermore, these obtained convergence
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rates are consistent with the result shown in [9] for the Hermite interpolations and with

the study from P. Fischer [63] for the Bell element.

We can now conclude that the Bell element is more efficient than the Hermite ele-

ment in term of the convergence rate and accuracy when the same number of elements

is concerned. Therefore, the Bell triangular element will be employed in the finite

element implementations of the normal displacement in the flat plate and the circular

tube problems in our study. Note that this element will be used in the nonlinear

problems as well in order to make a reasonable comparison.

5.2.3 Numerical comparisons between the Kirchhoff-Love lin-

ear and nonlinear governing equations

Next, we will implement the finite-element solution of the plate bending problem with

a clamped support at two ends. Comparisons will be illustrated between the solutions

obtained from the nonlinear and the linear governing equations that associate with

the problem. Note that the implementations of the linearised governing equaiton with

the linear constitutive law will be based on the equations (5.10), (5.11), and (5.12)

that we derived in section 5.2.1 while the nonlinear governing equation with the linear

constitutive law is expressed as (3.91).

In order to implement the finite element method of a two-dimensional space in

this study, the domains of interest which is the unit square will be discretised with

triangles. The reason of using a triangular mesh is a consequence of section 5.2.2 that

the Bell triangular element is superior to the Hermite rectangular element. Note that

the unstructured mesh is employed in all following implementations with 150 elements

in the mesh. Similar to the Biharmonic implementation, the numerical integration is

the same in this implementation.

Next, we will consider boundary conditions that will be specified for the flat plate.

Since a clamped support is considered in this problem, the displacement in tangential

and normal directions with their derivatives degrees of freedom associated with its

employed interpolations have to be imposed.

As the shell is clamped at both ends of ξ1 = 0 and ξ1 = 1 (see Fig. 5.1), the

displacement in tangential directions has to be specified so that uj(0, ξ2) = 0 and
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uj(1, ξ2) = 0,∀i, j = 1, 2. Note that no derivative degree of freedom in both tangential

directions has to be considered since the Lagrange interpolations are employed.

To determine boundary conditions for the normal displacement, there are six de-

grees of freedom to be concerned at nodes; the displacement value, its first deriva-

tives, and its second derivatives, as the Bell shape functions are employed. Since

the shell is clamped at both ends of ξ1 = 0 and ξ1 = 1, we have that both value

and its first derivatives have to be set to zero at both boundaries, i.e., u3(0, ξ2) = 0,

u3,j(0, ξ2) = 0, ∀j = 1, 2, and u3(1, ξ2) = 0, u3,j(1, ξ2) = 0, ∀j = 1, 2. For all second

derivatives, it follows from the clamped support that there is no rotation at both ends

as well. Therefore, u3,ij(0, ξ2) = 0 = u3,ij(1, ξ2), ∀i, j = 1, 2,

Note that there is no constraint on the boundary ξ2 = 0 and ξ2 = 1. Therefore,

all degrees of freedom in all directions that associate with the applied shape functions

are set to be free.

Next, we start the implementation with the comparison between the solutions

obtained from the linear and nonlinear equations within the small-deformation regime.

All linear and nonlinear equations are solved numerically using a finite-element method

in Oomph-lib [53] with the aforementioned boundary conditions. Note that there is no

initial stress and constant external forces are uniformly distributed in normal direction

to the plate. The thickness of a flat plate is 0.01.

Fig. 5.9 illustrates displacements in all directions in Cartesian coordinates system

for the flat plate problem stated above. The solutions in Fig. 5.9 are compared be-

tween the finite element solutions obtained from the linear and the nonlinear governing

equations with applied loads equal to 1.0 × 10−8. It can be seen that the obtained

displacements from the linear and nonlinear equation are consistent only in the normal

direction.

Regarding the displacements in both tangential directions, it can be seen from

Figs. 5.9a and 5.9c that no deformation occurs in the x- and y-directions in the linear

implementation. The underlying reason is that the forces are applied in the normal

direction to the surface of the plate which correspond to the z-direction. Hence, there

is no force applied in both tangential directions which correspond to the x- and y-

directions. Therefore, there is no contribution to make the body deforms in those

directions as the linear governing equations are not coupled between displacements in
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Figure 5.9: Displacements in cartesian coordinates for the clamped plate with the
normal distributed loads=1× 10−8.

each direction as can be seen in (5.10), (5.11) and (5.12). This contrasts to the non-

linear governing equations which is coupled between displacements in each direction

(see (3.91)).

To appreciate the difference between the solutions obtained from the linear and
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the nonlinear governing equations when forces change, we will increase the applied

forces from 0 by 1 × 10−8 for 11 steps. The comparison will be made between the

displacements in z-direction obtained from the linear and the nonlinear governing

equations and are illustrated in Fig. 5.10.
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Figure 5.10: Differences between the displacement in z-direction obtained from the
linear, the nonlinear, and the exact solutions with increasing loads from 0 to 1× 10−7.

From Fig. 5.10a, it can be seen that the normal displacements obtained from the

linear and nonlinear governing equations vary, respectively, linearly and nonlinearly

when the applied loads increase. This is a consequence from the nature of their gov-

erning equations. Moreover, it can be seen that the obtained linear and nonlinear

solutions agree when loading is small and the difference starts to increase when the

loading terms is getting bigger as seen in Fig. 5.10b.

These results are similar to those obtained from the beam problems when the linear

and the nonlinear governing equation are compared. This suggests that, in the 3D

small-deformation regime when the applied forces are very small, the linear governing



CHAPTER 5. FINITE ELEMENT METHOD FOR A SHELL 127

equations can be used to describe the thin shell’s behaviour. Furthermore, for the

plate problem, the linear governing equation is valid until the normal displacement is

approximately 3.5% of the thickness which is consistent with the result from the beam

with non-zero curvature. This is computed with the relative error between the linear

and nonlinear solutions not greater than 0.01%.

5.3 Finite element method for a circular tube

In the previous section, we consider the flat plate whose undeformed configuration has

a zero curvature. Within a small-deformation regime, it can be seen from section 5.2.3

that the finite element solutions obtained from the linear governing equations for this

straight shell agree with those of nonlinear. However, it can not be, yet, concluded

that the thin-shell behaviour can be described by the linear governing equation when

a load is small. This is because the plate’s governing equations derived in section 5.2

showed that some terms disappeared from the general thin-shell’s governing equations

in (3.112), (3.113), and (3.114) so that they can not be used as a representative of a

general thin-shell.

Hence, in this section, we will consider the circular tube whose domain of interest

has a non-zero curvature in order to verify the consistency of the linear and nonlinear

solutions with a small deformation for a more general thin-shell.

5.3.1 The linearised governing equation

In this section, we consider a deformation of a circular tube which is subjected to a

pressure loading on its surface as illustrated in Fig. 5.11. The loads applied on the

tube are uniformly distributed in the normal direction. Similar to the elastic beam

mentioned in chapter 4, a quarter circular tube will be implemented and symmetric

conditions are assumed along the tube. The boundary conditions determined in this

problem are clamped supports at both ends of the tube.

The initial positions of the circular tube are r =


cos(ξ2)

sin(ξ2)

ξ1

 , and parametrised

by the local coordinates ξ1, ξ2. The local coordinate ξ1 is an axial coordinate defined
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Fn

0

1

Figure 5.11: The geometry of unit circular tube with a clamped support at both ends
of the tube. Forces applied to a body are uniform in normal direction.

in [0, 1], and the radial coordinate ξ2 defined in [0, π
2
]. Hence, the associated tangential

and normal vectors are as follows

t1 = (0, 0, 1)T ,

t2 = (− sin(ξ2), cos(ξ2), 0)
T ,

n̂ = t̂3 = (cos(ξ2), sin(ξ2), 0)
T .

(5.23)

The linear version of the covariant metric tensor in the undeformed and deformed

configurations for the circular tube can be computed from (3.94) and (3.95), respec-

tively, as

aαβ = tα· tβ, (5.24)

and,

Aαβ = aαβ + uα|β + uβ|α. (5.25)

Remind that uj; j = 1, 2, 3 are associated components of a displacement u in the

tangential and normal directions. Also, uj|βtj denote the components of the first

derivatives in the tangential and normal system as described in (3.97). For the circular

tube, we have that the determinant of the covariant metric tensor in undeformed shell

is a = 1.

The linearised Green strain tensor for the circular tube which determined from the

differences between the undeformed and deformed metric tensors as seen in (3.100),

can be determined as follow

γαβ =
1

2
(uα|β + uβ|α)

=
1

2

(
uα,β + uβ,α + u1(Γα

1β + Γβ
1α) + u2(Γα

2β + Γβ
2α) + u3(Γα

3β + Γβ
3α)
)
,

(5.26)

where the last line comes from the definition of the first derivative in tangential and

normal directions (see (3.97)). Note that Γα
iβ can be computed from ∂ti

∂ξβ
· tα. For the
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circular tube, we have

Γk
i1 =

∂ti
∂ξ1

· tk ≡ 0, ∀i, k,

Γk
1j =

∂t1
∂ξj

· tk ≡ 0, ∀j, k,

Γk
22 =

∂t2
∂ξ2

· tk ≡ (0, 0,−1)T ,

Γk
32 =

∂t3
∂ξ2

· tk ≡ (0, 1, 0)T .

(5.27)

Substituting (5.27) into (5.26) with some algebraic computations, the strain tensor

becomes

γαβ =

 u1,1
1
2
(u1,2 + u2,1)

1
2
(u2,1 + u1,2) u2,2 + u3

 . (5.28)

Also, its variation can be obtained as

δγαβ = δuα,β + Γα
1βδu

1 + Γα
2βδu

2 + Γα
3βδu

3,

=

 δu1,1
1
2
(δu1,2 + δu2,1)

1
2
(δu2,1 + δu1,2) δu2,2 + δu3

 .
(5.29)

Next, we consider the curvature tensor for the circular tube which is specified by

(3.103) as

bαβ = n̂· r,αβ,

= n̂· tα,β.
(5.30)

Now, it can be seen that the undeformed configuration for the circular tube has a

non-zero curvature as ∂tα
∂ξ2

̸= 0, ∃α = 2, 3. Also, the linearised deformed curvature

tensor is determined from (3.108) as

Bαβ = bαβ +

[
1

a
LjΓ

j
αβ −

L3

a2
Γ3
αβ

]
+

(
ui|αΓ3

iβ + u3,αβ + uk
∂Γ3

kα

∂ξβ
+ ukβΓ

3
kα

)
,

=

 b11 + u3,11 b12 + u3,12 − u2,1

b21 + u3,21 − u2,1 b22 + u3,22 − u2|2 − u2,2

 ,

=

 b11 + u3,11 b12 + u3,12 − u2,1

b21 + u3,21 − u2,1 b22 + u3,22 − (u2,2 + u3)− u2,2

 ,

=

 b11 + u3,11 b12 + u3,12 − u2,1

b21 + u3,21 − u2,1 b22 + u3,22 − 2u2,2 − u3

 .

(5.31)

Note that the last line comes from the definition of the Christoffel symbol of the second

kind Γj
iα =

(
∂ti
∂ξα

· tj
)
which computed in (5.27) for the circular tube.
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Hence, the linearised bending tensor can be calculated from (3.109) as

καβ = bαβ −Bαβ

= −

 u3,11 u3,12 − u2,1

u3,21 − u2,1 u3,22 − 2u2,2 − u3

 .
(5.32)

Also, its variation is expressed as

δκαβ = −

 δu3,11 δu3,12 − δu2,1

δu3,21 − δu2,1 δu3,22 − 2δu2,2 − δu3

 . (5.33)

Substituting the strain tensor in (5.28) and the bending tensor in (5.32) with

their variations (5.29) and (5.33) into the shell governing equation, (3.91), gives the

governing equation for each displacement direction as follows

0 =

∫∫ [
−1

h
f1

]
δu1 + Ẽαβγδ

{
(u1,1 + u1,2 + u2,1 + u2,2 + u3)δu1,δ

}
dξ1dξ2, (5.34)

for a displacement u1 in tangential direction along the coordinate ξ1, and

0 =

∫∫ [
−1

h
f2

]
δu2 + Ẽαβγδ

{[
(u1,1 + u1,2 + u2,1 + u2,2 + u3)

− 2

12
h2(u3,11 + u3,12 − 2u2,1 + u3,21 + u3,22 − 2u2,2 − u3)

]
δu2,δ

}
dξ1dξ2,

(5.35)

for a displacement u2 in tangential direction along the coordinate ξ2, and

0 =

∫∫ [
−1

h
f3

]
δu3 + Ẽαβγδ

{[
(u1,1 + u1,2 + u2,1 + u2,2 + u3)

− 1

12
h2(u3,11 + u3,12 − 2u2,1 + u3,21 + u3,22 − 2u2,2 − u3)

]
δu3

+
1

12
h2(u3,11 + u3,12 − 2u2,1 + u3,21 + u3,22 − 2u2,2 − u3)δu3,δγ

}
dξ1dξ2,

(5.36)

for a displacement u3 in normal direction.

Similar to the beam, the partial differential equations that govern displacements in

both tangential and normal directions for the curved shell are more complicated than

those of the straight case. Having a non-zero curvature in the undeformed configuration

for the curved geometry is the result for certain terms to maintain and to contribute

in the equations. The governing equations for the circular tube are coupled between

displacements in all directions except the tangential direction in the coordinate ξ1 as

can be seen from (5.34), (5.35), and (5.36).



CHAPTER 5. FINITE ELEMENT METHOD FOR A SHELL 131

Regarding the weak formulation in the finite element implementations, equations

(5.34), (5.35), and (5.36) exhibit the same order of continuity in the finite element

representations for each associated displacements with the beam. Therefore, the mixed

formulation will be employed to implement the governing equations of the curved shell

as suggested in the beam implementations in chapter 3.

5.3.2 Numerical comparisons between the Kirchhoff-Love lin-

ear and nonlinear governing equations

In this section, implementations of the linearised governing equations for the circular

tube will be illustrated and compared with the nonlinear equations that associate

with the problem. The results will bring us to the conclusion for the capability of the

linear governing equation to describe a thin-elastic body with a small deformation.

Note that the linear implementations will be based on the governing equations (5.34),

(5.35), and (5.36) that we derived in section 5.3.1 where those of the nonlinear can be

seen in (3.91) of chapter 3.

Similar to the flat plate, the problem will be solved with the assumption that the

thickness of the tube is thin so that the linear theory can be applied. Our choice of

thickness for the circular tube is 0.01. Also, applied forces will be small and be of

order 1 × 10−6. Note that the forces applied to the circular plate are greater than

those applied to the flat plate as stronger forces are needed to make the body deforms.

This is a consequence of being curved and having non-zero curvature in an undeformed

configuration so that it resists more to forces.

In order to perform the finite element implementations, the domain of interest will

be discretised by triangular elements with an unstructured mesh as the Bell triangular

finite elements will be employed. The same amount of loading terms equals to 1×10−6

will be applied in normal direction to the circular tube for both linear and nonlinear

equations. Note that there will be 248 triangular elements in the mesh. Regarding the

numerical integration and the approximations for each displacement directions, they

are chosen to be the same as in the flat plate implementations.

Since the clamped circular tube is determined in this problem as seen in Fig. 5.11,

the boundary conditions for both ends of the tube at ξ1 = 0 and ξ1 = 1 will be
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pinned for all of the degrees of freedom. Also, at the boundary ξ2 = 0 and ξ2 = π/2,

the symmetric conditions will be applied since only quarter of the circular tube is

implemented.

Next, a comparison between nonlinear and linear governing equations for the cir-

cular tube will be illustrated by applying the constant external forces that uniformly

distributed in normal direction to the tube. This is to illustrate the consistency be-

tween the linear and nonlinear equation with a small deformation where the magnitude

of the applied force equals to 1× 10−6.

Fig. 5.12 illustrates displacements in all directions in Cartesian coordinate system

for the clamped circular tube problem stated above. It can be seen that those two

displacements are consistent in all directions. Furthermore, the displacement in x-

and y-directions are symmetry as shown in Fig. 5.12. This behaviour depicts that the

thin-circular tube deforms axisymmetrically.

It should be mentioned here that the compared displacements are in the Cartesian

coordinate system where those displacements in the implemented equations are in tan-

gential and normal system. The transformation between the two coordinate systems

can be done similarly as in (4.43) but a three-dimensional space has to be concerned.

Next, we will increase loading forces from 0 by 1 × 10−6 for 11 steps in order to

appreciate the consistency between the linear and nonlinear governing equations when

forces change.

Figs. 5.13 and 5.14 illustrate the consistency between the displacements in y- and

z-directions, respectively, obtained from the linear and nonlinear equations for the

circular tube with different applied loads. The figures depict that those two solutions

in y- and z-direction are consistent with an small error when applied loads are small

as can be seen in Figs. 5.13a and 5.14a. Note that the comparison in x-direction is

discarded as it is symmetry to the y-direction.

Furthermore, it can be seen from Figs. 5.13b and 5.14b that the difference between

the linear solutions and the nonlinear solutions starts to increase when the loading

terms are getting bigger. These results are similar to those of the flat plate and all

beam problems when displacements obtained from the linear and nonlinear equation

are compared within a small-deformation regime. For the circular tube, the linear

governing equation is valid until the normal displacement is approximately 1.06% of
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Figure 5.12: Displacements in cartesian coordinates for the clamped circular tube with
the normal distributed loads=1× 10−6.

the thickness.
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Figure 5.13: Differences between the displacement in y-direction obtained from the
linear and the Nonlinear governing equations for the circular tube with increasing
loads from 0 to 1× 10−5.

5.4 Summary

In this chapter, the finite element models of thin shells in the linear theory have been

developed. Two different undeformed geometries are concerned; a flat plate and a

circular tube. These two thin-elastic materials in three-dimensional space are studied

in order to illustrate the consistency between the linear and the nonlinear governing

equations within a small-deformation regime.

Regarding the finite element discretisation of the desired geometry in two dimen-

sions, there are two choices; a rectangular and a triangular element. From section

5.2.2, the numerical comparison between the performance of the rectangular Hermite

and the Bell triangular elements shows that the Bell element gives higher accuracy

and converges faster than the Hermite element. Also, for some selected tolerances, the

Bell element is less time-consuming and also employs less degree of freedom than the

Hermite element to achieve the accuracy.
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Figure 5.14: Differences between the displacement in z-direction obtained from the
linear and the Nonlinear governing equations for the circular tube with increasing
loads from 0 to 1× 10−5.

For the reason of greater convergence rate than the Hermite rectangular element,

the Bell triangular finite element is thus employed to represent the normal displacement

of the thin-shell problems for both linear and nonlinear equations. This is to assure the

C1-continuity between the solutions as required in the associated governing equation

described in sections 5.2.1 and 5.3.1.

Regarding the thin-shell implementations illustrated in sections 5.2.3 and 5.3.2

for the flat plate and the circular tube, respectively, it can be seen that the solutions

obtained from the linear and nonlinear equations agree when loading is small. This ap-

plied load should be in the range that gives the normal displacements, approximately,

1-3% of the thickness with the relative error between the linear and nonlinear solution

not greater than 0.01%. Also, the difference between the linear and nonlinear solutions

starts to increase when the loading is greater than this range of linear validity. These

results obtained from both flat plate and circular tube, which is a thin-elastic body in
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a three-dimensional space, are consistent with those of a straight beam and an elastic

ring which is a thin-elastic body in a two-dimensional space. Therefore, this can bring

us to the conclusion that the linear equation can be used to describe a thin-elastic

material with a small deformation when the normal displacements are, approximately,

1-3% of the thickness.



Chapter 6

The fourth-order problem with

curved boundary domain

6.1 Introduction

In the previous chapters, the triangular Bell element has been successfully used to

solve fourth-order problems. The domains of interest considered in the particular

problems contained only straight boundaries so that this representation was exact.

However, in many engineering applications, the geometric boundary of a problem is

not straight. Solving such a problem with the straight-sided C1-finite elements limits

the convergence rate and accuracy as presented in [56], [47], [63], [65]. Consequently,

this motivates many researchers to develop and improve an efficient finite element

when C1-problems are concerned with a curvilinear boundary.

In order to deal with a fourth-order problem, which requires C1-continuity, on a

curved boundary, there are many literature that present the efficient C1-finite elements

dealing with curvilinear boundary for both rectangle and triangular meshes (see [7],

[18], [41], [56], [48], [63], [64]). Only M. W. Chernuka [56] and M. Bernadou [48] are

dealing with the C1-elements defined on a triangular mesh.

In the study of M. W. Chernuka [56], a triangular element is modified to include

one curved and two straight edges. In his study, the polynomial space was defined

over the original triangle with no modification in the shape functions. Instead, the

areas of integration changed and were extended over the additional curved area. This

additional area of integration from the extended curve made the method even more

137
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difficult when complicated integrands were involved.

Similar to M. W. Chernuka, M. Bernadou [48] constructed a triangular element

including one curved edge by moving out one edge to fit the curved boundary while

the other two remain straight. However, Bernadou constructed each shape function in

correspondence with a reference element which makes his method very straightforward

to work in numerical integration. Also, an explicit computation of his C1-curved finite

elements is well explained in [48], [50]. Therefore, to deal with the curvilinear boundary

problem, the idea of using one curve-sided triangle from M. Bernadou is employed to

retain the rate of convergence and accuracy in this study.

Before a numerical implementation of the fourth-order problems with a curvilinear

boundary will be illustrated, the construction of a C1-curved finite element will be

discussed in section 6.2. The section will contain four subsections on the triangulation

of a domain which constitutes of both straight-edged and curve-edged triangles (see

section 6.2.1), the mapping associated the reference triangle with the physical curved

triangle (see section 6.2.2), the definition of the C1-curved finite element (see section

6.2.3), and the construction of the interpolation of any function v defined over curved

triangles (see section 6.2.4).

Next, numerical implementations of the fourth-order problems will be presented

in section 6.3 by employing the C1-curved triangular element derived in section 6.2

to represent curvilinear boundary. The Biharmonic equation and the circular-plate

bending problem will be two concerned problems in this study.

In the study of the Biharmonic equation in section 6.3.1, the comparison between

the performance of the C1-straight-edged and the C1-curved triangular elements will

be illustrated. Both rate of convergence and the obtained accuracy from those two

elements will be determined together with the computational time. This is to show

that representing a curved boundary by a series of straight-sided triangles exhibits a

limitation in convergence rate and accuracy.

Likewise, further validation of the capability of the C1-curved element is performed

in section 6.3.2 by solving the plate bending problem. The obtained accuracy from

both the Bell and the C1-curved elements will be compared in order to conclude the

efficient triangular element for the C1-curvilinear boundary problem.

Finally, this chapter will end with the summary section 6.4.
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6.2 The C1-curved finite element

In this section, we will introduce the C1-curved finite element compatible with the

Bell element studied in chapter 5. The objective of this element is to obtain the same

asymptotic error estimates on the curved boundary domain as that of the problem

when the exact representation is concerned.

Unlike the triangulation of the straight boundary domain, since the curved bound-

ary domain is concerned in this study, the triangulation of the domain of interest will

be the union of two sets of triangles. The first set will constitute of straight-sided trian-

gles KI and the other will constitute of curve-sided triangles KC . Also, we assume that

each of two distinct triangles of the triangulations is either disjoint, or have a common

vertex or a common edge. Consequently, we have to define mappings associated the

reference and the physical triangles for each straight and curved triangles.

Regarding the straight boundary domain, the Bell shape functions will be employed

as the domain associated the mapping remains unchanged. On the curved boundary

domain, the shape functions will be re-constructed compatible with the Bell shape

functions. The functions will be defined over the approximated domain associated

with the mappings approximating the curved boundary. Finally, these shape functions

will be used to define interpolations of variables on the typical elements.

6.2.1 Approximation of a physical domain

In order to approximate the geometry, the mapping which associates the reference and

the physical triangles has to be concerned. In this study, we will define mapping by

using polynomials to approximate boundaries. Since there are two sets of triangular

elements in the mesh, different mappings have to be considered for typical elements. In

order to deal with a straight-sided triangle in a physical domain, KI , an affine mapping

will be taken into account. Nonetheless, a nonlinear mapping has to be considered in

order to deal with a curved-edge triangle, KC .

Now, we will define the affine mapping FKI
which associates the reference tri-

angle, K̂, with the straight-sided triangle, KI , on the physical domain. The refer-

ence triangle, K̂, is parametrised by the reference coordinates x̂1, x̂2 and defined as

K̂ = {(x̂1, x̂2)|0 ≤ x̂1, x̂2 ≤ 1, x̂1+ x̂2 = 1}. The affine mapping is parametrised by the
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reference coordinates x̂α, α = 1, 2, and can be constructed as

xα = FKIα
(x̂1, x̂2) = xα3 + (xα1 − xα3)x̂1 + (xα2 − xα3)x̂2 (6.1)

where xαi denote the global coordinates α = 1, 2 of the vertices ai, i = 1, 2, 3, of the

triangle KI as depicted in Fig. 6.1. Also, FKIα
is a αth component of the mapping

FKI
. This mapping will help us to associate a position (x̂1, x̂2) on the reference triangle

with a position (x1, x2) on the physical triangle whose sides are straight.

KC 

KI 

0

1

1

x1

x2

a1

a2

a3

a3

a2

a1

FKi

FKc

a
^
1

a
^
2

K
^

a
^
3

x^1

x^2

Figure 6.1: A graphical description of the mappings associated between the reference
coordinates x̂α and the physical coordinates xα, α = 1, 2 where FKI

is the mapping
corresponding with the straight-sided triangle and FKC

is the mapping corresponding
with the curved triangle.

Next, a triangulation that constitutes of curved triangles KC will be determined.

These curved triangles are considered to have two straight sides and one curved side

approximating an arc of the boundary Γ as shown in Fig. 6.2. Since the curved

boundary are concerned, the mapping FKC
for this case is thus nonlinear and can be

constructed as in the following descriptions.

 

Γ  

Γh 

a3

a2

KC

a1
a2

KC

a3

a1

Figure 6.2: An exact curved boundary Γ and an approximated boundary Γh of one-
curved side triangles KC .
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Let Ω be a given bounded domain on the plane whose boundary is curve in two-

dimensional space. We assume that the curved boundary Γ can be subdivided into a

finite number of arcs and each of them can be described as

x1 = χ1(s), x2 = χ2(s), sm ≤ s ≤ sM , (6.2)

where xα, α = 1, 2 denote coordinates in two-dimensional space defined on the phys-

ical domain and approximated by the functions χ1(s), χ2(s) which are continuous on

[sm, sM ].

In order to defined the nonlinear mapping FKC
which maps from the reference to

the physical element, reference coordinates has to be employed. Hence, we have to

reparametrise the arc a1a2 of KC in Fig. 6.2 by using the reference coordinate x̂2

which lies in the interval of [0, 1]. This can be done as follow

x1 = φ1(x̂2), x2 = φ2(x̂2), (6.3)

where φα(x̂2) = χα(sm + (sM − sm)x̂2), α = 1, 2. Note that either x̂1 or x̂2 can be

used to parametrise the arc but re-calculation will be required in the derivation of the

mapping FKC
.

Before considering the nonlinear mapping FKC
which does not depend on any

specific edge, we would like to define firstly a mapping corresponding with the curved

boundary Γ. This mapping will be defined so that the side â1â2 on the reference

triangle, K̂, associates with the curved boundary Γ.

Since φα(x̂2) are continuous functions defined to approximate coordinates xα, α =

1, 2 on the curved boundary, we have that our mapping has to define so that

φα(x̂2 = 0) = xα1 = a1,

φα(x̂2 = 1) = xα2 = a2, α = 1, 2.
(6.4)

Then, the approximated arc Γh of the curved boundary Γ is defined by the parametric

functions φih, i = 1, 2 satisfied the following

x1 = φ1h(x̂2), x2 = φ2h(x̂2). (6.5)

In this study, we restrict the mapping so that FKC
(âj) = aj, for j = 1, 2, 3. There-

fore, from (6.4), we employ a polynomial function of degree n to define a mapping
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associated with the curved boundary. This polynomial will be parametrised by the

reference coordinate x̂2 and can be expressed as

φαh(x̂2) = xα1 + (xα2 − xα1)x̂2 + x̂2(1− x̂2)pn−2;α(x̂2), n ≥ 2, (6.6)

where pn−2;α, α = 1, 2, denotes polynomials of degree n− 2 in the α-th coordinate and

also parameterises by the reference coordinate x̂2. Note that the choice of polynomial

degree can be determined from the interpolation theory [48].

Now, we will define the general mapping FKC
that is not specific to any side of the

triangle. Since the mapping FKC
is an affine mapping along the side a3aα, α = 1, 2,

and has to be identical to φαh when restricted to the side a1a2, we have that

FKCα
(x̂1, x̂2) =xα3 + (xα1 − xα3)x̂1 + (xα2 − xα3)x̂2

+
1

2
x̂1x̂2 [pn−2;α(1− x̂1) + pn−2;α(x̂2)] , n ≥ 2,

(6.7)

where FKCα
denotes an αth component of the mapping FKC

. Note that the nonlinear

mapping FKCα
(1− x̂2, x̂2) must be equal to the polynomial φαh(x̂2) when restricted to

the side a1a2.

6.2.2 The mapping, FKC
, associated the reference with the

curved triangle

As seen in (6.6), a degree of polynomial approximating the curved boundary has not yet

been determined. Therefore, in this section, we will discuss our choice of polynomial

degree that will be used in order to define a nonlinear mapping to associate between

the reference and the curved triangles.

In this work, the Hermite-type polynomial of degree 3 is our choice to approximate

the curved boundary. The reason for this choice is that cubic is the minimum degree

of polynomial to obtain the C1-continuity [48]. Since the Hermite-type polynomial of

degree 3 is concerned, we have that four conditions have to be specified and therefore

are described as

xα1 = φα(0) = χα(sm), xα2 = φα(1) = χα(sM),

φ′
α(0) = (sM − sm)χ

′
α(sm), φ′

α(1) = (sM − sm)χ
′
α(sM).

(6.8)
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These conditions are constraints in order to satisfy the hypothesis (6.4) and the ex-

pression

φα(x̂2) = χα(sm + (sM − sm)x̂2), α = 1, 2

for the coordinate values xα. Also, the derivative of φα have to satisfy the above

expression in order to obtain the continuity.

In order to obtain pn−2;α(x̂2) when n = 3 in (6.6) for each coordinate α, we assume

that p3−2;α(x̂2) = mαx̂2 + cα which is linear. Hence, (6.6) becomes

φαh(x̂2) = xα1 + (xα2 − xα1)x̂2 + x̂2(1− x̂2)[mαx̂2 + cα]. (6.9)

To obtain the unknowns mα and cα for the associated coordinates, we have to consider

the conditions for derivatives in (6.8). After differentiating (6.9) once and applying

conditions in (6.8), a cubic polynomial for each coordinate is obtained. Hence, (6.6)

and (6.7) lead to

φαh(x̂2) =xα1 + (xα2 − xα1)x̂2 + x̂2(1− x̂2) {[2(xα2 − xα1)− (sM − sm)

(χ′
α(sm) + χ′

α(sM))] x̂2 + xα1 − xα2 + (sM − sm)χ
′
α(sm)} ,

(6.10)

and then the general mapping that associates the reference and the curved elements

is obtained as follow

FKα(x̂1, x̂2) =xα3 + (xα1 − xα3)x̂1 + (xα2 − xα3)x̂2

+
1

2
x̂1x̂2 {[2(xα2 − xα1)− (sM − sm)(χ

′
α(sm) + χ′

α(sM))] (x̂2 − x̂1)

+ (sM − sm) [χ
′
α(sm)− χ′

α(sM)]} .

(6.11)

6.2.3 Definition of the C1-curved finite element compatible

with the Bell triangles where the mapping is cubic

Next, we will define the C1-curved finite element. Since the Bell triangular element

is considered in the implementations of the C1-problem in the previous chapter, the

curved finite element in this chapter will thus be constructed to have a connection of

class C1-compatible with Bell triangles.

To define such a connection, we need some conditions that assured for a connec-

tivity between a curved finite element and the Bell triangle. As shown in Fig. 6.3, we
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have that the connections between the curved elements and the adjacent (straight or

curved) finite elements are realised through the straight sides a3a1 and a3a2.

 

Γ 

a3

a2

a1

KC

KI

KC

Figure 6.3: Adjacent triangles to a curved triangle KC .

Therefore, to obtain a C1-connection, polynomials, p, of one-variable, and their

normal derivatives, ∂p
∂n
, defined over the curved triangle have to coincide with those

of the adjacent finite elements along the connected sides. In order to satisfy these

conditions, it is sufficient that the degrees of freedom of the curved finite element

relative to the sides a3aα, α = 1, 2, are identical to that of the adjacent finite element.

Since we wish to define an element compatible with the Bell triangle, the degrees of

a polynomial and its normal derivative along the sides a3aα, α = 1, 2, that associated

with the curved triangle KC , has to be of degree 5 and 3, respectively. Moreover, the

degrees of freedom have to be entirely determined on those sides. With these condi-

tions, a C1-connection between two adjacent curved finite elements can be ensured.

In order to employ the mapping FKC
defined in section 6.2.1 to associate any

function v defined over the physical triangle K with a function v̂ defined over the

reference triangle K̂, we have

v = v̂ ◦ F−1
KC
, v̂ = v ◦ FKC

. (6.12)

Therefore, for any polynomial p ∈ PK defined over the curved triangle KC , we can

associate this polynomial p with the polynomial function p̂ = p ◦ FKC
defined on the

reference triangle by using (6.12). Defining a polynomial on the reference triangle, K̂,

is a desirable condition which is convenient for the study of the approximation error

and to take into account the numerical integration and the boundary conditions.

However, this condition leads to the definition of reference finite elements which are

more complicated than those associated with corresponding straight finite elements.

This is because of the polynomial defined over the reference element corresponding to

the curved element is of higher degree which is the consequence from using higher de-

gree polynomial to approximate the boundary and in order to obtain the C1-continuity.



CHAPTER 6. C1-CURVED FINITE ELEMENT 145

Next, we will determine the degree of polynomials P̂ that employs to approxi-

mate the function v defined over the curved physical finite element. By using (6.12),

the correspondence interpolation function defined over the reference triangle can be

considered instead.

Let â = (x̂1, x̂2) be any point on the side â3â1 of the triangle K̂ and set a = FK(â).

Then the derivatives of p̂(â) = p ◦ FK(â) on the side â3â1 involves the chain rule and

the usual scalar product in ℜ2, < ·, · >, as follows

∂p̂

∂x̂2
(â) =

∂

∂x̂2
(p ◦ FK)(â) = Dp(a) · ∂FK

∂x̂2
(â), (6.13)

where D denotes the differential operator for the first-order derivative defined as D =

(∂x1 , ∂x2). By considering the derivatives in the tangential and normal directions, the

derivative can be expressed as

Dp(a) · ∂FK

∂x̂2
(â) = ⟨∂FK

∂x̂2
(â),

a1 − a3

|a1 − a3|2
Dp(a) · (a1 − a3) +

a2 − c2
|a2 − c2|2

Dp(a) · (a2 − c2)⟩.

(6.14)

Similarly, for any point â on the edge â3â2, we have

∂p̂

∂x̂1
(â) =

∂

∂x̂1
(p ◦ FK)(â) = Dp(a)· ∂FK

∂x̂2
(â)

= ⟨∂FK

∂x̂1
(â),

a2 − a3

|a2 − a3|2
Dp(a) · (a2 − a3) +

a1 − c1
|a1 − c1|2

Dp(a) · (a1 − c1)⟩,

(6.15)

where cα denote an orthogonal projection of aα on the side opposite to the point

aα, α = 1, 2. They are illustrated in Fig. 6.4.

a1
a3

c1

b1

b2 c2

b3

a1

a2

a3

b1

b2

b3

c1

c2

Figure 6.4: Description of the notations: c1 and c2 on the curved triangle KC .

As the consequence of using the Bell triangle, the degree of polynomial’s derivatives

Dp(a) defined over the physical element is quartic. Furthermore, since the degree of
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polynomial used in the mapping FK is n in general, we have that the derivatives of

the mapping are of degree n − 1. Hence, it follows from (6.15) that ∂p̂
∂x̂1

|â∈[â3â2] is a

polynomial of degree n + 3 with respect to x̂2 (as x̂1 ≡ 0 on that side). Also, (6.14)

gives that ∂p̂
∂x̂2

|â∈[â3â1] is a polynomial of degree n+ 3 with respect to x̂1 (as x̂2 ≡ 0 on

that side).

Since the degree of derivatives of the polynomial Dp(a) when restricts to both

side â3âα is n + 3 and they are one-variable polynomials, we can conclude that a

polynomial p̂ defined over the reference triangle K̂ has to be a polynomial of degree

n + 4. Subsequently, for an approximate boundary using a polynomial of degree 3 in

our study, we have to use a polynomial of degree 7 to define an interpolation over the

reference triangle.

Next, we will define a C1-curved finite element by imposing the triple (K̂, P̂ , Σ̂)

to associated with the curved finite element under consideration. By the definition,

K̂ denotes a reference finite element. Furthermore, P̂ and Σ̂ denote, respectively, the

functional space and the set of degrees of freedom of the reference finite element.

As mentioned previously, for a curved boundary that is approximated by a polyno-

mial of degree 3, an interpolation polynomial defined over the reference element has to

be of degree 7. Therefore, the desired ’basic’ P7-C
1 finite element will constitute of K̂

which is a unit right-angled triangle, the set of degrees of freedom Σ̂(ŵ), and P̂ which

is a space of complete polynomials of degree 7 with its dimension equals to 36. The

set of Σ̂(ŵ) composes of values and their derivatives defined on vertices, âi, i = 1, 2, 3,

and along edges, b̂i, i = 1, 2, 3, d̂i, i = 1, ..., 6, and the internal nodes, êi, i = 1, 2, 3, of

the reference triangle illustrated in Fig. 6.5 and are defined as

Σ̂(ŵ) =

{
ŵ(âi),

∂ŵ

∂x̂1
(âi),

∂ŵ

∂x̂2
(âi),

∂2ŵ

∂x̂21
(âi),

∂2ŵ

∂x̂1x̂2
(âi),

∂2ŵ

∂x̂22
(âi), i = 1, 2, 3;

− ∂ŵ

∂x̂1
(b̂1);−

∂ŵ

∂x̂2
(b̂2);

√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(b̂3); ŵ(d̂i), i = 1, ..., 6;

− ∂ŵ

∂x̂1
(d̂i), i = 1, 2;− ∂ŵ

∂x̂2
(d̂i), i = 3, 4;

√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(d̂i), i = 5, 6; ŵ(êi), i = 1, 2, 3

}
,

(6.16)

where ŵ denotes a function defined over the reference element K̂. These degrees of

freedom are constraints so that the C1-continuity can be assured and also the so-defined

C1-curve element can be compatible with the Bell element.
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Figure 6.5: The triple (K̂, P̂ , Σ̂) for a C1-curved finite element compatible with the
Bell triangle where the degree of polynomial approximating curved boundaries is cubic.

6.2.4 Construction of the interpolation, ΠKv, of the function

v defined over the curved element

In this section, we will elaborate on the construction of the interpolation, ΠKv which

will depend on the P7-C
1 shape functions and their associated values of degrees of

freedom defined on the reference element.

The P7-C
1 shape functions are constructed by employing the complete polynomial

of degree 7. The shape functions are defined over the reference triangle K̂ where its

36 nodal degrees of freedom will depend on 21 nodal degrees of freedom defined on the

curved physical triangle as you will see afterwards. Consequently, in order to obtain

the interpolation ΠKv, of the function v defined over the curved element, we have to

associate nodal values of degrees of freedom defined on K̂ with those of KC .

In order to define the association between the nodal values of degrees of freedom

defined on K̂ and KC , firstly, we have to define the degrees of freedom on the curved

elementKC to ensure the C1-compatible with the Bell triangles, which are the adjacent

elements. You will see later on that only 21 degrees of freedom are defined on KC .

Secondly, we will associate 36 nodal value of degrees of freedom defined on K̂

with those defined on KC in the first step. Since the number of degrees of freedom

defined on the curved and the reference triangles are different, the derivation of the

associations is not straightforward.

Once, the set of values of degrees of freedom defined on the reference element K̂

has been defined. The interpolation ΠKv can be obtained from the linear combination

between the complete P7-C
1 basis functions and their associated values of degrees of
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freedom.

Mathematically, the association between the 36 nodal degrees of freedom defined

on the reference element K̂ and the 21 nodal degrees of freedom defined on the curved

element KC can be divided into three following steps.

Step 1:

In the first step, we will define the set of degrees of freedom on the curved element.

In order to satisfy the C1-connection conditions with the Bell triangle, we have that

constraints have to be realised along the sides a3aα, α = 1, 2 which are connections

between the curved elements and the Bell elements.

To obtain the C1-compatible with the Bell element, we have that the degrees of

freedom of the curved finite elements along the connected sides have to be determined

by the degrees of freedom related to the sides a3aα, α = 1, 2. Hence, the degrees of

freedom defined on the curved triangle have to be identical to the degree of freedom

defined on the adjacent element.

Furthermore, there will be three additional degrees of freedom introduced inside

the curved triangle KC as seen in Fig. 6.6. These nodes come from three internal

nodes defined in order to ensure the C1-continuity in determining the polynomial of

degree 7 on the reference element. Consequently, there are 21 degrees of freedom in

total defined over the curved triangular element.

The set ΣK(v) of values of degrees of freedom of v is then given by (see Fig. 6.6)

ΣK(v) = {(Dαv(ai), α = 0, 1, 2), i = 1, 2, 3; v(ei), i = 1, 2, 3} . (6.17)

 

a3 a1

a2

e3 e1

e2

Figure 6.6: The description of the C1-curved finite element compatible with the Bell
element constituting of three vertices and three internal nodes where the set of dofs is
{(Dαv(ai), α = 0, 1, 2), i = 1, 2, 3; v(ei), i = 1, 2, 3}.
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By the general mapping defined in (6.11), let us set

ai = FK(âi), i = 1, 2, 3,

di = FK(d̂i), i = 1, ..., 6,

ei = FK(êi), i = 1, 2, 3.

(6.18)

Now, the set of degrees of freedom (6.17) defined on the curved element can be consid-

ered in its local version. The derivatives of v are computed along the side directions.

Then, the set ΣK(v) of degrees of freedom of the function v is explicitly given by

ΣK(v) = {v(a1); v(a2); v(a3);Dv(a1)(a3 − a1); (sM − sm)Dv(a1)χ
′(sm);

(sm − sM)Dv(a2)χ
′(sM);Dv(a2)(a3 − a2);Dv(a3)(a2 − a3);

Dv(a3)(a1 − a3);D
2v(a1)(a3 − a1)

2; (sM − sm)
2D2v(a1)(χ

′(sm))
2;

(sm − sM)2D2v(a2)(χ
′(sM))2;D2v(a2)(a3 − a2)

2;D2v(a3)(a2 − a3)
2;

D2v(a3)(a1 − a3)
2;D2v(a1)(a2 − a3)

2;D2v(a2)(a3 − a1)
2;

(sM − sm)
2D2v(a3)(χ

′(sm), χ
′(sM)); v(e1); v(e2); v(e3)

}
.

(6.19)

Step2:

In this step, the 36 values of degrees of freedom defined over the reference element will

be defined to depend on only 21 values of degrees of freedom on the curved element

defined in Step 1.

Let us first introduce Σ̂K̂ to be the set of degrees of freedom defined on the reference

element K̂. We have that Σ̂K̂ can be divided into three subsets as Σ̂K̂ = Σ̂1∪ Σ̂2∪ Σ̂3,

where Σ̂1 denotes the set of degrees of freedom associated with vertices and internal

nodes, Σ̂2 denotes the set of degrees of freedom on the edge â3âα;α = 1, 2, and Σ̂3

denotes the set of degrees of freedom on the edge â1â2. The total set of degrees of

freedom illustrated in (6.16) will be divided as

Σ̂1 = {(Dαŵ(âi), α = 0, 1, 2), i = 1, 2, 3; ŵ(êi), i = 1, 2, 3}

Σ̂2 =

{
ŵ(d̂i), i = 1, ..., 4;− ∂ŵ

∂x̂1
(b̂1);−

∂ŵ

∂x̂1
(d̂i), i = 1, 2;− ∂ŵ

∂x̂2
(b̂2);−

∂ŵ

∂x̂2
(d̂i), i = 3, 4;

}
Σ̂3 =

{
ŵ(d̂i), i = 5, 6;

√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(b̂3);

√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(d̂i), i = 5, 6

}
.

(6.20)
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In order to obtain an interpolation, ŵ ∈ P̂ of the function v, those sets of Σ̂i, i =

1, 2, 3, are associated with the set of values △̂K(v) = △̂1(v) ∪ △̂2(v) ∪ △̂3(v) defined

on the reference triangle K̂. Since we would like to have those three sets of values to

depend only on the set of values defined over the curved element, the association of

each subset △̂i(v), i = 1, 2, 3 will be determined separately as follows.

Firstly, the subset of values of degrees of freedom △̂1(v) that constitutes of values

and all their derivatives up to order 2 at vertices and all values of internal nodes can

be obtained from the set ΣK(v) in (6.17). These values can be associated by means of

the mapping FKC
and the following relation

v̂ = v ◦ FKC
. (6.21)

Consequently, the first set of values of degrees of freedom can be expressed as

△̂1(v) = {(Dαv̂(âi), α = 0, 1, 2), i = 1, 2, 3; v̂(êi), i = 1, 2, 3} . (6.22)

Secondly, the set of values △̂2(v) of degrees of freedom on the straight edges

â3âα, α = 1, 2, will be considered. This set of values will be associated with the

set of degrees of freedom Σ̂2(v) in (6.20).

It is worth mentioning that there is no degree of freedom defined along the sides

a3aα, α = 1, 2 of the curved physical triangle. Therefore, the values of degrees of

freedom at nodes d̂i, i = 1, ..., 4 and their derivatives, and the nodes b̂i, i = 1, 2, will

be associated with the degrees of freedom on vertices of the curved triangle, KC . In

order to do this, we have to define polynomials interpolating degrees of freedom defined

on those sides of the triangle KC which are parametrised by the reference coordinate.

In order to obtain the polynomials interpolating degrees of freedom defined on the

sides â3âα of the triangle KC , the polynomials have to provide the C1-connection with

the Bell triangle. According to section 6.2.3, we have that the degree of one-variable

polynomial of the interpolation ŵ on the sides â3âα for the nodes d̂i, i = 1, ..., 4 have to

coincide with the P5-Hermite polynomial. In order to constrain the normal derivative

∂ΠKv
∂n3α

, α = 1, 2 to be continuous, the one-variable polynomial of the normal derivatives

of the interpolation ŵ restricted on the sides â3âα for the nodes b̂i, i = 1, 2 have to

coincide with the P3-Hermite polynomial.

Next, we will consider the mentioned one-variable P3- and P5-Hermite polynomials

defined on the side a3a1 in order to associate the degrees of freedom on the reference
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element to the curved element. Note that the association of those values defined on

the side a3a2 can be obtained in a similar manner.

Regarding the P5-Hermite polynomial defined on the side a3a1, we have that any

variable xi, i = 1, 2, on that side will be parameterised by the variable x̂1 (x̂2 = 0 on

the side) as

x1 = x13 + (x11 − x13)x̂1, x2 = x23 + (x21 − x23)x̂1, (6.23)

and assume that the Hermite polynomial defined on the side a3a1 of the triangle KC

is named

f̂1 which has to coincide with (ΠKv) ◦ FK |[â3,â1]. (6.24)

This quintic polynomial, f̂(x̂1), can be then expressed as

f̂1(x̂1) = c0 + c1x̂1 + c2x̂
2
1 + c3x̂

3
1 + c4x̂

4
1 + c5x̂

5
1. (6.25)

In order to solve the coefficients ci, i = 0, 1, ..., 5, we define the set of values of the

degrees of freedom on the side a3a1 as follows

{v(a1), v(a3), Dv(a1)(a3 − a1), Dv(a3)(a1 − a3),

D2v(a1)(a3 − a1)
2, D2v(a3)(a1 − a3)

2
}
.

(6.26)

By interpolating the degrees of freedom in (6.26), the so-defined Hermite polynomial

on the side a3a1 is obtained. More details can be found in Appendix B. After that we

will use this Hermite polynomial to associate the values define on the nodes d̂i with

the values defined on vertices a1 and a3 on KC .

Likewise, the P5−Hermite polynomials over the straight side a3a2 can be defined

with the same idea but reparameterised by using the variable x̂2 (x̂1 = 0 on the side)

as

x1 = x13 + (x12 − x13)x̂2, x2 = x23 + (x22 − x23)x̂2. (6.27)

And the corresponding Hermite polynomial defined on the side a3a2 of the triangle

KC is named

f̂2 which has to coincide with (ΠKv) ◦ FK |[â3,â2]. (6.28)

To obtain the P3-Hermite polynomial of the side a3a1, we will parametrise the

polynomial by using the variable x̂1 as in (6.23) and assume that the corresponding

Hermite polynomial defined on the side a3a1 is named

ĥ1 which has to coincide with (DΠKv(·)(a2 − c2)) ◦ FK |[â3,â1], (6.29)
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and can be written as in the following form

ĥ1(x̂1) = c0 + c1x̂1 + c2x̂
2
1 + c3x̂

3
1. (6.30)

Solving the coefficients ci, i = 0, 1, ..., 3 by interpolating the degrees of freedom in

(6.31) gives the so-defined Hermite polynomial on the side a3a1. More details can also

be found in Appendix B.{
Dv(ai)n31, D

2v(ai)(n31, t31)
2, i = 1, 3

}
, (6.31)

where n31 and t31 denote the normal and tangential vectors on the side a3a1.

Similarly, the P3−Hermite polynomials over the straight side a3a2 can be defined

with the same idea but reparameterised by using the variable x̂2 as in (6.27) and

assume that the corresponding Hermite polynomial defined on the side a3a2 is named

ĥ2 which has to coincide with (DΠKv(·)(a1 − c1)) ◦ FK |[â3,â2]. (6.32)

Now, we will apply the derived one-variable polynomials f̂α and ĥα, α = 1, 2, to

associate the set of values △̂2(v) with the set of degrees of freedom Σ̂2. Firstly, We will

consider the expression of the first four elements of values of the nodes d̂i, i = 1, ..., 4.

With the help of (6.12), their association can be easily obtained as

ŵ(d̂i) = f̂2(d̂i), i = 1, 2,

ŵ(d̂i) = f̂1(d̂i), i = 3, 4.
(6.33)

Next, we will take care of the expression of the last six elements of △̂2(v) which

are the values of the following degrees of freedom; − ∂ŵ
∂x̂i

(b̂i), i = 1, 2;− ∂ŵ
∂x̂1

(d̂i), i =

1, 2;− ∂ŵ
∂x̂2

(d̂i), i = 3, 4. We will begin by considering the mathematical description of

∂ŵ
∂x̂j

(d̂), j = 1, 2, where the others can be obtained similarly. Regarding d̂ on the side

a3aα, α = 1, 2, the mathematical description of ∂ŵ
∂x̂j

(d̂), j = 1, 2 can be expressed in

the tangential and normal directions similarly from (6.14) and (6.15) as follows

∂ŵ

∂x̂2
(d̂) =

∂

∂x̂2
(w ◦ FK)(d̂) = Dw(d) · ∂FK

∂x̂2
(d̂)

= ⟨∂FK

∂x̂2
(d̂),

a2 − a3

|a2 − a3|2
Dw(d)(a2 − a3) +

a1 − c1
|a1 − c1|2

Dw(d)(a1 − c1)⟩,
(6.34)

and

∂ŵ

∂x̂1
(d̂) =

∂

∂x̂1
(w ◦ FK)(d̂) = Dw(d) · ∂FK

∂x̂1
(d̂)

= ⟨∂FK

∂x̂1
(d̂),

a1 − a3

|a1 − a3|2
Dw(d)(a1 − a3) +

a2 − c2
|a2 − c2|2

Dw(d)(a2 − c2)⟩,
(6.35)
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where <,> denotes the usual scalar product in ℜ2 with the notations cα, α = 1, 2,

illustrated in Fig. 6.4.

Regarding d̂i, i = 1, 2 and b̂1 on the side â2â3, we have that the association of the

degrees of freedom on the reference element to the curved element can be determined

with the definition of the one-variable polynomials f̂α and ĥα, α = 1, 2 defined on the

side â3âα as

Dw(di)(a2 − a3) =
∂f̂2
∂x̂2

(d̂i),

Dw(di)(a1 − c1) = ĥ2(d̂i),

(6.36)

and, for d̂i, i = 3, 4 and b̂2 on the side â1â3, we have

Dw(di)(a1 − a3) =
∂f̂1
∂x̂1

(d̂i),

Dw(di)(a2 − c2) = ĥ1(d̂i).

(6.37)

Now, it can be seen that the polynomial functions f̂i and ĥi, i = 1, 2 depend only

on the values of the degrees of freedom of the function v and relative to the sides

a3ai, i = 1, 2. Hence, the set of values △̂2(v) associated with the set of degrees of

freedom Σ̂2 is given by

△̂2(v) =
{
f̂2(d̂i), i = 1, 2; f̂1(d̂i), i = 3, 4;

−⟨∂FK

∂x̂1
(b̂1),

a2 − a3

|a2 − a3|2
df̂2
dx̂2

(b̂1) +
a1 − c1
|a1 − c1|2

ĥ2(b̂1)⟩;

−⟨∂FK

∂x̂1
(d̂i),

a2 − a3

|a2 − a3|2
df̂2
dx̂2

(d̂i) +
a1 − c1
|a1 − c1|2

ĥ2(d̂i)⟩, i = 1, 2;

−⟨∂FK

∂x̂2
(b̂2),

a1 − a3

|a1 − a3|2
df̂1
dx̂1

(b̂2) +
a2 − c2
|a2 − c2|2

ĥ1(b̂2)⟩;

−⟨∂FK

∂x̂2
(d̂i),

a1 − a3

|a1 − a3|2
df̂1
dx̂1

(d̂i) +
a2 − c2
|a2 − c2|2

ĥ1(d̂i)⟩, i = 3, 4

}
.

(6.38)

Lastly, the set of values of degrees of freedom △̂3(v) on the edge â1â2 will be

considered. It can be derived by the same procedure which we employed to obtain

the set of values △̂2(v). Since we would like to have a one-variable polynomial of the

interpolate ΠK(v) restricted on the side a1a2 to vary quinticly, the polynomial f̂3 have

to coincide with the P5-Hermite polynomial defined by the values of degrees of freedom

as follows

{v̂(â1), v̂(â2), Dv̂(â1)(â2 − â1), Dv̂(â2)(â1 − â2),

D2v̂(â1)(â2 − â1)
2, D2v̂(â2)(â1 − â2)

2,
}
,

(6.39)
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and can be parametrised by

x̂1 = x̂1, x̂2 = 1− x̂1. (6.40)

Also, a one-variable polynomial of the normal derivative of the interpolation ΠKv

have to vary cubically so that the function ĥ3 coincides with the P3-Hermite polynomial

defined by the values of degrees of freedom as{
Dv̂(âi)(â3 − b̂3);D

2v̂(âi)(â3 − b̂3, â1 − â2)
}
, i = 1, 2. (6.41)

Consider similarly as in △̂2(v), the set of values of degrees of freedom, △̂3(v) is defined

as

△̂3(v) =
{
f̂3(d̂i), i = 5, 6;−

√
2ĥ3(b̂3);−

√
2ĥ3(d̂i), i = 5, 6

}
. (6.42)

Similar to (6.22) and (6.38), the set of values △̂3(v) is only dependent on the values

ΣK(v) defined over the curved element. Then, the set △̂K(v) =
{
△̂1(v), △̂2(v), △̂3(v)

}
specifies a value to each degree of freedom of Σ̂. Details of the matrix expressions for

the association of the set △̂K(v) can be seen in Appendix B.

Step3:

Finally, the interpolation ΠKv of the function v can be obtained from the set of value

△̂K(v) that defined over the reference triangle. By (6.12), any function v is obtained

through the mapping F−1
K as

v = ΠKv = v̂ ◦ F−1
K . (6.43)

In general, a function v or its interpolation, ΠKv, does not have to be the same.

Therefore, we will investigate the differences between these two functions in the next

section which devotes to numerical implementations.

6.3 Numerical implementations of the curved finite

element

In this section, we are going to apply the C1-curved finite element developed in the

previous section to solve the fourth-order problems on a curvilinear domain. The do-

main of interest considered throughout this chapter will be a circle as a representative

of a curvilinear boundary.
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Firstly, the performance of the C1-curved finite element will be investigated by

solving the Biharmonic equation on the circular domain. The objective of this section

is to perform a comparison between the performance of the straight and the curved

elements when a curved boundary is concerned.

Furthermore, the implementation of the linearised plate bending in a circle will be

performed. The obtained solutions between the straight and the curved elements will

again be compared.

6.3.1 The Biharmonic equation

Let consider the following Biharmonic equation in two-dimensional space

∂4u

∂x41
+ 2

∂4u

∂x21∂x
2
2

+
∂4u

∂x42
= 0, (6.44)

with the exact solution u(x1, x2) = cos(x1)e
x2 defined on the quarter of the unit circle

domain. A combination of Dirichlet and Neumann boundary conditions will be applied

by the given exact solution in the implementations.

In order to make a numerical implementation, the domain of interest is discretised

by triangles using unstructured meshes with various numbers of elements. After the

discretisation, our mesh constitutes of elements on the interior domain and elements

on the curved boundary. On the interior elements, the straight-sided Bell triangular

element will be employed to represent the solution.

Regarding elements on the curved boundary, we will compare the representation of

the curved boundary by two types of triangular finite elements. The first type is the

straight-sided Bell triangular element and the other is the C1-curved finite element

which is compatible to the straight-sided Bell elements constructed in section 6.2.

In order to avoid unnecessary computational time, the residuals and Jacobian ma-

trices in the finite element implementations will be computed analytically. For the

Bell triangular element, the computation for both the Residuals and Jacobian matrix

are straightforward.

Unlike the Bell element, the computations of the Residuals and Jacobian matrices

of the C1-curved finite element are a bit tricky as its values of degrees of freedom

defined on the reference element depend on those defined on the (curved) physical

triangle. Therefore, the unknown values can be determined by quantities defined on
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the reference triangle as

u(x1(x̂), x2(x̂)) =
36∑
j=1

ûjψ̂j(x̂1, x̂2), (6.45)

where ûj and ψ̂j, j = 1, ..., 36, are the nodal values and the C1-shape functions defined

on the reference element K̂, respectively. All these nodal values ûj are defined to

depend only on 21 nodal values, uk, defined on the curved element KC as described in

section 6.2.4.

Furthermore, the set of nodal values defined on the reference element can be asso-

ciated with those defined on the curved element by

ûj =
21∑
k=1

ukM̃kj,∀j = 1, ..., 36, (6.46)

where M̃ is the matrix of nodal-value transformation from the curved to reference ele-

ments. The computation of this matrix can be found in the Appendix B. Substituting

(6.46) into (6.45) gives

u(x1(x̂), x2(x̂)) =
36∑
j=1

21∑
k=1

ukM̃kjψ̂j(ξ1, ξ2). (6.47)

Therefore, the residuals rk; k = 1, ..., 21, which are expressed on the physical ele-

ment, can be determined by

rk =

∫∫ 36∑
j=1

▽2u▽2ψjM̃kjdx1dx2, (6.48)

and the Jacobian matrix Jkh can be determined by

Jkh =

∫∫ 36∑
j=1

(
36∑

m=1

M̃hm▽2ψm)▽2ψjM̃kjdx1dx2. (6.49)

Note that ▽2ψj are the derivatives of the shape functions with respect to the global

coordinates which can be obtained from employing the Jacobian of mapping to map

from the local to global coordinates.

Regarding the Gaussian quadrature associated to the finite element implementa-

tions, we employ 13-node scheme to perform the numerical integration of functions

defined over the Bell elements. Since the shape functions defined over the Bell ele-

ment is quintic, the highest-order polynomial under the integration is of order six as

the implemented equation contains the second-order derivatives.
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Similarly, since the function defined over the C1-curved element is of order sev-

enth, the highest-order polynomial under the integration is of order ten. Hence, we

need an integration scheme that can integrate up to tenth-order polynomials. The

37-integration points (see [21]) are the scheme that we employed to perform the nu-

merical integration of functions defined over the C1-curved elements. Note that an

under-determined number of integration points may not lead to the expected rate of

convergence and, sometimes, diverges.

Next, the Biharmonic equation stated in (6.44) with the curved boundary will be

implemented by the finite element method in Oomph-lib [53] using the Bell and the

C1-curved finite element. The performance between those two triangular elements

will be compared. The accuracy of the solutions will base on the L2-norm error (see

(5.22)) and are shown in Tables 6.1 and 6.2 for the Bell and the C1-curved elements,

respectively, with the associated computational time.

Number of elements Number of dofs L2−norm error Time (sec)
29 48 0.000567891 0.23
84 198 0.00017726 0.66
250 636 9.42737×10−5 2.02
2034 5838 3.49306×10−5 17.48
4833 14022 5.12128×10−6 43.94

Table 6.1: L2-norm error of the solution obtained from the Biharmonic implementation
using the Bell elements with various numbers of elements.

Number of elements Number of dofs L2−norm error Time (sec)
29 63 0.000141802 5.73
84 228 3.70896×10−5 16.07
250 696 9.52325×10−6 54.92
2034 5958 1.0478×10−8 436.17
4833 14262 3.6392×10−10 1749.63

Table 6.2: L2-norm error of the solution obtained from the Biharmonic implementation
using the C1-curved elements with various numbers of elements.

Tables 6.1 and 6.2 show that the computational time for the C1-curved element

is obviously very expensive compared to that of the Bell element when the same

number of element is concerned. However, for the same number of elements, accuracies

obtained from the curved elements are superior to those obtained from the straight
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elements.

Furthermore, if the same error is considered, sayO(10−5), it can be seen from Tables

6.1 and 6.2 that the number of the Bell elements has to be 2034 to obtain such an

accuracy. On the other hands, the number of the C1-curved elements needed to obtain

such accuracy is 84 which is a lot less. Also, the computational time to obtained the

accuracy of order O(10−5) for the Bell element is 17.48 and for the C1-curved element

is 16.07 which is slightly smaller.

In order to compare the convergence rate between the Bell and the C1-curved

elements, Fig. 6.7a illustrates the comparison between the L2-norm error and the

element size obtained from those elements. It can be seen that the C1-curved element

converges faster and, also, gives smaller error than the Bell element.
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Figure 6.7: The comparison of the convergence rate between the Bell triangular finite
element and the C1-curved triangular finite elements.
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When performing the log-plot between the L2-norm error and the element size,

Fig. 6.7b depicts that the convergence rate of the C1-curved are greater than the Bell

element as its slope is greater. The obtained rate of convergence for the C1-curved

and the Bell element is quintic and quadratic, respectively.

Our obtained rate of convergence for the Bell element, which is quadratic, is con-

sistent to the study of P. Fischer when the curved boundary is concerned (see [63],

pp. 109). Also, our obtained rate of convergence for the C1-curved element, which is

quintic, is consistent with the theoretical asymptotic error presented by M. Bernadou

[48] which states as the following theorem.

Theorem 6.3.1. Let Hk(K) be the Sobolev space of real-valued functions which, to-

gether with all their partial distributional derivatives of order k or less, belong to

L2(K) which is the linear space of square-integrable functions on a curved triangle K.

There exists a constant c, independent of hK, such that for all curved finite element

C1-compatible with Bell triangles, we have that

|v − ΠKv|K ≤ ch5K∥v∥5,K , ∀v ∈ H5(K), (6.50)

where ΠKv is the nodal interpolant of v. Furthermore, hK denotes the diameter of a

triangle K. The norms and semi-norms used here are defined as

∥v∥k,K =

∑
|α|≤k

∥Dαu∥2L2(K)

1/2

, |v|K =
(
∥u∥2L2(K)

)1/2
. (6.51)

Note that (6.50) describes the asymptotic order of the interpolation error. M.

Bernadou [49] proved that the rate of convergence of the finite element solutions in

L2-norm is bounded by the asymptotic order in (6.50).

It is noteworthy that using the Bell element to solve the C1-problem with a curved

boundary decreases its rate of convergence from its potential when solving an exact

representation domain. This limitation of convergence rate in the Bell element is due

to the representation of the curved boundaries with straight-edge elements.

6.3.2 Circular plate bending problem

Further verification of the C1-curved finite element is obtained by solving the linearised

shell equations for the circular plate bending. The problem is considered to have
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clamped boundaries with uniform loading in normal direction to the plate. Only one

quarter of the unit circular plate is analysed and symmetric conditions are applied in

this problem.

To implement the problem of the circular plate bending, the linearised governing

equations described in (3.112), (3.113), and (3.114) will be solved using the finite

element method. The undeformed position for the circular plate is

r = (ξ1, ξ2, 0)
T ,

where (ξ1, ξ2) ∈ [0, 1] and 0 ≤ ξ21 + ξ22 ≤ 1.

The idea of representing the displacements in each direction are the same as de-

scribed in section 5.2.1 of chapter 5. However, in order to represent the normal dis-

placements in this study, we will employ both the Bell and the C1-curved triangular

elements in order to compared the obtained accuracy.

Note that the plate will be discretised by triangles with an unstructured mesh. The

numerical integration schemes are the same as described in the Biharmonic problem

(see section 6.3.1).

Next, the solutions of the linearised shell equations (3.112), (3.113), and (3.114)

are implemented with different applied loads. In this study, the thickness of the plate

equals to 0.01. The uniform loads are in the normal direction to the circular plate and

are increased from 1× 10−7 to 1× 10−6 for 10 steps. Fig. 6.8 illustrates the solutions

obtained from the finite element method using the Bell and the C1-curved elements

with the same number of elements. It can be seen that the solutions obtained from

two different types of C1-finite elements are slightly different.

Regarding the representation of the circular domain, Fig. 6.9 illustrates the com-

parison of the curved boundary representation obtained from the Bell and the C1-

curved triangular elements. In this figure, the quarter of the unit circle are discretised

with an unstructured mesh with 29 triangular elements. As shown in Fig. 6.9a, the

C1-curved triangular elements can nicely represent the curved boundary even though,

the small number of elements are used in the mesh. Note that this curved element

employs a polynomial of degree 3 to approximate the curvilinear boundary.

On the other hand, it can be seen from Fig. 6.9b that the curvilinear bound-

ary cannot be represented by straight-sided triangular elements with this number of
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Figure 6.8: Linearised shell solutions of the circular plate problem obtained from the
29-element unstructured mesh with different loads.
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Figure 6.9: The representation of the curved boundary by the Bell and the C1-curved
triangular finite elements having 29 elements in the mesh.

elements. The obtained geometry boundary is the straight line polygon. However,

the representation of curved boundary by using the straight-sided element can be im-

proved by increasing the number of elements in the mesh. But this, indeed, increases

computational time and limits the convergence rate as shown in section 6.3.1.

Next, the comparison between the solutions obtained from the Bell and the C1-

curved elements with the exact solution is presented. Fig. 6.10 depicts the differences

between the exact solutions (6.52) and the solutions obtained from the Bell and the C1-

curved elements. It can be seen that error obtained from the Bell elements is greater

than those obtained from the C1-curved elements. Also, the differences between those

two solutions increases when the loads increase.

Note that the exact solution for the circular plate bending can be obtained by

considering the Biharmonic equation in polar coordinates. Since the solution we con-

sidered here is axisymmetric, the displacement u is thus parametrised by the radial

position, r, only as it is independent of the angle. With the clamped boundary condi-

tions expressed at boundaries as u(r = a) = 0 = u′(r = a), the exact solution for the

displacement u can be mathematically obtained as follow:

u(r) =
f0
64

(a2 − r2)2. (6.52)

where f0 denotes a constant uniform loading and a is the radius of the circular plate.

The derivation of the exact solution can also be found in many books of thin plate

and shell theory [25].
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6.4 Summary

In this chapter, the C1-curved finite element has been studied and implemented. The

objective is to improve accuracy and the convergence rate of the solution of the fourth-

order problem on curvilinear boundary.

From the results in section 5.2.2 of chapter 5, we see that the Bell triangular finite

element can be used to solve the solution of the fourth-order problem on the straight-

boundary domain. The element provided very nice C1−continuity in the solution

with very good accuracy. The rate of convergence obtained from the Bell element was

quartic.

However, using the Bell triangular element which has straight sides to solve the

fourth-order problem with a curvilinear boundary demonstrated less accuracy and

a rate of convergence. As shown in section 6.3.1, the obtained rate of convergence

decreases from quartic to quadratic. This is a consequence of the incapability of

representing a curvilinear boundary with a series of straight-sided elements.

It can also be seen in section 6.3.1 that the curved boundary cannot be accurately

represented by a small number of the Bell elements. Unlike the Bell element, a small

number of C1-curved finite elements showed the superiority in representing the curved

boundary domain. As shown in Table 6.1, even though using greater number of the

Bell element can represent the curved boundary, it illustrated the limitation in the

convergence rate.
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To retain a rate of convergence and accuracy, an idea of extending one side of

triangular element to be curve has been arisen. This attempt is made so that a

curved triangle can be fitted with the approximate boundary. Implementations of the

C1-curved element depicted in section 6.3 showed that both accuracy and a rate of

convergence increased.

At a first glance, the computational time from the C1-curved finite element seemed

to be very expensive compared to the Bell element when the same number of element is

concerned. Nonetheless, it can be seen from section 6.3.1 that the number of elements

and the computational time used by the C1-curved element were less than those of

Bell elements for some selected tolerance.

Henceforth, the C1-curved elements can retain the rate of convergence when solving

the C1-problem on a curved boundary domain as it increases to be quintic. Conse-

quently, the C1-curved element is superior to the Bell element as it converges faster and

provides higher order of accuracy when solving the C1-problem on a curved boundary

domain.



Chapter 7

Conclusion

7.1 Summary

In this thesis, there are three main goals that we addressed and illustrated. The

consistency between the linear and nonlinear governing equations of a thin-elastic

body with a small strain is the first goal that we presented in chapters 4 and 5. The

performance of higher-order finite elements for the thin-elastic theory is also discussed.

The other is the accuracy of the solution of a C1-problem on a curved-boundary domain

which was presented in chapter 6.

In what comes, a brief summary of contributions and results is presented. In

chapters 4 and 5, finite element implementations of the classical thin-beam and thin-

shell theories with both linear and nonlinear governing equations were illustrated and

compared. This is to examine the range of validity of the linear theory. Furthermore,

an understanding of a dimensional reduction which is one of motivations in numerical

simulation in order to represent the body with its intrinsically lower-dimensional space

is also provided by employing the Kirchhoff-Love theory.

There were two kinds of thin-elastic geometries considered in the implementations

presented in chapters 4 and 5; straight and curved. The results showed that numerical

comparisons between the solutions obtained from the linear and nonlinear governing

equations with the linear constitutive law were consistent for all thin-beam and thin-

shell theories of the straight and the curved kinds when an applied force was small.

Regarding the magnitude of an applied force within a small-deformation regime,

it was of order 10−8 for a straight geometry and of order 10−6 for a curved geometry

165
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for both thin-beam and thin-shell in this study. Also, in order to be in the linear

regime, an applied load should be in the range that gives the normal displacements,

approximately, 1-3% of the thickness. This is with the relative differences between the

linear and nonlinear solutions not greater than 0.01%. Note that the force was applied

on a thin-elastic material with a small non-dimensional thickness h = 0.01 which lies

between the thin regime 0 ≤ h ≤ 1/20. Furthermore, the obtained linear and nonlinear

solutions started to disagree when loading was increased. This suggested that within a

small-strain regime, the linear governing equation can be used to describe behaviours

of a thin-elastic material when a displacement is small.

Besides the contribution of the consistency between the linear and nonlinear govern-

ing equations of a thin-elastic material within a small deformation, there are additional

contributions from chapters 4 and 5. As the result of the linearisation of the governing

equations in both thin beam and thin shell, the order of continuity required in the

tangential and normal displacements for the associated problem was different. The

C1-continuity was required in the governing equation of the normal displacement so

that the Hermite family functions are used to approximate the normal displacement.

However, the tangential displacement can be approximated by either Hermite-type

or Lagrange-type interpolation functions as the weak formulation of its linearised gov-

erning equation did not require C1-continuity. Therefore, in chapter 4, an appropriate

choice of interpolation functions for the tangential displacement was considered in

both theoretical and numerical approaches.

Although, there was no significantly different in the numerical comparisons between

the solutions obtained from the Lagrange formulation and the Hermite formulation as

shown in Figs. 4.8 and 4.13, it was reasonable to continue approximating tangential

displacements by the Lagrange functions. The underlying reason was that using Her-

mite functions for the second-order differential equation gave extra conditions for the

derivatives at boundaries that had to be concerned about the consistency with the

natural boundary conditions. Therefore, Hermite polynomials were not of the correct

order for the interpolation of the tangential displacements.

Moreover, it has been suggested in section 4.2.2 that Lagrange interpolation is

suitable for the second-order differential equation. This is because there is no derivative

degree of freedom defined in the Lagrange shape functions which have to be concerned



CHAPTER 7. CONCLUSION 167

with the natural boundary conditions. Therefore, the consistency between them is no

longer an issue for the Lagrange interpolation for the second-order differential equation.

Next, we will discuss about another contribution from chapter 5 which are numer-

ical comparisons between the performance of the rectangular Hermite and the Bell

triangular elements. This is a consequence of discretisations of the desired geometry

in two-dimensional finite element implementations.

Regarding a discretisation in chapter 5, there were two types of finite elements

considered; a rectangular and a triangular element. Our choice of C1-shape functions

defined over a rectangular and a triangular element was a bicubic Hermite and a Bell

shape functions, respectively.

From section 5.2.2, the numerical comparison between the performance of the rect-

angular Hermite and the triangular Bell elements was illustrated by solving the Bi-

harmonic equation on a rectangular domain. The result showed that the Bell element

converged faster than the Hermite element. Also, for a selected tolerance, the Bell

element was less time-consuming and also employed less degree of freedom than the

Hermite element to achieve the accuracy.

Therefore, the Bell triangular finite element can be used to obtain the solution

of the fourth-order problem with very nice C1-continuity in the solution and a high

accuracy. The rate of convergence obtained from the Bell element was quartic which

was relatively faster compared to the Hermite element which converged cubically.

However, the results obtained from the Bell triangular element were for an exact

representation of the geometry, i.e. straight boundary domain.

But in reality, not every domain of interest is straight. In Chapter 6, we illustrated

results from using the straight-sided Bell element to obtain the solution of the Bihar-

monic equation on curvilinear boundary. It turned out that this kind of element gave

fairly good accuracy but a rate of convergence dropped from quartic to quadratic. It

was showed by P. Fischer [65] that error introduced to the solution was a result from

using straight-sided element to approximate a curvilinear domain.

To retain the rate of convergence, the C1-curved triangle was introduced so that

higher rate of convergence and accuracy in the solution can be obtained on a curvilinear

domain. This is the idea of extending one side of triangular element to be curve.

Implementations of the curved element were depicted in Chapter 6. The obtained
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results showed that using the C1-curved finite element to solve problems defined on a

curved-boundary domain did increase both accuracy and a rate of convergence.

When comparing between the Bell and the C1-curved elements with the same

numbers of elements, the computational time from the C1-curved finite element seemed

to be relatively expensive. However, if some tolerance was selected, it can be seen from

the results in Chapter 6 that the number of elements and the computational time used

by curved elements were less than those of straight elements. Henceforth, the curved

element was not truly expensive and rather gave high accuracy and converged faster

than the straight-sided Bell element in the case that the solution of the fourth-order

problem was solved on a curvilinear boundary.

7.2 Outlook

In this section, we would like to give an overview on a finite element method which

can desire further investigations. An emphasis will be placed on the C1-elements for

both straight and curved boundaries.

According to the linear thin-elastic governing equation, an implementation has to

employ a family of continuously differentiable finite elements on the domain of interest.

Because of the difficulties which occurred during the construction of continuously dif-

ferentiable finite elements in one- and two-dimensional spaces on a straight boundary,

few C1-elements have been developed in three dimensions (see [6], [72], [76]).

As far as the three-dimensional C1-finite element availability is concerned, an in-

teresting and challenging aspect could be an extension of a C1-element to a three-

dimensional space. It seems that the only continuously differentiable finite element on

tetrahedron constructed was by A. Zenisek in 1973 [6] and, recently, by S. Zhang [76]

in 2009.

In the study of A. Zenisek [6], the element was constructed by using a polynomial of

degree 9 on tetrahedrons. With this degree of polynomial, 220 degrees of freedom in the

3D finite element have to be specified and considered in an implementation. This makes

the coding and computation of C1-finite elements in 3D relatively expensive. Likewise,

the complexity in the construction and computation prohibits further development so

that a few researches have been done on this type of element (see [6], [76]).
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Another researcher that works on a tetrahedron C1-finite element is S. Zhang [76].

He tried to modify the Zenisek P9-tetrahedron to define another C1-Pk finite element

on tetrahedron where Pk is a polynomial degree higher than 9. In his study, some

numerical tests were presented to check that his C1-Pk finite element was well defined

on tetrahedral grids.

Recently in 2009, S.A. Papanicolopulos [72] applied a three-dimensional C1-finite

element for gradient elasticity. In his study, a new hexahedral C1-element was pre-

sented using the same technique as the C1-isoparametric quadrilateral presented by

J. Petera and J. Pittman [41]. The constructed element gave excellent rates of con-

vergence in boundary value problems of gradient elasticity. Furthermore, the C1-

hexahedron was shown not to be computationally more expensive than another alter-

native methods; meshless and penalty methods. However, requiring structured meshes

in his implementation is one main drawback of the element.

Regarding the C1-finite element for a curvilinear boundary, it was elaborated in

chapter 6 that the construction of the C1-curved finite element depends on the degree

of polynomial that uses to approximate curved boundaries. Therefore, different degrees

of interpolating polynomials give different C1-curved finite elements. This makes the

method impractical and unpopular as the new set of shape functions has to be derived.

Also, the coding and computation of C1-curved finite elements are relatively expensive

as seen in section 6.3 and Appendix B.

Furthermore, the construction of the C1-curved interpolation functions on the refer-

ence triangle rather increases the degree of interpolation polynomials. The additional

association between the values of degrees of freedom on the reference and physical

curved triangles has to also be computed for each element in the mesh and this makes

the computational time expensive.
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Appendix A

Shape functions

In this section, two families of shape functions are considered: the Lagrange and the

Hermite functions. They consist of sets of polynomials of different degrees which

depend on the desired accuracy of approximation. In general, the higher the degree,

the better the approximation.

A.1 Lagrange shape functions

A Lagrange shape function is a polynomial that is used to approximate a function.

It is one of the basic polynomials for problems with a simple degree of freedom per

node in an element. In this type of element, only the function values are given and

specified at nodes and are associated with Lagrange shape functions in order to make

an approximation. A field variable being approximated by the Lagrange functions is

continuous between elements; however, its derivatives are not necessarily continuous.

A.1.1 Interpolations in one dimension

One-dimensional interpolation functions can be constructed from the idea of the in-

terpolation theory. There are many kinds of Lagrange shape functions. Linear shape

functions are used when the domain is discretised with 2-node element, while quadratic

and cubic shape functions are used with 3-node and 4-node elements, respectively. In

this thesis, only linear and quadratic Lagrange shape functions will be used to approx-

imate our quantities of interest.

179
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Linear shape functions

A linear shape function is a linear polynomial defined on a 2-node element. Its shape

functions can be mathematically described in local coordinate, s ∈ [−1, 1], as

ψ1(s) = 0.5(1− s),

ψ2(s) = 0.5(1 + s).
(A.1)

The linear shape functions are straight lines that linearly vary between -1 and 1 as

illustrated in Fig. A.1.
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Figure A.1: The linear shape functions in one dimension which has two nodes in the
element.

Therefore, a linear approximation of unknown u can be defined by introducing a

normalised measure of distance, s, with s = −1 at one end and s = 1 at the other end

of the domain as

u(s) = U1ψ1(s) + U2ψ2(s),

= 0.5U1(1− s) + 0.5U2(1 + s),
(A.2)

where U1, U2, are called nodal parameters that associate with the values of unknown

at element nodes. It can be seen in (A.2) that a shape function defined in (A.1) is

associated with each of the nodal parameters.

Quadratic shape functions

A quadratic shape function is a polynomial of degree 2 defined on a 3-node element.

Its shape functions can be mathematically described in local coordinate, s, as

ψ1(s) = 0.5s(s− 1),

ψ2(s) = 1− s2,

ψ3(s) = 0.5s(s+ 1).

(A.3)
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Figure A.2: The quadratic shape functions in one dimension which has three nodes in
the element.

These shape functions are quadratic curve that vary between -1 and 1 as illustrated

in Fig. A.2.

Therefore, a quadratic approximation of unknown u can be defined by introducing

a normalised measure of distance, s, with s = −1 at one end and s = 1 at the other

end of the domain as

u(s) = U1ψ1(s) + U2ψ2(s) + U3ψ3(s),

= U1(0.5s(s− 1)) + U2(1− s2) + U3(0.5s(s+ 1)),
(A.4)

where U1, U2, U3, are called nodal parameters that associate with the values of unknown

at element nodes. Similar to a linear approximation, a quadratic shape function is

associated with each of the nodal parameters.

A.1.2 Interpolations in two dimensions

Two-dimensional Lagrange shape functions can simply be constructed from tensor

products of the one-dimensional functions. To approximate an unknown u over a 2D

domain, Lagrange shape functions defined in one dimension have to be used.

Bilinear shape functions

The bilinear Lagrange shape functions defines in two-dimensional space to have two

nodes on each side of the element. They can be constructed by taking the tensor

product of individual one-dimensional linear Lagrange shape functions in the s1 and
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s2 directions defined in (A.1). This scheme consists of four polynomials shown as

follows

ϕ1(s1, s2) = ψ1(s1)ψ1(s2)

ϕ2(s1, s2) = ψ2(s1)ψ1(s2)

ϕ3(s1, s2) = ψ1(s1)ψ2(s2)

ϕ4(s1, s2) = ψ2(s1)ψ2(s2)

(A.5)

where ψ1, and ψ2, are the one-dimensional linear Lagrange basis functions correspond

to nodal position 1,2, respectively.

Therefore, four nodal parameters, U1, ..., U4, which are the values of the unknown

u defined at the element nodes j = 1, ..., 4, are associated with the two-dimensional

shape functions, ϕ1, ..., ϕ4. The approximation of u is then given by

u(s1, s2) =
4∑

j=1

ϕj(s1, s2)Uj. (A.6)

Biquadratic shape functions

The biquadratic Lagrange shape functions defines in two-dimensional space to have

three nodes on each side of the element. They can be constructed by taking the tensor

product of individual one-dimensional quadratic Lagrange shape functions in the s1

and s2 directions defined in (A.3). This scheme consists of nine polynomials shown as

follows

ϕ1(s1, s2) = ψ1(s1)ψ1(s2)

ϕ2(s1, s2) = ψ2(s1)ψ1(s2)

ϕ3(s1, s2) = ψ3(s1)ψ1(s2)

ϕ4(s1, s2) = ψ1(s1)ψ2(s2)

ϕ5(s1, s2) = ψ2(s1)ψ2(s2)

ϕ6(s1, s2) = ψ3(s1)ψ2(s2)

ϕ7(s1, s2) = ψ1(s1)ψ3(s2)

ϕ8(s1, s2) = ψ2(s1)ψ3(s2)

ϕ9(s1, s2) = ψ3(s1)ψ3(s2),

(A.7)

where ψ1, ψ2, and ψ3, are the one-dimensional quadratic Lagrange shape functions

correspond to nodal position 1,2 and 3, respectively.
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Therefore, the approximation of u is given by

u(s1, s2) =
9∑

j=1

ϕj(s1, s2)Uj, (A.8)

where nine nodal parameters, U1, ..., U9, are associated with the two-dimensional shape

functions, ϕ1, ..., ϕ9.

Note that the resulting shape functions in the Lagrange family do not enforce

inter-element C1-continuity at any element’s boundary. For their derivations, the

reader may consult finite element books such as [40], [60].

A.2 Hermite shape functions

Unlike Lagrange shape functions, Hermite shape functions are defined to provide C1-

continuity in an approximated solution. To interpolate a solution of a problem, Her-

mite shape functions have to be associated with both the values and its derivatives

which are specified and known at nodes in an element.

A.2.1 Interpolations in one dimension

The Hermite shape function in one dimensional space is defined on 2-node element.

The cubic polynomials are employed to construct this type of shape functions and they

can be derived from interpolating a function value and its derivative at the nodes. The

one-dimensional Hermite shape functions are mathematically described as

ψ11(s) = 0.25(s3 − 3.0s+ 2.0)

ψ12(s) = 0.25(s3 − s2 − s+ 1.0)

ψ21(s) = 0.25(2.0 + 3.0s− s3)

ψ22(s) = 0.25(s3 + s2 − s− 1.0),

(A.9)

where ψi1 is the local shape function at node i associated with the unknown value,

and ψi2 is the shape function at node i associated with the unknown derivative. Note

that these shape functions are defined over the local coordinate s ∈ [−1, 1].

Hence, the approximation of u is then given by

u(s) =
2∑

i=1

2∑
j=1

ψij(s)Uij, (A.10)
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where nodal parameters, Ui1, Ui2; i = 1, 2, are associated with the unknown value u

and its first derivative, ∂u
∂s
, at node i, respectively. These must be defined at each

node of the element. In total, we have 4 nodal parameters per element for the bicubic

Hermite interpolations in one dimension.
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Figure A.3: The cubic Hermite basis functions.

From the definition of Hermite shape functions stated above, we have that, for

nodes s1 = −1 and s2 = 1, ψi1 = 1 at node si and ψi1 = 0 at the other node.

Furthermore, dψi1/ds = 0 at both nodes. Moreover, dψi2/ds = 1 at node si and

dψi2/ds = 0 at the other node. Furthermore, ψi2 = 0 at both nodes. Hence, a one-

dimensional cubic Hermite basis incorporates the four cubic polynomials listed above

and graphically illustrated in Fig. A.3.

A.2.2 Interpolations in two dimensions

The construction of two-dimensional Hermite shape functions can be achieved using

the same procedure as in Lagrange family. With the definition of tensor products, we

have that the Hermite shape functions in two-dimensional space are bicubic polyno-

mials.

The bicubic Hermite shape functions of the unknown u can be expressed as in
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(A.11) using the one-dimensional cubic Hermite shape functions defined in (A.9).

u(s1, s2) = ψ11(s1)ψ11(s2)U11 + ψ11(s2)ψ21(s1)U21

+ ψ11(s1)ψ21(s2)U31 + ψ21(s1)ψ21(s2)U41

+ ψ12(s1)ψ11(s2)U12 + ψ22(s1)ψ11(s2)U22

+ ψ12(s1)ψ21(s2)U32 + ψ22(s1)ψ21(s2)U42

+ ψ11(s1)ψ12(s2)U13 + ψ21(s1)ψ12(s2)U23

+ ψ11(s1)ψ22(s2)U33 + ψ21(s1)ψ22(s2)U43

+ ψ12(s1)ψ12(s2)U14 + ψ22(s1)ψ12(s2)U24

+ ψ12(s1)ψ22(s2)U34 + ψ22(s1)ψ22(s2)U44

(A.11)

where, for node j = 1, 2, 3, 4, Uj1 associated with value of the unknown at node j.

The Uj2 and Uj3 are coefficients associated with the first derivatives at node j of the

unknown with respect to the 1st and 2nd coordinate, respectively. And Uj4 denote the

mixed derivative at node j.

Hence, to approximate an unknown u using a two-dimensional bicubic Hermite

basis, the four quantities constituted of the unknown value u, its first derivatives, ∂u
∂s1

,

∂u
∂s2

and the mixed derivative ∂2u
∂s1∂s2

, must be defined at each node of the element.

In total, we have 16 nodal parameters per element for the bicubic Hermite shape

functions.



Appendix B

The association matrix between

nodal values defined on the

reference and the curved elements

In this chapter, we will detail the matrix transformation which allow us to realise the

association between the nodal values on the reference and those of the curved elements.

All steps described in section 6.2.4 will be transcribed into matrix expressions.

Remind that xα, α = 1, 2 denote coordinates in two-dimensional space defined

on the physical domain and approximated by the functions χ1(s), χ2(s) which are

continuous on [sm, sM ] defined in (6.2). Also, âi, i = 1, 2, 3, denote vertices of the

triangle, b̂i, i = 1, 2, 3, d̂i, i = 1, ..., 6, denote nodes along edges, and êi, i = 1, 2, 3,

denote the internal nodes of the reference triangle illustrated in Fig. 6.5.

Since the set of degrees of freedom defined over the reference triangle K̂ is (see

186
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(6.16))

[DL(ŵ)]

=

{
ŵ(â1), ŵ(â2), ŵ(â3),

∂ŵ

∂x̂1
(â1),

∂ŵ

∂x̂2
(â1),

∂ŵ

∂x̂1
(â2),

∂ŵ

∂x̂2
(â2),

∂ŵ

∂x̂1
(â3),

∂ŵ

∂x̂2
(â3),

∂2ŵ

∂x̂21
(â1),

∂2ŵ

∂x̂1x̂2
(â1),

∂2ŵ

∂x̂22
(â1),

∂2ŵ

∂x̂21
(â2),

∂2ŵ

∂x̂1x̂2
(â2),

∂2ŵ

∂x̂22
(â2),

∂2ŵ

∂x̂21
(â3),

∂2ŵ

∂x̂1x̂2
(â3),

∂2ŵ

∂x̂22
(â3),−

∂ŵ

∂x̂1
(b̂1),−

∂ŵ

∂x̂2
(b̂2),

√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(b̂3), ŵ(d̂1),

ŵ(d̂2), ŵ(d̂3), ŵ(d̂4), ŵ(d̂5), ŵ(d̂6),−
∂ŵ

∂x̂1
(d̂1),−

∂ŵ

∂x̂1
(d̂2),−

∂ŵ

∂x̂2
(d̂3),−

∂ŵ

∂x̂2
(d̂4),

√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(d̂5),

√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(d̂6), ŵ(ê1), ŵ(ê2), ŵ(ê3)

}
,

(B.1)

where ŵ denotes any function defined over the reference element K̂, and the set of

degrees of freedom defined over the curved triangle KC is

[DL(v)] = {v(a1); v(a2); v(a3);Dv(a1)(a3 − a1); (sM − sm)Dv(a1)χ
′(sm);

(sm − sM)Dv(a2)χ
′(sM);Dv(a2)(a3 − a2);Dv(a3)(a2 − a3);

Dv(a3)(a1 − a3);D
2v(a1)(a3 − a1)

2; (sM − sm)
2D2v(a1)(χ

′(sm))
2;

(sm − sM)2D2v(a2)(χ
′(sM))2;D2v(a2)(a3 − a2)

2;D2v(a3)(a2 − a3)
2;

D2v(a3)(a1 − a3)
2;D2v(a1)(a2 − a3)

2;D2v(a2)(a3 − a1)
2;

(sM − sm)
2D2v(a3)(χ

′(sm), χ
′(sM)); v(e1); v(e2); v(e3)

}
,

(B.2)

we need to define the matrix M̃ such that

[DL(ŵ)]1×36 = [DL(v)]1×21[M̃ ]21×36, (B.3)

where v is any function defined on the curved triangle KC . To consider the matrix M̃ ,

we will partition it as follow:

[M̃ ]21×36 =
[
M̃1 M̃2 M̃3 M̃4 M̃5 M̃6 M̃7

]
, (B.4)

where submatrices M̃j; j = 1, ..., 7, have 21 lines and 3, 6, 9, 3, 6, 6, and 3 columns,

respectively, and are determined as follows.



APPENDIX B. ASSOCIATION MATRIX FOR THE C1-CURVED ELEMENT 188

Construction of submatrix M̃1:

Since ŵ(âi) = v(ai), i = 1, 2, 3, we have that

M̃ t
1 = [I3;03×18]. (B.5)

Construction of submatrix M̃2:

This submatrix associates with the first derivatives at vertices of the triangles. Since

ŵ = v ◦ FK , we obtain

∂ŵ

∂x̂α
(âi) = Dŵ(âi)êα = Dv(x)DFK(âi)êα = Dv(ai)

∂FK

∂x̂α
(âi), i = 1, 2, 3, (B.6)

and with the definition of the nonlinear mapping depicted in (6.11)

∂ŵ

∂x̂1
(â1) = Dv(a1)(a1 − a3),

∂ŵ

∂x̂2
(â1) = Dv(a1)[a1 − a3 + (sM − sm)χ

′(sm)],

∂ŵ

∂x̂1
(â2) = Dv(a2)[a2 − a3 − (sM − sm)χ

′(sM)],
∂ŵ

∂x̂2
(â2) = Dv(a2)(a2 − a3),

∂ŵ

∂x̂1
(â3) = Dv(a3)(a1 − a3),

∂ŵ

∂x̂2
(â3) = Dv(a3)(a2 − a3).

(B.7)

Hence, we obtain

M̃ t
2 = [06×3; (m

t
2)6×6;06×12], (B.8)

with

m2 =



−1 −1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 −1 −1 0 0

0 0 0 0 0 1

0 0 0 0 1 0


. (B.9)

Construction of submatrix M̃3:

This submatrix associates with the second derivatives at vertices of the triangles. Since

ŵ = v ◦ FK , we obtain, for i = 1, 2, 3,

∂2ŵ

∂x̂α∂x̂β
(âi) = Dv(ai)

∂2FK

∂x̂α∂x̂β
(âi) +D2v(ai)

(
∂FK

∂x̂α
(âi),

∂FK

∂x̂β
(âi)

)
. (B.10)
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With the mapping defined in (6.11), we have

∂2ŵ

∂x̂21
(â1) = D2v(a1)(a1 − a3)

2,

∂2ŵ

∂x̂1∂x̂2
(â1) = D2v(a1)[a1 − a3, a1 − a3 + (sM − sm)χ

′(sm)]

+Dv(a1)[2(a1 − a2) +
1

2
(sM − sm)(3χ

′(sm) + χ′(sM))],

∂2ŵ

∂x̂22
(â1) = D2v(a1)[a1 − a3 + (sM − sm)χ

′(sm)]
2

−Dv(a1)[2(a1 − a2) + (sM − sm)(χ
′(sm) + χ′(sM))],

∂2ŵ

∂x̂21
(â2) = D2v(a2)[a2 − a3 − (sM − sm)χ

′(sM)]2

−Dv(a2)[2(a2 − a1)− (sM − sm)(χ
′(sm) + χ′(sM))],

∂2ŵ

∂x̂1∂x̂2
(â2) = D2v(a2)[a2 − a3 − (sM − sm)χ

′(sM), a2 − a3]

+Dv(a2)[2(a2 − a1)−
1

2
(sM − sm)(3χ

′(sM) + χ′(sm))],

∂2ŵ

∂x̂22
(â2) = D2v(a2)(a2 − a3)

2,

∂2ŵ

∂x̂21
(â3) = D2v(a3)(a1 − a3)

2,

∂2ŵ

∂x̂1∂x̂2
(â3) = D2v(a3)[a1 − a3, a2 − a3]−

1

2
(sM − sm)Dv(a3)[χ

′(sM)− χ′(sm)],

∂2ŵ

∂x̂22
(â3) = D2v(a3)(a2 − a3)

2.

(B.11)

Therefore, the submatrix M̃3 are as follows

M̃ t
3 = [09×3; (m

t
31)9×6; (m

t
32)9×9;09×3], (B.12)

where matrices m31 and m32 are given by

m31 =

0 (2ã1 + 1
2
˜̃a1) −(2ã1 + ˜̃a1) 0 0 0 0 0 0

0 ( 3
2

+ 2ã2 + 1
2
˜̃a2) −(1 + 2ã2 + ˜̃a2) 0 0 0 0 0 0

0 0 0 −(1 + 2b̃1 − ˜̃
b1) ( 3

2
+ 2b̃1 − 1

2
˜̃
b1) 0 0 0 0

0 0 0 −(2b̃2 − ˜̃
b2) (2b̃2 − 1

2
˜̃
b2) 0 0 0 0

0 0 0 0 0 0 0 1
2
(c̃1 + ˜̃c1) 0

0 0 0 0 0 0 0 1
2
(c̃2 + ˜̃c2) 0


,

(B.13)
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m32 =



1

(
1 + 1+ã1

2ã2

) (
1 + 1+ã1

ã2

)
0 0 0 0 0 0

1 ã2

2(1+ã1)

(
1 + ã2

1+ã1

)
0 0 0 0 0 0

0 0 0

(
1 + b̃1

1+b̃2

)
b̃1

2(1+b̃2
) 0 0 0 0

0 0 0

(
1 + 1+b̃2

b̃1

) (
1 + 1+b̃2

2b̃1

)
1 0 0 0

0 0 0 0 0 0 0 − c̃1 ˜̃c1

c̃1 ˜̃c2+c̃2˜̃c1
1

0 0 0 0 0 0 1 − c̃2 ˜̃c2

c̃1 ˜̃c2+c̃2˜̃c1
0

0 −1

2ã2(1+ã1)

−1

ã2(1+ã1)
0 0 0 0 0 0

0 0 0 −1

b̃1(1+b̃2)

−1

2b̃1(1+b̃2)
0 0 0 0

0 0 0 0 0 0 0 − 1
c̃1 ˜̃c2+c̃2˜̃c1

0



. (B.14)

The coefficients of the submatrices m31 and m32 can be defined as follows. Set

A1 = a3 − a1 and A2 = (sM − sm)χ
′(sm),

and assume that these vectors are linearly independent. Therefore, ãα and ˜̃aα are

defined by

a1 − a2 = ãαAα, (sM − sm)χ
′(sM) = ˜̃aαAα.

Similarly, set

B1 = −(sM − sm)χ
′(sM) and B2 = a3 − a2,

a2 − a1 = b̃αBα, (sM − sm)χ
′(sm) =

˜̃bαBα,

also,

C1 = a2 − a3 and C2 = a1 − a3,

(sM − sm)χ
′(sm) = c̃αCα, −(sM − sm)χ

′(sM) = ˜̃cαCα.

From these definitions, all the coefficients can be computed as follows,

ã1 =
(B2 ×A2) · e3
(A1 ×A2) · e3

− 1, ã2 =
(A1 ×B2) · e3
(A1 ×A2) · e3

,

˜̃a1 = − (B1 ×A2) · e3
(A1 ×A2) · e3

, ˜̃a2 = − (A1 ×B1) · e3
(A1 ×A2) · e3

,

b̃1 =
(A1 ×B2) · e3
(B1 ×B2) · e3

, b̃2 =
(B1 ×A1) · e3
(B1 ×B2) · e3

− 1,

˜̃b1 =
(A2 ×B2) · e3
(B1 ×B2) · e3

, ˜̃b2 =
(B1 ×A2) · e3
(B1 ×B2) · e3

,

c̃1 = −(A1 ×A2) · e3
(A1 ×B2) · e3

, c̃2 = −(A2 ×B2) · e3
(A1 ×B2) · e3

,

˜̃c1 = −(A1 ×B1) · e3
(A1 ×B2) · e3

, ˜̃c2 = − (B1 ×B2) · e3
(A1 ×B2) · e3

,

(B.15)

where ej, j = 1, 2, 3 denote standard basis vectors in the Cartesian coordinate system

in a three-dimensional space.
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Construction of submatrix M̃4:

This submatrix M̃4 is related to the normal derivatives defined at mid-side nodes of

the reference triangle. In particular, we want to have M̃4 that associates the 21 values

defined on the curved element with the degrees of freedom that defined at mid-side

nodes of the reference triangle. This can be mathematically described as[
− ∂ŵ

∂x̂1
(b̂1);−

∂ŵ

∂x̂2
(b̂2);

√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(b̂3)

]
= [DL(v)]1×21[M̃4]21×3. (B.16)

From (6.38), we have that

− ∂ŵ

∂x̂1
(b̂1) = −⟨∂FK

∂x̂1
(b̂1),

a2 − a3

|a2 − a3|2
df̂2
dx̂2

(b̂1) +
a1 − c1
|a1 − c1|2

ĥ2(b̂1)⟩

= −⟨∂FK

∂x̂1
(b̂1),

a2 − a3

|a2 − a3|2
⟩df̂2
dx̂2

(b̂1) + ⟨∂FK

∂x̂1
(b̂1),

a1 − c1
|a1 − c1|2

⟩ĥ2(b̂1)

= E1 df̂2
dx̂2

(
1

2
) + E2ĥ2(

1

2
).

(B.17)

where <,> denotes the usual scalar product in ℜ2 with the notations cα, α = 1, 2,

illustrated in Fig. 6.4. Also, E1 and E2 are defined as

E1 = ⟨a3 − a1 +
1

4
(a1 − a2) +

1

8
(sM − sm) (3χ

′(sM)− χ′(sm)) ,
a2 − a3

|a2 − a3|2
⟩,

E2 = ⟨a3 − a1 +
1

4
(a1 − a2) +

1

8
(sM − sm) (3χ

′(sM)− χ′(sm)) ,
a1 − c1
|a1 − c1|2

⟩,
(B.18)

since the derivative of the nonlinear mapping FK with respect to x̂1 involves

−∂FK

∂x̂1
(b̂1) = a3 − a1 +

1

4
(a1 − a2) +

1

8
(sM − sm) (3χ

′(sM)− χ′(sm)) . (B.19)

Now, for our convenience later on, we introduce the functions F̂i; i = 1, 2, 3 and

Ĥi; i = 1, 2, 3 as

[f̂1(x̂1); f̂2(x̂2); f̂3(x̂1)] = [DL(v)]1×21[F̂1(x̂1); F̂2(x̂2); F̂3(x̂1)]21×3, (B.20)

[ĥ1(x̂1); ĥ2(x̂2); ĥ3(x̂1)] = [DL(v)]1×21[Ĥ1(x̂1); Ĥ2(x̂2); Ĥ3(x̂1)]21×3. (B.21)

By the definitions in (6.24), (6.28), (6.42), (6.29), (6.32), and (6.42), we have[
F̂1(x̂1)

]
=
[
x̂31(6x̂

2
1 − 15x̂1 + 10); 0; (1− x̂1)

3(6x̂21 + 3x̂1 + 1);

x̂31(1− x̂1)(4− 3x̂1); 0; 0; 0; 0; x̂1(1− x̂1)
3(1 + 3x̂1);

1

2
x̂31(1− x̂1)

2; 0; 0; 0; 0;
1

2
x̂21(1− x̂1)

3; 0; 0; 0; 0; 0; 0

] (B.22)
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[
F̂2(x̂2)

]
=
[
0; x̂32(6x̂

2
2 − 15x̂2 + 10); (1− x̂2)

3(6x̂22 + 3x̂2 + 1);

0; 0; 0; x̂32(1− x̂2)(4− 3x̂2); x̂2(1− x̂2)
3(1 + 3x̂2); 0; 0; 0; 0;

1

2
x̂32(1− x̂2)

2;
1

2
x̂22(1− x̂2)

3; 0; 0; 0; 0; 0; 0; 0

] (B.23)

[
F̂3(x̂1)

]
=
[
x̂31(6x̂

2
1 − 15x̂1 + 10); (1− x̂1)

3(6x̂21 + 3x̂1 + 1); 0;

−(3ã1 + ˜̃a1)x̂31(1− x̂1)
2; x̂31(1− x̂1){2− x̂1 − (1− x̂1)(3ã

2 + ˜̃a2)};

x̂1(1− x̂1)
3{1 + x̂1 − x̂1(3b̃

1 − ˜̃b1)};−x̂21(1− x̂1)
3(3b̃2 − ˜̃b2);

0; 0; 0;
1

2
x̂31(1− x̂1)

2;
1

2
x̂21(1− x̂1)

3; 0; 0; 0; 0; 0; 0; 0; 0; 0

]
(B.24)

[
Ĥ1(x̂1)

]
=

[
0; 0; 0;−1

2
(1− η2 + 2ã1)x̂21(2x̂1 − 1)(5− 4x̂1);

−ã2x̂21(2x̂1 − 1)(5− 4x̂1); 0; 0; (1− x̂1)
2(1− 2x̂1)(1 + 4x̂1);

−1

2
(1 + η2)(1− x̂1)

2(1− 2x̂1)(1 + 4x̂1);
1

2
(ã1 − η2)x̂

2
1(1− x̂1)(1− 2x̂1);

−1

2

(ã2)2

1 + ã1
x̂21(1− x̂1)(1− 2x̂1); 0; 0;

−c̃1˜̃c1

c̃1˜̃c2 + c̃2˜̃c1
x̂1(1− x̂1)

2(1− 2x̂1);

−
{
1

2
(1 + η2) +

c̃2˜̃c2

c̃1˜̃c2 + c̃2˜̃c1

}
x̂1(1− x̂1)

2(1− 2x̂1);
x̂21(1− x̂1)(1− 2x̂1)

2(1 + ã1)
;

0;
−1

c̃1˜̃c2 + c̃2˜̃c1
x̂1(1− x̂1)

2(1− 2x̂1); 0; 0; 0

]
(B.25)
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[
Ĥ2(x̂2)

]
=
[
0; 0; 0; 0; 0;−b̃1x̂22(2x̂2 − 1)(5− 4x̂2);

−1

2
(2b̃2 + 1 + η1)x̂

2
2(2x̂2 − 1)(5− 4x̂2);

−1

2
(1− η1)(1− x̂2)

2(1− 2x̂2)(1 + 4x̂2);

(1− x̂2)
2(1− 2x̂2)(1 + 4x̂2); 0; 0;−

1

2

(b̃1)2

1 + b̃2
x̂22(1− x̂2)(1− 2x̂2);

1

2
(b̃2 + η1)x̂

2
2(1− x̂1)(1− 2x̂1);

−1

2

(
2c̃1˜̃c1

c̃1˜̃c2 + c̃2˜̃c1
+ 1− η2

)
x̂2(1− x̂2)

2(1− 2x̂2);

− c̃2˜̃c2

c̃1˜̃c2 + c̃2˜̃c1
x̂2(1− x̂2)

2(1− 2x̂2); 0;
1

2

1

1 + b̃2
x̂22(1− x̂2)(1− 2x̂2);

− 1

c̃1˜̃c2 + c̃2˜̃c1
x̂2(1− x̂2)

2(1− 2x̂2); 0; 0; 0

]
(B.26)

[
Ĥ3(x̂1)

]
=

[
0; 0; 0; x̂21(3− 2x̂1) + (ã1 +

˜̃a1

2
)x̂21(1− x̂1);

x̂21(x̂1 −
3

2
) + (

1

2
+ ã2 +

˜̃a2

2
)x̂21(1− x̂1);

−1

2
+

3

2
x̂21 − x̂31 +

1

2
(2b̃1 − ˜̃b1 + 1)x̂1(1− 2x̂1 − x̂21);

1 +
1

2
(2b̃2 − ˜̃b2)x̂1 − (2b̃2 − ˜̃b2 + 3)x̂21 + (2− 2b̃2 − ˜̃b2

2
)x̂31; 0; 0;

1 + ã1

2ã2
x̂21(x̂1 − 1);

1

2
(1 +

ã2

1 + ã1
)x̂21(x̂1 − 1);

1

2
(1 +

b̃1

1 + b̃2)
x̂1(−1 + 2x̂1 + x̂21);

1 + b̃2

2b̃1
x̂1(−1 + 2x̂1 + x̂21);

0; 0;− 1

2(1 + ã1)ã2
x̂21(x̂1 − 1);

− 1

2b̃1(1 + b̃2)
x̂1(−1 + 2x̂1 + x̂21); 0; 0; 0; 0

]

(B.27)

Note that we have used the eccentricity parameters η1 and η2 of the curved triangle

KC which are given by

a1 − c1 = a1 − a2 −
1

2
(1 + η1)(a3 − a2)

a2 − c2 = a2 − a1 −
1

2
(1− η2)(a3 − a1).

(B.28)

Hence, (B.17), (B.22), and (B.26) give

− ∂ŵ

∂x̂1
(b̂1) = [DL(v)]1×21[E

1 d

dx̂2
F̂2(

1

2
) + E2Ĥ2(

1

2
)]21×1, (B.29)
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By similarity, we obtain

− ∂ŵ

∂x̂2
(b̂2) = [DL(v)]1×21[F

1 d

dx̂1
F̂1(

1

2
) + F 2Ĥ1(

1

2
)]21×1, (B.30)

where F 1 and F 2 are defined as

F 1 = ⟨a3 − a2 +
1

4
(a2 − a1)−

1

8
(sM − sm) (3χ

′(sm)− χ′(sM)) ,
a1 − a3

|a1 − a3|2
⟩,

F 2 = ⟨a3 − a2 +
1

4
(a2 − a1)−

1

8
(sM − sm) (3χ

′(sm)− χ′(sM)) ,
a2 − c2
|a2 − c2|2

⟩.
(B.31)

Also, (6.42) gives

−
√
2

2

(
∂ŵ

∂x̂1
+
∂ŵ

∂x̂2

)
(b̂3) = [DL(v)]1×21[

√
2Ĥ3(

1

2
)]21×1. (B.32)

Thus, the submatrix M̃4 can be written as

M̃4 = [E1dF̂2

dx̂2
(
1

2
) + E2Ĥ2(

1

2
);F 1dF̂1

dx̂1
(
1

2
) + F 2Ĥ1(

1

2
);−

√
2Ĥ3(

1

2
)]. (B.33)

Construction of submatrix M̃5:

The submatrix M̃5 will deal with values at nodes d̂i; i = 1, 2, 3, 4, 5, 6 along the edges

of the reference triangle. Since the trace of the interpolate function restricted on the

sides for the nodes di; i = 1, ..., 6 have to coincide with the one-variable P5-Hermite

polynomial f̂1 f̂2, and f̂3 (see (6.24), (6.28), (6.42)), it can be obviously obtained as[
ŵ(d̂1); ŵ(d̂2); ŵ(d̂3); ŵ(d̂4); ŵ(d̂5); ŵ(d̂6)

]
= [f̂2(

3

4
); f̂2(

1

4
); f̂1(

1

4
); f̂1(

3

4
); f̂3(

3

4
); f̂3(

1

4
)]

(B.34)

Therefore, (B.22), (B.23), and (B.24) gives

M̃5 = [F̂2(
3

4
); F̂2(

1

4
); F̂1(

1

4
); F̂1(

3

4
); F̂3(

3

4
); F̂3(

1

4
)]. (B.35)

Construction of submatrix M̃6:

The submatrix M̃6 will deal with the derivatives at nodes d̂i; i = 1, 2, 3, 4, 5, 6 along

the edges of the reference triangle. By Similarity as described in (B.17), the submatrix

M̃6 is given as

M̃6 =

[
G1dF̂2

dx̂2
(
3

4
) +G2Ĥ2(

3

4
);H1dF̂2

dx̂2
(
1

4
) +H2Ĥ2(

1

4
); J1dF̂1

dx̂1
(
1

4
) + J2Ĥ1(

1

4
);

K1dF̂1

dx̂1
(
3

4
) +K2Ĥ1(

3

4
);−

√
2Ĥ3(

3

4
);−

√
2Ĥ3(

1

4
)

]
.

(B.36)
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where we have set

G1 = −⟨a1 − a3 +
9

16
(a2 − a1) +

3

32
(sM − sm) (χ

′(sm)− 7χ′(sM)) ,
a2 − a3

|a2 − a3|2
⟩,

G2 = −⟨a1 − a3 +
9

16
(a2 − a1) +

3

32
(sM − sm) (χ

′(sm)− 7χ′(sM)) ,
a1 − c1
|a1 − c1|2

⟩,

H1 = −⟨a1 − a3 +
1

16
(a2 − a1) +

1

32
(sM − sm) (3χ

′(sm)− 5χ′(sM)) ,
a2 − a3

|a2 − a3|2
⟩,

H2 = −⟨a1 − a3 +
1

16
(a2 − a1) +

1

32
(sM − sm) (3χ

′(sm)− 5χ′(sM)) ,
a1 − c1
|a1 − c1|2

⟩,

J1 = −⟨a2 − a3 +
1

16
(a1 − a2)−

1

32
(sM − sm) (3χ

′(sM)− 5χ′(sm)) ,
a1 − a3

|a1 − a3|2
⟩,

J2 = −⟨a2 − a3 +
1

16
(a1 − a2)−

1

32
(sM − sm) (3χ

′(sM)− 5χ′(sm)) ,
a2 − c2
|a2 − c2|2

⟩,

K1 = −⟨a2 − a3 +
9

16
(a1 − a2)−

3

32
(sM − sm) (χ

′(sM)− 7χ′(sm)) ,
a1 − a3

|a1 − a3|2
⟩,

K2 = −⟨a2 − a3 +
9

16
(a1 − a2)−

3

32
(sM − sm) (χ

′(sM)− 7χ′(sm)) ,
a2 − c2
|a2 − c2|2

⟩,

(B.37)

Construction of submatrix M̃7:

Here, we define the submatrix which associates the value defined in the internal nodes

of the curved triangle. Since ŵ(êi) = v(ei), i = 1, 2, 3, it can be clearly seen that

M̃ t
7 = [03×18; I3×3]. (B.38)

From the constructions that have been illustrated, the interpolating function ΠKv

of the function v which takes the values on the set of degrees of freedom in (B.2) can

be determined as

ΠKv(x) = ŵ(x̂) = [DL(v)]1×21[M̃ ]21×36[p]36×1, (B.39)

where [p] denotes the column matrix of basis polynomials of degrees less than or equal

to 7. These basis polynomials can be determined from the Kronecker delta property

for shape functions which states that a shape function at any node has a value of 1

when evaluates at that node and a value of zero when evaluates at all other nodes.

They can be written as

[p]36 = [A]36×36[m7]36×1, (B.40)

where the coefficients [A]36×36 are shown in Figs. B.1 and B.2. Also, [m7]36×1 is
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illustrated as

[m7] =
[
1, x̂1, x̂2, x̂

2
1, x̂1x̂2, x̂

2
2, x̂

3
1, x̂

2
1x̂2, x̂1x̂

2
2, x̂

3
2,
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3
1x̂2, x̂

2
1x̂

2
2, x̂1x̂

3
2, x̂

4
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x̂51, x̂
4
1x̂2, x̂

3
1x̂

2
2, x̂

2
1x̂

3
2, x̂1x̂

4
2, x̂

5
2,

x̂61, x̂
5
1x̂2, x̂

4
1x̂

2
2, x̂

3
1x̂

3
2, x̂

2
1x̂

4
2, x̂1x̂

5
2, x̂

6
2,

x̂71, x̂
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1x̂2, x̂
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1x̂

2
2, x̂
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1x̂

3
2, x̂

3
1x̂

4
2, x̂

2
1x̂

5
2, x̂1x̂

6
2, x̂

7
2

]
.

(B.41)
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   A(0,0) = 6496.0/27.0 

   A(0,2) = 55376.0/27.0 

   A(0,3) = 15296.0/3.0 

   A(0,4) = 86464.0/27.0 

   A(0,5) = 464.0/3.0 

   A(0,8) = ‐6896.0/9.0; 

   A(0,10) = ‐136424.0/27.0; 

   A(0,11) = ‐187040.0/27.0; 

   A(0,12) = ‐27880.0/27.0; 

   A(0,15) = 7750.0/9.0; 

   A(0,17) = 98371.0/27.0; 

   A(0,18) = 41027.0/27.0; 

   A(0,21) = ‐10501.0/27.0; 

   A(0,23) = ‐17323.0/27.0; 

   A(0,26) = 490.0/9.0;  

   A(1,2) = 464.0/3.0; 

   A(1,3) = 86464.0/27.0; 

   A(1,4) = 15296.0/3.0; 

   A(1,5) = 55376.0/27.0; 

   A(1,7) = 6496.0/27.0; 

   A(1,10) = ‐27880.0/27.0; 

   A(1,11) = ‐187040.0/27.0; 

   A(1,12) = ‐136424.0/27.0; 

   A(1,14) = ‐6896.0/9.0; 

   A(1,17) = 41027.0/27.0; 

   A(1,18) = 98371.0/27.0; 

   A(1,20) = 7750.0/9.00; 

   A(1,23) = ‐17323.0/27.0; 

   A(1,25) = ‐10501.0/27.0; 

   A(1,29) = 490.00/9.0; 

   A(2,0) = ‐6496.00/27.0; 

   A(2,2) = 14176.00/27.00; 

   A(2,3) = ‐2944.00/27.00; 

   A(2,4) = ‐2944.00/27.00; 

   A(2,5) = 14176.00/27.00; 

   A(2,7) = ‐6496.00/27.00; 

   A(2,8) = 24784.00/27.00; 

   A(2,10) = ‐5680.00/27.00; 

   A(2,11) = 12736.00/9.00; 

   A(2,12) = ‐5680.00/27.00; 

   A(2,14) = 24784.00/27.00; 

   A(2,15) = ‐11846.00/9.00; 

   A(2,17) = ‐26758.00/27.00; 

   A(2,18) = ‐26758.00/27.00; 

   A(2,20) = ‐11846.00/9.00; 

   A(2,21) = 22789.00/27.00; 

   A(2,23) = 18262.00/27.00; 

   A(2,25) = 22789.00/27.00; 

   A(2,26) = ‐5566.00/27.00; 

   A(2,29) = ‐5566.00/27.00; 

   A(2,35) = 1.00; 

   A(3,0) = ‐400.00/9.00; 

   A(3,2) = ‐3080.00/9.00; 

   A(3,3) = ‐816.00; 

   A(3,4) = ‐4496.00/9.00; 

   A(3,5) = ‐232.00/9.00; 

   A(3,8) = 416.00/3.00; 

   A(3,10) = 7448.00/9.00; 

   A(3,11) = 9872.00/9.00; 

   A(3,12) = 1472.00/9.00; 

   A(3,15) = ‐457.00/3.00; 

   A(3,17) = ‐1177.00/2.00; 

   A(3,18) = ‐4337.00/18.00; 

   A(3,21) = 607.00/9.00; 

   A(3,23) = 619.00/6.00; 

   A(3,26) = ‐28.00/3.00; 

   A(4,1) = ‐896.00/9.00; 

   A(4,2) = ‐392.00/9.00; 

   A(4,3) = 2384.00/9.00; 

   A(4,4) = 2512.00/9.00; 

   A(4,5) = 232.00/9.00; 

   A(4,9) = 2336.00/9.00; 

   A(4,10) = ‐8.00/9.00; 

   A(4,11) = ‐3920.00/9.00; 

   A(4,12) = ‐976.00/9.00; 

   A(4,16) = ‐2104.00/9.00; 

   A(4,17) = 123.00/2.00; 

   A(4,18) = 1981.00/18.00; 

   A(4,22) = 766.00/9.00; 

   A(4,23) = ‐307.00/18.00; 

   A(4,27) = ‐31.00/3.00; 

   A(5,2) = 232.00/9.00; 

   A(5,3) = 2512.00/9.00; 

   A(5,4) = 2384.00/9.00; 

   A(5,5) = ‐392.00/9.00; 

   A(5,6) = ‐896.00/9.00; 

   A(5,10) = ‐976.00/9.00; 

   A(5,11) = ‐3920.00/9.00; 

   A(5,12) = ‐8.00/9.00; 

   A(5,13) = 2336.00/9.00; 

   A(5,17) = 1981.00/18.00; 

   A(5,18) = 123.00/2.00; 

   A(5,19) = ‐2104.00/9.00; 

   A(5,23) = ‐307.00/18.00; 

   A(5,24) = 766.00/9.00; 

   A(5,28) = ‐31.00/3.00; 

   A(6,2) = ‐232.00/9.00; 

   A(6,3) = ‐4496.00/9.00; 

   A(6,4) = ‐816.00; 

   A(6,5) = ‐3080.00/9.00; 

   A(6,7) = ‐400.00/9.00; 

   A(6,10) = 1472.00/9.00; 

   A(6,11) = 9872.00/9.00; 

   A(6,12) = 7448.00/9.00; 

   A(6,14) = 416.00/3.00; 

   A(6,17) = ‐4337.00/18.00; 

   A(6,18) = ‐1177.00/2.00; 

   A(6,20) = ‐457.00/3.00; 

   A(6,23) = 619.00/6.00; 

   A(6,25) = 607.00/9.00; 

   A(6,29) = ‐28.00/3.00; 

   A(7,0) = ‐400.00/9.00; 

   A(7,2) = 1456.00/9.00; 

   A(7,3) = ‐992.00/9.00; 

   A(7,4) = ‐5248.00/9.00; 

   A(7,5) = ‐4096.00/9.00; 

   A(7,6) = ‐896.00/9.00; 

   A(7,8) = 1552.00/9.00; 

   A(7,10) = ‐464.00/3.00; 

   A(7,11) = 2464.00/3.00; 

   A(7,12) = 3424.00/3.00; 

   A(7,13) = 3040.00/9.00; 

   A(7,15) = ‐761.00/3.00; 

   A(7,17) = ‐1831.00/9.00; 

   A(7,18) = ‐938.00; 

   A(7,19) = ‐1288.00/3.00; 

   A(7,21) = 1528.00/9.00; 

   A(7,23) = 2266.00/9.00; 

   A(7,24) = 2210.00/9.00; 

   A(7,26) = ‐406.00/9.00; 

   A(7,28) = ‐499.00/9.00; 

   A(7,33) = 1.00; 

   A(8,1) = ‐896.00/9.00; 

   A(8,2) = ‐4096.00/9.00; 

   A(8,3) = ‐5248.00/9.00; 

   A(8,4) = ‐992.00/9.00; 

   A(8,5) = 1456.00/9.00; 

   A(8,7) = ‐400.00/9.00; 

   A(8,9) = 3040.00/9.00; 

   A(8,10) = 3424.00/3.00; 

   A(8,11) = 2464.00/3.00; 

   A(8,12) = ‐464.00/3.00; 

   A(8,14) = 1552.00/9.00; 

   A(8,16) = ‐1288.00/3.00; 

   A(8,17) = ‐938.00; 

   A(8,18) = ‐1831.00/9.00; 

   A(8,20) = ‐761.00/3.00; 

   A(8,22) = 2210.00/9.00; 

   A(8,23) = 2266.00/9.00; 

   A(8,25) = 1528.00/9.00; 

   A(8,27) = ‐499.00/9.00; 

   A(8,29) = ‐406.00/9.00; 

   A(8,34) = 1.00; 

   A(9,0) = 8.00/3.00; 

   A(9,2) = 52.00/3.00; 

   A(9,3) = 40.00; 

   A(9,4) = 24.00; 

   A(9,5) = 4.00/3.00; 

   A(9,8) = ‐8.00; 

   A(9,10) = ‐124.00/3.00; 

   A(9,11) = ‐160.00/3.00; 

   A(9,12) = ‐8.00; 

   A(9,15) = 17.00/2.00; 

   A(9,17) = 349.00/12.00; 

   A(9,18) = 47.00/4.00; 

   A(9,21) = ‐11.00/3.00; 

   A(9,23) = ‐61.00/12.00; 

   A(9,26) = 1.00/2.00; 

   A(10,1) = 32.00/3.00; 

   A(10,2) = 8.00/3.00; 

   A(10,3) = ‐80.00/3.00; 

   A(10,4) = ‐80.00/3.00; 

   A(10,5) = ‐8.00/3.00; 

   A(10,9) = ‐80.00/3.00; 

   A(10,10) = 8.00/3.00; 

   A(10,11) = 128.00/3.00; 

   A(10,12) = 32.00/3.00; 

   A(10,16) = 70.00/3.0; 

   A(10,17) = ‐43.0/6.0; 

   A(10,18) = ‐65.0/6.0; 

   A(10,22) = ‐25.0/3.0; 

   A(10,23) = 11.0/6.0; 

   A(10,27) = 1.0; 

   A(11,2) = 4.0; 

   A(11,3) = 40.0/3.0; 

   A(11,4) = 40.0/3.0; 

   A(11,5) = 4.0/3.0; 

   A(11,10) = ‐28.0/3.0; 

   A(11,11) = ‐64.0/3.0; 

   A(11,12) = ‐16.0/3.0; 

   A(11,17) = 29.0/4.0; 

   A(11,18) = 65.0/12.0; 

   A(11,23) = ‐17.0/12.0; 

   A(12,2) = 4.0/3.0; 

   A(12,3) = 40.0/3.0; 

   A(12,4) = 40.0/3.0; 

   A(12,5) = 4.0; 

   A(12,10) = ‐16.0/3.0; 

   A(12,11) = ‐64.0/3.0; 

   A(12,12) = ‐28.0/3.0; 

   A(12,17) = 65.0/12.0; 

   A(12,18) = 29.0/4.0; 

   A(12,23) = ‐17.0/12.0; 

   A(13,2) = ‐8.0/3.0; 

   A(13,3) = ‐80.0/3.0; 

   A(13,4) = ‐80.0/3.0; 

   A(13,5) = 8.0/3.0; 

   A(13,6) = 32.0/3.0; 

   A(13,10) = 32.0/3.0; 

   A(13,11) = 128.0/3.0; 

   A(13,12) = 8.0/3.0; 

   A(13,13) = ‐80.0/3.0; 

   A(13,17) = ‐65.0/6.0; 

   A(13,18) = ‐43.0/6.0; 

   A(13,19) = 70.0/3.0; 

   A(13,23) = 11.0/6.0; 

   A(13,24) = ‐25.0/3.0; 

   A(13,28) = 1.0; 

   A(14,2) = 4.0/3.0; 

   A(14,3) = 24.0; 

   A(14,4) = 40.0; 

   A(14,5) = 52.0/3.0; 

   A(14,7) = 8.0/3.0; 

   A(14,10) = ‐8.0; 

   A(14,11) = ‐160.0/3.0; 

   A(14,12) = ‐124.0/3.0; 

   A(14,14) = ‐8.0; 

   A(14,17) = 47.0/4.0; 

   A(14,18) = 349.0/12.0; 

   A(14,20) = 17.0/2.0; 

   A(14,23) = ‐61.0/12.0; 

   A(14,25) = ‐11.0/3.0; 

   A(14,29) = 1.0/2.0; 

   A(15,0) = ‐8.0/3.0; 

   A(15,2) = 56.0/3.0; 

   A(15,3) = 80.0/3.0; 

   A(15,4) = 32.0/3.0; 

   A(15,8) = 32.0/3.0; 

   A(15,10) = ‐40.0; 

   A(15,11) = ‐32.0; 

   A(15,12) = ‐8.0/3.0; 

   A(15,15) = ‐33.0/2.0; 

   A(15,17) = 51.0/2.0; 

   A(15,18) = 19.0/3.0; 

   A(15,21) = 73.0/6.0; 

   A(15,23) = ‐25.0/6.0; 

   A(15,26) = ‐25.0/6.0; 

   A(15,30) = 1.0/2.0; 

   A(16,1) = ‐32.0/3.0; 

   A(16,2) = ‐160.0/3.0; 

   A(16,3) = ‐320.0/3.0; 

   A(16,4) = ‐320.0/3.0; 

   A(16,5) = ‐160.0/3.0; 

   A(16,6) = ‐32.0/3.0; 

   A(16,9) = 112.0/3.0; 

   A(16,10) = 448.0/3.0; 

   A(16,11) = 224.0; 

   A(16,12) = 448.0/3.0; 

   A(16,13) = 112.0/3.0; 

   A(16,16) = ‐50.0; 

   A(16,17) = ‐150.0; 

   A(16,18) = ‐150.0; 

   A(16,19) = ‐50.0; 

   A(16,22) = 95.0/3.0; 

   A(16,23) = 190.0/3.0; 

   A(16,24) = 95.0/3.0; 

   A(16,27) = ‐28.0/3.0; 

   A(16,28) = ‐28.0/3.0; 

   A(16,31) = 1.0; 

   A(17,3) = 32.0/3.0; 

   A(17,4) = 80.0/3.0; 

   A(17,5) = 56.0/3.0; 

   A(17,7) = ‐8.0/3.0; 

   A(17,10) = ‐8.0/3.0; 

   A(17,11) = ‐32.0; 

   A(17,12) = ‐40.0; 

   A(17,14) = 32.0/3.0; 

   A(17,17) = 19.0/3.0; 

   A(17,18) = 51.0/2.0; 

   A(17,20) = ‐33.0/2.0; 

   A(17,23) = ‐25.0/6.0; 

   A(17,25) = 73.0/6.0; 

   A(17,29) = ‐25.0/6.0; 

   A(17,32) = 1.0/2.0; 

   A(18,3) = 256.0; 

   A(18,4) = 768.0; 

   A(18,5) = 768.0; 

   A(18,6) = 256.0; 

   A(18,10) = ‐64.0; 

   A(18,11) = ‐896.0; 

   A(18,12) = ‐1600.0; 

   A(18,13) = ‐768.0; 

   A(18,17) = 176.0; 

   A(18,18) = 992.0; 

   A(18,19) = 816.0; 

   A(18,23) = ‐160.0; 

   A(18,24) = ‐352.0; 

   A(18,28) = 48.0; 

   A(19,1) = 256.0; 

   A(19,2) = 768.0; 

   A(19,3) = 768.0; 

   A(19,4) = 256.0; 

   A(19,9) = ‐768.0; 

   A(19,10) =‐1600.0; 

   A(19,11) = ‐896.0; 

   A(19,12) = ‐64.0; 

   A(19,16) = 816.0; 

   A(19,17) = 992.0; 

   A(19,18) = 176.0; 

   A(19,22) = ‐352.0; 

   A(19,23) = ‐160.0; 

   A(19,27) = 48.0; 

   A(20,3) = 128.0*sqrt(2.0); 

   A(20,4) = 128.0*sqrt(2.0); 

   A(20,10) = ‐32.0*sqrt(2.0); 

   A(20,11) = ‐192.0*sqrt(2.0);

   A(20,12) = ‐32.0*sqrt(2.0); 

   A(20,17) = 40.0*sqrt(2.0); 

   A(20,18) = 40.0*sqrt(2.0); 

   A(20,23) = ‐8.0*sqrt(2.0); 

   A(21,3) = ‐65536.0/27.0; 

   A(21,4) = ‐114688.0/27.0; 

   A(21,5) = ‐40960.0/27.0; 

   A(21,7) = ‐8192.0/27.0; 

Figure B.1: Matrix [A]36×36.
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   A(21,10) = 16384.0/27.0; 

   A(21,11) = 53248./9.0; 

   A(21,12) = 38912.0/9.0; 

   A(21,14) = 26624.0/27.0; 

   A(21,17) = ‐32768.0/27.0; 

   A(21,18) = ‐10240.0/3.0; 

   A(21,20) = ‐10240.0/9.0; 

   A(21,23) = 16384.0/27.0; 

   A(21,25) = 14336.0/27.0; 

   A(21,29) = ‐2048.0/27.0; 

   A(22,2) = 53248.0/27.0; 

   A(22,3) = 40960.0/9.0; 

   A(22,4) = 69632.0/27.0; 

   A(22,5) = ‐8192.0/27.0; 

   A(22,7) = 8192.0/27.0; 

   A(22,10) = ‐48128.0/9.0; 

   A(22,11) = ‐22528.0/3.0; 

   A(22,12) = ‐1024.0; 

   A(22,14) = ‐10240.0/9.0; 

   A(22,17) = 14336.0/3.0; 

   A(22,18) = 8192.0/3.0; 

   A(22,20) = 14336.0/9.0; 

   A(22,23) = ‐37888.0/27.0; 

   A(22,25) = ‐26624.0/27.0; 

   A(22,29) = 2048.0/9.0; 

   A(23,0) = 8192.0/27.0; 

   A(23,2) = ‐8192.0/27.0; 

   A(23,3) = 69632.0/27.0; 

   A(23,4) = 40960.0/9.0; 

   A(23,5) = 53248.0/27.0; 

   A(23,8) = ‐10240.0/9.0; 

   A(23,10) = ‐1024.0; 

   A(23,11) = ‐22528.0/3.0; 

   A(23,12) = ‐48128.0/9.0; 

   A(23,15) = 14336.0/9.0; 

   A(23,17) = 8192.0/3.0; 

   A(23,18) = 14336.0/3.0; 

   A(23,21) = ‐26624.0/27.0; 

   A(23,23) = ‐37888.0/27.0; 

   A(23,26) = 2048.0/9.0; 

   A(24,0) = ‐8192.0/27.0; 

   A(24,2) = ‐40960.0/27.0; 

   A(24,3) = ‐114688.0/27.0; 

   A(24,4) = ‐65536.0/27.0; 

   A(24,8) = 26624.0/27.0; 

   A(24,10) = 38912.0/9.0; 

   A(24,11) = 53248.0/9.0; 

   A(24,12) = 16384.0/27.0; 

   A(24,15) = ‐10240.0/9.0; 

   A(24,17) = ‐10240.0/3.0; 

   A(24,18) = ‐32768.0/27.0; 

   A(24,21) = 14336.0/27.0; 

   A(24,23) = 16384.0/27.0; 

   A(24,26) = ‐2048.0/27.0; 

   A(25,2) = ‐71680.0/27.0; 

   A(25,3) = ‐145408.0/27.0; 

   A(25,4) = ‐88064.0/27.0; 

   A(25,5) = ‐2048.0/9.0; 

   A(25,10) = 150016.0/27.0; 

   A(25,11) = 183296.0/27.0; 

   A(25,12) = 31232.0/27.0; 

   A(25,17) = ‐94208.0/27.0; 

   A(25,18) = ‐40960.0/27.0; 

   A(25,23) = 15872.0/27.0; 

   A(26,2) = ‐2048.0/9.0; 

   A(26,3) = ‐88064.0/27.0; 

   A(26,4) = ‐145408.0/27.0; 

   A(26,5) = ‐71680.0/27.0; 

   A(26,10) = 31232.0/27.0; 

   A(26,11) = 183296.0/27.0; 

   A(26,12) = 150016.0/27.0; 

   A(26,17) = ‐40960.0/27.0; 

   A(26,18) = ‐94208.0/27.0; 

   A(26,23) = 15872.0/27.0; 

   A(27,4) = ‐2048.0/9.0; 

   A(27,5) = ‐4096.0/9.0; 

   A(27,6) = ‐2048.0/9.0; 

   A(27,11) = 512.0/3.0; 

   A(27,12) = 7168.0/9.0; 

   A(27,13) = 5632.0/9.0; 

   A(27,17) = ‐256.0/9.0; 

   A(27,18) = ‐3584.0/9.0; 

   A(27,19) = ‐1792.0/3.0; 

   A(27,23) = 512.0/9.0; 

   A(27,24) = 2048.0/9.0; 

   A(27,28) = ‐256.0/9.0; 

   A(28,2) = ‐2048.0/9.0; 

   A(28,3) = ‐8192.0/9.0; 

   A(28,4) = ‐4096.0/3.0; 

   A(28,5) = ‐8192.0/9.0; 

   A(28,6) = ‐2048.0/9.0; 

   A(28,10) = 6656.0/9.0; 

   A(28,11) = 6656.0/3.0; 

   A(28,12) = 6656.0/3.0; 

   A(28,13) = 6656.0/9.0; 

   A(28,17) = ‐7936.0/9.0; 

   A(28,18) = ‐15872.0/9.0; 

   A(28,19) = ‐7936.0/9.0; 

   A(28,23) = 4096.0/9.0; 

   A(28,24) = 4096.0/9.0; 

   A(28,28) = ‐256.0/3.0; 

   A(29,1) = ‐2048.0/9.0; 

   A(29,2) = ‐8192.0/9.0; 

   A(29,3) = ‐4096.0/3.0; 

   A(29,4) = ‐8192.0/9.0; 

   A(29,5) = ‐2048.0/9.0; 

   A(29,9) = 6656.0/9.0; 

   A(29,10) = 6656.0/3.0; 

   A(29,11) = 6656.0/3.0; 

   A(29,12) = 6656.0/9.0; 

   A(29,16) = ‐7936.0/9.0; 

   A(29,17) = ‐15872.0/9.0; 

   A(29,18) = ‐7936.0/9.0; 

   A(29,22) = 4096.0/9.0; 

   A(29,23) = 4096.0/9.0; 

   A(29,27) = ‐256.0/3.0; 

   A(30,1) = ‐2048.0/9.0; 

   A(30,2) = ‐4096.0/9.0; 

   A(30,3) = ‐2048.0/9.0; 

   A(30,9) = 5632.0/9.0; 

   A(30,10) = 7168.0/9.0; 

   A(30,11) = 512.0/3.0; 

   A(30,16) = ‐1792.0/3.0; 

   A(30,17) = ‐3584.0/9.0; 

   A(30,18) = ‐256.0/9.0; 

   A(30,22) = 2048.0/9.0; 

   A(30,23) = 512.0/9.0; 

   A(30,27) = ‐256.0/9.0; 

   A(31,2) = 

1024.0*sqrt(2.0)/9.0; 

   A(31,3) = 

1024.0*sqrt(2.0)/9.0; 

   A(31,10) = ‐

1792.0*sqrt(2.0)/9.0; 

   A(31,11) = ‐

256.0*sqrt(2.0)/3.0; 

   A(31,17) = 

896*sqrt(2.0)/9.0; 

   A(31,18) = 

128.0*sqrt(2.0)/9.0; 

   A(31,23) = ‐

128.0*sqrt(2.0)/9.0; 

   A(32,4) = 

1024.0*sqrt(2.0)/9.0; 

   A(32,5) = 

1024.0*sqrt(2.0)/9.0; 

   A(32,11) = ‐

256.0*sqrt(2.0)/3.0; 

   A(32,12) = ‐

1792.0*sqrt(2.0)/9.0; 

   A(32,17) = 

128.0*sqrt(2.0)/9.0; 

   A(32,18) = 

896.0*sqrt(2.0)/9.0; 

   A(32,23) = ‐

128.0*sqrt(2.0)/9.0; 

   A(33,2) = 4096.0; 

   A(33,3) = 8192.0; 

   A(33,4) = 4096.0; 

   A(33,10) = ‐9216.0; 

   A(33,11) = ‐10240.0; 

   A(33,12) = ‐1024.0; 

   A(33,17) = 6144.0; 

   A(33,18) = 2048.0; 

   A(33,23) = ‐1024.0; 

   A(34,3) = 4096.0; 

   A(34,4) = 8192.0; 

   A(34,5) = 4096.0; 

   A(34,10) = ‐1024.0; 

   A(34,11) = ‐10240.0;

   A(34,12) = ‐9216.0; 

   A(34,17) = 2048.0; 

   A(34,18) = 6144.0; 

   A(34,23) = ‐1024.0; 

   A(35,2) = ‐4096.0; 

   A(35,3) = ‐12288.0; 

   A(35,4) = ‐12288.0; 

   A(35,5) = ‐4096.0; 

   A(35,10) = 11264.0; 

   A(35,11) = 22528.0; 

   A(35,12) = 11264.0; 

   A(35,17) = ‐10240.0;

   A(35,18) = ‐10240.0;

   A(35,23) = 3072.0; 

 

Figure B.2: Matrix [A]36×36 (cont.).


