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Abstract

This thesis studies the mixed data types kernel estimation framework for the models of discrete
dependent variables, which are known as kernel discrete conditional functions. The conven-
tional parametric multinomial logit MNL model is compared with the mixed data types kernel
conditional density estimator in Chapter (2). A new kernel estimator for discrete time single
state hazard models is developed in Chapter (3), and named as the discrete time “external
kernel hazard” estimator. The discrete time (mixed) proportional hazard estimators are then
compared with the discrete time external kernel hazard estimator empirically in Chapter (4).
The work in Chapter (2) attempts to estimate a labour force participation decision model us-
ing a cross-section data from the UK labour force survey in 2007. The work in Chapter (4)
estimates a hazard rate for job-vacancies in weeks, using data from Lancashire Careers Service
(LCS) between the period from March 1988 to June 1992. The evidences from the vast liter-
ature regarding female labour force participation and the job-market random matching theory
are used to examine the empirical results of the estimators.

The parametric estimator are tighten by the restrictive assumption regarding the link func-
tion of the discrete dependent variable and the dummy variables of the discrete covariates.
Adding interaction terms improves the performance of the parametric models but encounters
other risks like generating multicollinearity problem, increasing the singularity of the data ma-
trix and complicates the computation of the ML function. On the other hand, the mixed data
types kernel estimation framework shows an outstanding performance compared with the con-
ventional parametric estimation methods. The kernel functions that are used for the discrete
variables, including the dependent variable, in the mixed data types estimation framework,
have substantially improved the performance of the kernel estimators. The kernel framework
uses very few assumptions about the functional form of the variables in the model, and relay on
the right choice of the kernel functions in the estimator.

The outcomes of the kernel conditional density shows that female education level and fertil-
ity have high impact on females propensity to work and be in the labour force. The kernel condi-
tional density estimator captures more heterogeneity among the females in the sample than the
MNL model due to the restrictive parametric assumptions in the later. The (mixed) proportional
hazard framework, on the other hand, missed to capture the effect of the job-market tightness
in the job-vacancies hazard rate and produce inconsistent results when the assumptions regard-
ing the distribution of the unobserved heterogeneity are changed. The external kernel hazard
estimator overcomes those problems and produce results that consistent with the job market
random matching theory. The results in this thesis are useful for nonparametric estimation
research in econometrics and in labour economics research.

Key Words: Nonparametric methods, kernel, mixed data types, kernel conditional density,
multinomial logit, female labour force participation decision, discrete time hazard, external
kernel hazard, sub-survival function, random matching theory.
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Chapter 1

Introduction and Literature Review

1.1 Parametric Estimation of Discrete Conditional Func-

tions in Econometrics

Estimation of discrete dependent variable models is popular in many fields in eco-

nomics, such as labour economics, welfare economics, transportation, consumer be-

haviour. The discrete dependent variable model could be a model to estimate the

conditional probabilities for multinomial choices, alternatives, to examine ordered out-

comes, opinions or ranked choices or to model events in discrete time intervals. There

are familiar estimation methods for discrete dependent variable models in conventional

parametric estimation frameworks in econometrics. Generally, they are estimated using

a link function. The link function is a function that maps between the independent

variables in the model and the function that being estimated for the discrete dependent

variable.

The specification of the link function depends on the function that being estimated,

the nature of the discrete dependent variable in the model and the assumptions about

the independence and the distribution of the errors in the model. The regular choice

of the link function in the multinomial discrete choice models for example is either

logit, probit or complementary log-log. The complementary log- log link function is

used for modelling in discrete time duration models. There are other types of link

functions that are available in the literature in discrete time hazard models estimation.

Accordingly, the estimation of discrete dependent variable models is restrictive due to

the assumptions that imposed to introduce the link function. The estimated results are

often unsatisfactory for econometricians, in term of their consistency with the economic

theory. The results are often viewed and interpreted in a very restrictive context that

fails to illustrate many aspects in the model.

On the other hand, for the models that include discrete independent variables or

categorical independent variables different treatment is needed. The discrete inde-

pendent variables are included after converting them to dummy variables and define

a base-group. This is considered as a restrictive treatment that limits the ability of the
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parametric model to capture the effects of those variables appropriately. The dummy

variables may explain small amount of heterogeneity in the model. This makes the

interpretation of the results of the model valid under very restrictive conditions.

So, including discrete variables in parametric estimation method is problematic due

to the illustrated difficulties regard defining them in the model. The restrictions effect is

higher when the model include discrete dependent and discrete independent variables,

where both link function and dummy variables are needed in the estimator. The para-

metric estimation of the models is exposed to risks of functional form misspecification,

which could result from either an inappropriate specification of the functional form of

the variables in the model or from a wrong specification of the link function itself. The

methods to check and test the specification of the functional form of discrete dependent

variable models are sometimes complicated.

Alternative approaches to estimate discrete dependent variable models, to the link

function approach, are very attractive for econometricians. Nonparametric approach

is attracting considerable interest nowadays as an estimation framework that does not

impose certain specification of the functional form for the objects that being estimated.

The functions of the discrete dependent variables are denoted as discrete conditional

functions (DCFs) in the nonparametric estimation framework. Nonparametric esti-

mation method, particularly the kernel method, provide estimators that can be used

to estimate DCFs and handle the discrete independent variables in the model differ-

ently. The application of nonparametric estimation methods to the models that include

discrete variables, whether as dependent variables, independent variables or both, is

slightly attempted in empirical research.

This thesis uses the nonparametric estimation techniques to estimate functions of

discrete dependent variables, discrete conditional functions, and compare the results

with the conventional parametric discrete dependent variable estimation methods. In

this thesis we focus on the multinomial dependent variable case, of discrete unordered

choices, and the discrete time to event case, in two empirical examples. The exam-

ples that we consider are some micreoeconometrics applications of discrete dependent

variable models.

1.2 Nonparametric Estimation

Nonparametric estimation methods are defined in Racine (2008) as “statistical tech-

niques that do not require a researcher to specify functional forms for the objects

being estimated”. The objective of the nonparametric estimation techniques is to esti-

mate models with as fewest functional form and distribution assumptions as possible.

The properties concern the randomness and the smoothness of the data. The early de-

velopments of the nonparametric estimation techniques goes back to the 1950s, but in

the last decade interest in these techniques has grown sharply. Nonparametric estima-
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tion applies a lot more numerical calculations to estimate models than the conventional

parametric estimation methods. This needs the researchers to use sophisticated com-

puter routines and wait longer time to receive the results. Due to this hard computation

cost that involved in the estimation process, the early nonparametric estimators were

little attractive in empirical research.

Interest in nonparametric kernel method has been growing considerably during the

last years. Recent books that focus on kernel methods and nonparametric methods in

econometrics and statistics include: Ullah (1989) Barnett et al. (1991), Hardie and

Linton (1994), Lee (1996), Horowitz (1998), Pagan and Ullah (1999), Härdle et al.

(2004), Li and Racine (2007), Li et al. (2009) and Ahamada et al. (2011). Books that

present nonparametric estimation techniques in one or more chapters include Powell

and Program (1993), Mittelhammer et al. (2000), Ullah et al. (2002), Cameron and

Trivedi (2005), Johnston et al. (2007) and Baltagi and Baltagi (2008). Literature sur-

vey papers for nonparametric methods in econometrics include Robinson (1988), Ullah

(1988a,b), Hardle et al. (1993); Härdle and Manski (1993) and Cai et al. (2009). In

addition to the above cited work, there is a vast literature in the empirical applications

of the nonparametric estimation techniques in microeconometrics, time series and other

fields.

There is early research that compare the performance of nonparametric estimators

with their parametric counterparts. Hardle and Marron (1985) compare between the

fits of parametric regression with nonparametric regression and show that there are

visible differences between the fits that generated by each technique. Nicol (1993)

compares empirically between parametric and nonparametric regressions in estimating

an Engle Curve, and finds that nonparametric regression is more flexible than paramet-

ric regression. Härdle et al. (2004), Li and Racine (2007), Racine (2008) and Cai et al.

(2009) provided more examples for similar comparisons between parametric and non-

parametric techniques and agree in the advantages of the nonparametric estimation.

Generally nonparametric approach is recommended when the data is not well behaved,

for example when there is a fat tail behaviour or sharp skewness occurring in the data,

or in the models for rare events. Nonparametric estimation methods are preferred also

when the parametric estimation fails to give satisfactory results that match with the

economic theory, as in the example of the conditional hazard of job vacancies in Chap-

ter 4 in this thesis, and in models with unobserved heterogeneity. The nonparametric

estimation approach in empirical research is attractive when the model include only

a few variables, the sample size is sufficiently large, the functional form of the para-

metric models is complicated and problems like endogeneity or random effects are not

anticipated in the model.

The recent development in the nonparametric estimation techniques is encouraged

by the remarkable development in computer technologies and software engineering.

Which contributed to make the work with those techniques easier and encouraged the

19



research in this field. Currently, there are large number of new nonparametric esti-

mators that are available, or suggested in the literature, in econometrics. The volume

of the literature concerning those techniques is growing exponentially for years. The

interest to use nonparametric estimation techniques empirically in econometrics, fol-

lowing the revolution in the theoretical development, is now high. In this thesis we

are motivated by the development in kernel method estimators, and our aim is to apply

some of the new estimators in empirical research in applied microeconometrics. We

focus on kernel method with fixed bandwidth, that is defined in the next subsection,

for its advantages on smoothing discrete variables efficiently. Our interest is to compare

the empirical results of the kernel method with the conventional parametric discrete

dependent variable methods.

1.2.1 The Kernel Method with Fixed Bandwidth

Kernel method with fixed bandwidth (KMWFB) is a nonparametric estimation tech-

nique that has many advantages over other nonparametric estimation methods in econo-

metrics. The method is popular because it is easy to handle theoretically and empirically,

allows to smooth discrete (categorical) variables and construct estimators for mixed

types of variables and allows to construct smoothing tests, whether for testing the sig-

nificance of the variables in the model or to test the specification of the model. Kernel

method aims to estimate densities and/or distribution functions directly by smoothing

the variables. The kernel is a smoothing function that weights the observations in the

sample using specific rule that depends on the distance between the observations. To

illustrate the KMWFB and its approach to estimate the density function we start by

the simplest kernel function that smooths sample observations, the näıve kernel of

Van Ryzin (1973) for continuous variables. The density estimation using the näıve ker-

nel is known as the histogram method. The näıve kernel is just a simple indicator

function that applies a simple rule to the variables in the model.

Let Xc
i , 1, 2, ..., n, be an iid continuous random variable that drawn from unknown

distribution f(xc). The superscript c denotes that X is a continuous variable. Our objec-

tive is to estimate the density of Xc from a sample of n observations. The fundamental

information about the density of X is that it is a smooth function that integrate to 1. The

density, as a continuous curve has a property that for any nearby values xc1 and xc2 in the

domain of f , the density f(xc1) has near value to f(xc2). As xc1 → xc2 the density exhibit

that f(xc1) → f(xc2). The histogram method utilise this characteristic in the estimation

procedure. The sample observations that are close in values in fixed ranges known as

the binwidth, b, are taken to estimate the density. The observations are set into bins in

an attempt to estimate the density. The estimator takes the following form, see Härdle
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et al. (2004, page 22),

f̂b(x
c) =

1

nb

n∑
i=1

k∑
j

I(Xc
i ∈ Bj)I(xc ∈ Bj), (1.1)

where I(Xc
i ∈ Bj) is an indicator function that equals 1 if Xc

i is included in the jth bin,

b is the binwidth and k is the number of bins. The näıve kernel, I(Xc
i ∈ Bj), equally

weights the observations in each bin.

The disadvantage of the histogram method is that it is not smooth and fully depen-

dent on a choice of an origin point, xco, that needs to be determined in advance, and on

the value of the binwidth. Different choices of these two parameters lead to a substan-

tial changes in the density that being estimated. Arbitrary choice of b and xco is against

the objectives of nonparametric estimation, because they are the key elements in the

model and the arbitrary choice ignores to use the data in the sample. In other word,

arbitrary choosing the value of b is not a data driven estimate. This contradicts with

the rule in the nonparametric estimation that says “let the data speak for themselves”,

Härdle et al. (2004).

Despite that there are data driven methods to estimate the optimum value of b in the

literature, like the technique that based on minimizing the mean integrated square er-

ror (MISE), the histogram method is still considered as a rough technique that produces

inaccurate results. Ullah (1988b) mentions that the histogram method is discontinuous

and complicated in multivariate density estimation, Wegman (1972b) shows inaccuracy

of the histogram method using simulation methods and concludes that the histogram

density estimators have error in the rate of convergence. The same results are sup-

ported in Kumar and Markman (1975). Additionally, the histogram method needs a

large sample size and it is badly affected by the outliers.

Kernel Univariate Density Estimation

The kernel method is suggested by Rosenblatt (1956) to estimate univariate probabil-

ity density functions for continuous random variables. The kernel method overcomes

many of the disadvantages of the histogram method. The objective to estimate a strong

smooth density function using the observations in the sample is achieved in the kernel

estimator. The kernel is defined as a weighting function that weights the observations

in the sample, Xc
i , based on their distance from a specific value xc. Then xc is known

as the point of smoothing or the point of estimation. Xc
i are weighted relative to xc

in a fixed range known as the window width or the bandwidth. The weights that are

given by the kernel function to the observations in the sample are known as the local

weights. The basic density estimator is the sample average of the local weights that

given by the kernel for all the observations in the sample. For a continuous univariate

density function, f(xc), the kernel with fixed bandwidth estimator at the value xc using
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sample observation {Xc
i }ni=1 is given as follows, see Pagan and Ullah (1999, page 9):

f̂(xc) =
1

nĥ

n∑
i=1

k

(
Xc
i − xc

ĥ

)
=

1

nĥ

n∑
i=1

k (ẑi) , (1.2)

which known as the Rosenblatt-Parzen density estimator. h ≥ 0 is the fixed bandwidth

of the kernel function, equivalent to the binwidth b in the histogram method.

The bandwidth, h, has fixed value that does not change irrespective to whether the

point of estimation, xc, is at the centre or at the boundary of the distribution. If xc is at

a boundary the number of the sample observations in that range is likely to be small.

Then keeping the window width fixed at all values of xc makes the estimation of the

density at the boundaries biased and inconsistent, since this ignores the data density at

those points, see Gasser et al. (1985) and Karunamuni and Alberts (2005). To overcome

this problem researches suggest kernel method with variable bandwidth, also known as

the k nearest neighbour (k-nn) method, that use bandwidth that vary with xc, denoted

as hxc. This reduces the bias in the kernel estimator. However, the advantage of KMWFB

are sill highly attractive, where it allows to smooth variables of different type jointly and

construct smoothing significance tests.

The kernel function weights the observations in an interval of ±h around xc. The

simplest form of weights is given by the Uniform (the näıve) kernel, which is sim-

ply a function that gives equal weights 1
2

for all the observations inside the interval

[xc − 1, xc + 1), and zero weights for all the observations outside this interval, Härdle

et al. (2004). Other kernel functions apply different types of weights. Each kernel func-

tion, however, applies a unique type of weights, some of which have highly sophisticated

formulas. The general rule in all kernel functions is that; the closer the observation in

the sample to xc, the higher the weight that is given to that observation by the kernel

function. So, in the density estimator the observations that are near xc and inside the

interval [x− h, x+ h) have higher weights than the far observations inside the interval,

and all the observations outside the interval are given zero weights. However, some

kernel functions weight the observations outside the interval as well, for example the

Gaussian Kernel function, where the observations outside the interval are not given zero

weights. Table 1.1 presents some kernel functions for continuous variables, the indica-

tor I(|z| < 1) means that the observations outside the interval [x− h, x+ h) are given 0

weight.

The kernel function is a symmetric function and satisfies the following consistency

conditions;

1.
∫
k (z) dz = 1.

2.
∫
zsk (z) dz = 0.

3.
∫
zrk (z) dz = τr 6= 0.
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When r = 2 the kernel is known as a first order kernel. The second condition ensures

the symmetry property. When r > 2 the kernel becomes known as a higher order kernel

but the symmetry condition still holds.

Standardised values of the observations are used in the kernel function. In this con-

text, the bandwidth plays the role of the dispersion measure, the standard divination.

The kernel function weights the standardised value zi =
Xc
i−xc
h

for each observation in

the sample when the density is estimated at xc. For each observation in the sample the

area under the kernel function is 1
n
, so that the total area under all the observations is

1.

The derivatives of the Gaussian kernel function are easy to find, this facilitates the

estimation of the derivatives and the partial derivatives of the density estimator. High

order kernels reduce the bias in the kernel density function estimator but require more

numerical calculations, Jones and Signorini (1997). This fact makes higher order ker-

nels functions preferred for density estimation in small samples. Discussion about the

effect of the order of the kernel functions on the precision of the kernel density esti-

mators is found in Marron (1994), Jones (1995), Jones and Signorini (1997), Gasser

et al. (1985), Ahmad and Ran (2004) and Greco et al. (2009). More advanced discus-

sion with infinite order kernel functions and flatted-top kernel functions is presented in

Politis and Romano (1999). Recent developments in nonparametric estimation adds ad-

ditional advantages for the higher order kernel functions, where Li and Racine (2007)

show that high order kernel functions allow for constructing the smoothing significance

and specification tests for nonparametric estimators better than low order kernel func-

tions. High order kernel functions ensure the asymptotic properties of the smoothing

test and increase the convergence rate, but makes the test difficult empirically due to

the tough computation of the test statistic and its empirical bootstrap distribution. More

discussion about kernel specification tests is given in the discussion of discrete choice

models specification tests in Chapter 2.

Table 1.1: Kernel functions for continuous variables1

Kernel Function for Continuous Variables2

Uniform (näıve) Kernel 1
2 × I(|z| < 1)

Triangle (1− |z|) I(|z| < 1)
Epanechnikov (or Quadratic) 3

4

(
1− z2

)
× I(|z| < 1)

Gaussian (or normal) (2π)
− 1

2 exp(−z2/2)
Quadratic 15

32

(
3− z2

)2 × I(|z| < 1)

Triweight 35
32

(
1− z2

)3 × I(|z| < 1)

Fourth order Gaussian 1
2 (3− z)

2
(2π)

− 1
2 exp(−z2/2)

Fourth order Quadratic 15
32

(
3− z2 + 7z4

)3 × I(|z| < 1)

1 Source Cameron and Trivedi (2005), Härdle (2004).
2 z = Xc−xc

h .

The kernel method is a viable technique to estimate density functions, works better

for symmetric distributions and is extendible to estimate many type of functions, like
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conditional density, conditional hazard, regression and distribution functions. The ker-

nel method is used also to estimate densities of complex variables like the truncated and

censored variables. During the 1970’s there was intensive research in kernel methods.

Simulation methods are used to examine the properties of the kernel estimators and

compare them with other nonparametric methods of density estimation. Or to compare

different methods of bandwidths estimation for kernel density estimator. For exam-

ple the work of Wegman (1972b,a) and Kumar and Markman (1975). Fryer (1977)

compares the asymptotic properties of a number of nonparametric methods of density

function estimation including the kernel method and finds that kernel density estima-

tors have ‘infinite support’ and good rate of convergence compared with the histogram

method estimator.

Fryer (1977) additionally illustrates that the histogram density estimator has “er-

ror rate of convergence”, which is a term that used to describe the convergence that

is higher than (O(n−0.8)), see Fryer (1977, Table 2, page 23). In a comparison study

between the kernel and the series methods, Anderson (1969) applies the Monte Carlo

simulation technique to illustrate that kernel method produces better estimated den-

sities in term of the mean integrated square error (MISE) measure. Scott and Factor

(1981) apply Monte Carlo simulation also to compare the kernel density estimator with

the k-nn methods density estimators. The results show dissimilar outcomes for the

kernel method and the series method in the large sample. Scott and Factor (1981) rec-

ommend the kernel method, and argue that kernel method is easier to be computed and

workable more than the series and k-nn methods.

The convergence rate of the univariate continuous density under the consistency

conditions above is: as h→ 0, nh→∞ and n→∞

f̂ (xc)− f(xc) = Op

(
n−

2
5

)
. (1.3)

Among the nonparametric methods of density estimation the histogram method has

the slower rate of convergence. The rate of convergence of a correctly specified para-

metric density estimator is, Racine (2008, page 12):

f̂ (x)− f(x) = Op

(
n−

1
2

)
. (1.4)

So the nonparametric technique has a slower rate of convergence than that for the

correctly specified parametric estimator, n−
1
2 .

The asymptotic normality result for the kernel density estimator is given by:

√
nh
(
f̂ (xc)− f(xc)

)
d−→ N

(
0, f(xc).

∫
k2 (v) .dv

)
as n→∞. (1.5)
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The 95% confidence intervals for the density function are then estimated as follows:

f̂(xc)± 1.96

√
f(xc).

∫
k2 (v) .dv

nh
. (1.6)

Univariate Probability Mass Function Estimation

To estimate probability mass functions for discrete variables the frequency method is

used, but considered as a simple method that equivalent to the histogram method in

continuous variables density estimation. The frequency method split the data into cells

to estimate the mass probability function. Let Xd
i , 1, 2, ..., n, be an iid discrete random

variable that has an unknown probability mass function p(xd), the superscript d denotes

that x is a discrete variable. The variable xd is assumed to have finite and limited

support in {0, 1, 2, ..., c − 1}. The probability mass function estimate is given by the

follows formula, Li and Racine (2007, page 116):

p̂(xd) =
1

n

n∑
i=1

I(Xd
i = xd), (1.7)

which is the relative frequency at xd.

The frequency method produces unbiased and asymptotically consistent estimators

if the mass probability function has few mass points, but needs large sample to operate

well. If the number of values in the discrete variable is large, the accuracy of the

frequency method deteriorates dramatically. If the number of cells, on the other hand,

exceeds the sample size, the frequency method collapses completely. Additionally, the

frequency method is inapplicable for the multivariate probability functions.

The extension of KMWFB to estimate probability mass functions of categorical vari-

ables is provided in Aitchison and Aitken (1976). They propose an estimator in the

univariate case that takes the following form, Racine (2008, page 17)

p̂
(
xd
)

=
1

n

n∑
i=1

l
(
Xd
i , x

d, γ̂
)
. (1.8)

Where l
(
Xd
i , x

d, γ
)

is a weighting function that depends on γ (the window width or the

bandwidth). The smoothing parameter, γ, take a value in [0, 1] range and depends on

the number of values in the support of Xd variable, c. The consistency conditions for the

discrete variable kernel functions are similar to that for the continuous variable kernels,

where the discrete probability function is estimated under the following conditions:

For any discrete variable that takes values in the range {0, 1, ...., c − 1}, the kernel
(weighting) function for this variable is defined as, Wang and Van Ryzin (1981);

c−1∑
xd=0

l
(
Xd
i , x

d, γ
)

= 1 . (1.9)
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Where l
(
Xd
i , x

d, γ
)
≥ 0, for every xd = 0, 1, ..., c− 1, i = 1, 2, ..., n and γ ∈ [0, 1].

To ensure the asymptotic properties, the discrete kernel function should satisfy the

following conditions, Wang and Van Ryzin (1981), Ahmad and Cerrito (1994):

1. γ → 0 as n→∞.

2. γ/
√
n→ 0 as n→∞, and l

(
Xd
i , x

d, γ
)

has a continuous first derivative at 0.

The first condition ensures that p̂
(
xd
)

converge in probability to p
(
xd
)
. While the

second condition ensures that the estimator has an asymptotic normal distribution:

√
n
{
p̂
(
xd
) (

1− p̂
(
xd
))}

d−→ N
(
0, p

(
xd
) (

1− p
(
xd
)))

. (1.10)

The estimator has the same structure for both unordered variable and ordered vari-

able probability mass density functions, but the type of the discrete kernel function,

l (·, ·, ·), is different. There are large number of discrete kernel functions that have been

developed in the literature in the work of Habbema et al. (1978), Titterington (1980),

Wang and Van Ryzin (1981), Aitken (1983) and Titterington and Bowman (1985). Ta-

bles 1.2 and 1.3 present examples of the kernel functions for unordered and ordered

variables respectively. The kernel functions in the tables are collected from different

sources as shown in the footnotes to the table.

The discrete kernel function weights the categorical variable by matching each value

in the sample, Xd
i , with the value at the point of smoothing, xd. The difference between

the unordered kernel function and the ordered kernel function is on the method of

weighting the pairs Xd
i and xd. The unordered kernel function gives only two weights,

the first weight is for the matched pairs Xd
i and xd, which is equivalent to the case when

Xd
i − xd = 0. The second weight is for the dismatched pairs Xd

i and xd, i.e. when

Xd
i − xd 6= 0. The ordered kernel function, in contrast to the unordered kernel, gives

weights that depend on the distance
∣∣Xd

i − xd
∣∣. Which means that the ordered kernel

function give c different weights to the observations in the sample. The absolute values

of the distances are taken because the kernel function is symmetric.

Table 1.2: Kernel function for discrete unordered variables1

Aitchison and Aitken (1979) 1 l
(
Xd
i , x

d, γ
)
=

{
1− γ if Xd

i = xd

γ/(c− 1) if Xd
i 6= xd

Aitken kernel (1976) 2 l
(
Xd
i , x

d, γ
)
=

{
1 if Xd

i = xd

γ otherwise
1Li and Racine (2007).2Li et al. (2008).
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Table 1.3: Kernel function for discrete ordered variables

Aitchison and Aitken1 l
(
Xd
i , x

d, γ
)
=


(
c
j

)
γj (1− γ)c−j if

∣∣Xd
i − xd

∣∣ = j

0 if
∣∣Xd

i − xd
∣∣ 6= j

Modified
Aitchisonand Aitken1 l

(
Xd
i , x

d, γ
)
∝

{
1 if Xd

i = xd

γ|x
d−xd| if Xd

i 6= xd

Habbema kernel4 l
(
Xd
i , x

d, γ
)
∝ γ|X

d
i −x

d|2 γ ∈ [0, 1]

Modified
Habbema kernel2

l
(
Xd
i , x

d, γ
)
∝ γ|X

d
i −v

d|λ γ ∈ [0, 1] , λ ∈ [0,∞]

Aitken kernel3 l
(
Xd
i , x

d, γ
)
=

{
γ if Xd

i = xd

(1− γ)
/
2|X

d
i −x

d| if Xd
i 6= xd

γ ∈ [0, 1]

Geometrical 3 l
(
Xd
i , x

d, γ
)
=

{
1− γ if Xd

i = xd

1
2 (1− γ) γ

|Xdi −xd| if Xd
i 6= xd

γ ∈ [0, 1]

Titterington (1980)4
l
(
Xd
i , x

d, γ
)
=

{
1− γ if Xd

i = xd

(1− γ) gji if Xd
i 6= xd

γ ∈ [0, 1]

c−1∑
j=0

gij = 1 for all i, and gij ≥ 0

Uniform 5 l
(
Xd
i , x

d, γ
)
=


1
2 (1− γ) /c− 1 if

∣∣Xd
i − xd

∣∣ = j
1− γ if Xd

i = xd

0 otherwise
γ ∈ [0, 1] and j ≤ c− 1

1Li and Racine (2007), 2Tutz and Pritscher (1996), 3Li et al. (2008), 4Titterington and
Bowman (1985), 5Wang and Van Ryzin (1981).
Modified Aitchisonand Aitken, Habbema and Modified Habbema kernel functions

need to be normalised to satisfy the condition
c−1∑
xd=0

l
(
Xd
i , x

d, γ
)
= 1.

Many studies compare the accuracy and the asymptotic behaviour of the kernel func-

tions, but with minor distinction between unordered and ordered kernel functions. Ex-

amples of such a comparison is found in the work of Titterington (1980). Compari-

son between ordered kernel functions is available in Titterington and Bowman (1985),

which illustrates that Habbema kernel function, in Table 1.3, is more efficient compared

with the Uniform and Titterington kernel functions. Li and Racine (2003) modified the

Aitchison and Aitken (1976) ordered kernel to the Modified Aitchison and Aitken kernel

to use it in the mixed data smoothing framework, that is defined in the next sub-section.

The original ordered kernel function of Aitchison and Aitken (1976) cannot smooth out

(drop out) the irrelevant variables in the kernel density estimator when the cross valida-

tion method is used to estimate the bandwidths. This characteristic is illustrated more

in Li and Racine (2007). The modified version of the kernel function in Table 1.3 seems

like a special form of Modified Habbema kernel, only with λ = 1. Li and Racine (2007)

claim that the modification of the kernel is necessary only for the independent variables

in the model, if the discrete variable is a dependent variable it is not necessary to use a
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discrete kernel function that capable to drop out irrelevant variables to smooth it as Li

and Racine (2007) claim.

Nonparametric kernel estimators with discrete variables have a better convergence

rate. The rate of convergence of a density estimator of a discrete variable equals the

rate of convergence of a correctly specified parametric estimator, where

p̂
(
xd
)
− p(xd) = Op

(
n−

1
2

)
, (1.11)

1.2.2 Multivariate Kernel Density Estimation with Mixed Types Vari-

ables

The multivariate kernel density is estimated by using the product of the univariate ker-

nel functions. Therefore, estimating the multivariate density of a same type variables

is easier than estimating a multivariate density of mixed types variables. The estimator

of a multivariate density function of q continuous variables takes the following form,

rearranged from Li and Racine (2007, page 25):

f̂ (xc) = f̂
(
xc1, x

c
2, ..., x

c
q

)
=

1

nĥ1...ĥp

n∑
i=1

q∏
s=1

k

(
Xc
is − xcs
ĥs

)
, (1.12)

For a multivariate density of p discrete variables the formula is the following, Li and

Racine (2007, page 127):

p̂
(
xd
)

= p̂
(
xd1, x

d
2, ..., x

d
p

)
=

1

n

n∑
i=1

p∏
r=1

l
(
Xd
ir, x

d
ir, γ̂r

)
. (1.13)

The estimation framework of objects that include mixture of continuous and dis-

crete variables using KMWFB is known as “mixed data types (MDT) kernel estimation

framework”. The framework is developed by Jeffrey Racine, Qi Li and Peter Hall and

other researchers, in a series of papers that propose estimators for multivariate density

function, multivariate conditional density, nonparametric regression with mixed types

regressors and many other estimators. MDT kernel estimation framework opens the

door for wider applications of the nonparametric estimation techniques in economet-

rics. Most of the objects that researches aim to estimate are functions of mixed discrete

and continuous variables. The framework contributes directly on the development of

kernel estimators for discrete conditional functions, the functions of discrete dependent

variable. Additionally, it allows to have a nonparametric kernel estimators that be the

nonparametric counterpart for the discrete choice models like the multinomial logit and

multinomial probit, the ordered choice models or discrete time hazard rate. The MDT

framework is developed under KMWFB, i.e the kernel functions for continuous variables

must use the fixed bandwidth rule to smooth the mixed types variables correctly. Then

KMWFB is the broad nonparametric estimation method that we use. In this literature
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review we will present some of the estimators that are suggested in this framework.

The multivariate density function is the easiest MDT estimator. The multivariate den-

sity might include variables of one type or a mixed of continuous and discrete variables

types. Early attempt of estimating a multivariate density function for mixed discrete

and continuous variables is created by Ahmad and Cerrito (1994), where they use a

uniform and a geometric discrete kernel functions to estimate a bivariate distribution

of one continuous and one discrete variables. For more than one discrete variable the

choice of the kernel function in the multivariate kernel density estimator was problem-

atic, until the development of the MDT smoothing technique. Li and Racine (2003)

show that the frequency method is inappropriate in the mixed type variables density

estimator, as it splits the data into large number of cells, which may exceed the sample

size if the model includes many variables. In the papers Li and Racine (2003), Racine

et al. (2004), Li and Zhou (2005), Racine et al. (2006), which are part of the series of

papers that demonstrate the smoothing method for MDT. Which is illustrated more also

in Li and Racine (2007), the authors suggest the Aitchison and Aitken kernel function

for unordered variables, and the Modified Aitchison and Aitken kernel function or the

Geometrical Kernel function for ordered variables.

For a multivariate density that includes p continuous variables and q discrete vari-

ables, let the sample include {Xc
i ,X

d
i }ni=1, where Xc

i is the vector of the sample obser-

vations of the continuous variables for individual i, Xc
i = [Xc

1i, · · · , Xc
qi], and Xd

i is the

vector of the discrete variables, Xd
i = [Xd

1i, · · · , Xd
pi]. To estimate the mixed density at

the vector of values x = [xc,xd] the estimator takes the following form, rearranged from

Li and Racine (2007).

f̂ (x) = f̂
(
xc1, ..., x

c
q, x

d
1, ..., x

d
p

)
=

1

nĥ1...ĥq

n∑
i=1

q∏
s=1

k

(
Xc
is − xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
ir, γ̂r

)
(1.14)

=
1

nĥ1...ĥq

n∑
i=1

W(x,Xi, ĥ), (1.15)

where W(x,Xi, ĥ) =
q∏
s=1

k
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
ir, γ̂r

)
is the product of the univariate ker-

nel functions of the mixed types variables in the model at observation i in the sample,

and ĥ is the vector of the estimated bandwidths of the variables in the model, ĥ =

[ĥ1, · · · , ĥq, γ̂1, · · · , γ̂q].
In the multivariate case the rate of convergence is Op

(
n−

1
q+4

)
for the multivariate

density with continuous variables only. In the models with discrete and continuous

variables the continuous variables control the convergence rate.
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1.2.3 Estimation of the Bandwidths

Kernel density estimators depend crucially on the smoothing parameters (the h′s in the

continuous kernel and the γ’s in the discrete kernels). The precision of the nonparamet-

ric kernel density estimator deteriorates dramatically with the inappropriate choices of

the smoothing parameters. In the kernel nonparametric estimation method the choice

of the kernel functions in the estimator, by construction, is not as sensitive as the choice

of the bandwidths. The bandwidth values influence on the precision of the kernel esti-

mates more, i.e. on the estimated standard error of the density and on the convergence

rate to the true density. Most of the calculation cost in kernel density estimation is paid

in the estimation of the bandwidths. Data-driven methods to estimate the bandwidths

require hard calculations. The numerical calculations become harder when the sample

size increases, the number of variable in the model increase or higher order kernel func-

tions are used. However, higher order kernel functions speed up the convergence rate

to the true density as shown by Li and Racine (2007).

There are two main approaches: the bandwidth approximation method which ap-

proximates the true theoretical bandwidths of the kernel function, and data driven

bandwidth estimation methods. Data driven methods estimate the bandwidths by op-

timising an objective function that trades off between the variance and the bias of the

kernel density estimator. The variance and the bias of the continuous univariate kernel

density estimator in Eq (1.2) is shown by Racine (2008, page 10) as follows:

Bias f̂(xc) ≈ h2

2
f (2)(xc)

∫
z2k (z) dz , varf̂(xc) ≈ f(xc)

nh

∫
k2(z)dz, (1.16)

where f (2)(x) is the second derivative of the density function.

When the consistency conditions that h → 0, nh → ∞ as n → ∞ are satisfied, the

bias in the kernel density estimator is eliminated. The optimum bandwidth is the value

that minimises the integrated mean square error (IMSE), Li and Racine (2007, page

13):

IMSE(f̂)
def
=

∫
E
[
f̂(xc)− f(xc)

]2
dx, (1.17)

which gives

hopt =

{ ∫
k2 (z) dz[∫

z2k (z) dz
]2 [∫

f (2)(x)dx
]2
}− 1

5

.n−
1
5 = c0n

− 1
5 . (1.18)

Then, the optimum bandwidth is a function on the second derivative of the true den-

sity, which is unknown in the model. Bandwidth approximation methods use underlying

assumptions about the true density. This considered inconsistent with the objectives of

nonparametric estimation, but they may be attractive in a model with a large number

of variables or large sample size. Generally, the bandwidth estimation method can be

one of the following methods.
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Trial and Error Approach (Graphical Selection Approach)

This method is shown in Pagan and Ullah (1999), and incorporated in many software

packages as an easy and arbitrary method that uses graphical presentation. The Trial

and Error approach is fully dependent on an arbitrary choice of h. This could be chosen

after studying of a number of plots of f̂(xc) with xc with different values of h. Hence,

the Trial and Error method is applicable only when the sample size is small and the

model includes few variables, one or two variables only. For multivariate densities the

Trial and Error approach becomes very difficult and ineffective.

Plug-in Method

The Plug-in method, introduced by Woodroofe (1970), assumes that the variable in the

model follows a certain density function, then uses the formula in Eq (1.18) to obtain

an initial pilot value of h.

The disadvantage of the Plug-in method is that it is not fully nonparametric and

inconsistent with the objectives of the nonparametric estimation. The assumption re-

garding the distribution of the variable is not plausible in kernel estimation.

Rule of Thumb Method

Probably the Rule of Thumb is one of the oldest methods to estimate the smoothing

parameter. The Rule of Thumb method is introduced and recommended by many re-

searches during the early stages of the development of the nonparametric kernel esti-

mation techniques, for example by Deheuvels (1977) and Silverman (1986). A pilot

value obtained by one of the above methods, the Trial and Error method or the Plug-in

method is used, as a smoothing parameter itself. So it conflicts with the objective of

the nonparametric method, because it does not include any searching process for the

optimal bandwidth. Jones et al. (1996) in their brief survey of smoothing parameters

selection for density estimation, mentioned that the Rule of Thumb method has the

disadvantage of smoothing out some important features of the data.

However, when the cost of the numerical calculation increase, the Rule of Thumb

method offers a solution, particularly for the large sample sizes, since the true band-

widths converge in probability to some known values.

Cross-Validation Methods

Cross validation (CV) methods are a set of data-driven bandwidth estimation tech-

niques that attract most of the attention in the later research in nonparametric estima-

tion. They aim to estimate the smoothing parameter of the kernel function automat-

ically from the sample, and defined as “extremum” estimators that are generated by

optimizing a loss objective function on the true density. The integrated square error

(ISE), mean integrated square error (MISE) which equals the integrated mean square
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error (IMSE), the weighted integrated mean square error (WIMSE) and the asymp-

totic integrated mean square error (AIMSE) are the commonly used functions in this

context.

Cross validation method is introduced to the nonparametric literature separately by

Duin (1976) and Habbema, Hermans and Van Der Burgt (1974), and discussed inten-

sively in Scott and Factor (1981), Rudemo (1982), Hall (1982), Bowman (1984), Stone

(1984), Silverman (1986), Eubank (1988), Härdle (1989) and Scott and Terrell (1987).

The asymptotic property of the bandwidths that are estimated by the CV method are

examined by Hall and Marron (1987), Park and Marron (1990), Hall et al. (1992),

Jones et al. (1996), Chiu (1991, 1992, 1996). The latter compares different methods

of bandwidth estimation for density functions. The development of CV methods has

two breakthroughs; first, in the work of Sarda (1993) who introduces the so-called

leave-one-out (LOO) method that improved the quality of the estimated bandwidths

substantially, and second in the work of Sain et al. (1994) that extends the use of the

cross validation method to multivariate densities.

In the following a review of some CV methods that are used in the kernel density

estimation.

Least Squares Cross-Validation This method is proposed by Fryer (1977), Rudemo

(1982) and Bowman (1984). The least squares cross validation (LSCV) optimum

bandwidths are estimated by minimising the integrated squared difference between the

true function f(x) and kernel function f̂(x) as follows:

min
h1....hq ,γ1....γp

{∫ [
f̂(x)− f(x)

]2
dxc
}
. (1.19)

In the case of multivariate density function for q continuous variables the LSCV

formula takes the following form, compiled from Li and Racine (2007, page 27) and

Pagan and Ullah (1999, page 51).

CVf (h) =
1

n

n∑
i=1

n∑
j 6=i,j=1

q∏
s=1

h−1s k

(
Xis −Xjs

hs

)

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i,j=1

q∏
s=1

h−1s (k ◦ k)

(
Xis −Xjs

hs

)
, (1.20)

where (k ◦ k) is the convolution of the kernel with itself. For a multivariate function with

q continuous variables and p discrete variables the LSCV objective function is presented

in (Li and Racine; 2003, page 270)

The LSCV method is recommended for kernel density estimation in Hall (1983),

Burman (1985) and Stone (1984), with the asymptotic properties of the bandwidths

discussed in Hall et al. (1992). The problem with the LSCV method as stated by Racine

(2008) is that it is “sensitive to the presence of rounded or disretized data and to small
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scale effects in the data”. But the bandwidths converge to the optimum bandwidths.

Li and Racine (2003) recommend the LSCV method to estimate the bandwidths for

the density functions with mixed variables type. It is recommended as first choice if

the model does not include many variables or the sample size is not large, due to the

tail problem that is associated with the alternative method, the maximum likelihood

cross-validation MLCV method, that is illustrated below.

Maximum Likelihood Cross-Validation The bandwidths can be estimated using the

maximum likelihood cross-validation (MLCV) method, which is constructed from

the kullback-leibler distance between the kernel density and the true density, it is

known also as the kullback-leibler cross-validation method. The MLCV method finds

the optimum bandwidth values by maximising the following objective function, Racine

(2008, page 15):

L =
n∑
i=1

log f̂−i(Xi) =
n∑
i=1

log

{
1

(n− 1)hc

n∑
j 6=i,j=1

W(Xi,Xj, ĥ)

}
, (1.21)

which is the sample analogue of the following loss function, Pagan and Ullah (1999,

page 51):

I
(
f̂ , f

)
=

∫
f̂(x) log

{
f(x)

f̂(x)

}
dx,

f̂−i(Xi) is known as the leave-one-out LOO kernel density estimator. The density in

the LOO estimator is estimated for observation i in the sample using the n − 1 other

observations. The LOO procedure is crucial for CV, as it developed from the Jackknife

bootstrap method to avoid having zero value of the objective function. Without the LOO

procedure the cross validations methods collapse completely. The main disadvantage of

the maximum likelihood cross-validation method is that it is badly affected by the fat

tailed distributions, like the Cauchy distribution, where MLCV oversmooths the kernel

distributions.

Comparisons of bandwidth estimation methods for unconditional density had wide

discussion in nonparametric econometrics. Loader (1999) in a comparison study of

the plug-in method with the cross-validation method shows that the plug-in method

is inefficient and fails when the choice of the pilot bandwidth is wrong. Other work

that recommends the CV method, or generally data driven bandwidth methods include,

Izenman (1991) survey for density estimation and Chiu (1996) simulation study that

compares different bandwidth estimation methods. Ouyang et al. (2006) examines

asymptotic properties of the CV method and recommends the cross validation method

for the MDT kernel density estimation.

Recently, cross validation methods have shown new advantages in KMWFB. The CV

methods have the ability to smooth out irrelevant variables in the model as proved

in Hall et al. (2004) and Li and Racine (2004). Large bandwidths for the irrelevant
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variables are estimated. This is consistent with the argument that the bandwidths of

the irrelevant variables converge to infinity, or 1 in the discrete variables case. This

advantage as shown by Li and Zhou (2005) is unique for CV among other bandwidth

estimation methods. Accordingly, it has been used to established the basis of nonpara-

metric kernel significance tests in the nonparametric regression. Compared with other

nonparametric methods, KMWFB is developed more mainly because of this advantage.

The kernel method with fixed bandwidth is incorporated in many software packages

like STATA, SPSS, MATLAB as an advanced tools of data analysis, whilst other method

are available in fewer software packages, for example R software.

However, the cross-validation methods slowing the use of the kernel method in em-

pirical research, because they require complicated calculations. The objective function

of the CV method may have several local minima (maxima) and be difficult to opti-

mize, which may add more computation in the model. Cross validation bandwidths,

additionally, show large variability when they are affected by the outliers in the model,

see Park and Marron (1990). The computation cost of the CV methods is now easier

with the new generations of computers and shared processing systems, like the high

performance computer that used in this research, this encourages the use of the kernel

method in nowadays.

To overcome the cost of numerical calculations of the CV bandwidths Botev and

Kroese (2008) propose a technique that is based on Maximum Entropy method, which

is quite different approach to the approach that used in the CV method. However,

they argue that their new approach is data-driven method and not time consuming,

and provide examples that show that Maximum Entropy method works in univariate

and multivariate kernel density functions. Bors and Nasios (2009) on the other hand,

proposes three methods that not numerically expensive to estimate the bandwidths in

the kernel method. The methods, as introduced by Bors and Nasios (2009), very briefly,

are based on ”scale space”, ”mean shift”, and ”quantum clustering”. But the work is

related to engineering and industrial sciences and beyond the level of this research.

The problem of the variability of bandwidths that is caused by the outliers in the model

is discussed in Chen et al. (2009), and the problem of the slow convergence rate of the

bandwidths is discussed by Hall and Robinson (2009).

1.2.4 Estimation of Mixed Data Types Distribution Function

The estimation of the cumulative distribution function using the kernel method is slightly

more complicated than the estimation of the density function. The distribution function

jumps at each ordered sample observation and at the boundaries, which make the es-

timators produce estimates outside the [0, 1] range. The simplest estimator is the em-

pirical distribution function (EDF) that takes the form F̂n(x(·)) = n−1
n∑
i=1

I(X
(·)
i ≤ x(·)).

Where (·) denotes that x is either discrete or continuous. The EDF estimator of the
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distribution function is consistent, but exhibit a problem that it produce a step function

estimate for continuous variables when the true density is smooth. Developing kernel

estimators for the distribution function that overcomes this problem is considered early

in the literature, as in Nadaraya (1965), Azzalini (1981), Falk (1985) and Jin and Shao

(1999).

Li and Racine (2003) propose an estimator of the multivariate mixed type distribu-

tion function that uses the integrations of continuous variables kernel functions and the

summation for the discrete variables kernel functions. The estimator takes the following

form, Ju et al. (2009, page 4) :

F̂ (xc,xd) =
1

n

n∑
i=1

G(Xc
i − xc

ĥxc

)∑
u≤xd

L
(
Xd
i , u

d, γ̂
) (1.22)

=
1

n

n∑
i=1

 q∏
s=1

G

(
Xc
is − xcis
ĥs

)∑
u≤xd

p∏
r=1

l
(
Xd
ip, u

d
p, γ̂r

) ,
where G (y) =

y∫
−∞
k(v)dv. The univariate continuous distribution function is given when

q = 1 and p = 0. The consistency conditions ensure that the kernel estimators of the

distribution function have the following properties.

√
n
(
F̂
(
xc, xd

)
− F (xc, xd)

)
d

−→N
(
0, F (xc, xd)(1− F (xc, xd)

)
(1.23)

The bandwidth estimation methods for kernel multivariate distribution function are

discussed by Sarda (1993), Altman and Leger (1995) who propose the weighted MISE

to estimated the bandwidths. Bowman et al. (1998) recommend the cross valida-

tion methods for bandwidth estimation and present a comparison between different

methods of smoothing parameters estimation for kernel distribution function. Hansen

(2004a) proposes a plug-in estimator based on optimising AMISE. Other work includes

Bowman, et al. (1998), Cheng and Peng (2002), Efromovich (2004), Kim et al. (2006),

Ouyang et al. (2006), Gannoun et al. (2007), Janssen et al. (2007) and Liu and Yang

(2008). Li and Zhou (2005) and Ju et al. (2009) propose the CV method to estimate

the bandwidths of the MDT multivariate kernel distribution function estimator.

The asymptotic properties for kernel distribution function estimators are better than

the asymptotic properties of kernel density function estimators. Where the convergence

rate of the distribution function bandwidth is faster than the convergence rate of the

bandwidths of the density function.
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1.3 Estimation of Conditional Functions in the Mixed

Data Types Framework

The core of econometric is the estimation of conditional functions. The nonparamet-

ric estimation framework is rich with methods to estimate different type of models,

including: conditional density, conditional distribution, regression function and con-

ditional hazard models. Kernel methods to estimate those functions are illustrated in

this section, however, the methods to estimate the conditional hazard are discussed in

Chapter 4, where is beyond the discussion in this chapter. The conditional functions

are estimated directly in the kernel estimation framework without assuming a specific

functional form to the relationships between the variables in the model.

1.3.1 Mixed Data Types Conditional Density Function

The kernel conditional density estimator is suggested by Rosenblatt (1969) and im-

proved by Hyndman et al. (1996) who introduce a conditional density estimator that

uses the local constant kernel regression technique. The same estimator is discussed

also in Wang and Van Ryzin (1981), Chow et al. (1983), Stute (1986a,b), Hardle et al.

(1988), Falk (1993) and Hyndman et al. (1996). The methods to estimate the band-

widths for the conditional density are discussed in Turlach (1993) and Bashtannyk and

Hyndman (2001). Racine et al. (2004) and Hall et al. (2004) develop the mixed type

conditional density function estimator for the densities with categorical and continuous

variables. Racine et al. (2004) recommend the Modified Aitchison and Aitken kernel

function in Tables 1.2 and 1.3 for the categorical unordered and categorical ordered

variables respectively.

Let y be the vector of the values of mixed type dependent variables, where y =

[yc1, y
c
2, ..., y

c
qy , y

d
1 , y

d
2 , ..., y

d
py ], and x be the vector of the values of the independent vari-

ables x = [xc1, x
c
2, ..., x

c
qx , x

d
1, x

d
2, ..., x

d
px ]. Then, for simplicity, denote the variables in the

joint density by zc and zd, then zc = [yc1, y
c
2, ..., y

c
qy , x

c
1, x

c
2, ..., x

c
qx ] and zd = [yd1 , y

d
2 , ..., y

d
qy ,

xd1, x
d
2, ..., x

d
qx ]. The kernel conditional density estimator takes the following form, rear-

ranged from Li and Racine (2007, Chapter 4):

f̂Y|X (y |x) =
f̂Y,X(y,x)

f̂X(x)

=

n−1
n∑
i=1

q∏
s=1

h−1s w
(
Zcis−zcs
hs

)
.
p∏
r=1

l
(
Zd
ir, z

d
r , γr

)
n−1

n∑
i=1

qx∏
s=1

h−1s w
(
Xc
is−xcs
hs

)
.
px∏
r=1

l
(
Xd
ir, x

d
r , γr

) , (1.24)

where, z(·) refers to any y(·) or x(·) in the joint density function. q is the number of

continuous variables, p is the number of discrete variables, in the model and in the joint

density function respectively. qx is the number of independent continuous and px is the
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number of discrete independent variables and so they are the number of continuous

and discrete variables in the marginal density function respectively. w(·) is a univariate

continuous variable kernel function, see Table 1.1. l(·) is a discrete univariate Aitchison

and Aitken kernel function, from Table 1.2 if the variable is unordered and from Table

1.3 if the variable is ordered.

The number of the continuous dependent variables is qy = q− qx and the number of

discrete dependent variables is py = p − px. For example, when qy = 1 and py = 0, the

conditional density model includes one continuous dependent variable. When qy = 0

and py = 1 the conditional density includes only one dependent discrete variable. The

kernel conditional density model could then be considered as the kernel nonparamet-

ric equivalent of the discrete choice parametric model. Hall et al. (2004) recommend

the cross-validation method to estimate the bandwidths of the conditional density as

illustrated below.

The LSCV bandwidths for the conditional density with mixed variables type is based

on minimizing the sample analogue of the weighted integrated square error In given by

the following formula:

In =
{
f̂Y|X (y |x)− fYpX(y |x)

}2

f̂X(x).M(x)dxdy, (1.25)

where M(x) is a nonnegative weighting function.

The MLCV bandwidths on the other hand are estimated by maximizing the following

function:

L =
n∑
i=1

log f̂Y|X−i (Yi |Xi ). (1.26)

The bandwidths satisfy hs ≥ 0 for continuous variables and 0 ≤ γr ≤ (cr − 1)/cr

discrete variables. Racine et al. (2004) show that the bandwidths that are estimated for

the conditional density function with MDT have the following asymptotic properties:

The bandwidth selected by CV converges to the optimal parameters at a rate O(n−1/q+5)

for the bandwidths of the continuous variables and O(n−2/q+5) for the discrete variables.
The bandwidths that are estimated by the maximum likelihood cross-validation

method may oversmooth the kernel density if the continuous variables in the model

are drawn from fat-tail distributions. But the maximum likelihood cross-validation is

more useful than the least squares cross validation method because it requires less nu-

merical calculations and is easier to apply in empirical research.

1.3.2 Conditional Distribution Function

Kernel estimation of conditional distribution function CDF for continuous variable

is established by Nadaraya (1964). Azzalini (1981) uses two different ways to drive

the conditional distributions estimators: first by using direct integration of the kernel

function of the dependent variable, and second by estimating the quantiles. Those two
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methods are discussed in Falk (1984), Chu and Marron (1991), Fan (1993), Fan, Yao

and Tong (1996) and Yu and Jones (1997) and Yu and Jones (1998).

The estimation of the conditional distribution function is illustrated in Li and Racine

(2007). The conditional distribution function for one continuous dependent variable

takes the form:

FY |X (yc |x) =

yc∫
−∞

fY,X(u,x)

fX(x)
du, (1.27)

which is estimated by

F̂Y |X (yc |x) =

yc∫
−∞

f̂Y,X(u,x)

f̂X(x)
du, (1.28)

where f̂Y,X(yc,x) and f̂X(x) are the kernel estimators of the joint and marginal density

functions respectively.

There are two approaches for estimating the conditional distribution functions. The

first approach uses Nadarya-Watson kernel regression, the local constant nonparametric

regression, to estimate the distribution function using an indicator function I (Y c
i ≤ yc).

This estimator is proposed by Hall et al. (1999) and is known as the conditional mean

CDF estimator, and takes the following form in the mixed data types case, see Li and

Racine (2007, page 194):

F̂
(1)
Y |X (yc |x) =

n−1
n∑
i=1

I (Y c
i ≤ yc)

q∏
s=1

ĥ−1s w
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
r , γ̂r

)
n−1

n∑
i=1

q∏
s=1

ĥ−1s w
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
r , γ̂r

) . (1.29)

The second estimator substitutes the indicator function 1(Y c
i ≤ yc) by an integrated

kernel function of yc, G(yc) =
∫ yc
−∞ k(yc)dyc, as follows, see Racine (2008, page 27) and

Li and Racine (2007):

F̂
(2)
Y |X (yc |x) =

n−1
n∑
i=1

G
(
Y ci −yc

ĥ0

) q∏
s=1

ĥ−1s w
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
r , γ̂r

)
n−1

n∑
i=1

q∏
s=1

ĥ−1s w
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
r , γ̂r

) . (1.30)

The consistency condition for the conditional distribution function are that as n →
∞, hs → 0, nh1...hm →∞.

The estimation of the smoothing parameters for the conditional distribution func-

tion is discussed in Hyndman et al. (1996) and Yu et al. (2008). Hall et al. (1999)

proposes a bootstrap method based on AIC and point to the difficulties on estimating

the bandwidths of conditional densities. A cross validation method for the conditional

distribution function is proposed by Bashtannyk and Hyndman (2001) and Hyndman

and Yao (2002). Hansen (2004b), in an unpublished manuscript, provides a review of

the literature of bandwidth estimation methods for the kernel conditional densities and
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conditional distribution function. Hall et al. (2004) provides the methods for estimating

the bandwidths for the conditional distribution function, which is similar to the meth-

ods of estimating the bandwidths for the conditional densities. However, the optimum

bandwidths of the conditional distribution as shown by Hall et al. (2004), are slightly

different than the optimum bandwidths of the conditional density function. Hence, re-

searchers should be careful when applying the bandwidths that are estimated for one

function in another.

1.3.3 Nonparametric Regression

Kernel nonparametric regression estimators are more popular in the literature than ker-

nel conditional density and conditional distribution function estimators. Applications of

kernel nonparametric regression are available more and discussed thoroughly. Kernel

regression is introduced separately by Nadaraya (1965) and Watson (1964), and ex-

tended by Priestley and Chao (1972), Priestley and Chao (1972) and Benedetti (1977)

among many others. In this research, kernel regression is used in Chapter 4 in the

sub-survival functions in the conditional hazard estimator. This section illustrates the

development of kernel regression technique with MDT regressors.

The conditional moment function takes the form:

Y = E (Y | X = x) + u = m(x) + u, (1.31)

where m(x) is the optimal prediction of Y given X. Pagan and Ullah (1999), define

nonparametric regression approach as a method to “approximates the function arbitrar-

ily”. This incorporates trying to estimate the densities in the conditional expectation

function directly as follows:

E (Y | X = x) = m(x) =

∫
y.fY,X(y,x)

fX(x)
dy, (1.32)

which is estimated as follows:

m̂(x) =

∫
yf̂Y,X(y,x)

f̂X(x)
dy. (1.33)

The simplest kernel regression estimator is the local constant regression, developed

independently by Nadaraya (1965) and Watson (1964) and widely known as Nadarya-

Watson regression.

The nonparametric kernel regression estimator of y on a single continuous indepen-
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dent variable xc is given as follows:

m̂(x) = min
b0

n∑
i=1

{Yi − b0}2 × k
(
Xi − x
h

)

=

n∑
i=1

Yiw
(
Xi−x
h

)
n∑
i=1

w
(
Xi−x
h

) , (1.34)

which is considered as a local weighted average of the dependent variable. The local

weights, which are known as the Nadarya-Watson weights, are given by the kernel func-

tion of the independent variables in the model
n∑
i=1

w(Xi−xh )
n∑
i=1

w(Xi−xh )
= 1. The kernel regression

of y on MDT independent variables is given by using the product of the kernel functions

of the independent variables in the Nadarya-Watson weights as follows:

m̂(x) =

n−1
n∑
i=1

Yi
q∏
s=1

ĥ−1s w
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
r , γ̂r

)
n−1

n∑
i=1

q∏
s=1

ĥ−1s w
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
r , γ̂r

) . (1.35)

Or simply

m̂(x) =
n∑
i=1

YiA(x,Xi, ĥ), (1.36)

where A(x,Xi, ĥ) are the Nadaraya-Watson weights that given by

A(x,Xi, ĥ) =

n−1
q∏
s=1

ĥ−1s w
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
r , γ̂r

)
n−1

n∑
i=1

q∏
s=1

ĥ−1s w
(
Xc
is−xcs
ĥs

) p∏
r=1

l
(
Xd
ir, x

d
r , γ̂r

) . (1.37)

The local constant kernel estimator is highly discussed in the literature, among

those who improved this estimator are Priestley and Chao (1972), Stone (1977, 1982),

Benedetti (1977), Clark (1977), Gasser and Müller (1979), Gasser and Müller (1984),

Gasser et al. (1985), Cheng and Lin (1981), Ahmad and Lin (1984), Muller and Stadt-

muller (1987), Bierens (1987) and Chu and Marron (1991).

The local constant regression is extended to a local linear and to a local polyno-

mial kernel regression by Fan et al. (1992), Fan (1993) and Fan, Hall, Martin and Patil

(1996), using the method of Stone (1977). The local polynomial function is a Tay-

lor expansion of the local linear function and improves the consistency properties in

the nonparametric regression by substituting the simple Nadaraya-Watson weights by a

sequence of probability weighting functions. The local polynomial regression attracts

more attention in the literature especially when the objective is to reduce the bias in

the kernel estimates. The local constant regression though is a special case of the local
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polynomial regression. The general form for the local polynomial nonparametric kernel

regression with one independent continuous variable is, see Li and Racine (2007, page

85):

m̂(x) = min
b0,b1,...,bd

n∑
i=1

{
Yi − b0 − b1(Xi − x)− ....− bd(Xi − x)d

}2
×k
(
Xi − x
h

)
, (1.38)

which is known as the local polynomial regression function of order d. When d = 0,

the formula reduces to the local constant regression, Li and Racine (2007, page 61).

When d = 1 the model has a first order polynomial, which is known as the local linear

regression and has the form:

m̂(x) = min
b0,b1

n∑
i=1

{Yi − b0 − b1(Xi − x)}2 × k
(
Xi − x
h

)
. (1.39)

Härdle et al. (2004, pages 94-96) shows the following weighted least squares for-

mula for the local polynomial kernel regression. The same formula is presented also

in Cleveland (1979), Hastie and Loader (1993), Mays (1995), Mays et al. (2001) and

Racine (2008). To make the local polynomial kernel regression written in weighted

least squares form: first, sort the difference between Xi and x and the values of the

dependent variable Yi in matrices as follows:

X =
[
c, X̃

]
=


1 (X1 − x) (X1 − x)2 · · · (X1 − x)d

1 (X2 − x) (X2 − x)2 · · · (X2 − x)d

...
...

... . . . ...

1 (Xn − x) (Xn − x)2 · · · (Xn − x)d

 , Y =


Y1

Y2
...

Yn

 ,

X has an order n × (1 + d), for local constant model X is n × 1, a column of ones a.

In the local linear regression X has order n× 2. Second, define the diagonal matrix W

that includes the kernel weights

W = h−1diag
[
k(X1−x

h
), k(X2−x

h
), · · · k(Xn−x

h
)
]
.
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Define also the matrix B and the vector S as follows:

B =
(
XTWX

)−1

=



n∑
i=1

k(Xi−x
h

)
n∑
i=1

(Xi − x) k(Xi−x
h

) · · ·
n∑
i=1

(Xi − x)d k(Xi−x
h

)

n∑
i=1

(Xi − x) k(Xi−x
h

)
n∑
i=1

(Xix)2 k(Xi−x
h

) · · ·
n∑
i=1

(Xi − x)d+1 k(Xi−x
h

)

...
... . . . ...

n∑
i=1

(Xi − x)d k(Xi−x
h

)
n∑
i=1

(Xi − x)d+1 k(Xi−x
h

) · · ·
n∑
i=1

(Xi − x)2d k(Xi−x
h

)



−1

=


β0 β1 · · · βd

β1 β2 · · · βd+1

...
... . . . ...

βd βd+1 · · · β2d

 , (1.40)

and

S = XTWY = h−1



n∑
i=1

k(Xi−x
h

)Yi
n∑
i=1

(Xi − x) k(Xi−x
h

)Yi
n∑
i=1

(Xi − x)2 k(Xi−x
h

)Yi

...
n∑
i=1

(Xi − x)d k(Xi−x
h

)Yi


=



s0

s1

s2
...

sd


(1.41)

(1.42)

and

eT = [1, 0, 0, ....0] . (1.43)

where e has value 1 at the first element and zero elsewhere.

When the model includes more than one independent variable the distances in X,

B and S are replaced by the euclidean distances between the vectors Xi and x. W in-

cludes the kernel products
q∏
s=1

h−1s w
(
Xc
is−xcs
hs

) p∏
r=1

l
(
Xd
ir, x

d
r , γr

)
. Then the local polynomial

regression function becomes

m̂(x) = eT
(
XTŴX

)−1
XTŴY = eTBS =

d∑
j=0

βjsj, (1.44)

which is the regression estimate at the point x, and Ŵ is the diagonal weights matrix

that is generated form the kernel functions and the estimated bandwidths. This shows

that the local polynomial kernel regression is not easy to compute because it includes

many smoothed terms.
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The precision of the kernel regression depends on the choice of the kernel functions

in the model, higher order kernels functions reduce the bias in the model, but on the

other hand are harder to compute. It also depends of the choice of the bandwidth esti-

mation method, CV method is recommended due to its nice properties of the estimated

bandwidths. The higher order local polynomial regression also improves the precision

of the model, but increases the computation cost.

Estimation of the bandwidths of the kernel nonparametric regression is discussed

in Rice (1984), Hardle et al. (1992), Muller and Stadtmuller (1987), Azzalini et al.

(1989), Vieu (1991), del Ŕıo (1996), Herrmann (1997) and Ziegler (2002). The Plug-

In method and Rule of Thumb are inefficient compared with the automatic data driven

bandwidth estimation methods, similar to the case of density and conditional density

estimation. Lee and Solo (1999) compare between the bandwidth estimation methods

for local linear regression using simulation method, the Rule-of-Thumb method and the

Plug-in method show inefficiency compared with LSCV method. A similar comparison

study is presented by Loader (1999) who demonstrates the same result for the Plug-in

method and CV methods.

The LSCV method estimates the optimum bandwidth by optimizing the following

objective function, Li and Racine (2007, page 138):

CVls(h, γ) =
n∑
i=1

(Yi − m̂−i(Xi))
2M(Xi) (1.45)

where m̂−i(Xi) is the leave-one-out kernel estimator for m(x) and M(Xi) is a weighting

function.

1.4 Advanced Kernel Models

Owen (2001) suggests a method of inference of parametric model using nonparametric

likelihood ratios, defined as the nonparametric likelihood method, that is maximized

by the empirical distribution function. The EL method reassigns weights, pi, to the

sample observations, instead of the Uniform weights n−1, in an attempt to improve the

nonparametric likelihood function L(F ) =
n∏
i=1

pi under the restriction that pi ≥ 0 and
n∑
i=1

pi = 1. The method uses a profile likelihood function of the parameter that being es-

timated. Adopting the same procedure in nonparametric kernel estimation is attempted

in two different approaches. First, the weighted kernel density estimator, also known

as the globally weighted kernel density and the re-weighted kernel density, that is

suggested by Hall and Turlach (1999) and Hazelton and Turlach (2007), and discussed

also by Wang and Wang (2007). The second is defined as the constrained kernel density

is a kernel density and developed by Chen (1997), is considered a stronger empirical

likelihood base kernel density estimator that the weighted density.
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1.4.1 Weighted Kernel Density Estimators

The weighted kernel density is estimated by the following formula:

f̂ ∗p (xc) =
1

ĥ

n∑
i=1

pik

(
Xc
i − xc

ĥ

)
, (1.46)

where: pi ≥ 0 and
n∑
i=1

pi = 1 are defined by Hall and Turlach (1999) as global weights,

where they are estimated from {Xi}ni=1 and do not depend on xc and the distance

Xc
i − xc. Since the weights that are given by the kernel function are defined as the local

weights, where the observations are weighted in a distance controlled by the value of

the bandwidth. Hazelton and Turlach (2007) referred to this technique as the reweight-

ing of the kernel density. The properties of the weighted kernel density estimator are

discussed by Hall and Turlach (1999). The weighted kernel density estimator has less

bias than the traditional kernel density estimator.

Wang and Wang (2007) focus on the method of estimating of the optimum band-

widths for the weighted kernel density, which is shown to be not substantially differ-

ent from the optimum bandwidths of the traditional kernel density estimator. Hall and

Turlach (1999) and Hazelton and Turlach (2007) on the other hand, focus on the choice

of the optimum global weights for the estimator. Both papers examine the kernel den-

sity estimator that suggested by Marron and Padgett (1987) as a special case of the

weighted kernel density estimator.

The predicted global weights are defined by Hall and Turlach (1999) as the “bias

annihilating global weights”. Hazelton and Turlach (2007) note that the weighted ker-

nel density estimation framework is useful to estimate models of mixed distributions.

Marron and Padgett (1987) and Wang and Wang (2007) use the approach for right

censored observations. The theoretical validation of the global weighting idea of the

kernel density estimators is built on the convolution the of the kernel functions with

other continuous functions. Hazelton and Turlach (2007, page 3060) in Theorem 1

define the optimum global weights as function on unknown densities g (·) and f (·) as

p0,i = 1
n

g(Xc
i )

f(Xc
i )

. Hall and Turlach (1999) illustrate that “bias annihilating global weights

are positive and satisfy E
[
n∑
i=1

pi

]
= 1”.

A data-driven method is recommended to estimate the optimum global weights us-

ing a similar approach to that used in the estimation of the bandwidths of the density.

The restrictions that the weights must be non-negative and have sum equals 1 must be

added to the optimization formula. The global weights can only be estimated under

known bandwidths, either Plug-in or cross validation bandwidths. The computation of

the objective function of the global weights is very hard compared to the computations

to estimate the bandwidths. Hall and Turlach (1999) suggests a method based on min-

imizing the ISE, similar to the LSCV in bandwidth estimation, but with the restrictions
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regarding the global weights added to the function.

The Hall and Turlach (1999) method is not easy to use empirically. Hall and Turlach

(1999) and Hazelton and Turlach (2007) show that the data-driven global weights are

almost impossible computationally when the sample size exceeds 500 observations. The

discussion of the weighted density is presented on the context of univariate continuous

variable densities, and the application of this method to discrete univariate and con-

ditional densities appears not to have been attempted. The convolution based global

weights makes this method unobvious to use for the univariate discrete variable case as

well as in the case of mixed variables type densities.

1.4.2 Constrained Kernel Density Estimation

Chen (1997) suggests the following kernel density estimator:

f̂ ∗el(x
c) =

1

ĥ

n∑
i=1

pik

(
Xc
i − xc

ĥ

)
, (1.47)

where: pi ≥ 0 and
n∑
i=1

pi = 1. pi are estimated by maximizing a multinomial likeli-

hood function
n∏
i=1

pi, but additional information is needed in the model. Chen (1997)

expresses this information in the moment condition EX{gl(Xc)}, where gl, l = 1, · · · ,m
are real functions. The density function is estimated with the conditions that

n∑
i=1

pi = 1

and
n∑
i=1

pigl(X
c
i ) = 0 for l = 1, · · · ,m.

The optimum weights are shown by Chen (1997, page 49) have the following form:

pi = n−1{1 + λTg(Xc
i )}, (1.48)

where λ = (λ1, λ2, ..., λm)T are the Lagrange multipliers and g(Xc
i ) = (g1(X

c
i ), g2(X

c
i ),

· · · , gm(Xc
i ))

T .

The additional information can be constructed from the data, Chen (1997) suggests

the first moment, E(Xc − µ0) for the unknown mean µ0, and shows that the empirical

likelihood density estimator in this case takes the form, Chen (1997, page 50, Eq (7)) :

f̂ ∗el(x
c) =

1

nĥ

n∑
i=1

1

1 + λ(Xc
i − µ0)

k

(
Xc
i − xc

ĥ

)
. (1.49)

Hall and Presnell (1999) extend this method to use general constrains, and shows

that additional constraints can be used, such as the unimodality constrain which is

adopted in Hall and Huang (2002) and Hall and Kang (2005).
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1.5 Comparison Between Mixed Data Types Kernel Es-

timation Methods and Parametric Estimation Meth-

ods

The nonparametric kernel technique is a revolutionary method in econometric estima-

tion, has so far had application in a few types of models. The kernel method is vague in

models with random effects and panel data and on handling the endogenity problem in

the data. The performance of the significance tests for kernel methods is difficult and

time consuming in empirical research. The results of kernel estimators are presented

side-by-side with the results of the corresponding parametric model. There are addi-

tional sources of differences that we distinguished during the work in this thesis. On

the following a highlight of some of those differences as they appeared to us.

First, nonparametric kernel estimators do not produce coefficients like their para-

metric counterparts. The only parameters that are produced are the smoothing param-

eters, the bandwidths, that are used to predict the object that being estimated. This

key difference has many implications in interpreting and in examining nonparametric

estimators results. The coefficients in the parametric models, particularly the sign of the

coefficients, reflect the type of the effect that independent variables make in the model,

whether negative or positive. The size of the effect, the elasticities and many other issue

related to the type of the model that being estimated are also known from the estimated

coefficients. In the kernel nonparametric estimation, the bandwidths do not carry the

same information and do not have the same rules. Researchers have to compute the

predicted values of the function at chosen values of the independent variables to know

the shape of the function and the relationships in the estimated kernel object. Hence,

working with kernel estimators needs more skills and knowledge about the function

that is being estimated than in parametric estimators.

The consequences of these differences in empirical research are that: using tables

to compare between the results of parametric and kernel nonparametric estimator be-

comes unrevealing. Graphs and plots became more effective and emphasise, but must

be handled carefully. Calculating the predicted values can be misleading if not con-

ducted carefully. Pointwise sample predictions are usually confusing in plots, since re-

searchers have to set a few independent variables fixed at certain values as appropriate

to the discussion and the objectives in the research. Usually the graphical presentation

is only successful after examining a large number of plots and becomes more difficult if

the model includes many variables and there are a large number of cells.

Second, the nonparametric kernel estimation method applies large amount of nu-

merical calculations to estimate the bandwidths and to predict the function in the

model. This makes the application of the kernel method difficult in studies with large

sample sizes or that include many variables. Computing of the differences and weight-

ing them by the kernel function for each pair of observations in the sample is a tedious
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process. For the estimators that include many smoothed objects, like the sub-survival

(sub-distribution) functions in the conditional kernel hazard estimators in Chapter 3,

the cost of the computation process increases substantially. Consequently, the estima-

tion of the optimum bandwidths using data-driven method becomes a very hard, since

the pointwise sample predictions are estimated repeatedly to compute the objective

function at each iteration until the optimum bandwidths are achieved.

?? Third, in parametric estimation the categorical independent variables are added

as dummy variables, with little distinction between between unordered and ordered

variables. A categorical independent variable with 4 choices (discrete values) is repre-

sented in a model that estimated parametrically by 3 dummy variables if the intercept

is included. In the MDT estimation of the same model the same categorical variable

is smoothed directly without converting it to dummy variables. Aitchison and Aitken

(1976), illustrate the advantages of discrete kernel function in this context using the

cluster analysis. Consider a discrete variable, Xd, that specified as dummy variables

in MDT kernel estimators, with all the dummies smoothed by a same type of discrete

kernel function chosen from Table 1.2 or Table 1.3. Aitchison and Aitken (1976) show

that the product of the kernel functions of the dummy variables allocate the same num-

ber of weights that a single discrete kernel function allocates to Xd. Then the optimum

bandwidths for the kernel functions of the dummy variables will be estimated with

paying high unnecessary cost to smooth the data, where computing the weights by ker-

nels product apply or more procedures than computing the weights by a single kernel

function.

Hence, the number of covariates, which is the independent variables with the con-

tinuous variables transformed to define a functional form and the discrete variables

converted to dummy variables, in the parametric estimator will be different than in

the MDT estimator. The covariates set for parametrically estimating the model will

be longer if many continuous variable are included with transformed version to define

a quadratic or a linear polynomial form, and one more discrete variables have many

possible outcomes. For example, to capture the effect of calendar months in a para-

metrically specified model 11 dummy variables are needed, to estimate the same model

nonparmetrically a singe discrete ordered variable that take integer values from 1 to 12

captures the effect. Accordingly, number of covariates that are needed to perform the

MDT kernel estimation is likely to be lower depending on the type of the independent

variables and the object that being estimated as well as on the parametric specifica-

tion of the model. The number of variables becomes different if the parametric model

defines functional form for the continuous variables, like a quadratic or a linear polyno-

mial form, or one or more discrete variable has more than two possible outcomes.

Finally, the estimation of elasticities for kernel regression and kernel conditional den-

sity functions is not sufficiently developed. Pagan and Ullah (1999) illustrates a num-

ber of numerical methods and kernel based methods for estimation of marginal effects
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in nonparametric regression. Additional methods are available in Gasser and Müller

(1984), Jiang and Doksum (2003), Abdous et al. (2003) and Lee and Lee (2008). The

estimation of the marginal effects and the derivatives of kernel conditional functions

may become very complicated, for example the marginal effects of the conditional haz-

ard estimator in Chapter 4. This in one hand restrict the use and the interpretation of

the results of kernel estimators, but on the other hand opens a wide field of further

research in kernel method estimation framework.

1.6 Research Objectives

The objective of this PhD thesis is to apply empirically some of the recently developed

kernel nonparametric estimators for MDT to estimate models of discrete dependent

variables, and compare the results with the regular parametric link function estimators

using labour market data from the UK. The thesis comprises two applications using real

data and one using simulated data. The research is faced with a number of difficulties.

First, problems like unobserved heterogeneity in the data and the curse of dimen-

sionality problem in the nonparametric estimators, restrict the choice of independent

variables in the empirical models. Second, the computation cost of the nonparamet-

ric estimators, and the calculation cost of the nonparametric smoothing tests, restrict

our choice of variables in each example. We refer to the literature to choose the vari-

ables in the parametric models, the variables that are commonly used are likely to be

found relevant in the nonparametric estimators. Some difficulties in our work are gen-

erated by the size of the samples that are used in each application. This problem has

been overcome by using the high performance computer (HPC) at the University of

Manchester.

The research compares critically between the results of the kernel estimator of the

DCF and its corresponding parametric discrete dependent variable model in each ex-

ample. To make the comparison between parametric and nonparametric estimation

techniques clear, under the above restrictions, the thesis estimates models that are well

known and thoroughly discussed in labour economics literature. The first empirical

example focuses on female labour force participation decision using UK data, and esti-

mates a model using the multinomial logit parametric technique and compares it with

the kernel conditional density nonparametric estimator. The second empirical example

estimates a discrete time conditional hazard rate model for job vacancies in Lancashire

area in the UK between the period from March 1988 to June 1992 and compares the

results with the results of the conventional mixed proportional hazard estimation frame-

work.

The literature in labour economics provides sufficient information to examine the

result of each estimation technique. The vast literature about female labour force par-

ticipation decision is informative about the relationship between the propensity of fe-
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male to work with fertility, marital status, household characteristics and female eduction

level. The discussion about the econometric estimation technique that capture those re-

lationship correctly is vast. There is a degree for dis-satisfaction about the results of

the parametric models in empirical research in labour economics. Thus, we refer to

the theory of female labour market supply to assess the results that delivered by each

estimation technique in the first example.

In the second example, which attempts to estimate a conditional hazard model for

job vacancies, the random matching theory (RMT) of the job-market is used to assess

the estimated results of each technique. The random matching theory explains the

relationship between the number of job-seeker and the number of job-vacancies with

the matching rate, the average number of filled job-vacancies per unit of time, using

a matching function of specific form. The RMT defines the job-market tightness as

the ratio between the number of job-vacancies and the number of job-seekers, which

directly influence in the speed at which the job-vacancies are filled. So, the RMT is

informative about the relationship of the hazard rate of the job-vacancies with the job-

market tightness, because the transformation of the matching function to a conditional

hazard rate is easy.

The parametric model is estimated first in each example. The approach in this re-

search is to find the “best fitting parametric model” first before attempting the nonpara-

metric estimation. Which means that a model selection criteria is used in each example.

All the issues that related to the reshaping of the dataset in the parametric and the non-

parametric estimation frameworks are illustrated sufficiently in the thesis. Generally a

correctly specified parametric model is attracted more than a nonparametric estimator,

where parametric estimation is easier. However, reaching a correctly specified paramet-

ric model is difficult, particularly for DCF, where many objects like the link function, the

distribution of error term, the functional form of the heterogeneity function, etc, are all

need to be correctly specified in the model. Then the best fitting parametric model

seems as a difficult form to be achieved. Our results show that it is difficult to define

which parametric model is best fitting. In all examples we claim that the best fitting

model is reached when some of the restrictive parametric assumption are relaxed.

The original contributions of this thesis to knowledge are that: (i) It applies a new,

and powerful, estimation technique for British labour market data for the first time.

(ii) Develops and introduce a new discrete time kernel hazard estimator in economet-

rics that may have many useful applications in duration models. (iii) Invents a data

generating process (DGP), based on the conditional proportional hazard estimation

framework, that is designed in continuous time but discretized for grouped time (dis-

crete time) hazard rate. The DGP has the advantage of controlling the random right

censoring problem in the simulation. The examination of the results of the independent

variables is allowed for both the continuous time and the discrete time hazard rate esti-

mates. A competing risks right censoring process is simulated in the study to control for
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the proportion of the right censored observations. The DGP is introduced from the med-

ical survival model literature, and it has been designed to examine our new developed

discrete time kernel hazard estimators. (iv) The thesis presents new quality empirical

results in the examples, which could be useful in labour economics decision making

and future research. The results of the nonparametric estimators generally match the

suggestions of the theories of labour economics better than the results of the parametric

models.

1.7 Computing the Models

Kernel estimation methods for conditional functions are available in very few economet-

ric software packages. The kernel estimators of conditional models with MDT, up to our

knowledge, are available only in the software package “R”. Other software packages

that used in econometrics like Matlab and Gauss include codes that smooth continu-

ous variables only. Matlab includes codes for univariate and multivariate kernel density

estimation and kernel nonparametric regression. The codes that provided by Yi Cao

allow Matlab users to estimate different objects including local constant and local lin-

ear kernel regression. In addition to those codes the free Kernel Density Estimation

Toolbox for MATLAB offers different types of estimators. However, the codes that are

available in Matlab estimate unconditional density and kernel regression function only.

We have not been successful to find codes that estimate conditional density and codes

that smooth discrete variables in Matlab.

Similarly the software Mathematica and Gauss include codes of kernel smoothing

of continuous variables only as that available in Matlab. But they seem to provide less

number of kernel estimators. The software SAS, on the other hand, include a procedure

called Kernel Density Estimation Procedure, which performs the kernel density and

kernel regression estimators. The same type of estimators are available in packages in

STATA, Limdep, Nlogit and StatsDirect in addition to many other software. Those same

software, however, provide estimation of many types of parametric discrete dependent

variable models with different link functions. However, the kernel estimators that are

included in those software can just estimate unconditional density and kernel regression

only, with no capability to smooth discrete variables.

R software package, on the other hand, include many packages for kernel density

estimation and kernel smoothing. For example the packages kerdiest (nonparamet-

ric kernel estimation of the distribution function), NP (nonparametric kernel smooth-

ing methods for mixed data types), npRmpi (parallel nonparametric kernel smoothing

methods for mixed data types) and SM (smoothing methods for nonparametric regres-

sion and density estimation). The smoothing methods of discrete variables is available

in NP and npRmpi packages of Jeffrey S. Racine and Tristen Hayfield. The NP is the

earlier, the first version it was published in November 2006, and it was the only package
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that allows to smooth the MDT in R when we started the work in this thesis.

The advantages of R software are that it is flexible, easy and free. Those advantages

facilitate the work in all chapters in this thesis, where they allow us to write our own

codes for kernel hazard estimators in addition to the codes of bandwidth estimation in

Chapter 4. The parametric models are estimated in R and in STATA software jointly.

The former include commands that allow data to be imported directly from STATA. The

computation cost of the kernel estimators in this research is high so much so that there

are some codes of density estimates executed in weeks. The models in the simulation

study in Chapter 3 are simplified to reduce the computation time. Without the High

Performance Computer of the University of Manchester some of the models and the

simulations in this thesis could be impossible.

The software package R is used to estimate the multinomial discrete choice model

in Chapter 2 and the homogeneous discrete time proportional hazard model in Chapter

3. To estimate the parametric discrete time conditional hazard using the mixed propor-

tional hazard model we use STATA software. Where STATA provides more choices for

the distribution function of the unobserved heterogeneity than other software like R,

Limdep and Nlogit. The package Sabre R is available and comparable with the pack-

age Sabre STATA, but both packages do not include Gamma and nonparametric cloglog

mixture models.

Finding the suitable software to estimate the parametric mixed proportional hazard

models in Chapter 4 required a review for the packages that available in R and STATA

software. Chart B.1 in Appendix B illustrates the available packages in both R and STATA

that we examined empirically to estimate the discrete time hazard model in Chapter

4. Our target, in addition of finding a software package that estimates the parametric

(M)PH model easily, is to find a package that also produces prediction of the hazard rate

that allow us to do more analysis into comparing the quality of the (M)PH predictions

with the quality of the predictions of the kernel hazard estimators. So, GLAMM software

in STATA is used to estimate the (M)PH models. The predicted coefficients of the (M)PH

in STATA are imported to R software also in addition to the pointwise predicted discrete

time hazard. This allows to improve the comparison between the kernel estimation

technique and (M)PH method better.

1.8 Overview of the Thesis

The thesis is written in individual chapters basis and organised as follows:

Chapter 2 compares the estimates of the kernel conditional density function estima-

tor in the MDT estimation framework with the multinomial logit MNL parametric model

estimates. The example attempts to estimate a female labour force participation model

using data form UK labour market survey in 2007. A restricted version of the female

labour force participation model is discussed first in the chapter. This highlights the dif-
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ferences between the predicted conditional probabilities of the MNL parametric method

and kernel nonparametric estimation method better, as will be illustrate in details in

the chapter. Kernel smoothing tests are used to test the correct specification of the

parametric multinomial logit model, and to test the equality of the kernel unconditional

density estimates of the variables that included in the model. The conclusions of Chap-

ter 2 are interesting to both nonparametric estimation methods and labour economics.

Where the chapter presents a deep comparison between the conditional probabilities

that estimated by the MNL method and the kernel nonparametric method. The kernel

nonparametric estimation technique is found capable more to interpret the heterogene-

ity in female labour force participation and deliver results that are better than the results

of the parametric MNL estimation technique.

In Chapter 3, a new kernel hazard estimators for single state discrete time transition

is developed. The new estimator is extended from the existing continuous time kernel

hazard estimators. So, a review of the kernel methods to estimate the continuous time

unconditional and conditional hazard rate is presented in the chapter. The chapter

justify the selection of the type of discrete ordered kernel function that smooths the

duration time variable in the kernel hazard estimator. Where the assumption underlying

the development of the discrete ordered kernel function have to be considered in the

estimator. The last sections in Chapter 3 presents a simulation study that invented in

this research to compare between the discrete time kernel hazard estimator and the

parametric discrete time proportional hazard estimator. The competing risks random

right censoring is simulated in the study. The duration time variable and the right

censoring time variable are simulated from the Weibull and the Uniform distributions

respectively and a numerical approximation method is used to control for the proportion

of the right censored observations. A grouping scheme of the time is used and the

comparison of the models in the simulation study is allowed in the continuous time

setting and the discrete time setting jointly. However, the simulation study is to compare

between homogeneous duration model only, where no frailty is simulated in the DGP.

Chapter 4 includes an empirical study that compares between the results of the dis-

crete time kernel hazard estimators that developed in Chapter 3 and the discrete time

proportional hazard method. However, because the work uses a real data on duration

of job vacancies in weeks, the mixed proportional hazard (MPH) models are included

in the comparison to have models that control for the effect of the unobserved het-

erogeneity. There are repeated arguments in the literature of kernel nonparametric

estimation methods that says that the nonparametric kernel estimators are less affected

by the unobserved heterogeneity problem. So, the results of the kernel hazard estima-

tor are compared with the results of homogeneous proportional hazard estimator and

the mixed proportional hazard estimator in an attempt to examine this argument. The

hazard rate is estimated for job vacancies in weeks using a data from Lancashire Careers

Service (LCS) for the period from March 1988 to June 1992. The job search random
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matching model is used to compare between the estimation techniques, where the haz-

ard of the job vacancies are estimated conditional on the number of job seekers and the

number of job vacancies in the job market. It is found that the kernel hazard estimator

produces results that consistent are with the random matching theory better than the

parametric models. The work on chapters 3 and 4 refers to Cameron and Trivedi (2005)

and Jenkins (2005) heavily in the definition of the teams that used in the discussion.

The last chapter, Chapter 5, includes a summary of the conclusions of the work in

all the chapters in the thesis. Each chapter in the thesis has its own conclusions section

that relates only to the work in that chapter. The final chapter presents an overview

and an assessment for the performance of kernel method with fixed bandwidth and the

mixed data types estimation framework in estimating DCF. The chapter presents useful

suggestions for future research in this field in econometrics.

The Appendices are sorted as follows: Appendix A presents the key notation to

the equations and the formulas. Appendix B is related to the discussion regarding the

software packages that estimate mixed proportional hazard models in this chapter. Ap-

pendix C and D are related to Chapters 2 and 3 respectively. The results that thought

to be too long to be presented inside those two chapters are presented in their relevant

appendices. This include also basic component to the work that we think they may be

too daunting for the reader if they are presented in the chapters, for example the math-

ematical proofs in Appendix D that are the fundamentals of the DGP design in Chapter

3.
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Chapter 2

Nonparametric Conditional Density
Analysis of Female Labour Supply
Using UK Labour Force Survey for 2007

Chapter Abstract

This paper compares between kernel conditional density function estimation technique and
multinomial logit MNL discrete choice parametric estimation technique. The model that is esti-
mated is a female labour market participation decision model, using a cross section data from
the labour force survey in the UK in 2007. Nonparametric smoothing specification tests for
the discrete choice models, which are recently developed in econometrics, are used to compare
between the two estimation techniques.

The kernel estimation method shows an outstanding performance compared with parametric
MNL estimation method. This is true even when the MNL is improved by using semi-parametric
specifications that relax the functional form of the continuous variables in the model. The
smoothing specification tests show that the MNL models with different specification cannot be
as good as the kernel method into capturing the heterogeneity in the propensity to work among
the females in the sample. Attempting to improve the parametric models to make them be
as powerful as the kernel estimators into capturing the heterogeneity may make them exhibit
problems like multicollinearity.

The results of this research are interesting in labour economics. Nonparametric estimation
method shows how female propensity to work is higher for females with no dependent children
and high qualification levels. The propensity to work decreases with the increase in the number
of dependent children, but for the females at age older than 40 years old the propensity is high
irrespective to the number of dependent children, possibly due to the higher working experience
for the females of that age. This last property in females propensity to work is captured by the
kernel estimators only.

Key Words: Female labour force participation decision, nonparametric, discrete choice
model, multinomial logit, binomial logit, kernel conditional density, mixed data types,
maximum likelihood cross validation, delta method.

JEL Classification: C14, C21, C25, C41, C63, J10, J20, J24.
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2.1 Introduction

Estimating models of female labour supply - in particular the decision whether or not

to participate in the labour force - is usually analysed using discrete choice modelling

techniques. In this literature, it is standard to explain the decision to participate using

fertility variables (such as the number of dependent children or the number of chil-

dren younger than 5), education, marital status and household status (for example,

whether the female is the head of the household). In the keeping with this thesis,

in this chapter we focus on nonparametric methods to estimate a female’s participa-

tion decision; in particular, we use kernel conditional density with mixed data types

estimation method and compare the results with the often-used discrete choice estima-

tion technique, namely the multinomial logit. We use a sample of females of working

age (16-59) from the UK Labour Force Survey in 2007, and estimate the conditional

probabilities for whether the female is either employed, unemployed or economically

inactive. We think that this is the first application of nonparametric kernel techniques

for modelling female labour supply decisions using UK data.

The kernel conditional density estimator for mixed data types (MDT) is a newly

developed nonparametric estimator that is considered as a major advancement in the

nonparametric estimation in econometrics. This estimator is developed in Li and Racine

(2003) and Racine et al. (2004). It is particularly attractive because, hitherto, the

investigator was unable to specify conditioning variables of different ”types”, namely

continuous covariates, discrete categorical unordered covaraites, and discrete ordered

covariates. Where there were no suitable kernel functions for categorical variable in

kernel estimators. For parametric estimation methods such as the multinomial logit, this

issue is handled easily, but for kernel nonparametric estimation methods the problem of

having different data types is “solved” in the mixed data framework by adopting a family

of discrete unordered and discrete ordered kernel functions to smooth such variables.

The chapter is organised as follows; Section 3.2 presents a review of the literature

that uses the discrete choice method in estimating female labour force participation

models. Section 3.3 presents the econometric estimation method, and is divided into

a presentation of the development of the parametric estimation technique, then a pre-

sentation of the kernel estimation technique and kernel smoothing tests. The sample is

discussed in section 3.4, and the results of the models are discussed in section 3.5. The

final section discusses the conclusions.

2.2 Modelling Female Labour Force Participation

The discrete choice modelling technique in econometrics was developed by Fishbein

(1967), McFadden (1973), Manski and McFadden (1981), and Maddala (1983). An ad-

vanced discussion is found in econometrics textbooks like Wooldridge (2002), Greene
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(2003), and Cameron and Trivedi (2005). Applications of discrete choice models in eco-

nomics are extremely commonplace, including estimating models for consumer choice

analysis, revealed and stated preferences analysis, transportation problems, willingness

to pay, experimental economics and economics of happiness studies.

The multinomial logit (MNL) structure theoretically is the easiest structure among

the discrete choice modelling structures. Where it is designed to estimate conditional

probabilities for non-nested unordered alternatives like the labour supply choices of

individuals, under the assumption that the unobserved utility has an extreme value

distribution. Compared with other structures for non-nested unordered alternatives like

multinomial probit (MNP) and extreme value discrete choice structures, the MNL is

flexible, easy to estimate and adaptable in advanced applications like in the bootstrap

method. The MNL structure is also directly expendable theoretically like when using

Taylor expansion to its logit function to do more analysis.

There is a vast empirical literature that uses the multinomial discrete choice method

to estimate the female labour force participation conditioning on fertility and education.

Examples include Hill (1983), Lehrer (1992), Heineck (2004) and Molina et al. (2007).

Papers that condition on the number of children are Shapiro and Mott (1979), Johnson

(1980), Carliner (1981), Lehrer and Nerlove (1986), Lehrer (1992), Nakamura and

Nakamura (1994), Xie (1997), Jacobsen et al. (1999) and Miller and Xiao (1999).

The main finding is that fertility has a negative effect on a female’s propensity to work;

specifically an increase in the number of dependent children decreases females tendency

to enter the labour force and then employed. The papers that discuss the effect of both

number of children (fertility) and education level to female labour force participation in

UK, using the multinomial, is found in the work of Lehrer (1992), Bingley and Walker

(1997, 2001) and Bingley et al. (2005). In Sudan a female labour market participation

model is estimated by Maglad and Consortium (1998). The education level shows

an increasing effect on the tendency of women to be in the labour force and be in

employment.

In addition to the above paper, there are number of papers that compare female

labour force participation in different countries. Calhoun (1994) compares the results

of multinomial logit method across chosen EU countries including the UK with the re-

sults in the US. Cross-country comparison studies are found also in Colombino and

Tommaso (1996), Tommaso (1999) and Bratti (2003). The last work shows a compari-

son between Italy and a few European countries in the impact of fertility and education

on female labour force participation.

Studies that compare within parametric discrete choice techniques, like between

MNL and MLP methods, are less common. Di Tommaso and Weeks (2000) discuss the

differences between the multinomial discrete choice models and binary choice models

using female labour force participation data and both logit and probit structures. Their

research focus on modelling the decisions of labour market participation conditioning
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on the child bearing decision. The research outcomes show that the multinomial mod-

els are better than the binary models in representing the data, especially if enough care

is paid to avoid multi-dimensionality problem. They show that extending the model

to a ‘higher dimensions’ model, which is a term that used in the paper to refer to the

multinomial model with high number of alternatives, encounters the curse of dimen-

sionality problem. So, the research recommends not to use dependent variable with

large number of alternatives (higher dimension).

Comparisons between parametric discrete choice models and nonparametric or semi-

parametric models empirically in estimating the conditional probabilities of labour sup-

ply alternatives are available in Gerfin (1996), Fernández and Rodŕıquez-Poo (1997)

and Goodwin and Holt (2002) among many others. Those papers use nonparametric

regression estimator for a binary dependent variable that of female labour force par-

ticipation decision. After the development of kernel conditional density with mixed

variables types estimator a few comparison studies are available. For example Kumar

(2006) uses data on female choice of work from the US and compares the output of a

binomial logit (BNL) model and a binomial probit model estimates with the output of

the kernel conditional density estimator. The work compares the number of correct pre-

dictions of each technique, and shows that the nonparametric kernel method estimates

more correct probabilities.

Froelich (2006) develops a nonparametric kernel regression technique that uses a

new method of locally weighting the data. The estimator is defined as the local logit

kernel regression. The empirical example in the paper uses Swedish female labour

labour force participation data to compares between the results of the new kernel re-

gression local logit estimator and the BNL model results. The conclusion of Froelich

(2006) is the same as that of Kumar (2006), which shows that kernel estimator produces

a better ratio of correct predictions. However, Froelich (2006), additionally, claims that

kernel nonparametric estimators are better than the parametric binary choice estima-

tor on dealing with unobserved heterogeneity in the data. Both works however, focus

on the binary dependent variable case only, the application of the kernel nonparamet-

ric technique to a labour supply model with a multinomial dependent variable has not

come to our knowledge.

2.3 The Econometric Techniques

2.3.1 The Unordered Multinomial Logit Model

The MNL model is an easy and direct parametric model that used to estimate condi-

tional probabilities of unordered categorical variables. Define m+ 1 mutually exclusive

alternatives that are exhaustive and finite. The scalar Y d
i denotes the alternative that is

chosen by individual i. The superscript d is used to define that Y d
i is a discrete variable.
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Then for each individual the probability pik = Pr[Y d
i = k] denotes the probability that

individual i chooses alternative k, where k = 0, 1, ...m. So, Y d
i a sample draw from a

multinomial density function f(yd) =
m∏
k=0

pδikik , where δik is a dummy variable that equals

1 if alternative k is selected and zero otherwise.

Let the observed sample contains the values {Y d
i ,Xi}ni=1. The row vector of the

mixed independent variables Xi include q continuous variables Xc
is, s = 1, 2, ..., q, and

p discrete variables Xd
ir, r = 1, 2, ...p. To match the notation in the MNL model with the

kernel MDT conditional density estimator, in the next subsection, we will illustrate the

estimators when the covariates are very simple set. Specifically, when the continuous

covariates are not transformed to define a quadratic or a polynomial form and each

discrete variable has only two possible outcomes. In this simplest case Xi is the same

in the parametric estimator and the kernel MDT estimator. Additionally, X does not

include a column of ones, so that βk is a column vector of length p + q that does not

include an intercept.

The random utility theory (RUT) is used to construct the unordered multinomial

discrete choice model. The RUT assumes that individuals seek utility maximisation by

choosing appropriately from the basket of the alternatives. Let Uki = Vki + εki define the

utility of individual i that is obtained from alternative k. Vki is defined as the captured

part of the utility, the representative utility, that can be estimated in the model using

Xi and the coefficient vector that is associated with alternative k, βk . εki is the uncap-

tured part of the utility, or the part that captures the factors that are not included in Vki.

The probability for individual i to choose alternative k is given as follows:

pik = Pr [εji − εki < Vki − Vji; j 6= k] (2.1)

=

∫
ε

I (εji − εki < Vki − Vji; j 6= k) f (εi) dεi, (2.2)

where f (εi) is the density function of εi.

The estimator of the conditional probability of choosing the kth alternative by the

ith individual is found by specifying the distribution of εki, and thus on the distribution

of the difference of the unexplained part of the two alternatives εji − εki. By taking

the integration to find the cumulative distribution of εi, the model is written as follows,

Cameron and Trivedi (2005: page 496):

pik = Pr
[
Y d
i = k|Xi;β

]
= Fk (Xi,β) , k = 0, 1, 2, ...,m i = 1, 2, ..., n, (2.3)

Fk (Xi,β) ∈ [0, 1] and
m∑
k=0

Fk (Xi,β) = 1, (2.4)

where F (·) is a link function that transforms the explained part of the utility into a
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probability. The parameters are estimated using the likelihood function:

`
(
Y d
i ,Xi,β

)
=

n∑
i=1

m∑
k=0

δik ln pik. (2.5)

The link function must be identifiable and measurable for the independent variables and

the parameters, and should be continuous in X and β values. The explanatory variables

are not alternative specific and they are observed for all yd values, while the parameter

vector βk is alternative specific and the model is normalised so that β0 = 0, where the

alternative that Y d
i = 0 is known as the reference alternative. The coefficient vector

βk is estimated by maximizing the likelihood function in Eq (2.5), which is available in

most econometrics software.

The unordered multinomial logit MNL is defined when εi is assumed has an Extreme

Value distribution with density function:

f(εki) = exp
(
−e−εki

)
.e−εki , (2.6)

and distribution function

F (εki) = exp
(
−e−εki

)
. (2.7)

The multinomial logit MNL is easier than other specifications like the multinomial probit

or generalised extreme value models and well established in the literature. The MNL

link function is given by:

pik =
exp (Xiβk)

1 +
m∑
l=1

exp (Xiβl)
.

Which is estimated as follows:

p̂ik = F (Xi; β̂) =
exp

(
Xiβ̂k

)
1 +

m∑
l=1

exp
(
Xiβ̂l

) . (2.8)

The maximum likelihood (ML) coefficients are consistent and follow the normal

distribution asymptotically as follows:

β̂
a∼ N

(
β,−E

[
∂2`
(
yd,X,β

)
/∂β∂β′

]−1)
. (2.9)

The multinomial logit link function is twice continuously differentiable in X and

β = [0,β′1, ...,β
′
m] , McFadden (1984), Greene (2003) and Cameron and Trivedi (2005).

The changes in the conditional probabilities of the alternatives due to the change in

the independent variables are known as the marginal effects. They are estimated from

the partial derivatives of the link function with respect to the continuous independent

variables, and by differencing between the probability at value 1 and the probability at

value 0 for the dummy independent variables. When the marginal effect is estimated
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for some independent variable in the model, all other covariates are kept fixed at known

values. The regular choice is to fix other covariates at the mean values, but different

measures like the quartiles, the median, · · · etc, are also valid to use.

The marginal effects for continuous explanatory variables take the following form,

Greene (2003, page 722):

∂pik
∂Xi

= pik

[
βk −

m∑
l=1

pilβl

]
, (2.10)

which is estimated by π̂k with an asymptotic variance:

Asy.V ar (π̂ik) =
m∑
t=1

m∑
l=1

(
∂πik
∂β′t

)
Asy.Cov(β̂t, β̂l)

(
∂πik
∂β′l

)′
. (2.11)

The odds ratio, or the relative risk, R, for alternative k rather than the reference

alternative, is the probability of alternative k divided by the probability of the reference

alternative,

Rk0 =
pk
p0

= exp(Xiβk). (2.12)

for the ith individual. For any other two alternatives, say k and l, the relative risk is

estimated by dividing the probabilities of the alternatives, which produces a formula for

the difference between the alternative specific coefficient vector of k and l, Rkl = pk
pl

=

exp(Xi (βk − βl)).

The logarithm of the relative risk is practically useful in applied research since

∂ logRk0

∂X
= βk,

and
∂ logRkl

∂X
= βk − βl.

Then, a positive coefficient is interpreted as an increase in the probability of the al-

ternative relative to the probability of the reference alternative when the independent

variable increases, and the negative coefficient is interpreted as a decrease in the prob-

ability of the alternative relative to the reference alternative. This is in the dummy

variables case is interpreted as an increase and a decrease in the relative probabilities

from the individuals in the base-group for the positive and negative coefficients respec-

tively. When the relative risk is computed for alternatives k and l the interpretation

depends on the sign of the difference.

The binomial logit BNL model is used when the dependent variable is binary, has

only two possible outcomes. This is a special case of the multinomial logit, where one of

the outcomes is chosen as the reference alternative. The binomial logit model is simpler

than the multinomial logit model. The interpretation of the coefficients is easier and

direct more than the interpretation of the coefficient vector and the marginal effects of
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the multinomial logit.

The point-wise standard errors for the multinomial logit predicted probabilities are

needed to compare the 95% confidence bands of p̂ikwith the corresponded 95% boot-

strap confidence bands of the kernel nonparametric conditional density predicted prob-

abilities. The Delta method is used to expand the logit link function, the point-wise

variances are found as follows, for the reference alternative:

V ar(p̂i0) = p̂2i0

{(
R

(0)
i ⊗Xi

)T [
V ar(β̂)

] (
R

(0)
i ⊗Xi

)}
, (2.13)

for other alternatives:

V ar(p̂ik) = p̂2ik

{(
R

(k)
i ⊗Xi

)T [
V ar(β̂)

] (
R

(k)
i ⊗Xi

)}
. (2.14)

where:

R
(0)
i = [p̂1i, p̂2i, ..., p̂mi]

T .

R
(j)
i is R(0)

i with the probability of the alternative j replaced by its complement (1− p̂ik),
and ⊗ denotes matrix Kronecker product.

2.3.2 Kernel Conditional Density Method for a Discrete Unordered

Dependent Variable

The Development of the Kernel Conditional Density Estimator

The kernel smoothing method is suggested by Rosenblatt (1956) to estimate univariate

density functions of continuous variables. The method is extended to estimate univari-

ate probability mass functions for discrete variables by Aitchison and Aitken (1976)

and improved in the work of Habbema et al. (1978), Titterington (1980), Wang and

Van Ryzin (1981) and Aitken (1983), among many others, to different kinds of dis-

crete variables. A clear distinction between discrete unordered and discrete ordered

variables in the development of the estimators is followed. Kernel method to estimate

multivariate density functions for mixed variables types attracts attention since the early

development of kernel density estimation framework. Ahmad and Cerrito (1994) pro-

vides a method to estimate a bivariate density with one continuous variable and one

discrete variable. Li and Racine (2003) and Racine et al. (2004) extend this estimator

to the multivariate density with a number of discrete and continuous variables, which is

the work that became highly distinguished in the kernel density estimation framework

lately.

The development of the kernel estimator of conditional density functions started

later than that of the unconditional kernel density estimators. Hyndman et al. (1996)

for example, is one of the first contributors on this field, and the conditional density es-

timator that developed in his work uses the nonparametric kernel regression technique
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that was developed separately by Nadaraya (1965) and Watson (1964) in a conditional

density context. Other work include Hall et al. (1999), Bashtannyk and Hyndman

(2001), Hyndman and Yao (2002), Hansen (2004a,b), Hall et al. (2004), Fan et al.

(2006) and Li and Racine (2008), with the asymptotic properties and the normality of

the estimators discussed and established in Holmes et al. (2007) and Ezzahrioui and

Ould-Said (2008) among many others.

The objective is to estimate the conditional density of yd on X. The kernel estimation

approach does not require information about the utility function of the individuals.

Instead, kernel estimator of the conditional density requires the estimators of the joint

density and the marginal density functions. Where the conditional density is the ratio

between the estimated joint density f̂Y,X(Y d
i ,Xi) and the estimated marginal density

f̂X(Xi) as shown in Eq(2.20).

The joint density estimator at Y d
i = k and Xi is the average of the product of the

univariate local weights that given to variables by the univariate kernel functions as

follows:

f̂Y,X(Y d
i = k,Xi) = n−1

n∑
j=1

l
(
Y d
j , k, γ̂0

) q∏
s=1

ĥ−1s w

(
Xc
js −Xc

is

ĥs

) p∏
r=1

l
(
Xd
ir, X

d
ir, γ̂r

)
. (2.15)

where γ̂0 is the bandwidth of the discrete dependent variable, ĥs are the bandwidths

of the univariate continuous variables, all presented in the vector ĥxd = [ĥ1, ..., ĥq]. γ̂r
are the bandwidths of the and univariate discrete variables, presented in the vector

γ̂xd = [γ̂1, ..., γ̂p]. Then the vector of the bandwidths of the joint density function is

[γ̂0, ĥxd , γ̂xd ]. The bandwidth control the degree of smoothness of the function and are

estimated jointly in the model using data driven method. The marginal density estimate

on the other hand is the average of the product of the univariate local weights of the

variables in X only as follows,

f̂X(Xi) = n−1
n∑
j=1

q∏
s=1

ĥ−1s w

(
Xc
js −Xc

is

ĥs

) p∏
r=1

l
(
Xd
jr, X

d
ir, γ̂r

)
, (2.16)

the bandwidth vector of the marginal density function estimator is ĥ = [ĥxc , γ̂xd ], has

length p+ q equals the length of the alternative specific coefficient β̂k, since we present

the estimator for simple X as defined above. When the MNL model defines a quadratic

or a polynomial form or one or more independent discrete variable has more that two

possible outcomes, ĥ and β̂k will have different lengths. In the model that we estimate

in this research the number of coefficients in β̂k is larger than the number of the band-

widths of the marginal density ĥ because we use a MNL with quadratic form and some

discrete categorical variables have more that two possible outcomes.

The local weights are computed using the kernel function w (·) for the continuous
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variable that, in this research, is defined as a Second-Order Gaussian kernel function

w (z) = (2π)−
1
2 exp(−z2/2). (2.17)

l (., ., .) is a discrete variable kernel function that is defined differently for the discrete

unordered variables and the discrete ordered variables. In the first case the unordered

Aitchison and Aitken (1979) kernel function is used, which has the form:

l
(
Xd
i , x

d, γ
)

=

{
1− γ if Xd

i = xd

γ/(c− 1) if Xd
i 6= xd

, (2.18)

which is equivalent to;

l
(
Xd
i , x

d, γ
)

= [1− γ]δi
[

γ

(c− 1)

]1−δi
, δi = 1

(
Xd
i = xd

)
.

For the ordered variables we use Wang and Van Ryzin (1981) kernel that takes the

form:

l
(
Xd
i , x

d, γ
)

=

{
1− γ if Xd

i = xd

1
2

(1− γ) γ|Xd
i −xd| if Xd

i 6= xd
γ ∈ [0, 1] . (2.19)

See, Racine et al. (2004), Racine and Hayfield (2008) and Hayfield and Racine

(2008, page 24).

So, the kernel conditional probability mass function estimate of Y d
i = k, conditioning

on Xi, takes the following form, see Li and Racine (2007, chapter 5):

f̂Y |X (Y d
i = k |Xi ) =

f̂Y,X(Y d
i = k,Xi)

f̂X(Xi)
,

=

n−1
n∑
j=1

l
(
Y d
i , k, γ̂0

) q∏
s=1

ĥ−1s w
(
Xc
js−Xc

is

ĥs

) p∏
r=1

l
(
Xd
ir, X

d
ir, γ̂r

)
n−1

n∑
j=1

q∏
s=1

ĥ−1s w
(
Xc
js−Xc

is

ĥs

) p∏
r=1

l
(
Xd
jr, X

d
ir, γ̂r

) ,(2.20)

where the bandwidths γ̂0 and ĥ are estimated combined together for the joint and

marginal densities.

f̂Y |X (yd |x) estimator converges in distribution to a normal distribution as follows,

Racine et al. (2004) and Li and Racine (2007, page 180):

(
nĥ
)1/2{

f̂Y |X (yd |x)− fY |X (yd |x)−B1

(
x, yd

)
ĥ2 −

2∑
r=1

B2r

(
x, yd

)
γ̂r

}
d−→ N

(
0,

(∫
w2 (z) dz

)
fY,X(yd,x)

fX(x)

)
, (2.21)

where B1

(
x, yd

)
and B2

(
x, yd

)
are shown in Li and Racine (2007) Solutions Manual1.

1Note that the formulas that are presented in Li and Racine (2007, Solutions Manual) illustrate the
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The dependent variable is smoothed in the joint density function with the discrete

unordered kernel function l
(
Y d
i , k, γ̂0

)
, and each observation Y d

i in the sample is locally

weighted based on whether it equals k or not, but without defining a reference value

(alternative) in the kernel estimators. Then, in contrast to the MNL models, where a

reference alternative in the dependent variable is needed, in the kernel nonparametric

estimator the definition of the reference alternative is absolutely not necessary. The

redefining of the reference alternative in the parametric MNL model leads to a repa-

rameterisation of the coefficients of the MNL model while the estimated conditional

probabilities and the estimated marginal effect coefficients remain the same. In the

kernel estimator there is no such treatment, all the alternatives are equally smoothed

in the model and matched with k with no distinction. Hence, it is easier to present the

results of the parametric model in a form of predicted probabilities and marginal effect

coefficients to make the comparison with the kernel method estimated results.

Bandwidth Selection Method

The bandwidths of the conditional density estimator are estimated using data-driven

methods, like the cross-validation method, as suggested by Habbema, Hermans and

Van den Broek (1974) and Duin (1976). Where, the mixing of the continuous and dis-

crete variables in the model makes bandwidth approximation methods, like the Plug-in

method or the Rule-of-Thumb method, not feasible. The advantages of the CV method

in the conditional density estimation are shown in Loader (1999), Bashtannyk and Hyn-

dman (2001), Li and Racine (2003), Fan and Yim (2004), Hall et al. (2004), Horne and

Garton (2006) and Li and Racine (2007). In the models with mixed types variables, Li

and Zhou (2005) demonstrates that the cross validation bandwidths have nicer conver-

gence behaviour to the true smoothing parameters than the bandwidths that estimated

by other methods, and show that the discrete variables in the model contribute in ac-

celerating the convergence rate to the true bandwidths.

Hall et al. (2004) suggests two cross validation methods for the kernel conditional

density estimator, the least squares cross validation (LSCV) and the maximum likelihood

cross validation (MLCV). The two methods produce similar bandwidths when the data is

well behaved, but the LSCV bandwidths have nicer asymptotic properties and are better

recommended. The MLCV on the other hand, apply less numerical calculations and are

easier to compute in models with many variables and a large sample size. However, the

MLCV method may estimate bandwidths that over-smooth the density if the continuous

variables in the model are drawn from fat tailed distributions, see Li and Racine (2007,

page 161). Despite the fact that the good qualities of the LSCV bandwidths are more

attractive in the model than the qualities of MLCV, we use the MLCV method to estimate

asymptotic properties of the estimator when both relevant and irrelevant regressors are included. In this
research we show the same formula but when relevant regressors only are included. The reader should
consider this difference when reading the formulas of B1

(
x, yd

)
and B2

(
x, yd

)
.
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the bandwidths because the LSCV bandwidths estimation is computationally very taught

in our data.

The MLCV maximises an objective function that based on the Kullback-Leibler dis-

tance between the kernel density estimator and the true density. The leave-one-out

(LOO) method is needed in the objective function. The objective function of the MLCV

method is given in Li and Racine (2007, page 161) as:

L =
n∑
i=1

log f̂−i(Yi |Xi ) = (2.22)

n∑
i=1

log


n∑

j 6=i,j=1

l
(
Y d
j , Y

d
i , γ̂0

) q∏
s=1

ĥ−1s w
(
Xc
js−Xc

is

ĥs

) p∏
r=1

l
(
Xd
jr, X

d
ir, γ̂r

)
[

n∑
j 6=i,j=1

q∏
s=1

ĥ−1s w
(
Xc
js−Xc

is

ĥs

) p∏
r=1

l
(
Xd
jr, X

d
ir, γ̂r

)]
 (2.23)

Without the LOO method the CV method collapses and the estimation of the band-

widths are not attainable, see Li and Racine (2007, page 16). The LOO method uses

each observation in the sample n times to compute the value of the objective function

at each iteration. For each individual in the sample the conditional density f̂(Yi |Xi )

is estimated using all the observations except the observation that related to the ith in-

dividual, i.e by using n − 1 observations in the sample. This estimates the conditional

density with one observation left out each time, then the objective function is the sum

of the logarithms of all the LOO estimated densities.

2.3.3 Nonparametric Kernel Tests

Discrete Choice Model Specification Tests

The kernel nonparametric smoothing technique is used to test the correct specification

of many parametric models. The kernel smoothing tests is a broad framework that

include families of tests that some of them apply the bootstrap method, a addition

to the smoothing method, to calculate the test statistic and its empirical distribution.

Kernel correct specification smoothing tests are available for regression function and

continuous variable density function estimator, see Li and Racine (2007, Chapter 12),

and they are widely considered in the literature and many tests of this type are now

available in many software packages. Tests for the correct specification of the discrete

choice model are not very common in the literature compared with the tests of correct

specification of parametric regression functions. Where only the tests that developed by

Fan et al. (2006) and its duplicate test that developed by Zheng (2008) appeared to us.

Both tests extend the correct specification test of Zheng (2000) to the discrete choice

model case. The bandwidths that are estimated for the kernel conditional density are

used to calculate the test statistic. The bootstrap method is required to approximate the

distribution of the test statistic under the null empirically.
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The tests are one sided and the test statistic tends asymptotically to a standard nor-

mal distribution. The null hypothesis is that the parametric discrete choice model is cor-

rectly specified. The critical value is calculated using the parametric bootstrap method

from the discrete choice model using the method of Andrews (1997). The bootstrap

procedure is identical in the two tests. However, the variance of the distance measure

in the test is different in Fan et al. (2006) to that in Zheng (2008), so that the standard-

ised version of the test statistic is also different. Zheng (2008) claims that the test is

robust and “has high power in all directions”, but Fan et al. (2006) on the other hand

argue that the test has the power to remove the irrelevant variables in the models and

“enjoys substantial power gains in finite-sample application”. There seems to be no

application of these tests in empirical research.

The null and alternative hypotheses are, see Fan et al. (2006, page 590):

H0 : Pr
[
f(Y d

i |Xi ) = p
(
Y d
i |Xi ,β

)]
= 1,

H1 : Pr
[
f(Y d

i |Xi ) = p
(
Y d
i |Xi ,β

)]
< 1,

The tests are likelihood ratio type tests that are constructed from the kullback-leibler

distance, the statistic is computed as follows:

U∗n =
1

n (n− 1)

n∑
i=1

n∑
j 6=i,j=1

W
(
Xi,Xj, ĥ

)
Υ∗ij, (2.24)

where W
(
Xi,Xj, ĥ

)
is the product of the kernel functions of the independent variables

in the model:

W
(
Xi,Xj, ĥ

)
=

q∏
s=1

ĥ−1s w

(
Xc
js −Xc

is

ĥs

) p∏
r=1

l
(
Xd
jr, X

d
ir, γ̂r

)
, (2.25)

and

Υ∗ij =
I
(
Y d∗
i = Y d∗

j

)
− p

(
Y d∗
i |Xj , β̂

∗)
p
(
Y d∗
j |Xi , β̂

∗) , (2.26)

is an indicator function that depends on the discrete dependent variable and the pre-

dicted probabilities of the parametric model. The superscript (∗) indicates that the

dependent variable Y d∗
i is simulated from the predicted probabilities of the MNL, and

the coefficients β̂∗ are estimated from the bootstrap samples. The estimated variance of

the statistics are different, which makes the standardised value of the tests different. In

Fan Test the variance of the test statistic is

σ̂2∗

Fan =
1

n (n− 1)

n∑
i=1

n∑
j 6=i,j=1

(
W
(
Xi,Xj, ĥ

)
Υ∗ij

)2
, (2.27)
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but the variance of Zheng Test statistic is

σ̂2
Zheng =

1

n (n− 1)

n∑
i=1

n∑
j 6=i,j=1

W
(
Xi,Xj, ĥ

)2
. (2.28)

The test statistics from the bootstrap samples are

κ∗Fan = n(nh1 · · ·hr)1/2U∗n/σ̂∗Fan, (2.29)

in Fan test, and

κ∗Zheng = n(nh1 · · ·hr)1/2U∗n/σ̂Zheng, (2.30)

in Zheng test.

The bootstrap method of Andrews (1997) is applied in this research using the fol-

lowing steps:

1 Use the cumulative conditional distribution of the dependent variable that is es-

timated by the MNL model F (Y d
i = k|Xi, β̂) =

k∑
l=0

p̂il to simulate the dependent

variable Y d∗
i . The covariates are not simulated, thus the bootstrap sample contain

{Y d∗
i , Xi}ni=1. Y d∗

i is simulated as follows: a continuous Uniform [0, 1] random

variable U c
i is simulate, then Y d∗

i is set equals 0 if U c
i 6 F (Y d

i = 0|Xi, β̂) (in

other words when U c
i 6 p̂i0 for the reference alternative in the MNL model). For

other alternatives, Y d∗
i is set equals k if F (k − 1 |Xi , β̂) < U c

i 6 F (k |Xi , β̂) for

k = 1, 2, ...,m.

2 Use the bootstrap sample to estimate the bootstrap estimated coefficient vector,

β̂
∗
.

3 Use the bootstrap sample parametric model estimated coefficients, β̂
∗
, and the

cross-validation bandwidths vector that are estimated from the sample, γ̂0 and ĥ,

to compute the test statistics in Eq (2.24) and the variance in Eq (2.27). Where

the variance of Zheng test in Eq (2.28) is computed from the original sample and

not form the bootstrap samples.

4 Repeat steps (1) to (3) B times, in each bootstrap sample compute κ∗(·), where (·)
denotes Fan or Zheng test. The empirical distribution of the B bootstrap statistics

{κ∗(·)}Bb=1 is then used to approximate the distribution under the null.

5 Reject the H0 at significant level α if the test statistic from the sample exceeds the

αth percentile of the empirical bootstrap distribution.

Zheng (2008) and Fan et al. (2006) show that, (nh1 · · ·hr)1/2U∗n/σ̂∗Fan
d→ N (0, 1),

and (nh1 · · ·hr)1/2U∗n /σ̂Zhg
d→ N (0, 1) in Fan and Zheng tests respectively. The MLCV

bandwidths that are estimated for the kernel conditional density are used to smooth the

observations in the test statistic and the bootstrap samples.
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In this research we apply the discrete choice specification tests after a simulation

study that replicates some of the simulations of Zheng (2008) only but both tests are

examined. In other words, we replicate some of Zheng (2008) simulations but adds Fan

et al. (2006) test to our work. R software is used, the results are shown in Appendix C.

The replication of all the results in the two papers is time consuming and not one of the

objectives of this research, so we focus on replicating part of the results and reducing

the number of Monte Carlo samples. Our simulation shows that Fan et al. (2006) and

Zheng (2008) tests outcomes are very close. The size of the tests is estimated correctly

in the replicated simulation, and close to the size of the test that shown in Zheng (2008).

The power, on the other hand, is improved in our replicated simulation study, the power

of Zheng (2008) test is higher than that shown in the paper. This may be due to the

difference in the software package that used in our replication. This shows that our

code is correctly written and valid to be used in the research.

Unconditional Densities Equality Test

The test of equality of the unconditional densities using kernel method for mixed data

types is suggested by Li et al. (2009) and is available in R software in the NP package

of Hayfield and Racine (2008). The null hypothesis of the test is that the two densities

are equal, H0 : f(x) = g(x), is applied for the unconditional densities of discrete,

continuous, univariate and mixed types multivariate densities. The kernel densities f̂(x)

and ĝ(x) are densities estimated in two different samples of size n1 and n2 respectively.

Denote the mixed variables type by {Xi}n1
i=1 in the first sample and {Zi}n2

i=1 in the

second sample. The test statistic is constructed based on the integrated squared density

difference, Li et al. (2009, Eq 2.6), and has the following formula,

In =
1

n1 (n1 − 1)

n1∑
i=1

n1∑
j 6=1

Kh(Xi, Xj) +
1

n2 (n2 − 1)

n2∑
i=1

n2∑
j 6=1

Kh(Zi, Zj)

− 1

n1n2

(
n1∑
i=1

n2∑
j 6=1

Kh(Xi, Zj) +

n2∑
i=1

n1∑
j 6=1

Kh(Xj, Zi)

)
, (2.31)

where Kh(Xi, Zj) is a kernel product term
q∏
s=1

h−1s w
(
Xc
is−Zcjs
hs

) p∏
r=1

l
(
Xd
ir, Z

d
jr, γr

)
and

Kh(Xj, Zi) switching the subscript, the vector of the bandwidths h is the bandwidth of

68



the pooled sample n1 + n2. The variance of the test statistic is

σ2
n = (2n1n2h1, · · · , hr)

[
1

n2
1 (n1 − 1)2

n1∑
i=1

n1∑
j 6=1

K2
h(Xi, Xj)

+
1

n2
2 (n2 − 1)2

n2∑
i=1

n2∑
j 6=1

K2
h(Zi, Zj)

− 1

n2
1n

2
2

(
n1∑
i=1

n2∑
j 6=1

K2
h(Xi, Zj) +

n2∑
i=1

n1∑
j 6=1

K2
h(Xj, Zi)

)]
, (2.32)

τn = (2n1n2h1, · · · , hr)1/2I∗n/σ̂∗n
d→ N (0, 1)

The test statistics converges to a standard normal distribution as illustrated in The-

orem 2.1 in the Li et al. (2009). n1 and n2 are used in Li et al. (2009) to develop the

bootstrap procedure to approximate the test statistics under the null hypothesis. The

pooled sample of n1 and n2 is used to independently draw two samples of size n1 and

n2 respectively and then compute the test statistics.

The cross validation bandwidths are used in computing the test statistic and in the

bootstrap distribution {τ̂ ∗}Bb=1, the (1−α)th quantile is compared with the sample statis-

tics τ̂ . As this test is provided in R software no replication to the simulations in Li et al.

(2009) is needed.

2.4 The Data

In the empirical analysis, we analyse a sample of females of working age (16-59) drawn

from the first quarter 2007 of the UK Labour Force Panel Survey. The sample, will be

denoted as the females in the working age sample, comprises 35311 females. The

dependent variable, Y d, is the working status of the females. There are three working

states that are defined: the employed state; for the individuals who are employed; the

unemployed state, comprises the individuals who are seeking jobs; and the economi-

cally inactive state. The last group is the group are females who are said to be out of

the labour force, and, by definition, are neither working nor seeking a job. The unem-

ployed state includes all the individuals without a job but thinking or seeking to start

work, continuously, for at least four weeks. They are individuals currently not working

but able to move to the employed state in at least a couple of weeks period.

The independent variables that are included in our research are, mostly, some of the

common covariates that are used the estimated models of female labour force partici-

pation decision in the literature that presented in Section ( 2.2). The covariates are the

basic demographic and educational characteristic of the females, and those are directly

related to female labour supply. There are 5 mixed independent variables: a continuous

variable, Age, which is denoted by Xc
age; the Number of Dependent Children, Xd

nc, that

defined as a categorical variable with 4 categories, no children, one child, two children
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and three or more children; the Education Level, Xd
ed, with 3 ordered categories de-

fined as, the High Qualification group, including the females with university degree or

higher qualifications, the Medium Qualifications group, the group that includes all the

females with either a GCE a level or GCSE grades a-c or equivalent qualifications, and

last the Low Qualification or the GCE/GCSE group, which is the group of all females

with qualifications that lower than the women in the two first groups in addition to the

individuals with no qualifications. Then a variable of whether the female in the sample

is the head of the household, Xd
hoh, which defined as a categorical variable. Finally a

categorical variable that shows whether the female has an under 5 years old child (or

children), Xd
u5c.

We estimate a model using a subset that includes only: age, number of dependent

children and education level (Xc
age, X

d
nc, and Xd

ed), which is called the restricted model.

The model with all the covariates is called the unrestricted model. The results of the

restricted model is presented in the chapter but not used in the kernel smoothing tests.

The sample is divided into smaller sub-samples using the economic activity depen-

dent variable and the education level independent variable. First, all the females in the

labour force are separated in one sub-sample, by dropping the group of the inactive

females in the original sample. This generates a sample of size 26007 female, denoted

by the females in the labour force sample. The dependent variable in the labour force

sample is Ud that has only two categories: whether the individual is employed or un-

employed. Each of the females in the working age sample and the females in the labour

force sample is divided into three smaller sub-samples using the highest qualification

variable, where each qualification level is used to generate a sub samples. The newly

generated 6 sub-samples are as follows: females in the working age and high qualifica-

tions, females in the working age and medium qualifications, females in the working age

and low qualifications, females in the labour force and high qualifications, females in

the labour force and medium qualifications, females in the labour force and low qualifi-

cations. With the original sample the total number of sample and sub-samples that used

in the research is 8. Accordingly, the dependent variable is multinomial in the females

in the working age sample/sub-samples, and binomial in the samples/sub-samples of

the females in the labour force.

The objective of the education level sub-samples is to overcome the computation cost

of the kernel smoothing tests, since the empirical distribution of the tests is difficult to

estimate in the samples of all females, which are the samples that include the females

with all qualification levels, due to the tough calculations that are involved. The pre-

dicted probabilities in the pooled sample are matched with the predicted probabilities

in the sub-samples and they are very similar.

The comparison includes two stages. The first stage compares the restricted mod-

els. Which are the models given by the estimator in Eq (2.20) when q = 1 and p = 2.

The restricted models allow to examine the predicted probabilities in a small number of
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cells, since there are only 12 cells that are created by the cross categories of number of

children and education level variables. This makes the number of observations in each

cell sufficiently large to estimate the pointwise standard errors. Next is the comparison

of the unrestricted models, in Eq (2.20) those are the models with q = 1 and p = 4. The

number of cells in the unrestricted models is 48, generated from the cross categories

of 4 discrete variables. The graphs illustrate the differences in the predicted probabil-

ities of the estimation techniques in the restricted models better. While the smoothing

specification tests illustrate the differences in the unrestricted models better.

2.4.1 The Summary Statistics and the Restricted Model Results

The descriptive statistics for the variables in the model are shown in Table 2.1. The

summary statistics of the dependent variable shows that the majority of females are in

the employed state, for the sample of females in the working age 16-59 the percentages

are 69.9% in the employed state and 26.3% in the inactive state. The percentages

of employed females increase as the qualification levels increases. In the sub-sample of

females in the working age and high qualifications 85.4% of females are in the employed

state, for those in the labour force 97.5% are in the employed state. This compares

with the percentages 50.5% and 90.5% respectively in the sub-sample of females with

low qualifications. The number of dependent children is higher for females with low

qualifications, the proportion of mothers with dependent child/children under 5 years

old is slightly different among the sub-samples but considerably different for the high

and medium qualifications labour force sub-samples. The proportion of females who

are heads of households is also similar in the sub-samples.

The statistics in Table 2.1 show differences in average age between females in quali-

fication level groups, the average age of females with low qualifications is 6 years higher

than the average age of females with medium qualification. Females with high quali-

fications have higher average age than females with medium qualifications by about

4 years. There is 4.5 percentage points drop in the proportion of females with low

qualifications and three or more dependent children in the labour force sample.

The summary statistics in Table 2.1 show well behaved variables in the sample.

The data is suitable to be used for comparison between parametric and nonparametric

estimation techniques.

Restricted Parametric Models

Two specifications of the MNL and the BNL discrete choice models are estimated using

a logit link function: one with a quadratic form in age and one with semiparametric

form in age by using age dummy variables. The second model relaxes the restrictive

functional form of age by using the dummy variables. In all logit models, the dummies

of the categorical variables, the number of dependent children and the education level
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Table 2.1: Summary statistics.

Highest Qualification sub-samples
Sample All females High Qual. GCE/GCSE Low Qual

Panel A: Females in working age 16-59
Sample size 35311 10125 16181 9005
Y d employed 0.699 0.854 0.709 0.505

unemployed 0.038 0.022 0.039 0.053
Inactive 0.263 0.124 0.252 0.442

Xc
age Mean 38.23 39.52 35.63 41.44

Xc
nc 0 child 0.492 0.550 0.433 0.532

1 child 0.220 0.192 0.249 0.201
2 children 0.199 0.190 0.224 0.164
3 or more 0.089 0.068 0.094 0.103

Xd
hoh 0.255 0.250 0.235 0.297

Xd
u5c 0.168 0.177 0.172 0.154

Xd
ed Degree or Higher 0.287 - - -

GCE/GCSE 0.458 - - -
Low Qual. 0.255 - - -

Panel B: Females in the labour force
Sample size 26007 8869 12111 5027
Ud employed 0.949 0.975 0.948 0.905

unemployed 0.051 0.025 0.052 0.095
Xc
age Mean 38.66 39.30 36.60 42.50

Xc
nc 0 child 0.529 0.564 0.473 0.601

1 child 0.219 0.194 0.244 0.202
2 children 0.189 0.183 0.213 0.142
3 or more 0.063 0.059 0.070 0.055

Xd
hoh 0.242 0.253 0.222 0.270

Xd
u5c 0.135 0.156 0.137 0.091

Xd
ed Degree or Higher 0.341 - - -

GCE/GCSE 0.466 - - -
Low Qual 0.193 - - -

are included. The base group is defined as the group of females with no children and

low education level. The estimated coefficients of the logit models are little useful in the

comparison, so the marginal effects coefficients only are presented. The marginal effect

coefficients are estimated at the mean of all and the sum of all covariate in the MNL

logit model in all alternatives equals 0. The reference alternative is the employed state.

For the models with semi-parametric form in age the marginal effect of age dummy

variables are not reported for brevity.

Table 2.2 shows that the quadratic form is accepted in all samples, which indicates

a concave shape on age for the conditional probability of the employed state and a

convex shape on the inactive state. Negative coefficients show decreasing conditional

probability of the alternative, like the coefficients of the number of children dummies on

the probability of being in the employed state and the coefficients of education level in

the conditional probability of being unemployed and being inactive. Positive marginal

effects, in contrast, show an increasing effect on the conditional probability of the alter-

native, and are estimated for the education level in the employed state and number of

children in the inactive state. In the MNL models, the majority of females in the sample
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are either employed in the labour force or inactive, only a handful number of females

are in the unemployed state and, so the value of marginal effects of this alternative are

close to zero.

Likelihood Ratio test statistics (LR test) at the bottom of Table 2.2 show that the

parametric model with semi-parametric form in age is accepted against the model with

the quadratic form, where the value of the test exceeds 204 in MNL model and 56 in

the BNL model with high significance. The estimated marginal effect in the models with

semi-parametric form in age are close to the marginal effects that are estimated to the

models with the quadratic form. The value of the Log Likelihood shows a substantial

improve in the models that relax the restrictive quadratic functional form on age.

The marginal effects show that females with three or more children have lower prob-

ability of being employed by about 36 percentage points than the females with no chil-

dren. This is about three times the decrease in the probability for the females with one

child, where their probability of being employed drops by about 10 percentage points

only. Females with GCE/GCSE are 20 percentage points more likely to be employed

than females with low qualifications, the base group. Females with high qualification

on the other hand, are about 27 percentage points more likely to be employed than

the low qualification females. This means that the difference between the probability

of employed state among females with high qualification and females with GCE/GCSE

qualification is only 7 percentage points. The table shows that the drop in the proba-

bility of being employed almost equals the increase in the probability of being inactive.

The marginal effect of the number of dependent children in the unemployed state are

almost zero. This magnitude appears in the model because the majority of the females

with dependent children in the sample are inactive, and very small number of females

are employed and having dependent children.
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Table 2.2: Marginal effect for the restricted MNL and the restricted BNL models1.

Model MNL BNL
Alternative Employed Unemployed Inactive Unemployed4

Panel A: Quadratic form in Xc
age

p
(
(·)d

∣∣X)2 0.728 0.034 0.238 0.032
Age(= Xc

age) 4.527 (0.140) -0.366 (0.049) -4.161 (0.130) -0.228 (0.045)
Age Squared -5.691 (0.187) 0.294 (0.067) 5.397 (0.174) 0.133 (0.063)
Number of Children3 Xd

nc:
1 child -0.105 (0.007) 0.003 (0.002) 0.103 (0.007) 0.002 (0.002)
2 children -0.173 (0.008) -0.004 (0.002) 0.177 (0.008) -0.005 (0.002)
3 or more -0.358 (0.011) -0.001 (0.003) 0.359 (0.011) -0.002 (0.003)

Education Level3 Xd
ed:

gcs/gcse 0.201 (0.006) -0.023 (0.002) -0.178 (0.005) -0.017 (0.002)
high qual. 0.270 (0.005) -0.029 (0.002) -0.241 (0.005) -0.025 (0.002)

Log likelihood -22897.312 -5407.5366
n 35311 26007
Pseudo R2 0.1058 0.0445
Wald stat. 4638.25 467.36

Panel B: Year dummies of Xc
age

p
(
(·)d

∣∣X)2 0.730 0.033 0.237 0.038
Age dummies the marginal effects of the age dummies are not shown
Number of Children2 Xd

nc:
1 child -0.114 (0.008) -0.0005 (0.002) 0.114 (0.008) 0.008 (0.003)
2 children -0.181 (0.009) -0.007 (0.002) 0.188 (0.009) 0.003 (0.004)
3 or more -0.364 (0.011) -0.004 (0.003) 0.368 (0.011) 0.024 (0.006)

Education Level3 Xd
ed:

ges/gcse 0.200 (0.006) -0.024 ( 0.002) -0.176 (.005) -0.037 (0.003)
high qual. 0.270 (0.005) -0.028 (0.002) -0.241 (.005) -0.045 (0.002)

Log likelihood -22795.229 -4770.8475
n 35311 26007
Pseudo R3 0.1098 0.0902
Wald stat. 4816.35 930.49

1 Restricted model are the models that predict female labour force participation on age, number of
dependent children and education level only.

2 p
(
(·)d

∣∣X) indicates p
(
yd
∣∣X) in the MNL model and p

(
ud
∣∣X) in the BNL model.

3 The basegroups are: for the Number of Children, the no children group; for the Education level,
the Low Qualification group.

4 The marginal effects of the BNL are for the probability of unemployment for the females in the
labour force.

Restricted Kernel Nonparametric Models

The MLCV optimum bandwidths of the nonparametric kernel conditional density esti-

mate are reported in Table 2.3. The values of the bandwidths suggest a nice kernel

conditional density estimate for each of the multinomial dependent variable and the bi-

nomial dependent variable. Where all the bandwidths are sufficiently higher than zero,

which removes the suspicion of a kernel density under-smoothing problem. The band-

widths show also that all the variables are relevant in the model, where the CV method

estimates high bandwidth values for the irrelevant variables, and bandwidths that close

to 1 for the irrelevant discrete variables. Fortunately the estimated bandwidths are not
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showing such a magnitude for any of the variables in the model.

The way to summary of the output of the kernel estimates is completely different

than the way to summary the output of the parametric models. The bandwidths are

not informative about the change in the conditional probabilities of the alternatives as

the marginal effects coefficients in the parametric model. Compare the predictions of

the parametric logit model with the prediction the kernel conditional density graphical

presentation is used, because it is easy and effective approach. The conditional proba-

bilities of the parametric models show a concave shape with age in the employed state

and a convex shape in the inactive state. The change in the functional form of age in

the model changes those shapes directly, so the probabilities are plotted with age in all

figures to illustrate the effect of changing the specification of the functional form of the

continuous variable in the parametric models better. For the categorical variables the

parametric models predict the effect as a shift in the probabilities at all ages equally.

So, choosing age variable to plot the probabilities makes the differences emerge clearly

if the kernel estimator does not predict the effect of the categorical variables equally in

all ages.

Table 2.3: Bandwidths of the restricted nonparametric ker-
nel conditional density estimate of Y d and Ud models in the
pooled sample1.

Multinomial2 Binomial2

conditional pdf conditional function conditional function
Bandwidth
Y d 0.001990 0.001134
Age Xc

age 1.647721 2.008208
Number of Children Xd

nc 0.081346 0.246962
Eduction level Xd

ed 0.020117 0.017490
CV. Optimum Value 0.640072 0.183654
n 35311 26007
CV iterations -22398.87 -84241.91
log likelihood 3 1
1 The bandwidth are estimated using the MLCV method.
2 The types of the kernel functions are: Second Order Gaussian ker-

nel for the continuous variables, Aitchison and Aitken (1979) kernel
function for the unordered discrete variables and Geometrical kernel
function for the ordered discrete variables.

Figures 2.1 and 2.2 show the plots of the predicted probabilities for the employed

alternative and the inactive alternative respectively. The panels in the figures are, from

top to bottom: the sample proportion of females in the economic activity state, the pre-

dicted conditional probabilities of the MNL with quadratic form in age, the predicted

conditional probabilities of the MNL with age dummies, and the predicted conditional

probabilities of the nonparametic kernel conditional density estimate. The predicted

probabilities of the basegroup in each model is the red dotted line in the low qualifica-

tions column. The difference between the conditional probabilities that are predicted

by the MNL model and the kernel conditional density estimator highly distinguishable.
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The quadratic form MNL model makes the predicted probabilities extremely different

from the probabilities that implied by the sample proportions.

The sample proportions show that females with different number of dependent chil-

dren have higher propensity to work in all age groups than other females. Females

below 40 years old are more likely to be economically inactive if they have dependent

children and the proportion of being in the employed state drop substantially at these

young working ages. For the group of females above 40 the differences in employment

propensity decrease due to the increase in the propensity for the females with children,

up to a level that make them equivalent to the propensity of females with no children.

Relaxing the quadratic functional form in age improves the parametric model, the

semi-parametric form in Table 2.2 shows better Log Likelihood value and the LR test

result shows that the semi-parametric form is accepted. The figures show that the pre-

dicted probabilities of the parametric models are improved when the semi-parametric

form is used. The only improvement, however, is that the model becomes able to cap-

ture the diversity in the conditional probability with age and does not enforce a restric-

tive concave/convex shape in the model. Then the semi-parametric model does not

imply a certain age at which the propensity to work for all females reach the peak. The

parametric models enforce certain shapes for conditional probabilities of the females

with different qualification. This contradicts with the behaviour that shown by the sam-

ple proportions. The conditional probabilities that predicted by the parametric method

are very restrictive, and the parametric models failed to capture that females after age

40 have increasing propensity for work even with dependent children.

The kernel estimator, as shown in the plot, explains the heterogeneity in the model

better than the parametric logit model. The conditional probabilities that are estimated

by the kernel conditional density estimator show predicted conditional probabilities that

are consistent with those implied by the sample proportions. The predicts of the kernel

estimator is sensible in explaining the relationships between the variables in the model

and the propensity of females to work. The advantage of the kernel estimate is that it

shows this quality in the predictions without assuming any functional form in the model,

and without using dummy variables or interaction terms. The number of the regressors

in the kernel conditional density estimator is smaller than the number of covariates in

the logit models, even though they specify the same set of independent variables. This

shows that kernel estimation technique is more powerful than the parametric method.

The plots in Figures 2.3 and 2.4 compare between the precision of the predicted

probabilities of the parametric model and the nonparametric kernel estimates in chosen

cells. The 95% confidence bands of the probabilities are shown together with the sample

proportions. Only the MNL quadratic form is chosen for this comparison, where it is

sufficient to illustrate the differences in the level of precision. The Delta method is

used to estimate the pointwise standard errors in the MNL, and the bootstrap method is

used to estimate the standard error of the kernel estimated conditional probabilities, as
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recommended by Li and Racine (2003) and Li and Racine (2007). The confidence bands

of the kernel estimates are wider in the ranges when few sample points are observed,

and in those ranges the probability is either under-estimated or over-estimated. Then

the confidence bands properly capture the information from the sample and indicate

what level at which each pointwise predicted conditional probability should be trusted.

This data density property is ignored by the MNL, which still suggests a high level of

precision even at the ranges when there are no sample observations. In Figure 2.3 the

MNL predicted conditional probability of females with low qualification and no children

is the highest at ages 38-40 while the kernel estimates and the sample proportions show

a decrease in the probability at this range. The worst performance of the MNL model

is in predicting the propensity to work for the females with three or more children. In

reverse to the MNL, the kernel estimate shows an outstanding performance in all sample

cells.
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Panel A: Sample proportions of females in the Employment state. 

   

Panel B: MNL with quadratic form predictions. 

   

Panel C: MNL with dummy variables of age predictions.. 

   

Panel D: Kernel conditional density predictions. 

   

High Qualifications Medium Qualifications Low Qualifications 

 Key:  
 

      
 

 

Figure 2.1: Predicted probability of being employed against age, restricted MNL model.
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Panel A: Sample proportions of females in the Inactive state. 

   

Panel B: MNL with quadratic form predictions. 

   

Panel C: MNL with dummy variables of age predictions.. 

   

Panel D: Kernel conditional density predictions. 

   

High Qualifications Medium Qualifications Low Qualifications 

 Key:  
 

      
 

 

Figure 2.2: Predicted probability of being inactive against age, restricted MNL model.
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Key:                     Sample proportions. 
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                    Kernel conditional density confidence bands 

 

Figure 2.3: Predicted probabilities with the 95% confidence bands for being employed
alternative from the MNL with quadratic form model and the kernel conditional density.
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                     Conditional probabilaity predictions 

 

                     Quadratic models confidence bands 

 

                     Kernel conditional density confidence bands 

 

Figure 2.4: Predicted probabilities with the 95% confidence bands for being inactive
alternative from the MNL with quadratic form model and the kernel conditional density.
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2.5 The Unrestricted Models

The discussion of the restricted models demonstrates that the outcome of the MNL

model deteriorates when defining a restrictive parametric functional forms to capture

the effect of the continuous variables. Kernel conditional density estimates produce

substantially better and reliable results, that match female labour force participation

in the presented literature in Section 3, than the MNL model. The kernel estimates

show that the age at which the propensity to work of females reaches the highest level

is not the same for females with different number of dependent children and different

eduction levels. The restricted model, however, use a smaller number of independent

variables, so it explains less heterogeneity than the unrestricted model that are used in

this section.

In this section we extend the specification of the functional form of the parametric

model in an attempt to make the MNL model produce results similar to that shown by

the kernel estimate. This may reduce the differences in the predicted probabilities be-

tween the MNL estimator and produce results that much better. Li and Racine (2007)

claim that a correctly specified functional form, if available, is preferred to a nonpara-

metric estimator, since a correctly specified parametric model is easier to estimate. In

this research, in the following sections, we examine different specifications for the dis-

crete choice model in an attempt to find the right functional form compared with the

kernel nonparametric estimator.

The MNL model in the restricted model analysis shows improvement when the re-

strictive parametric quadratic form is relaxed to a semi-parametric form. So the new

MNL specifications are developed in this direction, where more dummy variables are

added in the semi-parametric form of the model. This on the other hand means that

more coefficients are added in the model. The new dummy variables that are added are

interaction terms of the age dummy variables with the dummy variables of the categor-

ical variables. The number of the new interaction dummy variables is large since there

are 42 year of age specific dummy variables. In the MNL, because the coefficients are

alternative specific, the interaction of the age dummy variables with each of the other

dummies generate 84 new coefficients. This makes the new models (coefficient rich)

models.

The interaction terms (the slope coefficients) are added to the number of dependent

children and education level dummy variables first. In the models that are estimated

in the sub-samples, however, the interaction terms are added to the number of depen-

dent children dummies only, since all the females in the sub-sample are in the same

education level. The number of the new coefficients, from the quadratic form when

the interaction terms are included, exceed 500 coefficients in the sample of all females

and 300 coefficients in the sub-samples. The model with the interactions of age with

number of children and education level is denoted by age dummies with interactions

1 form. The second interactions model includes, in addition to the interaction of age
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with number of children and education level, the interaction of age with head of house-

hold, Xd
hoh. To avoid a possible perfect multicollinearity problem no interaction terms

are added to age dummy variables with under 5 dependent children, Xd
u5c, since this

is very likely to be correlated with the interactions of age with number of dependent

children. This model is denoted by age dummies with interactions 2 form. The LR

test in Tables 2.5 and 2.4 show that the interaction term models are accepted against

the quadratic form model.

Tables 2.5 and 2.4 show Likelihood Ratio test results and the degrees of freedom

of the test for the unrestricted model. Appendix C shows the functional form of each

model. The null hypothesis is the the coefficients that are added to the model are not

significant, so rejecting the null hypothesis means that the form that is tested against

the linear form is rejected. The panels in each table show the test of the linear form in

the null against the quadratic form, the age dummies form and the interaction dummies

forms. The MNL models are all strongly accepted against the linear form, so the linear

form is not used in any further analysis.

Table 2.4: LR test of the MNL models1

All females sub-samples
High Qual. GCE/GCSE Low Qual

Linear age form LR 1390.3481 244.2615 740.7486 277.0995
vs df 2 2 2 2

Quadratic age form p-value 0.0000 0.0000 0.0000 0.0000

Linear age form LR 1544.6526 335.5853 877.9067 408.0022
vs df 82 82 84 84

Age dummies form p-value 0.0000 0.0000 0.0000 0.0000

Linear age form LR 807.2954 262.7919 471.9074 276.6197
vs df 424 226 244 250

Age dummies with interactions 1 p-value 0.0000 0.0469 0.0000 0.1190
form

Linear age form LR 1008.0401 382.7069 635.7328 389.8687
vs df 510 308 330 336

Age dummies with interactions 2 p-value 0.0000 0.0024 0.0000 0.0227
form

1 Functional form of the MNL models is presented in Appendix C.
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Table 2.5: LR test of the BNL models1

All females sub-samples
High Qual. GCE/GCSE Low Qual

Linear age form LR 63.9777 12.7415 37.6773 19.5673
vs df 1 1 1 1

Quadratic age form p-value 0.0000 0.0004 0.0000 0.0000

Quadratic age form LR 131.5605 53.3878 92.9801 90.0488
vs df 42 40 42 42

Linear age form p-value 0.0000 0.0930 0.0000 0.0000

Quadratic age form LR 285.1997 132.1117 150.5406 185.5728
vs df 209 108 119 159

Age dummies with interactions 1 p-value 0.0004 0.0574 0.0268 0.0734
form

Linear age form LR 328.6070 197.2187 192.4168 158.4192
vs df 252 149 162 161

Age dummies with interactions 2 p-value 0.0008 0.0050 0.0515 0.5428
form

1 Functional form of the BNL models is presented in Appendix C.

The marginal effects for the quadratic form and the semi-parametric form models

are reported in Table 2.6. The marginal effects of the BNL are shown in the last column

of the table. The effect of the new variables, the head of household dummy and under

5 years old dummy, on the estimated probabilities is highly distinguishable. Females

with under 5 years old child/children have 17-18 percentage points lower conditional

probability of being employed than females with no under 5 dependent children. This

exceeds the drop in the propensity to work that is generated by the 2 dependent children

dummy variable. The effect of the head of household dummy on the probability of being

in the employed state is negative, but the estimated drop in the estimated conditional

probability is only 10 percentage points. The marginal effects of the quadratic form

model and semi-parametric form on the sub-samples are presented in the Appendix C.

The marginal effects of the interaction models are not reported for brevity.

The results of kernel conditional density estimator are reported in Table 2.7. The

estimated MLCV bandwidths in the table indicate that the variables in the model are all

relevant. However, the bandwidth of Xd
u5c is estimated very low in the multinomial con-

ditional density in the sample of all females, and in the sub-sample of females with high

qualifications. In the binomial conditional density kernel estimate on the other hand,

the estimated MLCV bandwidth is exactly 0.5, except in the sub-samples of females with

high qualification. This is possibly due to that there are very few females have children

under 5 years old in the sub-samples where the bandwidth of Xd
u5c is estimated equals

0.5.

If a female has an under 5 years old child(ren) she is more likely to be out of the

labour force, economically inactive, rather than being unemployed. So, Xd
u5c = 1, a

female has under 5 child(ren), is not observed sufficiently for the unemployment alter-

84



native. On the other hand, Xd
u5c is correlated with Xd

nc, where Xd
u5c = 1 only if Xd

nc > 0.

For the females in the sample with all dependent children younger than 5 the variable

Xd
u5c adds little information. This is likely to happen for females in the age groups (16-

50), whilst females at higher age group (50-59) are more likely not to have under 5

dependants. Female with high qualifications in the sample have less tendency to be

inactive, the probability of this alternative is almost zero in the qualifications category.

Females with dependent children are observed in the age group (20-50) and their prob-

ability of being inactive is lower than females with other qualifications. This is captured

by the MNL model and kernel estimator jointly. For the kernel estimator the lowest

plots in Figure 2.5 and 2.6 show a remarkable decrease in the predicted probability of

inactive alternative that are estimated by the kernel estimator for the females with high

qualifications. Then for females with high qualification Xd
u5c = 1 is almost not observed

at the inactive alternative.

In contrast to this in the binary modelXd
u5c = 1 is almost not observed for the females

with medium and low qualification. Females in this groups tend to be economically

inactive if they have dependent children. This behaviour of Xd
u5c with both Xd

nc and Y d

affects the estimated bandwidths of the latter. As the estimation of the bandwidths of

kernel fixed bandwidths estimators is affected by the extreme values outliers in the data

in the continuous variables. In the case of smoothing a number of discrete variables,

like in the above, a problem may exist in the estimated bandwidths, which we should

argue that it should have closed look in research.

Figures 2.5 to 2.12 show the predicted conditional probabilities of the: MNL model

with quadratic form in age, the MNL model with age dummy variables, the MNL model

with age dummy variables with interactions 1, the MNL model with age dummy vari-

ables with interactions 2 and the kernel conditional density estimates, respectively from

top to bottom. All the figures show that it is very difficult to draw a conclusion from

the plots of the models with the interaction terms. It seems that adding coefficients

increases the noise in the model. For some interaction dummy variables there are very

few number of observations in the sample. This makes the estimated coefficients impre-

cise. Increasing the number of variables in a parametric model increases the possibility

of multicollinearity problem and the singularity in the data matrix. This is likely to be

the problem with the models with the interaction terms.

Kernel conditional density predicted probabilities show outstanding performance,

similarly to that shown in the restricted model. The propensity to work for the fe-

males is estimated consistently with the suggestions in the literature and female labour

force participation theory. Females with more dependent children and low qualification

level have less conditional probability to be in the employed state or be in the labour

force. The number of children under 5 years old has a substantial effect in reducing

the propensity of females to work. After the work premium age, after 40 years old, the

propensity to work of the females with dependent children become almost similar to the
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propensity of the females with no dependent children. Note that the propensity to work

for females with no dependent children is high at all age groups. Then the differences

in the propensity to work decrease due to the increase of the propensity of the females

with dependent children. However, Figures 2.6 and 2.8 show that females with children

under 5 years old and in the work premium age are still having a substantially lower

propensity than other females.

Table 2.6: Marginal effects for the unrestricted MNL and the unrestricted BNL
models1.

MNL BNL4

Employed Unemployed Inactive Unemployed
Panel A: Models with quadratic form in Xc

age

p
(
(·)d

∣∣X)2 0.733 0.033 0.234 0.037
Age(= Xc

age) 5.128 (0.140) -0.387 (0.049) -4.741 (0.132) -0.650 (0.057)
Age Squared -6.588 (0.188) 0.322 (0.068) 6.266 (0.177) 0.640 (0.078)
Number of Children3 Xd

nc:
1 child -0.072 (0.008) 0.006 (0.003) 0.066 (0.007) 0.013 (0.003)
2 children -0.140 (0.009) 0.001 (0.003) 0.139 (0.008) 0.011 (0.004)
3 or more -0.304 (0.012) 0.008 (0.004) 0.296 (0.012) 0.037 (0.007)

Xd
hoh -0.103 (0.006) 0.020 (0.003) 0.083 (0.006) 0.031 (0.003)

Xd
u5c -0.173 (0.008) -0.007 (0.002) 0.180 (0.008) -0.0001 (0.003)

Education Level3 Xd
ed:

ges/gcse 0.193 (0.006) -0.023 (0.002) -0.170 (0.005) -0.034 (0.002)
high qual. 0.267 (0.005) -0.028 (0.002) -0.239 (0.005) -0.044 (0.002)

Log likelihood -22474.156 -4737.79
Pseudo R2 0.1223 0.0965
Wald stat. 5218.27 908.14

Panel B: MNL with year dummies of Xc
age

p
(
(·)d

∣∣X)2 0.734 0.033 0.233 0.037
Age dummies the marginal effects of the

age dummies are not shown
Number of Children3 Xd

nc:
1 child -0.060 (0.008) 0.002 (0.003) 0.058 (0.008) 0.007 (0.003)
2 children -0.124 (0.009) -0.003 (0.003) 0.127 (0.009) 0.004 (0.004)
3 or more -0.283 (0.013) 0.003 (0.004) 0.280 (0.013) 0.025 (0.007)

Xd
hoh -0.105 (0.006) 0.022 (0.003) 0.085 (0.006) 0.033 (0.003)

Xd
u5c -0.189 (0.010) -0.003 (0.003) 0.192 (0.010) 0.006 (0.004)

Education Level3 Xd
ed:

ges/gcse 0.195 (0.006) -0.023 (0.002) -0.172 (0.005) -0.034 (0.003)
high qual. 0.265 (0.005) -0.028 (0.002) -0.239 (0.005) -0.042 (0.002)

Log likelihood -22397.00 -4703.9989
Pseudo R2 0.1253 0.103
Wald stat. 5313.32 1035.21
n 35311 26007
1 Unrestricted models add Xd

hoh and Xd
u5c dummy variables to the restricted models in Table 2.2 .

2 p
(
(·)d

∣∣X) indicates p
(
yd
∣∣X) in the MNL model and p

(
ud
∣∣X) in the BNL model.

3 The basegroups are: for the Number of Children, the no children group; for the Education level,
the Low Qualification group; for Xd

u5c, no under 5 children; Xd
hoh, not head of the household.

4 The marginal effects of the BNL are for the probability of unemployment for the females in the
labour force.
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Table 2.7: Bandwidths of the unrestricted kernel nonparametric
conditional pdf models for for all females and the labour force
subsample1.

Highest Qualification sub-samples
All females High Qual. GCE/GCSE Low Qual

Panel A: Multinomial Kernel nonparametric conditional density2

Eco. activity Y d 0.004172 0.006167 0.004722 0.002627
Age Xc

age 1.960021 1.691900 1.716179 2.532146
Number of Children Xd

nc 0.163338 0.202886 0.129685 0.195695
Head of household Xd

hoh 0.069432 0.2316024 0.038003 0.086186
Under 5 children Xd

u5c 6.92e-16 2.58e-14 0.035466 0.015003
Eduction level Xd

ed 0.030360
CV. Optimum Value 0.631176 0.446865 0.653140 0.798135
log likelihood -21900.44 -4420.153 -10402.42 -7079.773
CV iterations 1 5 2 2
n 35311 10125 16181 9005

Panel B: Binomial Kernel nonparametric conditional density2

Eco. activity Y d 0.001533 0.001703 0.001628 0.001668
Age Xc

age 2.030528 2.252071 2.055114 1.972357
Number of Children Xd

nc 0.365660 0.189327 0.278545 0.712765
Head of household Xd

hoh 0.030499 0.269757 0.008774 0.040048
Under 5 children Xd

u5c 0.5 0.243203 0.5 0.5
Eduction level Xd

ed 0.027529
CV. Optimum Value 0.181522 0.113285 0.191092 0.278112
log likelihood -4614.677 -974.8996 -2271.539 -1368.491
CV iterations 1 5 5 5
n 26007 8869 12111 5027
1 The bandwidth are estimated using the MLCV method.
2 The kernel functions are: Second Order Gaussian kernel for the continuous

variables, Aitchison and Aitken (1979) kernel function for the unordered dis-
crete variables and Geometrical kernel function for the ordered discrete vari-
ables.
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Figure 2.5: Probability of employment for the females who are not head of household
and not have under 5 years old children.
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Figure 2.6: Probability of employment for the females who are not head of household
and have under 5 years old children.
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Figure 2.7: Probability of employment for the females who are head of household and
have no under 5 years old children.

90



M
N

L
 w

it
h

 q
u

a
d

ra
ti

c 
fo

rm
 i

n
 

A
g

e 

   

M
N

L
 w

it
h

 a
g

e 
d

u
m

m
iy

 

v
a

ri
a

b
le

s 

   

M
N

L
 w

it
h

 a
g

e 
d

u
m

m
ie

s 
a

n
d

 

in
te

ra
ct

io
n

 (
fo

rm
 1

) 

   

M
N

L
 w

it
h

 a
g

e 
d

u
m

m
ie

s 
a

n
d

 

in
te

ra
ct

io
n

 (
fo

rm
 2

) 

   

K
er

n
el

 c
o
n

d
it

io
n

a
l 

d
en

si
ty

 

   
 

Age Age Age 

 High Qualifications Medium Qualifications Low Qualifications 

 

Key: ●  No dependent children 

 

 ●  1 dependent child 

 

 ●  2  dependent children 

 

 ● 3 or more dependent children 
 

Figure 2.8: Probability of employment for the females who are head of household and
have under 5 years old children.
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Figure 2.9: Probability of inactive for the females who are not head of household and
have no under 5 years old children.
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Figure 2.10: Probability of inactive for the females who are not head of household and
have under 5 years old children.
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Figure 2.11: Probability of inactive for the females who are head of household and have
no under 5 years old children.
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Figure 2.12: Probability of inactive for the females who are head of household and have
under 5 years old children.
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2.5.1 The Nonparametric Tests

Kernel Smoothing Specification tests

The correct specification test for the parametric models are performed using the MLCV

bandwidths of the kernel conditional density estimate. The results of the tests are shown

in Tables 2.8 and 2.9. Under the null hypothesis that the test statistic converges to

a standard normal. If the null hypothesis is not true, the test statistics converges in

probability to a positive number. The distribution of the test statistic is approximated

empirically using the bootstrap method that was described in Section 2.3.3. The number

of bootstrap samples is 399. The test is one side tail test. The p-value that are reported

in the table shows that the empirical distribution of the test statistics drifts from that

of a normal distribution. The sign and the empirical distribution of the test statistic

depends crucially on the term
I(y∗i=y∗j )−p(y∗i |xj ,β̂

∗
)

p(y∗i |xi ,β̂
∗
)

. The test statistic can be negative in

the case of a rare events, like in the case of the number of females in the unemployment

alternative, p(Ud = 1) and p(Y d = 1). This case is not considered in any of the papers

that developed these tests. Then the bootstrap empirical distribution drifts to the left,

but this may not affect the test decision where the null is not true and the distribution

is different than standard normal.

The Zhang test and Fan test produce similar results regarding the correct specifica-

tion form of the MNL models. The quadratic form MNL and the semi-parametric form

in age are both highly rejected in all samples. The MNL model with the interaction

terms 1 model on the other hand, is accepted in Zhang test in the sample of all females

and the sub-sample of females with medium qualifications. The MNL with interactions

2 fails in the sample of all females. Both tests require very hard calculations, therefore,

it becomes very difficult to approximate the bootstrap empirical distribution due to the

large sample size. The p-value of the tests in the sub-samples indicate less difference

between the parametric MNL model with interactions 2 and the kernel conditional den-

sity model. The MNL with interactions 2 specification failed to reject in all sub-samples,

except the sub-sample of females with low qualifications.

The result of the BNL specification tests are very weak compared with the results

of the tests of the MNL models. A problem appeared with BNL specification tests, that

is generated from the distance term
I(y∗i=y∗j )−p(y∗i |xj ,β̂

∗
)

p(y∗i |xi ,β̂
∗
)

. In most bootstrap samples this

term is either zero or an undetermined (0
0
) term. This is generated by that; I

(
y∗i = y∗j

)
=

p
(
y∗i |xj , β̂

∗)
or p

(
y∗i |xi , β̂

∗)
= 0 in most bootstrap samples. The second case occurs

more in the Fan, Li and Min (2006) test because the variance of the distance measure

depends on the BNL the predicted probabilities. The tests seems to be working better in

the case where there are no rare events in the model. The only results that are produced

successfully are the results of the test of the BNL model with quadratic form in age. For

other forms, the test statistic is calculated successfully for the semi-parametric form

model but the bootstrap empirical distribution fails, while both test statistic and its
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empirical distribution are completely failed in the interaction form models.

The correct specification tests illustrate that; the quadratic, semi-parametric and the

interactions 1 MNL forms are all rejected against the kernel multinomial conditional

density estimates. However, as appeared in the plots above, the MNL with interactions

2 is parametrically an adverse specification which exhibits serious problems like multi-

collinearity. The conditional probabilities that are estimated by the interaction 2 models

merely sensible. For the binomial conditional density our results allow to make decision

about the quadratic model only. The quadratic form BNL model is rejected against the

kernel estimate.

The discrete choice correct specification tests are slow, apply tough calculations and

are difficult to manage. Despite that the logit model is an easy type of discrete choice

models compared with multinomial probit, so that the bootstrap method and the simu-

lation of the dependent variable to estimate the empirical distribution of the tests is easy

theoretically, it has been difficult to approximate the distribution of the test statistics in

many samples.

Table 2.8: Smoothing specification tests for the MNL models1

MNL Models2 All females3 High Qual sub-sample
Zhang Test Fan Test Zhang Test Fan Test

Test Stat. Sig Test Stat. Sig Test Stat. Sig Test Stat. Sig
MNL Model 1 97.831 0.000 42.963 0.000 4.708 0.000 2.732 0.003
MNL Model 2 84.373 0.000 37.007 0.000 1.9486 0.000 1.020 0.000
MNL Model 3 16.905 0.644 7.168 0.000 -8.9820 0.000 -4.950 0.000
MNL Model 4 naa naa naa naa 20.495 0.053 -11.946 0.138

Mid. Qual. sub-sample Low Qual sub-sample
Zhang Test Fan Test Zhang Test Fan Test

Test Stat. Sig Test Stat. Sig Test Stat. Sig Test Stat. Sig
MNL Model 1 50.677 0.000 27.230 0.000 28.855 0.000 8.793 0.000
MNL Model 2 38.927 0.000 20.926 0.000 10.904 0.000 3.213 0.000
MNL Model 3 5.640 0.065 3.013 0.017 -8.364 0.000 -2.522 0.000
MNL Model 4 -15.411 0.192 -8.030 0.247 -23.632 0.000 -7.043 0.006
1 Number of bootstrap samples is 399.
2 MNL models specification is presented in Appendix C.
3 naa denotes that the test is not performed for the sample of all females.
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Table 2.9: Smoothing specification tests for the BNL models1

BNL Models2 All females3 High Qual sub-sample
Zhang Test Fan Test Zhang Test Fan Test

Test Stat. Sig Test Stat. Sig Test Stat. Sig Test Stat. Sig
BNL Model 1 12.456 0.000 8.078 0.000 0.890 0.050 0.586 0.048
BNL Model 24 5.717 0.000 3.768 0.000 0.646 nab 0.341 nab

BNL Model 34 -4.167 naa -2.520 naa nab nab nab nab

BNL Model 44 naa naa naa naa nab nab nab nab

Mid. Qual. sub-sample Low Qual sub-sample
Zhang Test Fan Test Zhang Test Fan Test

Test Stat. Sig Test Stat. Sig Test Stat. Sig Test Stat. Sig
BNL Model 1 3.851 0.005 2.612 0.005 8.377 0.000 5.614 0.000
BNL Model 24 -1.211 nab -0.819 nab -1.046 nab -0.698 nab

BNL Model 34 nab nab nab nab nab nab nab nab

BNL Model 44 nab nab nab nab nab nab nab nab

1 Number of bootstrap samples is 399.
2 MNL models specification is presented in Appendix C.
3 naa denotes that the test is not performed for the sample of all females.
4 nab denotes that the empirical bootstrap distribution failed to estimate.

Tests for density equality

The kernel conditional density estimate predicts wide differences in the probability of

being employed for females with different number of children and different qualifica-

tions levels. Our objective in this final investigation in this subsection is to examine the

differences the conditional density of Y d
i and Ud

i . In the kernel estimation framework

there are methods to test the difference between conditional densities as well as be-

tween unconditional densities, using the densities estimated in the sub-sample and the

cells of the categorical variables in the pooled sample. To apply the conditional density

equality test we do need to write our own code in R, as we did to the discrete choice

specification tests and the kernel estimators in the following chapters. Also, we do not

need to replicate the simulations in Li et al. (2009), similarly to what we did to apply

the discrete choice specification tests. This process is very long and difficult to manage

within our PhD research period. However, the differences in the conditional density

estimates imply differences in the joint and marginal densities of the variables in the

model. So, our argument in this subsection is that testing the univariate unconditional

densities in addition to the joint and marginal densities might provide information about

the sources for differences in the estimated conditional densities.

Similarly to the correct specification smoothing tests, the bootstrap method is used to

estimate the empirical distribution of the test statistic. The number of bootstrap samples

is 399. The results are reported in Table 2.10. The unconditional kernel densities that

are used in the test are; the univariate densities of the dependent variable, age, number

of dependent children, under 5 years old children and head of household, in addition

to the multivariate mixed type joint density and marginal density. The test is performed

smoothly in all samples except for the joint density in the sample of all females.
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Table 2.10 shows two tests for each unconditional density function; first a test that

applied for the sample of all females, which uses the bandwidths that are estimated

once in that sample, and test the equality of densities between different qualification

levels. Which means that the categories of Xed are used in the null hypothesis. If the

unconditional density is the same in all the categories of Xed, then the null hypothesis

will be accepted in all three partial tests (high qualifications category v. medium qual-

ifications category, high qualifications category v. medium qualifications category and

medium qualifications category v. low qualifications category). Second, to test whether

the unconditional kernel densities that are estimated in the sub-samples are the same.

For the same variable three unconditional densities are estimated, one kernel uncondi-

tional density in each sub-sample, and the MLCV bandwidths are obtained to the test.

To clarify this in the table we refer to the first test by the same bandwidths test and

the second test as the different bandwidths test. The number of females is denoted

by n1, n2 and n3 for the females in high qualifications, medium qualifications and low

qualification in each category/sub-sample.

The null hypothesis that the unconditional densities is the same is rejected in all

samples, except for the unconditional density of Xd
u5c for the females with high qualifi-

cation and the females with medium qualification. The standardised test statistics for

the estimated density of the dependent variable, the estimated joint density and the es-

timated marginal density functions are in general higher for the tests between the group

of females with high qualifications and the group of females with low qualifications, i.e.

in the tests of f̂1 (·) = f̂3 (·). The differences between the univariate unconditional den-

sities estimates of the variables that included in the model cause the differences in the

joint and the marginal densities estimates, since the later are multivariate unconditional

densities that include those variables.

The differences that are captured by the unconditional densities equality tests are

very likely to be affecting the conditional density estimates. Unconditional density

equality tests show that Y d, Ud, Xc
age, X

d
nc, X

d
hoh and Xd

u5c
2 are all having density func-

tions that are dissimilar for females with different highest qualification levels. Those

differences are influence on the conditional probability function kernel estimates and

generate the different in the pointwise conditional probabilities that shown in the plots

above.
2Except between females with high qualification and females with medium qualifications
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Table 2.10: Unconditional densities equality tests

Multinomial models sub-samples
f̂1 (·) = f̂2 (·) f̂1 (·) = f̂3 (·) f̂2 (·) = f̂3 ()

Test Stat Sig. Test Stat Sig. Test Stat Sig.
Y d

Same bandwidths 202.37 0.000 1030.63 0.000 461.77 0.000
Different bandwidths 202.26 0.000 1030.50 0.000 461.93 0.000

Xc
age

Same bandwidths 1365.63 0.000 141.31 0.000 -462.86 0.000
Different bandwidths 215.35 0.000 127.54 0.000 189.54 0.000

Xd
nc

Same bandwidths 138.96 0.000 12.38 0.000 109.39 0.000
Different bandwidths 138.96 0.000 12.38 0.000 109.38 0.000

Xd
hoh

Same bandwidths 2.32 0.005 19.40 0.000 41.02 0.000
Different bandwidths 2.16 0.005 19.50 0.000 41.24 0.000

Xd
u5c

Same bandwidths 0.18 0.281 4.05 0.000 2.75 0.000
Different bandwidths 0.04 0.283 4.05 0.000 2.91 0.000

Marginal density
Same bandwidths 913.91 0.000 809.30 0.000 -252.00 0.000
Different bandwidths 196.86 0.000 -252.99 0.000 -388.25 0.000

Joint density
Same bandwidths na na 655.10 0.000 666.90 0.000
Different bandwidths -120.46 0.000 450.43 0.000 453.00 0.000

Binomial models sub-samples
f̂1 (·) = f̂2 (·) f̂1 (·) = f̂3 (·) f̂2 (·) = f̂3 ()

Test Stat Sig. Test Stat Sig. Test Stat Sig.
Ud

Same bandwidths 5.78 0.000 23.94 0.000 9.51 0.000
Different bandwidths 5.70 0.000 23.73 0.000 9.79 0.000

Xc
age

same bandwidth -451.29 0.000 -383.51 0.000 -266.86 0.000
Different bandwidths 120.49 0.000 81.73 0.000 100.94 0.000

Xd
nc

Same bandwidths 70.14 0.000 10.68 0.000 93.39 0.000
Different bandwidths 70.14 0.000 10.68 0.000 93.39 0.000

Xd
hoh

Same bandwidths 8.32 0.000 1.53 0.008 14.12 0.000
Different bandwidths 8.16 0.000 1.78 0.008 14.39 0.000

Xd
u5c

Same bandwidths 3.00 0.000 21.17 0.000 11.28 0.000
Different bandwidths 2.88 0.000 21.29 0.000 11.53 0.000

Marginal density
Same bandwidths 772.56 0.000 525.60 0.000 515.84 0.000
Different bandwidths -153.93 0.000 -33.67 0.000 457.00 0.000

Joint density
Same bandwidths 742.74 0.000 508.02 0.000 491.65 0.000
Different bandwidths -163.16 0.000 349.05 0.000 349.05 0.000

1 f̂1 (·) denotes the estimated kernel unconditional density for the high qualification
females group. f̂2 (·) and f̂3 (·) denote the estimated kernel unconditional density
for the medium and low qualification females groups respectively.

2 The test with same bandwidth uses the pooled sample estimated kernel density,
the null hypothesis assumes that unconditional density is the same in the two cate-
gories.

3 The test with different bandwidth uses the kernel unconditional density in the sub-
samples of education level. The null hypothesis is that the density is the same in
the two sub-samples.

4 na=missing test results.
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2.6 Summary and conclusions

This research estimates female labour force participation decision in the UK using a

sample of females in the working age 16-59 from the UK labour force survey in 2007.

The objective of the research is to estimate the conditional probability of females work-

ing status, whether employed, unemployed or economically inactive, using a mixed

type independent variables set that includes the basic factors that affect female propen-

sity to work, like fertility (the number of dependent children and the number of under

5 years old children) and education level. The labour economic literature and the ap-

plied econometrics literature are rich with empirical research on the female labour force

participation topic, but most of the available work uses parametric techniques. The con-

tribution of this research is that it applies nonparametric kernel techniques for the first

time to a UK individual level female labour force participation data.

The nonparametric technique that are used is kernel method with fixed bandwidth

(KMWFB) utilising the mixed data types (MDT) estimation framework. The kernel

method estimates are compared with the parametric multinomial logit model. The com-

parison uses discrete choice smoothing specification tests that are developed recently in

nonparametric estimation techniques. The results are supported with graphical presen-

tation to illustrate the differences between the sample predictions that are produced by

each technique. Density equality tests are used to test whether the unconditional kernel

density of the variables in the model are the same, using the categories of the education

level variable in the pooled sample in addition to testing the equality of the uncon-

ditional densities among the sub-samples. The division of the sample of all females

into smaller sub-samples is useful to overcome the computation problem that encoun-

ters the estimation of the kernel conditional density and in performing the smoothing

kernel specification tests.

The research uses different specifications for the continuous independent variable

(age) in the parametric logit model. The quadratic form in age, which strongly sup-

ported in the literature of female labour force participation, is used. In addition a

semi-parametric form is used, which replaces the quadratic form in age with year of

age dummy variables. The kernel conditional density estimate shows an outstanding

performance in estimating female propensity to work compared with the parametric

logit models that use those two forms. The correct specification smoothing tests failed

to accept the parametric logit models with quadratic form and with semi-parametric

form with very high significance. The sample pointwise predictions of the parametric

models show that the logit predicted probabilities are consistent with the theory of fe-

male labour market input in respect to the effect of fertility and education. But they are

highly restrictive and can only be interpreted in a very narrow context. The conditional

probabilities that predicted by the kernel conditional density function, in contrast to the

logit model, are highly consistent with the female labour force participation theory, and

explain the heterogeneity in the sample better.
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Based on those outcomes the research extends the semi-parametric form to a form

that uses interaction terms of age dummies with number of children and eduction. The

interaction terms are added into two stages; (i) adding the interaction terms of age with

the number of dependent children and with education level, (ii) adding the interaction

terms with the head of household dummy to the interaction terms that are used in (i).

The objective of the interaction terms models is to make the parametric logit model

capture the same properties that captured by the kernel estimator. However, despite

that the smoothing specification tests show a decrease in the differences between the

probabilities that are estimated by the kernel estimator and the interaction term model

in (ii), the interaction terms model encounter a problem of multicollinearity, due to the

large number of regressors that are included, which makes the model ineffective.

The kernel conditional density estimate shows outstanding performance in estimat-

ing the conditional probabilities of female propensity to work. The properties that are

captured by the kernel conditional density estimate are not captured by the discrete

choice parametric model with any of the specifications that used in this research. The

plots of the predicted probabilities demonstrate the outstanding qualities of the ker-

nel estimate compared with the discrete choice parametric model. The information

provided by the plots is useful, where they show that the heterogeneity between the

females that affect propensity to work varies across age even for females with the same

number of children and qualifications. The results of the kernel estimator are highly

consistent with the theory of female labour force participation in the literature.

The kernel conditional density estimates show that female propensity to work is

highly dependent on the number of dependent children, particularly with under 5 years

old dependent children, and varying between females with different qualifications. The

effect of number of children on the propensity to work is negative, and positive in the

propensity of being economically inactive. In contrast, the effect of education level

is positive in the propensity to work, where females with higher qualifications have

higher tendency to be employed. Females with no dependent children have always high

propensity to be employed. The propensity to work of females with dependent children

is lower than the propensity of females with one dependent child, particularly in the age

group 25-35 where the differences are extremely high. However, for the females after

the working premium age, 45-59, the propensity to work seems indifferent with respect

to the number of dependent children. This may indicate that females in this age group,

45-59, have good working experience, are mature with regard to their responsibilities at

home and work, so that they could participate in the labour force and work to support

their dependent children. However, the propensity to work for females in the young

group, 25-35, drops substantially with the number of dependent children because they

are more likely to have under 5 years old dependent children.
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Chapter 3

The Estimation of the Grouped Time
Conditional Hazard Rate Using Kernel
Method with Mixed Data Types

Chapter Abstract

This chapter suggests a new kernel hazard rate estimator for discrete time single state tran-
sition models. The estimator is developed to estimate the hazard rate conditioning on mixed
data types time invariant independent variables. Most of the duration models that are esti-
mated in economics are measured in discrete (grouped) time unit and estimated conditional
on continuous and categorical variables together. The research develops an estimator that can
be the kernel nonparametric counterpart of the cloglog discrete time proportional hazard rate
estimator of Jenkins (1995).

The estimator is extended from the continuous time external kernel hazard estimation frame-
work of Watson and Leadbetter (1964a,b), and uses the sub-survival kernel function estimation
method for the conditional hazard of Beran (1981). The discrete time hazard estimator of Tutz
and Pritscher (1996), and the mixed independent variables smoothing technique for the con-
ditional distribution function of Li and Racine (2008), provide good resources to develop the
discrete time kernel hazard estimators successfully. The estimation of the kernel hazard rate
in discrete time has many advantages over the continuous time estimator, where the Boundary
Bias problem is treated better and reduced.

A Monte Carlo simulation study is constructed to examine the new kernel hazard estimator.
The naive bandwidths are used in the simulation to reduce the computation cost. The new
estimator shows good performance in spite that the naive bandwidths reduces the quality of
kernel estimates in the simulation study compared with the PH models. A data-driven method
to estimate the bandwidths of the discrete time kernel hazard is needed to improve the estimator.
Extending the estimator to include time varying covariates is left for future research.

Key Words: Nonparametric, hazard rate, survival function, grouped time hazard,
Weibull hazard, proportional hazard, external kernel hazard, Beran kernel hazard, sin-
gle state transition, , sub-survival function, näıve bandwidths.

JEL Classification: C14, C15, C24, C25, C51, C63.
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3.1 Introduction

The estimation of duration models, or survival models, using kernel method is one of

the sophisticated, but also the less developed, areas of nonparametric kernel estimation

method in econometrics. The hazard rate and the survival function have many applica-

tions in economics. For example, in modelling the duration of the states for individuals

in given labour market states - unemployment, employment, out of the labour force etc,

in addition to applications in trade, finance, poverty and many other fields. In contrast

to other disciplines, because of the nature of the data being analysed, survival models in

economics and social sciences are often estimated in discrete time units, i.e. in intervals

of weeks, months, quarters, ...etc. Although the underlying data generation process in

the population is in a continuous time, the hazard can only be estimated in the discrete

(grouped) time. The discrete time hazard estimator is then known also as the interval

censored data hazard estimator. The hazard is estimated using the observed number

of transitions in each interval without considering the sequence of the transitions in the

underlying continuous time inside the intervals.

The development of the duration models in the discrete time must not ignore the

underlying continuous time structure of the process. The discrete time model can be

developed using the information from the observed part of the continuous time, which

are the time index points (the points at which the observation are taken). The grouped

time hazard estimator is theoretically not affected by whether the time index points

are defined at the beginnings or at the ends of the intervals. The continuous time

survival function at each time index point equals the discrete time survival function at

the interval corresponding to that point. This explains the use of the continuous time

survival function to construct the hazard rate and the survival function formulas in the

grouped time transition model.

The estimation of the discrete time hazard rate is well defined in the literature of the

fully parametric and semi-parametric estimation techniques in econometric. Standard

references are Lancaster (1990), Van den Berg (2001), Wooldridge (2002), Cameron

and Trivedi (2005) and Jenkins (2005). But all of them say very little about the methods

to estimate a hazard rate using the kernel method, which are known as the kernel

hazard (KH) estimators. The interest in the nonparametric kernel method is growing

because it is showing impressive performance in many applications, particularly in the

models that include discrete variables. Chapter 2 shows the high quality results that are

possible using the kernel method estimators. The use of the kernel method in Survival

Analysis is quite popular in medicine and industry, where well established estimators

for the conditional and the unconditional hazard and survival functions are available.

However, most of those estimators are suitable for the continuous time hazard models

and cannot be applied directly to the discrete time hazard cases. So, to apply kernel

method to duration models in economics new estimators are need to be developed.

There are two ways to estimate a continuous time hazard rate using the kernel
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method, the external approach and the internal approach, see Nielsen and Linton

(1995) and Spierdijk (2008). The external approach tries to estimate the hazard rate

directly by smoothing the data, while the internal approach attempts to estimate the

cumulative hazard function first. Intuitively, those two approaches are equivalent to the

kernel method approaches for density and cumulative distribution functions estimation.

In Chapter 1 it is shown that the estimation of the density function is easier than the

estimation of the cumulative distribution function. A considerable attention must be

paid to the cumulative distribution function estimator to avoid producing estimates

that lay outside the [0, 1] range. For discrete variables an estimator of a cumulative

distribution function is little important, where the discrete variable density estimator is

sufficient. The same is true in the hazard estimation. Where, we argue that developing

an estimator for the discrete time hazard is sufficient and there is no need to develop an

estimator for the discrete time cumulative hazard. The external approach, suggested by

Watson and Leadbetter (1964a,b), is easier to be adopted in the discrete time because

it can be extended to this time setting easily and directly. Accordingly, we will focus

on the external approach of kernel hazard estimation only to develop the discrete time

estimator.

Using the kernel method to estimated the hazard in discrete time appeared to be

rarely considered in the literature, we find only Tutz and Pritscher (1996), who suggest

a kernel hazard estimator for the Life Tables discrete data. Since the development of

the kernel smoothing method with mixed data types by Li and Racine (2003), Hall et al.

(2004), Hall et al. (2004), Li and Racine (2008), and Li and Racine (2007), a discrete

time hazard with mixed independent variables appeared to be not attempted.

The objective of this research is to introduce a kernel estimator for the discrete time

single state transition conditional hazard rate model, conditioning on mixed type inde-

pendent variables. The suggested estimator extends the existing external kernel hazard

estimator of the continuous time transition models. The construction of the estimators

in the continuous time and the grouped time setting is studied to show the relationship

between the density, distribution, survival and hazard functions in these two time set-

tings clearly. The grouping scheme of the continuous time is studied to demonstrate

our choice of the kernel function that used to smooth the grouped time variable in our

estimator. The research deals with the right censoring problem only, problems like left

truncation, left censoring and right truncation are not considered. The technique is

developed when only time invariant independent variables are included. The devel-

oped kernel estimator is compared with the popular discrete time proportional hazard

method of Jenkins (1995) using the simulation technique. The asymptotic properties of

the kernel hazard are not discussed and left for future research.

The research considers the duration models in the homogeneous case only, i.e when

it is assumed that there is no effect of the unobserved heterogeneity in the model. The

unobserved heterogeneity problem is widely considered in the duration models in eco-
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nomics, the mentioned references above to Horowitz (1999), Baker and Melino (2000),

Abbring and Van Den Berg (2007) discuss this topic thoroughly in the parametric hazard

rate estimation framework. But not discussed sufficiently in kernel estimation techiques.

To control for the effects on the unobserved components, v, in the parametric PH esti-

mation framework, a function that depends only on the unobserved components, g(v),

is introduced in the model and a distribution assumption that regards, v, is added.

Abbring and Van Den Berg (2007) shows that the asymptotic distribution of the unob-

served heterogeneity is Gamma but in the literature there are models that use Gaussian

or nonparametric distribution assumptions. The unobserved components are assumed

to be uncorrelated with the independent variables and time fixed. In the parametric

estimation of the duration model v is treated as random effects component. The para-

metric estimation framework controls for the effect of the unobserved heterogeneity by

using techniques that developed by the mixing the distribution assumptions of the tran-

sition time, which is discussed more in the next section and the next chapter, and the

distribution assumption of the unobserved heterogeneity (a mixture models estimation

technique).

In the kernel estimation framework, the literature is little informative about the ways

to handle the unobserved heterogeneity problem. We find only a claim by Froelich

(2006), in a comparison between the nonparametric regression and the binary logit

model, says that the kernel regression is less affected by the problem of the unobserved

heterogeneity than the parametric discrete choice models. After a sufficient search in

this subject and in the ways of estimating mixed models using the kernel method, we

find that it is very difficult theoretically to develop the discrete time hazard estimator on

a mixed distribution assumptions. In addition to that, smoothing random effects is shyly

discussed in kernel estimation framework. However, we distinguish in the literature few

techniques that are promising into providing solutions to the mixed distributions issue,

like the re-weighted kernel density method of Hall and Turlach (1999) and Hazelton and

Turlach (2007) which is discussed more in Wang and Wang (2007), and the constrained

kernel density technique of Chen (1997) and Hall and Presnell (1999), which based on

the empirical likelihood method, with a similar technique in the kernel hazard rate

estimation presented by Hall et al. (2001). All those estimation methods are discussed

in Chapter 2. For the conditional hazard rate, the weighted local constant estimator

of Cai (2002), see Li and Racine (2007), and the constrained nonparametric kernel

regression method of Racine et al. (2009) are all attractive estimators that could be

considered. Those are a few kernel methods that we think they may be useful to improve

the conditional kernel hazard estimator that suggested in this research.

With the short research that available in this field, we consider this research one

of the very early attempts to drive a kernel estimator for discrete time hazard rate

using the mixed data types (MDT) estimation framework. The main contribution of this

research is that it suggests and examines a new estimator in the well known, novel,
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kernel estimation technique. We expect to find many applications to our new estimator

in economics and other fields. The chapter is organized as follow: Section 3.2 interprets

the main terms in the Survival Analysis literature and the Economic Duration models,

Section 3.3 and 3.4 illustrate the continuous time kernel hazard estimators and our

discrete time kernel hazard estimator respectively. Then a simulation study to compare

the kernel discrete time hazard with the discrete time PH models is designed in section

3.5. The last section summarises the conclusions of the research.

3.2 Definitions

The duration models as defined in Cameron and Trivedi (2005, page 573) are the “mod-

els of the length of the time spent in a given state before transition to another

state”. This type of economic problems can be addressed in many forms, for example:

in the individual level data, the duration of employment and unemployment spells; in

the household level data, modelling the length of time that a household stay under the

poverty line, and so on. The period that a unit of research - we refer to them as the

individuals - spend in a particular state, is known as the spell length or the duration

length. A transition means that a successful shift to another state is observed for an

individual in the sample. The period that the individuals spend in the state and the

probability of transition conditional of the period spent in the state are of special inter-

est in the duration models. The relationship between the probability of transition and

the spell length is known as the duration dependence, it can be negative if the prob-

ability decreases with the increase in the duration of the spell, positive if the opposite

or, rarely, they can be not interdependent. The probability of staying in the state after

a certain period is known as the survival probability and is measured by the survival

function, which is the complement of the cumulative distribution function. The survival

function will play the key rule in the development of the grouped time hazard model.

In the duration models, we are specially interested in the hazard rate, Cameron and

Trivedi (2005, page 576) defines the hazard as “the instantaneous probability of leav-

ing a state conditional on survival time”. The hazard is the density function divided

by the survival function. The estimation of the hazard rate, and also the survival func-

tion, requires assumptions about the distribution of the elapsed time in the spell. The

assumptions focus on the distribution function of the continuous time. The estimation

of the process in the grouped time though, must consider those distribution assump-

tions as assumptions of the underlying continuous time. To estimate a duration model

in the continuous time, the time variable can assumed to have Exponential, Weibull,

Gompertz, Log-normal, Log-logistic, or Gamma distribution. In the grouped time mod-

els there are less options, where only Exponential, Weibull or Log-logistic assumptions

are used for the underlying continuous time, because those are the distribution as-

sumptions that work with the proportional hazard (PH) estimation framework. The
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less number of assumptions in the grouped time case is because only the proportional

hazard estimation framework is used in discrete time transition models. Whilts in the

continuous time duration models both the accelerated failure time (AFT) estimation

framework and the proportional hazard estimation framework are used, see Jenkins

(1995, 2005), Sueyoshi (1995) and Allison (1982).

The proportional hazard estimation framework assumes that the conditional hazard

is a product of two functions: i) a baseline hazard that depends on time only, this

function measures the duration dependence of the spell. Although it can be identified

via the distribution assumptions, the model can still be estimated if it is not identified,

where a Partial Likelihood, a Marginal Likelihood or a Profile Likelihood method can be

used. ii) the observed heterogeneity function, which is a function on the contribution

of the independent variables to the baseline hazard, this function is on the independent

variables only and independent of time. The AFT on the other hand, estimates the

conditional hazard in a regression form. Therefore, all the terms in the AFT model,

like the intercept and the coefficients, should be identified. In the continuous time an

estimated conditional hazard under one of the distribution assumption above in a PH

form can easily be compared with its corresponding AFT form, the coefficients of the

independent variables can easily be re-parametrize from one form to another.

The grouping of the time affect the estimation of the baseline function only in the

PH model. The contribution of the independent variables to the baseline hazard is

unchangeable with the grouping of the transition time variable. The observed hetero-

geneity function is unaffected by the grouping because it is independent of time. So,

the coefficients of the grouped time PH model are the same as the coefficients of the

continuous time PH and can be re-parametrized to the AFT form. The grouped time

models have more advantages over the continuous time models. Where the occurrence

of tie transitions in the sample do not complicate the estimation. If there is any lake

of identification problem from the grouping it affects the baseline hazard function only,

but is treated in the grouped time PH model by introducing a semi-parametric or a non-

parametric specification of the baseline hazard function in the model. Those facts are

highly considered in the development of the simulation study in the last section of this

research.

The censoring problem is the most common problem that affects the estimation of

the duration models, that occurs when the exact start date of the spell or the date of

transition is not observed. Generally, the censoring occurs when the spell is not observed

in full and the information about the length of time in the state is incomplete for some

units in the sample. In other words, the information is unavailable for an individual

after a certain period in the state, so the transition is not observed for that individual.

The right censoring is problematic in the duration models and uninformative, Klein and

Moeschberger (2003), and complicates the estimation because all that known about the

right censored individuals is that the transition will occur to them at some point in the
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future.

There are other forms of the censoring problem, where the spell can be censored

from the left if the information about the beginning date of the spell is not available, or

interval censored if the transition is known to occur inside intervals. The left censoring

is more difficult to handle than the right censoring, it causes more serious bias in the

model. Generally it is preferred to drop the left censored observations from the sample.

The interval censoring on the other hand, can be removed by grouping the time, where

the grouped time hazard model is also known as the interval censored hazard model,

Mátyás and Sevestre (2008). So this is an additional advantage for the grouping of the

duration time, in addition to the advantage of handling of the tie observations problem

that complicats the estimation of continuous time duration models.

3.3 Continuous Time Kernel Hazard Estimation

Let Y c
i denotes the continuous transition time for individual i, i = 1, 2, 3, ..., n. Y c

i is an

iid nonnegative continuous random variable with a density function f and a distribution

function F . To handle the right censoring problem in the sample, define an iid random

right censoring continuous time variable Cc
i with a density function r and a distribution

function R. The transition of individual i is observed if Y c
i ≤ Cc

i , otherwise the spell is

right censored. The observed time for each individual in the sample is T ci = min(Y c
i , C

c
i ),

with a density g and a distribution function G, but both depend on the density and the

distribution functions of Y c
i and Cc

i , where 1 − G = (1− F ) (1−R). The uncensored

observations are defined in the sample by an indicator function Mi= I(Y c
i ≤ Cc

i ). This

is defined as the competing risks right censoring process, which is commonly occurs

in economic duration models.

The functions of Y c
i are of the special interest in the duration model, since they are

the functions of the true transition variable, but the process is not completely observed

due to the right censoring problem in the data. In the duration analysis the sample

consists of {T ci ,Mi,Xi}ni=1, where Xi is a vector of mixed type independent variables.

The model can be estimated parametrically or nonparametrically. The kernel method

can be used, where the kernel hazard rate estimators have means to correct the right

censoring problem. There are many kernel estimators for the hazard and the survival

functions in the continuous time, but we will illustrate the estimators that developed

from the external kernel hazard only in the following subsections1.

1The notation that used in this section is related to the discussion in the section only, we use different
notation for the continuous time transition variable that is being grouped in the following sections.
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3.3.1 The Unconditional Continuous Time Kernel Hazard

The unconditional hazard rate in continuous time is defined as:

φ (tc) =
f (tc)

1− F (tc)
= Λ

′
(tc) , (3.1)

where Λ (tc) = − log (1− F (tc)) is the cumulative hazard function and Λ
′
(tc) is its

derivative. The hazard rate is estimated parametrically by assuming that f (tc) follows

Exponential, Weibull, Gompertz, Log-normal, Log-logistic, or Gamma distribution as

illustrated above, or it could be estimated nonparametrically using the sample frequen-

cies or the kernel method.

Among the estimators that are discussed by Rice and Rosenblatt (1976) there are

two kernel estimators of the hazard rate for continuous time transition models that are

relevant to our discussion in this research. The first estimator is the ratio between the

estimated kernel density and the estimated kernel survival function as follows, see Rice

and Rosenblatt (1976, page 62, Eq (2.9) and (2.10)):

φ̂1 (tc) =
f̂h (tc)

1− F̂h (tc)
. (3.2)

The second estimator is based on Watson and Leadbetter (1964a) direct estimator of

the hazard rate and takes the form:

φ2 (tc) =

∫
h−10 k

(
s− tc

h0

)
dFn (s)

1− Fn (s)
, (3.3)

where Fn is a modified sample distribution function. The modification is necessary to

avoid dividing by 0 in the hazard estimator in Eq (3.3). The sample distribution function

uses the order statistics of the duration time, since the sequence of the transitions of the

individuals in the sample is as important as the number of the transitions. In other

words, in the continuous time hazard estimation, we sort the individuals in the sample

so that the earliest transition be first followed by the individual with the second earliest

transition and so on. The transition time is sorted ascendantly from the lowest to the

highest. The order statistics of transition time variable, T c(i) where T(1) ≤ T(2) ≤ T(3) ≤
· · · ≤ T(n) is used in the kernel estimator instead of Ti.

The sample distribution function is modified for the order statistics T(i) to avoid

having F(n) = 1 since this produces a sample survival function 1 − F(n) = 0 which

produces unspecified value in the hazard estimator. The sample distribution function

as shown by Watson and Leadbetter (1964a) could be modified to Fn

(
T c(i)

)
= i

n+1

without affecting the precision of the kernel hazard estimator, just by multiplying the

usual empirical sample distribution function by n
n+1

.

The kernel function, k (·), in Equations (??) and (3.3) is a continuous variable kernel

function that locally weight the relative difference of the order statistics T(i) from tc
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relitively to h0. The scalar h0 is known as the smoothing parameter or the bandwidth.

Kernel functions for continuous variables have different forms and orders, see Wand

and Jones (1995). The kernel hazard estimators are designed to be less sensitive to the

form of the kernel function, and use low order kernel function, usually not exceeding

the second order. The higher order kernel functions are difficult to use due to the high

computation cost of them. However, the method to estimate the bandwidth, h0, are

carefully considered because the bandwidth value affects the variance and the bias of

the predictions directly.

Let z =
T c
(i)
−tc

h0
be the distance between the ordered sample observation T c(i) and the

value tc proportional to h0. The kernel function should satisfy the following consistency

conditions:

1.
∫
k (z) dz = 1, and

∫
zk (z) dz = 0.

2. Symmetry: k (z) = k (−z) .

3.
∫
zrk (z) dz = τr 6= 0. for r > 1.

4. As n −→∞, h0 −→ 0 and nh0 −→∞.

Watson and Leadbetter (1964b) show that the continuous variable kernel functions

under this properties are legitimate to the hazard rate estimator.

The hazard estimator smooths the order statistic of the elapsed time in the sample

T(i) and uses the empirical sample distribution function as follows,

φ̂2 (tc) =
n∑
i=1

ĥ−10 k

(
T(i) − tc

ĥ0

)
dF̂n

(
T(i)
)

1− F̂n
(
T(i)
) , (3.4)

=
n∑
i=1

ĥ−10 k

(
T(i) − tc

ĥ0

)
1/ (n+ 1)

1− i/ (n+ 1)
, (3.5)

=
n∑
i=1

ĥ−10 k

(
T(i) − tc

ĥ0

)
1

n− i+ 1
, (3.6)

The bandwidths ĥ0 is estimated using cross-validation method. Few research, how-

ever, use the Plug-in bandwidth of the density function when the computation of the CV

bandwidth is difficult. The quantity n−i+1 at each sample ordered transition time T(i) is

the number of individuals at risk at time T(i). This estimator is know as the continuous

time external kernel hazard in the continuous time kernel hazard estimation litera-

ture, as it is a direct kernel estimator of the hazard in contrast to φ̂1 (tc). Where φ̂1 (tc)

estimates the kernel density and the kernel distribution functions first before estimating

the hazard rate.

For right censored observations the formula can be corrected by adding the right

censoring indicator, so that the continuous time external kernel hazard estimator is
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modified as

φ̂2 (tc) = ĥ−10

n∑
i=1

k

(
T c(i) − tc

ĥ0

)
M(i)

n− i+ 1
. (3.7)

Watson and Leadbetter (1964b) and Rice and Rosenblatt (1976) show that the bias

of φ̂1 (tc) and φ̂2 (tc) are slightly different and take the forms:

Bias
(
φ̂1 (tc)

)
=

f
′′

(tc)

1− F (tc)

h20
2

∫
u2k

(
u− tc

h0

)
du+ o

(
h20
)
, (3.8)

and

Bias
(
φ̂2 (tc)

)
= φ

′′
(tc)

h20
2

∫
u2k

(
u− tc

h0

)
du+ o

(
h20
)
, (3.9)

= Bias
(
φ̂1 (tc)

)
+ Φ̂ (tc) .

where φ′′ (tc) is the second derivative of the true hazard, f ′′ is the second derivative of

the true density of the transition time, F is the true distribution function and

Φ̂ (tc) =
(

3φ (tc)φ
′
(tc) + φ (tc)3

)[h20
2

∫
u2kh (u) du+ o

(
h20
)]
.2

The variances φ̂1 (tc) and φ̂2 (tc) are the same and take the form:

V ar
(
φ̂1 (tc)

)
= V ar

(
φ̂2 (tc)

)
(3.10)

=
1

nh0

φ (tc)

1− F (tc)

∫
k2
(
u− tc

h0

)
du+ o

(
1

nh0

)
. (3.11)

3.3.2 The Conditional Continuous Time Kernel Hazard Estimator

An estimator of the kernel hazard conditioning on x, where the vector x includes two

types of variables, continuous independent variables xc and discrete independent vari-

ables xd, is introduced by Beran (1981). The estimator uses a so-called sub-survival

function, which is the survival function of the individuals in the risk sets just after each

observed failure time in the sample. The conditional hazard rate is estimated by taking

the ratio of the conditional probability of transition and the conditional sub-survival

probability for the individuals in the risk set. The estimator is known as Beran kernel

hazard (BKH) estimator and has the following form, see Beran (1981, page 8):

φ̂BKH (tc |x) =
Ŝh,1 (tc |x)− Ŝh,1 (tc+ |x)

Ŝh,2 (tc |x)
, (3.12)

where Ŝh,1 (tc |x) is the survival probability exactly at tc conditioning x and Ŝh,1 (tc+ |x)

is survival probability just after tc conditioning on the same x. The survival function

2Combined by the writer, see Rice and Rosenblatt (1976).
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is a non-negative monotonic non-increasing function in the range [0, 1], which means

that the terms in the nominator is less than or equal 1. Because of the one-to-one

relationship between the survival and the distribution functions, the subtraction of the

conditional survival functions, Ŝh,1, in the nominator approximates the density of the

transition variable. The subscript 1 in the sub-survival function estimator denotes that

the sub-survival function Ŝh,1 is estimated for the uncensored individuals only.

The sub-survival function in the denominator, Ŝh,2 (tc |x), is the conditional survival

probability of the individuals in the risk set at tc, some individuals in this set could be

censored in later times (after tc) but this is considered only when the hazard is estimated

at those times.

The sub-survival functions are estimated by nonparametric kernel regression tech-

niques. Beran (1981) uses the Nadaraya-Watson regression for the individuals in the

risk set, and indicator functions are used to distinguish the observations in the risk set

at each T(i) in the sample. The sub-survival functions are given by the formulae

Ŝh,1 (tc |x) =
n∑
i=1

W (x,X(i), ĥ)I
(
T c(i) ≥ tc;M(i)= 1

)
n∑
i=1

W (x,X(i), ĥ)
, (3.13)

and

Ŝh,2 (tc |x) =
n∑
i=1

W (x,X(i), ĥ)I
(
T c(i) ≥ tc

)
n∑
i=1

W (x,X(i), ĥ)
, (3.14)

respectively

The same estimator can be written in term of the sub-distribution functions as fol-

lows

θ̂BKH (tc |x) =
F̂h,1 (tc+ |x)− F̂n,1 (tc |x)

1− F̂h,2 (tc |x)
, (3.15)

where

F̂h,1 (tc) =
n∑
i=1

W (X(i), ĥ)I
(
T c(i) ≤ tc;M(i)= 1

)
n∑
i=1

W (X(i), ĥ)
(3.16)

F̂h,2 (tc) =
n∑
i=1

W (x,X(i), ĥ)I
(
T c(i) ≤ tc

)
n∑
i=1

W (x,X(i), ĥ)
. (3.17)

The function W (x,X(i),h) is a product of the kernel functions of the mixed vari-

ables in x. h is a vector of the bandwidths of the independent variables only with

length q + p. The vector h includes a sub-vector of the bandwidths of the continuous

independent variables hxc = [h1, h2, ..., hq] and a sub-vector of the bandwidths of the

discrete independent variables γxd = [γ1, γ2, ..., γp]. The product of the kernel func-

tions multiply the univariate kernel functions of the continuous independent variables
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h−1s w
(
Xc

(i)s
−xcs

hs

)
, s = 1, 2, .., q, and the univariate kernel function of the discrete indepen-

dent variable l
(
Xd

(i)r, x
d
r , γr

)
, r = 1, 2, ..., p, where the sample observations of each vari-

able are smoothed around their corresponding value in the vector x. So, W (x,X(i),h)

has the following form,

W (x,X(i),h) =

q∏
s=1

h−1s w

(
Xc

(i)s − xcs
hs

) p∏
r=1

l
(
Xd

(i)r, x
d
r , γr

)
,

note that x =
[
xc1, · · ·xcq, xd1, · · ·xdp

]
.

The sample is sorted by the order statistic T(i) only, so X(1) is the vector that corre-

sponds to T(1) but not necessary be the vector that include the least values of X in the

sample. The Nadaraya-Watson weights for the sub-survival functions are

A(x,X(i),h) =
n−1W (x,X(i),h)
n∑
i=1

n−1W (x,X(i),h)
.

Beran (1981) uses this hazard estimator to predict the survival function as follows:

Ŝ (tc |x) =
∏
T(i)≤t

(
1− φ̂BKH

(
T c(i), |x

))M(i)

. (3.18)

The second conditional kernel hazard estimator uses Nadaraya-Watson weights also,

but it can be considered as a direct extended version of the unconditional external

kernel hazard that presented above. The sub-survival functions in the formula in Eq

(3.12) are integrated in the unconditional kernel hazard formula in Eq (3.7) to give a

hazard estimator as follows:

φ̂CEKH (tc |x) = ĥ−10

n∑
i=1

k

(
T c(i) − tc

ĥ0

)
A(x,X(i), ĥ) M(i)

1−
i−1∑
j=1

A(x,X(i)ĥ)

. (3.19)

This estimator is called the continuous time conditional external kernel haz-

ard estimator and denoted by φ̂CEKH . The same estimator can be written in a sub-

distribution function form as well. It is easy to show that the unconditional external

hazard estimator in Eq (3.19) follows when the Nadaraya-Watson weights are replaced

by the empirical distribution function weights, i.e when we put A(x,X(i),h) = n−1, and

then

h−10

n∑
i=1

k

(
T c(i) − tc

h0

)
n−1 M(i)

1−
i−1∑
j=1

n−1
= h−10

n∑
i=1

k

(
T c(i) − tc

h0

)
M(i)

n− i+ 1
= φ̂EKH (tc) . (3.20)

Beran (1981) kernel conditional hazard estimator is used in Li and Doss (1995),

Akritas (2004), Läuter and Liero (2006), Guilloux (2011). The conditional external
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kernel hazard estimator on the other hand, has received attention in few literature

papers. Van Keilegom and Veraverbeke (2001) discuss φ̂CEKH (tc |x) with Gasser-Müller

local weights instead of the Nadaraya-Watson weights, and assumes continuous partial

derivatives of the sub-distribution functions with respect to xc and tc to illustrate the

consistency conditions of the estimator. Spierdijk (2008) on the other hand, extends

the external hazard estimator by replacing the Nadaraya-Watson weights, also known

as local constant regression weights, in the sub-distribution functions by local linear

regression weights. The local linear weights are Taylor expansion of the local constant

weights. Cao and López-de Ullibarri (2007) suggests a product-type KH estimator by

modifying the Nelson-Aalen estimator of the survival function. The use of Beran kernel

hazard estimator and the external kernel hazard estimator, or any of their modified

versions, to estimate a grouped time hazard has not come to our knowledge. We haven’t

been able to find any work that is relevant to any of those estimators in the discrete time

duration models estimation. Accordingly, we will focus on the basic estimators only, the

estimators that use the Nadaraya-Watson weights, and leave the other estimators for

future research in this field.

The continuous time kernel hazard estimators have in general a bias problem, most

of the published work in the context of the continuous kernel hazard estimator attempt

to correct the estimator from this bias problem rather than enhancing it. The bias prob-

lem is generated in the lower bound and known as the Boundary Bias. The problem

occurs because the kernel function allocates local weights to each observation T c(i) and

its nearby observations in the interval
(
T c(i) − h, T c(i) + h

]
. But on the lower limit the

weights are given to the observations in the range (0− h, 0 + h]. This shows that the

continuous time hazard enforces negative values in duration variable in the lowest win-

dow, when the variable should be strictly positive.

The consequence of the Boundary Bias is that the kernel hazard estimator under-

estimates the hazard at the lower bound (the beginning of the spell) by almost the half,

see Bagkavos (2003). There are many methods that are suggested in the literature to

remove the Boundary Bias in the external kernel hazard estimator, but most of them ac-

tually reduce the bias only rather than removing it. Where in addition of extending the

Nadarya-Watson weights to a local linear weights, there are some methods suggest to

reduce the bias by using kernel functions with variable bandwidth, i.e. use bandwidth

of the form htc that change with the value tc and depends on T(i), see Li and Racine

(2007, Chapter 14). However, the variable bandwidth kernel functions are used for

continuous variables only, where they are not used in the discrete or mixed variables

models. Higher order kernel functions like the functions in Jones (1995) are also sug-

gested, where they have less bias than the lower order kernel functions. But the higher

order kernel functions increase the computation cost and make the estimation more

difficult and less attractive.

The Boundary Bias problem is one of the reasons that make the application of the
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kernel hazard estimator in the continuous time transition models complicated and not

attractive. But the continuous time estimator can still be extended to the discrete time

hazard case. In the grouped time models the type of the kernel function that used to

smooth the grouped time variable does not smooth negative values at the lower bound,

so there is no source of the Boundary Bias as will be illustrated in the next section.

Generally in duration models, we gain advantages from the grouping the duration

time in many aspects, like in the interval censoring problem and the ties problem as

show by Hess and Persson (2009). Which are the reasons that motivated the paramet-

ric estimation of the grouped time hazard rate. In the kernel estimation the grouping

remove the Boundary Bias that is associated with the continuous time estimators. This,

in addition to the interval censoring and tie observations problem motivates the devel-

opment of the grouped time kernel hazard estimator. However, the proportional hazard

estimation framework in the continuous time models imposes very restrictive assump-

tions about the distribution of Y c in the baseline hazard, and only weakly deals with

the time varying covariates. Whilst the grouped time PH framework uses flexible spec-

ification of the baseline hazard and easily handle time varying independent variables,

as shown by Jenkins (1995). The kernel estimator of the discrete time hazard that

developed in this research is just able to include time invariant independent variables.

3.3.3 The Estimation of the Bandwidths of the Continuous Time

Kernel Hazard

The least squares cross-validation (LSCV) method is proposed to estimate the band-

widths of the kernel hazard in Equations (3.7), (3.12) and (3.19). The bandwidths are

estimated by minimizing the weighted integrated square error (ISE) risk function which

has the form
∫ (

φ̂ (tc)− φ (tc)
)2
ω (tc) dt, where ω (tc) is the weighting function. The risk

function of the least squares cross validation of the unconditional hazard is:

LSCV (ĥ0) =

∫
φ2
(
tc; ĥ0

)
dt− 2

n

n∑
i=1

φ
−i
(
tc; ĥ0

)
n− i+ 1

ω (t) . (3.21)

This method finds the optimum bandwidth by making a tradeoff between the bias and

the variance in the model.

For the conditional external hazard Spierdijk (2007, page 2434) suggest the inte-

grated asymptotic mean squared error (IAMSE) method to derive a cross validation

risk function from the formula:

IMSE(ĥ0,h) =

∫ ∫
MSE

(
tc,x, ĥ0,h

)
f (tc |x) f (x) .dtc.dx. (3.22)

The above objective functions of the kernel hazard estimator is difficult to compute

numerically especially for the conditional hazard estimator. The sub-survival functions
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in the conditional hazard formulas of φ̂BKH and φ̂CEKH slow the computation substan-

tially. Alternatively, one can use the CV bandwidths of the kernel density function, or

the kernel conditional density in the case of the conditional hazard, as näıve band-

widths. The bandwidths that driven from a maximum likelihood function of the con-

ditional hazard rate can also be used. The leave-one-out method can be used in the

objective function and the method is called the maximum likelihood cross validation

risk (MLCV-Risk) method in this thesis, see Chapter 4. Tanner and Wong (1984) intro-

duced this method for continuous time kernel hazard bandwidth estimation. It provides

a good alternative to the above least squares methods when the computation cost is too

high and produce better bandwidth estimates than the näıve bandwidths.

3.4 Grouped Time Kernel Hazard Estimation Framework

In economics it is more common to observe the duration of the spells in intervals of ei-

ther equal lengths or unequal lengths than to observe the duration in continuous time.

The transition in the process runs in the continuous time, but the data are taken at

points in the time that known to the researcher, i.e in intervals. The survival function

or the distribution function of the continuous time are used to construct the functions

of the grouped time model. The basic assumption is that the survival probability does

not change as a result of the way that the data is taken. Which means that the survival

function at the time index points is the same as the survival probabilities of the contin-

uous time. The time index points could be defined at the beginnings or at the ends of

the intervals. This does not, theoretically, affect the construction of the grouped time

model. We follow the design of Jenkins (2005) in this research by using the ends of the

intervals as time index points, since this matches the grouping scheme in the R software

that used in this research. The number of transitions inside each interval is the variable

that used to construct the discrete time hazard estimators. In contrast to the continuous

time models, in discrete time models the sequence of the transitions inside the intervals

does not matter, although that the sequence of the intervals must be carefully consid-

ered. Accordingly, the problem of tie observations diminishes automatically with the

grouping scheme.

The estimation of the grouped time hazard rate, also known as the discrete time

hazard and interval hazard, by kernel estimation method is rarely considered in the

nonparametric estimation literature. Tutz and Pritscher (1996) suggest a kernel estima-

tor for the Life-Tables, and argue that to smooth the duration time an ordered variable

kernel function can be used. We will proof that choosing this type of kernel functions is

the right choice to smooth the duration time in the grouped time hazard estimator, and

we will use this argument to develop the discrete time external kernel hazard estimator.
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3.4.1 The Grouping Scheme

The grouping scheme provides sufficient information about the relationship between

the hazard rate and the survival function in the continuous time and the discrete time.

However, some functions in the grouped time, like the discrete time cumulative hazard

function, may remain not fully specified without restrictive assumptions. This may cause

an unidentification problem in the parametric estimation of the discrete time PH hazard

model, where the coefficients of the discrete time variable may become interpretable

under very narrow assumptions only. Jenkins (2005, Chapter 3, Section 3.3) shows an

example of this case for a grouped Weibull variable. More information related to this

issue is provided in Appendix D. To illustrate the grouping scheme and the relationships

between the hazard and the survival functions we will use an equal length intervals

grouping system, since this makes the discussion easier. We will show also that the

construction under equal interval length is crucial for the development of the kernel

hazard estimator.

Suppose that the range (0,∞) of the continuous time Y c, with a continuous density

function fY c (Y c), is divided into B equal intervals having an equal length b. The inter-

vals are numbered subsequently from 1 to B, and the time index is at the end of the in-

tervals. So the intervals are defined as follows, (0, b], (b, 2b], ..., and ((B − 1) b, Bb], (Bb,∞),

which are also written as (0, y1], (y1, y2], . . ., (yB−1, yB] and (yB,∞). After the last ob-

served complete interval, (yB−1, yB], in the sample there is no upper bound, where

ycB+1 = ∞, and the hazard at the interval (ycB,∞] equals 1 irrespective of the inter-

val length or the number of intervals. In practice the sample end date is ycB and the

observations that remain in the state until ycB are right censored. We assume that the

probability of survival after ycB is very low, Pr(Y c > ycB) ≈ 0, in our discussion. So,

the reminder probability of fY c could be ignored when the variable is grouped. This

is consistent with the behaviours of the transition processes in economics if the sample

period was sufficiently long.

Let the positive integer Jo denote the number of the interval at with the transition

occurs. Jo is denoted also as the episode number, where jo = 1, 2, 3, · · · , B. Then

jo = ((jo − 1) b, job] is the interval jo written using in the interval length form to denote

the time index points, and jo =
(
ycjo−1, y

c
jo

]
is the same interval with the time index

points written in Y c form. Then yc1, y
c
2, · · · , ycB are the time index points that associated

with the intervals 1, 2, 3, ..., B respectively3. Note that ycB+1 = ∞ and the hazard in the

episode (ycB,∞] equals 1 irrespective of the interval length or the number of intervals.

Let f (jo) = fjo be the probability mass of the discreteised time on episode jo, then

the distribution function for Y c and the distribution function of jo must be equal at the

3Clearly: yc1 = b, yc2 = 2b, · · · , ycB = Bb.
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ends of the intervals by construction, then the two functions are related as follows:

jo∑
r=1

fJo (r) =

ycjo∫
0

fY c(u)du = FY c (yjo) , (3.23)

where the summation is for the discretized distribution function and the integration

is for the continuous distribution function4. This shows how the matching between

the area the under distribution functions of the continuous variable and the discretized

variable is specified mathematically. The survival probability in a grouped time model

in interval jo is defined as the probability of survival the interval and beyond, which is

the complement of the distribution function at the end of the previous interval, so that

Sj = 1− FY c
(
ycjo−1

)
.

Figure 3.1 illustrates the grouping scheme using an example of a Weibull continuous

transition variable with shape parameter 4 and scale 10. The Weibull density at this

shape parameter approximates the normal density, see Mood and Graybill (1963) and

Spanos (1999), and the scale parameter is chosen arbitrarily to suit the interval length

which set to be b = 1. The plots in the figure show that the density, the distribution

and the survival functions of the continuous Weibull and the grouped Weibull are very

closely matched, but the hazard rate, which has an upward slope because the shape is

larger than 1, does not match. Mathematically in this example of Weibull distribution,

the hazards match only when the scale tend to∞ or when b −→ 0.
When the model include the right censoring problem, the censoring runs as a con-

tinuous time process (on the underlying continuous time). The observation is right

censored if the right censoring continuous time, Cc, is less than the continuous transi-

tion time Y c, so that we cannot observe the transition time. Generally, observation i

is right censored in episode jo if Cc
i < Y c

i and Cc
i ∈ ((jo − 1) b, job]. A right censoring

indicator is defined in the reverse relationship

Mijo= I (Y c
i ≤ Cc

i , (j
o − 1) b < Y c

i ≤ job) . (3.24)

The sample of the grouped time hazard contains {Joi ,Mi,Xi}ni=1, where Joi is a scalar

that indicates the number of episodes that individual i spent in the state. So, Joi is

a positive integer number for all i. The underlying continuous time in the process

is no longer Y c, because of the existence of the right censoring problem, instead it

is T ci = min(Y c
i , C

c
i ). So the underlying continuous time process is identical to the

process that described in the previous section, but the hazard can only be estimated for

the intervals. The censoring indicator function, Mi, takes a value 1 if observation i is

uncensored and the vector Xi is a vector of mixed independent variables.

4For simplicity we are not using a notation for the cumulative distribution function of the discretized
variable.
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Figure 3.1: Grouping Scheme of Weibull with shape 4 and scale 10, using interval length
1.

3.4.2 Smoothing Methods for the Grouped Time Variable

How to smooth a discretised continuous random variable was considered early in the de-

velopment of the kernel smoothing techniques, for example in Wand and Jones (1995)

and Simonoff (1996). We will describe two methods, the first smooths the underlying

continuous variable with the continuous variables smoothing technique. The second

method tries to smooth the discrete grouped variable.

Let the vector pT = [f1, f2, .., fB] be a vector of length B contains the probabilities of

the intervals, where for interval jo the probability is fjo =
jo/B∫

(jo−1)/B
fY c (u) du. Let f̂jo be

the estimated probability for interval jo and djo be the number observations in interval

jo. The estimator f̂jo is consistent if f̂jo −→ fjo as djo −→∞ and n −→∞, see Simonoff

(1996, Chapter 6). Then estimating the density for the discretised continuous variable,

jo, by the relative frequency djo

n
is inappropriate because this fails to use the information

about the density of the continuous variable fY c outside the interval jo. In other words,

the estimated probability of the discrete function f̂jo must use the information from

all the intervals, which means that it should be a function of all the probabilities in

p. The probability fjo can then be specified as a function on the probabilities of all

other intervals, f−jo, particularly on the nearest neighbours to jo. So that the estimated
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density f̂jo should be estimated so that for any nearby interval jo′ , with jo 6= jo′ the

estimates must satisfy f̂jo′ −→ f̂jo as jo′ −→ jo.

Smoothing the grouped time using the nonparametric regression technique

The smoothing of the grouped variable, jo, is possible by the nonparametric regression

technique as follows; Simonoff (1996, page 219):

f̂jo =

B∑
jo=1

k
(
jo/B−(jo−1)/B

h

)
djo

n

B∑
jo=1

k
(
jo/B−(jo−1)/B

h

) . (3.25)

The disadvantage of this method is that it suffers from the Boundary Bias. Where

the continuous variable kernel function that used in Eq (3.25) smooths negative values

in the first episode, as in the external kernel hazard estimator in the continuous time

model. Some authors recommend using of local linear regression or local polynomial

nonparametric regression to reduce the bias in the discretised density estimator. How-

ever, this can only partially remove it. This method is not suitable for smoothing the

grouped time variable in the discrete kernel hazard estimator. Since it has the above dis-

advantage and it is complicated to be transformed to construct a grouped time hazard

estimator that has a similar form of the continuous time kernel hazard estimators.

Smoothing the grouped time with the Wang and Van Ryzin discrete ordered kernel

function

The second approach uses a discrete ordered kernel function directly to smooth the

grouped time variable. The development of the ordered variable kernel function is

illustrated in Titterington (1980). The method uses assumptions about the probabilities

in p and an estimator of the form:

p̂ (γ) = (1− γ)d + γp, γ ∈ [0, 1] , (3.26)

where γ is estimated by a data- driven method. The information about the probabilities

in all intervals is used to estimate the probability in interval jo. Different distribution

assumption are used for the probabilities in p. One can think of p as probabilities from:

a Multinomial, Uniform, Poisson,... discrete distribution. For duration models with

single spell one can think of the transition as a single event that takes place at any of the

episodes 1, 2, ..., B. Then, if the transition is observed at interval jo, it can be considered

as a success after jo − 1 failures. Therefore, one can think about the probabilities in

p as Geometric distribution generated probabilities 5. Wang and Van Ryzin (1981) use

5Titterington (1980) shows that when a multinomial distribution is assumed for the probabilities in
p, the formula produces the Aitchison and Aitken (1976) kernel function for unordered variables.
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an estimator of this form to develop the so-called the Geometric Kernel function for

discrete ordered variables. Accordingly, the assumption that the intervals are all equal

length is crucial to smooth the grouped time variable because otherwise, the assumption

about the probabilities in p has to be changed, in other words, another discrete kernel

function is required.

The Geometric Kernel function is symmetric and takes the following form:

l (Ji, j, γ) =

{
1− γ if |Joi − jo| = 0
1
2

(1− γ) γ|Joi −jo| if |Joi − jo| 6= 0
, (3.27)

where l (·, ·, ·) depends on the smoothing parameter (the bandwidth) γ and the number

of the intervals B. The ordered kernel gives B local weights for the difference between

the point of smoothing jo and the observations in the sample, Joi . The weight (1− γ) is

the highest and is given if the difference is zero, i.e. the observations in the sample that

are in the same interval with jo are given higher weights by the kernel function than

the observations in other intervals. The wider the difference between jo and Joi the

lower the weight that is given to Joi by the kernel function. This discrete ordered kernel

function exploits the information from all intervals in the discretised density to estimate

the probabilities, the estimated probabilities have the quality that for any two intervals

jo and jo′, with jo 6= jo′, f̂jo′ −→ f̂jo as jo′ −→ jo, which is the required property in the

discretised density estimator.

The properties and the consistency conditions for the discrete ordered kernel func-

tion are shown by Wang and Van Ryzin (1981), Ahmad and Cerrito (1994) as follows:

1 The weights of any interval in {1, 2, 3, . . . , B}must be proper probabilities and add

up to 1;
B∑

jo=1

l (., jo, γ) = 1, (3.28)

and l (., jo, γ) ≥ 0, for any jo.

2 γ → 0 as n→∞.

3 γ/
√
n→ 0 as n→∞, and l (Ji, j, γ) has a continuous first derivative.

So, the Geometric kernel has similar asymptotic properties to the continuous variables

kernel functions.

The properties of the ordered variable kernel function are given by Tutz and Pritscher

(1996). The discrete ordered kernel function has an advantage that it does not smooth

negative values in the first interval. So, the source of the Boundary Bias is eliminated

from the grouped time kernel hazard estimator.
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3.4.3 Discrete Time Unconditional Kernel Hazard

The grouped time hazard rate is constructed from the continuous time survival function

by making the grouped time and the continuous time survival functions equal at the

ends of the intervals. Let θ (jo) be the hazard rate of the grouped time on interval jo,

Jenkins (2005) and Brecht and Brecht (1996) show that the survival probability of the

discrete time hazard is:

SY c
(
ycjo
)

= Pr
(
Y c > ycjo−1

)
, (3.29)

=

jo∏
r=1

(1− θ (r)) . (3.30)

Where the grouped time hazard is defined as

θ (jo) = Pr
(
ycjo−1 < Y c ≤ ycjo |Y c > yjo−1

)
, (3.31)

=
Pr
(
ycjo−1 < Y c ≤ ycjo

)
Pr
(
Y c > ycjo−1

) , (3.32)

= 1−
SY c

(
ycjo
)

SY c
(
ycjo−1

) , (3.33)

and the density of the grouped time variable can be written as a function of the hazard

and the survival functions as follows:

f (jo) =
θ (jo)

1− θ (jo)

jo∏
r=1

[1− θ (r)] . (3.34)

Brecht and Brecht (1996) suggests a product limit estimator of the discrete time

survival function which takes the following form 6:

Ŝn (jo) =

jo∏
r=1

(
1− dr

nr

)
.I (njo > 0) ,

=

jo∏
r=1

(
1− θ̂n (r)

)
.I (njo > 0) , (3.35)

where θ̂n (jo) =
djo

njo
,

djo =
n∑
i=1

I (Joi ≤ jo;Mi= 1)−
n∑
i=1

I (Joi ≤ jo − 1;Mi= 1) , (3.36)

=
n∑
i=1

I (Joi = jo;Mi= 1) , (3.37)

6We moved the time index on Brecht and Brecht (1996) estimators to the end of the intervals to make
the notation consistent with our equations.
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and njo =
n∑
i=1

I (Joi ≥ jo) = n −
n∑
i=1

I (Joi ≤ jo − 1) is the number at risk at the end of

episode jo (just after the time index point ycj−1). The estimated cumulative hazard from

the data is

Λ̂n (jo) =

jo∑
r=1

θ̂n (r) .I (nr > 0) , (3.38)

To develop the external kernel hazard estimator in the grouped time we start from

the formula of Watson and Leadbetter (1964a) in Eq (3.3). Replacing the continuous

variable kernel function k (·) by the discrete ordered variable kernel function l (., ., γ)

and the integration by a summation over all the intervals, the formula becomes

θ (jo) =
∑
r∈B

l (r, jo, γ)
4Fn (r − 1)

1− Fn (r − 1)
, (3.39)

=
∑
r∈B

l (r, jo, γ)
Fn (r)− Fn (r − 1)

1− Fn (r − 1)
, (3.40)

where Fn (·) is the sample distribution function of the grouped time.

Inside the interval the process runs in the continuous time,

F (jo)− F (jo − 1) =

ycjo∫
ycjo−1

fY c(u)du, (3.41)

= f (jo) . (3.42)

Then for interval jo the density is estimated using the sample distribution function as

follows:

F̂n (jo)− F̂n (jo − 1) = n−1
n∑
i=1

I
(
Jo(i) = jo

)
, (3.43)

=
djo

n
= f̂n (Jo) . (3.44)

Then

θ̂ (jo) =
∑
r∈B

l (r, jo, γ̂)
f̂n (jo)

1− F̂n (r − 1)
. (3.45)

From the sample this produces the following external grouped time hazard estimator,

after rearranging the terms:

θ̂ (jo) =
B∑
r=1

l0 (r, jo, γ̂)
n∑
i=1

I (Joi = r)

n−
n∑
i=1

I (Joi ≤ r − 1)
,

=
n∑
i=1

l0 (Joi , j
o, γ̂)

nJoi
. (3.46)
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This is very similar to the external hazard estimator for continuous time models in

Eq (3.7). In this equation nJci is the size of the risk set at the beginning of episode Joi ,

and is equivalent to n − i + 1 in the continuous estimator, which is the size of the risk

set just after the distinct failure time T(i).

For right censored data, the external hazard estimator includes a censoring indicator

as follows,

θ̂EKH (jo) =
n∑
i=1

l (Joi , j
o, γ̂) Mi

nJoi
. (3.47)

We call this estimator the discrete time unconditional external kernel hazard

(EKH) estimator.

3.4.4 Discrete Time Conditional Kernel Hazard Estimator

To estimate the conditional hazard rate one can use an estimator that directly extended

from the continuous time external kernel hazard estimator. The conditional kernel

hazard estimator of Beran (1981) in Eq (3.12) does not need modification because

we can take the difference in the numerator using the grouped time index points, i.e. at

the ends of the episodes. But to extend the external kernel hazard in Eq (3.19), one can

replace the continuous variable kernel by the Geometric kernel function. The grouped

time estimators are intended to be used with a mixed independent variables, which

affects the smoothing of the sub-survival (sub-distribution) function in the formula. The

distribution function at the ends of the intervals of the grouped time, jo, is estimated by

the conditional mean regression function estimator of the CDF of the continuous time

variable Y c at yjo. In Li and Racine (2007, Chapter 6, page 182), the estimator takes

the form

F̂Y c;h
(
ycjo |x

)
=

n∑
i=1

W (x,Xi, ĥ)I (T ci ≤ yjo)
n∑
i=1

W (x,Xi, ĥ)
, (3.48)

=
n∑
i=1

A(x,Xi, ĥ)I
(
T ci ≤ ycjo

)
, (3.49)

=
n∑
i=1

A(x,Xi, ĥ)I (Joi ≤ jo) , (3.50)

=
∑
i:Ji≤jo

A(x,Xi, ĥ), (3.51)

= F̂h,2 (jo |x) . (3.52)

Although T ci in Equations (3.48) and (3.49) is not observed but by construction

F̂Y c;h
(
ycjo |x

)
= F̂h (jo |x) , (3.53)
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the construction makes I
(
T ci ≤ ycjo

)
= I (Joi ≤ jo), which is used in Eq (3.50). The

regression function can then be written in a sub-distribution function form. The estima-

tor estimates the distribution function conditional on a mixed independent variables,

so it can be used directly to estimate the sub-distribution functions at the ends of the

intervals.

The survival function is estimated by the same equation but with the inverse strict

inequality sign as follows:

ŜY c;h (yjo−1 |x) =
n∑
i=1

W (x,Xi, ĥ)I (T ci > yjo−1)
n∑
i=1

W (x,Xi, ĥ)
, (3.54)

=
∑

i:Ji>jo−1

A(x,Xi, ĥ), (3.55)

=
∑
i:Ji≥jo

A(x,Xi, ĥ), (3.56)

= Ŝh,2 (jo |x) , (3.57)

which estimates the conditional survival function at the beginning of interval jo. This

sub-survival function is the complement of the sub-distribution function at the previous

episode, ,1− F̂h,2 (jo − 1 |x).

Then Beran (1981) conditional kernel hazard estimator in the grouped time and

mixed independent variables is

θ̂BKH (jo |x) =
n∑
i=1

Ŝĥ,1 (jo |x)− Ŝĥ,1 (jo + 1 |x)

Ŝĥ,2 (jo)
, (3.58)

=

∑
i:Joi =j

o

A(x,Xi, ĥ) Mi∑
i:Joi ≥jo

A(x,Xi, ĥ)
, (3.59)

where

Ŝĥ,1 (jo |x) =
n∑
i=1

W (x,Xi, ĥ)I (Joi ≥ jo;Mi= 1)
n∑
i=1

W (x,Xi, ĥ)
,

The conditional external kernel hazard estimator for continuous time from Eq (3.19)

is extended to the grouped time as follows

θ̂CEKH (jo |x) =
n∑
i=1

l (Joi , j
o, γ̂0)

A(x,Xi, ĥ) Mi

1−
∑
i:Ji<j

A(x,Xi, ĥ)
, (3.60)

This estimator is denoted as the grouped time conditional external kernel hazard

(CEKH) estimator. As with the continuous time conditional external conditional haz-

ard estimator, in the grouped time hazard if the Nadaraya-Watson weights in Eq (3.60)
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were replaced by n−1 the formula reduces to the discrete time unconditional external

hazard estimator in Eq (3.47).

3.4.5 The Estimation of the Bandwidths of the Grouped Time Kernel

Hazard Estimators

Since the grouped time kernel hazard estimators are straightforward extensions of the

continuous time kernel hazard estimators, one claims that the methods to estimate the

bandwidths might not be different. However, to suggest a method that is based on

the bias-variance tradeoff, we need to find the bias and the variance formulas of the

grouped time estimator. Which are the equivalent formulas to the bias and variance

formulas of the continuous time kernel hazard estimator that shown in the equations

from Eq (3.8) to Eq (3.10). However, this work is beyond the level of this research and

it is not attempted.

A method of bandwidths estimation that tradeoff between bias and variance in the

discrete time kernel hazard estimator might produce an estimation method work simi-

larly to the least squares cross-validation method of Rudemo (1982) in discrete variable

kernel density estimation. The bias-variance tradeoff method generally aims to find

the optimum bandwidths, the bandwidths that are not large so they over-smooth the

kernel estimator (increase the variance of the kernel estimator), and not small so they

under-smooth the kernel estimator (increase the bias). The optimum bandwidths in

this sense could be achieved by optimizing a cross-validation risk function of the form

R
{
θ (jo |x) , θ̂(·) (jo |x)

}
, see Wasserman (2006, Chapter 6). An objective function of

this form could be a function that minimize the integrated squared risk function be-

tween the kernel hazard and the true hazard, which could produce an objective func-

tion similar to the objective function of the least-square cross validation method, this

method in known as the least-square cross validation risk method7.

We suggest Maximum Likelihood Cross-Validation Risk (MLCV-Risk) method, with

an objective function that is based on kullback-leibler loss function. It is applied in

the continuous time kernel hazard estimation approach in Tanner and Wong (1984).

The leave-one-out method is used in the discrete time hazard, so that the maximum

likelihood function of the grouped time hazard that described by Jenkins (2005) can be

rewritten as MLCV-Risk objective function as follows:

ML (γ0,h) =
n∑
i=1

Mi log

(
θ̂
(·)
−i (J

o
i |xi )

1− θ̂(·)−i (Joi |xi )

)
+

Joi∑
r=1

log
(

1− θ̂(·)−i (r |xi )
) (3.61)

7We use the term cross validation risk function to refer to the cross validation objective function
when the estimated kernel function is a hazard function, Wasserman (2006) shows that both names can
be used to refer to the CV-objective function. We think this may help the reader to distinguish the case
when the CV method is applied to the density (minimizes a mean square error) from the case when the
CV is applied to the hazard (minimize a squared risk function).
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where θ̂(·)−i is the kernel hazard estimated with the ith observation left out, (·) denotes

either BKH or CEKH.

The MLCV method has a traditional problem with the fat tail and monotonicity in-

creasing or decreasing functions, where it over-smooths the bandwidths and increases

the variance in the estimator. So, the kernel hazard estimator may get over-smoothed

easily. Accordingly, more research is needed in this topic.

A less attractive choice is to use optimum cross validation bandwidths of kernel con-

ditional probability mass function estimate as näıve bandwidths in the hazard estimator.

The only advantage of the näıve bandwidths is that they are more attractive computa-

tionally than CV risk bandwidths. Unfortunately, we are forced to use näıve bandwidths

in the simulation study due to the tough commutation cost of MLCV-Risk method.

3.5 Monte Carlo simulations

A Monet Carlo simulation study is designed to examine the discrete time kernel haz-

ard estimators. The study compares between the kernel estimators and parametric PH

estimators of the grouped time hazard rate. The development of the data generat-

ing process (DGP) uses the PH framework: we simulate a continuous time duration

variable from Weibull distribution function and then apply the grouping scheme. So,

the baseline hazard is specified in the simulation in the continuous time and the dis-

crete grouped time. The observed heterogeneity function is defined as a function that

depends on time invariant independent variables only. The continuous duration time

is grouped using an equal interval length that fixed at b = 1 in all simulations. The

functional form of the baseline hazard depends on the parameters of the Weibull distri-

bution. The true baseline hazard and the coefficients of the independent variables, i.e.

the contribution of the independent variables to the baseline hazard, are designed to

be known in both continuous and grouped time, so the distance between the predicted

hazard and the true hazard is measurable in the DGP.

A fully parametric accelerating failure time AFT model is estimated for the continu-

ous time hazard model, before the grouping of the time. The relationship between the

coefficients of the independent variables in the AFT form with the coefficients of the PH

with Weibull baseline hazards is illustrated in Jenkins (2005). The coefficients of the in-

dependent variables in the continuous time PH form and the discrete time PH form are

the same, and the functional forms of the baseline hazard in the continuous time and

the discrete time is mapped though the survival function of the continuous time. Be-

cause the coefficients are the same in the continuous time PH and the discrete time PH,

only the discrete time model is estimated. Additionally, because the kernel estimators

in the continuous time have Boundary Bias problem and they need hard computation,

they are not included in the simulation study. The objective of including the continuous

time AFT model in the simulation, which is the only continuous time estimator that in-
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cluded, is to examine whether we simulated the proportional effect of the independent

variables correct or not.

Jenkins (2005) provides sufficient and easy to follow guidance to design the simu-

lations, where the functional form of the Weibull AFT regression model, Weibull con-

tinuous time PH model, grouped time Weibull PH model and the parametrizeation of

the coefficients of the independent variables between AFT and PH models is clearly

illustrated.

The DGP of Baker and Melino (2000) and Nicoletti and Rondinelli (2010), which

are the only simulation studies that we are able to find for discrete time conditional

hazard in economic, are inappropriate to use with the kernel estimators. Baker and

Melino (2000) and Nicoletti and Rondinelli (2010) simulate a discrete hazard directly

with no means to follow the process in the continuous time. The distance between

the true hazard and the predicted hazards is not measurable directly, where the DGP is

parametrically designed, which is the reason that makes the kernel estimators cannot

be included easily. The assessment of the performance in Baker and Melino (2000) and

Nicoletti and Rondinelli (2010) simulation studies is driven for the parametric model

on the bases of the estimated coefficient values only. A detailed description of the func-

tional form of the baseline hazard and the observed heterogeneity function in the DGP

is provided, however, we still find that the modification of their DGP to accommodate

the kernel estimator needs as much effort as that used to develop our original DGP that

described below.

3.5.1 The Design of the Data Generating process

The development of the simulation study in this research uses a similar technique to

that developed in the simulation studies in Hess et al. (1999), Cao and Jácome (2004),

Dikta et al. (2005), Jácome and Iglesias-Pérez (2008), Cho and White (2010) and Cho

et al. (2011). However, we introduce the time grouping scheme to the DGP to allow

for estimating the grouped time hazard. The competing risks random right censoring is

simulated along with the simulated data. The distribution of the right censoring time

is continuous and defined as a Uniform(0, uπ) random variable. So the right censoring

is not duration dependent and the censoring time is simulated independently from the

transition time and the independent variables. The assumption that the censoring time

is Uniform is easier to handle than assuming that it follows another Weibull distribution,

because one can then control the proportion of the right-censored observations, π, in

the Monte Carlo samples better.

The right censored observations are the observations that correspond to the negative

value in the variable Cc−Y c, where Y c is the transition time and Cc is the right censor-

ing time. Then we can simulate from the distribution function of Cc − Y c and set the

proportion of the right censored observations, which is π = F (cc − yc < 0). The upper

limit of the censoring time, uπ, is approximated for each given parameters of Weibull
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distribution. The numerical approximation method approximates the population dis-

tribution function F (cc − yc < 0), and is available in the package distr in R software.

The value of π is determined arbitrarily in the study.

Two DGPs are studied, the first for the study of the unconditional hazard estimators,

without the independent variables simulated in the study. The second DGP simulation

study is for the conditional hazard estimators with time invariant independent variables

only. There are two independent variables that are included, a continuous variable xc

and a categorical variable xd with only two possible outcomes [0, 1]. The R software is

used to do all the simulations, with the codes to estimate the MLCV naive bandwidths

written in the simulation program. The execution time of the simulation program varies

with the values of Weibull parameters and the proportion of the right censored observa-

tions, the total of the execution times for all the simulations exceeded the 1500 hours.

Let λ be the scale parameter and k be the shape parameter of the continuous Weibull

transition time, and that π is used to determine the value of uπ. In each sample, q, in the

unconditional hazard DGP, the variables of the ith observation are simulated as follows:

1. Simulate Y c
i from fY c, a Weibull(scale = λ, shape = k) continuous density.

2. Simulate Cc
i from rCc, the Uniform(0, uπ) continuous density.

3. Compute T ci = min(Y c
i , C

c
i ), and Mi= I(Y c

i ≤ Cc
i ).

4. Bin T ci into equal groups each of length b = 1.

5. Apply the estimators of the discrete time hazard for the grouped transition model

and the continuous time hazard AFT estimator to the continuous time variable.

6. Compute the measures of distance for the predicted hazard rate from the true

grouped time hazard, the measure of distance is applied for the grouped time

hazard estimators only.

The parameter values that chosen for the Weibull distribution are λ ∈ λ = [1, 3],

and k ∈ k = [1, 0.25, 0.50, 0.75]. The proportions of the censored observation are chosen

from the set π ∈ [0%, 2%, 5%, 10%, 25%]. The distributions are simulated for the sample

sizes 100, 200, 500 and 1000 individuals. The number of the Monte Carlo samples

repetitions is 500 in all simulations.

The discrete time PH models are estimated using Jenkins (1995) method, which

include the following steps:

1. Pool the sample into an unbalance panel data shape, for each individual, i, the

time variable is a discrete number that takes values from one to the number of the

last episode that observed to that individual, Joi . The time variable in the pooled

sample is known as the elapsed time in the state air, where i = 1, 2, · · · , n and

r = 1, 2, · · · , joi . Then for each individual in the sample we generate a number

130



of rows that equivalent to the number of the episodes that are observed to that

individual in the state.

2. The independent variables for each individual are repeated in each row until the

last row, which is the row that is associated with the last episode that observed for

that individual. Where the independent variables, in our simulation, are all time

invariant, so they do not change with the elapsed time in the state.

3. Introduce a dummy variable, ddir, in the pooled sample that takes one on the last

episodes only and only if the individual in the sample made a transition. So, the

sum of ddir in the pooled sample gives the total number of transitions. We will refer

to this variable as the pooled sample transition dummy.

4. Use the binary choice modelling technique to estimate a binary model for the

dummy variable ddir using a complementary log-log (cloglog) link function. The

binary choice regression is regressed on the elapsed time variable air and the

independent variables.

5. The predicted probabilities of the complementary log-log binary model are directly

the estimates of the discrete time hazard rate. The predictions at the last episode,

joi , give the predicted hazard at the last episode that observed for individual i.

A transformation of the elapsed time in the state variable, air, is needed in the

pooled sample binary model to define the functional form of the baseline hazard in the

parametric PH estimator. Using log (air) transformation estimates the Weibull baseline

hazard directly in the cloglog model, but we cannot identify the Weibull parameters

if the Weibull shape parameters not equal 1, see the mathematical proofs in Appendix

D. Using dummy variables instead of air for each elapsed time unit, or grouped air, is

known as the semi-parametric specification of the baseline hazard, also as the piecewise

linear baseline hazard. The grouped air is used to handle the decreasing number of

individuals in the state on the late episodes, see Jenkins (2005). The unconditional PH

hazard estimator is obtained by regressing the transformed air variable (or dummies)

only.

For each Monte Carlo sample the above steps are used, where the sample sizes 100,

200, 500 and 1000 are pooled after simulating the variables. The size of the pooled

sample depends also on the Weibull parameters and the proportion of the right cen-

sored observations. The estimation of the parametric PH model is harder if the pooled

sample is too long. For the simulations with Weibull with scale parameter 3 and shape

parameter 0.25, some spells were simulated very long, exceeded a 1000 episodes. Then

the pooling of the sample and the estimation of the PH model became more tedious

than the estimation of the nonparametric kernel hazard, where the size of some pooled

sample exceed a million (individuals×elapsed time unites). Accordingly, an upper limit
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of the binning process is used to reduce the time that needed to estimate the parametric

PH model.

All the spells that exceeded 250 episodes are right censored in the simulation study,

i.e we set B = 250 in all simulations. However, we attempted to make the value of B

not effective to the predetermined right censoring proportion, π. The grouping scheme

shows that all the observations in the interval B + 1 are right censored. Low value of

B will increase the Monte Carlo sample proportion of the right-censored observations,

π̂, to a larger value than π. Ignoring B in the simulation will lead to have samples with

spells that are very long, particularly on the sample that simulated from Weibull density

function with shape equals 0.25. Therefore, we choose B = 250, so that YB = 250

since the interval length is 1, which appeared to be a suitable choice. Where, it is easy

to show that the survival probability for the continuous time at the end of episode B,

S (Y250) = exp
[
−
(
250
λ

)k], and it is very low, ignorable, when the shape parameter is 1,

0.75 and 0.50. For the sample that are simulated from Weibull with shape parameter

0.25, the survival probability at the end of episode B is 0.0188 and 0.0487 for the scale

parameter 1 and 3 respectively, which increases the possibility that π̂ be larger than π.

Table 3.1 illustrates the mapping from the continuous Weibull transition variable

to the grouped variable by showing some statistical measures and functions. The first

panel shows the expected value, the median (50th) quantile, the 95th and the 99th quan-

tiles of the continuous time, the continuous time hazard rate at the index point of the

first episode, and the continuous time survival function at the index point of the first

episode and at each of the location measures. Panel B in the table shows the grouped

time measures and functions. For each column of a statistical measure of the continuous

time variable in Panel A we include a column in Panel B that shows the episode where

that measure is contained in the grouped time variable when the interval length is b = 1.

The Weibull with scale parameter λ = 1 and shape parameter k = 1, for example, has

expected value equals λ = 1, which is the index point of the first interval in the grouped

time. The simulations with scale 1 may be practically unsuitable, but theoretically they

have nice properties that help to understand the process better.

As Table 3.1 shows, the hazard rate of the continuous time variable at the index

point of the first episode equals the value of the shape parameter, φY c (1) = k, and

survival functions are all equal for all shape parameters, SY c (1) = 0.3679. For the

grouped time Weibull with scale parameter λ = 1, the discrete time hazard in the first

interval is the same at all shape parameters. Accordingly the discrete time survival

function is the same since θ (1) = 1− S (1). The spells for Weibull with scale parameter

1 tend to be very short, and they start with a high hazard rate, so that there is very high

probability of transition at the beginning of the spell. All the medians of the continuous

time variables are in the first episode of their corresponded grouped time variables. It is

likely that 63.21% of the transitions will be observed in the first episode. For the model

with Weibull with shape 0.50 it is more likely to have more than half of the sample
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make transition out of the state before the end of the first half of episode 1. In Weibull

variable with shape 0.25 it is more likely to have more than half of the sample make

transition before the end of the first quarter of episode 1.

The simulations with Weibull variable with scale parameter λ = 3 is more related to

economics. Baker and Melino (2000, page 365) use information about the duration of

the unemployment spells and the hazard rate from Ham and Rea Jr (1987) to design

the DGP of their simulation. They state that they “tried to generate hazards with the

probability of exiting in the first period equal to the about 0.15 with about half the

sample exiting by the fourth week”. We find the simulation results with scale 3 are close

to the hazard that they try to simulate. One can interpret the DGPs of a Weibull with

scale parameter 3 and shape parameters 0.75 and 0.50, as simulations of unemployment

spells by weeks with probability of exiting in the first week equal 0.3551 and 0.4386

respectively, and half of the individuals exit by the second week. Trying to make the

probabilities closer to that in Baker and Melino (2000) means simulating longer spells

and pay more computation cost in the grouped time PH estimators. In the model with

λ = 3 and k = 0.75, about 95% of the individuals make a transition by the 13th week

(a little more than 3 months in the unemployment state) and 99% make transition

by the 23th week (after about 6 months in the unemployment state). We think that

those are close figures to the common ‘out of unemployment transition rates’ in labour

economics. Therefore we will show the simulation results of the DGP that are simulated

from Weibull density function with scale 3 and shapes 0.75 and 0.50 in this chapter. The

simulation results of all other Weibull parameter choices are presented in Appendix D.

3.5.2 The Hazard Estimators and the Measures of Performance in

the Simulation Study

The Unconditional Hazard Models

The parametric proportional hazard PH models that are estimated for the unconditional

hazard simulation are:

1. A complementary log-log model with Weibull baseline hazard specification. This

model regress the pooled sample transition dummy on an intercept and log(air)

only. The model is denoted by θWPH and the estimated baseline hazard for each

individual is the complementary log-log predicted probability at the last episode

of that individual. To predict the hazard rate on episode jo we use the log of the

episode number on the right-hand-side of the estimated complementary log-log

equation, as follows

θ̂WPH (jo) = 1− exp {− exp [α̂0 + α̂1 log (jo)]} . (3.62)

2. A complementary log-log model with a step-function - piecewise linear- base-
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line hazard. The episodes are grouped in the pooled sample to form the so-

called a series of episodes. The distribution function of the grouped Weibull

variable is considered in grouping the episodes, but the grouping is still some-

how arbitrary. Let d(s)ir = I (air ∈ (· · · ]s) be the dummy variable of the series of

episodes s, where s = 1, 2, · · · , S. Clearly the dummy variable of the first se-

ries is d(1)ir = I (air ∈ (1, · · · ]1) and the last series is d(S)ir = I (air ∈ (· · · , B]S) with

S ≤ B. The pooled sample transition dummy is regressed on S series dummies,

without including an intercept term, using the binary choice method with com-

plementary log-log link function. The complementary log-log specification is then

contain the step-function specification of the baseline hazard (also known as a

semi-parametric baseline hazard). The step function PH model is denoted by

θSPH in the simulation study, the first letter refers to step-function. To predict

the hazard at episode jo we use the estimated coefficient of the dummy variable

of the series that include jo in the complementary log-log equation. The hazard

rate for the step s is predicted with the following equation

θ̂SPH (s) = 1− exp

[
− exp

(
S∑
s=1

α̂sd
(s)

)]
, (3.63)

where α̂s is the estimated coefficient of the dummy variable corresponding to step

s.

The coefficients are estimated using the Maximum Likelihood method of the discrete

time PH models in Jenkins (2005, Chapter 6).

The nonparametric kernel estimators are :

1. The density implied kernel hazard (DNK) estimators. This estimators is the

ratio between the estimated discrete time kernel density function and estimated

discrete time kernel survival function. The estimator does not correct for the right

censoring problem, where the research has not discuss any method of correcting

the right censoring problem in the kernel density estimators. The kernel density

estimator is obtained automatically since we are using the näıve bandwidths. The

density implied kernel hazard estimators takes the form:

θ̂DNK (jo) =
f̂γ̂ (jo)

1− F̂γ̂ (jo)
, (3.64)

where f̂γ̂(jo) = 1
n

n∑
i=1

l (Joi , j
o, γ̂) and F̂γ̂(jo) =

jo∑
r=1

f̂γ̂(r), j
o = 1, 2, ...,B.

2. The grouped time external kernel hazard (EKH) estimator in Eq (3.47), θ̂EXK (jo).

The bandwidth γ̂ is estimated using the maximum likelihood cross-validation method

MLCV using the unconditional density function in the density implied estimator, see Li
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and Racine (2003). The same bandwidths are used again in θ̂EKH (jo) as näıve band-

widths.

To measure the performance of the estimators in the simulation study, the distance

measures from the true hazard are used. The sample mean square error and the sample

Bias are measured is each Monte Carlo sample for all the estimators. The hazard is

predicted in each sample for the episodes 1,2,· · · ,B′, where B′ = Jo
{Q(99)

Y c }
, the episode

that include the 99th quantile of the continuous Weibull variable, Q(99)
Y c . For the samples

that simulated from Weibull distribution with shape parameter 0.25, B′ is chosen at

50 and 150 for the simulations with scale 1 and 3 respectively, which are equivalent

to B′ = Jo
{Q(93)

Y c }
. The predicted hazard rate of the parametric PH model with Weibull

baseline hazard θ̂WPH (jo) are calculated for each episode in the range up to the episode

B′. For the piecewise PH models, θ̂SPH (s), the hazard rate are predicted for the step

that include B′.

The sample mean squared error is computed in each Monte Carlo sample up to the

interval Jo
{Q(99)

Y c }
. For sample q the predicted MSE is calculated as

M̂SEq

(
θ̂(·)
)

= S−1
S∑
r=1

(
θ (r)− θ̂(·)q (r)

)2
, q = 1, 2, ..., 500, (3.65)

where (·) refers to the either SPH, DNK or EKH estimator.

Then the average of the MSE is taken over the Monte Carlo samples (aMSE) for each

estimator as

âMSE
(·)

= 500−1
500∑
q=1

M̂SEq

(
θ̂(·)
)
. (3.66)

The estimator that has the less âMSE is the estimator that performed better in the

study. Where less âMSE means that the estimator predicts hazard rates that are closer

to the true grouped time hazard in all episodes.

The absolute average Bias is computed in each sample also. For sample q the abso-

lute bias is

B̂iasq

(
θ̂(·)
)

= S−1
S∑
r=1

∣∣∣θ (r)− θ̂(·)q (r)
∣∣∣ , q = 1, 2, ..., 500, (3.67)

which is averaged over the Monte Carlo samples as

B̂ias
(·)

= 500−1
500∑
q=1

B̂iasq

(
θ̂(·)
)
. (3.68)

For the WPH estimators M̂SEq

(
θ̂(WPH)

)
and B̂iasq

(
θ̂(WPH)

)
are computed by

summing over the episodes up to B′ instead of summing over the steps S.

To find the predictions of the kernel estimators in each step more work has been

done. The kernel estimators are developed under the assumption of equal interval
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length. This is equivalent to a piecewise cloglog estimator with interval specific dum-

mies. But in the piecewise cloglog model the predicted hazard on step (series of

episodes) s is the average of the hazard rate of the episode in that step. Then the

average of the predicted hazards for the episodes in the steps is taken.

The Conditional Hazard Models

The conditional hazard rate is estimated conditioning on two variables, a continuous

independent variable which is simulated from Xc ∼ N (0, 1) and a categorical inde-

pendent variable which is defined as a binary variable with Pr
(
Xd = 1

)
= 0.5. The

coefficients of those variables are chosen arbitrary after many investigations. The ob-

jective is to make the hazard conditioning on xc significantly different between the

groups of xd, and to create a reasonable shift in the hazard rate when either variable

is changed. So, we chose βxc = 0.15 and βxd = 0.50. This makes the proportional haz-

ard increase by approximately 116% from the baseline hazard when xc = 1 and drop

to 80% of the baseline hazard when xc = −1. On the other hand, the hazard rate of

the group of individuals with xd = 1 is 165% more than the hazard of the group in the

baseline hazard. Those numbers are substantially lower than what was found by Baker

and Melino (2000) and Nicoletti and Rondinelli (2010), where they simulate the same

xc but they set the coefficient equals 1, which means they assume a bigger contribution

of the independent variable to the baseline hazard.

The contribution of the independent variables to the baseline hazard in the propor-

tional hazard framework is specified as a change in the scale of the Weibull variable, see

Jenkins (2005). Then the DGP of the simulation of the conditional hazard is designed

as follows:

1. For the same choice of λ and k for the continuous Weibull transition time that

is used in the unconditional hazard simulation, determine the proportion of cen-

sored observations π and the upper parameter of the Uniform distribution of the

continuous censoring time, uπ. This is equivalent to setting the proportion of the

censored observations in the baseline hazard.

2. Simulate Xc
i from N (0, 1) and Xd

i from Bernoulli with probability of success

Pr(Xd
i = 1) = 0.5.

3. Simulated Y c
i from fY c|Xc

i ,X
d
i
. The mathematical proofs show that Y c

i is simulated

from the density Y c
i ∼ Weibull(scale = λexp

[
− 1
k

(
0.15Xc

i − 0.5Xd
i

)]
, shape = k).

This means that we make the unconditional hazard in the first simulation the

baseline hazard in the this simulation. Where for Xc = 0 and Xd = 0 the scale

parameter reduces to λ.

4. Simulate Cc
i from rCc, the Uniform(0, uπ) continuous density.
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5. Compute the duration variable, T ci = min(Y c
i , C

c
i ), and the right censoring indica-

tor Mi= I(Y c
i ≤ Cc

i ).

6. Bin T ci into equal intervals each of length b = 1.

7. Estimate the conditional hazard model using the estimators.

The parametric PH hazard estimators that are compared in the conditional hazard

simulation study are a PH with a Weibull specification of the baseline hazard θCWPH , a

PH with a step function specification of the baseline hazard θCSPH . The hazard rate is

predicted at episode jo conditional on chosen values of xc and xd, that are denoted by

Xc and Xd. At episode jo the hazard rate is predicted by the PH estimators as follows

1. The cloglog model with Weibull specification of the baseline hazard: find log(jo)

and use the clolog link function with the estimated coefficients α̂0, β̂xc and β̂xc,

which are the coefficients of elapsed time in the state, the continuous independent

variable and the discrete independent variable in the pooled sample respectively.

The predicted hazard at episode jo is given as follows

θ̂CWPH
(
jo
∣∣Xc, Xd

)
= 1− exp

{
− exp

[
α̂0 log (jo) + β̂xcX

c + β̂xdX
d
]}

. (3.69)

2. The PH hazard with step function (piecewise) baseline hazard. To predict the

hazard at episode jo the estimator estimates the hazard for the step s that includes

jo. The hazard at each step s is predicted using the ML estimated coefficient of the

dummy variable of s with the estimated coefficients of the continuous and discrete

independent variables in the cloglog link function as follows:

θ̂CSPH
(
s
∣∣Xc, Xd

)
= 1− exp

{
− exp

[
α̂s + β̂xcX

c + β̂xdX
d
]}

. (3.70)

As in the unconditional PH parametric estimators, the coefficients of the transformed

elapsed time variable and the coefficients of the independent variable are estimated

using the ML method.

The kernel estimators of the conditional hazard are

1. The conditional density implied hazard estimator, θ̂CDNK , which is the estimated

kernel conditional density function of the duration time divided by the estimated

conditional survival function. The predicted hazard for episode jo is as follows.

θ̂CDNK
(
jo
∣∣Xc, Xd

)
=

f̂ĥ
(
jo
∣∣Xc, Xd

)
1− F̂ĥ (jo |Xc, Xd )

. (3.71)

where the survival function F̂ĥ(jo
∣∣Xc, Xd ) =

jo∑
r=1

f̂ĥ(r
∣∣Xc, Xd ), jo = 1, 2, ...,B.
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The conditional kernel density estimator θ̂CDNK is automatically estimated since

we are using the MLCV bandwidths of the conditional density as näıve bandwidths

in the kernel hazard estimators.

2. Beran kernel hazard estimator, θ̂BKH , in Eq (4.29).

3. θ̂CEKH , the conditional external kernel hazard estimator in Eq (4.27).

The performance of the models is measured using 4 evaluation points of Xc and the

categories of Xd. The values of Xc are: the mean of the Monte Carlo sample X
c

q; the

expected value of Xc, µxc = 0; µxc plus 1 standard deviation, µxc + σxc = 1; µxc minus 1

standard deviation, µxc−σxc = −1. The first two points are very close, the total number

of the evaluation pairs (evaluation points) of Xc and Xd is 8 points. The evaluation

point at Xc = 0 and Xd = 0 produces the baseline hazard. The hazard is predicted on

each sample at each combination of Xc and Xd in all the intervals up to the interval of

the 99th quantile of continuous time
(
Y c|Xc = 0, Xd = 0

)
.

To compute the measure of performance, the average mean squared error (aMSE),

for sample q, the predicted mean squared error at the evaluation point
(
Xc, Xd

)
e
, is

computed by

M̂SEeq(θ̂
(·)|
(
Xc, Xd

)
e
) = S−1

S∑
r=1

[
θ
(
r
∣∣(Xc, Xd

)
e

)
− θ̂(·)q

(
r
∣∣(Xc, Xd

)
e

)]2
, (3.72)

where e = 1, 2, · · · , 8 denotes the evaluation point and q = 1, 2, · · · , 500. (·) refers to

the estimators CSPH, BKH, CEKH, CDNK. For the CWPH the summation is over the

intervals, B′, not over the steps S. The average mean squares error for each estimator

âMSE
(·)

is calculated by taking the average over all samples and all the evaluation

points.

âMSE
(·)

= 500−1
500∑
q=1

(
8−1

8∑
e=1

M̂SEeq

(
θ̂(·)
))

. (3.73)

On the other hand, the absolute bias for sample q at the evaluation point e is com-

puted as

B̂iasq(θ̂
(·)|
(
Xc, Xd

)
e
) = S−1

S∑
r=1

|θ
(
r
∣∣(Xc, Xd

)
e

)
− θ̂(·)q

(
r
∣∣(Xc, Xd

)
e

)
|, (3.74)

and the average absolute bias for estimator (·) in all samples at all the evaluation point

is

B̂ias
(·)

= 500−1
500∑
q=1

(
8−1

8∑
e=1

B̂iaseq

(
θ̂(·)
))

. (3.75)
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3.5.3 The Simulations Results

The simulation results are presented in two parts: the first part - Simulation Results Part

A - is related to the parametric estimators only, the second part - Simulation Results

Part B - include the comparison between the estimators, the parametric PH and the

KH estimators. The discussion in the first part focuses on the Monte Carlo estimated

coefficients of the AFT and PH models only. After we show that the coefficients of

the parametric models are estimated correctly in the first part, we proceed into the

comparison of the estimators using the performance measures in the second part. The

comparison in the second part include all the discrete time hazard estimators in the

simulation study, the AFT estimator is not included in the performance measures.

Simulation Results Part A: Comparison between the estimated coefficients of the

parametric estimators

The scale and shape parameters of Weibull continuous time are estimated directly in the

continuous time hazard regression, the estimators that are denoted by AFT (accelerated

failure time) and CAFT (conditional accelerated failure time) in the unconditional and

conditional DGP results respectively. For WPH and CWPH estimators the parameters

of the continuous density function of the underlying Weibull variable are not identified

without more restrictions8. The coefficients of the independent variables that are esti-

mated by the CAFT estimator are denoted by β̂∗AFTxc and β̂∗AFT
xd

for xc and xd respectively

in Tables 3.2 and 3.3. The same coefficients in the PH form are denoted by β̂AFTxc and

β̂AFT
xd

respectively. The transformation of the coefficients from CAFT to PH form depends

on the Weibull density shape parameter as follows, β∗
AFT

= −k−1βAFT .

The estimated values of the scale and shape parameters by the AFT and CAFT es-

timators, show that the Weibull continuous time hazard model is estimated correctly.

This implies that the continuous time PH model could follow directly. However, the

continuous time PH is not included. We will focus on the estimated coefficients, where

they are sufficient to examine the design of the DGP and the grouping scheme. The

estimated coefficients for the independent variables that shown in the tables are almost

the same for the continuous time estimator and the discrete time estimators. The co-

efficient of the continuous independent variable is set at βxc = 0.15 and of the dummy

independent variable is set at βxc = 0.50. Both values are estimated correctly by the

continuous time CAFT estimator and the discrete time CWPH and CSPH estimators ,

see the tables in Appendix D.

Hence, the effect of the independent variables to the hazard function is correctly esti-

mated in the continuous time model and in the grouped the time models. Which means

that the observed heterogeneity function is estimated correctly by the PH parametric

estimators. The coefficients that are estimated in the continuous time estimator seem
8One of those restrictions is to restrict the values the scale and the shape to 1 as shown in Appendix

D
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slightly better than the coefficients that are estimated in the grouped time estimators.

On the other hand, the coefficients that are estimated in the fully parametric grouped

time model, CWPH, are also slightly better than the coefficients that are estimated in

the step-function grouped time PH model, CSPH. This is an intuitive result since the

true model is simulated from a known Weibull conditional hazard model.

The PH models estimate the baseline hazard and the observed heterogeneity func-

tions jointly. The intercept and the coefficient of log(jo) in the WPH and CWPH models

and the coefficients of the steps dummies in the SPH and CSPH models are the coeffi-

cient that estimate the baseline hazard function. The estimated coefficient of the inde-

pendent variables are the coefficient that estimate the observed heterogeneity function.

If the Weibull shape and scale parameters are identified in the model, they become pre-

dictable by the intercept and the coefficient of log(jo) in the WPH and CWPH models.

As the mathematical proofs and the simulation results in Appendix D show, the shape

parameters is identified in our simulations when k = 1 only, on the Exponential case,

where the shape parameter is k = 1 − αlog(jo). In the simulations 1 − α̂log(jo) is used

to find the estimated shape parameter. The identification of the parameters of Weibull

continuous variable in the PH models is not important in our simulation study, the base-

line hazard is estimated correctly for all values of k. The identification of the Weibull

parameters in the PH is not concerned in the performance measures. We argue that if

we tried to include assumptions to make the Weibull parameters identified to all WPH

and CWPH models, this may restrict the comparison and affect our research objectives.

Simulation Results Part B: Comparison between discrete time hazard estimators

The nonparametic kernel estimators do not produce coefficients, the only estimated

parameters are the bandwidths. So, the comparison between parametric and nonpara-

metric kernel estimates is slightly difficult. The researcher attempt to use a method

that makes the reading of the simulation results and the comparison between the es-

timators easy, with this large number of hazard estimators that are compared. The

estimators that are included in the simulation study are compared using distance mea-

sures between the true hazard and the predicted hazard that estimated by each PH or

KH estimator. The estimator that predicts a hazard rate that closer to the true haz-

ard is better than the other estimators. Counting the number of (estimators×baseline

hazards×samples)9. We estimate each hazard estimator a number of times that equals

the to the product of the chosen Weibull shape parameters, k, by the number of the

chosen Weibull scale parameters, λ, (baseline hazards). This is repeated at each chosen

sample size n and proportions of the right censored observation, π (samples). The result

of the overall number of times that each estimator is estimated is 160. The simulation

study compares between 4 unconditional hazard estimators and 5 conditional hazard

9The proportion of right censored observations and the sample size are the two characteristics that
define each sample in the simulation study.
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estimators. This gives a total of 640 unconditional and 800 conditional Monte Carlo

predicted hazard, each repeated 500 time.

We aim to provide sufficient information about the results of the simulation study.

So, we follow a method that uses a graphical presentation to a rescaled aMSE measure.

For each estimator on each (baseline hazard × sample) the rescaled distance measure,

log(aMSE × 105), is represented by a marker in Figures 3.2 to 3.5 below. The trans-

formation of the aMSE to log(aMSE × 105) makes the comparison easier, Figures 3.2

and 3.3 present the results of the unconditional hazard simulation, Figures 3.4 and 3.5

present the results of the conditional hazard simulation. The log(aMSE × 105) of the

conditional estimators in Tables 3.2 and 3.3 are shown in the middle columns in Figure

3.5. The log(aMSE × 105) of the PH with Weibull baseline hazard estimator, WPH and

CWPH estimators, is shown by black markers. The external kernel hazard estimators

are shown by blue markers in all plots.

Figures 3.2 and 3.3 show that (C)WPH model performance deteriorates dramatically

when the shape parameter decrease. log(aMSE × 105) of the (C)WPH model is higher

than that for other model. At low value of the shape parameter, k = 0.25, the conditional

hazard of the grouped time model takes the form:

θ (jo|x) = 1− exp
[
−exp

(
klog

(
1

λ

)
+ log

(
jo
k − (jo − 1)k−1

)
+ xTβ

)]
(3.76)

Identifying the shape parameter of the underlying continuous time becomes dif-

ficult in the model. (C)WPH model use the term α log(jo) in the cloglog link func-

tion in an attempt to estimate the cumulative hazard the takes the form klog
(
1
λ

)
+

log
(
jo
k − (jo − 1)k−1

)
. α is assumed to be an estimator of k−1, but it is identified with

respect to k only when k = 1 where the coefficient α estimate is 0. When k is different

than 1 k becomes unidentified to α, with k goes to a small number the identification

becomes more difficult. Then the grouped time model cannot identify the parameters

of the continuous time model, see Jenkins (2005) for detailed discussion.

The (C)WPH perform the worst on the models that are simulated from Weibull

with shape parameter k = 0.25. The (C)WPH model defines the baseline function as

1− exp(−exp(α0 + α1logj
o)) whilst the function takes the form 1− exp[−exp(klog( 1

λ
) +

log((jo)k−(jo−1)k))]. At k = 1 the true baseline hazard reduces to 1−exp(−exp(log(
1

λ
))).

The intercept α0 is an estimate of the log(
1

λ
) and the coefficient α1 = 1 − k = 0. Then

the (C)WPH capture the parameters of Weibull variables in the model. When k 6= 1

the (C)WPH model fails to identify the parameters of the Weibull underlying transi-

tion time. With the k becomes largely different that 1, the difference between (C)WPH

model definition of the baseline hazard as the true baseline hazard becomes large. The

limits lim
k−→c

(1 − k)logjo and lim
k−→c

log((jo)k − (jo − 1)k) are equal at k = 1 only, which ex-

plains the reason that the performance of the (C)WPH model deteriorates substantially

when the shape parameters reduced.
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The semi-parametric and the nonparametric estimation techniques generally need

large sample size to preform good, see Li and Racine (2007). This explains the subi-

tantial increase in the performance of the distance measure in the large sample size,

n = 500 and n = 1000, in the plots in Figures 3.2 to 3.5 below. The aMSE is negatively

related with the sample size, the downward slope of the log(aMSE×105) dotted line in

the plots is resulted from the increase in the sample size. In contrast to Weibull baseline

hazard estimators, the semi-parametric and the nonparametric estimators, as implied

by the plots, are not affected by the shape unmatchability between the discretised time

density function and the continuous time density function.

The aMSE for the unconditional hazard estimators is very close to the aMSE of the

conditional hazard at the baseline hazard evaluation points. This is an advantage in

the design of the DGP, where the proportional effect of the independent variables is

simulated upon the unconditional hazard. The distance between the true conditional

hazard and the hazard that estimated by any of the estimators is consistent. The quality

of the hazard predictions are similar for the estimators among all the evaluation points,

except for the density implied hazard estimator.

The proportional hazard estimators are generally better than the kernel estimators.

The performance of the kernel estimators deteriorate substantially when the hazard is

predicted at the evaluation points with Xd = 1. Kernel estimators failed to capture

the proportional contribution of the categorical independent variable in the simulation

study. In Figures 3.6 to Figures 3.11 the conditional hazard is predicted at the baseline

hazard evaluation points,
(
Xc = 0, Xd = 0

)
, in addition to the points

(
Xc = 0, Xd = 1

)
and

(
Xc = 1, Xd = 0

)
and

(
Xc = 1, Xd = 1

)
, for a sample size 500 and proportion of

right censored observations 0%, 5% and 25%. The right column shows the true hazard

(the black curve) and the PH estimators predictions, the left column shows the same

true hazard and the predictions of the kernel estimators. It can be seen in the charts

that how the PH estimators produce estimates that are very close to the true hazard

at all the evaluation points. The upward shift in the conditional hazard occurs when

the dummy independent variable increases from 0 to 1. The PH estimators captured

the upward shift better than the kernel estimators. Where the kernel estimators have

underestimated the contribution of the categorical independent variable as shown in

the plots.

The right censoring problem causes a reduction in the observed duration in the state

in the simulation study. When the Uniform density is higher than the Weibull density

the probability of the right censoring is higher than the probability of transition. This

occurs for a short period at the beginning of the spell, but the probability of transition

increases as the Weibull density function increases upward and exceeds the height of the

Uniform density function. At the end of the spell the probability of transition decreases,

the Uniform density function becomes higher than the Weibull density function, this

leads to a drop in the probability of transition and an increase in the probability of the
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right censoring. The drop in the duration of the spell is clearer in the samples that

are simulated from Weibull(scale=3, shape=0.50), where the spell length is dropped

from 22 episodes to almost the half, to about 10 episodes only. The right censoring

problem seems to make the estimators underestimate the true hazard rate at the end of

the spells, but the underestimation is higher in the kernel estimators when the hazard

is predicted at Xd = 1.

Lastly, the average bias at the first episode is calculated for the conditional hazard at

the 8 evaluation points of Xc and Xd. The average of the absolute bias of the predicted

hazard rate for the episodes up to the episode that include the 99th quantile of the

continuous time is computed for each estimator, with the percentage bias at the first

episode. The bias in the first episode can be an indicator of the Boundary Bias problem,

if the problem still in the smoothing of the grouped time variable. Where the predicted

hazard on the first episode will have high percentage bias if the Boundary Bias still exist.

The result of the bias measures for the duration models that are simulated from

Weibull with shape parameters 0.75 and 0.50 and scale parameter 3, are shown in Ta-

bles 3.6 and 3.7. The percentage bias of the first episode is higher in the PH with Weibull

baseline estimator than in the step-function PH estimator. The first episode bias in the

kernel hazard estimator, in contrast to the PH estimator, increases with the increase in

the sample size and is not affected much by the proportion of the right censored ob-

servations, except in the density implied estimator because it does not control for the

right censoring problem. The first episode bias is substantially lower than half, which is

the amount of Boundary Bias at the continuous time kernel hazard models. However,

this result is just implied from the simulation results, we haven’t studied the theoretical

properties of the discrete time KH estimators. Part of this bias, however, is due to the

use of inefficient bandwidths estimates in the discrete time kernel hazard estimators.

The absolute bias in the lower panel in Tables 3.6 and 3.7 shows the performance of

the estimators in all episodes. The estimators with the lowest absolute bias is the WPH

and CWPH followed by SPH and CSPH estimators. This illustrates that the bias in the

kernel predictions is high.

The results of the distance measures and that shown in the hazard plots, in addition

to the absolute bias results, imply that the kernel estimators have not performed well in

the simulation study. As all kernel estimators, the choice of the method to estimate the

bandwidths in the model is the corner stone of the good results. The choice of using the

naive bandwidths in this simulation study lead to estimate poor results by the kernel

hazard estimators. The naive bandwidths are not estimated by trading between the

variance and the bias in the hazard formula. Where this might likely be the reason that

the kernel hazard estimators failed to capture the effect of the categorical variable in

the simulation study.
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Figure 3.2: log(aMSE× 105) for the simulations of the unconditional hazard with scale
parameter 1.
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Figure 3.3: log(aMSE× 105) for the simulations of the unconditional hazard with scale
parameter 3.
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Figure 3.4: log(aMSE × 105) for the simulations of the conditional hazard with scale
parameter 1.
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Figure 3.5: log(aMSE × 105) for the simulations of the conditional hazard with scale
parameter 3.
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Table 3.4: aMSE of the conditional hazard models with the baseline
hazard that follows Weibull with scale=3 and shape=0.75.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.001694 0.005676 0.008143 0.006798 0.005532
200 0% 0.000803 0.002355 0.003637 0.003131 0.002778
500 0% 0.000319 0.000967 0.001554 0.001361 0.001280

1000 0% 0.000206 0.000477 0.000807 0.000743 0.000714
100 2.2% 0.001541 0.005497 0.008132 0.007031 0.005891
200 2.1% 0.000737 0.002682 0.003989 0.003395 0.003334
500 2.2% 0.000311 0.000947 0.001519 0.001365 0.001456

1000 2.1% 0.000193 0.000468 0.000797 0.000728 0.000817
100 5.5% 0.001711 0.005732 0.008745 0.007172 0.007256
200 5.5% 0.000718 0.002484 0.003811 0.003250 0.003772
500 5.5% 0.000333 0.000990 0.001563 0.001408 0.002060

1000 5.4% 0.000210 0.000502 0.000823 0.000756 0.001329
100 10% 0.001793 0.006454 0.009105 0.007630 0.009758
200 9.9% 0.000801 0.002887 0.004133 0.003642 0.005811
500 9.8% 0.000362 0.001158 0.001765 0.001617 0.003623

1000 9.4% 0.000232 0.000553 0.000847 0.000803 0.002485
100 25.9% 0.002728 0.011895 0.016292 0.014843 0.059273
200 25.6% 0.001444 0.004881 0.006624 0.006343 0.047432
500 25.7% 0.001094 0.002149 0.002906 0.002885 0.040385

1000 25.7% 0.000903 0.001331 0.001744 0.001741 0.037771

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.003341 0.009332 0.013343 0.012625 0.010603
200 0% 0.001373 0.003686 0.006712 0.006148 0.005648
500 0% 0.000555 0.001550 0.003304 0.003113 0.003030

1000 0% 0.000350 0.000764 0.001979 0.001916 0.001895
100 2.2% 0.003203 0.009145 0.013748 0.012460 0.011264
200 2.1% 0.001445 0.004348 0.006917 0.006440 0.005787
500 2.2% 0.000555 0.001516 0.003299 0.003129 0.002915

1000 2.1% 0.000336 0.000761 0.002096 0.002020 0.001866
100 5.5% 0.003175 0.009109 0.013774 0.012160 0.011140
200 5.5% 0.001303 0.004186 0.007372 0.006537 0.006503
500 5.5% 0.000573 0.001586 0.003488 0.003312 0.003083

1000 5.4% 0.000349 0.000791 0.002191 0.002109 0.001971
100 10% 0.003217 0.010190 0.014259 0.012421 0.013020
200 9.9% 0.001459 0.004631 0.007407 0.006826 0.007012
500 9.8% 0.000621 0.001783 0.003923 0.003750 0.003860

1000 9.4% 0.000390 0.000893 0.002436 0.002374 0.002499
100 25.9% 0.004646 0.018034 0.022379 0.020905 0.050521
200 25.6% 0.002571 0.007859 0.012088 0.011810 0.038542
500 25.7% 0.001821 0.003502 0.006851 0.006828 0.032688

1000 25.7% 0.001433 0.002094 0.004582 0.004578 0.030969
1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE

is up to the interval that include the 99th quantile of Y ci .
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Table 3.5: aMSE of the conditional hazard models with the baseline
hazard that follows Weibull with scale=3 and shape=0.50.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.000792 0.003291 0.004309 0.005524 0.003567
200 0% 0.000546 0.001326 0.001886 0.002709 0.001846
500 0% 0.000398 0.000480 0.000745 0.001254 0.000867

1000 0% 0.000357 0.000239 0.000395 0.000677 0.000475
100 2.5% 0.000866 0.004288 0.005299 0.006047 0.004711
200 2.3% 0.000543 0.001441 0.002024 0.002673 0.001972
500 2.4% 0.000401 0.000525 0.000788 0.001049 0.000880

1000 2.4% 0.000355 0.000258 0.000409 0.000515 0.000470
100 5.9% 0.000844 0.004387 0.005309 0.005751 0.004584
200 5.7% 0.000546 0.001678 0.002197 0.002449 0.002423
500 5.7% 0.000413 0.000560 0.000869 0.000880 0.001170

1000 5.7% 0.000366 0.000281 0.000456 0.000433 0.000767
100 10.1% 0.000872 0.006254 0.007167 0.007027 0.008507
200 2.7% 0.000594 0.002602 0.003228 0.003287 0.004801
500 4% 0.000462 0.000708 0.001041 0.000322 0.002484

1000 10% 0.000425 0.000346 0.000546 0.000521 0.002016
100 25.5% 0.002001 0.009486 0.012651 0.011660 0.121134
200 25.5% 0.001335 0.005021 0.006488 0.006387 0.125883
500 25.6% 0.001014 0.001804 0.002365 0.002365 0.128161

1000 25.5% 0.000890 0.000988 0.001379 0.001379 0.125455

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.001549 0.005728 0.006985 0.011295 0.008368
200 0% 0.000917 0.002274 0.003457 0.005491 0.004436
500 0% 0.000627 0.000840 0.001581 0.002546 0.001865

1000 0% 0.000552 0.000417 0.001028 0.001562 0.001200
100 2.5% 0.001775 0.007231 0.007549 0.010635 0.009254
200 2.3% 0.000944 0.002501 0.003557 0.005026 0.004579
500 2.4% 0.000640 0.000914 0.001675 0.002191 0.001720

1000 2.4% 0.000550 0.000450 0.001109 0.001359 0.001077
100 5.9% 0.001620 0.007384 0.007583 0.009221 0.009813
200 5.7% 0.000950 0.002897 0.003607 0.004317 0.004213
500 5.7% 0.000681 0.000984 0.001832 0.001938 0.001638

1000 5.7% 0.000587 0.000492 0.001179 0.001193 0.001033
100 10.1% 0.001688 0.009874 0.009109 0.009583 0.012244
200 2.7% 0.001029 0.004385 0.004488 0.004652 0.005046
500 4% 0.000779 0.001253 0.002006 0.001980 0.002343

1000 10% 0.000702 0.000603 0.001360 0.001341 0.001741
100 25.5% 0.003391 0.014590 0.016039 0.015222 0.111126
200 25.5% 0.002196 0.007740 0.009154 0.008711 0.114156
500 25.6% 0.001709 0.003085 0.004748 0.004748 0.117009

1000 25.5% 0.001494 0.001693 0.003231 0.003231 0.116500
1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE

is up to the interval that include the 99th quantile of Y ci .
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Figure 3.6: The predicted conditional hazard for the models with Weibull(k = 0.75, λ =
3) baseline hazard and 0% censored observations.
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Figure 3.7: The predicted conditional hazard for the models with Weibull(k = 0.75, λ =
3) baseline hazard and 5% censored observations.
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Figure 3.8: The predicted conditional hazard for the models with Weibull(k = 0.75, λ =
3) baseline hazard and 25% censored observations.
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Figure 3.9: The predicted conditional hazard for the models with Weibull(k = 0.50, λ =
3) baseline hazard and 0% censored observations.
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Figure 3.10: The predicted conditional hazard for the models with Weibull(k =
0.50, λ = 3) baseline hazard and 5% censored observations.
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Figure 3.11: The predicted conditional hazard for the models with Weibull(k =
0.50, λ = 3) baseline hazard and 25% censored observations.
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Table 3.6: The bias for the conditional hazard for the models
with the baseline hazard that follow Weibull with scale=3 and
shape=0.75.

The percentage bias of
first episode

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0.0% -3.4% -0.3% 9.5% -16.3% -10.2%
200 0.0% -2.1% -0.1% 8.5% -9.7% -5.3%
500 0.0% -2.7% 0.1% 6.8% -3.5% -1.0%

1000 0.0% -2.9% -0.2% 4.7% -1.7% -0.1%
100 2.2% -4.0% -0.8% 9.3% -16.2% -8.8%
200 2.1% -3.7% -0.7% 7.9% -8.9% -3.5%
500 2.2% -3.5% -0.7% 5.9% -3.9% 0.1%

1000 2.1% -2.9% -0.2% 4.9% -1.1% 1.9%
100 5.5% -3.1% -0.7% 9.3% -13.4% -4.5%
200 5.5% -4.4% -2.0% 7.0% -8.0% -0.6%
500 5.5% -3.7% -1.1% 5.4% -2.3% 3.5%

1000 5.4% -3.2% -0.6% 4.6% 0.5% 5.5%
100 10.0% -5.2% -2.9% 7.4% -11.3% 0.0%
200 9.9% -4.4% -2.1% 7.2% -3.9% 5.8%
500 9.8% -3.2% -1.0% 6.1% 1.2% 9.6%

1000 9.4% -3.6% -1.4% 4.1% 2.0% 7.0%
100 25.9% -6.0% -4.9% 8.0% 1.8% 24.1%
200 25.6% -5.6% -4.7% 5.4% 3.5% 24.9%
500 25.7% -4.9% -4.1% 3.0% 2.7% 24.5%

1000 25.7% -5.0% -4.1% 1.0% 0.9% 22.9%

Average of the absolute bias up to f
the interval that include the 99th quantile of Y ci

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0.0% 0.042394 0.073008 0.088750 0.083305 0.077528
200 0.0% 0.028042 0.046779 0.063335 0.060132 0.058278
500 0.0% 0.018230 0.030515 0.045094 0.043760 0.043269

1000 0.0% 0.014473 0.021388 0.034607 0.034056 0.033884
100 2.2% 0.041396 0.071953 0.089684 0.082626 0.078643
200 2.1% 0.028697 0.050382 0.064742 0.061469 0.059062
500 2.2% 0.018144 0.030031 0.044952 0.043742 0.042503

1000 2.1% 0.014249 0.021407 0.035459 0.034749 0.033680
100 5.5% 0.041932 0.073418 0.091269 0.083584 0.079667
200 5.5% 0.028177 0.049314 0.066620 0.062860 0.061060
500 5.5% 0.018437 0.030741 0.046158 0.044879 0.043789

1000 5.4% 0.014588 0.021812 0.036400 0.035742 0.035382
100 10.0% 0.042931 0.076560 0.092343 0.085193 0.085139
200 9.9% 0.029649 0.052257 0.067443 0.064391 0.064786
500 9.8% 0.019596 0.032366 0.048400 0.047883 0.049518

1000 9.4% 0.015530 0.022860 0.038210 0.037723 0.040350
100 25.9% 0.053652 0.098859 0.115988 0.111366 0.168271
200 25.6% 0.040491 0.066534 0.085390 0.084200 0.150649
500 25.7% 0.034574 0.044483 0.063765 0.063650 0.145367

1000 25.7% 0.031276 0.034839 0.051367 0.051337 0.145574
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Table 3.7: The bias for the conditional hazard for the models
with the baseline hazard that follow Weibull with scale=3 and
shape=0.50.

The percentage bias of
first episode

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0.0% -8.0% -0.7% 7.3% -39.1% -29.9%
200 0.0% -7.2% -0.3% 7.3% -31.5% -23.2%
500 0.0% -7.1% -0.2% 6.1% -21.6% -15.2%

1000 0.0% -7.2% -0.4% 4.8% -15.1% -10.3%
100 2.5% -6.9% -0.3% 7.9% -34.3% -24.8%
200 2.3% -6.7% -0.2% 7.4% -26.0% -17.8%
500 2.4% -6.3% 0.0% 6.6% -15.6% -9.4%

1000 2.4% -6.5% -0.2% 5.5% -9.1% -4.6%
100 5.9% -6.6% -1.2% 7.6% -27.5% -17.8%
200 5.7% -6.2% -0.7% 7.7% -17.7% -3.4%
500 5.7% -5.7% 0.0% 7.4% -6.3% -0.8%

1000 5.7% -6.2% -0.5% 5.7% -1.7% 2.3%
100 10.1% -5.3% -0.7% 9.4% -18.0% -7.9%
200 2.7% -5.6% -1.0% 8.3% -8.8% -0.9%
500 4.0% -5.4% -0.9% 6.8% 0.0% 5.5%

1000 10.0% -5.3% -0.7% 5.7% 2.9% 7.4%
100 25.5% -4.3% -2.7% 9.0% 2.9% 18.3%
200 25.5% -4.7% -2.9% 7.1% 6.1% 20.2%
500 25.6% -4.8% -3.0% 3.6% 3.5% 17.8%

1000 25.5% -4.7% -2.9% 1.6% 1.6% 16.2%

Average of the absolute bias up to f
the interval that include the 99th quantile of Y ci

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0.0% 0.026296 0.054213 0.062051 0.066745 0.058949
200 0.0% 0.020644 0.035632 0.044853 0.048101 0.043417
500 0.0% 0.017471 0.022209 0.031246 0.034364 0.030970

1000 0.0% 0.016418 0.015704 0.024954 0.027542 0.025298
100 2.5% 0.028657 0.059212 0.063888 0.066672 0.061972
200 2.3% 0.021494 0.037089 0.045733 0.048083 0.044437
500 2.4% 0.018312 0.023053 0.032106 0.033745 0.030748

1000 2.4% 0.017287 0.016390 0.025986 0.027141 0.024804
100 5.9% 0.028342 0.060156 0.064236 0.064604 0.062860
200 5.7% 0.022665 0.031106 0.046816 0.047370 0.044642
500 5.7% 0.016176 0.024143 0.033558 0.033560 0.031259

1000 5.7% 0.019057 0.017176 0.026813 0.026643 0.025207
100 10.1% 0.030314 0.068068 0.069267 0.068339 0.072214
200 2.7% 0.024780 0.046196 0.050575 0.048828 0.052012
500 4.0% 0.022867 0.027179 0.035526 0.035094 0.038022

1000 10.0% 0.022473 0.019011 0.028890 0.028656 0.033075
100 25.5% 0.047010 0.090701 0.098648 0.095820 0.251130
200 25.5% 0.038742 0.064325 0.073451 0.072964 0.249570
500 25.6% 0.035393 0.041302 0.054177 0.054180 0.250981

1000 25.5% 0.033881 0.031035 0.044029 0.044029 0.252296
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3.6 Conclusions

This research attempts to develop a kernel hazard estimator for discrete time single

state transition model. There are two kernel estimators that are suggested in this re-

search, an unconditional KH estimator and a conditional KH estimator. Both estimators

are developed from the existing kernel estimators for single state continuous time tran-

sition model. The construction of the discrete time KH estimators is very similar to the

construction of the continuous time hazard kernel estimators. The continuous time KH

estimators use the information about the individuals in the risk set after each distinct

transition time in the sample. The developed discrete time estimators, similarly, use the

information about the individuals in the risk set just after each time index point in the

underlying continuous time, the points that determine the grouped time intervals. The

advantages of the discrete time KH estimators over the continuous time KH estimators

are that they do not have source of Boundary Bias problem, are not affected by the

interval censoring problem and are not affected by tie transitions.

The research also demonstrates that for the discrete time with equal length time

intervals models, the Geometric Kernel function is appropriate to smooth the duration

grouped time variable when the kernel estimators are used. The choice of the kernel

function depends on the assumptions about the process. The Geometric Kernel is devel-

oped under the assumption that the number of intervals before the successful transition

for individual i in the sample has a Geometric distribution. In the models with un-

equal length intervals, the assumptions regarding the transition in the process have to

be considered to choose the kernel function of the duration grouped variable. The ker-

nel estimators of the discrete time hazard are developed for the right censored data,

however, they can be improved to the left truncated data as well. The asymptotic prop-

erties of the estimators are not discussed and left for future research. The discrete time

kernel hazard estimators can be developed more to include method to control for the

unobserved heterogeneity in the sample. The research suggests few kernel bandwidth

estimation methods that can to be useful in this context.

The estimators that developed in this research are compared with the parametric

proportional hazard discrete time estimator using Monte Carlo simulation method. The

research creates a data generating process, DGP, that based on the grouping scheme of

a continuous Weibull transition variable and on the assumptions of the PH framework.

The kernel nonparametric hazard estimators show weaker performance than the para-

metric PH estimators. The reasons of the weak performance can be divided into two

categories, reasons that are related to the DGP design in the research, and reasons that

are related to the kernel method and the proportional hazard estimation framework.

The reasons that are related to the DGP and the simulation study in this research

are:

1. The näıve bandwidths that are used in the simulation study are not optimal for
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the kernel hazard rate estimators. The estimation of the optimum bandwidths is

very tedious work in the Monte Carlo simulation study. The least-square cross

validation risk optimum bandwidths are not founded because the variance and

the bias formulas of the discrete time KH estimators are needed. This part is

considered as a work that beyond the level of this research. The maximum like-

lihood cross validation risk (MLCV-Risk) optimum bandwidth can be estimated

without further development, where the objective function of the MLCV-Risk haz-

ard model is easier than the LSCV objective function. However, the computation

of the MLCV-Risk bandwidths in the simulation study is very time consuming and

is not feasible in our research time limits. The exclusion time of the simulation

study to re-produce the simulations with the MLCV-Risk bandwidths is over 200

thousand hours. Which clearly justify that the use of the näıve bandwidths is the

only feasible option in this case.

2. The largest sample size that used in the simulation study, n = 1000, is not large

enough to demonstrate the performance of the kernel estimators adequately. Ker-

nel estimators work better with large sample size, where the asymptotic properties

of the estimators depend crucially on n. However, the hard computation cost that

associated with the hazard estimators, which is generated from the estimation of

the sub-survival functions in the model, makes the increase of the sample size to

more than 1000 observations very difficult.

The reasons that related to the kernel estimation method and the proportional haz-

ard estimation method are:

1. The kernel estimators are biased but consistent estimators, the asymptotic theory

is necessary to show the properties of the estimators and how they converge to

the true hazard functions. The discrete time KH estimators that are suggested

in this research have asymptotic properties that are not discussed. The research

draw the conclusions regarding the kernel hazard estimators based on the findings

of the simulation study, which uses restrictive conditions and assumptions and

excessive to the kernel estimators. The research focuses on the construction of the

discrete time KH estimators, but due to the computation difficulties, done very

little to allow those estimators be compared fairly with the proportional hazard

parametric estimators.

2. The literature in conditional kernel hazard estimation is short and little informa-

tive.

3. The proportional hazard assumption is very restrictive, the assumption that the

conditional hazard is a product of a baseline hazard and an observed heterogene-

ity function is not plausible empirically. However, the PH is the popular framework
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to estimate duration models in econometrics, and we couldn’t find an alterna-

tive estimation framework that applied to economic data. A link function condi-

tional hazard estimators that relax the assumption regarding the baseline hazard

is found in the literature of the parametric estimation of Survival Models in Younes

and Lachin (1997). However, Younes and Lachin (1997) hazard estimator is for

continuous time transition model, and is slightly discussed in the literature.

The kernel hazard estimators show a performance that indicates that they are promis-

ing class of estimators. However, the estimator that is suggested in this research has

limitations, where the results are concluded from the simulation study only with lit-

tle theoretical support, which shows the performance of the estimator under the DGP

design only. Due to the hard computation of the KH estimator the naive bandwidths

only are used, this limits use of the results in this research even more. The results on

this chapter are only useful in that is highlights many of the advantages of estimating

the hazard rate nonparametically, like the advantage that nonparametric estimation of

the hazard does not need fully identifying the distribution of the underlying transition

time and the discrete time KH estimator does not generate a Boundary Bias when the

grouped time transition time is smoothed. The work in this research opens the door to

do a lot of research in discrete time kernel hazard estimation.

This research is creative in that it develops a new discrete time kernel hazard KH

estimators and design an original simulation study for grouped time duration models.

The results and the findings of this research are important to economic duration esti-

mation method and can be improved in many ways. The simulation study can easily

be extended to include a simulation of the unobserved heterogeneity that follows Gaus-

sian or Gamma distribution. The kernel hazard estimators in the simulation study can

be compared with group regression AFT model in addition to the proportional hazard

model. The work in this research can be extended to find the form of the optimum

bandwidths of the discrete time KH estimators. The kernel hazard estimators, on the

other hand, can be expanded also to comprise time varying independent variables and

control for the unobserved heterogeneity in the duration model.
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Chapter 4

Kernel Hazard Estimation of the
Random Job Matching Model

Chapter Abstract

The research in this chapter applies the discrete time conditional kernel hazard estimator,
that developed in the previous chapter empirically. The discrete time hazard is estimated for
job-vacancies in Lancashire region in the UK, using a flow sample that covers the period from
March 1988 to June 1992, and the duration is measured in weeks. The conditional external
kernel hazard estimator is compared with the (mixed) proportional hazard estimators for dis-
crete time single transition models. The labour-market random matching theory (RMT) is used
to assess the performance of the estimation techniques. The research also introduces a maxi-
mum likelihood cross validation method to estimate the bandwidths of the conditional hazard
estimators, and shows that it produces accurate results compared with näıve bandwidths.

The (mixed) proportional hazard estimators improves when the restrictive parametric as-
sumptions regarding the baseline hazard form and the distribution of the unobserved het-
erogeneity are relaxed. But they show inconsistent results when the distribution assumption
about the unobserved heterogeneity is changed, and produce results that contradict with the
labour-market RMT. Kernel nonparametric estimators, on the other hand, show outstanding
performance in term of the predicted hazard rate and the consistency of the results with the
labour-market random matching theory. The kernel estimators show that the hazard rate of job-
vacancies increase to about 3 times at the end of the flow sample period due to the increase of
the number of job-seekers. The conditional external kernel hazard estimator capture the effect
of labour market tightness in contrast to the (mixed) proportional hazard estimators.

Key Words: Nonparametric, random matching model, job-market tightness, job va-
cancies, hazard rate, survival function, grouped time hazard, Weibull hazard, propor-
tional hazard, external kernel hazard, Beran kernel hazard, single state transition, ,
sub-survival function, näıve bandwidths.

JEL Classification: C14, C15, C24, C25, C51, C63, J10, J20, J41, J64.
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4.1 Introduction

The objective of this chapter is to apply the discrete time kernel hazard estimation tech-

nique that is developed in Chapter 4. This chapter extends the methods of bandwidth

estimation of the conditional kernel hazard estimators to the so-called the maximum

likelihood cross validation risk (MLCV-Risk) method. The MLCV-Risk bandwidths

are not used in Chapter 4 due to the high computation costs in their estimation. But

in this chapter the computation cost is paid in an attempt to improve the kernel hazard

estimators and enrich the discussion. The research uses data on weekly duration of

job-vacancies drawn from the Lancashire Careers Service (LCS) administrative records.

The proportional hazard (PH) estimators are compared with the conditional external

kernel hazard (CEKH) and Beran kernel hazard (BKH) estimators in Chapter 3. The

PH estimators are also improved by controlling for unobserved heterogeneity by using

the mixed distributions proportional hazard estimation technique, known as the mixed

proportional hazard (MPH) method.

The proportional hazard models are estimated with two specifications for the base-

line hazard function. First, a fully parametric specification under the assumption that

the underlying continuous time in the survival model follows Weibull distribution, and

second, a semi-parametric specification of the grouped time baseline hazard, which is

known as the step-function (piecewise) baseline hazard. The PH model without con-

trolling for the unobserved heterogeneity is estimated for both specifications of the

baseline hazard, but the MPH models are estimated with the step-function baseline

hazard models only. The MPH models are estimated under two different assumptions:

when the distribution of the unobserved heterogeneity is assumed to be a Gaussian

distribution, and when it is assumed to follow a discrete distribution with a limited

number of mass points. As shown empirically in Chapter 2 in the case of the condi-

tional density estimation, parametric methods produce better results when restrictive

parametric assumptions about the functional form in the model are relaxed. The MPH

model with step-function baseline hazard and nonparametric discrete distribution of

the unobserved heterogeneity is the parametric model with the most relaxed paramet-

ric assumptions in this research.

More specifically, the objective of this research is to examine the empirical results

of the nonparametric conditional kernel hazard estimators relative to the results of the

proportional hazard and the mixed proportional hazard parametric estimators, using

labour-market data on duration of job-vacancies in weeks. The form of the hazard of

job-vacancies is developed from the job-matching function of Pissarides (1990). The

transformation of the matching function to a conditional hazard function conditioned

on the number of job-seekers and the number of job-vacancies and other factors is

illustrated in Section 5.2. In contrast to the comparison in the simulation study in

the previous chapter, in this chapter the true hazard is not known and the sample is

subject to an obvious unobserved heterogeneity problem. The theory regarding the job-
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matching function is informative about how the function responds to the changes in the

number of job-seekers and the number of job-vacancies in the market pool, and shows

that the rise in the number of job-seekers increases the probability of matching. .

The research deals with the unobserved heterogeneity problem in the data carefully

and critically. In contrast to the parametric and semi-parametric estimation of duration

models, where the unobserved heterogeneity problem is treated clearly by using mixture

distributions, see Horowitz (1999), Baker and Melino (2000) and Abbring and Van

Den Berg (2007), in kernel estimation treating UH ambiguous. The approaches to

estimate kernel objects of mixture distribution is advanced theoretically and difficult

to be handled empirically, in addition to that it is mostly covers continuous variables

estimators. The our research focuses on the impact of the UH on the KH estimator and

compares this with the impact of the UH in the parametric hazard estimator before and

after controlling for the unobserved heterogeneity problem.

The chapter is organized as follows: Section 4.2 presents the theory regarding the

labour-market matching function and the job-vacancies hazard rate development, then

Section 4.3 we illustrate the econometric development of the parametric estimation

technique and the kernel nonparametric estimation technique. The flow sample data

and the sample statistics are discussed in Section 4.4. The models results and finally the

conclusions are presented subsequently in Sections 4.5 and 4.6.

4.2 The Random Matching Model in the Labour Market

Random matching models aim to explain the relationship between job-seekers and em-

ployers in the trading sector of the job market. The trade sector is the first component

of the labour-market before the production sector. The trade runs between the em-

ployers who offer job opportunities in the market and the unemployed workers who

are interested in filling those jobs for wages. When a job is filled by an unemployed

worker both the employer and the worker move to the production sector in the labour-

market. However, the process corresponding the trade depends on macroeconomic and

environmental factors as well as some individual characteristics regarding both unem-

ployed workers and employers. This economic activity is a time consuming process

constructed on labour supply and labour demand forces and leads to the determining

of the wages in the labour-market. The matching function aims to specify the behaviour

of employers and unemployed workers in the trading sector over time, and defines the

matching between them as a time to event process that could be estimated with hazard

modelling techniques. The employers that are looking for workers reveal this in the

form of announced job-vacancies in the market. The unemployed workers, who are the

job-seekers, respond to this by contacting with the employers according to the labour-

market rules. There could be an intermediate body in the market like a job-office or

an employment service that organizes the behaviour in the labour-market as a whole.
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Most matching function focus on the numbers of job-vacancies and job-seekers to study

this process in the labour-market.

The standard random matching model developed by Pissarides (1990) has a match-

ing function that is constructed to be a well behaved function explains the transition

from the trade sector to the production sector smoothly. The trade sector is constructed

from a pool of job-vacancies that represent the demand side and job-seekers that repre-

sent the supply side. Stocks and flows in job-seekers and job-vacancies depend on the

rate of transition from the trade to the production sectors in the market, and on the

reverse transition. The flow is generated from loss of existing jobs in the production

sector in addition to the entering of new workers and new job-vacancies to the market.

The lose of existing jobs is assumed to have a steady effect in the model. The stock of

job-vacancies and job-seekers on the other hand depends on the matching rate. A slow

matching rate means a slow transition from the trade sector to the production sector

and generates high stock of workers seeking jobs.

The matching function measures the average number of coordinated job-vacancies

and job-seekers in the market per unit of time. Advanced labour-market matching

model divide the job-seekers and the job-vacancies to stock and flow each, and esti-

mate the matching function in implication of those components. The effect of the stock

and flow in the matching function is examined in Andrews et al. (2011) and Forslund

and Johansson (2007). The former paper shows that the flow of new vacancies is likely

to increase the matching probability of the job-seekers in the stock by about three times.

The model that use the total number of stock and flow job-vacancies and job-seekers is

the basic standard random matching model of Pissarides (1990) and is the model that

is considered in this research. The average matched number of job-vacancies per time

unit, denoted by m, as shown by Pissarides (1990) is: m = µ (U, V ), where U and V are

the total number of unemployed workers and job-vacancies in the market respectively.

µ is a well behaved function that has the same properties of the production function.

The natural choice of µ (·) is a Cobb-Douglas form function, µ = UαV β with 0 < α,

β < 1 and follows a Poisson process with a rate that equals the labour-market tightness

ρ ≡ V/U , where the average number of contacts per vacancy is decreasing in ρ. The

average number of contacts per vacancy is

m = µ (U/V, 1) = UαV β−1. (4.1)

Under the random matching model the hazard rate for a vacancy to get filled is

θ = aµ (U/V, 1) = aUαV β−1, (4.2)

where a is the joint probability of offering a job and the probability of accepting the

offer by a pair of contacted employer and job-seeker in the market. Then the log of the
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hazard is

log θ = log(a) + α log(U) + (β − 1) log V + ε. (4.3)

ε captures the effects of the unobserved factors in the model, which are assumed to be

time invariant and independent of U and V .

For job-vacancy i the hazard of matching with a job-seeker in the market during the

interval jo is

θ (jo | xijo, ε) = Pr(ycjo−1 < T ci ≤ ycjo
∣∣T ci > ycjo−1,xijo , ε), (4.4)

= Pr(Joi = jo |Joi ≥ jo ,xijo , ε), (4.5)

=
S(jo − 1 |xijo , ε)− S(jo |xijo , ε)

S(jo − 1 |xijo , ε)
, (4.6)

where yc is the underlying continuous transition time that measured in equal intervals

(0 = yc0, y
c
1], (yc1, y

c
2], ...,,

(
ycB−1, y

c
B

]
. T ci is the ith individual continuous duration time,

which is not observed, instead the interval (the episode) of T ci is observed and denoted

by Joi . The episode are defined from the continuous transition time as Joi = 1 if yc0 <

T ci ≤ yc1, J
o
i = 2 if yc1 < T ci ≤ yc2,.. etc. Thus jo is a discrete variable that denotes the

episodes of transition and takes the values 1,2,..,B, it is illustrated more in the next

section.

Using log [− log (1− θ)] ≈ log θ and the baseline hazard in the interval jo, τjo =

log

(
yjo∫
yjo−1

φ0(u)du

)
, that is common for all job-vacancies, the hazard in Eq (4.3) can

then be written as

log [− log (1− θ)] ≈ log θ, (4.7)

≈ τjo + log(a) + α log(U) + (β − 1) log V + ε. (4.8)

Because the approximation is very close, the equation is transformed to a complemen-

tary log-log link function form as follows

θ = 1− exp [− exp (τjo + log(a) + α log(U) + (β − 1) log V + ε)] . (4.9)

This equation is directly estimated by a discrete choice method with a cloglog link

function, the coefficients α and β being interpreted as being the estimated elasticities of

the labour supply and labour demand respectively.

The random matching model is directly estimated parametrically using the condi-

tional hazard technique, whilst the mixed proportional hazard framework is used di-

rectly to estimate the function in Eq (4.9).
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4.3 The Econometric Framework

The hazard rate is the “instantaneous probability of leaving a state conditional on

survival time”, see Cameron and Trivedi (2005, page 576). The correlation between

the conditional probability of leaving the state and the duration in the state is called the

duration dependence. The matching of a job-vacancy with a job-seeker is a leaving

of the state of being in the trade sector in the labour-market to the state of becoming

active in the production sector. The duration dependence is negative if the probability

of leaving the state decreases with the duration in the spell, and positive if the condi-

tional probability increases with the duration in the spell. In rare cases, however, the

dependence may be weak and undetectable by the model.

The data for labour-market random matching models have the regular problems of

duration model data, so that the same sampling methods like the flow and stock sam-

pling are used. The samples are mostly taken from administrative records of labour-

market offices or government offices. The censoring problem occurs when the informa-

tion about the duration in the state is incomplete for some individuals or vacancies in

the sample. This causes a bias problem and uninformative in the model. The censor-

ing complicates the estimation and reduces the effective sample size that used in the

estimation. There are three types of censoring problems in survival analysis data: left

censoring, interval and right censoring. The left censoring is when the beginning of the

spell is not observed. It is the most difficult type to handle and causes serious bias in

the duration model. It is advisable to eliminate the sources of the left censoring in the

sample by choosing a sampling scheme that does not include the units that entered the

state before the beginning of the observation period. The flow sampling method, for

example, draws a sample from the unit entering the state after a specific time known as

the study start date, so it does not include the sources of left censoring bias.

Interval censoring is defined as the case where the duration in the state is only

known to continue between two points in time. In economic duration data the mea-

surements are taken into time units like days, weeks, months, or in an unmeasured

length intervals, which means that the data automatically correspond to the interval

censoring problem. Although the process in many application runs originally in the

continuous time, it may be difficult or even impossible to follow the units in the sam-

ple continuously to record or approximate the time of transition. Following the units

through periods of time is one of the ways to overcome this problem. The transitions are

then known to occur in an intervals only but the particular points in time at which they

occurred are unknown. For this structure of the data the grouped time hazard model

is also called interval censored data hazard model. In the grouped time hazard models

the bias of the interval censoring is corrected by constructing an estimation technique

using the functions of the continuous transition time at the boundaries of the intervals,

which are also known as the time index points.

The last type of censoring, the right censoring, is when the transition is not ob-
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served. It causes a bias known as the right censoring bias, which is corrected in the

models by including the distribution functions of the censored observations in the Max-

imum Likelihood function, see Klein and Moeschberger (2003) and Jenkins (2005).

Let fY c and FY c be the density and the distribution functions of the underlying

continuous transition time Y c. Let the right censoring continuous time, denoted by

Cc, have a density rCc and a distribution function RCc. So for each observation i,

the continuous time in the state is T ci = min(Y c
i , C

c
i ) and has a distribution function

1− (1− FY c) (1−RCc). The right censored observations are the observations that coin-

cide with the value 1 in the indicator function I (Y c
i ≤ Cc

i ). The continuous time Y c is

observed in equal intervals each with length b. The intervals are numbered subsequently

from 1 to B, where B is the last observed interval. This generates a discrete ordered

random variable jo that measures the duration in the state in intervals, jo known as

episodes. The intervals are defined theoretically with respect to the continuous dura-

tion time variable as jo =
(
ycjo−1, y

c
jo

]
, where yc1, y

c
2, · · · , ycB are the time index points

which are the upper bounds of the equal intervals. The index points are the key points

that link the variables and the functions in the grouped and continuous forms. Note that

after the last complete interval in the sample there is no upper bound where ycB+1 =∞
and the hazard in the episode (ycB,∞] equals 1 irrespective of the interval length or the

number of intervals. In practice the sample end date is ycB and the observations that are

still in the state up to this point are right censored.

Let f (jo) = fjo be the mass probability density of the discrete (discretized Y c) tran-

sition time Jo. Then the distribution function of the continuous time Y c and the discrete

time Jo must be identical at the time index point, which are the ends of the intervals,

as follows:

FJo (jo) =

jo∑
r=1

fJo (r) =

ycjo∫
0

fY c(u)du = FY c (yjo) , (4.10)

where ycjo are the time index points of the intervals. The hazard and the survival func-

tions of the discrete (grouped) transition time, Jo, are defined in term of the survival

function of the continuous time transition time, Y c. The survival probability in the

grouped time model in interval jo is defined as the probability of surviving the interval

and beyond, this means it is the complement of the distribution function at the end of

the previous interval, i.e. S (jo) = 1−FY c
(
ycjo−1

)
. The discrete time hazard in each inter-

val then follows directly from the survival function of the discrete time. The conditional

survival function of the discrete time, Jo, is defined form the conditional distribution

function of the continuous time Y c, where S (jo|xijo , ε) = 1 − FY c
(
ycjo−1|xijo , ε

)
, and x

is the vector of the independent variables. This directly produces the hazard formula in

Eq (4.6).

The conventional econometric method for discrete time hazard estimation is the

proportional hazard (PH) framework of Jenkins (1995), which is flexible enough to

control for the effect of the unobserved components. In contrast to the parametric
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methods of conditional hazard estimation, there are only few nonparametric kernel

methods available. Thus to estimate a job-matching model, only the kernel hazard

estimator that developed in Chapter 4 can be used. The following sub-sections examine

the parametric method and the kernel nonparametric method for conditional hazard

estimation in more details.

4.3.1 The Mixed Proportional Hazard Framework

The proportional hazard framework is the conventional technique to estimate the con-

ditional hazard rate in grouped time parametrically. The PH framework assumes that

the inter-individual differences in the sample have proportional impact on a common

function that depends on time only known as the baseline hazard, θ0 (jo). The baseline

hazard function have the properties that it is:-

• A function on the elapsed time in the state only aims to estimate the duration

dependence.

• The same for all the observations in the sample.

• Need not to be fully specified in the model.

Some proportional hazard estimation techniques apply the Partial Likelihood method or

the Marginal Likelihood method to estimate the conditional hazard rate without defin-

ing a functional form to the baseline hazard, for example Cox regression which applies

the Partial Likelihood. But those methods are used in continuous time conditional haz-

ard estimation. For the discrete time case the baseline hazard can be nonparametrically

defined in the model and the Maximum Likelihood method applies directly.

The inter-individual differences are divided into differences that are due to observed

components in the sample and differences that are due to unobserved components. The

observed components are the independent variables in the sample, X, which have two

types: time invariant independent variables and time varying independent variables.

The contribution of the observed components to the baseline hazard is defined theo-

retically as a change in the scale of the transition time variable, but at the same time

decomposable to a separate function known as the observed heterogeneity function,

ψ (X) > 0. This is estimated parametrically as a function on the independent variables

only and needs to be fully specified in the model. The regular choice of the observed

heterogeneity function in the literature is ψ (X) = exp
(
XTβ

)
. Clearly, the individuals in

the sample with values of the independent variables that increase the hazard will have

their conditional hazard rates estimate shifted upwards from the baseline hazard by a

level determined by the values of independent variables and the estimated coefficients

β̂.

The proportional hazard functional form in the grouped time hazard case is the

product of the baseline hazard and the observed heterogeneity functions, θ0 (jo)ψ (X),
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which is transformed to the following form, see Jenkins (2005, Chapter 2):

θ (jo|Xi) = 1− exp {− exp [log (Λ (yjo)− Λ (yjo−1)) + X′iβ]} , (4.11)

= 1− exp

− exp

log

 yjo∫
yjo−1

φ0(u)du

+ X′iβ


 , (4.12)

= 1− exp {− exp [τjo + X′iβ]} , (4.13)

where Λ (yjo) is the cumulative hazard function of the underlying continuous time at

the end of the interval jo,
yjo∫
yjo−1

φ0(u)du is the discrete time baseline hazard inside the

interval. So, the discrete time baseline hazard θ0 (jo) is defined from the continuous

time baseline hazard φ0 (yc).

The function in Eq (4.13) has a complementary log-log (cloglog) form which makes

the estimation of the coefficients in τjo part easy, but involves identification of the base-

line hazard of jo with respect to the parameters of the distribution of the continuous

transition variable. However, τjo may be fully identified when certain assumptions are

enforced about f (yc), as in the case when it is assumed to be a Weibull density with

shape parameter equals 1.

There are two methods to estimate the baseline hazard of the grouped time models.

The first uses the logarithm of the grouped time jo and the intercept term to define

τjo = δ0+δ1 log (jo). This method identifies the continuous time baseline hazard through

the values of the coefficients δ0 and δ1 if yc has a Weibull distribution, particularly if

the shape parameter is 1 (yc is Exponential). However, the parameters of the Weibull

density are not identified by the cloglog function if the shape parameter is different than

1, see the mathematical proofs in Appendix D. The second method uses a nonparametric

step function to define the baseline hazard in the cloglog function. This method is

known also as the piecewise baseline hazard, Jenkins (2005), and it is able to predict

the baseline hazard of the grouped time better than the first method, but provides no

information about the underlying continuous time density function. The step function

is estimated by including time dummy variables in the cloglog function to approximate

the baseline hazard in discrete time.

The mathematical proofs of Appendix D shows that for a discrete time hazard model

with an underlying continuous time that follows Weibull with scale λ, shape parameter

k and cumulative hazard function ΛY c is:

log [− log (1− θ (jo |Xi ))] = log
[(

ΛY c
(
ycjo |Xi

)
− ΛY c

(
ycjo−1 |Xi

))]
, (4.14)

= log

[(
1

λ exp (−k−1XT
i β)

)k (
(jo)k − (jo − 1)k

)]
,(4.15)

= log

(
1

λ

)k
+ log

(
(jo)k − (jo − 1)k

)
+ XT

i β, (4.16)
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where the interval length is 1 and

τjo = log

(
1

λ

)k
+ log

(
(jo)k − (jo − 1)k

)
. (4.17)

The log transformation aims to approximate the baseline hazard function:

δ0 + δ1 log (jo) ≈ log

(
1

λ

)k
+ log

(
(jo)k − (jo − 1)k

)
(4.18)

clearly the first term is defined where δ0 = log
(
1
λ

)k, the approximation is on the sec-

ond terms δ1 log (jo) ≈ log
(
(jo)k − (jo − 1)k

)
. In the Exponential case k = 1, then

δ0 = log
(
1
λ

)
and log ((jo)− (jo − 1)) = 0. Then the estimated intercept coefficient is

identified to the Exponential distribution scale parameter and the estimated slope is

δ̂1 = 0, which is related to the shape parameter as δ̂1 + 1 = 1, which means a constant

duration dependence. For the Weibull with shape parameter k 6= 1 the estimated slope

coefficients is not identified in the model. But in the case of k < 1 the hazard is decreas-

ing in time δ̂1 < 0 and δ̂1 +1 < 1, when k > 1 the hazard is increasing in time δ̂1 > 0 and

δ̂1 + 1 > 1. So a correct duration dependence in the grouped Weibull duration variable

is estimated by the cloglog model.

Maximum Likelihood method is used to estimate the discrete time PH model. Jenk-

ins (1995) shows that the likelihood function in Eq (4.13) is similar to the likelihood

function of a panel data binary choice model with cloglog link function. The panel data

binary model is estimated for a dependent binary variable dijo that takes the value 1

only at the last episode for each individual only if the individual has a transition from

the state and takes zero otherwise. The model is estimated by pooling the survival

analysis dataset to an unbalanced panel data shape, and creates a new variable, air,

r = 1, 2, · · · , joi . For each individual in the sample air measure the elapsed time in the

state, it takes the values form 1 up to the number of the last episode that observed

to the individual in the state, i.e ai1 = 1 and aijoi = joi . The pooled sample discrete

choice model is estimated with the covariates log(air) and Xir to estimate a cloglog

with Weibull baseline hazard.

To estimate the discrete time model with step-function baseline hazard an episode

specific dummy variables are used, a dummy variable that takes a value 1 for each

individual at air = 1 and zero otherwise, another dummy variable that takes values 1

when air = 2 and zero otherwise, and subsequently up to the last dummy variable which

equals 1 when air = max(Ji) and zero otherwise. The time dummy variables are then

included in the cloglog link function with Xir to estimate the model with step-function

baseline hazard. The time dummies can be defined for grouped episodes instead to

each episode as shown. For example, the episodes 10, .., 20 ,which cover the underlying

continuous transition time in the range (yc10, y
c
20], can be grouped by define them by one

dummy variable (step). The advantage of the grouped episodes step function over the
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step function of each episode is that it treats the diminishing number of individuals in

the state in the late episodes in the sample better.

The log likelihood function of the discrete time proportional hazard model is, see

Jenkins (2005, Chapter 6, page 72)

logL =
n∑
i=1

Joi∑
r=1

[dir log θ (r|Xir) + (1− dir) log (1− θ (r|Xir))] , (4.19)

can be maximized in any conventional software that allows the estimation of discrete

choice model with cloglog link function like STATA and R software.

The unobserved part of the inter-individual differences are known as the unobserved

components in the proportional hazard model, v. The effect of v is defined as the

unobserved heterogeneity (UH) in the duration models and they are assumed to be

independent of time and not correlated with the independent variables, Van Keilegom

and Veraverbeke (2001). The aggregate survival function is used to identify the PH

model with the existence of the unobserved heterogeneity, as

S (yc|x) = Ev [S (yc|x, v)] , (4.20)

=

∫
exp (−vΛ0 (yc)ψ (x)) g (v) dv, (4.21)

where g (v) is the unknown density function of the unobserved components. The model

is estimated by making assumptions about g (v) which have large impact on the likeli-

hood function of the model. In the grouped time model the survival probability at the

time index points of interval jo− 1 is the survival probability for episode jo and beyond,

so

S
(
ycjo−1|x

)
=

∫
exp

(
−vΛ0

(
ycjo−1

)
ψ (x)

)
g (v) dv, (4.22)

= S (jo|x) . (4.23)

This makes the identification of the distribution of the UH in the continuous time and

the discrete time the same. For the identification of the hazard model the density func-

tion g (v) in addition to the baseline hazard and the observed heterogeneity functions

are assumed to be uniquely defined in the model. This characteristic is known as the

non-parametric identification of the proportional hazard model, see Cameron and

Trivedi (2005).

The hazard rate is defined as a product of the baseline hazard and the observed

heterogeneity functions with v as

θ (jo|X) = θ0 (jo)ψ (X) v, (4.24)
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with v > 0 and normalised so that E [v] = 1 by reparametrizing the density function

g (v).

The unobserved heterogeneity causes bias in hazard rate estimation. The effect

of this bias in the observed heterogeneity and the duration dependence functions is

studied by Andersen (1970), Lancaster (1979, 1990), Lancaster and Nickell (1980),

Heckman and Singer (1984a,b,c), Ham and Rea Jr (1987), Meyer (1991), Van den Berg

(2001) and Abbring and Van Den Berg (2007) among many. Ignoring the unobserved

heterogeneity in the model causes serious bias toward zero in the coefficients of the

independent variables, see Baker and Melino (2000), and causes an underestimation

to the slope of the hazard rate, see Cameron and Trivedi (2005), where more negative

duration dependence is estimated. The duration dependence that are affected by UH is

known as spurious duration dependence. Due to the effect of UH, spurious duration

dependence is more negative than the duration dependence when UH is controlled for

in the model, because the individuals in the sample with higher values of v stay longer in

the state. This relationship is known as the weeding out or the sorting effect problem,

Heckman and Singer (1984b) and Van den Berg (2001).

The unobserved heterogeneity is defined in the model as individual specific random

effects and time fixed components. The methods to control for UH use assumptions

about the distribution of v added to the initial assumption about the distribution of the

transition time variable yc. The method of estimation is known as the mixed propor-

tional hazard (MPH) method, each hazard model is defined by the combination of the

distributions assumptions in θ0 (jo) and g (v) respectively, like Weibull-Gamma mixture

or Exponential-Gaussian mixture. The density function of the unobserved components,

g (v), as mentioned by Cameron and Trivedi (2005), is arbitrary. When specified para-

metrically it should be assumed to be a function with a small number of parameters

to avoid adding extra complications in the likelihood function. Heckman and Singer

(1984b) and Heckman and Singer (1984c) developed a method to estimate the mixed

model with nonparametric specification of the density of v, but adding more computa-

tions in the estimation technique. The mixing of the distributions directly affects the

second moment of the hazard function by inflating the variance, Cameron and Trivedi

(2005), this forces the researcher to trade between efficiency and bias in the mixed

hazard model.

In the MPH literature the choice of the parametric form of g (v) varies between the

Gaussian density function and the Gamma density function, see Cameron and Trivedi

(2005), Wooldridge (2002), and Lancaster and Nickell (1980). However, the asymptotic

distribution of the UH, as shown by Abbring and Van Den Berg (2007), converges to a

Gamma distribution for the individuals who remain in the state at the end of the study

period (the survivals) in both continuous and discrete time MPH models, and in both

univariate and multivariate duration models. Nicoletti and Rondinelli (2010) show

that the mis-specification of the distribution of the unobserved heterogeneity causes
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bias in the estimated duration dependence function. But Heckman and Singer (1984b)

argued that the parametric specification of the unobserved heterogeneity induces a lack

of robustness in the model. Later, however, Heckman and Singer (1984c) introduce a

nonparametric maximum likelihood (NPML) approach to estimate the mixed model

which appears effective in estimating duration models. The NPML method assumes

a discrete density function for v and approximates the distribution of the unobserved

heterogeneity without assuming any parameters for g (v) or any number for the mass

points in advance. The NPML estimator of the hazard rate is widely used in estimating

the duration models in economics. The mass points and their probabilities are estimated

jointly with the coefficients of the observed heterogeneity function and the baseline

hazard in the likelihood function via a hierarchical iterative procedure.

When the unobserved heterogeneity is controlled in the model the cloglog function

in Eq (4.13) becomes

θ (jo|Xi, vi) = 1− exp {− exp [τjo + X′iβ + log (vi)]} . (4.25)

Then the likelihood function of individual i takes the following form

Li(β,η, θ) =

∞∫
−∞

 Joi∏
r=1

θ (Joi ,Xir |vi )dik [1− θ (Joi ,Xi |vi )]1−dik
 g(vi, η)dvi, (4.26)

where the vector η is the vector of the parameters of the unobserved heterogeneity

density g(·). If the density g(·) is assumed as a density with many parameters this

affects the length of the vector η and makes the optimization of the ML function more

difficult. For the Heckman and Singer (1984c) method g(·) is assumed to be a discrete

density and the integration in the ML function is replaced by a summation sign.

In practice the estimation of the discrete time MPH model is not straight forward

and few software packages allow one to estimate any type of mixing. The Gaussian

mixture is when a Normal density function is used for g(·). The estimation of the mixture

model is then possible with random effects discrete choice estimation technique with the

cloglog link function. This technique is available in STATA and R software directly, which

makes the Gaussian mixture model the easiest type of MPH models to use practically.

The alternative assumption, the Gamma distribution of v with Gamma density of the

form

g(v;η) =
ηη21 v

η2−1 exp(−η1v)

Γ(η2)
, v > 0,

makes the maximum likelihood function more difficult than maximums likelihood func-

tion of the Gaussian mixture model, but the MPH model then becomes consistent with

the findings of Abbring and Van Den Berg (2007). Fewer packages allow the estimation

of the Gamma mixture discrete hazard model; there is a package PGMHZ8 of Jenkins
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(1997)1 in STATA, but there does not seem to be an equivalent package in R.

Finally, even fewer packages to estimate the MPH using Heckman and Singer (1984c)

method, the Nonparametric Maximum Likelihood NPML method, are available. STATA

is the only software that does this, with an option of two packages that available to

use. The GLLAMM package of Rabe-Hesketh et al. (2001) in STATA is a powerful tool

to estimate multilevel models and models of the panel data, see Rabe-Hesketh and

Skrondal (2008). The second is the HSHAZ package of Jenkins (2006). The two pack-

ages produce identical results, but we prefer GLLAMM because it is faster than HSHAZ.

The estimation of the MPH model using the Heckman and Singer (1984c) method in

R software is available only in the npmlreg package using the EM method, which is

not similar to the Newton Raphson Algorithm that used in the GLLAMM and HSHAZ

packages.

To estimate the MPH model the function g(·) is assumed to be discrete function with

limited number of mass points. The mass points are estimated using the Nonparametric

Maximum Likelihood method of Heckman and Singer (1984c). The information crite-

rion IC, the Akaike Information Criterion AIC and Bayesian Information Criterion BIC,

are used to determine of the mass points in the estimated g(·) function, Rabe-Hesketh

and Pickles (2002) and Rabe-Hesketh et al. (2004).

The hazard is estimated conditional on the independent variables: log total job-

seekers, logU , log number of job-vacancies, log V , in addition to year and month dum-

mies. Those dummy variables pick the seasonal variations in the hazard in the trading

sector in the labour-market that are generated from the seasonal flow of job-seekers.

The dummies of the sub-areas in the Lancashire region are included in the model also.

The MPH is estimated with Gaussian mixture and with nonparametric mixtures. The

model with Gamma mixture has been discarded due to the empirical difficulties relat-

ing to the slow convergence of the PGMHZ8 package. Also STATA is not available in the

high performance computer cluster that is used for the long processing time and high

levels of computation for the models in this research.

The term covariate set is used to describe the mixed type independent variables

after they are reshaped by generating dummy variables to specify the discrete values

of the categorical variables, as required to estimate the (M)PH models, see the dis-

cussion about the differences in inputting discrete categorical variable between para-

metric and nonparametric methods in Chapter 2. The reshaped covariate set contain

categorical variables only, where the year, month and lad variables are divided into

dummy variables. The base group for the year and month variables are set to the

earliest year in the sample (1988) and January month respectively. This generates 15

dummy variables aiming to pick up the seasonal variation in the matching process in

the labour-market. The basegroup of the lad sub-areas is East Lancashire. The lad

sub-areas are three, so two dummy variables are used. Hence the mixed independent

1The package PGMHZ8 compatible with STATA 8 and latter versions, the article Jenkins (1997) refers
to the older version.
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variables [logU, log V, year,month, lad], which are a vector of length 5 for each obser-

vation, are reshaped in the (M)PH models to a covariate set [ logU, log V, d1989, · · · ,
d1992, dFeb, · · · , dDec, dCentral, dEast ] with length 19 for each observation. The estimated

coefficients of the covariates give the predicted observed heterogeneity function in the

model.

4.3.2 The Kernel Hazard Approach

This research uses the conditional kernel hazard (KH) estimators as developed in Chap-

ter 3, the conditional external kernel hazard (CEKH) and Beran kernel hazard (BKH).

The discrete time KH estimator are extended formulas from the continuous time KH of

Watson and Leadbetter (1964a,b) and Beran (1981), respectively, to discrete grouped

time and right censored observations as illustrated in Chapter 4. The CEKH estimator

at episode jo conditional on the vector of mixed type independent variables x takes the

form

θ̂CEKH (jo |x) =
n∑
i=1

l (Joi , j
o, γ̂0)

A(x,Xi, ĥ) Mi

1−
∑

i:Joi <j
o

A(x,Xi, ĥ)
, (4.27)

where l (· , · , · ) is an ordered discrete variable kernel function used to smooth the dura-

tion time in the state. It is defined as a Geometric Kernel function due to the advantages

that shown in Section 4.2 in Chapter 3. The Geometric Kernel takes the following form:

l (Joi , j
o, γ) =

{
1− γ if |Joi − jo| = 0
1
2

(1− γ) γ|Joi −jo| if |Joi − jo| 6= 0
, (4.28)

Beran kernel hazard, on the other hand, takes the following form in grouped time

models:

θ̂BKH (jo |x) =

∑
i:Joi =j

o

A(x,Xi, ĥ) Mi

1−
∑

i:Joi <j
o

A(x,Xi, ĥ)
, (4.29)

where the duration time variable is not smoothed in the model.

A(x,Xi, ĥ) are the Nadaraya-Watson weights. The term in the denominator of each

estimator is the estimated sub-survival function for the vacancies in the trading state

of the labour-market (the units at risk) at the beginning of interval jo. In the nu-

merators the Nadaraya-Watson weights are for the uncensored vacancies in interval jo,

where Mi is the right uncensoring dummy variable that equals 1 for transitions and 0

for right censored observations. The smoothing technique embodied in the Nadaraya-

Watson weights is the mixed type variables smoothing technique that presented in Li

and Racine (2007). The weights are generated from the ratio of the kernel products of
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the independent variables in the model,

A(x,Xi,h) =
n−1W (x,Xi,h)
n∑
i=1

n−1W (x,Xi,h)
. (4.30)

The general form of the product kernel functions for a model that includes q continuous

variables, each smoothed by a continuous kernel function w
(
Xc
is−xcs
hs

)
, and p discrete

variables, each smoothed by a discrete kernel function l
(
Xd
ir, x

d
r , γr

)
, is

W (x,Xi,h) =

q∏
s=1

h−1s w

(
Xc
is − xcs
hs

) p∏
r=1

l
(
Xd
ir, x

d
r , γr

)
. (4.31)

The discrete variables, Xd, can either be unordered or ordered categorical variables

or a mixture of both. The scalar γ̂0 in the CEKH estimator in Eq (4.27) is the cross-

validation bandwidth of the discrete time variable. The vector of the independent vari-

ables cross-validation bandwidths, ĥ, has length q + p and contains a sub-vector of the

continuous independent variables bandwidths ĥxc and a sub-vector of the discrete in-

dependent variables bandwidths γ̂xd, so ĥ =
[
ĥxc , γ̂xd

]
.

The mixed type independent variables in the matching model, [logU, log V, year,

month, lad] have also been reshaped for the KH estimators, but by merging the year and

month variables into a new generated variable dmonth that gives the dates in months

in the sample as distinctive ordered values. Each combination of values in the year and

month variables gives a date in the sample in months. In the parametric reshaped data

each month in the sample period is equivalent to a unique vector of combination of

0-1 values generated by the 15 dummy variables of year and month. Then the dates in

months from the beginning of the flow sample period up to the end can be represented

as discrete, increasing ordered values, analogous to their representation as a unique

combination of 0-1 values in the dummy variables. The new variable is a discrete or-

dered variable that counts the length of time in the flow sample in months since the

start date of the observation period, and so has a similar construction to the duration

variable in the state. The duration time in the state is interpreted as the number of

weeks that a vacancy stays in the trading state in the labour-market, whiles the dmonth

variable is interpreted as the number of months that passed since the start of the obser-

vation in the flow sample. Both variables are then smoothed by the Geometric kernel

function.

However, the dmonth variable is related to calendar dates, and it is only interpretable

when it is converted back to the calendar month of the year. As in year and month

dummy variables in the parametric MPH model, the discrete ordered variable dmonth

aims to capture the seasonal variations in the model. In contrast, the duration time

in the state in weeks is independent of calendar dates, when the sample is taken from

the vacancies that are announced at the dates between the start and end of the sample
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period. The reshaping to decrease the number of variables in the kernel estimators is

an effective technique, where it reduces the number of the independent variables in the

kernel estimator. This reduces the chance of getting into the curse of dimensionality

problem, and shortens the computation time of the model without losing any informa-

tion from the sample. In the parametric method however it has the reverse effect. The

newly generated variable has 52 distinct ordered values, and need 51 dummy variables

to be included in the MPH model, which would make the MPH difficult to interpret.

The number of continuous independent variables in the kernel hazard estimators is

q = 2, logU and log V , and the number of the discrete variables is p = 2, dmonth and lad

among which only lad is unordered categorical variable. The Second-Order Gaussian

Kernel function,

w (z) = (2π)−
1
2 exp(−z2/2), (4.32)

is used to smooth the continuous independent variables, and the Aitchison and Aitken

(1979) unordered discrete variable kernel function

l
(
Xd
i , x

d, γ
)

= [1− γ]di
[

γ

(c− 1)

]1−di
, di = 1

(
Xd
i = xd

)
, (4.33)

is used to smooth the lad variable. The Geometric kernel function is used to smooth

dmonth variables as mentioned earlier.

Bandwidth Estimation Method

As in all kernel estimators, the method to estimate the bandwidths in the model is

more crucial to the quality of the results than the choice of the kernel functions of the

variables in the model. The functional form of the optimum bandwidths of the kernel

hazard estimator is not provided in the discussion in Chapter 4. A list of the possible

methods to estimate the bandwidths is presented in that chapter with an argument

which states that the MLCV method is valid to use to estimate the bandwidths for the

discrete time kernel hazard estimator. In this chapter we apply this argument to improve

the quality of the kernel hazard estimators.

The application of the MLCV method to the hazard rate is suggested by Tanner and

Wong (1984). The method is described as an application of the MLCV to the hazard

function. The produced bandwidths are better than the näıve bandwidths because they

are estimated from the hazard function directly and consider the sub-survival functions

in the KH formulas. But the MLCV method has a traditional problem with kernel esti-

mators, where it tends to oversmooth estimators of the functions that are increasing or

decreasing, or functions of the variables that have high skewness, like the sub-survival

function in the hazard rate. In our empirical resutls the näıve bandwidths are also

included, but they are used as starting values in the objective function of the MLCV

method. The value of the likelihood function indicates whether the estimators are im-
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proved when the MLCV method is used or not.

The näıve bandwidths are just the MLCV bandwidths of the conditional density of the

duration time conditioning on the mixed independent variables. The objective function

of the conditional density MLCV bandwidths is shown in Hall et al. (2004) and Li and

Racine (2007), with the leave-one-out method, as follows
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The function f̂−i (j
o
i |Xi) is the conditional density of the discrete duration time at Joi

on Xi, using all the observations in the sample except the ith observations. This means

that the distance between all the observations of the duration time from Joi , and the

distance of each independent variable in X from Xi, which are the columns of the

matrix X − Xi, are locally weighted with kernel functions that are specified for each

variable after dropping the distances corresponding to the ith observation. The number

of the locally weighted observations is n−1, as expected with the leave-one-out method.

Note that the leave-one-out method is developed from the jackknife bootstrap method,

see Chapter 2 for more information.

The so-called MLCV-Risk bandwidths are used to refer to the extension of the MLCV

method for the continuous time hazard of Tanner and Wong (1984) to the discrete time

KH estimators. The maximum likelihood function of the discrete time hazard function

in Jenkins (2005) is used. The maximum likelihood function of the discrete time haz-

ard is presented in Jenkins (1995) and shown in discrete choice binary model maximum

likelihood form to allow to use the cloglog link function to estimate the hazard para-

metrically. We start from the same original form of the maximum likelihood function

as presented in Jenkins (2005, Chapter 6, Eq (6.10)), except that we will applies the

leave-one-out method in the conditional kernel hazard in the formula. We refer to the

method as the MLCV-Risk method to distinguish it from the MLCV of the kernel condi-

tional density estimator that is used to estimate the näıve bandwidths. The objective

function of the MLCV-Risk method is as follows:

ML (γ0,h) =
n∑
i=1

Mi log

(
θ̂
(·)
−i (J

o
i |Xi )

1− θ̂(·)−i (Joi |Xi )

)
+

Joi∑
r=1

log
(

1− θ̂(·)−i (r |Xi )
) , (4.35)

where (·) denotes the CEKH or BCH estimator.

The difference between the MPH method and the KH method is not only in the

reshaping of the independent variables, to generate dummy variables for the parametric
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estimators or merge categorical variables to apply the nonparametric kernel estimation

method. But also on the number of the observations that are used in each method.

The MPH method uses the pooled sample data-shape to estimate the hazard, whilst the

kernel hazard method uses the survival analysis data-shape. The survival analysis data-

shape is the data shape of continuous time kernel hazard estimators, so that the discrete

time kernel hazard estimators use this data-shape. The survival analysis data-shape

compared with the pooled sample (unbalanced panel) data-shape is just a realisation

of each unit in the sample at the last episode that observed for it in the state. However

this is only a rough description to the difference. The information about the duration in

the state is not changed by this reshaping, but the information about the values of the

time varying independent variables before the last episode is lost.

Consequently, the current kernel hazard estimators are not able to handle time vary-

ing independent variables. Conditional kernel hazard estimators with time varying re-

gressors are up till now discussed very briefly in the literature, as in Nielsen and Linton

(1995), but all the sources that used to develop CEKH and BKH are silent about time

varying regressors. One can argue that the kernel hazard estimators in this chapter

and in Chapter 3 can be extended to smooth time varying independent variables with

only an appropriate modification of the local weights in the sub-survival functions, say

for example from the regular Nadaraya-Watson weights to possibly more sophisticated

type of weights. The literature of kernel methods in time series provides families of

local weighting functions that are attractive to try here. This issue is one of the future

research focuses of the discrete time kernel hazard estimators.

4.4 The Data

4.4.1 Lancashire Careers Service Dataset

A flow sample from the job vacancies in the administrative records of Lancashire Ca-

reers Service (LCS) is drawn to estimate the random matching model in this research.

The sample covers the period from March 1988 to June 1992 in three sub-areas and fol-

lows the job-vacancies and the job-seekers weekly. The LCS was a Government-funded

network which acted as an employment service for youth in the age group 15-18. In-

dividuals in this age group have few options for their future careers, they can either

continue in school (be in education), move to a government training program, or leave

school to work. In the last option they spend time in the trade sector of the labour-

market searching until they find a job and start work. The LCS therefore worked as

employment service, or a job center, for youth in the area who are seeking job as well

as for employers who are looking for workers/employees. In contrast to the adult job

service, the notification of job vacancies for youth was compulsory for all employers

in the region, where the Government aimed to monitor the working experience of the
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youth population in the UK through this service, see Andrews, Bradley and Stott (2001)

for more details.

The LCS is a rich database and provides sufficient information to experiment with

many types of labour market models including the random matching model. The sam-

ple of our research is used in Andrews, Bradley and Upward (2001), Andrews, Bradley

and Stott (2001) and Andrews et al. (2011) among many other papers. The job va-

cancies that announced in LCS for youth job-seekers account for about 30% of all job

vacancies in the region during the period of the sample. Each vacancy is followed in

the sample until a matching with an unemployed young job-seeker is observed, or, be-

comes right censored. A youth in employment, re-unemployment, government training

and education is dropped from the sample, so only unemployed youth are counted on

the number of job-seekers variable. The vacancies are right censored if they were with-

drawn from the market or stayed open until the end of the observation period. Hence,

the vacancies that are filled by unemployed young job-seekers only are included in the

flow sample in addition to the censored vacancies. The duration in the state is measured

in weeks starting from the week that the vacancy was announced in the LCS office until

the matched job-seeker actually started working in the position.

The motivation of our research, in addition to comparing the results of kernel haz-

ard estimator with the MPH estimator, is to study the effect of the job-market tightness

on the duration of the job-vacancies and the hazard rate for making transition from the

trading sector in the job-market and check the argument that kernel estimators are not

by the unobserved heterogeneity problem as much as the parametric estimators. Kernel

hazard estimators is developed for homogeneous models, i.e when no unobserved het-

erogeneity exists in the transition processes. Thus our research focuses on examining

the impact of the UH problem in the data on the KH estimators, since those estimators

have no mean to control for this problem.

4.4.2 Sample Statistics

There is a big divergence between the number of job-vacancies and the number of

job-seekers in the sample. The total number of job-seekers and the total number of

job-vacancies, which are the sum of the stock and flow of each variable, are shown

in Chart 4.1. The lines in the plots show the weekly total number of job-seekers, U

(black), and job-vacancies, V (red), in each local sub-area separately. The horizontal

axis shows the date in weeks. The number of job-seekers has an upward trend and is

growing substantially every year with very high seasonal variations, and in particular

there a very large increase in the number of job-seekers in June-September each year.

The number of job-seekers is affected by the schools academic year start and end dates,

where the largest increase is associated with the summer break period each year.

Compared with the total number of job-seekers, the total number of the job vacan-

cies, which is the demand side, has no similar seasonal trend. Instead the number of
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vacancies has an upward trend in the first half of the sample followed by a downward

trend in the second half, with a concave shape inside the sample study period and is

similar in all sub-areas. The trend of the total number of vacancies during the sample

period indicates that they are more affected by business cycle trends than school start

and end dates. However, the total number of job-vacancies counts only youth vacancies

and the influence of the business cycle on the labour-market of young individuals may

not be similar to the business cycle influence on the adult labour-market. The peak

in the number of job-vacancies is reached in the period around the first half of 1990,

this is seen clearly in West Lancashire sub-area where the majority of job-vacancies are

observed.

The summary statistics in Table 4.1 shows the average duration of job-vacancies

and the total number of job-vacancies during the sample period. The total number of

job-vacancies is 14154 vacancies. There is an average duration of 5.76 weeks for the

vacancy to get matched with a job-seeker but double the average, 10.65 weeks, for the

right censored vacancy. The value of the overall average duration for all job-vacancies

is closer to the average of the censored vacancies due to the high number of censored

vacancies. The total number of employers in the sample is 4121, but some employ-

ers operate in more than one area. The number of job-vacancies and the duration of

matched vacancies is lower in East Lancashire sub-area and is the highest in West Lan-

cashire sub-area.

Taking the ratio of the matched vacancies in each sub-area, by dividing the row

of Matched Vacancies in the first panel in the table by first row, shows that Central

Lancashire is the area with the highest rate of matched vacancies, 21.4%, followed by

West Lancashire then East Lancashire with percentages of matched vacancies 18.7% and

17.9% respectively. This shows that the proportion of matched vacancies in the three

sub-areas is not different, but the speed at which the job-vacancies are matched, or

more generally, the length of time that employers stay operating in the trading state is

different between the sub-areas. Vacancies in West Lancashire sub-area have the longest

average duration, followed by Central Lancashire and then East Lancashire. This order

is the same for the average duration of the censored and matched vacancies combined.

In West Lancashire and Central Lancashire sub-areas there are 3 job-vacancies that are

matched with job-seekers after more than 2 years in the trading state in the market;

there are no other late transitions. Late transitions are generally difficult to handle in

duration models. They are unfavourable to the estimation of the model, and can cause

many difficulties in the interpretation of the results. Spells that continue to a very long

duration are created by high values of v relative to the other spells in the sample. This

increases the variance of the unobserved heterogeneity in the sample and makes the

estimation of the distribution parameters of the g(v), η̂, less efficient. They are sign of

a high ’weeding out’ problem in the data.

The number of job-vacancies in the first row in Table 4.1 is the sample size of the
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survival analysis data-shape, which is the data-shape that is used in kernel hazard es-

timation. The number in the second row, the Job Vacancies-weeks row, is the size of

the pooled sample that is used in the estimation of MPH models. The size of the pooled

sample depends on the duration of the individual job-vacancies, and becomes very large

if some spells are too long, which creates difficulties for the estimation of MPH models.

The job-vacancies that continue for a large number of weeks are more likely to be right

censored and be uninformative about the true hazard rate.
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Figure 4.1: The job-seekers and the job vacancies stocks.

186



Table 4.1: Flow Summary Statistics1

Lancashire
West Central East All

Job Vacancies2 5251 5180 3723 14154
Job Vacancies-weeks2 79015 36128 22080 137223
Vacancy order 2739 3825 2992 9555
Employers 1212 1530 1384 4121
Matched Vacancies 983 1110 668 2761
Right Censored Vacancies 4268 4070 3055 11393

Average Duration (all) 15.05 6.98 5.94 9.70
Average Duration (censored) 16.49 7.63 6.53 10.65
Average Duration (uncensored) 8.81 4.58 3.21 5.76

Spells > 23 weeks 1075 328 146 1549
Transitions (> 23 weeks) 108 28 9 145
Censored (> 23 weeks) 967 300 137 1404
Spells > 52 weeks 309 45 39 393
Transitions (> 52 weeks) 16 8 1 25
Censored (> 52 weeks) 293 37 38 368
Spells > 104 weeks 36 4 8 48
Transitions (> 104 weeks) 2 1 0 3
Censored (> 104 weeks) 34 3 8 45

1 The sample period is from March 1988 to June 1992.
2 The number of job-vacancies is the sample size of flow sample in the

survival analysis data shape. The number of job Vacancies-weeks is the
sample size of the unbalance panel data shape ( the pooled sample)
that is used to estimate the (M)PH models.

4.5 The Results

The estimation results are shown for the parametric estimators first then for the non-

paramtric estimators in the next two sub-sections. The estimated hazard results are

delivered in a very different manner. For the parametric estimators, the output is deliv-

ered in a form of estimated coefficients for logU and log V and the dummy variables in

the model. The kernel nonparametric estimators on the other hand provide the results

of the estimated models in form of estimated bandwidths, ĥ, in addition to γ̂0 in the

CEKH estimator. Accordingly, generating the discussion of the results by interpreting

the output of each estimation technique separately first is useful before moving to the

comparison of the results.

4.5.1 Parametric Models

The coefficients of the independent variables and the variance of the unobserved het-

erogeneity components of the MPH models are presented in Table 4.2. For brevity, only

the coefficients of the logU and log V are shown, with the estimated elasticities. The
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coefficients for the homogeneous PH models are reported in the first two columns and

the coefficients of the MPH models with Gaussian mixture and the MPH with nonpara-

metric mixtures are presented in columns 3 and 4, respectively. The panels in the table

show the models that are estimated for the Lancashire area on the top, then the results

of the models that estimated in each of the West Lancashire, Central Lancashire and

East Lancashire sub-areas on the bottom. The value the coefficient of log jo in the ho-

mogeneous models indicate a highly negative spurious duration dependence. Despite

the fact that the Weibull shape parameter is not identified from the value of this coef-

ficient, we can argue, from the evidences from the mathematical proofs in Chapter 3,

that the shape parameter of the underlying continuous duration time is less than 1.

The values of elasticities of job-seekers and job-vacancies in the homogeneous mod-

els, β and α, that are estimated by the PH models are very close. The nonparametric

specification of the baseline hazard improves the estimation, since the log likelihood

value, logL, in the models with the piecewise baseline hazard is higher than in the

models with Weibull baseline hazard. Therefore, the MPH models are estimated with

the piecewise baseline hazards only. The mixture models on the other hand show im-

proved log likelihood values when the distribution of the unobserved heterogeneity is

relaxed from a Gaussian parametric distribution to nonparametric discrete distribution.

The NP mixture is the parametric model with the most relaxed parametric assumption

in the baseline hazard and the unobserved heterogeneity distribution in this research,

and show the highest improvement in log Likelihood values at the same time.

The unobserved component v is defined as a random effects in the mixture models,

defined as constant over time and varies among employers. This is more plausible in

the random effects assumption than assuming that v varies over job-vacancies, so the

vacancies that are opened by the same employer have the same value of v. Based on

the sample statistics in Table 4.1, the employers in the local areas in the sample seem

to have different heterogeneity. The late transitions in the sample indicate vacancies

that associated with large values of v, which means that there are some employers with

characteristics that are different than the others employers in the area. The employers

with large value of v in our data waited longer period than other employers to have their

vacancies filled by job-seekers, some employers waited more than two years, this implies

very large value of v and high variance to those employer. The estimated variance of

v in the NP mixture PH models is the highest in the sub-area that shows the highest

number of late transitions and the lowest in the sub-area that has no late transitions,

East Lancashire.

The values of the Akaike Information Criterion AIC and Bayesian Information Crite-

rion BIC are reported for the models in each area. According to the BIC, the homoge-

neous models are improved after the piecewise baseline hazard is introduced, and the

mixture models are improved when the distribution of the UH is relaxed to a nonpara-

metric distribution. The value of BIC increased from 23591.86 in the homogeneous
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model with Weibull baseline hazard, to 23654.58 in the homogeneous models with

the semi-parametric baseline hazard. In the sub-areas models BIC shows the highest

improvement in the piecewise PH model in East Lancashire sub-area. For the mix-

ture models BIC increased substantially from 22803.67 to 22911.58 in the models that

estimated the Lancashire region, and from 5413.075 to 5440.929 in the models that

estimated in East Lancashire sub-area. The inconsistency in the Akaike Information Cri-

terion AIC on the other hand, is due to the regular problem of that it fails to choose the

right models in many cases, see Davidson and MacKinnon (2004, Chapter 15, Section

15.4).

The variance of the unobserved components as estimated in the Gaussian mixture

PH model seems as estimated from a mis-specified distribution for v, particularly in

Central Lancashire sub-area, where it estimates V ar (v) less than in East Lancashire

which contradict with information in Table 4.1. The results of the mixture models are

different and confusing if they are critically compared with each other in the sub-areas

that have large unobserved heterogeneity. If we denoted to the UH in West Lancashire,

Central Lancashire and East Lancashire by v1, v2 and v3 respectively, the numbers of late

transitions in Table 4.1 imply that V ar(v1) > V ar(v2) > V ar(v3). The results in Table

4.2 show that the Gaussian mixture estimates ̂V ar(v1) > ̂V ar(v3) > ̂V ar(v2), but NP

mixture model estimates ̂V ar(v1) > ̂V ar(v2) > ̂V ar(v3).
The coefficients of the PH model that does not control for the UH are expected to be

closer to zero than the coefficients that estimated by the MPH. For logU and log V , the

coefficients of the homogeneous PH models are closer to zero in absolute values than

the coefficients that estimated by the MPH models, which indicates that the models

are improved and the bias in the estimated coefficients is corrected when the MPH is

used. For log V the value of the estimated coefficient improved from -0.344 to -0.525

in the model of West Lancashire sub-area and from -0.687 to -0.793 in the model of

East Lancashire sub-area. In Central Lancashire, however, this pattern is not estimated.

However, the evidence from the coefficients of the Gaussian mixture model are incon-

sistent with the evidence from the estimated variance. It is likely that the Gaussian

mixture overestimate the coefficients, estimated coefficients that have absolute value

that substantially higher than zero.

With the results that are shown, our conclusion about the parametric models is that

the NP mixture shows more reliable estimates relative to the Gaussian mixture and the

models without the unobserved heterogeneity controlled.
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Table 4.2: Coefficients of the proportional hazard models1

region Weibull (homo) Piecewise (homo) Gaussian Mixture2 NP Mixture
Lancashire log jo -0.794 (0.018)

dCentral -0.798 (0.133) -0.800 (0.133) -1.366 (0.203) -1.418 (0.196)
dEast -0.951 (0.156) -0.959 (0.156) -1.532 (0.235) -1.557 (0.229)
log V -0.670 (0.090) -0.676 (0.091) -0.756 (0.135) -0.765 (0.132)
log U(= α) 1.328 (0.154) 1.324 (0.154) 1.887 (0.223) 1.836 (0.216)

β 0.330 0.324 0.244 0.235
log L -11671.72 -11655.76 -11224.39 -11213.29
AIC3 23385.44 23369.53 22508.79 22508.58
BIC3 23591.86 23654.58 22803.67 22911.58
V ar (v)

4 4.022 5.050

West log jo -0.771 (0.027)
log V -0.344 (0.276) -0.314 (0.277) -0.632 (0.360) -0.525 (0.313)
log U(= α) 2.223 (0.483) 2.119 (0.478) 3.203 (0.608) 2.585 (0.529)

β 0.656 0.686 0.368 0.475
log L -4652.149 -4637.604 -4319.380 -4317.146
AIC3 9342.297 9329.208 8694.760 8712.291
BIC3 9518.568 9579.697 8954.527 9074.109
V ar (v)

4 7.038 24.650

Central log jo -0.766 (0.030)
log V -0.641 (0.154) -0.673 (0.154) -0.622 (0.197) -0.712 (0.209)
log U(= α) 1.666 (0.331) 1.721 (0.333) 1.673 (0.378) 1.557 (0.365)

β 0.359 0.327 0.378 0.288
log L -4367.356 -4357.776 -4265.806 -4265.688
AIC3 8772.713 8767.553 8587.612 8599.376
BIC3 8934.115 8987.835 8825.467 8888.2
V ar (v)

4 1.991 3.042

East log jo -0.902 (0.044)
log V -0.689 (0.242) -0.740 (0.243) -0.845 (0.300) -0.793 (0.290)
log U(= α) 1.734 (0.433) 1.789 (0.440) 2.074 (0.553) 1.930 (0.515)

β 0.311 0.260 0.155 0.207
log L -2604.1992 -2597.286 -2566.503 -2565.427
AIC3 5246.400 5248.572 5189.007 5192.854
BIC3 5398.446 5464.637 5413.075 5440.929
V ar (v)

4 2.274 2.1153
1 Piecewise (homo), Gaussian Mixture and NP Mixture models use step-function specification of the

baseline hazard with ten grouped weeks dummies. The grouped weeks are: [0, 1), [1, 2), [2, 4), [4, 6),
[6, 8), [8, 13), [13, 26), [26, 39), [39, 52), [52,∞). The coefficients of the steps dummies are not shown.

2 Gaussian Mixture models are estimated using a number of quadrature points Q=24.
3 AIC and BIC are used to determine the number of the mixture distribution mass points in each NP

Mixture model. The number of the mass points that emerge in each model are: 7 mass points of the
models of Lancashire and West Lancashire sub-area, 5 mass point in the model of Central Lancashire
sub-area, and 3 mass points for the model in East Lancashire sub-area.

4 V ar (v) is the variance of the unobserved heterogeneity components.
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4.5.2 Kernel Hazard Models

The nonparametric kernel hazard models are estimated using the naive bandwidths

as starting values to the MLCV-Risk method. Beran kernel hazard BKH and conditional

external kernel hazard CEKH, show comparable values of the MLCV-Risk objective func-

tion at the optimum values of the bandwidths, even when the values of the objective

function at the näıve bandwidths are extremely different. A summary of the results for

the kernel hazard estimators is reported in Table 4.3. Three sets of bandwidths and

objective function values in each panel are presented, which are: the näıve bandwidths,

BKH optimum MLCV-Risk bandwidths and CEKH optimum MLCV-Risk bandwidths. The

näıve bandwidths are not applied in any process but as starting values of the MLCV-Risk

method. The hazard rates are predicted with the MLCV-Risk optimum bandwidths. Ob-

viously, the maximum likelihood objective function shows a substantial improve for the

MLCV-Risk bandwidth over the näıve bandwidths.

However, for the kernel hazards estimators in Lancashire region, the MLCV-Risk has

not improved from the näıve bandwidths. This is possibly caused by the increase in the

sample size and the number of independent variables in the model of the Lancashire

region, giving more difficulties in the computation of the objective function. Another

reason, but to the advantage of the kernel conditional hazard estimator, is that the in-

crease in the sample size adds more consistency in the results. The inclusion of more

independent variables also accommodates more observed heterogeneity. For these two

reasons, it is more likely to find that the optimum bandwidths of the conditional density

and the conditional hazard are close. However, it is difficult empirically to investigate

whether the MLCV-Risk bandwidths are the same as the näıve bandwidths when differ-

ent starting values are used, due to the long time that this new task may take.

The number of job-vacancies in the sample is 14154 vacancies, and the näıve band-

widths are achieved after more the 5 hours of processing in the HPC. It is possible to

start the estimation again from other starting values, but this will be very time consum-

ing. In addition, if the MLCV-Risk function shows progress toward some optimum band-

widths, they are more likely to be some bandwidths that are close in values to the näıve

bandwidths. Looking at the logL values of the models in Table 4.2 and the values of the

objective function in Table 4.3, where the original formula of the likelihood function

is the same, gives an insight on the expected improve that the MLCV-Risk bandwidths

will make to the hazard over the näıve bandwidths. In the model in the Lancashire re-

gion the objective function at the näıve bandwidths is already substantially higher than

all the values of logL in the first panel in Table 4.2. In the Piecewise (homo) model

logL = −11655.76 and in the NP mixture logL = −11213.29, compared with the values

of the objective function of the kernel hazard estimators −10724.97 and −10570.03 for

the BKH and CEKH respectively, which are higher than the values in the parametric

models. Comparing this with the improvement that is achieved in the models in the

sub-areas supports our claim that the näıve bandwidths and the MLCV-Risk bandwidths
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are possibly too close and that it is not necessary to pay the extra computation cost to

estimate the MLCV-Risk bandwidths.

For the models in the sub-areas the näıve bandwidths of log U and log V are substan-

tially lower than the MLCV-Risk bandwidths in the CEKH and BKH estimators, which

indicates that the näıve bandwidths over-smooth the hazard rates. The bandwidth of

the duration times on the other hand, are estimated lower by the MLCV-Risk. The

values of the bandwidths are not very informative about the quality of the estimated

kernel hazard, but the substantial improve in the value of the log likelihood function

(the objective function of the MLCV-Risk) illustrates that the kernel hazard estimator

are better off using the MLCV-Risk bandwidths than the näıve bandwidths. The values

of the MLCV-Risk bandwidths do not show strange behaviour except in BKH in Central

Lancashire, where the bandwidth of log V is estimated very large.

In spite of this limited information about the significance of the independent vari-

ables on the hazard rate, the information in Table 4.3 show nice convergence relative to

the amount of the numerical computation that involved in the estimation. It also shows

good quality for the kernel estimators since the values of the optimum bandwidths do

not indicate an oversmoothing or an undersmoothing of the independent variables in

the model. This also illustrates the fact that all the variables that are included in the

model are relevant variables.

The effect of the unobserved heterogeneity in the kernel conditional hazard esti-

mators is examined by comparing the MLCV-Risk bandwidths that are estimated in the

local sub-areas. The magnitude of the bandwidths of the BKH and CEKH estimators

is similar to the magnitude of the coefficient and variance v that are estimated in the

MHP models in Table 4.2. In the area with the highest unobserved heterogeneity, West

Lancashire sub-area, the MLCV-Risk bandwidths of the BKH and CEKH estimators are

extremely different, while for the sub-area with the lowest unobserved heterogeneity,

East Lancashire, the MLCV-Risk bandwidths are substantially less different. Studying

the effect of UH on kernel hazard estimators, theoretically and empirically, is attractive,

as this results imply that kernel estimators are affected differently.

In the areas with high unobserved heterogeneity, West and Central Lancashire sub-

areas, CEKH perform better than BKH in term of the values of the estimated bandwidths.

CEKH estimator, in contrast to the BKH estimator smooths the discrete time transition

variable. Our intuition is that the performance of CEKH estimator overcome that of BKH

estimator for that CEKH is smooths more variables, which may imply that smoothing

makes the estimator less affected by the UH problem as Froelich (2006) claims. This

result is encouraging to do more research in the effect of UK in kernel estimators.

Finally, the bandwidth of the dmonth variable is well estimated in all models. The

seasonal variations are detected in the kernel hazard rate estimators effectively by the

CKEH and BKH estimators. The only variable with the MLCV-Risk bandwidth value that

estimated tolerantly in all models is the dmonth variable.
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Table 4.3: Conditional kernel hazard bandwidths1

Region Naive1 Beran Kernel Hazard External Kernel Hazard

Lancashire jo 0.211500 0.211500
log U 1.078088 1.078088 1.078088
log V 0.015727 0.015727 0.015727
dmonth 0.814899 0.814899 0.814899
lad 0.590069 0.590069 0.590069
Obj. fn (näıve)2 -10724.97 -10570.03
Obj. fn (MLCV-Risk)3 -10724.97 -10570.03
Execution time (h) 5.2915 216.1317 122.3389

West jo 0.267892 0.301522
log U 0.030051 0.472083 0.297836
log V 0.016243 0.276469 0.048854
dmonth 0.338863 0.515488 0.460587
Obj. fn (näıve)2 -6888.39 -4225.92
Obj. fn (MLCV-Risk)3 -3981.01 -3945.90
Execution time (h) 0.2997 174.0182 104.1565

Central jo 0.147044 0.007090
log U 0.394634 2.516729 2.831348
log V 0.078130 24.556184 1.551502
dmonth 0.739984 0.506349 0.488774
Obj. fn (näıve)2 -4296.03 -4235.03
Obj. fn (MLCV-Risk)3 -3899.00 -3893.60
Execution time (h) 0.3431 97.3131 117.0946

East jo 0.097844 0.051905
log U 0.248588 1.265907 1.284935
log V 0.187331 0.411490 0.381787
dmonth 0.842971 0.670388 0.672655
Obj. fn (näıve)2 -2352.29 -2383.78
Obj. fn (MLCV-Risk)3 -2310.14 -2342.07
Execution time (h) 0.1350 25.8423 19.7866

1 Kernel hazard estimators do not control for the unobserved heterogeneity problem
2 The näıve bandwidths are estimated using the MLCV method for conditional density, the start-

ing values are the normal-reference bandwidths for the continuous variables and 0.5 for the
categorical variables.

3 The MLCV-Risk bandwidths are estimated by maximizing the objective function in (4.35), the
näıve bandwidths are used as starting values.

4.5.3 The Comparison of the Results

A graphical presentation is used to illustrate the differences in the results and compare

the predictions of the proportional hazard models and kernel estimators. Figures 4.2

to 4.7 show plots of the predicted conditional hazard of the piecewise homogeneous

PH model, Gaussian mixture and NP mixture PH models, in addition to the predictions

of the conditional KH estimators. The months July and August of each of the year

1989, 1990 and 1991 are presented in the first three figures, they are the months of

the highest increase in the flow of young job-seekers to the labour-market and thus the

duration of the vacancies is expected to be the lowest during this period of the year.
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The months February and March are presented in the second three figures. In contrast

to the months in the first three figures, February and March are the months with a low

flow of young job-seekers, most of the job-seekers are in the stock during this period.

The hazard that estimated by each estimation technique are predicted up to the 52th

week and at the weighted mean of U and V using the local sub-areas to weight the

variables. The plots present the results of the sample of Lancashire region where more

heterogeneity is explained in the model.

The slope of the predictions of the piecewise homogeneous PH (the black solid step

line) is more negative than the prediction of the MPH models (the coloured solid step

lines) in all plots, where spurious duration dependence is predicted by the homoge-

neous model since it is not controlling for UH. The spurious duration dependence un-

derestimates the increase in the hazard rate at the later weeks in the spell. The plots

show good performance of the kernel hazard estimators (the dashed step lines) com-

pared with the performance of the parametric models. The kernel hazard predictions

are closer to the piecewise homogeneous PH model since both do not control for the

effect of the unobserved heterogeneity. The predictions from the parametric and the

nonparametric estimators are closer in the years 1989 and 1990 in the plots than in

the year 1991. This is due to the captured effect of the year and month dummies in

the parametric models compared with the captured effect of the dmonth categorical

variable in the nonparametric kernel hazard estimators. The difference between the

predictions of the estimation technique increases in the later months in the flow sample

period, since these are the months with high values of dmonth. The kernel hazard pre-

dictions are relatively unchanged in value in the later months in the flow sample period.

This is particularly predicted in the first week in the state but there are some changes

in the second week and beyond. The (M)PH predictions are substantially different in

value and slope throughout the spell length. This demonstrates that the two estimation

techniques pick up different effects of the flow sample months variable in the model.

The seasonal variations in the job matching function are generated by the seasonal

flows of the job-seeker in the labour-market. The effect of the weekly number of U and

V on the hazard rate of the job-vacancies is the effect that the year and month variables

aim to capture. We illustrate this effect using the theory of the job matching function of

Pissarides (1990), and the line graphs in Figure 4.1. The number of job-seekers creates

the seasonal variation in the hazard rate, so that the higher the difference between

the number of job-seekers and number of job-vacancies, with U � V , the higher the

average number of matches per week, m, and the higher hazard rate. The trends of

U and V indicate an increasing differences in the flow sample duration, which means

an increasing hazard rate. The ceteris paribus effect of the labour-market tightness, ρ,

on the hazard of the job-vacancies is increasing the hazard with the decrease in ρ. So,

the hazard should be with an upward slope. Similarly, the months of the high shifts

in U are expected to be coincide with high shifts in the predicted hazard rate. The
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plots in Figures 4.2 to 4.7 show the opposite manner for the predictions of the (M)PH

estimators, where they indicate that the hazard rate is decreasing in the later months

in the flow sample. Also they indicate that the months with the large differences on the

number of job-seekers and job-vacancies are characterised by lower hazard rates, which

violates a clear proposition of the job matching models theory.

Figures 4.8 and 4.9 compare between the ability of the proportional hazard method

and the kernel hazard method to estimate the seasonal differences in the predictions.

The horizontal axis in the plots presents the discrete ordered values of the elapsed

months in the flow sample. Each discrete ordered value coincides with a date in months

and years in the flow sample period. The horizontal axis in months in Figures 4.8 and

4.9 covers the same period as that covered in the horizontal axis in Figure 4.1 in weeks.

Figure 4.8 shows the estimated hazard rate in the first week only for each sub-areas,

and Figure 4.9 shows the estimated hazard for the second week in the same sub-areas.

The kernel hazard estimators show remarkable performance in estimating hazard rate

that captures the effects of the difference between U and V , i.e. the labour-market

tightness, in the model. The increase in the number of job-seekers appears to increase

the hazard rate in the second week, in Figure 4.9, more than the increase in the first

week. This is obvious in the model, where the matching date in the sample is the date

when the matched job-seeker started to work in the position, which is more likely to

be in the week after the announcement of the job-vacancy in the LCS if the contact

took place in the first week. Generally, the kernel hazard estimator gives hazard rates

that strongly agree with the effect of the job market tightness and the labour-market

matching theory.

The last comparison aims to investigate whether the difference in the estimated sea-

sonal effect of U is the same in the proportional hazard models, if the year and month

dummies are replaced by 51 dummy variables that represent the discrete ordered vari-

able dmonth that used in the kernel estimator. This step aims to repeat the same method

of comparison that used in Chapter 2, trying to making the difference between the re-

sults of the parametric and the nonparametric kernel estimators less by enriching the

parametric model with coefficients. The new PH model is estimated without controlling

for the unobserved heterogeneity in the sample, where the plots show that the MPH

models performed worse than the homogeneous PH model in capturing the effect of

the difference between U and V . The new model has 36 more coefficients than the

piecewise model in the discussion above.

The predicted hazard for the new PH model is compared with the kernel hazard

in Figure 4.10. The coefficient rich PH model is still unable to estimate the effect of

the labour market tightness. Using a semi-parametric specification for U and V in the

cloglog model to add more coefficients and slope dummies is problematic, because of

the wide range of U and V values. The variables U and V need to be grouped first

before converting them to dummy variables. This requires defining of a number of bins
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and bin widths of the grouped variables, which is an arbitrary process that depends on

the experience more than on statistical rules. Additionally, for U and V variables, the

grouping will smooth out useful information inside the bins, and the slope coefficients

will not correctly estimate the effects in the model. Then we conclude that trying to

enrich the parametric PH models with coefficients to reduce the difference between

them and the kernel hazard estimators is not an effective technique.

4.6 Conclusions

This research presents an empirical example for the performance of the conditional ker-

nel hazard estimators that are developed in Chapter 4. The example uses a flow sample

from Lancashire Careers Service data covers the period from March 1988 to June 1992.

The research tries to estimate a hazard rate for job-vacancies, which is less considered

in the literature than the estimation of hazard of unemployment spells. The kernel haz-

ard estimators are compared with the (mixed) proportional hazard estimators using a

step-function (piecewise) specification of the baseline hazard and two choices of the dis-

tribution of the unobserved heterogeneity, a Gaussian distribution and a nonparametric

discrete distribution. The kernel hazard estimators are relatively underdeveloped, but

despite this they show satisfactory performance, which makes them attractive for future

research. The MLCV-Risk method is used to estimate the bandwidths of the KH estima-

tors, they show an outstanding performance compared with the näıve bandwidths.

The kernel hazard estimators do not control for the unobserved heterogeneity, unlike

the MPH estimators, and elasticities of the labour demand and supply in the matching

function are not directly produced in the model. The variables in the model have to be

smoothed with kernel function derivatives to estimate the elasticities. The total number

of job-seekers and the total number of job-vacancies in the kernel estimators are taken

at the last week that is observed for the vacancy in the trading state in the sample.

The kernel hazard models use the survival analysis data shape, while the (M)PH model

use the unbalanced panel data shape, and U and V are observed weekly during the

spell for the vacancy in the trading state. The comparison between the techniques is

restricted and weakened due to that the KH estimators do not use all the information in

the sample like the (M)PH estimator.

The estimated duration dependence that is shown in the Figures 4.2 to 4.7 illustrates

that the hazard rate is closely predicted by the PH and the kernel hazard estimators in

the early months in the flow sample period, but the predictions are substantially differ-

ent in the later months. This is due to that the kernel hazard estimators are more able

to pick up the effect of labour-market tightness than the PH and the MPH estimators. At

the later months in the flow sample period, the job market tightness is extremely low,

and leads to an increase in the hazard rate. The relationship is predicted by the ker-

nel hazard estimators correctly, whiles the proportional hazard estimator predicts the
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reverse effect. The (M)PH estimators have completely failed to capture this effect. The

PH model shows no improve when the number of coefficients is increased in the model.

The kernel hazard estimators show that the hazard rate of job-vacancies at the end of

the flow sample observation period is three times more than its value at the beginning

of the period. The increase is generated by the increase in the total number of job-

seekers which increased the labour-market tightness. However, this result needs more

investigation with time varying regressors and with both stock and flow of job-seekers

and job-vacancies included in the model as in Andrews et al. (2011).

The research compares the kernel estimators in a difficult and advanced empiri-

cal example, in which the job matching function is highly dependent on time varying

independent variables. The flow sample has large unobserved heterogeneity that af-

fects the average duration of the job-vacancies. In spite of all those factors, the kernel

hazard estimator captured features in the model more than the PH models, and de-

livers predictions that are more consistent with the theory of job matching function

and labour-market tightness than the (M)PH model. As in the previous chapter, in this

chapter the comparison is not balanced between the parametric method and the ker-

nel method. The parametric model has given the best chance that available to make

them work effectively. The kernel estimators, due to their recent development and their

high computation cost, are given just a moderate chance. Despite this unfair procedure,

kernel hazard estimators show outstandingly good performance compared with the PH

estimators, which indicate that the estimators are well constructed.

The research suggests to do more work to improve the discrete time KH estimators,

so that they become powerful estimation tools in econometrics. The current kernel haz-

ard estimators are attractive to be examined empirically in a model that include time

invariant independent variables only, and a data set that does not include high unob-

served heterogeneity. This will increase the opportunity for the kernel estimators to

preform better than their performance in this research. The predicted duration depen-

dence and observed heterogeneity could then be studied better than in the models that

include time varying regressors.
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Figure 4.2: The predicted hazards in July and August months in West Lancashire sub
-area.
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Figure 4.3: The predicted hazards in July and August months in Central Lancashire sub
-area.

199



1989 

July August 

  
1990 

July August 

  
1991 

July August 

  
Key:  
             Homogeneous PH            Beran kernel hazard 

             Gaussian mixture PH            Conditional external kernel hazard 

             Nonparametric mixture PH  
 

Figure 4.4: The predicted hazards in July and August months in East Lancashire sub
-area.
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Figure 4.5: The predicted hazards in February and March months in West Lancashire
sub -area.
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Figure 4.6: The predicted hazards in February and March months in Central Lancashire
sub -area.
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Figure 4.7: The predicted hazards in February and March months in East Lancashire
sub -area.
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Figure 4.8: The predicted hazard rate on the first week in the trading state using the
dummy variables of month and year variables in the PH model.
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Figure 4.9: The predicted hazard rate on the second week in the trading state using the
dummy variables of month and year variables in the PH model.
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Figure 4.10: The predicted hazard rate on the second week week in the trading state
using the dummy variables of the discrete ordered elapsed month in the flow sample
period in the PH model (51 dummy variables).
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Chapter 5

Conclusions of the Thesis

This PhD thesis examines the performance of kernel methods with fixed bandwidths

(KMWFB) in estimating discrete conditional functions (DCF) conditioning on mixed

data types (MDT). The discrete models that are considered in the thesis are respectively

a multinomial conditional density function model and a discrete time single state du-

ration model. We developed Chapter 2 a discrete time kernel hazard (KH) estimator

and a discrete time conditional KH estimator, referred to as discrete time external ker-

nel hazard (EKH) and discrete time conditional external kernel external hazard (CEKH)

estimators respectively. The (C)EKH estimator is examined in a simulation study that

is designed under the assumptions of the proportional hazard (PH) framework. Both

EKH and CEKH estimator and the data generating process in the simulation study are

original contributions of this thesis.

The discrete time external kernel hazard estimator is derived from the existing ex-

ternal kernel hazard estimator for continuous time transitions. The new discrete time

hazard estimator has an advantage over the continuous time external kernel hazard

estimator in that it does not smooth negative values in the lower bound in the spell,

accordingly it does not have the source of the Boundary Bias. This advantage is gained

from the Geometric kernel function that is used to smooth the grouped duration time

in the hazard estimator. The discrete time conditional external kernel hazard estimator

might be the first that being suggested in econometrics, it could be useful alternative to

the exciting discrete time proportional hazard estimator in economic duration models.

The simulation study of the hazard estimators is developed from existing simulation

studies in Survival Models in medical and applied sciences, but we extend the designs

by introducing the grouping scheme of the transition time and make the hazard in the

simulation study be estimatable in both continuous and discrete times. The work of

the development of the discrete time external hazard estimator and the Monte Carlo

simulation study is presented in Chapter 2.

The discrete choice estimation technique that used in Chapter 2, and the parametric

discrete time proportional hazard that used in in Chapter 3, are parametric estimation

methods that are difficult to be specified functionally correct. The restrictive assump-

tions that are required for parametrically estimate the models make the produced results
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that do not match with the economic theory or valid only under very narrow conditions.

The multinomial conditional density function is estimated parametrically using the

discrete choice method, in which the random utility theory (RUT) is the cornerstone

of the development of the model. The discrete time conditional hazard is estimated

parametrically using the proportional hazard (PH) estimation framework, with an un-

derlying assumption of an existence of a baseline hazard that is equal for all individuals.

In addition, it is assumed that the contribution of the independent variables is propor-

tional, and shifts the baseline hazard either upward or downward. In both functions

the restrictive assumptions lead to results that fail to capture many features in the data

and contradict with the underlying economic theory.

Parametric models show limited improvement when their restrictive functional form

is relaxed. However, the improvement of the parametric model requires introducing

many dummy variables and interaction terms, which creates a semi-parametric func-

tion in the model. This tends to make the maximisation of the likelihood function of

the parametric models difficult, and may make the model exhibit problems like multi-

collinearity and increase the singularity of the data matrix. This research shows em-

pirically how difficult it is to reach a correctly specified parametric functional form in

econometrics, and recommends the use of nonparametric estimation more than para-

metric estimation in empirical research if it is available. The computation difficulties

that we faced in this work are temporary, since developments in computing systems and

technologies will make nonparametric estimation easier in the near future.

5.1 Mixed Data Types Smoothing Framework

Accordingly, the role of the discrete kernel function of the dependent variable in the

DCF estimation is no different to that of the link function in parametric estimation. The

MDT smoothing method ultimately is the kernel framework that allows of the estima-

tion of DCF functions. Accordingly, the kernel function that is assigned to the discrete

dependent variable in the estimator is crucial for making a correct specification in the

nonparametric kernel estimation approach. The kernel function of the dependent vari-

able has to consider the assumptions and the type of the variable in the model, similarly

to the link function in the parametric discrete choice estimation methods. However,

the discrete kernel function that smooths the discrete dependent variable in the kernel

estimators enforces very few assumptions in the model that do not restrict the interpre-

tation of the results.

Generally kernel estimators depend on the correct choice for the kernel functions

of the variables in the model. Correct kernel estimator depends on the correct choice

of the kernel functions of the variables in the model, i.e to choose continuous kernel

functions for the continuous variables, discrete unordered kernel functions for the dis-

crete unordered variables and discrete ordered kernel functions for the discrete ordered

variables. This property in the kernel nonparametric estimation is considered carefully
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in the development of the discrete time EKH and CEKH estimators in Chapter 3, where

the Geometric kernel function that is used to smooth the grouped duration time in the

hazard estimator is developed under assumptions that are consistent with the grouping

scheme and the transition process. The mixed data types kernel estimators are not sen-

sitive to the choice of the continuous kernel function. However, in the mixed data types

kernel conditional function estimators a wrong choice of the discrete kernel function,

either for the discrete dependent variable or discrete independent variables, leads to

severe consequences to the results. Where this leads to inappropriately locally weight-

ing the observations of the discrete variables and produce wrong results. The kernel

method produces better results if no extreme values or outliers exist in the sample. This

feature is shown in Chapter 2 for the independent variables, where the kernel condi-

tional density estimator provides better results for all interaction terms, which is the

feature that improves the capability of the MDT to effectively estimate the DCF.

In the kernel estimation of the conditional density function the MDT smoothing

technique is used in both the joint and the marginal kernel density estimators. The

MDT smoothing method that applied in the estimated joint density function weights

the interactions of the dependent discrete variable and the discrete independent vari-

ables. The conditional density estimator is the ratio between the estimated joint density

function and the estimated marginal density function. The joint behaviour of the dis-

crete dependent variable with the discrete independent variables that captured in the

estimated joint density function gives the conditional density estimator the ability to

explain more heterogeneity. Which explains the source of the outstanding results that

produced by the conditional density kernel estimator in Chapter 2. For the CEKH esti-

mator in Chapters 4 the factor that improved the quality of the predicted hazard rate is

the same.

In the MDT estimation framework and the DCF kernel estimation the method to

estimate the bandwidths of the estimator has to be considered carefully. Bandwidth

approximation methods are not supported in the MDT smoothing framework. In Chap-

ter 3 the simulation results show that the näıve bandwidths failed to capture the effect

of the discrete variables in the model, whereas the MLCV-Risk method in Chapter 4

captured the effect.

5.2 Remarks on the Results of the Empirical Models

The empirical examples that are applied in this thesis illustrate a number of facts regard-

ing parametric and kernel nonparametric estimation for discrete conditional function.

For the parametric estimation method the thesis demonstrates the following:

First, the limit dependent variable parametric estimation method assumes high ho-

mogeneity among the observations in the sample. This restricts the interpretation of

the results, as shown in Chapter 2, where the MNL model estimates the same marginal

209



effects for the categorical independent variables on the propensity to work for females

in all ages. The enforced high homogeneity assumption have also led to an inaccurate

results that are completely inconsistent with the economic theory, as shown in Chapter

4. Where the proportional hazard model, which uses the cloglog link function, underes-

timates the contribution of year and month categorical variables to the baseline hazard,

which make the model fail to capture the effect of the job-market tightness.

Referring to the theory in duration models, the observations with long duration in

the spell have higher variance of the unobserved components, and increase the variance

of the duration time. But the frequency of such observations is low in the sample. Then

the homogeneity among individuals who stay short period in the spell is higher than the

homogeneity for all individuals in the sample. In parametric estimation of the hazard

rate the proportional hazard model produce estimates that are biased as a result of fail-

ing of counting for the overall heterogeneity that is generated by the observations with

long spells. More specifically, the estimated coefficients in the parametric PH model are

better off when the sample is homogeneous, but when the heterogeneity increases, the

coefficients become biased. In the kernel estimator this problem is treated automatically

by the smoothing method of the MDT framework. The smoothing of the sub-survival

functions (sub-distribution function) in the conditional kernel hazard estimator com-

prises the information regarding the individuals with long spells in the sample and their

characteristic, better than the PH estimator.

Second, parametric estimation methods of DCF are easy to handle and offer many

alternatives specifications for the link functions and the mixture models. However, our

work shows that there is a cost regarding this advantage. The level of ambiguity on

using the alternative specifications of the link functions and the mixture distribution is

high. In Chapter 2 our work uses the multinomial logit (and the binomial logit) link

function only because using other link functions like the multinomial probit and cloglog

needs using more complicated procedures to estimate the pointwise standard errors of

the predictions. Our intuition is that there may not be large differences between the

predicted probabilities with those link functions and the predicted probabilities that are

estimated by the logit link function. However, attempting to make the comparison in

Chapter 2 between the kernel conditional density and the multinomial porbit for ex-

ample, requires more work in the parametric model to estimate the pointwise standard

errors and compare the precision of the predicted probabilities than that done with the

logit link function.

In contrast to the choices of the link functions, the alternative specifications of the

mixture distribution make large diversity in the results. This is shown clearly in Chapter

4. The definition of the mixture distribution is usually arbitrary and highly restricted, in

term of the number of coefficients or the number of the mass points. Our work shows

that it is likely to have inconsistent results when the assumption of mixture distribution

is changed. Generally, these mentioned remarks are the reason that the estimated re-
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sults of the discrete choice models are often unsatisfactory for econometricians in term

of their consistency with the economic theory.

For the kernel method with fixed bandwidth the research illustrates the following

points when an estimation of a DCF is attempted:

First, kernel estimation techniques are generally difficult to handle particularly when

discrete variables are included in the model. The estimated results of the discrete con-

ditional functions are distributed into cells that are created by the categories in the

dependent variable in addition to the cell that are created by the discrete independent

variables. The study of the results with discrete dependent variable is more difficult

than the study of the results with the continuous dependent variable, due to the high

number of cells that are included in the comparison. A plan to investigate the results

based on experience and the sample is needed, as well as a careful design of a method

of presentation of the results that depends on the research objectives. But in the presen-

tation of the results there is high risk to the research objectives, where some important

features may become difficult to show clearly in the MDT kernel estimates.

Second, it is very difficult to test the significance of the independent variables in the

model using the kernel method. The performing of models selection criteria is even

more difficult, due to the hard calculation of the kernel estimators. Nonparametric DCF

cannot stand by their own in econometric research. Researches try to overcome this

problem by using parametric version to examine the significance of the variables in the

model. This process might not necessary make the significant variables that chosen

in the parametric model be distinguished as relevant variables in the nonparametric

estimator. The parametric estimation in our research shows low quality fits compared

with the kernel nonparametric estimation, which makes it difficult to define the best

fitting parametric model. The argument that says that the best fitting parametric model

has to be found first is vague. Our research shows that a good fitting parametric model

in very difficult to achieve, so the best fitting parametric model is a relative based on

the researcher understanding of the results.

Third, Nonparametric kernel methods work better when only a few variables are

included in the model due to the computation difficulties. This may imply low capabil-

ity, particularly that researchers usually prefer to include many independent variables

in parametric models in an attempt to explain more heterogeneity. Adding to that the

curse of dimensionality problem in the nonparametric models make researcher con-

scious about the choice of the variables in the estimator. However, researchers have

to consider the ability of kernel estimator to explain more heterogeneity on the con-

trary of the conventional trend of parametric estimators to enforce homogeneity in the

model. In the estimation of the DCF models, the information that the nonparametric

estimators explain in the model is more than that the parametric link function model

can explain. Having few independent variables in the MDT estimation framework is not

a disadvantage. Researchers have to note the reshaping of the independent variables to
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input them in the estimator of each technique. The reshaping, in the MDT framework,

is more likely to make the number of covariates in the kernel estimator less than the

number of covariates in the discrete dependent variable parametric model.

The research provides new evidence to the labour economic research in UK. It

presents new features in female labour force participation in Chapter 2 and in the youth

job market in Chapter 4, both could be useful in future research in those fields. The MDT

kernel estimation framework is a effective technique to estimated DCF in econometrics,

that need to be handled carefully in empirical research.

5.3 Suggestions of Further Research

The main contribution to knowledge that this thesis provides is that it applies some

recently developed nonparametric techniques empirically. It focusses on the discrete

conditional functions because there is general dis-satisfaction about the results of para-

metric discrete choice models. The novel contribution of the thesis, however, is the de-

velopment of (C)EKH estimators. These estimators open new insights into approaches

to estimate duration models in economics. Kernel hazard estimators for discrete time

models enjoy many advantages over their corresponding estimators in continuous time,

as has been illustrated in Chapter 3. This makes research in this field attractive and

fruitful. The kernel nonparametric estimators can only be applied, so far, to a few types

of models in econometrics. Because kernel method is weak on the estimation of mod-

els with instrumental variable or random effects and for many existing estimators the

estimation of elasticities is complicated. However, with the MDT techniques and the

discrete time KH estimators that we suggest in this thesis, a new field of research in

kernel estimation techniques is opened.

The multinomial kernel conditional density estimator that used in this research is a

simple, special case, of kernel conditional density functions in the MDT framework. The

kernel conditional density estimator can be used for a multivariate conditional density,

for example a conditional density with two discrete dependent variables, one could

be unordered and the other could be ordered. There are potentially many interesting

applications for such conditional function estimates.

The development of the discrete time kernel hazard estimator is the biggest con-

tribution of this research. But this contribution just scratches the surface of what can

be developed with the kernel method in the field of economic duration models. The

MDT estimation framework provides a good basis for developing kernel estimators for

competing risks models.

The effect of unobserved heterogeneity of kernel conditional density estimator and

kernel conditional hazard is very attractive topic of research. An examination of this

property in the kernel conditional density function estimator is interesting. The effect

of the unobserved heterogeneity in the discrete choice models is considered in the liter-
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ature of the parametric estimation of limit dependent variable models in econometrics.

The research suggests a study to compare between the MDT conditional density esti-

mator and the discrete choice estimation method, similar to that presented in Chapter

2, with the unobserved heterogeneity exist in the data, to examine the effect of this

problem in each estimation technique. Monte Carlo simulation method that examine

the effect of unobserved heterogeneity in the MDT kernel density estimator can also be

included in the study.
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Cao, R. and Jácome, M. (2004). Presmoothed kernel density estimator for censored
data, Nonparametric Statistics 16(1-2): 289–309.
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Appendix A

Key of the Notation

Variables
Xc continuous variable
Xd discrete variable
Y d discrete dependent variable (multinomial)
Ud binary dependent variable
Jo discrete (grouped) transition time (the episode of transition number)
Y c underlying continuous transition time
Y cjo underlying continuous transition time at the end of episode j
Cc underlying continuous right censoring time
4 right censoring indicator (= 0 if right censored)
T c underlying continuous duration time

Vectors
X independent mixed variables vector
Xc sub-vector of the independent continuous variables in X
Xd sub-vector of the independent discrete categorical variables in X
h (=[hxc ,γxd]) mixed independent variables bandwidths vector
hxc sub-vector of the continuous independent variable bandwidths
γxd sub-vector of the categorical independent variable bandwidths
p vector of length B of the probabilities for intervals of the discretised continuous time density

Scalars
b the binwidth, interval length (the length of the episode)
B number of grouped time intervals
h0 continuous time variable bandwidth
γ0 grouped time variable bandwidth
hxc continuous independent variable bandwidth
γxd categorical independent variable bandwidth
λ scale parameter of the Weibull transition time density function
k shape parameter of the Weibull transition time density function
κ∗
(·) standardised value of the smoothing specification test of discrete choice models

Functions
iid independent and identically distributed
l(·, ·, ·) categorical variable kernel function
k(·) continuous variable kernel function
w(·) continuous variable kernel function for independent variable
W (·, ·, ·) product of mixed variables kernel functions
A(·, ·, ·) Nadaraya-Watson weights of a product of mixed variables kernel functions
f(tc) probability density function of the continuous transition time variable at tc (used in section 3 only)
F (tc) distribution function of the continuous transition time variable at tc (used in section 3 only)
S(tc) survival function of the continuous transition time variable at tc (used in section 3 only)
r(·) probability density function of the continuous right censoring time variable
R(·) distribution function of the continuous right censoring time variable
R(·) survival function of the continuous right censoring time variable
g(·) probability density function of the continuous observed duration time variable
G(·) distribution function of the continuous observed duration time variable
G(·) survival function of the continuous observed duration time variable
φ(·) continuous time hazard rate
f(tc|x) conditional probability density function of the continuous transition time variable at tc conditional

on the mixed type independent variables X = x (used in section 3 only)
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F (tc|x) conditional distribution function of the continuous transition time variable at tc conditional on the
mixed type independent variables X = x (used in section 3 only)

S(tc|x) conditional survival function of the continuous transition time variable at tc conditional on the
mixed type independent variables X = x (used in section 3 only)

fY c (Y
c
jo ) probability density function of the continuous transition time under the grouping scheme at the

end of episode jo

FY c (Y
c
jo ) distribution function of the continuous transition time under the grouping scheme at the end of

episode jo

SY c (Y
c
jo ) survival function of the continuous transition time under the grouping scheme at the end of episode

jo

f(jo) or (fjo) the probability mass of the grouped time variable at episode jo (discretised from fY c)
F (jo) or (Fjo) the distribution function of the grouped time variable at the end episode jo

S(jo) or (Sjo) the survival function of the grouped time variable at the end of episode jo

θ(jo) the hazard probability of the grouped time at episode jo

Jo
{Q(ρ%)

Y c
}

the interval that include the ρth quantile of the continuous time under the grouping scheme Y c

Estimates
F̂n(·) frequency estimated distribution function of the continuous time model
F̂
ĥ,1

(·) kernel estimated sub-distribution function of the uncensored observations in the risk set

F̂
ĥ,2

(·) kernel estimated sub-distribution function of the observations in the risk set

Ŝn(·) frequency estimated survival function of the continuous time model
Ŝ
ĥ,1

(·) kernel estimated sub-survival function of the uncensored observations in the risk set

Ŝ
ĥ,2

(·) kernel estimated sub-survival function of the observations in the risk set

φ̂DNH(·) unconditional density implied estimated hazard rate for the continuous time transition model
φ̂AFT (·) Continuous time Accelerated Failure Time regression estimated hazard rate
φ̂EKH(·) unconditional external kernel hazard estimated for the continuous time transition model
φ̂CDNH(·|x) continuous time conditional kernel density implied hazard estimated conditioning on the covari-

ates set x
φ̂CEKH(·|x) estimated continuous time conditional external kernel hazard when X = x

φ̂BKH(·|x) estimated continuous time Beran Kernel Hazard when X = x

f̂(jo) kernel estimated probability mass function of the grouped time for episode jo

F̂ (jo) kernel estimated distribution function of the grouped time at the end episode jo

Ŝ(jo) kernel estimated survival function of the grouped time at the end of episode jo

θ̂DNH(jo) estimated density implied unconditional hazard of the grouped time at episode jo

θ̂EKH(jo) estimated external kernel unconditional hazard of the grouped time at episode jo

θ̂WPH(jo) estimated unconditional proportional hazard function using log(jo) variable for the elapsed
grouped time in the spell

θ̂SPH(jo) estimated unconditional proportional hazard function with piecewise (step function) specification
θ̂CDNH(j|x) estimated density implied conditional hazard of the grouped time at episode jo

θ̂CEKH(j|x) estimated conditional external kernel hazard of the grouped time at episode jo and x

θ̂BKH(j|x) estimated Beran kernel hazard of the grouped time at episode j conditioning on the covariates set
x

θ̂CWPH(j|x) estimated conditional proportional hazard function using log(jo) specification of the baseline haz-
ard conditioning on the covariates set x

θ̂CSPH(j|x) estimated piecewise conditional proportional hazard function conditioning on the covariates set x,
uses a step function (semi-parametric) specification of the baseline hazard

λ̂(·) estimated scale parameter of Weibull transition time density function from model (·)
k̂(·) estimated shape parameter of Weibull transition time density function from model (·)
α̂
(·)
0 estimated intercept from model (·)
α̂
(·)
log(jo)

estimated coefficient of log(jo) from a WPH or CWPH model (indicated by (·))
β̂?xc estimated coefficient of the continuous time independent variable xc from a AFT
β̂?
xd

estimated coefficient of the dummy independent variable associated with xd from a AFT

β̂
(·)
xc estimated coefficient of the continuous time independent variable xc from a PH model (indicated

by (·))
β̂
(·)
xd

estimated coefficient of the dummy independent variable associated with xd from a PH model
(indicated by (·))

γ̂0 estimated naive bandwidth of the grouped time variable
ĥ estimated naive bandwidth of the covariates of the conditional hazard
ĥxc estimated naive bandwidth of the continuous covariate independent variable xc

γ̂xd estimated naive bandwidth of the discrete covariate independent variable xc
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Appendix B

Appendices of Chapter 1
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Figure B.1: Software packages to estimate (M)PH parametric models in Chapter 4.

232



Appendix C

Appendices of Chapter 3

C.1 MNL unrestricted models

Denote to the alternative specific coefficients of the dummy regressors by δ(·)k(?) and to

the dummy regressors by d
(·)
(?)i, where (·) denotes to independent variable(s) and (?)

denotes the value(s) of the independent variable(s) that use to generate the dummy

regressor. The parametric models are specified as the following:

Linear form in age:

p(Y d
i = k) = F (βk0 + βk1X

c
age,i

+
3∑
l=1

δnckl d
nc
li + δhohk dhohi + δu5ck du5ci ). (C.1)

The quadratic form in age (Model1):

p(Y d
i = k) = F (βk0 + βk1X

c
age,i + βk2(X

c
age,i)

2

+
3∑
l=1

δnckl d
nc
li + δhohk dhohi + δu5ck du5ci ). (C.2)

Age dummies form (Model2):

p(Y d
i = k) = F (βk0 +

59∑
j=17

δagej dageji

+
3∑
l=1

δnckl d
nc
li + δhohk dhohi + δu5ck du5ci ). (C.3)
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Age dummies with interactions 1 (Model3):

p(Y d
i = k) = F (βk0 +

59∑
j=17

δagej dageji

+
3∑
l=1

δnckl d
nc
li +

59∑
j=17

3∑
l=1

δage,nckjl dage,ncijl + δhohk dhohi + δu5ck du5ci ). (C.4)

Age dummies with interactions 2 (Model4):

p(Y d
i = k) = F (βk0 +

59∑
j=17

δagej dageji

+
3∑
l=1

δnckl d
nc
li +

59∑
j=17

3∑
l=1

δage,nckjl dage,ncijl

+
59∑
j=17

δage,hohkj dage,hohji + δu5ck du5ci ). (C.5)

The models that estimated in the sample of all females add the term
3∑
e=2

δedked
ed
ei in the

linear model, Model1 and Model2, and the term
59∑
j=17

3∑
e=2

δage,edkje dage,edjei +
3∑
e=2

3∑
l=1

δed,nckel ded,nceli in

Model3 and Model4.

C.2 BNL unrestricted models

Denote to the alternative specific coefficients of the dummy regressors by δ(·)(?) and to the

dummy regressors by d(·)(?)i, where (·) denotes to independent variable(s) and (?) denotes

the value(s) of the independent variable(s) that use to generate the dummy regressor.

The parametric models are specified as the following:

Linear form in age:

p(Ud
i = 1) = F (β0 + β1X

c
age,i +

3∑
l=1

δncl d
nc
li

+δhohdhohi + δu5cdu5ci ). (C.6)
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The quadratic form in age (Model1):

p(Ud
i = 1) = F (β0 + β1X

c
age,i + β2(X

c
age,i)

2

+
3∑
l=1

δncl d
nc
li + δhohdhohi + δu5cdu5ci ). (C.7)

Age dummies form (Model2):

p(Ud
i = 1) = F (β0 +

59∑
j=17

δagej dageji

+
3∑
l=1

δncl d
nc
li + δhohdhohi + δu5cdu5ci ). (C.8)

Age dummies with interactions 1 (Model3):

p(Ud
i = 1) = F (β0 +

59∑
j=17

δagej dageji

+
3∑
l=1

δncl d
nc
li +

59∑
j=17

3∑
l=1

δage,ncjl dage,ncjli + δhohdhohi + δu5cdu5ci ). (C.9)

Age dummies with interactions 2 (Model4):

p(Ud
i = 1) = F (β0 +

59∑
j=17

δagej dageji

+
3∑
l=1

δncl d
nc
li +

59∑
j=17

3∑
l=1

δage,ncjl dage,ncjli

+
59∑
j=17

δage,hohj dage,hohji + δu5cdu5ci ). (C.10)

The models that estimated in the sample of all females add the term
3∑
e=2

δede d
ed
ei in the

linear model, Model1 and Model2, and the term
59∑
j=17

3∑
e=2

δage,edje dage,edjei +
3∑
e=2

3∑
l=1

δed,ncel ded,nceli in

Model3 and Model4.

C.3 Replication of Zheng (2008) DGPs

In this section we attempt to reproduce some of the Monte Carlo simulations results that

presented in Fan et al. (2006) paper using R programming Language. The objective of
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this replication is to examine the codes that are used in Chapter 2 this research to

compute the smoothing specification tests of the discrete choice models are correct.

However, due to the hard computations that involved in the computation of the test

bootstrap distribution, the work replicates only some of the Monte Carlo simulation

results that presented in Zheng (2008) paper. However, both tests are examined in our

work, this doubles the computation and make the work more difficult.

The simulated model in Zheng (2008) is a Multinomial Logit that simulates a multi-

nomial dependent variable with 3 outcomes and a continuous covariate variable that

follow a standard normal distribution.

C.3.1 Replication of the Monte Carlo Simulation in Zheng (2008)

This is a replication of the results on Table 1 in Zheng (2008), but with less number of

Monte Carlo replication for sample sizes 50 and 100.

Table C.1: Replication of the simulation
of the size of the test in Zheng (2008)

% of H0 rejections.
Zheng (2008)Test:-
Sample Monte Carlo level of significance

replications 1% 5% 10%
n = 50 1000 1.3 4.4 9.5
n = 100 1000 1.2 6.4 10.6
n = 200 500 2 6.4 11.8
n = 300 500 1.6 7.4 12.2

Fan et al. (2006) Test:-
Sample Monte Carlo level of significance

replications 1% 5% 10%
n = 50 1000 1.4 4.4 9.7
n = 100 1000 1.2 6.2 10.6
n = 200 500 2.2 7 11.4
n = 300 500 1.6 7.8 12.2

1 The number of Monte Carlo samples is re-
duced than the number in the paper to re-
duce the computation time.
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C.4 Females Labour Supply Sub-samples Models

Table C.2: Marginal effects for the MNL unrestricted models in the
females with high qualifications sub-sample.

females with high qualifications
Employed Unemployed Inactive

Panel A: Quadratic form in Xc
age

p
(
yd |x

)
0.874 0.020 0.105

Age(= Xc
age) 3.929 (0.263) -0.373 (0.109) -3.556 (0.241)

Age Squared -5.153 (0.324) 0.395 (0.138) 4.758 (0.296)
Number of Children Xd

nc:
1 child -0.020 (0.011) 0.009 (0.005) 0.011 (0.010)
2 children -0.078 (0.014) 0.005 (0.005) 0.073 (0.013)
3 or more -0.176 (0.024) 0.010 (0.009) 0.166 (0.023)

Xd
u5c -0.018 (0.008) 0.005 (0.003) 0.013 (0.008)

Xd
hoh -0.150 (0.015) -0.009 (0.003) 0.158 (0.0150

Log likelihood -4520.30
Pseudo R2 0.062
Wald stat. 553.67

Panel B: Year dummies of Xc
age

p
(
yd |x

)
0.877 0.018 0.105

Age dummies the marginal effects of the
age dummies are not shown

Number of Children Xd
nc:

1 child -0.018 (0.012) 0.005 (0.004) 0.013 (0.011)
2 children -0.068 (0.014) 0.001 (0.005) 0.067 (0.014)
3 or more 0.159 (0.024) 0.005 (0.007) 0.155 (0.024)

Xd
u5c -0.017 (0.008) 0.005 (0.003) 0.013 (0.008)

Xd
hoh -0.139 (0.017) -0.005 (0.004) 0.144 (0.017)

Log likelihood -4474.58
Pseudo R2 0.0715
Wald stat. NA
n 10125
1 The basegroups are: for the Number of Children, the no children group; for the

Education level, the Low Qualification group; for Xd
u5c, no under 5 children;

Xd
hoh, not head of the househols

2 The MNL model is estimated for the sub-sample of the females in the working
age 16-59 and the High qualification group, the predictions of this model can
be compared with the predictions of the model in Table 2.6 when the dummy
variable high qual. is one.
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Table C.3: Marginal effects for the MNL unrestricted models in the
females with medium qualifications sub-sample.

females with medium qualifications
Employed Unemployed Inactive

Panel A: Quadratic form in Xc
age

p
(
yd |x

)
0.732 0.035 0.232

Age(= Xc
age) 5.553 (0.194) -0.436 (0.076) -5.117 (0.181)

Age Squared -7.196 (0.270) 0.415 (0.109) 6.781 (0.253)
Number of Children Xd

nc:
1 child -0.081 (0.011) 0.006 (0.004) 0.075 (0.010)
2 children -0.143 (0.012) 0.002 (0.004) 0.141 (0.012)
3 or more -0.306 (0.017) 0.011 (0.006) 0.295 (0.017)

Xd
u5c -0.134 (0.009) 0.028 (0.004) 0.107 (0.009)

Xd
hoh -0.169 (0.012) -0.005 (0.004) 0.175 (0.012)

Log likelihood -10670.49
Pseudo R2 0.081
Wald stat. 1609.19

Panel B: Year dummies of Xc
age

p
(
yd |x

)
0.735 0.034 0.231

Age dummies the marginal effects of the
age dummies are not shown

Number of Children Xd
nc:

1 child -0.074 (0.011) 0.002 (0.004) 0.072 (0.011)
2 children -0.134 (0.013) -0.002 (0.004) 0.136 (0.013)
3 or more -0.290 (0.018) 0.006 (0.006) 0.285 (0.018)

Xd
u5c -0.135 (0.009) 0.028 (0.004) 0.108 (0.009)

Xd
hoh -0.189 (0.014) -0.001 (0.004) 0.190 (0.014)

Log likelihood -10601.91
Pseudo R2 0.0869
Wald stat. 1730.66
n 16181
1 The basegroups are: for the Number of Children, the no children group; for the

Education level, the Low Qualification group; for Xd
u5c, no under 5 children;

Xd
hoh, not head of the household

2 The MNL model is estimated for the sub-sample of the females in the working
age 16-59 and the Mid qualification group, the predictions of this model can
be compared with the predictions of the model in Table 2.6 when the dummy
variable ges/gcse is one.
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Table C.4: Marginal effects for the MNL unrestricted models in the
females with low qualifications sub-sample.

females with low qualifications
Employed Unemployed Inactive

Panel A: Quadratic form in Xc
age

p
(
yd |x

)
0.505 0.046 0.449

Age(= Xc
age) 5.092 (0.306) -0.274 (0.103) -4.818 (0.301)

Age Squared -6.382 (0.397) 0.036 (0.140) 6.347 (0.393)
Number of Children Xd

nc:
1 child -0.081 (0.016) 0.003 (0.006) 0.078 (0.016)
2 children -0.152 (0.017) -0.011 (0.005) 0.163 (0.017)
3 or more -0.319 (0.017) -0.007 (0.007) 0.326 (0.018)

Xd
u5c -0.116 (0.012) 0.020 (0.005) 0.096 (0.012)

Xd
hoh -0.179 (0.017) -0.017 (0.005) 0.196 (0.017)

Log likelihood -7197.77
Pseudo R2 0.0722
Wald stat. 1022.8

Panel B: Year dummies of Xc
age

p
(
yd |x

)
0.505 0.043 0.453

Age dummies the marginal effects of the
age dummies are not shown

Number of Children Xd
nc:

1 child -0.056 (0.017) -0.002 (0.005) 0.058 (0.017)
2 children -0.124 (0.019) -0.013 (0.005) 0.137 (0.019)
3 or more -0.297 (0.019) -0.010 (0.006) 0.307 (0.020)

Xd
u5c -0.123 (0.012) 0.021 (0.005) 0.102 (0.012)

Xd
hoh -0.213 (0.018) -0.012 (0.005) 0.225 (0.018)

Log likelihood -7132.32
Pseudo R2 0.0806
Wald stat. 1074.78
n 9005
1 The basegroups are: for the Number of Children, the no children group; for the

Education level, the Low Qualification group; for Xd
u5c, no under 5 children;

Xd
hoh, not head of the household

2 The MNL model is estimated for the sub-sample of the females in the working
age 16-59 and the Low qualification group, the predictions of this model can
be compared with the predictions of the model in Table 2.6 at the basegroup.
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Table C.5: Marginal effects for the probability of unemployment from
the BNL models with quadratic form and with the age dummies for
the females in labour force.

sub-samples
High Qual. GCE/GCSE Low Qual

Panel A: Quadratic form in Xc
age

p
(
yd |x

)
0.023 0.041 0.073

Age(= Xc
age) -0.506 (0.121) -0.785 (0.088) -1.212 (0.177)

Age Squared 0.562 (0.154) 0.839 (0.127) 1.074 (0.238)
Number of Children Xd

nc:
1 child 0.011 (0.006) 0.012 (0.005) 0.023 (0.010)
2 children 0.008 (0.006) 0.012 (0.005) 0.018 (0.012)
3 or more 0.018 (0.011) 0.039 (0.011) 0.074 (0.022)

Xd
u5c 0.006 (0.004) 0.046 (0.006) 0.055 (0.009)

Xd
hoh -0.006 (0.004) 0.002 (0.005) -0.0001 (0.011)

Log likelihood -1003.74 -2313.52 -1402.46
Pseudo R2 0.019 0.0688 0.1107
Wald stat. 42.48 321.04 331.18
Panel B:Year dummies of Xc

age

p
(
yd |x

)
0.021 0.039 0.069

Age dummies the marginal effects of the age dummies are not shown
Number of Children Xd

nc:
1 child 0.006 (0.005) 0.008 (0.005) 0.004 (0.010)
2 children 0.003 (0.006) 0.007 (0.006) -0.001 (0.011)
3 or more 0.010 (0.009) 0.028 (0.011) 0.041 (0.020)

Xd
u5c 0.006 (0.004) 0.046 (0.006) 0.059 (0.010)

Xd
hoh -0.003 (0.005) 0.008 (0.006) 0.018 (0.014)

Log likelihood -983.42 -2285.87 -1367.22
Pseudo R2 0.0388 0.0799 0.133
Wald stat. 86.55 383.79 385.03
n 8869 12111 5027
1 The basegroups are: for the Number of Children, the no children group; for the

Education level, the Low Qualification group; for Xd
u5c, no under 5 children;

Xd
hoh, not head of the household.
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all qualifications levels sample sub-sample 
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Low qualifications 
 

  
  
 

Figure C.1: Predicted probability of employment state by kernel estimator for the fe-
males with high qualifications, no children and not head of household in the sample of
all females (left) compared with the predicted probability of the kernel model from the
sub-sample of high qualifications (right).
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Figure C.2: Predicted probability of the employment state for the females with high
qualifications, no children and not head of household as estimated in the labour for
sample (Binomial conditional density - left) and in the sample of females in the work-
ing age 16-59 as a multinomial conditional density function by taking the product of
the predicted conditional probabilities of employment and economically active states
(right).
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Appendix D

Appendices of Chapter 4

D.1 The Mathematical Proofs

Let yc denotes the transition time variable in continuous duration model. yc is a non-

negative continuous random variable with a density fY c and a distribution function FY c.

Let assume that Y c
i is drawn from Weibull density function with a scale parameter λ and

a shape parameter k, then the functions of Y c
i are

fY c (yc;λ, k) = k

(
1

λ

)k
(yc)k−1 exp

[
−
(
yc

λ

)k]
. (D.1)

The distribution function is:

FY c (yc;λ, k) = 1− exp

[
−
(
yc

λ

)k]
. (D.2)

The survival function is:

SY c (yc) = exp

[
−
(
yc

λ

)k]
, (D.3)

= exp

[
−
(

1

λ

)k
(yc)k

]
, (D.4)

and the hazard is

φY c (y) = k

(
1

λ

)k
(yc)k−1, (D.5)
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and the cumulative hazard function is

ΛY c (yc) = − log

{
exp

[
−
(
yc

λ

)k]}
, (D.6)

=

(
1

λ

)k
(yc)k. (D.7)

The mean and the variance are

µY c = λΓ

(
1 +

1

k

)
, (D.8)

and

σ2
Y c = λ2

[
Γ

(
1 +

2

k

)
− Γ2

(
1 +

1

k

)]
. (D.9)

Now assume that the continuous variable yc has been grouped into intervals with

equal lengths b, where b is determined exogenously, the grouped time variable jo takes

the values 1, 2, 3, ..., B, as follows:

yc jo f(jo)

0 < yc ≤ b ⇒ 0 < yc ≤ yc1 =⇒ jo = 1 f(Jo = 1)

b < yc ≤ 2b ⇒ yc1 < yc ≤ yc2 =⇒ jo = 2 f(Jo = 2)

2b < yc ≤ 3b ⇒ yc2 < yc ≤ yc3 =⇒ jo = 3 f(Jo = 3)
...

...
...

...

(B − 1) b < yc ≤ Bb ⇒ ycB−1 < yc ≤ ycB =⇒ jo = B f(Jo = B)

Bb < yc ⇒ ycB < yc <∞ =⇒ jo = B + 1 f(Jo = B + 1)

The probability mass function of the grouped time can be constructed directly from

the Weibull density function as follows:

f (jo) =

ycjo∫
ycjo−1

k(
1

λ
)uk−1exp(−

(u
λ

)k
)du (D.10)

Since the distribution on the Weibull variable takes the form above, the probability mass
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function in the first interval is

f(Jo = 1) = 1− FY c (yc1) , (D.11)

= 1− exp

[
−
(
yc1
λ

)k]
, (D.12)

(D.13)

and for the other intervals

f(Jo = jo) = FY c
(
ycjo−1

)
− FY c

(
ycjo
)
, (D.14)

= SY c
(
ycjo
)
− SY c

(
ycjo−1

)
, (D.15)

= exp

[
−
(
b

λ

)k
(jo − 1)k

]
− exp

[
−
(
b

λ

)k
(jo)k

]
. (D.16)

At the last interval the probability is

f (Jo = B + 1) = exp

[
−
(
b

λ

)k
Bk

]
,

so that we can have
B+1∑
jo=1

f (jo) = 1. This is clearly not a Weibull density function and

depends crucially on the interval length b.

Jenkins (2005) show that the hazard of the grouped time jo at any episode jo ∈

[1, 2, ..., B] is:

θ (jo) = 1− SY c (job)

SY o ((jo − 1) b)
, (D.17)

= 1−
exp

[
−
(
1
λ

)k
(job)k

]
exp

[
−
(
1
λ

)k
((jo − 1) b)k

] ,
= 1− exp

{
−
(
b

λ

)k [
(jo)k − (jo − 1)k

]}
(D.18)

But ΛY c
(
ycjo
)

=
(
b
λ

)k
(jo)k and ΛY c

(
ycjo−1

)
=
(
b
λ

)k
(jo − 1)k, then

θ (jo) = 1− exp
[
ΛY c

(
ycjo−1

)
− ΛY c

(
ycjo
)]
. (D.19)

Then

1− θ (jo) = exp
[
ΛY c

(
ycjo−1

)
− ΛY c

(
ycjo
)]
, (D.20)
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and

log (1− θ (jo)) =
[
ΛY c

(
ycjo−1

)
− ΛY c

(
ycjo
)]
, (D.21)

log [− log (1− θ (jo))] = log
[(

ΛY c
(
ycjo
)
− ΛY c

(
ycjo−1

))]
, (D.22)

= log

[(
b

λ

)k (
(jo)k − (jo − 1)k

)]
, (D.23)

= log

(
b

λ

)k
+ log

(
(jo)k − (jo − 1)k

)
. (D.24)

Which is the complementary-log-log transformation.

The proportional hazard conditional on the independent variable x for the baseline

hazard in Eq (D.5) is given by

θY c (yc |x) = θY c (yc) exp(xTβ), (D.25)

= k

(
1

λ

)k
(yc)k−1 exp(xTβ), (D.26)

= k

(
1

λ

)k (
exp

(
xTβ

)− 1
k

)−k
(yc)k−1, (D.27)

= k

(
1

λ

)k (
1

exp (−k−1xTβ)

)k
(yc)k−1, (D.28)

= k

(
1

λ exp (−k−1xTβ)

)k
(yc)k−1, (D.29)

(D.30)

Take the integration to find the cumulative hazard at the end of episode ycjo.

ΛY c (yc |x) =

ycjo∫
0

k

(
1

λ exp (−k−1xTβ)

)k
(u)k−1du. (D.31)

=

(
1

λ exp (−k−1xTβ)

)k
(ycjo)

k, (D.32)

=

(
1

λ exp (−k−1xTβ)

)k
(job)k. (D.33)

Which is the cumulative hazard for a Weibull variable with
(
1
λ

exp(xTβ∗)
)

scale param-

eter.
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The complementary-log-log transformation of the conditional hazard produces

log [− log (1− θ (jo |x))] = log
[(

ΛY c
(
ycjo |x

)
− ΛY c

(
ycjo−1 |x

))]
, (D.34)

= log

[(
b

λ exp (−k−1xTβ)

)k (
(jo)k − (jo − 1)k

)]
,(D.35)

= log

(
b

λ

)k
+ log

(
(jo)k − (jo − 1)k

)
+ xTβ. (D.36)

Note that −k−1β are the coefficients of the Accelerated Failure Time regression model.

The table below shows the function for the continuous Weibull transition time and the

functions of the grouped time model for a fixed interval length b = 1 .
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D.2 The Simulation Results
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Table D.3: aMSE for the estimation techniques for the unconditional haz-
ard rate for Weibull with shape=1 and scale=1.

n π̂ aMSE(θ̂WPH(j)) aMSE(θ̂SPH(j)) aMSE(θ̂EKH(j)) aMSE(θ̂DNK(j))
1 100 0.0164% 0.005332 0.003446 0.009426 0.011955
2 200 0.0164% 0.003074 0.001853 0.005548 0.005856
3 500 0.0164% 0.001267 0.000752 0.002287 0.002262
4 1000 0.0164% 0.000646 0.000367 0.001176 0.001166
5 100 2% 0.005753 0.003476 0.009367 0.012001
6 200 2% 0.003390 0.001874 0.006208 0.007338
7 500 2% 0.001262 0.000753 0.002322 0.002330
8 1000 2% 0.000678 0.000409 0.001101 0.001143
9 100 4.999% 0.006360 0.004239 0.011767 0.012860

10 200 4.999% 0.003691 0.002390 0.007824 0.008091
11 500 4.999% 0.001650 0.001059 0.003136 0.003068
12 1000 4.999% 0.000185 0.000272 0.000655 0.000720
13 100 9.999% 0.007935 0.005008 0.015788 0.013113
14 200 9.999% 0.005100 0.003009 0.010547 0.011431
15 500 9.999% 0.002541 0.001772 0.005531 0.005780
16 1000 9.999% 0.001887 0.001412 0.003187 0.003553
17 100 24.99% 0.023973 0.016507 0.085253 0.019767
18 200 24.99% 0.018075 0.012555 0.072481 0.036933
19 500 24.99% 0.015399 0.011029 0.065739 0.053787
20 1000 24.99% 0.013685 0.009819 0.063792 0.054100

1 The average mean square error (aMES) is computed for the models:θ̂WPH(j), the grouped time hazard
with log(j) specification of the elapsed time in the spell variable. θ̂SPH(j), the piecewise grouped time
hazard. θ̂EKH(j) kernel external hazard model, and θ̂DNK(j) the density implied hazard.

Table D.2: Coefficients of parametric models for the un-
conditional hazard for Weibull with shape=1 and scale=1.

n π̂ k̂AFT λ̂AFT α̂WPH
0 α̂WPH

log(j)
γ̂naive0

1 100 0.0164% 1.016 1.0010 -0.002183 0.044480 0.045000
2 200 0.0164% 1.008 0.9982 -0.000137 0.022940 0.022512
3 500 0.0164% 1.003 1.0030 -0.001791 0.004742 0.009683
4 1000 0.0164% 1.002 0.9985 -0.000443 0.010050 0.004298
5 100 2% 1.014 1.0000 -0.024800 0.062850 0.040372
6 200 2% 1.009 0.9976 -0.017700 0.041060 0.021031
7 500 2% 1.003 0.9982 -0.011310 0.003260 0.008262
8 1000 2% 1.003 1.0000 -0.013440 0.002428 0.004126
9 100 4.999% 1.007 1.0030 -0.047310 0.054550 0.035995

10 200 4.999% 1.005 1.0060 -0.042040 0.010860 0.019897
11 500 4.999% 1.005 1.0030 -0.035400 -0.002882 0.007945
12 1000 4.999% 1.002 0.9984 -0.034690 0.002387 0.003947
13 100 9.999% 1.018 1.0050 -0.076040 0.028980 0.032920
14 200 9.999% 1.007 0.9964 -0.067110 -0.002553 0.017219
15 500 9.999% 1.001 1.0000 -0.071690 -0.010090 0.006229
16 1000 9.999% 1.001 1.0000 -0.071300 -0.016780 0.003018
17 100 24.99% 1.019 1.0090 -0.191400 -0.122800 0.011004
18 200 24.99% 1.010 1.0010 -0.178300 -0.149700 0.003309
19 500 24.99% 1.002 1.0040 -0.181300 -0.161900 0.000073
20 1000 24.99% 1.000 0.9975 -0.177200 -0.158000 0.000005

1 π̂ is the proportion of the right censored observations. λ̂AFT and k̂AFT are the
estimated scale and shape parameters from the continuous time AFT. α̂WPH

0 and
α̂WPH
log(j)

are the coefficients of the grouped time PH model. γ̂naive0 is the MLCV naive
bandwidth of grouped time.

2 The number of the Monte Carlo samples is 500 in all simulations.
3 aMSE for the models in this table are shown in Table D.3 below.
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Table D.4: Coefficients of parametric models for the
unconditional hazard for Weibull with shape=1 and
scale=0.75.

n π̂ k̂AFT λ̂AFT α̂WPH
0 α̂WPH

log(j)
γ̂naive0

1 100 0.0191% 0.7627 1.0050 -0.02435 -0.3850 0.091761
2 200 0.0191% 0.7562 1.0010 -0.01491 -0.4145 0.057789
3 500 0.0191% 0.7533 1.0010 -0.01689 -0.4223 0.025770
4 1000 0.0191% 0.7490 0.9985 -0.01334 -0.4349 0.013252
5 100 1.984% 0.7613 1.0050 -0.03157 -0.3963 0.090620
6 200 1.984% 0.7567 1.0060 -0.03057 -0.4128 0.054975
7 500 1.984% 0.7541 1.0000 -0.02402 -0.4290 0.023246
8 1000 1.984% 0.7523 1.0010 -0.02398 -0.4337 0.013635
9 100 5.002% 0.7618 1.0050 -0.04287 -0.4071 0.083544

10 200 5.002% 0.7528 1.0040 -0.04022 -0.4357 0.047524
11 500 5.002% 0.7515 0.9995 -0.03704 -0.4406 0.020196
12 1000 5.002% 0.7520 1.0010 -0.03677 -0.4428 0.009969
13 100 9.99% 0.7614 1.0020 -0.06529 -0.4255 0.060011
14 200 9.99% 0.7540 1.0030 -0.06615 -0.4499 0.030697
15 500 9.99% 0.7479 0.9959 -0.05464 -0.4754 0.012490
16 1000 9.99% 0.7495 1.0000 -0.05707 -0.4771 0.005104
17 100 24.99% 0.7601 1.0050 -0.13370 -0.6295 0.015328
18 200 24.99% 0.7570 1.0090 -0.14000 -0.6253 0.005592
19 500 24.99% 0.7547 1.0040 -0.13820 -0.6345 0.001359
20 1000 24.99% 0.7508 0.9976 -0.13220 -0.6460 0.000087

1 π̂ is the proportion of the right censored observations. λ̂AFT and k̂AFT are the
estimated scale and shape parameters from the continuous time AFT. α̂WPH

0 and
α̂WPH
log(j)

are the coefficients of the grouped time PH model. γ̂naive0 is the MLCV
naive bandwidth of grouped time.

2 The number of the Monte Carlo samples is 500 in all simulations.
3 aMSE for the models in this table are shown in Table D.5 below.

Table D.5: aMSE for the estimation techniques for the unconditional haz-
ard rate with shape=1 and scale=0.75.

n π̂ aMSE(θ̂WPH(j)) aMSE(θ̂SPH(j)) aMSE(θ̂EKH(j)) aMSE(θ̂DNK(j))
1 100 0.0191% 0.004566 0.035007 0.025352 0.027044
2 200 0.0191% 0.002531 0.018283 0.016979 0.017891
3 500 0.0191% 0.001181 0.006735 0.006717 0.006691
4 1000 0.0191% 0.000807 0.003031 0.003049 0.003026
5 100 1.984% 0.004798 0.034868 0.025591 0.027135
6 200 1.984% 0.002907 0.019885 0.017602 0.019495
7 500 1.984% 0.001184 0.007240 0.006828 0.006804
8 1000 1.984% 0.000910 0.003515 0.003518 0.003619
9 100 5.002% 0.005285 0.041025 0.029924 0.029761

10 200 5.002% 0.003035 0.022921 0.019868 0.021493
11 500 5.002% 0.001653 0.008238 0.008138 0.009535
12 1000 5.002% 0.001257 0.004008 0.004043 0.004761
13 100 9.99% 0.008072 0.050095 0.036690 0.039242
14 200 9.99% 0.004429 0.030821 0.025480 0.032618
15 500 9.99% 0.002971 0.013357 0.013408 0.020442
16 1000 9.99% 0.002618 0.006508 0.007423 0.013472
17 100 24.99% 0.017565 0.066043 0.061106 0.089800
18 200 24.99% 0.012988 0.050071 0.046062 0.097669
19 500 24.99% 0.010906 0.038705 0.038771 0.113423
20 1000 24.99% 0.010596 0.032627 0.035192 0.124522

1 The average mean square error (aMES) is computed for the models:θ̂WPH(j), the grouped time hazard
with log(j) specification of the elapsed time in the spell variable. θ̂SPH(j), the piecewise grouped time
hazard. θ̂EKH(j) kernel external hazard model, and θ̂DNK(j) the density implied hazard.
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Table D.6: Coefficients of parametric models for the
unconditional hazard for Weibull with shape=1 and
scale=0.50.

n π̂ k̂AFT λ̂AFT α̂WPH
0 α̂WPH

log(j)
γ̂naive0

1 100 0.0275% 0.5050 1.0240 -0.06972 -0.8189 0.268743
2 200 0.0275% 0.5041 1.0110 -0.06120 -0.8277 0.192186
3 500 0.0275% 0.5012 1.0010 -0.06148 -0.8304 0.118166
4 1000 0.0275% 0.5004 1.0030 -0.06411 -0.8307 0.073156
5 100 2.002% 0.5053 1.0130 -0.06507 -0.8302 0.236345
6 200 2.002% 0.5066 1.0180 -0.06696 -0.8343 0.168660
7 500 2.002% 0.5001 1.0020 -0.06278 -0.8455 0.096857
8 1000 2.002% 0.5004 1.0020 -0.06207 -0.8461 0.058277
9 100 4.994% 0.5075 1.0200 -0.06131 -0.8572 0.193049

10 200 4.994% 0.5028 1.0060 -0.06005 -0.8673 0.133222
11 500 4.994% 0.5011 1.0040 -0.06063 -0.8723 0.062834
12 1000 4.994% 0.5008 1.0020 -0.06063 -0.8733 0.032309
13 100 9.984% 0.5067 1.0260 -0.06510 -0.9160 0.135402
14 200 9.984% 0.5056 1.0090 -0.06001 -0.9199 0.066573
15 500 9.984% 0.4995 0.9962 -0.05497 -0.9347 0.023784
16 1000 9.984% 0.4996 1.0020 -0.05996 -0.9317 0.007589
17 100 25% 0.5074 1.0190 -0.09356 -1.1700 0.017785
18 200 25% 0.5024 1.0200 -0.08899 -1.2110 0.005187
19 500 25% 0.4989 1.0060 -0.08955 -1.1890 0.000389
20 1000 25% 0.5001 0.9942 -0.08453 -1.1920 0.000011

1 π̂ is the proportion of the right censored observations. λ̂AFT and k̂AFT are the
estimated scale and shape parameters from the continuous time AFT. α̂WPH

0 and
α̂WPH
log(j)

are the coefficients of the grouped time PH model. γ̂naive0 is the MLCV
naive bandwidth of grouped time.

2 The number of the Monte Carlo samples is 500 in all simulations.
3 aMSE for the models in this table are shown in Table D.7 below.

Table D.7: aMSE for the estimation techniques for the unconditional haz-
ard rate with shape=1 and scale=0.50.

n π̂ aMSE(θ̂WPH(j)) aMSE(θ̂SPH(j)) aMSE(θ̂EKH(j)) aMSE(θ̂DNK(j))
1 100 0.0275% 0.001492 0.016232 0.007148 0.007220
2 200 0.0275% 0.001189 0.007870 0.004840 0.005117
3 500 0.0275% 0.000979 0.002444 0.002058 0.002386
4 1000 0.0275% 0.000927 0.001040 0.001040 0.001225
5 100 2.002% 0.001717 0.018696 0.008146 0.007820
6 200 2.002% 0.001252 0.010083 0.005116 0.004951
7 500 2.002% 0.001102 0.003008 0.002318 0.002472
8 1000 2.002% 0.001034 0.001232 0.001255 0.001352
9 100 4.994% 0.002233 0.021147 0.008848 0.007810

10 200 4.994% 0.001653 0.011842 0.006145 0.005756
11 500 4.994% 0.001352 0.004982 0.003120 0.003336
12 1000 4.994% 0.001265 0.002152 0.001738 0.002233
13 100 9.984% 0.003135 0.023886 0.011361 0.010249
14 200 9.984% 0.002275 0.014012 0.007798 0.012591
15 500 9.984% 0.001997 0.006992 0.004825 0.018739
16 1000 9.984% 0.001874 0.003793 0.003049 0.027478
17 100 25% 0.006175 0.019693 0.016626 0.168449
18 200 25% 0.005462 0.011538 0.012449 0.179391
19 500 25% 0.004488 0.006056 0.008242 0.187374
20 1000 25% 0.004246 0.004809 0.006648 0.187418

1 The average mean square error (aMES) is computed for the models:θ̂WPH(j), the grouped time hazard
with log(j) specification of the elapsed time in the spell variable. θ̂SPH(j), the piecewise grouped time
hazard. θ̂EKH(j) kernel external hazard model, and θ̂DNK(j) the density implied hazard.
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Table D.8: Coefficients of parametric models for the
unconditional hazard for Weibull with shape=1 and
scale=0.25.

n π̂ k̂AFT λ̂AFT α̂WPH
0 α̂WPH

log(j)
γ̂naive0

1 100 0.027% 0.2538 1.073 -0.22710 -1.098 0.629026
2 200 0.027% 0.2524 1.039 -0.22890 -1.099 0.472990
3 500 0.027% 0.2514 1.015 -0.22490 -1.102 0.292734
4 1000 0.027% 0.2505 1.004 -0.22640 -1.102 0.183169
5 100 1.991% 0.2540 1.032 -0.19490 -1.139 0.643352
6 200 1.991% 0.2522 1.042 -0.20600 -1.140 0.489129
7 500 1.991% 0.2502 1.008 -0.20250 -1.145 0.295361
8 1000 1.991% 0.2505 1.005 -0.20020 -1.145 0.184509
9 100 4.993% 0.2531 1.108 -0.17920 -1.199 0.647731

10 200 4.993% 0.2509 1.070 -0.18350 -1.201 0.514523
11 500 4.993% 0.2506 1.010 -0.16900 -1.207 0.312028
12 1000 4.993% 0.2507 1.010 -0.17240 -1.204 0.189034
13 100 9.996% 0.2513 1.061 -0.12780 -1.303 0.459381
14 200 9.996% 0.2513 1.021 -0.12900 -1.295 0.324829
15 500 9.996% 0.2502 1.016 -0.13770 -1.291 0.165767
16 1000 9.996% 0.2499 1.007 -0.13730 -1.292 0.085604
17 100 25% 0.2544 1.110 -0.07810 -1.571 0.138790
18 200 25% 0.2514 1.057 -0.07462 -1.588 0.055947
19 500 25% 0.2512 1.007 -0.06934 -1.578 0.004967
20 1000 25% 0.2502 0.993 -0.06991 -1.577 0.000178

1 π̂ is the proportion of the right censored observations. λ̂AFT and k̂AFT are the
estimated scale and shape parameters from the continuous time AFT. α̂WPH

0
and α̂WPH

log(j)
are the coefficients of the grouped time PH model. γ̂naive0 is the

MLCV naive bandwidth of grouped time.
2 The number of the Monte Carlo samples is 500 in all simulations.
3 aMSE for the models in this table are shown in Table D.9 below.

Table D.9: aMSE for the estimation techniques for the unconditional haz-
ard rate with shape=1 and scale=0.25.

n π̂ aMSE(θ̂WPH(j)) aMSE(θ̂SPH(j)) aMSE(θ̂EKH(j)) aMSE(θ̂DNK(j))
1 100 0.027% 0.001019 0.000967 0.002961 0.003001
2 200 0.027% 0.000960 0.000457 0.001664 0.001598
3 500 0.027% 0.000926 0.000183 0.000671 0.000653
4 1000 0.027% 0.000914 0.000093 0.000291 0.000307
5 100 1.991% 0.000952 0.001048 0.003098 0.003134
6 200 1.991% 0.000870 0.000471 0.001783 0.001715
7 500 1.991% 0.000829 0.000187 0.000686 0.000657
8 1000 1.991% 0.000819 0.000095 0.000293 0.000304
9 100 4.993% 0.000817 0.001024 0.003171 0.003204

10 200 4.993% 0.000747 0.000475 0.001967 0.001889
11 500 4.993% 0.000719 0.000191 0.000754 0.000711
12 1000 4.993% 0.000711 0.000098 0.000317 0.000326
13 100 9.996% 0.000703 0.001192 0.001899 0.001639
14 200 9.996% 0.000646 0.000514 0.000997 0.000913
15 500 9.996% 0.000606 0.000197 0.000356 0.000437
16 1000 9.996% 0.000593 0.000101 0.000162 0.000264
17 100 25% 0.001124 0.004904 0.003446 0.032254
18 200 25% 0.000979 0.002327 0.002038 0.054539
19 500 25% 0.000893 0.000923 0.000902 0.072925
20 1000 25% 0.000863 0.000487 0.000485 0.074671

1 The average mean square error (aMES) is computed for the models:θ̂WPH(j), the grouped time hazard
with log(j) specification of the elapsed time in the spell variable. θ̂SPH(j), the piecewise grouped time
hazard. θ̂EKH(j) kernel external hazard model, and θ̂DNK(j) the density implied hazard.
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Table D.10: Coefficients of parametric models for the
unconditional hazard for Weibull with shape=3 and
scale=1.

n π̂ k̂AFT λ̂AFT α̂WPH
0 α̂WPH

log(j)
γ̂naive0

1 100 0.0164% 1.0170 3.009 -1.112 0.020560 0.235593
2 200 0.0164% 1.0090 3.007 -1.113 0.017770 0.151203
3 500 0.0164% 1.0020 2.994 -1.099 0.003680 0.075134
4 1000 0.0164% 0.9997 3.003 -1.099 -0.000111 0.038404
5 100 2% 1.0180 3.008 -1.125 0.032070 0.231950
6 200 2% 1.0090 2.993 -1.111 0.016020 0.151197
7 500 2% 1.0030 3.012 -1.109 0.004786 0.074217
8 1000 2% 1.0010 3.002 -1.106 0.003932 0.038204
9 100 4.999% 1.0130 2.979 -1.114 0.022590 0.225576

10 200 4.999% 1.0070 3.007 -1.117 0.010580 0.139404
11 500 4.999% 1.0030 2.992 -1.110 0.006075 0.065851
12 1000 4.999% 1.0000 3.002 -1.110 0.001558 0.035393
13 100 9.999% 1.0140 2.994 -1.126 0.019030 0.203409
14 200 9.999% 1.0070 2.998 -1.124 0.009652 0.123773
15 500 9.999% 1.0040 3.018 -1.124 0.001028 0.053759
16 1000 9.999% 1.0020 2.998 -1.118 0.000542 0.028344
17 100 24.99% 1.0220 3.021 -1.164 0.004123 0.112877
18 200 24.99% 1.0060 3.009 -1.148 -0.015710 0.051956
19 500 24.99% 0.9988 3.015 -1.143 -0.028320 0.011311
20 1000 24.99% 0.9998 3.004 -1.140 -0.026700 0.002477

1 π̂ is the proportion of the right censored observations. λ̂AFT and k̂AFT are the
estimated scale and shape parameters from the continuous time AFT. α̂WPH

0 and
α̂WPH
log(j)

are the coefficients of the grouped time PH model. γ̂naive0 is the MLCV
naive bandwidth of grouped time.

2 The number of the Monte Carlo samples is 500 in all simulations.
3 aMSE for the models in this table are shown in Table D.11 below.

Table D.11: aMSE for the estimation techniques for the unconditional haz-
ard rate ith shape=3 and scale=1.

n π̂ aMSE(θ̂WPH(j)) aMSE(θ̂SPH(j)) aMSE(θ̂EKH(j)) aMSE(θ̂DNK(j))
1 100 0.0164% 0.001867 0.002405 0.002776 0.005279
2 200 0.0164% 0.000896 0.001151 0.001955 0.002960
3 500 0.0164% 0.000389 0.000504 0.001190 0.001321
4 1000 0.0164% 0.000176 0.000238 0.000552 0.000546
5 100 2% 0.002091 0.002891 0.002832 0.005381
6 200 2% 0.001035 0.001265 0.002005 0.003125
7 500 2% 0.000409 0.000530 0.001255 0.001514
8 1000 2% 0.000201 0.000261 0.000586 0.000575
9 100 4.999% 0.001959 0.002861 0.003386 0.005269

10 200 4.999% 0.001012 0.001482 0.002190 0.003288
11 500 4.999% 0.000431 0.000560 0.001299 0.001588
12 1000 4.999% 0.000185 0.000272 0.000655 0.000720
13 100 9.999% 0.002253 0.003589 0.004665 0.005101
14 200 9.999% 0.001138 0.001566 0.002658 0.002863
15 500 9.999% 0.000476 0.000669 0.001609 0.002607
16 1000 9.999% 0.000250 0.000335 0.000882 0.001909
17 100 24.99% 0.003243 0.005895 0.017501 0.005457
18 200 24.99% 0.001600 0.003026 0.014219 0.005062
19 500 24.99% 0.001008 0.001533 0.012015 0.013452
20 1000 24.99% 0.000710 0.001092 0.010526 0.019898

1 The average mean square error (aMES) is computed for the models:θ̂WPH(j), the grouped time hazard
with log(j) specification of the elapsed time in the spell variable. θ̂SPH(j), the piecewise grouped time
hazard. θ̂EKH(j) kernel external hazard model, and θ̂DNK(j) the density implied hazard.
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Table D.12: Coefficients of parametric models for the
unconditional hazard for Weibull with shape=3 and
scale=0.75.

n π̂ k̂AFT λ̂AFT α̂WPH
0 α̂WPH

log(j)
γ̂naive0

1 100 0.0191% 0.7541 2.991 -0.8753 -0.3555 0.336117
2 200 0.0191% 0.7590 3.009 -0.8814 -0.3524 0.245971
3 500 0.0191% 0.7516 2.992 -0.8701 -0.3657 0.136030
4 1000 0.0191% 0.7506 2.992 -0.8729 -0.3642 0.079472
5 100 1.984% 0.7625 3.020 -0.8913 -0.3440 0.322385
6 200 1.984% 0.7514 3.010 -0.8789 -0.3635 0.235871
7 500 1.984% 0.7538 3.010 -0.8829 -0.3596 0.134903
8 1000 1.984% 0.7523 3.000 -0.8772 -0.3639 0.075323
9 100 5.002% 0.7569 3.029 -0.8872 -0.3621 0.307053

10 200 5.002% 0.7583 3.009 -0.8862 -0.3579 0.214290
11 500 5.002% 0.7549 3.014 -0.8845 -0.3639 0.115333
12 1000 5.002% 0.7503 3.005 -0.8784 -0.3711 0.065779
13 100 9.99% 0.7577 2.983 -0.8728 -0.3745 0.267615
14 200 9.99% 0.7555 3.000 -0.8799 -0.3756 0.173714
15 500 9.99% 0.7531 3.014 -0.8851 -0.3764 0.080780
16 1000 9.99% 0.7502 2.996 -0.8766 -0.3827 0.040039
17 100 24.99% 0.7610 3.029 -0.8947 -0.4159 0.121934
18 200 24.99% 0.7524 3.027 -0.8924 -0.4264 0.044784
19 500 24.99% 0.7506 3.005 -0.8863 -0.4298 0.006108
20 1000 24.99% 0.7507 3.017 -0.8881 -0.4313 0.001076

1 π̂ is the proportion of the right censored observations. λ̂AFT and k̂AFT are the
estimated scale and shape parameters from the continuous time AFT. α̂WPH

0
and α̂WPH

log(j)
are the coefficients of the grouped time PH model. γ̂naive0 is the

MLCV naive bandwidth of grouped time.
2 The number of the Monte Carlo samples is 500 in all simulations.
3 aMSE for the models in this table are shown in Table D.13 below.

Table D.13: aMSE for the estimation techniques for the unconditional haz-
ard rate with shape=3 and scale=0.75.

n π̂ aMSE(θ̂WPH(j)) aMSE(θ̂SPH(j)) aMSE(θ̂EKH(j)) aMSE(θ̂DNK(j))
1 100 0.0191% 0.000865 0.009819 0.004797 0.006013
2 200 0.0191% 0.000478 0.005106 0.003375 0.004317
3 500 0.0191% 0.000269 0.001434 0.001659 0.002299
4 1000 0.0191% 0.000193 0.000696 0.001039 0.001448
5 100 1.984% 0.001008 0.010697 0.005356 0.006289
6 200 1.984% 0.000496 0.005720 0.003526 0.004290
7 500 1.984% 0.000269 0.001885 0.001876 0.002412
8 1000 1.984% 0.000197 0.000807 0.001167 0.001506
9 100 5.002% 0.000995 0.011332 0.005592 0.006240

10 200 5.002% 0.000535 0.006963 0.003939 0.004308
11 500 5.002% 0.000294 0.002188 0.002369 0.002645
12 1000 5.002% 0.000240 0.000884 0.001485 0.001676
13 100 9.99% 0.001230 0.014422 0.006346 0.006309
14 200 9.99% 0.000696 0.009790 0.004952 0.005055
15 500 9.99% 0.000411 0.004723 0.003377 0.003866
16 1000 9.99% 0.000331 0.001605 0.002323 0.002722
17 100 24.99% 0.001960 0.009276 0.008316 0.012540
18 200 24.99% 0.001312 0.004445 0.005774 0.026139
19 500 24.99% 0.000846 0.001907 0.003870 0.050913
20 1000 24.99% 0.000708 0.001005 0.002980 0.064090

1 The average mean square error (aMES) is computed for the models:θ̂WPH(j), the grouped time hazard
with log(j) specification of the elapsed time in the spell variable. θ̂SPH(j), the piecewise grouped time
hazard. θ̂EKH(j) kernel external hazard model, and θ̂DNK(j) the density implied hazard.
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Table D.14: Coefficients of parametric models for the
unconditional hazard for Weibull with shape=3 and
scale=0.50.

n π̂ k̂AFT λ̂AFT α̂WPH
0 α̂WPH

log(j)
γ̂naive0

1 100 0.0275% 0.5061 3.031 -0.6794 -0.7216 0.531526
2 200 0.0275% 0.5055 3.021 -0.6842 -0.7198 0.452056
3 500 0.0275% 0.5024 3.009 -0.6833 -0.7237 0.331860
4 1000 0.0275% 0.4996 3.008 -0.6789 -0.7298 0.242645
5 100 2.002% 0.5067 3.030 -0.6763 -0.7293 0.501108
6 200 2.002% 0.5004 3.000 -0.6748 -0.7352 0.419827
7 500 2.002% 0.5029 3.018 -0.6787 -0.7329 0.298438
8 1000 2.002% 0.5009 3.016 -0.6749 -0.7381 0.211292
9 100 4.994% 0.5097 3.094 -0.6844 -0.7352 0.465790

10 200 4.994% 0.5034 3.005 -0.6654 -0.7493 0.359169
11 500 4.994% 0.5027 2.995 -0.6663 -0.7495 0.222824
12 1000 4.994% 0.5009 3.000 -0.6655 -0.7530 0.137920
13 100 9.984% 0.5049 3.058 -0.6548 -0.7808 0.372519
14 200 9.984% 0.5046 3.042 -0.6599 -0.7759 0.257915
15 500 9.984% 0.5015 3.029 -0.6586 -0.7802 0.125261
16 1000 9.984% 0.5022 3.017 -0.6585 -0.7781 0.059100
17 100 25% 0.5086 3.092 -0.6392 -0.8868 0.144363
18 200 25% 0.5030 3.056 -0.6276 -0.9029 0.049851
19 500 25% 0.4999 3.031 -0.6241 -0.9082 0.005885
20 1000 25% 0.5008 2.984 -0.6223 -0.8991 0.001614

1 π̂ is the proportion of the right censored observations. λ̂AFT and k̂AFT are the
estimated scale and shape parameters from the continuous time AFT. α̂WPH

0
and α̂WPH

log(j)
are the coefficients of the grouped time PH model. γ̂naive0 is the

MLCV naive bandwidth of grouped time.
2 The number of the Monte Carlo samples is 500 in all simulations.
3 aMSE for the models in this table are shown in Table D.15 below.

Table D.15: aMSE for the estimation techniques for the unconditional haz-
ard rate with shape=3 and scale=0.50.

n π̂ aMSE(θ̂WPH(j)) aMSE(θ̂SPH(j)) aMSE(θ̂EKH(j)) aMSE(θ̂DNK(j))
1 100 0.0275% 0.000340 0.001172 0.001296 0.002039
2 200 0.0275% 0.000269 0.000591 0.000895 0.001484
3 500 0.0275% 0.000228 0.000244 0.000478 0.000819
4 1000 0.0275% 0.000219 0.000128 0.000265 0.000455
5 100 2.002% 0.000359 0.001308 0.001243 0.001860
6 200 2.002% 0.000279 0.000618 0.000844 0.001293
7 500 2.002% 0.000237 0.000264 0.000449 0.000674
8 1000 2.002% 0.000228 0.000136 0.000245 0.000348
9 100 4.994% 0.000398 0.001405 0.001237 0.001665

10 200 4.994% 0.000304 0.000660 0.000756 0.001002
11 500 4.994% 0.000256 0.000293 0.000364 0.000417
12 1000 4.994% 0.000246 0.000154 0.000197 0.000195
13 100 9.984% 0.000469 0.001688 0.001393 0.001335
14 200 9.984% 0.000366 0.000818 0.000833 0.000712
15 500 9.984% 0.000313 0.000344 0.000437 0.000463
16 1000 9.984% 0.000291 0.000199 0.000272 0.001203
17 100 25% 0.000959 0.005564 0.003607 0.018809
18 200 25% 0.000780 0.003545 0.002220 0.029333
19 500 25% 0.000666 0.001579 0.001222 0.038294
20 1000 25% 0.000581 0.001011 0.000852 0.043179

1 The average mean square error (aMES) is computed for the models:θ̂WPH(j), the grouped time hazard
with log(j) specification of the elapsed time in the spell variable. θ̂SPH(j), the piecewise grouped time
hazard. θ̂EKH(j) kernel external hazard model, and θ̂DNK(j) the density implied hazard.
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Table D.16: Coefficients of parametric models for the
unconditional hazard for Weibull with shape=3 and
scale=0.25.

n π̂ k̂AFT λ̂AFT α̂WPH
0 α̂WPH

log(j)
γ̂naive0

1 100 0.027% 0.2532 3.303 -0.6171 -0.9983 0.626261
2 200 0.027% 0.2528 3.125 -0.6088 -1.0010 0.499590
3 500 0.027% 0.2507 3.005 -0.6039 -1.0030 0.315253
4 1000 0.027% 0.2504 3.045 -0.6098 -1.0020 0.194329
5 100 1.991% 0.2532 3.178 -0.5712 -1.0360 0.635536
6 200 1.991% 0.2529 3.131 -0.5818 -1.0320 0.499794
7 500 1.991% 0.2504 3.062 -0.5804 -1.0340 0.315184
8 1000 1.991% 0.2502 3.031 -0.5776 -1.0360 0.196037
9 100 4.993% 0.2522 3.202 -0.5417 -1.0800 0.642241

10 200 4.993% 0.2514 3.131 -0.5414 -1.0820 0.505253
11 500 4.993% 0.2508 3.038 -0.5434 -1.0800 0.320692
12 1000 4.993% 0.2500 3.019 -0.5422 -1.0820 0.198012
13 100 9.996% 0.2545 3.224 -0.4915 -1.1510 0.677300
14 200 9.996% 0.2515 3.207 -0.5061 -1.1480 0.527941
15 500 9.996% 0.2505 3.066 -0.4960 -1.1520 0.329701
16 1000 9.996% 0.2505 3.013 -0.4951 -1.1500 0.205204
17 100 25% 0.2543 3.359 -0.4209 -1.3290 0.365517
18 200 25% 0.2517 3.158 -0.4144 -1.3280 0.228685
19 500 25% 0.2500 3.104 -0.4178 -1.3280 0.088246
20 1000 25% 0.2501 3.011 -0.4087 -1.3310 0.023976

1 π̂ is the proportion of the right censored observations. λ̂AFT and k̂AFT

are the estimated scale and shape parameters from the continuous time AFT.
α̂WPH
0 and α̂WPH

log(j)
are the coefficients of the grouped time PH model. γ̂naive0

is the MLCV naive bandwidth of grouped time.
2 The number of the Monte Carlo samples is 500 in all simulations.
3 aMSE for the models in this table are shown in Table D.17 below.

Table D.17: aMSE for the estimation techniques for the unconditional
hazard rate with shape=3 and scale=0.25.

n π̂ aMSE(θ̂WPH(j)) aMSE(θ̂SPH(j)) aMSE(θ̂EKH(j)) aMSE(θ̂DNK(j))
1 100 0.027% 0.000865 0.000501 0.002035 0.002027
2 200 0.027% 0.000815 0.000243 0.001276 0.001227
3 500 0.027% 0.000792 0.000101 0.000525 0.000493
4 1000 0.027% 0.000782 0.000051 0.000222 0.000214
5 100 1.991% 0.000793 0.000521 0.002075 0.002068
6 200 1.991% 0.000755 0.000253 0.001278 0.001222
7 500 1.991% 0.000722 0.000100 0.000533 0.000503
8 1000 1.991% 0.000713 0.000053 0.000221 0.000214
9 100 4.993% 0.000711 0.000519 0.002110 0.002107

10 200 4.993% 0.000663 0.000261 0.001303 0.001246
11 500 4.993% 0.000639 0.000104 0.000550 0.000514
12 1000 4.993% 0.000628 0.000053 0.000227 0.000219
13 100 9.996% 0.000611 0.000523 0.002342 0.002353
14 200 9.996% 0.000560 0.000266 0.001432 0.001364
15 500 9.996% 0.000534 0.000105 0.000576 0.000536
16 1000 9.996% 0.000527 0.000054 0.000243 0.000237
17 100 25% 0.000443 0.000702 0.000994 0.001199
18 200 25% 0.000399 0.000335 0.000479 0.000935
19 500 25% 0.000370 0.000127 0.000166 0.000805
20 1000 25% 0.000363 0.000065 0.000081 0.000741

1 The average mean square error (aMES) is computed for the models:θ̂WPH(j), the grouped time hazard
with log(j) specification of the elapsed time in the spell variable. θ̂SPH(j), the piecewise grouped time
hazard. θ̂EKH(j) kernel external hazard model, and θ̂DNK(j) the density implied hazard.
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Table D.24: aMSE of the conditional hazard models with
a baseline hazard that follows Weibull with scale=1 and
shape=1.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.009422 0.005871 0.018917 0.017679 0.015362
200 0% 0.004979 0.002956 0.012469 0.012521 0.011051
500 0% 0.002128 0.001263 0.004942 0.004852 0.004765

1000 0% 0.000552 0.000602 0.002546 0.002535 0.002520
100 2% 0.009388 0.005858 0.021351 0.018620 0.015286
200 2.1% 0.004785 0.002892 0.012459 0.011116 0.011174
500 2.1% 0.001986 0.001254 0.005912 0.005767 0.005619

1000 2.1% 0.001038 0.000663 0.003224 0.003179 0.002881
100 5.2% 0.010517 0.006876 0.023322 0.019302 0.015143
200 5.1% 0.005435 0.003332 0.015000 0.013359 0.013017
500 5.2% 0.002559 0.001688 0.007607 0.007329 0.006348

1000 5.2% 0.001502 0.000986 0.003741 0.003666 0.003551
100 10% 0.013367 0.008985 0.026657 0.023195 0.016888
200 9.9% 0.007647 0.004681 0.019568 0.018403 0.014387
500 8.6% 0.004131 0.002814 0.010714 0.010365 0.010736

1000 2.3% 0.002787 0.002090 0.007172 0.007176 0.007721
100 25.6% 0.048616 0.031028 0.071970 0.067462 0.025686
200 25.4% 0.040132 0.026190 0.059442 0.055053 0.026912
500 25.6% 0.031770 0.021063 0.061396 0.058058 0.022023

1000 25.6% 0.028069 0.019197 0.065133 0.061038 0.021735

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.009084 0.006252 0.024328 0.018806 0.019269
200 0% 0.004936 0.003248 0.017757 0.015530 0.015283
500 0% 0.002078 0.001301 0.008489 0.008061 0.008505

1000 0% 0.001028 0.000656 0.004912 0.004866 0.005027
100 2% 0.009146 0.006252 0.027768 0.021603 0.020048
200 2.1% 0.004841 0.003209 0.018014 0.014885 0.014214
500 2.1% 0.001315 0.001322 0.010138 0.009507 0.008885

1000 2.1% 0.001095 0.000741 0.005916 0.005702 0.004938
100 5.2% 0.010413 0.007188 0.031669 0.022320 0.018518
200 5.1% 0.005724 0.003784 0.022529 0.018387 0.015113
500 5.2% 0.002717 0.001879 0.012897 0.011923 0.008851

1000 5.2% 0.001597 0.001098 0.007754 0.007577 0.005412
100 10% 0.013484 0.009357 0.042079 0.032420 0.020626
200 9.9% 0.008126 0.005210 0.031282 0.024810 0.014650
500 8.6% 0.004366 0.003054 0.018315 0.017031 0.010750

1000 2.3% 0.002826 0.002210 0.013339 0.013123 0.007205
100 25.6% 0.054042 0.033099 0.105069 0.095835 0.027076
200 25.4% 0.045419 0.028980 0.091311 0.082136 0.025214
500 25.6% 0.035238 0.022891 0.087015 0.080321 0.021288

1000 25.6% 0.031325 0.021175 0.087927 0.079459 0.019038

1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE is up

to the interval that include the 99th quantile of Y ci .
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Table D.25: aMSE of the conditional hazard models with
a baseline hazard that follows Weibull with scale=1 and
shape=0.75.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.006940 0.048827 0.058289 0.046248 0.044857
200 0% 0.003287 0.027438 0.034146 0.029698 0.028670
500 0% 0.001555 0.011063 0.013884 0.013553 0.013078

1000 0% 0.000977 0.004987 0.006436 0.006325 0.006296
100 2% 0.007295 0.052714 0.064164 0.052219 0.047440
200 2.2% 0.003610 0.032012 0.036962 0.032454 0.030902
500 2.2% 0.001866 0.012594 0.016169 0.015279 0.015602

1000 2.2% 0.001165 0.006431 0.008338 0.008046 0.008244
100 5.4% 0.008974 0.062216 0.070903 0.056331 0.053284
200 5.4% 0.005175 0.037865 0.044981 0.039783 0.038655
500 5.4% 0.002663 0.016169 0.020787 0.019659 0.021187

1000 5.4% 0.001712 0.008047 0.010448 0.010243 0.011985
100 9.8% 0.011786 0.069181 0.078031 0.065597 0.062131
200 9.9% 0.007334 0.049783 0.057436 0.052652 0.049521
500 0.4% 0.004575 0.027439 0.033357 0.031091 0.041666

1000 8.7% 0.003680 0.016286 0.021365 0.020705 0.036943
100 25.8% 0.030013 0.076369 0.084180 0.075951 0.170736
200 25.7% 0.023410 0.064482 0.067797 0.061643 0.168171
500 25.6% 0.016921 0.057889 0.058982 0.055198 0.164336

1000 25.7% 0.019395 0.055069 0.056669 0.054179 0.163617

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.008294 0.056832 0.073041 0.055712 0.054970
200 0% 0.005068 0.032695 0.047845 0.040034 0.041812
500 0% 0.002355 0.013068 0.023319 0.022035 0.024242

1000 0% 0.001401 0.006177 0.014209 0.013722 0.015813
100 2% 0.010353 0.060595 0.078766 0.062114 0.055979
200 2.2% 0.005383 0.037006 0.050043 0.043367 0.042618
500 2.2% 0.002755 0.014872 0.026172 0.024293 0.025727

1000 2.2% 0.001635 0.007892 0.017776 0.017269 0.017529
100 5.4% 0.012414 0.071346 0.085857 0.067072 0.058779
200 5.4% 0.007404 0.044257 0.059396 0.051679 0.046700
500 5.4% 0.003956 0.019754 0.032826 0.030717 0.029049

1000 5.4% 0.002592 0.009740 0.020774 0.020144 0.019053
100 9.8% 0.016602 0.085458 0.093154 0.082931 0.062021
200 9.9% 0.010443 0.061012 0.076296 0.069410 0.050221
500 0.4% 0.006393 0.034418 0.049328 0.046499 0.033773

1000 8.7% 0.005094 0.020675 0.034719 0.033597 0.032686
100 25.8% 0.036503 0.105658 0.124436 0.112756 0.126385
200 25.7% 0.031214 0.092443 0.106040 0.096821 0.123262
500 25.6% 0.026957 0.083456 0.092790 0.086586 0.120842

1000 25.7% 0.025420 0.079057 0.086036 0.081751 0.120313

1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE is up

to the interval that include the 99th quantile of Y ci .
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Table D.26: aMSE of the conditional hazard models with
a baseline hazard that follows Weibull with scale=1 and
shape=0.50.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.002420 0.026135 0.026722 0.027219 0.020988
200 0% 0.001411 0.015114 0.015411 0.015553 0.009285
500 0% 0.001140 0.005605 0.006018 0.006222 0.003737

1000 0% 0.001106 0.001702 0.002036 0.002114 0.001806
100 2.3% 0.002697 0.026321 0.027389 0.024944 0.019330
200 2.4% 0.001975 0.017042 0.017724 0.017611 0.011668
500 2.3% 0.001357 0.007145 0.007857 0.007892 0.006087

1000 2.3% 0.001331 0.002506 0.003055 0.003099 0.002799
100 5.9% 0.003388 0.031097 0.031233 0.026431 0.026202
200 5.6% 0.002479 0.021135 0.022524 0.020370 0.018557
500 5.7% 0.001690 0.010561 0.011452 0.011099 0.013877

1000 5.6% 0.001828 0.008247 0.008758 0.008483 0.010831
100 10% 0.004318 0.034285 0.037190 0.032731 0.055136
200 10% 0.003012 0.020722 0.022958 0.021570 0.044942
500 0.3% 0.002490 0.011545 0.012626 0.012076 0.042039

1000 6.2% 0.002402 0.005836 0.007264 0.007234 0.042615
100 25.4% 0.013267 0.031949 0.039338 0.034544 0.267160
200 25.7% 0.010811 0.023583 0.025930 0.023037 0.260776
500 25.6% 0.009338 0.017586 0.018737 0.018325 0.254356

1000 25.6% 0.009146 0.015158 0.015878 0.015878 0.253064

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.004712 0.035411 0.031844 0.031383 0.036859
200 0% 0.002553 0.020972 0.019401 0.020563 0.021165
500 0% 0.001862 0.008200 0.009272 0.009529 0.009638

1000 0% 0.001772 0.002804 0.004864 0.004982 0.005197
100 2.3% 0.005012 0.036403 0.032555 0.029482 0.036351
200 2.4% 0.003258 0.023011 0.021892 0.021537 0.020967
500 2.3% 0.002273 0.010408 0.010896 0.010930 0.009460

1000 2.3% 0.002178 0.003090 0.006029 0.006007 0.005490
100 5.9% 0.005936 0.042144 0.037471 0.032537 0.042432
200 5.6% 0.004176 0.027882 0.027736 0.025425 0.022608
500 5.7% 0.003384 0.014953 0.015617 0.015299 0.015359

1000 5.6% 0.003056 0.011124 0.012308 0.011956 0.011497
100 10% 0.007403 0.045039 0.045586 0.040274 0.057366
200 10% 0.004000 0.028405 0.030091 0.028286 0.043980
500 0.3% 0.004094 0.016699 0.018569 0.018121 0.037339

1000 6.2% 0.003962 0.008905 0.012943 0.012880 0.037277
100 25.4% 0.019470 0.046321 0.058244 0.052513 0.223783
200 25.7% 0.016522 0.036056 0.044515 0.041744 0.218340
500 25.6% 0.014355 0.028028 0.033978 0.033535 0.213037

1000 25.6% 0.013946 0.024239 0.029164 0.029164 0.211720

1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE is up

to the interval that include the 99th quantile of Y ci .
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Table D.27: aMSE of the conditional hazard models with
a baseline hazard that follows Weibull with scale=1 and
shape=0.25.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.001085 0.001464 0.001961 0.007025 0.003209
200 0% 0.000954 0.000669 0.000873 0.003449 0.001588
500 0% 0.000883 0.000250 0.000353 0.001394 0.000677

1000 0% 0.000860 0.000123 0.000192 0.000608 0.000336
100 2.5% 0.000944 0.001661 0.002112 0.006526 0.003317
200 2.6% 0.000799 0.000675 0.000896 0.003864 0.001767
500 2.5% 0.000734 0.000263 0.000384 0.001603 0.000774

1000 2.6% 0.000698 0.000128 0.000203 0.000647 0.000376
100 5.6% 0.000815 0.001838 0.002326 0.005061 0.003299
200 5.6% 0.000681 0.000801 0.001020 0.002396 0.001502
500 5.7% 0.000605 0.000278 0.000397 0.000802 0.000689

1000 5.6% 0.000587 0.000135 0.000212 0.000322 0.000393
100 10.1% 0.000844 0.003396 0.003930 0.004768 0.014769
200 10% 0.000689 0.001478 0.001829 0.002087 0.011880
500 10% 0.000606 0.000654 0.000855 0.000854 0.013422

1000 8.6% 0.000581 0.000352 0.000453 0.000441 0.014233
100 19.4% 0.002273 0.009135 0.012439 0.012186 0.202182
200 19.5% 0.001664 0.005743 0.007064 0.006814 0.189427
500 19.4% 0.001340 0.001943 0.002629 0.002626 0.176944

1000 19.3% 0.001208 0.001012 0.001383 0.001383 0.172556

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.001948 0.002684 0.003639 0.011986 0.008136
200 0% 0.001575 0.001213 0.001522 0.006011 0.003129
500 0% 0.001387 0.000444 0.000615 0.002237 0.001035

1000 0% 0.001337 0.000219 0.000390 0.001072 0.000580
100 2.5% 0.001657 0.002754 0.004054 0.012246 0.006290
200 2.6% 0.001294 0.001212 0.001611 0.006377 0.003362
500 2.5% 0.001137 0.000465 0.000661 0.002572 0.001130

1000 2.6% 0.001083 0.000228 0.000409 0.001139 0.000595
100 5.6% 0.001380 0.003340 0.003611 0.008407 0.009282
200 5.6% 0.001123 0.001473 0.001675 0.003891 0.003635
500 5.7% 0.000960 0.000504 0.000662 0.001291 0.000866

1000 5.6% 0.000922 0.000242 0.000416 0.000607 0.000486
100 10.1% 0.001453 0.005791 0.005089 0.006517 0.018723
200 10% 0.001110 0.002473 0.002394 0.002853 0.011942
500 10% 0.000972 0.001057 0.001230 0.001244 0.012958

1000 8.6% 0.000934 0.000556 0.000745 0.000730 0.013777
100 19.4% 0.003784 0.014095 0.015046 0.014631 0.194868
200 19.5% 0.002708 0.008453 0.009356 0.008154 0.182390
500 19.4% 0.002161 0.003317 0.004547 0.004550 0.171084

1000 19.3% 0.002016 0.001766 0.002962 0.002962 0.167159

1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE is up

to the interval that include the 99th quantile of Y ci .
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Table D.28: aMSE of the conditional hazard models with
a baseline hazard that follows Weibull with scale=3 and
shape=1.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.001773 0.002090 0.004233 0.004014 0.003289
200 0% 0.000858 0.001019 0.002108 0.002007 0.001832
500 0% 0.000336 0.000385 0.000818 0.000761 0.000733

1000 0% 0.000156 0.000185 0.000372 0.000348 0.000345
100 2% 0.001804 0.001867 0.003625 0.003471 0.003201
200 2% 0.000838 0.000968 0.002008 0.001884 0.002014
500 2.1% 0.000336 0.000397 0.000762 0.000716 0.000878

1000 2.1% 0.000168 0.000197 0.000382 0.000357 0.000503
100 5.1% 0.001979 0.002034 0.004024 0.003842 0.004269
200 5.2% 0.000904 0.001064 0.002124 0.002054 0.002751
500 5.3% 0.000334 0.000398 0.000745 0.000695 0.001331

1000 5.1% 0.000178 0.000210 0.000376 0.000353 0.000877
100 9.8% 0.002179 0.002016 0.004157 0.004110 0.006191
200 9.9% 0.000925 0.000972 0.001946 0.001870 0.003980
500 9.9% 0.000397 0.000455 0.000731 0.000685 0.002446

1000 1.6% 0.000194 0.000208 0.000372 0.000358 0.002027
100 25.7% 0.002677 0.002405 0.004871 0.004712 0.021505
200 25.5% 0.001470 0.001318 0.002119 0.002075 0.018886
500 25.7% 0.000925 0.000766 0.000856 0.000849 0.014735

1000 25.6% 0.000653 0.000536 0.000513 0.000511 0.013241

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.003339 0.003432 0.006576 0.007159 0.006117
200 0% 0.001471 0.001577 0.003614 0.003779 0.003614
500 0% 0.000561 0.000592 0.001869 0.001843 0.001879

1000 0% 0.000258 0.000292 0.001197 0.001175 0.001203
100 2% 0.003578 0.003368 0.006677 0.007380 0.006145
200 2% 0.001474 0.001570 0.003745 0.003812 0.003565
500 2.1% 0.000562 0.000618 0.002022 0.001493 0.001907

1000 2.1% 0.000276 0.000305 0.001294 0.001273 0.001208
100 5.1% 0.003619 0.003496 0.007197 0.007954 0.006274
200 5.2% 0.001565 0.001666 0.004192 0.004216 0.003830
500 5.3% 0.000596 0.000654 0.002132 0.002087 0.001909

1000 5.1% 0.000296 0.000327 0.001363 0.001341 0.001260
100 9.8% 0.003803 0.003490 0.006986 0.007451 0.006662
200 9.9% 0.001614 0.001637 0.004269 0.004282 0.004067
500 9.9% 0.000635 0.000676 0.002336 0.002284 0.002288

1000 1.6% 0.000347 0.000350 0.001526 0.001507 0.001735
100 25.7% 0.004538 0.004064 0.009851 0.010146 0.015438
200 25.5% 0.002508 0.002190 0.006277 0.006176 0.012768
500 25.7% 0.001450 0.001214 0.003864 0.003848 0.009806

1000 25.6% 0.001017 0.000830 0.002579 0.002574 0.009195

1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE is up

to the interval that include the 99th quantile of Y ci .
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Table D.29: aMSE of the conditional hazard models with
a baseline hazard that follows Weibull with scale=3 and
shape=0.75.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.001694 0.005676 0.008143 0.006798 0.005532
200 0% 0.000803 0.002355 0.003637 0.003131 0.002778
500 0% 0.000319 0.000967 0.001554 0.001361 0.001280

1000 0% 0.000206 0.000477 0.000807 0.000743 0.000714
100 2.2% 0.001541 0.005497 0.008132 0.007031 0.005891
200 2.1% 0.000737 0.002682 0.003989 0.003395 0.003334
500 2.2% 0.000311 0.000947 0.001519 0.001365 0.001456

1000 2.1% 0.000193 0.000468 0.000797 0.000728 0.000817
100 5.5% 0.001711 0.005732 0.008745 0.007172 0.007256
200 5.5% 0.000718 0.002484 0.003811 0.003250 0.003772
500 5.5% 0.000333 0.000990 0.001563 0.001408 0.002060

1000 5.4% 0.000210 0.000502 0.000823 0.000756 0.001329
100 10% 0.001793 0.006454 0.009105 0.007630 0.009758
200 9.9% 0.000801 0.002887 0.004133 0.003642 0.005811
500 9.8% 0.000362 0.001158 0.001765 0.001617 0.003623

1000 9.4% 0.000232 0.000553 0.000847 0.000803 0.002485
100 25.9% 0.002728 0.011895 0.016292 0.014843 0.059273
200 25.6% 0.001444 0.004881 0.006624 0.006343 0.047432
500 25.7% 0.001094 0.002149 0.002906 0.002885 0.040385

1000 25.7% 0.000903 0.001331 0.001744 0.001741 0.037771

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.003341 0.009332 0.013343 0.012625 0.010603
200 0% 0.001373 0.003686 0.006712 0.006148 0.005648
500 0% 0.000555 0.001550 0.003304 0.003113 0.003030

1000 0% 0.000350 0.000764 0.001979 0.001916 0.001895
100 2.2% 0.003203 0.009145 0.013748 0.012460 0.011264
200 2.1% 0.001445 0.004348 0.006917 0.006440 0.005787
500 2.2% 0.000555 0.001516 0.003299 0.003129 0.002915

1000 2.1% 0.000336 0.000761 0.002096 0.002020 0.001866
100 5.5% 0.003175 0.009109 0.013774 0.012160 0.011140
200 5.5% 0.001303 0.004186 0.007372 0.006537 0.006503
500 5.5% 0.000573 0.001586 0.003488 0.003312 0.003083

1000 5.4% 0.000349 0.000791 0.002191 0.002109 0.001971
100 10% 0.003217 0.010190 0.014259 0.012421 0.013020
200 9.9% 0.001459 0.004631 0.007407 0.006826 0.007012
500 9.8% 0.000621 0.001783 0.003923 0.003750 0.003860

1000 9.4% 0.000390 0.000893 0.002436 0.002374 0.002499
100 25.9% 0.004646 0.018034 0.022379 0.020905 0.050521
200 25.6% 0.002571 0.007859 0.012088 0.011810 0.038542
500 25.7% 0.001821 0.003502 0.006851 0.006828 0.032688

1000 25.7% 0.001433 0.002094 0.004582 0.004578 0.030969

1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE is up

to the interval that include the 99th quantile of Y ci .
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Table D.30: aMSE of the conditional hazard models with
a baseline hazard that follows Weibull with scale=3 and
shape=0.50.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.000792 0.003291 0.004309 0.005524 0.003567
200 0% 0.000546 0.001326 0.001886 0.002709 0.001846
500 0% 0.000398 0.000480 0.000745 0.001254 0.000867

1000 0% 0.000357 0.000239 0.000395 0.000677 0.000475
100 2.5% 0.000866 0.004288 0.005299 0.006047 0.004711
200 2.3% 0.000543 0.001441 0.002024 0.002673 0.001972
500 2.4% 0.000401 0.000525 0.000788 0.001049 0.000880

1000 2.4% 0.000355 0.000258 0.000409 0.000515 0.000470
100 5.9% 0.000844 0.004387 0.005309 0.005751 0.004584
200 5.7% 0.000546 0.001678 0.002197 0.002449 0.002423
500 5.7% 0.000413 0.000560 0.000869 0.000880 0.001170

1000 5.7% 0.000366 0.000281 0.000456 0.000433 0.000767
100 10.1% 0.000872 0.006254 0.007167 0.007027 0.008507
200 2.7% 0.000594 0.002602 0.003228 0.003287 0.004801
500 4% 0.000462 0.000708 0.001041 0.000322 0.002484

1000 10% 0.000425 0.000346 0.000546 0.000521 0.002016
100 25.5% 0.002001 0.009486 0.012651 0.011660 0.121134
200 25.5% 0.001335 0.005021 0.006488 0.006387 0.125883
500 25.6% 0.001014 0.001804 0.002365 0.002365 0.128161

1000 25.5% 0.000890 0.000988 0.001379 0.001379 0.125455

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.001549 0.005728 0.006985 0.011295 0.008368
200 0% 0.000917 0.002274 0.003457 0.005491 0.004436
500 0% 0.000627 0.000840 0.001581 0.002546 0.001865

1000 0% 0.000552 0.000417 0.001028 0.001562 0.001200
100 2.5% 0.001775 0.007231 0.007549 0.010635 0.009254
200 2.3% 0.000944 0.002501 0.003557 0.005026 0.004579
500 2.4% 0.000640 0.000914 0.001675 0.002191 0.001720

1000 2.4% 0.000550 0.000450 0.001109 0.001359 0.001077
100 5.9% 0.001620 0.007384 0.007583 0.009221 0.009813
200 5.7% 0.000950 0.002897 0.003607 0.004317 0.004213
500 5.7% 0.000681 0.000984 0.001832 0.001938 0.001638

1000 5.7% 0.000587 0.000492 0.001179 0.001193 0.001033
100 10.1% 0.001688 0.009874 0.009109 0.009583 0.012244
200 2.7% 0.001029 0.004385 0.004488 0.004652 0.005046
500 4% 0.000779 0.001253 0.002006 0.001980 0.002343

1000 10% 0.000702 0.000603 0.001360 0.001341 0.001741
100 25.5% 0.003391 0.014590 0.016039 0.015222 0.111126
200 25.5% 0.002196 0.007740 0.009154 0.008711 0.114156
500 25.6% 0.001709 0.003085 0.004748 0.004748 0.117009

1000 25.5% 0.001494 0.001693 0.003231 0.003231 0.116500

1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE is up

to the interval that include the 99th quantile of Y ci .
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Table D.31: aMSE of the conditional hazard models with
a baseline hazard that follows Weibull with scale=3 and
shape=0.25.

aMSE of the baseline hazard

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.000887 0.000681 0.000954 0.003033 0.001732
200 0% 0.000785 0.000321 0.000498 0.001855 0.000977
500 0% 0.000729 0.000125 0.000224 0.000790 0.000425

1000 0% 0.000712 0.000064 0.000146 0.000344 0.000212
100 2.6% 0.000766 0.000671 0.000952 0.003277 0.001819
200 2.7% 0.000670 0.000324 0.000501 0.001906 0.001012
500 2.6% 0.000617 0.000128 0.000239 0.000817 0.000446

1000 2.6% 0.000599 0.000064 0.000142 0.000348 0.000217
100 5.8% 0.000668 0.000704 0.001006 0.003453 0.002050
200 5.5% 0.000573 0.000321 0.000495 0.002079 0.001146
500 5.6% 0.000523 0.000129 0.000233 0.000849 0.000488

1000 5.6% 0.000505 0.000068 0.000151 0.000363 0.000249
100 10.2% 0.000579 0.000775 0.001056 0.002391 0.001658
200 10.1% 0.000480 0.000362 0.000538 0.001281 0.000943
500 10% 0.000431 0.000133 0.000240 0.000443 0.000474

1000 9.9% 0.000420 0.000068 0.000149 0.000180 0.000322
100 19.6% 0.000790 0.002506 0.003132 0.003491 0.022341
200 19.2% 0.000626 0.001082 0.001549 0.001474 0.022047
500 19.3% 0.000534 0.000393 0.000627 0.000607 0.025909

1000 19.4% 0.000496 0.000191 0.000333 0.000332 0.029336

aMSE of the conditional hazard at
8 combination of values for xc and xd

n π̂ θ̂CWPH θ̂CSPH θ̂BKH θ̂CEKH θ̂CDKH

100 0% 0.001519 0.001243 0.001577 0.005025 0.004329
200 0% 0.001264 0.000567 0.000718 0.002893 0.001664
500 0% 0.001113 0.000213 0.000358 0.001323 0.000757

1000 0% 0.001079 0.000110 0.000250 0.000656 0.000416
100 2.6% 0.001327 0.001263 0.001560 0.005471 0.003754
200 2.7% 0.001091 0.000578 0.000711 0.002901 0.001705
500 2.6% 0.000960 0.000223 0.000369 0.001358 0.000765

1000 2.6% 0.000927 0.000111 0.000251 0.000671 0.000420
100 5.8% 0.001120 0.001206 0.001572 0.005695 0.003870
200 5.5% 0.000931 0.000570 0.000725 0.003226 0.001904
500 5.6% 0.000832 0.000231 0.000373 0.001420 0.000790

1000 5.6% 0.000789 0.000118 0.000265 0.000688 0.000425
100 10.2% 0.000972 0.001419 0.001564 0.004128 0.004101
200 10.1% 0.000788 0.000656 0.000749 0.001986 0.001291
500 10% 0.000682 0.000235 0.000381 0.000791 0.000609

1000 9.9% 0.000662 0.000119 0.000264 0.000379 0.000370
100 19.6% 0.001272 0.004231 0.003955 0.004301 0.023218
200 19.2% 0.001026 0.001963 0.001670 0.002073 0.021333
500 19.3% 0.000867 0.000700 0.000936 0.000928 0.024820

1000 19.4% 0.000812 0.000342 0.000592 0.000592 0.028527

1 The point of (Xc, Xd) that used to calculated the average aMSE are
(0, 0), (1, 0), (−1, 0), (Xc

, 0), (0, 1), (1, 1), (−1, 1), (Xc
, 1). The first point mea-

sures the hazard of the baseline group.
2 The interval length is b = 1 and the number of intervals that used in the aMSE is up

to the interval that include the 99th quantile of Y ci .
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