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ABSTRACT

Financial institutions stand at the edge of what is called a dynamic environment.

Acting fast is a vital requirement of this environment. On the top of that, changes

at the regulations [31, 32] make institutions’ obligations more complex and compute

intensive than ever.

Financial researchers try constantly to create new models and improve the ex-

isting ones to reduce the complexity and make them simpler and more efficient. In

addition, computer scientists have made a significant progress in the acceleration of

complex algorithms using parallel and distributed systems. High Performance Com-

puting techniques are used more often to meet the speed requirements that have

been set by the modern economic situations.

In this thesis we will present a state-of-the-art financial method, called Least-

Squares Monte Carlo. This method is presented to reduce the complexity of a more

complex method called Stochastic-on-Stochastic valuation. New regulations have

introduced by the European Commission for the insurance companies and this algo-

rithm can fulfill the requirements of these regulations faster and accurately.

Furthermore, the utilization of the High Performance Computing techniques will

reveal the power of the modern hardware architectures and programming languages

as they can be able to accelerate the performance of a complex financial application

by multiple times.
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Chapter 1

Introduction

1.1 Introduction

The burgeoning growth of the international banking and insurance sector in con-

junction with the fast and ever-changing economic system has increased the need for

both quick and accurate decisions. These decisions require the processing and ana-

lyzing of large volumes of data combined with the execution of economic models and

algorithms. This data processing and algorithm execution are data - and compute -

intensive processes respectively which require a reasonable amount of time for their

completion.

Due to the instability of the financial markets in recent years, the banking and

insurance institutions are trying to optimize and accelerate these processes to remain

competitive. The achievement of this objective requires knowledge derived from two

different scientific fields, finance and computer science. Regarding the financial part

great emphasis has been given to finding new algorithms and economic models or

optimizing the existing ones in order to reduce their complexity while maintaining

the same level of accuracy. An emerging particular compute-intensive problem that

insurance companies face recently is the calculation of the so called Solvency Capital

Requirement.

As the insurance industry is moving from a direct supervisory control system in a

more liberalized environment, it requires new control systems and risk management.

Moreover, the monitoring authorities need to use improved and more sophisticated

techniques for the supervision of insurance companies. Since these institutions are

major investors, their credibility has a great impact on the financial stability. The
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main reference point for an insurance company is its solvency or its financial strength

(Sandstrom, 2006).

The basic obligations of an insurance company are the expected underwriting

requirements and its associated expenses which are often calculated by actuarial

methods. However, these calculations are nothing more than estimates that incor-

porate probability of errors. For the protection of the policyholders of an insurance

product or contract and to ensure the stability of the financial market, insurance

companies are required to have in reserve a certain amount of additional assets,

called “Solvency Capital Requirement” introduced by the European Union (EU) in

the Solvency II regulatory framework.

The calculation of the SCR may require, in principle, stochastic-on-stochastic or

nested simulation. This process demands a huge amount of calculation and simula-

tion in order to produce an accurate estimation. This problem has created the need

for a more sophisticated algorithm to reduce the computational effort. The Least-

Squares Monte Carlo Simulation (LSMC) is proposed as an efficient solution to this

problem as it could reduce the number of simulations combined with a least-squares

regression. As the financial products have become more and more complex and the

volume of the transactions increases, the acceleration achieved from the improve-

ment of the financial algorithms was proven insufficient. This continuously growing

need for acceleration has led insurance companies to utilize state-of-the-art compu-

tational platforms. High Performance Computing (HPC) platforms combined with

parallel programming languages are able to exploit the characteristics of the parallel

architectures in order to maximize the acceleration of the financial algorithms.

Parallel programming is defined as the practice of using a large number of co-

operating processors, which communicate with each other in order to solve, quickly,

compute-intensive problems. Parallel programming is evolving rapidly into a major

area of computer science. It can be already seen that the prediction made by Mousa

in 2005, that it is possible that in the future years this will become so large and

powerful that most of the research conducted in the fields of design and analysis of

algorithms, biomedical applications, computer architectures and financial applica-

tions will be in the context of parallel calculation, proved true.

The potential of HPC has already been proved in multiple scientific fields but it

is still under-utilized for financial applications. One reason for this is that almost

all financial institutions hold legacy programs that were developed some decades

ago. This means that they must re-write all these codes in order to take advantage
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of the characteristics of parallel architectures. In addition, the evolution of HPC

platforms have resulted in multiple hardware and software solutions. Many-core and

multi-core architectures are available and multiple programming models created for

each of these platforms. Financial institutions should be able to find the efficient

combination of software and hardware that suits their needs, their investment policy

and will maximize the acceleration considering the specific characteristics of different

financial applications. This will result in an improvement of their risk-management,

their trading policy and other internal processes. This thesis presents a comparison of

multiple programming models using different parallel architectures in order to eval-

uate the performance of the LSMC Simulation that can be used for the calculation

of the Solvency Capital Requirement under the Solvency II Regulatory Framework.

1.2 Thesis Outline and Contributions

The structure of the thesis is as follows:

In chapter 2 we present the financial problem for insurance companies following

introduction of new EU regulations. In addition, a brief description of the Monte

Carlo Simulation will be given as well as a variance reduction technique that can

improve the accuracy of the simulation.

In chapter 3 we will present the Least-Squares Monte Carlo Simulation (LSMC)

for American Options and show how it can solve the problem described at chapter

2. The main decisions regarding the implementation will be discussed and in order

to reveal their importance and their impact on estimation accuracy.

In chapter 4 the application of the algorithm will be presented for the valuation of

a European Put Option, an Asian Option and a Barrier Option in order to benchmark

the accuracy of the LSMC estimates. This is one of the contributions of this thesis

where the valuation of complex products, like Asian options, is done under the

context of LSMC. The results of this application will be discussed and analyzed to

show the success and the drawbacks of the algorithm for different products.

The second part of this thesis consists of the HPC discussion and analysis. In

chapter 5 the parallel CPU architectures and their programming model OpenMP will

be described. In chapter 6 an analysis and description of the characteristics of the

parallel GPU architectures will be discussed. Chapter 6 also contains a description

of the CUDA programming model and the OpenACC programming model that can
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be used to exploit at the parallel GPU attributes.

In chapter 7 we present the results of the multiple implementations, the opti-

mization techniques used for the acceleration of the LSMC algorithm and the pros

and cons, of each programming model and parallel architectures will be analyzed.

This is the main contribution of this thesis as the only discussion in the literature

regarding the implementation of LSMC using high performance techniques has been

done from Abbas-Turki et al. [34] where they price European and American Options

using CPU and GPU clusters. They proved that they can accelerate their CPU

implementation up to 10 times depending on the number of the simulation paths

and and the dimension of the problem. The main difference between the implemen-

tation of this thesis and their implementation is that in this thesis we describe the

application of LSMC in the context of Solvency II and various programming models

for GPUs are compared by discussing optimization techniques that can be used to

accelerate serial implementations. Our results extend their findings that GPUs can

accelerate Monte Carlo simulation.

In chapter 8 the finance results and the HPC implementations will be summarized

and future work description for the optimization of the algorithm in both scientific

fields.
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Chapter 2

Literature Review

In the first part of this thesis LSMC method is presented. This method was first

presented by Longstaff and Schwartz [21] in the context of pricing American options.

This approach can be interpreted as a way to estimate the value of a function of

dynamic programming with linear regression, with the help of basis functions. The

potential of this method has already been proved [21] and many attempts had tried to

optimize this method in order to improve the estimate accuracy. However, nowadays,

insurance companies are turning their interest to this method as it can be used to

calculate the Solvency Capital Requirement.

2.1 The Solvency II Regulatory Framework

Solvency II is the new EU directive to regulate capital adequacy requirements of

insurance companies and it is expected to be applied at the end of 2016 [24]. Sol-

vency II introduces a new system to calculate the capital requirements for every

EU member, which will replace the existing system and the insurance laws of the

member states, and will adopt risk management techniques, corporate governance

and transparency, which are necessary for the proper functioning of the market and

the protection of the policyholders. It will also carry out more effective comparisons

between companies within a state as well as between companies located in different

states.

The first pillar, the quantitative solvency requirements, includes all relevant rules

that an insurance company must follow to form its technical reserves. It will also

regulate the investments, determine the assets and the quality of capital that will
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provide the required solvency for insurance companies.

The key terms included in the first pillar are the Solvency Capital Require-

ment (SCR) which is the capital an insurance company will hold in order to avoid

bankruptcy, with a confidence level of 99.5% for a one year time horizon, and the Min-

imum Capital Requirement (MCR), which is the lower limit of capital that should

be held by an insurance company in order to avoid supervisory intervention and

possible revocation of operation.

The second pillar establishes quality standards for solvency, i.e. the principles

of internal control activities on which risk evaluation will be based (corporate gov-

ernance and risk management system) and the framework for conducting the Own

Risk and Solvency Assessment (ORSA), which refers to the set of procedures used to

identify, evaluate, monitor, manage and report the risks that an insurance company

would face now and in the future and to ensure the necessary and ongoing solvency

of the firm.

Especially in the field of risk management, reference is being made to all the main

areas of risk faced by an insurance company. These include market risk, insurance

risk, operational risk and counterparty risk. These risks are quantified in pillar

one. In addition, reference is being made to other risks such as liquidity risk and

reputational risk which are mostly dealt with qualitatively.

The second pillar also defines the general framework of the internal audit opera-

tion, the actuarial operation and outsourcing. According to the directive, supervisory

authorities may impose additional capital requirements if they believe that a firm’s

governance system is inadequate.

The third pillar defines the requirements of transparency and publication of the

data of an insurance company. Firms should create two reports to different audiences.

The first will only be sent to supervisors and will include confidential information

regarding the operation of the firm; the second will be made publicly available and

will contain information on solvency and financial conditions.

2.2 Variable Annuities

In recent years, insurance companies offer flexible products that combine multiple

investment options with guarantees in order to attract more customers and also to

benefit from the long-term positive trends that some indexes might have.
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A characteristic example of this kind of products is the Variable Annuity insur-

ance contracts which combine investment options with guarantees that are available

to the policyholder at certain policy anniversaries. The level of the guarantees de-

pends on the age of the policyholder, the lapse rate, the profit/loss of the investments

etc.. The guarantees can be grouped in five main categories:

• Guaranteed Minimum Death Benefits (GMDB).

• Guaranteed Minimum Living Benefits (GMLB).

• Guaranteed Minimum Accumulation Benefits (GMAB).

• Guaranteed Minimum Income Benefits (GMIB).

• Guaranteed Minimum Withdrawal Benefits (GMWB).

In order to give a more detailed description of these guarantees we will discuss the

GMWB which is the most used. The following description will be based in the

variable annuity type of contract that is presented and discussed by Ledlie M., C.,

in Variable Annuities [35].

We assume that the policyholder is 65 years old and he has chosen to activate

the GMWB option since the beginning of the contract. The activation of this option

costs to the policyholder 1% of the total account value. This cost will not be applied

if at some point in time the policyholder decide to deactivate the GMWB option.

GMWB option offers to the policyholder a guaranteed payment of 5% of the to-

tal account value per year when the policyholder is older than 65 years old. This

guaranteed payment is called ’guarantee base’ and it is set according to the aggre-

gated amount of money given by the policyholder. This guarantee base can change

subject to the performance of the investments associated with the contract for the

next ten years after his 65 birthday. Then, he will receive the constant pre-specified

percentage of this fund value until he dies. For the following description we will

assume that the total aggregated amount is 100,000 pounds and every year the fund

value is invested by 40% at zero coupon swaps with ten years duration and 60% in

equity index.

In order to calculate the liabilities of this product, policyholder’s life expectancy

is the first issue that needs to be addressed. Although a stochastic model should be

used for the calculation of the uncertainty of the mortality rates, it can be assumed

that these are deterministic and the policyholder cannot be older than 120 years
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old. This means that Monte Carlo simulations should simulate 55 years into the

future considering that the policyholder is 65 years old. Of course this is only an

assumption and this area is an open research subject.

For each of the 55 years we need to calculate the fund value, the income level

and the guarantee base. These values are interlinked and stochastic, making the

calculation of the liabilities complex and compute intensive.

The simulation of the equities and bonds price should be performed in order

to calculate the level of the fund at each year after policyholder’s 65th birthday

(annuitisation). The following equation describes the behaviour of the find value

FVi in year i after annuitisation:

FVi = max ((FVi−1 − Ii−i) (1 + Ri) , 0)

where

Ri = xEi + yBi − ν− λ,

where x and y are the bond and equity investment percentages which in our case

are 40% and 60%. Ei and Bi shows the simulated prices of the equities and bonds.

Ii−1 shows the income level at year i − 1, ν represents administration fees and λ is

the 1% additional fee we discussed above and applies when the GMWB option is

activated.

When the fund value is defined the guarantee base should be calculated. Each

year after annuitisation the guarantee base can be changed depending on the per-

formance of the investments. The following example will make this concept clear.

The fund value is 100,000 pounds when the policyholder is 65 years old. If at the

end of the next year the fund value is 110,000 pounds then the guarantee base will

also be higher, 110,000. This is applied only for ten years after annuitisation. Any

change at the fund value after ten years will not have any impact to the level of the

guarantee base. Also the change of the guarantee base cannot be higher than 15%

each year. This means that if the investments increase the fund value by 20% only

15% will be applied to the guarantee base. In addition, the guarantee base can be

the same or higher compared to the previous year. This is in accordance with the

5% minimum income of the initial value of the fund. This can be expressed in the

following equation:
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GBi = I (i ≤ γ) min (1.15xGBi−1,max (GBi−1, Fi)) + I (i > γ)GBi−1

When the guarantee base is defined, the income level of the policyholder after

annuitisation will be 5% of the guarantee base. There have been some discussions

[36] regarding the ability of the policyholder to withdraw the whole amount or not in

order to achieve the maximum performance of GMWB option but under the Solvency

II capital estimation a sensible assumption is that the policyholder always withdraws

the whole amount.

When the fund value, the guarantee base and the income value are defined we

can calculate the cost to the insurer for each of the 55 future years. If the return of

the investments is lower than expected and the fund value is lower than the initial

value then the insurer should cover the difference from his capital. Also, there is a

possibility that the policyholder might switch-off the GMWB option. The following

equation gives the cost of guarantees Vi at year i.

Vi = −Pi min (Fi − Ii, 0) .

where Pi gives the policy in force as this will be active if the policyholder is alive

and he hasn’t deactivate the GMWB option (lapse rate). Because this valuation is

being done under the risk-neutral context we should discount this value with the

simulated discount factor of the time of the valuation.

It is obvious that the structure of the above equation is very similar with the

payoff of an option and this will be discussed further in Chapter 4 where various

types of options will be used for the evaluation of the Least-Squares Monte Carlo

algorithm.

We can see that these contracts are very attractive to customers as they offer

protection and at the same time investment options that can increase the profit at

a relatively low level risk. Furthermore, the expiration of these contracts lasts many

years into the future as it depends on the death of the contract owner which might

happen many years after acquisition of the contract.

The risk-management of this kind of products is a real challenge for insurance

companies because of their complexity. The path-dependence and the number of risk-

factors affecting this product can be large as it might include the stock price, the
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interest rate, the volatility, the lapse rate, the life expectancy of the policyholder,

etc.. The calculation of the risk for these products as the number of contracts

increases can lead to a compute intensive process with an increasing need for an

efficient method to accelerate existing approaches.

2.3 Monte Carlo Simulation

The Monte Carlo method has proven to be a valuable and versatile computational

tool in modern financial theory. The complexity of numerical calculations has grown

rapidly, requiring greater speed and efficiency in the calculations. Numerical methods

are used in various purposes in finance such as the valuation of securities, assessing

their sensitivities to certain factors, and assessing their risks, as well as in various

portfolios stress tests.

Presented for the first time in finance by Hertz [10] in 1964 in 1977, Boyle [9]

introduced the Monte Carlo simulation for valuation of derivative securities.

In finance, the prices of basic securities and the state variables of the underlying

assets are often modeled as stochastic processes in continuous time. The decision of

buying or selling a derivative security depends on the value of securities. Under no

arbitrage condition, it has been proved that a derivative’s price can be calculated

from the expected value of the discounted profit. The expected value is taken based

on the transformation of the original probability measure (risk-neutral measure).

In this dissertation, we use Monte Carlo simulation in the two stages of the LSMC

simulation. In the first stage, by using Monte Carlo we create multiple realizations

of the risk-factors that affect the valuation of our product and in the second stage

we value our product conditional on each of these realizations produced earlier.

2.4 Euler Discretization Scheme

The starting point of the implementation of the Monte Carlo methods for valuation

of options is to create sampling paths of the underlying assets. Simple options do

not require the creation of sampling paths as their value depends only on the price of

the underlying asset at maturity, but for other type of options there are cases where

their values depend on the whole path or at least on one sequence of values at given

times. There are two different sources of error in the path creation process:
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1. The sampling error.

2. The discretization error.

The first error is the result of the Monte Carlo randomness and can be minimized

with the use of variance reduction techniques [26]. In this thesis we will use the

Euler discretization scheme for the Monte Carlo simulations. In order to explain the

discretization error resulting from this scheme we will discretize a continuous time

model.

dSt = a (St, t) dt + b (St, t) dWt

If we apply the Euler discretization scheme to this process we obtain the following

discretized model:

δS = St+δt − St = a (St, t) δt + b (St, t)
√
δtε,

where δt is the discretization step and ε ˜ N(0,1).

One of the most important issues in stochastic differential equations is the con-

vergence. If we use the standard normal distribution to sample the random variable

ε, we could simulate one discrete time stochastic process associated with the solution

of the continuous time equation. The error can be reduced even if we increase the

number of paths or the numbers of repetitions.

A major problem of the Euler discretization scheme is that it cannot guarantee

the positive values for a CIR process and this will cause problems to the calculation

of the square root. For example, if we apply the Euler discretization scheme in the

following CIR process:

dvt = κ(θ− vt)dt + ξ
√
vtdW

v
t

we obtain the following equation

v (ti+1) = v (ti) + κ (θ− v (ti)) [ti+1 − ti] + ξ
√

v (ti)Zi

√
[ti+1 − ti]

In order to assure that the v (ti) will never take negative values, Deelstra and

Delbaen (1998) proposed an extension of this scheme to force this value to 0 whenever

a negative value appears.
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2.5 Antithetic Variates

The method of antithetic variates is one of the simplest and most commonly used

methods for variance reduction. The main idea behind this technique, which seems

to be introduced by Hammersley and Morton in 1956 [18] in the context of Monte

Carlo Simulation, is that suitable pairs are created on the observations obtained from

the simulation. The premise is that if we want to estimate a parameter θ we need

two unbiased estimators which would have a strong negative correlation [27].

Each pair of these observations shall be such that one observation is greater

average than the average price θ and the other smaller. So considering as an estimate

of their average, the price would be closer to the value of the parameter. If Y1 and

Y2 are unbiased estimators of θ, not independent of each other, then the (Y1+Y2)
2

is

also an unbiased estimator of this parameter and its variance will be:

V ar

(
(Y1 + Y2)

2

)
=

1

4
V ar (Y1) +

1

4
V ar (Y2) +

1

2
Cov (Y1, Y2)

Therefore, from the last equation, if the Cov (Y1, Y2) is negative this method can

be effective for the reduction of the variance. Suppose we have random variables

X1, X2, ..., Xn which we use to calculate their sampling average as an estimator of

the parameter θ. If these parameters are independent then:

V
(
X̄
)

=
1

n2
V

(
n∑

i=1

Xi

)
=
σv
2

n

If these parameters are not independent:

1

n2
V

(
n∑

i=1

Xi

)
=

1

n2

(
n∑

i=1

V (Xi) + 2
∑
i<k

Cov (Xi, Xk)

)
=
σv
2

n
+

2

n2

∑
i<k

Cov (Xi, Xj)

If Cov (X1, X2) < 0 then V
(
X̄
)
< σv

2

n
and as a result we will have an estimation

with a lower variance using the same number of observations.

This method is termed antithetic variates because of the way we produce negative

correlated random numbers. Assume that for the calculation of each of the Xi we

need m independent random numbers U i
1, U

i
2, ..., U

i
m from the uniform distribution

U (0, 1) and every Xi is a monotonic function of the vector Ui = (U i
1, U

i
2, ..., U

i
m) so

that Xi = g (Ui). In order to produce a negatively correlated Xi we produce pairs of
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vectors Ui and 1− Ui, where:

1− Ui =
(
1− U i

1, 1− U i
2, ..., 1− U i

m

)
The vector 1−Ui is consisted of m independent uniform random numbers so the

monotonic functions g (Ui) and g (1− Ui) will have the same distributions [28]. Now

we simulate our Xi as follows:

X2k−1 = g (U2k+1)

X2k = g (1− U2k+1)

for every k = 1, ..., n. Then

Cov
(
U i
j , 1− U i

j

)
= E

(
U i
j

(
1− U i

j

))
− E

(
U i
j

)
E
(
1− U i

j

)
=

= E
(
U i
j

(
1− U i

j

))
− 1

2

1

2
=

= E
(
U i
j −

(
U i
j

)2)− 1

4
=

ˆ 1

0

(
x− x2

)
fU (x) dx− 1

4
=

=

ˆ 1

0

(
x− x2

)
dx− 1

4
=

1

6
− 1

4
= − 1

12
< 0

for every j = 1, 2, ...,m.

The benefit is that the new estimator has a lower variance compared to the

variance of using m new independent Ui values and we save time from generating

new random numbers from the uniform distribution as we just use the negative values

of the already created random numbers.

2.6 Stochastic-on-Stochastic Simulation and Al-

ternatives

The Stochastic-on-Stochastic simulation allows the production of the distribution of

the total liabilities and the direct estimation of the SCR at any selected confidence
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level. This method is particularly useful when values of liabilities are driven by

multiple risk factors and analytical solutions are not available.

Monte Carlo Simulation is a parametric method, with assumed distributions for

asset returns for every risk-factor. The calculation of the SRC contains the following

basic steps:

1. Scenario Generation: Use estimates for the model parameters of the risk-

factors (price of the underlying asset, volatility, interest rate etc.) and correla-

tion or dependence structure of the risk-factors (as appropriate), we produce a

large number of future values for each of these factors at the projection date.

2. Liabilities Valuation: For each scenario in step 1, use another set of model

parameters estimate to calculate the value of the liability at the projection

date.

Liabilities that are affected by multiple risk-factors are more complex to value. As a

result, there is no analytical solution which means that Monte Carlo simulation has

to be performed for their valuation, conditional on each of the generated scenarios.

An important observation regarding this algorithm is the different calibration

performed for the two simulation stages. In the first stage the purpose is to realis-

tically capture the behavior of all the risk-factors affecting the value of the liability

on the projection date. In order to achieve this, the model used for the simulation

should be calibrated according to the physical measure proxy by historical data.

In the second stage the simulation should be performed under the risk-neutral

measure for market valuation of the liability. One problem with this second stage

simulation arises from the fact that many insurance contracts typically last for thirty

to forty years into the future and this makes the risk-neutral calibration difficult

because usually options with forty years maturity are not available and if there are,

they are not liquid. So some heuristic input estimates are necessary.

The execution of this nested simulation is very costly even when the number of

risk-factors is low. When the number of risk-factors is high, the valuation of the

liabilities is prohibit especially with standard single processor computers. Figure 2.1

presents the simulation schemes under stochastic-on-stochastic (or nested) simulation

and Least-Squares Monte Carlo (LSMC), the later of which will be described in the

next chapter. As described in Section 2.1, insurance companies are required to

calculate their SCR which means that they should minimize their probability of
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Figure 2.1: Nested vs LSMC Simulation

default to 0.5% confidence level. For a reasonable accuracy, at least 10000 outer

simulation scenarios are needed. This step is what we described above as “Scenario

Generation”. In the second step the liabilities should be valued conditional on each of

these scenarios. In order to achieve an acceptable accuracy for each valuation we need

to perform at least 10.000 simulations in the inner loop. As a result 10.000x10.000

simulation paths are needed to produce the estimation of the total liabilities on the

projection date, which is the year from now according to Solvency II. This number

is extremely high for the capabilities of a single processor computer especially when

considering a portfolio of complex products that an insurance company typically

holds.

Multiple solutions have been proposed as alternatives to the stochastic-on-stochastic

simulation in order to reduce the computational effort and consequently make the

valuation of the liabilities easier. These are the curve fitting approach, the Replicat-

ing portfolios and the Least-Squares Monte Carlo.

According to the Curve fitting approach the inner valuation of the liabilities can

be performed with the use of few outer scenarios and then we can interpolate the

behaviour. The replicating portfolios approach follows the logic of using some assets

that areeasy to be valued instead of liabilities. Finally, the Least-Squares Monte

Carlo approach reduces the number of the inner valuation scenarios and improve the

accuracy of the inaccurate inner valuations with the use of the least-squares method.

In practice, the idea of LSMC is very similar to the stochastic-on-stochastic simu-

lation but instead of using many paths to value the liabilities for each outer scenario

we use only one path. Because of the big number of outer scenarios, a regression

fit can be built from all these valuation which will be able to minimize the errors of
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the inaccurate valuations. As will be discussed in the next chapter, the risk-factors

act as the explanatory variables of the method and the liability valuations are the

responce variables. When the curve is built the method is the same as the curve

fitting.

As the number of the risk-factors is getting higher LSMC adds more value to

the reduction of the computational effort. The total number of simulations is less

compared to the curve fitting for the same level of accuracy and this is what makes the

LSMC method efficient compared to other approaches. In addition, the distribution

of the outer scenarios that is used for the construction of the regression function can

be different than the actual distribution of the real scenarios and this can improve

the accuracy of the model at the tails as discussed in the literature.

The disadvantages of the model is that its theory is more complicated compared

to the other approaches making it harder to implement and explain. In addition most

of the insurance companies have already implemented and used one of the other two

approaches and the implementation of the LSMC would be a hard change.
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Chapter 3

Least-Squares Monte Carlo

Simulation

3.1 Least-Squares Monte Carlo Simulation for Amer-

ican Options

The Least-Squares Monte Carlo (LSMC) algorithm is widely used in finance and

it is one of the most important tools for valuing American options. An American

option can be exercised any time before and at option maturity. At maturity the

option is exercised, if the exercise value is positive. Before maturity, the optimal

strategy for the investor is to compare the exercise value at each point in time with

the continuation value of the option. If the exercise value is higher then the investor

should exercise the option. The key to this valuation strategy is the determination

of the continuation value of the option.

The Solvency II Capital Requirement calculation has features similar to the val-

uation of American options in that the total liability is equivalent to the value of

a put option which has to be valued at some future point in time, the projection

date at 1-year horizon in this case. Hence, the LSMC for SCR calculation consists

of three key steps

• Generation of scenarios for the projection date

• Estimation of the Least-Squares function

• Valuation of liabilities (as a put option)
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The LSMC method creates scenarios through Monte Carlo simulation, and then

performs iteratively, and at each time step a least-squares approximation of the

continuation function. Suppose that ω is a simulated scenario at some projection

date. 0 < t1 ≤ t2 ≤ ... ≤ tT = T are the exercise dates of this contract and C (ω, t)

is a cash flow scenario calculated assuming that the investor has not exercised the

option at or before time t.

At maturity T the investor exercises the option if the exercised value is positive.

At time tk before maturity the investor should decide if he will exercise the option or

wait until the next exercise date. The amount of money he will receive for exercising

the option is known but the expected value cash flows from holding the option are

not known for a particular path in the Monte Carlo simulations.

The continuation value of the option F (ω; tk) at time tk for the scenario ω is

calculated as follows:

F (ω; tk) = EQ

 K∑
j=k+1

exp

− tjˆ

tk

r (ω,s) ds

C (ω; tj) |Ftk


where r (ω, t) is the discount rate to time tk and Q the risk-neutral measure.

The LSMC algorithm aims at approximating the continuation value, F (ω; tk),

without iterative simulation at each time step . Given F (ω; tk), the investor should

be able to follow the optimal strategy either by exercising the option at this time

or hold the optional F (ω; tk). This is an iterative process until the decisions have

been calculated for every scenario at every time step. When the strategy has been

fully determined, the valuation of the American options is simple. In summary mul-

tiple scenarios are generated through Monte Carlo simulation and for every scenario

the optimal stopping point is defined by the LSMC estimate for F (ω; tk) and the

exercised value of the option.

F (ω; tk) is typically approximated as follows:

F (ω; tj) =
m∑
i=1

aiLi (S (tj,ω))

where S (tj,ω) is the price of the underlying asset at tj for the scenario ω and ai is

the coefficient of the ith basis function Li.

The coefficients ai are calculated through the least-squares method as explained

in the next section.
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3.2 Least-Squares Method

If fitted values y are a linear function of x as shown bellow:

yi = a0 + a1xi, i = 1 . . . n

the parameters a0 and a1, can be estimated from n pairs of (x1, y1) , (x2, y2) , ..., (xn, yn)

in which the y values deviate from predicted value by a random error of the normal

distribution with zero mean. For polynomial of degree m

y = a0 + a1xi + ... + amx
m
i

n∑
i=1

[yi − ŷi]
2 =

n∑
i=1

[yi − (a0 + a1xi + ... + amx
m
i )]2

The unknown coefficients must field zero first derivatives in order to obtain the

least-squares error

n∑
i=1

yi = a0

n∑
i=1

1 + a1

n∑
i=1

xi + a2

n∑
i=1

x2
i + ... + am

n∑
i=1

xm
i

n∑
i=1

xiyi = a0

n∑
i=1

xi + a1

n∑
i=1

x2
i + a2

n∑
i=1

x3
i + ... + am

n∑
i=1

xm+1
i

...

n∑
i=1

xm
i yi = a0

n∑
i=1

xm
i + a1

n∑
i=1

xm+1
i + a2

n∑
i=1

xm+2
i + ... + am

n∑
i=1

x2m
i

which can be written as A*b = Y as follows:

a =


a0

a1

...

ak

 , A =



n
n∑

i=1

xi ...
n∑

i=1

xm
i

n∑
i=1

xi

n∑
i=1

x2
i ...

n∑
i=1

xm+1
i

... ... ... ...
n∑

i=1

xm
i

n∑
i=1

xm+1
i ...

n∑
i=1

x2m
i


, Y =



n∑
i=1

yi
n∑

i=1

xiyi

...
n∑

i=1

xm
i yi
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where, n is the number of the outer scenarios, x is the price of the underlying asset,

b is the coefficients vector, and y is the value of the liabilities. If the value of the

liabilities depends on multiple risk-factors then

(x1,1, x1,2, ..., x1,n, y1) , (x2,1, x2,2, ..., x2,n, y2) , ..., (xn,1, xn,2, ..., xn,n, yn).

In the case of the SCR calculation, y and x are, respectively, the values of the

option (or liability) and the underlying factor (e.g. asset price) on projection date.

In particular y is generated by analytical function (typically unavailable) or by inner

loop simulations. In the case of multiple factors, x could include stochastic interest

rate, asset price, volatility etc.

In our implementation the solution of the above system is done with the use

of a function that implements the LU decomposition with partial pivoting and row

interchanges to factor A.

The outcome of LU factorization is a lower triagonal matrix L and an upper

triagonal matrix U so that:

PA = LU.

The elements of the diagonal of matrix L are identical and equal to one and

the other non-zero positions are the multiplier of Gauss elimination (used to elim-

inate each element). Matrix U is an upper triagonal matrix resulting from Gauss

elimination. Finally, matrix P, is the permutation matrix corresponding to the lines

transitions that were performed according to partial pivoting. When L, U and P

have been calculated the solution of Ax = B is reduced to:

Ly = Pb

Ux = y

3.3 Sampling methods for the outer scenarios

Previous study shows that sampling the outer scenarios from a distribution other

than the distribution generated by the model selected for option pricing, can improve

the estimation of the LSMC [19]. This is partly because models for option pricing

typically leaves very few observations in the tails. There are several choices for the

outer scenario sampling and the most obvious one is the full grid sampling where

we should fill the grid formed by the risk-drivers. This method can improve the
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Figure 3.1: Regular grid (Left) and Latin hypercube sampling (Right)

estimation of the LSMC but it suffers from the so-called curse of dimensionality.

This means that as the number of the risk-factors increases the dimension of the

grid will become prohibitively high.

Other sampling approaches that do not suffer from the curse of dimensionality

include the Latin hypercube sampling, the uniform sampling and the quasi-random

sampling. The Latin hypercube sampling allows a good degree of reliability with a

smaller number of samples and thus less computational time. The main idea of the

Latin hypercube sampling is the separation of the space of the multidimensional dis-

tribution at various intervals and the creation of samples through random sampling

from all these intervals.

The other two approaches are based on pseudo-random numbers (uniform dis-

tribution) and semi-random numbers (quasi-random) generators. The quasi-random

numbers introduce lower discrepancy compared to the uniform random numbers but

this does not necessarily lead to a better estimation result.

3.4 Basis functions

The selection of basis functions for the regression model is a crucial choice for the

accuracy of the LSMC simulation described in section 3.1. Choices of the basis func-

tions have been widely discussed in the literature. Basis functions can be powers or

from the polynomial families such as orthogonal polynomials, Legendre polynomials,
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Figure 3.2: Uniform Sampling (Left) and Quasi-random Sampling (Right)

Hermitte polynomials etc.

Moreno and Navas (2003) [13] tested the robustness of the LSMC method against

multiple polynomial basis functions and found little difference in their performance.

They identified that the method produce similar and accurate results for all of their

choices. Moreover, they state that the use of polynomials with degree higher than

20 may cause the least-squares regression to malfunction. Finally, the accuracy and

the robustness of the LSMC cannot be guaranteed for complex products because of

the weakness of the polynomial basis functions to proxy the value of these products.

Areal et al. (2008) [12] found all the polynomial basis functions they tested

provided almost the same accuracy. In addition, the use of powers form of the basis

functions is recommended because of the improved computational speed. The choice

of the basis functions depends on the type of the option and to keep the same order

of accuracy the number of simulation paths must increase with a higher number of

basis functions. Finally they find low-discrepancy series combined with Brownian

Bridges can improve efficiency as it can be used as a dimension reduction technique.

Glasserman and Yu (2005) [14] examined the convergence of LSMC for American

options in terms of the number of basis functions and the number of the simulated

paths. They checked their results assuming that the underlying asset follows a Brow-

nian motion and a Geometric Brownian motion and they showed that the number

of the simulated paths increases exponentially as the degree of the polynomial basis

function increases.
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Clement et al. (2002) [15] discussed the Longstaff and Schwartz solution for

American options concentrating on the discrete time problem. For their experiments

they used in-the-money paths and out-of-money paths in order to calculate the con-

tinuation value of the option showing that this method can converge. Their results

were verified and extended by Daniel Egloff [33] who proved the convergence of the

method if the basis function is fixed.

In this thesis powers were used in the basis functions and logarithmic transforma-

tion. Since all the polynomial families produce almost the same accuracy, we choose

the fastest form which turns at to be the powers function. In the following chapters

we show the accuracy of the LSMC simulation by using these basis functions to price

various types of options including exotic options.

3.5 Information Criteria

To choose the best form of the regression function for use in the LSMC one may

calculate the Akaike’s Information Criterion (AIC) and the Bayesian Information

Criterion (BIC). The general form of the AIC is

AIC (M) = 2 log (likelihoodmax (M))− 2dim (M)

where M is the specific model and dim(M) is the size of the model’s parameters.

The AIC criterion evaluates each model according to its goodness of fit by the

maximum likelihood and at the same time it penaltizes models complexity with the

term -2dim(M). If the penalty term was not used, then the AIC would inevitably

lead to the most complex model which is likely to be difficult to calibrate and more

prone to errors.

The BIC defined as follows:

BIC (M) = 2 log (likelihoodmax (M))− (log n) dim (M)

It is obvious that the AIC and the BIC information criteria are very similar.

They both utilize the maximum log-likelihood of the candidate models and impose

an appropriate penalty term, which is 2dim (M) for AIC and (logn) dim (M) for

BIC. Both penaltize models that have a large number of parameters. For BIC, it

also depends on the logarithm of the total number of data points.
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The penalty term of BIC is higher and thus stricter regarding the addition of

variables for n > 8 (n > e2). As a result, BIC discourage the selection of models

with many variables compared to AIC. They both go for model with small number

of parameters.

On the other hand, AIC performs better in terms of the selection of a model with

the least mean squared error [22]. This means that AIC select the same model that

is selected by minimizing the squared error.

These two models can both choose the regression function that is closer to the

real distribution of data as n→∞. It is an open research subject how the efficiency

of the AIC could be combined with the consistency of BIC.

In this thesis the stepwise AIC method was used [19] to select the best regression

functions. A brief description of this process will follow. First, the function with the

least elements is tested. Each time a new basis function is added and the calculation

of the AIC is carried out. Then a comparison of the AICs is done and the one

with the biggest decrease in AIC will be chosen. Then this new model will be

tested against all the remaining basis functions and the AIC will be calculated again

for all possible choices. If the subsequent AICs are all larger it means that the

stepwise algorithm should be terminated and the last model will be the most suitable

candidate regression function.

3.6 Error Statistics

Assuming the best choice and number of basis functions are chosen in the previous

step, the performance of the LSMC is evaluated based on two error statistics. For

this purpose we will utilize two different error metrics. The first error statistic can

be used when an analytical formula is available for the valuation of the liabilities,

i.e. for the model used in the inner loop simulation. Of course, this is not applicable

to many real-world liabilities which are very complex. This error statistic is used in

our experiments to study the properties of LSMC.

MAE =
1

n

n∑
i=0

|V̂ i
t − V i

t |

Here, the outer scenarios are not sampled from an artificial distribution but they

are taken from the real-world distribution instead. This means that the n points
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used for the valuation of the liabilities are taken directly from the outer Monte

Carlo simulation. The MAE (Mean Absolute Error) measures the absolute error for

all these points disregarding if the approximated value is higher or lower than the

analytical solution.

The second error statistic, PE (Percentile Estimation), describes the behavior of

the LSMC approximation compared to the stochastic-on-stochastic valuation at some

specific percentiles of the liabilities distribution. More precisely, in the equation be-

low, V̂ i
t is the LSMC valuation of the liability and V

[j′]
t is the stochastic-on-stochastic

valuation, both at percentile j.

PE = |V̂ i
t − V

[j′]
t |

In order to determine V
[j′]
t the following process is performed:

1. n scenarios of the multiple risk-factors are simulated from now to the projection

date by using a real-world model.

2. These n points are used as inputs to the LSMC approximation function in order

to determine the value of the liability conditional on each scenario generated

in step 1.

3. These calculated values are sorted in increasing order. The percentiles of this

distribution can be found by multiplying the number of scenarios n with the

required percentile. For example for the 50-th percentile, j′ = 0.50 ∗ n

In order to determine the V̂ i
t the scenario that generated the V

[j′]
t should be found and

then a full simulation will be performed for this scenario in order to value the liability

using stochastic-on-stochastic simulation. This will be only an approximation of

the 50-th percentile of the distribution which can be improved if we increase the

number of the full simulated scenarios around this percentile. Of course, this will

consequently increase the required computational effort.

The second error metric can be used in cases where an analytical formula is not

available for the inner valuation model and it can be applied to real-world valuation

processes.
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Chapter 4

Application of Least-Squares

Monte Carlo

4.1 European Put Option

As mentioned above, recently, practitioners tend to use LSMC in order to calculate

economic capital requirements in accordance to Solvency II regulation. Bauer et al.

(2010) published a comparison between nested simulations and the LSMC approach

in order to calculate the solvency capital requirement. Their results reveal the higher

computational effort required by the nested simulation as well as the acceptable

accuracy of the LSMC although this method is heavily dependent on the choice of

the basis functions.

Koursaris (2011) [16] also discussed the application of the LSMC in the context

of SCR. He introduced a two risk-factors model for variable annuities. In the first

case study used the risk-factors consisted of the price of the underlying asset and the

volatility whereas in the second case study he discussed the price and the interest

rate. The results of these implementations shows that using polynomials as basis

functions makes the method more robust as polynomials can be configured to fit

multiple function shapes and ultimately multiple different payoffs. He also acknowl-

edges the reduction in computational effort compared to nested simulation and the

high fitting speed.

Cathcart et al. (2012) [17] used the LSMC method to calculate variable annuity

economic capital. The main contribution of his work is that he treats the distribution

of the outer scenarios as a choice parameter in order to improve the behavior of the
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regression function at the tails of the distribution. This idea improves the accuracy

only at the tails and not in the middle of the distribution. In addition, he makes use

of the powers of the risk-factors as basis functions and he discusses the form of the

regression function by comparing them using the Akaike Information Criterion.

The above research efforts shows that there are some critical decisions that affect

the performance of the LSMC method. These are the use of variance reduction tech-

niques (antithetic variates), the sampling method that will be used for the fitting of

the outer simulation scenarios (Uniform, Quasi-Random) and the choice of the basis

functions that will be used for the regression of the risk-factors. In addition, a com-

mon finding of the above research is that even after the compute reduction provided

by the LSMC compared to the stochastic-on-stochastic valuation, this method is still

compute-intensive as we increase the number of risk-factors of our economy and the

simulated paths. In the next part of this thesis we introduce the utilization of the

state-of-the-art HPC techniques for the acceleration of this method.

In this chapter we present the application of the LSMC simulation for the valu-

ation of a European Put Option, with 10 years maturity, at year 1. The reason for

this choice is that the payoff of a European Put Option is similar to the liabilities

that are faced by the insurance companies. As is known, the payoff of a European

Put Option is max {K − ST , 0} where K is the strike price and ST is the price of

the underlying asset at maturity. The liabilities of an insurance company at year t

can be expressed as the max {P − Ft, 0} where P is the amount of money that the

insurance company should pay to the contract owner and Ft is the amount of money

in an underlying fund.

As mentioned above the multiple investment options that are available to the

policyholder of the variable annuities contract, can increase or decrease the amount

of money available to the fund. As a result, if at time T, P > FT the insurance

company must cover the difference with its own reserved capital, but if P < FT then

the insurance company will not face any liability. It is obvious that the structure

of these liabilities follows exactly the same logic as the payoff of the European Put

Option.

The value of this option will be calculated against two different models, the

Heston Model and the Black-Scholes CIR model. In the first case an analytical

formula is available to evaluate the LSMC approximation but for the second case, in

the absence of an analytical solution, the stochastic-on-stochastic valuation will be

used.
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4.1.1 Heston Model

We introduce a two risk-factors model to our regression function with the use of the

Heston model. Heston (1993) developed a closed form solution for pricing European

Options. He modeled the stochastic process of variance as a mean reverting pro-

cess using its square root. He assumed that the stock price follows the stochastic

differential equation:

dSt = μStdt +
√
vtStdW

S
t

where W S
t is a Wiener process. Also, the volatility follows the process:

dvt = κ(θ− vt)dt + ξ
√
vtdW

v
t

where 〈dW S
t , dW

v
t 〉 = ρdt

Our risk-factors for this model will be the stock price and the volatility of the

underlying asset at the projection date. The parameters used for these experiments

are as follows: the valuation date is t=1, the maturity T of the European Put Option

is 10, the price of the underlying asset is 1 and the volatility 20%. The strike price K

is 1.3 and the interest rate for the outer scenarios and the risk-free rate is 0.05. We

will perform 50,000 real-world simulation scenarios to capture the behavior of the

risk-factors at year one and then we will sample 1,000 outer scenarios uniformly and

for each scenario we perform a second Monte Carlo simulation to value our liabilities.

In addition, we try to show the success of this algorithm even if different models for

the simulation of the risk-factors and the valuation of the liabilities are used. For

this application we use the Heston model for the simulation of the risk-factors as

we mentioned above and for the valuation of the liabilities we use the Black-Scholes

model. For the valuation model there is available an analytical solution in order to

measure the accuracy of the LSMC results.

In chapter three we described the stepwise AIC method which is used for the

definition of the form of the regression function and the impact of this to the estimate

accuracy. Below, the LSMC simulation will be applied using multiple regression

function in order to prove the previous argument.

For the first regression function the basis functions were used only two basis

functions the S1 and σv1. At the second regression function the S2
1 , σv21 and a mixed

term S1σv1 were added. A the last regression function used the basis functions were
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up to third order for S1 and up to second order for σv1 with the addition of some

mixed terms S1σv1 , S2
1σv1 and S3

1σv1. Table 4.1 shows the error metrics for the various

regression functions compared to the analytical solution of the valuation model.

It is obvious that as we include more basis functions and mixed terms at the

regression function the error metrics are decreasing to lower levels. For the f3 proxy

function we can observe that the error compared to the whole valuation distribution

is only 0.41% and the error at the 99.5-th percentile is 0.25%.

f1 (S1,σv1) = c0 + c1S1 + c2σv1

f2 (S1,σv1) = c0 + c1S1 + c2σv1 + c3S
2
1 + c4σv

2
1 + c5S1σv1

f3 (S1,σv1) = c0 + c1S1 + c2σv1 + c3S
2
1 + c4σv

2
1 + c5S1σv1 + c6S

3
1 + c7S

2
1σv1 + c8S1σv

2
1 + c9S

3
1σv1

f4 (S1,σv1) = c0+c1S1+c2σv1+c3S
2
1+c4σv

2
1+c5S1σv1+c6σv

3
1+c7S

2
1σv1+c8S1σv

3
1+c9S

2
1σv

2
1+c10S

5+c11S
5
σv1

Proxy Function MAE PE Log-MAE Log-PE
f1 3.4% 1.2% 0.94% 0.11%
f2 1.4% 1.7% 0.78% 0.42%
f3 0.40% 0.35% 0.25% 0.19%
f4 0.56% 0.43% 0.13% 0.20%

Table 4.1: Regression and Logarithmic regression error metric MAE and PE

In chapter 3 we also stated that, except for the form of the regression function,

the form of the basis functions impacts the algorithm’s accuracy. In the following

experiments we use the same form for the three regression functions presented above

but in this case we will use the logarithmic transformation of S1 instead. The ac-

curacy results of the regression functions are presented in Table 4.1. For every case

there is an improvement of the estimates compared to the previous experiment where

we did not use the logarithmic transformation of the stock price.

Figure 4.2 below shows the analytical surface of the valuation model and Figure

4.3 shows the LSMC regression formula surface. We can see that the LSMC surface
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Figure 4.1: Analytical Surface - European Put Option

Figure 4.2: Regression surface for f1 (left) and f1 with logarithmic stock price (right)

follows the behavior of the analytical surface as when the stock price is getting higher

the option value decreases and vice versa and when the volatility of the underlying

asset is increasing the option value increases. When S1 > 0.8 the value of the option

is very close to zero and the same happens at the analytical surface. When the

volatility σv < 0.2 the value of the option is also close to zero. With the naked eye,

it is not easy to capture the real accuracy of the LSMC simulation but the error

metrics presented above shows the success of this algorithm.

4.1.2 Black-Scholes CIR

The second model we use to check the accuracy of the LSMC simulation is the

Black-Scholes CIR. For the Black-Scholes CIR model, we assume that the equity
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Figure 4.3: Regression surface for f4 (left) and f4 with logarithmic stock price (right)

index returns are lognormal as in the Black-Scholes model but the risk-free rate is

stochastic and follows a CIR process.

dSt = rtStdt + σvStdW
S
t

drt = κ(θ− rt)dt + σv
√
rtdW

r
t

where 〈dW S
t dW

r
t 〉 = ρdt

In this case we use the same model for the real-world simulation and for the valuation

of the liabilities. The uniform distribution will be used to sample the outer fitting

scenarios. Two different regression functions will be used to show the impact of

the regression models to the accuracy and we will also present the impact of the

use of powers of the explanatory variables as basis functions and their logarithmic

transformation.

The regression functions we will be used for the BS-CIR model are:

f1 (S1, r1) = c0 + c1S1 + c2r1 + c3S
2
1 + c4r

2
1 + c5S1r1

f2 (S1, r1) = c0+c1S1+c2r1+c3S
2
1+c4r

2
1+c5S1r1+c6S

3
1+c7S

2
1r1+c8S1r

2
1+c9S

4
1+c10S

3
1r1+

+c11S
5
1 + c12S

4
1r1 + c13S

6
1 + c14S

5
1r1
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Figure 4.4: Regression surface for f1 (left) and f1 with logarithmic stock price (right)
- European Put

The first function in simpler than the second as it includes four basis functions

instead of thirteen in the second case. In the previous case presented above, there was

an analytical formula available for the model used for the valuation of the liabilities.

For Black-Scholes CIR such a formula does not exist for the evaluation of the LSMC

results. Stochastic-on-stochastic valuation will be used to produce a more accurate

result for some percentile of the regression-estimated liabilities distribution. The

regression-estimated liabilities distribution is the distribution generated from the

regression function calculated before when we use as inputs the scenarios from the

real-world simulation model. We perform a stochastic-on-stochastic valuation only

for some percentile of this distribution as it would be extremely time-consuming to

do it for every scenario as discussed in previous chapters.

The process to calculate multiple percentiles of this distribution is described in

Section 3.7. In Table 4.2 the results of the LSMC estimates and the stochastic-on-

stochastic valuations are presented for various percentiles from the middle to the

upper part of the distribution. Table 4.3 shows the results for the same regression

function but now the basis functions are the logarithmic transformation of the stock

price instead of the stock price and the interest rate as before. We can see the there

is a big improvement in the estimates as now they are closer to the stochastic-on-

stochastic valuations. The estimations are improved for all the percentiles checked

showing again that the logarithmic basis function can better capture the behavior of

the payoff of a European put option even when the valuation model is more complex.

Tables 4.4 and 4.5 show the behavior of the LSMC considering a more complex

regression function. It is obvious that the results are improved but in this case the

incorporation of the logarithmic transformation did not improve the accuracy of the

estimates.
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Figure 4.5: Regression surface for f2 (left) and f2 with logarithmic stock price (right)
- European Put

Perc. S r Reg.Est. Full Est. Abs.Diff.

50-th 1.0095 4.32% 0.1908 0.1713 1.9%
75-th 0.8846 4.45% 0.2353 0.2149 2.0%
90-th 0.8413 2.16% 0.2736 0.2558 1.7%
95-th 0.7686 3.02% 0.2961 0.2825 1.3%
99-th 0.5734 8.04% 0.3356 0.3478 1.2%

99.5-th 0.6506 2.97% 0.3514 0.3586 0.72%
Average 1.47%

Table 4.2: Percentiles Comparison for f1 - European Put

Perc. S r Reg.Est. Full Est. Abs.Diff.

50-th 1.0283 3.56% 0.1698 0.1718 0.18%
75-th 0.8755 4.85% 0.2107 0.2144 0.42%
90-th 0.7922 4.28% 0.2508 0.2569 0.70%
95-th 0.7168 5.50% 0.2770 0.2848 0.76%
99-th 0.6453 4.71% 0.3274 0.3350 0.76%

99.5-th 0.5646 8.13% 0.3483 0.3521 0.48%
Average 0.55%

Table 4.3: Percentiles Comparison for f1 with logarithmic stock price - European
Put
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Perc. S r Reg.Est. Full Est. Abs.Diff.

50-th 1.0766 1.73% 0.1714 0.1720 0.06%
75-th 0.8500 5.98% 0.2156 0.2151 0.04%
90-th 0.7811 4.83% 0.2578 0.2578 0.01%
95-th 0.7441 4.05% 0.2846 0.2848 0.02%
99-th 0.6795 2.79% 0.3345 0.3344 0.009%

99.5-th 0.5861 6.38% 0.3543 0.3565 0.22%
Average 0.06%

Table 4.4: Percentiles Comparison for f2 - European Put

Perc. S r Reg.Est. Full Est. Abs.Diff.

50-th 1.0068 4.43 0.1716 0.1713 0.03%
75-th 0.9383 2.16 0.2160 0.2150 0.10%
90-th 0.8014 3.87 0.2582 0.2575 0.06%
95-th 0.7441 4.05 0.2849 0.2848 0.005%
99-th 0.6232 5.95 0.3344 0.3361 0.17%

99.5-th 0.5861 6.38 0.3543 0.3565 0.22%
Average 0.09%

Table 4.5: Percentiles Comparison for f2 with locarithmic stock price - European
Put

4.2 Asian Put Option

The Asian put option is a kind of exotic options where the average price of the

underlying asset to maturity or at certain times, shapes the final profit. The average

of the stock prices presents a smaller volatility than the final price, these products

are cheaper compared to the regular products where their value depends on the price

of the underlying asset at maturity.

There are multiple versions of Asian options available based on how the calcula-

tion of the average price of the underlying asset is done. Asian options can be based

on the arithmetic or the geometric mean of the underlying asset price. In addition, if

the mean is calculated for the whole time duration of the simulation then the Asian

option is called plain vanilla but if the mean is calculated from some point to matu-

rity then Asian options are called forward-starting options. Another distinction of

this kind of products is based on the strike price. If the strike price is constant they

are called fix-strike and if the strike is not constant they are called floating-strike
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Figure 4.6: Regression surface for f3 (left) and f4 (right) - Asian Put

[23].

For the following experiments the geometric mean of the underlying price is

calculated taking into consideration the price of the asset at the end of each year

until maturity. The strike price is assumed constant.

4.2.1 Heston Model

In order to apply the LSMC simulation for an Asian option we use the Heston model

as we did for the European put option. The same parameters will be applied to the

models and the same number of outer and inner simulations will take place in order

to compare the behavior of the algorithm for different payoffs.

The regression function we use for this experiment will be f3 and f4 as they were

described in Section 4.1.1 with a logarithmic transformation of the underlying stock

price.

Figure 4.6 shows the regression surfaces for f3 and f4. We can see that the

LSMC simulation can capture the behavior of this product and as the impact of the

volatility at this simulation is lower compared to the European put option surface

presented above the value of this option is also lower.
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Figure 4.7: Regression surface for f3 (left) and f4 (right) with logarithmic stock price
- Asian Put

Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 1.0365 14.14% 0.2576 0.2571 0.05%
75-th 0.7474 9.53% 0.3263 0.3235 0.28%
90-th 0.7481 18.52% 0.3888 0.3850 0.38%
95-th 0.6521 18.14% 0.4255 0.4214 0.41%
99-th 0.5002 17.13% 0.4917 0.4886 0.31%

99.5-th 0.4716 20.17% 0.5167 0.5144 0.22%
Average 0.27%

Table 4.6: Percentiles Comparison for f3 - Asian Put

Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 0.9448 10.89% 0.2558 0.2561 0.02%
75-th 0.8707 15.91% 0.3213 0.3232 0.19%
90-th 0.7444 18.28% 0.3828 0.3849 0.21%
95-th 0.6052 14.14% 0.4199 0.4219 0.19%
99-th 0.5002 17.13% 0.4893 0.4886 0.07%

99.5-th 0.4880 23.19% 0.5168 0.5168 0.0012%
Average 0.11%

Table 4.7: Percentiles Comparison for f3 with logarithmic stock price - Asian Put
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Figure 4.8: Comparison Regression surface for f3 and f4 Asian and European Option

Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 0.9548 11.15% 0.2620 0.2551 0.69%
75-th 0.8098 12.90% 0.3316 0.3232 0.84%
90-th 0.7735 19.96% 0.3933 0.3841 0.91%
95-th 0.6133 14.93% 0.4290 0.4221 0.68%
99-th 0.4858 15.32% 0.4915 0.4892 0.23%

99.5-th 0.5131 25.10% 0.5159 0.5119 0.39%
Average 0.62%

Table 4.8: Percentiles Comparison for f4 - Asian Put

Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 1.0170 13.36% 0.2558 0.2558 0.003%
75-th 0.8505 14.85% 0.3185 0.3225 0.39%
90-th 0.6724 13.45% 0.3790 0.3859 0.69%
95-th 0.6245 15.85% 0.4169 0.4217 0.48%
99-th 0.5302 21.32% 0.4896 0.4902 0.06%

99.5-th 0.4872 23.16% 0.5180 0.5171 0.09%
Average 0.28%

Table 4.9: Percentiles Comparison for f4 with logarithmic stock price - Asian Put

4.3 Barrier Put Option

These options are similar to the simple European options with the difference that

the price of the underlying asset must exceed or not (depending on the type of the
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option) a specified price (called the barrier) within a certain period of time, to be

considered active; otherwise it is considered dead. These are quite attractive to

investors because of their low price, due to the possibility they will expire without

being exercised if the price of the underlying asset does not reach the predetermined

barrier. Various types of barrier options are traded in the OTC market. The barrier

options are categorized as follows:

• The initial price of the underlying asset is higher than the value of the barrier:

– down-and-in: The option is considered active when the price of the

underlying asset becomes lower or equal to the value of the barrier until

the expiration date date of the contract.

– down-and-out: The option is considered dead when the price of the

underlying asset becomes lower or equal to the value of the barrier until

the expiration date of the contract.

• The initial price of the underlying asset is lower than the value of the barrier:

– up-and-in: The option is considered active when the price of the underly-

ing asset becomes higher or equal to the barrier value until the expiration

date of the contract.

– up-and-out: The option is considered dead when the price of the under-

lying asset becomes higher or equal to the barrier value until the expiration

date of the contract.

In addition, there is a another type of barrier option whereby, when the price of

the underlying asset reaches the barrier, the option becomes dead and a part of

the premium is returned to the holder of the contract. This type is usually more

expensive.

Barrier options can be considered as European (if they can be exercised only

at maturity) or American (if they can be exercised any time until maturity) type

of options. Investors use these kind of contracts for hedging and to increase their

financial leverage (higher profit assuming higher risk).
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Figure 4.9: Regression surface for f3 (left) and f4 (right) - Barrier Put

Figure 4.10: Regression surface for f3 (left) and f4 (right) with logarithmic stock
price - Barrier Put

4.3.1 Heston Model

For this measurement of the accuracy under this product we used the same set-up for

the LSMC simulation as we did for the European put option. In the following graphs

and tables we present the results for functions f3 and f4. For these simulations the

barrier option is an up-and-out option where the initial stock price is 1 the strike

price is 1.3 and the barrier is 1.1.
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Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 0.9893 10.57% 0.0894 0.0786 1.08%
75-th 0.8206 12.13% 0.1645 0.1714 0.68%
90-th 0.6852 12.84% 0.2412 0.2555 1.42%
95-th 0.6397 22.24% 0.2885 0.3134 2.48%
99-th 0.4883 13.24% 0.3821 0.3912 0.90%

99.5-th 0.4517 15.71% 0.4188 0.4256 0.68%
Average 1.20%

Table 4.10: Percentiles Comparison for f3 -Barrier Put

Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 1.0070 13.56% 0.0982 0.0792 1.89%
75-th 0.8210 12.42% 0.1634 0.1724 0.90%
90-th 0.6745 11.42% 0.2334 0.2562 2.28%
95-th 0.6055 12.29% 0.2793 0.3060 2.67%
99-th 0.4901 14.21% 0.3730 0.3928 1.98%

99.5-th 0.4558 17.29% 0.4119 0.4268 1.48%
Average 1.86%

Table 4.11: Percentiles Comparison for f3 with logarithmic stock price - Barrier Put

Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 0.9990 12.07% 0.0993 0.0787 2.05%
75-th 0.8263 13.27% 0.1770 0.1725 0.44%
90-th 0.6865 13.12% 0.2526 0.2557 0.31%
95-th 0.6119 12.79% 0.2978 0.3038 0.59%
99-th 0.5002 17.13% 0.3845 0.3941 0.95%

99.5-th 0.4600 18.71% 0.4178 0.4273 0.94%
Average 0.88%

Table 4.12: Percentiles Comparison for f4 - Barrier Put
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Figure 4.11: Regression surface for f2 (left) and f2 with logarithmic stock price
(right) - Barrier Put

Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 1.0016 12.51% 0.0969 0.0787 1.81%
75-th 0.8148 11.04% 0.1577 0.1702 1.24%
90-th 0.6833 12.46% 0.2254 0.2551 2.96%
95-th 0.6230 15.97% 0.2714 0.3072 3.57%
99-th 0.4920 14.59% 0.3720 0.3926 2.06%

99.5-th 0.4517 15.71% 0.4137 0.4256 1.19%
Average 2.13%

Table 4.13: Percentiles Comparison for f4 with logarithmic stock price - Barrier Put

4.3.2 Black-Scholes CIR

For this model we also used the European put option set-up for the LSMC simulation

and the same parameters for the valuation model. In the following experiments we

compare the behavior of the algorithm under the f2 proxy function and the f2 proxy

function with logarithmic transformation of the stock price.

Perc. S r Reg.Est. Full Est. Abs.Diff.

50-th 1.0212 3.52% 0.0517 0.0487 0.29%
75-th 0.9035 3.22% 0.1076 0.1111 0.34%
90-th 0.8069 3.27% 0.1679 0.1711 0.31%
95-th 0.7657 2.49% 0.2067 0.2090 0.22%
99-th 0.6524 4.31% 0.2777 0.2742 0.34%

99.5-th 0.6048 5.39% 0.3047 0.3006 0.40%
Average 0.31%

Table 4.14: Percentiles Comparison for f2 - Barrier Put
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Perc. S σv Reg.Est. Full Est. Abs.Diff.

50-th 1.0144 4.07% 0.0517 0.0491 0.26%
75-th 0.8301 8.29% 0.1076 0.1079 0.03%
90-th 0.7863 4.68% 0.1687 0.1693 0.05%
95-th 0.7461 3.81% 0.2081 0.2076 0.05%
99-th 0.6580 3.96% 0.2786 0.2740 0.45%

99.5-th 0.6330 3.60% 0.3046 0.2989 0.56%
Average 0.23%

Table 4.15: Percentiles Comparison for f2 with logarithmic stock price - Barrier Put

4.4 Summary of Options pricing

In this chapter we discussed the valuation of three different options, a European

put option, an Asian put option and a Barrier put option. In every case the LSMC

simulation could capture the behavior of the products and present an acceptable

accuracy for the various basis functions. There are though some interesting outcomes

that show that this algorithm needs to be adjusted each time to the specific product

valuation.

For the valuation of the European put option under the Heston model the best

regression model is function f4 with the use of the logarithmic transformation of the

stock price. This combination provided the best accuracy compared to whole distri-

bution and almost the same accuracy as function f3 with the use of the logarithmic

transformation of the stock price. In addition, the introduction of the logarithm

as a basis function improved the accuracy of the LSMC simulation for every proxy

function.

For the valuation of the European put option under the Black-Scholes CIR model

function f2 presented the best accuracy but in this case the introduction of the

logarithmic stock price as a basis function did not improve the accuracy. On the

other hand, the accuracy was improved for functionf1 but these estimates were still

poor compared to the f2 proxy function.

When the payoff of an Asian option was used function f3, using the logarithmic

transformation of the stock price was the best choice as it presented better results

for the various percentiles of the regression-estimated valuation distribution as well

as for the 99-5th percentile specifically.

In the case of the barrier option LSMC presented the poorest estimates compared
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to the other products. Barrier options are strongly path dependent products and

LSMC was unable to capture the behavior as accurately as before. The best estima-

tion results were produced with the use of the f3 proxy function. The introduction of

logarithmic transformation as a basis function worsens the accuracy. The valuation

of this product under the Black-Scholes CIR model presented better estimations as

for the 99-5th percentile the absolute difference was 0.40%. The use of logarithmic

transformation improved the estimates at the middle of the distribution but it did

not improve the accuracy at the upper percentiles.

In conclusion, LSMC can capture the behavior of multiple products but the

performance of the algorithm may be based on the underlying product. Different

products might require different sampling methods, proxy functions, basis functions

and different outer and inner simulation paths in order to improve the accuracy of

the estimates. It can be a very useful method for practitioners not only because of

the accurate estimations but primarily because of the reduction of the computational

effort provided compared to the Stochastic-on-Stochastic simulation.

European Asian Barrier

Heston Log - f4 Log - f3 f3
Black Scholes CIR f2 f2 f2

Table 4.16: Functions that produce the best results for each model and each Option
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Chapter 5

Multicore CPUs

In 1965, Gordon Moore, co-founder of Intel, published an article entitled “Cramming

more components into integrated circuits”[6]. In this article, Moore predicted that

the number of transistors per chip and the processing power will double every year.

This period increased later to 18 months, giving the final shape to what was later

referred to as the Moore’s Law.

5.1 The collapse of Moore’s Law

In the previous decades, Moore’s Law was totally respected from the integrated

circuits industry, being a motivation which introduced the technology in areas such

as economy, entertainment and communication.

Moore made a second prediction, which did not receive much special attention

until recently. He predicted that the power consumption of each CPU will decreases

as the number of transistors increases. The reduction of the power per processing

unit is necessary in order to be able to increase the density of the transistors and at

the same time keeping the consumption at relatively stable and acceptable levels, in

order to achieve increase in processing power.

The power consumption is proportional to the clock frequency, thus imposing a

natural limit to this. The power consumption of an integrated circuit (IC) does not

reveal the whole truth as an important parameter is also the power density (Watts

/ cm2). The miniaturization of ICs resulted in a reduced transistors consumption

but also increased their number per unit. Moreover, the static power, which un-

til recently was negligible, is now a major consumption factor, which increases as
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technology miniaturizes. Accordingly, the density power consumption has risen to

the physical limits that can be supported by conventional cooling systems. All the

above constructed a power wall which prevented further increase of density and hence

processor performance.

Even using exotic materials and sophisticated cooling systems, the increase of

the frequency will not lead to the desired benefits. The required increase of the

pipeline’s level is not easily exploited, while there is a significant burden on the

hardware complexity. The frequency wall and the power wall make the increase of

the processor’s clock unaffordable for the amount of the increase it provides.

Another major limiting factor in the evolution of the processing units is mem-

ory. The speed difference between DRAMs and CPUs is continually growing. The

relatively increasing access time to the main memory undermines the increase at the

speed of the processors, creating this way a memory wall. Multiple cache hierarchies

are used in order to conceal the delay of the main memory. These types of memory

are usually expensive, they require a lot of space and they are an important factor

of static power consumption.

The memory wall, beyond the obvious obstacles created, limits the potential par-

allelism of sequential programs. The execution speed of these programs is greatly

increased when the hardware can exploit parallelism at the instruction level (In-

struction Level Parallelism - ILP). The potential parallelism resulting from the code

segments that do not have dependencies. The slow memory, along with the inabil-

ity to improve the branch prediction methods, restricts the theoretical limit of the

ILP. The ILP wall is also one of the reasons hardware developers had to seek for an

alternative model than the execution of the programs in single processors.

Asanovic et all., mention that: “The power wall + the memory wall + the ILP

wall = a brick wall for serial performance” [7]. In April 2010, the vice president of

Nvidia, Bill Dally, said that “Moore’s law is dead” [8], referring to the inability of

the serial models to double their performance every 18 months.

Given that the density of the transistors is able to follow Moore’s Law for at

least one to two decades yet, the incorporation of many cores in one IC and the

dissemination of the parallel programming model provided the most logical solution.

The ILP is replaced by Thread Level Parallelism (TLP), so the frequency and the

consumption are kept within acceptable limits while the processing power increases.
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5.2 Evolution of Multicore CPUs

During the last decade it became clear that the single processor performance was not

increasing despite Moore’s Law. Hardware companies tried to deal with this through

the implementation of products based on multicore architectures. These products

contained multiple CPU cores which shared a cache level memory, communicated

through simple interface and were located on the same IC (Chip Multiprocessors or

CMPs). The architecture of the cores was similar to that of the single processor

implementations. The main characteristics of the topology of the bus were design

simplicity, low delay, low consumption and small occupation on the IC.

The inevitable increase of the number of the CPU cores however did not allow

use of existing, proven, core architectures and interconnection buses. The inability

to use similar techniques in IC with multiple cores, led to a new kind of architectures

called many-core architectures. The main difference between multicore processors

and many-core processors in term of architectural approaches is the architecture of

the cores, the caches hierarchy and the interconnection topology of the bus.

5.3 Architecture of Multicore CPUs

For the execution of parallelized applications, it is required the existence of appro-

priate hardware must exist. There are several classes of parallel multiprocessors that

are distinguished based on the type of the parallel architecture used and the type of

communication between the processors.

A classification of parallel architectures according to Flynn, which utilizes the

relationship between the executed instructions and the processed data is as follows:

• SISD (Single Instruction - Single Data), where in each cycle a single instruction

is performed using a single data stream as an input. Computers belonging to

this category are serial and cannot be parallelized.

• SIMD (Single Instruction - Multiple Data), where in each cycle a single in-

struction is performed using multiple data streams as an input. Computer

belonging in this category are distinguished in two categories:

– Processor Arrays where at each clock cycle multiple processors execute

the same instruction on different data.
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Figure 5.1: Classification of parallel architectures [29]

– Vector Pipelines where in each clock cycle a whole data vector in one clock

cycle is processed instead of one data element.

• MISD (Multiple Instructions - Single Data), where in each clock cycle multiple

instructions are executed in parallel using a single data stream.

• MIMD (Multiple Instructions - Multiple Data), where in each clock cycle a

different instruction is executed using different data streams. This is the most

common category of parallel computers.

The memory architecture is the way in which the processors of a parallel system

communicate with each other and affect the implementation of a parallel application.

The main memory implementations are shared memory and distributed memory.

With shared memory architectures, processors operate independently but share

the same memory through which they communicate. At any time, only one processor

can access the shared memory and as a result the synchronization of the read and

write instructions is required. The advantage of this architecture is the easy imple-

mentation of the applications and the speed of access and the sharing of data via

shared memory. The disadvantage is that the bandwidth of the memory is limited
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so an increase in the number of the processors should require a proportional increase

in the memory bandwidth.

With distributed shared memory architectures, processors operate independently

and each has its own private memory. Processors communicate via message passing

implementations. The advantage of this architecture is the scalability of the size of

the memory in relation to the number of processors and the rapid access of each

processor to its private memory without contention. The disadvantage of this ar-

chitecture is the difficulty of matching the existing data structures to this memory

organization and the need of the developer to define the messages exchanged between

the processors.

5.4 Programming Models for Multicore CPUs

5.4.1 OpenMP Programming Model

The OpenMP standard defines a set of compiler directives to allow parallel execution

that can be included in the source code of a program which has been written for

a sequential execution. These directives indicate to the compiler how to parallelize

the code in a shared memory multicore environment. OpenMP includes also library

routines to modify the execution parameters, such as the number of threads.

Before OpenMP, there was not a standard way to parallelize programs in a shared

memory environment. Although there was a message passing programming model,

developers had to use non-standard and non-transferable API for shared memory.

OpenMP changed this situation because:

• OpenMP is a commonly accepted standard. Programs developed under this

model are transferable to a wide variety of shared memory multicore environ-

ments. The manufacturers of these systems need only implement a well-defined

API.

• OpenMP does not require from the developer to change the logic of their pro-

grams. Programs can be written using the normal sequential logic and then

OpenMP directives can be added without affecting the performance of the se-

rial version. As a result, the work to solve a problem is separated from the

parallelization effort.
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• The parallelization problem is guided by the user. This means that the compiler

does not need to do a thorough analysis of the code, but it is sufficient provided

by the user. In this way, the user has complete control over what and how will

be parallelized, while rendering the translator simpler in its implementation.

OpenMP makes use of the fork-join parallel model. The utilization of this model

programs can generate multiple threads. The thread that begins the execution of

the program is called the master thread. The master thread executes the program

sequentially until the first parallel region which is indicated by the word parallel.

At the beginning of a parallel region the master thread creates a number of threads

and each thread executes the instructions written in the parallel region. Apart from

the parallel command there are commands that define work sharing regions. Inside

there regions each thread is responsible for a part of the job. The master thread

continues its execution after the completion of the parallel region while all the other

threads are killed.
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Chapter 6

Graphics Processing Units (GPUs)

The graphic processing unit (GPU) is a specialized microprocessor that was devel-

oped to handle the preparation and processing of, initially, two-dimensional (2D)

and, later, three-dimensional (3D) computer graphics, freeing the central processing

unit (CPU) from these tasks. The GPU runs in parallel to the CPU. The GPU has

specialized parallel processing capabilities. In recent years the increasing need for

computational power has extended the use of GPUs, beyond graphics editing, into

numerically demanding and computationally intensive algorithms. GPU processors

quickly replace specialized parallel architectures with its exponential cost reduction,

due to their strong demand in the game industry [2].

6.1 Evolution of Graphics Processing Units

The first GPUs appeared in 1981 by IBM and consisted of 16KB of memory and one

RAMDAC [3]. At that time, GPUs was served as an intermediate buffer between the

CPU and the monitor. The processing capabilities of GPUs that appeared in 1984,

incorporated integrated processing and visualization routines, but they were limited

only to 2-D graphics. The increasing demand for 3D games and other applications

led to the development of the first modern GPUs in 1990, were the acceleration of

the demanding 3-D graphics was achieved using separate graphics cards. By the

end of the decade, the 2-D and 3-D processing capabilities of graphics acceleration

were merged, and processing pipelines were added to the same integrated circuit,

forerunners of modern multicore designs. The first cards with a parallel architecture

that allowed programming of vertex and pixel shaders appeared in 2001 (NVIDIA

65



GeForce3) where each vertex and pixel was processed independently, thus paving the

way for General Purposes GPUs (GPGPUs) [3].

6.2 General Purpose GPUs

GPGPUs were suitable for solving problems beyond the graphics processing, under-

taking the role of a parallel processor for highly parallelized algorithms and numerical

applications (computationally intensive). In these designs the GPGPUs can be used

in parallel with the CPU, undertaking the computational load of algorithms that are

not suitable for the serial (sequential) logic of long pipelines, being used by CPUs.

A specially written subroutine, called the kernel, is run simultaneously and inde-

pendently on every GPU core and each kernel processes its own set of data. The

data are first transferred from the computer’s main memory to the graphics card’s

memory, after which they are processed by the GPU and finally returned back to the

main memory. These copies/commands dictate the transfer and processing of chunks

of memory between the GPU and the CPU. With the increasing processing power

of the GPU, the limiting factor in performance is the requirement for large memory

transfers of the algorithms. Programs should anticipate this limitation by minimizing

and hiding the communication costs in the design of the algorithms through over-

lapping processes. Often, it is preferable to repeat calculations on the GPU instead

of storing and retrieving data from the memory. To achieve maximum parallelisa-

tion, attention should be given to the data storage so that each core can process one

independent piece of data, stored in successive memory locations, for faster access.

The performance achieved by GPGPUs is much better than CPUs, for algorithms

suitable for parallel processing, providing acceleration that previously was achieved

only by using expensive architectural systems (supercomputers).

6.3 Architecture of GPUs

GPUs are fundamentally different from CPUs as they are designed to meet different

computation requirements: GPUs can execute a large number of arithmetic opera-

tions with potential parallelism, with emphasis on the increased throughput, i.e. the

calculations capacity in a unit of time, rather than latency, i.e. the processing time

from data input to data output of the processed data. The GPU development is
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Figure 6.1: Graphics’ Pipeline [1]

driven by the way in which the eye process changing images and the number of pix-

els needed to synthesize a digital image. A typical graphics application implements

a series of consecutive calculations called the graphics pipeline, such as vertex and

fragment operations, on a large number of input data. To perform this task, a CPU

would take a group of the input data and perform the calculations for the vertices,

following the calculations for the fragments etc.. All calculations are performed se-

quentially for each set of data within a short time (low latency for each data set).

The graphical pipeline is divided in time, and each step is performed serially.

On the other hand, GPUs sacrifice the low latency and the functionality of a

general purpose processor to take advantage of two other features: the ability for

parallel processing of multiple sets of data (data parallelism) and the parallelisation

of the graphical pipeline, with the simultaneous execution of different stages using

different data sets (task parallelism). There are two different kinds of parallelism

although the second one has been eliminated in recent years with the advent of

Unified Shader Models in modern GPGPUs.

The input of the GPU is a set of geometric objects, typically triangles in a 3-D

space, which after a series of processing algorithms mapped to a 2-D image. The
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graphical pipeline is divided in space and the GPU processes simultaneously different

stages, and each part of the processor that performs each step, extract its data in

the part of the processor that executes the next segment of the pipeline. In this

way, the parts of the processor that execute a specific part of the pipeline can be

implemented appropriately in the hardware level in order to be more efficient for

the type of calculation they undertake. In addition, apart from the simultaneous

execution of the different stages, each stage can accept multiple input and apply

the same calculation simultaneously, exploiting the fact that the calculations are

the same. This feature means that GPUs are SIMD (Single Input - Multiple Data)

implementations where the parallelisation is achieved by the simultaneous execution

of the same operations on multiple items. With the introduction of the programmable

stages of pixels and vertex shaders described above, the specialized material of the

stages was replaced by programmable units without changing the organization and

the logic of the pipeline.

The result is a long feed-forward graphical pipeline with many specialized stages,

where each calculation may require thousands machine cycles to execute (high la-

tency), but the task and data parallelism are performed on a large number of items

achieving high throughput. In contrast to the CPU every action needs a few clock

cycles, but only one item or group of items will be processed.

6.4 The Tesla Architecture

Tesla is Nvidia’s first dedicated GPGPU. Nvidia calls the multiprocessor’s processing

units Streaming Multiprocessors (SMs). When a program is executed on the GPU,

it generates multiple threads, each of which belongs to a block on a grid. The blocks

are identified by a number, each of which is executed entirely in one SM in parallel

and independently of the other blocks. Each SM has multiple blocks ready for

execution so that once a block completes its calculations to be immediately replaced

by another. It is obvious that care must be taken so that the number of blocks

overlaps the number of SMs in each card in order to achieve optimum performance.

The overhead for the creation, planning and execution of the threads is practically

zero, allowing the creation of blocks with a large number of threads. In addition, the

command to synchronize the threads of a block, synchthreads(), requires only one

machine instruction. These two features allow a high discretization of the parallel
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Figure 6.2: Grids and Blocks [1]

process, with the creation of multiple independent threads. Nvidia calls this way

of processing SIMT (Single Instruction - Multiple Threads) [1]. Each kernel creates

and manages the threads in consecutive groups of 32, called warps. Threads in the

same warp start their execution from the same memory address but each also has

its own instruction address and registers and continues its execution independently.

If a thread follows a different path of a branching instruction, its execution will be

performed independently and in addition (not in parallel) from the others meaning

that these branches should be avoided by the clever split of the problem into blocks

(or warps as each warp executes independently). Unlike the conventional SIMD

architectures where the size of the parallel processing vector might be known at

compilation time, the size of the SIMT warp is not needed in order to execute a

CUDA program on the GPU. SMs are responsible for the separation and scheduling

of the threads. The programmer defines the vector length and the size of the block.

Moreover, in SIMT, threads in each warp follow independent command sequences

in contrast to vector architectures (vector machines) where the programmer should

anticipate and handle exceptions to the common sequence of commands.

For every runtime command, the SM chooses a warp and executes the command

simultaneously for all the threads in the warp. The corollary of this is that the blocks
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Figure 6.3: Tesla Architecture[1]

should always contain 32 or more threads. Previous research results indicate that 64

threads per block are enough to avoid warps queueing for execution and, as a result,

running out of the on-chip memory[5].

The memory available at each SM includes:

• A set of registers

• A shared memory for all cores Single Processors (SPs)

• A constant read-only memory cache for all the SPs that accelerates the readings

from the constant memory of the graphic card’s main memory

• A read-only texture cache for all the SPs that accelerates the readings from

the texture memory of the graphic card’s main memory

The main memory of the graphic card is classified as local or global memory and it

is not possible to access these memories space through the cache memory.
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Figure 6.4: Memory Hierarchy [1]

6.5 Programming Models for GPUs

The development of programming tools to facilitate and improve the experience of

writing parallel code was the natural next step after the creation of GPUs. In the

past, writing a program for GPUs was done using APIs for GPUs with the direct

handling of concepts such as texture filtering, vertices, blending, etc. The increas-

ing demand for APIs beyond graphics usage, such as DirectX and OpenCL, led to

the extension of high level languages (especially C), for managing the GPU parallel

architectures. Early efforts, such as BrookGPU and Sh, let developers handle paral-

lelism using abstract concepts such as streams and kernels without special knowledge

of hardware architecture[4]. Today, OpenCL and CUDA are the most popular APIs

that have gained widespread. Although CUDA can be used only for Nvidia’s graphic

cards at present, its wide dissemination and the collection of libraries for mathemat-

ical and financial algorithms led to its popularity. A detailed description of CUDA

is presented.
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6.5.1 CUDA Programming Model

The thread hierarchy, the memory hierarchy and the synchronization of the kernels

are three key elements in the CUDA kernel execution. These are handled through

appropriate calls to the CUDA API functions regardless of the type of processor

being used. Accordingly, the program can be executed on any number of cores and

only the graphic card driver needs to know their quantity and the type of the card.

6.5.1.1 Threads Hierarchy

CUDA programmers control the GPU cores by writing specialized C functions, called

kernels. Each kernel determines the code that each thread runs (in the core) at the

GPU. Accordingly, every thread runs the same piece of code. Kernel requires two

arguments and is called with the following command:

kernel <<< dimGrid, dimBlock>>> (... parameter list ...);

where dimGrid defines the number of threads and dimBlock defines the num-

ber of blocks. Each block contains dimGrid number of threads and thus, the total

number of threads created is dimGrid x dimBlock. The call of a kernel introduces a

relatively small overhead (3-7 ms)[5], while the creation and execution of the threads

does not introduce any more costs[1]. Threads within the same block can be syn-

chronized with the command synchthreads() and they can exchange data through

their shared memory, available to each core. On the other hand, threads in different

blocks can be synchronized only through atomic memory operations using global

memory, which add much delays, and each application should treat them as sep-

arate, parallel computational units. The execution time sequence of the blocks is

determined exclusively by the control units of the processor and cannot be changed

by the programmer. This characteristic enables the parallel implementation of low

granularity code, using several parallel blocks, and higher granularity code through

the threads of each block.

6.5.1.2 Memory Hierarchy

In CUDA, the CPU-associated memory (RAM) is called host memory, while the

memory on the graphics card is called device memory. The kernel code can only

process data stored in the device memory. For this reason there are functions to

allocate, deallocate, copy and transfer data between host and device memory.
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Figure 6.5: Shared Memory Spaces[1]

Threads can access data from various memory spaces of the graphic card. Each

thread is assigned a set of registers (See FIgure 6.5). The total size of the register file

for each block is 32-64 KB and it is the fastest memory that the thread can access. In

addition, every thread in a block has access to a common memory space of 16 KB per

core. These two memory spaces are on-chip and thus achieve very high throughput.

If there is no need for communication between threads the register memory should

always be used because it is faster than the shared memory[5]. Finally, the global

or device memory of the graphic card is used to store data and transfer data to

and from host memory, while the two separate memory areas, constant and texture

memory, are optimized for some specific uses (data filtering etc).[1].

6.5.2 OpenACC Programming Model

OpenACC is a new interface [20], proposed in order to exploit the advantages of

GPUs. This language is developed along the lines of OpenMP to combine the sim-

plicity of the OpenMP with the performance of GPUs. OpenACC is considered a

high-level language as it has directives that can be added to the C/C++ or Fortran
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code without the need to re-write or re-structure the code.

In addition, this API does not require the knowledge of the detailed characteristics

of the GPU architectures. Regions of code can be easily offloaded to the GPU as

the OpenACC directives take care of the memory allocation and transfers. Similar

to OpenMP, the developer should include regions of code that are candidates for

parallelization inside pragmas and copy clauses and the compiler will automatically

port this part of the code to the GPU for execution. Furthermore, an important

aspect of OpenACC is its portability. This interface is independent of the hardware

and can be executed on every available GPU. It is continuously being improved

and, at the last update the utilization of multiple GPUs is available through the

creation of multiple CPU threads being done by OpenMP whereby each CPU thread

is responsible for one co-processor.

The simplicity of this interface essentially removes from the programmer much of

the implementation responsibility. This also means that the developer cannot con-

trol most aspects of the architecture as the compiler hides low-level implementation

details. Sometime this might have adverse impact on the performance.
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Chapter 7

Parallelism Analysis and

Performance

7.1 Experimental Environment

The experimental environment consists of 2 (x8 cores) CPUs Intel Xeon E5-2670,

with 64 gigabytes DDR3 RAM memory and one GPU card Nvidia Tesla M2050

computing module. The technical specifications of the two environments are pre-

sented in tables 7.1 and 7.2. The Intel Xeon E5-2670 is based on the Sandy-Bridge

architecture which at the time of writing it is one of the fastest CPUs in the market.

The operating system was Ubuntu Linux 64 bit and the CUDA toolkit version

was the 4.2.9. We used the Intel compiler version 12.0.5. In order to better capture

the performance of the multiple environments all implementations ran 10 times and

the aggregated times were divided by 10. Every measurement was repeated 5 times

and the median of these measurements was selected.

7.2 Profiling of the application and description of

the parallel algorithm

The identification of compute intensive parts of a computer program is a prerequisite

to performance acceleration. For this purpose two stress tests were performed on the
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Peak double precision floating
point performance peak

515 Gigaflops

Peak single precision floating
point performance peak

1030 Gigaflops

Memory clock speed 1.55GHz
Core clock speed 1.15GHz

CUDA cores 448
Memory size (GDDR5) 3 GigaBytes

Memory bandwidth (ECC off) 148 GBytes/sec
Power consumption 225w TDP

CUDA SDK CUDA Driver API 4.2.9

Table 7.1: Technical Specifications GPU

Memory Size/Type 64Gb
Memory clock speed 1.3ghz/DDR3

Core clock speed (max turbo
frequency)

3.0 GHz (3.3Ghz)

Number of cores (in each chip) 8
Number of threads (in each chip) 16

Cache memory size 20 Mb
Memory bandwidth 51.2 GBytes/sec
Power consumption 115w TDP

OpenMP version 2.0

Table 7.2: Technical Specifications CPU
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100,000 paths 500,000 paths

Defining Risk-factors’ Intervals 2.55 12.79
Sampling Outer Scenarios 0.0075 0.035
Outer/Inner Simulation 2.92 14.67

Calculation of coefficients 0.060 0.197
Total 5.53 27.69

Table 7.3: Performance Results of Serial Implementation

LSMC algorithm. In the first experiment; 100,000 simulation paths were used for the

definition of the risk-factors intervals, 100,000 outer scenarios and 1 inner valuation

conditional on each of these outer scenarios. For the second experiment we increased

the number of paths to 500,000 to observe the impact on the total time performance

at every level. For both experiments the number of steps for each simulation path

is 100.

Table 7.3 shows very clearly that the most time consuming parts of the LSMC

algorithm the definition of the risk-factors’ intervals and the outer/inner loop sim-

ulations. Furthermore, the increase of the simulation paths increases the execution

time linearly. On the other hand, sampling of the outer scenarios and the calculation

of the regression coefficients does not require a lot of time and it is not sensitive to

the number of the simulation paths.

Based on the profiling results above the simulation of the risk factors intervals

should be parallelized. The number of simulation paths is divided by the number of

the available threads. If the number of threads is higher than the number of paths

then each thread is responsible for the simulation of one path.

Although the sampling of the outer scenarios takes little time, is done in parallel

in Section 7.4.3. As the outer simulations takes place the Monte Carlo paths of

multiple outer scenarios are executed in parallel. Due to memory constraints that

are explained in Section 7.4 the inner simulation paths for each outer scenario are

executed serially.

The last part of the algorithm which is consisted of the calculation of the coeffi-

cients is done at the CPU as it does not require a substantial computational power

as mentioned above.
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7.3 Parallel CPU Implementation

During the experiments, a steady behavior was observed for this implementation’s

performance. Figure 7.4 shows the speedup achieved for this specific parallel CPU

implementation. The presented results were obtained by running 500,000 simulation

paths for the definition of the risk-factors intervals at the projection date, 50,000

outer scenarios and 1 inner antithetic valuation. 1, 2, 4 and 8 threads were running

at one processor while the 16 threads are distributed in two processors with 8 threads

each.

The speedup obtained by this implementation in the first case is very close to

linear. More precisely, when up to 4 cores are used the speedup is almost linear while

when 8 cores are used the acceleration falls to x7.6. When the number of simulated

paths increases this acceleration falls even more to x7. In the case of 12 and 16

threads, where all the available processors are used, the acceleration is x10.15 and

x12.51 respectively in the first case and x10.11 and x12.48 in the second case which

is very good considering the NUMA (Non Uniform Memory Access) architecture.

It is obvious that as the number of threads increases the relative acceleration

falls. This is mostly because of the critical sections used in the first part of the

algorithm. Critical sections have been used for the definition of the risk-factor in-

tervals. Inside these sections the execution of the program is sequential and only

one thread can access the specified memory address each time. This competition for

access between the threads cause delays and as a result impacts the performance of

the implementation.

7.4 GPU Implementation and Optimization Tech-

niques

The Monte Carlo simulation that is performed for the definition of the risk-factors

intervals is done in the GPU. The random numbers that are required for each path are

generated directly in the GPU memory and then a kernel is called for the correlation

of these random numbers. This is followed by another kernel for the execution of the

paths; calculating the values of the stochastic variables at the projection date.

In the second stage of the algorithm, for each sampled outer scenarios, random

numbers for the inner loop simulations are generated in the GPU memory. Again,
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Figure 7.1: Parallel CPU acceleration

a kernel is called for the correlation of the random numbers and another for the

simulation of the paths.

It is obvious that many numbers are generated directly to the GPU memory and

this creates a limitation on the number of the simulation paths that can be executed

in one go. As mentioned in Section 7.1 the inner simulation paths for each outer

scenario is done sequentially. An implementation dilemma was whether it is better to

lower the limit of the outer scenarios to get the maximum parallelization or execute

the inner simulation paths sequentially in order to achieve a higher number of paths.

Due to the complex nature of the liabilities faced by the insurance companies

the number of the outer scenarios is crucial for the accuracy of the algorithm. In

addition, the goal of the LSMC algorithm is to maintain the accuracy as well as to

minimize the number of the inner simulation paths as explained above. These two

arguments were the reason of choosing the second implementation method. At the

following experiments each inner loop simulation is done sequentially for each outer

scenario. In order to make this more clear we will give an example using the Heston

model as an outer simulation model and Black-Scholes as the inner valuation model.

Let’s assume that the outer scenarios are 10,000 and we simulate 2 inner valuations

for each of these. The 10,000 outer scenarios are created in parallel. Continuously, in

the first run 10,000 inner simulation paths are simulated (one for each outer scenario)

and at the second run another 10,000 paths are simulated (again one for each outer

scenario). At the end of this simulation we have simulated 20,000 paths in total

which was the expected outcome.
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7.4.1 Coalesced Memory Access

Storage efficiency Load efficiency

CUDA 67.9% 37.00%
ACC 67.9% 53.70%

C-OPT 99.9% 76.70%

Table 7.4: Global Memory Efficiency

As already mentioned, accesses to the main memory are costly due to the high la-

tency; a global memory access introduces a latency of 400-600 clock cycles. This cost

can be significantly reduced if the developer fully exploits the parallel architecture

of GPU.

Each access to main memory can transfer data with size 32, 64 and 128 bytes.

When a warp executes an instruction that requires data from main memory, the

data retrievals are merged into one or more accesses, depending on the size of the

requested data and their locations in the main memory. As a result, when the data

are not efficiently stored in the memory, the data retrievals cannot be merged and

consequently many useless data transfers take place and each of these transfers adds

to the latency cost. The effective capability of the main memory is greatly reduced,

and this has a significant impact on the overall program performance. For example

if each thread needs 4 bytes of data from the main memory, which are not efficiently

stored, this generates 32 bytes transfer for each thread and the memory performance

is reduced by 8 times.

To achieve the most efficient main memory accesses (memory coalescing) consec-

utive threads of a warp should access consecutive memory addresses. In this way,

all data retrievals from the main memory are merged and the total memory latency

is minimized. In order to achieve this, the developer should organize the data, so

that the memory address of the data is a function of the thread ID. This storage

implementation is not fixed and varies according to the algorithm. In our LSMC

GPU implementation this method can be applied to the way we read and store the

simulation results in the global memory. Figure 7.1 presents how the C programming

language - and CUDA - stores the values of a matrix in the memory. It is obvious

that this matrix is stored in the memory in rows.

Let us assume that every row contains the evolution of the simulated price for

each thread. This means that the memory addresses a0,0, a1,0, a2,0, a3,0 hold the
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Figure 7.2: Matrix storage in memory

initial price of the underlying asset S0. Because, as we mentioned above, the matrix

is stored in rows, these memory addresses are not consecutive and as a result memory

accesses cannot be merged and the data is not efficiently stored.

On the other hand, if we store the evolution of the simulated price by columns this

means that the addresses a0,0, a0,1, a0,2, a0,3 will hold the initial price of the underlying

asset. This will improve the storage efficiency in the global memory as consequent

memory addresses will be accessed by consequent threads by one merged access. The

results at the end of this chapter will reveal the importance of this concept.

7.4.2 Parallel Reduction and Shared Memory usage

An important issue for parallel GPU processing is the calculation of the summary;

e.g. the minimum and the maximum of the elements of an array. In order to find the

summary of all the elements of an array we could assign the whole task to a single

thread and this thread would sum all the elements and store the result in a memory

address.

This method would be inefficient as it does not utilize the characteristics of the

parallel architecture as only one thread is executing the whole task giving sequential

performance. In order to exploit the GPU we use the parallel reduction method.

According to this method, in order to add N elements of an array we use N/2

threads, and each will add two array elements. More specifically, the tread with id i
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Figure 7.3: Uncoalesced (Up) vs Coalesced Memory(Down)
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will add the element located in the address i with the element located in the address
N
2

+ i .

The partial sums of the elements of the array will be stored in the first half of

the array. Then, the same process will take place but using half the threads used in

the first stage, (N/2)/2 = N/4. This process is repeated until the number of threads

is equal to 1, this will be the last iteration. The result of the parallel additions will

be stored in the first memory address of the array.

A very useful and important characteristic of the parallel architecture that be

used in the parallel reduction method is the shared memory. The shared memory is

on-chip memory, which means it’s access is very fast; much faster than other memory

types. When it is used properly it provides performance comparable to register.

In order to achieve the maximum performance, shared memory is divided into

equally sized parts that can be accessed in parallel - these parts are called banks and

they are organized such that 32-bit consecutive words are assigned to consecutive

banks. Access to these banks can be done simultaneously with a maximum range

of 32 bits per two clock cycles for each bank. So when the request for write or

read addresses are to different banks, the performance of the shared memory is

maximized and equal to 32*32 bits per two clock cycles. On the other hand, when the

memory addresses are in the same bank, accesses are sequential and the performance

decreases.

Due to the high performance of the shared memory, it should be used for fre-

quently used data. Its usage starts by copying data from the global memory, carrying

out calculations using the shared memory, taking advantage of the multiple banks,

and when the calculations are completed the data are transferred back to the global

memory. When the size of the shared memory is insufficient, the developer can make

use of the read-only constant or texture memory, which are located in the main

memory, but they are cached and occasionally offer higher performance compared to

the global memory.

Below, we describe how we can apply this concept to improve the performance of

the LSMC simulation and some technical optimizations that make use of the shared

memory. As described in the previous chapters, in the first phase of the LSMC

simulation multiple risk factors scenarios must be created at the projection date.

For this purpose, a Monte Carlo simulation should be performed from today to the

projection date. This simulation is being done by the GPU and the results are stored

in the GPU global memory.
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Uncoalesced Coalesced Parallel Reduction

seconds 567.30 91.35 80.34

Table 7.5: Coalesced memory

When this simulation is finished, the developer has the option to transfer these

results to the CPU memory and then define the interval of each of these risk factors

using the CPU or to use the GPU parallel reduction technique in order to minimize

the transfers between the CPU and the GPU. Minimizing the transfers is a general

heuristic for every GPU implementation and it should be applied here. When the

parallel reduction method finishes, calling the NAG functions we can generate the

required scenarios directly in the GPU memory.

There are many ways of implementing the parallel reduction method. The most

efficient version, which is applied in this implementation, avoids the divergent warps

problem that slows the execution and makes use of the shared memory avoiding

bank conflicts for maximum performance. In fact, the cost of the access to the shared

memory can be the same as the access to a register if there are not any bank conflicts

between the threads. Consequently, if n accesses to the shared memory are stored at

n different banks then these memory addresses can be accessed simultaneously. On

the other hand, if two or more threads try to read from memory addresses stored at

the same bank this will be done serially thus reducing the performance of the shared

memory.

7.4.3 CUDA Streams

Data transfer is a critical subject in GPU implementations (and indeed in all com-

puter performance). In the LSMC implementation data transfers can be managed

in the following ways. First, the values of the risk-factors scenarios are generated

and stored in the CPU memory and then transferred to the GPU or in the second

method they are generated and stored directly on the GPU memory.

In order to minimize the duration of the data transfers the use of CUDA streams

is required. Stream is an instruction set that is executed sequentially at the device.

That means that every device instruction is executed by a stream. If the programmer

does not define any streams, memory transfers and kernels executions are executed

sequentially by the default stream. If the device is able to perform memory copies

and kernel execution at the same time the developer should consider creating more
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First Method Second Method

ms 155.78 114.42

Table 7.6: CPU-GPU sampling

Figure 7.4: Asynchronous Memory Transfer [30]

than one streams to overlap these two processes. Tesla C2050 provides this possibility

with one copy engine from host to device, one copy from device to host engine and

a kernel engine responsible for kernels execution.

With the first method described above the CPU-generated numbers will be di-

vided into pieces and transferred asynchronously to the GPU device using streams.

After the first batch of data is transferred the kernel engine will begin its execution

and at the same time the second batch of data will be transferred from host to device.

When the kernel engine finishes the first simulation of the first batch of data, the

three engines will work in parallel using the device to host copy engine to transfer the

simulated data back to the CPU, the kernel engine will simulate the second batch of

data and the host to device engine will transfer the next batch of data. This scheme

is presented in Figure 7.4. Of course the disadvantage of this method is that the

initial generation of scenarios is being done sequentially in the CPU and as a result

it is slower than the parallel generation being done by the GPU.

If in contrast we apply the second method, by simulating the risk factors scenarios

directly at the GPU we do not need the host to device copy engine as the risk-factors

numbers are already in the GPU memory and their transfer from device memory to

host will be required at the end of the simulations using the device to host copy

engine. On the other hand, the generation of the scenarios is faster because it is

executed in the GPU using parallel algorithm.

No Streams Streams

ms 114.42 75.65

Table 7.7: Use of streams
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7.5 GPU Implementations Comparison

In the previous sections, we described various ways to optimize GPU implementation

taking advantage of the parallel architecture. In this section, we present the results

of the Heston and Black-Scholes CIR models for the GPU implementations in order

to assess and compare these acceleration techniques.

As described in chapter 4 for the Heston Model implementation, the real-world

Heston parameters are used to simulate risk-factors on the projection date and the

Black-Scholes model was used for the valuation of the liabilities. The Black-Scholes

model has only one stochastic variable; the stock price of the underlying asset. Con-

sidering the characteristics of the LSMC simulation and the GPU implementation,

the outer fitting scenarios consist of only the stock price. These scenarios are gen-

erated directly in the GPU and at the end of the inner loop simulation they are

transferred to the CPU memory for the least-squares regression. The various GPU

implementations for the Heston model are presented in Figure 7.5. The maximum

acceleration achieved is x122.76 for the optimized version of CUDA compared to

the sequential version and the performance declined as we increase the number of

paths. While the use of the coalesced memory has improved the GPU performance,

as we increase the number of paths the impact of the memory transfers dominates.

Even with use of the parallel reduction algorithm, the problem exists because of the

transfers of the risk factors at the second stage of the algorithm.

On the other hand, the speedup of the CUDA naive implementation and the

OpenACC implementation is increasing as the number of paths grows. In this case

the memory transfers are hidden from the calculations which are slower without use

of the coalesced memory. An important outcome of this comparison is that the Ope-

nACC implementation is slightly faster than the CUDA naive implementation. This

happens because, as presented in the previous section, the OpenACC compiler makes

better use of global memory achieving better storage and load efficiency percentages

than the CUDA naive implementation. Considering the ease of use of the OpenACC

language this finding is very important for practitioners who need to balance speed

up with implementation’s cost. Of course, OpenACC cannot compete with the op-

timization techniques of CUDA but it is a very good alternative when maximum

performance is not the only target.

Figure 7.6 shows the speedup of the Black-Scholes CIR model for the various

GPU implementations. For this model the maximum speedup achieved is x117.52
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Figure 7.5: GPU Implementations Heston Model

and, as in the Heston model, this number decreases as the number of paths increases.

Unlike the Heston model, the same reduction, with a slower rate, occurs for the

CUDA naive and OpenACC implementations. As was described in chapter 4, for

the implementation of LSMC with the Black-Scholes CIR model we used the same

model in both the outer loop and inner loop simulations. In this case, there are two

risk-factors (the stock price and the interest rate) and this doubles the numbers of

the outer fitting scenarios and the number of the inner simulation paths compared

to the previous implementation. When the inner simulation is finished the number

of transfers from the GPU to the CPU is higher compared to the Heston model

implementation. Consequently, the impact of these transfers is higher and it cannot

be hidden even in the CUDA naive and the OpenACC implementations.

Figure 7.7 shows the impact of the addition of one extra risk-factor to the val-

uation model. The reduction in speedup is higher as we increase the number of

paths. The minimum speedup for two risk-factors is x60.33 which is still much

higher compared to the OpenMP speedup but these results shows that if the num-

ber of risk-factors is higher and the complexity of the valuation model requires many

simulation paths to achieve an acceptable accuracy then the choice of the computa-

tional platform is not very clear. The OpenMP implementation maintain the same

speedup for both models because it does not require any memory transfers.
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Figure 7.6: GPU Implementations - Black-Scholes CIR

Figure 7.7: GPU Comparison - CUDA Opt version
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Chapter 8

Conclusion and Future work

8.1 Conclusion

In this thesis we described the LSMC simulation as a key tool for the calculation of

the SCR under the solvency II regulatory framework, by applying this algorithm for

the valuation of various options. We explained in detail its function and the various

available development choices through the set-up of the algorithm and the impact

that these would have in the accuracy of the estimates. The results showed that

the LSMC simulation can be an excellent alternative to the stochastic on stochas-

tic valuation as it reduces the required computational effort and at the same time

maintains the required accuracy of the estimates in a very good and acceptable level.

Through this analysis, we identified appropriate parallelizable sections of the al-

gorithm. Furthermore, we analyzed the attributes of parallel CPU environments and

we described the architecture of GPGPUs. Finally, the LSMC simulation was applied

on these parallel architectures using various programming models and optimization

techniques to exploit the characteristics of the parallel architectures and thus the

acceleration was improved. The results of the implementations are summarized in

the following Figure 8.1.

The results showed that the selection of computational platform is not an absolute

but can rather depend on the algorithm characteristics. More specifically it depends

on the required accuracy, the implementation effort, the available hardware and

the complexity and nature of the algorithm. For our implementation the GPU

platform provided the greatest speedup. HPC developers introduce new approaches

for more efficient use of GPUs for general purpose calculations. In addition, software
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Figure 8.1: Acceleration of the HPC implementations compared to the sequential
version

companies are trying to improve the available programming models by improving

and simplifying the available APIs. The most difficult implementation problems arise

from the legacy codes used by most financial institutions and they are difficult re-

write. Software companies are trying to improve the available programming models

by improving and simplifying the existing options in order to make it easier to adopt

legacy codes and at the same time to not be stacked to a specific hardware. In the

same directions, companies that design and implement GPU hardware are trying to

increase the performance of their coprocessors by adding features designed only for

general purpose calculations.

In summary, nowadays, it is more than obvious that there is a need for integration

between finance and HPC implementations. The increasing need for computation

arises from the complexity of the financial algorithms makes this integration more

vital than ever for the financial institutions if they want to stay competitive under

this modern fast-paced environment.

8.2 Future work

In this thesis there were presented results and implementation details from two dif-

ferent scientific fields. There are certain improvements that should be researched in
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the future in terms of finance and high performance computing.

Regarding the financial part of this thesis the most important research subject

regarding the LSMC algorithm is the identification of more efficient basis functions.

As already described, basis functions are just polynomials trying to capture the

behavior of the payoff of the product. The selection and the efficiency of these basis

functions is not clear for complex products. Although these results are promising

certain extensions should be done in order to capture the behaviour of more complex

products like variables annuities which described in Chapter 2.

In addition, selection of the proxy function should be investigated in order to

possibly identify a more efficient algorithm for the definition of the least complex

proxy function that will be able to replicate the behavior of different payoffs.

Regarding the HPC part of this thesis the identification of possible vectorizable

parts of the OpenMP version would improve the performance of the parallel CPU

platform. For the CUDA version the next step is the calculation of the coefficients

of the regression function on the GPU. The profiling of the sequential version of

LSMC showed that the calculation of the coefficients does not require a great deal

of computation and hence its parallelization was unlikely to offer significant speed-

up. In practice, there was some speedup due to reduction of the required transfers

between CPU and GPU memory.

The underlying issue remains that even with the implementation of this part

on the GPU there will still be transfers between the GPU and the CPU memory

which we cannot be eliminated. Janosek and Nemec [25] discussed the polynomial

approximation technique on GPUs. Their implementation calculates elements of the

A matrix and the Y vector on the GPU (described in Section 3.2) and these elements

are transferred to the CPU memory for completion of the polynomial approximation

process. Only a polynomial up to third degree with one variable was considered

for these experiments and as a result matrix A did not consist of many elements

and consequently the transfer time was small. The drawback of this method is that

the implementation of complex regression functions with multiple variables might

require substantial implementation effort which will be specific for each different

proxy function which makes it useless even for even small changes in the proxy

function and further that the number of transfers for this kind of functions will be

higher because of the size of matrix A and vector Y. All these hypotheses should be

testes in order to investigate if they will improve the performance of the algorithm

by making it robust to the increase of the number of the risk-factors or not.
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