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Abstract 

The lack of significant buoyancy effects in zero-gravity conditions poses an issue with fluid 

transfer in a stagnant liquid. In this thesis, the movement of a bubble or droplet in both 

stagnant and rotating liquids is analysed and presented numerically using computational fluid 

dynamics (CFD). The governing continuum conservation equations for two-phase flow are 

solved using the commercial software package (2011). The Volume of Fluid (VOF) method 

is used to track the liquid/gas interface in 2D and 3D domains. User-Defined Functions 

(UDFs) are employed in order to include the effect of surface tension gradient and fluid 

properties as a function of temperature, with a view to efficiently investigating temperature 

effects on the properties of the two phases. The flow is driven via Marangoni influence 

induced by the surface tension gradient, which in turn drives the bubble/droplet from the cold 

to the hot region. For stationary liquid, the results indicate that the scaled velocity of the 

bubble decreases with an increase in the Marangoni number, which agrees with the results of 

previous space experiments. An expression for predicting the scaled velocity of a bubble has 

been regressed based on the obtained data from the present numerical study for thermal 

Marangoni numbers up to 10,721. An expression for predicting the scaled velocity of a 

Fluorinert droplet migrating in oil has also been presented for an MaT range from 24.05 to 

2771. The interactions of two droplets in thermocapillary motion have also been studied and 

compared with the results obtained for the isolated droplet. The results have shown that the 

leading droplet will not move faster than if it were isolated, as the trailing droplet has no 

influence on the velocity of the leading droplet. Three-dimensional results show that no 

bubbles broke in any of the cases observed and agglomeration could occur during 

thermocapillary migration for bubbles placed side by side. The results of the motion of a 

singular and multiple bubbles incorporating thermocapillary forces in a rotating liquid in a 

zero-gravity environment have been presented for the first time. When the Rossby number is 

1, the effects of rotation are important. Furthermore, the deflection of the gas bubble motion 

increases towards the axis of rotation with a decrease in the Rossby number (Ro). Bubble 

population balance modelling has been investigated in normal gravity using Luo kernels for 

breakage and agglomeration and two different laminar kernels for zero-gravity conditions. 

The simulations covered a wide range of scenarios and results are presented as a bell and 

histogram shapes for number density and particle percentage distribution, respectively. 
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Chapter 1 Introduction 
 

1.1  Overview 

This thesis deals with two-phase flows, i.e. systems of different fluid phases, such as gas and 

liquid. A typical example of a two-phase flow is the motion of a bubble or droplet (the word 

droplet refers to a liquid phase; and the word bubble refers to a gas phase)  in a stagnant fluid 

(liquid or gas). In many branches of engineering it is important to be able to describe the 

motion of gas bubbles in a liquid (Krishna and van Baten, 1999). In multiphase flow, the 

simultaneous flow strongly depends on the gravitational force. However, in zero-gravity 

conditions, buoyancy effects are negligible and as an alternative, three different surface 

tension effects were found to make the bubbles or droplet move in zero-gravity. A change in 

surface tension can be caused by a change of temperature (thermocapillary), a change of the 

concentration of surfactant or impurities (solutalcapillary), and also by the presence of an 

electrical charge or electrostatic potential on the surface  (electrocapillary). However, for 

small geometries and/or zero-gravity environments, this is not the case and these capillary 

forces could become dominant (Alhendal and Turan, 2012). In a non-uniform temperature 

gradient field, the surface tension varies according to the local temperature conditions. Near 

cold regions, a greater surface tension force exists in comparison with the hotter regions. This 

causes a net imbalance in the force acting upon the fluid particles, thus leading to a general 

movement of fluid from the hot to the cold region (in the current case, from the upper to the 

lower surface). Surface tension generally decreases with increasing temperature and the non-

uniform surface tension at the fluid interface leads to shear stresses that act on the outer fluid 

by viscous forces, thus inducing a motion of the fluid particle (a bubble or droplet) in the 

direction of the thermal gradient. Bubbles suspended in a fluid with a temperature gradient 

will move towards the hot regions due to thermocapillary forces (Nas and Tryggvason, 2003). 
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In space, where buoyancy forces are negligible, thermocapillary forces can be dominant and 

can lead to both desirable and undesirable motion of bubbles, drops, and particles moved up.  

Multi-phase flows are encountered in a variety of industrial processes and plants, in the 

petroleum industry and its equipment, and in the chemical industry. The transport 

phenomenon of bubbles/droplets in a liquid is a very important topic for both fundamental 

hydrodynamics and practical applications such as the production of pure materials in 

manufacturing. For example, glass is believed to have the potential of producing very pure 

materials  (Uhlmann, 1981). Thermocapillary migration may provide a method of removing 

bubbles from the melt. The prevention of vapor bubbles forming in both the fuel systems of 

liquid-rockets (Ostrach, 1982) and the cooling system of space habitats may be achievable 

using thermocapillary migration. Thermocapillary migration may also lead to the 

accumulation of gas bubbles on the hot surface of heat exchangers, thus reducing their 

efficiency. Ostrach (1982) studied various types of fluid flows that could occur in low-gravity 

conditions and observed that Marangoni convection is significant. In practical applications, it 

is frequently necessary to deal with a large number of bubbles or droplets and their collective 

behaviour  may differ from what one might expect based on the results for a single particle. 

An understanding of the behaviour  of multiphase fluid flow in general and more specifically, 

bubbles/drops in specific in zero-gravity conditions, is important for designing useful 

experiments for the space shuttle and the international space station. In addition, such an 

understanding is important for the future design of thermo-fluid systems and machinery that 

might be employed in similar environments. 
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1.2 The need for CFD in zero-gravity investigation 

The available experimental results are usually supposed to be the major source of information 

on the behaviour of the physical process of multiphase flow at zero gravity. However, very 

little is known of the behaviour  of fluids in microgravity due to the relative difficulty of 

obtaining experimental results and the funds and time-involved in the design and fabrication 

of space experiment. Multiphase flow experiments generally require continuous observation 

of the moving fluid during a test, which makes the experimental setup extremely 

complicated. It is also a challenge for space researchers to design a space experiment to 

accommodate most of their objectives. On the other hand, computational fluid dynamics 

offers sensitivity and enables feasible studies to be carried out for different parameters and 

designs. It can help to understand the basic fluid physics and assist in designing the 

experiments or systems for the zero-gravity environment. Therefore, calculating these flow 

regimes by means of computational fluid dynamics (CFD) is very useful and desirable. For 

the above reasons and more, modelling the numerical methods in this ways is the ideal tool 

allowing the investigation of the behaviour  of multiphase flow and the capture of the flow 

physics in reduced-frame and at a lower cost. 

1.3 Description of this thesis and its objectives 

This research specifically targets the use of computational techniques in order to simulate 

thermocapillary (Marangoni) bubble/droplet flow in zero-gravity conditions to better 

understand the physical processes behind many of the observed physical phenomena of zero-

gravity environments. In this thesis we will use the ANSYS-Fluent (Release 13.0, 2011) code 

to analyse and design a bubble/droplet flow system in a zero-gravity environment and to 

investigate sensitivity studies for various parameters. This illustrates the importance of the 

CFD simulations and examines the effect of several external and internal forces on the bubble 
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flow in zero gravity. The finite volume method (FVM) with a fixed non-uniform spatial grid 

was used to computationally model 2D axisymmetric and 3D uniform grid domains. This 

work presents the importance of CFD in multiphase flow studies in zero gravity. Due to these 

challenges, many CFD models have been proposed to carry out appropriate numerical 

simulations for the behaviour of bubble/droplet flow in microgravity. The literature review in 

Chapter 2 examines the challenges facing fluid experiments aboard orbiting spacecraft and 

includes extensive discussion of the work on thermocapillary progression of recent years. The 

literature indicates the need for CFD for predicting bubble/droplet behaviour in zero gravity. 

Surprisingly, there is still no satisfactory approach for predicting thermocapillary particle 

flow, and this overview of the literature will outline the available correlations.  

Chapter 3 provides an interesting opportunity to test the capability of the finite volume 

method (FVM) simulation and the volume of fluid (VOF) model along with the solution 

algorithm of Ansys-Fluent. In addition, several published articles concerning the use of the 

volume of fluid (VOF) method in bubble/droplet simulations are reviewed. The need to first 

substantiate the code validation and verification methods in order to have confidence that the 

simulation tool is actually generating correct solutions to the problems that motivate this 

study is the focus of Chapter 4. The model's solution algorithms, boundary conditions, source 

terms, and fluid properties used in the simulation are described in detail in Chapter 5, along 

with calculations. Throughout Chapter 5 the simulation was able to examine scenarios not 

covered experimentally in order to verify the effect of temperature gradient, column-particle 

aspect ratio, fluid properties and temperature on the behaviour of bubble/droplet flow. An 

expression for predicting the scaled velocity of a bubble has been derived based on the data 

obtained in this chapter between scaled velocity and Marangoni numbers. A Fluorinert 

droplet migrating in oil has also been investigated, and the interactions of two Fluorinert 

droplets in thermocapillary motion have also been discovered and compared with the results 
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obtained for the isolated droplet. Chapter 6 covered the thermocapillary flow and interaction 

of a single and multiple bubbles in a three-dimensional domain. The study in this chapter 

focuses on the interaction of a pair of bubbles migrating in a leading and trailing sequence in 

the first part and placed side by side in the second study. The behaviour of both a single 

bubble and a coalescence of bubbles under the effects of both fluid rotation and surface 

tension gradient is investigated in detail in Chapter 7. Transient trajectories for a single 

bubble and a group of bubbles are demonstrated in this chapter to illustrate the influence of 

external forces, such as rotation force, on the behaviour of particles. Though a huge amount 

of publications (textbooks, conference proceedings and journal articles) concern multiphase 

flow, publications on two-phase flow in microgravity is a very seldom studied field and 

information about bubble behaviour in a rotating column in particular is not so complete in 

comparison with other physical phenomena in normal gravity. These are the main reasons for 

carrying out simulation research in microgravity.  

In Chapter 8, Population Balance Models (PBM) for bubble break-up and coalescence were 

implemented into two axisymmetric dimensional Eulerian/Eulerian simulations of two-phase 

(air/water) transient flow using a multiphase flow algorithm based on the finite-volume 

method for both stationary and rotating columns in normal and zero gravity. The study 

covered a wide range of scenarios and the interesting results were found to be of great help 

for future design of two-phase flows in general and of bubble columns in particular. In 

Chapter 9, conclusions and suggestions for future works and recommendations are given.  
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Chapter 2 Literature review 

2.1 Overview 

Research and experimentation on thermocapillary bubble and drop motion began in 1959 on 

the ground using a space laboratory and via drop towers some years  later. A few on-board 

microgravity experiments on the thermocapillary migration of bubbles and drops have since 

been performed using spacecraft. With the advent of space flight, the study of flows under 

near-zero-gravity conditions was strongly motivated by practical considerations, (Ostrach, 

1982). In recent years and with advances in numerical calculation, knowledge of 

thermocapillary flow has undergone a considerable change and new, calculated results can be 

used to support, modify, or change the previous results.  

The first study recorded in the literature regarding gas bubble motion due to thermal gradient 

was investigated experimentally and theoretically by Young et al. (1959). In their ground 

based experiment where gravity force is presented, they succeeded in holding a small bubble 

stationary and moving it downwards against the buoyant rise of gas bubbles by applying a 

temperature gradient between the lower and upper sides. The liquid was  heated from the 

lower side and the Rayleigh number (Ra) was kept small to avoid any natural convective flow 

during the experiment. They introduced a linear relation for small Marangoni (Ma) and 

Reynolds numbers (Re) to obtain the bubble/drop velocity as follows: 
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where rb is the radius of the bubble,       is the surface tension gradient,       is the 

temperature gradient, and   and           are the dynamic viscosity, thermal conductivity of 

gas and continuous phase, respectively. In their study, no bubble velocity was recorded; the 
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objective was to calculate what temperature was needed to keep the bubble stationary or to 

move it against buoyancy.  

Hardy (1979) used a closed rectangular cell to reduce the experimental error related to the 

free liquid surface in Young et al's model. He first repeated the ground experiment of Young 

et al. (1959) and used their theoretical prediction to compare his measured data. With the 

agreement in vertical temperature gradient amount required to render the bubble motionless, 

the bubble's velocity results were lower than the calculated results. He also found that the 

bubble increased in size during migration toward the hotter side. 

The thermocapillary motion of bubbles in zero-gravity was first considered experimentally by 

Thompson et al. (1980) who used the drop tower at the NASA Lewis Research Centre for 5.2 

s of free fall to eliminate buoyancy. Thompson et al. demonstrated the existence of the 

Marangoni phenomenon in zero-gravity. They succeeded in observing the existing of the 

Marangoni flow phenomena for nitrogen bubbles in ethylene glycol, Dow-Corning silicon 

oil, and ethanol. The nitrogen diameter was approximately 0.6 cm for ethanol and 0.8 cm for 

silicon oil and ethylene glycol. The cylindrical test container measured 12 cm in diameter and 

was 12 cm high. The liquid in the cylinder was heated from the upper side for a about 260 

minutes before the bubble was injected from a nozzle located in the centre of the bottom of 

the cylinder. Thompson et al. (1980) related the failure to observe the movement of a 

nitrogen bubble in water to impurities concentrated at the bubble interface or to a molecular 

phenomenon. Thompson's et al.(1980) study focused on proving the reality of the Marangoni 

phenomena and confirming that the variation of surface tension with temperature is the 

driving force in the absence of gravity. Thompson et al. (1980) showed experimentally that 

the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a 

non-isothermal liquid in a low-gravity environment. The maximum Re and Ma reached for 

ethylene glycol were 5.66 and 713, respectively. Thompson et al. (1980) suggested that the 
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use of a zero-gravity environment with sufficient time to undertake the investigation would 

help to improve the finding. 

Merritt and Shankar Subramanian (1988) carried out experiments on bubbles with diameters 

ranging from 0.06 to 0.3 mm in three different test fluids, namely Dow-Corning 200 series 

silicone oils, in a downward temperature gradient, reversing the buoyant rise of the bubble. 

They were careful not to include buoyant convection cells by maintaining the Rayleigh 

number below the critical value. They observed that the bubble size doubled when migrating 

toward the hotter side, which was previously found by Hardy (1979). The authors deduced 

that this phenomenon is due to mass transfer. Their results were in good agreement with these 

obtained by Young et al., although they mentioned that the varying physical properties of a 

fluid with temperature should be considered at all times. 

Subramanian (1981) discussed the influence of the convective transportation of energy on the 

migration of thermocapillary bubbles and its effect of reducing the bubble speed. He assumed 

the bubble size to be a non-deformable and nonzero convective heat transfer in order to 

present his expression to calculate the velocity of a gas bubble for 0 (Ma
2
). 

Shankar and Subramanian (1988) solved the energy equation numerically to compute the 

migration speed of a gas bubble in a liquid with a uniform temperature gradient. They noted 

the reduction in the gas bubble's scaled velocity with an increase in the Marangoni number 

and suggested two different equations to calculate the bubble velocity for different ranges of 

Marangoni numbers. They used streamlined figures to show the recirculation region around 

the bubble, and thermal line plots to display the extended thermal wake behind the moving 

bubble. They also suggested that future experimental works be conducted to confirm their 

numerical data, due to lack of existing data.  

Siekmann and Szymczyk (1988) used numerical methods to solve the motion of a gas bubble 

under the action of a surface tension gradient for three different flows (creeping, creeping 
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with convection, and thermocapillary flow). They plotted the scaled migration speed versus 

Re values of up to 100 for different Prandtl number (Pr) = 0.01,0.1,10,100. They concluded 

that the bubble migration speed decreases with increasing Prandtl number and observed that 

the Marangoni number is an important parameter for the calculation of thermocapillary 

bubble migration. Balasubramaniam and Lavery (1989) investigated numerically the 

migration of a gas bubble in an infinite medium with a uniform temperature gradient under 

microgravity for Re and Ma values of up to 2000 and 1000, respectively, which only reduced 

the scaled bubble velocity from 0.5 to 0.16. They confirmed the earlier findings of Szymczyk 

and Siekmann (1988) concerning the central influence of the Marangoni number on the 

bubble velocity. They mentioned that further computational investigation was necessary to 

calculate the bubble velocity for higher Re and Ma numbers. 

Balasubramaniam et al. (1996) reported experiments on the motion of drops and bubbles 

under the effects of surface tension gradient in reduced gravity conditions. They used a Dow-

Corning silicon oil as the host liquid and air bubbles during their experiment aboard the 

NASA space shuttle in orbit. They used the YGB model to plot the scaled bubble velocity 

against Ma values of up to 810, which confirmed the trend predicted with quantitative 

difference.   

Hadland et al. (1999) performed experiments aboard a NASA space shuttle mission and 

succeeded in increasing the Re and Ma values up to 87.2 and 5780, respectively. In their 

experiments on the thermocapillary migration of bubbles and drops, Dow-Corning silicon oil 

was used as a host liquid with air and Fluorinert for the bubbles and drops. Their results 

revealed the same trend of bubble migration scaled velocity of earlier work at higher Ma 

number. They also confirmed the reduction in scaled velocity as the Marangoni number was 

increased, and they noticed deformation of large bubbles to oblate spheroids. Their data on 



23 
 

bubbles and drops display complex transient behaviour  due to variation in viscosity with 

temperature, which was also reported by Treuner et al. (1996). 

Treuner et al. (1996) carried out experimental investigations for air bubbles in three paraffin 

liquids for Marangoni numbers of up to 2500 in the Bremen drop tower in Germany, which 

provided around 4.74 s of reduced gravity. Bubbles with a diameter from 0.2 to 5 mm were 

injected after two hours of preheating the host liquid in normal gravity and after 0.5 s of 

reduced gravity time to allow for bubble formation. Treuner et al. (1996) presented several 

plots for scaled velocity vs Marangoni number for three different Prandtl numbers (8.2, 12.1, 

and 25.5). The authors compared their experimental data with Thompson et al. (1980) and 

Szymczyk and Siekmann (1988). They also performed numerical calculations of the steady 

state and a good comparison with their experiment data was found. The short duration time of 

the experiments was considered to be a disadvantage by the authors. For better understanding 

of the thermocapillary bubble flow behaviour  in reduced gravity, the authors suggested that a 

fully transient model was required to give better understanding and explanation of the bubble 

flow behaviour , which could not be covered theoretically or exponentially. Such a model 

would also serve to validate their experimental result. 

Nas and Tryggvason (1993) and Nas (1995) presented numerical simulation results for two- 

and three-dimensional bubbles and drops migrating in temperature gradient by solving the 

full Navier-Stokes equation using a finite difference/front-tracking method. In their research, 

they began with the rise of a single bubble in different parameters before extending their 

work to a fully three-dimensional model in order to investigate in detail the interaction 

between two bubbles or drops and a group of bubbles. The authors plotted the behaviour  and 

flow pattern of single and multiple bubbles moving under the action of the surface tension 

effect in zero-gravity and their tendency to line up side by side, across the channel, 

maintaining their spherical shape within the flow. Nas and Tryggvason (2003) later 
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investigated the thermocapillary motion of two particles toward the hotter side numerically. 

Their most important finding was that the deformation is very slight and the lower particle 

was moving faster toward the hotter wall until it caught up with the upper particle.  

Arlabosse et al. (1999) investigated numerically the thermocapillary flow around a gas 

bubble when the two driving forces, surface tension gradient and gravity forces, were against 

each other, for different Pr. The results of velocity and temperature in a steady state obtained 

from the finite element model developed for this purpose have been validated against 

previous experimental data and small differences were shown. The authors analyzed and 

plotted the influence of the Rayleigh number (Ra), Ma and Pr on the flow pattern, which were 

then converted to an expression relating to the strength of the flow.   

Wozniak et al. (2001) performed an experiment on the motion of bubbles and drops in 

stagnant liquid aboard the space shuttle in orbit. The buoyancy was reduced and 

thermocapillary flow dominated the flow of the bubble and the drop, air and Fluorinert FC-

75, inside a Dow–Corning silicon oil. This result was composed of due to the surface tension 

gradient. The authors compared the experimental during the flight and the numerical 

calculations. The isothermal plots were similar; however, the authors mentioned the deviation 

of some other results due to the constant  physical properties used during the numerical 

prediction. The authors also mentioned the complexity of performing similar experiments on 

the ground, due to the difficulty of eliminating buoyancy. The authors also mentioned the 

need for an optimized optical set-up and smaller tracers for quantitative measurement of the 

thermocapillary velocity fields.   

In recent experiments on bubble thermocapillary migration by Kang et al. (2008), the results 

of the thermocapillary flow of one and two air bubbles injected in stagnant silicon oil of 

nominal viscosity 5cst on board the Chinese 22nd recoverable space satellite in 2005 were 

presented. The air bubbles were injected in the direction of the temperature gradient of the 
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stagnant heated liquid and the impact on the behaviour  of the bubbles and their coalescence 

were presented in their research study. The maximum Marangoni number in this experiment 

was 9288, which was larger than any prior space experiment. The results showed that the 

minimum value of the scaled bubble velocity was 0.3076 as (Ma) goes to infinity. The trend 

of the thermocapillary scaled bubble velocity given by Kang et al. (2008) confirmed the 

previous results of Hadland et al. (1999) and Treuner et al. (1999, Treuner et al., 1996). The 

results of the interaction between two bubbles, leading and trailing, presented in this 

experiment plotted against time for different bubble diameters were similar in tendency to the 

earlier predictions for small Ma and Re numbers. 

Meyyapan et al. (1983) studied theoretically the thermocapillary motion of two bubbles using 

an approximate method. The authors explained in detail the different reactions between two 

bubbles with different diameters. The authors found that the smaller bubble moved faster than 

the larger bubble and the velocity of the larger bubble moved slightly slower, unlike in the 

case of a single bubble. They also found that two bubbles of equal diameter will not affect 

each other's velocity for any separation distance.  

Sun and Hu (2003) considered the interaction between two bubbles moving toward the hotter 

side in their theoretical work. Their results confirmed the previous findings by Meyyappan et 

al. (1983), in that the thermocapillary motion of two bubbles has a stronger influence on the 

smaller bubble than the larger bubble, and the velocity of the smaller bubble will change 

greatly as a result of this interaction.  

Harper J. (2002) published a review of the book:The Motion of Bubbles and Drops in 

Reduced Gravity by Subramanian and Balasubramanian (2010). He gave a brief review of 

how important the text book is for researcher and those wishing to know about 

thermocapillary flow. Harper mentioned some important points related to the application of 

the topic, such as the fact that two bubbles will move at the same speed whatever the 
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separation distance if the Peclet and Reynolds numbers are both less than one, and if the flow 

is purely thermocapillary. The author found no mention of interfacial turbulence in this book, 

despite its significance.  

Xie et al. (Xie et al., 1998) performed on-ground experiments on thermocapillary drop 

migration in the case of intermediate Reynolds numbers in a microgravity environment with a 

free fall of 4.5 s. The thermocapillary velocity of their experiment was smaller than that 

suggested by YGB linear theory. Results from their experiments show that the drop migration 

velocity depends on the temperature gradient and the drop size of the fixed host liquid. These 

findings  agree with those of the ground-based experiment. Regarding their experimental time 

period (4.5 s of microgravity) the authors suggested that a longer microgravity period may 

give better results. The authors mentioned the need for numerical simulations with which to 

evaluate the experimental results. 

Using the same methods as used for the ground-based experiment of Xie et al. (1996)  and 

immiscible vegetable oil and 5cst silicone oil as experimental media for the matrix liquid and 

drop, respectively, Xie et al. (1998) studied experimentally the migration of drops for 

intermediate Reynolds numbers. The experiments were conducted using the drop with 4.5 s 

of freefall experiments in the Microgravity Laboratory of Japan. The experimental results 

showed that the thermocapillary drop velocities were smaller than those suggested by the 

YGB model, a finding which agrees with previous ground-based experiments (Xie et al., 

1996). The author confirmed that a longer experimental time in microgravity conditions is 

necessary for a drop approaching its steady thermocapillary velocity and more experiments at 

larger Reynolds numbers are required. 

 Xie et al. (2005) carried out a space experiment on board the Chinese spacecraft ShenZhou-4 

for isolated drops of Fluorinert liquid in a heated test cell of a 5cst silicone oil at two 

temperature gradients of 0.9 and 1.2 K/mm respectively. In these experiments, a decrease in 
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the scaled drop migration was recorded as the values of expanded Ma were increased to 5500. 

From all the experiments, the authors could not deduce whether the drop migration was 

consistent with the YGB model, or whether it could reach steady velocities. At large 

Marangoni numbers, the authors noticed complex behaviour for the thermocapillary drop 

migration and stated that further studies are still needed. 

Recently, Cui et al (2008) used a single air bubble in a stagnant silicone oil of nominal 

viscosity 5cst to conduct, on board the Chinese 22nd recoverable satellite, an experiment 

complementary to that conducted previously by Kang et al. (2008). The curve obtained was 

comparable with the previous lower Balasubramaniam et al. (1996)  Ma.et al. (1999) for 

scaled velocity vs. Marangoni numbers (Ma) up to 9288. 

We can conclude from the historical review of thermocapillary bubble/drop flow in zero-

gravity that a few microgravity experiments have been performed on board the microgravity 

sounding rocket and spacelab. Two-phase flow experiments generally require continuous 

observation of moving fluid during a test, which makes the experiment complicated. It is also 

a challenge for space researchers to design a space experiment to accommodate most of their 

objectives. The available results are limited to low Reynolds and Marangoni numbers 

because of the difficulties in obtaining experimental results in microgravity (Kang et al., 

2008). Most experimental studies have noted that there are no theoretical or numerical results 

with which to compare their experiments. It is also difficult to obtain complete information 

about the behaviour  of bubbles in space and a CFD study has been undertaken by many 

researchers to compare and analyse their experimental results (Treuner et al., 1996). 

Experiments under normal and microgravity conditions are too costly as well as being 

complicated (Bozzano and Dente, 2009). Numerical simulations consequently become an 

important tool in research studies of two-phase flows in a microgravity environment. For the 

above reasons and more it is necessary to carry out appropriate numerical simulations for the 
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behaviour  of bubble/drop measurement in microgravity. Numerical simulations can also help 

to understand the basic fluid physics, as well as to assist in the design of experiments or 

systems for zero-gravity environments. 
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Chapter 3 Computational Fluid Dynamics 
 

3.1 Overview 

Two changes to the element in motion will most likely take place, which govern the evolution 

of fluid from one state to another. First, the translation of the fluid element, which is often 

referred to as convection, while the second process is called distortion is related to the 

presence of gradients in the velocity field. Sources and other phenomena can also contribute 

to the change of fluid with time. Convection, diffusion, and sources or sinks of the conserved 

or transported quantity can be tracked and defined by three principles: Conservation of mass, 

momentum and energy. The changes in one variable in these equations can give rise to 

changes in other variables. Analytically, these equations can only be solved for a limited 

number of flows. Numerically, with the arrival of modern computers with high process speed 

and large capacity, the solution of these partial differential equations has improved and led to 

new techniques in the field of computational fluid dynamics. 

3.2 Conservation equations 

3.2.1 Continuity (mass) equation 

The continuity (mass) equation for a control volume of all the inlet and the outlet requires 

that the sum of the mass flow rates into the control volume equal the sum of the mass flow 

rates out of the control volume. The mass of fluid in this elemental volume depends on the 

amount of fluid entering and leaving through the faces.  

For more general cases, the density can vary in time and in space, and the continuity equation 

takes on the more familiar form, when written in vector notation: 
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where 
t




 is the change in density, and .( v 0)  is net flow of mass across boundaries 

(Convective term). The source 
mS is the mass added to the continuous phase from the 

dispersed second phase. For incompressible fluids 0t   , and the equation becomes

.( v 0)  . For 2D axisymmetric geometries, the continuity equation is given by 
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where x is axial coordinate, r is the radial coordinate, vx
, is the axial velocity and vr

is the 

radial velocity. 

3.2.2 Momentum 

The momentum equation, also called the Navier-Stokes equation, is a statement of 

conservation of momentum. Equation (3.3) present momentum transport by convection, 

diffusion, and several momentum sources (Batchelor, 2000 ). 
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In Eq. (3.3), the left hand side are the convection terms. The pressure gradient, a source term; 

the divergence of the stress tensor, the gravitational force, and other source terms are on the 

right hand side. 
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where µ is the molecular viscosity, I is the unit tensor.  

For 2D axisymmetric geometries, the axial and radial momentum conservation equations are 

given by: 
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and  
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where  
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3.2.3 Energy 

Heat transfer is often expressed as an equation for the conservation of energy. The equation 

for conservation of energy (total enthalpy) is: 

( ) .(v( )) . j j h

j

E E p h J S
t
 

 
     

  
       3-7 

In this equation, the energy, E , is related to the static enthalpy, jh , through the following 

relationship involving the pressure, P , and velocity magnitude, v : 

2v

2

p
E h


             3-8 

3.3 Computational Multiphase Flows Modelling 

Computational fluid dynamics (CFD) is the name given to the solution of problems involving 

fluid flow, heat transfer, chemical species and turbulence models using computational and 

numerical techniques to convert the partial differential equation governing the flow with an 

algebraic equation. CFD can contribute to better understanding and analysis of problems that 

involve complex fluid flows, complex geometries and different boundary conditions, and has 

the ability to change the design parameters without the need for alterations to hardware. The 

time required to run CFD cases is usually favourable in comparison with the effort required 

to conduct experiments in zero-gravity. In the area where measurements are unfeasible or 
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difficult to obtain, CFD can guide the researchers to the cause of problems and provide full 

information about a flow field. The main stages in a CFD study are:  

 Pre-processing step, involving the establishment of governing equations and boundary 

conditions, followed by the construction of a computational mesh 

 Numerical solution of the governing equations 

 Post-processing of the solution by way of the plotting and analysis of results. 

3.4 Overview of Multiphase Flows Solvers  

A multiphase model can only be used when multiple fluids are involved in a flow field. When 

a multiphase model is used, each of the fluids is assigned a separate set of properties, 

including the different densities and forces of different magnitude that may act on the fluids. 

The selection of the appropriate model for solving multiphase problems numerically depends 

on the flow regime in question. For the numerical calculation of multiphase flows there are 

two approaches: the Euler-Lagrange approach and the Euler-Euler approach (Ansys-Fluent, 

2011). In the Euler-Lagrange approach, the fluid phase is treated as a continuum by solving 

the time averaged Navier-Stokes equations in the same manner as for a continuous fluid 

phase, while the Lagrangian particle tracking method is solved by tracking a large number of 

particles, bubbles or droplets through the calculated flow field using Newtonian equation of 

motion. Heat, mass, and momentum exchange is permitted between the dispersed and fluid 

phases. The model is widely used for coal and liquid fuel combustion, bubble columns, and 

gas spargers in stirred tanks. The Euler-Lagrange Model is inappropriate in any application 

where the volume fraction of the second phase is not negligible (Ansys-Fluent, 2011), for 

example modelling of liquid-liquid mixtures, fluidized beds. In the Euler-Euler approach, the 

volume fraction of each phase is introduced and assumed to be continuous functions of space 

and time. The volume fraction of each phase cannot be occupied by the other phases, and 
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their sum must equal to one. In Euler-Euler methods three different multiphase model are 

available in the ANSYS-Fluent CFD program: the volume of fluid (VOF) model, the mixture 

model, and the Eulerian model, and each model is developed for its own specific flow type. 

For the liquid and solid phases, an Eulerian granular multiphase model is recommended and 

separate sets of momentum equations are used. Gas sparging can be modelled using the 

Eulerian or mixture multiphase models. In this research study, the governing continuum 

conservation equations for bubble/drop flow were solved using the Volume of Fluid (VOF) 

method. The VOF model is a surface-tracking technique designed for two or more immiscible 

fluids where the position of the interface between the fluids is of interest (Ansys-Fluent, 

2011). The VOF method is designed for flows with completely separated phases; the phases 

do not diffuse into each other (Ansys-Fluent, 2011). In the Euler-Euler approach, the different 

phases are treated mathematically as interpenetrating continua. Since the volume of a phase 

cannot be occupied by the other phases, the concept of phase volume fraction is introduced. 

These volume fractions are assumed to be continuous functions of space and time and their 

sum is equal to one. Conservation equations for each phase are derived to obtain a set of 

equations, which have similar structure for all phases. These equations are closed by 

providing constitutive relations that are obtained from empirical information, or, in the case 

of granular flows, by application of kinetic theory. In the Eulerian model a set of n  

momentum and continuity equations is derived by ensemble averaging the local 

instantaneous balance for each phase. Coupling is achieved through the pressure and 

interphase exchange coefficients. The manner in which this coupling is handled depends 

upon the type of phases involved; granular (fluid-solid) flows are handled differently than 

nongranular (fluid-fluid) flows. Momentum exchange between the phases is also dependent 

upon the type of mixture being modelled. FLUENT's user-defined functions (UDF-Manual, 

2011) are used for the momentum exchange calculations. 
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3.5 The volume of fluid (VOF) model and background 

In the VOF model, the motion of all phases is modelled by solving a single set of transport 

equations with appropriate jump boundary conditions at the interface (Krishna and van Baten, 

1999). This model has been successfully employed in a wide range of multiphase flow cases, 

including stratified flows, free-surface flows, the steady or transient tracking of any liquid gas 

interface and the effects of surface tension (Ansys-Fluent, 2011). The work of Tomiyama et 

al. (1993) illustrated the capability of VOF to accurately simulate bubble shapes, which were 

shown to agree with the experimental published data of Bhaga and Weber (1981). Kawaji et 

al. (1997) noted a new result which was not observed experimentally when they compared 

the numerical simulation results of the VOF model of a two dimensional simulation of a 

Taylor bubble rising in a stagnant liquid filled tube to the results given by experimental 

analysis. The VOF simulations with gas-liquid systems could be used as an investigative tool 

for studying bubble rise and bubble-bubble interactions in gas-liquid bubble columns 

(Alhendal et al., 2010). The VOF model has been used to simulate a bubble’s motion in 

bubbly flows (Cook and Behnia, 2001); (Essemiani et al., 2001); (Lörstad et al., 2004) and 

slug flow (Taha and Cui, 2006); (Kang et al., 2004). The VOF model is also suitable for the 

simulation of sharp fluid-fluid interfaces using a finite volume approach (Akhtar et al., 2007). 

One of the major drawback of the volume of fluid model is the so-called artificial 

coalescence of bubbles which occurs when their mutual distances is not larger than the size of 

the computational cell (Ranade, 2002). 

3.5.1  The VOF Model Governing Equations  

The concept of the VOF model was originally proposed by Hirt and Nichols (1981) in order 

to reduce the excessive computer memory required by the marker particle interface tracking 

method. Hirt and Nichols defined a volume fraction function ( ) whose average value was 
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unity at any cell fully occupied by fluid and zero at any cell containing no fluid, and between 

zero and one in the cells where an interface was present. 

This volume fraction function is then tracked through the domain by solving its transport 

equation, as well as a single set of conservation equations common to both phases, and the 

motion of the interface is then deduced indirectly from these results. The VOF model can also 

be used in problems consisting of more than two phases, as the volume fraction variables of 

the additional phases will be added in the computational domain. The model can have a 

steady or time-dependent (transient) implementation in order to track the motion of the 

bubble/drop. The movement of the gas–liquid interface is tracked based on the distribution of

G , the volume fraction of gas in a computational cell, where 0G   in the liquid phase and  

1G   in the gas phase. Therefore, the gas–liquid interface exists in the cell where 
G  lies 

between 0 and 1. A single momentum equation, which is solved throughout the domain and 

shared by all of the phases, is given by Batchelor (2000 ):   

( v) .( vv) .[ ( v v )]
T

p F
t
  


      


            3-9 

where v is treated as the mass-averaged variable: 

m

v v
v G G G L L L   




          3-10 

  



36 
 

  

Figure 3.1a Initial condition for the bubble 

inside the 2-D axis 
 3-1b Typical mesh used for Marangoni cases 
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 3-1c Volume of fluid (VOF) interface 
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 3-1d Volume fraction and properties in each cell in 

the bubble 

Figure  3-1  Show volume fraction equation method employed in the simulations 

 

The following three conditions are therefore possible for representation of, for example, the 

thq fluid’s volume fraction (
G ): 

0G  : the cell does not contain the 
th fluid; 

1G  : the cell is full of the 
thq fluid; 

0 1G  : the cell contains the interface between the 
thq  fluid and one or more other fluids. 
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Based on the local value of 
G the appropriate properties and variables will be assigned to 

each control volume within the domain. The values for all variables and properties are 

calculated as volume-averaged values based on the weighted average of the values for the 

individual fluids. The variables and properties in any given cell are therefore either purely 

representative of one of the phases, or representative of a mixture of the phases, determined 

by the volume fraction contributions. 

The VOF model includes the effects of surface tension along the interface between each pair 

of phases. The CSF model was used to compute the surface tension force for the cells 

containing the gas–liquid interface. With this model, the addition of surface tension to the 

VOF calculation results in a source term in the momentum equation, F , (Brackbill et al., 

1992): 

1
( )

2
L G

kn
F




 





         3-11 

Where σ is the coefficient of surface tension, n is the surface normal which is estimated from 

the gradient of the volume fraction and κ is the local surface curvature, calculated as follows 

(Brackbill et al., 1992): 

1
ˆ( ) ( . )

n
k n n n

n n

 
       

 
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The tracking of the interface between the gas and liquid is accomplished by the solution of a 

continuity equation for the volume fraction of gas, which is:  

( ) ( ) 0G G G G Gv
t
   


 


        3-13 

The volume fraction equation will not be solved for the primary phase; the primary-phase 

volume fraction will instead be computed based on the following constraint: 

1G L             3-14 
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where 
G and 

L are the volume fraction of the gas and liquid phases respectively. The 

properties appearing in the transport equations are determined by the presence of the 

component phases in each control volume. In a two-phase system, for example, if the phases 

are represented by the subscripts G  and L , and the mixture density in each cell is given. The 

density and viscosity in each cell at the interface were computed by the application of the 

following equations: 

(1 )G G G L               3-15 

(1 )G G G L               3-16 

where
G ,

L ,
G ,and

L are the density and viscosity of the gas and liquid phases 

respectively, while 
G  is the volume fraction of gas. In general, for the n phase system, the 

volume-fraction-averaged density takes on the following form:
 

1

1
n

q

p




           3-17 

All other properties (e.g. viscosity) are also computed in this manner. The energy equation is 

also shared among the phases: 

( ) .[ ( ) )] .( )effE E p T
t
   


   


      3-18

 

The VOF model treats energy, E, and temperature, T, as mass-averaged variables: 

1

1

 

n

q q q

q

n

q q

q

E

E

 

 










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where
qE for each phase is based on the specific heat of that phase and the shared 

temperature. The effective thermal conductivity 
effk  is also shared by the phases. 
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3.6 The Eulerian Model 

In comparison to the previous models the Eulerian model is a more complicated and 

computationally expensive model, but potentially more accurate for general use. The Eulerian 

multiphase model available in the CFD code provides the ability to simulate multiple separate 

phases, and their interactions, in any combinations (i.e. liquids, gases and solids). However, 

the overview of this model will be limited to fluid-fluid flows. This model can handle any 

number of phases, and is only limited by memory requirements and convergence behaviour. 

The Eulerian model is based on solving continuity and momentum equations for each phase, 

and a single pressure is shared among them. Additionally, several interface drag coefficient 

functions are available to include in the model, as well as turbulence models which can be 

applied to all phases separately or to the mixture. 

3.6.1  The Eulerian Model Governing Equations 

In general, the mass conservation equation of the Eulerian model for phase q takes the 

following form: 

     
n

q q q q q pq qp q

p 1

α ρ . α ρ v m m S
t 


   


       3-20 

where         is the velocity of phase  , the source term    on the right-hand side is zero by 

default, but can be specified by the user. The volume fractions are obtained from the phase 

continuity equations, ensuring the condition that the volume fractions sum to one within a 

control volume. 

The momentum balance for the phase q can be generally written as: 

       
n

qq q q q q q q q q q pq pq pq qp qp q lift,q vm,q

p 1

α ρ v . α ρ v v α P . α ρ g R m v m v F F F
t





           



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where P is the pressure, shared by all phases, and      represents the stress-strain tensor of 

phase     which is given as: 

 T
q q q q q q q q q

2
α μ v v α λ μ .

3
= v I

 
     

 
      3-22 

   and    are the shear and bulk viscosity of phase q. The term       is the interface velocity, 

which can be defined as follows: 

If        :             (i.e. phase p mass is being transferred to phase q) 

If        :             (i.e. phase q mass is being transferred to phase p) 

       is an interaction force between phases,      represents any external body force,           is a 

lift force, and         represents a virtual mass force. The momentum conservation equation 

must be closed with appropriate expressions for the interface force       . This force is subject 

to the following conditions: 

               and          

and depends on the friction, pressure, cohesion and other effects. ANSYS FLUENT uses a 

simple interaction model of the following form: 

 
n n

pq pq p q

p 1 p 1

R K v v
 

           3-23 

where     is the interface momentum exchange coefficient which depends on a drag function 

that is based on a relative Reynolds number. 

The lift forces acting on a particle (particle here can mean either a droplet or bubble in fluid-

fluid flows) are mainly due to velocity gradients in the primary-phase flow field. In the 

ANSYS FLUENT model the inclusion of lift is not appropriate for closely packed particles or 

for very small particles, as the model is based on the assumption that the particle diameter is 

much smaller than the interparticle spacing. On the other hand, it must be kept in mind that 

the lift force will be more significant for larger particles. The lift force is added to the right-
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hand side of the momentum equation for both phases. The lift force acting on a secondary 

phase p in a primary phase q is calculated from:                             

   lift l q p q p qF C v v v             3-24 

where    is the lift coefficient, which typically takes a value of 0.5 for inviscid flow. In most 

cases, the lift force is insignificant compared to the drag force and can thus be ignored. In the 

ANSYS FLUENT model, by default, it is not included, but it can be specified if it is 

significant. 

Another force term in the ANSYS FLUENT model is the virtual mass force, which is also 

added to the right-hand side for both phases. The virtual mass force effect occurs when a 

secondary phase p accelerates relative to the primary phase q. The inertia of the primary 

phase mass encountered by the accelerating particles exerts a virtual mass force on the 

particles: 

q q p p

vm p q

d v d v
F 0.5α ρ

dt dt

 
  

 
        3-25 

where 
  

  
 denotes the phase material time derivative of the form, 

   
 q

q

d
v .

dt t

 



  


        3-26 

The virtual mass effect is significant when the secondary phase density is much smaller than 

the primary phase density. In the ANSYS FLUENT model the virtual mass force is not 

included, by default, but it can be modelled when desired. 

3.7 Solution algorithm of ANSYS-FLUENT 

To solve the governing (transport) equations for the conservation equations, a pressure-based 

solver and a coupled-based solver are available in the ANSYS-FLUENT code, which for both 

methods the velocity field is obtained from the momentum equations. In the density-based 
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approach, the continuity equation is used to obtain the density field while the pressure field is 

determined from the equation of state. On the other hand, in the pressure-based approach, the 

pressure field is extracted by solving a pressure or pressure correction equation which is 

obtained by manipulating continuity and momentum equations. Only pressure-based solver 

algorithms is available in FLUENT for multiphase flow. 

3.7.1 The Pressure-Based Segregated Algorithm 

In the segregated algorithm the individual governing equations are solved one after another, 

and each variable is therefore updated in turn. Each solution loop in the segregated algorithm 

is made up of the following steps and describe in figure 3.2: 

1. Updating flow properties including turbulent viscosity based on the current solution. 

2. Solving the momentum equations, in a segregated manner, using the currently 

estimated values of pressure and face mass fluxes. 

3. Solving the pressure correction equation using the velocity field, from the previous 

step, and the corresponding mass-fluxes. 

4. Correcting the pressure, velocity field and face mass fluxes using the pressure 

correction obtained from the previous step. 

5. Solving the equations for additional scalars such as turbulent quantities using the 

current values of the solution variables. 

6. Updating the source terms arising from the interactions among different phases. 

7. Checking for the convergence of the equations. 
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Figure  3-2 Overview of the Pressure-based solution methods 

 

These steps are continued until the convergence criteria are satisfied. The segregated 

algorithm is efficient in terms of the required memory as the discretized equations need only 

be stored one at a time. On the other hand, the solution convergence can be relatively slow. 

3.7.2 General Scalar Transport Equation: Discretization and Solution 

The control volume technique consists of integrating the transport equations over each 

control volume. These integrations, and associated approximations, result in a set of discrete 

equations that express the conservation laws on a control-volume basis. Illustration of this 

procedure can be given by starting with writing the unsteady conservation equation for 

transport of a scalar quantity ( ), as follows: 

Solve sequentially , ,vel vel velU V W  

 

Solve pressure-correction (continuity equation) 

 

Update mass flux, pressure, and velocity 

 

Solve energy, species, turbulence and other scalar 

equation (if available) 

 

 as volume fraction continuity 

 and _ as well 

 

equations for k and _ as well 

as volume fraction continuity 

equations if available. 

 

Converged? 

 

Stop 

Update fluid properties 

YES No 
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Equation (3.27) can be integrated over an arbitrary control volume V. This yield: 

Γ
V V

dV v dA dA S dV
t

 


 


     

 ∮ ∮      3-28 

where    is surface area vector,    is diffusion coefficient for  , ∇  is the gradient of  , and 

   is any source term of   per unit volume. Equation 3.28 is applied to each cell in the 

computational domain. These integrals can be approximated by writing the cell face values of 

the unknown   and relating them to the cell centre values of these unknowns, and for a given 

cell this discretization yields: 

Γ
faces facesN N

f f f f f f

f f

V v A A S V
t

 


  


     


       3-29 

where        is the number of faces enclosing the cell,  
 
 is value of   at the centre of face f, 

      is the area of this face,  
 
           is mass flux through the face, ∇ 

 
 is the gradient of   at the 

centre of face f, and V is cell volume. The discretized equation obtained is, in general, non-

linear and contains the unknowns ( ) at the cell centre and in the surrounding neighbouring 

cells. A linearized form of equation (3.29) can be written as follows; 

P nb nb

nb

a a b            3-30 

where    and     are the linearized coefficients for the scalar quantities (  and    ) at the 

cell centre and surrounding neighbouring cells respectively. The number of the surrounding 

cells is equal to the number of faces enclosing the cell. A similar procedure can be conducted 

for the other cells in the computational domain, which results in a set of algebraic equations. 

ANSYS-FLUENT solves the resultant linear system using a point implicit (Gauss-Seidel) 

linear equation solver in conjunction with an algebraic multigrid (AMG) method.  
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3.8 Discretization of the Domain: Grid Generation 

Because of the nonlinearity of the equation set, it is difficult to solve the governing equation 

analytically and the sets of equations have to be discretized before the systems can be solved. 

Discretization means approximating the transport equations by a system of algebraic 

equations for flow variables at some set of discrete locations in space and time. Gambit 

(2005) is a pre-processor used to great the geometry which describes the computational 

domain of the problem to be analyzed. In Gambit, the whole computational domain has to be 

divided into small control volumes in order to solve the discretized transport equation. A grid 

(also called a mesh and shown in figures 3-3) is the first step in designing and building the 

computational domain of flow model and is used to break the domain into a set of discrete 

sub-domains, or cells, or control volumes. The success of the CFD analysis is highly depends 

on how dense the cells of the computational domain is, which needs to be fine enough to 

capture the flow details; on the other hand, the larger the numbers of cells the more time it 

will take to converge and a CFD user should consider the computer capability and simulation 

time when simulating. The grid cells are usually tetrahedral, prisms, pyramids, or hexahedral 

in 3D domains or quadrilaterals and  triangles in 2D domains. Quadrilateral for the 2D or 

hexahedral for the 3D are always structured.  In 2D axissymmetry, non-uniform grids can be 

used to cluster a larger number of mesh cells in regions where there is needed and fewer 

mesh cells in other part to increase the simulation accuracy and reduce the simulation time.  
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Figure  3-3a Control volume 
Figure 3.3b The computational domain is 

discretized into a finite set of control volumes. 

3.9 Spatial Discretization 

Since FLUENT stores discrete values of the scalar   at the cell centers, the face values 
f are 

required to be interpolated from the cell centre values using one of the upwind scheme. 

FLUENT has several upwind schemes: first-order upwind, second-order upwind, power law, 

and QUICK. To do this, consider a steady-state conservation equation: 

( )U
x x x


 

   
  

   
        3-31 

where   and u  are constant across the interval x  . Equation (3.31) can be integrated to 

yield the following solution describing how   varies with x : 

 
0 0
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L
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   

 
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

       3-32 

where 
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Depending on the value of the Peclet number, Pe ,  
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



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which represent the ratio of the influence of convection to that of diffusion on the flow field, 

different limiting behaviour exists for the variation of between x = 0 and x = L, and according 

to these limiting, more differencing schemes cases are discussed below along with some more 

rigorous discretization,  

3.9.1 Central-Differencing Scheme  

For Pe = 0, the solution is purely diffusive, and there is no convection. The second-order 

central-differencing scheme calculates the face value for a variable (  )as follows: 

, 0 1 0 0 1 1

1 1
( ) ( . . )

2 2
f CD r r               3-34 

where the indices 0  and 1
 
refer to the cells that share face   and    is the vector directed from 

the cell centroid toward the face centroid. In this approach, the upwind part is treated 

implicitly while the difference between the central-difference and upwind values is treated 

explicitly and the face value is calculated as follows: 

, , ,

_ _

( )f f UP f CD f UP

implicit part Explicit part

             3-35 

where UP  stands for upwind. As indicated, the upwind part is treated implicitly while the 

difference between the central-difference and upwind values is treated explicitly. Provided 

that the numerical solution converges, this approach leads to pure second-order differencing. 
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3.9.2 First-Order Upwind Scheme 

For Pe >>1, convection dominates, and also called Upwind Differencing Scheme. When first-

order accuracy is desired, the value at the cell face can be assumed to be identical to the 

upstream value, i.e.     . First-order upwind is available in the pressure-based and 

density-based solvers. 

3.9.3 Second-Order Upwind Scheme 

In a modified version of first order upwind differencing, quantities at cell faces are computed 

using a multidimensional linear reconstruction approach based on the upwind neighbour and 

its neighbours. In this second order upwind differencing scheme, which makes use of a 

Taylor series expansion to describe the upwind gradients, the face value   is computed using 

the following expression: 

, .f SOU r             3-36
 

where r is the displacement vector from the upstream cell centroid to the face centroid and   

and    are the cell-centered value and its gradient in the upstream cell. This formulation 

requires the determination of the gradient    in each cell, which is limited. It requires 

additional computational effort than the first order upwind method, but offers greater 

accuracy. 

3.9.4 Power-Law Scheme 

For intermediate values of the Peclet number, 0 < Pe < 10, The power-law discretization 

scheme interpolates the face value of a variable,   , using the exact solution to a one-

dimensional convection-diffusion as shown in eq. (3.31) and can be approximated by one that 

does not use exponentials, involving the Peclet number raised to an integral power. It is 

identical to the first order upwind differencing scheme in the limit of strong convection but 

offers slightly improved accuracy for the range of Peclet numbers mentioned above. 
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3.9.5 QUICK Scheme 

FLUENT also provides the QUICK scheme for computing a higher-order value of the 

convected variable   at a face.  The QUICK scheme (Leonard and Mokhtari, 1990) is similar 

to the second order upwind differencing scheme, with modifications that restrict its use to 

quadrilateral or hexahedral meshes (Edward L. Paul et al., 2004). For the face e in Figure 3.4, 

if the flow is from left to right, such a value can be written as: 

2
(1 )d c u c c

e P E P W

d c d c u c u c

S S S S S

S S S S S S S S
      

   
       

      
   3-37 

 

 

Figure  3-4 One-dimensional control volume 

 

In this scheme, a quadratic function is fitted to the variable at three points, upwind cell centre 

and next upwind neighbour along with the value at the node P, and use to compute the face 

value. This scheme can offer improvements over the second order upwind differencing 

scheme for some flows with high swirl. 

3.9.6 Third-Order MUSCL Scheme 

Is available for all transport equations and most significantly for complex three-dimensional 

flows. Comparing to the second-order upwind scheme, the third-order MUSCL has a 

potential to improve spatial accuracy for all types of meshes by reducing numerical diffusion 

(Ansys-Fluent, 2011). This third-order convection scheme was conceived from the original 
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MUSCL by combination a central differencing scheme and second-order upwind scheme 

(van Leer, 1979) as: 

, ,(1 )f f CD f SOU              3-38 

where       defined in Equation (3-34), and       is computed using the second-order 

upwind scheme as described above in Equation (3-36). Compared to the second-order upwind 

scheme, the third-order MUSCL has a potential to improve spatial accuracy for all types of 

meshes by reducing numerical diffusion, most significantly for complex three-dimensional 

flows, and it is available for all transport equations. 

3.9.7 Geometric Reconstruction Scheme  

In the VOF, the geometric reconstruction scheme represents the interface between fluids 

using a piecewise-linear approach. It assumes that the interface between two fluids has a 

linear slope within each cell, and uses this linear shape for calculation of the advection of 

fluid through the cell faces using the standard interpolation schemes that are used in ANSYS 

FLUENT. The first step in this Geometric Reconstruction Scheme is calculating the position 

of the linear interface relative to the centre of each partially-filled cell based on information 

about the volume fraction and its derivatives in the cell. Then calculating the advecting 

amount of fluid through each face using the computed linear interface representation and 

information about the normal and tangential velocity distribution on the face. Finally, using 

the balance of fluxes calculated during the previous step, the volume fraction in each cell is 

obtaining. 
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Table  3-1 : Summary of spatial discretization scheme (Marshall and Bakker, 

2003) 

Discretization Scheme Description, Advantages, and Disadvantages 

Central 

Good when diffusion dominates. Assumes there 

is no convection, and that variables vary 

linearly from cell center to cell center. For 

convective flows, errors can be reduced by the 

use of a refined grid. This scheme is 

recommended for LES simulations. 

First order upwind 

Good when convection dominates and the flow 

is aligned with the grid. Assumes the face value 

for each variable is equal to the upstream cell 

center value. Stable, and a good way to start off 

a calculation. A switch to a higher order scheme 

is usually recommended once the solution has 

partially converged. 

Second order upwind 

Good for full range of Peclet numbers. 

Computes the face value for each variable from 

gradients involving the upwind neighbour  and 

its neighbour s. 

Power law 

Good for intermediate values of Peclet number. 

Computes the face value for each variable from 

gradients expressed in the form of a power law 

function. For high Peclet numbers, results are 

equivalent to first order upwind. 

QUICK 

Good for full range of Peclet numbers. Similar 

to second order upwind, but restricted to 

quadrilateral and hexahedral meshes. 

Third-Order MUSCL Scheme 

Is available for all transport equations and most 

significantly for complex three-dimensional 

flows. Comparing to the second-order upwind 

scheme, the third-order MUSCL has a potential 

to improve spatial accuracy for all types of 

meshes by reducing numerical diffusion. 

 

3.10 Temporal Discretization  

The discrete location in time means that an unsteady flow will be divided in small time steps. 

A discretization scheme gives for flow variables like pressure or velocity a relation between a 

particular cell and its neighbours, and relates information of the previous time step with the 
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current time step. The relations for space and time form an equation for every cell, which 

yields to a system of equations with a size equal the number of cells. Temporal discretization 

involves the integration of every term in the differential equations over a time step    to 

solve a time-dependent problem. The time derivative is discretized using backward 

differences, the time derivative can be approximated to first order as: 

( )F
t








          3-39 

where the function   incorporates any spatial discretization. If the time derivative is 

discretized using backward differences, the first-order accurate temporal discretization is 

given by:  

1

( )
n n

F
t

 


 



         3-40 

and the second-order discretization is given by: 

1 13 4
( )

2

n n n

F
t

  


  



        3-41 

where   is a scalar quantity,      is the value at the next time level,       is the value at 

the current time level,  , and     is the value at the previous time level,     . 

3.10.1 Implicit and Explicit time integration 

Explicit methods are best suited to certain flow conditions, such as compressible flow, while 

an implicit method is usually the most robust and stable choice for a wide variety of 

applications. The major difference between the explicit and implicit methods is whether      

in Eq. (3-43) is evaluated at the current time (Explicit),           , or at the new time 

(Implicit):             , since      in a given cell is related to in neighbouring cells 

through        ,: 

1 1( )n n ntF              3-42 
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This implicit equation can be solved iteratively at each time level before moving to the next 

time step. The advantage of the fully implicit scheme is that it is unconditionally stable with 

respect to time step size. Here, the time step t  is limited by the Courant-Friedrich-Lewy 

condition (CFL). In order to be time-accurate, all cells in the domain must use the same time 

step, and  must be the minimum of all the local time steps in the domain for stability. 

3.10.2 Time Schemes in Multiphase Flow 

In many multiphase applications, the process can vary spatially as well as temporally. In 

order to accurately model multiphase flow, both higher-order spatial and time discretization 

schemes are necessary. In addition to the first-order time scheme, the second-order time 

scheme is available in the Eulerian multiphase model and with the VOF Implicit Scheme. In 

multiphase flow, a general transport equation (3-39) may be written as: 

( )
.( ) .u S

t



  


  


       3-43 

where is either a mixture or a phase variable,   is the phase volume fraction (unity for the 

mixture equation),  is the mixture phase density, u is the mixture or phase velocity 

(depending on the equations),   is the diffusion term, and S
 is the source term. As a fully 

implicit scheme, this second-order time-accurate scheme achieves its accuracy by using an 

Euler backward approximation in time (see eq. 3-41). The general transport equation, 

Equation (3-43) is discretized as: 

1 1
1

1 1 12( ) 4( ) ( )
( )

2

n n n
n

n n nP P P P P P P P P
nP nP p U P P

V V V
A S S

t

        
  

 


   
     

    3-44
 

Equation (3-44) can be written in simpler form: 

P P n nA A b b S             3-45 

where 
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1
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This scheme is unconditionally stable; however, the negative coefficient at the time level 

    , of the three-time level method, may produce oscillatory solutions if the time steps are 

large. This problem can be eliminated if a bounded second-order scheme is introduced. 

However, oscillating solutions are most likely seen in compressible liquid flows. Therefore, a 

bounded second-order time scheme has been implemented for compressible liquid flows 

only. For single phase and multiphase compressible liquid flows, the second-order time 

scheme is, by default, the bounded scheme. 

3.10.3 Volume-of-Fluid Model Time Schemes 

In the Volume-of-Fluid model, the volume fraction equation may be solved either through 

implicit or explicit time discretization. 

When the implicit scheme is used for time discretization, FLUENT's standard finite-

difference interpolation schemes, QUICK, Second Order Upwind and First Order Upwind, 

and the Modified HRIC schemes, are used to obtain the face fluxes for all cells, including 

those near the interface. 

1 1
1 1

,

1

( ) ( )
GL LG

L

n n n n n
n nL L L L

L f L f

f G

V U S m m V
t



   
 

   
 



  
      
     3-48 

where 1n and n  represents the index for the new and previous time step, respectively. 
,q f  

is the face value of the     volume fraction, computed from the first- or second-order 

upwind, Quadratic Upwind Interpolation for Convective Kinematics (QUICK), Compressive 

Interface Capturing Scheme for Arbitrary Meshes (CICSAM) and High Resolution Interface 

Capturing (HRIC) schemes. V is the volume of cell and 
fU is the volume flux through the 

face, based on normal velocity. The face fluxes were interpolated either using interface 
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reconstruction or using a finite volume discretization scheme. The reconstruction based 

scheme investigated was Geometric Reconstruction (GR) method given by Donor-Acceptor 

scheme can be used only with quadrilateral or hexahedral meshes. For the computations of 

interpolation near the interface, the control-volume formulation required that convection and 

diffusion fluxes through the control volume faces be computed and balanced with source 

terms within the control volume itself. In the geometric reconstruction and donor-acceptor 

schemes, an interpolation treatment was applied to the cells that lie near the interface between 

two phases. 

Since Equation (3-48) requires the volume fraction values at the current time step (rather than 

at the previous step, as for the explicit scheme), a standard scalar transport equation is solved 

iteratively for each of the secondary-phase volume fractions at each time step. 

The implicit scheme can be used for both time-dependent and steady-state calculations. In the 

explicit approach, FLUENT's standard finite-difference interpolation schemes are applied to 

the volume fraction values that were computed at the previous time step. 

1 1

,

1

( ) ( )
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L

n n n n n
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t


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 

   



  
      
     3-49

 

This formulation does not require iterative solution of the transport equation during each time 

step, as is needed for the implicit scheme. When the explicit scheme is used for time 

discretization, the face fluxes can be interpolated either using interface reconstruction or 

using a finite volume discretization scheme.  

3.10.4 Evaluation of Gradients and Derivatives 

Gradients are needed not only for constructing values of a scalar at the cell faces, but also for 

computing secondary diffusion terms and velocity derivatives. The gradient  of a given 

variable   is used to discretize the convection and diffusion terms in the flow conservation 
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equations. The gradients are computed in according to the following methods: Green-Gauss 

Cell-, Green-Gauss Node- or Least Squares Cell-based methods. 

3.10.5 Green-Gauss Theorem  

When the Green-Gauss theorem is used to compute the gradient of the scalar   at the cell 

center 
0c

 
, the following discrete form is written as:  

0

1
( )c f f

f

A
v

             3-50 

where    is the value of   at the cell face centroid, computed as shown in the sections below. 

The summation is over all the faces enclosing the cell.  

3.10.6 Green-Gauss Cell-Based Gradient Evaluation  

By default, the face value   
    , in Equation (3-50)  is taken from the arithmetic average of the 

values at the neighbouring cell centers, i.e.,  

0 1

2

c c
f

 



           3-51 

3.10.7 Green-Gauss Node-Based Gradient Evaluation  

Alternatively,   
    , can be computed by the arithmetic average of the nodal values on the face:  

1 Nf

f n

nfN
             3-52 

where 
fN is the number of nodes on the face.  

The nodal values,  
    , Equation (3-52), are constructed from the weighted average of the cell 

values surrounding the nodes. This scheme reconstructs exact values of a linear function at a 

node from surrounding cell-centered values on arbitrary unstructured meshes by solving a 

constrained minimization problem, preserving a second-order spatial accuracy. The node-

based averaging scheme is known to be more accurate than the default cell-based scheme for 

unstructured meshes. 
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3.10.8 Least Squares Cell-Based Gradient Evaluation 

In this method the solution is assumed to vary linearly. In Figure 3-5, the change in cell 

values between cell
0c

 
and 

ic  
 
along the vector 

ir  from the centroid of cell 
0c

 
to cell

ic , can 

be expressed as: 

0( ) . ( )co i ci cr              3-53 

 

 
 
 
 
 
 
 
 
 
 
 

Figure  3-5 Cell centroid evaluation 

 

If we write similar equations for each cell surrounding the cell 
0c , we obtain the following 

system written in compact form: 

 [ ]( ) ( )coJ             3-54 

where [ ]J is the coefficient matrix which is purely a function of geometry. The objective here 

is to determine the cell gradient,
ˆˆ ˆ

o x y zi j k       , by solving the minimization problem 

for the system of the non-square coefficient matrix in a least-squares sense. The above linear-

system of equation is over-determined and can be solved by decomposing the coefficient 

matrix using the Gram-Schmidt process. This decomposition yields a matrix of weights for 

each cell. Thus for our cell-centered scheme this means that the three components of the 

weights 
0, 0, 0,( )x y z

i i iW W W are produced for each of the faces of cell 
0c . Therefore, the gradient at 

 

co 
ci 

rj 



58 
 

the cell center can then be computed by multiplying the weight factors by the difference 

vector 
0( )ci c     : 

0 0 0
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3.11 Pressure-Based Solver 

Discretization of the momentum and continuity equations and their solution by means of the 

pressure-based solver are addressed by considering the steady-state continuity and 

momentum equations in integral form: 

 . 0u dA            3-56 

 .pI dA   .dA  
V

FdV         3-57 

 

where I  is the identity matrix,   is the stress tensor, and F  is the force vector. 

3.11.1 Discretization of the Continuity and Momentum Equations 

The discretized form of the x-momentum equation, for example, can be obtained by setting: 

    

ˆ.P nb nb f

nb

a u a u p Ai S           3-58 

where the subscript     refers to neighbour cells, and   and     are the linearized 

coefficients for the velocity component (  and    ) at the cell centre and surrounding 

neighbour cells respectively.    is the pressure value at the faces enclosing the cell in 

question and   is any other momentum source term contributions. The number of surrounding 

cells is equal to the number of faces enclosing the cell. A similar discretization procedure can 
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be conducted for the other cells in the computational domain, which results in a set of 

algebraic equations. If the pressure field and face mass fluxes are known, Equation (3.58) can 

be solved directly and a velocity field obtained. However, the pressure field and face mass 

fluxes are not known a priori and must be obtained as a part of the solution. Equation (3.58) 

requires particularly the value of the pressure at the face between two cells c0 and c1 shown in 

Figure (3.7), as an example. The face pressure value can be obtained from interpolating 

between cell centre values employing an interpolation scheme, as ANSYS-FLUENT stores 

both pressure and velocity at cell centres using a co-located scheme. There are different 

methods of pressure interpolation available in ANSYS FLUENT, which will be addressed 

next. 

In the default pressure interpolation scheme the cell-face pressure values are interpolated 

using the discretized momentum equation coefficients: 

0 1

, 0 , 1

, 0 , 1
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This formulation gives a good estimation to the pressure field as long as the pressure 

variation between cell centres is smooth. However, in some cases, include two-phase 

problems, there may be large gradients in the momentum source terms that result in high 

pressure gradients across the cells. 

A simpler alternative for obtaining cell-face pressures is a standard linear interpolation 

between adjacent cell-centre values. However, for multiphase problems this linear pressure 

interpolation scheme is only available with the mixture model. Another scheme is the body-

force-weighted scheme in which the face pressure is computed by assuming that the normal 

gradient of the difference between pressure and body forces is constant. This scheme works 

well for both the VOF and mixture models. However, the recommended, and default, scheme 
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for use with the VOF in ANSYS-FLUENT is the PRESTO! (Pressure Staggering Option) 

scheme. The PRESTO! scheme uses the discrete continuity balance for a staggered control 

volume about the face to compute the staggered (i.e. face) pressure. 

Cell-face mass fluxes are also required in equation (3.58), since they appear in the     and 

   coefficients arising from discretization of the convection terms. They are also required for 

a discretized form of the continuity equation. The steady-state continuity equation may be 

written in integral form as follows: 

. 0v dA ∮           3-60 

and applying this to the control volume illustrated in figure (3-7) leads to the following 

discrete equation: 

0
facesN

f f

f

J A            3-61 

where    represents the mass flux (   ) through face f.  

To evaluate the cell-face mass fluxes again requires some interpolation since the velocity 

values are stored at the cell centres. In ANSYS-FLUENT the velocity face values are not 

interpolated linearly, as this may lead to unphysical checker-boarding of pressure; instead, a 

momentum-weighted averaging procedure is employed. The momentum-weighted averaging 

procedure is based on the use of weighting factors that utilize the    coefficient from 

equation (3.31). Thus, the face mass flux (  ) can be written as: 
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where the term    is a function of    , the average of the momentum equation    coefficients 

for the cells on either side of face f, and    ,     and      ,       are the pressure and face 

normal velocities, respectively, within the two cells on either side of the face. 
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3.11.2 Pressure-Velocity Coupling 

The momentum equations, for example Eq. (3.62) for the x-momentum, can be solved to 

obtain the velocity field if the pressure field is known a prior. The continuity equation cannot 

be used directly to obtain the pressure field. However, an iterative procedure is usually used 

to correct the pressure field in order to ensure that the velocity field satisfies the continuity 

equation. Such iterative procedure is generally referred to as pressure correction scheme. 

There are several pressure-velocity coupling algorithms available in ANSYS FLUENT, 

including: SIMPLE, SIMPLEC, PISO, COUPLED, and Fractional Step (FSM). For Eulerian 

multiphase calculations, ANSYS FLUENT uses the phase coupled SIMPLE (PC-SIMPLE) 

algorithm for the pressure-velocity coupling. PC-SIMPLE is an extension of the SIMPLE 

algorithm to multiphase flows. The velocities are solved coupled by phases, but in a 

segregated fashion. Pressure and velocities are then corrected so as to satisfy the continuity 

constraint. 

In the SIMPLE algorithm, a guessed pressure field is used in the solution of the momentum 

equations in the segregated algorithms. The new computed velocities will not, in general, 

satisfy the continuity equation, so corrections to the velocities will need to be determined. A 

pressure correction is computed then based on the velocity corrections, which then add to 

update the original guessed pressure. Following the solution of the remaining problem 

variables, the iteration is complete and the entire process repeated. All iterative algorithms 

have the same general structure: they start with a guessed pressure field (  ). With a known 

pressure field it is possible to solve the momentum equations and determine a temporal 

velocity field. Then a pressure correction (p') is calculated based on these temporal velocities. 

With these pressure corrections the final velocities and pressures, then the resulting face mass 

fluxes (  
 ) can be obtained: 



62 
 

0 1
ˆ* * ( * * )f f f c cJ J d p p           3-63 

Corrections (   ) are then added to these face fluxes (  
 ) in order to ensure they satisfy the 

discretized continuity equation. Therefore, the corrected face flux (  ) can be written as: 

* '

f f fJ J J            3-64 

ANSYS-FLUENT defines the correction value (     as following: 

'

0 1( ' ' )f f c cJ d p p           3-65 

where    represent the cell pressure correction. The corrected mass fluxes equation (3.61) is 

substituted into the discrete continuity equation (3.64), and equation (3.65) used to express 

the flux corrections in terms of pressure corrections. This leads to a discrete equation for the 

pressure corrections: 

' 'p nb nba p a p b           3-66 

where the source term b represents the net flow rate into the cell: 

*
N faces

f f

f

b J A           3-67 

The pressure corrections (  ) obtained from solving equation (3.66) can then be used to 

correct the cell pressure and the face mass fluxes as follows: 

* 'fp p a p            3-68 

and 

0 1* ( ' ' )f f f c cJ J d p p           3-69 

where    is the under-relaxation factor for pressure. 

The SIMPLEC procedure is similar to the SIMPLE procedure. The only difference between 

SIMPLEC and SIMPLE lies in the expression used for the face flux correction, ' fJ . As in 

SIMPLE, the correction equation may be written as shown in Equation (3-70): 

0 1* ( ' ' )f f f c cJ J d p p           3-70 
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However, the coefficient
fd is redefined as a function of p nb

nb

a a
 

 
 

 . The use of this 

modified correction equation has been shown to accelerate convergence in problems where 

pressure-velocity coupling is the main deterrent to obtaining a solution (Van Doormaal and 

Raithby, 1984).  

One of the limitations of the SIMPLE and SIMPLEC algorithms is that new velocities and 

corresponding fluxes do not satisfy the momentum balance after the pressure-correction 

equation is solved. As a result, the calculation must be repeated until the balance is satisfied. 

To improve the efficiency of this calculation, the PISO algorithm performs two additional 

corrections: neighbour  correction and skewness correction. 

The main idea of the PISO algorithm is to move the repeated calculations required by 

SIMPLE and SIMPLEC inside the solution stage of the pressure-correction equation. After 

one or more additional PISO loops, the corrected velocities satisfy the continuity and 

momentum equations more closely. This iterative process is called a momentum correction or 

"neighbour correction''. The PISO algorithm takes a little more CPU time per solver iteration, 

but it can dramatically decrease the number of iterations required for convergence, especially 

for transient problems. For the flow problem on hand it is chosen to use the PISO algorithm; 

The PISO algorithm is highly recommended for all transient flow calculations, especially 

when the use of a large time step is intended. Due to the second pressure correction it is 

possible to enlarge the time step, which means a considerable decrease in demanded CPU-

time. It is also possible to increase the Under-Relaxation-Factor of the velocities, which 

means faster convergence and thus also decreased CPU-time. 

3.11.3  Under-Relaxation of Variables 

Because of the nonlinearity of the equation set being solved by FLUENT, it is necessary to 

control the change of . If 
old  is the value of the variable from the previous iteration and   



64 
 

is the new value, then some small difference or change in the variable brings the variable 

from the old value to the new one: 

old              3-71 

underrelaxation factors,  , typically range from 0.1 to 1.0 is used in all cases for some 

material properties and in the pressure-based coupled algorithm. This process is called 

underrelaxation, and  is used to reduces the change of  produced during each iteration at 

the expense of slowing the rate of convergence as follows:  

old= +                3-72  

Then the under-relaxation of equations is used in the pressure-based solver to stabilize the 

convergence behaviour  of the outer nonlinear iterations: 

1
=

p

nb nb p old

nb

b
  

   
 


         3-73 

The Courant-Friedrichs-Lewy (CFL) number is a solution parameter in the pressure-based 

coupled algorithm and can be written in terms of  : 

1 1

CFL






           3-74 

3.11.3  General approach - convergence 

The iterative process is repeated until the change in the variable from one iteration to the next 

becomes so small that the solution can be considered converged and all discrete conservation 

equations (momentum, energy, etc.) are obeyed in all cells to a specified tolerance. In 

addition the solution no longer changes with additional iterations, and mass, momentum, 

energy and scalar balances are obtained. 

3.11.4 Residuals  

Residuals measure imbalance (or error) in conservation equations. The absolute residual at 

point P is defined as: 
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b b nb nbnb
p

b b

a a
R

a

 







        3-75 

Residuals are usually scaled relative to the local value of the property f in order to obtain a 

relative error: 

,

b b nb nbnb
p scaled

b b

a a b
R

a

 



 



       3-76 

They can also be normalized, by dividing them by the maximum residual that was found at 

any time during the iterative process. An overall measure of the residual in the domain is: 

p p nb nball cells nb

b pall cells

a a b
R

a


 



 

 


       3-77 

It is common to require the scaled residuals to be on the order of 10
-3

 to 10
-4

 or less for 

convergence. 

3.11.5 Time-Advancement Algorithm 

For steady-state flows, the governing equations do not contain time-dependent terms. For 

time-dependent flows, the discretized form of the generic transport equations is of the 

following form:  

1 1 1 1 1 1. .n n n n n n

V V
dV u dA dA S dV

t
 


       

    
 ∮ ∮     3-78 

As a standard default approach, all convective, diffusive, and source terms are evaluated from 

the fields for time level 1n . In the pressure-based solver, the overall time-discretization 

error is determined by both the choice of temporal discretization (e.g., first-order, second-

order) and the manner in which the solutions are advanced to the next time step (time-

advancement scheme). Temporal discretization introduces the corresponding truncation error;

2( ), [( ) ]O t O t  , for first-order and second-order, respectively. The segregated solution 

process by which the equations are solved one by one introduces splitting error. There are 
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two approaches to the time-advancement scheme depending on how we want to control the 

splitting error. 

3.11.6 Iterative and Non-Iterative Time-Advancement Scheme 

The iterative scheme is the default in FLUENT. In the iterative scheme, all the equations are 

solved iteratively, for a given time-step, until the convergence criteria are met. With this 

iterative scheme, non-linearity of the individual equations and inter-equation couplings are 

fully accounted for, eliminating the splitting error, but requires a considerable amount of 

computational effort due to a large number of outer iterations performed for each time-step. 

In the non-iterative time-advancement (NITA) scheme, one does not really need to reduce the 

splitting error to zero, but only have to make it the same order as the truncation error. The 

NITA scheme does not need the outer iterations, performing only a single outer iteration per 

time-step, which significantly speeds up transient simulations. 
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Chapter 4 Benchmark test cases for bubble dynamics in zero-

gravity condition 
 

4.1 Introduction 

One of the issues associated with the numerical predictions of flow regimes in zero gravity is 

their validation against available data. Before proceeding to examine and investigate in detail 

the impact of changing the boundary conditions and parameters, the very challenging and 

often overlooked task of multiphase code validation and verification must be performed 

before beginning any multiphase simulations, especially in zero gravity. Predicting surface 

tension-dominated flows numerically is a challenging task, since numerical errors caused by 

the discretisation of this singular term can lead to large errors: so-called spurious currents 

(Herrmann et al., 2008). If the correct model is used and if the results obtained are verified 

against results available from the literature, code validation and verification can help to solve 

multiphase flow. With regard to the verification process, the relationship between the 

simulation and the correct mathematics and method being used is the primary concern; 

however, in the validation process, the comparison between computational and experimental 

data is the issue. Verification is primarily a mathematics issue; validation is primarily a 

physics issue (Roache, 1998). 

4.2 Numerical model, boundary and operating conditions 

The objective of this chapter is to simulate the behaviour of a single bubble under the 

influence of a linear temperature gradient in a zero-gravity environment using CFD code. The 

results obtained are then be validated against an existing experimental method from the 

literature before proceeding to the main topic. For the verification and validation process, the 

thermocapillary flow of an isolated N2 bubble in ethanol (Pr 16.2) in a two-dimensional 

axisymmetrical cylinder was first investigated. 
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A description of the geometry in question is shown in Figure 4.1, and the following 

assumptions are made for all numerical simulations: 

1. The width of the domain is 20D and the height of the domain is 20D. 

2. The thermocapillary velocity is small and the flow is laminar.  

3. The upper and lower surfaces are flat and non-deformable; adiabatic and non-slip wall 

conditions are applied to all surfaces. 

4. A steady-state temperature distribution is established as an initial condition before 

releasing the bubble into the unsteady motion, where the top and bottom walls are 

maintained at constant temperatures: Top BottomT T  

5. The host liquid is an incompressible Newtonian fluid and an assumption of constant 

properties is applicable, except for surface tension. 

6. The driving force for the flow is the variation of surface tension according to 

temperature, which is modelled by a linear function shown in Equation 4.1 below: 

 
0 0( )  T T T              4-1 

where σo is the coefficient of surface tension at reference temperature To  and σT is 

the rate of change of surface tension with fluid temperature T (usually negative). 

Table 4.1 presents the physical properties of the host liquid and gas bubble used for 

the simulations at 300K. 
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Once the geometry and the grid were formulated, they were read into the fluid simulation 

code. The boundary conditions and source terms must be specified in the momentum 

equations. The calculations were performed using a pressure-based, segregated, implicit 

solver. The two-phase problems were computed within the VOF framework in which one 

 

Figure  4-1 Schematic of solution domain for bubble migration in a uniform 

temperature gradient. 

Table  4-1 Physical properties of the liquids employed in the simulation at 300K for Silicone oil 

(Pr=138) , ethanol (Pr=16.3) and Nitrogen (Pr=0.79). 

Properties Unit Silicone oil Ethanol Nitrogen (N2) 

Density ( ) kg/m
3
 940 790 1.138 

Specific Heat (Cp) j/kg-K 1800 2470 1040.7 

Thermal Conductivity (k) w/m-K 0.134 0.182 0.0242 

Viscosity (μ) kg/m-s 0.0103 0.0012 1.66e-5 

Surface Tension (σ0) N/m 0.0201 0.0275 ------ 

Surface Tension Coefficient (σT) N/m-K 0.00007 0.00009 ------ 

Temperature Gradient (∇T) K/mm 0.208 - ------ 

Prandtl Number (Pr) ------- 138 16.28 0.79 
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single set of conservation equations is solved for both phases, together with the volume 

fraction equation for the gas phase, as detailed in Chapter 3. The walls of the cylinder had 

non-slip boundary conditions applied for the three sides and one axis side. Pressure–velocity 

coupling was accomplished by the pressure-implicit with the splitting of the operators 

(PISO), which performs two corrections: one for neighbour and the other for skewness. The 

pressure-staggering option (PRESTO) scheme is used for the pressure interpolation, and the 

momentum and the energy equations were discretised using a second-order upwind 

differencing scheme. Other algorithms were also attempted, such as QUICK, instead of a 

second-order upwind scheme. No difference was observed in the simulation results using 

these alternative methods; however, simulations using non-iterative methods were 

considerably computationally faster than when the iterative method was used. 

The geometric reconstruction scheme, based on the piece-wise linear interface calculation 

(PLIC) method of Youngs (1982), is applied to reconstruct the gas–liquid interface. 

According to many different operational conditions, non-iterative time advancements with 

time steps of 32.5 10   s are used to obtain convergence. Since mass transfer at the interface 

is not important in this situation, no mass sources were involved. Only the surface tension 

source was considered in the momentum. As previously described, the CSF method 

represents the surface tension force as a source term for cells with fractional liquid volumes. 

This method has been incorporated into the solver in such a way that the only input required 

is the surface tension coefficient force, written by a user-defined function (UDF) and called 

by the code simulation for each control volume at each time step. No gravitational force was 

imposed on the simulation, and all cases were run in double precision mode in the FLUENT 

software.  
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4.3 Bubble dynamics in a 2D axisymmetrical simulation 

The thermocapillary motion of a bubble in a confined apparatus was the first multiphase test 

case, which will serve as a stringent test for our treatment (explain) of surface tension. 

A single bubble with a diameter of 6 mm for ethanol and 8 mm for oil was placed 10 mm 

from the lower (cold) wall using the region adaptation setting on Ansys-Fluent. The size of 

the computational wall-bounded domain was chosen as 120 x 60 mm
2
 with impermeable 

sides. The properties for ethanol used in the simulation shown in Table 4.1 were taken from 

the study by Thompson et al. (1980). The initial velocity for the bubble was set to zero. The 

upper surface (upper wall) of the domain was hotter than the lower surface (lower wall); (see 

Fig. 4.1). 

Figure 4.2 shows the temperature contours for a thermocapillary isolated bubble migrating in 

microgravity. The figure shows the moves towards the warmer side when subjected to a 

temperature gradient in a microgravitational environment. Such a phenomenon is known as 

the Marangoni problem or the thermocapillary migration problem. Surface tension generally 

decreases with increasing temperature and the non-uniform surface tension at the fluid 

interface leads to shear stresses that act on the outer fluid by viscous forces. This causes 

bubbles in the fluid to move in the direction of the thermal gradient. Temperature gradients 

cause surface tension gradients at the liquid-gas interface (meniscus), and the variation of 

surface or interfacial tension along the meniscus gives rise to convection. The flow from a 

region of low surface tension to a region of higher surface tension is referred to as Marangoni 

flow. This phenomenon is clearest in Figures 4.4 & 4.5. The motion of the bubble triggers 

motion of the liquid around it. This motion of the ethanol reflects off the bottom of our 

domain and then rebounds into the back of the bubble.  
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Figure  4-2 A nitrogen bubble rising in a stationary fluid with an imposed 

stratified temperature gradient for ethanol with Pr=16, ReT= 148.2, and 

MaT=2412.3 at t=9 s from the start of the bubble migration.  

 

 

Figure  4-3 streamlines (Kg/s) for a bubble rising in a stationary fluid for 

ethanol with Pr=16, ReT= 148.2, and MaT=2412.3 at t=9 s from the start of 

the bubble migration. 
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Figure  4-4 A bubble rising in a stationary fluid with an imposed 

temperature gradient for ethanol with Pr=16, ReT= 148.2, and  

MaT=2412.3 at t=9 s from the start of the bubble migration. 

 

 

Figure  4-5 streamlines (Kg/s) for a bubble rising in ethanol with Pr=16.3, 

ReT= 148.2, MaT=2412.3 at t=9 s from the start of the bubble migration. 
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The final numerical results were then compared with the experimental measurements of 

Thompson et al (1980), as shown in Figure 4.6. The Fluent solver over-predicts bubble 

motion early in the process, and the steady velocity predicted by the current model does not 

agree well with the steady velocity measured by Thompson et al. (1980) for Pr = 16.3; 

however, the predictions improved later in the process, as seen in Figure 4.6. The reason for 

this variation is that the bubble is placed in the domain by ‘patching’ the shape of a sphere at 

the initial boundary condition and numerically duplicating the initial bubble injection process 

is almost impossible, whereas for simulations a stagnant bubble is assumed. The exact 

experimental initial conditions are often difficult or impossible to determine and this leads to 

slight differences in the bubble trajectory early on the bubble motion. However, the 

predictions are quite close to the experimental results in the latter stages. From Figure 4.6 one 

can see the similarity between the obtained results and experimental data for Nitrogen bubble 

migrating in Silicon oil. This match in result is due to the low migration speed of the bubble 

inside high Prandtl number (Pr=138) and the easy for the CFD results to catch up with the 

experimental from the early stage. Based on the results shown in Figure 4.6 and discussed in 

this section, it was also found that CFD predictions with the VOF model agreed better with 

the experimental data, due to the fact that it is based on the Geo-Reconstruct algorithm. The 

VOF model with the UDF were examined properly and results show that the surface tension 

coefficient was well coded, suggesting that it is an appropriate choice to solve 

thermocapillary problems. 
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Figure  4-6 Validation of VOF-model with previous experimental data 

for bubble diameters, d=6 and 8 mm in ethanol (Pr=16.3) and silicon 

oil (Pr=138) respectively. 
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4.4 Grid resolution study for a two-dimensional axisymmetry 

The objective of a grid independence study is to ensure that the simulation result are 

independent of the grid density. Grid independence was achieved by increasing the number of 

region adaption cells from 72 to 406 per bubble radius by increasing the grid cells in both the 

X and Y directions, and plotting the convergence of certain parameters of interest such as 

bubble migration time towards the hotter side and migration distance to ensure that the 

solution remains independent of grid size. Concerning the number of cells in the present 

study, a non-uniform grid with grid lines clustered towards the centre was used in order to 

keep cell count down and to avoid the drawback of increasing memory and CPU time. The 

grid sensitivity test is shown in Table 4.2 and was simulated with the parameters outlined in 

Table 4.1. Another important point is that, when using an axisymmetric solver, a mesh need 

only be created for half of the domain, thus drastically reducing the number of cells used and 

consequently the time of calculation.  

Table  4-2. Grid sensitivity check for a gas bubble diameter=8 mm in ethanol (Pr=16.3) for the 2D-

axis models. 

Grid (∆x,∆y) Number of cells Cells per radius Migration time (s) Bubble speed (cm/s) 

(1) 0.6x0.6 8400 72 9.5 1.12 

(2) 0.5x0.5 9600 104 9.5 1.08 

(3) 0.4x0.4 17760 158 9.75 1.05 

(4) 0.3x0.3 23200 278 10 1.04 

(5) 0.25x0.25 31200 406 10 1.024 

 

Five different grids were used to study the grid size dependency. Each of the grids was used 

to simulate the thermocapillary bubble migration under zero-gravity conditions.  Since the 

bubble translation behaviour is of interest to this study, five simulations using each of the five 

grids developed in Table 4.2 are presented in Figure 4.7 and the mesh size with streamline 
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resolutions was tested using Tecplot software to simulate the 2D representation of the 

domain, as seen in Figure 4.8. Note that due to the difficulty obtaining the experimental 

initial condition for each 3D case; it was assumed that the previous validation results with 

Thompson et al.  (1980) in Figure 4.6 is in accepted agreement with the 2D axis simulation 

results for Pr=16.3 and 138. Therefore the coming 3D grid dependency figures are excluded 

from Thompson et al.'s  (1980) results and replaced with the results from the 2D axis 

simulation only.  

 

Figure  4-7 The predicted rising distance of a bubble, for five different grid sizes, 

vs. time (s) 

 

The profiles of bubbles with diameter of 8 mm were extracted across half of the 2D axis 

domain at a time = 9s at different distances from the cold lower side. These figures show only 
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a very small difference in the calculated bubble motion profiles using the 23200 mesh (grid-

4) and the 31200 mesh (grid-5) of the domain, which give 278 and 406 cells per bubble 

radius respectively. As seen from the results, it was expected that the greater grid density 

would give more accurate simulation results as finer grids reduce the distance over which 

variables in the computation are interpolated. However, as the 31200 mesh is computationally 

expensive, it is desirable to use the 23200 mesh to produce the desired results. In this grid 

study, the number of computational cells in the horizontal and vertical directions was 

increased while maintaining a square computational cell. This is achieved by changing the 

grid to uniform control volume (Δx/Δy=1), which is more satiable for accurate schemes at 

higher orders, avoiding numerical aliasing errors. 
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Figure  4-8 The rising distance of a bubble for five different grid sizes at t=9 s 

from the start of the bubble migration. 
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4.5 Bubble dynamics in a three-dimensional domain (periodic boundary 

and complete cylinder) 

 

If an axisymmetric model could be assumed to simulate the thermocapillary flow of a bubble, 

then a 2D-axis geometry would suffice; conversely, to model a bubble placed off-centre, then 

a 3D model simulation (using x, y and z co-ordinates) is necessary and a 2D axis will no 

longer be valid to model such flow. On the other hand, 3D models are more complicated and 

require more computational resource, i.e. running time and memory, while simultaneously 

conferring a loss of accuracy or creating difficulties with convergence by reducing the mesh 

size. Alternatively, periodic geometry could be used to reduce the computational effort 

required for some simulations. Periodic geometry is a very important step in the 3D 

simulation of bubble dynamics and is recommended for bubbles located in the centre and off-

centre area of the domain. When using the periodic flow solver, a mesh is only created for a 

quarter, half, three quarters or any other suitable fraction of the domain, as seen in Figure 

4.10. This method therefore reduces the number of cells used, and consequently the 

calculation time required. 

Four different grid densities were generated using Gambit (2005) software, one of which was 

used for each quarter of the cylinder. All grids used in this investigation were structured 

meshes. These refinements were adopted specifically to investigate the effect of using 

different cell sizes on the simulation of Marangoni flow, as shown in Figure 4.9. The results 

of the grid sizes and bubble speed are listed in Table 4.3. When creating a mesh for a quarter 

of the cylinder, as seen in these figures, the cells required to model the cylinder is reduced by 

a factor of 4, i.e., the total cells required for quarter 4 (shown in Figure 4.9 and Table 4.3) are 

equal to 375,000, which is equivalent to 1,500,000 cells if the case were to be simulated in a 

full 3D geometry. 
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The use of periodic boundaries can be of great assistance to ensure the validity of the 

previous 2D axisymmetric simulation results, leading to better justification of the full 3D 

geometry. For example, some benefits of this method may be greater simplicity of building 

and meshing the 3D geometry, ability to check the 3D grid dependency resolution, insight 

into the flow physics expected from fully three-dimensional flow, and help in predicting the 

results of the 3D flow. However, although using periodic geometries offers considerable 

benefits, they cannot be employed in the case of bubble/droplet motion in a rotating cylinder, 

as will be seen in Chapter 7; alternatively, a full 3D geometry will be used to calculate 

thermocapillary bubble migration in a rotating cylinder. 

  

Table  4-3 Grid sensitivity check for a nitrogen bubble of 11mm diameter migrating in ethanol 

(Pr=16.3) in quarterly periodic boundaries 

Grid (∆x,∆y,∆z ) 
Quarter hexahedral 

cells 

Cells per 

bubble quarter 

Bubble speed 

(mm/s) 

Quarter 1 25x25x100 50700 26 10.7 

Quarter 2 30x30x120 81000 46 10.9 

Quarter 3 40x40x160 192000 106 10.92 

Quarter 4 50x50x200 375000 206 10.3 
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Quarter 1 Quarter 2 

  

  

Quarter 3 Quarter 4 

Figure  4-9 Grid sensitivity check for quarterly periodic boundaries 

 

In order to study Marangoni bubble motion phenomena in a 3D geometry and as a result of 

computational requirements, the thermocapillary motion of a bubble in a confined apparatus 

was first performed in periodic domains measuring a quarter, half and three quarters of a 

circle before the experimental locus was extended into a more complex, fully 3D domain.  

Half and three-quarter geometries can also be utilised to reduce the computational time and 

memory, but can only be used for particles that do not flow across the periodic boundary 

when migrating toward the hotter surface. Subsequently, the results obtained were subject to 

grid dependency tests before being extended to three dimensions, as seen in Figure 4.11. 
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Quarter of a cylinder Half a cylinder 

  

Three quarters of a cylinder Full 3D cylinder 

 

Figure  4-10 Rotational periodic/full geometry used to calculate bubble migration toward the hotter 

side, with bubble initial position equal 1.5d 
 

The effects of grid resolution on the numerical predictions of thermocapillary bubble flow in 

zero gravity show the same behaviour as seen in Figure 4.9. In the same figure, the three-

dimensional periodic data for varying grid resolutions and a full 3D geometry confirmed the 

results with the 2D axisymmetric configurations, which were validated with results from the 

experiments of (Thompson et al., 1980). The simulations were plotted in terms of bubble 

displacement versus time .   
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 Figure  4-11 Grid sensitivity check for a bubble diameter of 11mm in quarterly 

periodic boundaries 

 

Further validation of the present VOF model was achieved by producing a series of 

increasingly refined grid densities using Gambit (2005) software. The reason for creating 

grids of different densities is to analyse how the grid density affects simulation characteristics 

of particular interest. It is very important to understand which grid will produce the desired 

effect with the least requirements of computational time and memory. Three different grid 

densities were created for meshing the full 3D cylinder with structured grids. These 

refinements were particularly adopted to investigate the effect of using different cell sizes on 

the simulation of thermocapillary bubble motion in zero gravity. The number of these cells 

and their data are listed in Table 4.4. (A, B, and C) and shown in Figure 4-12. 
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Figure  4-12 Grid sensitivity check for full 3D models related to Table 4-4 

 

Grid (X, Y, Z ) 
Number of 

hexahedral cells 

Cells per bubble 

radius 

Migration 

time (s) 

Bubble speed 

(cm/s) 

 

(A) 25x100x25 192400 100 9.5 1.09 

 

(B) 

 

30x120x30 

 

324000 

 

184 

 

9.5 

 

1.09 

 

(C) 

 

40x160x40 

 

768000 

 

424 

 

9.75 

 

1.10 

Table  4-4 Grid sensitivity check for a bubble diameter of 11mm for full 3D models 
  

Figure 4.13 shows a cross-sectional view of the 3D grid. The 3D model geometry has both a 

diameter and height of 120 mm with zero permeability (no “inflow” or “outflow” through the 

side boundaries). For the simulations, ethanol properties were taken as given in Table 4.1 and 

the calculations were performed using ReT=111, Pr=16.2 and MaT 1809.2. Bubble movement 

was observed from the colder to the hotter region. For bubbles with a diameter of 7 mm, finer 

mesh (FM) was utilised for the purpose of validation, using the results published by 

Thompson et al. (1980), as illustrated in Figures 4.13a-d. These figures show that the bubble 

staggers along the vertical line, maintaining a spherical shape due to the asymmetric 

distribution of the pressure in its wake. 

(A) (B) (C) 
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Figure 4.13a Diagram of the solution, t=0 s Figure 4.13b  Migration t=2 s 

  

Figure 4.13c Migration t=4 s Figure 4.13d Migration t=6 s 

 

Figure  4-13a, b, c and d represent 3D code validation for the thermocapillary motion of N2=6 mm 

diameter in ethanol (Pr=16.2) at zero gravity for different time steps 

 

Grid independence was achieved for parameters such as bubble migration time and velocity 

by increasing the number of region adaption cells from 100 to 424 per bubble; this was 

achieved by increasing the grid size in the X, Y, and Z directions. Figures 4.14 show the 

migration distance of the bubble in the Y direction, towards the hotter side, versus time for 

the three tested meshes of dimensions CM (25 x 100 x 25, 192,400 cells), MM (30 x 120 x 

30, 324,000 cells) and FM (40 x 160 x 40, 768,000 cells). Only a minor difference in the 

results was seen between the MM and FM dimensions, whereas the computational cost 

almost doubled. 
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Figure  4-14 Migration distance of the bubble (11mm) inside ethanol (Pr=16.2)  

towards the hotter side (Y-direction), versus time for the three tested meshes 
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4.6 Conclusion 

At the beginning of this research study and for the verification and validation process, 

investigations based on the computational fluid dynamics (CFD) concept have been carried 

out in detail and a reasonable agreement was found with (Thompson et al., 1980). The work 

documented in this chapter is very important in terms of an initial attempt to test the VOF 

solver capabilities of Fluent and its ability to predict surface tension-dominated flows 

numerically. The data and figures in this chapter have proven the existence of Marangoni 

bubble flow phenomena in zero-gravity conditions in a confined apparatus of axisymmetric, 

periodic, and fully three-dimensional geometries. The results were then validated with 

previous data from zero-gravity experiments. With regard to the VOF solver of Fluent, the 

CFD predictions of the VOF model exhibited better agreement with the experimental data 

due to the fact that they were based on the Geo-Reconstruct algorithm. Close examination of 

the VOF model with UDF showed that the surface tension coefficient was well coded, 

suggesting that this model is an appropriate choice to solve this problem. Further validation 

of the present VOF data was achieved by performing a series of calculations, as numerical 

errors due to the discretisation of this singular term can lead to large errors. Further to this, 

the numerical results of the surface tension gradient will serve as a base for the rest of this 

study. As the accuracy of the simulation is mostly dependent on mesh density, the process of 

using different mesh sizes, time steps, convergence criteria and discretisation schemes, grid 

tests and extending the geometry from periodic boundaries to a fully three-dimensional model 

was checked and validated with previous experimental work and the 2D axisymmetric data. 

Nonetheless, the numerical simulation facilities available nowadays should encourage 

researchers to make use of high-density grids and complex three-dimensional models to 

obtain results of the highest possible accuracy.  
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Chapter 5 Numerical results and discussion 
 

5.1 Thermocapillary Simulation of Single Bubble Dynamics in Zero 

Gravity 

 

The CFD tools used in this chapter are employed to simulate the flow of thermocapillary 

(Marangoni) bubbles/droplets along a 2D axis in zero-gravity conditions. These simulations 

were carried out in order to better understand the physical processes behind many of the 

observed physical phenomena of zero-gravity environments. The CFD method also allows 

sensitivity and feasible studies to be carried out for different parameters and designs. The 

thermocapillary motion of a bubble was observed in a confined 2D axis apparatus, as 

described in Chapter 4. Figure 4.1 is the first multiphase test case, which will serve as a base 

test when solving for Marangoni bubble flow in this section. All simulations were run at time 

t=0 with an initial stationary liquid and gas, with an applicable surface tension between those 

of ethanol and nitrogen (σ) = 27.5 (dyn/cm), and surface tension gradient (σt) = -0.09 

(dyn/cm ºC), (Kuhlmann, 1999). The domain was defined as a cavity with bounded walls. For 

all simulations the initial state will be set with no velocity at the inlet or the outlet, and the 

pressure will be taken to equal atmospheric pressure. The axisymmetric solver will be used in 

Fluent to model the effect of different parameters on the ascension of a bubble in a column of 

liquid; for instance, the effect of temperature, geometry aspect ratio, changing bubble 

position in the x direction on the bubble’s migration behaviour in weightless conditions will 

be examined. 
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5.1.1 Effect of liquid temperature upon bubble migration 

In order to investigate what happens to the thermocapillary bubbles when a linear 

temperature distribution is prescribed between the upper and lower walls, four different 

temperature differences were tested. The lower wall temperature was kept constant at 300 K, 

and the temperature of the upper wall was varied from 317.5 to 325 K in increments of 2.5 K. 

Figures 5.1a-c show the temperature contours (right) and streamlines (left) for a single gas 

bubble N2 (dp=8mm) migrating in Ethanol (Pr=16.2) at t=9 sec. The volume fraction contours 

for the same condition are shown in Figure 5.2a-c at t=9 s.  The flow pattern in these figures show 

that bubbles in an immiscible fluid will move toward the warmer side when subjected to a 

temperature gradient in a zero-gravity environment. The effect of the temperature gradient is 

clear in these figures; for example, as the temperature gradient increases, the migration 

velocity increases. Figure 5.3 presents the relationship between migration time and migration 

distance for different upper wall temperatures. As seen from the figures, increasing the 

temperature gradient (upper wall temperature) simultaneously increases the bubble 

displacement. 

In this test section regarding the effect of temperature gradient on the bubble migration and 

by analysing the simulation results from in Figures 5.1-5.4, the results shown that different 

temperature gradients lead to different bubble migration velocities, indicating a direct 

relationship between temperature gradient and bubble speed. It also reveals that the bubble 

velocity decreases if the temperature gradient between the upper and the lower walls 

decreases, and vice versa.  
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Figure 5.1a Temperature contours (right-K) and streamlines (left-Kg/s) for   =8 mm diameter at t=9 

s, with a lower wall temperature of 300K and upper wall temperature of 320K  

  
Figure 5.1b Temperature contours (left) and streamlines (right-Kg/s) for =8 mm diameter at t=9 s, 

with a lower wall temperature of 300K and upper wall temperature of 322.5K 

  
Figure 5.1c Temperature contours (left) and streamlines (right-Kg/s) for   =8 mm diameter at t=9 s, 

with a lower wall temperature of 300K and upper wall temperature of 325K 

Figure  5-1 (a-c) Temperature contours and streamlines at t=9 s 

 

  

2N
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Figure 5.2a phase fraction contours for   =8 mm diameter at t=9 s, with a lower wall 

temperature of 300K and upper wall temperature of 320 K 

 
Figure 5.2b volume fraction contours for   =8 mm diameter at t=9 s, with a lower wall 

temperature of 300K and upper wall temperature of 322.5 K 

 
Figure 5.2c volume fraction contours for   =8 mm diameter at t=9 s, with a lower wall 

temperature of 300K and upper wall temperature of 325 K 

 Figure  5-2 (a-c) volume fraction at t=9 s 
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Figure  5-3 Relationship of displacement versus time for a bubble of N2=8 mm diameter to migrate in 

ethanol (Pr =16.2) for different temperature gradients, TBottom=300 K. 
 

 
Figure  5-4 Relationship of migration speed versus time for a bubble of =8 mm diameter to migrate in 

ethanol (Pr =16.3)  for different temperature gradients, TBottom=300 K. 
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5.1.2 Effect of changing the width of the cylinder on bubble migration 

This section presents the results of an extensive numerical investigation of the 

thermocapillary flow of a bubble with a diameter (d) equal to 6 and 8 mm rising in stagnant 

ethanol liquid. The size and aspect ratios of the cylinders were varied by using four different 

columns with diameters of 20, 40, 60, and 80 mm to test the effect of column width on the 

time and speed of the bubble migration while keeping heights fixed. The results of the 

migration time and speed for each aspect ratio (AR), the ratio of the bubble diameter to the 

column diameter, are summarised in Table 5.1 and Figure 5.5, which show the effect of the 

column width on the ascension speed of the bubble.  

 

 Table  5-1 Numerical results for eight different aspect ratio 

Bubble diameter 

(mm) 

Column width 

(mm) 

Aspect Ratio 

(Ar) 

Migration time 

(s) 

Bubble speed 

(mm\s) 

 

4 15 0.53 16.2 6.8  

4 20 0.4 11.5 9.88 

3 20 0.3 12.5 9.66 

4 30 0.267 10.65 9.93 

4 40 0.2 10.5 10.0 

4 60 0.13 10.5 10.0 

4 80 0.1 10.5 10.0 

4 100 0.08 10.5 10.0 

4 120 0.067 10.5 10.0 
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Figure  5-5 Compares the x-coordinates of the nose of 8 mm bubbles 

 

The liquid phase streamlines profiles for four aspect ratios (AR = 0.53, 0.4, 0.267, and 0.2), 

illustrated in Figures 5.6a-d. These results show that when the ratio of the bubble diameter to 

the column diameter is less than 0.267, the influence of the column diameter on the ascension 

velocity is negligible; however, as the AR increases, there is a significant reduction in the 

bubble’s velocity. When calculating the bubble speed in the next section, the results obtained 

here were considered as a factor having crucial effect on the bubble speed; consequently, the 

wall effect was removed from the calculations. Note that in all thermocapillary bubble flow 

calculations, the migration velocity is taken as the bubble migration in the axial direction, as 

seen in Figure 5.7; moreover, the bubble remained spherical in shape and no deformation was 

noticed for any of the ARs (see Figures 5.6a-d).  
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a)AR=0.5 b) AR=0.4 c) AR=0.2  d) AR=0.133 

Figure  5-6a-d Contours of temperature (top) and streamlines (bottom) illustrate the effect of 

four different (AR) upon bubble migration at time =7.5 sec 
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Figure  5-7 Bubble velocity in columns with widths of 15, 20, 30, 40, 60, 80, 100, and 120 mm 

diameters 

5.1.3 Effect of changing a bubble’s initial position upon its migration velocity 

In addition to the temperature gradient and width of the cylinder, another important factor 

that may influence bubble migration and is worthy of investigation is the starting position of 

the bubble in relation to the bottom of the cylinder. In this subsection this effect is 

investigated numerically. The idea is to place the bubble at various starting positions, starting 

at a distance of 1d from the lower wall and then increase the distance by 1d in each run, up to 

a distance of 4d. Figures 5.8 and 5.9 illustrate the effect of changing the initial bubble 

position on bubble migration. In all of these simulations, the diameter of the bubble is 10mm, 

the height of the domain is 120mm, and the temperature gradient is 0.25 K/mm.  Clearly, the 

lower wall has no direct influence on bubble migration, and a distance of up to 1d shows no 

attractive force from the lower wall to the bubble. What is more, the further the bubble’s 

starting position from the upper, warmer wall, the more likely it is to reach the steady state, as 

seen in Figure 5.9 for a position of 1d, which shows that the bubble approaches the steady 
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state at a time between 5 and 7s. Therefore, the initial bubble-wall distance is an important 

factor for the effect of the wall on the bubble. Thus, a bubble placed far away from the 

warmer side will reach a steady state migration velocity. The motion induced in the x 

direction in zero gravity for all four position distances shows that the bubble migrates toward 

the warmer region. This observation is in line with the Marangoni phenomena, which asserts 

that the surface tension gradient effect is dominant.  

 
Figure  5-8 A 10 mm-diameter bubble rising from a position equal to 1d, 2d, 3d, and 4d from the lower 

wall. 
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Figure  5-9 Velocity of a 10 mm-diameter bubble rising from a position equal to 1d, 2d, 3d, and 4d 

from the lower wall 

 

5.1.4 Correlation for the thermocapillary bubble migration velocity 

Young, Block, and Goldstein (1959) first investigated the thermocapillary migration of 

bubbles and droplets with a linear model, as previously stated in Eq. (2.1) from chapter 2: 
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commonly called the YGB model, which is suitable for small Reynolds and Marangoni 

numbers: 
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where Prandtl number is the ratio of kinematic viscosity to thermal diffusivity: 
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Pr



            5-3 

and ν is the kinematic viscosity in m²/s: 





             5-4 

The velocity   , derived from the tangential stress balance at the free surface, is used for 

scaling the migration velocity (m/s) in Eq.s (5.2) and (5.3): 

. .

T

d dT
rb

dT dxV




            5-5 

where                   are the dynamic viscosity and thermal conductivity of continuous 

phase and gas, respectively.   is the density and,    is the radius of the bubble. The constant 

  
    or    is the rate of change of interfacial tension and       is the temperature gradient 

imposed in the continuous phase fluid. The bubble velocity is obtained from the ratio of the 

monitored displacement of a small                         and the short time interval ∆t. 

This definition implies that: 

CFD

x
V

t





           5-6 

where      is the bubble's velocity at time   and    is the change in displacement of the 

bubble between times   and     . In this situation    must be kept small so that the bubble 

velocity does not change appreciably between times   and     . If    is too large then 

formula (5.6) becomes invalid.   

The current numerical tool allows for the use of different gravity values. However, the 

current chapter only presents the zero gravity results, specifically flow movement due to 

surface tension rather than buoyancy effects. In a non-uniform temperature gradient field, the 

surface tension varies according to the local temperature conditions. Near cold regions, a 

greater surface tension exists than in the warmer regions. This causes a net imbalance of force 

acting upon the fluid particles, leading to a general motion of fluid from the warm region to 
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the cold region (in the current case, from the upper to the lower surface). Upon closely 

observing the bubble movement (see Figs 5.1 & 5.6) it is noted that the bubble absorbs heat 

at the hot end and rejects heat at the cold end, as observed by (Nas and Tryggvason, 1993): 

"Whenever surface is created, heat is absorbed, and whenever surface is destroyed heat is 

given off. Therefore a swimming bubble absorbs heat at its hot end and rejects heat at its cold 

end”. In Figure 5-10 a single bubble migration velocity correlation was obtained numerically 

in a differentially heated fluid cell. A spherical bubble shape is then assumed to find the 

relation for the scaled rise velocity of the bubble (         ). This is given as: 

0.161.35CFD

YGB

V
Ma

V

          5-7 

YGBV was used for scaling the calculated bubble velocity in Equation (5-7). Figure 5.10 

presents the relationship between the present results for the simulated scaled rise velocity 

(         ) and previous experimental results for Kang et al. (2008) and Treuner et al. 

(1996). It is clear from the figure that, the) present numerical simulations, for             

agree well with the previous experimental results, also shown in the same figure is the 

correlation given by Eq. 5.7 which predicts the scaled velocity with a maximum standard 

deviation of 5.2% for the simulation range of the present study. For the current simulations, 

the selection of temperature gradient between the walls was kept low to avoid fluid property 

changes due to thermodynamics. It was observed that as Ma increases, the bubble’s scaled 

migration velocity tends to approach an asymptotic behaviour (               . In the 

current case, the migration velocity of a single bubble is smaller than that predicted by the 

YGB model, as can be seen from the curve fit in Figure 5.10. In fact, the current results seem 

to better agree with other predictions of Kang et al. (2008) and Treuner et al. (1996). Figure 

5.11 show a percentage error between simulated and predicted scaled velocity. 
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Figure  5-10 Scaled velocity plotted against Marangoni number; earlier experimental data also 

shown  

 

Figure  5-11 Relationship between simulated and predicted scaled velocity 
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5.2 Thermocapillary migration of an isolated droplet in zero gravity 

5.2.1 Over view 

In a non-uniform temperature gradient field, the surface tension varies according to the local 

temperature conditions. Near cold regions, a greater surface tension exists than that observed 

in the hotter regions. This causes a net imbalance of force acting upon the fluid particles, thus 

leading to a general motion of fluid from the hot region to the cold region. Such a 

phenomenon is known as the Marangoni problem or the thermocapillary migration problem. 

Research and experimentation on thermocapillary bubble and droplet motion began in 1959 

on the ground using a space laboratory by Young, Goldstein and Blocks. In their ground-

based experiment where gravitational force was presented, they succeeded in holding a small 

bubble stationary and moving it downwards against the buoyant rise of gas bubbles by 

applying a temperature gradient between the lower and upper sides. A few years later, on-

board microgravity experiments on the thermocapillary migration of bubbles and droplets 

have since been performed using spacecraft. Two-phase flow experiments generally require 

continuous observation of moving fluid during a test, which makes the experiment 

complicated, and it is also a challenge for space researchers to design a space experiment to 

accommodate most of their objectives. Furthermore, experiments under microgravity 

conditions are limited to low Reynolds and Marangoni numbers because of the difficulties in 

obtaining experimental results in microgravity (Kang et al., 2008). A few microgravity 

experiments on the thermocapillary droplet flow in zero gravity have been performed on 

board the microgravity sounding rocket and Spacelab, and noted that there are no numerical 

results with which to evaluate their data. Xie et al. (2005) mentioned the complex behaviour 

of thermocapillary droplet migration, confirming that further studies were still needed. They 

also confirmed that a longer experimental time in microgravity conditions is necessary for a 

droplet approaching its steady thermocapillary velocity. It is also difficult to obtain complete 
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information about the behaviour of bubbles/droplets in space, and CFD studies have been 

undertaken by many researchers in order to compare and analyse their experimental results 

(Treuner et al., 1996). In recent years and with advances in numerical calculation, knowledge 

of thermocapillary flow has undergone a considerable change and new calculated results 

could be used to revise and adjust some previous results. On the other hand, numerical 

simulations have consequently become an important tool in studies of two-phase flows in a 

microgravity environment and can help to clarify the basic fluid physics, as well as to assist 

in the design of the experiments or systems for the zero-gravity environment. 

Xie et al. (2005) presented results from aboard China’s spacecraft ShenZhou-4 space 

experiment, which show decreases in the droplet scale velocity with increasing Marangoni 

number. These results are in contrast with the work of the theoretical predictions from a 

numerical solution made by Ma et al. (1999) and the theoretical predictions of 

Balasubramaniam and Subramanian (2000), which show a decrease and subsequent increase 

in the droplet scale speed with Marangoni number. These three research works used the same 

liquid media of Fluorinert liquid FC-75 and silicone oil for the drop liquid and matrix phase 

respectively. From the above comparison, it can be seen that the behaviour of a droplet’s 

thermocapillary migration at large Marangoni numbers appears complex, and further studies 

are needed to observe the developing trend of droplet migration velocity with an increase in 

the values of MaT. There is also a conflict in the results of some authors on the subject of the 

interaction between two droplets, which will be discussed in detail later in this chapter. For 

the above reasons and more, it is necessary to carry out appropriate numerical simulations for 

the measurement of the behaviour of droplets in microgravity (Subramanian et al., 2009). 

Flow patterns are key to the understanding and prediction of the physics behind flow systems. 

The shape and the area of the varying interfaces are very complex and often a numerical 

simulation study is required. Furthermore, the flow patterns of some regimes remain largely 
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undiscovered; consequently, accurate predictions of flow patterns are highly desirable (Wölk 

et al., 2000). This subsection is a step in this direction; some aspects of the thermocapillary 

two-phase flow in zero gravity will be numerically investigated and discussed. In this 

chapter, the results from the Ansys-Fluent CFD are reported and the data are compared with 

the numerical results of Ma et al.  (1999) and Balasubramaniam and Subramanian (2000) as 

well as the space experiment results of Xie et al. (2005). 

5.2.2 Simulation method for migration of a droplet in liquid 

The objective of this CFD work is to simulate and observe the behaviour of a single and 

multiple droplets under the influence of a linear temperature gradient in a zero-gravity 

environment and to validate the present CFD work with an existing experiment from the 

literature, before proceeding to find an expression for the relationship between the droplet 

scale velocity and the Marangoni number. The behaviour of leading and trailing droplets is a 

central topic in research and engineering applications and the results of these tests will be 

included in detail in this section as well. 

A description of the geometry is shown in Fig.5.12, and the following assumptions are made 

for all numerical simulations: 

7. The diameter and height of the domain are 12d. 

8. The thermocapillary velocity is small and the flow is laminar.  

9. The upper and lower surfaces are flat and non-deformable; adiabatic non-slip wall 

conditions are applied to all surfaces. 

10. A steady-state temperature distribution is established as an initial condition before 

releasing the drop in the unsteady motion, where the top and bottom walls are 

maintained at constant temperatures:              

11. The host liquid is an incompressible Newtonian fluid and an assumption of constant 

properties is applicable, except for density, viscosity, and surface tension. 

12. The driving force for the flow is the variation of surface tension according to 

temperature, which is modelled by a linear function shown in Equation 4-1 below:  
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where or    is the coefficient of surface tension at reference temperature    and    is the rate 

of change of surface tension with temperature T. Table 5.2 presents the physical properties of 

the host liquid and liquid droplet used for the simulations at 300K. The calculation was 

carried out for FC-75 Fluorinert droplets migrating in DOW-Corning DC-200 series of 

nominal viscosity 10 cst at different temperature gradients (∇ ) K/mm, in order to investigate 

what happens to the thermocapillary drop when a linear temperature distribution is prescribed 

between the upper and lower walls. A stationary cylindrical domain with an isolated spherical 

droplet inside was considered by the initial locations of its centre at (1d, 0d) mm from the 

lower wall, at the cylindrical coordinates of (X,Y) so that the droplet is close to the bottom of 

the cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical calculations were carried out to simulate the droplet’s Marangoni migration in a 

2D axisymmetrical column in a zero-gravity environment, to investigate in detail the 

 

  Figure  5-12 Schematic of drop migration in a uniform temperature gradient. 
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behaviour of a single and multiple droplets under thermocapillary force in a column of liquid. 

The domain was defined as a cavity with abounded walls (described in Chapter 4 and Figure 

5.12) and was used for all simulation. All simulations were run at time t=0 with initially 

stationary liquid and droplet. For all simulations the initial state will be set with no velocity at 

the inlet or at the outlet. Before patching the droplet using Fluent’s “region” function, the 

matrix liquid was preheated to obtain the steady state against temperature gradient. The 

surface tension coefficient between the host liquid and the droplet, density, and viscosity 

were considered to be dependent on temperature and were computed via UDF.  

 

The thermophysical properties for density, viscosity and surface tension gradient for silicone 

oil (DOW-Corning DC-200 series of nominal viscosity 10 cSt) and Fluorinert FC-75 were 

taken to be the same as those used by Hadland et al. (1999), as follows:  

The density variation with temperature of the two liquids is assumed to be of the form: 

A BT             5-8 

and the viscosity variation with temperature of the two liquids is assumed to be of the form  

Table  5-2 Physical properties of the liquids employed in the simulation of silicone oil (DOW-

Corning DC-200 series of nominal viscosity 10 cst) and Fluorinert FC-75. 

Properties Unit Silicone oil Fluorinert 
Fluorinert FC-75/10 

cst silicone oil (ratio) 

Density ( ) =A+BT kg/m
3
 

A=1200 

B=-0.9 

A=2504 

B=-2.48 
1.89 

Viscosity (μ)=  exp (C+D/T) kg/m-s 
C=-10.17 

D=1643 

C=-11.76 

D=1540 
0.147 

Initial Prandtl Number (Pr) ------- 121.6 22 22/121.6 

Specific Heat (Cp) j/kg.K 1778.2 1047 0.589 

Thermal Conductivity (k) w/m.K 0.13389 0.063 0.47 

Surface tension gradient N/m-K 0.000086 
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exp( / )C D T            5-9 

The major properties of the liquid system used in the present simulation are summarised in 

Table 5.2. 

5.2.3 Grid size dependency  

The objective of the grid independence study was to ensure that the results of the simulation 

were independent of the grid density. Grid independence was achieved by increasing the 

number of regional adaption cells from 111 to 632 per droplet radius by increasing the grid 

cells along the X and Y axes and plotting the convergence of certain parameters of interest, 

such as the time taken for droplets to migrate towards the warmer side and their migration 

distance, to ensure that the result remained independent of the grid size. In terms of the 

number of cells in the present study, a non-uniform grid with grid lines clustered towards the 

centre was developed in order to keep cell count down and to avoid the potential negative 

consequences of increased memory usage and CPU time. Another key consideration is that, 

when using an axisymmetric solver, you create a mesh only for half of your domain, thus 

drastically reducing the number of cells used, and consequently the calculation time. These 

cases were simulated with the parameters outlined in Table 5.2. A study of the grid size 

dependency is described in Table 5.3. 
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Table  5-3 Grid sensitivity check for a droplet with diameter of 10  mm for 2D-axis models 

Grid (∆x,∆y) Number of cells Cells per drop radius Droplet speed (mm/s) 

(1) 0.6x0.6 8400 111 

 

1.90 

 

(2) 0.5x0.5 9600 158 

 

1.90 

 

(3) 0.4x0.4 17760 242 

 

1.83 

 

(4) 0.3x0.3 23200 430 

 

1.70 

 

 

(5) 

 

 

0.25x0.25 

 

 

31200 

 

 

632 

 

 

1.7 

 

(6) 0.2x0.2 45000 988 1.7 

 

Figure 5.13 shows the migration distance of the droplet versus time for these 6 cases. Note 

that, in all the results presented in this study, the migration velocity is simply taken as the 

droplet’s velocity in the X direction. In the present study, a non-uniform grid of 23,200 cells 

with grid lines clustered towards the centre (grid 4), giving 430 cells per droplet radius, has 

been used in all calculations.  

 

Figure  5-13 Ascension distance of a droplet nose for five different grid sizes vs. time (s) 
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Figure 5.14 shows the result of four different grid densities used in this simulation to give the 

isothermal contour of an isolated droplet at a time equal to 66 sec for all five grid studies. 

 
Grid (1) Grid (1) Grid (1) 

 
Grid (4) Grid (5) Grid (6) 

Figure  5-14 Distance (mm) towards the warmer region of the droplet for five different grid sizes at 

time = 66 sec 
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5.2.3 Results and discussion 

In this subsection, the migration of a droplet with a diameter of 10 mm was observed in a 

container with lower and upper surfaces at temperatures of 300 and 325 K respectively. At a 

given temperature and from the physical properties of the liquids employed in the simulation 

of silicone oil (DOW-Corning DC-200 series of nominal viscosity 10 cst) and Fluorinert FC-

75 given in Table 5.2, the corresponding average thermal Reynolds (ReT) and Marangoni 

numbers (MaT) were 7.80 and 769.8 respectively. The droplet was released from the colder 

region (lower wall) and reached the warmer region (upper wall) within about 75 sec. The 

contours of the isotherms which developed near the interface and within the droplet for 

axisymmetric simulations at the indicated time from 25 sec to 70 sec in increments of 5 sec 

are shown in Figure 5.15. The results show that the droplet in an immiscible fluid will move 

towards the warmer side when subjected to a temperature gradient in a zero-gravity 

environment. Such a phenomenon is known as the Marangoni problem or thermocapillary 

migration. 

Upon closely observing the temperature contours in these figures, two types of heat transfer 

can be perceived that are both responsible for the droplet’s movement towards the hotter side. 

These forms of transfer are conduction heat transfer between the surrounding liquid and the 

droplet, and convection within the droplet itself. It was also noted that the temperature inside 

the droplet was different from that of the surrounding liquid, due to insufficient time for the 

temperature gradient inside the droplet to reach a steady distribution. The second significant 

effect is that which the outside temperate gradient had on the heat transfer rate between the 

droplet and the matrix liquid, which provides an explanation for the observed movement of 

the Fluorinert droplet in the silicon oil and the inside droplet, as will be seen in the following 

subsection. 
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Figure  5-15 Contour of isotherms, showing the development of the cold region inside the droplet 

at ReT=7.8 and MaT=769.8 for different time steps. 

  

 
Figure  5-16 Transient thermocapillary droplet migration towards the warmer side 
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Note that so far the numerical analysis has been restricted to a given temperature gradient 

∇T=0.25 K/mm. Intuitively, decreasing or increasing the temperature gradient of the liquid 

medium could affect the rate of conduction heat transfer across the droplet, thus increasing or 

decreasing the convection heat transfer within the droplet. This in turn affects the migration 

velocity of the droplet, causing it to move towards the warmer region. The next section will 

investigate numerically the effect that varying the temperature gradient has on the conduction 

rate while keeping VT, and VYGB constant, as shown in Table 5.4. 

5.2.4 Effect of varying the temperature gradient on the thermocapillary flow 

Table 5.4 summarises the droplet migration speed observed for different temperature 

gradients between the upper and lower walls. The thermal Reynolds and Marangoni numbers 

varied, depending on the diameter of the droplet and the temperature gradient, from 0.24 to 

15.6 and from 24.06 to 1540 for the ReT and MaT respectively. The specific value of the 

Prandtl number is constant at 98.7 for all calculations. The thermal velocity VT, caused by 

tangential stress, and the Young model velocity (YYGB) are also constant at 12.62 mm/s and 

4.2 mm/s, respectively. In the first example from the table and for Ma=24.06, the temperature 

gradient applied is equal to 6.66 K/mm, and the droplet CFD migration speed VCFD was 

found to be equal to 2.38 mm/sec, which is higher than in the rest of the simulations. The 

lowest value of VCFD was equal to 1.49 mm/s at an Ma of 1540.  This shows that the CFD-

calculated velocity (VCFD) of the droplet decreases as the Marangoni number increases, 

becoming almost constant at Marangoni numbers of 750 and higher. In the same table one 

can see a variation in the calculated droplet speed, VCFD, due to the varying temperature 

gradient of the host liquid; a direct relation between temperature gradient and droplet speed is 

thus observed. It can therefore be concluded that different temperature gradients lead to 

different droplet migration velocities. 
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Table  5-4 Calculation of the average non-dimensional numbers and velocities corresponding to the 

fluid properties given in Table 5.2 and the results of CFD test for Fluorinert droplet migrating in Oil 

∇ T  

(K/mm) 

Pr 

 (FC75) 

Pr  

(oil) 

ReT 

 

MaT 

 

VT  

(mm/s) 

VYGB 

(mm/s) 

VCFD 

(mm/s) 

V 

 

6.66 18.1 98.7 0.24 24.06 12.62 4.2 2.38 0.57 

3.33 18.1 98.7 0.49 48.11 12.62 4.2 2.03 0.48 

1.67 18.1 98.7 0.98 96.22 12.62 4.2 1.83 0.44 

0.83 18.1 98.7 1.95 192.4 12.62 4.2 1.85 0.44 

0.42 18.1 98.7 3.90 384.9 12.62 4.2 1.82 0.43 

0.28 18.1 98.7 5.85 577.3 12.62 4.2 1.88 0.45 

0.21 18.1 98.7 7.80 769.8 12.62 4.2 1.69 0.40 

0.17 18.1 98.7 9.75 962.2 12.62 4.2 1.68 0.40 

0.14 18.1 98.7 11.7 1155 12.62 4.2 1.69 0.40 

0.12 18.1 98.7 13.7 1347 12.62 4.2 1.66 0.40 

0.10 18.1 98.7 15.6 1540 12.62 4.2 1.49 0.36 

 

The flow pattern shown in Figures 5.17a-j for the dynamic of a droplet in a host liquid with a 

∇T of between 0.1 and 6.66 K/mm is in good agreement with the transient movement of the 

isolated droplet presented in Figure 5.15 for ∇T=0.25 K/mm. Initially in Figure 5.17a, the 

thermal Marangoni number (MaT) is small, and the droplet is subjected to a large temperature 

gradient at its surface (6.66 K/mm), resulting in strong thermocapillary flow. Interestingly, 

the isotherms in the continuous phase around a Fluorinert FC-75 droplet migrating in 10 cs 

silicone oil for MaT= 24.06 are almost straight, excluding the thermal wake behind the 

droplet. Moreover, the recirculation flow within the droplet is located in the upper section, 

and the temperature difference of the fluid inside and outside the droplet is almost identical 

for this low MaT and high temperature gradient. This is because the higher heat transfer rate 

across the droplet forces the isothermal layers to detach from the droplet more quickly than in 

the case of the droplet with lower heat transfer across it, resulting in a high migration speed. 

As the      , one can conclude that the flow pattern will corroborate the theory of Young 

et al. (1959). As the temperature gradient between the top and the bottom decreases and MaT 

increases, as shown in Figures 5.17b to 5.17j, the heat transfer by conduction across the 

streamlines to the interior of the droplet decreases. As a result, increasing the temperature 

difference between the interior and the surface of the droplet, i.e. causing the inside region of 
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the droplet to become colder than the surrounding liquid, results in the development of a 

clearly visible longer thermal wake behind the isolated droplet. Thus, the droplet speed 

begins to decrease and the recirculation expands inside the droplet. Using the relationships 

between the various temperature gradients summarised in Table 5.3 and the flow pattern 

presented in Figures 5.17a-j, it is evident that the heat transfer between the outside and inside 

of the droplet becomes constant for Ma>750; consequently, the inside colder region and the 

thermal wake become constant too. It is worth noting that in this study, the results confirmed 

that the thermocapillary droplet’s migration velocity depends largely on the applied 

temperature gradient. 

  
Figure 5.17a MaT =24.05 Figure 5.17b MaT =48.11 

∇T= 3.33 K/mm ∇T= 6.66 K/mm 
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Figure 5.17c MaT =96.22 Figure 5.17d MaT =192.4 

  
Figure 5.17e MaT =384.9 Figure 5.17f MaT = 577.3 

∇T= 0.83 K/mm ∇T =1.67  K/mm 

∇T= 0.42 K/mm ∇T= 0.28  K/mm 
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Figure 5.17g MaT =769.8 Figure 5.17h MaT =962.2 

  
Figure 5.17i MaT =  1155 Figure 5.17j MaT =1347 

Figure  5-17 a-j Isolated droplet migration for different temperature gradients 

∇T= 0.21 K/mm 

∇T= 0.12 K/mm   ∇T= 0.14 K/mm 

∇T= 0.17 K/mm 
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5.2.4 Comparison with previous numerical and space experimental results 

All of the data shown in figure 5.18 present a droplet’s scaled velocity versus Marangoni 

number for a droplet of DOW-Corning DC-200 series fluid of nominal viscosity 10cst and 

Fluorinert (FC-75) as a host liquid. Thermal Reynolds and Marangoni numbers and average 

calculated velocity VCFD vary due to differences in temperature gradients (∇T) for each 

simulation, as summarised in Table 5.4. The Prandtl number, reference velocity VT and the 

VYGB theory model were taken as average and constant for all cases in this study. For the 

current simulations, the temperature gradients between the walls were kept low to avoid fluid 

property changes caused by thermodynamics. 

The numerical results show that for the smaller and larger MaT, 24.06 and 2771 in the present 

simulations, the scaled droplet velocities (Vdrop) are 0.57 and 0.35 respectively. Both values 

of Vdrop are smaller than that given by the linear prediction of the YGB model. 

 

 Figure  5-18 Comparison and validation of scaled velocity plotted against Marangoni number 
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The CFD results in this graph, Figures5-19, show a decrease in the scaled droplet speed with 

increasing MaT, which contrasts with the trends of the asymptotic theory of Balasubramaniam 

and Subramanian (2000) and the numerical results of Ma et al. (1999). In fact, the current 

results seem to better agree with the other predictions of the space experimental results of Xie 

et al. (2005). Some important parameters numerical users should be mindful of when 

conducting simulations include grid sensitivity, droplet diameter, and the number of mesh 

cells used inside the droplet, as these factors could affect the droplet’s motion in zero gravity. 

It is also very important to have all the physiochemical properties for the host liquid and 

droplet as a function of temperature or the exact value of each parameter at a given 

temperature.  

Figure 5.19 displays the details more clearly for Marangoni number versus scaled droplet 

velocities, (Vdrop), up to 2771. In the same figure, the migration velocity correlation of a 

single droplet was obtained numerically in a differentially heated fluid cell. A spherical 

droplet shape is then assumed in order to find the relationship of the scaled rise in velocity of 

the droplet (Vdrop). This is given as: 

0.080.7dropV Ma  5-10 

where Vdrop is the droplet’s scaled migration velocity and VYGB was used for scaling the 

calculated droplet velocity in Eq. 5-10. 
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Figure  5-19 Scaled velocity plotted against Marangoni number; earlier experimental data also shown  

 

Figure 5.19 presents the relationship between the present results for the simulated scaled rise 

velocity (VCFD/VYGB) and the experimental results obtained by Xie et al. (2005). Figure 5.20 

show a percentage error between simulated and predicted scaled velocity. 
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Figure  5-20  Relationship between simulated and predicted scaled velocity 
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5.2.5 Thermocapillary migration of leading and trailing droplets in zero gravity 

The thermocapillary migration and interaction of two droplets are very important areas of 

study and are topics that have not been extensively covered, especially in zero gravity. A 

bubble or droplet is not usually found in isolation, and studying the interaction of a pair or 

multiple particles, or, more specifically, a column of bubbles or droplets, is of great benefit to 

numerous industrial processes. In practice, it is common to have two or more bubbles or 

droplets in the continuous phase; as such, it is necessary to study their interactions (Yin et al., 

2011). This study will continue to examine the conditions used in the previous section, as 

well as inserting a leading droplet at a distance (h) equal to 3d from the centre of the isolated 

droplet, located 1d from the lower wall in the x direction. The density, specific heat, thermal 

diffusivity, and kinematic viscosity are constant for all cases, as tabulated in Table 5.1. The 

droplet diameter and temperature gradient vary with the domain size ratio. The two droplets 

are of equal diameter and migrate under the same temperature gradient and physical 

properties. 

From Figure 5.21, one can note that the trailing droplet has no effect on the leading droplet, 

and both droplets migrate towards the warmer side. Note that neither the leading nor the 

trailing droplet has a higher migration speed than an isolated droplet. 

Throughout all of the simulations shown in these figures, the initial position of the lower 

droplet is comparable to that of the isolated droplet in Figure 5.17 for different Reynolds and 

Marangoni numbers. The comparison shows that the higher the temperature gradient, the 

smaller the distance between the leading and the trailing droplets. As the temperature is 

decreased, the distance between the two droplets will increase. Furthermore, the distance 

between the two droplets is expected to be constant for a very low Ma (<1). On the other 

hand, a reduction in the trailing migrating speed is visible as the MaT increases. As the 

temperature difference reduces between the two walls, the inner region of the leading droplet 
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remains at a low temperature and thrusts downward, causing a thermal fluctuation toward the 

trailing droplet. This thermal variation in local temperature can have a significant impact on 

the dynamics of the trailing droplet, due to the strong dependency of the surface tension 

gradient on the local temperature. Generally speaking, in the x direction and for leading and 

trailing droplets for the range of Marangoni numbers shown in Figure 5.21, the trailing 

droplet moves as slowly as decreasing the temperature gradient due to thrusting colder liquid 

by the leading droplet, while the leading droplet appears unaffected by the droplet following 

it. 

  
Iinitial bounbery of two droplets Initial of isolated droplet 
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The isotherms around the two droplets and the isolated droplet for ReT=0.24, MaT=24.06 at t=1 sec, both the 

trailing and the isolated droplet has same inital distance =1d from the bottom wall, ∇T= 6.66 K/mm 

  
The isotherms around the two droplets and the isolated droplet for ReT=0.48, MaT=48.11 at t=2.4 sec; both the 

trailing and the isolated droplets have the same initial distance =1d from the lower wall, ∇T =3.33 K/mm 
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The isotherms around the two droplets and the isolated droplet for ReT=0.975, MaT=96.2 at t=5.5 sec; both the 

trailing and the isolated droplets have the same initial distance =1d from the lower wall, ∇T =1.67 K/mm 

  
The isotherms around the two droplets and the isolated droplet for ReT =1.95, Ma=192.4 at t=12 s; both the 

trailing and the isolated droplets have the same initial distance =1d from the lower wall, ∇T= 0.83 K/mm 
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The isotherms around the two droplets and the isolated droplet for ReT =3.9, MaT=384.9 at t=31 sec; both the 

trailing and the isolated droplets have the same initial distance =1d from the lower wall, ∇T= 0.42 K/mm 

  
The isotherms around the two droplets and the isolated droplet for ReT =5.85, MaT=577.3 at t=41 sec, both the 

trailing and the isolated droplet droplets have the same initial distance =1d from the lower wall, ∇T= 0.28 K/mm 
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The isotherms around the two droplets and the isolated droplet for with ReT=7.8 MaT=769.8 at t=56  sec; both 

the trailing and the isolated droplets have the same initial distance =1d from the lower wall, ∇T= 0.21 K/mm 

  
The isotherms around the two droplets and the isolated droplet for ReT =9.75  MaT=962.2  at t=70 sec; both the 

trailing and the isolated droplets have the same initial distance =1d from the lower wall, ∇T= 0.17 K/mm 

Figure  5-21 Interaction and comparison of leading and trailing droplets with an isolated drolpet 
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5.2.6 Conclusions 

This section utilises a computational approach to calculate the transient thermocapillary 

migration of an isolated droplet in a zero-gravity environment. The work has shown 

conclusively that the current VOF technique is a robust numerical method for the simulation 

of liquid–liquid flow. 

The present methodology has the ability to simulate surface tension as a function of 

temperature (thermocapillary flow), using a UDF for routine design and development 

engineering. The current results show conclusive existence of Marangoni droplet flow 

phenomena in a zero-gravity environment. The droplet velocity is scaled and compared with 

the measurements of (Xie et al., 2005) for Marangoni numbers from 24.05 to 1540.  This 

study shows that, generally speaking, as MaT increases, the scaled velocity of a single droplet 

decreases and steadily approaches its asymptotic value. 

The present CFD results show that different temperature gradients lead to different droplet 

migration velocities, and it was proven that droplet migration velocity varies linearly with the 

temperature gradient for the given condition. This phenomenon is expected due to an increase 

or decrease in the movement source - in this case, temperature difference. At low MaT the 

droplet is cooler than the surrounding liquid, and with increasing MaT the interior of the 

droplet cools, leaving a long thermal wake behind it. The interactions of two droplets in 

thermocapillary motion have also been studied and compared with the results obtained for the 

isolated droplet. The results have shown that the leading droplet will not move faster than the 

isolated droplet, as the trailing droplet has no influence on the velocity of the leading droplet. 

In addition, the trailing droplet translates more slowly than the isolated droplet due to the 

thermal wake of the leading droplet. Moreover, the results indicate that as      , the 

trailing droplet will move at the same velocity as the isolated droplet. 



131 
 

Most experiments in microgravity have constraints such as time limitations; computer 

simulations, on the other hand, are not restricted in such a way, and can simulate any 

arbitrary geometry. Thus, numerical simulations prove to be a valuable tool to study such 

complex problems under the conditions of zero and reduced gravity. A wider range of 

parameters and deeper physical explanations could be included in future work, such as the 

impact of the distance between the two droplets on their interaction. The droplet behaviour is 

fundamentally different from that of the bubble in thermocapillary flow and further attention 

should be paid to this observation in future research. 
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5.3 Thermocapillary bubble dynamics in a 2D axis swirl domain 

5.3.1  Overview 

As mentioned previously (Chapter 1), there is still much to be understood about two-phase 

flows in general and especially in zero-gravity conditions. As a result, this section will 

investigate the sensitivity of various parameters and/or scenarios that could not be 

investigated or fully covered previously, i.e. thermocapillary bubble migration in a rotating 

cylinder. The investigation of both rotational and surface tension-driven motion on the shape 

and trajectory of a bubble is a new area of study and aims to support research into space 

applications. Swirl flow is a technique that involves a rotational flow around an axis. This 

flow can be found in a wide range of engineering applications, such as turbomachinery, 

chemical and mechanical mixing devices and separation devices. Swirling flows appear in 

spray drying towers, burners, cyclone separators, and a wide variety of other process systems, 

and are among the most common and most complex in the process industry. "Water droplets 

in petroleum lines and vapor bubbles in cryogenic fluids in microgravity conditions are some 

other applications in which the two phases need to be separated from the mixture" (Gupta and 

Kumar, 2007). This simulation will show the effect of a rotating cylinder on a single bubble 

under the effect of surface tension gradient in zero gravity. To understand the flow structure 

in such thermocapillary flows, it is necessary to pay attention to the behaviour of each 

individual bubble and their interaction with external forces – rotation, in this study. The aim 

of the numerical simulation in this section is to simulate and observe the Marangoni bubble 

migrating along the cylindrical axis of a rotation. Two-dimensional axisymmetric and full 

three-dimensional computational domains could both be used to simulate such flows; 

however, due to the complexity of modelling this process in 3D, starting with a simple 2D 

model will enable different parameters and scenarios to be investigated in order to simplify 

and clarify the flow process, before extending the study to 3D flows. It should be noted that 
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when using a VOF model to simulate bubbles placed off-centre, as will be seen in the coming 

chapters, the swirl in the flow contains a large degree of three-dimensionality, invaliding two-

dimensional simulations and therefore requiring a fully three-dimensional approach. 

5.3.2 Numerical Method 

Thermocapillary single bubble migration in swirling flow was simulated by placing the 

bubble 1.5d from the lower (cold) wall by using the region adaptation function (Ansys-

Fluent, 2011). A 2D swirl axisymmetric interface is available in VOF-Fluent, where the flow 

in the rotational direction is incorporated in the equation: 

3

2

1 1 1 1
( ) ( ) ( )R u R R R F

t R x R R R x x R R R R R

  
      

          
                  

 5-11 

where   is the axial coordinate,   is the radial coordinate,   is the axial velocity,   is the 

radial velocity, and   is the swirl velocity. All simulations were run at time     with an 

initial velocity for the bubble of zero and different angular rotational speeds for the liquid 

phase. For all simulations the initial conditions were set with no velocity at the inlet or at the 

outlet, and the pressure was set to atmospheric. The size of the computational wall-bounded 

domain was chosen as 120x60 mm
2
 with impermeable sides. The properties of the ethanol 

used in the simulation are shown in Table 5.5. The upper surface (upper wall) of the domain 

was at a higher temperature than the lower surface (lower wall); both top and bottom walls 

were defined as no-slip solid walls (see Fig. 5.22). The material properties of the bubble and 

the ambient fluids are different and the interfacial tension depends on the temperature. The 

numerical scheme for the variation of surface tension with temperature was implemented 

with user-defined functions (UDFs). A grid dependency study is described in Chapter 4. 
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Figure  5-22 Schematic diagram of the swirl 

axisymmetric model for Marangoni bubble migration. 

 

Fluent requires that the horizontal x-axis be the axis of rotation for axisymmetric flows; this 

is described for axisymmetric swirling flows (Ansys-Fluent, 2011). 

5.3.2 Distribution of tangential velocity component, pressure, and temperature of the 

surrounding liquid 

 

Ethanol is used as the working fluid for the present case, with no bubble present in the 

domain. The properties of ethanol are given in Table 5.5, and the cylinder is set to be working 

under zero-gravity condition. The cylinder has varying angular velocities at the walls, with 

the lower and upper surfaces having the temperatures of 300 K and 330 K respectively.  

  

Axis 
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Table  5-5 Physical properties of the liquids employed in the simulation at 300K for (Pr=16.28) 

Properties Unit Ethanol Nitrogen (N2) 

Density ( ) kg/m
3
 790 1.138 

Specific heat (Cp) j/kg-K 2470 1040.7 

Thermal conductivity (k) w/m-K 0.182 0.0242 

Viscosity (μ) kg/m-s 0.0012 1.66e-5 

Surface tension (σ0) N/m 0.0275 ------ 

Surface tension coefficient (σT) N/m-K 0.00009 ------ 

Temperature gradient (∇T) K/mm 0.250 ------ 

Prandtl number (Pr) ------- 16.28 0.79 

 

To confirm the accuracy of the simulation after the steady state had been reached, the 

tangential velocity component, pressure, and temperature gradient of the host liquid were 

measured and results are given in Figure 5-23. The steady state result shows that the 

tangential velocity is increased linearly from the cylinder axis of rotation to the wall of the 

cylinder and the measured values agreed with the v r relationship at every axial 

measurement position for ω=0.5 rad/sec and cylinder radius R=60 mm, and the pressure 

change from the centre to any point in the radial direction is given as 
2 2r

2
P


 where r is 

the distance from the axis of rotation. Furthermore, the total pressure is highest at the wall 

and lowest in the centre. The temperature has also shown a linear behaviour from the lower to 

the upper surface of the cylinder, and the overall  results for the three figures show that the 

steady state CFD measurements for the present study validating the theoretical study.  
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Figure  5-23 Tangential velocity (mm/s) between the centre and the outside wall (left), distribution of 

static pressure (Pascal) between the centre and the wall (middle), distribution of temperature (K) 

between the lower and upper walls (right). 
 

The steady state pressure gradient is presented in Figure 5.24 and shows the radial pressure 

distribution results of eight simulations for the dynamics of a bubble inside a cylinder with 

angular velocities of 0.25, 0.5, 0.6, 0.75, 1, 1.25, 1.5, 1.75 and 2 rad/sec. The figure shows 

that the pressure remains constant at a radial rotation speed of zero, while for cases with 

rotational speed the pressure is at its lowest at the closest point to the axis of rotation, i.e. at 

the point of minimum radial direction. Conversely, the pressure increases steadily as the 

radial distance from the axis increases. The gradient of the static pressure depends upon the 

value of rotational speed, i.e. the radial pressure gradient increases with an increase in 

rotational velocity and reaches its maximum value at the wall of the cylinder at 2 rad/sec. 

These findings are in agreement with the pressure gradient term given in the tangential 

momentum transfer term in Eq. 5.11.  
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Figure  5-24 Steady state pressure distribution (Pascal) 

5.3.4 Results of the investigation of bubble dynamic in thermocapillary flow including 

swirling flow 

 

The results obtained for the steady state simulation of the rotating cylinder shown in Figures 

5.22 to 5.24 for angular velocity, pressure gradient and temperature gradient will now be used 

to predict the effect of different rotational speeds (centrifugal force) on the dynamics of a 

single bubble migrating under the dominant surface tension gradient force. After obtaining 

the steady state for each rotational speed, a bubble diameter of 8 mm with zero velocity fields 

at the initial moment for each rotational speed was then patched and its centre placed at the 

locations of 1.5d and 0d in the X and Y directions respectively, where "d" is the diameter of 

the bubble. The temperature gradient was kept at a constant value of 0.25 K/mm for each 

simulation. The corresponding thermal Reynolds (ReT) and Marangoni (MaT) numbers for the 

given temperature gradient, diameter and thermal properties shown in Table 5.5 are 257 and 

4188 respectively. At the same time, the bubble was subjected to a constant angular speed (ω) 
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applied to the walls of the cylinder, ranging from 0.25 rad/sec to 2.0 rad/sec for each 

simulation. This speed was then evaluated at tangential velocities of the cylinder ranging 

from 15-120 mm/s. Figures 5.25 show the pressure distribution around the bubble at different 

angular velocities after 5 sec of flow time from the start of the transient flow. At lower 

angular velocities the bubble moves faster and its speed decreases as the angular velocity 

increases. Moreover, the radial pressure gradient increases steadily along the radial direction 

with increasing rotational speed. It can be deduced from the figures that at lower angular 

velocities the dominant force affecting the bubble motion is the thermocapillary force acting 

within the domain; this is due to the application of a temperature gradient between the upper 

and lower walls of the cylinder. As the angular velocity increases the pressure gradient 

between the cylinder’s outer wall and the axis of rotation increases, forcing the lowest 

pressure region to shift from the sides of the bubble to the axis of rotation (front and back of 

the bubble), as evident in the same figure. In other words, the pressure close to the outer edge 

of the cylinder has the higher positive region than that close to the axis of rotation, which has 

a lower, and in some cases negative, pressure region, causing a reduction in the bubble’s 

migration speed and high angular velocity, trapping the bubble within this region.  
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Figure  5-25 present the effect of the static pressure gradient (Pascal) on the bubble dynamics for 

different angular velocities at t=5s 
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It can ultimately be deduced from these figures that the rotational speed of the wall imparts 

extra radial forced vortex motion to the adjacent fluid layer, subsequently toward the centre 

of the cylinder, causing an increase in the fluid radial velocity towards the axis of rotation. 

Here, the application of rotation in thermocapillary flow imparts an additional downward 

force on the gas bubble, resulting in a reduction in the bubble rise velocity and preventing its 

migration towards hotter wall. The location of the bubble along the axis of symmetry is 

shown in Figure 5.26, which demonstrates that the effect of rotational speed is minimal up to 

0.75 rad/sec, and the thermocapillary force dominates the bubble’s motion. Above this level 

the bubble shows a large decrease in its velocity, as the larger radial pressure gradient 

produces a negative pressure region on the lower section of the bubble, slowing the bubble’s 

motion in the positive axial direction. It can also be noticed from the same figure that the 

remarkable change in this calculation began in the case of 1rad/sec and up to 2 rad/s, but that 

there are no major changes in the final bubble position after 10 sec of flow time. The trend 

shows an overall decrease in migration distance with increasing rotational rate and gradually 

approaches its asymptotic value. This phenomenon occurs because the bubble becomes 

trapped in the region where the thermocapillary force due to temperature gradient and the 

pressure gradient force due to rotational speed balance out, causing the bubble to cease to 

move in the axial direction.  
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The velocity field inside the bubble may also have been affected by the mobility of the flow 

around the interface. This is shown in Figures 5.27a-d, where the velocity field inside and 

outside the bubble respectively exhibit increasing thermocapillary flow (top) and higher 

rotational rate (bottom).  

For low rotational speeds of up to 0.75 rad/sec in the present condition, no vortex was formed 

inside the bubble, whereas two vortices were formed when the angular speed was increased 

to 0.9 rad/sec and above. The formation of the two vortices inside the bubble is due to the 

reverse flow at the front of the bubble acting against the direction of the bubble’s movement. 

Furthermore, the bubble is more compressed in these cases than at lower rotational speeds 

because of the higher pressure gradient between the wall and the axis of rotation. 

 

 

Figure  5-26 Reduction in bubble distance from the bottom with higher rotational speeds for ReT 

and MaT equal 257 and 4188, respectively. 
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Figure 5.27a Angular velocity (ω) =0.1 rad/sec Figure 5.27b Angular velocity (ω) =0.5 rad/sec 

  
Figure 5.27c Angular velocity (ω) =1 rad/sec Figure 5.27d Angular velocity (ω) =1.5 rad/sec 

 

Figure  5-27 Velocity field inside and outside the thermocapillary bubble migration at low rotational 

rate (top) and at higher rotational rate (bottom) for time = 6 sec. 

 

Figures 5.28a-h present the streamline results of the liquid phase for different rotational  

speeds. From Figures 5.28a to 5.28f one can see that the streamlines of the liquid phase are 

clearly dominated by thermocapillary force. One large convection roll can be seen in the first 

two figures for a stationary case and for small angular velocities of 0.1 rad/sec in Figures 

5.28a and 5.28b. A second vortex begins to form at the bottom of the cylinder (cold region), 

which is induced by increasing the radial pressure gradient, as seen in Figure 5.28c for an 

angular velocity of 0.25 rad/sec. Increasing the angular speed to 0.75 rad/sec will show very 

similar results, but with more circulation and a slight decrease in the bubble migration speed, 

which does not have a major impact on the bubble speed due to its direction in relation to the 
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bubble’s motion. However, due to increasing angular velocity caused by the pressure gradient 

moving inwards towards the axis of rotation, small vortices are formed at the front and back 

of the bubble, as seen in Fig. 5.28g and 5.28h. These vortices are created to account for the 

opposing flow directions. At the front of the bubble, another smaller recirculation zone vortex 

is formed through rotation due to the negative pressure layer, causing the bubble to move 

backwards. However, as a result of increasing the rotational speed, the shape of the vortices 

does not coincide exactly with the present results obtained for the small recirculation zone. 

As mentioned in Figure 5.27, the reason for the formation of the two internal vortices is the 

negative pressure generated due to increasing pressure gradient. 

 

 
Figure  5-28 Streamlines around the thermocapillary bubble motion in a swirl flow for time=10 sec for 

different angular speeds and for ReT and MaT equal 257 and 4188, respectively. 
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5.3.4 Conclusion 

Numerical results were presented to show the trajectory and shape of the bubbles in a rotating 

liquid under zero-gravity conditions. The conclusive existence of Marangoni bubble flow 

phenomena in a zero-gravity environment was demonstrated in figures. The bubble 

trajectories reported in this study show that as the rotational speed is increased, the time taken 

for a bubble to migrate towards the hotter side also increased. It was shown that by adjusting 

the rotational speed it is possible to change a bubble’s behaviour in a thermocapillary flow, 

which can help to determine the new migration time and speed in the rotating cylinder. 

For the present calculations, the bubble was located at the axis of rotation and under the 

present numerical conditions and for angular velocities up to 2 rad/s there was no 

deformation and the bubble was spherical in shape.  

No previous similar work was used to compare the obtained results; this could be used in 

future in order to validate newer results. In order to test the behaviour of bubbles located off-

centre, a 3D simulation is necessary and a 2D swirl axis will no longer be sufficient to model 

such flows. 
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Chapter 6 Thermocapillary Bubbles Flow and Coalescence in a 

Static Cylinder: 3D Study 
 

6.1 Overview 

This study will investigate bubble dynamics and coalescence in two- and three-dimensional 

simulations to give a better understanding of the dynamics and coalescence of 

thermocapillary bubbles in a weightless environment. In general, it is common to have a 

group of bubbles in a continuous liquid and it is very important to understand their 

interaction. "In fact, the interactions between bubbles or droplets are more common than the 

migration of a single bubble" (Kang et al., 2008).  

Some examples of bubble coagulation in which this research is interested include chemical 

flow processes, the removal of gas bubbles from glass, melt, and gaseous flow. "Bubbles 

have also advantageous effects since they are responsible for the gas–solids mixing and gas 

circulation and thus they play an important role in chemical reactions in fluidized beds" 

(Sobrino et al., 2009). Understanding thermocapillary bubble flow and the interaction 

between bubbles is very important for future research and for designing useful experiments;  

indeed, an understanding of these phenomena is highly desirable for the future design of 

space shuttles and equipment that might be employed in zero-gravity environments. "In 

reality, the interactions of the bubbles with one another and with the boundaries of the melt 

are likely to play important roles in determining the rate of gas removal" (Satrape, 1992). 

Very little is known about bubble collision and agglomeration in zero-gravity conditions, due 

to the relative complexity of conducting experiments under such conditions. In addition, the 

literature reveals the complexity of modelling three-dimensional geometries to simulate the 

thermocapillary flow of a group of bubbles in cylindrical coordinates. "The question of 

whether two bubbles will coalesce in a particular situation is obviously a complicated issue" 

(Satrape, 1992). 
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The objective of this chapter is therefore to investigate numerically the thermocapillary 

bubbles’ trajectory and the merging process of two and a group of bubbles inside a cylinder 

in zero-gravity conditions. The first step of this study will investigate in detail the movement 

of a single bubble rising in a complex flow field under the effect of surface tension gradient 

(Marangoni force). Under such conditions, the study will be expanded further in order to 

investigate in detail the effect of temperature gradient and bubble size diameter on both the 

dynamic and collision between bubbles during their migration toward the hotter region. Due 

to the lack of information available on the interaction of two and a group of bubbles/droplets, 

the main focus of this section will extend the previous study of this thesis to multiple bubbles 

and will investigate in detail the coalescence process between two and a group of bubbles 

under the effect of surface tension gradient alone. Previous studies have shown that there is 

much still to be understood about thermocapillary flows and the interaction of two and a 

group of bubbles. 

6.2 Fluids and Initial Conditions: Description of Parameters and Domain 

A cylindrical vessel measuring 120 mm high (H) x 120 mm diameter (D) was filled with 

liquid Ethanol (Pr=16.28). The origin of the cylindrical coordinate system was placed on the 

centre of the lower plate, and the vertical axis, y, was directed upward. Nitrogen bubbles 

were patched into liquid contained in a cylinder and subjected to a vertical temperature 

gradient, T (K/mm). The velocity is set to zero, with a no-slip boundary used for the walls 

of the vessel. This signifies that no flow passes across the wall boundary and the flow does 

not slip along the wall, as well as meaning that no heat is lost or gained from the wall. The 

physical parameters used for the three-dimensional simulation are similar to the two-

dimensional simulations in Section 5.1of Chapter 5, except that the initial locations of the 

bubble are slightly different. The domain boundary conditions for the scenarios that were 

simulated are better understood with the visual representation of the domain represented in 



148 
 

Figure 6.1. Once the geometry and the grid were formulated, they were coded using CFD 

software. The calculations were performed using a pressure-based, segregated, implicit 

solver. Pressure–velocity coupling was accomplished using the pressure-implicit with 

splitting of operators (PISO), which performs two corrections for neighbour and skewness. 

The pressure-staggering option (PRESTO) scheme is used for pressure interpolation, and the 

momentum and energy equations were discretised using a second-order upwind differencing 

scheme. Other algorithms such as QUICK were also tried instead of a second-order upwind 

scheme. No difference was observed in the simulation results using these alternative 

methods; however, simulations using non-iterative methods were considerably faster than 

iterative methods from a computational perspective. According to several different 

operational conditions, the non-iterative time advancement in time steps of 32.5 10   s is used 

to obtain convergence. No gravitational force was imposed on the simulation and all cases 

were run in double-precision mode. 

6.3 Thermocapillary flow and interaction of two vertically-placed 

spherical bubbles 

 

To serve as a control case and indicator, the motion of an isolated bubble immersed in liquid 

Ethanol placed at the centre of the cylinder and 1.5d from the bottom wall (colder region) 

was first computed. The simulation was conducted with the set of parameters shown in Table 

6.1, with ReT and MaT equal to 308.6 and 5025.7, respectively, for a bubble with a diameter 

equal to 8 mm and a temperature gradient of T =0.25K/mm. The final results, shown in 

Figure 6.1a, present the motion of the isolated bubble from the colder to the hotter region 

over 10 time steps. Besides the existence of Marangoni phenomena (as seen in Figure 6.1a), 

the results from the same figure show good agreement with the earlier 2D axis study and the 

experimental results of Thompson et al. (1980). 
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Three different studies for three different bubble diameter sizes were carried out to 

investigate the effect of bubble diameter size on thermocapillary migration and interaction of 

leading and trailing bubbles located at the centre of the cylinder and perpendicular to the 

hotter region. Identical boundary conditions and physical properties of the isolated bubble 

were used; the only variable was the bubble's diameter. In the first case, presented in Figure 

6.1b, two bubbles of equal diameter (10 mm) were aligned perpendicular to the hotter 

surface. The lower bubble was located at a distance of 1.5d above the lower wall (cold 

surface) and at a distance of 2d below the centre of the upper bubble. In the second case, 

presented in Figure 6.1c, two bubbles with different diameters were placed one above the 

other. The smaller and larger bubbles had diameters of 8 and 10 mm and were located at 1.5d 

and 3d from the bottom wall, respectively. In the third case, presented in Figure 6.1d, two 

bubbles with different diameters were used, with the larger bubble positioned below the 

smaller one. The centre of the lower bubble was positioned 1.5d from the colder wall and the 

upper bubble at 2.5d from the centre of the lower bubble. The final and critical result found 

from the three simulations is that in a zero-gravity environment, the thermocapillary 

Table  6-1 Physical properties of the liquid and gas employed in the simulation at To=298.2K and 

sample results of a bubble with a diameter equal to 10 mm. 

Properties Unit Ethanol Nitrogen (N2) 

Density ( ) kg/m
3
 790 1.138 

Specific Heat (Cp) j/kg-k 2470 1040.7 

Thermal Conductivity (λ) w/m-k 0.182 0.0242 

Viscosity (μ) kg/m-s 0.0012 1.66e-5 

Surface Tension (σ0) N/m 0.0275 ------ 

Surface Tension Coefficient (σt) N/m-k 0.00009 ------ 

Temperature Gradient (∇T) K/mm 0.208 ------ 

Prandtl Number (Pr),  Eq. (4) ------- 16.28 0.79 

Thermal Reynolds Number(ReT),  Eq. (2) ------- 257.2 ------- 

Thermal Marangoni Number(MaT),  Eq. (3) ------- 4188 ------- 
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migration of a pair of bubbles immersed in a surrounding liquid with a temperature gradient, 

both bubbles will migrate toward the hotter side. The motion of these two bubbles depends on 

the temperature difference, their position, and the length of their diameters. The results 

recorded in Figures 6.1a-d show the final results for the three cases at two time steps (0.25 to 

7.25s). As expected, the trailing bubble has no influence on the migration of the leading 

bubble, which moves as if it were an isolated bubble. Contrary to the behaviour of the upper 

bubble, the lower bubble was found to be significantly affected by the dynamics of the 

leading bubble. The lower bubble always moves more slowly than an isolated bubble, due to 

the back flow produced by the leading bubble. Balasubramaniam and Subramanian  (2000) 

studied two bubbles migrating in large Reynolds (ReT) and Marangoni numbers (MaT) and 

found that the thermal wake of the leading bubble disturbed the temperature field around the 

trailing bubble and reduced its velocity, in contrast to the findings of Meyyappan et al. (1983) 

who studied theoretically the different reactions between two bubbles with different 

diameters along their line of centres and found that the smaller of the two bubbles always 

moves faster and the larger bubble moves slightly more slowly, unlike in the case of a single 

bubble. All the theoretical work on the interaction between bubbles or droplets mentioned 

above was restricted to small Re and Ma values. 
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Figure 6.1a Isolated bubble migration at 10 time 

steps (d=8 mm). 

Figure 6.1b Two equal bubbles migrating at 

two time steps (d=8 mm). 

  
Figure 6.1c Two unequal bubbles migrating at 

two time steps (dtop=12 and dbottom=8 mm) 

Figure 6.1d Two unequal bubbles migrating 

at two time steps (dtop=8 and dbottom=12 mm) 

Figure  6-1a-d Final position of single and two bubbles aligned vertically in ∇T=0.25K/mm. The 

bubbles are shown at different times along with their path. 

6.5 Thermocapillary flow and interaction of two horizontally-placed 

spherical bubbles 

 

The thermocapillary flow of two and a group of bubbles located side by side in a zero-gravity 

environment may be considerably different from the flow observed in normal gravity. In this 

section, several fundamental aspects of multi-bubble behaviour are presented, which include 

thermocapillary bubble merging and coalescence (small bubbles merging into a large bubble) 

and bubble size distribution due to bubble coalescence. 

This numerical study observed the behaviour of two spherical bubbles inside a stationary 

cylindrical domain. The two bubbles had zero-velocity fields and were prescribed 
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horizontally with a distance of h = 2d between their central points. The bubbles were placed 

at initial locations of -1d, 1.5d, 0d and 1d, 1.5d. 0d mm on the coordinate system X, Y, Z for 

the left and right bubble respectively, so that both of the bubbles were close to the centre of 

the cylinder. Two simulations were conducted with two different temperature gradients; the 

corresponding thermal Reynolds and Marangoni numbers for the two different temperature 

gradient were ReT= 257.2 and MaT= 4188 for T = 0.208 K/mm and ReT= 308.6 and MaT= 

5025.7for T = 0.25 K/mm.  For the first temperature gradient of 0.25 K/mm, the numerical 

simulations of stationary cylinder systems show that the two bubbles move from the cooler to 

the hotter side in an almost linear motion, as seen in Figure 6.2a and 6.3. The bubbles 

maintain the same distance from each other and travel to the hotter side without colliding, 

rising separately and developing almost spherical shapes. The final configuration can be 

explained by the fact that, in addition to the motion towards the warmer surface, the bubbles 

migrate with equal space between them at a steady state velocity. The results of the case with 

two bubbles are similar to what is seen for the isolated bubble in a stationary cylinder (as 

reported in the previous section; see Fig. 6.1). Another simulation was carried out in the same 

conditions, except with a higher temperature gradient between the bottom and the top wall, 

equal to 0.25 K/mm. It is evident from Figure 6.2b that when the temperature gradient 

between the lower and the upper wall is increased to 0.25 K/mm, a collision and 

agglomeration into a single bubble occurred in the upper region of the Y-axis at time t=8.0 s. 

Here, the increase in shear stress force caused by the increase in temperature is seen to 

advance the motion of the bubbles towards the centre of the cylinder. This shows that as the 

bubbles move more consistently, their trajectory and agglomeration are dominated by the 

temperature gradient. The critical result of this is that, in zero gravity, two bubbles immersed 

in a surrounding liquid with a temperature gradient will migrate towards the hotter side. The 
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dynamic and agglomeration of the two bubbles depends on the temperature difference of the 

liquid ( T ), their position (h), and their diameter (d). 

  
Figure 6.2a Final results of two bubbles (db=10 

mm) migrating at T =0.208 K/mm 

Figure 6.2b Final results of two bubbles (db=10 

mm) migrating at T =0.25 K/mm 

Figure  6-2 Rise of a pair of bubbles aligned horizontally and migrating towards the hotter side. 

The bubbles are shown at four times along with their path. 

 

 

Figure  6-3 A plane of a pair of bubbles aligned horizontally and migrating towards the 

hotter side 

h=2d h=2d 
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6.6 Thermocapillary flow and coalescence of a group of bubbles in zero 

gravity 

 

In the same conditions and using similar fluid properties to those selected in the previous 

section, two simulations were performed to evaluate the transition time for bubble-bubble 

collision and agglomeration in zero gravity due to change in bubble diameter. Figures 6.4 and 

6.5 show eight equally-sized bubbles placed 1.5d above the bottom wall and aligned 

horizontally in the Y and Z directions at a distance of 2d from the centre of the cylinder for 

the first row and 4d for the second row. The temperature gradient between the lower and the 

upper walls was 0.25 K/mm, and the corresponding thermal Reynolds (ReT) and thermal 

Marangoni (MaT) numbers for a bubble diameter of 8 mm (as seen in Figure 6.4) were equal 

to 197.5 and 3216.4. For the 10 mm diameter bubble, shown in Figure 6.5, these numbers 

were equal to 308.6 and 5025.7. The four different time in these two figures present the 

bubble trajectory between time, t = 0.25 to t = 10.0 sec. The final results in these two figures 

show that in both cases the eight bubbles merged into four bubbles and reached the top of the 

cylinder at a time of t = 10 sec. It is evident from the comparison between these two figures 

that the collision and agglomeration occur at different times due to the difference in the 

diameters of the bubbles. In the case of the bubble with a diameter of 8 mm, the coalescence 

occurred at around t = 4.25 sec. On the other hand, for the 10 mm diameter bubble, the 

coalescence happened at around t = 6 sec. The two figures also display a shift in the bubble 

position towards the right of the centre due to the relatively high-speed motion of the bubbles 

on the outer side. This result strongly suggests that thermocapillary bubble-bubble collision 

and agglomeration can take place in zero gravity, and there is a clear dependence of bubble-

bubble interaction on their diameter, i.e. with greater diameter the bubble coalescence 

mechanism could occur at a higher point in the Y direction. In general, the present results 

show similarities with experimental results and differences with other numerical findings. For 

instance, the current results contrast with the results of Nas and Tryggvason (1993) in their 



155 
 

three-dimensional numerical study, which reported that no collision could occur in zero 

gravity and that bubbles repel each other due to cold liquid carried between the particles 

during migration. Their results contrast with both the present results and those recorded 

onboard the Chinese 22
nd

 recoverable satellite experiment by (Kang et al., 2007), who 

observed a total of 19 coalescences between air bubbles injected in the direction of the 

temperature gradient of the stagnant heated liquid, where the bubbles were found to stay at 

the upper side of the test cell.  

 
Figure  6-4 Bubble coalescence into four bubbles at ∇T=0.25K/mm (db=8 mm). 

The bubbles are shown at four times along with their path. 
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Figure  6-5 Bubble coalescence into four bubbles at ∇T=0.25K/mm(db=10mm). 

The bubbles are shown at four times along with their path. 

 

6.7 Coalescence of a group of bubbles 

In continuous flow such as is found in a bubble column, it is common to have many bubbles. 

In this subsection, the VOF method was used to simulate thermocapillary flow and the 

interaction of 13 bubbles equal in diameter (8 mm) in a fully three-dimensional geometry. A 

constant temperature gradient of 0.25 K/mm was applied between the top and bottom walls, 

and the corresponding ReT and MaT for the given conditions were equal to 197.5 and 3216.4, 

respectively. All of the bubbles were placed at 1.5d from the bottom of the cylinder (colder 

region) with one bubble at the centre; the remaining twelve bubbles were distributed 

regularly in the Y and Z directions. Figure 6.6 presents the final result of the thermocapillary 

flow and coalescence of these bubbles at four different time steps. The results show that the 

bubbles’ behaviour is similar in tendency to the earlier predictions for smaller numbers of 
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bubbles with a slight difference in coalescence time. The observation worth noting is that the 

bubbles tend to flow away from the centre of the cylinder during their migration. The final 

results show the tendency for the 8 bubbles in the core to coalesce into 4 larger bubbles. The 

outer bubbles were found not to collide, due to their relatively high speed. 

 
Figure  6-6 Thermocapillary migration and interaction of 13 bubbles at =0.25 

K/mm and db=8 mm. The bubbles are shown at four times along with their 

path. 
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6.8 Conclusion 

This section has covered the thermocapillary flow and interaction of single and multiple 

bubbles in a three-dimensional domain. The results show that the trailing bubble migrates 

more slowly than the isolated bubble, due to the disturbed temperature caused by the leading 

bubble. The interaction and disturbance increases as the gap between the two vertically 

aligned bubbles decreases, and vice versa. With a centre-to-centre (h) distance equal to 2d 

between two horizontal bubbles, the results show that the bubbles aggregated when the 

temperature gradient ( T ) was 0.25 K/mm. The final results show that the dynamic and 

agglomeration of the two bubbles depends on the temperature difference ( T ), the distance 

of the bubbles from each other (h), and the size of their diameter (d). Other fundamental 

aspects of bubbles placed side by side were also presented, which included the size 

distribution of smaller bubbles and their agglomeration to form a larger bubble. The results 

show that collision and agglomeration could occur at a higher distance and longer time if 

larger bubbles were used. No bubbles broke in any of the cases observed and agglomeration 

only occurred during thermocapillary migration for a given range of thermal Reynolds and 

Marangoni numbers.  
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Chapter 7 Thermocapillary Bubbles Flow and Coalescence in a 

Rotating Cylinder: 3D study 

7.1 Overview 

This work aims to provide a better understanding of the dynamics of single and multiple 

bubbles in confined rotating flows subject to thermocapillary forces in zero-gravity 

conditions. In an actual rotating cylinder, the momentum of the rotating cylinder often causes 

gas bubbles to merge as they move to the axis of the rotation. This increases the bubble size 

and can lead to a reduction in the gas holdup. Furthermore, it can also affect the momentum 

exchange (drag) between the different phases. However, even with the advent of modern 

science, the motion of a single bubble in a rotating flow field is yet to be fully understood; "In 

particular, the spin force acting on a small bubble is not clearly identified, and it is not easy to 

predict optimum conditions for bubble removal" (Yamaguchi et al., 2004). The results of a 

three-dimensional rotating cylinder can complement the previous published 2D studies 

thereby explaining not only the motion of small bubbles but also their coalescence into one 

large bubble. "A rotating fluid provides a gyrostatic pressure field which causes less dense 

material such as bubbles to move inward toward the rotation axis"(Subramanian and Cole, 

1979). In a rotating field, fluid particles which are less dense compared to the surrounding 

media migrate inwards, i.e. towards the axis of rotation (Annamalai et al., 1982). This 

technique of adding an additional force, such as centrifugal force, is one way to enhance 

bubble-bubble interaction and has potential applications in micro gravitational science and 

technology. The same method can be used in the glass-manufacturing process by controlling 

bubble coalescence, which may improve gas bubble distribution. "Rotation of the melt 

followed by thermocapillary migration of the coalesced bubbles results in a “centrifugal 

fining” operation for bubble removal (Annamalai et al., 1982)". This method is also 

applicable to removing non-metallic inclusions and is useful in microgravity" (Yamaguchi et 
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al., 2004). Thus, the objective of this chapter is first to confirm the existence of the 

centrifugal force on the bubbles inside a cylinder under zero-gravity conditions subjected to 

Marangoni force, and secondly to investigate numerically the rising and merging process of a 

group of bubbles affected by both these forces. The numerical study will investigate in detail 

the behaviour of a single bubble rising in such a complex flow field. Under such conditions, 

the study will be expanded further to investigate in detail the effect of two important 

parameters: the temperature gradient and the angular velocity. The study will also provide a 

relation ratio for the bubbles’ trajectory under the action of both Marangoni and centrifugal 

forces. Young, Block, and Goldstein (Young et al., 1959) first investigated the 

thermocapillary migration of bubbles and drops with a linear model: 

Thus, the objective of this chapter is first to confirm the existence of the centrifugal force on 

the bubbles inside a cylinder in zero-gravity conditions subjected to Marangoni force, and 

secondly to investigate numerically the rising and merging process of a group of bubbles 

affected by both forces. The numerical study will investigate in detail the behaviour of a 

single bubble rising in such complex flow fields. Under such conditions, the study will be 

expanded further to investigate in detail the effect of two important parameters: the 

temperature gradient and the angular velocity, and to provide a relation ratio for the bubbles’ 

trajectory under the action of both forces. 

7.2  Problem description 

A cylindrical vessel measuring 120 mm high x 120 mm diameter and filled with liquid 

(Pr=16.28) was rotated around its vertical axis at a constant angular speed (ω). The origin of 

the cylindrical coordinate system was placed on the centre of the bottom plate and the vertical 

axis, y, was directed upward. Nitrogen bubbles in the diameter d=10 mm were patched into 

liquid contained in a cylinder and subjected to a vertical temperature gradient (∇T). The 

velocity was set to zero. A non-slip boundary was used for the walls; this refers to the lack of 
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flow across the boundary wall and the inability of the flow to slip along the wall, as well as 

indicating that no heat was lost or gained from the wall. 

7.3 Theory 

The three-dimensional Navier-Stokes equation for incompressible fluid flow in a system 

rotating about a vertical axis reads as seen from chapter 3, Eq. 3-3: 

( ) .( ) 2 . .[ ( )]TP F
t
     


       


      

where,  is the angular velocity of the system and P  is the modified pressure accounting for 

centrifugal force: 2 21

2
P p R  . Here the coriolis force ( 2 .v ) results from a 

combination of fluid velocity and the angular velocity of the system (Detzel et al., 2009). 

Other important dimensionless numbers when dealing with the thermocapillary bubble flow 

in a rotation system are Taylor number 
2R

Ta



 , the swirl Rossby number YGBV

Ro
R

  

(which characterises the relative importance of inertial force (thermocapillary force in this 

study) to Coriolis forces and the Ekman number, 
2kE

R




  (which indicates that of viscous 

to Coriolis forces (Bush et al., 1995)). We consider situations where the bulk external fluid 

motion is geostrophic, i.e. the Coriolis forces are balanced by pressure gradients: 

2 ( )
dp

v R
dR

   , where R  is the radial distance measured from the centreline of the vessel and 

  is the angular velocity of the rotation of the cylinder measured in rad/sec.  

To check the procedure, we first examine the simple problem of ω= 0.5 rad/sec as the 

baseline case. To confirm the accuracy of the simulation, after a steady state was established, 

the tangential velocity component, pressure and temperature gradient of the host liquid were 

measured. Figures 7.1a-d show the distributions of the tangential velocity component, v , 

along with the temperature and pressure within the computational domain after reaching the 



162 
 

steady state condition. Here, the cylinder has a rotational velocity of 0.5 rad/sec and a 

temperature differential of 25 K between the lower and the upper faces. Ethanol is used as the 

working fluid with its properties given in Table 7.1. The results given in figure 7.1a, show 

that the radial distributions of the tangential velocity component measured on the horizontal 

planes (R=60 mm) obeyes Rv  relationship at every axial measurement position.  

Table  7-1 Physical properties of the liquids employed in the simulation at300K for (Pr=16.28) 

Properties Unit Ethanol Nitrogen (N2) 

Density ( ) kg/m
3
 790 1.138 

Specific Heat (Cp) j/kg-K 2470 1040.7 

Thermal Conductivity (k) w/m-K 0.182 0.0242 

Viscosity (μ) kg/m-s 0.0012 1.66e-5 

Surface tension (σ0) N/m 0.0275 ------ 

Surface tension coefficient (σT) N/m-K 0.00009 ------ 

Temperature gradient (∇T) K/mm 0.208 ------ 

Prandtl Number (Pr) ------- 16.28 0.79 

 

The steady state result approximated in figures 7.1a show that the tangential velocity 

increases linearly from the cylinder’s axis of rotation to the walls of the cylinder. It also 

indicates that the total pressure has its minimum and maximum value at the centre and the 

outside walls of the cylinder, respectively. The temperature also shows a linear behaviour 

from the lower to the upper face of the cylinder. Thus the steady state result shown in figures 

7.1a-d verifies that the present CFD measurements are accurate.  
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Figure7.1a Tangential velocity along the radius Figure7.1b Tangential velocity (mm/s) 

  
Figure7.1c Distribution of static pressure (Pascal) Figure7.1d Distribution of temperature (K) between 

the lower and upper walls 
Figures  7-1a-d Tangential velocity, static pressure, and temperature gradient along X, and Y axis. 
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7.4 Singular bubble dynamics in a rotating cylinder 

The results obtained from the steady state simulation of the rotating cylinder will now be 

used to predict the behaviour of a single bubble within such a cylinder. A bubble was placed 

at the location of (5d,1.5d,0d) in the (X,Y,Z) directions respectively, where "d" is the 

diameter of the bubble. 

 

Table  7-2 A simple calculation for the dynamic of a single bubble using the physical 

properties from Table 7.1 

Radius of the Cylinder ( R ) 60        [mm] 

Bubble diameter (d) 10        [mm] 

Bubble position at X-axis 50        [mm] 

  0.5       [rad/s] 

YGBV  35.8    [mm/s] 

TRe
 257 

TMa
 4188 

Ro  1.37 

kE
 0.00122 

Ta  822.9 

 

The transient simulation result in figure 7.2 presents the location profiles of the bubble in the 

x, y and z directions at different time intervals. It is evident from the figure that two 

important forces affect the thermocapillary bubble dynamics. This induces Marangoni flow in 

the surrounding liquid, which may affect the bubble migration by subjecting it to additional 

forces. Since the applied thermal gradient (and hence the thermocapillary motion) is parallel 

to the rotational axis, i.e. the y-axis, the bubble dynamics can be simplified into motion along 

the transverse plane (x-z plane) and motion in the axial direction, where the bubble can be 

expected to be asymmetrically placed. Since the transverse plane motion for a bubble is an 

inward-spiralling trajectory and the vertical thermocapillary motion is a straight line (from 

the cooler to the warmer region), qualitatively, the bubble trajectory should follow a helical 

path, as is observed from figure curves in figures 7.3 to 7.5 and 7.6 for the non-dimensional 

numerical solution of a bubble dynamic for ω= 0.5 rad/sec. The radius and the pitch of the 
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helix will depend on the relative magnitude of the temperature gradient that causes the 

vertical motion and the rotation rate that governs that rate of inward-spiralling motion, which 

will be studied in detail in the coming sections of this chapter. From the same figures, it can 

also be concluded that the gas bubble trajectory under the current rotating conditions is 

significantly different from that of a non-rotating case. That is, the Coriolis force due to the 

rotation of the cylinder is the more dominant factor than the inertial force caused by the 

Marangoni flow where the deflection is strongly influenced by the rotation rates. 

 

Figure  7-2 Three-dimensional numerical solution of a bubble trajectory in XYZ when ω = 0.5 rad/sec, 

db=10mm, ∇T=0.208 K/mm. 
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Figure  7-3 The X and Y directions of a single bubble vs. time (s) 

 

 

Figure  7-4 The Z-direction of a single bubble vs. time (s) 
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Figure  7-5 The radial and angular directions of a single bubble vs. time (s) 

 

 

Figure  7-6 A non-dimensional numerical solution of a bubble dynamic when 

ω=0.5 rad/sec, d=10mm,
YGBV =35.8 mm/s 
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7.5  Impact of changing the angular velocity of the cylinder upon bubble 

dynamic and coalescence 

 

The current set of results are from simulations carried out for two bubbles equal in diameter 

(10 mm each) located side by side at a distance of 10d from each other. Constant temperature 

gradient equal to 0.208 K/mm was prescribed for each simulation and the corresponding 

thermal Reynolds (ReT) and Marangoni (MaT) numbers for all cases were set to 257 and 4188 

respectively. The values of Ta, Ro, Ek were calculated and are reported in Table 7.3 using 

constant VYGB=35.8 mm/s and r =50 mm. 

 

 Figure  7-7 Tangential velocity along the radius for ω= (0.25 to 2 rad/sec) 

 

Figure 7.7 shows the results of numerical simulations of eight different angular velocities. 

The degree to which the bubble diverged toward the axis of rotation depended on the angular 

velocity, ω, and distance (r) from the centre, as seen in Figures 7.8. In the case where Ro= 

2.74, the bubbles developed into almost perfect spherical shapes and rose separately with 

slight diversion at the top of the cylinder towards the axis of rotation but no merger occurred.  
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Table  7-3 Non-dimensional numbers used in the calculation of (R=50 mm) 

and constant (
YGBV =35.8 mm/s)  

 ( rad/s) Ta  TRe  
TMa  Ro  kE  

0.25 411.5 257 4188 2.74 0.00243 

0.50 822.9 257 4188 1.37 0.00122 

0.60 987.5 257 4188 1.14 0.00101 

0.75 1234 257 4188 0.91 0.00081 

1.00 1645 257 4188 0.68 0.00061 

1.25 2057 257 4188 0.55 0.00049 

1.50 2468 257 4188 0.46 0.00041 

1.75 2880 257 4188 0.39 0.00034 

2.00 3291 257 4188 0.34 0.00030 

 

As the angular velocity of the cylinder increased to 0.5 rad/sec, (Ro=1.37), the bubble 

divergence increased toward the axis of rotation and the effects of the Coriolis forces on the 

bubbles trajectory can be observed. However, the thermocapillary force still dominated the 

bubble dynamics, as seen in figures 7.8a-b. These figures show that at this angular speed and 

beyond, the oscillating regime appears and the bubble moves from the left to the right of the 

axis of rotation before reaching the top of the cylinder. 

  
Figure7.8a ω= 0.25 rad/sec and Ro=2.74 Figure7.8b ω= 0.5 rad/sec and Ro=1.37 
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Figure7.8c ω= 0.75 rad/sec and Ro=0.91 Figure7.8d ω= 1 rad/sec and Ro=0.68 

 

 

 

 
Figure7.8e ω= 1.25 rad/sec and Ro=0.55 Figure7.8f 1 ω= 1.5 rad/sec and Ro=0.46 

  
Figure7.8g ω= 01.75 rad/sec and Ro=0.39 Figure7.8h ω= 2 rad/sec and Ro=0.34 

Figure  7-8(a-h) The migration sequence of two bubbles with diameters d=10mm and ∇T = 0.208 

K/mm at eight different angular speeds. 



171 
 

The majority of the bubble divergence caused by the Coriolis forces can be observed by 

increasing ω to 0.75 rad/sec at Ro <    , which resulted in a large divergence of the bubbles 

toward the axis of rotation with a small effect in the direction of the warmer region. 

Increasing the rotation rate to 1 rad/sec and beyond leads to a further divergence which is 

accompanied by a decrease in the magnitude of the Coriolis force. Overall the bubble 

divergence remains unchanged as angular velocity ω is further increased and Ro number is 

further decreased as seen in figures 7.8d to 7.8h. In the simulations it was observed that for 

Rossby number (Ro) >1.0 the bubble motion was mainly guided by thermocapillary force. 

However, at smaller Rossby numbers (Ro < 1), the flow was rotationally dominated and 

behaved quite differently. Such low Rossby numbers indicate that rotation is significant to the 

dynamics of the bubble. 

 

Figure  7-9 Plot of the angular direction of each angular velocity vs. time(s)  
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Figure  7-10 Plot of the bubble spiral in the X-coordinate for the eight cases vs. time (s) 

 

Figure  7-11 Bubble displacement (mm) from the releasing position (at Z=0 mm) toward the 

axis of rotation and the hotter side vs. time (s) 
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Figure  7-12 Plot of the radial bubble trajectory for the eight cases vs. time (s) 
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also cause a major reduction in the bubble velocity towards the hotter side. This is seen in 
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Figure  7-13 Bubble displacement (cm) from the releasing position (3 cm from the axis of rotation) 

toward the axis of rotation and the warmer side (Marangoni). 

7.6  Impact of changing the temperature gradient of the host liquid upon 

bubble dynamic and coalescence 

 

Several series of simulations were performed with the cylinder size and liquid properties that 

were used in the previous sections to investigate the impact of changing the temperature 

gradient of the host liquid upon thermocapillary flow and coalescence of four bubbles. The 

four bubbles of equal diameter were located at a distance of 50 mm from the axis of rotation 

and 90 mm apart from each other in the angular direction. The temperature at the lower 

surface was kept constant at 300K for all cases, while the temperature at the top of the 

cylinder varied between 310 to 330 K giving a temperature gradient between 0.0833 K/mm to 

0.25 K/mm. The corresponding thermocapillary Reynolds, Marangoni numbers and the 

resultant YYGB and Rossby number (Ro) differ with temperature, see table 7.4 for details. 
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Table  7-4 Non-dimensional numbers used in the calculation of (R=50 mm and 

ω=0.5 & 0.6 rad/sec) at different temperature gradients 

∇T(K/mm) VCFD ReT MaT Ro (0.5 Rad/s) Ro (0.6 rad/s) 

0.083 0.014 102.8 1675 0.57 0.48 

0.125 0.022 154.3 2512 0.86 0.72 

0.167 0.028 205.7 3350 1.15 0.96 

0.208 0.036 257.2 4188 1.4 1.2 

0.250 0.043 308.6 5025 1.72 1.4 

 

The left column in figure 7.14a-e represent the trajectory of the four bubbles subjected to a 

constant rotational speed of 0.5 rad/sec with varying thermal gradients between 0.0833 to 

0.25K. The results show that with low rotational speeds, increasing the temperature gradient 

can help to control the bubble trajectories and their merging inside the cylinder. 

This is because the greater the thermal gradient experienced by the bubbles, the greater the 

thermocapillary force exerted on the bubbles by the fluid. Results for a constant rotational 

speed of 0.6 rad/sec are shown in the right column of figure 7.15a-e. The corresponding 

thermocapillary Reynolds, Marangoni, and Rossby numbers and the resultant YYGB for 0.5 

and 0.6 rad/s angular velocities are giving in table 7.4. In these figures at a constant angular 

velocity, the temperature is seen to advance the motion of the bubbles towards the centre of 

the cylinder. At low angular speeds, once the bubble reaches the middle of the cylinder, it is 

pushed further into the centre due to an increase in the temperature gradient. Both the 

rotational cases show that as the Ro increases, the bubbles move more consistently and their 

trajectory and agglomeration are dominated by the temperature gradient. In the earlier 

sections, it was proven that the bubble migration velocity varies linearly with the temperature 

gradient. Here, in the case of low rotational speeds, increasing thermal gradient causes the 

bubbles to move further in the radial and axial directions. This ascent due to Marangoni flow 

causes the bubbles to be pushed further towards the centre of the cylinder. 
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Figure7.14a Migration sequence of four bubbles 

when ∇T =0.083 K/mm and Ro=0.57 at 

ω=0.5rad/s 

Figure7.15a Migration sequence of four bubbles 

when ∇T =0.083 K/mm and Ro=0.48 at 

ω=0.6rad/s 

  
Figure7.14b Migration sequence of four bubbles when  

T=0.125K/mm, and Ro=0.86 at ω=0.5rad/s 

Figure7.15b Migration sequence of four bubbles when  

T=0.125 K/mm, and Ro=0.72 at ω=0.6rad/s 

  
Figure7.14c Migration sequence of four bubbles when  

T=0.167 K/mm, and Ro=1.15 at ω=0.5rad/s 

 Figure7.15c Migration sequence of four bubbles when  

T=0.167 K/mm, and Ro=0.96 at ω=0.6rad/s 
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7.7      Coagulation of bubbles at varying distances from the axis of rotation 

Different parameters have been changed in order to study different scenarios of bubble 

dynamics and coalescence in a rotating cylinder under zero-gravity conditions. In this section, 

simulations were carried out to investigate in detail the effect of bubble placement from the 

centre of the cylinder, as well as the impact of the position of the bubbles in relation to each 

other on the collision and agglomeration of a group of bubbles. 

  
Fiture 7.14d  migration  sequence of four bubbles 

when  T=0.208 K/mm, and Ro=1.4 at ω=0.5rad/s 

Figure7.15d Migration sequence of four bubbles when 

T=0.208 K/mm, and Ro=1.2 at ω=0.6rad/s 

 

 

 

 

Figure 7.14e migration  sequence of four bubbles 

when  T=0.25 K/mm, and Ro=1.72 at ω=0.5rad/s 

Figure7.15e Migration sequence of four bubbles when  

T=0.25 K/mm, and Ro=1.4at ω=0.6rad/s 

Figure  7-14 and Figure  7-15 Comparison between ω = 0.5 rad/s and ω = 0.6 rad/sat five different 

temperatuer gradient 
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7.7.1 Single bubbles located at five different distances from the centre of a cylinder 

The position of a collection of bubbles from the axis of rotation may have a major effect on 

their diverging and merging.  In order to discover the effect of bubble distance from the 

centre of the cylinder, more than 40 fully three-dimensional cases for five different positions 

have been studied in this section, in order to identify the relationship between the distance 

and the diverging level, time, and merging process for eight rotational speeds. 

Bubbles with a diameter of 10 mm were placed axially at a distance of one and a half times 

the diameter of the bubble from the lower surface of the cylinder (cooler region), and at X=10 

to 50 mm in increments of 10 mm for each case in the radial direction. The size of the 

computational domain and the fluid parameters were kept the same as in the previous section. 

After steady state condition was achieved, the bubbles were patched against a constant 

temperature gradient of 0.208 K/mm and against each rotational speed from 0.25 to 2 rad/sec 

in increments of 0.25 rad/sec. Each Figure from 7.16to 7.23 presents the comparison of the 

five bubble positions at different angular speeds. The Ro numbers vary from each model to 

the next due to changes in radial position and (ω), as seen in each plot. Thermal Reynolds and 

Marangoni numbers were kept constant for all simulations at 257 and 4188 respectively. The 

Rossby number (Ro), assumed as ω=0.25 rad/sec for the five positions shown in Figure7.16, 

was between 2.87 and 14.3. The plot shows no oscillating regime for any Rossby numbers in 

this range, which confirm the previous results obtained in this chapter.  In the next Figure 

7.17, related to ω=0.5 rad/sec, the spiral regime appears for the first time when a single 

bubble was placed at a distance of between 40 and 50 mm from the Y- axis, which is   

equivalent to Rossby numbers of 1.4-1.8 respectively. For ω=0.75 rad/sec in Figure7.18, the 

bubbles spiral around the Y-axis after 2 seconds and show similar behaviour with a slight 

difference in time, as shown in Figures 7.18 to7.23. As the angular rotational rate was 

increased, the bubble(s) reached the Y-axis in a shorter time. The results show that the 
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maximum looping around the Y-axis occurs at x=-16.6 when ω=0.5 rad/sec and the bubble is 

in a position of 50 mm from the axis. For the same bubble position and for ω=2 rad/sec, the 

looping was shorter and the bubble tends to move faster toward the Y-axis. This indicates that 

at a higher angular speed, the bubble tends to settle on the axis of rotation. These calculations 

can also be used to estimate the typical time required for the bubble to reach the axis. 

 

Figure  7-16 Computed results of the bubble released from the five positions (ω=0.25 rad/sec) 

 

Figure  7-17 Computed results of the bubble released from the five positions (ω=0.5 rad/sec) 
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Figure  7-18 Computed results of the bubble released from the five positions (ω=0.75 rad/sec) 

 

Figure  7-19 Computed results of the bubble released from the five positions (ω=1 rad/sec) 
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Figure  7-20 Computed results of the bubble released from the five positions (ω=1.25 rad/sec) 

 

Figure  7-21 Computed results of the bubble released from the five positions (ω=1.5 rad/sec) 
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Figure  7-22 Computed results of the bubble released from the five positions (ω=1.75 rad/sec) 

 

 

Figure  7-23 Computed results of the bubble released from the five positions (ω=2 rad/sec) 
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7.7.2 Multiple bubbles located side by side along the radial plane 

Nine bubbles with a diameter of 10 mm were placed axially at a distance of one and a half 

times the diameter of the bubble from the lower surface of the cylinder (cooler region). The 

cylinder height and diameter measured 120 mm x120 mm, rotating at 0.5 rad/sec in the first 

calculation and 0.6 rad/sec in the second calculation. The chosen liquid had a Prandtl number 

of 16.28. The first group of bubbles contained 4 bubbles located at 2d from the bubble in the 

centre, and the second group contained the same number of bubbles located at 4d from the 

centre on the X-Z planes. In this section, two rotational speeds (ω=0.5 rads/sec and 0.6 

rads/sec) were applied to the cylinder to observe the behaviour of 9 bubbles. The results show 

that for the first angular speed (0.5 rad/sec) the inner four bubbles (first row) collide and 

agglomerate with the bubble in the centre of the cylinder in a time of 6 seconds, while the 

outer group of bubbles (second row) rotate around the axis of rotation. The higher centrifugal 

force, as seen in the second case for ω=0.6 rad/sec, caused the bubbles to agglomerate in a 

shorter time and more closely to the lower surface as seen in figures 7.24 and 7.25 .  

 

  

Figure  7-24 Two migrating time for nine bubbles 

located side by side (ω=0.5 rad/sec) 

Figure  7-25 Two migrating time for nine bubbles 

located side by side (ω=0.6 rad/sec) 
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7.7.3 Group of bubbles located above the second row  

In order to further investigate the effect of bubble position and angular speed on the bubbles’ 

dynamics and agglomeration, a simulation of two groups of bubbles placed above each other 

is carried out in this section. The two groups consisted of eight bubbles of equal diameter (10 

mm) located at a distance of 50 mm from the axis of rotation and 90 mm apart from each 

other in the angular direction. The first group, containing four bubbles, was placed axially at 

a distance of one and a half times the diameter of a bubble from the lower surface and the 

second group at a position of 1.5d from the first group on the axial direction. The size of the 

computational domain and the fluid parameters were kept the same as in previous sections. 

Upon steady state condition being reached, the bubbles were patched against a temperature 

gradient equal to 0.208 K/mm and a rotational speed of 0.5and 0.6 rad/sec for the first and 

second simulations respectively. A comparison of the results of the two different simulations 

is presented in Figures 7.26a-c and 7.27a-c. Figures 7.26a-c for ω=0.5 rad/sec show the same 

results as the previous section for a singular, pair, and group of bubbles under the same 

conditions. The two groups migrate in a straight line to the upper surface of the cylinder 

without intersecting. In Figures 7.26a-c for ω=0.6 rad/sec, the merging process of the two 

group took place just before they reached the top of the cylinder. The results show that large 

numbers of bubbles could be compounded inside the cylinder to form a larger bubble. The 

behaviour of the bubbles in both simulations is also similar to the results from the same 

conditions studied in previous sections. By comparing the migration time between the two 

simulations, we find that the bubbles with higher angular velocity (0.6 rad/sec) reached the 

surface faster. However, for the same simulation conditions, velocities higher than 0.6 rad/sec 

will tend to increase the bubble migration time. The results obtained from this section can 

explain the angular velocity required to merge bubbles inside the cylinder without reducing 

their migration speed.  



185 
 

  
Figure7.26a Migration time=2 s Figure7.27a Migration time=2 s 

  
Figure7.26b Migration time=6 s Figure7.27b Migration time=6 s 

  
Figure7.26c Migration time=8 s Figure7.27c Migration time=8 s 

Figure  7-26a-c The interaction of eight bubbles at 

a selected time for ω=0.5 rad/s 

Figure  7-27a-c The interaction of eight bubbles at 

a selected time for ω=0.6 rad/s 
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7.8 Coagulation of bubbles of various sizes 

The results presented in Figures 7.28a-c and 7.29a-c show a comparison of two cylinders 

each containing 4 bubbles of equal diameter located at a distance of 50 mm from the axis of 

rotation and 90 mm apart from each other in the angular direction. The cylinder measured 

120 mm in diameter and rotated at an angular velocity of 0.5 rad/sec, filled with a liquid with 

a Prandtl number of 16.28. The temperature was 300 K at the lower surface for all cases and 

325 K at the upper surface of the cylinder. For given conditions, the temperature gradient 

measured 0.0208 K/mm and thermocapillary Reynolds and Marangoni numbers were 257 and 

4188 respectively. The computed results in this section compare two bubble diameters 

migrating under the same conditions. The two bubble diameters were 10 and 11mm for the 

first and second simulation respectively. The bubbles were placed axially at a distance of one 

and a half times the diameter of the bubble from the bottom of the cylinder (cooler region). In 

the time sequence shown in Figures 7.28a-c, no merging process was observed for bubbles 

with a size of 10 mm and all four bubbles reached the top wall without coalescing. On the 

other hand, the merging occurred at the top of the cylinder and at the time (t)=8s for the 

bubbles with diameter equal to 11 mm, as seen in the time sequence in Figure7.29a-c. These 

two figures show the possibility of controlling bubble agglomeration by adjusting the angular 

velocity.  
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Figure7.28c Migration time= 6 s Figure7.29c Migration time= 6 s  

  
Figure7.28c Migration time= 8 s Figure7.29c Migration time= 8 s 

  
Figure7.28c Migration time= 9 s Figure7.29c Migration time=9 s 

Figure  7-28a-c  Bubble diameter=10 mm Figure  7-29a-c Bubble diameter=11 mm 
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Figure  7-30 Top view of the migration and agglomeration of four bubbles with diameter =11 mm 

7.8.1  Simulation of heterogeneous bubble sizes in a single cylinder 

Finally, in order to further confirm that the merging process is affected by the diameter of the 

bubbles involved, a simulation of four different bubble sizes were carried out in a single 

cylinder at the same time. The diameters of the bubbles measured 9, 10, 11 and 12 mm and 

the bubbles were located at a distance of 50 mm from the axis of rotation and 90 mm apart 

from each other in the angular direction. The bubbles were placed axially at a distance of one 

and a half times the diameter of the bubble from the base of the cylinder (cooler region). The 

size of the computational domain and the fluid parameters were kept the same as in the 

previous sections of the study, and the bubbles were patched after obtaining the steady state 

condition against a constant temperature gradient of 0.208 K/mm and a rotational velocity of 

0.5 rad/sec. The bubble dynamics in Figures 7.31a-b are similar to those of the bubbles with 

equal diameters and the same flow conditions. The results show that the bubbles migrate with 

equal space between them towards the centre and the hotter side of the cylinder, while 

maintaining a steady state velocity. The plots in Figures 7.32 and 7.33 show that bubbles with 

a larger diameter reached the axis of ration and the warmer side faster than those with smaller 
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diameters. On the other hand, the bubbles with smaller diameters exhibited a taller helix than 

the other bubbles in Figure7.34. 

 

  
Figure 7-31a Time step=2 s Figure 7-31b Tme step=6 s 

  

Figure 7-31c Time step=10 s Figure 7-31d Time step=14 s 

Figure  7-31a-d Four snap-shot in time showing heterogeneous bubbles moving toward the warmer 

region 
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Figure  7-32 Dimensionless radial position for the four heterogeneous diameters versus time (s) 

 

 

Figure  7-33 Displacement of the four bubbles towards the warmer region 
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Figure  7-34 Plot of bubble motion around the axis of rotation 

 

The final configuration can be explained by the fact that in order to simulate the merging 

process between bubbles, we apply angular velocity to the cylinder containing bubbles. This 

rotational rate forces the bubbles to move closer to the axis of rotation, leading to 

coalescence. For similar conditions and fluid properties given in this chapter, at a small 

angular velocity of ω = 0.5 rads
-1

, the gas bubbles tend to merge in the upper area of the 

cylinder. However, as the angular velocities increase (ω =0.6 rad/sec), the coalescence shifts, 

occurring in the lower part of the cylinder. This implies that controlling the bubble 

coalescence and manipulation is possible by controlling the rotational rate of the cylinder, 

which was illustrated by figures and plots throughout this chapter. In order to describe a 

bubble rising in a rotating cylinder under the effect of surface tension gradient in zero gravity, 

the ratio of inertia force to Coriolis force is given by the dimensionless Rossby number: 
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where YGBV is the thermocapillary bubble velocity in zero gravity, which can be calculated 

from Eq.2-1 and V is the rotational or angular velocity given as V R  . From the 

results of this report, one can see that if the Rossby number is larger than 1.0, i.e. if the 

angular velocity is slower than the thermocapillary bubble velocity, the bubble deflection 

towards the axis of rotation is small, due to minimal rotational effects. On the other hand, for 

Rossby numbers of less than 1.0, the bubble motion is significantly affected by the rotation 

rate, and the amount of deflection (in relation to the size of the cylinder) increases further 

towards the axis of rotation. This suggests that the Coriolis forces have minimal contribution 

to the agglomeration of the bubbles when the Rossby number is substantially greater than 

one. On the other hand a bubble’s trajectory and coalescence will be significantly affected 

when the Rossby number is much less than unity: 

Rossby number ( ) 1 Coriolis dominant
inertial

Ro
Coriolis

    
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7.9 Conclusion 

The results for motion of a singular and multiple bubbles incorporating thermocapillary 

forces in a rotating liquid in a zero-gravity environment have been presented for the first 

time. When the Rossby number ≥ 1, the effects of rotation are important. Furthermore, the 

deflection of the gas bubble motion increases towards the axis of rotation with a decrease in 

the Rossby number (Ro). On the other hand for a stationary cylinder, the thermocapillary 

migration of two bubbles was found to move in a linear fashion. This shows that the 

coalescence rates could be improved by operating the cylinder at lower mechanical rotation 

rates. As can be seen from the results, centrifugal and Coriolis forces are an example of 

external phenomena that may be used to control bubble agglomeration in zero gravity. 

Furthermore rotation can play an important role in the dynamics and collision of bubbles in 

zero-gravity conditions. Different flow patterns such as thermocapillary bubble migration, 

stream function, and thermal gradients were observed for the 2-D and 3-D models under the 

effect of zero gravity. It was found that the flow pattern transitions appeared as a result of the 

temperature gradient and the angular velocity rates. Since zero gravity is difficult to achieve 

in a laboratory setting, one can demonstrate the relevant phenomena using numerical 

simulations. It also allows one to study sensitivity effects regarding different parameters. It 

may be concluded that VOF is a robust numerical method for the simulation of gas-liquid 

two-phase flows with high-density ratios. With computer simulations proving their worth as a 

valuable tool to study the complex problems under the conditions of zero gravity, and from 

the results of this chapter one can assess the credentials of modelling to simulate realistic 3-D 

Marangoni cases. 
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Chapter 8 : Bubble Population Balance Modelling in Normal and 

Zero Gravity 

8.1 Introduction 

The size distribution of the bubbles plays a critical role in mass transfer and reactions that 

may occur between the any two phases. Detailed knowledge about the bubble-bubble 

interaction is of great importance for improving bubble contact and increasing efficiency of 

the bubble column. The operation of bubble-bubble interaction in bubble column reactors is 

affected by different operating parameters such as initial boundary conditions of the two 

phases (gas and liquid) as well as outside forces such as column rotation, vibration, 

pulsation...etc. Hence resolving the bubble size distribution is an important task in the CFD 

analysis of bubble column reactors. Population balances is the most frequently used 

modelling tool to investigate the large size distribution of the dispersed gas bubble and 

accounting for the break-up and coalescence effects in bubble column flows. An extensive 

review of the application of population balances to particulate systems in engineering is given 

by Ramkrishna (2000). Bubbles usually flow in a large number of groups and all the data of 

previous calculations have been carried out for single and a small group of bubbles using the 

VOF model. Bubble population balance equation (BPBE) in the Euler–Euler computational 

fluid dynamics (CFD) representation is used to assess the effect of inlet gas velocity on the 

bubble collision and agglomeration. The implemented population balance models (PBM) will 

also be used to perform 2D axisymmetric simulations of air bubbles flow in a rotational 

column to investigate the possibility of using a rotating cylinder for bubble population 

modelling under both normal and zero gravity. The implemented population balance models 

(PBM) in a CFD Eulerian-Eulerian model of air-water bubble column flows will be validated 

with the experimental data of Degaleesan et al. (2001) and the population balance simulations 

performed by Chen et al. (2005). The validated PBM code will also be subjected to grid 
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dependency checks before the final set of calculations. The investigation of air bubbles flow 

under zero gravity will be carried out based on the details of the bubble-bubble interaction for 

rotating cylinders given by the previous calculations (results presented in the last few 

chapters). 

8.2 Numerical Methodology 

The discrete method was developed by Hounslow et al. (1988) , Litster et al. (1995), and 

Ramkrishna (2000).  It is based on representing the continuous particle size distribution 

(PSD) in terms of a set of discrete size classes or bins. In the current solver Population 

Balance Modelling Equations (PBE) are written in terms of volume fraction of particle size i: 

0, , , , 0( ) .( ) ( ) 0iv s i
s i s i i s i ag i ag i br i br i s

G
u V B D B D V n

t V V

 
     

   
       

   
  8-1 

where 
s  is the density of the secondary phase and 

s  is the volume fraction of particle size i, 

defined as 

 

i i iN V   (i=0, 1 ...N-1) 

 

where  

1

( ) ( , )
i

i

V

i

V

N t n V t dV


           8-2 

and 
iV  is the volume of the particle size i. For the simulations, a fraction of   called 

if  is 

introduced as the solution variable. This fraction is defined as 

i
if




           8-3 

where   is the total volume fraction of the secondary phase. The nucleation rate 0n


 appears 

in the discretized equation for the volume fraction of the smallest size
0V . The notation 0

i
 

signifies that this particular term ( 00sV n


) appears in Equation 8-1 only in the for the 
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smallest particle size. The growth rate in Equation (8.1) is discretized as follows (PBM-

Manual, 2011) 

, 1 1 ,

1 1

v i i v i iv s i
s i

i i i i

G N G NG
V

V V V V V V

 
  

 

      
      

        

     8-4 

The volume coordinate is discretized as 1 2q

i iV V  where q=1, 2,...and is referred to as the 

“ratio factor”. The particle birth and death rates are defined as follows: 

,
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here ( , )kj i ja a V V and 1kj  for 1i ag iV V V   where 1i N  , otherwise =0 

agV  is the particle volume resulting from the aggregation of particles  and j , and is 

defined as 

1[ (1 ) ]ag j i j iV V V              8-9 

where  
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If agV is greater than or equal to the largest particle size
NV , then the contribution to 

class N−1 is 

ag

j

N

V

V
            8-11 

Note that there is no breakage for the smallest particle class, (Ansys-Fluent, 2011). The 

readers are encouraged to refer to the Population Balance Model Manual (2006) for a 
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comprehensive overview of the FLUENT population balance model and its application in 

solving multiphase flows involving a secondary phase with a size distribution. 

8.3 Computational settings and validation of the PBM model 

The first part of this work is to combine a coalescence and break-up model with a complete 

flow numerical simulation under normal gravity. The flow equations are solved using a 

population balance approach coupled with the Eulerian multiphase model. The population 

balance module is provided as an add-on with the standard FLUENT solver. A two-phase air-

water bubble column with a height of 200 cm and diameter of 14.5 cm is used for the 

simulations. The geometry and operating conditions are all based on the air-water 

experimental system of Degaleesan et al. (2001), which have been validated by simulations 

from Chen et al. (2005) and Law and Battaglia (2013). The initial diameter of the injected air 

bubbles is 0.4 cm as specified by  (Degaleesan et al., 2001). In accordance with Hounslow et 

al. (1988), the prescribed bubble classes are chosen in such a way that the bubble volume (or 

mass) in class i + 1 is twice the volume (or mass) of the antecedent class below i: 

1 .i iv n v           8-12 

where i refers to the bubbles size group and n=2, i.e. classes were assigned such that the 

volume of class i+1 is twice the volume of the antecedent class i, (vi+1 = 2vi). For the purpose 

of PBM validation, six bubble sizes from 0.159 to 1.62 cm in diameter are considered as 

shown in table 8.1, and bubble size of only the 3
th

 class i.e. 0.4 cm enter the column; these 

setting as all consistent with thoses of Degaleesan et al. (2001).  

Table  8-1 Assigned bubble sizes of n=2 for the population balance simulation 

Class index  1 2 3 4 5 6 

Bubble 

diameter(cm) 
0.159 0.252 0.400 0.636 1.00 1.62 
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The properties for air and water used in the simulation were taken from (Ansys-Fluent, 2011), 

see table 8.2. 

Table  8-2 Physical properties of the two fluids (water/air) employed in the simulation 

Properties Unit Water Air 

Density ( ) kg/m
3
 998.2 1.225 

Viscosity (μ) kg/m-s 0.001003 1.79e-5 

Surface tension N/m 0.075 

 

The air bubble is injected into a 14 cm diameter bubble column filled with 98 cm of water 

through an inlet at the bottom with a constant velocity of 9.6 cm/s, as shown in figure 8.1.  

The geometry is modelled as two-dimensional axisymmetric to reduce the computational 

time. 

 

Figure  8-1 Problem Schematic for normal gravity flow 

 

 

Air inlet velocity = 9.6 cm/s 

Axis 

Air 

Water 

14 cm 

102 cm 

98 cm 
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The coalescence and breakage models proposed by Luo and Luo-Svendsen are considered in 

the simulations to account for breakage and agglomeration mechanism, whereas the model of 

Schiller and Naumann has been employed for the drag coefficient calculation. The settings 

given in table 8.3 are used to compare the Fluent computations with the experimental data of 

Degaleesan et al. (2001). All these settings are used for all computational runs except for zero 

gravity conditions where laminar flow is consider.  

Table  8-3 Physical properties of the two fluids (water/air) employed in 

the simulation 

Category Description Input 

Numerical solver 
Segregated implicit unsteady 

first order 
 

Solution algorithm 
Solving algorithm scheme 

Phase Coupled 

SIMPLE 

Convergence Criteria 0.001 

Turbulence modeling 

Standard κ- ε model  

Standard wall function 
 

 

Mixture  

Multiphase model 

Eulerian  

Specified operational density 

and gravity-zero gravity 
 

Drag coefficient model Schiller- Naumann  

Discretization scheme 

Momentum First order 

Turbulent viscosity First order 

Turbulent dissipation rate First order 

Population Balance 

Model 

Discrete method  
Six different 

bubble sizes 

Aggregation Kernel Luo model 

Breakage Kernel Luo model 

Under Relaxation    

Factors 

Pressure 0.3 

Density 0.6 
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Body-forces 0.6 

Momentum 0.2 

Volume Fraction 0.2 

Turbulent kinetic energy 0.8 

Turbulent dissipation rate 0.8 

Turbulent viscosity 0.6 

air Bin 0.8 

Initial Conditions 

Reference pressure 101325 [Pa] 

Turbulent kinetic energy 0.1 

Turbulent dissipation rate 0.25 

    Boundary condition 

Rotating <-> Stationary grid Interface 

Outer walls No-slip wall 

Body No-slip wall 

 

For the present work, time-dependent simulations were run with time step of 0.01 s until a 

steady flow was established with acceptable mass balance for all fluid phases as shown in 

figures (8.2 to 8.4). 
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Figure ‎8-2 Monitoring of smaller bubble size 

 

Figure  8-3 Monitoring of medium bubble size 

 

Figure  8-4 Monitoring of larger bubble size  
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Comparisons between the present results for six bubble sizes with previous experimental and 

numerical results at an air inlet velocity of 9.6 cm/s show acceptable agreements (see Figure 

8.5). In fact, the results of axial water velocity agrees better with the predictions of Law and 

Battaglia (2013) and Chen et al. (2005) for six different bubble sizes. On the other hand in 

Figure 8.6 average axial liquid velocity predictions are shown to have little effect by varying 

column heights for a fixed inlet velocity of 9.6 cm/s.  

 
Figure  8-5 Comparison and validation of 2d axis of average axial liquid velocity 

predictions at 10, and 15 cm heights with experiments at 9.6 cm/s superficial gas 

velocity. 
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Figure  8-6 Calculated average axial liquid velocity predictions from 20 to 80 cm 

heights of column at 9.6 cm/s superficial gas velocity 

8.4 Grid-Size Dependency 

Further validation of the present PBM model was achieved by performing a series of refining 

grid densities using Gambit (2005) software. Grid independence was achieved by increasing 

the grid cells whilst plotting the convergence of certain parameters of interest, such as the 

radial profile of the axial velocity (cm/s) for water at a specific height. This was to ensure that 

the results remained independent of the grid size. It is very important to know which grid will 

produce the desired effect with the least computational cost. In this study, four different 

refined grid densities have been created for meshing the 2d axisymmetric cylinder with a 

structured grid approach. These cells number and figures are listed in table 8.4 and showed in 

figure 8.7. Based on these results, the use of 4800 cells seems to be adequate to capture key 

features of flow inside the bubble column. Therefore, 4800 cells were used in all the 

subsequent simulations.  
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Table  8-4 Grid sensitivity check for a the 2D axis models of air-water PBM 

Grid (∆x,∆y) Number of cells 

(1) 0.55,0.55 4004 

(2) 0.5,0.5 4800 

(3) 0.45,0.45 5772 

(4) 0.40,0.40 7500 

 

The final domain is 2d axisymmetric where the mesh is rectangular, structured and uniform 

with the control volumes being  0.5×0.5 cm
2
 in size.  

 

Figure  8-7 Grid sensitivity check for four different grid size 

8.5 Influence of changing air inlet velocity open bubble breakup and 

coalescence in normal gravity 

 

After validating the PBM model with the bubble column experiments of Degaleesan et al. 
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done not only to study the influence of changing air inlet velocity on bubble breakup and 

coalescence in normal gravity but also to understand and predict air inlet velocity effect on 

the particle size distribution. For the current simulations, similar boundary conditions to the 

validation cases have been used apart from a different air inlet velocity. Figure 8.8 presents 

the density distribution as a function of particle sizes at 2, 4, 6, 8, and 9.6 cm/s air inlet 

velocities. From the comparisons between figures 8.9a-f, it is clear that there is a reduction in 

the initial bubble size inlet (which was 0.4 cm). Furthermore with varying air inlet velocities 

there is an increment in the number density of larger (right) and smaller (left) bubble sizes, 

which shows the bubble coalescence and breakup, respectively. As the air inlet speed is 

increased, bubbles undergo coalescence which results in a sharper (low variance) bell shaped 

distribution. 

 

Figures 8.9a to 8.9f compare number density (#/cm
3
) for air diameter of 0.4 cm at different 

inlet velocities. These figures show an increase in smaller and larger bubble with an 

 

Figure  8-8 Bubble Number density  for different air inlet velocities 
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increasing inlet air velocity, even though all simulations were started with the initial particles 

size equal to 0.4 cm and a constant growth rate. This is evident from the dominant number 

density of 0.4 cm peak histogram in all figures.  

  
(a) Inlet gas velocity = 1 cm/s (b)Inlet gas velocity = 2 cm/s 

  
(c) Inlet gas velocity = 4 cm/s (d) Inlet gas velocity = 6 cm/s 
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(e) Inlet gas velocity = 8 cm/s (f) Inlet gas velocity = 9.6 cm/s 

Figure  8-9 Surface Averaged Number Density Distribution Histogram 

 

All simulations show that bubbles with a range of sizes are formed in the bubble column. 

This model considers that several bubble groups with different diameters di can be 

represented by an equivalent phase with the Sauter mean diameter dg; a single bubble 

breaking into a large and a small bubble. Figure 8.10 shows reduction of the bubble size 

distribution with increasing velocity along the axis for Sauter mean diameter. In this figure it 

is clear the decrease is from inlet to outlet. Figure 8.11 shows air fraction flow development 

with increasing inlet velocity along the radial direction. The contour of figure 8.11 is clarified 

in figure 8.12. 
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Figure  8-10 Distribution of bubble size along the axis for initial bubble size 

 

Figure  8-11 Air volume fraction for each velocity at 40 cm height of the bubble column 
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1 cm/s 2 cm/s 4 cm/s 

   
6 cm/s 8 cm/s 9.6 cm/s 

Figure  8-12 Contours of air fraction for different inlet velocity 

 

It is observed that as the air inlet speed is increased, bubbles undergo coalescence which 

results in a sharper (low variance) bell shaped distribution. With increasing frequency, the 

peak of the bell curve shifts towards the right indicating larger mean bubble diameters as 

observed from figures 8.12 and 8.13 
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(a) Inlet gas velocity = 1 cm/s (b) Inlet gas velocity = 2 cm/s 

  
(c) Inlet gas velocity = 4s cm/s (d) Inlet gas velocity = 6 cm/s 

  
(e) Inlet gas velocity = 8 cm/s (f) Inlet gas velocity = 9.6 cm/s 

Figure  8-13 Histogram of Sauter Diameter Distribution 
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8.6 Bubble breakup and coalescence undergoing forced rotation in 

normal gravity 

 

The next logical step was to perform simulations for bubble breakup and coalescence using a 

forced rotation under normal gravity. For this case the column was rotated with a fixed 

angular velocity and air was injected from the bottom at 0.02 m/s. Calculations of the PBE 

for air entering from the bottom of the column were initiated after obtaining the steady state 

condition for each rotational speed using similar geometry and boundary condition as that of 

the previous simulations. (Figure 8.1, tables 8.1, 8.2). 

The current simulations comprise of column rotational angular speeds of 0.5, 1.0, 1.5 and 2 

rad/s. It is observed that the bubble breakup and coalesce due to turbulence and which is 

caused directly by the injected air  inside the liquid column. The coalescence and breakage 

models proposed by Luo and Luo-Svendsen were considered in the simulations, and the 

model of Schiller and Naumann (1935) was employed for the drag coefficient calculation. 

For the present work, time-dependent simulations were run with a time step of 0.01 s until the 

steady state was established with acceptable mass balance for all fluid phases.  

Figure 8.14 show development of the parabolic shape around the centreline of the column 

due to centrifugal force effect. The obtained figure is for different rotational speeds for air 

phase. The profiles are along the radial direction at a distance of 40 cm from the inlet. Results 

also indicate that rotation could help in moving the gas phase following a parabolic shape. 

Rotation also helps in reducing the turbulence dissipation coming from the wall. 
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 Figure  8-14 Air inlet velocity profile entering with 2 cm/s at 40 cm height of the bubble 

column. 

 

The effect of rotation on the mean bubble size was quantified by measuring the fraction of the 

initial bubble size at various angular speeds. Figure 8.15 shows a decrease in the initial 

bubble diameter with increasing rotational speeds, where the initial bubble diameter is plotted 

along the axial direction showing a decrease from the inlet to the outlet. Figure 8.15 shows 

evolution of Sauter mean bubble diameter with respect to the height at constant air inlet 

velocity and rotational speed. It is also noted from the simulations that the mean bubble 

diameter decreases with increasing height, ultimately reaching an equilibrium size. By 

changing the rotational speed one changes the energy dissipation rate. For these analyses the 

representative bubble size was deduced from the bubble size distribution by calculating the 

Sauter mean diameter.  
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 Figure  8-15 Distribution of bubble size along the axis of rotation for air initial bubble size at 2 cm/s 

 

Figure 8.16 illustrates the effect of angular velocity on the bubble distribution. At low 

rotational speeds, the bubble bell shape of the number density is high. It is observed that 

rotation provides a radial force input to the system leading to an even narrower size 

distribution and a smaller number density as compared to the non-rotational case. As the 

rotational speed is further increased, the peak of the bell curve becomes smaller. 
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Figure  8-16 Effect of angular velocity on bubble distribution 
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(a) Inlet gas velocity = 0 rad/s (b) Inlet gas velocity = 0.05 rads/s 

  
(c) Inlet gas velocity = 0.1 rad/s (d)Inlet gas velocity = 0.2 rad/s 
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(e) Inlet gas velocity = 0.4 rad/s (f) Inlet gas velocity = 0.6 rad/s 

  
(g) Inlet gas velocity = 0.8 rad/s (h) Inlet gas velocity = 1 rad/s 

Figure  8-17 Surface Averaged Number Density Distribution Histogram 
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Figure 8.18 shows comparisons of bubble diameter for different rotational speeds. With an 

increase in the angular velocity, a noticeable reduction on the larger bubble diameter is also 

observed; the larger bubbles (0.4 to 1 cm diameter ones). Thus it is concluded that at higher 

angular speeds more uniform air particles become to form.  

  
(a) angular speed = 0 rad/s (b) angular speed = 0.05 rad/s 

  
(c) angular speed = 0.1 rad/s (d) angular speed = 0.2 rad/s 

  
(e) angular speed = 0.4 rad/s (f) angular speed = 0.6 rad/s 
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(g) angular speed = 0.8 rad/s (h) angular speed = 1 rad/s 

Figure  8-18 Histogram of Sauter Diameter Distribution with increasing 

rotational speeds. 

8.7 Bubble coalescence undergoing forced rotation in zero gravity 

Coalescence undergoing rotational force holds the key to control the bubble aggregation as 

seen in the earlier chapters. To date, the understanding of the low gravity bubbles coalescence 

behaviour is limited mainly due to the  unresolved physical mechanisms that lead to 

coalescence; the lack of information because of the difficulties in obtaining experimental 

result in microgravity, especially for a rotating column. There has been no study investigating 

bubble size distribution under both rotation and zero gravity condition; the work presented in 

this section fills this gap. It is widely accepted that bubble break up contributes to changes in 

the bubble size distribution but this is considered to be negligible for small bubbles and for 

Marangoni flow (zero buoyancy force). In this study a purely coalescing mechanism for 

bubble growth will be considered and the extent to which coalescence occurs is discussed. A 

rotating bubble column with varying rotational speeds of 0.25, 0.5, 0.75 and 1 rad/s about its 

axis of symmetry is considered. Figure 8.19 shows the schematic representation of the air-

water bubble column of diameter of 120 mm and height of 120 mm. The properties for air 

and water used in the simulation were taken from (Ansys-Fluent, 2011), see table 8.2. The 

geometry consists of air with a constant speed of 1 cm/s flowing through a 30 mm inlet from 

the bottom of the water column. The inlet velocity was chosen to be close to the velocity of 
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gases in zero gravity (thermocapillary migration speed). The geometry was modelled as two-

dimensional axisymmetric to reduce the computational time. Part of the upper surface (top 

wall) of the domain was set to pressure outlet; the rest of top and bottom walls were defined 

as no-slip solid walls (see fig.8.19 for details). 

 

 

 

  

 

Figure  8-19 Problem Schematic for zero gravity flow 

water 
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8.7.1 The aggregation kernel for Laminar Flow (model 1) 

 

Coalescence occurs instantaneously after two particles collide forming a new sphere. Particle 

collision and coagulation leads to a reduction in total number concentration. However, the 

total particle volume remains unchanged. The coalescence rate can be expressed as the 

product of collision frequency and coalescence probability. The collection kernels used for 

the population balance modelling are complex and have not yet been benchmarked for zero 

gravity environments. A number of applicable kernel models for the determination of bubble 

coalescence in thermocapillary flow and two coalescence kernel suggested by number of 

authors for small bubbles diameter and laminar shear collision mechanisms will be 

implemented in this investigation. 

The aggregation kernel ( , )kj i ja a V V  has units of m
3
/s, and is expressed as a product of the 

collision frequency of particles of volume Vi and Vj. The coalescence efficiency is the 

probability of particles of volume Vi coalescing with particles of volume Vj, where the two 

bubbles have diameters di and dj, respectively. In this study, the coalescence (model 1) is 

written as: 

2( )
4

kj i j

du
a K d d

dx


          8-13 

 

where  ( , )kj i ja a V V ,with the unit of “volume per time (mm
3
/sec)” depends on the sizes of 

the colliding particles and boundary condition of the flow field. When Vi and Vj collide, a 

new particle with volume of Vk  is formed. In the present work all small bubbles collision 

frequency and efficiency are lumped into a single constant, K which depends on the intrinsic 

diameters di and dj of the two bubbles. The collection kernel ( model 1 ) has been suggested 

by a number of authors (for example Everson (1971), and Argyriou et al. (1993)), where the 
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relative velocity 
du

dx
 of the two colliding bubbles is assumed to be constant. It can be 

remarked that such a factorisation of the collection kernel is possible only if the characteristic 

time of the collision process is large compared with the time scale of coalescence (Everson et 

al., 1993). 

8.7.2 The aggregation kernel for Laminar Shear Flow (model 2): 

Particles in a uniform, laminar shear flow collide because of their relative motion. In 

modelling the particle motion in laminar shear flow its motion is assumed to be rectilinear. 

For this case the collision frequency function kja  for coagulation is  given by Friedlander 

(2000) reads as: 

34
( )

3
kj i j

du
a d d

dx
           8-14 

where 
du

dx
 is velocity gradient in the direction x normal to the streamline. 

Simulations are performed to study the influence of changing the column rotational speed 

open bubble coalescence in zero gravity where air is entring from the bottom of the rotating 

column. 

8.8  Results and discussions 

In this section, we present a thorough study of the effect of rotational speed on bubble size 

distribution using two coalescence kernels for laminar flow. The study begins by 

investigating the dependency of aggregation kernel (1). Classes were assigned such that n=4, 

i.e. the volume of class i+1 is four times the volume of the previous class i, (vi+1 = n.vi). A six 

different bubble size group used for the PBM simulations of the bubble column is shown in 

table 8.5 
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Table  8-5 Assigned bubble sizes of  n=4 for the population balance simulation 

Class index  1 2 3 4 5 6 

Bubble diameter(mm) 1 2.52 6.34 16.0 40.3 101.6 

 

In figure 8.20, the inlet gas velocity was set equal to 1cm/ s (approximately close to the 

thermocapillary migration speed of same bubble size diameter). A 2-D rotating fluidized bed 

has an angular velocity of 0.5 rad/s. Under the current operating conditions a quasi-steady 

state was reached after 30-40 s of real-time simulations. Both kernels (1 & 2) were 

implemented in the CFD using UDFs. 

 

Figure  8-20 Air phase (1 cm/s) development inside a rotating column (ω=0.5 rad/s) 
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A typical percentage of bubble diameter columns for the same case and time step is shown in 

Figure 8.21, which show a coalescing mechanism for bubble growth during the flow until it 

reaches the steady state condition i.e. after 34 s. 

    
4 s  14 s 24 s 34 s 

Figure  8-21 Percentage distribution of bubble diameter in a rotating column (ω=0.5 rad/s) and 

air flowing at 1cm/s in zero gravity 

 

A typical number density of bubble size inside the rotating column is shown in Figure 8.22. It 

should be noted that the ND is a function of coalescence process only.  

 

 

The simulation results shown in figures 8.23 are presented for four different rotating speeds 

(0, 0.25, 0.5, 0.75, 1rad/s) at a fixed air inlet velocity equal to 1 cm/s. In figure 8.23 it is 

 

Figure  8-22 Number density for ω=0.5 rad/s 
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observed that for 1 rad/s at t=20 s, the column was in a complete fluidization state unlike at 

lower rotational speeds. These figures reveal that there is an influence of the rotational speed 

on the migration of air phase. i e. rotating the column not only causes bubble collision but 

also accelerates the speed of moving bubbles throughout the column.  

 

Figure ‎8-23 Transient development of air flow at 1 cm/s at different angular speed in zero gravity 
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A typical bubble number density columns is shown in Figure 8.24. It should be noted that the 

number density is a function of axial position in the column owing to the coalescence 

process. 

 

Figure  8-24 Comparison between the two kernels model for air 

inlet =1 cm/s 

 

Another study has been done to investigate the size of bubble due to change in the n classes. 

The new value is assigned such that the volume of class i+1 is twice the volume of the 

previous class i, (vi+1 = 2vi). As mentioned earlier the determination of bubble size is based 

upon the bubble volume interval where index i refers to the bubble size group. Comparison of 

the bubble number density for air entering the column at 1 cm/s is presented in Table 8.6 and 

figures 8.25 for bubble sizes of n=2 and 4. 
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Table  8-6 Assigned bubble sizes of n=2 and 4 for the population balance simulation 

n Bubble diameter(mm) 

2  1 1.59 2.52 4 6.35 10.08 

4 1 2.52 6.34 16.0 40.3 101.6 

 

Comparisons between figures show the difference in the bubbles size diameter with similar 

number density behaviour. Figure 8.25 shows that the PBM results are comparable with each 

other for different bubble size groups. Furthermore, the profiles collapse to the same with 

increasing bubble size groups. 

 
 

Figure  8-25 Number density for bubble sizes of n =2 (left) and n =4 (right). 

 

Finally the bubble size distribution was measured at four different air superficial velocities of 

1, 2, 3, and 4 cm/s and rotational speed was set constant at 1 rad/s. The simulations results in 

figure 8.25 for n=2 show increase in number density with increase in air inlet velocity. 
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Figure  8-26 Number density for different air inlet velocity 

 

This shows that the bubble diameter depends on gas hole velocity through the inlet.  

Histogram in figures 8.26 & 8.27 show the effect of inlet velocity on the air bubble diameter. 

As the gas flow rate is increased, the initial diameter decreases and bubble agglomeration 

increases. 
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Air inlet velocity =1 cm/s Air inlet velocity =2 cm/s 

  
Air inlet velocity =3 cm/s  Air inlet velocity =4 cm/s 

Figure  8-27 Effect of different air inlet velocity on the bubble size distribution 
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8.9 Conclusions 

Euler–Euler simulations of gas–liquid flow in a bubble column have been coupled with a 

study of population balance. Bubbles have been distributed into 6 diameter classes. For each 

of them coalescence and break-up phenomena has been taken into account under normal 

gravity. For zero gravity condition coalescence only case was considered. The most important 

conclusion from these numerical results is that the centrifugal force is responsible for the 

bubble motion towards the axis of rotation shifting them away from the wall. The population 

balance under rotational effect for turbulence and in normal gravity is different than that for 

zero gravity and laminar. Two kernel models show no difference on the obtained data as 

rotation is dominant factor.  In future a constant value for Kernel in zero gravity could be 

obtained and assigned for population balance modelling.  Increasing the air flow rate shows 

an increase in the coalescence rate with a decrease in the inlet bubble diameter. Rotation 

changes the flow profile from turbulence to laminar under normal gravity, whereas it helps in 

accelerating the speed of bubble motion throughout the column under zero gravity. From the 

work of this thesis it can safely be concluded that Computational Fluid Dynamics (CFD) can 

be used as a reliable tool to gain more knowledge and a detailed understanding of the flow 

physics; especially for the hydrodynamics of  bubble column under zero gravity conditions. 
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Chapter 9 Conclusions 
 

Two axisymmetric and three-dimensional VOF simulations of two-phase (gas/liquid) 

transient flow were performed using a multiphase flow algorithm based on the finite-volume 

method. The current results show conclusive existence of Marangoni bubble/droplet flow 

phenomena in a zero-gravity environment. The present CFD results show that different 

temperature gradients lead to different droplet migration velocities, and it was proven that 

bubble migration velocity varies linearly with the temperature gradient for the given 

conditions. This phenomenon is expected due to an increase or decrease in the movement 

source - in this case, temperature difference. This study shows that, generally speaking, as 

MaT increases, the scaled velocity of a single bubble/droplet decreases and steadily 

approaches its asymptotic value. At the beginning of this research study, the terminal velocity 

of a single bubble was calculated and an expression for predicting the scaled velocity of a 

bubble has been derived based on the data obtained in the present numerical study for 

Marangoni numbers up to 10,721. An expression for predicting the scaled velocity of a 

Fluorinert droplet migrating in oil has also been presented for Ma ranging from 24.05 to 

2771. The interactions of two droplets in thermocapillary motion have also been studied and 

compared with the results obtained for the isolated droplet. The results have shown that the 

leading droplet will not move faster than if it were isolated, as the trailing droplet has no 

influence on the velocity of the leading droplet. In addition, the trailing droplet translates 

more slowly than the isolated droplet, due to the thermal wake of the leading droplet. 

Moreover, the results indicate that as      , the trailing droplet will move at the same 

velocity as the isolated droplet. This research study has also covered the thermocapillary flow 

and interaction of a single and multiple bubbles in a three-dimensional domain. The results 

show that the trailing bubble migrates more slowly than the isolated bubble, due to the 

disturbed temperature caused by the leading bubble. The interaction and disturbance 
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increases as the gap between the two vertically aligned bubbles decreases, and vice versa. 

Other fundamental aspects of bubbles placed side by side were also presented, which 

included the size distribution of smaller bubbles and their agglomeration to form a larger 

bubble. The results show that collision and agglomeration could occur at a higher level if 

larger bubbles were used. No bubbles broke in any of the cases observed and agglomeration 

only occurred during thermocapillary migration for a given range of thermal Reynolds and 

Marangoni numbers. The results of the motion of a singular and multiple bubbles 

incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment have 

been presented for the first time. When the Rossby number is 1, the effects of rotation are 

significant. Furthermore, the deflection of the gas bubble motion increases towards the axis 

of rotation with a decrease in the Rossby number (Ro). On the other hand, for a stationary 

cylinder, the thermocapillary migration of two bubbles was found to move in a linear fashion. 

This shows that the coalescence rates could be improved by operating the cylinder at lower 

mechanical rotation rates. It was also found that CFD predictions with the VOF model agreed 

better with the experimental data, due to the fact that it is based on the Geo-Reconstruct 

algorithm. The VOF model with the UDF were examined properly and results show that the 

surface tension coefficient was well coded, suggesting that it is an appropriate choice to solve 

thermocapillary problems. 

Finally, two axisymmetric dimensional Eulerian/Eulerian simulations of two-phase 

(gas/liquid) transient flow were performed using a multiphase flow algorithm based on the 

finite-volume method to simulate bubble population balance modelling for both stationary 

and rotating columns in normal and zero gravity. Quantitative agreements between the 

experimental data and simulations are obtained for the averaged axial liquid velocity profiles. 

An important conclusion from these numerical results is that the centrifugal force is pulling 
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the bubbles towards the axis of rotation and shifts them away from the wall. Rotation could 

accelerate the moving bubbles throughout the column in zero-gravity conditions.  

Recommendations and future works 

Most experiments in microgravity have constraints such as time limitations; computer 

simulations, on the other hand, are not restricted to such constraints where any arbitrary 

geometry can be simulated. Thus, numerical simulations prove to be a valuable tool to study 

such complex problems under the conditions of zero and reduced gravity. A wider range of 

parameters as well as deeper physical explanations should be included in future work, such as 

a distance between the two droplets and the influence upon their interaction. The droplet 

behaviour is different from that of the bubble in thermocapillary flow, and more attention 

should be given to this topic in subsequent research studies. Since zero gravity is difficult to 

achieve in a laboratory setting, one can demonstrate the relevant phenomena using numerical 

simulations. It also allows one to study the effects of the sensitivity of different parameters. 

With computer simulations proving their worth as a valuable tool to study the complex 

problems under the conditions of zero gravity, and from the results of this thesis, one can 

assess the credentials of modelling to simulate realistic 3D Marangoni cases. Nonetheless, the 

numerical simulation facility on hand nowadays should encourage researchers to make use of 

high density grids and complex three-dimensional models to obtain results of the highest 

possible accuracy. 

No previous similar work was used to compare the obtained results; this could be used in 

future in order to validate newer results. Mainly, there seems to be a need for further 

investigations on multiphase flow in zero gravity. 

As stated in Chapter 3, FLUENT does not offer particle interaction simulation unless UDF is 

used. As a next step, this model could be upgraded with UDFs in which different aspects of 

particle collection can be depicted. For example, with UDF, a complete picture of the particle 
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behaviour in zero gravity could be established and the collective efficiency of a bubble and 

droplet agglomeration could be predicted. In future, many processes can be modelled to study 

different scenarios, such as the effects of pulsation, vibration, and surfactant on the behaviour 

of bubbles and droplets in zero gravity. 
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