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Abstract 
 

Firms or organisations implement performance assessment to improve productivity but 

evaluating the performance of firms or organisations may be complex and complicated due 

to the existence of conflicting objectives. Data Envelopment Analysis (DEA) is a non-

parametric approach utilized to evaluate the relative efficiencies of decision making units 

(DMUs) within firms or organizations that perform similar tasks. Although DEA measures 

the relative efficiency of a set of DMUs the efficiency scores generated do not consider the 

decision maker’s (DM’s) or expert preferences.  

 

DEA is used to measure efficiency and can be extended to include DM’s and expert 

preferences by incorporating value judgements. Value judgements can be implemented by 

two techniques: weight restrictions or constructing an equivalence Multiple Objective 

Linear Programming (MOLP) model. Weight restrictions require prior knowledge to be 

provided by the DM and moreover the DM cannot interfere during the assessment analysis. 

On the other hand, the second approach enables the DM to interfere during performance 

assessment without prior knowledge whilst providing alternative objectives that allow the 

DM to reach the most preferred decision subject to available resources. 

 

The main focus of this research was to establish interactive frameworks to allow the DM to 

set targets, according to his preferences, and to test alternatives that can realistically be 

measured through an interactive procedure. These frameworks are based on building an 

equivalence model between extended DEA and MOLP minimax formulation incorporating 

an interactive procedure. In this study two frameworks were established. The first is based 

on an equivalence model between DEA trade-off approach and MOLP minimax 

formulation which allows for incorporating DM’s and expert preferences. The second is 

based on an equivalence model between DEA bounded model and MOLP minimax 

formulation. This allows for integrating DM’s preferences through interactive steps to 

measure the whole efficiency score (i.e. best and worst efficiency) of individual DMU. In 

both approaches a gradient projection interactive approach is implemented to estimate, 

regionally, the most preferred solution along the efficient frontier. The second framework 

was further extended by including ranking based on the geometric average. All the 

frameworks developed and presented were tested through implementation on two real case 

studies. 
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Chapter 1 

 

Introduction to the thesis. 

 

1.1 General overview 

 

The aim of performance assessment is to improve the operations of business and 

organisation units with the intention of increasing productivity. Performance assessment is 

a complicated process due to the existence of multiple and conflicting objectives and 

attributes. 

 

Data Envelopment Analysis (DEA), a non-parametric method, is a very powerful tool used 

for assessing performance, benchmarking and future planning. It is used to evaluate the 

performance of a set of peer entities called Decision Making Units (DMUs) relative to the 

best DMU’s practice, which forms the efficient frontier. It was introduced by Charnes, 

Cooper, and Rhodes and is known as the CCR approach or model, (Charnes; 1978). Since 

then DEA has seen a great variety of applications in evaluating the performance of many 

kinds of entities and most extensions, i.e. incorporating value judgments, of the approach 

have resulted from these real life applications.  

 

This research builds on these extensions of DEA and its integration with Multi Objective 

Linear Programming (MOLP) to provide three new interactive frameworks that are fully 

implemented and tested on two real life case studies. 
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1.2 Motivation for the research 

 

The integration of assessing past performance and planning future targets involving DM 

and expert preferences is of increasing interest to support both management and planning 

control (Cooper, 2004). Although DEA has been developed for performance assessment 

many implementations and applications of DEA have not included the interaction of the 

decision maker(s) or expert(s) and therefore have not included their value judgements. The 

incorporation of value judgements into DEA can be satisfied by placing restrictions on 

weights linked to inputs or outputs or by developing equivalent Multiple Objective Linear 

Programming (MOLP) models which previously have been employed for target setting and 

future planning. The former approach of weight restrictions is difficult because of the need 

to identify the appropriate weights whilst the latter approach has the advantage of 

including the decision maker(s) or expert(s) judgements through the employment of 

interactive trade-off analysis. A third approach to incorporating DM preferences involves 

the construction of ordering preferences in which preference relationships are viewed in a 

fuzzy manner as “higher”, “lower”, “better” or worse” Liu (2006). Techniques for ordering 

preferences include: Pareto, K-cone and Lexicographic methods, which are all transitive 

(Liu, 1985 and Nemhauser, 1989). 

 

Incorporating ranking in performance assessment and DEA is essential as it enables DMs 

to monitor the level of improvement of the targeted DMU among the others. Although 

there have been several attempts in the literature to incorporate ranking they have only 

provided a means of measuring the best efficiency (one-directional efficiency) but not a 

complete image of the performance of DMUs. In this research a new approach for ranking 

DMUs is presented which allows for measuring the performance of individual DMUs from 

two different perspectives (the best relative efficiency and the worst relative efficiency).  

 

This work presents three interactive frameworks: production trade-off MOLP model, 

bounded MOLP model, and interactive ranking model. The origin of these models is to 

integrate DEA with a minimax MOLP model from which the Most Preferred Solution 

(MPS) is obtained interactively through gradient projection. The third framework employs 

the Geometric Average to incorporate the best and worst relative efficiencies for ranking 

the DMUs. 
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1.3 Research Questions 

 

The aim of this research was to provide frameworks for better efficiency assessment and 

target setting leading to improved decision making. The research questions posed were: 

 

 How effective and useful are DEA and its extensions in incorporating both DM and 

expert preferences when focussing on performance assessment, benchmarking and 

target setting? 

 How can any equivalence of the extended DEA (i.e. trade-off approach and 

bounded model) and MOLP models be employed to establish an interactive 

framework for improving performance assessment? 

 How can ranking be incorporated into performance assessment and what would be 

the effect on decision making? 

 

1.4 Structure of the thesis 

 

The thesis comprises six chapters including this introduction. 

 

Chapter 2 is the main literature review and focuses on the essential background knowledge 

required to conduct the research of this work. The chapter begins by reviewing the concept 

of Data Envelopment Analysis (DEA) starting from the work of Farrell (1957) and follows 

the development of DEA and its extensions culminating with a discussion of its advantages 

and disadvantages. Then follows a critical review of Multi-Criteria Decision Making 

(MCDM) approaches including: basic Multiple Objective Linear Programming (MOLP), 

interactive MOLP, the integration of DEA and MOLP and the interactive Gradient 

Projection Approach (GPA) all of which form the basis of this research. 

 

Chapter 3 begins with an introduction into the incorporation of Decision Maker (DM) and 

expert value judgements and reviews the production trade-off DEA/MOLP model before 

providing an illustrative example and presenting the steps required for an interactive 

framework. Then two case studies are presented to illustrate this interactive framework. 

The first case study considers decisions concerning several academic departments at the 

University of Bahrain and fully describes the framework process involving: selecting 
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variables, statistical analyses, identifying returns to scale and decisions for improvement of 

one department. The second case study considers decisions concerning several private 

hospitals in Bahrain and focuses on how hospital performance can be measured and the 

application of the framework to improve one specific hospital.  

 

Chapter 4 begins with a critical review of relative efficiency and reviews the bounded 

DEA-MOLP approach before presenting an illustrative example and the steps required for 

the second interactive framework. The framework is then fully implemented and tested on 

The Bahrain International Hospital from the case study data presented in the previous 

chapter. 

 

Chapter 5 begins with a critical review of ranking approaches and reviews the Geometric 

Average Approach (GAA) before presenting a third interactive framework and an 

illustrative example. The chapter concludes with a fully detailed implementation of the 

framework to the second case study of chapter 3 (The private hospitals of Bahrain). 

 

Finally, chapter 6 presents an overview of the thesis and conclusions followed by a 

summary of the contributions that the research has made to knowledge before outlining 

possibilities and proposals for further research.
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Chapter 2 

 

Literature Review: 

Efficiency Analysis and Performance Assessment 

 
2.1 Introduction 

Improvement in an organization or firm can be achieved by taking appropriate decisions. 

Decision making is considered as the process of selecting a course or action from 

alternatives. Data Envelopment Analysis (DEA) and Multiple Criteria Decision Making 

(MCDM) have been developed to aid a Decision Maker (DM) to assess the performance of 

an organization and to choose the most efficient decision(s) among several alternatives.  

 

Efficiency can be simply defined as the ratio of output to input. More output from less 

input results in relatively larger efficiency. If the greatest possible output is obtained then a 

state of absolute or optimum efficiency has been accomplished and it is not possible to 

become more efficient without making changes to assumed constants in system (e.g. 

production) processes. 

 

DEA, which is also known as frontier analysis, is a very powerful tool and benchmarking 

technique which was formally developed by Charnes, Cooper and Rhodes in 1978 

(Charnes, 1978) based on an original idea by Farrell (1975). It was first implemented to 

evaluate non-profit and public sector organizations in which the units being evaluated were 

known as DMUs (Decision Making Units). DEA has since been used to find ways to 

improve firms or organisation that have not been found by other techniques. 

 

There is a wide variety of Multiple Criteria Decision Making (MCDM) tools and perhaps 

the most popular comprise those that come under the heading of Multiple Objective Linear 

Programming (MOLP), which can be used to solve problems with multiple conflicting 

linear objectives, criteria or attributes subject to linear constraints.  

 



 

19 

 

Relatively recently, Yang (2009) has shown that integrating DEA with MOLP techniques 

can produce a more comprehensive analysis tool to enable a decision maker interactively 

to achieve efficient decisions. This integration is reviewed and developed in Chapter 4. 

 

2.1.1 Aims 

 

The aim of this chapter is to present and critically examine the underlying literature upon 

which this thesis is based to build background knowledge about the DEA efficiency 

assessment approach. In summary the aims of this chapter are: 

 

 A review of basic DEA and its applications  

 Establishing solid background knowledge about DEA mathematical formulations 

and models. 

 Investigating the methods used to incorporate value judgements in DEA. 

 Studying the approaches that integrate DEA with MOLP 

 Reviewing the methods used for ranking DMUs 

 

 

2.1.2 Research questions 

 

This chapter attempts to answer the following questions: 

 

 

1. To what extent have DM preferences and expert preferences been included in DEA 

models? 

2. How and to what extent has DMU efficiency been addressed in the literature? 

3. To what extent has the ranking of DMUs been addressed in DEA models and how 

does this benefit the DM? 
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2.1.3 Methodology 

 

This chapter critically examines and reviews the literature of DEA and its extensions and 

applications to identify any gaps that need to be addressed in order to achieve the research 

objectives of this thesis. The chapter begins with an introduction to DEA starting with the 

original concept proposed by Farrell (1957) and then follows its development and 

extensions to enable a discussion of its advantages and disadvantages to provide essential 

background knowledge about the origin of DEA and its major drawbacks. The chapter then 

examines Multi-Criteria Decision Making (MCDM) approaches, in particular MOLP, and 

how it can be made interactive for a Decision Maker (DM) and integrated with DEA, 

which is one of the desirable improvement in basic DEA. This will provide vital 

knowledge required for this study in which interactive DEA can be formulated. 

 

 

2.1.4 Chapter structure 

 

This chapter includes: 

 

 Basic DEA models 

 DEA mathematical formulations 

 Extensions of DEA models  

 Strengths and weaknesses of DEA models  

 Multiple Criteria Decision Making (MCDM)  

 Multiple Objective Linear Programming (MOLP) models 

 Integration of DEA and MOLP 
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2.2 Data Envelopment Analysis 

 

In this review, general developments in basic DEA and its applications in different sectors 

such as banking, health and education are considered.  

 

DEA involves the use of linear programming methods to construct a non-parametric piece-

wise surface (or frontier) over the data in the form of multiple inputs and multiple outputs. 

These data are collected for each DMU within an organization or firm. Efficiency 

measures are then calculated relative to this frontier. Several researchers have intensively 

studied the methodology of DEA such as Fare, Grosskopf and Lovell (1985, 1994), Seiford 

and Therall (1990), Lovell (1993), Ali and Seiford (1993), Lovell (1994), Charnes et al 

(1995), Seiford (1996), Cooper, Seiford and Tone (2000) and Thanassoulis (2001). 

 

The piece-wise convex hull approach to frontier estimation, initially demonstrated by 

Farrell (1957), was considered by only few authors in the two decades following his work. 

Boles (1966), Shephard (1970) and Afriat (1972) proposed systematic mathematical 

programming methods that could achieve the task, but their work did not become wide 

spread until the paper of Charnes, Cooper and Rhodes (1978) in which Data Envelopment 

Analysis was first used. Since then a large numbers of papers have appeared which have 

extended and applied the DEA methodology. 

 

Charnes, Cooper and Rhodes (1978) suggested an input oriented model that assumed 

constant returns to scale (CRS) known as the CCR model. Subsequent papers have 

considered alternative sets of assumptions, such as those by Fare, Grosskopf and Logan 

(1983) and Banker, Charnes and Cooper (1984) with variable returns to scale (VRS). The 

model proposed by this latter group is known as BCC model. 

 

The idea behind DEA is to find a projection of inefficient DMUs on the efficient frontier 

by following a radial contraction or expansion, and hence, their efficiency score is 

modified relative to the highest efficiency score among DMUs. The efficient frontier can 

be defined as a surface on which the efficient DMUs lie (i.e. the surface that contains 

DMUs having the highest efficiency score among the others).  
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The underlying concept behind DEA was suggested by Farrell (1957) who proposed that 

the efficiency of a firm consisted of two components. Farrell (1957) defined these as: 

technical efficiency, which reflects the ability of a firm to obtain maximal output from a 

given set of input, and allocative efficiency, which reflects the ability of a firm to use the 

inputs in optimal proportions, given their respective prices and the production technology. 

Farrell’s approach will be discussed in more detail in the next section. 

 

The logical extension of Farrell’s work was to provide a model that included multiple 

inputs and multiple outputs. This was achieved by dividing the sum of outputs over the 

sum of inputs with the assumption of different DMUs having a common set of weights for 

each set of inputs and outputs. However, Charnes et al. (1994) recognised that sharing 

common weights was a limitation on the model and they suggested individual weights for 

individual inputs and outputs.  

 

Recall that DEA is based on comparing the efficiency of each DMU relative to an efficient 

frontier constructed from the highest outcome scores of DMUs within a firm or 

organization. The condition used for calculating optimality is well known as the Pareto 

optimality condition, which states that if one input is reduced then another input must be 

increased to maintain the same amount of output. 

 

DEA has widespread applications for measuring performance in different sectors including 

banking, health and education. 

 

In the banking sector DEA has been applied successfully to estimate banking performance 

(Brockett et al., 1997; Chen, 1997; Al-Shmmari and Salimi, 1998; Lorenzo-Vivas et al., 

2000 Ayadi et al., 1998) and the performance of bank branches see for example Avkiran 

(1999).  

 

In the health sector DEA has been applied to estimate the performance of hospitals, 

nursing homes, and physicians see for example Hollingsworth et al. (1999) who counted 

91 DEA studies in health care.  His finding led several researchers to address essential 

questions to help formulate hypotheses in subsequent studies. Most of the hospital studies 

have merely illustrated DEA as a methodology and demonstrated its potential, however, 



 

23 

 

some studies tried to produce useful results for a DM. For example, a study of 22 hospitals 

in the National Health Service in the United Kingdom used a four output, five input model 

(Kerr et al., 1999). 

 

In the education sector, Hanushek (1986) surveyed 147 studies to characterize the 

achievements of individual students resulting from consuming inputs related to school 

characteristics e.g. teachers’ qualifications and curricula. A subsequent similar study, by 

Wenger (2000) added ‘completion of schooling’ to the output and showed that ‘school 

completion’ is essential in a production theoretic perspective. There are many studies in 

this sector, see for example Ray and Mukherjee (1998), Mincer (1974) and Beharman and 

Birdsal (1983). Some studies concentrate on higher education, see for example Flegg et al 

(2004) and Johnes (2005 and 2006).  

 

DEA is a non-parametric approach has been found to be more applicable in contrast with 

parametric methods such as ratio analysis or regression. DEA is an extreme point 

approach, which compares each DMU with those that have best practice unlike statistical 

approaches based on central tendency methods which compare DMUs relative to the 

average DMU. Ratio analysis suffers from a major drawback in that a different ratio may 

indicate the performance of a unit ambiguously in different directions; whilst regression 

analysis yields average or central tendency behaviour of observations (Ganley and Cubbin, 

1992; Seiford and Tharall, 1990). Furthermore, DEA does not require a production 

function, pre-described probability distributions or any assumptions about the distribution 

of standard errors or the efficiency residual in the production function and therefore is 

easier to implement (Banker, 1992 and Cubbin and Tzanidakis, 1998). 
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2.2.1 Farrell Efficiency 

 

The concept of the piece-wise-linear convex hull approach was initially presented by 

Farrell (1957). In his study, the following assumptions were applied: 

 

1. Efficiency measures were based on radial uniform contractions or expansions 

from inefficient elements to the frontier. 

2. The production frontier was specified as the most pessimistic piecewise linear 

envelopment of the data (Koopmans, 1951). 

3. The frontier was calculated through solving systems of linear equations, 

obeying the two conditions on the unit isoquant: 

i. That its slope is not positive. 

ii. That no observed point lies between it and the origin. 

 

The most important feature of Farrell’s approach is that overall efficiency could be 

decomposed into ‘technical’ and ‘allocated’ (price) efficiency as defined below and 

explained through Figure 2.1 in which inputs x1 and x2 produce output y .  

 

 

Figure 2.1 Farrell’s efficiency Analysis 
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Assuming constant returns to scale (CRS) the unit isoquant YY’ shows the minimum 

combination of inputs per unit of output needed to produce a unit of output. Every package 

of inputs along the unit isoquant is considered as technically efficient while any point 

above and to the right of it, such as point P, defines a technically inefficient producer 

because the input package that is being used is more than enough to produce a unit of 

output. The distance RP along the ray OP measures the technical inefficiency of a producer 

located at point P and represents the amount by which all inputs can be divided without 

decreasing the amount of output. The technical inefficiency level associated to package P 

can be expressed by the ratio RP/OP and therefore the technical efficiency of the producer 

under analysis (1-RP/OP) is given by: 

 

Technical efficiency = 
OP

OR
 

 

If information on market prices is known and cost minimization is assumed in such a way 

that the input price ratio is reflected by the slope of the isocost-line CC’ then allocative 

inefficiency can also be derived from the unit isoquant plotted in Figure 2.1. The relevant 

distance is given by the line segment SR, which in relative terms is the ratio SR/OR. With 

respect to the least cost combination of inputs given by point R’, the ratio indicates the cost 

reduction that a producer would be able to reach if it moved from a technically but not 

allocatively efficient input (R) to a both technically and allocatively efficient one (R’). 

Therefore, the allocative efficiency of the producer at point P is given by 

 

Allocative efficiency = 
OR

OS
 

  

Together with the concepts of technical efficiency and allocative efficiency, Farrell (1957) 

also described a measure of what he termed overall efficiency as: 

 

OP

OS

OR

OS

OP

OR
  

 

where the distance involved in its definition (SP) can also be analyzed in terms of 

cost reduction. 
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The natural extension of the Farrell’s approach was to include multiple inputs and multiple 

outputs to the model. This was achieved by Charnes, Cooper and Rhodes, (1978) which is 

known as CCR model. The technical efficiency of a DMU in this case can be expressed as: 

 

Technical efficiency 






inputweighted

outputweighted
                                 2.0 

 

The weights are varied to approach the optimum solution (i.e. max or min) of the DEA 

problem. 

 

 

2.2.2  Basic DEA models 

 

DEA models have been developed over the last decade and have been demonstrated as a 

collection of models and extension to the original work of Charnes, Cooper and Rhodes 

(1978). For instance, these models vary in their orientation (i.e. input oriented or output 

oriented) and constant return to scale (CRS) or variable return to scale (VRS). The original 

DEA model was a non-linear model in which the efficiency (the ratio of outputs to inputs) 

is maximised. This involves finding values for the weights (see equation 2.1) such that the 

efficiency of the i
th

 firm is maximised. The optimum solution is measured for each 

observed DMU and this optimisation is repeated for each of the DMUs within a firm. The 

optimal weights are obtained by solving the mathematical programming problem:  

 

misr

vu

nj

xv

yu

xv

yu

h

ir

m

i

iji

s

r

rjr

m

i
oiji

s

r
orjr

,...,1and,...,1allfor

0,

,...,11

toSubject

Max

1

1

1

1

























                                                 (2.1) 



 

27 

 

 

where: 

 

j0 is the observed DMU 

h is the efficiency score of the DMU0 under analysis; 

n is number of DMUs under analysis; 

s is the number of outputs; 

m is the number of inputs; 

yrj = {y1j, y 2j, …., yrj, ….., ysj}is the vector of outputs for DMUj with yrj being the value of 

output r for DMUj. 

xij = {x1j, x2j, …., xij, ….., xmj}is the vector of inputs for DMUk with xjk being the value of 

input  j for DMUk; 

u and ν are the vectors of multipliers, representing the weights for inputs (xi ) and outputs 

(yr ) respectively.  

 

For a given set of n DMUs within a firm, the model allows for the calculation of the 

optimal set of the input weights [uw]i = 1 and output weights [νi]j = 1 that maximize its 

efficiency score h for an individual DMU0, 

 

Charnes, Cooper, and Rhodes (1981) defined efficiency by reference to the orientation 

chosen: 

 

i. Output oriented model, in which a DMU is inefficient if it is possible to improve 

any output without increasing any input or decreasing any other output. 

ii. Input oriented model, in which a DMU is inefficient if it is possible to decrease 

any input without increasing any other input and decreasing any output. 

 

Hence, a DMU is defined to be inefficient whenever one of the above conditions are not 

satisfied, i.e. (i) and (ii). An efficiency score less than one indicates that the linear 

combination of other units forming the sample could produce the vector of outputs using 

smaller vectors of inputs. Mathematically, a DMU is efficient when the ratio of the output 

to the input is equal to one (i.e. h = 1). 
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Charnes (1981) introduced small non-Archimedean infinitesimal ε (~10
-5 

or 10
-6

) to avoid 

zero production of the DMUs. So, the model can be expressed as: 
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                                                    (2.2) 

 

The above non-linear model can be converted to a linear model as demonstrated by 

Charnes and Cooper (1978) by letting 
i

iji x 1
0

 . By using this transformation the CCR 

input oriented model is established and can be written as: 
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                                  (2.3a) 

 

This form of DEA model is known as the multiplier form. On the other hand, CCR output 

oriented model is produced by letting  
r

rjr yu 1
0

 In this case, the efficiency score is 

equal to 1/h0 and the mathematical formulation of the problem can be written as: 
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The CCR input model is solved by using any optimisation method to find the vectors u and 

v which maximise the targeted firm (the efficiency of the firm equals h0) whereas 

minimizing the targeted firm using the CCR output oriented formulation yields reciprocal 

efficiency (i.e. efficiency = 1/ h0)  

 

If the previous formulation (i.e. input oriented and output oriented) is defined to be the 

primal then the dual form can be written as:  

 

Dual CCR input oriented  
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Dual CCR output oriented  
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                                  (2.4b) 

 

The proposed CCR models were developed to deal with CRS where the input consumed is 

proportional to the output produced. However, imperfect competition, government 

regulations, constraints on finance etc, may not result in constant returns to scale (CRS). 

This led various researchers, such as Afriat (1972), Fare Grosskopf and Logan (1983) and 

Banker, Charnes and Cooper (1984) to suggest adjusting the CRS DEA model to account 

for variable returns to scale (VRS). This type of model is known as BCC model and it 

changes the CCR model by adding the convexity constraint (i.e. 1
j

j ). 
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Figure 2.2 illustrates a comparison of efficiencies for five DMUs (A, B, C, D and E) 

calculated using CCR input oriented (CRS, solid line) and BCC input oriented (VRS, 

dashed line). 

 

 

Figure 2.2 Computing the Efficiency using VRS (dashed line) and CRS (solid line). 

 

Using the CCR model the only efficient DMU is A. However, using the BCC model 

DMUs A, B and C are efficient whilst D and E are inefficient.  
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The BCC mathematical formulation is written as: 

Output oriented Primal form 
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Output oriented Dual form 

 

srmi

xx

njyy

h

j

n

j

j

m

i

ijjij

s

r

rjjrjj

j

o

o

,...,1  and  ,...,1  allfor               

0              

1                          

0             

,...,1        ,0             

Subject to

Max 

1

1

1
0

0



































                                   (2.5b) 

 

The transformation from the CCR model (2.4b) to the BCC model (2.5b) is achieved by 

adding convexity constraints 1
j

j . This ensures that the targeted DMU will be scaled 

according to Ali et al. (1995). It is worth noting that, in 2.5a, u0 plays the key role of 

expressing the returns to scale. If u0 = 0 (or 0
j

j ) then there are constant returns to 

scale (CRS), whilst u0 > 0 has local decreasing returns to scale and u0 < 0 has local 

increasing returns to scale 
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2.2.3 Extensions to the basic DEA model 

 

In this section developments of the basic DEA model are considered. Initially the focus is 

on general developments and integrating DEA with value judgements followed by an 

intensive review of the trade-off approach, the bounded model and the geometric average 

approach. 

 

Since the formulation of the original DEA model by Charnes, Cooper, and Rhodes (1978) 

many developments have been demonstrated.  For example, additional control of weights 

may be needed especially if dealing with a large number of input and output variables and 

this may cause DEA to be less discriminating. Moreover, the decision maker may put 

restrictions on the weights based on his preference structure about the relative importance 

of different inputs and outputs. 

 

Inputs and outputs are assumed to be discretionary (i.e. they are controllable) and can be 

set for decision-maker. However, in reality some inputs and outputs are considered to be 

exogenous and non-discretionary, (e.g. a bank’s branches would not have absolute control 

over the numbers of deposits processed). Consequently, Charnes (1994) suggested 

categorising the input and the output variables into two subsets: discretionary and non-

discretionary.  
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In practice DEA can be described as the projection of scores, generated from the ratio of 

multi-input to multi-output on the efficient frontier (envelopment) surface. Any inefficient 

DMU can be written as a linear combination of an efficient DMU. For example, in Figure 

2.2 the inefficient DMU D can be written as D = λ 1 A+ λ 2 B by using BCC model. Thus, 

for any DMU0 defined by input and output vectors  
00

, rjij yx , the following transformation 

can be applied: 

 

 













   

j j

rjjrjijjij

tiontransformadualDEA

rjij yyxxyx 
0000

,,   (2.6) 

 

2.2.3.1 DEA and value judgements 

 

The term value judgement was defined by Allen et al. (1997) as “logical structures, 

incorporated within an efficiency assessment study, reflecting the Decision Makers 

preferences in the process of assessing efficiency”. Hence, value judgements incorporated 

into DEA reflect prior views or information in efficiency assessments and have different 

implications for DEA outcomes. Moreover, it allows for identifying a relationship between 

certain inputs and outputs adhering to marginal rates of substitution, which can be used to 

support the resource allocation decision. 

 

To ensure that results are consistent with the purpose of the decision making process value 

judgements may be needed to constrain weights. Weight restrictions permit DMs to 

determine the relative importance of inputs and outputs which helps to increase the power 

of DEA and give better efficiency estimates by incorporating advice from managers and 

experts. The incorporation of value judgements in DEA models has been extensively 

studied by several authors, such as Allen et al. (1997), Thanassoulis, Portela and Allen 

(2004). Weight restrictions have been introduced by imposing both upper and lower 

bounds on individual weights (Dyson and Thanassoulis ,1988); identifying an assurance 

region ( Thompson et al, 1990); restricting composite inputs and outputs, weight ratios and 

proportions (Wong and Basely,1990); and through the cone ratio concept (Harness et al., 

1990, 1994). Weight restrictions may provide a discriminatory framework, coupled with 

value judgements, by defining ranges of acceptable weights or assurance regions for 

selecting the preferred efficient DMU, and also ensure the efficiencies scores reflect the 
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performance of DMUs of all the input and output variables. Another issue to consider is 

the instability of the efficiency scores in weight restrictions when data are slightly 

perturbed; Scheel and Scholtes (1998) suggested identifying perturbations a priori to avoid 

instability in efficiency scores. 

 

The incorporation of value judgement into DEA models can be divided into three 

categories: (a) restrictions implemented to control the weights of the input and output, i.e. 

weight restrictions, (b) transformation of the input and output to seek satisfaction of the 

value judgements, i.e. cone ratio approach, and (c) restrictions on virtual inputs and 

outputs. 

 

In category (a) the types of weight restriction can be described by the generalised linear 

programme:  
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Where ur and υi are the weights for inputs and outputs respectively; the Greek letters (κi, αi, 

βi, γi, δi, τi, ρr, ηr) are constants and used to describe the relative importance of the input and 

output factors; the normalised constant, C (normally either 1 or 100), defines the upper 

limit on efficiency ratings and prevents the input and output weights being inflated or 

totally ignored; and the constraints labelled r1 to r5 relate to constraints introduced in the 

literature to restrict the input and output weights and cannot be used simultaneously as they 

depend on the prior knowledge of the DM. 

 

Weight restrictions were first considered by Dyson and Thanassoulis (1988) by introducing 

constraint r1 in formulation (2.7). They implemented regression analysis to determine 

lower bounds on the DEA weights in a single-input multiple-output DEA model. In 1990, 

Wong and Beasley proposed the constraint r2, to calculate the relative ordering of inputs 

and outputs as well as to reflect the marginal rate of substitution. The upper (βi) and the 

lower (αi) limits in constraint r2 were set according to Pedraja-Chapparo et al., (1997). 

 

In 1990, Thompson et al. developed the assurance region model characterised by 

constraints r3 in formulation (2.7)  where γiυi ≥ ur represents the relationship between 

weights of inputs and outputs (i.e. the weights of inputs and outputs were combined rather 

than separated as in the DEA basic model). This approach allows flexibility in changing 

the assurance region until it reaches a level of efficiency as viewed by the DM. 

Furthermore, Allen et al. (1997) noticed that the bound values of the assurance regions 

depend on the scaling of inputs and outputs and consequently constraints r4 and r5 were 

suggested. Whilst the assurance region concept adds flexibility and more precise controls 

in the efficiency measurements it can also be applied to relax tight conditions imposed by 

the allocative efficiency DEA model. The drawback of this approach is that it requires 

great deal of information to impose proper conditions on all inputs and outputs. 

 

The cone ratio approach, category (b), was first demonstrated by Charnes et al. (1990) to 

incorporate preferences of DMs. The original data reflect a range of complex issues 

involving personal judgement and prior knowledge and are difficult to consider. Brockett 

et al., 1997 restricted the possible range for the virtual weights by which the original data 

can be transformed. The efficiency of DMUs is measured by comparison to a previously 

chosen DMU considered to be more efficient. It is worth noting that the cone ratio 

approach did not add constraints as in the assurance region approach  
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In 1992, Thanassoulis and Dyson reported a general structure of weight-based techniques. 

Their model set an ideal target from among the reference DMUs that dominate the DMU 

under observation. Moreover, the model allows for estimating the amount needed for the 

DMU to become efficient and permits the DM to integrate value judgements to satisfy his 

preferences in target setting by increasing output and decreasing inputs to achieve 

efficiency. The idea behind the weight-based general preference structure is to divide the 

DMUs into two groups such that one group contains those DMUs that need to be improved 

and the others are those that need to be kept without changing (i.e. maintained at their 

current level). Hence, an inefficient DMU can have a target set to improve their outcome 

by lowering inputs level and raising outputs level.  

 

The model proposed by Zhu (1996), which is known as the weight-based preference 

structure DEA model, is able to reflect the relative degree of desirability by controlling 

inputs and outputs through the introduction of preference weights into the objective 

function of the non-radial CCR model. Zhu’s model adds more flexibility in changing the 

inputs and outputs compared to the model of Thanassoulis and Dyson (1992) which only 

allowed for changing inputs for a fixed output. The most important feature of the Zhu 

model is its ability to integrate preference structures to achieve efficiency targets and to 

produce an efficiency score of individual DMU by changing both inputs and outputs 

without restrictions. By using this model, uncontrollable inputs and/or outputs can be 

regulated, the breakdown of efficiency in terms of allocation and technical efficiency can 

be measured, and the number of relatively efficient DMUs can be reduced depending on 

the choice of preference weights. 

 

Athanassopoulos (1995) combined goal programming and DEA (GoDEA) to overcome the 

shortcomings of the Thanassoulis and Dyson (1992) model because their model deals with 

DMUs individually. The GoDEA model considers global targets and global resources of 

organisations to provide solutions to identify which level of inputs and outputs can be 

improved. The GoDEA model sets a global target such that DMU improves their outcome. 

Hence, this model applies the concept of equity, efficiency and effectiveness that reflects 

the satisfaction of the main goal of global achievements or effectiveness of the system by 

increasing the contribution of each DMU to the main goal. Another essential feature of 

GoDEA is that it does not need prior information about each DMU because it assumes 

some information about the ideal input and output target predefined by DM. GoDEA 
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minimises the objective function deviational variables used in constraint sets individually 

and globally. Unlike basic DEA, GoDEA considers the incorporation of global targets for 

controllable inputs and outputs. Furthermore, it is able to solve both target and resource 

allocation based problems by calculating the interactions between DMUs and incorporating 

the DM’s preferences as well as selecting the efficient technologies for each DMU in order 

to achieve the global target levels.  

 

GoDEA model was developed to measure global targets and the target-based resource 

allocation (TABRA) approach was developed to adopt a principle-agent paradigm such 

that the principal is the central managements and the agent is the DMU management. 

TABRA focuses on the trade-offs between the objectives of individual DMUs in term of 

marginal rates of substituting between inputs and outputs by setting global performance 

targets (the effectiveness) and the allocation of resources (the equity) which depend on 

prerequisite of each DMU. The method seeks for the most preferred combination of inputs 

and outputs that maximise the accomplishment of all goals whereas the objective function 

is to minimise the goal deviational variables assigned by the explicit representation of the 

trade-offs between effectiveness, efficiency and quality.  

 

Further improvement in DEA was reported by Thanassoulis and Simpson (2000). In their 

model, unobserved DMUs, which are derived from Pareto-efficient observed DMUs, are 

used to integrate value judgements. It has been achieved by combining a set of unobserved 

DMUs with a set of observed DMUs through which efficiencies of the observed DMUs 

can be replicated by carefully chosen unobserved DMUs. In fact, the basic DEA model is 

used to identify the efficient and non-enveloped DMUs. From any non-enveloped DMUs, 

anchor DMUs are determined by the concept of super-efficiency in which outputs of 

individual DMU are adjusted to build the unobserved DMUs, together with DM’s value 

judgement. The unobserved are then constructed by setting the lowest permissible level for 

each output of each anchor DMU, which in turn produces a positive slack value at its 

optimal solution. In essence, unobserved DMUs use modifications of observed DMUs as 

additional DMUs to augment the comparative set in a manner that reflects value 

judgements. Nevertheless it is not conclusive to say that unobserved DMU approach is a 

better approach, it provides an alternative method to that of weight restrictions. The 

unobserved DMUs might not be user-friendly, but unobserved DMU offer more flexibility 

to identify trade-offs between inputs and outputs, and target setting under the unobserved 
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DMU is deemed more significant since the observed input-output mix of Pareto-inefficient 

DMU concerned is mainly preserved. 

 

Although the above models can provide better discrimination between efficient and 

inefficient DMUs, they cannot be interpreted as a realistic improvement (Allen et al, 1997, 

Tanassoulis and Allen, 1998). For example, most of the mentioned models design the 

weight restrictions according to the marginal importance of inputs and outputs, whilst 

some other models include monetary considerations which reflect input costs and output 

prices. In these models the composite sum of inefficient DMUs is not generally 

technologically feasible (producible). To overcome this drawback Podinoviski (2004) 

developed a model called the trade-off approach, which incorporates production trade-offs 

into the dual or primal DEA model. Two ways were proposed to incorporate the 

production trade-offs: first, by adding terms to the dual to modify the composite DMUs 

and second, by using weight restrictions in the primal. Although the proposed approach 

may expand the production possibility set the radial targets of inefficient DMUs are always 

producible. Furthermore, the efficiency estimates retain their traditional meaning as the 

realistic ultimate radial improvement factors. However, the trade-off approach fails to 

clearly address how the DMs preferences are involved; it does not provide alternative 

objectives to guide the DM to the most preferred solution; a priori knowledge is required 

and solving the models is complicated (Podinoviski, 2007). To overcome these drawbacks 

an interactive framework has been developed to integrate the trade-off approach with 

MOLP. The concepts of the trade-off approach and MOLP are discussed in more detail 

below to lay the groundwork for the interactive framework presented in subsequent 

chapters. 
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2.2.3.2 The production trade-off DEA model 

 

In the trade-off approach value judgements are incorporated explicitly by externally adding 

P and Q vectors, for input and output respectively, into the constraints of the basic DEA 

dual programme. These two vectors are specified to handle the trade-off contributions, i.e. 

value judgements, and are defined by the DM a priori based on expertise or survey. By this 

modification, the basic dual formulation DEA programme presented in section 2.2.2 can be 

expressed as: 

 

Output oriented dual formulation 
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Input oriented dual formulation 
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Where K is the number of production trade-off judgements made by the DM with the index 

t denoting each specific judgement.  and are the two trade-off vectors of 
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inputs and outputs respectively, which translate the perceived importance between inputs 

and output variables into relations between the corresponding weights. For example, the 

higher weights join more expensive inputs and outputs with higher prices. To understand 

the meaning of P and Q trade-off vectors, consider the primal formulations for both the 

input and output oriented models. 

 

Output oriented primal formulation 
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Input oriented primal formulation 
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Note that both primal programmes (i.e. input-oriented and output-oriented) share the same 

additional homogeneous weight restriction constraint. This indicates that the additional 

weight restriction constraint can be used in the both input-output oriented without any 

modifications, unlike the non-homogeneous weight restriction constraints such as weight 

bounds. There is an important feature that needs to be considered in using this model. P 

and Q vectors should be changed within the range by which the production possibility set 

maximum can be expanded (i.e. maximum enlargement of the area under the origin 

efficient frontier for P and Q equals zero). The new generated efficient frontier (the 

expanded one) should reflect realistic situations in which the radial targets of inefficient 

DMUs are always producible and the efficiency measure retains its traditional meaning as 

the realistic ultimate radial improvement factor. Although expansion under the area of 

efficient frontier has taken place as a consequence of adding P and Q vectors, the 

inefficient DMUs can be projected on the new (realistic) efficient frontier by following a 

radial path. P and Q vectors should be chosen with caution because the transformation of 

 yx,  into    QyPx  ,  must belong to R
+
 (i.e. satisfy the Closedness axiom see 

Podinoviski, 2004). For instance, if vectors of input and output are )0,0,2(x  and 

)1(y  respectively then P and Q vectors cannot be chosen such that the transformation of 

   QyPx  ,  becomes negative, e.g. (P =  1,1,1  ). This causes violation of 

the Closedness property because the transformation to  yx,  becomes negative (i.e. 

equals  1,1,1  ). Hence, this transformation should be applied to x  vector of the form 

),,2( 21   where ε1 and ε2 must be > 0. Another important feature of this model is that it 

adds more flexibility in controlling inputs and outputs as one can vary input and/or output 

data to achieve the DMs preferences. This approach will be extended in the next chapter by 

producing an equivalent MOLP model to establish an interactive framework based on the 

gradient projection approach. 

 

To illustrate the above discussion, consider the following example (Podinovski, 2004) of 

three similar hypothetical university departments (Table 2.1). 
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Department No. of  staff 
No. of  undergraduate 

students 

No. of Masters 

students 

1 100 700 700 

2 100 1200 600 

3 100 1300 250 

 Table 2.1 Hypothetical university data 

 

Let the following judgements be agreed on by the three departments: 

(J1) No extra resources can be claimed if the number of master students is reduced by one 

and the undergraduate students are increased by one, i.e.  

(J2) No extra resources can be claimed if the number of master students is increased by one 

and the undergraduate students are reduced by two, i.e.  

(J3) In order to increase the undergraduate students by five, it is sufficient to increase the 

number of staff by one, i.e.  

 

For the output-orientation CRS model, the above judgements can be incorporated in both 

the dual and primal formulation as shown below: 

 

Dual formulation 
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In the above formulation, the left-hand side of the constraints contain the decision variables 

(λ1, λ2, λ3) which represent a composite DMU feasible in CRS whilst (π1, π2, π3) modifies 

this composite unit according to the DM preferences (i.e. judgements) J1, J2 and J3.It is 

worth recalling that π belongs to the same feasible decision space as λ and its action is to 

compensate for the extension on the space due to the addition of the P and Q vectors 
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Primal formulation 
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In this Primal formulation of model 2.9a the first four constraints are basic DEA 

requirements whilst the next three inequalities are as a consequence of adding the DM 

preferences (judgements), J1, J2, and J3. 

 

2.2.3.3 The bounded DEA model 

 

DEA models have taken the optimistic point of view in which the relative efficiencies 

reflect the best relative efficiencies or optimistic efficiencies. The optimum solution will be 

between 1 and 0, that is the efficient DMUs have score of 1 and the inefficient DMUs have 

score of less than 1 but greater than 0. In this case the DMUs are classified into two 

groups: optimistic non-efficient and optimistic efficient. Efficiency assessment can also be 

viewed from a pessimistic prospective. Thus the efficiency assessment will reflect worst 

relative efficiency and will have worst DMUs and non-worst DMUs. The efficiency scores 

from this point of view will be greater than 1. Contrary to the best efficient optimistic 

DMUs that form a convex efficient frontier, the worst relative efficiency pessimistic 

DMUs form a concave inefficient frontier. 

 

A few studies have considered dealing with assessment of DMU efficiencies from both an 

optimistic and pessimistic point of view. Entani et al (2002) propose upper and lower 

limits to overcome the difficulties of combining the best and worst relative efficiencies 

because they are incomparable. Doyle et al (1995) proposed three pairs of upper and lower 
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bound evaluation models. These mathematical formulations are not considered any further 

in this review. 

 

More recently in 2007, Wang Y-M and Yang J-B developed a model that is able to 

integrate the views of both optimists and pessimists in one model, which they called the 

bounded DEA model. The problems arising from incomparability between optimistic and 

pessimistic views were overcome by introducing a virtual anti-ideal DMU (ADMU). 

Conceptually, the ADMU is defined to be a DMU that consumes most inputs (x
max

) only to 

produce least outputs (y
min

). Although ADMU is a virtual DMU, it may reflect real 

practical situations because a waste of resources is allowed for in the theory of production. 

The efficiency can be found by solving the following LP.  
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where ɛ is the non-Archimedean infinitesimal. 

 

By using the anti-ideal DMU, which allows for estimating the efficiencies of DMUs in the 

interval  1,ADMU , the following pair of fractional, optimistic (Max) and pessimistic (Min), 

LP DEA models can be written: 
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which are equivalent to: 
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One approach to finding pessimistic and optimistic DMUs is to identify the worst DMU 

among the others, allowing DM to take most suitable decision so that he can see the action 

of each DEA from different point of view. An equivalent MOLP model based on minimax 

formulation will be presented later. To measure the worst and most efficient DMU, the 

projection iterative technique is introduced below. 
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2.2.3.4 The Geometric Average Approach 

 

Measuring DMU activity from different points of view (i.e. optimistic and pessimistic) 

offers a complete view of the DMU that enables DMs to take appropriate decisions. It is 

essential for the DM to identify the overall activities of individual DMUs from both 

extreme views. The Geometric Average Approach (GAA) calculates the overall 

performance of each DMU much easier than the previous models of Doyle et al (1995) and 

Entani et al (2002). In practise, optimistic and pessimistic efficiencies can be used to form 

an interval with lower bound (pessimistic) and upper bound (optimistic). This can be 

achieved by using an adjustment coefficient as reported by Wang Y.M. et al. (2007). The 

adjustment coefficient is restricted to be between zero and one and has the ability to adjust 

the pessimistic efficiency which in this case can be written as:  **~
jj     where:   is the 

adjustment coefficient, *
j  is the pessimistic DMU and *~

j is the adjusted pessimistic 

DMU. To form the interval the adjusted pessimistic, DMU efficiency should fulfil the 

following equality ***~
jjj   where *

j is the optimistic efficiency and it runs over j
th

 

DMUs such that
  *

*

,...,1min
j

j

nj 


  . The interval can be written as    njjj ,....,1, **  . 

To simplify the comparison of the interval numbers Wang et al (2007) proposed the 

comparison of their midpoints calculated by using arithmetic average  
2

**

Jj
  . However, 

finding   is problematic but this parameter plays an important role in rankings of DMUs 

efficiency scores. To overcome this problem, a geometric average is suggested in which 

  can be dismissed because the geometric average can be expressed 

as ****
jjjj     so eliminating   from the geometric average will not affect the 

rankings among the DMUs.  
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The DEA model to measure the overall efficiency score based on the geometric average 

can be written as (Wang et al, 2007): 
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The above programme can be converted to output oriented and can be written as 
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The purpose of converting the geometric average model to the above formulation is to 

derive an equivalent MOLP model (see the next section) that allows for estimating the 

most preferred overall efficiency score for each DMU.  
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2.2.3.5 Ranking DMUs in DEA 

 

Lack of discrimination in DEA applications has led researchers to seek methods to rank 

DMUs. Furthermore, DMs are interested in ranking because such information can be used 

to identify best practice DMUs against which others can be compared. The integration of 

ranking DMUs in DEA has been studied by several researchers. A method of ranking was 

initially proposed by Charnes et al., (1985a) in which the DMU benchmark was identified 

by counting the number of times that an efficient DMU becomes the benchmarking unit for 

others. However, finding the reference set is not an easy task. Another approach was 

suggested by Charnes et al., (1962) by changing the rate of outputs and evaluating the 

change of efficiency score but this was never clarified. In 1986, Sexton et al proposed the 

cross efficiency method which uses the weights obtained from solving n-linear problems 

with the DMUs’ evaluated efficiency being stored in a matrix. Each row of this matrix 

contains the cross efficiency score of DMUs and the average of the matrix rows is 

computed as a ranking measure. The outcome of this method is that DEA models may 

sometimes have more than one solution. Another technique was proposed by Thompson et 

al (1992) based on assurance regions by which the number of efficient DMUs may be 

decreased but finding suitable weight is not easy. In 2001, Adler et al suggested a ranking 

approach based on decreasing the number of inputs and outputs by utilizing component 

analysis but this method failed to provide complete ranking whilst in 2007 Wang et al 

utilized the geometric average for ranking DMUs.  
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2.2.4 Advantages and disadvantages of DEA 

 

Advantages 

 

DEA is a framework analysis which accommodates a comprehensive view of 

organisational performance. It is an appropriate tool for assessing performances of an 

organisation or firm. This is partially due to the fact that a multitude of subjective factors 

affect the quality and productivity of a service that needs to be well managed. Although 

there is no clear relationship between inputs (consumed) and outputs (produced) in DEA 

Charnes et al (1994) identified three extremely useful features: 

 

 Each DMU can be characterized individually.  

 Inefficient DMUs are improved by projecting them on the efficient frontier 

(envelopment). 

 It facilitates making inferences for each DMU among the inferences on the 

DMUs’ general profile. 

 

Charnes et al (1994) also reported a complementary list of other advantages of DEA: 

 

 Multiple-output and multiple-input can be handled in various DMUs 

measurements. 

 A focus on a best-practice frontier, instead of on central-tendencies, i.e. every 

DMU is compared to an efficient unit or a combination of efficient units. The 

comparison, therefore, leads to sources of inefficiency of DMUs that do not 

belong to the frontier. 

 No restrictions are imposed on the functional form relating inputs to outputs. 
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Disadvantages 

 

Although traditional DEA models are considered a powerful tool for efficiency assessment, 

many limitations have been identified: 

 

 As DEA is an extreme point technique, it is very sensitive to noise (even for 

symmetrical noise with a zero mean) that may cause significant errors in efficiency 

measurements.  

 

 Statistical hypothesis tests are difficult because DEA is a non-parametric.  

 

 The standard formulation of DEA is based on separate linear programmes for each 

DMU, which is computationally demanding.  

 

 Basic DEA suffer from other limitations as reported by Athanassoulis (1993): 

 

 Difficulties in aggregating different aspects of efficiency especially whenever 

DMUs perform multiple activities. 

 Insensitivity to intangible and categorical components (e.g. service quality in a 

bank branches).   

 

 There are crucial problems related to mixing multiple dimensions in the analyses. 

For instance, consider a DMU performing two different activities; the DMU could 

be found efficient in the first activity but inefficient in the second. For example, a 

bank’s branches are a single platform that management uses to sell financial 

services to customers as well as providing more traditional banking services such as 

processing deposits or loan. Furthermore, it is difficult to simultaneously assess the 

sales efficiency and the service efficiency of the branch. Because the relevant 

inputs and outputs for individual activities are not directly comparable, the analyst 

would have to run two DEA models one for sales and the other for services. DEA is 

intended for estimating the relative efficiency of a DMU but not specifically 

addressing absolute efficiency. In other words, it measures how well the DMU is 
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behaving compared to its peers (the set of efficient units) but not compared to a 

theoretical maximum. Therefore,  two major problems arise: 

 

 

 It is impossible to rank efficient units absolutely because all DMUs located on 

the frontier surface have 100% efficient score. 

 From managerial point of view, it may be more useful to compare DMUs to a 

frontier of absolute best performance. So the analyst would be able to better 

detect, for example, a DMUs network’s true inefficiency.  In fact, one might 

argue that efficient units may not be efficient enough, so the created frontier 

does not reflect the real potential of the DMU network. 

 

 There is no specifically robust methodology for evaluating or testing the 

appropriateness of a set of factors in an efficiency study. A DEA model can 

indicate how efficient a specific DMU is out of a given set of factors, and what its 

efficiency score is. It does not indicate, however, whether the chosen factors can 

provide the right efficiency. 
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2.3 Multiple Criteria Decision Making approaches 

 

In the real world, many objectives need to be addressed to control a certain system and to 

make a firm or organisation follow an optimum direction. However, sometimes these 

objectives may be conflicting. This can lead to trade-offs between objectives and has 

resulted in multiple objective optimisation techniques being used as a practical tool to 

control such systems and direct firms and organisations in an optimum direction  

 

Different techniques of Multi-Criteria Decision Methods (MCDM) have been established. 

These techniques often integrate common methodologies, for instance, a utility function 

includes a set of judgement criteria, a set of decision variables, and a means of selecting 

alternatives or solutions.  

 

Analytical Hierarchy Process (AHP) and multiple attribute utility theory were 

demonstrated by Saaty (1980). Methods used for solving MCDM problems were reviewed 

by Hwang and Yoon (1981). However, Stewart (1992) argued that these methods were 

unsatisfactory because they failed to provide some degree of theoretical and/or empirical 

justification. Stewart (1992) and separately Dyer et al (1992) developed new methods that 

could produce consistent and rational results, capable of dealing with uncertainties and 

providing transparency to the analysis process. More recently, Yang and Singh (1994) and 

Yang and Sen (1997) reported a method, called Evidential Reasoning (ER), which 

considers both qualitative and quantitative data, can deal with missing values, random 

numbers and subjective judgements with uncertainty. 

 

Multiple Objective Linear Programming (MOLP) deals with well defined objective 

functions under certain constraints. MOLP problems are usually solved by maximising or 

minimising objective functions within a feasible set such as finding the optimum solution 

of the utility function under certain constraints with feeding information from the Decision 

Maker (DM). While MOLP does not allow for choosing the alternatives it assigns a target 

alternative as the essential alternative to be satisfied.  This leads to interactive procedures 

facilitating trade-off analysis.   
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2.3.1 Multiple Objective Linear Programming (MOLP) 

 

Generally a multiple objective optimisation problem symbolising various plans and 

ambitions of the DM can be written as: 

 

 MmLlhg

ffff

ml

si

,...,1,,...,1;0)(,0)(/            

where

            

Subject to

)](),...,(),...,(),([Max 21











                 (2.13) 

 

Where: 

λ is an n-dimensional column vector with elements being decision variables,  

f(λ) are continuous and differentiable objective functions,  

g(λ) and h(λ) are continuously differentiable equality and inequality constraints 

respectively. 

 

The f(λ) are conflicting objective functions and there are many solutions that could 

optimise f(λ) simultaneously. Conceptually, a feasible solution λ
*
 is said to be efficient if 

there does not exist any λ  Ω (λ  λ
*
), such that  f(λ)  f(λ

*
) and f(λ)  f(λ

*
), where fi ( i = 

1,2,……, s) are assumed to be minimised. Furthermore, a feasible solution *
 is said to be 

weakly efficient if there does not exist any λ  Ω (λ  λ
*
), such that  f(λ)  f(λ

*
), where fi ( i 

= 1,2,……, s) are assumed to be minimised.  Conventionally, an efficient solution refers to 

a non-dominated solution or non-inferior or Pareto optimal solution. 

 

One of the essential issues that needed to be incorporated with MCDM problems was to 

design a framework to allow DMs to interfere directly in deciding their course of action 

and provide a set of available alternatives. Keeney and Raiffa (1993) suggested that the 

interactions of subjective values and trade-offs could lead a suitable solution for complex 

decision making problems with uncertainties as described below. 
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2.3.2 Interactive MOLP Methods 

 

This section was mainly adapted from the reference (Multiobjective optimisation and 

control, G.P. Liu, J.B. Yang, and J.F. Whidborne, 2003) 

 

Generally, interactive methods are implemented whenever a priori knowledge about 

decision problem is not available. The DM is allowed to search for different solutions 

along the efficient frontier composed of all efficient solutions, in order to obtain the most 

preferred solution (MPS) that maximises the DM’s explicit or implicit utility function. 

Decision makers provide their vision about the weighted objectives and the alternatives. At 

each interaction, the current solution is adapted to the structure of preferences of the DM. 

This interactive process is designed to drive the DM towards the MPS, or at least to a good 

solution, which is acceptable by the DM. For this reason, interactive methods are powerful 

tools for solving multiple objective optimisation problems.  

 

The interactive methods used for solving MCDM problems can be classified, according to 

the methods used in providing preference information by the DM, into three categorise: 

local trade-off methods, efficient generation methods, and Goal or reference point 

methods. Trade-off methods include: the GDF algorithm (Geoffrion Dyer and Feinberg; 

1972), Interactive Goal Programming (IGP) (Dyer; 1972), Sequential Proxy Optimisation 

approach (SPOT) (Sakawa; 1982), Interactive Surrogate Worth Trade-off (ISWT) 

(Chankong and Haimes; 1982), and Gradient Projection (Yang; 1999). The efficient 

generation methods include: Zionts-Wallemius’s method (Zionts and Wallemius; 1967) 

and the Tchebyshev method (Steuer and Choo; 1983). In these methods the DM needs to 

assess the most suitable solution among alternatives. Finally, in goal or reference point 

methods the DM provides a target value or reference level to be achieved as in the Step 

Method (STEM) (Banayoun et al; 1971); Wierzbicki’s (Wierzbicki; 1980); Satisfacing 

Trade-off Method (STOM) (Nakayama and Sawaragi; 1984); Visual Interactive Approach 

(VIA) (Korhonen and Laakso; 1986); LBS method (Jaszkiewicz and Slowinsiki; 1994), 

and Guess method (Buchanan; 1997). 

 

In the GDF algorithm developed by Geoffrion et al. (1972) the utility function (which is 

differentiable, continuous, concave, and increasing) comprises objective functions that are 
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concave and a set of convex decision spaces. The underlying algorithm of this approach is 

based on that of Frank and Wolf (1956) in which the optimum solutions of a utility 

function are reached by calculating the gradient of this function that increases its direction. 

The optimising process moves sequentially from one objective to another under the 

condition of ascending step length. Hence, the first round of this process will produce a 

solution that is used for the second round and so on. Furthermore, at each round the DM 

provides local trade-off information on objectives or local weights. Mathematically, if each 

round of the iterative process is h, the solution of the previous weights of individual object 

x
h-1

 are determined as w
h
 =  h

k

hhh wwww ,.......,,, 321  in interactive method with the DM. The 

optimal solution y
h
 should follow an ascending direction of the relevant utility function 

which can be derived from: 
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Although the GDF method and Zionts-Wallenius’s method shared the same mathematical 

formulation in Zionts-Wallenius’s method the multicriteria simplex technique is used to 

reach the optimum solution. At each iteration all non-basic efficient variables for the 

current solution are provided and in each step the DM must provide his opinion and 

judgements about various calculated solutions.   

 

A method that depends on implicit trade-offs was proposed by Steuer and Choo (1983). 

This method mainly benefited from Tchebycheff approach in which DM must select one 

possible solution from different solutions produced at each round of iterative process. For 

instance, the solution for each iterative process is used to project the ideal vector to the 

current criterion vector such that a new weights interval is generated and the DM chooses 

one solution from various solutions. In case the DM disagrees with any of obtained 

solutions another set of solution can be offered by the next iteration but at each step of the 

iterative process the weight’s interval become smaller. The idea of this method is to 

minimize the weight’s interval in each step of iterative process whereby: 
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Another method that can be categorised as an implicit trade-off method is the STEM 

method by Benayoun et al. (1971).This method relies on minimising the Tchebycheff 

distance towards an ideal solution in the criterion space. The parameters of the distance 

formula and the feasible space can be changed by a normalised weighting method 

depending on the DM preferences in the early solution. This method allows the DM to 

monitor the direction of the optimum. Mathematically the STEM method can be expressed 

as: 
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Where kixff i
x

i ,......,1)(max* 


 are considered to be the ideal value generated from 

maximising the objective function individually. 

 

There are group of methods based on a pre-defined reference point in which the optimum 

solution is to reach this reference point such as that proposed by Wierzbicki (1977)  

Solution are divided into two types: efficient and weakly efficient and  Wierzbicki (1980) 

reported that an achievement function provides technical support to the reference point 

method for producing an efficient solution, while the trade-off method allows the variation 

of the achievement function to assess the reference point. Basically, this method is based 
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on an iterative process in which an achievements function is minimised through the 

reference point defined by the DM. A set of reference points can be found such that each 

point differs from the original reference points by some component. This technique allows 

the DM to allocate one of the solutions on the efficient frontier obtained by minimising the 

achievement function. Although the function’s weights are fixed during this process the 

reference point may be varied according to the views of the DM. The weights associated 

with the reference points are either supplied by the DM or can be set arbitrarily using a 

normalising factor.   

 

Mathematically, the achievement function can be expressed as: 
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where: 

 

w = (w1……..,wk ) is the weights vector, 

 kqqq ,......,1  is the reference point 

 is a small positive value.  
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Along with an addressed solution  11,  hh fx , the DM must provide another reference 

point
h

q


. Using this provided point the criterion vector can then be written as 0,hf  at which 

the achievement function is minimised.  

 

The formulation can be written as: 
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The application of these two vectors ( 
h

q


 and 0,hf  ) is to generate k reference points: 

 

2

0,,, ,)0,....,0,,0,..,0( hhhhjhjh fqqq         j = 1… k                 (2.19) 

 

associated with criterion vectors which can be expressed as: 

 

  jhjh

x
fwxfqs ,, ),(,Min 


     j = 1…k                                               (2.20) 

 

From these k+1 criterion vectors, khh fff ,......, 1,0, , the DM must select one of the 

generated solution as the MPS written as  )(, hh xfx . 
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Another method used in MOLP methods, called VIA, was proposed by Korhonen and 

Laakso (1986). This method is also based on an achievement function in which a direction 

with a certain step size is resolved in the DM’s utility function. This method is constrained 

by maximising the utility function, i.e. trying to find the direction at each iterative step that 

yields an increase in the utility function. The starting reference direction associated with 

the vision of  the DM is projected onto the efficient set, as well as several points relative to 

the segment that join this reference point, and the criterion vector of the previous iteration. 

An improvement, which is indicated by the increasing direction of the utility function, will 

lead the DM to interactively choose a specific direction rather than choose arbitrarily. This 

is usually achieved by using the AHP method to determine the direction in which the 

utility function is being increased. 

 

The STOM method developed by Nakayama and Sawaragi (1984) is similar to 

Wierzbicki’s (1977) method. In STOM the achievements function is iteratively improved 

starting with a reference point which does not change through the whole process. At each 

iterative step the DM must provide the reference levels for the objectives that need to be 

improved, maintained and relaxed. Eventually, it is not essential for the DM to provide the 

reference values for the objective function that are to be relaxed. The reference point is 

determined by using the trade-off process by which Lagrange multipliers are applied to 

minimise the objective function. Mathematically, with the existence of a 

solution  11,  hh fx , the DM must provide the objectives function that needs to be 

improved h

ni Iif ,  with the amount of improvement h

ni Iif  , , the objectives function 

that is preferred to be maintained   h

mi Iif ,  and the objective function selected to be 

relaxed  h

oi Iif ,  with the amounts of relaxation as h

oi Iif  , .  
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The change of the new reference point  h

k

hh qqq ......1  can be expressed as: 
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The structure of the problem in this case can be written as: 

 










 hx qf
xffs

*

* 1
),(,Min  and can be formulated as: 

 

ki
qf

w

x

kixffw

h

ii

h

i

ii

h

i

x

,...,1
1

where

0

,...,1)(

toSubject

Min

*

*

,

















                                            (2.22) 

 

The ISWT (Chankong and Haimes, 1978) and SPOT (Sakawa, 1982) approaches depend 

on the trade-off methods that use constraints to generate immediate MOLP solutions. The 

difference between these two approaches occurs in the methodology of the trade-off 

process being applied.  

 

All of the above methods are, conceptually, trade-off methods in which the objective 

function is varied due to the interaction with the DM. 
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The GUESS (Buchanan, 1997) and LBS (Slowinski, 1994) methods are based on the trade-

off method initialized with providing a reference point by the DM. The methods employ a 

projection of the gradient of optimal solutions on the efficient frontier proposed by the 

DM. The applications of the reference points are to normalise the achievement function 

between 0 and 1. 

 

Another method that depends on a different methodology used in trade-off processing is 

the IGP method developed by Dyer (1972). In this approach the DM must accommodate 

uncertain goals for an individual objective function at the beginning of the iterative 

process. 

 

MOLP methods obtain optimum solutions that coincide with the DM preferences. These 

solutions may result in a convergence of the utility function due to interactive methods 

which guide the DM to MPS. The MOLP method is an efficient tool that can be 

implemented interactively. 

 

Yang (1999) reviewed frequently used interactive methods and identified that they had a 

number of problems including unclear termination criterion. For example, Geoffrion’s 

method is based on the strict assumption that the preferences supplied by the DM must not 

only be consistent but also monotonic with respect to an implicit utility function that is 

difficult to satisfy. Yang also argues that the DM may find it easier to provide the required 

information in the early iterations than in later iterations and without proven convergence, 

the solution process of an interactive method may be stopped prematurely and the obtained 

compromised solution may not be the MPS. The STEM method fails to identify the best 

compromise solution because the DM is allowed to search the efficient frontier in a 

restricted and irreversible manner and there is no guideline provided to clarify the benefit 

of continuing the trade-off between sacrificed objectives. The ISTM method may search 

for compromise solutions but fails to produce clear termination criterion. Unlike the above 

mentioned methods, the gradient projection method has clear termination criterion and this 

is presented in section 2.3.4 because it will be implemented in the work of this thesis. 
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2.3.3 Integration of DEA and MOLP models 

 

As a decision maker of an organisation setting targets that reflect the required progression 

of DMUs is vital. Integrating MOLP with DEA provides powerful tool that enables the 

DM to allocate his targets in terms of input and output. Furthermore, it distinguishes 

between efficient and inefficient DMUs and it recommends the best optimal direction of 

allocating resources in order to turn the inefficient DMUs into efficient DMUs. 

 

Combining DEA with MOLP has been studied by several researchers (Tavares, 2002). 

Initially, Golany (1988) demonstrated a method of selecting the optimum input from DEA 

analysis and set it as a target for the inefficient units. A method to set targets based on the 

weights preference format was developed by Zhu (1996) and Thanassoulis and Dyson 

(1992). Another method was proposed by Athanassopoulos (1995 and 1998) which 

examined the integration of planning and resource allocation and incorporated the notion 

of global target achievements. In 1998, Joro et al proposed a method that uses MOLP 

methodology to choose the targets by combining the CCR output and input models. 

Analogous to the Joro model, Korhonen et al (1998 and 2002) and Joro et al (2003) 

illustrated the possibility of finding the best inputs and outputs for the decision maker. 

Recently, Yang et al (2009) incorporated DEA within MOLP and proved the equivalence 

between the CCR output oriented and the minimax formulation.  

 

2.3.4 Interactive Gradient Projection Method 

 

The shortcomings of most interactive techniques (i.e. lack of rigorous termination 

criterion), are addressed by the Gradient Projection Method (GPM). This method is based 

on marginal rate of substitution (utility gradient) to represent the DMs’ preferences, which 

is similar to the GDF approach of Geoffrion et al (1972). The interactive process obtained 

using GPM calculates the projection of the gradient onto the tangent plane of the efficient 

frontier to identify the trade-off direction (Li and Yang, 1996; Yang, 1999; Li et al., 1999). 

The local minimum of the utility function is satisfied whenever the projection of the trade-

off direction to the tangent line around a certain point on the efficient plane is zero. 
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Minimax is a method that can be implemented to solve most MOLP formulations (see 

equation 2.23) (Steur and Choo, 1993; Yang, 1999 and Li, 2002). Suppose λ is the 

optimum solution of equation (2.23) and f
*

r the maximum feasible value of the r
th

 objective 

fr then the efficient solution can be established by using the following formulation, where s 

is the number of objectives: 

 

   











              

oSubject  t

,...,1    maxMin *

1
srffw rrr

sr

                                                               (2.23) 

 

A special formulation of the weighted minimax formulation is called the ideal point 

formulation such that ],...,,...,[ ***

1

*

sr ffff   sets the ideal point as the reference point. In 

the minimax formulation, for a given weight vector the DM is assumed to be satisfied with 

an efficient solution   at which )(f  has the shortest distance from *f  measured in 

the objective space. Another formulation of the weighted minimax MOLP can be derived 

by introducing an auxiliary variable   that is similar to formulation (2.19) and (2.20) (for 

more information see Lightner and Director, 1981; Yang and Li, 2002) which can be 

expressed as: 

  













            

,...,1     ;              
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 Min

* srffw rrr

                                         (2.24) 

 

The above formulation (2.24) is employed to design interactive steps supporting the DM to 

search for the MPS on the efficient frontier by incrementally changing the weighting 

parameters rw  for objectives r =1, …, s. 

 

The steps to reach the optimal solution using this method are as follows. For the targeted 

DMU, at the first step of iteration t an initial positive weight vector }{ 1

t

s

t

r

tt wwww   is 

set. The optimal solution of the minimax MOLP formulation (2.22) is then given 

by }{ 1

t

s

t

r

tt   , which must be an efficient solution and the optimal value of the dual 

variables (also called shadow prices) of the r
th

 objective constraint   ))(( *

rrr ffw  is 
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given by t

r . Letting Tt

s

t

r

tt ffff )]()()([)( 1    represent the corresponding 

efficient solution in the objective space, it is proved (Yang and Li, 2002) that the normal 

vector tN  at )( tf   on the efficient frontier is given by: 
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ttttt wwwwN ],....,,...,,[ 2211                                                    (2.25) 

 

In linear programming, t

r  can be generated using most existing software packages at no 

extra cost and for the first iteration all DMUs have an equal chance, hence rw  is assumed 

to be a unit vector ( T]1,...,1[ ). Suppose the implicit utility function of the DM is denoted by 

))(( fu  then the gradient of ))(( fu  at the solution )( tf   is given by: 
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In practice ))(( fu  is unknown but the utility gradient tu  can be calculated using the 

local preference information of the DM, similar to marginal rates of substitution. 

If the solution of )( tf   is MPS then it is necessary as well as sufficient in a convex case 

(e.g. linear case) that the normal vector tN  is proportional to the utility gradient tu  at 

)( tf   hence: 
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If the optimal conditions are satisfied the gradient,  tuG 


 as shown in Figure 2.3, 

would be proportional to the normal vector   T
wN 


 and the dashed line would overlap 

the dotted line or point E2 would overlap E3. If the optimal condition is not satisfied, as in 

Figure 2.3, then the gradient  tuG 


 can be projected onto the tangent plane as shown 

by the dotted line of the efficient frontier at )( tf  . This indicates a direction by which the 
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DM’s utility can be improved. The projection, denoted by tu  as shown in Figure 2.3, is 

given by: 

 

tu  = Tt

s

t

r

t fff ][ 1    = - tu + t

tTt

tTt

N
NN

Nu
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Figure 2.3: Projection of utility gradient onto tangent plane of efficient frontier 

(Yang, 2009) 

 

As the utility function is not known explicitly a utility gradient is estimated by indifference 

trade-offs based on marginal rate of substitution, M, which may be provided by the DM. 

The first objective 1f  is set as the reference objective and the indifference trade-off 

t

rM1 between the first and the r
th

 objectives and the marginal rate of substitution tM  at 

)( tf   are given by: 
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where tdf1  is the change in )(1 f  that can be exactly offset by the change t

rdf  in )(rf  

with the overall utility kept constant, given that all other objectives remain unchanged. 
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Yang (2009) shows that the gradient of the utility function tu  given in (2.24) is 

proportional to the marginal rate of substitution tM  at )( tf  as follows: 
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                                                                        (2.30) 

where the MPS is reached, the following optimal indifference trade-off between )(1 f  and 

the r
th

 objective can be estimated by applying the following equation 
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The optimal indifference trade-off can also be used to check whether the MPS has been 

achieved. If the MPS has not been achieved then the projection tu can be calculated 

using tM  and denoted by tu , which should provide a new trade-off direction to improve 

the DM’s utility function as follows: 

 

tu  = Tt

s

t

r

t fff ][ 1    = tM + t

tTt

tTt

N
NN

NM

)(

)(
                                 (2.32) 

 

Next, the trade-off step size is determined. Suppose   is a trade-off step which can be 

separated into two parts where: 

 

 max                                                                    (2.33) 

 

max  is the largest permissible step-size and   is a regulating factor with 10  . 

 

Given 

rf  (=
0rj

f ) is the maximum value generated from the pay-off table and t

rf  is the 

current value of the thr objective and t

rf  as the projection of the thr objective that needs 

to be sacrificed. The maximum step size is then determined as follows: 
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An explicit trade-off table, as illustrated in Table 2.2 below, can then be used to help find 

the trade-off step size   using the following general formula: 

 

t

r

t

rr fff   )()(
                                                             

(2.35) 

 

  )(1 f  )(2 f  … )(sf  

0.1 
tt ff 1max1 1.0)(    tt ff 2max2 1.0)(    ... 

t

s

t

s ff  max1.0)(   

0.2 
tt ff 1max1 2.0)(    tt ff 2max2 2.0)(    ... 

t

s

t

s ff  max2.0)(   

. 

. 

. 

. 

. 

. 

. 

. 

. 

... 

… 

… 

. 

. 

. 

 

1.0 
tt ff 1max1 0.1)(    tt ff 2max2 0.1)(    ... 

t

s

t

s ff  max0.1)(   

      Table 2.2 Trade-off step size table 

 

In Table 2.2 the DM may determine the step size by analysing the trade-offs among the 

outputs along the tangent plane of the efficient frontier. Once the step size is decided the 

weighting parameters rw  can be updated as follows. 
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  r = 1, …, s                             (2.36) 

 

Replacing rw  by 1t

rw  in formulation (2.22) and solving it leads to a new solution 1t  

which should have a higher utility than t  for a sufficient small   or )( 1tu  > )( tu  .  

 

The interactive and trade-off analysis process continues until the DM agrees with the 

optimal trade-offs between the objectives and when the MPS that maximises the implicit 

utility function of the DM is found the interactive process is terminated. 
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2.4 Summary 

 

Most methodological extensions of the basic DEA followed an application driven path as a 

result of the application of the method to real life problems. In this research the desire is to 

incorporate value judgement in DEA. Having studied the literature, there appear to be two 

streams for incorporating value judgements. The first stream imposes restrictions on 

weights of inputs or outputs, which requires prior information provided by DM (Charnes et 

al; 1978, Charnes et al; 1990, Thanassoulis; 1995). The second stream employs an 

equivalence MOLP model to utilize the MOLP solution methods, which enables value 

judgements to be incorporated interactively. 

 

Although there are well established equivalence MOLP models none of them includes 

measuring the whole efficiency (i.e. best and worst efficiency) of DMUs or utilises both an 

interactive and ranking procedure. Furthermore, they do not integrate the DM’s and expert 

preferences in a well defined model, which would improve performance assessment and 

benchmarking, notably target setting and resource allocation. 
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Chapter 3 

 

The production trade-off MOLP equivalent model  

 
3.1 Introduction 

 

In DEA models prior preference knowledge needs to be identified and this is normally 

provided by a DM through value judgements, which are subjective and difficult to be 

determined. Moreover, it is impossible to assume a well-defined explicit utility function 

that expresses the DM’s preferences because of the conflict of interests or incompleteness 

of available information. Developing an interactive framework based on trade-off analysis 

and incorporating DM preferences to locate the MPS on the efficient frontier could be 

achieved by using the gradient projection and local search method (Yang, 1999). By using 

these methods the DM can examine a spectrum of technically achievable targets that make 

him/her more confident in making the best decisions. The gradient projection approach 

uses the marginal rate of substitution (utility gradient) together with a normal vector on the 

efficient frontier determined by employing a weighted minimax formulation. The normal 

vector is used to create an optimal condition to terminate the interactive procedure as it 

provides the optimal indifference trade-off that the MPS must satisfy. Otherwise, the 

normal vector provides a direction along which a better efficient solution could be 

achieved. 

 

Recent developments in the integration of MOLP with DEA have heightened the need for 

incorporating value judgements. Decision makers need to improve the discrimination of 

variables and the performance of DMUs in an interactive manner. To date there has been 

little work done in this area. The framework developed in this research as reported in this 

chapter unveils a new technique in this field by employing the production trade-off 

approach through which value judgements are considered by a board within an 

organisation. The production trade-off approach incorporates two additional vectors P (for 

input variables) and Q (for output variables) in the DEA (input or output orientation) dual 

formulation that appear as weight restrictions in the primal formulation. The inclusion of 
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these two vectors improves the discrimination of variables and because they are chosen by 

experts or survey they can achieve a more realistic outcome through the board choosing the 

P and Q vectors. Consequently, the DM’s preferences can be incorporated in the efficiency 

analysis through an interactive process.  

 

3.1.1 Aims 

 

The purpose of this chapter is to establish a framework in which target setting and resource 

allocation decisions can be supported through an interactive process. This is achieved by 

providing a new equivalent MOLP-DEA model based on the production trade-off approach 

(Podinovski, 2004, 2005). The proposed framework provides a powerful tool as it allows 

the DM to improve the targeted DMU of real situations by incorporating P and Q vectors. 

In this chapter, we aim to: 

 

 Integrate MOLP with DEA through the production trade-off approach. 

 Establish a framework in which the DM can have more involvement in managing 

and improving the targeted DMU. 

 

3.1.2 Research Questions  

 

This chapter is designed to answer the following questions: 

 

1. How can the MOLP-DEA equivalence model provide a tool that enables the DM to 

set targets according to his/her preferences?  

2. How can the proposed framework be used to improve a targeted DMU? 

3. What is the range of targets that the DM can set?  

4. What are the resources that should be changed (increased or decreased) to satisfy 

the DM targets? 
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3.1.3 Methodology 

 

To address the above questions this chapter considers the required theoretical research and 

two case studies. The theoretical research establishes an MOLP-DEA equivalence model 

employing the production trade-off approach through which a framework is built for 

conducting an interactive analysis. The two case studies illustrate the application of the 

model to improve the performances of departments in the University of Bahrain and 

private hospitals in Bahrain.  

 

3.1.4 Chapter Overview 

 

The chapter presents: 

 

 An overview of incorporating value judgements 

 Selecting input and output variables 

 The theoretical model 

 An example of the production trade-off DEA-MOLP model.  

 Case study#1: The University of Bahrain  

 Case study#2: Private hospitals in Bahrain 
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3.2  An overview of incorporating value judgements 

 

Value judgement models have been developed to improve the discrimination of efficiency 

analysis. They are formulated by imposing additional restrictions that take into account the 

marginal importance of individual inputs and outputs, which incorporate prior information 

about the assessment efficiency of DMUs. This prior information can be included by 

employing various techniques which have different implications on the assessed relative 

efficiency of DMUs (Allen et al, 1997 and Thanossoulis, 2001). 

 

There are two ways to incorporate value judgements in DEA assessment either in primal 

DEA formulation as weight restrictions or in the dual DEA formulation as an additional 

term modifying composite unit. The later formulation falls under the umbrella name of the 

trade-off approach (Podinovski, 2004; Podinovski, 2005). Although weight bounds have 

often been employed (Sarrico et al, 1997 and Sueyoshi, 1999) there is no clear evidence of 

agreement about the meaning of these restrictions and the outcomes of DEA are 

significantly affected by the application of these bounds, which has resulted in ambiguities 

and confusion. It has been proposed that the trade-off approach overcomes the drawback of 

value judgements structured by weight bounds and that this type of approach can produce 

realistic improvements (Podinovski, 2004).  For instance, by using the trade-off approach 

inefficient DMUs will reflect real situations located in the feasible region which can be 

produced. 

 

In 2007, Podinovski proposed an algorithm to integrate target setting and resource 

allocation using the trade-off approach. To do so, he defined three stages as follows: 

 

 Solve the model 2.8a or 2.9a (inputs or outputs respectively) by considering the 

type of returns to scale (i.e. CRS or VRS) and if VRS, the condition 1  needs 

to be added. 

 

 Look for possible non-radial improvements to the radial target. This can be 

achieved maximizing the sum of residual slacks subject to the explicit condition in 

which the efficient target has only positive inputs. The proposed model is written as  
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where the vectors w, m, and d are of same dimension. In case of VRS, equality 

1
1




n

j

j  is added to the constraints in model (3.1). 

 

 Identify a reference set of efficient peer observable DMUs, which is achieved by 

maximising the sum of wi; ensuring the efficiency of the observable DMU. This is 

achieved by solving the following model 
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where e  and d   are fixed and determined by optimising model 3.1. 

 

In this research a flexible framework incorporating target setting and resource allocation 

was developed. The flexibility of the developed model can be emphasized by active 

participation of the DM in renewing his preferences during efficiency analysis resulting in 

the most preferred solution based on his views. An MOLP-trade-off model is implemented 

by incorporating a DEA output-oriented approach with MOLP through the Minimax 
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method. The MOLP-trade-off model can be solved iteratively by using the gradient 

projection method.  

 

The next section contains a theoretical derivation of MOLP-trade-off model followed by an 

illustrative example. Real applications of the model are then presented through two 

empirical case studies, one at the University of Bahrain (UOB) and the other at several 

private hospitals in Bahrain. 

 

3.3 The production trade-off DEA-MOLP model 

 

The aim of this section is to present the MOLP- production trade-off approach that 

employs an interactive framework based on the gradient projection technique to determine 

the MPS on the efficient frontier for target setting and resource allocation. 

 

3.3.1 The theoretical derivation  

 

The general form of the MOLP problem formulation can be written as a maximization 

problem of multiple objectives within a utility function and can be expressed as: 
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The minimax formulation, which represents a special form of equation (3.3), can be 

expressed as: 
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The equivalent MOLP (for more information see Yang, 2009) of the output oriented model 

can be written as:  

 













































0 allfor 

,...,1,,...,1,,...,1       ,
             

,...,1            ,             

oSubject  t

Min 

1

1

*

0










n

j

ijijj

n

j

rjjrr

Ktnjmixx

sryfw
            (3.5) 

 

According to the production trade-off approach (see section 2.2.3.2) the above formulation 

can be modified by adding the two vectors P (for input data) and Q (for output data). 

Hence, the problem can be written as: 
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In order to derive MOLP equivalent model, the following definitions are used: 
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f  is the maximum feasible value of the rth composite output for the observed DMU0. 
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By using the above definitions, formulation (3.6) can be written as 
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Model (3.11) can be modified to be similar to model (3.4). This can be achieved by the 

following manipulations: 

 



 

78 

 

 

 

  
  

  
ojrrr

ojrrr

ojrrrrr

oj

r

rrr

roj

r

Fffw

Fffw

fwffw

w
fff

f
w





















max*

max*

**

**

where,,

,

,

equalsmeans""
1

,

0,
1

                           (3.12) 

Furthermore, the modification on the objective function can be written as: 
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Thus, the equivalent MOLP Minimax model to the production trade-off approach output 

oriented model in dual form can be written as: 
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If the data of DMUs obey Variable Returns to Scale (VRS), formulation (3.6) can be 

modified by imposing the convexity constraint 1
1




n

j

j  and so the equivalent MOLP 

formulation can be expressed as: 
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It is worth noting that π belongs to the same feasible decision space as λ and its action is to 

compensate for the extension on the space due to the addition of the P and Q vectors as 

defined and explained in section 2.2.3.2.  
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3.3.2 An illustrative example 

 

This example illustrates the equivalence of the derived MOLP model (3.15) with DEA 

CCR output oriented dual model (3.6). The data were collected from the University of 

Bahrain (UOB). The data covered seven DMUs (colleges) as follows: Art, Business, 

Education, Engineering, Science, IT and Law. Each DMU had two inputs: number of 

academic staff (x1) and number of students (x2) and two outputs: the number of graduates 

(y1) and the number of publications (y2). 

 

DMU 
Inputs Outputs 

x1 x2 y1 y2 

1 176 3895 473 29 

2 62 5337 693 19 

3 80 2552 716 26 

4 99 1605 392 89 

5 76 954 149 55 

6 47 2247 300 32 

7 30 1182 55 12 

Table 3.1 Inputs and Outputs  

 

Relative efficiency results were obtained by applying the output oriented CCR dual DEA 

model (3.6) as shown in Table 3.2 where P = (0, 0)
T
 and Q = (-1, 1)

T
 are the trade-off 

vectors for inputs and outputs respectively and the λs are the decision variables. 

Table 3.2 The efficiency scores obtained from applying formulation (3.6) 

 

DMU 

DEA 

Score 

(1/θ) 

 

Intensity 

(θ) 

λ1 λ2 λ3 λ4 λ5 λ6 λ7 

1 0.441 2.266 0.000 0.000 1.301 0.358 0.000 0.000 0.000 

2 1.000 1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

3 1.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

4 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

5 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

6 0.984 1.016 0.000 0.265 0.000 0.309 0.000 0.000 0.000 

7 0.450 2.223 0.000 0.008 0.000 0.298 0.000 0.000 0.000 
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Table 3.2 shows the relative efficiency scores and the composite inputs and outputs for all 

DMUs. The bold scores are the inefficient DMUs (1, 6 and 7). The score of these DMUs 

are: 44.1%, 98.4% and 45.0% respectively whilst the DMUs that have efficiency scores of 

unity lie on the efficient frontier. 

 

Recall that the importance of incorporating MOLP into DEA is to allow the interaction of 

DMs in the efficiency evaluation procedure. Table 3.3 presents the equivalence of 

oj
F   max

 for individual DMUs. F
max

 was generated by feeding in the trade-off 

vectors P and Q and solving the following programme for each DMU to build the pay-off 

table: 
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           (3.16) 

 

along with using definition (3.9).  

 

Max f1 Max f2  

f1 f2 f1 f2 Max(f1)/y1 Max(f2)/y2 F
max

 

1092.80 39.68 696.89 158.22 2.31 5.46 5.46 

693.00 19.00 245.49 55.74 1.00 2.93 2.93 

716.00 26.00 316.77 71.92 1.00 2.77 2.77 

450.31 16.35 392.00 89.00 1.15 1.00 1.15 

267.66 9.72 149.00 55.00 1.80 1.00 1.80 

451.39 15.02 186.10 42.25 1.50 1.32 1.50 

277.75 9.67 118.79 26.97 5.05 2.25 5.05 

Table 3.3 The pay-off table showing the results of solving formulation (3.16).  

 

The equivalence of MOLP to the DEA dual model is satisfied by solving (3.15) and (3.6) 

respectively. If 
oj

F   max
 is fulfilled then equivalence is achieved. 
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DEA model Minimax model 

    input and output variables  

DMU 1/θjo θjo  F
max

  x1 x2 y1 y2  θ  F
max

-θjo 

1 0.441 2.266  5.46  176 3895 473 29  3.19 3.19 

2 1.000 1.000  2.93  62 5337 693 19  1.93 1.93 

3 1.000 1.000  2.77  80 2552 716 26  1.77 1.77 

4 1.000 1.000  1.15  99 1605 392 89  0.15 0.15 

5 1.000 1.000  1.80  76 954 149 55  0.80 0.80 

6 0.984 1.016  1.50  47 2247 300 32  0.49 0.49 

7 0.450 2.223  5.05  30 1182 55 12  2.83 2.83 

Table 3.4 The equivalence of the DEA outputs dual and minimax formulation. 

 

Table 3.4 shows the result obtained from solving (3.15). It also shows the values of F
max

 

measured using (3.16). The last two columns demonstrate the intensity of the equivalent 

MOLP-Trade-off approach formulation (3.15), θ measures and the values of F
max

-θjo. F
max

 

indicates the maximum allowable range that outputs can reach and θjo is the optimum 

intensity resulting from (3.6). 

 

Before proceeding to the case study it is worth to briefly mention the interactive steps that 

were developed in chapter 2 

 

3.3.3 The interactive steps 

 

The interactive steps of the framework are as follows: 

 

 Identifying the trade-off vectors P and Q by expertise or questionnaire. 

 Solving model 3.4 to find the composite output of the targeted DMU. For instance, 

finding the projection of inefficient DMU point on the efficient frontier. The initial 

parameters are determined in this step. 

 Generating the pay-off table to identify the range through which the targets can be 

selected. 

 Calculating the weighting vectors by using a perturbation technique to start the 

interactive procedure. 



 

83 

 

 Solving model 3.13 to find the decision variables. 

 Measuring the normal vector and checking the optimality condition 

 Finding the trade-off direction, and then the step size table to update the weighting 

vector for the next iterative step. 

 

3.4 Case study#1: The University Of Bahrain (UOB) 

 

3.4.1 Selecting the variables 

 

The DEA approach is significantly affected by the number of inputs and outputs, the 

higher the number of inputs and outputs the less discerning the analysis. The guideline for 

choosing the number of inputs and outputs is less than one third of the number of DMUs 

 
3

n
sm   (Friedman and Sinuany-Stern, 1998).  

 

Correlation is used to improve discrimination among DMUs. For instance, if some of the 

input or output variables are highly correlated, one or more of these input or output 

variables might be eliminated as they have least impact on DEA outcomes (Jenkins, 2003). 

On the other hand, input variables that have high correlation coefficient with output 

variables are recommended to be involved in the variables set.  

 

In this work multivariate statistical analysis was implemented to specify the number of 

variables to be used in the analysis. This was based on partial covariance analysis 

developed by Jenkins and Anderson (2003). This approach compares the sum of 

covariance of certain variable(s) relative to the sum of the covariance of the total variables 

so that most information appears in the retained variables. 

 

Both correlation analysis and multivariate analysis, including partial covariance and cluster 

approach, were implemented. They were applied to reduce the inputs and outputs for 

performing DEA analysis on the data collected from the University of Bahrain shown in 

Table 3.5 below 
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The data covered seven DMUs (colleges) as follows: Art, Business, Education, 

Engineering, Science, IT and Law. Each DMU has four inputs: number of full time 

academic staff (I1), number of teaching assistants (I2), number of registered students (I3), 

and expenses in Bahraini Dinars (I4); and two outputs: number of graduates (O1) and 

number of research publications (O2). 

 

    Inputs Outputs 

DMU College No. Staff  Registered  Expenses Graduate  Research  

    Full time TA Students (BD) Students Published 

1 Art 150 28 3517 50496 496 99 

2 Business 53 3 5033 51801 632 20 

3 Education 77 8 2002 108595 489 16 

4 Engineering 102 6 1401 103846 359 75 

5 Science 76 1 902 44261 143 81 

6 IT 47 12 2140 21458 234 23 

7 Law 27 1 1145 32458 147 15 

Table 3.5 Data collected from The University of Bahrain (UOB) (where: TA denotes 

Teaching Assistants and BD denotes Bahraini Dinars). 

 

3.3.2 Correlation analysis 

Correlation is used to improve discrimination among DMUs. For instance, if some of the 

input or output variables are highly correlated, one or more of these input or output 

variables might be eliminated as they have least impact on DEA outcomes. On the other 

hand, input variables that have high correlation coefficient with output variables are 

recommended to be involved in the variables set. Correlation analysis was applied to 

examine the relationship between the variables in Table 3.5. 

DMU I1 I2 I3 I4 O1 O2 

I1 1      

I2 0.763 1     

I3 0.179 0.352 1    

I4 0.379 -0.0439 -0.0922 1   

O1 0.388 0.357 0.852 0.433 1  

O2 0.837 0.487 -0.103 0.0971 -0.0442 1 

Table 3.6 Results of correlation analysis. 
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Table 3.6 presents the correlation analysis outcome. The yellow shaded area in Table 3.6 

shows the relationship (correlation) between input and output variables and the bold data 

are those that need to be omitted. 

 

From the correlation matrix (Table 3.6), input variables I1, I3, or I4 could be omitted, whilst 

of the output variables the analysis suggests that O2 should be removed. Clearly, using this 

analysis is not sufficient to decide which variable(s) can most appropriately be omitted. For 

instance, which variable(s), if omitted, have the least effect on DEA outcome?  

 

3.3.3 Multivariate Analysis 

 

Multivariate analysis based on partial covariance was implemented to investigate the 

variable(s) that if they were removed would result in least information loss. The effect on 

the efficiency if one of the variables is removed is considered first and the results are 

presented in Table 3.7 below, where I and O represent input and output variables 

respectively, whilst the numbers before them indicate which variables have been omitted. 

For example, the column headed 3I, 2O,1I shows the results from only having 3 inputs (3I) 

and 2 outputs (2O) when input 1 is omitted (1I). 

 

DMU 4I,2O,0 3I,2O,1I 3I,2O,2I 3I,2O,3I 3I,2O,4I 4I,1O,1O 4I,1O,2O 

1 1.000 1.000 1.000 1.000 0.787 1.000 1.000 

2 1.000 1.000 1.000 1.000 1.000 0.354 1.000 

3 1.000 1.000 1.000 0.715 1.000 0.195 1.000 

4 1.000 1.000 1.000 0.822 1.000 0.690 1.000 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6 0.969 0.969 0.969 0.969 0.728 0.570 0.894 

7 0.822 0.762 0.818 0.768 0.822 0.521 0.900 

Relative Variance 1.16E+09 1.16E+09 1.16E+09 1.15E+09 2.20E+06 1.32E+03 3.62E+04 

Relative Variance 

percentage 
100.00 100.00 100.00 99.81 0.19 3.521 96.479 

No. Of Efficient 

DMUs 
5 5 5 3 4 2 5 

Table 3.7 Efficiency changes due to omitting one variable. 
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Table 3.7 shows the changes to efficiency resulting from applying basic DEA (i.e. dual 

CCR output oriented model) with different inputs and outputs variables omitted. The three 

bottom rows show the variance, variance percentage and number of efficient DMU 

changed as an effect of omitting a variable.  

 

Based on the results in Table 3.7 input 1 (Full time staff), input 2 (Teaching Assistants) or 

output 2 (Research Publications) can be omitted without losing information because the 

number of efficient DMUs does not change. On the other hand, much information could be 

missed if input 3 (Registered Students) or output 1 (Graduated Students) are removed. It is 

worth noting that omitting output 1 (Graduated Students) omits most information, i.e. 

number of the efficient DMUs is reduced to 2.  

 

For more discernment in the DEA, further reduction in the number of variables was 

attempted. Partial covariance was again employed but this time when more than one input 

variable was removed. Note that the column headings are defined as in Table 3.7, for 

example, column 1 shows the results from the omission of inputs 1 and 2 (i.e. 12I) whilst 

column 2 shows the results from omitting inputs 1 and 3 (i.e. 13I). 

 

From the results in Table 3.8, one remarkable point can be seen, that all the information is 

retained (i.e. no loss) when both inputs 1 and 2 are omitted simultaneously.  
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DMU  2I,2O,12I 2I,2O,13I 2I,2O,14I 2I,2O,23O 2I,2O,24I 2I,2O,34I 1I,2O,234I 1I,2O,134I 1I,2O,124I 1I,2O,123I 

1  1.000 1.000 0.550 1.000 0.821 0.742 0.742 0.097 0.550 1.000 

2  1.000 1.000 0.729 1.000 1.000 1.000 1.000 1.000 0.490 1.000 

3  1.000 0.370 0.978 0.538 1.000 0.538 0.538 0.290 0.953 0.370 

4  1.000 0.525 1.000 0.817 1.000 0.817 0.817 0.329 1.000 0.368 

5  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.933 

6  0.980 0.980 0.427 0.980 0.757 0.695 0.695 0.098 0.427 0.980 

7  0.724 0.566 0.719 0.777 0.861 0.777 0.777 0.741 0.501 0.409 

Relative Variance  1.16E+09 2195185 1154349650 1.15E+09 1.15E+09 1744.286 1654 90.28571 2193530.6 1.15E+09 

Relative Variance 

percentage 
 100.000% 0.190% 99.810% 99.810% 99.810% 0.000% 0.000% 0.000% 0.190% 99.810% 

No. Of Efficient 

DMUs 
 5 3 2 3 4 2 2 2 2 2 

Table 3.8 Efficiency changes due to omitting more than one variable.  
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3.4.4  Cluster Analysis 

 

Cluster analysis groups data objects based on information found in the data that describes 

the objects and their relationship. The goal is that the objects within a group be similar (or 

related) to one another and different from (or unrelated to) the objects in the other groups. 

The greater the similarity (or homogeneity) within a group and the greater the difference 

between groups the better or more distinct the cluster.   

 

There are several techniques for conducting cluster analysis with binary data, all of which 

involve calculating distances between groups of data based upon the observed variables 

and then applying one of the standard cluster analysis algorithms to these distances. A 

popular group of these measures designed for binary data is known collectively as 

matching coefficients (Dillon and Goldstein, 1984).  There are many techniques of 

matching coefficient, all of which take as their main goal the measurement of response set 

similarity between any two groups. The logic underlying these methods is that two 

individuals should be viewed as similar if they share a common pattern of attribute among 

the binary variables (Snijders et al, 1990).  

 

In this study cluster analysis was implemented to measure the similarity and dissimilarity 

within the input variables. If input variables share a common pattern of attribute one of 

them may be omitted. The omitted inputs are those that contain least information.  

 

A hierarchical clustering (dendrogram) is used to present both the cluster-subcluster 

relationships and the order through which the clusters were merged or split (Figure 3.1).  
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Figure 3.1 Dendrograms for the input variables (The right hand dendrogram clarifies the 

similarity between inputs 1 and 2 by magnifying the left hand dendrogram). 

 

Cluster analysis suggests that input 1 (Full-time Staff) or input 2 (Teaching Assistants) can 

be eliminated resulting in 3 inputs and 2 outputs. Table 3.9 shows the data after removing 

input 2 (Teaching Assistants). 

 

    Inputs Outputs 
DMU Colleges Full 

time 

staff 

Registered 

Students 
Expenses 

Graduate 

Students 

Published 

papers 

1 Art 150 3517 50496 496 99 

2 Business 53 5033 51801 632 20 

3 Education 77 2002 108595 489 16 

4 Engineering  102 1401 103846 359 75 

5 Science 76 902 44261 143 81 

6 IT 47 2140 21458 234 23 

7 Law 27 1145 32458 147 15 

Table 3.9 The UOB data after cluster analysis 

 

 

1 2 3 4
0

2

4

6

8

D
is

ta
n

ce

Dendrogram

Input variables

  



 

90 

 

3.4.5 Identifying the type of returns to scale 

 

Identifying of the type of returns to scale, i.e. CCR with Constant Returns to Scale (CRS) 

or BCC with Variable Returns to Scale (VRS) is essential in DEA analysis. Failing to do 

so might result in inconsistent inefficiency scores. For example, if VRS is wrongly 

implemented the resulting efficiency scores will be greater than the true efficiency scores 

because of the restrictive property of the VRS which assumes that the efficient frontier 

always produces a closer of the envelopment of the data. Hence, it is essential to examine 

the returns to scale properties, which can be satisfied by using an hypothesis test. The 

hypothesis test allows identification of the type of data whether it is CRS or VRS so it 

should be adopted for a particular case study. 

 

Several authors have implemented a two-sample t-test (a hypothesis test used for small 

samples) to identify the type of returns to scale (Camanho and Dyson, 2005; Banker et al, 

1996; Banker et al, 1993). In practice the hypothesis test compares the mean of two 

samples to identify the probability that the two samples are likely to come from the same 

population.  

 

Say βi and βj are the population means for the distributions of DEA outcome scores from 

applying the CCR and BCC models. The null hypothesis assumes that there is no 

difference between the mean of the two samples whilst the alternative hypothesis opposes 

it, i.e. 
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For small samples of ni and nj, where n<30, the t-test can be written as: 
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Where ix  is the mean
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In the case that the null hypothesis does not pertain i.e. βi - βj ≠ 0 within the 5% 

significance interval, it is rejected and the p-value is investigated. The p-value indicates the 

observed probability of obtaining the sample results when the null hypothesis is assumed 

to be true (Kinnear and Gray, 2004). If so, the βi and βj are not equal, which implies that 

the CCR and BCC models have different outcome scores. Hence, it infers that data are 

more likely exhibiting VRS, in which case the BCC model should be used. 

 

 

Table 3.10 The outcomes of CRS (CCR) and VRS (BCC) and their means. 

 

Table 3.10 shows that the DEA efficiency scores for CRS (i.e. CCR model) and VRS (i.e. 

BCC model) have similar means. This suggests that the data are more likely to exhibit 

constant returns to scale (CRS). 

 DEA Efficiency Scores 

DMU CRS (CCR) VRS (BCC) 

Art 1.000 1.000 

Business 1.000 1.000 

Education 1.000 1.000 

Engineering 1.000 1.000 

Science 1.000 1.000 

IT 0.980 0.980 

Law 0.933 0.933 

Mean 0.988 0.988 
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3.4.6 Improving the Law Department 

 

In this case study the steps of the interactive framework were applied to the real data 

collected from the University of Bahrain (see Table 3.9). This data was entered into Excel 

Solver and the Lindo software with Excel Solver used to identify the efficiency scores and 

Lindo used to determine the normal vector. The results are shown in Table 3.11 which was 

obtained by running the output-oriented CCR dual DEA model (2.8a) 

 

Table 3.11 The DEA CCR model outcome score.  

 

Table 3.11 shows two inefficient departments: IT and Law (in bold). The Law department 

was considered because it had the lowest efficiency score of 86% and its virtual or 

composite components on the efficient frontier are a convex combination of: 0.181 of the 

Business Department, 0.141 of Engineering Department and 0.040 of the Science 

Department. It is worth noting that the sums of the convex combinations for these 

inefficient departments is not normal (i.e. 1
7

1


j

j ). 

 

In the first step the P and Q vectors need to be determined and this was achieved by 

interviewing the department staff. Recall that P and Q may cause an increase on the 

feasible region and if this occurs then it could imply that the collected raw data could be 

considered realistic. The staff agreed that no extra academic staff would be needed to 

increase publications by one but this would be at the expense of graduates, which needed 

DMU Dep. 
DEA 

 Score(1/θ) 

 

Intensity (θ) 
λ1 λ2 λ3 λ4 λ5 λ6 λ7 

1 Art 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 Bus. 1.000 1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

3 Edu. 1.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

4 Eng. 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

5 Sci. 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

6 IT 0.980 1.021 0.191 0.228 0.000 0.000 0.000 0.000 0.000 

7 Law 0.861 1.161 0.000 0.181 0.000 0.141 0.040 0.000 0.000 
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to be decreased by one. Therefore, the P and Q vectors could be written as P=(0,0) and 

Q=(-1,1). This seems reasonable because to publish more research, the staff need to have 

more time to undertake the research and write the publications and this might be achieved 

by decreasing their teaching load through reducing the number of students. 

 

By including these decisions and running model (2.8a) it was found that DMU5, DMU6 

and DMU7 became inefficient as shown by the italic entries in Table 3.12 below. 

 

DMU 1/θ θ λ1 λ2 λ3 λ4 λ5 λ6 λ7 

1 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 1.000 1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

3 1.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

4 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

5 0.990 1.010 0.108 0.000 0.000 0.374 0.000 0.000 0.000 

6 0.952 1.051 0.000 0.414 0.000 0.000 0.000 0.000 0.000 

7 0.780 1.283 0.017 0.123 0.232 0.000 0.000 0.000 0.000 

Table 3.12 Changes in efficiency after adding the P and Q vectors.  

 

The range by which the objectives can be varied is determined by generating the pay-off 

table using model 3.16. Table 3.13 shows that to improve each DMU other DMUs need to 

be sacrificed, i.e. DMU1 (Art Department) needs to be excluded. Furthermore, it shows 

that for the inefficient DMUs (5, 6 and 7) both outputs can be further improved. For 

example, the Law Department f1 can be increased from 50.80 up to 199.88 and f2 from 7.89 

up to 28.78. Hence, for DMU7 (Law Department) the maximum composite output for 1
f  

is 277.75 whereas for 2
f  is 26.97. Hence, the maximum values of the both outputs can be 

expressed as a maximum output vector as  78.28,88.199f  which was used in the next 

step of the analysis. 



 

94 

 

 

  Max f1 Max f2 Maximum Values 

DMU Dep f1 f2 f1 f2 f1 f2 

1 Art 496.00 99.00 496.00 99.00 496.00 99.00 

2 Bus. 632.00 20.00 99.72 56.49 632.00 56.49 

3 Edu. 489.00 16.00 144.88 82.07 489.00 82.07 

4 Eng. 359.00 75.00 191.92 108.71 359.00 108.71 

5. Sci 208.24 9.57 143.00 81.00 208.24 81.00 

6 IT 261.80 8.28 122.73 40.33 261.80 40.33 

7 Law 199.88 7.89 50.80 28.78 199.88 28.78 

Table 3.13 The new pay-off table.  

 

The interactive procedure was started by solving model (3.14) after changing the weight 

values of both objectives. The initial starting optimal solution came from applying the 

basic dual DEA model (2.8a) for the Law Department. The composite output will be 

located on the efficient frontier (the DM can accept or reject this point) and was: 

 T000.0,000.0,000.0,000.0,232.0,123.0,0174.00   with     78.28and88.199 0
2

0
1   tt ff .  

 

Note that the maximum value of output 1 obtained from the pay-off table is similar to that 

obtained from the DEA model (2.8a), i.e. 88.199)( 0
111  fff t  . This reflects that the 

composite unit is an extreme point on the efficient frontier and f1 is dominant. At this point 

the weighted vector can be written as  Trw 0,1  and the normal vector as  TN 0,10  . 

 

If the DM did not agree with these initial trade-offs then this implies that this solution is 

not the MPS. We can search for the MPS around 
21

or ff by making a small variation in 

both of them (i.e. sacrificing of one of the DMU in favour of another), which could not be 

done in basic DEA models. By considering f1 as a reference objective that can be sacrificed 

a slight decrease in tf1  can be made. For instance, tf1  can be chosen as 199.87 (< 1
f = 

199.88) and hence the targeted objective values denoted by    90.7,87.1990 rf  

measured by solving model (3.16) with the new weights calculated as 

048.0
90.778.28

1
and100

87.19988.199

1
21 





 ww . The latter is related to a 
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perturbation technique often employed in interactive MOLP and is used to start the 

interactive process. The composite output unit for this change was 

 T000.0,000.0,000.0,000139.0,232.0,123.0,0174.00  generated by solving formulation (3.16) 

and the normal vector was estimated by equation (2.27) to be  TN 048.0,028.00  . At this 

point the department is a linear convex combination of DMU1, DMU2, DMU3 and DMU4 

(Arts Department 0.0174, Business Department 0.123, Education Department 0.232 and 

Engineering Department 0.000139) at which f1(λ
0
) = 199.87 and f1 (λ

0
) =7.90. It is worth 

noting that the latter values are closer to that obtained from the composite output DEA 

model (2.8a), so the efficiency score point will be closer to the efficient frontier. Note that 

f1 does not exceed the maximum value obtained from the pay-off table. 

 

Objectives Decision variables Normal vectors 

)( 0

1 f  )( 0

2 f  
0

1  
0

2  
0

3  
0

4  
0

5  
0

6  
0

7  
0

1N  
0

2N  

199.87 7.90 0.0173 0.123 0.232 0.000139 0.00 0.00 0.00 0.028 0.048 

Table 3.14 The objectives, decision variables and normal vectors for the initial values. 

 

The optimum indifference trade-offs can be measured by equation (2.24) as 

 Tdf 583.0,00.10  . If the DM does not agree with this indifference trade-off, which 

reflects that the initial target values are not the most preferred outcome, then he can 

suggest new set of indifference trade-offs. The staff in the Law Department suggested the 

marginal rate of substitution as  TM 500.0,00.10  . This will increase f2 by two 

( 222  oldnew ff ), for a unit reduction in f1 ( 111  oldnew ff ). Table 3.15 below compares 

the old and new indifference trade-offs. 

 

Indifference trade-offs Values 

Old trade-offs (199.87,7.90) ↔(199.87-1.00, 7.90+1.72) 

New trade-offs (199.87,7.90) ↔(199.87-1.00, 7.90+2.00) 

Table 3.15 Comparison between old and new trade-off values. 
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The new trade-off proposed by the DM was to improve research output (increase 

publications) (i.e. f2) at the expense of reducing the number of students. The new trade-off 

direction is determined by applying the gradient projection method using equation (2.32) 

resulting in Tf )308.0,528.0(
0

 . To calculate the maximum allowable trade-off step 

size, equation (2.34) was implemented resulting in ( 0

max ~68) which was then used to build 

the step sizes in Table 3.16. Table 3.16 shows decreasing f1 and increasing f2 for each 

incremental step size between the current estimates of 9.68 of f2 and its maximum feasible 

value of 28.78. The LHS of Table 3.16 shows increments of 0.1 (C10) for α between 0 and 

1 whilst the RHS shows increments of 0.01 (C100) for α between 0 and 0.1. The purple 

shaded area shows the MPS. 

 

C10    C100   

α  1f   2f   α  1f   2f  

0.0 199.87 7.90  0.00 199.87 7.90 

0.1 196.29 9.99  0.01 199.51 8.11 

0.2 192.71 12.08  0.02 199.15 8.32 

0.3 189.13 14.16  0.03 198.80 8.53 

0.4 185.54 16.25  0.04 198.44 8.74 

0.5 181.96 18.34  0.05 198.08 8.94 

0.6 178.38 20.43  0.06 197.72 9.15 

0.7 174.80 22.52  0.07 197.36 9.36 

0.8 171.22 24.60  0.08 197.00 9.57 

0.9 167.64 26.69  0.09 196.65 9.78 

1.0 164.06 28.78  0.10 196.29 9.99 

  Table 3.16 Trade-off steps. 

 

At the next iteration, the weighting vector was determined by using equation (2.36) 

where Tw )00.1,78.18(1  . Feeding the updated weights in formulation (3.16) to estimate 

the convex combination  T000.0,0,000.0,171.0,216.0,128.0,0124.01   of the observed 

DMU the new efficient solution was measured as    Tf 53.8,8.1981   and the Normal 

vector calculated as  TN 97.0,57.01  . Note that the updated Normal vector is a multiple 

of the previous one (i.e. 01 20~ NN ). This result was expected because the normal vector 

should locate on the line segment between the efficient point obtained form DEA models 

and the MPS. The optimal indifference in this case being  Tdf 583.0,00.11  .  
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Staff in the Law Department were looking for more publications requiring an optimal 

indifference trade-off of (198.80-1.00, 8.53+1.78), which is unsatisfactory because they 

proposed alternative indifference trade-off of (198.80-1.00, 8.53+2.22). Subsequently, the 

marginal rate of substitution can be approximated as  TM 450.0,00.11  , the gradient 

projection as Tf )313.0,537.0(
1

  and the maximum step size as 63~1
max .  

 

Now suppose the DM sets the target level of f2 to 10.11. As before step size tables of C10 

and C100 were constructed with  Tw 00.1,83.42   and feeding w
2
 in formulation (3.16), 

the new convex combination of the observed DMU became: 

 T000.0,000.0,000.0,0601.0,174.0,142.0,000.02  and the new efficient solution was 

   Tf 11.10,01.1962  . The new normal vector was  TN 90.0,52.02   being a multiple 

of initial normal vector (i.e. 02 18~ NN ). The indifference trade-off was estimated as 

 Tdf 578.0,00.12  . The staff accepted this optimal indifference trade-off (198.86-7.55, 

20.00+1,) and the process was terminated with    Tf 00.20,86.1992  which became the 

MPS. The calculations are shown in Table 3.17 below. 
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Table 3.17 The steps of the interactive procedure up to the second iteration. 

 

The DEA model suggests that to improve the efficiency of the Law Department, graduated 

students should be increased by 36% and published papers increased by 47% as can be 

seen from Table 3.18. These results were obtained with composite outputs resulting from 

projecting the Law Department on the efficient frontier. These results (efficiency scores) 

were obtained by comparing the targeted DMU score, which is inefficient, relative to 

efficient DMUs. It is worth noting that by using the basic CCR model these results could 

not be improved or changed and hence the DM has no choice but to accept them.  

 

Unlike basic DEA, which compares the efficiency of the targeted DMU relative to the 

others, the developed DEA-MOLP integrated model seeks the most preferred solution 

(MPS) according to DM preferences. For instance, in the Law Department the DM 

managed to increase publications up to 28%; from the value proposed by CCR model but 

to do so the number of graduated students should be reduced by almost 2% and expenses 

should be raised by 0.10%.  
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Inputs Outputs 

Academic Registered Expenses Graduated Published 

Staff Students.   Students.  Papers 

Raw value 27 1145 32458 147 15 

DEA results 27 1145 32458 200 8 

Improvements % 0.00% 0.00% 0.00% 35.97% 47.37% 

Raw value 27 1145 32458 147 15 

DEA_MOLP results 27 1145 32425 196 10 

Improvements % 0.00% 0.00% 0.10% 33.34% 32.58% 

DEA results 27 1145 32458 200 8 

DEA_MOLP results 27 1145 32425 196 10 

Improvements % 0.00% 0.00% 0.10% 1.94% 28.11% 

Table 3.18 Summary of target setting and resource allocation for the Law Department. 

 

In comparison the DEA_MOLP integrated model allows alternative outcomes according to 

DM preferences which, in this case adds more flexibility to the basic DEA solution. 

Nevertheless the basic DEA method did find the composite outcome of the inefficient 

DMU projection on the efficient frontier.  
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3.5  Case study#2: Private Hospitals in Bahrain 

 

The data were collected from the Ministry of Health in Bahrain (MHB) and comprised ten 

DMUs (hospitals). Similar procedures to those used in section 3.3.1, were implemented to 

select the variables, three inputs (Physicians, Nurses and Dentists) and two outputs (In-

patients and Out-patients) as shown in Table 3.19 (see the Appendices for a detailed 

analysis). 

 

 

DMU Hospital Physicians Nurses Dentists 
Out-patients 

treated 

In-patients 

admitted 

1 American Mission 68 109 15 186294 2528 

2 Awali 18 43 2 37671 942 

3 
Bahrain 

International 
58 62 6 85939 3924 

4 Ibn Al-Nafees 39 48 1 96987 3483 

5 Bahrain Specialist 43 50 2 83406 4449 

6 
Gulf Dental 

Speciality 
1 16 10 14228 27 

7 Al Amal 13 16 2 13617 12 

8 Al Hillal 18 22 1 41013 431 

9 Salmaniya Medical 625 1677 6 518287 46738 

10 Bahrain Defence 229 758 12 460496 24616 

Table 3.19 The raw data after a statistical analysis was used to identify the variables. 

 

 

3.5.1  Measuring hospital performance 

 

The CCR DEA model was applied to measure the performance of each DMU relative to 

the others within the group and the results are shown in Table 3.20 below. The bold figures 

in Table 3.20 indicate the inefficient DMUs. 
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DMU 1/θ θ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 

1 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.81 1.24 0.12 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.77 1.30 0.00 0.00 0.00 0.51 0.75 0.00 0.00 0.00 0.00 0.00 

4 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

6 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

7 0.42 2.37 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 

8 0.92 1.08 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 

9 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

10 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Table 3.20 Inefficient DMUs scores obtained from using the CCR DEA analysis.  

 

The DM within the Ministry of Health in Bahrain desired that In-patients in the Bahrain 

Defence hospital should be increased by 3 with no extra resources. By setting the Q vector 

to (0, 3)
T
 and the P vector to (0, 0)

T
 and running model (3.16) the outcome scores shown in 

Table 3.21 were obtained. 

 

DMU 1/θ θ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 

1 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.81 1.24 0.12 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.69 1.46 0.00 0.00 0.00 1.29 0.00 0.00 0.00 0.00 0.00 0.00 

4 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.83 1.21 0.00 0.00 0.00 1.04 0.00 0.00 0.00 0.00 0.00 0.00 

6 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

7 0.42 2.37 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 

8 0.92 1.08 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 

9 0.89 1.12 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.80 1.25 0.46 0.00 0.00 5.07 0.00 0.00 0.00 0.00 0.00 0.00 

Table 3.21 The outcomes after adding the P and Q vectors.  
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In Table 3.21 the inefficient DMUs are shown in bold and the observed DMU in italics and 

the addition of the DM preferences has caused several DMUs to have scores less than one, 

for example, DMU5, DMU9, and DMU10.  

 

3.5.2  Improving the Al Amal private hospital 

 

The DM also wanted to improve the performance of DMU7 (Al Amal Hospital), (shown 

by italics in Table 3.21) and therefore the production trade-off MOLP model was 

implemented. Initially the trade-off DEA model (2.8a) was used to measure the 

performance of the observable DMU among the others. The DM had the choice to accept 

this outcome, which provided the combination of decision variables of the observable 

DMU (i.e. a point on the efficient frontier) or to start the interactive procedure by 

implementing the perturbation technique. In this case, the MPS is satisfied and the 

maximum composite from the pay-off table is similar to the trade-off DEA model (2.8a), 

i.e.     32329  0

1

0

1  DEAoffstradefpayofff , hence, it is suitable to have 1f  as a 

reference. 

 

  Max f1 Max f2 
f1                             f2 

DMU Hospital f1 f2 f1 f2 

1 
American 

Mission 
186294 2528 132890 7092 186294 7092 

2 Awali 46758 1196 35646 1904 46758 1904 

3 
Bahrain 

International 
125275 4498 103423 5517 125275 5517 

4 
Ibn Al-

Nafees 
96987 3483 96987 3483 96987 3483 

5. 
Bahrain 

Specialist 
101028 3628 83406 4449 101028 4449 

6 
Gulf Dental 

Speciality 
14228 27 2011 108 14228 108 

7 Al Amal 32329 1161 25245 1346 32329 1347 

8 Al Hillal 44452 1596 34950 1864 44452 1864 

9 
Salmaniya 

Medical 
581922 20898 518287 46738 581922 46738 

10 
Bahrain 

Defence 
577434 18813 460496 24616 577434 24616 

Table 3.22 The maximum values of the output variables from the pay-off table.  
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The iterative procedure was started by making small changes to f1 and f2 of 99.323280
1 f  

(< 32329) and 01.11610
2 f (> 1161). The initial weighted vector was 

00538.0
01.11617.1346

1
and01.0

99.3232832329

1 0
2

0
1 





 ww  which was fed into 

model (3.14) to find the composite output combination of 

 000.0,000.0,000.0,000.0,000.0,000.0,333.0,000.0,000.0,000.00   and the normal 

vector, calculated by using equation (2.27), as  TN 00538.0,000151.00  . The optimal 

indifference trade-off vector for  0f  was estimated by using equation (2.24) with 

 Tdf 028.0,00.10  . 

 

Objectives Decision variables Normal vectors 

)( 0

1 f  )( 0

2 f  
0

1  
0

2  
0

3  
0

4  
0

5  
0

6  
0

7  
0

1N  
0

2N  

577433.6 18812.7 0.462 0.000 0.000 5.066 0.000 0.000 0.000 0.000377 0.000172 

Table 3.23 The parameters used to start the interactive procedure 

 

The new marginal rate of substitution was )0.30,00.1(M . Table 3.24 below compares 

the old and new indifference trade-offs. 

 

Indifference trade-offs Values 

Old trade-offs (32329, 1161) ↔(32329-1.00, 1161+35.6) 

New trade-offs (32329, 1161) ↔(32329-1.00, 1161+30.0) 

Table 3.24 Comparing the old and new indifference trade-offs. 

 

The gradient projection direction of this change was calculated using equation (2.32) 

giving Tf )004.0,158.0(
1

 . The maximum step size was measured as 41909~0
max  

using equation (2.34) from which the step size table was established and  f1 and f2 were 

generated as shown in Table 3.25. As in the previous section, Table 3.25 shows increments 

of 0.1 (C10) for α between 0 and 1 on the LHS whilst the RHS shows increments of 0.01 

(C100) for α between 0 and 0.1. The purple shaded area shows the MPS. 
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C10    C100   

α  1f   2f   α  1f   2f  

0.0 32328.99 1161.01  0.20 31005.77 1198.15 

0.1 31667.38 1179.58  0.21 30939.61 1200.01 

0.2 31005.77 1198.15  0.22 30873.44 1201.86 

0.3 30344.15 1216.72  0.23 30807.28 1203.72 

0.4 29682.54 1235.29  0.24 30741.12 1205.58 

0.5 29020.93 1253.86  0.25 30674.96 1207.43 

0.6 28359.32 1272.43  0.26 30608.80 1209.29 

0.7 27697.71 1291.00  0.27 30542.64 1211.15 

0.8 27036.10 1309.57  0.28 30476.48 1213.00 

0.9 26374.48 1328.13  0.29 30410.32 1214.86 

1.0 25712.87 1346.70  0.30 30344.15 1216.72 

Table 3.25 .Trade-off steps 

 

It is worth noting that f1 decreases whereas f2 increases without exceeding the maximum 

value of f2 obtained from the pay-off table.  

 

According to the DM in the Al Amal hospital, in-patients should be increased by 3.4% in 

order to increase their revenue and be able to hire more staff but this will be at the expense 

of out-patients. The decrease in out-patients can be found from Table 3.25.  New targets 

were set as  1200,309401 f  with the convex combination 

 T000.0,000.0,000.0,000.0,0204.0,103.0,219.0,000.0,000.0,000.01   which was 

generated by supplying the new weighted vector  00.1,11.01 w  in model (3.16). As 

before the weighted vector was determined by using equation (2.36) with the normal vector 

 TN 790.0,0222.01  estimated by equation (2.27). It is worth noting that this target setting 

results in a convex combination of Bahrain International hospital (DMU3), Ibn Al Nafees 

hospital (DMU3), and Bahrain Specialist hospital (DMU5). 
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Table 3.26 Summary of the steps of the interactive procedure up to the first iteration. 

 

The DEA outcome indicates that the Al Amal hospital could be improved by increasing the 

both Out-patients and In-patients up to 32329 and 1161 respectively. It also shows that no 

extra Physicians or Nurses are needed but that Dentists should be decreased by up to 83%.  
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Inputs Outputs  

Physicians Nurses Dentists Out-patients In-patient 

    treated  admitted 

Raw value 13 16 2 13617 12 

DEA results 13 16 0.33 32329 1161 

Improvements % 0.00% 0.00% 83.33% 137.42% 9575% 

Raw value 13 16 2 13617 12 

MOLP-DEA results 13 16 0.52 30940.16 1200.06 

Improvements % 0.00% 0.00% 73.93% 127.22% 9901% 

DEA results 13 16 0.33 32329 1161 

MOLP-DEA results 13 16 0.52 30940.16 1200.06 

Improvements % 0.00% 0.00% 56.42% 4.30% 3% 

Table 3.27 Summary of targets and resource allocations for Al Amal hospital  

 

However, the MOLP-DEA approach gave target composite outputs of (30940, 1200) for 

Out-patients and In-patients, which suggests that these new targets could be achieved by 

decreasing Dentists by 74% with no changes to Physicians or Nurses. 

 

In comparing the DEA and MOLP-DEA outputs, Table 3.27 shows that only Dentists 

should be decreased by almost 56% to obtain an increase in In-patients of 3% at the 

expense of a reduction in Out-patients of 4%.  
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3.6 Summary 

 

DEA is a technique used to aid the DM to improve DMUs performance whilst MOLP is a 

technique that can be used to explore various possible alternative solutions. The core of the 

interactive framework developed in this chapter is the integration of MOLP and DEA 

employing the production trade-off approach. This allows the DMs to examine various 

realistic targets and explore which of them could be achieved technically.  

 

The developed framework has two phases: (a) the method of choosing P and Q and (b) the 

iterative procedure. The iterative MOLP procedure is achieved by using the interactive 

gradient projection method, which involves determining normal vectors on the efficient 

frontier. The normal vector provides a vigorous measure to test whether the most preferred 

decision is achieved which maximise the implicit utility function of the DM, or whether 

the DM should be satisfied with the optimal indifference trade-offs. The projection of the 

utility gradient onto the tangent plane of the efficient frontier using the normal vector can 

guide the DM to manage a direction by which the targeted DMU could be improved. 

 

The equivalent MOLP-DEA model was tested by using real data collected from the 

University of Bahrain in which the number of input and output variables was selected by a 

statistical analysis.  

 

The findings of this study have important implications for future practice. First, the P and 

Q vectors are incorporated in MOLP-DEA model for improving the discrimination of the 

DEA model. Second, constructing a well-defined framework realistically allows the DMs 

to manage improving the targeted DMU in a technical manner. 
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Chapter 4 

 

Integrating bounded DEA and minimax MOLP  

 

4.1 Introduction 

 

DEA was developed to analyse the relative efficiency of DMUs. For best performance of a 

DMU relative efficiency is less than or equal to one. On the other hand, for worst 

performance relative efficiency measure is within the range of greater than or equal to one. 

Contrary to the best relative efficiencies, which define the efficient frontier, the worst 

relative efficiencies define an inefficient frontier. Investigating the best and worst 

efficiency allows DMs to estimate and assess overall efficiency of DMUs from different 

points of view. Recently, Wang and Yang (2007) developed a model, called  the bounded 

model, which allows the DMs to measure the best and worst performance using a unified 

model (i.e. upper and lower bounds of the DMUs). The values of the best and worst 

efficiency are determined by introducing a virtual anti-ideal DMU, which is defined as the 

absolutely worst performance among all DMUs. Although the bounded model enables the 

best and worst efficiency to be measured, the DM has no choice but to accept the results 

without any alternatives. Furthermore, the bounded model is not designed to include the 

DMs preference or value judgements in assessing the DMUs and setting targets and 

therefore DMs are restricted in their ability to change resource (i.e. input) values.  
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4.1.1 Aims 

 

The main goal of this study is to establish an interactive framework based on integrating 

MOLP and the bounded DEA model through which the DM can exam various achievable 

targets and hence choose the most suitable one according to his preferences. Moreover, by 

using the developed framework the DM is allowed to examine several alternatives of costs, 

outputs, inputs and savings by making each inefficient DMU efficient. 

 

4.1.2 Research Questions 

 

 How can the bounded DEA model be integrated with the minimax MOLP 

approach? 

 How can the proposed framework aid the DMs to have a proper decision? 

 What are the achievable targets that enable the DMs to choose from? 

 How can we incorporate the DM preferences? 

 How can we guide the DMs to satisfy their goals? 

 

4.1.3 Research methodology 

 

This study consists of two parts: a theoretical derivation and a case study. The theoretical 

part presents an equivalent MOLP-DEA model by integrating the MOLP minimax method 

and the bounded DEA model proposed by Wang and Yang. The case study was conducted 

by collecting data from a private hospital in Bahrain. A framework is presented and 

implemented to improve the performance of the International Hospital of Bahrain.  
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4.1.4 Chapter structure 

 

This chapter presents the following: 

 

 An overview of relative efficiency 

 The bounded DEA-MOLP model 

o Theoretical derivation 

o An illustrative example 

 An interactive framework 

 A case study: The Bahrain International Hospital 

 Chapter summary 

 

4.2 Overview of relative efficiency 

 

Conventional DEA assumes that all the data comprise exact and precise numerical values. 

However, in some cases imprecise data such as ordinal data, as reported Cook et al. (1993 

and 1996) and interval data as reported by Cooper et al. (1999) may be collected. A typical 

example is faculty positions, e.g. full professor, associate professor, assistant professor, 

etc., and academic degrees such as doctorate, master and bachelor. Interval data were 

reported by Cooper et al. (1999, 2001), which is associated with the imprecise DEA model 

(IDEA). 

 

Intuitively efficiency scores of imprecise data are imprecise as well. For instance, the 

efficiency scores appear in ranges, rather than being exact. Using imprecise data induces a 

non-linear analysis that adds more complexity in finding the optimum solution. Cooper et 

al. (1999) proposed a transformation method to tackle this problem and the scale 

transformation was simplified by Zhu (2003) to reduce the computational burden. The 

efficiency scores of this approach could be used only to measure the upper bound, Kao 

(2006). 

 

Overall efficiency of a DMU within a firm or organisation can be measured by finding the 

worst relative efficiency and the best relative efficiency. The best relative efficiencies are 

those scores that have values between zero and one, whereas the worst relative efficiency 
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are those that have relative efficiency scores greater than or equal to one (Wang and Yang, 

2007). Hence, DMU efficiency scores measured in different ranges have different 

meanings and measuring the efficiency scores in some of these ranges causes one-sided 

efficiency. In their proposed model DMU efficiencies are estimated within the range of the 

interval defined by the upper and lower bound determined through introducing virtual anti-

ideal DMU (the lowest DMU performance). Previous models proposed to measure the 

worst and best relative efficiency have been presented by Doyle et al (1995) and Entani 

(2002), both sharing the same structure, Wang and Yang (2007). 

 

In this chapter, the integrated model of MOLP and bounded DEA model presented by 

Wang and Yang (2007) are further developed to build a framework which incorporates the 

DM’s preferences interactively through the DEA assessment procedure. 

 

 

4.3 The bounded DEA-MOLP model 

 

The aim of this section is to present the theoretical derivation of the integrated MOLP-

DEA model, which allows for the interaction of a DM during DEA-oriented preference 

assessment and planning. The projection gradient interactive method is implemented to 

explore the most preferred performance target according to the DM preferences. 

 

In 2000, Parkan and Wang reported that the worst and the best relative efficiency can be 

calculated by using the two DEA models. The DEA model for the best efficiency has 

efficiency scores between zero and one, whereas the DEA model for worst efficiency has 

an efficiency scores greater than one (Parkan and Wang, 2000).  
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The dual output oriented DEA model used to measure the best efficiency can be written as: 
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The dual output oriented DEA model used to measure the worst efficiency can be written 

as: 
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4.3.1 The equivalent MOLP model theoretical derivation 

 

Formulation (2.10) for the bounded DEA model can be divided into two models: optimistic 

and pessimistic. The Optimistic Output Oriented model in primal form can be written as: 
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The dual form of the above model (4.3) is: 
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By using the following manipulation: 
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and the objective function transformation as: 
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The equivalent MOLP model based on the minimax approach for the upper bound can be 

expressed as: 

 

 

 

 






























































0,  and  ,.......1 ,,,                

                

Subject to

Min  

1

1

max

0 jj

n

j

ijiijjADMUjjjjj

r

n

j

rjjjrr

ir

mixsx

syfw

ssh







          (4.7) 



 

115 

 

Note that 
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On the other hand, the Pessimistic Output Oriented model in primal form can be written as: 
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The dual form for the above model (4.9) will be: 
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By using the following transformation: 
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and the objective function transformation as: 
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The equivalent MOLP pessimistic model (lower bound) is: 
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Note that: 
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4.3.2 An illustrative example 

 

The equivalence of the derived MOLP model with the DEA CCR output oriented dual 

model is demonstrated through the hospital data in case study #2 presented in section 3.5. 

For convenience the raw data is reproduced in Table 4.1 below. 

 

 Inputs Outputs 

DMU Physicians Nurses Dentists Out-Patients In-Patients 

1 68 109 15 186294 2528 

2 18 43 2 37671 942 

3 58 62 6 85939 3924 

4 39 48 1 96987 3483 

5 43 50 2 83406 4449 

6 1 16 10 14228 27 

7 13 16 2 13617 12 

8 18 22 1 41013 431 

9 625 1677 6 518287 46738 

10 229 758 12 460496 24616 

Most inputs and least outputs 625 1677 15 13617 12 

Table 4.1 Input and output data collected from MHB.  

 

The Anti-ideal DMU  ADMU  is defined as the most inputs to produce the least outputs. 

Hence, its performance is the worst among all other DMUs and it should have the smallest 

efficiency and can be estimated by using the following model 
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Feeding the data presented in Table 4.1 in the above model (4.15), the anti-ideal DMU can 

be measured and is equal to 0.00936. To calculate the lower and upper limits the DEA in 

dual form was applied and Table 4.2 below presents the results. 

 

 

DMU 
The best efficiency The worst efficiency Bounded DEA model 

1 1.0000 2.4202 [0.0227, 1.000] 

2 0.8057 1.5171 [0.0142, 0.806] 

3 0.7671 1.5349 [0.0144,0.767] 

4 1.0000 2.6192 [0.0245,1.000] 

5 1.0000 2.1380 [0.0200,1.000] 

6 1.0000 1.0000 [0.0094, 1.000] 

7 0.4212 1.0000 [0.0049,0.421] 

8 0.9226 2.2370 [0.0209,0.923] 

9 1.0000 1.0000 [0.0094,1.000] 

10 1.0000 1.4509 [0.0136,1.000] 

Anti-ideal DMU 

 ADMU  
0.00936 

Table 4.2 Best and worst efficiencies from applying DEA models 4.1 and 4.2. 

 

The anti-ideal DMU was measured using model (4.15). The last column of Table 4.2 

shows the results obtained from using the bounded model (4.4) for the upper bound and 

the bounded model (4.10) for the lower bound. 

 

It is worth noting that for the upper limits, the best efficiency in Table 4.2 does not change 

from implementing the DEA or bounded models. However, the lower limits do change 
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when applying the bounded model which comes from the multiplication of the lower limits 

by the Anti-ideal DMU, ( i.e. the worst efficiency multiplied by the Anti-ideal DMU). 

 

In order to apply the MOLP bounded model, F
max

 and F
min

 should be measured. F
max

 

expresses the maximum value of the upper bound, whereas F
min

 highlights the minimum 

value of the lower bound. To calculate F
max

 for the upper bound data, a pay-off table 

shown in Table 4.3 below was generated by using the following programme: 
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Max f1 Max f2 
f1/y          f2/y F

max
 

f1 f2 f1 f2 

186294 2528 132891 7092 1 3 3 

46758 1196 35646 1904 1 2 2 

125275 4499 103423 5517 1 1 2 

96987 3483 96987 3483 1 1 1 

101028 3628 83406 4449 1 1 1 

14228 27 2011 108 1 4 4 

32329 1161 25245 1347 2 112 112 

44452 1596 34950 1864 1 4 4 

581922 20898 518287 46738 1 1 1 

577434 18813 460496 24616 1 1 1 

Table 4.3 Results obtained from applying model 4.16.  

 

On the other hand, the F
min

 estimates presented in Table 4.4 below were calculated by 

using the following linear programme: 
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Min f1  Min f2  
f1/y              f2/y F

min
 

f1 f2 f1 f2 

131753 4502 131753 4502 1 2 1 

46953 1153 46953 1153 1 1 1 

85939 3924 85939 3924 1 1 1 

63174 2621 63174 2621 1 1 1 

67158 2898 67158 2898 1 1 1 

14228 27 14228 27 1 1 1 

21058 874 21058 874 2 73 2 

29026 1210 29026 1210 1 3 1 

1787339 39537 1787339 39537 4 1 1 

777424 14096 777424 14096 2 1 1 

Table 4.4 Results obtained from applying model 4.17.  

 

The equivalence of the bounded DEA model and the bounded MOLP model for the lower 

limits (worst efficiency) and upper limits (best efficiency) was tested. For the upper limits 

this was established by showing the equivalence of the equation 
0

max

jF    (see Table 

4.5 below). 
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DEA model 

Minimax model 

 Composite inputs and outputs    

DMU 1/θjo θjo  F
max

  x1 x2 x3 y1 y2  θ F
max

-θjo 

1 1.000 1.000  2.81  68 109 15 186294 2528  1.81 1.81 

2 0.806 1.241  2.02  18 43 2 37671 942  0.78 0.78 

3 0.767 1.304  1.46  58 62 6 85939 3924  0.15 0.16 

4 1.000 1.000  1.00  39 48 1 96987 3483  0.00 0.00 

5 1.000 1.000  1.21  43 50 2 83406 4449  0.21 0.21 

6 1.000 1.000  3.98  1 16 10 14228 27  2.98 2.98 

7 0.421 2.374  112.23  13 16 2 13617 12  109.85 109.86 

8 0.923 1.084  4.33  18 22 1 41013 431  3.24 3.25 

9 1.000 1.000  1.12  625 1677 6 518287 46738  0.12 0.12 

10 1.000 1.000  1.25  229 758 12 460496 24616  0.25 0.25 

Table 4.5 Equivalence of the bounded DEA and MOLP models for upper limits.  

 

The equivalence of the lower limits (worst efficiency) for the bounded DEA model and 

bounded MOLP model was achieved by establishing 
0

min

jF  
 
(see Table 4.6). 

 

 

DEA model 

Minimax model 

 Composite inputs and outputs    

DMU 1/θjo θjo  F
min

  x1 x2 x3 y1 y2  θ F
min

+θjo 

1 0.0227 44.15  0.033  68 109 15 186294 2528  44.85 44.18 

2 0.0142 70.43  0.034  18 43 2 37671 942  71.65 70.46 

3 0.0144 69.61  0.014  58 62 6 85939 3924  70.61 69.62 

4 0.0245 40.79  0.010  39 48 1 96987 3483  41.44 40.80 

5 0.0200 49.97  0.009  43 50 2 83406 4449  50.62 49.98 

6 0.0094 106.84  1.000  1 16 10 14228 27  107.84 107.84 

7 0.0094 106.84  0.976  13 16 2 13617 12  108.39 107.82 

8 0.0209 47.76  0.039  18 22 1 41013 431  48.47 47.80 

9 0.0094 106.84  0.027  625 1677 6 518287 46738  107.69 106.87 

10 0.0136 73.64  0.023  229 758 12 460496 24616  74.21 73.66 

Table 4.6 Equivalence of the bounded DEA and MOLP models for lower limits  
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4.3.3 An interactive Framework 

 

The interactive procedure was implemented to improve the Bahrain International Hospital 

and consists of the following steps (see chapter 2): 

 

 Generate the pay-off table 

o Lower bound 

o Upper bound 

 Generate the initial efficient solution  

 Calculate the normal vector and checking of the optimality condition  

 Determine the trade-off direction 

 Determine the trade-off step size  

 Update the weighting vector 
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4.4 Case study: The Bahrain International Hospital 

 

The interactive approach was started by employing the DEA model to calculate the linear 

combination of the observed DMU3 (Bahrain International Hospital), which represents its 

projection on the efficient frontier. The DM had the choice to accept these results, in which 

case the obtained results became the most preferred solution (MPS) and the process would 

be terminated. If DM rejected the results then the interactive procedure would be initiated 

by perturbing the composite output (i.e. changing their values slightly). 

 

If one of the composite outputs, obtained from DEA model, matches the one from those 

obtained from the pay-off table, the composite output unit is considered to be an extreme 

point on the efficient frontier. As a result the weight and the normal vectors of any of the 

composite output will be either zero or one and a weighted value of unity for any of 

composite output represents its dominancy. 

 

In this case f2 was chosen as a reference for perturbation purposes. The composite outputs 

could be written as:        00.0,75.5516,and00.0,65.103423, 00
2

00
1   ff  with 

the decision variables    TT
0,0,0,0,0,0,0,0,0,0and0,0,0,0,0,0,24.1,0,0,0 00    

calculated using equation (4.3) after feeding it the weighted vector  558.4,1000  ew . 

This showed that DMU3 was a multiple of DMU4. The limited interval that allowed 

varying both f1 and f2 were calculated from the pay-off table (Table 4.3) generated for the 

individual DMU using equation (4.8). The normal vector, was found by applying equation 

(2.27) giving  TeeN 52.98,56.40  . Table 4.7 below summarises the initial parameters 

that would be used in the next step. Note that the β decision variable is omitted because its 

value was zero. 
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Objectives Decision variables Normal vectors 

)( 0
1 f  )( 0

2 f  
0

1  
0

2  
0

3  
0

4  
0

5  .... 0
10  

0

1N  
0

2N  

10.34e4 4.97e3 0.00 0.00 0.00 1.24 0.00 0.00 0.00 46e-5 98.2e-5
 

  Table 4.7 The initial starting parameters used in the next iterative step. 

 

Indifference trade-off was estimated by equation (2.24) as  Tdf 00.1,35.210  and the DM 

had the choice to accept it and if not then other trade-off values could have been chosen. 

The latter case indicates that the initial target parameters were not the most preferred ones. 

Unlike the basic DEA model, this framework allows the DM to choose other indifference 

trade-offs in which the marginal rate of substitution should be  TM 00.1,02.00  . Note that 

marginal rate must be chosen so that f1 must not exceed the maximum feasible value of 

obtained from the pay-off table (i.e. the value of 125274.88) see the Table 4.8 below. 

 

Indifference trade-offs Values 

Old trade-offs (103423.65,5516.75) ↔(103423.65+21.35,5516.75-1.00) 

New trade-offs (103423.65,5516.75) ↔(103423.65+50.00,5516.75-1.00) 

Table 4.8 Old and new trade-off values. 

 

The DM in the Bahrain International Hospital agreed that to improve the hospital services, 

output1 (Out-patients) should be reduced by 5% (i.e. output1 = 109323.33) whereby 

output2 (In-patients) should be increased by a certain amount that could be found by steps 

taken below. 

 

As in sections 3.3 and 3.4, Table 4.9 shows increments of 0.1 (C10) for α between 0 and 1 

on the LHS whilst the RHS shows increments of 0.01 (C100) for α between 0 and 0.1. The 

purple shaded area shows the MPS. 
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C10    C100   

α  1f   2f   α  1f   2f  

0.0 103423.45 5516.7500  0.20 107793.74 5312.03 

0.1 105608.59 5414.3910  0.21 108012.25 5301.80 

0.2 107793.74 5312.0320  0.22 108230.76 5291.56 

0.3 109978.88 5209.6729  0.23 108449.28 5281.32 

0.4 112164.02 5107.3139  0.24 108667.79 5271.09 

0.5 114349.16 5004.9549  0.25 108886.31 5260.85 

0.6 116534.31 4902.5959  0.26 109104.82 5250.62 

0.7 118719.45 4800.2369  0.27 109323.33 5240.38 

0.8 120904.59 4697.8779  0.28 109541.85 5230.14 

0.9 123089.73 4595.5188  0.29 109760.36 5219.91 

1.0 125274.88 4493.1598  0.30 109978.88 5209.67 

          Table 4.9 Trade-off steps 

 

The value that reduces the input2 (In-patients) by 5% was initially found between the step 

sizes interval  3.0,2.0 , which was found at the step size 27.0 and as a result f1 = 

109323.33. 

 

If the DM disagreed with the above improvement of f1 and sought alternative options then 

the next iterative step (t=1), would be carried out by calculating the weighted vector using 

equation (2.36) with  Tw 72.57,00.11  . In this case, entering this weighted vector in 

formulation (3.14) the updated decision variables would 

become    TT
0,0,0,0,0,0,0,0,0,0and0,0,0,0,0,90.0,35.0,0,0,0 11   . Subsequently, 

the normal vector could be estimated as  TN 65.15,73.01  and the optimal indifference as 

 Tdf 00.1,44.211  .The DM was unsatisfied with this indifference trade-off 

(109323.33+21.44, 5240.38-1.00) and was looking to reduce the In-patients by 10% from 

the original value (i.e. reduced by another 5% from the previous target). The new marginal 

rate of substitution was chosen to be  TM 00.1,015.01  which lead to determining a new 

direction of improvement by using the gradient projection method 

giving Teef )347.1,416.3(
1

 . The maximum step size value was 

65.5051681
max   and the nearest target value was found at step size 0.37.  
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Further improvement could be achieved by implementing more iterative steps depending 

on the DM preferences. As mentioned above the DM was looking to improve the Out-

patients variable at the expense of the In-patients variable. The parameters generated from 

each iterative step are summarised in Table 4.10. 
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Table 4.10 Summary of the parameters generated in each interactive step. 

 

Unlike in DEA, improving the Bahrain International Hospital by projecting it on the 

efficient frontier, the proposed framework allowed for setting different targets and 

allocating resources so that the DM could choose the most preferred solution according to 

his preferences. The DEA composite outputs for Bahrain International Hospital were given 

by (103423, 5516) for In-patients and Out-patients. Further improvement required by the 
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DM preferences could be achieved using the developed framework (Table 4.10). DEA 

proposes that for the Bahrain International Hospital to be efficient both outputs (Out-

patients and In-patients) should be increased by 30% alongside with decreasing the 

Physicians and Dentists by 10% and 66% respectively. Up to this stage no more analysis 

could be done and the DM had no further alternative choices.  

 

  

Inputs Outputs 

Physicians Nurses Dentists  

Out-patients 

treated 

In-patients 

 admitted 

Raw value 58.00 62.00 6.00 85939.00 3924.00 

DEA results 52.16 62.00 2.01 112035.70 5115.58 

Improvements % 10.07% 0.00% 66.47% 30.37% 30.37% 

Raw value 58.00 62.00 6.00 85939.00 3924.00 

MOLP-t=1 52.35 61.80 2.15 109010.85 5223.15 

Improvements % 9.74% 0.32% 64.17% 26.85% 33.11% 

Raw value 58.00 62.00 6.00 85939.00 3924.00 

MOLP-t=2 51.81 62.10 1.84 115432.32 4974.03 

Improvements % 10.67% 0.16% 69.33% 34.32% 26.76% 

DEA results 52.16 62.00 2.01 112035.70 5115.58 

MOLP-t=1 52.35 61.80 2.15 109010.85 5223.15 

MOLP-t=2 51.81 62.10 1.84 115432.32 4974.03 

Improvements % 

(MOLP-t=1/DEA) 0.37% 0.32% 6.88% 2.70% 2.10% 

Improvements % 

(MOLP-t=2/DEA) 0.67% 0.16% 8.53% 3.03% 2.77% 

Improvements % 

(MOLP-t=2/MOLP-t=2) 1.03% 0.49% 14.42% 5.89% 4.77% 

Table 4.11 Comparison of the DEA and MOLP developed models.  

 

Based on the data (recorded in Table 4.11), DEA suggested that In-patients and Out-

patients could be improved by up to 30.4%, which could be achieved by reducing 

Physicians by 10.1% and Dentists by 66.5%. It is worth noting that, using the DEA model, 

the DM has no choice but to accept these results and the developed model strengthens 

DEA by allowing alternatives according to the DM’s preferences.  
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Initially the DM preferences were to raise In-patients by 33.1%. The developed model 

showed that this would be at the expense of reducing Out-patients by 26.8% and that this 

would have required a 9.7% reduction in Physicians, a 0.32% reduction of Nurses and 

64.2% reduction of Dentists.  

 

The last row in Table 4.11 compares the changes that occurred according to DM 

preferences. In comparing the DEA outcomes with first iterative step (MOLP-t=1), the 

output variables (Out-patients and In-patients) were increased by 2.7% and 2.1% 

respectively and the resources should be changed as follows: Physicians should be 

increased by 0.37%, Nurses should be decreased by 0.32%, and Dentists should be 

increased by 6.88%. 

 

Similar to the above by comparing DEA outcomes with the second iterative step (MOLP-

t=2) Out-patients were increased by 3.03% but In-patients were decreased by 2.77% and 

this required a reduction of Physicians and Dentists by 0.67% and 8.53%  respectively and 

an increase in Nurses of 0.16%. 

 

Finally, by comparing the first iterative (MOLP-t=1) with the second iterative (MOLP-

t=2), Out-patients increased by 5.89%, In-patients decreased by 4.77%; and this required 

Physicians and Nurses to be increased by 1.03% and 0.49 respectively whilst Dentists 

should be decreased by 14.4% 

 

As can be seen from the interactive trade-off steps (Table 4.11), the DM placed more 

emphasis on decreasing the Physicians, aiming to increase the revenue, i.e. reducing the 

amount paid out in Physician salaries. In the first interactive step the DM increased Out-

patients and In-patient by 26.8% and 33.1% respectively with Physicians being reduced by 

9.74% and in the second interactive step, In-patients were reduced by 7% and Out-patients 

increased by up to 8% (compared to the first interactive step) with Physicians decreased by 

10.7%. 

 

In brief, we have shown the power of the equivalent MOLP model in establishing a 

framework that allows target setting, based on DM preferences and resource allocation that 

needs to be adjusted accordingly. 
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4.5 Summary 

 

In this chapter an interactive framework was presented and illustrated. The origin of this 

framework is the integration between MOLP and DEA underlying the bounded model 

proposed by Wang and Yang (2007). An equivalent relationship was built between the 

output-oriented dual bounded model and the minimax formulation. The bounded model is 

constructed by unifying the best efficiency, which has values between zero and one, and 

the worst efficiency, which has values greater than or equal to one, of DEA models. It was 

achieved by using a virtual anti-ideal DMU, which has the worst efficiency among all 

other DMUs. For instance, the anti-ideal DMU utilizes the most inputs to produce the least 

outputs. The proposed framework can be used to support a comprehensive efficiency 

analysis by measuring the best and worst efficiency of the DMUs and can incorporate the 

DMs preferences and guide them to make better decisions on setting realistic targets values 

and allocating resources. 

 

The interactive gradient projection method was implemented to explore target setting and 

resource allocation. The advantage of this method is the determination of a normal vector 

on the efficient frontier, which provides a realistic estimate to examine whether the most 

preferred solution is satisfied i.e. that which maximises the DM’s implicit utility function. 

Moreover, the projection of a utility gradient onto a tangent plane of the efficient frontier 

yields directions through which the DMs utility can be further improved. 

 

The findings of this study enhance the application of DEA by incorporating the DM’s 

preferences and providing an overview of the DEA problem from different sides of the 

targeted DMU in an interactive manner. An important practical implication is that it can 

help deepen the understanding of appropriate ways to make inefficient DMU efficient by 

looking at the problem from optimistic and pessimistic viewpoints.  
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Chapter 5 

 
Interactive MOLP and ranking frameworks 

 
5.1 Introduction 

 

It is possible to take two extreme points of view (optimistic and pessimistic) in the 

bounded DEA model and these lead to two different efficiency estimates of individual 

DMUs: the best relative efficiency and the worst relative efficiency. The best relative 

efficiency scores have values between zero and one, whilst the worst relative efficiency 

scores are greater than or equal to one. Combining these best and worst relative 

efficiencies could provide a better understanding of the practice of each DMU and provide 

the decision-maker (DM) with a panoramic view of the performance of individual DMUs, 

resulting in an improved decision making process. Ranking is essential for the DM as it 

allows him/her to test the impact of choices on the practice of other DMUs. Several 

ranking approaches have appeared in the literature and the geometric average approach 

(GAA) has been proposed for providing an overall ranking of DMUs’ efficiency (Wang, 

Chin, and Yang, 2007). Although the geometric average approach could provide an overall 

ranking, the original suggestion based on the bounded DEA model allowed no 

interference/interactivity by the DM in the analysis and consequently he/she would be 

given no alternative but just to accept the resulting optimum solutions from the analysis.  

 

5.1.1 Aims 

 

The purpose of this chapter is to establish a framework that integrates the interactive 

(bounded) MOLP model developed in the previous chapter with a ranking approach based 

on the geometric average approach. By using the proposed framework, the DM is able to 

set targets and to choose the most suitable one that satisfies his/her preferences. Further, 

the ranking procedure enables the DM to examine any improvements that may take place 

after the iterative steps are performed. 
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5.1.2 Research questions 

 

This chapter investigates the following research questions: 

 

 How can the ranking of DMUs be integrated with an MOLP interactive procedure? 

 How can the DM be supported in making the most suitable decisions? 

 

5.1.3 Methodology 

 

The new proposed framework is based on a thorough investigation of the relevant models 

and methods that have already been published. In this chapter, the feasibility of the 

framework is initially demonstrated through an illustrative example using secondary data 

and then the applicability of the framework is demonstrated through a case study of private 

hospitals in Bahrain in order to improve the performance of one specific hospital. 

 

5.1.4 Chapter structure  

 

This chapter consists of: 

 

 An overview of ranking approaches 

 A development of the Geometric Average Approach (GAA) 

 An illustrative example of GAA 

 A case study: The hospitals of Bahrain 
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5.2 An overview of ranking approaches  

 

In the literature, there are various ranking approaches using DEA and these are critically 

examined in this section.  

 

Ranking DMUs in DEA was introduced by Sexton et al. (1986). The cross-evaluation 

matrix analysis was recommended by Doyle and Green (1994) who argued that DMs do 

not always have a reason to use assurance regions. Generally, the cross-evaluation matrix 

approach was based on measuring efficiency scores of DMUs by using the optimal weights 

obtained from solving DEA models. DEA cross-efficiency scores can be represented by a 

cross-efficiency matrix generated from the following equation: 
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                                                 (5.1) 

 

where hkj represents the score for j in the DEA run of unit k. For instance, unit j is 

evaluated by the weights of unit k. It is worth noting that the values of the elements in the 

cross-efficiency matrix are between zero and one, 10 
kj

h , where the diagonal 

elements constitute the standard DEA efficiency outcome. In other words, hkk = 1 means 

that DMU k is efficient and hkk <1 means that DMU k is inefficient. If the weights obtained 

from DEA models do not have unique values, Goal Programming methods can be 

implemented. Based on Sexton (1986), for example, the Goal Programming could be either 

aggressive or benevolent. In the aggressive context, the selected DMU should minimize 

self-efficiency with the secondary objective of minimizing the other DMUs cross-

efficiency rankings. On the other hand, the benevolent secondary objective would be to 

maximize all DMUs cross-efficiency rankings. Similar implementations of Goal 

Programming can be found in the literature (Oral, 1991).  

 

Application of the cross-efficiency ranking method in the DEA context utilizes the results 

of the efficiency matrix in order to rank the units. If hkj is an element in the matrix then kh , 



 

133 

 

which is the average of cross efficiency scores of k elements, can be defined as 



n

j
kj

hn
1

1 . It 

is worth noting that the median or the variance can also be used instead of the average 

(Green et al. 1996). Moreover, it has been argued that kh is more representative than the 

diagonal elements hkk, which represents the basic DEA efficiency score. This is because 

kh  considers all elements in the cross-efficiency matrix including the diagonal one. The 

maximum value of kh is 1, which occurs if DMU k is efficient in all the runs, i.e. all DMUs 

evaluate that DMU k is efficient. In order to rank DMUs, a DMU with the highest score is 

ranked as one and those with lower scores are ranked as n. Although the kh  score is 

comparable as it utilizes the weights of all DMUs equally but a drawback occurs in this 

technique when the multiplier weights lose their connection with subsequent evaluation. 

 

The shortcomings of this method were discussed by Doyle and Green (1994). They 

proposed the idea of a “maverick index”, which estimates the dispersion of each element 

from the basic DEA efficiency scores, i.e. hkk is achieved by using the following 

relationship as: 
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where,                                 (5.2) 

 

The higher value of Mk, the more a DMU could be considered a maverick. Note that other 

authors, for example Doyle and Green (1994), later argued that this scaling is similar to a 

benchmarking process through which the efficiency of DMUs results from self-assessment, 

where the elements reaching higher Mk scores fail to appear in the reference set of the 

inefficient DMUs. On the other hand, those elements that achieve low Mk scores distribute 

all around. 
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A super-efficiency ranking approach was proposed by Anderson and Peterson (1993) 

which enables extreme efficient units to achieve efficiency scores of more than one as 

described by the following model. 
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                                       (5.3) 

 

The dual formulation of the above model (5.3), which determines the distance between the 

Pareto frontier with and without unit k, i.e. for = {1, ..., n, j≠k}, is given by:  
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                                                        (5.4) 

 

There are several shortcomings of this model. First, the DEA objective function is referred 

to as a ranking value, in spite of the fact that individual unit is assessed based on different 

weights. In reality, the ranking value obtained by applying this formulation can be 

considered as the ratio between the weights of each unit k and a virtual unit that is closest 

to it on the efficient frontier.   
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Second, the problem caused by the high ranking value of the “specialized” DMU was 

addressed by Sueyoshi (1999) by introducing special bounds such as: 
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                                                       (5.5) 

 

Moreover, to limit the super-efficiency score, Sueyoshi proposed an Adjusted Index 

Number (AIN) relationship as shown below: 
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                                      (5.6) 

 

where E is the set of efficient DMUs.  

 

Third infeasibility might occur and, if so, the ranking of all DMUs could not be achieved. 

Furthermore, the extreme efficiency of DMUs, which is described by Thrall (1996), 

indicates that the super-efficiency CCR model may be infeasible. Several authors such as 

Zhu (1996a), Dula and Hickman (1997), and Seiford and Zhu (1999) provide important 

information about the conditions by which the super-efficiency model becomes infeasible. 

One suggestion to deal with the infeasibility problem in the super-efficiency approach, 

proposed by Mehrabian et al. (1999), is to modify the dual formulation as shown by the 

model: 
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The simplicity of the super-efficiency model attracted interest by several researchers. For 

example, Hashimoto (1997) incorporated this model with assurance regions in order to 

rank all DMUs but to provide a complete ranking of the DMUs further preferences need to 

be added for each DMU, i.e.  
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                                    (5.8) 

 

where ur is the sequence of weights assigned to the r
th

 place. This is a preference voting 

system, i.e. a ranked voting system in which each DM selects, ranks and votes for the top s 

DMUs among the n DMUs. The use of assurance regions is to prevent the specialization 

pitfall caused by using the standard super-efficiency model. 

 

The benchmark ranking approach developed by Togersen et al. (1996) enabled the 

complete ranking of DMUs. The method was based on estimating the importance of the 

observable DMU as a benchmark for inefficient DMUs. This approach works in two 

stages. First, an additive model is applied to measure the slacks through which efficient 

DMUs are identified as those that have zero slacks. Second, to order all DMUs, the 

following model is used: 
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In order to rank the efficient DMUs and evaluate which are of particular importance, the 

benchmarking measure aggregates the individual reference weights as shown in the 

equation (5.10) below: 
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                                                         (5.10) 

 

For an efficient DMU k, the benchmark r
k , estimates the ratio of the total combined 

potential increase in output over the k
th

 DMU that acts as a reference. Note that the scores 

of efficient DMUs determine the entire potential within each variable. The mean value of 

k can then be found, which is then used for ranking all efficient DMUs completely.  

 

Ranking methods reported in the literature utilize statistical techniques together with DEA 

to provide a complete ranking and three approaches have been reported in the literature: 

Canonical Correlation analysis (CCA), linear discriminant analysis (DDEA) and 

discriminant analysis of ratios (DR/DEA). 

 

Canonical Correlation Analysis (CCA) is an extension of simple regression analysis and 

deals with multiple inputs and multiple outputs (Johnson and Wichern, 2002). CCA 

determines the weighting vector for inputs and outputs that is common to all DMUs. In 

particular, CCA finds vectors Zj and Wj, which are the linear sum of input variables and 

output variables respectively, which can be written as: 
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The aim of CCA is to determine the two vectors UV  and in order to maximize rZw the 

correlation coefficient of the composite inputs, Z, to the composite outputs, W, by using the 

following programme (Hardoon, 2004): 
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where Sxx, Syy and Sxy are the matrices of the sums of squares and sums of the products of 

the variables respectively. Note that the ratio of UV  and is determined up to a 

proportional constant and feasibility is achieved for positive weight values.  

 

Friedman and Sinuany-Stern (1997) proposed using the ratio between Zj and Wj as a 

scaling score, Tj. Then the largest eigenvalue obtained from CCA is used to find the 

common weights for the linear combinations and can be written as: 
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Note that Tj is unbounded as the DEA score is limited to values between 0 and 1 and 

ranking is based on the scaling ratios instead of DMUs absolute measures.  
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Linear discriminant analysis (DDEA) is a ranking method developed by Sinuany-Stern et 

al. in 1994 based on finding a score function for ranking DMUs. The score function is 

determined by dividing the DMUs into two groups: efficient and inefficient. By integrating 

conventional discriminant analysis, the following model can be built: 
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                                      (5.14) 

 

where the critical Dc, which divides DMUs into two groups (efficient and inefficient) is the 

midpoint of the discriminant function. Subsequently, the efficient DMUs are those that 

have values greater than Dc i.e. Dj >Dc (Morrison, 1976). Note that ur and vi have closed 

form solutions and a DDEA score is feasible only if all the weights are non-negative. 

 

Discriminant analysis of ratios (DR/DEA) is another ranking method originally proposed 

by Sinuany-Stern and Friedman (1998). It integrates discriminant ratio analysis with DEA 

aiming to avoid the problem caused by infeasibility found in the previous approach. To do 

so, a ratio function is established by using the linear combination vectors of inputs and 

outputs defined in the previous approach. While DEA allows estimating different 

efficiency scores for individual DMUs, DR/DEA provides common weights for all DMUs. 

The idea behind this approach is to determine the weights through which the ratio score 

function optimally discriminates between two groups of DMUs on a one-dimensional 

scale, i.e. efficient and inefficient DMUs. The ratio and the arithmetic mean can be 

expressed as:  
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where n1 and n2 are the number of efficient and inefficient DMUs, obtained from DEA 

model, respectively. The weighted mean of efficient, n1, and inefficient, n2, DMUs can be 

written as   1
2211

 nTnTnT . The ratio for common weights that needs to be measured 

between the group variance of T, (SSB(T)) and the within- group variance of T, (SSW(T)) 

should be maximized as described by the following model: 
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Hence, the ratio between the composite inputs and outputs, Tj, represents the efficiency 

scores for DMU j; thereby DMUs with higher ratio scores will be at the top and those with 

lower ratio scores will be at the bottom. It is worth noting that for negative weight values, 

non-negative constraints have to be added to the optimization model and a non-linear 

optimization method needs to be implemented to solve the problem. 

 

So far, none of the methods mentioned above provide a ranking of inefficient DMUs. For 

instance, the benchmarking and super-efficiency methods only attempt to rank efficient 

DMUs assigned in the standard DEA models. However, (Cooper and Tone, 1997) claim 

that the cross-efficiency matrix method and the associated statistical techniques do address 

the problem by stating that the original efficiency value “will generally be determined from 

different facets” An attempt to rank inefficient DMUs was derived by Bardhan et al. in 

1996 through a Measure of Inefficient Dominance (MID). This technique was based on 

slack-adjusted DEA models whereby overall estimates of inefficiency can be measured by 

equation (5.18): 
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The MID index ranks the inefficient DMUs according to their average proportional 

inefficiency in all inputs and outputs. While the benchmarking approach ranks the efficient 

DMUs, the MID index ranks the inefficient DMUs. 

 

Golany (1988) introduced Multiple Criterion Decision Making (MCDM) into DEA. In his 

approach, DEA and multiple-objective linear programming were combined interactively. 

Although MCDM does not allow complete ranking a discussion was provided about using 

the preliminary details of input and output variables in order to refine the preferential 
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power of the DEA model. Using MCDM as an interactive framework for ranking, a 

procedure was developed in which the importance of inputs and outputs are chosen by the 

DM. Even though the latter is considered as a drawback of the approach, several 

researchers such as Golany (1988), Kornbluth (1991), Thanassoulis and Dyson (1992), 

Golany and Roll (1994), Zhu (1996b) and Halme et al. (1999) incorporated discriminatory 

details into DEA models. A group of researchers (Thompson, 1986; Dyson and 

Thanassoulis, 1988; Charnes et al., 1989 and 1990; Cook and Kress, 1990a and 1990b; 

Thompson et al., 1990; Wong and Beasley, 1990; Cook and Johnston, 1992 and Green and 

Doyle, 1995) applied an assurance region or cone-ratio model to specify the importance of 

inputs or outputs through which DMUs can be scaled.  

 

A number of authors suggested that a discrimination factor should be constructed by 

imposing ratio constraints on the multipliers and a lower bound (Cook and Kress, 1990a, 

1991 and 1994; Cook et al., 1993 and 1996). This modification can almost ensure a single 

efficient DMU. For example, when considering aggregation of votes whereby yrj is the 

number of r
th

 placed votes received by candidate j, an intensity function d(r,ε) can be 

defined in the DEA model as: 
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The outcome of the above model depends on the discriminatory function, d(r,ε). It is linear 

whenever the difference between the ranks is linear; however, this is not always the case as 

reported by Green et al. (1996), because the form of d(r,ε) limits the ranking results. 

Moreover, mathematically, the shape of the function used in this analysis is not clear.  

 

A two-stage methodology was developed for fully ranking DMUs by utilizing fuzzy logic 

(Karsak, 1998; Hogaard, 1999). In the first stage, efficiency scores using DEA were 

identified whilst the second stage incorporated fuzzy logic to rank the efficient units using 

expert information. Several authors argued that DEA should be considered as another 

methodology within MCDM (e.g. Troutt, 1995; Li and Reeves, 1999; and Sinuany-Stern et 

al, 2000). In order to distinguish between efficient DMUs, Troutt (1995) proposed a 

maximin efficiency ratio model as: 
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To increase the discrimination between DMUs, Li and Reeves (1999) proposed 

incorporating multiple objectives to the basic DEA as in the following model: 
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                       (5.20) 

 

In the above model (5.20) three objectives are used. The first objective is the same as the 

standard CCR model. The second is to minimize the maximum deviation (slack variable) 

and the last is to minimize the total deviations. The first objective increases discrimination 

between DMUs whilst the second and third objectives do not provide the full ranking of 

DMUs. 

 

Some other researchers, such as Sinuany-Stern et al. (2000) suggested using the Analytical 

Hierarchical Process (AHP/DEA) for ranking DMUs in two stages. In the first stage, the 

DEA model is applied in pairs to the units whilst the second stage depends on the first 

stage outcome to generate a pair wise comparison matrix. 
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5.3 The Geometric Average Approach (GAA) 

 

The standard DEA approach provides a means of measuring the best efficiency which does 

not provide a complete image of the performance of DMUs. In this section, we propose a 

new approach for ranking DMUs based on the bounded model discussed in the previous 

chapter, which allows measuring the performance of individual DMU from two different 

perspectives (the best relative efficiency and the worst relative efficiency). The geometric 

average of these two efficiencies could provide a more useful measure of a DMU’s 

efficiency (i.e. overall efficiency).  

 

5.3.1 The theoretical background of GAA 

 

To apply GAA the overall efficiency for each DMU is determined by finding the optimistic 

efficiency (the best relative efficiency, or upper bound) and the pessimistic efficiency (the 

worst relative efficiency, or lower bound) (Wang et al, 2007). 

 

The optimistic efficiency DEA output linear programming model (for efficiency scores 

between 0 and 1) can be written as: 
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and the dual formulation is: 
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The pessimistic efficiency DEA output linear programme (for efficiency scores greater 

than 1) can be written as:  
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Which, in the bounded model can be written: 
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whilst the dual formulation can be expressed as: 
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and for the bounded model: 
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The geometric average is expressed as ****
jjjj   , where the terms **

jj and   in 

the geometric average are the lower bound ( i.e. worst efficiency) and the upper bound  

(i.e. the best efficiency). The difficulty of estimating the constant (α) in the bounded model 

is a major drawback of this model. Implementation is investigated through an illustrative 

example and case study later in this chapter. 

 

5.3.2 The stages of the framework 

The proposed framework consists of two main stages: 

 Interactive stage 

» Generate the pay-off table Lower bound and Upper bound 

» Generate the initial efficient solution  

» Calculate the normal vector and checking of the optimality condition  

» Determine the trade-off direction 
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» Determine the trade-off step size  

» Update the weighting vector 

 Ranking stage 

» The overall ranking using geometric average approach 

 

5.3.3 An illustrative example 

The application of the proposed framework for improving a targeted DMU in an 

interactive manner and ranking it within the other DMUs is illustrated through a simple 

data set shown in Table 5.1. 

 

DMU Input (x) Output 1 (y1) Output 2 (y2) 

1 1 2 5 

2 2 2 4 

3 3 6 6 

4 1 3 2 

5 2 6 2 

Table 5.1 Simple data set consisting of one input and two outputs variables. 

 

To assess the DMU performance the output-oriented CCR dual model was implemented. 

Table 5.2 shows that DMU 2 and DMU 3 are inefficient and their efficiency scores are 

45% and 73% respectively. The composite output for DMU 2 on the efficient frontier is a 

linear combination of 1.60 DMU 1 and 0.4 DMU 4.  

 

DMU Efficiency score   Decision variables   

1 1.00 1.00 0.00 0.00 0.00 0.00 

2 0.45 1.60 0.00 0.00 0.40 0.00 

3 0.73 0.75 0.00 0.00 2.25 0.00 

4 1.00 0.00 0.00 0.00 1.00 0.00 

5 1.00 0.00 0.00 0.00 0.00 1.00 

 0.2424 

Table 5.2 The output-oriented CCR model (2.4b) applied to the data in Table 5.1 
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DMU 2 will be the targeted for improvement and its ranking among other DMUs will be 

tested. Table 5.3 presents the initial ranking of the DMUs obtained from applying the 

Geometric Average Approach. The scores of DMUs were produced from the lower and 

upper bound models (4.4 and 4.10) and the geometric average using  developed in 

the previous chapter. The Anti-ideal DMU was measured by using model 4.16 giving 

 = 0.2424. The targeted DMU (i.e. DMU 2) is initially ranked fifth.  

 

DMU Lower bound 

( ) 

Upper bound 

( ) 

Geometric Average Ranking 

1 0.4848 1.0000 0.6963 1 

2 0.2424 0.4545 0.3320 5 

3 0.2909 0.7273 0.4600 4 

4 0.3394 1.0000 0.5826 2 

5 0.2424 1.0000 0.4924 3 

Table 5.3 Lower/upper bounds and geometric average (target DMU is shown bold).  

 

Recall that the developed framework consists of two stages: an interactive procedure and a 

ranking stage. The interactive procedure was started by constructing a pay-off table to find 

the allowable range in which objectives were to be chosen by using model (4.16). Table 

5.4 shows the trade-off feasible ranges of the DMUs. 

 

 

DMU 

Max f1 Max f2 
Max f1/y1 Max f2/y2 F

max
 

f1 f2 f1 f2 

1 3 2 2 5 1.50 1.00 1.50 

2 6 4 4 10 3.00 2.50 3.00 

3 9 6 6 15 1.50 2.50 2.50 

4 3 2 2 5 1.00 2.50 2.50 

5 6 4 4 10 1.00 5.00 5.00 

Table 5.4 The pay-off table. (The targeted DMU is shown bold) 

 

Table 5.4 shows the allowable ranges when each composite output of individual DMU is 

maximized. For the targeted DMU (DMU2), the possible ranges of the objectives are as 

follows: f1 can be varied between 4 and 6 and f2 can be varied between 4 and 10. The 
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maximum allowable feasible value for each objective is: f = [f1, f2]
 T

 or f= [6, 10]
 T

, which 

is the ideal point of the composite outputs. 
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5.3.3.1 Stage #1: The interactive MOLP  

 

The interaction was started by solving model (4.4) to generate the composite output of the 

targeted DMU on the efficient frontier. The DM has the choice of accepting them 

otherwise trade-off between the objectives f1 and f2 takes place. If f2 is considered to be a 

reference objective, it could be perturbed or reduced by a small amount (e.g. reduced by 

0.01). In this case the f(λ
0
) = [4.01, 99.9]

 T
 was used to generate the composite output. Note 

that the resultant solution is almost similar, but not exact, to those obtained from the DEA 

model for f(λ
0
) = [4.00, 10.0]

 T
. Hence, the initial decision variables are given by 

 T000.0,003.0,000.0,000.0,996.10  and the normal vectors  TN 17.0,5.00   are 

estimated using equation (2.27). Hence, the initial solution of DMU2 is a linear 

combination of 1.996 of DMU1 and 0.003 of DMU4. The optimal indifference trade-off 

vector at the solution f(λ
0
) for a unit change of f2 can be found by equation (2.31) as 

 Tdf 00.1,34.00  resulting in the initial indifference trade-offs 

   00.199.9,34.001.499.9,01.4  . Now suppose that the DM did not agree with 

obtained indifference trade-off and an alternative is proposed. If the DM prefers to increase 

f1 at the expense of f2 as:    00.199.9,44.001.499.9,01.4    then the marginal rate of 

substitution can be generated by  TM 00.1,3.20  . 

 

The trade-off direction is calculated as  Tf 76.0,26.00  using the gradient projection 

method i.e. equation (2.28). The trade-off size can be found by calculating the maximum 

step size as 80

max   using equation (2.34), which is used to build the following step size 

table (Table 5.5). 
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C10       C100     

α y1 y2   α y1 y2 

0.00 4.01 9.990   0.00 4.01 9.990 

0.10 4.21 9.989   0.01 4.03 9.932 

0.20 4.41 9.988   0.02 4.05 9.873 

0.30 4.61 9.987   0.03 4.07 9.814 

0.40 4.81 9.986   0.04 4.09 9.756 

0.50 5.01 9.985   0.05 4.11 9.697 

0.60 5.20 9.984   0.06 4.13 9.639 

0.70 5.40 9.983   0.07 4.15 9.580 

0.80 5.60 9.982   0.08 4.17 9.523 

0.90 5.80 9.981   0.09 4.20 9.463 

1.00 6.00 9.980   0.10 4.21 9.405 

Table 5.5 The step size table with 05.0 shown in bold. 

 

Table 5.5 shows that while y1 increases y2 decreases. Note that y1 should not exceed the 

maximum allowable value of 6. Suppose the DM sets the target level for f1 at 4.11 which 

can be found between 00.0  and 10.0 . This can be allocated more precisely in the 

C100 table above at 05.0 , which is  . Whenever   is determined the weighting 

vector can be updated to find the decision variables and hence the resources can be 

allocated.  

 

The weighting vector  Tw 16.0,00.11   is calculated using equation (2.36) used to 

generate the decision variables:  T000.0,101.0,000.0,000.0,899.11  for the new targets 

f(λ
1
) = [4.11, 9.70]

 T
.  
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5.3.3.2 Stage #2: Ranking DMUs by GAA  

 

The ranking is essential for DMs to see the impact of their decisions. For instance, the 

ranking reveals whether the targeted DMU’s position among the others is improved or 

reduced. The interactive outcomes, which are based on the DM’s opinion, shows that in 

order to improve DMU2’s efficiency, output1 and output2 should be increased by about 

105% and 142% without changing the resources. 

 

DMU Input (x) Output 1(y1) Output 2(y2) 

1 1 2 5 

2 2►2 2►4.1 4►9.7 

3 3 6 6 

4 1 3 2 

5 2 6 2 

Table 5.6 The improvement from the interactive stage (the target DMU is shown bold). 

 

Table 5.6 indicates that for DMU2 to become efficient outputs 1 and 2 should be changed 

to 4.1 and 9.7 without requiring more resources. After applying the proposed changes, the 

Bounded Model and Geometric Average Approach (GAA ) are employed and the 

results are shown in Table 5.7. 

 

 Bounded Model GAA Ranking 

DMU   After before 

1 0.2424 1.0000 3 1 

2 0.2485 1.0000 2 5 

3 0.2424 0.7273 5 4 

4 0.3030 1.0000 1 2 

5 0.2424 1.0000 4 3 

Table 5.7 DMU ranking before and after changes. (Target DMU is shown bold) 
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Table 5.7 shows the results of applying the Bounded Model (i.e. 4.4), developed in the 

previous chapter, and the Geometric Average Approach (GAA  ). DMU1 was 

moved from first to third place, DMU2 was raised from fifth to second place, DMU3 was 

moved from fourth to fifth place, DMU4 was raised from second to first place, and DMU5 

was moved from third to fourth place. The change in ranking of each DMU was caused by 

the fact that the pessimistic efficiency of individual DMUs is assessed relative to all the 

other DMUs. The pessimistic efficiency was computed using all the input and output 

information rather than only one input and one output.  

 

The DM may agree with the improvement for the targeted DMU and if so then the process 

is terminated. Otherwise, new targets may be proposed requiring a re-run of the first stage 

of the interactive procedure and the second stage of ranking procedure in the developed 

framework. 

 

5.4 Case Study: Hospitals of Bahrain 

 

In this section, the proposed framework is applied to the private hospitals of Bahrain with 

the aim to improve the Awali hospital. The data of the case study is shown in Table 5.8.  

 

DMU Hospital Physicians Nurses Dentists 

Out-

patients 

treated 

In patients 

admitted 

1 American Mission 68 109 15 186294 2528 

2 Awali 18 43 2 37671 942 

3 Bahrain International 58 62 6 85939 3924 

4 Ibn Al-Nafees 39 48 1 96987 3483 

5 Bahrain Specialist 43 50 2 83406 4449 

6 Gulf Dental Speciality 1 16 10 14228 27 

7 Al Amal 13 16 2 13617 12 

8 Al Hillal 18 22 1 41013 431 

9 Salmaniya Medical 625 1677 6 518287 46738 

10 Bahrain Defence 229 758 12 460496 24616 

Table 5.8 The data collected from the Ministry of Health in Bahrain.  
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By applying the above, models (5.22 for optimistic model and 5.24 for pessimistic model) 

and the dual bounded models shown in the previous chapter (model 4.4 for the upper 

bound and model 4.10 for the lower bound) the following results are obtained: 

 

 

DMU 

The best  

efficiency 

The worst 

efficiency 
Bounded DEA model 

1 1.0000 2.4202 [0.0227, 1.000] 

2 0.8057 1.5171 [0.0142, 0.806] 

3 0.7671 1.5349 [0.0144,0.767] 

4 1.0000 2.6192 [0.0245,1.000] 

5 1.0000 2.1380 [0.0200,1.000] 

6 1.0000 1.0000 [0.0094, 1.000] 

7 0.4212 1.0000 [0.0049,0.421] 

8 0.9226 2.2370 [0.0209,0.923] 

9 1.0000 1.0000 [0.0094,1.000] 

10 1.0000 1.4509 [0.0136,1.000] 

Anti-ideal DMU 0.00936 

Table 5.9 Pessimistic and optimistic efficiencies from DEA and bounded models 
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5.4.1 Stage #1: Interactive MOLP  

 

The output-oriented CCR dual model was run for the data in table (5.8) to determine the 

relative efficiency scores. As shown in Table 5.10, DMUs 2, 3, 7, and 8 (hospitals: Awali, 

Bahrain International, Al Amal, and Al Hillal respectively) were found to be inefficient 

related to all ten hospitals.  

 

DMU 1/θ θ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 

1 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.81 1.24 0.12 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.77 1.30 0.00 0.00 0.00 0.51 0.75 0.00 0.00 0.00 0.00 0.00 

4 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

6 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

7 0.42 2.37 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 

8 0.92 1.08 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 

9 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

10 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Table 5.10 DMU efficiency from CCR DEA analysis. (Inefficient DMUs bold). 

 

For Awali, which is targeted for improvement, the efficiency score is 81% and its 

composite points on the efficient frontier are a linear combination of 0.12 of American 

Mission hospital and 0.26 of Ibn Al-Nafees hospital. The DM has the choice to accept or 

reject the generated composite outputs. If he accepts the results, the DEA composite input 

and output values will be the most preferred solution (MPS) for Awali hospital. If the 

obtained inputs and outputs are rejected then the interactive process is started by measuring 

the range of the output targets from which the DM can choose. This step is achieved by 

constructing the trade-off (Table 5.11) using formulation 3.14, which shows that the range 

of the composite output for f1 is between 46758 and 35636 whereas for f2 it is between 

1196 and 1903. Hence the maximum feasible composite output vector 

is Tf ]1903,46758[ , which represents the ideal point of the composite outputs. 
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Max f1 Max f2 
f1/y             f2/y F

max
 

f1 f2 f1 f2 

186294.00 2528.00 132890.66 7091.78 1.00 2.81 2.81 

46758.02 1196.14 35646.20 1903.78 1.24 2.02 2.02 

125274.87 4498.87 103423.44 5516.76 1.46 1.41 1.46 

96987.00 3483.00 96987.00 3483.00 1.00 1.00 1.00 

101028.12 3628.12 83406.00 4449.00 1.21 1.00 1.21 

14228.00 27.00 2010.90 107.49 1.00 3.98 3.98 

32329.00 1161.00 25245.08 1346.70 2.37 112.23 112.23 

44452.37 1596.37 34949.62 1864.38 1.08 4.33 4.33 

581922.00 20898.00 518287.00 46738.00 1.12 1.00 1.12 

577433.69 18812.71 460496.00 24616.00 1.25 1.00 1.25 

Table 5.11 The trade-off table where the target DMU is shown bold. 

 

The resultant output of the DEA bounded model (4.4) for Awali hospital (DMU2) is 

 Tf 1196 ,467580  , where 467580

11
 ff .This indicates that the DEA composite unit 

is an extreme point on the efficient frontier and hence the weighting vector can be written 

as  Trw 0,1  and is related to the normal vector  TN 0,10  . 

 

Establishing the equivalent MOLP model allows the user to vary f1, by a small amount 

such that 0
11 ff  , e.g.  02.4675801.46758 1

0
1  ff , where the maximum objective 

values of the starting interactive process of    Tf 15.1196,01.46758, 00   can be 

determined by using model (4.7). The obtained values of the decision variables are 

 T0,0,0,0,0,0,26.0,0,0,12.00   and  T0,0,0,0,0,0,0,0,0,00  and the corresponding 

normal vector  TN 0014,.0031.00  was obtained from equation (2.27). Similar to the 

DEA decision variables, Awali hospital is a linear combination of 0.12 American Mission 

hospital and 0.26 Ibn Al-Nafees hospital.  
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Objectives Decision variables Normal vectors 

)( 0
1 f  )( 0

2 f  
0

1  
0

2  
0

3  
0

4  
0

5  .... 0
10  

0

1N  
0

2N  

4.7e4 1.2e3 0.12 0.00 0.00 0.26 0.00 0.00 0.00 31e-4 14e-4
 

Table 5.12 The initial starting parameters used in the next iterative step. 

 

The first interactive step was started by allocating the reference objective f1. The optimal 

indifference trade-off vector at f (λ
0
) for a unit change of f1 can be estimated by using 

equation (2.24) as  Tf 45.0,00.10  resulting in the initial indifference trade-off of 

   45.015.1196,00.101.4675815.1196,01.46758  . In case that the DM rejects this 

initial optimal indifference, which indicates that the initial target value is not the most 

preferred solution, a new set of indifference trade-offs may be provided by the DM, for 

example,    40.015.1196,00.101.4675815.1196,01.46758    with a marginal rate of 

substitution  TM 50.2,00.10  . It is worth noting that the trade-off of (1196.15+0.40) for f2 

does not exceed the maximum feasible value of 1903.78 obtained from the pay-off table. 

 

Indifference trade-offs Values 

Old trade-offs (46758.01, 1196.15)↔( 46758.01-1.00, 1196.15+0.45) 

New trade-offs (46758.01, 1196.15) ↔(46758.01-1.00, 1196.15+0.40) 

Table 5.13 The old and new trade-off values.  

 

The trade-off direction is determined as  Tf 43.0,019.00  . Hence, the DM prefers 

to improve f2 at the expense of f1 with maximum step of 16507~0
max , which is 

implemented to build the step size table of 10 incremental steps. For more accurate 

targeted objective, 1000 incremental steps could also be established as shown in Table 

5.14. 
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C10     C100     C1000     

α f1 f2 α f1 f2 α y1 y2 

0.0 46758.010 1196.150 0.40 46630.1801 1479.2020 0.420 46623.7886 1493.3546 

0.1 46726.053 1266.913 0.41 46626.9843 1486.2783 0.421 46623.4690 1494.0622 

0.2 46694.095 1337.676 0.42 46623.7886 1493.3546 0.422 46623.1494 1494.7699 

0.3 46662.138 1408.439 0.43 46620.5928 1500.4309 0.423 46622.8298 1495.4775 

0.4 46630.180 1479.202 0.44 46617.3971 1507.5072 0.424 46622.5103 1496.1851 

0.5 46598.223 1549.965 0.45 46614.2013 1514.5835 0.425 46622.1907 1496.8928 

0.6 46566.265 1620.728 0.46 46611.0056 1521.6598 0.426 46621.8711 1497.6004 

0.7 46534.308 1691.491 0.47 46607.8098 1528.7361 0.427 46621.5515 1498.3080 

0.8 46502.350 1762.254 0.48 46604.6141 1535.8124 0.428 46621.2320 1499.0156 

0.9 46470.393 1833.017 0.49 46601.4183 1542.8887 0.429 46620.9124 1499.7233 

1.0 46438.435 1903.780 0.50 46598.2226 1549.9650 0.430 46620.5928 1500.4309 

Table 5.14 Trade-off step size table for increments of 10, 100, and 1000. 

 

It is worth noting that while f1 decreases, f2 increases for each incremental step, and the 

maximum value of f2 should not exceed the maximum feasible value obtained from the 

pay-off table, which is 1903.78. If the DM manages to increase f2 up to 1500, i.e. increase 

it by 25%, this value can be allocated at 429.0~  as shown in Table 5.5, which 

corresponds to a decrease of f1 to 46621, i.e. an approximate decrease of 0.3%. 

 

By identifying the regulating parameters of the step size, the weighted vector can be 

updated using equation 3.14 as  Tw 034,00.11  . The obtained weight is used to determine 

the new decision variables corresponding to the new target set    Tf 1500,46621, 11  , 

and the related decision variables are found to be 

 T0,0,0,0,12.0,0,41.0,0,0,03.01  and  T0,0,0,0,0,0,0,0,0,00  , which corresponds to a 

new normal vector of  TN 19.0,42.01  . If the DM does not agree with the obtained 

objectives, further iterative steps would be undertaken. 
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5.4.2 Stage #2: Ranking DMUs by GAA 

 

For the purpose of understanding the improvement achieved by using MOLP-DEA 

optimistic bounded model, the initial data (i.e. 3 inputs and 2 outputs) for DMU2 were 

replaced by those data obtained from the developed model as shown in Table 5.15 below.  

 

 Inputs Outputs 

DMU Physicians Nurses Dentists Out-Patients In-Patients 

1 68 109 15 186294 2528 

2 18 24.60 2 46620.15 1497.49 

3 58 62 6 85939 3924 

4 39 48 1 96987 3483 

5 43 50 2 83406 4449 

6 1 16 10 14228 27 

7 13 16 2 13617 12 

8 18 22 1 41013 431 

9 625 1677 6 518287 46738 

10 229 758 12 460496 24616 

Table 5.15 The replaced data for DMU2  

 

The optimistic and pessimistic bounded models were then applied to measure the best and 

the worst efficiency of DMUs. Table 5.16 below shows the effects of DEA on improving 

the performance of DMU2 before and after changing the data. 
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 Bounded Model GAA Ranking 

DMU θpessimistic θoptimistic After before 

1 0.02 1.00 2 2 

2 0.01 1.00 5 6 

3 0.01 0.77 7 7 

4 0.02 1.00 1 1 

5 0.02 1.00 3 3 

6 0.01 1.00 8 9 

7 0.01 0.42 10 10 

8 0.02 0.92 4 4 

9 0.01 1.00 9 8 

10 0.01 1.00 6 5 

Table 5.16 The efficiency improvement achieved by using optimistic bounded 

MOLP_DEA resultant data for DMU2. 

 

Table 5.16 shows that the ranking of the DMU2’s efficiency is improved from the 6th 5
th

 

place. Note that some DMUs are ranked worse after the data for DMU2 are changed. For 

instance, there is a slight reduction in the ranking of DMU9 and DMU10. 

 

It is worth noting that the analysis of improving the observable DMU is achieved by using 

what was referred to earlier as one-directional improvement. For instance, improvement is 

done towards the optimistic (upper bound frontier) direction. The pessimistic (lower bound 

frontier) direction of improvement will form the basis of a future study. 
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5.5 Summary 

 

This chapter reviewed a wide range of ranking concepts which can be divided into four 

groups. The first group is based on a cross-efficient matrix in which DMUs are evaluated 

through both self and peer pressure. The second group is based on a super-efficiency 

approach where an efficient DMU receives a score greater than unity. The third group is 

based on benchmarking through which a DMU is highly ranked if it is chosen as a useful 

target against other DMUs. The fourth group incorporates multivariate statistical 

techniques into DEA including Canonical Correlation and Discriminant Analysis, which 

are used to calculate common weights. 

 

The Geometric Average Approach (GAA) was proposed for ranking DMUs (Wang et al., 

2007). The essence of this method is to find the optimistic frontier and the pessimistic 

frontier and then apply the geometric average formula. However, DEA/GAA does not 

allow the DM to interfere in the process. It could be strengthened by incorporating it with 

MOLP. Doing so would allow the DM to choose alternative data variables (resources or 

services), which could be done without changing the ranking of the observable DMUs. 

 

Compared with the previous approaches in the literature, the developed framework consists 

of two stages: the interactive stage in which a DMU is studied deeply to gain insights from 

optimistic and pessimistic points of view, followed by a ranking stage based on taking the 

geometric average of these different points of view to provide a more realistic overall 

ranking. 
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Chapter 6 

 

Conclusions, contributions to knowledge and 

future research. 

 

6.1 Introduction 

 

The integration of assessing past performance and planning future targets involving DM 

and expert preferences is of increasing interest to support both management and planning 

control (Cooper, 2004) and this tenet provided the motivation of this work. This research 

focuses on how DM and experts preferences could be incorporated without prior 

knowledge. The aim of the research was to incorporate value judgements which can be 

defined as “logical structures, incorporated within an efficiency assessment study, 

reflecting the DMs’ preferences in the process of assessing efficiency” (Allen et al, 1997). 

Extended DEA, which involves value judgement, was developed to measure individual 

DMU efficiency. MOLP was developed to solve problems having multiple conflicting 

objectives. This study set out to explore the integration of some extended DEA and MOLP 

models and identified their potential application through two real case studies in the 

medical and education sectors. Ranking is an essential tool that can be used to aid DMs to 

identify the level of improvement of each DMU based on their decisions and this thesis has 

also presented new frameworks of comprehensive performance assessment by integrating 

extended DEA and MOLP with ranking and illustrated their effectiveness through the two 

real case studies. 
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6.2 Conclusions 

 

Incorporating value judgements can be achieved in two different ways, by weight 

restriction techniques or through an interactive procedure constructed by integrating DEA 

and MOLP models. In weight restriction techniques weights are supplied a priori by the 

DM, which are subjective and often difficult to identify. Integrating DEA models and 

MOLP models overcomes this problem and makes the analyses more practical. 

Furthermore, integrating DEA and MOLP models has several other advantages. (1) it 

enables the incorporation of DM’s preferences through an interactive procedure without 

prior knowledge, (2) it aids the DM in reaching the most preferred solution (MPS) by 

incorporating the DM’s influence in each iterative step, and (3) it provides alternative 

explicit and achievable targets which allows the DM to find the most suitable decision and 

resource allocation through a systematic procedure.  

 

Integrating extended DEA and MOLP models enabled the construction of frameworks that 

can be employed as a comprehensive tool for performance assessment to provide valuable 

insights towards target setting, performance benchmarking and resource allocation. These 

frameworks are based on establishing the equivalent MOLP models to the extended DEA 

models employing the trade-off approach of Podinovski (2004) and the bounded model of 

Wang and Yang (2007). This paved the way to constructing an interactive trade-off 

analysis procedure using a local search approach and gradient projection method in which 

the DM’s preferences are represented by the marginal rate of substitution to elicit the most 

preferred solutions on the efficient frontier. This approach enables DMs explicitly to set 

alternative targets and test them to see if they are achievable according to available 

resources before implementing the decisions. The most preferred solution (MPS) is 

iteratively identified on the efficient frontier in which the DM’s utility function is 

maximised. The main advantage of the gradient projection method, among MOLP 

methods, is that the termination criterion is well defined and is satisfied whenever the 

normal vector coincides with the utility gradient of the targeted DMU.  

 

The applicability of the bounded model was enhanced by incorporating a ranking method 

based on the geometric average approach in which DMU’s practice is measured from two 

points of view (best and worst) to improve overall efficiency by identifying the level of 
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improvement. This yields the better understanding of DMU’s practice and consequently is 

likely to result in better improvement.  

 

As set out in Chapter 1, the main purpose of the study was to construct frameworks to 

allow the incorporation of decision maker and expert preferences in some extended DEA 

models, and to study the impact of the developed frameworks on improving performance 

assessment using real data. More specifically, the objectives of the study were to: 

 

 To investigate the effectiveness and usefulness of DEA and its extensions in 

incorporating both DM and expert preferences when focussing on performance 

assessment, benchmarking and target setting. 

 To investigate how any equivalence between the extended DEA (i.e. trade-off 

approach and bounded model) and the MOLP models can be employed to establish 

an interactive framework for improving performance assessment. 

 To investigate how ranking can be incorporated into performance assessment and 

what the affect on decision making. 

 

These objectives were pursued through the research presented in Chapters 2 to 5.  

 

Chapter 2 is divided into three main reviews: basic DEA and its applications to real life 

problems, extended DEA, and interactive MOLP methods. Basic DEA was reviewed to 

provide essential background knowledge to initiate this study and understand the 

foundations and mathematical formulation of Farrell (1957) and the linear optimization of 

the multiple inputs/outputs problem of Charnes et al (1978) for constant/variable return to 

scale. Extended DEA was reviewed particularly for applications to real life problems. The 

inclusion of value judgements followed the two streams already mentioned: weight 

restrictions or deriving an equivalent MOLP model to enable incorporating the DMs’ 

preferences through an interactive procedure. The review of weight restrictions included: 

direct restrictions (e.g. Thomas et al, 1986; Dyson et al, 1998; Banker et al, 1989, and 

Thanassoulis et al, 1995); adjusting the observed input-output levels to capture value 

judgements (e.g. Charnes et al., 1990; Kornbluth, 1991; and Cook et al, 1992) and 

restricting the virtual inputs and outputs (e.g. Wong and Beasley, 1989; Beasley, 1990). 

The review of equivalent MOLP-DEA models began with considering the similarity 

between DEA and MCDM, specifically MOLP (e.g. Joro et al, 1998; Agrell and Tind, 
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2001; Stewart, 1994 and 1996). Further reviews included the interactive model through 

which the DM could allocate a set of inputs levels as resources and choose the most 

preferred set of outputs levels from a set of alternative points located on the efficient 

frontier (Golany, 1988), interactive multiple goal programming where preference 

information is provided interactively by the DM (Post and Sponk, 1999) achieved by 

adjusting the upper and lower feasible boundaries of both inputs and outputs levels, and 

more recently, the super-ideal point model showing that the dual formulation of the DEA 

output-oriented and MOLP are identical (Yang et al, 2009).  

 

The review also investigated the application of ranking in DEA. Ranking is vital in 

performance assessment where the DM is often interested in ranking to refine the 

evaluation of DMU’s practice. Furthermore, ranking helps the DM to identify the level of 

improvement on a targeted DMU after the analysis has taken place. Although there are a 

number of ranking methods presented in the literature (Adler et al, 2002), in this research a 

ranking procedure that employing a geometric average (Wang and Yang, 2007) was 

considered most appropriate because it includes both optimistic and pessimistic views.  

 

Finally, MOLP interactive methods were reviewed to identify a suitable method that could 

be realistically implemented. Among MOLP interactive methods, gradient projection 

method was preferred because the criterion for termination of the procedure is well defined 

(i.e. when the projection of the utility gradient becomes zero). The method employs the 

projection of the gradient onto the tangent plane of the efficient frontier to identify the 

trade-off direction (Li and Yang, 1996; Yang, 1999; and Li et al., 1999).  

 

Chapter 3 was mainly about establishing a framework to allow the incorporation of DM 

and expert preferences without prior knowledge. This was achieved by providing a 

theoretical derivation of the equivalent MOLP/extended DEA model based on the trade-off 

approach proposed by Podinoviski (2004) and illustrated through a real case study in the 

educational sector (the University of Bahrain). Several statistical tests were applied to 

select the number of DEA variables including: correlation, multivariate and cluster 

analyses with constant and variable returns to scale being considered. The interactive 

method used to calculate the most preferred solution was gradient projection method 

identified in Chapter 2.   
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In any organisation, it is essential to consider sub-manager (e.g. bank branch managers, 

heads of departments of colleges or hospitals, etc) preferences. This will provide more 

realistic performance assessment leading to a better way to improve each DMU practice 

and hence better productivity. The proposed framework provides rich insights into 

performance assessment with realistic MPS targets incorporating both executive and sub-

manager preferences. Sub-manager preferences are integrated within the body of the 

extended DEA programme whilst the executive preferences are incorporated through the 

interactive procedure.  

 

Each nation’s future wealth and competitive position in a globalized world depends 

increasingly on its ability to create quality knowledge. Higher education is an essential 

resource for the creation and application of knowledge. Hence, decision makers are 

increasingly concerned about assessing the performance of higher education to improve its 

productivity. The developed framework provides a comprehensive analysis for quality 

control and future planning in higher education as demonstrated through the first of the two 

case studies in the University of Bahrain (UOB).  

 

Similarly, the health of a nation also contributes to the productivity of its people and 

consequently health services need be efficient. To be efficient, clinical and non-clinical 

managers must perform an intensive performance analysis by incorporating both clinical 

managers, who manage physicians’ decision making (i.e. patient management), and non-

clinical managers, who make the best use of all hospital assets by managing operations (i.e. 

practice management). Therefore, patient and practice require extraordinary amount of 

coordination and commitment for performance improvement. The proposed framework 

enables managers to better control and manage expenditures through a realistic and a well 

established explicit interactive procedure by allowing them to test their targets and identify 

whether they are achievable according to their available resources as demonstrated in the 

second case study in the Hospitals of Bahrain.  

 

These two case studies were extensively used in Chapters 3, 4 and 5 to test and 

demonstrate the applicability of the methods and procedures employed in this thesis. 

 

In Chapter 4 the bounded DEA model of Wang and Yang (2007) was used as the basis of 

an interactive framework to measure the targeted DMUs’ practice from two points of view: 
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best efficiency (between 0 and 1) and worst efficiency (greater than 1).  Wang and Yang 

(2007) presented the anti-ideal DMU (ADMU) defined as the DMU that consumes the 

most inputs to produce the least output. The framework developed in this chapter enhanced 

this bounded model by considering the DMs’ preferences that can provide more realistic 

performance assessment results. The interactive steps were tested by applying the gradient 

projection method described above and in greater detail in Chapter 2. The methodology of 

the interactive MOLP method is to elicit DM’s preferences to search for the MPS along the 

efficient frontier for the targeted DMU. The MPS can provide better measures for 

efficiency score than incorporating DM’s preferences and support target setting and 

resource allocation. The proposed framework was applied to the real case studies 

previously described.  

 

The process of integrating ranking within efficiency analysis was presented in chapter 5. 

Although there are several well established method of ranking (Adler, 2002), the proposed 

ranking technique was considered to be more systematic and realistic. For instance, the 

developed framework not only incorporates the DM’s preferences but also allows the DM 

to identify the level of improvement that may take place according to his judgements. As 

such the developed framework helps the DM to choose the best decision that could be 

achieved based on evaluable resources. The method (Wang and Yang, 2007) was then 

implemented to order the DMUs according to this geometric average score of the best and 

worst efficiency. 
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6.3 Summary of contributions to knowledge 

 

In this thesis three new interactive frameworks were developed to comprehensively allow a 

DM to analyse DMUs practice. These frameworks are based on the methodology of 

integrating extended DEA models and MOLP models. The first framework was developed 

by integrating extended DEA model trade-off approach of Podinoviski (2004) and MOLP. 

The second framework was generated by integrating the extended DEA bounded model of 

Wang and Yang (2007) and the MOLP model. The third framework was established by 

incorporating a ranking procedure based on the geometric average of Wang and Yang 

(2007) from which an interactive bounded model framework was developed.  

 

The main contributions of this study are therefore: 

 

 The development of a framework that incorporates DM and expert preferences 

without prior knowledge about inputs or outputs in a systematic iterative way to 

produce more realistic performance assessment results, see Figure 6.1. 

 

 An enhanced bounded model incorporating DM’s preferences to measure the whole 

efficiency which yields more realistic picture about the targeted DMU practice. The 

developed model improves the targeted DMU from both an optimistic and/or a 

pessimistic view, see Figure 6.2a (optimistic), and Figure 6.2b (pessimistic). 

 

 Employing the geometric average to rank DMUs based on measuring overall 

efficiency in an interactive manner to enable the DM to determine the level of 

improvement after the analysis has taken place in each iterative step, see Figure 

6.3a (interactive stage), Figure 6.3b (ranking stage) 
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Figure 6.1: Flow chart of the MOLP trade-off approach 
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Figure 6.2a: Flow chart describing the optimistic interactive bounded model  
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Pessimistic interactive view: 

Figure 6.2b: Flow chart describing the pessimistic interactive bounded model 
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Figure 6.3: Flow chart of interactive bounded model with ranking  
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6.4 Future research 

 

The DEA equivalent MOLP model explored in this work provides opportunities for 

considerable future research.  

 

This research considered integrating MOLP methods and extended DEA with an output-

oriented formulation based on a maximization approach. Further research could consider 

integrating extended DEA with an input-oriented formulation based on a minimization 

approach.  

 

The bounded model could be further improved by considering preferences under 

uncertainty, where there are inconsistent judgements or imprecise data. Further, as the 

bounded model application is based on interval analysis, it could be enhanced by the use of 

fuzzy set theory. Fuzzy set theory deals with uncertain input-output environments caused 

by imprecise data such as missing judgement and forecasting data or ordinal preference 

information. 

 

This thesis paves the way for investigating the incorporation of MOLP in other extended 

DEA models such as the Malmquist productivity index. The Malmquist productivity index 

was developed for forecasting based on previous knowledge and could be enhanced by 

aggregating DM preferences to improve the control of resources.  

 

Finally, the developed frameworks were implemented on relatively small data sets (i.e. 

small number of DMUs) and it would be worth implementing the proposed frameworks 

using large data sets to test its stability and consistency. 
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APPENDIX I: 

University of Bahrain raw data. 
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    APPENDIX II:  

  Private hospitals raw data 
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APPENDIX III: Selection of health variables 

 

 
Years         

2007  1 2 3 4 5 6 

    Inputs Outputs 

DMU Hospitals         

    Beds physicians Nurses Dentists 
Out-patients 

treated 
In patients 
admitted 

1 American Mission Hospital 40 68 109 15 186294 2528 

2 Awali hospital  28 18 43 2 37671 942 

3 Bahrain International Hospital 57 58 62 6 85939 3924 

4 Ibn Al-Nafees Hospital 18 39 48 1 96987 3483 

5 Bahrain Specialist Hospital  56 43 50 2 83406 4449 

6 Gulf Dental Speciality hospital 10 1 16 10 14228 27 

7 Al Amal Hospital 20 13 16 2 13617 12 

8 Al Hillal hospital 45 18 22 1 41013 431 

9 Salmaniya Medical Hospital  874 625 1677 6 518287 46738 

10 Bahrain Defence Hospital 339 229 758 12 460496 24616 
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 4i,2o,0 3i,2o,1i 3i,2o,2i 3i,2o,3i 3i,2o,4i 4i,1o,1o 4i,1o,2o 

 1.000 1.000 0.864 1.000 1.000 0.406 1.000 

 0.806 0.806 0.434 0.802 0.595 0.495 0.791 

 0.767 0.767 0.767 0.686 0.767 0.748 0.686 

 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 1.000 1.000 1.000 1.000 1.000 1.000 0.826 

 1.000 1.000 0.440 1.000 1.000 1.000 1.000 

 0.421 0.421 0.421 0.392 0.421 0.009 0.421 

 0.923 0.923 0.923 0.901 0.923 0.231 0.923 

 1.000 1.000 1.000 1.000 0.707 0.807 0.332 

 1.000 1.000 0.545 1.000 1.000 1.000 0.785 

R_Variance 3.29E+05 3.29E+05 2.92E+05 3.69E+04 3.29E+05 2.32E+08 3.40E+10 

%R_Variance 100.000% 100.000% 88.788% 11.219% 99.992% 0.677% 99.323% 
Efficient 
DMUs 6 6 3 6 5 4 3 
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 2i,2o,12i 2i,2o,13i 2i,2o,14i 2i,2o,23i 2i,2o,24i 2i,2o,34i 1i,2o,234i 1i,2o,134i 1i,2o,124i 1i,2o,123i 

 0.846 1.000 0.985 0.864 0.864 1.000 0.864 0.457 0.846 0.128 

 0.434 0.806 0.617 0.250 0.434 0.600 0.250 0.548 0.434 0.194 

 0.767 0.666 0.767 0.356 0.767 0.686 0.356 0.641 0.767 0.151 

 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.875 1.000 1.000 

 1.000 1.000 1.000 0.582 1.000 0.992 0.411 0.963 1.000 0.447 

 0.440 1.000 1.000 0.264 0.440 1.000 0.264 1.000 0.440 0.015 

 0.421 0.395 0.421 0.126 0.421 0.269 0.126 0.074 0.421 0.070 

 0.923 0.902 0.923 0.423 0.923 0.452 0.169 0.323 0.923 0.423 

 1.000 1.000 0.703 1.000 0.368 0.705 0.276 0.696 0.313 1.000 

 0.545 1.000 1.000 0.536 0.438 1.000 0.375 1.000 0.365 0.411 

R_Variance 291770.8 291745.211 25.5666667 25.5666667 25.5666667 36843.07 0 36843.07 291745.2 25.5666667 

%R_Variance 88.788% 88.781% 0.008% 0.008% 0.008% 11.212% 0.000% 11.212% 88.781% 0.008% 
Efficient 
DMUs 3 6 4 1 2 4 1 2 2 2 

           

Average   = 0.738 0.877 0.842 0.540 0.665 0.770 0.409 0.658 0.651 0.384 

∆Average = 0.154 0.015 0.050 0.352 0.226 0.121 0.482 0.234 0.241 0.508 
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 t-Test: Two-Sample Assuming Equal Variances  

     Efficiency Score: 

  
Variable 

1 
Variable 

2   CRS VRS 

Mean 0.891656 0.988609   1.000 1.000 

Variance 0.035071 0.001298   0.806 1.000 

Observations 10 10   0.767 0.886 

Pooled Variance 0.018184    1.000 1.000 
Hypothesized Mean 
Difference 0    1.000 1.000 

df 18    1.000 1.000 

t Stat 
-

1.607682    0.421 1.000 

P(T<=t) one-tail 0.062652    0.923 1.000 

t Critical one-tail 1.734064    1.000 1.000 

P(T<=t) two-tail 0.125304    1.000 1.000 

t Critical two-tail 2.100922       

    

t-Test: Paired Two Sample for Means 

    

  CRS VRS  

Mean 0.891656 0.988609  

Variance 0.035071 0.001298  

Observations 10 10  

Pearson Correlation 0.233755   

Hypothesized Mean Difference 0   

df 9   

t Stat -1.68228   

P(T<=t) one-tail 0.063404   

t Critical one-tail 1.833113   

P(T<=t) two-tail 0.126808   

t Critical two-tail 2.262157    
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F-Test Two-Sample for Variances 

    

  CRS VRS  

Mean 0.891656 0.988609  

Variance 0.035071 0.001298  

Observations 10 10  

df 9 9  

F 27.02643   

P(F<=f) one-tail 1.83E-05   

F Critical one-tail 3.178893    

 

t-Test: Two-Sample Assuming Unequal Variances 

    

  Variable 1 Variable 2  

Mean 0.891656 0.988609  

Variance 0.035071 0.001298  

Observations 10 10  

Hypothesized Mean Difference 0   

df 10   

t Stat -1.60768   

P(T<=t) one-tail 0.069492   

t Critical one-tail 1.812461   

P(T<=t) two-tail 0.138984   

t Critical two-tail 2.228139    

    

 
       

  Input_1 Input_2 Input_3 Input_4 Output_1 Output_2 

Input_1 1      

Input_2 0.996 1     

Input_3 0.996 0.993 1    

Input_4 0.173 0.199 0.230 1   

Output_1 0.889 0.895 0.920 0.444 1  

Output_2 0.988 0.985 0.994 0.224 0.939 1 
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 Omit 3     

      

  
Column 

1 
Column 

2 
Column 

4 
Column 

5 
Column 

6 

Column 1 1     

Column 2 0.996 1    

Column 4 0.173 0.199 1   

Column 5 0.889 0.895 0.444 1  

Column 6 0.988 0.985 0.224 0.939 1 

      

 

 Omit 6     

      

  
Column 

1 
Column 

2 
Column 

3 
Column 

4 
Column 

5 

Column 1 1     

Column 2 0.993 1    

Column 3 0.199 0.230 1   

Column 4 0.895 0.920 0.444 1  

Column 5 0.985 0.994 0.224 0.939 1 

      

 
 Omit 1,3     

      

  
Column 

2 
Column 

4 
Column 

5 
Column 

6  

Column 1      

Column 2 1     

Column 4 0.199 1    

Column 5 0.895 0.444 1   

Column 6 0.985 0.224 0.939 1  
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APPENDIX IV:  MOLP/Trade-offs approach  

(Law department) 

 
 

Primal formulation 
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Dual formulation 
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Trade-offs approach Excel sheet codes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMU 1/θ θ λ1 λ2 λ3 λ4 λ5 λ6 λ7 

1 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 1.000 1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

3 1.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

4 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

5 0.990 1.010 0.108 0.000 0.000 0.374 0.000 0.000 0.000 

6 0.952 1.051 0.000 0.414 0.000 0.000 0.000 0.000 0.000 

7 0.780 1.283 0.017 0.123 0.232 0.000 0.000 0.000 0.000 

 

 

 

 max(f1)    max(f2)   

f1 f2 f1 f2 

496.00 99.00 496.00 99.00 

632.00 20.00 99.72 56.49 

489.00 16.00 144.88 82.07 

359.00 75.00 191.92 108.71 

208.24 9.57 143.00 81.00 

261.80 8.28 122.73 40.33 

199.88 7.89 50.80 28.78 

 

 

DMU X1 X2 X3 Y1 Y2 

1 150 3517 50496 496 99 

2 53 5033 51801 632 20 

3 77 2002 108595 489 16 

4 102 1401 103846 359 75 

5 76 902 44261 143 81 

6 47 2140 21458 234 23 

7 27 1145 32458 147 15 
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Sub DEA_VJ() 

' 

' DEA_VJ Macro 

' Macro recorded 22/10/2008 by ASHOOR-PC 

' 

 

' 

 Dim i, j, k, l, n As Integer 

l = 2 

Range("J2:J11").ClearContents 

Range("L31:AF43").ClearContents 

For i = 1 To Cells(25, 3) 

Range("J2: J11") = 1: Range("M7") = 1 ': Stop 

Range("R2:R3") = 1 

 

    'Inputs loop 

    For j = 0 To Cells(26, 3) - 1 

    Range("N" & 9 + j) = Cells(l, 2 + j) 

    Next 

     

    'Outputs loop 

    For k = 0 To Cells(27, 3) - 1 

    Range("Q" & 13 + k) = Cells(l, 6 + k) 

    Next 

    SolverSolve (True) 

    l = l + 1 

    For n = 1 To Cells(25, 3) 

    Cells(30 + i, 12 + n) = Range("J" & 1 + n) 

    'Cells(20 + i, 19 + n) = Range("R" & 1 + n) 

    Next 

    Cells(30 + i, 12) = Cells(7, 13) 

     

Next 

End Sub 
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Sub Payoff_VJ() 

' 

' Payoff_VJ Macro 

' Macro recorded 07/08/2008 by Hala 

' 

 

' 

Dim i, j, l, m, n, k As Integer 

l = 2 

m = 0 

k = 0 

Range("A27:AO40").ClearContents 

'Range("P24:S43").ClearContents 

 

' Output sumproduct 

For m = 0 To Cells(14, 15) - 1 

Range("L2:L8") = 1 ': Stop 

Range("R3") = Range("N" & m + 2).Formula: ' Stop 

For i = 0 To Cells(12, 15) - 1 

Range("L2:L8") = 1 ': Stop 

'For St. right handside, Input # 

    For j = 0 To Cells(13, 15) - 1 

    Range("S" & 5 + j) = Cells(l, 2 + j) 

    Next 

'Stop 

    SolverSolve (True) 

' 

'Stop 

'Writing results in tables 

l = l + 1 

If m = 0 Then 

For n = 0 To Cells(14, 15) - 1 

Cells(27 + k, 1 + n) = Cells(2 + n, 14) 

Next 

End If 

If m = 1 Then 

For n = 0 To Cells(14, 15) - 1 

Cells(27 + k, 6 + n) = Cells(2 + n, 14) 

Next 

End If 

If m = 2 Then 

For n = 0 To Cells(14, 15) - 1 

Cells(27 + k, 11 + n) = Cells(2 + n, 14) 

Next 

End If 

If m = 3 Then 

For n = 0 To Cells(14, 15) - 1 

Cells(27 + k, 16 + n) = Cells(2 + n, 14) 

Next 

End If 
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If m = 4 Then 

For n = 0 To Cells(14, 15) - 1 

Cells(27 + k, 21 + n) = Cells(2 + n, 14) 

Next 

End If 

k = k + 1 

'Stop 

Next 

k = 0 

l = 2 

Next 

End Sub 

 

 

Sub DEA_MOLP_VJ() 

Dim i, j, k, l, n As Integer 

'Dim temp As Range 

l = 2 

Range("N29:X38").ClearContents 

Range("L2: L8") = 1 

Range("Q3") = 1 

Range("T2:T3") = 1 

For i = 1 To Cells(25, 3) 

Range("L2: L8") = 1 

'Range("Q3") = 1 

Range("T2:T3") = 1 

 

    'Inputs loop 

    For j = 0 To Cells(26, 3) - 1 

    Range("R" & 5 + j) = Cells(l, 2 + j) 

    Next 

     

    'Outputs loop 

    For k = 0 To Cells(27, 3) - 1 

    Range("Y" & 2 + k) = Cells(l, 6 + k) 

    Range("W" & 2 + k) = Range("Y" & 2 + k) * Range("X" & 1 + i) 

    Next 

     

    'Stop 

    'Start optimization 

    SolverSolve (True) 

    l = l + 1 

    Range("N" & 28 + i) = Cells(3, 17) 

    For n = 1 To Cells(25, 3) 

        Cells(28 + i, 14 + n) = Range("L" & 1 + n) 

    Next 

    'Stop 

    Next 

 

End Sub 
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APPENDIX V: Bounded model formulation  
 

Bahrain Private Hospitals (Bahrain International Hospital) 

 

 

 

 

DMU Physicians Nurses Dentists 

Out-
patients 
treated 

In 
patients 
admitted Max(X) Min(Y) V U 

1 68 109 15 186294 2528 625 13617 1E-09 6.87E-07 

2 18 43 2 37671 942 1677 12 1E-09 1E-09 

3 58 62 6 85939 3924 15 0 0.066667 1E-09 

4 39 48 1 96987 3483 0   1E-09   

5 43 50 2 83406 4449     

6 1 16 10 14228 27     

7 13 16 2 13617 12     

8 18 22 1 41013 431     

9 625 1677 6 518287 46738     

10 229 758 12 460496 24616     
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Primal formulation (Optimistic) 
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Primal formulation (Optimistic) : Bahrain International Hospital
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Dual formulation (Optimistic) 
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Dual formulation (Optimistic): Bahrain International Hospital 
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Primal formulation (Pessimistic) 
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Primal formulation (Pessimistic): Bahrain International Hospital 
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Dual formulation (Pessimistic): Bahrain International Hospital 
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Sub Anti_DMU() 

' 

' Anti_DMU Macro 

' Macro recorded 28/02/2008 by ASHOOR 

' 

 

' 

    ActiveWindow.SmallScroll ToRight:=-3 

    SolverOk SetCell:="$N$8", MaxMinVal:=1, ValueOf:="0", ByChange:= _ 

        "$K$2:$K$5,$L$2:$L$4" 

    SolverSolve (True) 

End Sub 

 

DMU Physicians Nurses Dentists 

Out-
patients 
treated 

In 
patients 
admitted Max(X) Min(Y) V U 

1 68 109 15 186294 2528 625 13617 1E-09 6.87E-07 

2 18 43 2 37671 942 1677 12 1E-09 1E-09 

3 58 62 6 85939 3924 15 0 0.066667 1E-09 

4 39 48 1 96987 3483 0   1E-09   

5 43 50 2 83406 4449     

6 1 16 10 14228 27     

7 13 16 2 13617 12     

8 18 22 1 41013 431     

9 625 1677 6 518287 46738     

10 229 758 12 460496 24616     
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Sub Payoff_table_Pessimistic() 

' 

Dim i, j, l, m, n, k As Integer 

'i = DMU 

'j = Input 

l = 2 

m = 0  'Output 

k = 0 

Range("A27:Y36").ClearContents 

'Range("P24:S43").ClearContents 

 

' Output sumproduct 

For m = 0 To Cells(19, 10) - 1 

Range("L2:L11") = 1: Range("M2:M11") = 1 

Range("N15") = _ 

Range("R" & m + 2).Formula ': Stop 

For i = 0 To Cells(17, 10) - 1 

Range("L2:L11") = 1: Range("M2:M11") = 1 

'For St. lift and right handside, Input # 

    For j = 0 To Cells(18, 10) - 1 

    'Range("M" & j + 17) = _ 

    'Range("Q" & j + 2).Formula 

    Range("O" & 17 + j) = Cells(l, 2 + j) 

    Next 

'Stop 

    SolverSolve (True) 

'Stop 

l = l + 1 

If m = 0 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 1 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 1 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 6 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 2 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 11 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 3 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 16 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 4 Then 

For n = 0 To Cells(19, 10) - 1 
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Cells(27 + k, 21 + n) = Cells(2 + n, 18) 

Next 

End If 

k = k + 1 

'Stop 

Next 

k = 0 

l = 2 

Next 

End Sub 

 

Sub Optimestic_Bounded() 

' 

' Optimistic Macro 

' Macro recorded 06/03/2008 by ASHOOR 

' 

 

' 

Dim i, j, k, l, n, m As Integer 

l = 2 

Range("m24:m33").ClearContents 

For i = 1 To Cells(24, 3) 

Range("L2: L11") = 1: Range("N2:N11") = 1 

Range("Z2") = 1 

Range("AA2:AA4") = 1: Range("AB2:AB3") = 1 

 

    'Inputs loop 

    For j = 0 To Cells(25, 3) - 1 

    Range("W" & 9 + j) = 1 * Cells(l, j + 2) 

    Next 

     

    'Outputs loop 

    For k = 0 To Cells(26, 3) - 1 

    Range("W" & 13 + k) = 1 * Cells(l, k + 6) 

    Next 

    

'Stop 

    SolverSolve (True) 

'Stop 

    l = l + 1 

'printing the results 

    Cells(23 + i, 13) = 1 / Cells(7, 19) 

Next 

l = 2 

 

 

End Sub 
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Sub MOLP_Bounded() 

 

' 

Dim i, j, k, l, n, r As Integer 

l = 2 

Range("N29:O33").ClearContents 

Range("Q14:Q23").ClearContents 

For i = 1 To Cells(11, 22) 

Range("L2: L11") = 1: Range("M2: M11") = 1 

Range("T2") = 1: Range("U2: U6") = 1 

Range("V2: V5") = 1 

 

'Inputs loop lifthand and righthand sides 

'Range("P" & j + 13) = Range("M" & j + 2).Formula 

    For j = 0 To Cells(12, 22) - 1 

    Range("Z" & j + 4) = Cells(l, 2 + j) 

     

    Next 

     

    'Outputs loop lifthand and righthand sides 

    For k = 0 To Cells(13, 22) - 1 

    Range("M" & 14 + k) = Cells(l, 6 + k) 

    Range("N" & k + 14) = Range("L" & i + 13) * _ 

    Range("M" & k + 14) 

    Next 

     

'Stop 

    'Start optimization 

    SolverSolve (True) 

   l = l + 1 

    Range("Q" & 13 + i) = Range("T2") 

    Next 

l = 2 

End Sub 
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Sub Optimestic_Bounded() 

' 

' Optimistic Macro 

' Macro recorded 06/03/2008 by ASHOOR 

' 

 

' 

Dim i, j, k, l, n, m As Integer 

l = 2 

Range("m24:m33").ClearContents 

For i = 1 To Cells(24, 3) 

Range("L2: L11") = 1: Range("N2:N11") = 1 

Range("Z2") = 1 

Range("AA2:AA4") = 1: Range("AB2:AB3") = 1 

 

    'Inputs loop 

    For j = 0 To Cells(25, 3) - 1 

    Range("W" & 9 + j) = 1 * Cells(l, j + 2) 

    Next 

     

    'Outputs loop 

    For k = 0 To Cells(26, 3) - 1 

    Range("W" & 13 + k) = 1 * Cells(l, k + 6) 

    Next 

    

'Stop 

    SolverSolve (True) 

'Stop 

    l = l + 1 

'printing the results 

    Cells(23 + i, 13) = 1 / Cells(7, 19) 

Next 

l = 2 

 

 

End Sub 
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Payoff_table Macro 

' Macro recorded 11/09/2008 by ASHOOR-PC 

' 

 

' 

Dim i, j, l, m, n, k As Integer 

'i = DMU 

'j = Input 

l = 2 

m = 0  'Output 

k = 0 

Range("A27:Y36").ClearContents 

'Range("P24:S43").ClearContents 

 

' Output sumproduct 

For m = 0 To Cells(19, 10) - 1 

Range("L2:L11") = 1: Range("M2:M11") = 1 

Range("N15") = _ 

Range("R" & m + 2).Formula: 'Stop 

For i = 0 To Cells(17, 10) - 1 

Range("L2:L11") = 1: Range("M2:M11") = 1 

'For St. lift and right handside, Input # 

    For j = 0 To Cells(18, 10) - 1 

    'Range("M" & j + 17) = _ 

    'Range("Q" & j + 2).Formula 

    Range("O" & 17 + j) = Cells(l, 2 + j) 

    Next 

'Stop 

    SolverSolve (True) 

'Stop 

l = l + 1 

If m = 0 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 1 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 1 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 6 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 2 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 11 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 3 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 16 + n) = Cells(2 + n, 18) 

Next 
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End If 

If m = 4 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 21 + n) = Cells(2 + n, 18) 

Next 

End If 

k = k + 1 

'Stop 

Next 

k = 0 

l = 2 

Next 

End Sub 

 

 

Sub Pessimistic_Bounded() 

' 

' Pessimistic Macro 

' Macro recorded 06/03/2008 by ASHOOR 

' 

 

' 

Dim i, j, k, l, n, m As Integer 

l = 2 

Range("N24:N33").ClearContents 

For i = 1 To Cells(24, 3) 

Range("L2: L11") = 1: Range("N2:N11") = 1 

Range("Z2") = 1 

Range("AA2:AA4") = 1: Range("AB2:AB3") = 1 

 

    'Inputs loop 

    For j = 0 To Cells(25, 3) - 1 

    Range("W" & 9 + j) = 1 * Cells(l, j + 2) 

    Next 

     

    'Outputs loop 

    For k = 0 To Cells(26, 3) - 1 

    Range("W" & 13 + k) = 1 * Cells(l, k + 6) 

    Next 

    

'Stop 

    'SolverOK MaxMinVal:=2 

    SolverSolve (True) 

'Stop 

    l = l + 1 

    Cells(23 + i, 14) = 1 / Cells(7, 19) 

Next 

l = 2 
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End Sub 

 

Sub Payoff_table() 

' 

' Payoff_table Macro 

' Macro recorded 11/09/2008 by ASHOOR-PC 

' 

 

' 

Dim i, j, l, m, n, k As Integer 

'i = DMU 

'j = Input 

l = 2 

m = 0  'Output 

k = 0 

Range("A27:Y36").ClearContents 

'Range("P24:S43").ClearContents 

 

' Output sumproduct 

For m = 0 To Cells(19, 10) - 1 

Range("L2:L11") = 1: Range("M2:M11") = 1 

Range("N15") = _ 

Range("R" & m + 2).Formula: 'Stop 

For i = 0 To Cells(17, 10) - 1 

Range("L2:L11") = 1: Range("M2:M11") = 1 

'For St. lift and right handside, Input # 

    For j = 0 To Cells(18, 10) - 1 

    'Range("M" & j + 17) = _ 

    'Range("Q" & j + 2).Formula 

    Range("O" & 17 + j) = Cells(l, 2 + j) 

    Next 

'Stop 

    SolverSolve (True) 

'Stop 

l = l + 1 

If m = 0 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 1 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 1 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 6 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 2 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 11 + n) = Cells(2 + n, 18) 

Next 

End If 



 

 229 

If m = 3 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 16 + n) = Cells(2 + n, 18) 

Next 

End If 

If m = 4 Then 

For n = 0 To Cells(19, 10) - 1 

Cells(27 + k, 21 + n) = Cells(2 + n, 18) 

Next 

End If 

k = k + 1 

'Stop 

Next 

k = 0 

l = 2 

Next 

End Sub 

 

Sub Optimistic() 

' 

' Optimistic Macro 

' Macro recorded 15/03/2008 by ASHOOR 

' 

 

' 

   Dim i, j, k, l, n, m As Integer 

l = 2 

'Range("J2:J21").ClearContents 

Range("l24:l33").ClearContents 

'Range("K24:L30").ClearContents 

For i = 1 To Cells(24, 3) 

Range("J2: J11") = 1: Range("V2") = 1 

     

    'Inputs loop 

    For j = 0 To Cells(25, 3) - 1 

    Range("Q" & 9 + j) = 1 * Cells(l, j + 2) 

    Next 

     

    'Outputs loop 

    For k = 0 To Cells(26, 3) - 1 

    Range("Q" & 13 + k) = 1 * Cells(l, k + 6) 

    Next 

   'Stop 

    SolverSolve (True) 

 'Stop 

    l = l + 1 

    Cells(23 + i, 12) = Cells(7, 17) 

Next 

l = 2 

              End Sub 


