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Abstract 

Materials have always had a large impact on society over the different ages. Piezoelectric 

materials are the often ‘invisible’ materials which find widespread use, unknown to the 

general public by large. Mobile electronics, automotive systems, medical and industrial 

systems are few of the key areas where ‘piezoelectricity’ is indispensable. The parking 

sensor of our car uses the effect and even the echo to image an unborn baby in a womb 

requires the exploitation of the piezoelectric effect. 

 

The work presented in this thesis investigates the piezoelectric effect in semiconductors, 

namely in III-V, III-N and II-VI materials to have a better understanding and design 

potential applications in light emitting diodes (LEDs) and other electronic devices.  The 

current work focuses on the non-linear behaviour in the strain of the piezo effect, which is 

manifested by the generation of electric field under crystal deformation.    

 

Previous works have already confirmed the reports of the existence of non-linear 

piezoelectric effects in zincblende III-V semiconductors.   Here, the same semiempirical 

approach using Density Functional Theory has been utilized to investigate the strain 

dependent elastic and dielectric properties of wurtzite III-N materials. While we report 

the strong non-linear strain induced piezoelectric behaviour with second order 

coefficients, all spontaneous polarization terms are substantially smaller than the 

previously proposed values. We show that, unlike existing models, our calculated 

piezoelectric coefficients and nonlinear model provide a close match to the internal 

piezoelectric fields of quantum well and superlattice structures. Also, pressure 

dependence of the piezoelectric field in InGaN based LEDs predicts a significant 

improvement of the spontaneous emission rate can be achieved as a result of a reduction 

of the internal field. The LED devices using the proposed structures including a 

metamorphic layer under the active region of the device are expected to increase their 

light output power by up to 10%. We also explored the impact of the non-linear piezo 

effect in nanowires and present a further theoretical computational study of single photon 

sources optimization in InGaN based wurtzite single quantum dots. We observed the light 

emission can be made by those single photon sources covering the entire visible spectrum 

through suitable change in the alloy composition. 
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1.   Piezotronics and Piezophototronics     

 

The field of Piezotronics began in 2006 when Regent Professor Zhong Lin Wang at 

Georgia Institute of Technology coined two terms to describe the exploitation of strain 

induced Piezoelectricity in Nanostructured semiconductors to develop electronic devices 

with new functionalities.  A piezoelectric potential can be created in any nanostructured 

semiconductor crystal having non-central symmetry, such as the Group III-V and II-VI 

materials, due to polarization of ions under applied stress and strain.  Because of the 

presence of both piezoelectric and semiconductor behavior, the piezopotential in the 

crystal affects significantly the carrier transport at the interface/junction. The 

piezophototronic effect utilizes the piezopotential to influence the performance of 

optoelectronic devices1, such as photodetector2, solar cell3, transducers4 and LEDs5 by 

controlling the material properties including the carrier generation, transport, separation 

and/or recombination. Unique applications can be observed in areas such as sensing and 

actuating in nanorobotics, human-computer interfacing, nanorobotics, smart 

MEMS/NEMS, smart and personalized electronic signatures and energy sciences.6 

 

Within this area of research, energy harvesting involves the fundamental process of 

converting the nanoscale mechanical energy from the surrounding environment into 

electric energy. Such electrical energy can then be utilized to power nanodevices with less 

reliance on a battery. In 2006, a novel approach was reported converting the mechanical 

energy to electrical energy through the usage of piezoelectric zinc oxide (ZnO) nanowire 

(NW) arrays.7 As a very promising self-powering sources of nanosystems, one can 
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envisage that eventually nanogenerators will be part of everyday life and will be included 

in mobile phones and portable devices. 

 

What makes nanogenerators possible is the use of Nanowires (NWs), filaments thinner 

than a human hair, based on ZnO8 and GaN.9,10 Devices based on NWs have been 

demonstrated as nanogenerators7 and pressure sensors11 in the past few year. These have 

generated much interest because of their potential commercial applications in 

self‐powered circuits for wireless sensors, portable devices, medical science and mobile 

phones12,13,14,15 but also as environmental sensors (pressure and vibrations). The most 

recent media coverage was for an array of such devices, mounted on a flexible substrate, 

which is able to mimic the tactile sense of human skin. A very recent work on a 

piezotronic transistor arrays has been published in Science11 and major media covered the 

story including BBC16, CNET17, Nature World News18, The Engineer19, Science World 

Report20, Physics World21 and Engineering and Technology22.  
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Figure 1-1:  Piezopotential created inside a nanostructure, as represented by the color code, is the 

fundamental physics for nanogenerator and piezotronics. (reproduced from Z.L. Wang, “Piezotronics 

and Piezo-Phototronics”, Microtechnology and MEMS, Springer-Verlag Berlin Heidelberg 2012) 

 

In Figure1-1, the distribution of piezopotential inside a ZnO semiconductor NW is shown 

for both a nanogenerator and a piezotronics transistor.  In a nanogenerator the pressure 

generates a potential difference that can be converted into an electric current. In a 

Piezotronics transistor pressure acts as a gate and allows or constricts the current flow. 

Currently, the nanogenerator technology has been extensively developed and optimized to 

provide an output of ∼3V with the output power capable to run a liquid crystal display 

(LCD), light-emitting diode or laser diode.23  

Nanowire-based LEDs are of interest owing to the possible advantages of higher 

efficiency, higher lumens, and lower power consumption in comparison to traditional 

lighting modules. In a recent experimental work from Prof. Z. L. Wang’s group in 

Georgia Institute of Technology, USA, it has been shown that the external true LED 

efficiency can reach ∼7.82% after strain is applied. At a fixed applied bias above the turn-
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on voltage (3V), with 0.093% compressive strain along the growth plane, the injection 

current and output light intensity is found to be improved by a factor of  4 and 17, 

respectively, projecting a conversion efficiency improvement of 4.25 compared to the 

unstrained case.24 

Group III-Nitrides with wurtzite crystal structure and having much higher piezoelectric 

properties can also be utilized as the core nanostructures for LED,25 piezotronics,26 and 

even piezophotonics.27 Recent works on III-V NWs illustrated potential applications in 

solar cells28, lasers29 and photodetectors30. Due to the direct band gap and superior 

electrical properties, III-V NWs are ideal candidates for photonic devices. Furthermore, 

III-V nanowires can be grown epitaxially on Si (and even Graphene!!!), giving a realistic 

prospect for large scale fabrication of III-V NW optoelectronic devices.31,32,33 

Referring back to Fig 1-1 and the pressure controlled transistor, the reason we can call it a 

transistor is because it is obviously the counterpart of the conventional Silicon-based 

CMOS technology, operated by electrical driven charge transport process. In order to 

replicate the operational control of CMOS by mechanical action, generation of electrical 

signal is required as a result of mechanical stress. The obvious and natural choice is 

piezoelectricity and we will be discussing more in detail in later sections.  

Almost all of the concepts discussed so far have been conceptualized and pioneered in the 

research group in Georgia Institute of Technology, USA. It was in this group that 

researchers started exploiting ZnO semiconductors and their material properties such as 

the electrostatic interaction energy and the distinct chemical activities of the polar 

surfaces to produce a wide variety of ZnO based nanostructures such as nanowires, 

nanobelts, nanosprings, nanorings, nanobows, nanopropellors, nanocages and 

nanohelices. The nanostructures have been synthesized under ad hoc growth conditions, 
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using a solid state thermal sublimation process and controlling the growth kinetics, local 

growth temperature, and the chemical composition of the source materials.34  

 

Figure 1-2: A collection of nanostructures of ZnO nanostructures due to existence of [0001] polar 

surface (reproduced Z. L. Wang, MRS Bulletin, 37, 814 (2012)) 

 

Fig.1-2 shows high magnification scanning electron microscopy (SEM) images of the 

nanostructures. ZnO nanobelts and the associated unique nanostructures were grown by a 

vapor-solid process. 

 

Vertically aligned NWs are the most exploitable structures for potential applications 

mentioned earlier and aligned growth of ZnO nanorods has been performed successfully 

on a solid substrate using a vapor-liquid-solid or vapor-solid-solid process with gold 
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nanoparticles as catalysts.35, 36 While the catalyst initiates and provides guidance for 

growth, the epitaxial orientation relationship between the substrate and the nanorods 

gives rise to aligned growth.37 The patterns of the grown NWs are determined by the 

spatial distribution of the catalyst particles. An optimum match of the desired NWs and 

the substrate lattice provides aligned growth of NWs normal to the substrate. One of the 

low-cost, low-temperature and large scale approach for aligned NWs is the solution based 

growth technique.38,39 As the growth temperature is only 80-100°C, substrate of any 

material and shape can be used allowing a broad range of applications. 

 

 

Figure 1-3:  Fabrication flowcharts of a GaN NW LED device, including (i) growth of a p-type GaN 

thinfilm on (0001) sapphire, (ii) Au catalyst thin-film evaporation, (iii) growth of n-type GaN NWs, 

(iv) piezoelectric investigation with an atomic force microscope, (v) spin-coating of a polymer spacer 

(PMMA) in the LED device, and (vi) deposition of InO and Au/Ni electrodes for n-type and p-type 

contact, respectively (Reproduced from C-Y. Chen et al, ACS Nano 6 (6), 5687-5692 (2012)) 

 

In Figure 1-3, the fabrication process of GaN NW based LED modules has been 

illustrated including several procedures for e-beam photolithography, with (i) p-type GaN 

thin film grown on a c-plane (0001) sapphire by MOCVD, (ii) a Au catalyst thin film is 

deposited in ultrahigh-vacuum thermal evaporation, (iii) n-type GaN nanowires grown on 

a p-type thin film by a vapor-liquid-solid  process, (iv) piezoelectric performance studied 

through a unique AFM measurement, (v) spin-coated polymethyl methacrylate (PMMA) 

as  the binding spacer in LED devices, and (vi) an indium oxide (InO) layer and Au/Ni 

electrodes for n-type and p-type contact are deposited, respectively. 
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In the case of III-V semiconductors NW growth, the crystallographic quality still remains 

difficult to control despite the significant advances in growth techniques. The stable phase 

in bulk III-V materials is the cubic zinc blende (ZB) phase but it is not always 

predominant in NWs. Rather, often NWs replicate the hexagonal wurtzite (WZ) phase in 

sections of, or throughout, the NW. ZB-WZ polytypism, stacking faults and twin defects 

are reported quite often.40 As device applications require excellent physical properties, 

control over the NW crystal structure is essential. Although the commonly reported 

problems are non-desirable, they can be used to engineer the NW bandstructure, 

luminescence polarization and the emission energy.40,41,42 Several recent works reported 

the issue of diameter dependency of the NW crystal structure, with smaller diameter 

tending towards a WZ phase while larger diameter favours ZB phase.43,44,45
 Algra et al.44 

reported a dramatic transition of WZ structure to a periodically twinned ZB structure with 

the addition of Zn dopants to the InP NW growth system. Instead Caroff et al. 45 utilized a 

combination of NW diameter and growth temperature to achieve InAs NWs in 

periodically twinned ZB phase and WZ phase with higher control.  

 

The field has grown rapidly over the past few years. In particular the development of 

different approaches for energy harvesting using piezotronics and nanogenerators has 

stimulated great interest even in the commercial sector where there is a significant 

demand for wireless self powered sensors. In December 2012, the first international 

Xiangshan Science Conference was held in Beijing (China) dedicated to the frontiers of 

piezotronics and nanogenerators. The MRS 2013 Spring Meeting and Exhibit, held from 

April 1-5, 2013, at the Moscone West Convention Center in San Francisco, California, 

dedicated an entire symposium to piezotronics.  
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Thus, the field of piezotronics and piezophototronics has gained much attention 

worldwide signifying the need of much better understanding about the materials involved 

and their exploited properties, which is discussed in the next sections. 

 

 

1.1.  Piezoelectric Semiconductors 

The crystal classes of Cane sugar, Quartz, Tourmaline, Rochelle salt (sodium potassium 

tartrate tetrahydrate) and Topaz have all demonstrated to exhibit a piezoelectric effect. 

The effect has also been observed in the crystal classes having cubic (e.g. InGaAs) and 

hexagonal (GaN and ZnO) symmetries. Applications such as energy harvesters, actuators, 

micro-positioners, ultrasonic transducers for sonar and medical imaging and fuel injectors 

have utilized the piezoelectric effect.  

 

The nature of the effect is the same as the generation of electrical dipole moments 

observed in solids. On application of a mechanical stress, a change in polarization is seen 

in the crystal, as the charge symmetry is broken. This asymmetry in the charge density 

leads to an electric field in the crystal which is known as the piezoelectric field. Though 

the electric field is difficiult to measure directly, an impact can be observed on both the 

electrical and optical properties of the crystal.  

 

The last few years have witnessed a significant interest in investigating the impact of the 

piezo-effect in the epitaxially grown semiconductor materials. The exploitable nature of 

the variable piezo effect in wide range of applications has already been highlighted within 
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the field of piezotronics in the previous section. A detailed analysis of this effect in the 

III-V’s, mainly III-Nitrides and II-VI’s can be found later in chapter 3. 

 

The changes in the spontaneous (polarization that exists even in the absence of external 

pressure) and piezoelectric polarization fields lead to the increase in the polarization-

induced electrostatic charge density. In a structurally pure bulk semiconductor, the 

variation in the polarization fields will be observed at the surfaces. Nonetheless, the 

existence of the surface states or mobile carriers can nullify the resultant surface charges. 

However, in a heterostructure, the polarization and the associated polarization-induced 

charge has a significant influence on the internal electric field and the charge 

distributions. Donor-like or acceptor-like behaviour is stimulated in many ways by the 

induced positive or negative charge polarization. The behaviour of the polarization-

induced charge is electrostatically indistinguishable to the charge density due to the 

ionized dopants. The presence of a small dipole factor in each unit cell produces a 

uniform distribution of polarization induced volume charge density within the alloy layer. 

Although the polarization is dependent on the semiconductor properties in the ZB or WZ 

phase, examples of different crystal structures in III-V, III-N and II-VI semiconductors 

have been provided. In the case of ZB InAs grown pseudomorphically on GaAs (001) a 

PZ polarization of +0.069C/m2 is predicted using the PZCs by Beya-Wakata et al.46  For 

the case of WZ semiconductors, a thin film of GaN layer when grown on AlN in [0001] 

direction gives rise to a compressive strain of 3% and a polarization of +0.095C/m2 is 

predicted and in ZnO a polarization of +0.01C/m2 is expected when strained 

compressively by 3% in the growth plane using the classic linear model of 

piezoelectricity47. 
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The piezoelectric effect is now explained in more details exploring the fundamental 

concepts and material properties. 

 

1.2. Piezoelectric Effect 

The field of Piezotronics solely relies on piezoelectricity and as we have already seen the 

exploitation of the effect can have large influence on the device properties, we will 

explain in more detail about the present understanding of this phenomenon. 

 

The direct piezoelectric effect is the generation of an electric dipole moment in certain 

crystals if a stress is applied and the electric dipole moment is proportional to the applied 

stress.48 Such an effect was demonstrated first by Jacques Curie and Pierre Curie in the 

year of 1880. The origin of the word “piezo” is from the Greek word “piezen (πιέζειν)” 

which means “to press or squeeze”. The effect has been understood as the charge 

formation in some crystals due to the ionic displacements under some mechanical 

pressure.49 

 

The converse piezoelectric effect, where the crystals deforms under the application of 

external electric field in the polarization direction, has been outlined mathematically in 

1881 by Gabriel Lippmann from fundamental thermodynamic principles. Later in 1910, 

the publication “Lehrbuch der Kristallphysik” (textbook on crystal physics) by Woldemar 

Voigt classified 20 natural piezoelectric crystal classes. The publication also had detailed 

an investigated report of the piezoelectric constants using tensor analysis. 
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1.2.1. Piezoelectric Polarization   

The non-centrosymmetric feature of the hexagonal WZ and the cubic ZB structure gives 

rise to the nonzero piezoelectric moduli.  

Although both WZ and ZB give rise to piezoelectric polarization, the cubic ZB structure 

has higher symmetry than the WZ structure as can be seen in the figure 1.2.1-1:  

 

 

Figure 1.2.1-1: Crystal Structures of Wurtzite and Zinc blende crystals 

 

The tetrahedrons are the fundamental units of the crystals and in ZB crystals, the atoms of 

both tetrahedrons do not overlap each other, while owing to reduced symmetry, the atoms 

in different tetrahedrons exactly overlap in WZ leading to a repulsive force at the centre 

of the two tetrahedrons. This gives rise to an inherent polarization term in the unstrained 

WZ crystals compared to the unstrained ZB structures and this inherent component of 

polarization in WZ, even in absence of any strain, is known as spontaneous polarization. 

We will be discussing the spontaneous polarization in the next section in much more 

detail. 
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Here, the relations of the piezoelectric polarization field Ppz with the piezoelectric moduli 

  dijk and eijk , the stress tensor σjk and the strain tensor εjk  is expressed as follows48: 

            Ppz,i = dijkσjk = eijkεjk, σij = cijklεkl                (1) 

    where  cijkl is the elastic tensor.  

 

The symmetry of the tensors  dijk,σjk, eijk and εjk belongs to the indices of j and k; Hence, 

a unique array of indices are labelled as   j =  xx, yy, zz, yz, zx, xy ≡ 1, . . . ,6  and the short 

matrix notation is taken for the tensors in Eq. (1). 

 The matrix notation for  eij and εj is denoted as follows: 

 

 eij = ( 

e11 e12

e21 e22

e31 e32

    

e13 e14

e23 e24

e33 e34

    

e15 e16

e25 e26

e35 e36

)                              (2) 

 

  εj  =

(

  
 

ε1

ε2

ε3
ε4

ε5

ε6)

  
 

= (
ε1 ε6 ε5

ε6 ε2 ε4
ε5 ε4 ε3

)                                         (3) 

 

We first discuss about the ZB structure, where we have only three non-zero independent 

coefficients  

 

eij = ( 
0 0
0 0
0 0

    
0 e14

0 0
0 0

    
0 0

e25 0
0 e36

)                         (4) 
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When we have the unstrained case, it was shown by Nye (1957)48 that the ZB crystal 

structure has only one non-zero coefficient from Eq.(4) as e14 = e25 = e36. The WZ 

phase is bit more complicated with five different coefficients in the strained case. 

 

The five independent non-zero coefficients present in the piezoelectric tensors of the WZ 

structure, is  

 

 eij = ( 
0 0
0 0

e31 e32

    
0 0
0 e24

e33 0
    

e15 0
0 0
0 0

)                         (5) 

 

In the case of zero strain in the WZ structure, all the five coefficients are reduced to only 

three independent non-zero coefficients, given in Eq. (5)48, as e31 = e32, and  e15 =

e24 and  dij  is symbolized by an analogous term. 

 

Thus, a piezoelectric polarization field with nonzero values exists along the (111) growth 

direction diagonal to the normal growth axis (001) in ZB structures. The polarization is 

present along the c-axis direction in an [0001] epitaxially grown coherently strained WZ 

structures of III-N or II-VI material. 

In case of ZB,  ε3 = −2
c12

c11
1        (6) 

But, the piezoelectric polarization is only present when we have the off-diagonal 

components of the strain tensor available. 

 P𝑝𝑧,𝑥
𝑧𝑏 = 𝑒144, P𝑝𝑧,𝑦

𝑧𝑏 = 𝑒255 and P𝑝𝑧,𝑧
𝑧𝑏 = 𝑒36ε6.   (7) 
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While for WZ, a free-surface boundary condition for surface charge (σzz ≡ σ33 = 0) is 

supposed to be present as the polarization is directed in the [0001] or z- direction, then  

ε3 = −2
c13

c33
ε1                                                        (8) 

 Ppz,z =  2(e31 −
c13

c33
e33)ε1 =  2d31(c11 + c12 − 2

c13
2

c33
e33)ε1          (9) 

 

The growth of an alloy with a lattice constant a on a substrate which is coherently 

strained, generates a strain expressed by: 

ε1 = ε2 = 
asub − a

a
, 

where asub is the lattice constant of the substrate material. 

We have compiled the experimental values of the coefficients of different III-V, III-N and 

II-VI semiconductors in the following table50,51,52,53,54. The experimental data presented 

are for the natural crystalline material symmetry and data is missing for rest of the 

combinations. 

TABLE I: Experimental values of the piezoelectric coefficients of III-V, III-N and 

II-VI semiconductors 

Semiconductor 
Piezoelectric coefficients (C/m2) 

e14=e25=e36 e31 e33 e15 

ZB 
GaAs -0.160    

InAs -0.045    

WZ 

GaN  -0.55 1.12  

InN  -0.55 0.95  

AlN  -0.60 1.50 -0.48 

ZnO  -0.62 0.96  

 

 

In later sections, we will discuss the piezoelectric coefficients (PZCs) in more details and 

we will introduce the influence of non-linear piezoelectricity. 
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1.2.2. Spontaneous Polarization     

Though epitaxially grown wurtzite semiconductors formed in the typical [0001] 

orientation lead to the creation of a sizeable piezoelectric field when strain is present. 

Additionally, large spontaneous polarization47 is also present in both III-N and II-VI 

semiconductors. As spontaneous polarization (like the strain induced one) cannot be 

measured directly, it can only be inferred from experimental data on electro optical 

properties and their change as a result of strain. In addition, the electrostatic charge 

densities produced by the spontaneous polarization can be comparable to those produced 

by the strain induced piezoelectric polarization fields.55  

Spontaneous polarization develops from the atomic layout in the bulk materials. In the 

wurtzite structure, z-direction marks the overlap of the neighbouring dual tetrahedrons in 

contrast to the zinc blendes. As already pointed out earlier, this arrangement gives rise to 

closer second nearest neighbours in the wurtzites. The modified inter-atomic forces lead 

to a marginal reduction of the inter-atomic separation between the first nearest 

neighbours. Thus, the non-zero dipole moment in the crystal that is present in the absence 

of strain or an electric field55 is the spontaneous polarization. 

The charge reorganization at the surface of the bulk materials is assumed to cancel the 

uniform polarization fields owing to the piezoelectric and spontaneous polarization 

effects. Conversely, the variations in the crystal structure of the inhomogeneous alloy 

layers or heterostructures creates a non-vanishing and spatially altering field due to the 

piezoelectric and spontaneous polarization. The difference in the composition also 

generates the charge densities which have a prominent influence on device behaviour55 

and the properties of the material.  
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While investigating multilayered structures and piezo-devices,56 spontaneous polarization 

needs to be also included. 

The wurtzite III-N structures demonstrate a peculiar property of having the piezoelectric 

constants similar to those of the Group II-VI materials and quite starkingly opposite to the 

Group III-V materials. The III-N materials also differ from the normal III-V compounds, 

with a larger ionic charge and the internal-strain ionic contribution becomes larger than 

the clamped-ion term. The following table provides the compiled list for the spontaneous 

polarization values47 of different III-N and II-VI semiconductors.  

TABLE II: Spontaneous polarization values of III-N and II-VI semiconductors 

 

Semiconductor Spontaneous Polarization (C/m2) 

WZ 

GaN -0.029 

InN -0.032 

AlN -0.081 

ZnO -0.057 

 

1.3. The Microscopic Model     

So far we have described piezoelectricity in terms of macroscopic terms. An alternative 

model to analyse the effects of polarization has been proposed by Harrison57 based on 

Bond-Orbital Approximation which is at the origin of the microscopic understanding of 

piezoelectricity which will be used throughout this thesis.   

The total polarization resulting from both spontaneous and strain induced polarization is 

given by the sum of a direct dipole contribution and a bond contribution:57 

   
4

* 2

1

ˆ

ˆ2 1

2i

H p p q i q
q

x

Z r r x R

P

   


   






     

(10)
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where ˆ
ix  is the Cartesian direction, δr is the displacement vector of cations in respect of 

anions from the ideal position (i.e. the situation where all bonds in the tetrahedron are 

equal to each other), rq and δRq are the distance and displacement (deviation from the 

ideal position) vectors of the nearest neighbour q from the atom at the centre of the 

tetrahedron, respectively, αp is the bond polarity and Ω is the atomic volume. Borrowing 

from the language of tight binding, ZH* is the atomic charge, generally different from the 

transverse effective charge, which instead has its direct equivalent in the dynamic 

effective charge, or Born charge (Z*), calculated with density functional perturbation 

theory (DFPT). 

In the case of ZB crystals, as the tetrahedrons are subjected to small shear strain, the 

cation and anion sublattices undergo displacement relative to each other to minimize the 

cohesive energy. This is relaxation across the direction perpendicular to the shear strain, 

e.g., along the k direction when the shear strain is along the ij plane, as initially pointed 

out by Kleinman.58When the internal displacement takes place, the bond lengths in each 

tetrahedron become non equivalent and therefore both terms in Eq. 11 become non-zero. 

If the difference between the two terms is different from zero then a macroscopic 

polarization is predicted. A more comprehensive discussion and formalization of these 

concepts will be presented in Chapter 3. The displacement is dependent on the shear 

strain and is assumed to be linear in the strain, and therefore can be characterized by 𝜁, 

the Kleinman parameter. The Kleinman parameter defines the distance between the two 

sublattices and normally a constant for a material. The displacement can be easily written 

as 𝑎𝜀𝑖𝑗𝜁 4⁄ , with a, the lattice constant and 𝜀𝑖𝑗 , the shear strain. The PZCs can be then 

obtained in the ZB case from  

𝑃𝑠𝑡𝑟𝑎𝑖𝑛
𝑍𝐵 = 𝑒14𝜀𝑖̂𝑗̂ = 𝑃𝑘̂ =

𝑒

2Ω

𝑎𝜀𝑖𝑗𝜁

4
(𝑍𝐻

∗ −
4

3
𝛼𝑝(1 − 𝛼𝑝

2)
(1−𝜁)

𝜁
)   (11) 
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where 𝜀𝑖̂𝑗̂ is the strain component and 𝜁 is the Kleinman parameter. For the case of WZ 

structures, one must also take the spontaneous polarization into account, 

𝑃𝑠𝑡𝑟𝑎𝑖𝑛
𝑊𝑍 = 𝑒31𝜀∥ = 𝑃𝑇𝑜𝑡 − 𝑃𝑠𝑝 =

𝑍𝐻
∗ (𝛿𝑟−𝛿𝑢)+2𝛼𝑝(1−𝛼𝑝

2) ∑ (𝑟𝑞⃑⃑⃑⃑ ⋅𝑥̂𝑖)𝛿𝑅𝑞
4
𝑞=1

2Ω
  (12) 

    

            

In later chapters, we will discuss more in details about the parameters and the coefficients 

obtained in our calculations. 

1.4. Polar semiconductors     

The polar semiconductors in Group III-V, III-N and II-VI are all important in their 

different applications and in this section, applications and research interest in each group 

of semiconductors will be described in detail. 

 

In epitaxially grown ZB III-V semiconductors, the piezoelectric effect can be found in 

quantum wells grown on (111) substrates, quantum wires, and quantum dots. 

Piezoelectric effects in such nanostructures have attracted a substantial amount of interest 

in recent years,59,60 and were identified as the source of experimentally observable optical 

anisotropies.61,62,63  

For (111) orientation, where the PZ polarization is maximum in the ZB materials, 

InGaAs/GaAs (111)B heterostructures based MQW p-i-n photodiodes are found to have a 

significant influence on the device performance.64 Enhancement of the 2DEG density in 

AlGaAs/InGaAs/GaAs p-HEMT structures have also been observed on (111)A GaAs 

substrates65. These HEMT based power microwave devices that work or operate in the 

30–100 GHz range are used in many high-speed digital applications66,67  
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Moreover, InGaAs/AlGaAs laser diodes grown in (111)B direction demonstrated a 

positive role of the piezoelectric effect in reducing the threshold current of the diodes.68 

In GaAs/AlGaAs core-shell NWs, piezoelectric field is observed to reduce the carrier 

recombination due to the induced spatial separation of electron and holes.69  

Apart from the QW structures, the strain induced effect is observed even in the quantum 

dots.70 Single dot spectroscopy of InAs/GaAs QDs grown along polar direction has 

shown large Stark shifts due to the piezoelectric field as large as 800kV/cm.71Recent 

works on the embedded GaAs QD into AlGaAs NW have also illustrated relatively 

stronger electric field due to PZ effect compared to typical values observed in ZB QDs.72 

 

On the contrary, III-Nitride heterostructures are employed for an abundant variety of 

device applications, including ultraviolet high-power electronics,73,74,75 

photodetectors,76,77 light-emitting diodes (LEDs) and lasers78 as also field emitter 

arrays.79 Thus the research on III-Nitrides is gaining momentum owing to the expected 

high volume demand and low production costs. The latest ‘Blu-Ray’ technology from 

Sony Corporation, exploit GaN based Blue LASERs to enable read/write mechanism. In 

addition, due to the presence of their wurtzite structure with high level of ionicity, wide 

range of exploitable material properties are demonstrated, which could  have much less 

significance or even be absent in fundamental and normal zinc blende III-V 

semiconductors. The particular interests are the piezoelectric and the spontaneous 

polarization effects as they can be utilised to advantage in device engineering, as 

advocated by the recent experimental as well as the theoretical investigations or 

studies.80,81,82 

In III-N heterostructure field-effect transistors (HFET’s), two dimensional electron gas 

(2DEG)83 generated with intensely high carrier concentrations84 are the effect of the 
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positive polarization at the junction interface. The polarization induces electrostatic 

charge in the devices and helps to achieve a major increase in barrier height, and 

consequently a reduction in gate leakage current, without increasing the total barrier 

thickness.85  

The investigation of photoluminescence from an III-N multiple quantum-well structure 

also illustrates the Quantum Confined Stark Effect due to the piezoelectric polarization 

fields as blue shift is observed with increasing excitation intensity86.  

 

 

Figure 1.4-1: Schematic energy band diagrams for an InyGa1-yN/GaN single-quantum-well structure 

(a) in the absence of polarization fields (b) in the presence of the piezoelectric field within the 

InyGa1-yN layer 

 

Hence, the optical properties in nitride quantum-well structures are strongly affected by 

polarization fields and the associated electrostatic charge densities. The 

polarization-induced field in an InyGa1-yN/GaN quantum well structure will lead to a red 

shift in the PL wavelength, in the absence of screening effects, in comparison to absence 

of polarization effects. This polarization-induced red shift would be expected to increase 

with increasing well width. In Figure 1.4-1, the schematic band energy diagrams are 

shown where on the left, the ideal case of zero polarization is considered and on the right, 

with the presence of the polarization, enhanced band bending due to piezoelectricity and 

spontaneous polarization is illustrated. 
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While it was discussed in detail about the PZ effect in ZnO based NWs and its application 

on previous occasion, this section will focus more on the impact of piezoelectricity on 

other ZnO based nanostructures and applications. Polarization effects observed in ZnO 

based LEDs reveal a strong hole confinement.87 Also, ZnO films have been utilized in 

detectors and actuators and can be used to detect the strain and provide feedback.88 In 

addition, ZnO nanobelts have been demonstrated to work as bulk acoustic resonators 

(BARs) for high performance frequency control devices exploiting the piezoelectric 

polarization.89 

Recent work on exploiting the PZ effect in two-dimensional ZnO based nanosheets has 

been explored for efficient direct current power generation.90 Interface engineering has 

also been observed in ZnO based photoelectrochemical anode by exploiting the PZ 

polarization.91 

Recent progress in the field of piezoelectricity led to research interests in converting 2D 

layers into PZ materials. One such work relates to study of 2D graphene to make it a PZ 

material and provide dynamic control over graphene based electronics and devices.  The 

inversion symmetry in graphene needs to be broken to generate piezoelectricity92. The 

authors proposed and discussed technique to break the symmetry by the adsorption of 

atoms on the surface of graphene only on one side requiring spatial control of the 

adsorption method, as demonstrated in recent experiments to produce hydrogen and 

fluorine covered graphene (graphane and fluoro-graphene)93,94. The piezoelectric 

properties of graphene are predicted to be smaller by a factor 3 compared to GaN in this 

work and this could potentially lead to the creation of new piezoelectric devices.92 

As the piezoelectric polarization is very much dependent on the stress and strain, it is 

imperative to understand the concepts in details and we have discussed the underlying 

theory in more details in the next chapter.   
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2. Research Modeling Techniques 

The current work described in the thesis has utilized different modelling techniques and it 

is imperative to provide a deeper insight in these research methodologies. While we start 

discussing the concepts of stress and strain at the beginning of the chapter, we introduce 

Density Functional Theory and the k·p theory in the later sections. 

 

2.1. Stress and Strain 

 

Stress and strain are two important factors in the characterization of condensed matter. 

Stress and strain can be responsible for fractures and creation of defects in the crystal. 

Also, bandstructure and device behaviour gets affected by strain, which can be utilized in 

device design. Stress can also be quantified by experimental microscopy processes. In the 

later sections, we will discuss more about the stress, strain, their relationship and how 

they can be used in certain applications. 

 

The different combinations of pressure on a material as shear and dilation can be 

expressed through a stress tensor. In terms of condensed matter, independent parameters, 

like macroscopic stress and atomic force defines the final conditions of equilibrium95 of 

the system. 

 

“Condition (1): the total force vanishes on each atom 

Condition (2): the macroscopic stress equals the externally applied stress.”  
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The conditions are widely used in classical simulations96 (such as metric97 and 

Parrinello-Rahman98 methods), and now became an integral part of electronic structure 

calculations99 where the structure is relaxed by minimizing with respect to the atomic 

positions in a unit cell and shape and size of the cell. 

 

 

2.1.1.  Elastic strain 

 

An unstrained system with axes 𝑥̂,𝑦̂, 𝑧̂ will be distorted to a new system of axes 𝑥′, 𝑦′ and 

𝑧′ under external pressure. The deformation could be owing to any kind of applied 

pressure on the material as shear or dilation and creates small strains in the system.141  

The current section explores the basic expression for strain in crystalline materials. The 

new set axes is related to the original unstrained one as follows, 

𝑥 ′ = (1 + 𝜖𝑥𝑥)𝑥̂  +  𝜖𝑥𝑦𝑦̂  +  𝜖𝑥𝑧 𝑧̂       (13) 

𝑦 ′ = 𝜖𝑦𝑥𝑥̂ + (1 + 𝜖𝑦𝑦)𝑦̂ + 𝜖𝑦𝑧 𝑧̂       (14) 

𝑧 ′ = 𝜖𝑧𝑥𝑥̂ + 𝜖𝑧𝑦𝑦̂ + (1 + 𝜖𝑧𝑧)𝑧̂       (15) 

where  𝜖𝛼𝛽 defines the deformation in the system.  

Also, an important fact is that the new axes have lost their orthogonality in general.  

The following expression shows the relation of the space vector 𝑟 ′ with the distorted axes 

as 

𝑟 ′ =  𝑥𝑥′ + 𝑦𝑦′ + 𝑧𝑧′          (16) 

For the case of unstrained system, the expression is as follows 

𝑟 =  𝑥𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂         (17) 

The displacement of the deformation is obtained by the difference in the space vectors, 

𝑅 = 𝑟′ − 𝑟          (18) 
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    = 𝑥(𝑥 ′ − 𝑥̂) +  𝑦(𝑦 ′ − 𝑦̂) + 𝑧(𝑧 ′ − 𝑧̂)  

Using the last three equations, the expression can be rewritten as   

𝑅 = (𝑥𝜖𝑥𝑥 + 𝑦𝜖𝑥𝑦 + 𝑧𝜖𝑥𝑧)𝑥̂  +  (𝑥𝜖𝑦𝑥 + 𝑦𝜖𝑦𝑦 + 𝑧𝜖𝑦𝑧)𝑦̂  +  (𝑥𝜖𝑧𝑥 + 𝑦𝜖𝑧𝑦 + 𝑧𝜖𝑧𝑧)𝑧̂  (19) 

Hence, three new quantities u, v and w have been defined as  

𝑢 =  (𝑥𝜖𝑥𝑥 + 𝑦𝜖𝑥𝑦 + 𝑧𝜖𝑥𝑧)  

𝑣 =  (𝑥𝜖𝑦𝑥 + 𝑦𝜖𝑦𝑦 + 𝑧𝜖𝑦𝑧)  

𝑤 = (𝑥𝜖𝑧𝑥 + 𝑦𝜖𝑧𝑦 + 𝑧𝜖𝑧𝑧)        (20)  

In the limit of small strain, the position dependent strain can be defined for a general 

non-uniform distortion.  

 

𝑥𝜖𝑥𝑥 = 𝑥
𝜕𝑢

𝜕𝑥
;  𝑦𝜖𝑦𝑦 = 𝑦

𝜕𝑣

𝜕𝑦
;  𝑧𝜖𝑧𝑧 = 𝑧

𝜕𝑤

𝜕𝑧
      (21) 

The diagonal strain components can be used to define distortion as 

 

𝑒𝑥𝑥 = 𝜖𝑥𝑥 =
𝜕𝑢

𝜕𝑥
; 𝑒𝑦𝑦 = 𝜖𝑦𝑦 =

𝜕𝑣

𝜕𝑦
;  𝑒𝑧𝑧 = 𝜖𝑧𝑧 =

𝜕𝑤

𝜕𝑧
     (22) 

 

While the off-diagonal terms, defining the shear strain or angular distortion of strain, can 

be expressed as  

𝑒𝑥𝑦 = 𝑥 ′ ∙ 𝑦 ′ ≈ 𝜖𝑦𝑥 + 𝜖𝑥𝑦 = 
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
       (23) 

𝑒𝑦𝑧 = 𝑦 ′ ∙ 𝑧 ′ ≈ 𝜖𝑧𝑦 + 𝜖𝑦𝑧 = 
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
       (24) 

𝑒𝑥𝑧 = 𝑥 ′ ∙ 𝑧 ′ ≈ 𝜖𝑧𝑥 + 𝜖𝑥𝑧 = 
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
       (25) 
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The net fractional change in the volume due to distortion is defined by Dilation and can 

be expressed as  

 

𝛿 =
𝑉′−𝑉

𝑉
≈ 𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧         (26) 

where 𝑉 and 𝑉 ′ are the volume before and after distortion and initial cubic volume is 

unity. 

It is important to outline the stress components responsible for producing a distortion in a 

crystalline unit cell. Then, stress can be defined as the applied force over area. We can 

have 9 possible quantities of stress. However, in absence of torque on the system, we can 

have a reduced set of 6 stress quantities. The stress quantities are indicated as  

𝑋𝑥, 𝑌𝑦, 𝑍𝑧 , 𝑋𝑦, 𝑌𝑧 , 𝑍𝑥 

where the main letter, in capitals, represents the direction of force while the subscript 

represent the direction perpendicular to the plane of  stress and also, the following 

condition is met, 

 

𝑋𝑦, = 𝑌𝑥; 𝑋𝑧, = 𝑍𝑥; 𝑌𝑧 = 𝑍𝑦        (27) 

 

In the following sections using the stress-strain relations, the general expression for the 

elastic constants can be obtained. This will be very helpful in studying the elastic 

properties of crystalline material. The strain mentioned here defines the terms of 

displacement, internal strain parameter and moreover the piezoelectric constants can also 

be estimated utilizing the same relations. 
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2.1.2. Macroscopic strain and stress 

 

The atomic displacement of an atom 𝑅 =  𝑟 − 𝑟′ from a point 𝑟 to 𝑟′ due to deformation 

under applied pressure of shear or dilation is defined as strain. Here, the displacement R 

depends on the space coordinate r, which specifies the deformation. This can be 

illustrated with an example. Considering two near points connected together, the 

deformation will initiate a change of vector from 𝑑𝑟 to 𝑑𝑟′ and the distance in between 

the two points changes to  𝑑𝑙′ from the corresponding 𝑑𝑙 =  √(𝑑𝑟1
2 + 𝑑𝑟2

2 + 𝑑𝑟3
2) . The 

lowest order in 𝑢, 𝑑𝑙′ is given as follows 

(𝑑𝑙′)2 = 𝑑𝑙2 + 2𝑅𝛼,𝛽𝑑𝑟𝛼𝑑𝑟𝛽         (28) 

where the summation over Cartesian coordinates α and β are assumed, and  

𝑅𝛼,𝛽 = 
1

2
(
𝜕𝑅𝛼

𝜕𝑟𝛽
+ 

𝜕𝑅𝛽

𝜕𝑟𝛼
)         (29) 

This is strain tensor. This is equivalent to the metric tensor that provides changes in the 

lengths in the deformed system from the undeformed coordinates100 

(𝑑𝑙′)2 = 𝛿𝛼,𝛽  + 2𝑅𝛼,𝛽𝑑𝑟𝛼𝑑𝑟𝛽       (30) 

Also, it is convenient to define the strain tensor 𝛿𝛼,𝛽 and unsymmetrized strain tensor 𝜖𝛼𝛽, 

a scaling in space, as  

𝑟𝛼  → (𝜖𝛼,𝛽 + 𝛿𝛼,𝛽)𝑟𝛽          (31) 

The terms such as rotation will not affect the internal coordinates itself and thus allows 

us to use the expression in Eq. (31) relating to internal energy. The expression is valid for 

symmetric systems clearly even when antisymmetric terms, like rotation, are included. 

The macroscopic average stress tensor 𝜎𝛼,𝛽  is defined by the derivative of the energy to 

the strain tensor, per unit volume. The strain is considered to be homogenous over 

macroscopic regions. 
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𝜎𝛼,𝛽 = −
1

𝛺

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝜖𝛼𝛽
         (32) 

The enthalpy decreases for positive strain and thus compressive strain is defined by the 

applied forces with a negative sign.   

 

The stress-strain relations define the elastic phenomena and the linear elastic constants are 

given by  

𝐶𝛼𝛽,𝛾𝛿 =
1

𝛺

𝜕2𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝜖𝛼𝛽𝜕𝜖𝛾𝛿
= 

𝜕𝜎𝛼𝛽

𝜕𝜖𝛾𝛿
       (33) 

𝐶𝛼𝛽,𝛾𝛿  can be specified as 6x6 𝐶𝑖𝑗 array for a general crystal using symmetry101,102 and the 

notations i and j are defined in terms of Voigt’s notation as  

1 = 𝑥𝑥;  2 = 𝑦𝑦;  3 = 𝑧𝑧; 4 = 𝑥𝑦;  5 = 𝑦𝑧;  6 = 𝑥𝑧  

A cubic crystal has only three independent constants, C11, C12 and C44 while a wurtzite 

crystal has five independent constants namely, C11, C12, C13, C33 and C44.
48  

While linear elasticity constants have been discussed here, non-linear elasticity models 

provide higher order dependence on applied pressure. 103  

 

It is also worth noting that both the stress-strain relations to linear and non-linear terms 

can be observed in stress calculations. Also, stress along with applied strain, is being 

described by the derivatives.  Moreover, for any strain, the atomic positions in the unit 

cell are fixed by non-zero (internal + externally applied) force. Thus, the finite theory of 

strains can be treated simply from the basic theory.  In order to compute the stress and 

strain effects on the semiconductor materials under study, we utilized the Density 

Functional Theory and the theory has been explained in the next section. 
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2.2.  Density Functional Theory 

“Density functional theory (DFT) has long been the mainstay of electronic structure 

calculations in solid-state physics. (..) [The] approximate functionals were shown to 

provide a useful balance between accuracy and computational cost. This allowed much 

larger systems to be treated than by traditional ab-initio methods, while retaining much 

of their accuracy. Nowadays, traditional wavefunction methods, either variational or 

perturbative, can be applied to find highly accurate results on smaller systems, providing 

benchmarks for developing density functionals, which can then be applied to much larger 

systems.” As stated by the author, K. Burke, in his book “The ABC of DFT”.104 

A totally unique method to transform any complex interacting problem to a much simpler 

non-interacting problem, the exceptional theory is applied in a wide array of diverse 

problems. One of the most common of them is the ground-state electronic structure 

problem.105,106 

The Theory of DFT as projected by Hohenberg105 and Kohn107, Kohn and Sham106 can be 

condensed in the following fundamental theorems.108 

 

Theorem 1: “For any system of interacting particles in an external potential, the 

interparticle potential is uniquely determined by the ground state charge density”.  

 

Thus the ground state charge density can ascertain the properties of a system. 

 

Theorem 2: “A universal functional of the energy F[n] in terms of density n(r) can be 

defined, valid for any external potential. Conversely for any particular potential, the 
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exact ground state energy of the system is the global minimum value of this functional 

and the density n(r) which minimizes this functional is the exact ground state density”. 

 

Hence, the theorem, in simple words, affirms that the functional F[n] can characterize the 

ground state density effectively and hence the system properties. But the structure of the 

functional F[n] is yet to be determined.  

The Kohn-Sham equations being self-consistent should be interpreted such that unique 

potential is formed from the final ground state electron density, employed at the 

beginning to find it. 

Using the Born-Oppenhiemer approximation where the heavy nuclei are considered as 

fixed points, the ground-state electron problem is solved.104 

For a spin system, which is non-degenerate, the Kohn-Sham equations can be shown as 

follows: 

[−
ℏ2

2𝑚
∇2 + 𝑉𝐻[𝑛(𝑟)] + 𝑉𝑖𝑜𝑛[𝑛(𝑟)] + 𝑉𝑥𝑐[𝑛(𝑟)]]𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟),         (34) 

where [−
ℏ2

2𝑚
∇2] is the kinetic energy of the fictitious elements of non interacting nature,    

          𝑉𝐻[𝑛(𝑟)]    is the Hartree potential, 𝑉𝑖𝑜𝑛[𝑛(𝑟)]    is the ionic potential,   

         𝑉𝑥𝑐[𝑛(𝑟)]    is the exchange-correlation potential,  𝜀𝑖     is the eigenvalue,  

and        𝜓𝑖(𝑟)     is the eigenfunction of the fictitious elements (non-interacting). 

 

The exchange-correlation potential 𝑉𝑥𝑐  is sketched as: 

 𝑉𝑥𝑐[𝑛(𝑟)] =
𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛(𝑟)
                                                (35)  

The exchange-correlation potential could be found out by a functional derivative of the 

density, only if the functional 𝐸𝑥𝑐[𝑛(𝑟)] was recognized. However as the outline of the 

functional is unknown, approximations produce adequate results. 
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The total electronic charge density is equal to [𝜓𝑖(𝑟)]
2.  

In order to materialize an initial estimate, importance is needed equally to the basis set 

(∅𝑖). 

The Density Functional Theory, with a bright future, has the most important drawbacks as  

1. The absence of the ‘divine functional,’109 the exact exchange-correlation 

functional. 

2. The proper scheme to obtain the ground state charge density is absent. 

 

The outcome from DFT is dependent on the usage of exchange-correlation functional 

approximations. 

The Kohn-Sham equation terms of 𝑉𝐻 and 𝑉𝑥𝑐 are represented in different forms and 

provides the various aspects of DFT. As different approaches are available, it is highly 

questionable to determine the method with the finest outcome. A discussion on the 

benefits and the drawbacks of the different techniques is essential to have the complete 

representation. 

2.2.1. Exchange-Correlation     

The exchange-correlation potential illustrates the effects of the Pauli Exclusion Principle 

as well as the Coulomb potential, which is not a strain from sheer electrostatic interaction 

between the electrons.110 

 

The many-electron system has an anti-symmetric nature of the wavefunction. This 

antisymmetry causes the spatial separation among the electrons having same spin. This 

very unique nature of the wavefunction eventually shrinks the repulsive Coulomb 

potential. The exchange energy is thus referred to as the energy minimization of the 

electronic system owing to the anti-symmetric wavefunction properties. 
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The spatial separation of the electrons with opposite spins minimizes the Coulomb energy 

of the electronic system. The electron correlation effect is neglected by the Hartree-Fock 

scheme.  “The difference between the many body energy of an electronic system and the 

energy of the system calculated in Hartree-Fock approximation is called the correlation 

energy”. 111 

 

Kinetic Energy
Ø Relativistic
Ø Non-Relativistic

Basis Set
Ø Plane Waves
Ø Augmented Plane Waves
Ø Atomic Orbitals (Gaussians, Slater Orbitals).

Ionic Potential
Ø Full Potential
Ø Pseudo-Potential

Exchange-Correlation 
Functionals

Ø LDA
Ø GGA
Ø X-alpha Scheme

 

Figure 2.2.1-1: Density Functional Theory and its different aspects112. 
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Determination of the correlation energy is remarkably complicated for complex systems. 

The exchange-correlation energy has been defined as a function dependent on the electron 

density. The simplest class of approximations is the Local Density Approximation (LDA) 

which is suggested by Kohn-Sham (1965) and this approximation is the backbone of all 

the total-energy pseudopotential calculations.111                  

 

 

         

2.2.2. Local Density Approximation   

The exchange-correlation functional is assumed to be the electron energy density of the 

system resembling that of a slowly varying homogenous electron gas in space.  

The Local Density Approximation (LDA) is the simple scheme of the approximations. 

The functional is assumed to be the electron energy density of the system replicating that 

of a homogeneous electron gas. 

 

“It uses only the electron density, n(r), at a spatial point r to determine the exchange-

correlation energy density at that point. The exchange-correlation energy density is taken 

to be that of a uniform electron gas of the same density. The exchange part of the 

functional is defined as the exact expression derived for a uniform electron gas106. The 

available versions of LDA differ only in their representation of correlation. All modern 

LDA correlation functionals are based on Ceperly and Alder’s (CA’s) 1980 Monte Carlo 

calculation113 of the total energy of the uniform electron gas”. 

-stated by the authors in the paper: “Modelling Simul.Mater.Sci.Eng.13 (2005) R1- R31”. 
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Assuming the exchange-correlation energy in the LDA to be equal to the 

exchange-correlation energy for the uniform electron gas, the mathematical relation for 

the LDA functional is outlined as follows: 

 𝐸𝑥𝑐[𝑛(𝑟)] = ∫ 𝜀𝑥𝑐
ℎ𝑜𝑚[𝑛(𝑟)]𝑛(𝑟) 𝑑3𝑟                                        (36)    

The analogous exchange-correlation potential is found from the derivative of the above 

density equation. Again, the mapping of the exchange correlation as a function of density 

and the exchange correlation as a function of the inter-electronic spacing is expressed by 

the following relation: 

𝑛(𝑟)−1 =
4𝜋

3
𝑟𝑠

3                                                 (37)        

The estimation of the correlation energy for a uniform electron gas has been calculated by 

Wigner.114 The quantification has been done using an interpolation between the high 

density (r<1) and the low density (r>1) limits.  

 𝜀𝑐 = 0.44 (𝑟𝑠 +  7.8)⁄   (In Hartree)                                            (38) 

Perdew-Wang115 and Perdew-Zunger116 parameterized the Ceperly-Alder (CA) 

correlation data in the high and the low density limits.117  

An expression dependent on the distance between the two electrons has been derived by 

the Kohn-Sham for pure exchange.  

 𝜀𝑐 = 0.4582 𝑟𝑠⁄   (In Hartree)                                             (39) 

LDA disregards the correction terms in the exchange-correlation energy owing to the 

non-uniformity in the electron density. The computations performed using the LDA are 

known to give the proper results in spite of the imprecise quality of the approximation. It 

has been shown by Jones and Gunnarsson118 that the Local Density Approximation 

(LDA) gives the correct sum rule for the exchange-correlation hole. Thus the LDA is 

shown to offer the single global minimum energy value for non-spin-polarized 

systems.111 
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All the different versions of LDA fluctuate only under the various portrayal of the 

correlation.  Again, within the different functionals, when the surface energies and the 

properties of oxides need to computed, LDA always remains favoured over GGA, as 

LDA provides a better result.119 

2.2.3. Pseudopotentials 

 

The spatial distribution of the electronic charges of the valence electrons determines the 

ground state and the electronic properties of a system. The electronic wavefunctions can 

be defined using a unique set of the plane waves, as stated by the Bloch’s Theorem. But 

the strongly bound orbitals of the core and also the rapid deviation of the valence electron 

wavefunction in the core region involve a huge set of plane waves to expand the 

electronic wavefunctions. Thus the computation process becomes highly expensive, being 

dependent on the number of electrons involved. The energy of the valence electrons is 

normally smaller than the energy of the core electrons by three orders of magnitude. Also 

the energy variation under the influence of bonding or the ionic configurations is deduced 

from the energy of the valence electrons. The computation of the total energy might not 

be precise but the variation in energy has a considerable consequence which leads to the 

importance of a pseudo-atom. 

 

The pseudopotential is created by considering the pseudo wavefunctions and pseudo-

particles to be alike all-electron wavefunctions and the electrons. Thus the pseudo-

particles and the pseudo-wavefunctions are used in the calculation. Hence, the 

pseudopotential is typically the Coulombic interaction among the ionic core and the 

pseudo-electrons which forms an additional term to the Kohn-Sham Hamiltonian. 
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The wavefunction for a single particle is thus displayed as: 

∅ = 𝜓 + ∑ 𝛼𝑐𝜓𝑐𝑐𝑜𝑟𝑒                                      (40)  

 

where ψ is the wavefunction term for the concerned valence electron,  

         ψc is the wavefunction of the core electrons and 

         αc maintains the orthogonality (hence no overlap) between ∅ and  ψc  

which follows:        ⟨∅|𝜓𝑐⟩ = 0                         (41) 

 

Thus the Hamiltonian can be written down as the summation of the kinetic energy term 

and the term involving the pseudopotential. 

𝐻 = 𝐾𝐸0 + 𝑣𝑝𝑠𝑝 +𝑣𝐻𝑎𝑟𝑡𝑟𝑒𝑒 + 𝑣𝑥𝑐          (42) 

The pseudopotential must be equal to the actual potential in both spatial arrangements as 

well as in the absolute charge density magnitudes. The pseudopotential is developed such 

that the scattering properties as well as the phase shifts for the pseudo-wavefunctions 

remain similar to that of the valence wavefunctions of the ion and core electrons. The 

phase shifting property of the ion core is reliant on the angular momentum.  

Hence, a local pseudopotential is defined by the pseudopotential which ignores the 

dependency on the angular momentum terms. So, the local pseudopotential represents the 

function dependent on the nuclear distance or, the difference among the wave vectors in 

the plane wave basis states. 

 

The first order energy dependency of ion-scattering from the ion core has been shown to 

be correct when the pseudo and the real wavefunctions are identical outside a core 

region.120 The norm-conserving pseudopotentials are members of the class of the local 
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and non-local pseudopotentials where both the real and the pseudo wavefunctions are 

identical outside the core region.  

 

The pseudopotential is fabricated by performing an all-electron calculation utilizing an 

exchange-correlation functional on a segregated atom in both the ground and excited 

state. Self-consistent calculations provide an estimate of the electronic density, the 

eigenvalue and also the eigenfunction. Further computation is carried out involving the 

valence electrons, with the exchange-correlation functional remaining intact and the 

adjusted parameters (the convergence norm being generally the cutoff radius for the 

core). The outcomes are tweaked to replicate the all-electron calculation results for the 

eigenvalue and the eigenfunction. The pseudopotential for the atom is determined from 

the set of parameters obtained from the best optimized values.  The better the optimized 

values, the better estimate of the exact nature of the wavefunction can be obtained.  

 

The proper figure of merit of the quality of pseudopotential is to measure how well the 

outcomes of the identical all-electron calculations are replicated. Thus, the 

interchangeability of the pseudopotential created sufficient interest, ensuing different 

categories of pseudopotentials. First-principle, Empirical, Semi-empirical and model 

techniques are widely considered and utilized. 

 

The experimental data for the band structure is used to best fitting for the empirical 

pseudopotentials, but the drawback is the interchangeability and the fitting parameters 

which are employed to elucidate the properties. The finest outcomes will always be 

observed for the fitted parameters when a property is in direct relation to an algorithm. 

The Semi-Empirical and model methodology allows bit more flexibility while fitting in 

the algorithm. 
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 First principle pseudopotentials (Ab-initio) employ the Density Functional Theory to 

obtain a pseudopotential which has been discussed in the report. 

 

The earliest Pseudopotential created by the first principle method diverges when the cut-

off radius is in close proximity of the nucleus (i.e. r→0). This class of pseudopotentials 

are generally referenced as the hard-core pseudopotentials. Instead, the soft-core 

pseudopotentials120 provide converged results in the vicinity of the nucleus (i.e. r→0).  

The methodology to create the pseudopotentials includes the generalized norm-

conserving pseudopotentials (GNCPPs) of Hamman,120 soft-core pseudopotentials by 

Troullier-Martin121 and the non-norm-conserving ultrasoft pseudopotentials by 

Vanderbilt.122 During the analysis of the soft-core pseupotentials, the electron density is 

generally assumed to be split up into the core and the valence electrons. Hence, the 

overlapping characteristic of the two electron states, valence and core, has been ignored. 

But the Non-Linear core correction123 augments a fractional core correction charge to the 

exchange-correlation functional with the semi-core charge density because of the 

non-interacting core and valence electrons and is applicable to all different types of 

pseudopotential schemes. 

Thus, the ultrasoft pseudopotentials are favoured to give the enhanced outcomes even for 

an additional expense in computation.  

 

2.2.4. Plane Wave Basis Sets and Bloch's Theorem  

The prominent difficulty of dealing with the infinite number of electrons moving in a 

stationary field of an infinite number of ions can be solved using the Bloch’s Theorem. 

The wavefunction of the infinite crystal can be expressed as the domain wavefunctions of 

the reciprocal space vectors (Bravais lattice). The Bloch's theorem employs the periodic 
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property of a crystal and hence the infinite number of wavefunctions decreases to the total 

number of electrons in the unit cell.  

Thus the wavefunction can be expanded as the product of a wave resembling term and a 

component involving the cell periodicity141:  

 ψi,k(r) = fi(r)e
(ik.r)                                                  (43) 

 

The first part of the expression represent the cell periodic term of the wavefunction. This 

term can be further expanded using plane waves. The finite plane waves have the wave 

vectors replicating the reciprocal lattice vectors (G) of the crystal. The expanded form is 

as follows: 

  𝑓𝑖(𝑟) = ∑ 𝑐𝑖,𝐺𝑒(𝑖𝐺.𝑟)
𝐺                                             (44) 

Thus the electronic wavefunction (each) can be represented as the summation of the plane 

waves: 

  𝜓𝑖,𝑘(𝑟) = ∑ 𝑐𝑖,𝑘+𝐺𝑒{𝑖(𝑘+𝐺).𝑟}
𝐺                               (45) 

 

Thus, with the help of the Bloch Theorem, the problem of the infinite electrons is linked 

with the identical problem for the reciprocal space vectors (at the first Brillouin zone). 

The solution is to calculate the finite wavefunctions at specific periodic cells, k, of the 

Brillouin zone. 

 

The Kohn-Sham equation is needed to be solved at each of the k-points to converge 

(under the consideration of large k-points). This leads to a highly expensive 

computational process. The wavefunctions for the entire k-space can be imitated using the 

wavefunctions at single specific k-points in such a way that an identical wavefunction is 

made available at an adjacent reciprocal k-space. 
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Different approaches (Chadi-Cohen,124 Monkhorst-Pack125) have been recommended to 

attain more accurate space charge density of the system by sampling the reciprocal space 

and finally interpreting the Kohn-Sham equation at unique k points of the Brillouin Zone. 

The more dense the k-point grid is, the lesser the error margin but with a higher 

computational expense. 

The k-point wavefunctions are built up using a unique plane wave basis set including the 

infinite plane waves. The impact of the plane waves with lesser kinetic energy is much 

higher than the waves with higher kinetic energy.  Thus the plane wave basis set can even 

be reduced to a finite extent.  

 In principle the plane wave series is condensed to include the terms up to a certain 

defined energy (cut-off energy). The kinetic energy can be found from the second order 

derivative of the wavefunction, and is evaluated from the Bloch’s wavefunction 

expansion as: 

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 =
ℏ2

2𝑚
|𝑘 + 𝐺|2 ≤ 𝐶𝑢𝑡 − 𝑜𝑓𝑓 𝐸𝑛𝑒𝑟𝑔𝑦                              (46) 

The limiting factor for the cut-off energy saves the computational expense as the amount 

of the plane waves per k point is also reduced. An error is generated in the overall energy 

of the system due to the lesser number of the G-vectors employed. The error can be 

reduced using the higher cut-off energy during computation.  

The plane wave basis set reduces the Kohn-Sham equations to a much simpler set and the 

process becomes highly efficient. The reciprocal space replication can be done using the 

Fast Fourier transformation technique to convert from the real to the reciprocal space.  

Furthermore, the absence of any Pulay terms126 and the stresses in the Hamiltonian make 

the computed Hellmann127-Feynman128 force to be equivalent to the derivative of the 

overall energy relative to the ionic position. The convergence criterion being simple is 

dependent solely on the cut-off energy.  
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A highy converged outcome involves large number of plane waves even with all the 

advantages of employing the plane waves. Although the local atomic wavefunctions are 

not exactly matched in the plane waves, useful information can be extracted from the 

projection analysis using the Gaussian or Wannier functions.  

2.2.5. Scalability 

The computational process of the Kohn-Sham equations is an expensive method. The 

computing power of 17.59 PetaFLOPS/s (quadrillions of calculations per second) has 

already been achieved in 2012 and research is going on to reach 1 ExaFLOPS (1018) (one 

quintillion FLOPS) by 2018. This level of computational power has been absent even in 

the last decade. The future of the Density Functional Theory looks really bright with 

better and higher available computing power, larger system sizes can be considered for 

calculation. The diagonalisation of the Hamiltonian with N plane waves requires an Order 

of complexity of Ο(N3). The memory requirement involves an Order of Complexity 

Ο(N2). The orthogonalisation process with Nb number of bands has the order of Ο(NNb
2), 

which is highly expensive. 

However the computational power must be utilised wisely and the convergence criterion 

must be utilised through the proper utilization of the minimum feasible basis set and the k 

point grids.  

2.2.6. Application      

 

The Density Functional Theory (DFT) can be used in studying the ground state properties 

of different metals, insulators and semiconductors. The theory can also predict the 

properties for the complex materials (e.g. proteins, carbon nanotubes) along with the 

regular bulk materials. The current work focuses on the structural properties of the III-N 

semiconductors. 
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The pseudopotential techniques in the LDA and GGA are applied by 

Froyen-Cohen,129,130,131 Yin-Cohen,132,133 Garcia134 to analyse the structural properties of 

cohesive energy, bulk modulus as well to compute the pressure dependency during phase 

transitions in different semiconductors (e.g. GaAs, AlAs, GaP, AlP, Si). Interesting 

information has also been shown by Garcia et al134 in his paper which deems that the 

results of LDA for the semiconductors are not getting improved by the GGA usage. The 

computation of the electronic charge dispersal and the total energy curves for the crystal 

phases of GaAs and Si proves the reliancy on the atomic volume by Yin and Cohen.132,133 

The bandstructures and the fundamental properties of the III-Ns are estimated with the 

help of DFT by Yoshida et al.135 The elastic properties of the wurtzite class of 

semiconductors are computed using DFT by Xiao-Ju et al.136 DFT has also been 

employed to verify the dependency of the different structural properties of GaN on the 

strain.137 The pressure dependency of the electronic, structural and optical properties 

using the pseudopotential approach for the Gallium Nitride (GaN) has been assessed by 

G.Y. Gao et al.138 More importantly, Wang-Ye139 illustrated, through the usage of DFT, 

the dependency of the phonon and the dielectric properties of the III-nitrides, arsenides 

and phosphides on pressure. Thus the widespread applications of the Density Functional 

Theory (DFT) suggest that the predicted material properties can be accurately computed 

and are the reason for the popularity of the theory.  
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2.3.  kp Method and Deformation Potential 

We need to be able to compare our piezoelectric fields with experiment. That’s not easy 

as direct comparison is impossible. Experimental results are on bandstructure and 

wavefunctions. We then need to calculate those as a function of piezoelectric field to 

compare. How do we do it? Methods available are empirical pseudopotential and kp. The 

kp method is widely used model for calculations not only for bulk semiconductors but 

also lower dimensional systems such as QW, QD and NWs because the calculations are 

quite precise near the bandedges there. The kp method is limited to semiconductors, 

direct or indirect bandgap. It is chosen because of ease and also the already available 

code140 . The process is started with the known form of the bandstructure at the 

bandedges and then applying the perturbation theory the bands away from the high 

symmetry points are described.141  

As the work is more focussed on understanding the semiconductor properties, we 

consider a semiconductor with a bandedge at k0. We further assume that the Bloch 

functions and eigenvalues are known for the bandedge, thus the equation: 

 [
𝑝2

2𝑚
+ 𝑉(𝑟)] ∙ 𝜓𝑛(𝑘0, 𝑟) = 𝐸𝑛(𝑘0) ∙ 𝜓𝑛(𝑘0, 𝑟)                                (47) 

As in compound semiconductors mostly, the maximum of the valence band and the 

minimum of the conduction band occur at the same point in the k-space - at the Gamma 

point. Such semiconductors are called direct-gap semiconductors. In case of an indirect 

bandgap semiconductor, the minimum of the conduction band is reached at some other 

point in the k-space. Thus in most cases, k0 is the Gamma point (= [000]) in the 

Brillouin zone and we are considering the direct bandgap semiconductors here. 

Assuming each of the band eigenfunction away from Gamma (= [000]) can be 

expressed as a linear combination of the Bloch functions at Gamma: 
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 𝜓(𝑘, 𝑟) = ∑ 𝑏𝑛(𝑘)𝜓𝑛(𝑘0, 𝑟) ∙ 𝑒𝑖(𝑘−𝑘0)∙𝑟
𝑛              (48) 

where 𝑏𝑛 are the expansion coefficients, to be determined. The secular equation is given 

as                          ‖〈𝑒𝑖(𝑘−𝑘0)∙𝑟𝜓𝑛′
(𝑘0, 𝑟)|𝐻 − 𝐸|𝑒𝑖(𝑘−𝑘0)∙𝑟𝜓𝑛

(𝑘0, 𝑟)〉‖ = 0    (49)  

We can rewrite this equation through a simple expansion for the central cell section of the 

Bloch states.  

As  𝑝 = −𝑖ℏ∇ and   ∇ (𝑒𝑖(𝑘−𝑘0)∙𝑟𝜓𝑛) = 𝑒𝑖(𝑘−𝑘0)∙𝑟(∇ + 𝑖(𝑘 − 𝑘0))𝜓𝑛, 

Substituting, we have  

[
𝑝2

2𝑚
+ 𝑉(𝑟)]𝜓𝑛(𝑘, 𝑟) =  [

{𝑝+ℏ(𝑘−𝑘0)}
2

2𝑚
+ 𝑉(𝑟)] 𝑒𝑖(𝑘−𝑘0)∙𝑟𝜓𝑛(𝑘0, 𝑟) 

= 𝑒𝑖(𝑘−𝑘0)∙𝑟 [
{𝑝 + ℏ(𝑘 − 𝑘0)}

2

2𝑚
+ 𝑉(𝑟)]𝜓𝑛(𝑘0, 𝑟)  

= 𝑒𝑖(𝑘−𝑘0)∙𝑟[
ℏ2

2𝑚
(𝑘 − 𝑘0)

2 +
ℏ

𝑚
(𝑘 − 𝑘0) ∙ 𝑝 + 𝐸𝑛(𝑘0)]𝜓𝑛(𝑘0, 𝑟) (50)  

The determinant of the eigenvalue then becomes  

 

‖〈[
ℏ2

2𝑚
(𝑘 − 𝑘0)

2 + 𝐸𝑛(𝑘0) − 𝐸] 𝛿𝑛′𝑛 +
ℏ

𝑚
(𝑘 − 𝑘0) ∙ 𝑃𝑛′𝑛(𝑘0)〉‖ = 0    (51) 

where  𝑃𝑛′𝑛 is the momentum matrix element inbetween the various band edge states 

𝑃𝑛′𝑛 = ∫𝜓𝑛′
∗ (𝑘0, 𝑟) 𝑝 𝜓𝑛(𝑘0, 𝑟) 𝑑3𝑟        (52) 

We can now explicitly write the Energy vs k relationship to second order in perturbation 

theory: 

𝐸𝑛(𝑘) = 𝐸𝑛(0) +
ℏ2𝑘2

2𝑚
+

ℏ2

𝑚2
∑

|𝑘∙〈 𝜓𝑛′(𝑘0)|𝑝| 𝜓𝑛(𝑘0)〉|
2

𝐸𝑛(0)−𝐸𝑛′(0)𝑛≠𝑛′       (53) 

The above equation can also be expressed in terms of effective mass m* as  

𝐸𝑛(𝑘) = 𝐸𝑛(0) + ∑
ℏ2

𝑚𝑖,𝑗
∗ 𝑘𝑖 ∙𝑖,𝑗 𝑘𝑗      (54) 

where 
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𝑚

𝑚𝑖,𝑗
∗ = 𝛿𝑖,𝑗 +

2

𝑚
 ∑

〈 𝜓𝑛′(𝑘0)|𝑝𝑖| 𝜓𝑛(𝑘0)〉〈 𝜓𝑛′(𝑘0)|𝑝𝑗| 𝜓𝑛(𝑘0)〉

𝐸𝑛(0)−𝐸𝑛′(0)𝑛≠𝑛′     (55) 

The equation is valid for conduction band edge and the split-off bands.  

For the conduction band, we get  

𝐸𝑐(𝑘) = 𝐸𝑐(0) +
ℏ
2
𝑘
2

2𝑚𝑐
∗            (56) 

and  

   
1

𝑚𝑐
∗ =

1

𝑚
+

2𝑝𝑐𝑣
2

𝑚2 ∗
1

3
(

2

𝐸𝑔
Γ +

1

𝐸𝑔
Γ+Δ

)     (57) 

 
where 𝐸𝑔

Γ is the band gap at the Gamma point and  is the Heavy Hole-Split-Off 

band separation. 

 

k.p methods are also known as effective mass methods. 

 

Figure 2.3-1: A schematic showing the nature of the central cell symmetry at the bandedges of direct 

and indirect semiconductors. Reproduced from Ref [141] 
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The valence band has the Heavy Hole (HH), Light Hole (LH) degeneracy at the top of the 

valence band. As we move away from the Gamma point, the strong interaction inbetween 

the two states gives rise to a splitting among the bands. The split-off (SO) band can also 

impact the valence band states, as it is much closer to the HH and LH. 

 

Ignoring the conduction band effects in the determinant equation, we finally get a 6x6 

eigenvalue equation. Symmetry is considered to get the nonzero elements and form of the 

matrix equation.  

The matrix will now be expressed in the basis of the valence spin dependent p-type states 

(not exactly p but close: they are combinations of pure angular momentum p states). 

 

The list of the quantum numbers involved:  

L    Spin     Angular Momentum   Projection of J 

1  ±1/2   J        mj 

px      3/2           +3/2 

px      3/2            +1/2 

py      3/2             -1/2 

py      3/2             -3/2 

pz      1/2           +1/2 

pz      1/2             -1/2 

 

The Kohn-Luttinger142 Hamiltonian is then used to describe the Hamiltonian for the 

valence band in the basis of the angular momentum numbers. 

 

 𝐻𝐾𝐿 = −

[
 
 
 
 
 
 
 𝐻𝐻𝐻 𝑏 𝑐 0 𝑖𝑏√2 −𝑖√2𝑐

𝑏∗ 𝐻𝐻𝐻 0 𝑐 −𝑖𝑞 𝑖√3𝑏/√2

𝑐∗ 0 𝐻𝐿𝐻 −𝑏 −𝑖√3𝑏∗/√2 −𝑖𝑞

0 𝑐∗ −𝑏∗ 𝐻𝐿𝐻 −𝑖√2𝑐∗ −𝑖𝑏∗/√2

−𝑖𝑏∗/√2 𝑖𝑞 𝑖√3𝑏/√2 −𝑖√2𝑐 𝐻𝑆𝑂 0

𝑖√2𝑐∗ −𝑖√3𝑏∗/√2 𝑖𝑞 𝑖𝑏√2 0 𝐻𝑆𝑂 ]
 
 
 
 
 
 
 

 (58) 

where 
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  𝐻𝐻𝐻 =
ℏ2

2𝑚
[(𝛾1 + 𝛾2)(𝑘𝑥

2 + 𝑘𝑦
2) + (𝛾1 − 2𝛾2)𝑘𝑧

2]  

  𝐻𝐿𝐻 =
ℏ2

2𝑚
[(𝛾1 − 𝛾2)(𝑘𝑥

2 + 𝑘𝑦
2) + (𝛾1 + 2𝛾2)𝑘𝑧

2]  

  𝐻𝑆𝑂 =
(𝐻𝐻𝐻+𝐻𝐿𝐻)

2
+ ∆  

𝑏 =
−√3𝑖ℏ2

𝑚
𝛾3(𝑘𝑥 − 𝑖𝑘𝑦)𝑘𝑧  

𝑐 =
−√3ℏ2

2𝑚
[𝛾2(𝑘𝑥

2 − 𝑘𝑦
2) − 2𝑖𝛾3𝑘𝑥𝑘𝑦  

𝑞 = (𝐻𝐻𝐻 − 𝐻𝐿𝐻) √2⁄   

𝛾1, 𝛾2, 𝛾3 are the Luttinger parameters or bandstructure parameters. 

Because the SO splitting is usually large in most semiconductors, this 6x6 matrix could 

be reduced to a 4x4 for the LH and HH bands. Thus, the appropriate Hamiltonian for the 

HH and LH states is then 

𝐻 = − [

𝐻𝐻𝐻 𝑏 𝑐 0
𝑏∗ 𝐻𝐻𝐻 0 𝑐
𝑐∗ 0 𝐻𝐿𝐻 −𝑏
0 𝑐∗ −𝑏∗ 𝐻𝐿𝐻

]        (59) 

In terms of fitting parameters, the strain Hamiltonian for the HH and LH states, known as 

deformation potentials, can be written with the following form: 

𝐻 = −

[
 
 
 
 
𝐻𝐻𝐻

𝜀 𝐻12
𝜀 𝐻13

𝜀 0

𝐻12
𝜀 ∗

𝐻𝐿𝐻
𝜀 0 𝐻13

𝜀

𝐻13
𝜀 ∗

0 𝐻𝐿𝐻
𝜀 −𝐻12

𝜀

0 𝐻13
𝜀 ∗

−𝑏∗ 𝐻𝐻𝐻
𝜀 ]

 
 
 
 

       (60) 

where the matrix elements are as follows: 

𝐻𝐻𝐻
𝜀 = 𝑎𝑑(𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧) − 𝑏𝑑[𝜀𝑧𝑧 −

1

2
 (𝜀𝑥𝑥 + 𝜀𝑦𝑦)]  

𝐻𝐿𝐻
𝜀 = 𝑎𝑑 (𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧) + 𝑏𝑑[𝜀𝑧𝑧 −

1

2
 (𝜀𝑥𝑥 + 𝜀𝑦𝑦)]  

𝐻12
𝜀 = −𝑑𝑑(𝜀𝑥𝑧 − 𝑖𝜀𝑦𝑧)  

𝐻12
𝜀 =

√3

2
𝑏𝑑(𝜀𝑦𝑦 − 𝜀𝑥𝑥) + 𝑖𝑑𝑑𝜀𝑥𝑦  
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Here, 𝑎𝑑 , 𝑏𝑑 and 𝑑𝑑 are the valence band deformation potentials. 

For wurtzite structures, the strained Hamiltonian and the deformation potentials are used 

from the paper of S. L. Chuang and C. S. Chang143 

Common multi-band kp models include the 6-band model which includes only valence 

bands, while the 8-band and 14-band models include valence as well as conduction bands. 

We can replicate the bulk bandstructure more precisely with the multiband kp 

Hamiltonians than the standard 6- or 8-band Hamiltonian. Even with models including a 

large number of bands (≥15 or 30 after incorporation of the spin degree of freedom), can 

reproduce the bulk band structure throughout the whole Brillouin zone. 144   

We use the kppw code, developed by our collaborator, Prof. Stanko Tomić at University 

of Salford, to perform the kp calculations. The bulk bandstructure parameters extracted 

from ab initio codes like CASTEP and CRYSTAL are used in the kppw code. The code 

defines matter at an atomistic level of theory and provides comprehensive information 

regarding the cell periodic functions along with other important parameters like band 

edge effective masses, bulk dipole matrix elements and various energy gaps, extracted at 

various levels of DFT theory. In the kppw code those parameters are used for 

parametrization of 8-, 14- or 16-band bulk Hamiltonian. The need for effective masses 

gradually disappears with more bands being included. The code determines the 

Hamiltonian of the nanostructure as quantum well and quantum dots or any other random 

arrangement of those including the effects of surface interfacing, strain, piezoelectric and 

spontaneous polarization field. This code has been utilized for calculations of quantum 

dots energy bandstructure144 and in Figure 2.3-2, the wavefunctions for top six hole states 

and bottom five electron states for a square-based pyramidal InAs/GaAs QD using 

different models has been illustrated. To identify the effect of the Hamiltonians beyond 
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the standard 8-band one, model system using several different Hamiltonians with a 

different level of sophistication has been performed and in Figure 2.3.2, (a)-(g) resemble 

(a) The 8-band kp Hamiltonian consisting of the kinetic part only (without the spin-orbit 

interaction and strain),  

(b) The 8-band kp Hamiltonian consisting of the kinetic part with the spin-orbit 

interaction taken into account (but without strain),  

(c) The 8-band kp Hamiltonian consisting of the kinetic part with the interface band-

mixing effects taken into account (but without spin-orbit interaction and strain),  

(d) The standard 8-band kp Hamiltonian consisting of the kinetic part with the spin-orbit 

interaction and strain, as well as the strain-induced linear piezoelectric potential,  

(e) The 8-band kp Hamiltonian consisting of the kinetic part with the spin-orbit 

interaction and strain, as well as the strain-induced piezoelectric potential and the 

interface Hamiltonian,  

(f) The 14-band kp Hamiltonian consisting of the kinetic part only (without the spin-orbit 

interaction and strain)  

(g) The 16-band kp Hamiltonian consisting of the kinetic part only (without the spin-

orbit interaction and strain)  

(h) The 14-band kp Hamiltonian consisting of the kinetic part with the spin-orbit-

interaction and strain (as well as the strain-induced piezoelectric potential).144 

While we can observe the effect of different components, the results in Figure 2.3.2 (e) 

represent the strong influence of piezoelectricity; we are interested in exploiting the 

non-linear piezoelectricity and the corresponding impact on the electronic properties. 
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Figure 2.3-2: Wavefunctions of hole and electron states in InAs/GaAs QD using different kp models 

(Reproduced from Ref. [144])  

       

The kppw code has also been utilized for electronic structure calculations in QWs145 and   

intermediate band solar cells146.  We will discuss more about our outcomes from the kp 

calculations in the next chapter. 
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3.  Non Linear Piezoelectricity 

In this chapter, we will discuss non-linear piezoelectricity in the semiconductor materials 

III-Vs, III-Ns and ZnO. We will also discuss the potential exploitation of the non-linear 

piezoeffects in devices and applications in later sections of this chapter. 

3.1. Review of Previous Works  

3.1.1. ZB III-V Semiconductors 

3.1.1.1. Introduction 

 

Direct bandgap semiconductors such as GaAs and InAs have the innate ability to easily 

absorb and emit light and they are extremely popular in device fabrication of photovoltaic 

solar cells, sensors and LEDs.  The piezoelectric effect147,148in those semiconductors 

originates from the lattice mismatch, when two semiconductors are grown epitaxially on 

top of each other, because such layer by layer growth introduces shear strain. Such effect 

can be easily observed in QWs grown on (111) substrates, NWs and QDs via the 

off-diagonal strain tensor. The Piezo effect in QWs and QDs has been demonstrated to be 

the source of experimentally observed anisotropies in recent years. 59,60,149 A brief review 

of past work from Grundman et al61, Davies62 and Stier et al63 shows that only first-order 

PZ effects have been considered and the experimental PZCs of bulk GaAs and InAs are 

used while for alloyed semiconductors (InGaAs), the PZCs are typically obtained through 

linear interpolation of bulk values. 

Bester et al150 first made the point that substantial errors are observed in PZ field 

calculation when the second-order effects are neglected. Later, Migliorato et al 151 
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demonstrated that the estimates of first- and second-order piezoelectric tensor can be 

realized through the use of a semiempirical model reliant on input from Density 

Functional Theory (DFT).  According to the work from Bester et al,150  the second-order 

PZC for InAs and GaAs are predicted to be -0.230 and -0.115 (C/m2) respectively while 

Migliorato et al151 points out that there is no reasonable explanation as to why they should 

be different from the reported experimental value of -0.045 and -0.16 (C/m2) respectively. 

Furthermore the method of Migliorato et al151 appears to provide significant improvement 

compared to that of Bester et al150 (who uses the Linear Reponse technique) and achieves 

better agreement with the experimental data for InxGa1-xAs/GaAs QWs. 

3.1.1.2. Piezoelectric Quantum Well 

 

As discussed before, the polarization components are given by Pi = eijkεjk, with εjk being 

the strain tensor and eijk the piezoelectric coefficients.  The shear strain (εij), the 

off-diagonal component of strain tensor, is in a direct relation with the PZCs (e14, e25, e36).  

Due to the presence of ZB symmetry, the expression can be reduced to one PZC value, 

e14. The expression for the piezoelectric charge originating from the presence of shear 

strain is then given by 

𝜌(𝑟) =  −∇ ∙ (2𝑒14(𝑟) ∙ [𝜀𝑦𝑧(𝑟)𝑖 + 𝜀𝑥𝑧(𝑟)𝑗 + 𝜀𝑥𝑦(𝑟)𝑘])    (61) 

From the strain tensor, it is evident that the off-diagonal values of the strain tensor are 

non-zero for strain in [111] direction. Interestingly, the PZ polarization created in a QW 

in [111] direction can be inferred from measured quantities. This is where the modelling 

and detailed study of the polarization in III-V semiconductors is of fundamental 

importance. The main aspect of studying such QW nanostructure grown on (111) 

substrates is the presence of an induced PZ field in the growth direction, which simplifies 

the modelling of experimental data. The results of previous experiments involving 

photocurrent measurements reveal that the e14 values152,153,154 physically found from 
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measurement cannot be fitted to the linear interpolation of bulk values of InAs and GaAs 

for an alloy composition  of  x <0.3. The modelling results of the photocurrent 

measurement under low-temperature measurement from Hogg152and Sanchez-Rojas153 

reported upto 70% of the interpolated value. On the other hand, under slightly higher 

room-temperature condition, Cho156 reported 80% of the interpolated value.  Assuming 

the QW has an ideal structures with sharp interfaces and the width and alloy composition 

as the fitting parameter, these researchers152,153,154,155,156  detrermined the e14 reduction 

form electrooptical data. 

The work of Ballet et al157  revisited previous work on a QW structure grown on (111) 

susbstrate with Molecular Beam Epitaxy (MBE) process, but included in the model the 

presence of Indium segregation at the interfaces.  These calculations,157 later repeated by 

Migliorato et al,151 demonstrated that the correct value is 86% of the interpolated value, at 

x= 0.15, corresponding to the value of -0.124C/m2. Therefore a much smaller reduction 

than initially hypothesized. 

3.1.1.3. Piezo coefficients with Harrison’s Model 

 

The conclusions reported in the previous section are valid only within an Indium 

concentration range 0 ≤x≤0.2 for InxGa1-xAs semiconductor. The large lattice mismatch 

between two epitaxially grown semiconductors has a negative impact on the crystal 

quality and no experimental structures with x>0.4 have ever been grown. Different works 

152, 153, 154 ,155 ,156, 157 ,158 ,159  have all concluded that it was not possible to have an estimate 

of e14 when x>0.4. Later, Migliorato et al151  obtained estimates of e14 for x>0.2 by 

detailed observation of the reduction of the interpolated values within what is generally 

referred to as Harrison’s model.57 In order to utilize this method Migliorato et al151 

needed first to solve a significant shortcoming: the fact that the calculated piezoelectric 

charge 𝑒𝑝
∗ is generally in poor agreement with the experimental value leading to erroneous 
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determination of the PZC. The way round it was to accept the need for one parameter to 

be chosen and adjusted to have a better agreement of the theoretical value to the 

experimental one. Harrison’s model of piezoelectricity57 is very simple, easy to 

manipulate and can also provide possible analysis of general problems using simple ideas 

describing the dominant mechanism for stable structures.  

 The fundamental unit of the III-V semiconductors are tetrahedron, each containing five 

atoms that build up the crystal structure. One such tetrahedron is subjected to atomic level 

stress which is then directly related to the hydrostatic strain, the diagonal components of 

the strain tensor and is responsible for the atomic displacement dk.  Under influence of 

very small shear strain (εij<0.02), the off-diagonal quantity, very little or negligible 

atomic displacement is observed.  

Kleinman’s58 theoretical work first proposed that the relaxation occurs perpendicular to 

the direction of the shear strain. The displacement dk can be thought as to be linear in the 

strain and thus, the Kleinman parameter ζ, normally found < 1, is a constant. The 

Kleinman parameter was assumed to be a constant for a given material before Rideau et 

al160 and Migliorato et al151 showed otherwise. Fig. 3.1.1.3-1 shows the characterization 

of ζ on strain parameter εij and εk  respectively from Migliorato’s et al151 demonstrating 

the strong dependence of dk on εk and a very little dependence on εij, for  εij<0.02. 

In the same work, Migliorato et al151reported for the first time an alternative method to 

the linear response technique for the evaluation of non-linear effects. He used the tight 

binding formalism of Harrison57 but calculated the material dependent parameters using 

DFT and density functional perturbation theory (DFPT). In Harrison’s model57 the 

polarization in the 𝑥𝑖̂ direction, for any atom at the centre of a tetrahedron, is written as:  

𝑃𝑘̂ = 𝑍𝐻
∗ 𝛿𝑘 +  𝛽 ∑ (𝑟𝑞⃑⃑⃑  ∙ 𝑘)𝛿𝑅𝑞

4

𝑞=1
      (62) 
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where 𝑍𝐻
∗  is the atomic effective charge associated with both the cations and anions in 

the crystalline structure, 𝛿𝑘 the separation between anions and cations due to internal 

relaxation of the sublattices and the term β being the transfer parameter.  

The term 𝛿𝑘 can be also written in terms of the so called Kleinman parameter ζ, the 

shear strain 𝜀𝑖̂𝑗 and the lattice parameter a as: 

𝛿𝑘 =
𝑎𝜁𝜀𝑖̂𝑗̂

4
          (63) 

The transfer parameter is related to the more common encountered polarity αp, the 

measure of electric dipole associated with the bond, and this relation is given by  

β=2αp(1-αp
2). The two terms in the equation are normally of opposite sign and the 

polarization is a delicate balance between the difference between the direct dipole (𝑍𝐻
∗ 𝛿𝑘) 

and bond contributions (𝛽 ∑ (𝑟𝑞⃑⃑⃑⃑ ∙ 𝑘)𝛿𝑅𝑞

4

𝑞=1
) resulting from the fact that each of the four 

atoms located adjacent to the center atom of a tetrahedron is at a distance rq. 

𝛿𝑅𝑞 represents the differences in rq due to the rearrangement of atoms when the crystal 

structure undergoes internal relaxation due to shear strain in the plane orthogonal to the 

vector 𝑘. 

From Eqs. (62) and (63), it is possible to derive the linear piezoelectric coefficient e14, 

by dividing Eq. (62) by 2Ω, twice the volume per atom and multiplying times the electron 

charge e  and explicitly writing the bond dipole in terms of 𝛿𝑘:  

𝑃𝑘̂ = 
𝑒

2Ω

𝑎𝜀𝑖̂𝑗̂𝜁

4
(𝑍𝐻

∗ −
2

3
𝛽

(1−𝜁)

𝜁
) =  𝑒14𝜀𝑖̂𝑗      (64) 

All the parameters 𝑍𝐻
∗ , ζ and β must be known accurately for the model to yield 

accurate results.161  

Migliorato et al151 advocated the use of DFT and DFPT to evaluate not just the bulk 

values but also their dependence on the diagonal components of the strain tensor. 
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The  plane wave calculations in Migliorato et al151 was performed with a set of 

pseudopotentials provided by Troullier-Martin scheme162 while  the internal sublattice 

displacement ζ can be calculated provided a strain tensor is given. With a 

Monkhorst-Pack grid163 of 4×4×4 and planewave cutoff energy of 50 Ryberg, the lattice 

constant of InAs and GaAs are reported to be 11.37 and 10.48 a.u respectively.151 

A simple strain tensor is applied, with an added small shear strain (γ<0.01) onto the 

hydrostatically compressed lattice. The cation and anion are then relaxed to minimize the 

cohesive energy. The strain tensor and the simple relation of strain and ζ is given as 

follows: 

𝑆𝑡𝑟𝑎𝑖𝑛 𝑡𝑒𝑛𝑠𝑜𝑟 =  (

1 − 𝜀 𝛾/2 𝛾/2
𝛾/2 1 − 𝜀 𝛾/2
𝛾/2 𝛾/2 1 − 𝜀

)     (65) 

𝛿𝑟 =  √3
𝑎𝜁𝛾

4(1+𝜀)
         (66) 
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Figure 3.1.1.3-1: Strain dependence of Kleinman parameter of GaAs and InAs (Reproduced from 

Ref. [151]  
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The behaviour of ζ on shear and hydrostatic strain is interesting, keeping one of the 

quantities variable and another fixed. According to the figure 3.1.1.3-1, increasing 

hydrostatic strain ε increases the ζ parameter but increment in the shear strain γ reduces ζ 

concluding that piezoelectric charges get decreased with reduced ζ.151  Also, Wang and 

Ye164 noticed and reported the strain dependence on ζ.  Further DFT calculations165 have 

also been performed to study the influence of combinations of hydrostatic and shear 

strain. The author151 reported the strain dependence of ζ for the first time.  

 

3.1.1.4. Bond Polarity, Atomic Effective Charge 

The most recent calculation for bond polarity 𝛼𝑝, reported by Wang and Ye165, involved 

DFPT to compute the transverse effective charge and then the determination of  𝛼𝑝 from 

tight-binding expression linking the two quantities. The reported values for GaAs and 

InAs are 0.423 and 0.49 respectively, which are also validated by Shen et al,166 with the 

bond orbital approximation. Wang and Ye165 also reported the effect of hydrostatic strain 

to be a linear reduction of the polarity with an estimated decay of -0.95ε and -1.08ε and 

for GaAs and InAs respectively. The atomic effective charge 𝑍𝐻
∗  is obtained using the 

expression from Harrison’s work of 𝑍𝐻
∗ = 𝑍 − 4 +  𝛼𝑝, where Z is the chemical species 

column number, extrapolated from experimental data of Falter et al. 167 but, this approach 

is found to overestimate 𝑍𝐻
∗ . 

Several other studies166,167,168 have also reported Z* values with much close agreement 

with experimental data.  But even using the crude approximation of  𝑍∗ =  𝑍𝐻
∗ + 4/3  it 

has been difficult to provide widely agreed values of 𝑍𝐻
∗ , with a spread of theoretical and 

experimental data and a simple approach is used. 

DFT calculated 𝛼𝑝 and ζ values (using the DFT calculated lattice constants) and  𝑍𝐻
∗  are 

being used as a fitting parameter in Migliorato et al151 to ensure a precise bulk GaAs and 
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InAs e14 PZC experimental value of -0.16 and -0.045 (C/m2) respectively from equation 

(64). This process gives the corresponding values of 𝑍𝐻
∗  to be 0.43 and 0.54 and found in 

reasonable agreement with the values of 0.323 and 0.612 respectively from a basic 

tight-binding calculation. 

 

 Table III: Parameters used in calculations from Migliorato’s et al151 

   

Bulk 

𝜼 

distortion 

Second Order: 

𝚾𝜼 + 𝚾𝟐𝜼𝟐 + 𝚾𝟑𝜼𝟑 

    𝚾 𝚾𝟐 𝚾𝟑 

𝜻 GaAs 0.455 𝜺𝜶𝜶 5.88 -28.99 75.03 

   𝟐𝜺𝜶𝜷 -0.23 -19.98 102.75 

   𝜺𝜶𝜶 ∗ 𝟐𝜺𝜶𝜷 1.87 47.55 255.05 

 InAs 0.58 𝜺𝜶𝜶 5.42 -25.84 51.67 

   𝟐𝜺𝜶𝜷 -0.45 -11.86 70.78 

   𝜺𝜶𝜶 ∗ 𝟐𝜺𝜶𝜷 1.73 31.37 166.61 

𝜶𝒑 GaAs 0.423165 𝜺𝜶𝜶 -0.95 0 0 

 InAs 0.49165 𝜺𝜶𝜶 -1.08 0 0 

𝒁𝑯
∗  GaAs 0.43 𝜺𝜶𝜶 −4[𝛼𝑝(𝑏𝑢𝑙𝑘) − 𝛼𝑝(𝜀)] 

 InAs 0.54 𝜺𝜶𝜶  

 

In first approximation  

𝑍𝐻
∗ = 𝑍 − 4 + 4𝛼𝑝         (67) 

In reality, this expression overestimates 𝑍𝐻
∗  and the difference of 𝑍𝐻

∗ − 𝑍𝐻
∗ () gives a 

reasonable approximation for hydrostatic strain effects and hence the strain dependence 

of 𝑍𝐻
∗  can be derived from the expression for 𝛼𝑝(𝜀). 
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3.1.1.5. Compositional Disorder Effect 

The linear interpolation scheme has been shown to give wrong estimates for quantities 

like polarity as shown by Bouarissa169 work with empirical pseudopotential within virtual 

crystal approximation. This is demonstrated through the overestimation of values by 8% 

compared to the interpolated value of In0.5Ga0.5As. In Figure 3.1.1.7.1, such effect has 

been illustrated and can be associated with the random alloy compositional disorder. 

Migliorato et al151 demonstrates the expression for composition-dependent polarity and 

the derived bowing parameter as  𝛼𝑝 =  0.423 + 0.161𝑥 + 0.000148𝑥2    (68) 

As elastic properties for InxGa1-xAs follows Vegard’s law, Kleinman parameter ζ does not 

require any bowing parameter. Rather, 𝑍𝐻
∗   needs such scheme to obtain its strain 

dependence and is achieved by substituting 𝛼𝑝 from Eq (68) into Eq (67).151 

 

3.1.1.6. Piezo coefficient evaluation 

The evaluation of the PZC in the case of hydrostatic and shear deformed crystal requires 

the modification of equation (64).  The polarization needs to be divided by (1-ε) to yield 

the desired quantity. The equivalent cell volume under strain to first order is given by V’ 

that is found equivalent to V (1+3ε). The theoretical value has been directly compared to 

the existing experimental one from Migliorato et al.151 The parameter ζ and lattice 

constant 𝑎 for intermediate compositions of InxGa1-xAs has been computed through linear 

interpolation using the scheme described in previous section for 𝑍𝐻
∗  and 𝛼𝑝.  The values 

obtained for the PZC is linear as can be observed from Figure 3.1.1.3-1 but found 

dissimilar to the simple interpolated values between the e14 bulk values.  Strain effect has 

also been incorporated to compare with the experimental data and therefore included the 
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effect of strain for a uniform epitaxial layer of InxGa1-xAs grown directly on GaAs (111) 

substrate as a function of the composition (x). 

The changes in the interpolated parameters ζ, 𝑍𝐻
∗  and  𝛼𝑝 under strain is calculated using 

the relationship as defined in earlier section. The modified Eq (64) is then used to 

evaluate the PZC e14 and the results of the scheme have been summarized in Table III.  

 

3.1.1.7. Important Discussion Review 

 

This section will discuss the works and the differences of the two models from Migliorato 

et al151 and Bester et al150. Firstly, it should be highlighted here that photocurrent 

spectrum fitted results from Migliorato et al151 are different to the linear terms from 

Bester et al150. The reader should have understood by now that the PZC e14 value is 

considerably modified under strain. Migliorato et al151 demonstrate major influence of the 

incremental shear and hydrostatic strain on the elastic properties, in particular the 

Kleinman parameter.  

Also, it should be noted that figure 3.1.1.7-1 shows the PZC as a function of strain that a 

sufficiently thick epitaxial layer of uniform composition (x) would undergo when grown 

on GaAs (111) substrate and not to be confused to be a simple function of composition, 

which is misunderstood by many readers. Therefore, the unstrained bulk value for InAs in 

figure 3.1.1.7-1 does not match exactly with the plotted quantity of the strained InAs on 

GaAs (111). 

Major differences between the two models of Migliorato et al151 and Bester et al150 lie in 

the linear term and the former model151 is applied to reproduce the experimental value of 

e14. As no such process has been applied in latter work150, the linear term predicts larger 

estimates. 
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Figure 3.1.1.7-1: Piezoelectric coefficient dependence on In compositions (Reproduced from Ref. 

[151])  

The PZ field is often reported to be in the range of 120-165 kV/cm for In composition in 

the QW between x=0.15 and x=0.21. 152,153,154,155,156,157 

Such measurements rely on the assumption that the maximum of the oscillator strength is 

reached at flat band condition when the applied bias compensates the internal PZ field. 

However, it is assumed that a constant bandgap exists across the well region, while if 

there is a nonuniform stoichometric profile, then, at different applied bias, the maximum 

of the oscillator strength and the flat-band condition can be observed.  

But the PZ field estimates are somewhat unreliable and there is clearly a conflict on the 

field predictions when varying In compositions is considered.151 In case of 10nm wide 

QW with x=0.15, the PZ field is estimated to be 220kV/cm using theoretical 

expression141. Even with an assumption of 30% reduction of e14 value from the 

interpolated values the field is reported to be 165kV/cm. Furthermore, a field of 

190kV/cm is instead expected when 16% reduction in e14 is used while including diffused 
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interfaces (In segregation). This suggests the importance of In segregation for the huge 

discrepancy in the reported values of e14.  An 11nm wide of QW, for x=0.15, is predicted 

to have a PZ field of 80 kV/cm from Bester et al150 and the value is much smaller than the 

reported value152,153,154  and is  42% of the most realistic estimate157. Instead, Migliorato 

et al151 predicts the PZC which results in a much better match in the PZ field estimation 

to Ballet’s work157. This is clearly owing to the similar methodology used in evaluating 

the field and the values of e14 are identical. 

3.1.2. Previous Work: pseudomorphically grown semiconductors 

3.1.2.1. Bond Polarity and Kleinman 

 

In the work of Garg et al170, an extension of the previous work from Migliorato et al151 

was presented, where the strain dependence was extended from a selected number of 

strains to a full set of strains for biaxially strained materials.  

The bond polarity value 𝛼𝑝 was evaluated using DFPT and the CASTEP software 

package, with the applied strain tensor on the unit cell is given by  

𝑇𝑒𝑛𝑠𝑜𝑟 =  (

1 − 𝜀𝑥𝑥 0 0
0 1 − 𝜀𝑦𝑦 0

0 0 1 + 𝜀𝑧𝑧

)       (69) 

Diagonal strain components have non-zero values only, with strain ranges from - 0.01 to 

0.1. The strain components in the x direction and y-direction are identical while it is 

different across the z direction. 

A k-point grid of 4x4x4 is used with LDA and ultrasoft pseudopotential171 and a 1000eV 

energy cutoff to get fairly good convergence of 1% error for different combinations of 

k-point grid and cutoff energy. The bond polarity is obtained by evaluating the following 
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expression with 𝛥𝑍 = 1for III-V compounds from the born charge calculated from DFPT 

for GaAs and InAs as a function of the parallel or perpendicular strain component. 

𝑍∗ = −𝛥𝑍 + 4𝛼𝑝 + 4𝛼𝑃(1 − 𝛼𝑝
2)       (70) 

Figure 3.1.2.1-1 reveals the strain dependence of the bond polarity 𝛼𝑝 value of GaAs and 

InAs, following the repeating trend of the Born effective charge Z*. Hence with 

hydrostatic pressure, a decrease in the bond polarity 𝛼𝑝 is observed. 

 

 

Figure 3.1.2.1-1:  Bond Polarity plots of GaAs and InAs. Dependence of the bond polarity on the 

applied strain for GaAs and InAs. For each value of the perpendicular strain, each point corresponds 

to a different value of the parallel strain that ranges from -0.01 to +0.1, (top to bottom) as indicated 

by the arrows. (Reproduced from Ref[170]) 
 

The DFT calculations for the Kleinman parameter were performed with the CASTEP172 

software package, applying the following strain tensor 

𝑇𝑒𝑛𝑠𝑜𝑟 =  (

1 − 𝜀𝑥𝑥 𝛾/2 𝛾/2
𝛾/2 1 − 𝜀𝑦𝑦 𝛾/2

𝛾/2 𝛾/2 1 + 𝜀𝑧𝑧

)       (71) 
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Since the atomic displacement is obtained from the DFT calculations in fractional 

coordinate, the data is converted to the Cartesian coordinate before working out the 

internal sub-lattice displacement ζ. This is the equivalent of the Kleinman parameter ζ, 

which is evaluated with following equation 

𝑑𝑟 =  
1

(1+𝜀)
 
√3

4
𝑎 𝛾 𝜁        (72) 

where dr is the displacement of the cation to anion, 𝑎 being the lattice constant, γ/2 the 

off-diagonal tensor or shear strain and ε the hydrostatic strain. 

 

 

Figure 3.1.2.1-2:  Kleinman parameter plots of GaAs and InAs (Reproduced from Ref[170]) 

The Kleinman parameter ζ, vs   perpendicular strain εzz and parallel strain for GaAs and 

InAs is demonstrated in Figure 3.1.2.1-2, showing a unique trend, of strong strain 

(hydrostatic) dependence of Kleinman parameter. 
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3.1.2.2. Piezoelectric coefficients 

 

Garg et al170 also calculated the PZCs by fitting of polynomials to the DFT data and 

found that once all second order effects are incorporated, a single PZC will not be able to 

reproduce the strong dependence on the combination of strain in in-plane and off growth 

direction plane. In fact, a random combination of diagonal components of strain (exx, eyy 

and ezz) requires the usage of 3 coefficients in e14, e25 and e36. In this work, second order 

effects are considered in 3 effective coefficients. However, we can still obtain the full 

second order PZ tensor if the polynomial fitting is performed. However in Garg et al170, 

this was not performed as combinations of strain involving exx=eyy were included in the 

calculations. The part of the motivation of the work was to extend the previous work to a 

more generalized strain tensor to obtain the second order PZCs. 
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Figure 3.1.2.2-1:  Piezoelectric coefficients plot for GaAs and InAs 

In Figure 3.1.2.2-1, the PZCs are shown to be highly strain dependent in x, y and z 

direction. When InAs grows epitaxially on top of GaAs there is 5-7% of lattice mismatch 

and at that point,   PZC is observed to turn from negative to positive giving a 7% sign 

reversal. 
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3.1.3. More recent work on non-linear piezoelectricity in ZB 

materials 

In recent work from Tse et al173, the linear, quadratic and cubic piezoelectric coefficients 

related to diagonal terms of the strain tensor for both GaAs and InAs zincblende crystals 

are estimated, given in Table IV. After conditions are imposed on the coefficients based 

on the cubic symmetry of the crystal, a reduced set of PZCs for the fitting equation is 

found: 

𝑒′𝑙𝑚 = 𝑒𝑙𝑚 + ∑ 𝑒𝑙𝑛𝑚
3
𝑛=1 𝜀𝑛 + ∑ 𝑒𝑙𝑛𝑛′𝑚𝜀𝑛𝜀𝑛′

3
𝑛≤𝑛′=1 + ∑ 𝑒𝑙𝑛𝑛′𝑛′′𝑚𝜀𝑛𝜀𝑛′𝜀𝑛′′

3
𝑛≤𝑛′≤𝑛′′=1 ,(73) 

The magnitude of these extra terms are assessed and it is concluded that while linear and 

quadratic terms are likely to necessitate inclusion even in the limit of small strain, cubic 

terms should only be included when the material undergoes significant (around 10%) 

strain. 

Table IV:  Linear and non-linear coefficients obtained from DFT data. For second 

and third order terms the parameters are invariant upon cyclic permutation of the n 

indexes. 

Parameter   GaAs InAs 

𝒆𝒍𝒎   -0.160 -0.045 

𝒆𝒍𝒏𝒎 
l=n  e114=e225=e336 -0.666 -0.653 

l≠n e124=e235=e316 -1.646 -1.617 

  𝒏 ⇔ 𝒏′   

𝒆𝒍𝒏𝒏′𝒎 

l=n=n’ e1114=e2225= e3336 -0.669 -3.217 

l=n≠n’ e1124=e1134=e2215= 

e2235=e3316=e3326 

-2.694 -5.098 

l≠n=n’ e1224=e1334=e2115= 

e2335=e3116=e3226 

-1.019 1.590 

l≠n≠n’ e1234=e2135=e3126 -5.636 -1.962 

  𝒏 ⇔ 𝒏′ ⇔ 𝒏′′   

𝒆𝒍𝒏𝒏′𝒏′′𝒎 

l=n=n’=n’’ e11114=e22225= e33336 -0.840 21.063 

l=n=n’≠n’’ e11124=e11134=e22215= 

e22235=e33316=e33326 

-0.241 12.112 

l≠n=n’=n’’ e12224=e13334=e21115= 

e23335=e31116=e32226 

-9.168 -15.072 

l≠n=n’≠n’’ e12234=e21135= e31126 -1.471 -7.450 

n≠n’≠n’’ e11234=e21235=e31236 -4.725 -4.909 

 

This section completes the review of previous works and from the coming section, the 

results of the current work with thorough discussion is presented. 
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3.2.  Results on III-Nitride Semiconductors 

Among III-V semiconductors, the III-N family is the one for which piezoelectricity 

influences more the optical and electrical properties.174 This is because the piezoelectric 

coefficients (PZCs) are typically one order of magnitude larger than other III-V 

materials47 and because the polarization vector is in most cases parallel to the growth 

direction.175 The calculation of PZ properties in semiconductors is often affected by 

uncertainties in the correct values of the PZCs and in the case of wurtzite (WZ) crystals 

by the additional problem of determining the spontaneous polarization (Psp) component.47 

However for III-N second order PZCs had not yet been reported before this work, making 

it difficult to assess the influence of second order piezoelectricity in nanostructures.  

3.2.1. DFT Calculations 

The elastic deformation and Z*, for both the bulk and strained cases, were evaluated by 

using planewave pseudopotential, with pseudopotentials derived with the 

Troullier-Martin scheme,162 density functional theory in the local density approximation 

(DFT-LDA)116 and density functional perturbation theory (DFPT), with pseudopotentials 

derived with the Hamann scheme,176 within the CASTEP172 code. Single-particle orbitals 

expressed in a plane-wave basis set with kinetic energy of up to 103 eV, and Brillouin 

zone summations of up to 10x10x6 Monkhorst-Pack k-point grids163 were sufficient to 

converge the simulations below a remaining error of about 1% for multiple combinations 

of k-point grids and kinetic energy. 

The dynamic effective charge was computed from the Born charge matrix, studied via the 

Berry phase approach177 by applying a finite electric field perturbation in periodic 

boundary conditions. The matrix was then diagonalized and an average of the eigenvalues 

was taken as the effective charge. Both its bulk and strain dependence were determined in 

the same way.  
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WZ crystals are characterized by 3 independent quantities: the a in-plane, the c off-plane 

lattice parameters and u, the deformation from the ideal structure. The u parameter is at 

the origin of the Psp effect as even in the absence of external strain the tetrahedrons are 

asymmetric, resulting in only 3 of the 4 bonds being equal in length to each other. Strain 

induced polarization arises from additional modifications of the cation positions relative 

to the anions under the effect of external pressure. One major advantage of the present 

approach is that both the spontaneous and strain induced polarization effects are described 

within the same model; hence the results we will present for the PZCs and the Psp are 

uniquely linked. Furthermore only one PZC (e31) was used as input, while the other ones 

(e33 and e15) are calculated. 

3.2.2. Linear Piezoelectric coefficients 

The DFT calculated equilibrium values for a, c and u are presented in Table V for GaN, 

AlN and InN, together with Z* and the resulting bond polarity αp. The results of our 

calculations yielded similar values to those reported earlier.47,178 In the same table we 

report the experimental values of e31 used to fit ZH* in our models, together with the 

obtained values of ZH* which are much smaller than those of Z*, as explained earlier. 

ZH* is the atomic charge, already explained in more detail in section 1.3. 

The prediction of our model shows a substantial agreement with reported experimental 

values of e33 for bulk III-N (data in brackets). For e15 instead our predictions are always 

slightly larger than previously proposed values. It is also worth noting that the sign of e15 

as predicted by our model is negative for all III-N materials studied. In the literature both 

positive51,179 and negative180 values of e15 have been reported, but we have identified this 

as being the result of a misprint contained in Muensit et al51 when reporting the 

experimental values from Tsubouchi and Mikoshiba.52 
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Table V: Physical parameters of Group-III Nitrides (GaN, AlN and InN) calculated 

in this work. In brackets comparison with other calculated or experimental values. 

Parameters GaN   AlN   InN 

a (Ǻ)  3.155   3.063   3.523 

c (Ǻ)  5.149   4.906   5.725 

u (Ǻ)  0.376   0.382   0.377 

Z*   2.583   2.553   2.850 

αp   0.517   0.511   0.578 

Z*H  0.70   0.85   0.65 

Psp (C/m2) -0.007(-0.029th)
47 -0.051 (-0.081th)

47 -0.012 (-0.032th)
47 

e31(C/m2) -0.55 (-0.55exp)
51 -0.6 (-0.6exp)

51  -0.55 (-0.55exp)
53  

e33 (C/m2) 1.05 (1.12exp)
51  1.47 (1.50exp)

51 1.07 (0.95exp)
53  

e15 (C/m2) -0.57(-0.38th)
180 -0.6 (-0.48exp)

52 -0.65 (-0.44th)
180  

e311(C/m2) 6.185   5.850   5.151 

e333(C/m2) -8.090   -10.750  -6.680 

e133(C/m2) 1.543   4.533   1.280 

 

The frequently cited work of Bernardini and Fiorentini47 reported the value of Muensit et 

al51 rather than the original experimental work and since many authors referred to their 

work180 when listing PZCs, the error propagated. The compilation from Vurgaftman and 

Meyer181 also contains the erroneous positive sign. We have shown in our previous work 

on zincblende GaAs and InAs151 that ZH* needs to be roughly 25% of the value of the 

dynamic effective charge (Z*) in order to obtain values of the PZ polarization in 

agreement with experiment. 
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3.2.3. Internal Displacement (u) and Effective Charge (Z*) 

We examined the strain dependence of the internal displacement parameter (u), to 

observe the impact of combinations of perpendicular strain and isotropic parallel strain.182  

The dependence of u on a is illustrated in fig.3.2.3-1. 

 

In Figure 3.2.3-1 we demonstrate the distribution of the internal displacement 

parameter (u) with parallel and perpendicular strain (varying from -10% to 10%) 

calculated with parameters from our model.183  
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Figure 3.2.3-1: Strain dependence of 

internal displacement parameter (u) as a 

function of in-plane and perpendicular 

strain (from -0.1 to 0.1 in steps of 0.02) 

for a) GaN, b) AlN and c) InN 

respectively. Reproduced from work in 

Ref [182] 
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The results are quite interesting as we can observe a wide variation of the u parameter 

with strain and can be tuned for different combinations of strain applied on the system. 

 

Also, we tried to investigate the strain dependence of Z* for all III-N materials for various 

arrangements of strain along in-plane and perpendicular to growth plane directions.  

 

The outcomes of the Z* calculations reflect an unusual trend of non-linearity of 

dependence on strain and is valid in all three materials, namely GaN, AlN and InN.  
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Figure 3.2.3-2: Z* as a function  of  perpendicular strain (from -0.1 to 0.1 in steps of 0.02) along 

with in-plane strain, following similar steps as perpendicular strain, for a) GaN, b) AlN and c) InN 

respectively. The legend define the different values of in-plane strain. 
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We have observed similar trends in polarization as well and contrary to linear trends, 

Z* also shows dependence of second order effects on strain. Figure 3.2.3-2 resembles the 

strain effects on Z* for strain along perpendicular as well as in-plane strain varying ±10% 

with steps of 2%.  

The effective charge was used in our model later on to evaluate the bond polarity: 

  Z∗ = 4𝛼𝑝 + 4𝛼𝑝(1 − 𝛼𝑝
2) − ∆𝑍               (74) 

with ΔZ =1. 

 

3.2.4. Spontaneous Polarization 

The most striking difference between our predictions and earlier reports (data in brackets 

in Table V) is however the values of the Psp, for which no direct experimental data is 

available. The calculation of the Psp followed exactly the same methodology used for 

determining the PZCs once the value of ZH* was identified. The values that we calculated 

are between 25% and 65% of the values reported in the literature.47,180 This is not 

surprising since often the Psp has been calculated using a simple dipole model with 

charges equal to the transverse effective charge (Z*). The simple dipole model is 

equivalent to the first term in our model derived from Harrison’s original formulation.57 

Since in our model we use ZH*, the atomic charge, while earlier work tended to use Z* 

(which is roughly 3-4 times larger) our values are proportionally smaller. The problem 

that calculating both the PZCs and Psp using Z* leads to grossly overestimated PZCs has 

been pointed out by Bernardini and Fiorentini.47 Furthermore we note the existence of 

experimentally extrapolated values of the Psp
 184,185,186 which are substantially smaller than 

those given in the literature.47,180 
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3.2.5.  Strain dependence of the polarization 

We also studied the strain dependence of the total polarization (strain induced plus Psp), to 

determine whether the second order PZ effect in the strain has relevance to WZ crystals.  

Non-linear polarization effects have already been reported for the III-N 

semiconductors,187,188 however, to the best of our knowledge, no comprehensive list of 

second order PZCs has been reported. 

 

Our previous work on ZB InGaAs151,170 showed that second order effects in the strain 

arise from a non-linear displacement of the interpenetrating cation and anion fcc 

sublattices. Such non-linearity was revealed in our previous work even using DFT-LDA. 

Furthermore the effective charges and hence the bond polarity also appear to have a 

second order dependence on the strain, though the effect is weaker. In WZ crystals such 

behaviour is also present leading overall to a non-linear behaviour of the total 

polarization.  

 

In Figure 3.2.5-1 we show the total polarization as a function of combinations of parallel 

and perpendicular strain (varying from -0.1 to 0.1) calculated with our model (circles) and 

compared with the predictions from the linear model (dashed lines) using parameters 

compiled by Bernardini and Fiorentini.47  
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Figure 3.2.5-1:  Comparison of the total polarization as a function of perpendicular and parallel 

strain calculated in this work (circles) and that calculated using the linear model with parameters 

from Ref [47] (dashed lines). The perpendicular strain varies from -0.1 to 0.1 in steps of 0.02. . 
Reproduced from the work of Ref [183]. 
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The first obvious difference between the two models is the reduced values of the Psp
 

which offset the various lines of constant stress along the c-axis. Furthermore our model 

has second order terms that result in the bowing of the various lines, as expected from a 

second order model with quadratic dependence. 

 

 For parallel strain in the (0001) plane not exceeding ±0.08, and large strain along the 

c-axis (i.e. perpendicular strain), our model always predicts significantly reduced positive 

values of total polarization for the tensile case, and greatly increased values for the 

compressive case, compared to the linear model. As an example, a thin film GaN layer 

pseudomorphically grown on AlN, GaN would be strained by -3% in the growth plane 

(ε//) and by +6% along the c-axis (ε┴) resulting in a linear polarization of +0.095 C/m2 but 

a substantially lower second order value of +0.06 C/m2. This is clearly a large correction 

and cannot be neglected. 

 

It is worth noting that if one removed the Psp and only considered strain induced PZ 

polarization, for small strains the results of the two models would always coincide, as 

expected. With larger strain instead the second order terms become more important and 

deviations between the two models become more pronounced. It is only when the 

different values of the Psp term are introduced that one notices that for e.g. large 

compressive strain in the plane the two models appear to coincide. However this is purely 

coincidental and has no physical significance. What has significance instead is that our 

model predicts a much larger negative and a smaller positive range of attainable PZ fields 

for strain in the range ±10%. 
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3.2.6. Second Order Piezoelectric coefficients 

By fitting our data with a second order polynomial we have also obtained second order 

PZCs for quadratic terms in the strain containing parallel and perpendicular strain 

components (but not for those containing shear coefficients); the results are presented in 

Table V, where the subscripts 311, 333 and 133 refer respectively to a double strain in the 

plane, perpendicular to the plane and the combination of both parallel and perpendicular 

strain. The coefficients given in Table V allow us to express the strain dependence of the 

magnitude of the total PZ polarization in the direction orthogonal to the growth plane as 

2 2

33 31 // 311 // 333 133 //2Tot spP P e e e e e            
           

 (75)

  

At present we have not evaluated the second order dependence of the polarization due to 

shear strain in the growth direction or growth plane, connected to the PZC e15. Such 

dependence could have a potential impact on nanostructures such as quantum dots, but 

not on 2-dimensional thin films which are the focus of this work, for which Eq (75) is 

valid.   

3.2.7. Comparison with experimental results on binary materials  

To test the validity of our method and the PZCs obtained (listed in Table V) we compared 

with the experimental values for AlN/GaN superlattices. 189,190,191,192 

For this comparison we have evaluated the field in the AlN and GaN regions 

(conventionally referred to as the barrier (b) and well region (w) respectively) using the 

well known superlattice equations.186   

𝐹𝑧
𝑤 =

(𝑃𝑆𝑃
𝑏 +𝑃𝑃𝑍

𝑏 −𝑃𝑆𝑃
𝑤 −𝑃𝑃𝑍

𝑤 )

є𝑤+ є𝑏(𝐿𝑤/𝐿𝑏)
            

 (76)

 

𝐹𝑧
𝑏 = −

𝐿𝑤

𝐿𝑏
𝐹𝑧

𝑤

             

 (77)
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In Eqs. (76) and (77) the spontaneous and strain induced polarizations (Psp and PPZ) 

combine to give a resulting field in the z direction of growth. The field F also depends on 

the dielectric constant of the material (є) and the relative lengths Lw and Lb of the well 

and barrier material. 

For the relative dielectric constant we used values183 of 10.0, 8.5 and 15.3 for GaN, AlN 

and InN respectively, while using a linear interpolation between binary values for the 

alloys. Comparison between our calculated fields (to first and second order) in the well 

region (GaN) and experimental values for several superlattices differing only in the Lw/Lb 

ratio is presented in Table VI. We also show the results of the calculations using the 

widely used parameters of Bernardini and Fiorentini47 (previous work). For this material 

combination the second order effect is small, as the GaN region is unstrained for growth 

on GaN on sapphire. 

Hence in this case the field is mainly produced by the difference in Psp which with our 

parameters is 0.044 C/m2. Our calculated values are in excellent agreement with all 

available experimental data, with the exception of one where the agreement is however 

satisfactory (the case of Lw/Lb = (0.8 ±0.26)/(2.8±0.52)). Furthermore our model appears 

to produce much closer agreement compared to using the parameters from previous 

work.47  

Interestingly another independent theoretical work193 has attempted to calculate the 

barrier and well fields in the framework of DFT (in the generalized gradient 

approximation and also in the self interaction corrected scheme). Their predictions, based 

on calculating the interface electrostatic potential difference in superlattice structures, 

appear also consistent with both the experimental data and our calculated values (Table 

VI). The substantial agreement confirms the correctness of our PZCs for GaN and AlN.  

In particular it validates the proposed lower values of the Psp term, which is probably the 

most interesting outcome of our model.   
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TABLE VI: Experimental and calculated values of the piezoelectric field in various 

quantum wells comprising binary GaN, AlN and InN combinations. The calculated 

values in this work have been obtained both to first and second order for 

comparison. We also calculated (previous work) the corresponding values using the 

first order parameters of Bernardini and Fiorentini.47 The last column provides the 

estimates of the ratio of the well width to the barrier width used in the superlattice 

equations.184   

 

Quantum Experiment This work  This work Previous   Lw/Lb  

Well    (to II order) (to I order)  work 

  (MV/cm) (MV/cm) (MV/cm)  (MV/cm) 

 

GaN/AlN 10.2189    10.30  10.10  10.65  2.6/100189 

 

GaN/AlN 8.0190    8.06  7.91  8.43  2.5/6190 

 

GaN/AlN 10.0 ±1.0191   9.00 ±0.50 8.80±0.50 6.00 ±1.00   (0.8 ±0.26)/   

                 (2.8±0.52) 191 

 

GaN/AlN 5.04192    5.06  4.95  4.76  2.3/1.9192 

  (5.19÷4.76 th)
193

  

 

GaN/AlN 6.07192    6.07  5.98  6.55  1.4/1.9192 

  (6.09 th)
193 

 

InN/GaN 9.25 th (InN)
194

   9.62  8.29  6.93  4.7/6194  

8.13 th (GaN)
194   8.24  7.10  5.90 

 

InN/GaN 5.21 th (InN)
194

    6.61  6.10  5.85.  7/4194  

11.17 th (GaN)
194  12.2  9.79  7.89 

 

InN/GaN 3.99 th (InN)
194

    7.11  6.50  5.70  9.3/6194 

  8.52th (GaN)
194   11.51  10.05  7.33 

  

InN/GaN 6.32th (InN) 
194

   9.32  8.13  7.2  7/8194 

  6.84th (GaN)
194   8.70  7.57  5.84 

  

 

We have also attempted a similar comparison with superlattice structures comprising 

InN/GaN layers. Unfortunately we could not find any experimental data to verify our 

predictions. However theoretical values194 have been calculated with the same method 

used by Cui et al.193 The calculated values for the 3 methods discussed are listed in Table 

VI. 

In the Figure 3.2.7-1, we show the comparison of the fields in the well region between 

our calculated fields (cross) with the experimental fields (squares) along with the linear 
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model47 (triangles) with different estimates of the ratio of the lengths of the well and the 

barrier used in the superlattice equations.184  

 

Figure 3.2.7-1: Comparison of the fields in the well region between our calculated fields (cross) with 

the experimental fields (squares) along with the linear model (triangles) with different estimates of 

the ratio of the lengths of the well and the barrier used in the superlattice equations.186 The linear 

model parameters are taken from Ref.[47]. We compared the field in GaN/AlN (hollow symbols) and 

InN/GaN (solid symbols) QWs. Reproduced from this work of Ref [195] 

 

 

The difference between the values of Psp for InN and GaN is only 0.005 C/m2 and hence 

this case is a stronger test for the strain induced polarization. It is difficult to make 

conclusions based on the obtained data, as our model does not always agree with that of 

Shieh et al.194 In fact the two models seem to either agree for the barrier or the well 

values, but not for both. It is possible that the structures used in the calculations differ by 

some aspect, but we cannot draw any conclusions here other than again the linear model 

using parameters from Bernardini and Fiorentini47 leads to substantial differences from 

our calculated values of the field. 
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3.2.8. Comparison with experimental results on alloys 

Given that a significant amount of experimental data for AlGaN/GaN and InGaN/GaN 

quantum wells (QWs) exists the validity of our model can be further tested. A 

complication of treating alloys is that a significant parabolic dependence in the 

composition for all PZCs is present.196 To test our parameters quantitatively we have 

therefore introduced a parabolic alloy dependence in all our coefficients, including the 

second order ones. The procedure we used was to apply to our parameters the same 

percentage deviation of the Al0.5Ga0.5N and In0.5Ga0.5N from the linearly interpolated 

values given in Ambacher et al196 for the classic model of Bernardini and Fiorentini.47 

Then we could easily fit a parabolic dependence in essence equivalent to that given in 

Ambacher et al.196  

Table VII: Experimental and calculated values of the piezoelectric field in various 

quantum wells comprising AlGaN/GaN and InGaN/GaN alloys. Experimental values 

for the GaN/InGaN structures were digitally extracted from Fig. 3 of Ref [53]. The 

calculated values have been obtained including the first and the second order 

parameters from this work and with the parameters from Bernardini and 

Fiorentini47 (previous work), in both cases including the parabolic alloy 

dependence.196 In brackets, for comparison, we also show the values obtained 

including a simple linear interpolation of the piezoelectric parameters. The last 

column contains the values of the ratio of the well width to the barrier width used in 

the superlattice equations.184  

 

Quantum Well  Experiment This work  This work Previous  Lw/Lb 

     (to II order)   (to I order) work 

(MV/cm) (MV/cm) (MV/cm)  (MV/cm) 

 

Al0.17Ga0.83N/GaN 0.76184  0.760 (1.010)   0.775  1.205 (1.730)  3/50184 

 

Al0.65Ga0.35N/GaN 2.00185  2.090 (2.350)   2.130  2.170 (2.590)    6/3185 

 

GaN/In0.06Ga0.94N 0.6153  0.606 (0.610)   0.594  0.544 (0.530)    3/3 

 

GaN/In0.09Ga0.91N 1.0053  0.997 (0.980)   0.980  0.766 (0.756)    3/3 

 

GaN/In0.11Ga0.89N 1.33197  1.325 (1.310)   1.290  1.210 (1.180)    3/3197 

 

GaN/In0.12Ga0.88N 1.60  1.603 (1.610)   1.575  1.500 (1.450)    3/6 

 

GaN/In0.22Ga0.78N 3.09  3.097 (3.120)   3.000  3.132 (3.231)    3/8 
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Using the corresponding parameters that define the quadratic dependence on alloy 

composition (given in Table VIII) we have then compared directly with the values of the 

PZ field in the QW region reported for a variety of QW sizes and compositions for both 

AlGaN/GaN184,185 and InGaN/GaN197 structures in Table VII.  It is also worth noting that 

the reported values of the PZ field in QWs are not direct measurements but rather a value 

derived from electro-optical characterization of confined levels. Again our comparison is 

based on calculating the PZ fields in the QW region using Eqs (76) and (77).

 
TABLE VIII: Quadratic dependence on alloy composition for ternary nitride alloys 

(AlxGa1-xN, InxGa1-xN). The parameters are for the equation:  Y=Ax2 + Bx + C 

 

 

System  Y    A       B         C  

 

 AlxGa1-xN  Psp      -0.025     -0.019     -0.007 

  e31   0.064    -0.114     -0.550 

  e33   0.141     0.279      1.050 

e311   0.674    -1.000     6.185 

  e333   1.055    -3.715     -8.090 

e133   0.340     2.650     1.543 

 

InxGa1-xN  Psp      -0.001     -0.005     -0.007 

  e31  -0.368     0.368      -0.550 

  e33   0.119    -0.099     1.050 

e311   0.635    -1.669     6.185 

  e333   1.182     0.228     -8.090 

e133   0.226    -0.489     1.543 

 

A comparison between experimental values of the PZ field in different quantum wells, 

the predictions obtained with the parameters from Bernardini and Fiorentini47 and those 

obtained with the second order parameters of this work, with and without the parabolic 

dependence on the alloy composition, are presented in Table VII. It is obvious that the 

parabolic dependence on alloy composition is essential in obtaining PZ fields in the range 
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of values of experiment, but for all structures there is a substantial improved agreement 

between our model compared to the widely used one of Bernardini and Fiorentini.47  

Just like for the binary materials, the AlGaN/GaN structures are more sensitive to 

difference in spontaneous polarization, while in the InGaN/GaN structures the strain 

induced polarization and hence the second order coefficients play a more important role. 

This is also confirmed by the fact that the difference between first and second order tends 

to increase as the In content is increased, a consequence of sharply increasing strain. 

 

Figure 3.2.8-1: Comparison of the calculated field values (cross) of InGaN/GaN QWs in the well 

region on different alloy composition and Lw = Lb, with the experimentally reported values (squares) 

and the estimates with the parameters of the linear model (triangles).47 Reproduced from the work of 

Ref [195] 

 

 

In Figure 3.2.8-1, we have compared the experimental values53,184 of the PZ field in 

InGaN/GaN QWs, having different alloy composition while the length of the well and 

barrier were taken as equal, with those obtained from this work with second order 
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parameters and the estimates with the parameters of the linear model.47 For all the 

structures having various alloy composition, we have found a much better agreement 

using our model with the experimental work compared to the linear model.47 The 

agreement between the QW field in the well region and the experimental values strongly 

favours the validation of our PZCs for InN in real nanostructures.  

3.2.9. Matching spontaneous polarization in nitride alloys 

As an interesting case we will now discuss the values of the Psp in the ternary alloys 

AlGaN and InGaN. In Fig. 3.2.9-1 we compare the values of Psp for the AlxGa1-xN 

(squares) and InxGa1-xN (circles) alloys as a function of the molar fraction, as evaluated in  
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Figure 3.2.9-1: Comparison of the spontaneous polarization (Psp) for the AlxGa1-xN (squares) and 

InxGa1-xN (circles) alloys as a function of the molar fraction x, calculated in this work (solid lines-non-

linear model (NL)) and those calculated using the linear model with parameters from Ref [196] 

(dashed lines-linear model (L)).  The quadratic dependence in the molar fraction, with parameters 

from Table IV was used to evaluate the data within the solid lines. Reproduced from the work of Ref 

[183]. 
 

this work (solid lines) and as calculated using the linear model with parameters from  
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Ref [196] (dashed lines).  

The quadratic dependence in the molar fraction for the Psp values in this work was 

introduced using the parameters from Table VIII. Firstly we notice that the model used 

for the dashed lines predicts that only In rich InGaN with In content of at least 80% 

would exhibit the same spontaneous polarization as an AlGaN alloy. For this to happen, 

the Al content would have to be low, up to about 20%. 
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 Figure 3.2.9-2: Mapping of the difference in the spontaneous polarization (Psp) between AlxGa1-xN 

and InyGa1-yN for x≤0.5 and 0<y<1. The solid line illustrates the region where such difference 

vanishes (0<x<0.17). Reproduced from the work of Ref [183]. 
 

The data presented in the solid lines, which uses our reduced values of the Psp term, 

shows that instead this equality can be easily achieved at low In and Al contents. In Fig. 

3.2.9-2 we show the mapping of the difference in Psp between AlxGa1-xN and InyGa1-yN 

for x≤0.5 and y between 0 and 1.  
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A line exists where such difference vanishes for values of x between 0 and 17%. Because 

of the inherent difficulty of growing In rich InGaN alloys the fact that it is possible to find 

vanishing Psp differences for low enough In and Al fractions, means the possibility of 

designing layers where, according to Eqs. (76) and (77) the PZ field is entirely due to the 

strain induced polarization and is reduced compared to having materials with a difference 

in the Psp terms. 

 

In conclusion, we have calculated both the Psp and the first and second order PZCs, in the 

framework of ab initio DFT and DFPT in conjunction with the semi empirical 

formulation of Harrison.57  

 

Compared with previous calculations, which used only the linear theory of 

piezoelectricity and large values of the Psp, our model, where a significant role of second 

order piezoelectricity and much smaller values of the Psp are proposed, provides a much 

better agreement with available experimental data of the PZ field in the quantum well 

regions for various III-N materials and their alloys.   

 

Furthermore we showed that our model predicts that by choosing particular values of the 

molar fractions in AlGaN and InGaN alloys it is possible to match the spontaneous 

polarization terms and reduce the total piezoelectric field to the strain induced one alone. 

This could have applications in the design of optoelectronic devices. 
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3.3. ZnO Semiconductors 

 

As we already discussed in the first chapter, the recent discovery of the applicability of 

ZnO nanowires as mechanical energy sensors has originated a new field, Piezotronics. 

The proposition of combining piezoelectric and electronic properties using semiconductor 

materials has great potential for the realization of self-powering devices, nanogenerators 

and flexible electronics. 

In II-VI semiconductors, like the III-N semicondutors, strain with a component along the 

polar axis of the crystal leads to the generation of electrical dipoles. In a wurtzite crystal 

such dipoles are linked to the diagonal strain tensor components and the resulting 

piezoelectric field is along the polar axis [0001]. Though the piezoelectric field in 

semiconductors has for a long time been treated as linear effect in the strain, the influence 

of non-linear components has already been discussed in zincblende III-V and wurtzite 

III-N semiconductors earlier in the chapter 3.  

 In this section, we will discuss the recent work on the quadratic piezoelectric coefficients 

(PZCs) of ZnO198 and demonstrate that the magnitude of the coefficients is such that 

cannot be omitted in any calculation of the polarization field. 

Similar to the behaviour of the polarization in III-N semiconductors, we observed the 

polarization to be non-linear as well in ZnO and the total polarization equation is identical 

to (75) with all the values in Table IX. 

Note that in our model smaller values of the spontaneous polarization are predicted 

compared to previous calculations47,199. This is an expected result and the reason behind it 

is explained in detail in our previous work on wurtzite III-N semiconductors183. 
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Table IX. Calculated and measured physical parameters for ZnO used in the 

calculations. Comparisons between our calculated values and other calculated 

and/or experimental ones are given in brackets. 

 

Parameters   

a (Å) 3.18 (3.2547)th 

c (Å) 5.16 (5.20747)th 

u  0.375 (0.37547)th 

Z* 2.164 (2.1147)th 

αp 0.67  (0.69200)th 

ZH* 0.23 

C33 (GPa) 176201 

C13 (GPa) 84201  

Psp(C/m2) -0.01 (-0.05747, -0.047199)th. 

e33 (C/m2) 1.15(1.22 ±0.04,202 0.9654)exp 

e31 (C/m2) -0.61(-0.51±0.04,202 -0.6254)exp 

e311 (C/m2) 3.98 

e333 (C/m2) -5.59 

e313 (C/m2) 1.21 

 

The dependence of the total polarization on strain in the range -0.08 to + 0.08 according 

to the classic linear model (LM) and our non-linear (quadratic) model (NLM) is shown in 

Figure 3.3.1. The main feature is that the NLM appear to predict compared to LM, more 

positive values of the polarization. This is part a result of the smaller values of the 

spontaneous polarization but also due to non-linear effects which manifest through the 

coefficients e333 and e133 when the strain is sufficiently large. 
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Figure 3.3-1: Dependence of the total polarization (C/m2) on strain in the range -0.08 to + 0.08 

according to the classic linear model (LM) and our non-linear (quadratic) model (NLM). The red 

square and blue dot resemble the NLM and LM prediction at -2% In-plane strain. Reproduced from 

Ref [198]. 
 

We also notice that in same cases the LM and NLM predict opposite signs for the 

polarization, e.g. around 2% compressive parallel strain and no perpendicular strain gives 

a value of the total polarization of -0.04 C/m2 or  +0.01 C/m2 using the LM (in blue dot) 

or NLM (red square) respectively. 

Thus, we have estimated the linear and quadratic piezoelectric coefficients of ZnO 

wurtzite crystals and the magnitude of the quadratic terms is significant and necessitates 

inclusion even in the limit of small strain.  

  



 108 

3.4. Applications and Devices 

This section explores the effect of non-linear piezoelectricity in applications and devices 

and its potential exploitation in III-V, III-N and II-VI semiconductors and nanostructures. 

We will discuss about the influence in the QW based devices, then progressing to the 

NWs and finally QD properties will be explored in the coming sections. 

3.4.1. Quantum well based LED optical properties 

The performance of the LED based devices has long been affected and limited by the 

much published issue of efficiency droop.203,204  One of the major factors limiting the 

light output power is the presence of in-built polarization fields that originate from the 

wurtzite crystal structure of III-N semiconductors.205,206,207,208  Such fields can be high 

enough to localize carriers at the interfaces and create, through Coulomb repulsion, 

energy barriers that hinder carrier transportation. With the aim of circumventing such 

issues much work has recently been concentrated on producing devices on non-polar and 

semi-polar crystal orientations.209,210,211,212 However, the output powers at high injection 

current of these devices currently do not outperform the best devices grown on (0001) 

planes (c-planes).208,213,214We calculated the field dependence of  blue and green 

InGaN-based LEDs on hydrostatic pressure.  

 

 The device performance would be strongly enhanced if such fields were sizeably reduced 

in InGaN c-plane grown structures which are currently grown on either sapphire or 

silicon substrates. We have recently shown215 that there is a correlation between the value 

of the internal field and the reduction of the efficiency in c-plane GaN-based LED 

devices. This was revealed using optical efficiency measurements as a function of applied 

hydrostatic pressure of commercially-available blue and green polar multi-quantum well 

(MQW) LEDs with indium content of 14% and 26%, respectively, well widths of 3nm in 
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both LED types, and barrier widths of 13 nm in blue and 16nm in green LEDs. Applying 

pressure from 0 to 1GPa led to a reduction of ~4% in the light output power for both 

LEDs at an operating current of 260mA. In order to correlate this effect with the value of 

the polarization field we estimated, the piezoelectric field in the quantum well region 

have been calculated using both the linear piezoelectricity (LP) model of Bernardini and 

Fiorentini47 and the more accurate recently reported non-linear187,188,196,216,217model (NLP) 

of Pal et al.183 

 

We reported215 that the LP model predicts a reduction of the field of around 2%, which 

should result in increased optical efficiency, which is the opposite effect to the 

experimental observations. In contrast, the NLP model predicts an increase of 4% in the 

strength of the piezoelectric field which is consistent with our experimental observations 

of a decrease in the optical efficiency with increasing hydrostatic pressure.  

 

Whilst we observe an inverse proportionality and linear scaling between the efficiency 

and the value of the piezoelectric field in the active region as calculated using the NLP 

model, the radiative recombination rate is expected to show a stronger (quadratic rather 

than linear) increase with reducing internal polarization field strength due to the 

enhancement of the optical matrix element in Fermi’s golden rule. This discrepancy can 

be attributed to the fact that the experimental output power is increased by the radiative 

recombination rate but decreased due to non-radiative processes,218 resulting, in this case, 

in an approximately linear rather than quadratic dependence on the applied pressure. 

 

We now investigate the dependence of the internal field on applied tetragonal pressure i.e. 

a combination of tensile (in the growth plane) and compressive (along the c-axis) strain, 

instead of hydrostatic pressure, which is equal in all directions, used in our experiments. 
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A very recent work by Suski et al 219  showed that in order to correctly reproduce optical 

experimental data for nitride based LED structures, we need to implement NLE. The 

pressure dependence of the PL peak energy has been evaluated experimentally and 

compared with kp calculations involving both our non-linear model of piezoelectricity as 

well as the classic linear model.  The impact of NLE has been tested and it has been 

observed that NLE provides much improved estimates. The interesting aspect of the 

results suggests that with linear model of piezoelectricity the theoretical predictions 

completely disagree with the experimental observations and follow the negative slope, 

even with implementation of NLE. While, the predicted values using our non-linear 

model shows the correct positive slope and implementation of NLE makes the theoretical 

outcomes closer to the experimental data. In Figure 3.4.1-1, triangles represent the linear 

PZ model with LE and NLE while circles and squares are the non-linear PZ model with 

LE and NLE respectively. The experimental results are marked in the blue hatched 

rectangle. The authors also compared to another model of piezoelectricity and termed it as 

nonlinear piezoelectricity due to dependence of the first-order piezoelectric constants on 

deviatoric strain, but referred to our more accurate and complete model as second order 

piezoelectricity to differentiate the two models. 

 This clearly suggests the importance of the non-linear PZ model and also the effect of the 

NLE in the theoretical calculations for much precise outcome.  

This prompted the inclusion of the effects of non-linear elasticity (NLE)103 in the 

calculations, performed in a similar framework as previously used.183  
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Figure 3.4.1-1: Comparison between the experimentally determined dependence of   dEPL/dP vs EPL,0 

and the results of the k.p calculations performed for InxGa1-xN/GaN QWs with x= 0.1 (empty 

symbols), 0.2 (half-filled symbols), and 0.3 (solid symbols). Triangles, circles, squares, and stars 

correspondto the theoretical results obtained using (i) linear piezoelectricity and linear elasticity, (ii) 

second-order piezoelectricity and linear elasticity, (iii) second-order piezoelectricity and nonlinear 

elasticity, (iv) nonlinear piezoelectricity (due to dependence of the first-order piezoelectric constants 

on deviatoric strain) and nonlinear elasticity, respectively. The hatched rectangle represents the 

experimental results. (Reproduced from T. Suski et al.[219])   

 

We studied a typical active region of an LED structure containing a series of 

InxGa1-xN/GaN multi quantum wells grown on a GaN layer, assuming that no residual 

strain from the substrate is present. For blue and green emission we used indium 

compositions of x=0.14 and x=0.26, respectively, and a typical structure with a 3nm/3nm 

well to barrier ratio. The build-in field in the quantum well region can be estimated from 

the super-lattice equations Eq. (76) and Eq.(77) from Chapter 3.2.7.  

The relation between parallel and perpendicular strain components is evaluated using the 

following equations103: 

 Linear Piezo +Linear Elasticity 

Non-linear Piezo +Non-linear Elasticity 

Our Non-linear Piezo +Non-linear Elasticity 

Our Non-linear Piezo +Linear Elasticity 
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𝐶𝛼𝛽(𝑃) = ∑ 𝐶𝛼𝛽,𝑖𝑃
𝑛4

𝑛=1           

   

 (78) 

𝜀 = −
2𝐶13(𝑃)

𝐶33(𝑃)
𝜀||         

   

 (79)  

where P is the internal pressure, 𝐶𝛼𝛽,𝑖 are the NLE parameters and 𝐶𝛼𝛽(𝑃) are the final 

pressure dependent elastic parameters, taken from Lepkowski.103  

 Using the relationship for the pressure-induced strain from Thomas et al.,220 Figure 

3.4.1-2 shows the relative change in compressive strain with hydrostatic pressure. 
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Figure 3.4.1-2: The proportional change of the hydrostatic compressive strain within the LEDs as a 

function of pressure.215 

 

In Figure 3.4.1-3 we show the dependence of the total polarization (spontaneous plus 

strain induced polarization) in the well and barrier region as a function of tensile strain 

(evaluated from NLE) in the plane orthogonal to the c-axis for the blue (a) and the green 

(b) LED structures. Note that vanishing tensile stress in this plot equates to the situation 

encountered in devices when the entire structure is lattice matched in the c-plane to the 



 113 

GaN lattice parameter. Essentially the tensile strain on the abscissa of the graph needs to 

be interpreted as an additional tensile strain but not as the overall strain.  

Therefore the polarization results from both the parallel strain due to the lattice mismatch 

between the bulk values of the InGaN and GaN lattice parameters and an additional 

(hypothetical) tensile strain. However we have also taken into account any additional 

compressive strain in the c-axis originating from the additional tensile strain in the 

c-plane. 
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Figure 3.4.1-3: Dependence of the total polarization (spontaneous plus strain induced polarization) in 

the well and barrier region as a function of tensile strain (evaluated from NLE) in the c-plane for 

both the blue (a) and the green (b) LED structures. Reproduced from the work in Ref [215] 
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Though both well and barrier polarizations, for both blue and green LED structures, show 

a similar slope as a function of additional tensile strain, the magnitude of the 

polarizations, when calculated using LP and NLP parameters, are substantially different. 

This is primarily a result of the much smaller spontaneous polarization terms of NLP 

compared to LP. In both cases of blue and green LEDs the polarization calculated with 

NLP is always stronger (more positive) than that calculated with LP.   

Significant differences between the two models arise when the polarizations shown in 

Figure 3.2.1-3 are used with the superlattice equation (Eq. (76) and Eq. (77)) from 

Chapter 3.2.7) in order to calculate the fields in the barrier and well regions. In Figure 

3.2.1-4 we show the dependence of the piezoelectric field in the MQW region as a 

function of the tensile strain in the c-plane as used in Figure 3.2.1-1 for both the blue and 

the green LED structures.  

 

For comparison we show the results obtained using the LP model, the NLP model and the 

NLP model with the addition of NLE. Unlike LP, the NLP model combined with NLE 

leads to a pronounced reduction of the piezoelectric field as a function of increasing 

tensile strain in the well region.  



 115 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

 NL(P+E)

 NLP+LE

 LP+NLE

 LP+LE

 NL(P+E)

 NLP+LE

 LP+NLE

 LP+LE

0.0 0.4 0.8 1.2 1.6 2.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 

In composition in In
x
Ga

1-x
N layer

 

 

F
ie

ld
 i

n
 W

e
ll

 (
M

V
c

m
-1

)

 

Tensile Strain (in %)
 

Figure 3.4.1-4: Dependence of the piezoelectric field in the well region as a function of tensile strain in 

the c plane, for both the blue and the green LED structures. We compare the calculations using the 

LP model, the NLP model and the NLP model with the addition of NLE. Reproduced from the work 

of Ref [221] 

 

For example, a 1% additional tensile strain would result in a change of the piezoelectric 

field from 1.54 MVcm-1 to 1.40 MVcm-1 in the blue LED and from 2.825 MVcm-1 to 

2.615 MVcm-1 in the green LED. Such reduction is also larger compared with the case of 

using the NLP model with LE. On the top axis of Figure 3.4.1-4 we show the In 

composition of a relaxed InxGa1-xN intermediate layer (see Figure 3.4.1-5) between the 

substrate and LED structure which would generate the corresponding additional tensile 

strain as shown on the bottom axis. Thus if the MQW region was grown on a relaxed 

In0.09Ga0.91N layer then an additional tensile strain of around 1% in the growth plane 

would be present throughout the active region of the device. 

 

This data suggests that one effective way to reduce the detrimental effects of the presence 

of internal piezoelectric fields inside the active region of c-plane of InGaN LED devices 
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is to use an InGaN metamorphic layer (Figure 3.4.1-5). The compositions proposed of up 

to 9% In is in the achievable range for crystal growth.221 Metamorphic layers have been 

demonstrated222 to start strained and lattice matched to the substrate while subsequently 

relaxing towards their bulk lattice parameter, providing a virtual substrate on which the 

new layers then can be grown. Partial relaxation after about 10-20nm seems to favour the 

growth of subsequent layers lattice matched with the new virtual substrate. In this way, 

with the metamorphic layer inserted before the MQW region, the subsequently deposited 

material would feel a strain reduction in the InGaN layers and a strain increase in the GaN 

barriers.  

 

Inevitably, such a layer could provide an additional source of dislocations (though it 

could also stop threading dislocations propagating from the substrate), it would also 

substantially reduce the piezoelectric field in the active region.  

Additionally, the large conduction band discontinuity between InGaN and GaN can affect 

mobility of the n-type carriers,223 but since the problem in bipolar devices such as LEDs 

is with hole transport, it should not significantly affect device performance. 
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Figure 3.4.1-5: Proposed c-plane InGaN LED device structure using a metamorphic layer before the 

MQW region which is grown on the top of n-type GaN layer. Reproduced from the work of Ref [221] 

 

Since a 1% additional tensile strain reduces the internal field by ~9% and ~8% for the 

blue and green LEDs, respectively, and since we have showed how a field reduction can 

be linked to a comparable increase in optical efficiency,215 we believe a metamorphic 

intermediate InGaN layer could produce significant benefits for improved device 

performance. Having all the recent advances and increased level of control achieved in 

crystal synthesis and MOCVD growth of nitride compounds, the inclusion of a relaxed 

layer of InGaN with a modest In concentration is simply a matter of experimentally 

finding the correct growth conditions. Furthermore it should also make the deposition of 
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the MQW region easier as it would reduce the lattice mismatch between the well and 

barrier regions. Such an increased tensile strain as in our proposed structure in Figure 

3.4.1-5 is likely to vanish in the subsequent layers deposited after the MQW region, due 

to the typically large thickness. Therefore one can expect that the electronic blocking 

layer (EBL) and p-doped GaN region could be grown without additional need to 

significantly alter growth conditions compared to the case where the metamorphic layer 

was not included.  
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 Figure 3.4.1-6: Spontaneous emission spectra at injection carrier density equal to 2.5 x 1012 cm−3 for 

both the blue (x=14%) and green (x=26%) LED structures having InxGa1-xN/GaN quantum wells 

with metamorphic layer (a and c) and the conventional quantum well structure (b and d). 

Reproduced from the work of Ref [221]. 

 

It is also worth mentioning that though direct comparison is difficult, these predictions 

had to some extent already been made by Shieh et al,194 who by modelling the band 

offsets and interface polarization of InN/GaN superlattices as a function of strain had 
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concluded that the strain conditions were an unrecognized degree to which device 

properties could be potentially controlled. 

To further test our proposal we calculated the spontaneous emission spectra for the Green 

and Blue LED with and without the metamorphic layer. We utilized a self-consistent 

Poisson and 6 X 6 k·p Schrödinger solver (developed by our collaborator, Prof. 

Yuh-Renn Wu’s research group at National Taiwan University, Taiwan) to solve 

iteratively until convergence. The k·p method224 is used for calculating the valence and 

conduction band levels within the effective mass approximation. We use the polarization-

dependent optical matrix elements: 

 x – polarized: |⟨𝑆|𝑝𝑥|𝑋⟩|2 (|⟨𝜓𝑙
𝑒|𝜓𝑚1

ℎ ⟩ ↑  + ⟨𝜓𝑙
𝑒|𝜓𝑚5

ℎ ⟩ ↑|
2
+ |⟨𝜓𝑙

𝑒|𝜓𝑚2
ℎ ⟩ ↓  + ⟨𝜓𝑙

𝑒|𝜓𝑚6
ℎ ⟩ ↓|

2
) /4 

y – polarized: |⟨𝑆|𝑝𝑦|𝑌⟩|
2
(|⟨𝜓𝑙

𝑒|𝜓𝑚1
ℎ ⟩ ↑  − ⟨𝜓𝑙

𝑒|𝜓𝑚5
ℎ ⟩ ↑|

2
+ |⟨𝜓𝑙

𝑒|𝜓𝑚2
ℎ ⟩ ↓  − ⟨𝜓𝑙

𝑒|𝜓𝑚6
ℎ ⟩ ↓|

2
) /4 

z – polarized: |⟨𝑆|𝑝𝑧|𝑍⟩|2 (|⟨𝜓𝑙
𝑒|𝜓𝑚3

ℎ ⟩ ↑  + ⟨𝜓𝑙
𝑒|𝜓𝑚4

ℎ ⟩ ↓|
2
) /4,       

   

 (80) 

 

in the expression for the spontaneous emission rate225, which for electron-hole pair 

recombination in a quantum-confined active region is given by (in Gaussian CGS units): 

𝑅𝑠𝑝 = ∫𝑑(ℏ𝜔)
4𝜋2𝑒2ℏ

𝑛2𝑚0
2ℏ𝜔

1

2𝜋2
∑∫𝑑𝑘

𝑛,𝑚

∑|𝜀̂𝑃𝑛𝑚
𝜎 (𝑘)|2

𝜎,𝜀̂

 

× 𝜌𝜀̂(ℏ𝜔) δ(E𝑛
𝑒(k) − E𝑚

ℎ (k)  − ℏ𝜔)  ×  [f 𝑒(E𝑛
𝑒(k))][1 − fℎ(E𝑚

ℎ (k)]    (81) 

 

where 𝜌𝜀̂is the (in general) polarization-dependent photon density of states.  

 

In Figure 3.4.1-6 we show the difference in emission strength, by comparison of the 

spontaneous emission spectra for both the blue (x=14%) and green (x=26%) LED 

structures having InxGa1-xN/GaN quantum wells with metamorphic layer (Fig 3.4.1-6a 

and Fig 3.4.1-6c) and the conventional quantum well (Fig 3.4.1-6b and Fig 3.4.1-6d).  



 120 

At injection carrier density equal to 2.5 x 1012 cm−3, the conventional LED structures light 

emissions is significantly lower than the proposed ones with the metamorphic layer. The 

results are summarized in Table X.  

  Table X: Wavefunction overlap, peak emission energy, peak spontaneous emission 

rate and integrated spontaneous emission for both the blue (x=14%) and green 

(x=26%) LED structures having InxGa1-xN/GaN quantum wells with and without 

metamorphic layer 

 
 

LED Structure         Overlap     Emission     Peak Spontaneous      Integral of Spontaneous 

                     Energy         Emission rate   Emission Rate (Rsp) 

     (eV)       Rsp(max) 

          (1022 (cm-3eV-1s-1))  (1021 (cm-3eV-1s-1)) 

 

Blue with ML           0.5070     2.94       2.190   1.801 

Blue without ML      0.4525     2.92       1.975   1.619 

Green with ML        0.3652     2.42       1.447   1.214 

Green without ML   0.3329     2.40       1.197   1.003 

 
 

The results clearly indicate that the addition of tensile strain to the active region is 

beneficial to the efficiency of LED devices. We also noticed that a similar proposition 

was experimentally reported by Zhang and Tansu226, who used InGaN substrates with In 

composition of 15%. Such substrate would act precisely as the metamorphic layer 

proposed in this work. Zhang and Tansu226 reported that the structure grown on InGaN 

substrate exhibited spontaneous emission rates twice or thrice as large as the conventional 

structures.   

 

We can now theoretically confirm their result and the interpretation given by Zhang and 

Tansu226, who attributed the improved performance to interplay between strain and 

internal polarization fields. However we need to stress that only the non-linear theory of 
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piezoelectricity calculates correctly the reduction in the polarization field in the Quantum 

Well regions that is the origin of the increased spontaneous emission rate. 

 

 

In conclusion, we have analyzed the strain dependence of the piezoelectric field in the 

active region of two pseudomorphically strained InxGa1-xN MQWs with different In 

content and designed for blue (x=0.14) and green (x=0.26) light emission. A significant 

reduction of the total internal piezoelectric field as a function of tensile strain is found in 

both cases, when both non-linear piezoelectricity and non-linear elasticity models are 

taken into account in the calculations. Since tensile strain could be generated by growing 

the QW region on a semiconductor layer with a lattice parameter larger than that of GaN, 

a proposal to use a relaxed InGaN metamorphic layer has been presented.  We have 

evaluated the optical matrix elements and the resulting spontaneous emission rate for the 

proposed structures and confirmed that, consistent with experimental data in the 

literature, an increase of the optical emission can be predicted. Since we have previously 

experimentally showed that the change in value of the internal piezoelectric fields is 

proportional to the change in optical efficiency, LED devices made using the proposed 

structures are expected to increase their light output power by up to 10%.   
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3.4.2. Quantum Nanowire properties 

Nanowires (NWs) have been gaining major attraction in nanoscience studies as well as in 

applications in nanotechnology.7,8,9,10,11 Over the last decade, the research field of 

semiconductor NWs has seen exponential growth with much focus on the synthesis, 

fundamental properties along with the potential applications.  

The NWs are 1-dimensional systems having one quantum direction unconfined for 

electrical conduction, which allows NWs to be used in unique applications requiring 

electrical conduction rather than tunnelling transport.  NWs have high aspect ratio with 

wire-like structures and typical diameters involved ranges from a few to hundreds of 

nanometers. A variety of semiconductor systems, including Group II-VIs, III-Vs and 

Si/Ge, have been exploited to synthesize NWs to date with different and interesting 

morphologies.31,32,33     

 

As a result of the high surface to volume ratio and the size, these wires show significantly 

different behaviour in optical, thermal, mechanical, magnetic and electrical properties 

from the bulk material.  The NWs provide an exciting framework to apply the 

“bottom-up” approach (Feynman, 1959)227 for the design and modelling of nanoscience 

applications. The exploitation of these unique and novel properties of the NWs have 

resulted in widespread applications from nanophotonics, piezotronics, thermoelectrics, 

energy harvesting.228,229   

 

III-nitride semiconductors based NWs are getting more explored for prospective 

applications in LEDs,25  piezotronics,27 photovoltaics,230 lasers,231,232 high speed/power 

electronics,233,234 and other applications.  
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Figure 3.4.2-1: A schematic of the nanowire under strain and the corresponding impact on the 

cross-section due to piezoelectric polarization. 

 

In our recent work on ZnO semiconductors, we showed calculations of the total 

polarization in ZnO nanowires and reported that for particular strains originating from an 

external force, our non-linear model (NLM) of piezoelectricity predicts both positive and 

negative polarizations in the nanostructure whereas the linear model (LM) only predicts 

negative values. We have considered Linear Elasticity in calculations for both models. A 

schematic diagram of a strained nanowire is shown in Figure 3.4.2-1. 

 

A cross section of a ZnO NW under strain is shown in Figure 3.4.2-2, where the 

perpendicular (parallel) strain 𝜺(𝜺||) varies from -2.8% (+2.8%) to +2.8% (-2.8%).  
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Figure 3.4.2-2: Variation of the polarization (C/m2) in a cross section of a ZnO nanowire. The 

perpendicular (parallel) strain varies from -2.8% (+2.8%) to +2.8% (-2.8%). The calculated 

polarization of the non-linear (quadratic) model (NLM) is on the left half and the classic linear model 

(LM) on the right. Reproduced from the work of Ref [198]. 

 

Distinct differences are observed between the predictions of the LM and NLM. While the 

NLM predicts a gradient of the polarization ranging from -0.08 C/m2 at the compressed 

end of the section, to +0.06 C/m2at the tensile end, the LM polarization instead ranges 

from -0.12 C/m2 to 0.0 C/m2 within the same range of strains.  

This clearly demonstrates how the LM and NLM can produce opposite predictions.  

 

The present work constitutes the calculations in the Nitride NWs namely, GaN and InN. 

We tested the classic LM47 and our NLM183 by calculating the polarization in a GaN and 

InN nanowire subjected to a bending force deforming the cylindrical shape into an arch.  
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This time in addition we also included the effects of non-linear elasticity (NLE)103 which 

have been recently reported to be important for precise calculations. For simplicity we 

assumed that such deformation would result in a polarization that is isotropic for each 

circular cross section of the nanowire. We also assume that the resulting perpendicular 

strain 𝜀 is antisymmetric along the section of the bent cylinder. Since in most materials 

compressibility is always lower than the ability to withstand tensile deformation, this is a 

correct assumption only for small strains.  

 

The perpendicular strain is related to the parallel strain  𝜀|| through the elastic constants of 

the material from Lepkowski103, and through Eq.(76) and Eq.(77) used in Chapter 3.2.7.  

Then, the combination of parallel and perpendicular strain is used Eq. (75)  from Chapter 

3.2.6 to evaluate the polarization. 

 

 In Figure 3.4.2-3 and 3.4.2-4 we show the variation of the polarization for the case of 

GaN and InN respectively, where the perpendicular (parallel) strain 𝜺(𝜺||) varies from  

-4% (+4%) to +4% (-4%). There are marked differences between the predictions of the 

LM and NLM using the NLE parameters. 
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Figure 3.4.2-3: Variation of the polarization (C/m2) in a cross section of a GaN nanowire. The 

perpendicular (parallel) strain varies from -4% (+4%) to +4% (-4%). The calculated polarization 

using NLE parameters of the non-linear (quadratic) model (NLM) is on the left half and the classic 

linear model (LM) on the right. 

 

 

In particular, For GaN, the NLM predicts a gradient of the polarization ranging from 

-0.12 C/m2 at the compressed end of the section, to +0.12 C/m2 at the tensile end.  The 

LM polarization instead ranges from -0.15 C/m2 to +0.09 C/m2 within the same range of 

strains.  

 

The case of InN NWs also illustrates similar effect as in GaN NWs. For InN, the NLM 

predicts the polarization gradient to be ranging from -0.11 C/m2 at the compressed end of 

the section, to +0.08 C/m2 at the tensile end. The LM polarization instead has a range 

from -0.14 C/m2 to +0.05 C/m2 within the same set of strains.  
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Figure 3.4.2-4: Variation of the polarization (C/m2) in a cross section of a InN nanowire. The 

perpendicular (parallel) strain varies from -4% (+4%) to +4% (-4%). The calculated polarization 

using NLE parameters of the non-linear (quadratic) model (NLM) is on the left half and the the 

classic linear model (LM) on the right. 
 

Thus the Group III-Nitride NWs show improved predictions of the polarization in NLM 

compared to the LM unlike ZnO, where we have starking difference between the two 

models and demonstrated opposite predictions in NLM and LM models. 

 

This is the fundamental set of calculations for the ZnO and Nitride NWs and more 

calculations needs to be done to observe the effect in NW’s optical and electronic 

properties, critically important for several prospective applications. 



 128 

3.4.3.  Quantum Dots based Devices 

3.4.3.1. III-V Quantum Dots 

 

 In epitaxially grown InAs/GaAs Quantum Dots the piezoelectric field is directly 

responsible for lifting the energy degeneracy of the otherwise indistinguishable p-type 

electron wavefunctions.59,60,235 This is typically not the only cause of symmetry breaking, 

as in real structures structural (shape and crystal) asymmetries also play a vital part. We 

therefore discuss the differences between the piezoelectric potential distributions in the 

same nanostructure according to the conventional linear model (LM), the non-linear 

model (NL1) of Tse et al173 and the non-linear model of Beya-Wakata et al (NL2)46. The 

results are shown in Figure 3.4.3.1-1.  

 

The InAs/GaAs Quantum Dot used in the calculation is a square-based truncated pyramid 

with base width of 20 nm, height of 5 nm and a top width of 10 nm. We are showing the 

PZ potential energy on a (001) plane intersecting the truncated pyramid at 1.5 nm, 2.5 nm 

and 3.5 nm from the base (30%, 50% and 70% of the total height). There are significant 

differences. For instance the magnitude of the potential energy is certainly much larger 

for NL2 compared to LM or NL1 near the top of the pyramid, while it appears 

comparable closer to the base. This difference closer to the top of the pyramid, where 

strains are typically larger236, is the obvious result of the much larger values of e124 PZC. 
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Figure 3.4.3.1-1: Contour plots of piezoelectric potential energy of an InAs/GaAs Quantum Dot 

displayed columnwise on a (001) plane intersecting the pyramid at 1.5nm, 2.5nm and 3.5nm 

respectively from the base of the dot: a) Linear Model, b) Our Model and c) Beya-Wakata Model [46] 

 

 
There are also differences between the spatial distribution of the potential energy between 

the linear and non-linear models. Closer to the top of the pyramid the linear model 

appears to have a double structure on each lobe that in NL1 is spatially well separated 

while it is not at all present in NL2. At the bottom of the pyramid instead it is the LM that 

predicts the largest magnitude and spatial extension of the potential. Furthermore NL1 

and NL2 are comparable in magnitude but NL1 is slightly larger. 

We further performed electronic structure calculations of the p-type electron (e1 and e2) 

energies and wavefunctions using both the full 8-band and 14-band k.p formalism, 

including the kinetic part with the spin-orbit interaction, strain, the interface Hamiltonian 

as well as the strain-induced piezoelectric potential. The details of the method used can be 
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found in Tomić and Vukmirovic´.140 Both the 14-band and 8-band calculations yield the 

same result for the difference in energy of the p-state electron wavefunctions within 0.2 

meV. Since the electron wavefunctions tend to be spatially located at the bottom of the 

pyramid, the PZ potential calculated using the LM has the largest energy difference 

(18.1±0.1 meV). NL1 and NL2 give an energy difference of 10.2±0.1 and 7.85±0.05 meV 

respectively. The difference between the NL1 and NL2 models is significant. We also 

tested the influence of quadratic vs. cubic terms in NL1 and concluded that in truncated 

pyramidal Quantum Dots the quadratic terms are certainly very significant but the cubic 

terms only add a small positive correction of 0.1 meV. Hence the strain is not sufficiently 

large to motivate inclusion of the cubic terms.   

It is also noticeable that while both NL1 and NL2 under particular strain combinations 

predict the possibility of positive values of the PZC, in neither of these present 

calculations this appears to be the case. In Migliorato et al151  it was proposed that the 

linear PZ field alone was able to account energy differences of the p-type electron 

wavefunctions in both InAs/GaAs and InGaAs Quantum Dots. The experimental values 

of these splitting were given in the same work as between 5-8 meV, close to the 

theoretical prediction. However the experimental data also suggested that the [110] 

p-electron wavefunction should have been higher in energy compared to its [110] 

counterpart. This could have been explained by the PZ field switching from negative to 

positive as a result of the strain in the nanostructure. However, in truncated pyramidal 

Quantum Dots not even non-linear models appear to predict a switch of the sign of the 

piezoelectric potential energy. One cannot exclude that some shapes or sizes of Quantum 

Dots other than the one used in this work could have strain large enough to be able to 

switch the polarization from negative to positive. But at present we have to conclude that 

in experimental observations the degeneracy is mostly due to shape anisotropy 

counteracting and entirely reversing the effect of the piezoelectric field. 
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We tested whether in semiconductor InAs/GaAs truncated pyramidal Quantum Dots only 

quadratic or also cubic terms should be taken into account in electronic structure 

calculations and confirm that in such structures the strain is not large enough to 

necessitate inclusion of the cubic piezoelectric coefficients, although corrections due to 

the linear and quadratic terms (in the diagonal strain components) have a magnitude 

comparable to the conventional linear model (e14 times 𝛾) where the piezoelectric 

polarization depends only on the shear components of the strain tensor.   

 

3.4.3.2.  III-N Quantum Dot Properties 

Semiconductor Quantum Dot (QD) systems are an emerging technology as the ideal 

source of entangled photons (“on demand”) for use as single photon sources (SPSs). 

These SPSs are the building blocks for device applications in secure all-optical quantum-

cryptography and quantum information processing.  

The current prospect of such devices is based on using Zincblende QD structures. 237,238 

QDs based on nitride semiconductors unlock a novel blue and ultraviolet spectral region 

for the SPSs with the present structures.239 III-N QDs are also important for 

applications240,241,242,243,244,245,246,247  in LED technology and photovoltaic devices.  

In contrast to GaN/AlN QD system, the wutzite InxGa1-xN/GaN QDs which emit in the IR 

region provide an extra degree of freedom in the design of  SPSs by varying the indium 

mole fractions, x, of the InxGa1-xN QD material. In order to control the device operation 

of InGaN/GaN quantum dot (QD) based optoelectronic devices, the relationship between 

the excitonic structure and the geometry of the dots needs to be established. This is highly 

challenging due to the presence of the effects of strain, band mixing, quantum 

confinement and electron-hole Coulomb interaction present in any quantum-dot system. 

Furthermore, wurtzite QDs also exhibit a strong built-in electric fields induced by both 

spontaneous and non-linear piezoelectric polarizations. 183  
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Wurtzite InGaN/GaN QDs are favourable for use in SPS devices to be operated at higher 

temperatures owing to the presence of larger bandgap, band offsets and effective masses 

compared to the InAs/GaAs system, leading to stronger quantum-confinement effects.  

The shorter wavelengths of the InGaN/GaN system might be helpful in reducing the sizes 

of the transmitter and receiver optics for applications in free-space cryptography.239,248  

The emission of InGaN/GaN QDs can be tuned in the green and blue; depending on the 

Indium content, to have a potentially viable complete visible spectrum. This wavelength 

range corresponds to the best sensitive range of the ultrafast single-photon detectors.248 

Also, there have been previous reports of InGaN QD based single–dot spectroscopy 

experiments249,250 and recent studies on photon-correlation251,252 to improve the extraction 

efficiency for emission and detection of single photons from the dots.253 

 

SPS applications need larger values of the biexcitonic shift, described as the transition 

energy difference between the energy of the biexciton to exciton decay and the exciton 

energy itself. This enables better spectral separation of the transition lines.239 The built-in 

electric field has already been recognised to be localizing the electrons at the top and 

holes at the bottom of the QD.174,254 Hence, the interaction between the two excitons that 

form the biexciton complex is dominated by the electron-electron and hole-hole repulsive 

forces compared to the attractive interaction of the electron and the hole when spatially 

separated.255,256 Since with increasing QD height the attractive interaction decreases, the 

biexcitonic shift increases to the extent of rendering the biexciton unbound. This 

argument favours the choice of a large QD height. However, for the purpose of quantum 

efficiency, the optical transition matrix element of the excitonic transition requires to 

have a sizeable magnitude and this element becomes smaller with increasing QD height 

(because of the electron and the hole wavefunctions being spatially separated).254 
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Hence according to the argument, small QDs are preferable. Thus, the most suitable QD 

geometry for SPS applications should comprise of reconciliation between the opposite 

conditions and it demands a comprehensive exploration of the excitonic properties of 

InGaN QDs as a function of their geometry and composition. 

 

In this work, we present a systematic study aimed to provide insight into the 

morphological factors determining the performance of the optimal SPSs based on 

InxGa1-xN/GaN QD in general and, in particular, variation of the SPSs emission 

wavelength with In concentration in the QDs. 

In our theoretical model single particle electron and hole states of wurtzite InxGa1-xN/GaN 

QDs were modelled using 8-band pk   Hamiltonians,143 including second order 

piezoelectricity (with our parameters) and Psp, strain effect, spin-orbit interaction and 

crystal-field interaction and additional terms. We obtained the (bi)exciton states using 

configuration interaction (CI)257 method and the correction terms  for the hexagonal 

lattice have been introduced using the adapted Makov-Payne method258 by adding the 

first few terms in the multipole expansion  (monopole, dipole, and quadrupole) in order to 

compensate the effect of the mirror charges induced by periodic boundary conditions. 259  

In this way the model fully replicates the electronic and excitonic structure of an  single 

QD.Error! Bookmark not defined. Finally we computed the biexcitonic shift, namely 

the difference between  the energy of the exciton transition line and the energy of the 

transition line from the biexciton to exciton state as shown in Figure 3.4.3.2-1.   

The biexcitonic shift is given by 𝐵𝑋𝑋 = (𝐸𝑋𝑋 − 𝐸𝑋) − 𝐸𝑋 and in order to obtain bound 

biexcitons, 𝐵𝑋𝑋 needs to be negative.  

Also, for SPS applications, the value of  𝐵𝑋𝑋 needs to as large as possible, which provides 

good spectral separation of the two lines.239  
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Figure 3.4.3.2-1:  Schematic diagram of energy positions of unbound, entangled, and bound 

biexcitons where |𝟎⟩, |𝑿⟩ and |𝑿𝑿⟩ stands for ground, exciton, and biexciton state respectively. 

 

The importance of the built-in electric field in localizing the electrons at the top of the dot 

and holes at the bottom of the dot is already known.174,254 Hence, the stronger repulsive 

e-e and h-h interactions between spatially separated electron and hole determine the 

interaction between two excitons forming a biexciton.255,256 Thus, in QDs with larger 

heights, the biexciton remains certainly unbound and  Bxx increases with increment in 

height owing to a decrement in the attractive part of the interaction. This certainly 

supports the proposition that SPSs require large QD heights. 

 However as it is also important to have a large optical transition matrix element for the 

exciton transition 𝑝𝑥
239 and large QDs are unsuitable as this element becomes small due 

to spatial separation of e and h wavefunctions.  

To determine the ideal compromise, the following optimization function259 has been used 

to achieve the above conditions as  

Ξ =  (𝐸𝑋𝑋 − 2𝐸𝑋)𝑙𝑛(𝑝𝑥
(𝑥)

𝑝𝑥
(0)

⁄ )                                                                          (82) 

where, 𝑝𝑥
(0)

 is equal to 10−4𝑝𝑥
(𝑥),𝑚𝑎𝑥

 (10-4 is used as a scaling parameter) and 𝑝𝑥
(𝑥),𝑚𝑎𝑥

 is 

the max value of  𝑝𝑥
(𝑥)

  for all the QDs. The maxima of the optimization function has 

small dependence on the 𝑝𝑥
(0)

, when changed within reasonable limits.
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Hexagonal truncated pyramidal shapes were used in our work. The dimensions of the QD 

depend on two parameters, namely the diameter D  of the circumscribed circle around the 

hexagon at 0=z  and the truncated pyramid angle between the pyramid facets and base 

(taken as α = 30ο) while the QD depends mainly on the aspect ratio (D/h) where h 

represents the QD height. The calculations are performed over a wide range of QDs with 

In content ranging from 10% to 70%. 

 

For SPS calculations  the QD height was varied in the range h=1.5nm to h=5nm 

with  steps of 0.2nm or 0.1nm. The diameter to height ratio D/h was varied from 6 to11 

with a step of 1. In calculating the biexcitonic state to be bound or unbound, the aspect 

ratio (D/h) of 4,5,6,7 was considered. The height of the QDs was kept in the range 

h=1-2.1nm with step changes of 0.1nm. Large dots with diameter larger than 30 nm were 

discarded in the calculations for both cases as the electron and hole wavefunctions 

become spatially separated by a very large extent and also absence of strong 

exchange-correlation effects.  

 

The calculations aimed at determining the physical factors affecting the performance of 

InGan/GaN QD based SPS applications are now discussed. 

All the CI calculations involved single particle electron  (Ne=12) and hole (Nh=18)states, 

including both spin polarizations. In InGaN/GaN QDs, the biexciton shift depends on the 

exciton energy and is being calculated over a wide range of alloy composition in  

Figure 3.4.3.2-2.    
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 Figure 3.4.3.2-2: The dependence of the optimization function defined as 𝚵(𝑬𝑿𝑿) on exciton energy 

for different values of  aspect ratios (D/h)   and different In concentration in InGaN QDs: (a) In= 

20%, (b) In= 30%, (c) In= 40%, (d) In= 50%, (e) In= 60% and (f) In= 70%. 

 

The In concentration in the InGaN QDs was varied from 20% to 70% and for different 

D/h ratios of 6,7,8,9,10 and 11. 
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Figure 3.4.3.2-3: Variation of the optimized SPS emission energy/wavelength vs In concentration in 

QDs 
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The best choice of size and composition for the InGaN dots are shown to emit over a 

wide range of the visible spectra, from 1.7-3.1 eV, as evident in Figure 3.4.3.2-3. Hence 

the emission energy can be tuned in such dots by small variation of the Indium content.  

 

Another important aspect of the excitonic structure at InGaN/GaN QDs is to assess 

whether the biexciton is bound or unbound. Recent experiments have reported bound 

biexcitons in small III-N based QDs. 255,260One of the major shortcomings on the Hartree 

approximation based theoretical approaches is the lack of implementation of the 

electron-correlation effects in the model while in principle a CI based approach is capable 

of calculating such correlations correctly. The direct Coulomb energy of the excitons in a 

QD can be compensated by the exchange-correlation effect in smaller QDs.  

Here, we analysed the impact of our non-linear model with the second order parameters 

on the QDs formed by InxGa1-xN. 

 

We have calculated for a series of smaller InGaN QDs, the excitonic and biexcitonic 

states with In content varying from 10% to 70% and as shown in Figure 3.4.3.2-4, we 

found  that using the parameters from our model, bound biexcitons are achievable over a 

wide range of structures having an alloy composition varying from 20% to 70% and with 

the exception of the case of 10% In content. All calculations for the exciton and biexciton 

have been performed for a series of InGaN QDs with aspect ratios (D/h) of 4, 5, 6 and 7 

and the outcomes suggest the presence of bound biexcitons across different sizes of the 

QDs under consideration. 
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Figure 3.4.3.2.4: Variation of the bound biexcitons appearances for different In concentrations in InGaN QDs: (a) In=10%, (b) In=20%, (c) In=30%, (d) In=40%, (e) 

In= 50%, (f) In= 60% and (g) In=70% for a range of aspect ratio. 
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As the alloy content gets lower, the QDs also exhibit shallower confinement leading to 

lesser number of electron and hole states. This results in unbound biexcitonic states. 

Another interesting outcome of our calculation for the case of 50% In content and aspect 

ratio (D/h=5) is that we can observe multiple crossovers providing three different regions 

of bound biexcitons which could be further exploited in devices.  The variation of the 

alloy composition significantly impacts on the energy of the bound and biexciton state 

and with the rise in In content in the dots, the emission energy region also shifted towards 

higher energy.  
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Figure 3.4.3.2-5: Tunability of the bound biexciton (Bxx = 0) emission energy vs In concentration in 

InGaN QDs.(The coloured boxes represent the different regions of bound biexcitons across different 

In content in the alloy composition. 50% and 60% In concentration has multiple regions for D/h=5 

and are marked as 1st, 2nd and 3rd respectively). 
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We also considered the particular case of bound biexcitons with negative biexcitonic shift 

where gradual increment of 10% in the In content provides the tunability of the emission 

region from 2.15-3.30eV covering the visible light spectra as evident from Figure 

3.4.3.2-5. Thus, InGaN QDs can be used for highly tunable devices by regulating the 

emission region of the bound biexcitons over wide visible spectra through alloy 

composition. 

 

In Table IX, we show the variation of the excitonic emission energy with the In alloy 

composition in InGaN/GaN QDs. Thus, similar to QW nanostructures, the effect of  strain 

induced PZ polarization with second order coefficients and Psp has a large influence over 

the excitonic properties of QDs. 

 

TABLE IX:  Alloy composition dependence of the excitonic energy levels in 

InGaN/GaN quantum dots for bound biexcitons (having a negative biexcitonic shift 

Bxx<0). The calculations are done over different aspect ratios (D/h) of 4, 5, 6 and 7. 

 

Alloy content        Excitonic energy 

(%)  (eV) 

20  3.251 

30  3.043 

40  2.832 

50  2.610 

60  2.394 

70  2.219 
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The impact of these findings is widespread as QDs of InGaN can be used for futuristic 

devices. The tunability of the emission spectra of the excitons and biexcitons in InGaN 

QDs for different composition of alloy will be of great interest for development of 

futuristic optoelectronic devices such as multi-exciton generation solar cells and 

applications based on photon entanglement. Also, the excitonic properties of InGaN QDs 

remain similar for different sizes of the dots. The non-linear model of piezoelectricity 

applied in this work has been effective by a substantial amount in the QDs along with the 

QWs made of III-N materials. In summary, we have shown that with suitable variation of 

the In concentration between 20% and 80% in single InxGa1-xN/GaN QDs it is possible to 

design SPS that emit in entire visible spectral region. Using the CI method that include 

the effect of electron exchange-correlations interactions we have shown that in small 

QDs, the exchange-correlation effect is sufficient enough to compensate for the increase 

of the direct Coulomb energy of two excitons in a QD.   
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4. Conclusions 

 

In this thesis, the author has discussed the origin of non-linear piezoelectricity and its 

influence on the polar III-V, III-N and II-VI semiconductors. The field of piezotronics 

and its research potential has also been reviewed in much detail. The research arena has 

wide range of applications in self-powered circuits for wireless sensors, nanorobotics, 

interfacing between human and computer, medical science, tactile sensors imitating 

human skin, nanogenerators for portable devices, solar cells, LEDs and other 

optoelectronic devices. 

In recent years, a new theoretical understanding of the nature of the PZ polarization 

and resulting electric fields in semiconductor crystals has emerged 150,151 which advocated 

the necessity to include non-linear piezoelectric coefficients (PZCs) even in the limit of 

vanishing strain in order to correctly estimate the effect of the presence of strain induced 

electric fields on the electro-optical properties of polar semiconductor 

nanostructures.152,153,154,157 Such studies have demonstrated that the assumption that the 

PZ effect is a linear effect in the strain is incorrect and that the magnitude of the second 

order PZCs is of the same order of magnitude as the first order, even in the range of 

[-0.1÷0.1] of strains, which is typical for nanostructures.151 Furthermore non-linear 

effects, because of their ability to switch the sign of the PZ polarization from negative to 

positive depending on the applied strain170, have been shown to provide an additional and 

unexpected degree of freedom in the design of optoelectronic components.  

 

Although previous works were performed for the zincblende III-V semiconductors151,170, 

this work focuses almost completely on the effect of non-linear piezoelectricity in 

III-Nitride semiconductors in the Wurtzite phase and the strain dependent non-linear 

PZCs are reported for the first time. The calculations of the parameters for both the 
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Spontaneous Polarization and the first and second order PZCs of Group III-Nitrides, in 

the framework of ab initio DFT and DFPT in conjunction with the semi empirical 

formulation of Harrison57 has been performed.  

Other models47,180 of piezoelectricity have been proposed and controversy arose because 

they give different results for PZCs and in particular, the spontaneous polarization values. 

It was always difficult to pinpoint the origin of the discrepancy but there was a suspicion 

that it was due to an incorrect understanding of what the quantity Z* is compared to 𝑍𝐻
∗ . 

In the case of ZB III-As semiconductors, the experimental data from InGaAs QW was 

never conclusive to determine which model is correct. Instead, the III-Nitride 

semiconductors offer more data in the form of the spontaneous polarization and 3 PZCs. 

It was therefore believed that such material system could have provided the correct test 

bed for our model. 

Although our non-linear model on piezoelectricity is self-consistent and provides the PZC 

and Spontaneous Polarization values within the same regime, the model utilizes  𝑍𝐻
∗  as a 

fitting parameter, typically found to be 25% to 65% of the widely used effective charge 

(Z*). This might create some scepticism about the model and the outcomes but the model 

is verified by the precise predicted field estimates in close agreement with the 

experimental results.   

It has been demonstrated that compared to previous calculations of linear theory of 

piezoelectricity and larger spontaneous polarization, the new non-linear model to second 

order described in this work with much reduced Spontaneous Polarization provides more 

precise predictions to available experimental data for the piezoelectric field in the 

quantum well for various III-N materials and their alloys.   

More interestingly, there has been a debate within the scientific community about the sign 

of one of the PZC, e15, and the issue has been dealt with through investigation of the 
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existing literature. The correct sign of e15 has thus been found in our research work 

validating with the original experimental result. 

Also, by selecting particular values of the molar fractions in AlGaN and InGaN alloys, 

predictions of matching the spontaneous polarization terms and reduce the total 

piezoelectric field to the strain induced one alone. This could have applications in the 

design of optoelectronic devices. 

 

In order to validate even more the model and its prediction, the author has analyzed the 

strain dependence of the piezoelectric field in the active region of two pseudomorphically 

strained InxGa1-xN MQWs designed for blue (x=0.14) and green (x=0.26) light emission. 

In both cases, non-linear elasticity along with the non-linear piezoelectricity was also 

introduced and as expected, a major reduction in the internal piezoelectric field estimates 

as a function of tensile strain was observed as a function of strain in both cases.  

The results confirmed the experimental measurements of the change in the internal 

piezoelectric fields to the change in optical efficiency, which was measured by our 

collaborators using a system comprising a helium compressor to implement high 

hydrostatic presssure. While our model predicted a significant field reduction in 

accordance with the experiments, the classic linear model predicted a completely opposite 

trend of increment of the internal field with tensile strain, contrary to our experimental 

data. With introduction of non-linear elasticity, the difference between the two models 

became even more evident. This has also been confirmed by other research groups and 

the fact that the linear model provides incorrect field estimates is becoming increasingly 

accepted. 

As tensile strain generation is possible by growing the well region of the LED structure 

on a semiconductor layer with a larger lattice parameter than that of GaN, a unique and 

novel approach for LED design has been proposed later on by adding a relaxed InGaN 
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metamorphic layer.  The optical matrix elements and the ensuing spontaneous emission 

rate for the new structures are consistent with experimental data in the literature and the 

new LED devices with the proposed structures are expected to have an increment in the 

optical emission by a 10% higher output power.  Similar propositions of addition of 

tensile strain to the device active region has been observed to be beneficial 

experimentally by another research group226, while theoretical modelling of the band 

offsets and interface polarization in InN/GaN superlattices and their dependence on strain 

had also concluded that the strain conditions could be utilized to potentially control the 

device properties194. 

 

Furthermore, the author performed polarization calculations for III-N Nanowires, namely 

GaN and InN, and demonstrated that similar to the results obtained in ZnO nanowires, we 

can expect much improved estimates in our non-linear model compared to the linear 

model. These are fundamental calculations for both types of nanowires and more complex 

computations are required to study the non-linear piezoelectric effect in the optical and 

electronic properties of the nanowires. In particular, the equilibrium piezoelectric 

potential electrical current distribution will need to be incorporated in our model to 

correctly estimate the flow of charge carriers. 

 

Quite similar to Quantum well nanostructures, the effects of our non-linear model has 

also large influence over the excitonic properties of QDs.   

The author investigated the non–linear piezoelectric effect in semiconductor InAs/GaAs 

Quantum Dots, truncated pyramidal in shape, to study whether only quadratic or also 

cubic terms are important in electronic structure calculations. It is observed that in such 

structures, the absence of very large strain often does not need the requirement of the 

cubic piezoelectric coefficients. But the linear and quadratic correction terms (in the 
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diagonal strain components) helps to provide a precise estimate of the piezoelectric 

polarization in comparison to the conventional linear model of piezoelectricity.  

 

The excitonic and biexcitonic emission spectra in different InGaN quantum dots show 

wide tunability for different alloy compositions. It can be exploited in devices as 

multi-exciton generation solar cells and photon entanglement applications. While the 

excitonic properties of the dots remain identical even for different sizes. Significant effect 

of non-linear piezoelectricity has been observed in this III-N dots similar to the wells. 

Results from our calculations suggest the enablement of design of single photon source 

emitting in the visible spectra through wide variation of the Indium content ( from 20% to 

80%) in the single InGaN quantum dots. 

 

In summary, we developed a model on non-linearities in piezoelectricity, validated it on 

real devices and experimental data, also confirmed by others, and exploited the non-linear 

effect to make unexpected predictions of electro-optical behaviour in a variety of 

nanostructures.  
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4.1. Future Scope 

Our research is now an integral part of the global piezotronics effort and we hope to 

contribute more in coming years. 

The methodology used in this work has been well tested and validated by the 

experimental results for the Group III-Nitride materials. The calculations performed for 

different nanostructures such as quantum wells, quantum nanowires and quantum dots 

provide the impetus for further investigation in the field. The study of other materials in 

Group III-Vs and II-VIs can be carried out transferring the methodology for non-linear 

piezoelectricity already developed. The current model can be expanded not only to study 

the non-linearities in ZnSe, III-P and III-Sb semiconductors and their alloys, but also in 

different wurtzite and zincblendes crystal phases. 

 

Preliminary calculations have been performed in the case of the nanowires and more in 

depth analysis is required for the case of InGaN nanowires, which is really important for 

new optoelectronic device designs. Research can also be performed for the design of 

III-V nanowires, particularly the InGaP ones, where the ZB-WZ polytypism impacts the 

behaviour of the nanostructures by a large extent.  

 

Although the methodology provides much better agreement with the experimental data 

compared to the linear model of piezoelectricity, the effect of converse piezoelectric 

effect has not been studied and could well enhance the outcome. 

Also, the study of Hirshfeld charge calculation for ZH* and investigation of non linear 

elasticity using CASTEP can also be carried out.  

Furthermore, real device design and properties can be analysed involving the electronic 

structure calculations and Poisson and Schrodinger equation solver.  
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