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        initial contact angle 
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  initial horizontal speed 
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CoM  centre of mass 
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    touchdown leg angle 
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   initial condition comprising the height 

    horizontal velocity 

    coefficients 

   axial elasticity 

  
     force-free contact angle 

GRF ground reaction force 

  leg length 

  leg angle 

   vertical ground reaction force 

   horizontal ground reaction force 

N Newton 

t contact time 

s second 

m meter 

   tangential force 

   axial force 

                                       state variable number j for step i 

                                      state variable number     
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                                      step number 

  
                                     fixed point of state variable 

   stiffness ratio 

rad leg length is in radian 

          
  

  stiffness at the maximum 

          
  minimum axial force 

 

Chapter 7  

      
  linear axial stiffness 

  
  variable force-free leg length 

  
  variable tangential stiffness 

  
  force-free leg angle 

  whole-body mass 

  gravity 

                                    trialing leg angle 

                                   leading leg angle 

  leg length 

  leg angle 
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  step number 

    rest length 

   
        touchdown contact angle 

CoM  centre of mass 

VLO vertical leg orientation 

    horizontal distance between the CoM and the contact point 

   CoM height 

  
  velocity angle 

  state variables 

   system potential energy 

   kinetic potential energy 

   gravitational potential energy 

   elastic potential energy 

m meter 

  
  peak amplitude of force –free leg length variation 

    touchdown leg length 

   Excursion length 

       
       

  Total dynamic stiffness on hardening elastic profile 
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  Total dynamic stiffness on softening elastic profile 

    touchdown contact angle 

   vertical ground reaction force 

   horizontal ground reaction force 

N Newton 

t contact time 

s second 

   tangential force 

   axial force 
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Abstract 

The objective of this thesis is to develop and validate a computational framework based 
on mathematical models for the motion prediction and dynamic stability quantification 
of human walking, which can differentiate the dynamic stability of human walking with 
different mechanical properties of the leg. 

Firstly, a large measurement database of human walking motion was created. It 
contains walking measurement data of 8 subjects on 3 self-selected walking speeds, 
which 10 trials were recorded at each walking speed. The motion of whole-body centre 
of mass and the leg were calculated from the kinetic-kinematic measurement data.  

The fundamentals of leg property have been presented, and the parameters of leg 
property were extracted from the measurement data of human walking where the 
effects of walking speed and condition of foot-ground contact were investigated. Three 
different leg property definitions comprising linear axial elastic leg property, nonlinear 
axial elastic leg property and linear axial-tangential elastic leg property were used to 
extracted leg property parameters. The concept of posture-dependent leg property has 
been proposed, and the leg property parameters were extracted from the measurement 
data of human walking motion where the effects of walking speed and condition of foot-
ground contact were also investigated.  

The compliant leg model with axial elastic property (CAE) was used for the dynamic 
stability analysis of human walking with linear and nonlinear axial elastic leg property. 
The compliant leg model with axial and tangential elastic property (CATE) was used for 
that with linear axial-tangential elastic leg property. The posture - dependent elastic leg 
model (PDE) was used for that with posture-dependent leg property. 

 It was found that, with linear axial elastic leg property, the global stability of human 
walking improves with the bigger touchdown contact angle. The average leg property 
obtained from the measurement data of all participants allows the maximum global 
stability of human walking. With nonlinear axial elastic leg property, the global stability 
decreases with the stronger nonlinearity of leg stiffness. The incorporation of the 
tangential elasticity improves the global stability and shifts the stable walking velocity 
close to that of human walking at self-selected low speed (1.1-1.25 m/s). 

By the PDE model, the human walking motions were better predicted than by the CATE 
model. The effective range of walking prediction was enlarged to 1.12 – 1.8 m/s. 
However, represented by PDE model, only 1-2 walking steps can be achieved. In 
addition, the profiles of mechanical energies represented by the PDE model are 
different from that of the orbital stable walking represented by CATE model.  

Finally, the minimal requirements of the human walking measurements and the 
flexibility of simple walking models with deliberate leg property definitions allow the 
computational framework to be applicable in the dynamic stability analysis of the 
walking motion with a wide variety of mechanical property of the leg.  
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Chapter 1 Introduction 

 

1.1 Background  

 

Walking has been reported as one of the top activities that people does in daily life 

(Simpson et al., 2003; Eyler et al., 2003). Quantified by a wide variety of methodology, 

the walking stability was found to be maintained in healthy adults, and decline after the 

age range of 60-70 (Lockhart et al., 2003; Tinetti et al., 1995; Kallin et al., 2004; 

Moreland et al., 2004). In addition to the aging, other factors i.e. pregnancy and the 

deficiency in the somatosensory system can also effect on the walking stability. The 

increase of fall risk with the introduction of these factors is well known. However, other 

fall risks that have not been fully investigated are the slips and trips of healthy human 

walking. According to a survey conducted by Health and Safety Executive, slips and trips 

were the most common cause of major injuries to employees (Health and Safety 

Executive, 2012). In addition, the compensation claims of injury due to the slips and 

trips on unexpected walking surface without involvement of walking pathology has 

grown rapidly over the past couple of years. These claims approached 0.5 billion 

pounds per year (National Accident Helpline Limited, 2013). This evidence reflexes that, 

not only the fall risk guidance for pathological walking, but also that for healthy human 

walking (Kang and Dingwell, 2008) is also required.  

Similar to other activities, walking motion is performed by the interactions between 

neural and motion system based on both instinct and learning (Rose and Gamble, 2006). 

These complex interactions make individuals walk and response to perturbation 

differently. The dynamic stability of human walking may be quantified by the response 
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to external perturbation. However, since human locomotion adapts to situations (Kurz 

et al., 2010; Bruijn, 2010), a method for isolating such effect from the human locomotion 

measurements are required. Up until now, the accepted method for such isolation has 

not been identified (Bruijn, 2010). More importantly, the experiment of perturbed 

human motion needs to be conducted carefully to maintain the ethics of human 

experiment. All of these limitations make the measures of human locomotion in 

response to perturbation an open question.  

Despite the introduction of disturbance, the inherent variations emerging from complex 

neuro-musculoskeletal interactions during human walking can be treated as a small 

perturbation in the examinations for the rate of convergence to the steady walking 

motion (Steven, 1994), and the rate of divergence from nearby trajectory (Rosenstein et 

al., 1993). These examinations have been widely used to quantify local stability of the 

human locomotion based on the relatively small size of perturbations (Hurmuzlu and 

Basdogan, 1994; Dingwell and Kang, 2007; Dingwell et al., 2007;Bruijn et al., 2009; Kang 

and Dingwell, 2009).  

With the incorporation of human locomotion models, the global stability can be a 

reasonable prediction of fall possibility. Since the global stability is defined by the 

maximum perturbation before the occurrence of fall (Shub, 1987; Hsu, 1987; 

Guckenheimer and Holmes, 1983). This stability quantification is applicable only when 

a model is used to simulate human walking. Global stability can be estimated by many 

techniques i.e. maximum allowable disturbance (Karssen and Wisse, 2011) and basin of 

attraction (Schwab and Wisse, 2001). The area of basin of attraction is used to quantify 

global stability in term of robustness. This area was widely used to compare between 
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the dynamic stability of bipedal locomotion with the wide variety of mechanical 

property (Schwab and Wisse, 2001; Rummel et al., 2010).  

Despite the wide variety of stability indices, one may question that, based on a 

particular quantification method, how well can the individual locomotion stability be 

differentiated from others. As individuals have different walking motions, do they have 

the same level of walking stability and if not, what makes the difference? Human 

locomotion models may be able to response to these questions as they can provide 

insights into different levels of complexity of the whole-body motion system. The 

complexity level can range from minimum level of leg and joint complexity (Geyer et al., 

2006; Lipfert et al., 2012; Seyfarth et al., 2001; Gunther and Blickhan, 2002) to the 

interactions between motion and neural system during locomotion (Hase and Yamazaki, 

1998; Yamazaki et al., 1996; Ogihara and Yamazaki, 2001). However, due to the model 

complexity and limited knowledge of neuron inputs, the application of neuro-

musculoskeletal model in dynamic stability quantification may be not suitable.  

With the incorporation of human locomotion models, the human walking motion can be 

predicted, and the fall possibility can be examined. However, one of the challenges is 

how to ensure that walking motion is predicted from the human parameter range and 

how to extract such human mechanical property from the measurement data. Elastic leg 

property has been implemented into the compliant leg model with axial elastic property 

(CAE) to examine the validity of predict human locomotion (Lipfert et al., 2012). This 

examination suggested that more complicated leg definition may be required to 

represent the foot-ground contact and the change of leg property during the gait.  This 

suggestion supports the robot leg design inspired by the stabilising mechanisms in 

insect running legs (Schmitt and Clark, 2009). The actuated rest length incorporating 
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with the variation of touchdown angle has been found as stabilising mechanisms in 

running with perturbations. Such natural variation of leg property has never been 

investigated in human walking. 

The combination between the locomotion modelling, mechanical property and dynamic 

stability quantification technique is crucial to the reliability of dynamic stability 

analysis. On the wide variety of mechanical properties, the human locomotion may be 

predicted by human locomotion model and the global stability can be quantified. With 

the mechanical property being extracted from the human walking measurement date, 

this scheme for the dynamic stability analysis of healthy human walking may be able to 

provide insight into the difference between the dynamic stability of individuals.  

 

 

1.2 Aim and objectives 

The objective of the work presented in this thesis was to develop and validate a 

computational methodology for dynamic stability analysis of the human walking 

motion, and to use this methodology to examine the effects of leg property on the 

dynamic stability of human walking. This work is aimed to provide a computational 

framework for dynamic stability analysis of human walking, which requires minimum 

measurement data, is flexible to a wide variety of mechanical property of human leg,  

and can predict accurate walking motion and dynamic stability of individuals. The 

primary objective was completed by following secondary objectives. 

- To obtain the mechanical property of human leg during walking motion and 

validate the human walking prediction, a large measurement database of human 
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walking motion was created. The measurement of human walking at different 

speeds was conducted. 

- To provide insight into a wide variety of human leg property, the definitions of 

mechanical property of human leg during walking motion were presented. 

Fundamentals of leg property were defined for the extraction of crucial leg 

parameters from the measurement data. The crucial leg parameters are the 

minimum numbers of leg parameter required to identify human walking motion. 

Then, based on the fundamentals of leg property, the wide variety of leg property 

definition were presented, and used to extract the leg property from the 

measurement data. 

- To predict the accurate human walking motion from the wide variety of leg 

property. Simple models of human walking were developed to accommodate the 

wide variety of human leg property, and were used to predict walking motion. 

The simple walking models with different configurations and operating 

principles were developed to predict the effect of different leg property on the 

walking motion. 

- To differentiate the level of dynamic stability by the leg property, the dynamic 

stability of human walking with different leg property was analysed. The global 

stability was used to quantify the dynamic stability on the human walking 

prediction. The leg property requirements for stable walking motion were also 

identified.  
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1.3 Thesis overview 

The thesis is divided into eight chapters. This first chapter briefly reviews the current 

state of the analysis of human walking stability with the effects of dynamic leg 

properties, introduces the objectives of the research work of this thesis, and proposed 

the methodology adopted. The remaining seven chapters include: a chapter reviewing 

the literature on human locomotion modelling and dynamic stability quantifications, 

five chapters describing the core work of the thesis (see Figure 1.1), and a concluding 

chapter that summarises the work presented in the thesis as a whole and proposes an 

experimental and computational framework for dynamic stability quantification of 

human walking based on a wide variety of dynamic leg properties. 

 

The chapters describing the core work begin with a brief introduction that outlines the 

objectives of the work to be presented in that chapter and end with a short conclusion 

or discussion that summarises the major points from that chapter. Below is a 

breakdown of the thesis, previewing the content of each of the constituent chapters. 

 

In Chapter 2, a literature review of the relevant research for the analysis of human 

walking stability is presented, this being the basis of the proposed methodology for 

dynamic stability quantification of human walking motion. Firstly, the human 

locomotion modelling is introduced in a sequence of model complexity from minimum 

to maximum complexity. Secondly, the mechanical property of the leg during 

locomotion are introduced which include the leg property in human, animals and biped 

robots for the locomotion on different terrains. Finally, the methods to quantify the 
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walking stability are classified. In the conclusion, the best possible combination of 

human locomotion models, dynamic leg property and quantification methods for 

dynamic stability are proposed. 

   

In Chapter 3, the limitations of the use of three-dimensional whole-body walking 

measurement in dynamic stability analysis was raised. The three-dimensional whole-

body walking measurement for the development and validation of human walking 

model for dynamic stability analysis was introduced. The experimental protocol and 

process for three-dimensional whole-body walking measurement was presented. A 

carefully designed experimental protocol, together with a set of specially designed 

plastic plates carrying reflective marker clusters, were adopted to capture the motion of 

all the major body segments. Anatomical landmarks and local coordinate systems were 

used to reconstruct position and orientations of each body segment. The software GMAS 

(General Motion Analysis Software) is used to analyse three-dimensional kinematic and 

kinetic data. The data needed for leg property identification was calculated thereafter. 

The Chapter ends with some measurement results obtained. 

 

The fundamentals of leg property are described in Chapter 4. This includes the leg 

property definitions and a methodology for leg property extraction from human 

walking measurements. The fundamental leg properties of different walking speeds, in 

different contact conditions and with different elastic properties are presented.  
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In Chapter 5, the posture-dependent leg property is proposed for the study of the leg 

property variation throughout the gait cycle. The posture-dependent leg properties of 

different walking speeds, in different contact conditions and also the advantages over 

the fundamental leg properties are investigated. The potential applications in human 

walking prediction are analysed. 

In Chapter 6, the fundamental leg property is implemented into two simple walking 

models. The first model accommodates only the axial component of the fundamental leg 

property (CAE model). The second model accommodates both of the axial and 

tangential components of the fundamental leg property (CATE model). The constant 

system energy is assumed. The validity regions of human walking prediction by using 

CAE and CATE model with fundamental leg properties are presented. The human 

walking predictions provided by fundamental leg properties at different walking 

speeds, in different contact conditions and with different elastic functions are analysed. 

The dynamic stability of the predicted walking motions is quantified. The effects of 

elastic properties and the introduction of the tangential leg property on the dynamic 

stability of human walking are investigated. 

 

In Chapter 7, a posture-dependent elastic leg model operating with variable system 

energy is proposed. Human walking motions were predicted by the posture-dependent 

leg properties. The effect of posture-dependent leg property on the prediction accuracy 

of periodic walking motion is investigated. The limitations of posture-dependent elastic 

leg model in dynamic stability quantification are discussed. 
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Finally, Chapter 8 reviews the work of each constituent chapter by summarising the 

main points and drawing general conclusions. Integrating the methodologies employed 

in this thesis, an experimental and computational framework for dynamic stability 

quantification of human walking motion has been proposed, which may also provide 

guidance for the dynamic stability in clinical applications. Finally, some suggestions for 

future work are given.  

 

 

Figure 1.1 The relationship between the main chapters of the thesis. The measurement data in Chapter 3 is 
used to extract the leg properties in Chapter 4 and Chapter 5 and also to validate the human walking 
prediction in Chapter 6 and Chapter 7. Chapter 4 and Chapter 6 are based on the fundamental leg property 
definition. Chapter 5 and Chapter 7 are based on the posture-dependent leg property definition. The dynamic 
stability analysis was presented in Chapter 6 and Chapter 7 based on fundamental and posture-dependent 
leg property, respectively. 
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Chapter 2 Literature Review 

 

2.1 Introduction 

This chapter presents a review of previous works related to the human locomotion 

modelling, leg properties during locomotion and techniques for dynamic stability 

quantification of human walking, which are the basic of the methodology proposed in 

this thesis for dynamic stability quantification of human walking motion. The review is 

divided into three key areas: 1). Bipedal locomotion modelling, 2). Mechanical 

properties of legs during locomotion and 3).Dynamic stability quantifications of bipedal 

locomotion. In the conclusions, the relationships between the three key areas, their 

roles in dynamic stability analysis and the applications in this thesis work will be 

discussed. 

 

2.2 Bipedal locomotion modelling  

The sequence of processes for human locomotion may be summarized as followings: 

neuron actions from central to peripheral nervous system; contraction of muscles that 

develop tension; generation of forces at, and moments across, synovial joints; 

coordination of  rigid skeletal segments based on their anthropometry movement; and 

generation of ground reaction forces.  The whole-sequence proceeds along with the 

real-time interaction between sensory and motor system (Vaughan, 1999; Vaughan et 

al., 1999). Human gait model that tries to underline the most of this sequence is called 

the forward dynamic neuro-musculoskeletal model in which the model inputs are 

derived from different bases of neuro-excitation. Despite being represented by the 
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highest level of complexity, the human gait can be minimally represented by compass 

legs and a point mass representing the centre of mass motion. It depends on the 

ultimate applications that define which parts in the locomotion process to be included 

in a gait model.  The development of human gait model is primarily involved in two 

research fields: the design of legged robotics and biomechanics of animal and human 

locomotion. Both fields accept all levels of system complexity and involvement in 

stability prediction, which will be reviewed together in this sub-section in a sequence of 

system complexity.  

 

2.2.1 Inverted pendulum model 

Inverted pendulum model is widely used as a simplest model operated by the net effect 

of forces and torques or moments applied on a point or lump mass representing whole-

body mass. The simplicity and analytical solution allow the fundamental studies such as 

static and dynamic stability, performance and effect of mechanical properties on 

locomotion.  

 

Rigid leg inverted pendulum model 

The early study of biped walking mechanism used a rigid leg inverted pendulum model 

to express the ideal energy exchange during the curvilinear body motion over the foot-

ground contact point. (Cavagna et al., 1963; Cavagna et al., 1976; Cavagna et al., 1977) 

studied the mechanism of the body-ground interaction of biped locomotion by means of 

mechanical work done estimated by the measured ground reaction force and whole-

body kinematics. The external mechanical work done in elevation and forward 
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acceleration of the CoM during one-step walking and running were investigated when 

the net momentum of body-segment was considered as a constant. It was found that, 

the inverted pendulum being equivalent to rolling egg model provides exceptional 

quality explanations of the kinetic-gravitational energy exchange in intermediate speed 

walking. However, the energy storage and recovery performed by some sort of elastic 

mechanism better explained running motion. The complete energy exchange was found 

in inverted pendulum model with the rear foot pushing upward during the late stance 

(Cavagna et al., 1977). 

 

Afterwards, the interest was changed from mechanical energy to balance and stability of 

the locomotion, one of which is the study of balance stepping which was simplified by 

the motion of rigid leg inverted pendulum. Townsend (1985), Millard et al. (2009) and 

Wight et al. (2008) studied the foot placement, the location the foot needs to be placed 

to restore balance in biped walking. For lateral balance restoration, Townsend (1985) 

found the lateral foot placements as a linear function of the whole-body centre of mass 

position and velocity at the time of touchdown. Afterwards, Wight et al. (2008) focused 

on walking in the sagittal plane and derived the stable walking region based on the 

stability “in-the-sense of Lyapunov” by examining the initial tilting angle and angular 

velocity, energy balance and friction force. This stable walking region was used to 

quantify, the dynamic stability of the given initial walking condition. The foot placement 

estimator (FPE) was derived by the foot placement on a given initial condition, which 

can maintain the stable state variables and conservative angular momentum prior and 

after the touchdown impact (see Figure 2.1). The validation with human walking 

measurement data showed moderate stability prediction using foot placement 
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estimator. More details can be found in sub-section 2.4.3. Millard et al. (2012) extended 

the foot placement for balance restoration to 3D walking system by introducing an 

Euler pendulum, a rigid-leg monopod with disc-shaped foot. The rolling resistance and 

spin friction were included with the assumption of conserved angular momentum. The 

stable regions of walking were defined in the sense of Lyapunov by examining the initial 

tilting angle, angular velocity, energy balance, rolling resistance and spinning friction of 

Euler pendulum. An additional foot placement named capture point (CAP), a foot 

placement location to restore balance for a linear-inverted-pendulum was recalled 

(Pratt et al., 2006). The human foot placement location was bounded by the CAP and the 

FPE location since the human legs have been found to be stiffer than the nonlinear 

spring of the linear-inverted-pendulum model and more compliant than that the rigid 

leg FPE. The validation with human walking measurement showed considerable 

correspondence of 3DFPE to human foot placement (HFP).  

 

f FPE

 

Figure 2.1 The FPE location derived from the projection of the angle   from the CoM to the walking surface 
(Wight et al., 2008). 

  

The inverted pendulum model with variable leg length 

The inverted pendulum model with variable leg length has been developed especially 

for the conceptual analysis of CoM motion control during biped locomotion. Inman 

(1966) was one of the first investigators who suggested the idea of effective leg length 
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or virtual leg length for the analysis of centre of mass motion. This virtual leg was 

defined by the line connecting the whole-body centre of mass (CoM) and foot–ground 

contact point, the length of which varies during locomotion. He and his colleagues found 

that foot and ankle mechanisms are involved in the compression of the virtual leg length 

during mid-stance, which results in the lesser fluctuation the CoM trajectory. This 

concept renders in the gait control of machine walkers in that the constant CoM height 

is the only remaining control to achieve for the biped locomotion synthesis. Thereafter, 

the complexity level of IPM control for biped walking synthesis has been reduced to the 

minimal control on minimal joint actuation for examples, ankle and hip actuation that 

generate virtual leg length fluctuation to maintain the horizontal of CoM trajectory. Such 

system was called linear-inverted pendulum model (Saunders et al., 1953; Inman, 1966; 

Inman et al., 1994). Later on, Kajita and Tani (1991) proposed two telescopic legs with a 

2-DoF actuator on the leg tops generating the horizontal motion of CoM on the constant 

CoM height assumption. The gait pattern was determined by minimal ankle torque 

around the contact point. The 3D version (Kajita et al., 2001; Kajita et al., 2002) has row 

and pitch actuation at the contact point of the inverted pendulum to generate the flat 

CoM motion on a horizontal plane on single and double leg support.  

Lee and Farley (1998) studied the compression, touchdown angle and swept angle of 

the stance-limb for the prediction of CoM trajectory during walking and running. The 

stance-limb compression was defined as the difference between the leg length at heel-

strike and that at each instant during the stance phase. An inverted pendulum model 

with compressible stance-limb and a spring-mass model were used in predicting the 

actual CoM motion during walking and running, respectively. The touchdown angle and 

the timing of maximum compression of virtual stance-limb were found dependent and 
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responsible to the trajectory of the centre of mass during walking and running. The 

translation of the foot-ground contact point was found to decrease the stance-limb 

touchdown angle (with respect to vertical) and flatten the CoM trajectory. 

 

 Srinivasan and Ruina (2006) used inverted pendulum model with fluctuating leg length 

to study human gait on minimal energy cost. It is a conceptual model with an 

assumption that the cost of transport is proportional to muscle work. The legs were 

assumed to be massless and can be oriented, lengthen and shorten with no energy cost. 

The fluctuated leg length l(t) was formed by telescopic axial actuator in representing 

flexion of hip, knee and ankle and generating compressive time-varying force F= F(t) 

without elastic energy storage (see Figure 2.2). Potential-kinetic energy exchange 

regulated by leg length fluctuation was the key of this model. Only single support phase 

of the gait was addressed to examine mechanical work done during the locomotion. The 

optimal energy results showed that the stiff-leg, pendular running and impulsive 

contact are the less exhausted mechanics of moderate speed walking, walk-to-run 

transition and running, respectively.  

m

F(t)

F(t)

l(t)

 

Figure 2.2 Inverted pendulum model with fluctuated leg length (Srinivasan and Ruina 2006) 
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Inverted pendulum model with rotating mass 

By McGhee and Kuhner (1969), angular momentum has been introduced to a system of 

planar inverted pendulum as locomotion stabiliser. Actuated by moment (M), a rotating 

mass was simply included in the leg mechanisms for the locomotion stabilisation (see 

Figure 2.3). The equations of motion were linearised and solved for static stability, 

periodic motion and locomotion. The stable region was found to be enlarged by foot-like 

extension. By defining the relationship between leg angle (  ) and trunk angle (  ), the 

periodic motion was achieved by body torque control and extended to the locomotion 

by the planning sequence of two mass-less legs. 

 

f2

f1l

m

M

 

Figure 2.3 The inverted pendulum with rotating mass (McGhee and Kuhner, 1969) 

 

 Frank (1970) proposed an inverted pendulum model with six-degree of freedom in 

which the whole-body angular inertia is taken into account. This inverted pendulum 

model demonstrates the trade-off between the energy cost, body stability, body path 

stability and gait stability. The dynamic stability was founded with the sacrifice of 

minimum energy. Despite the nonlinear leg fluctuation minimizing the vertical 

displacements of the centre of mass (Saunders et al., 1953; Inman, 1966), a stiff-legged 
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gait permitting curvilinear motion of centre of mass was found to render as gait 

stabilisation. 

 

As a stability improvement version of the linear-inverted pendulum model, a two-mass 

inverted pendulum has been introduced by Park and Kim (1998) with one mass being 

assumed to concentrate at the foot of the swing leg and another mass being distributed 

over the rest of the body. The constrained motion of the swing leg was assumed to have 

no inertia effect. It was found that the locomotion formulated by this gravity-

compensated inverted pendulum model (GCIPM) is more stable than that of the simple 

inverted pendulum model.  

 

Albert and Gerth (2003) extended Park and Kim (1998)’s model to the multiple mass 

inverted pendulum model (MMIPM) without a trunk based on the control principle for 

zero moment around contact point (ZMP). This model allows leg trajectories to be 

responsible for the whole-body motion and gait stability. It was found that the dynamics 

of the swing leg i.e. rotational inertia facilitates the ZMP control such that the 3D gait 

pattern generator can regulate the ZMP to locate in the middle of the foot. With the ZMP 

at the maximum stability margin, the MMIP model was as one of the most stable 

inverted pendulum models. More details on ZMP and stability margin can be found in 

sub-section 2.4.3.  

 

On the same basis of ZMP control, the angular-momentum-inducing inverted pendulum 

(AMIP) was introduced by Kudoh and Komura (2003). By introducing the angular 
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momentum around the CoM, it was found that the controls for CoM motion in the 

sagittal and frontal plane can be achieved separately. The modified version by Ha and 

Choi (2007) introduced a virtual height (VHIM) adjustment depending on walking 

speed and mass distribution of the inverted pendulum. Since the ZMP trajectory is 

mainly determined by the CoM trajectory, the simple adjustment of the CoM height in 

this inverted pendulum was shown to improve the ZMP control. 

 

The linear-inverted pendulum has been used widely and successfully in biped 

locomotion synthesis because it helps to simplify the control of joint actuation and the 

body momentum. However, it was found that the additional angular momentum was 

introduced to every modified version of the linear-inverted pendulum. This is possibly 

the substitution to the absence of angular momentum of curvilinear motion of the CoM, 

which supports Frank (1970)’s suggestion in that the CoM vaulting over the contact 

point is fundamental to the stability of biped locomotion.  This underlines a drawback of 

flat CoM trajectory on locomotion stability, which is also supported by the fact that the 

flat CoM trajectory has never been found in human locomotion. 

 

By using the rigid leg inverted pendulum model, a decent quality prediction of human 

walking has been found at medium walking speed when the gravitational energy almost 

entirely exchanges with kinetic energy. A better prediction of hi-speed walking and 

running was found in the compressible leg inverted pendulum model. In these inverted 

pendulum models, different CoM trajectories of walking and running were represented 

by different touchdown angle and energy storage. The double support phase of walking 
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has not been considered deliberately. In addition, based only on the net effect of force 

and moment, the IPM may not render as an accurate prediction of the energy cost. For 

example, the leg fluctuation representing joint flexions during the gait may lead to 

incorrect interpretations of muscle work and energy cost of the expedition, as has been 

demonstrated in Heglund and Cavagna (1985) that the metabolic energy is used only 

when a muscle is activated and develops tension, does not matter the created 

mechanical work. Thus, in the fluctuating leg length - inverted pendulum model, the less 

mechanical cost of transport is not necessarily corresponding to either the less muscle 

work or the less exhausted condition in human walking. Apart from the energy 

prediction, the IPM can render in a simple description, prediction and design for the 

global mechanics of human locomotion and stabilisation.  

 

2.2.2 Spring loaded inverted pendulum model (SLIP) 

The gravitational potential energy and kinetic energy are not entirely exchanged in one 

stride of human walking. The mechanical energy stored as elastic energy and recovered 

as kinetic and gravitational energy have been found as energy transfer between stride 

(Cavagna et al., 1977). This mechanism can be represented by compliant mechanisms, 

which permit energy storage -release and the leg compression to represent more 

accurate dynamics of locomotion.  

 

Simple spring-mass model 

A simple spring-mass model was one of the first compliant mechanism models 

introduced by (Siegler et al., 1982). It was a simplified version of the inverted pendulum 
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model introduced by (Frank, 1970) in which the body was regarded as a point mass 

rather than a rigid body. The mass is supported by two linear visco-elastic legs 

representing the mechanical properties of the musculoskeletal system, which explain 

the generation of the ground reaction force during single and double support phase. 

Other two versions of this model are the three-dimensional model and the two-

dimensional model with foot being perpendicular to the leg. The stance phase of human 

gait was simulated by solving the initial value problem in which the initial motion and 

model’s parameters were obtained from human gait measurement. The gait 

characteristics simulated by using these three models are in close agreement with 

published measurement data. However, despite a good quality prediction of gait 

characteristics, the models are too complex to render as gait analysis in wide biological 

parameter space. 

   

By Blickhan (1989), a simpler spring-mass model was introduced to address the 

mechanics of human running and hopping as an extension of animal bouncing gait. 

Human running was modelled as a hopping forward with a spring angle at landing. The 

simulations showed that the CoM motion is uniquely characterised by leg stiffness, the 

velocity vector and spring length at landing. McMahon and Cheng (1990) used a similar 

hopping forward model justified by previously published experimental data of ground 

reaction force during running to study the coupling between leg-spring stiffness, gravity 

and forward speed. A steady running was achieved by a set of input parameters 

comprising the leg length and CoM velocity at landing which leads to a repetitive 

running motion. For a combination of leg stiffness and vertical velocity, the model 
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predicts relative stride length and initial angle in good agreement with experimental 

data. At high forward speed, leg stiffness is a nearly linear coupling with velocity vector.  

 

Alexander (1992) proposed a model of bipedal locomotion on compliant legs as an 

extension of his inverted pendulum model for quadrupeds (Alexander, 1980). The two-

dimensional model consists of a rigid trunk and two legs in which the centre of mass is 

located at the hip. Each leg has a telescopic actuator that can be lengthen and shorten 

and exert force, which represent the length change due to the flexion and extension of 

the knee and ankle joints. A spring aligned with the long axis of the leg represents the 

leg compliance. There is also a torque actuator at the hip representing the flexion and 

extension of human hip joint. The leg mass was assumed to be concentrate at a point 

located at a constant distance from the hip joint. The model walks or runs with constant 

touching down intervals. Each foot is alternately on and off the ground for stance phase 

and swing phase, respectively. Model parameters such as anatomical parameters and 

compliant properties were obtained from previous published data. The forward 

dynamic problem was solved by the optimisation of expenditure cost based on the 

assumption that the cost of transport is a proportion of muscle work. The results 

showed indistinct work requirement between walking and running which are different 

from the conducted metabolic cost measurement. The muscle performance estimated 

by metabolic cost, perfect elasticity and constant elastic compliance assumption were 

found as three factors resulting in inaccurate prediction of walking-running energy cost. 

As mentioned earlier in the previous sub-section, the metabolic energy is used only 

when a muscle is activated and develops tension, does not matter the created 

mechanical work (Heglund and Cavagna, 1985). Thus, the changes in leg length for 
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optimal mechanical energy are not necessarily related to optimal metabolic energy. This 

may be one of the sources for the inaccurate prediction. 

 

The modified version of Alexander (1992)’s model took account of the extra cost of the 

knee extensor muscles which increases the moments acting about the knee in the hi-

speed gait (Minetti and Alexander, 1997). The telescopic actuator was replaced by 

torque actuator at the knee joint. This torque actuator was introduced to balance the 

moment of a given ground force. By assuming the direct relationships between 

metabolic costs, muscle work and mechanical work done by the knee and hip torque, 

the walking simulation showed less expenditure energy than that of running at low 

speeds. However, since the relationship between the cost function, muscle work and 

mechanical work done by the model’s actuators is still ambiguous, the expenditure 

energy of human locomotion may be not best estimated by compliant leg model with 

axial elastic property.  

 

Afterward, the spring loaded inverted pendulum model was widely used to study the 

effect of leg mechanics on the locomotion stability. Running stability was the major 

topic at the early development as demonstrated in Raibert(1986), Schwind (1998), 

Seyfarth et al.,(2002) and Geyer et al (2005). Seyfarth et al. (2002) studied a criterion of 

stable running motion in terms of spring-like leg adjustments. The linear spring-mass 

model with designed attack angle was developed and justified by experimental tendon 

stress-strain relationships published in Alexander et al. (1986). The simulation started 

at the apex of flight phase with nominal leg length. The designed model parameters are 
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the body mass, leg stiffness, the nominal leg length and the angle of attack. Spring 

loaded inverted pendulum predicted periodic running motion within a certain range of 

leg stiffness (      and angle of attack ( ) in which the empirical relationship was found 

as 

 

        
 

      
                                                         (2.1) 

 

when   is a constant. The periodic running motion remains within a small range of leg 

stiffness and angle of attack. The stability of the periodic running motion was analysed 

by using the return map of the height and horizontal velocity at the apex of CoM 

trajectory. Limit cycles were identified using a stride number analysis and a stride-to-

stride analysis. The fixed point of limit cycle was examined if its gradient around the 

neighbourhood is within [-1, 1]. In stable running region, it was found that the 

adaptations of leg stiffness with the chosen angle of attack results in almost constant 

maximum leg force. The spring-mass model validation with experimental data of 

running animal and human  showed the self-stabilised running motion as a proper 

adjustment of leg stiffness, angle of attack at running speed above 3.5 m/s (Farley et al., 

1993). Ghigliazz et al., (2003) used a similar model to derive an explicit expression of 

the return map of spring-loaded inverted pendulum for running motion by neglecting 

gravity during stance. Geyer (2005) extended from stable region of running in Seyfarth 

(2002) to the closed-form approximation of stable running by assuming small spring 

angles during stance to redirect the gravitational force vector to the spring axis. With 

less computational intense, the simple closed-form solution of stable running was 
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suggested as a tool for gait stability analysis in large biological parameter space. 

However, as the operating region of locomotion speed is above the region of human 

walking speed, this simple spring-mass model was recognised as a human running 

template. 

 

 Afterwards, Geyer et al. (2006) proposed a bipedal spring-mass model with more 

deliberate properties of spring leg to represent both walking and running. For walking 

simulation, the double support phase was described by the motion between swing leg 

touchdown and stand leg take-off. A kinematic touchdown condition of the swing leg 

was defined by the leg striking the ground with rest length at fixed leg orientation with 

respect to gravity. The stand leg take-off condition was defined to occur when the spring 

leg reaches its rest length. The model parameters were justified by human 

measurement data. The simulations were started at the apex, or when the CoM 

trajectory is at the highest point during single support phase. The initial value problem 

was solved to obtain the periodic motion of apex-to-apex walking and running. The gait 

characteristics such as ground reaction force pattern, CoM trajectory and phase of 

mechanical energies were used to establish the region of spring leg stiffness and 

touchdown angle for human-like walking and running motion. The gait stability was 

examined by using apex return map and the Eigenvalues of the Jacobian matrix. The 

stable region of walking and running were distinguished by the angle of attack, spring 

stiffness, system energy and the present of double support phase. Despite the complete 

energy exchange ruled by rigid-leg inverted pendulum, this model suggested that 

walking efficiency depends on how much the stride energy can be stored elastically 

when redirecting the CoM during double support phase.  
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Some additional efficiencies  i.e. performance and robustness have been studied 

deliberately for the design of stable walking machine (Iida et al., 2007; Rummel et al., 

2010). One of which is the derivation of stable motion range of symmetric and 

asymmetric walking motion by identifying the leg stiffness that provides stable walking. 

The robustness against small perturbation was examined by the calculation of the area 

of the basin of attraction (Rummel et al., 2010). The results showed a wide range of 

angle of attack in the stable region of walking permitting the flexibility of attack angle to 

prepare for leg touchdown. The walking with higher linear stiffness has relatively small 

area of the basin of attraction indicating poor robustness against perturbations. To 

improve the robustness, non-linear leg functions with decreased slope of force-length 

relationship were suggested.  

 

Although the SLIP can predict the motion and dynamic stability of human walking and 

running, it underestimates the horizontal displacement of CoM and overestimates the 

vertical displacement of CoM and magnitude of ground reaction force. To predict the 

precise walking motion in human range, Lipfert et al. (2012) determined the realistic 

parameter range for human gait by the linear least square fitting on the data plot 

between the total ground reaction force and leg length obtained from human walking 

and running measurement. The mechanical parameters i.e. leg stiffness and rest length 

extracted by the fitting were directly fed into the SLIP model with the initial condition 

obtained from gait measurement. Preliminarily, none of the periodic motion for walking 

and running was found but, with compromises between leg property and initial 

condition, the solutions were finally found in a range of walking and running. The 
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limited range of solution is most likely caused by two reasons; the first one is the 

overestimation of extracted leg stiffness due to the leg force definition in which the total 

ground reaction force was transmitted to apply along the leg to the CoM. In fact, the 

total ground reaction force of each leg does not always apply along the leg and, 

therefore, the decomposition of the total GRF is required for the accurate estimation of 

the leg force-length relationship. The second one is the controversy between the model 

configuration and the initial condition used in the model. The human gait is, in fact, 

asymmetrical about the mid-stance, and therefore, feeding the measured initial 

condition into the symmetrical SLIP model would not likely to reproduce periodic 

motion. Although the deliberate selection of experimental data is required to validate 

the prediction range of the simple model of human locomotion, the flexibility of the 

model parameters allows the examination in a wide range of human locomotion 

parameters and thus can provide insight into the different mechanical properties of 

human locomotion i.e. leg stiffness and rest length. 

 

The spring-mass model with variable leg properties 

Schwind (1998) was one of the first investigators who proposed the nonlinear spring-

mass model of which the leg stiffness changes were operated by adaptive controller 

during the gait. The non-linear spring leg model was developed to solve for the 

analytical solution of periodic motion of human running. Only symmetrical stance phase 

was found to reproduce the periodic motion. Later on, based on the conservation of 

mechanical energy, another non-linear spring leg model for the design of running 

machine was proposed by Karssen and Wisse (2011). The optimal non-linear leg 

stiffness for maximum tolerance to small disturbance so called  disturbance rejection 
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(Hobbelen and Wisse, 2007) was determined. The soft nonlinear stiffness was found to 

increase the disturbance rejection which is consistent with the results of those in 

segmented leg running model (Rummel and Seyfarth, 2008). However, these results are 

in contrast to those in passive dynamic running model with nonlinear spring leg (Owaki 

and Ishiguro, 2007). Based on orbital stability quantification using maximum Floquet 

multipliers, the optimal stability was found in a certain design of hard nonlinear spring 

leg. More details for disturbance rejection and minimum Floquet multipliers can be 

found in sub-section 2.4.1. 

 

Despite the conservative system energy as a facility for the orbital stable locomotion, 

the energy variation found in animal self-stabilised mechanisms (Dudek and Full, 2006; 

Daley and Biewener, 2006; Daley et al., 2007; Sponberg and Full, 2008) has been 

applied to the SLIP model such that the storage-release, dissipation and production of 

energy can be managed by changes in leg properties. The self-stabilised locomotion in 

horizontal and sagittal plane was found as a result of clock-driven energy variations  

(Seyfarth et al., 2003; Seipel and Holmes, 2007; Kukillaya and Holmes, 2007). Schmitt 

and Clark (2009) introduced the variable force-free leg length during stance phase and 

changes in leg touchdown angle between strides to address the energy variation. The 

actuation of the force-free leg length modulates the spring force such that the energy 

stored in the spring does not equal the work done by the spring deflection and, 

therefore, non-conservative leg force-length relationship was established. It was 

adapted from a net effect of muscle-tendon coordination, which cyclically absorbs and 

produces energy during the first and the second half of the stance phase, respectively. A 

gait with variable force-free leg length is asymmetrical around mid-stance and requires 
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cooperation from leg angle variation or swing-leg retraction (Seyfarth et al., 2003) to 

regulate the CoM momentum around the contact point. In conjunction with either leg 

angle control or swing-leg retraction, the predetermined actuation of the force-free leg 

length during stance was found as a self-stabilised mechanism for the orbital stability of 

the SLIP model with the introduction of energetic perturbation. Such response to 

energetic perturbation is the advantage of the SLIP model with leg property variation 

over that with constant leg properties as the steady state of walking motion predicted 

by SLIP with constant leg properties will shift to a new steady state or simply fall when 

come across energetic perturbation (Seyfarth et al., 2002). On the similar basis of 

energy variation, the modified version of SLIP with instantaneous change of force-free 

leg length and leg stiffness called ESLIP has been introduced in Ludwig et al. (2012). 

These changes of leg properties were proposed to trace the CoM motion during human 

running. The multi-value of force-free leg length and leg stiffness were used to predict 

the precise human running motion. 

 

The spring-mass model with angular momentum of the body parts 

 The angular momentum of the body parts has been introduced to the SLIP model to 

further study the propulsion mechanics, CoP trajectory on the foot and upper body 

tilting for walking stability. The roller feet were included in the simple mass-spring 

model developed by Geyer et al. (2006) to the CoP progression (Whittington and 

Thelen, 2009). It was found that, with the assumption of the total ground reaction force 

pointing towards the CoM, the horizontal distance between the CoP and CoM can be 

reduced by the forward progression of the CoP which results in the smaller magnitude 

of the A-P and vertical ground reaction force compared to that of the conventional 
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simple spring-mass model. Another application of the spring mass model with roller 

feet included a damper to the spring leg  to study the propulsion mechanic during 

human walking (Kim and Park, 2011). To simulate one-step walking at different speeds, 

the model parameters and initial condition were adjusted with human walking 

measurements. The results showed that the propulsion energy is increased by the 

speed-dependent increment of leg stiffness, which underlines the relationship between 

elastic and propulsion energy. The damping coefficient was remarkably small and 

slightly increased with speed. The major drawback of these roller feet models is the 

statically unstable motion on the arc-shaped base, which have never been presented in 

human locomotion (Wisse et al., 2006). 

  

The effect of upper body angular momentum on the human locomotion stability has 

been studied. The experimental studies of primate locomotion have advised that the 

total ground reaction force pointing above the CoM as a result of the upright body 

posture may be an advantage of human locomotion over that of other primates (Thorpe 

et al., 2007; Kivell and Schmitt, 2009;Lovejoy et al., 2009). Maus et al (2010) proposed a 

SLIP model with a lumped mass hanged on the compass leg by a pin hip joint to study 

the effect of upright trunk on biped locomotion. A hip torque was introduced at the pin 

joint in order to tilt the trunk such that the total ground reaction forces point towards a 

certain point on a trunk so called virtual pivot point (VPP) (see Figure 2.4). Such 

mechanism was introduced to turn the inverted pendulum into regular pendulum 

mechanism termed virtual pendulum (VP), which inherits better self-stabilisation. The 

initial value problem with the assumption of constant transferred angular momentum 

was solved to achieve periodic motion solution. The system of trunk oscillation as the 
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redirection of net resultant force toward the virtual pivot point (VPP) was found to 

stabilise the walking after small perturbations. The most stable walking motion was 

found at the VPP heights of approximately 1-25 cm. The predicted hip torque and 

ground reaction force patterns are close to those observed in human walking motion. 

 

GRF

VPP

CoM

Hip t

 

Figure 2.4 The VPP model with VPP point being above the CoM. The hip torque ( ) redirects the ground 
reaction force (GRF) to point toward the VPP point. 

 

The spring-mass model provides insight into the elasticity of the human gait such as the 

energy storage and release by changes in leg length. With the proper combination of 

system parameters and the initial and touchdown condition, the locomotion predicted 

by SLIP model on the conserved system energy may inherit orbital stability. Such 

system can tolerate for small perturbation and converge to steady state but will shift to 

a new steady state or simply fall if comes across large perturbation. The SLIP operated 

on energy variation can facilitate the self-stability against energetic perturbation. Being 

accompanied with mechanical energy variation, the changes in leg properties have been 

found as a mechanical energy adjustment to perturbations. The coordination between 

the variation of leg properties and touchdown angle plays a crucial role in the self-
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stability of SLIP against energetic perturbation. One of the drawbacks of the SLIP is on 

the study of muscle and metabolic energy. As in human locomotion, the actions 

corresponding to changes in leg length does not always require muscle activation, the 

elasticity represented by SLIP model has no direct relationship with either muscle or 

metabolic energy. Another drawback is the absence of touchdown impact. As the 

compliant leg is assumed to be massless and the touchdown is always presented as part 

of the storage of mechanical energy, the touchdown impact is neglected or never 

presented. The loss at impact may be introduced by considering a small rigid foot with 

mass, however, touchdown at high velocity may result as a bouncing foot after a strike, 

and the biped will lose the ground.  

 

2.2.3 Passive dynamic walking model 

Passive dynamic walking model has been derived from ballistic walking in which the 

gait is induced by gravitation and zero actuation at the joints. This passive locomotion 

was proposed by McGeer (1990) based on the evidence from muscle activities during 

human walking motion which is remarkably low during swing phase and relatively high 

during double support phase (McMahon, 1984). Such activities were applied to the 

unpowered compass leg structure for the down-slope walking by the gravity–induced 

motion. The biped structure has a point mass at the hip with two links on each leg 

connected by the knee joint, and the distal link mounted rigidly with the roller feet. The 

knee is passively locked and unlocked at the determined sequence, which maintains the 

biped to be upright and progress forward. The sequence also regulates the stance leg 

and swing leg. The prototypes performed a stable walk down the slope. Over a decade, 

the nonlinear equations of ballistic walking were further studied to establish the 
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numerical solutions and the region of validity (Goswami et al., 1996; Goswami et al., 

1997; Goswami et al., 1998; Garcia et al., 1998). More studies were on the derivation of 

a natural and simple gait pattern for biped robotics (Rostami and Bessonnet, 2001a; 

Rostami and Bessonnet, 2001b). Later on it was used in biomechanical study as a simple 

gait description and the fundamentals of gait stability such as lateral balance (Bauby 

and Kuo, 2000), foot placement estimation (Millard et al., 2009; Wight et al., 2008) and 

walking stability (van der Kooij, 2001; Kooij, 2001; Dingwell and Kang, 2007; 

Verdaasdonk et al., 2009).  The 3D version accounted for the coupling between lateral 

rocking and forward swinging motion. The curved feet with compliant heels and 

mechanically constrained arms were added to provide harmonious coordination for 

stable gait. (Collins et al., 2001; Wisse et al., 2004).  Despite the improvement of 

dynamic stability, the statically unstable motion or unbalance stance on the roller feet 

was one of limitations for the study of gait stability. Such an unbalance state was 

overcome by the dynamics of flat feet with ankle spring (see Figure 2.5). The flat feet 

model with equivalent dynamic stability to the roller feet version was proposed to 

represent the balance and dynamic stability of human walking (Wisse et al., 2006). It 

also has been found that an actuated bipedal robot based on passive dynamic walking 

principle can maintain dynamic stability on walking on rough terrain (Byl and Tadrake, 

2008) 

k

 

Figure 2.5 The passive dynamic model with flat feet mounted on the ankle with spring ( ) 
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The major drawback of the PDW model is the horizontal speed limits. Such natural 

motion has restricted speed region for stable walking motion due to the zero actuation.  

 

2.2.4 Multi-body model 

The multi-body model is used to represent the human whole-body as the articulation of 

the series segments, where the limbs are not telescopic, and elasticity is localised at the 

joint level. Multi-body model enables the study of joint torques and muscle 

contributions at the joint level and thus the prediction of body segment coordination 

during locomotion. Also, by the mean backwards, the body segment coordination 

obtained from the gait measurements can be used to predict the coordination of joint 

torques and muscle contributions. The availability of input resources and final 

application of the results define which solving technique is to be used. 

    

The forward dynamic determination of the multi-body models for human locomotion 

study is scarce, due to the limited resources of input parameters. Alexander (1995) used 

segmented leg model driven by extensor musculature to study the effect of muscle 

properties, mass distribution of segment, number of leg segment and the leg geometry 

on standing jump. This multi-segment model with deliberate muscle insertion showed 

that the maximum shortening speeds, series compliances of leg muscles and the overall 

leg mass are the keys for high jumping. The leg geometry facilitates the jumping at 

different speeds by the changes of muscle moment arms. Such a model driven by 

deliberate joint dynamics was then developed especially for the posture balance 

prediction (Gunther et al., 2004). The forward dynamic determination on the multi-

body models has been found in the study of gait synthesis for stable biped robot. The 
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nonlinear joint stiffness and the gentle touchdown impact were found to improve the 

stability of biped running robot(Rummel and Seyfarth, 2008; Hutter et al., 2010). 

Despite the challenges of forward dynamic determination, a multi-body model with 

revolute joints was developed for the inverse dynamic problem in which the kinematic 

and kinetic measurement is the only requirement to solve for joint torques performing 

locomotion. The results primarily promote the understanding of joint coordination 

during locomotion. For example, the coupling between joint elasticity in the knee and 

ankle has been found as one of the joint properties playing a crucial role to stabilise the 

human locomotion and biped robot (Seyfarth et al., 2001; Gunther and Blickhan, 2002) . 

More details on forward and inverse dynamic determination can be found in sub-

section 2.2.5. 

 

2.2.5 Musculoskeletal model 

The whole-body musculoskeletal model incorporates the whole-system of the human 

body structure to determine as a result of the movement or motion, the joint torques 

and muscle forces. The direct measurement of muscle forces is generally not feasible in 

the clinical setting. For example, the most advance EMG can measure only the muscle 

activation signals, which rather indicates the timing than the magnitude of the force. 

The relationships between the forces applied to the body and the resulting motion of 

the body segments regardless of whether the skeleton is in two or three dimension can 

be expressed in the form 

 

M( )                                                               (2.2) 
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Where  ,   ,    are vectors of the generalized coordinates, velocities, and accerelations, 

respectively; M( ) is the system mass matrix and M( )   is a vector of inertial forces and 

torques;         is a vector of centrifugal and Coriolis forces and torques;      is a 

vector of gravitational forces and torques;      is the matrix of muscle moment arms; 

    is a vector of musculotendon forces and         a vector of musculotendon 

torques; and         is a vector of external forces and torques applied to the body by 

the environment. The contact between the body and environment is one of the most 

challenging parts in this model. This interaction has been dealing in many different but 

simple ways. For example, the heel contact is treated as an impact transition in the 

simplest models. The foot-ground interaction also can be simulated efficiently using 

compliance components such as damped springs in which the vertical force applied by 

the springs varies exponentially with the height of the foot above the ground (Pandy 

and Anderson, 2000; Pandy and Andriacchi, 2010; Pandy, 2001). 

 

Motion problems expressed by such an equation of motion can be categorised in two 

types, forward and inverse dynamics. The forward dynamic involves the calculation of 

body segment motion given the muscle forces acting on the body segment. The initial 

value of the muscle forces in this problem is critical and primarily effects in 

computational time and the accuracy of body motion estimation. The muscle forces may 

be estimated from the available force-length-velocity-activation relationships obtained 

from the recorded electromyography signals during the movement. The optimisation 

technique helps to determine the optimal muscle forces, through the integration of the 

equation of motion that satisfies given cost function corresponding to the tasks i.e. 
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minimum expenditure energy (Pandy and Berme, 1988b; Pandy and Berme, 1988a; 

Pandy et al., 1992; Pandy and Anderson, 2000; Anderson and Pandy, 2001). One of the 

challenges in this scheme is the determination of the muscle-tendon moment arms and 

lines of action as the small errors in these geometries can lead to large errors in muscle 

forces. 

 

 The inverse dynamics determines the muscle forces by tracing the measured kinematic 

and kinetic of the body i.e. position and external forces acting on the body. The 

optimisation technique is also required to solve the redundant muscle forces subjecting 

the cost function (Crowninshield and Brand, 1981; Glitsch and Baumann, 1997). This 

scheme is computationally efficient as it does not require the system differential 

equation to be numerical integrated. In addition, the initial values of optimization 

parameters can be set without the need of measurement data. However, one of 

limitations is that the accuracy of joint moment calculation highly depends on the 

measurement of mass and inertia of each body segment. The estimation of inertia using 

scaling rules may be a major source of errors.  In addition, only the equation of motion 

of multi-segment model for the open- chained link during the single support phase can 

be solved. Therefore, most of the original models of inverse dynamics only considered 

running motion and the walking motion with an instantaneous double support phase. 

An alternative gait prediction model has offered a new determination during double 

support phase. This method combined inverse dynamic solving and optimization 

method based on minimum energy and task constraints. It requires only few gait 

parameters and the assumption of force transfer ratio to define the task constraints 

(Ren et al., 2005). Another model has been proposed with the assumption of a smooth 
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transition to the double support phase (Ren et al., 2007). The model required the 

measured kinematic data of all major body segments. The calculation sequence started 

with the determination of GRF from the measured data allows the determination on 

various activities. However, a shortcoming of this method is that the accuracy of gait 

prediction is highly sensitive to the measurement quality. Both forward and inverse 

dynamic scheme have been used to predict joint coordination facilitating in the stable 

locomotion (Zajac et al., 2002; Zajac et al., 2003). However, the comparison between the 

prediction and the relevant human locomotion measurement remains a challenge for 

the musculoskeletal model validations. 

  

2.2.6 Integrated neuro-musculoskeletal models 

The most complicated model for human locomotion incorporates nervous system 

control within a musculoskeletal model. The major aim of this model is to estimate or 

predict muscle forces, joint moments and/or joint kinematics from neural signals. The 

dynamics of the whole system including neural commands, muscles and body segments 

currently can be implemented only in forward dynamics form. In inverse dynamics 

scheme, since the internal counterbalances between flexion and extension muscle to 

muscle activation remains unknown, the net values of the joint reaction forces and 

moments are the only ultimate prediction (Buchanan and Shreeve, 1996; Herzog and 

Leonard, 1991). In forward dynamics approach, the input is the neural command which 

specifies the magnitude of muscle activation. Such input can be taken from 

electromyograms (EMGs) or estimated by the optimization or neural network models. 

The muscle contraction dynamics was created on the dynamics of neural command. 

This muscle contraction dynamics designs the transformations from muscle activations 
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into muscle forces. Most models created the muscle contraction dynamics based on 

Hill’s muscle model (Hill, 1938) or other more complex biophysical model of Huxley 

(Huxley, 1957;Huxley and Simmons, 1971). Then the musculoskeletal geometry is used 

to transform muscle forces to joint moments. Finally, by solving the equations of 

dynamic system, the joint movement is predicted.  

 

The use of such interaction between multi-body dynamics and neuron mechanism for 

the study of biped locomotion has grown over the previous decade (Taga et al., 1991; 

Taga, 1994; Taga, 1995a; Taga, 1995b; Hase and Yamazaki, 1998; Yamazaki et al., 1996; 

Ogihara and Yamazaki, 2001). Currently, in clinical biomechanics, the EMG driven 

models of varying complexity have been used to estimate joint moments i.e. knee and 

low back muscle moment (Lloyd and Besier, 2003; Lloyd and Buchanan, 1996; McGill 

and Norman, 1986; Thelen et al., 1994). However, this forward dynamic determination 

is time-consuming, and verification of the central pattern generator (CPG), the cyclical 

generation of neural signals for human motor control is still an open question.  

 

The high variability of in EMG is a major drawback limiting the neuro-musculoskeletal 

models to represent the precise human locomotion. The optimisation methods may be 

used to predict muscle force directly, however, the proper cost function incorporating 

substantial neural actions has not been recognised. The neuro-musculoskeletal models 

in robotics considered the gait stability as a necessary condition to proceed the 

locomotion (Taga et al., 1991; Taga, 1994; Hase and Yamazaki, 1998). With the extreme 

level of complexity and highly limited information of muscle activation inputs, the 

whole-body neuro-musculoskeletal models for human locomotion are still under 



80 
 

investigation (Taga, 1995a; Taga, 1995b; Yamazaki et al., 1996; Ogihara and Yamazaki, 

2001). The applications in dynamic stability quantification have not been recognised. 

 

2.3 Mechanical properties of legs during locomotion 

As mentioned earlier in the previous section, the spring-mass model precisely predicts 

human running because the spring leg is an appropriate mechanism performing the 

elastic-kinetic-gravitational energy transfer which is a crucial energy flow in human 

running.  However, the strategic functions of whole-body muscle-tendon structure do 

not rely only on the single valued force-length relationship of such perfect elastic 

mechanism (Wainwright et al., 1976). For example, not only to return the energy stored 

previously, the leg also needs to produce energy to accelerate and elevate the CoM 

especially during late stance (Alexander, 1988). The complex functions of the human leg 

during the various types of locomotion may be briefly categorised into three classes; 

energy conservation, power attenuation and power amplification (Roberts and Azizi, 

2011). The combination of these functions performs sophisticated locomotion that a 

human does in daily-life without thinking. This may be a consequence of the design of 

structural organisms in the legs and other body parts which was adapted from 

generation to generation for certain functions (Wainwright et al., 1976). For the human 

leg, one of the most important functions may be the management between energy cost 

and dynamic stability during locomotion  (Blickhan et al., 2007; Srinivasan and Ruina, 

2006). Previous studies on the relationships between leg properties and its function 

during locomotion mainly concentrated on insect and robotic legs. Very few of which 

provide insight into human leg properties during locomotion possibly due to the 

experimental limitations and complexity of musculoskeletal structure. In this section, 
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the review is divided into two parts, each part concerned with different leg structural 

property: 1). Compliant leg properties 2). Variable leg properties 

 

2.3.1 Compliant leg properties 

Complaint legged machines operated on the conservation of system energy have been 

found to inherit the self-stability (Blickhan et al., 2007;Seyfarth et al., 2002 and 2006; 

Geyer et al. 2005 and 2006; Rummel et al., 2010). In a certain energy range, the well-

tuned combinations of linear elastic leg properties and touchdown timing defined by leg 

angle and leg length at touchdown instant are required to carry out periodic motion of 

walking and running. It was found that the orbital stability of the gait decays with 

higher leg stiffness (Geyer et al., 2005, 2006; Rummel et al., 2010). Similar results have 

been found in the study of leg parameters and elasticity during insect locomotion. The 

common combination of dimensionless leg parameters in the population of cockroach B. 

Discoidalis i.e. leg stiffness, leg angle and leg length, was found to stabilise the running 

over the rough terrain. It was suggested as a dimensionless design of leg properties for 

stable locomotion (Schmitt et al., 2002).  

The mechanical properties of the human leg during the gait were estimated by the 

linear elastic leg function (Lipfert et al., 2012). A linear axial force - leg deflection 

relationship were used to extract the elastic property and angle of attack of the leg. The 

dimensionless leg stiffness of 29- 45 and 21-23 and the attack angle ranging from 68 – 

85 and 73-88 degree were found during human walking and running, respectively. By 

feeding the leg properties into the simulation of walking and running by using spring-

mass model, it was found that the proper combination of leg properties and leg 
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positioning is required to carry on the periodic motion of walking and running. This 

underlines the relationship between the properties and elastic function of the leg during 

locomotion. With the proper combination of leg properties and leg positioning i.e. leg 

angle and leg length at touchdown instant and the elastic leg function can facilitate the 

periodic motion and stability of locomotion. 

Five different mathematical models for the estimation of leg stiffness during braking 

phase of running have been compared (Coleman et al., 2012). One of which requires 

kinetic-kinematic recordings with leg length being defined as the distance from the CoP 

of the foot to the greater trochanter. The leg force was calculated from the net resultant 

force being decomposed into the direction of leg compression. The other four models 

are conventional which require only force platform-derived data and anthropometric 

measure to calculate the leg stiffness. The estimations of peak vertical force and the leg 

length compression are the key for leg stiffness extraction.  The peak vertical forces 

were mainly estimated as the functions of body weight and the duration of flight and 

ground contact. The leg length compressions were estimated as functions of the leg 

length during still standing, average horizontal velocity and vertical displacement of the 

CoM (Morin et al., 2005; Morin et al., 2011; Blum et al., 2009; Farley et al., 1993; Farley 

and Gonzalez, 1996). Each model predicted significantly different leg stiffness from the 

others. However, the leg stiffness values predicted by kinetic-kinematic model and 

nonlinear estimation of peak vertical force and leg length compression are close. The 

two models share the stiffness range of 10.22 - 16.14 kN/m with the average body 

weight of 67 kg. Based on relatively small coefficients of variation, the direct kinematic-

kinetic measurement was suggested for the precise quantification of leg stiffness. The 
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nonlinear estimation of peak vertical force and leg length compression (Morin et al 

2005) was suggested as an alternative when kinematic measurement is unavailable. 

 This underlines the importance of leg definition on the study of properties and function 

of legs during locomotion. Depending on the availability of locomotion measurements, 

the mechanical properties of the human leg can be estimated on different knowledge of 

leg functions.  

 

2.3.2 The variable leg properties 

As an advantage over the linear elastic leg properties, the effect of the non-linear spring 

in straight and segmented leg on the disturbance resistance during running has been 

studied. It has been found that the biped running simulation with soft nonlinear spring 

leg  has fall region further away from the stable limit cycle than that with linear spring 

leg (Karssen and Wisse, 2011; Rummel and Seyfarth, 2008). However, with energy 

dissipation at the leg touchdown, the hard nonlinear stiffness was found to improve the 

orbital stability of passive dynamic running (Owaki et al., 2006). The variation of leg 

stiffness during the gait is likely another mechanical property facilitating in negotiation 

with small perturbation. 

 

Many examinations on arthropod leg properties showed the roles of elastic and 

damping property in energy management and locomotion stabilisation (Alexander, 

1988; Cavagna et al., 1977; Kubow and Full, 1999; Full and Koditschek, 1999; Schmitt 

and Holmes, 2000a; Schmitt and Holmes, 2000b; Schmitt and Holmes, 2003).  The 

passive mechanical properties of rapid running cockroach leg have been examined for 



84 
 

roles in self-stabilisation (Dudek and Full, 2006). With a very short time to react to 

perturbations, the energy management by rapid running cockroach leg could be 

assumed as feed-forward type. Energy absorption was found with leg resilience 

properties being ranged from 60 to 75%. It was found that, extracted from the leg force-

displacement data of individual cockroach leg over a wide range of leg frequencies, the 

elasticity and hysteretic damping (Nashif et al., 1985) are equivalent to that estimated 

for a single leg of human hopping on damped surfaces (Moritz and Farley, 2003). The 

frequency independence of hysteretic damping was suggested as embedded dynamics 

in running leg playing a crucial role as energy absorber handling the disturbance 

without sensing.  

 

A number of legged machine designs have utilised the leg property variation 

corresponding to the energy variation found in stable insect running to provide insight 

into the leg properties for stable biped locomotion (Raibert, 1986; Seyfarth et al., 2003; 

Schmitt, 2006). To introduce the different leg length at touchdown and leave-off, the 

elastic leg properties with variable force-free leg length (Schmitt and Clark, 2009) has 

been studied. A non-conservative force-length relationship was introduced to prescribe 

the increased or decreased duration of leg extension during the late stance which 

results in the increase and decrease of CoM velocity at the end of stance phase, 

respectively. It was found that such variations of force-free leg length allow the 

variations of CoM velocity to recover from energetic perturbation. However, with its 

non-conservative energy, the combination of variable force-free leg length and fixed leg 

touchdown angle yields unstable velocity heading angle or unstable angle between 

horizontal and net velocity of the CoM. The coupling between the variation in leg length 
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and leg angle at touchdown was introduced as feed-forward regulation against the 

change in CoM momentum and, therefore, stabilise the velocity heading angle by leading 

to steady velocity heading (Seyfarth et al., 2003; Schmitt and Clark, 2009).  

 

The relationship between the change of leg properties and the instantaneous changes in 

the mechanical energy during the gait has been studied (Carver et al., 2009; Riese and 

Seyfarth, 2012). In Carver et al. (2009), the spring force was constrained at the instant 

of the lowest CoM position during running to permit variation of the leg stiffness and 

force-free leg length, and the instantaneous change of the mechanical energy. It was 

found that such constraints permitting mechanical energy variation stabilise the gait 

pattern of biped machine running. Such instantaneous change of leg properties during 

human running were studied (Ludwig et al., 2012). By fitting such spring force-length 

relationship onto the measurement data of three-consecutive running steps, the 

dimensionless leg stiffness was found in the range of 18.7 and 21.2, which is close to the 

linear leg stiffness calculated by Coleman’s model (Coleman et al., 2012). 

 

A hip torque driven by cyclical prescription of rotational stiffness has been introduced 

to the SLIP model to improve the orbital stability (Seipel and Holmes, 2007). The model 

assumes that the total leg force exerts to the CoM, therefore, the body has no rotation. It 

was found that, in a range of axial and rotational stiffness, this modified SLIP model can 

recover from large perturbation (100% of its fixed point value). However, the orbital 

stability is highly sensitive to the leg angle and leg length at touchdown and lift-off. The 
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rotational actuation was found to resist the motion and manage mechanical energy 

exchange during the gait which is necessary for recovery from large perturbation. 

 

Despite their benefits on the stabilisation of running insects and biped robot after large 

perturbation, the variable leg properties during human gait and their effect on dynamic 

stability have not been fully explored. Similarly, the motion resistance and mechanical 

energy exchange managed by hip torque during human locomotion has never been 

studied. In addition, the coordination between axial and rotational actuation found to 

enhance perturbation resistance in biped robot simulation has never been investigated 

in human locomotion. Such leg properties and axial and rotational actuation may be 

obtainable from human locomotion measurement. It depends on the ultimate 

applications that define which part of leg mechanics to be included in the studies.  

 

2.4 Dynamic stability quantifications of biped locomotion 

The common purpose of dynamic stability quantification on biped locomotion may be to 

identify the ability to maintain steady motion after the destabilised situation i.e. the 

present of external perturbation and the inherent variation of the motion  (Wisse, 2004; 

Rose and Gamble, 2006). In this section, the review of dynamic stability quantification is 

divided into three categories based on the outcome of the quantification: 1). 

Quantifications of the tendency to regain steady state after perturbations, 2). 

Quantifications of sensitivity to variation and 3). Criteria for stability maintenance. 

 

2.4.1 Quantifications of the tendency to regain steady state after perturbations 
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Largest Floquet multiplier 

Floquet multipliers quantify at a certain moment of each motion cycle, the tendency of 

the system’s state to return to steady state, so called “limit cycle orbit”, after small 

perturbations. 

The relationship between the initial system’s state ( ) and the resulting system’s state 

after one step      defines a return map of which the collection is called Poincare map 

(see figure 2.6). The ideal initial state ( ) holding a return map to it expressed by 

       is called the fixed point. However, the system starting away from the fixed 

point can also converge to it. The conventional examination of this convergence 

introduces the deviation from the fixed point as a small disturbance. The gradient of 

which toward the fixed point, so called Jacobian matrix is calculated to identify whether 

the system has a return tendency and if so to measure at what rate. Such gradient values 

or Eigenvalues of Jacobian matrix so called Floquet multiplier lies within a unit circle for 

the convergence to steady state, the smaller magnitude indicates the faster rate of 

convergence. For the motion system with multiple state variables, one of which 

providing the largest Floquet multiplier implies the worst case of orbital stability 

(Steven, 1994; Hasan, 1995). More details can be found in chapter 5. The largest Floquet 

multiplier has been widely used with legged robot and simulations of biped walking 

(Hurmuzlu and Moskowitz, 1986; McGeer, 1990; Garcia et al., 1998; Seyfarth et al. 2002; 

Geyer et al., 2005; Geyer et al., 2006; Seyfarth et al., 2002). It was adapted to use with 

human locomotion with a periodic motion assumption. The orbital stability of human 

walking was determined by having the mean of return map during steady state walking 

to represent the limit cycle. The natural variation of human walking motion was treated 

as a perturbation (Hurmuzlu and Basdogan, 1994; Dingwell and Kang, 2007; Dingwell et 
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al., 2007; Schablowski and Gerner, 2006; Bruijn et al., 2009; Kang and Dingwell, 2009; 

Granata and Lockhart, 2008). Healthy human walking over  ground and on treadmill at 

different speeds showed orbital stability(Bruijn et al., 2009; Kang and Dingwell, 2009). 

However, its correlation with the risk of falling was unclear as very few studies can 

include the possibility of falls on such ethical measurement. One of which showed the 

higher value of maximum Floquet multiplier in fall-prone elderly compared to that in 

healthy elderly This study relates the decay of orbital stability with the higher risk of 

falling (Granata and Lockhart, 2008). Despite the difficulty to relate the orbital stability 

to the risk of falls during human walking, some simple walking models with falling 

inductions such as changes of floor height were introduced for the quantification of 

orbital stability on the fall-prone walking situations. However, the correlations between 

them still cannot be established(Su and Dingwell, 2007; Hobbelen and Wisse, 2007; 

Bruijn et al., 2011). From all of the above evidences, this orbital stability can be the best 

in quantifying the inherent stability of the gait pattern when coming across small 

perturbations. 

 

 

Figure 2.6 The time-history of system’s state (    ) and the Pointcare map captured on Pointcare section in 
perpendicular to the flow of system’s state (left). The close up of Pointcare section (right) shows return map 
(  ) and limit cycle (  ) (Bruijn 2010). 
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Basin of attraction 

The entire collection of the initial states leading the walking motion to steady-state is 

called the basin of attraction (BoA). The walking is orbital stable if it holds some basin of 

attraction, the size of which indicates the reliability so called the “robustness” of 

walking motion to changes in the initial condition. In other words, the large size of the 

basin of attraction possesses the high number of initial states leading the system to 

steady-state walking. The basin of attraction can be used to quantify the global stability 

in term of robustness. A couple of methods were used to draw the region of the basin of 

attraction (Guckenheimer and Holmes, 1983; Parker and Chua, 1989; Schwab and 

Wisse, 2001). More details can be found in chapter 5. It is widely used to compare the 

orbital stability between different designs or configurations of walking robot (Rummel 

et al., 2010; Wisse, 2004). The distance from the limit cycle to the border of the BoA is 

potentially equivalent to the biggest size of perturbation the walking motion can handle 

without falls (Wisse, 2004). However, such quantification would need to bring the 

subject near to fall if the global stability of human walking were to be defined. Above all, 

the BoA is a comparative quantification as it is not the actual area but a region contains 

all possible initial conditions. Therefore, the two basins of attraction need to be 

collected at the same sampling resolution for that their collections can be compared. 

 

Gait sensitivity norm 

As a practical extension from Floquet multipliers, a new measure called Gait sensitivity 

norm  was introduced (Hobbelen and Wisse, 2007). In this measure, the rate of 

convergence to the limit cycle was applied to the gait indicators such as step width and 

step time. The dynamic response of which to perturbations is more easily to be 
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visualised compared to that of state variables. As a linearised response of gait indicators 

  to a single disturbance     the Gait sensitivity norm (GSN) was defined as 

 
  

  
 
 
  

 

    
                  

   
 
                                  (2.3) 

,in which       is the value of the  th gait indicator at  th step after disturbance and   is 

the number of gait indicators. The nominal value of gait indicators        is calculated 

from the mean value of gait indicators during steady-state walking. The Gait sensitivity 

norm being less than 1 indicates stable walking. A pilot study of the GSN in human 

walking  selected the CoM position (with respect to the foot) as a gait indicator on a 

finite number of strides after it was perturbed by a side way pull (Bruijn, 2010). The 

variance of the CoM motion in perturbed walking was normalised to the variance of 

which in unperturbed walking to account for differences in natural variability. The GSN 

of the CoM position predicted that the walking pattern is more stable in the fast walk 

than in the normal walking. In general calculation of the GSN, the response to the actual 

disturbance and the variation of gait parameters are combined to capture all relevant 

consequences of the perturbation. However, based on the linearisation, it quantifies 

only the local stability of the gait pattern. In addition, it was found that the Gait 

sensitivity norm is highly sensitive to the selection of disturbances    and gait indicator 

  (Karssen and Wisse, 2011; Hobbelen and Wisse, 2007; Bruijn, 2010). 

 

Maximum allowable external perturbation 

The largest deterministic disturbance quantifies the maximal disturbance a motion can 

handle, but does not take into account the convergence rate after a disturbance 
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(McGeer, 1990; Pratt et al., 2001; Wisse et al., 2005). To determine the maximal 

disturbance, the different sizes of single perturbation, for example, a floor height and 

push disturbance were introduced until the motion system fails to produce periodic 

motion.  

To quantify the maximal disturbance capability of the motion system, some random 

multiple disturbances were introduced, and the rate of convergence to the steady state 

was quantified until motion system fails to produce periodic motion. The random 

multiple disturbances that result in a failure of periodic motion are called largest 

allowable random disturbance (Hobbelen and Wisse, 2007; Pavol et al., 2002; 

Pijnappels et al., 2008). 

Based on the examination of the responses to actual perturbations, these maximum 

allowable perturbations directly reflex the probability that the biped locomotion will 

fall. However, these global stability quantifications are hypothetical for human walking 

and thus, purely used in legged robot, which can bear with a very long experiment on 

falling situation. 

 

Metastable limit cycle analysis 

When the discrete impact events were taken into account, the dynamics of walking 

systems may be considered by using the discrete, closed-loop return-map dynamics. In 

such dynamic walking systems, the stochastic perturbation is introduced and the 

dynamic stability of the transient state of the dynamic system is quantified. The 

behaviour of this stochastic dynamic system may be steady for a long period, however, 

the occurrence of fall mode is guaranteed. These types of system cannot be classified as 
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stable, but it is also unsubstantiated to classify it as unstable (Talkner et al., 1987; 

Bovier et al., 2000; Maas et al., 2004; Weber et al., 2006). The dynamic stability of the 

stochastic dynamic system may be quantified based on a discrete-time, continuous-state 

Markov process in which the the convergence to the absorbing state (fall mode) can be 

quantified by using an eigenmode analysis (Bovier et al., 2000; Maas et al., 2004; Weber 

et al., 2006;Byl and Tedrake, 2009). This type of dynamic stability analysis has been 

applied to the passive walking model to improve the mechanical designs for dynamic 

stability of (Byl and Tedrake, 2009). The application in the dynamic stability analysis of 

human walking motion has not been recognised. 

 

2.4.2 Quantifications of the sensitivity to natural variation 

Maximum finite time Lyapunov exponent 

Maximum finite time Lyapunov exponent     is a continuous capture of short      and 

long term      response to a very small perturbation. The neighbouring trajectories of 

state variable(s), are traced to calculate the average logarithmic rate of separation so 

called “the rate of divergence”. The short     and long term      responses are 

estimated during the first stride and between fourth and tenth stride, respectively. The 

negative rate of divergence      indicates that the neighbouring trajectories move closer 

together, which represents stable response to small perturbation. The positive rate 

indicates that the neighbouring trajectories move away, which represents instability in 

the sense of “chaos”. The higher value of the finite time Lyapunov exponents      

indicates less stable motion system (Rosenstein et al., 1993; Kantz, 2004). With a 

perceptive mathematical foundation, maximum finite time Lyapunov exponent     has 
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been widely used to assess and compare the local stability in various walking situations 

(Dingwell 2000; Dingwell 2000; Buzzi 2003; Manor 2008; Dingwell 2006; Bruijn 2009). 

More studies designed fall-prone situations to establish the correlation between the 

sensitivity to natural variation quantified by maximum finite time Lyapunov exponent 

and the probability of falling. The experimental results from subjects with reported 

balance problems, simple passive dynamic model walking on slope variation and 

powered walking robot with disturbed movement control showed similar correlation 

between the rate of separation and the probability of falls (Lockhart and Liu, 2008; Su 

and Dingwell, 2007; Garcia et al., 1998; Roos and Dingwell, 2011). It was found that the 

short term response      is highly related to probability of falls while the relationship 

between the long term response     and probability of falls was still unclear. A 

validation of such relationships simulated the fall-prone situation by changes in 

morphology, the difference in mechanical properties, the introduction of perturbations 

and the combination of all situations with the extended version of passive walking 

model with arched feet and a hip spring (Hobbelen and Wisse, 2007). It confirms the 

established correlation between the short term response      and probability of falling, 

which is consistent with the global stability quantified by maximum allowable 

perturbation (Bruijn et al., 2012). However, the explicit relationship between the 

maximum finite time Lyapunov exponent, the possibility of falls and the global stability 

remains an open question.  

Similar to the largest Floquet multiplier, the maximum finite time Lyapunov exponent 

does not require the external perturbation during walking. The finite time Lyapunov 

exponent and the Floquet multipliers are defined by the rate of divergence and the rate 

of convergence, respectively, in response to the natural variation. The difference is the 
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reference for the calculation. For the Floquet multipliers, the motion is considered as 

periodic motion and each trajectory of a state variable is compared to the steady-state 

trajectory.  However, for the finite time Lyapunov exponents, the motion is considered 

as aperiodic motion and each state variable is compared to the nearest neighbour. This 

indicates that the two indices quantify the different dynamics stability. The response to 

small perturbation is the only similarity, which groups them into local stability 

quantification. 

 

Variability measures 

Kinematic variability during the gait has been studied over decades based on some 

knowledge of the relationships between the nature of variations and control strategies 

during human movement (Haken et al., 1985; Hausdorff, 2005; Brach et al., 2005; Brach 

et al., 2007). Although such relationships have not been fully established, the measures 

of variability have been progressively developed in various gait conditions. The 

statistics of the variation such as the variance, standard deviation, median absolute 

deviation and coefficient of variation were used to quantify the variability of gait 

variables that may be in relationship with falls. The gait variables such as stride time - 

stride width, the double-support duration and trunk movement have been widely used 

in variability measures (Su and Dingwell, 2007); Roos and Dingwell, 2011). Despite the 

wide variety of available quantification, very few of the which have been found to be 

capable to establish the relationship between the natural variation of the gait variables 

and the dynamic stability of the locomotion (Maki, 1997;  van Emmerik and van Wegen, 

2002). In a simulation of a rimless wheel motion on the slope with the stochastic 

changes of leg length, initial condition and external perturbation, it has been found that 
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the dynamic stability of bipedal walking motion is highly dependent on such stochastic 

variability (Thrishantha, et. al, 2012).  

In addition, even though such relationship can be established, the kinematic variability 

still have no relationship with the recovery from perturbation and, therefore, does not 

necessarily indicate the probability of falls (Bruijn et al., 2011). Since the direct 

relationship between kinematic variability and probability of falls is still unclear, some 

assumptions or constraints, for example, an assumption that the stiff or rigid movement 

is less adaptable to perturbation, are crucial to correlate between the kinematic 

variability and probability of falls (Stergiou and Decker, 2011). 

 

Criteria for stability maintenance 

Criteria for balance and dynamic stability maintenance based on inverted pendulum 

model 

A well-known criterion of static stability states that the vertical projection of the centre 

of mass (CoM) must be located within the base of support (BoS) to maintain static 

stability of the centre of mass. An extension of this rule was proposed for dynamic 

stability quantification base on a simple inverted pendulum model. This extension 

called extrapolated centre of mass position (XcoM) was calculated as 

 

         
 

  
,                                                          (2.4) 
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where         and   are location and velocity of the CoM and the pendulum 

eigenfrequency expressed by 

     
 

 
                                                (2.5) 

 

where   and   represent gravitational force and the CoM height at upright standing. The 

margin of stability ( ) is defined by the distance between the location of      and the 

edge of the base of support (Hof et al., 2005). The biped locomotion is defined to be 

dynamically stable, if the margin of stability ( ) is above zero. In human walking, it was 

assumed to be coincident with the centre of pressure location (CoP)(Hof et al., 

2007;Morasso and Schieppati, 1999). Despite the perceptive foundation of the criterion, 

it has not been widely used in stability analysis during human walking as it is only 

applicable in the medio-lateral stability. The stability margin was used to differentiate 

between the dynamic stability of the walking motion of the above knee amputee and 

healthy subject. It was found that the stability margin is extended in the walking motion 

of the above knee amputee (Hof et al., 2007). Another study used stability margin to 

investigate the effect of compliant surface on the dynamic stability of human walking, 

and found that the stability margin is extended in the human walking on the compliant 

surface (MacLellan and Patla, 2006). Those studies underline the extension of stability 

margin in the fall induced situation, which may then be used to discriminate the fall-

prone walking from the normal one. However, this dynamic stability index may need 

some verification to establish the relationship with the response to perturbation and 

probability of falls.  

A foot placement estimator has been derived on the assumption of conservative angular 

momentum during the walking motion to estimate the location that the foot should be 
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placed on to maintain dynamic stability (Mile 1985; Wight 2008). It was found that an 

inverted pendulum model representing human walking motion is asymptotically stable 

when a foot is placed right on the estimated point so called the foot placement estimator 

(FPE). The experimental validation showed that the healthy human walking manages to 

place the centre of pressure (CoP) slightly ahead the FPE. From those results, it was 

suggested that placing the CoP slightly behind and ahead the FPE may help to regulate 

the angular momentum in response to the destabilised situation, and may reduce the 

possibility of falls (Wight 2009). The 3D version includes the medio-lateral foot 

placement estimation (Milard 2012) and the capture point (CAP) (Pratt, 2006) adopted 

from a linear-inverted-pendulum design of biped robot. The 3D-FPE defines a boundary 

in which the human foot placement should never leave in order to optimise between 

dynamic stability and energy cost. A further study on the relationship between the FPE-

CoP distance and recovery from perturbation may be required to establish the relation 

with probability of falls.  

 

Criteria dynamic stability maintenance based on multi-body model 

Legged robotics have used the zero moment point (ZMP), foot rotation indicator (FRI) 

and centroidal moment pivot (CMP) as ground reference points to maintain the 

dynamic stability of  the walking machine. The ZMP was defined as a point of resulting 

reaction force at the contact surface between the leg and the ground (Vukobrat.M and 

Juricic, 1969). It was used to trace the walking stability while the foot is flat on the 

ground. The FRI is the point of application of the total ground reaction force due to the 

body motion and the foot angular momentum. The CMP is a point where the ground 

reaction force should apply to keep the horizontal component of the whole-body 

angular momentum constant (Popovic et al., 2005). The experimental validation in 
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healthy human walking supports the use of the ZMP and CMP to trace CoP and whole-

body angular momentum of human walking, respectively, to maintain dynamic stability 

of bipedal robot walking. As the human foot is light compared to the whole-body, it 

provides relatively small angular momentum. The ZMP and the FRI during human 

walking was found at nearly the same location. From such result, it was suggested that 

the incorporation of the foot angular momentum during the foot-ground interface is 

crucial in biped robot but has never found in human (Popovic et al., 2005). However,  

the application of the ZMP and CMP in human walking with pathological problem 

showed that CoP location does not follow the ZMP and the minimal whole-body angular 

momentum is not maintained (Brach et al., 2005; Brach et al., 2007). Above all, all of the 

three ground reference points is primarily a necessary condition for stable walking in 

which perturbation is not involved. That is, with the present of perturbations, this 

necessary condition may have no roles in recovery to steady walking. 

 

 

2.5 Conclusions 

 

Dynamic stability analysis of human locomotion involves the measurement of human 

locomotion and the quantitative method for dynamic stability. To quantify the dynamic 

stability, a long history of motion data is required such that the ability to return to 

steady motion or recover from perturbation can be examined. The human gait models 

can render in the simulation of repeat gait when the long track or long duration for gait 

measurement is not applicable (Hartmut, 2005; Geyer, 2005). In addition, the dynamic 

stability analysis of human locomotion may require gait models to simulate different 
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gait dynamics and perturbation to the locomotion (Gunther and Blickhan, 2002, Geyer, 

2005, Hobbelen and Wisse, 2007). 

 

To serve on different purposes of study, the gait models of different levels of complexity 

have been used in dynamic stability analysis of animal, biped robot and human 

locomotion. The minimal model i.e. inverted pendulum, spring-loaded inverted 

pendulum and passive dynamic walking model were widely used to study the CoM 

motion and the effect of leg mechanics (Seyfarth et al., 2002; Geyer et al., 2006; Owaki et 

al., 2006; Lipfert et al., 2012). In the multi-body models, the effect of joint properties i.e. 

the effect of joint stiffness on the locomotion stability can be examined (Seyfarth et al., 

2001; Gunther and Blickhan, 2002). More deliberate joint contributions can be 

examined by using the gait models with higher level of complexity i.e. musculoskeletal 

and neuro-musculoskeletal model (Zajac et al., 2002; Zajac et al., 2003). However, in 

such high level of complexity, the estimations of the joint contributions i.e. joint moment 

are highly sensitive to measurement quality and the objective function used to solve the 

motion problem (Ren et al., 2005). Thus, the applications of the complex model of 

bipedal locomotion in the dynamic stability analysis are limited to the stability of 

running and walking robots in which the interaction between the mechanical and 

control system is known and thus, the measurement data and objective function do not 

play a significant role in the estimation of joint contribution. 

 

In addition to the dynamics of leg and joints, the operation or the function 

corresponding to the mechanical property is another key factor in dynamic stability of 

bipedal locomotion. It has been found that leg elasticity facilitates in the stability of gait 
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pattern in running and walking robots (Lida et al., 2007, Rummel et al., 2010, Seyfarth et 

al., 2006). The disturbance absorption and angular momentum adjustment have been 

found to accompany with dynamic properties of the animal, insect and robot leg during 

locomotion (Raibert, 1986; Seyfarth et al. 2003; Schmitt, 2006). These functions play 

crucial roles for that the heavy control, and intensive energy are not required to 

maintain locomotion stability (Wainwright et al., 1976). Such functions of the human leg 

have not been fully investigated as it is limited by the measurement of the force and 

displacement of the muscles and tendons, which would be required to estimate the 

elastic energy during locomotion. The invasive measurement of these quantities is 

impractical while the available technology for non-invasive one still cannot provide 

accurate estimation of such force-length relationship (Buchanan et al., 2004). Adopted 

from the measurement in robot and insect leg (Dudek and Full, 2006; Rummel et al., 

2010), the entire of the human leg may be considered as a spring and the elastic energy 

can be defined by the relationships between the leg length, leg angle and resultant leg 

forces. The better understanding of the human leg functions can improve the dynamic 

stability analysis in human locomotion. For example, in daily-life, people always come 

across stability challenges and individual human gait seems to possess different ability 

to get over them (Rose and Gamble, 2006). The dynamic stability quantification on 

different function and mechanical properties of the human leg can provide insight into 

the dynamic stability of individual human gait. This can be alternative stability guidance 

to that from the comparison between the gait pattern stability in healthy and faller 

population. 
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In dynamic stability quantification, the rate of recovery from perturbation, for example, 

the rate of convergence to steady state (Floquet multipliers) and the rate of divergence 

due to the natural variation (finite Lyapunov exponents) were calculated from the 

motion of the centre of mass (CoM). Some gait characteristics i.e. stride time-stride 

width and double support duration were used to calculated the variability of the 

locomotion, but the role in recovery from perturbation has not been recognised. Thus, it 

is sufficient to use the simple models of human gait, which primarily represent the CoM 

motion, to simulate the human gait for dynamic stability quantification. The major 

advantage of the simple models is that it can accommodate the wide variety of the 

operation and mechanical property of the human leg, which can benefit in the analysis 

of dynamic stability on the effect of function and mechanical property of the leg. 

 

The wide variety of available quantification methods serves on different purposes of 

quantification of the dynamic stability during human locomotion. The inherent 

variations emerging from complex neuro-musculoskeletal interaction during human 

locomotion can be treated as a small perturbation in the examinations of convergence 

to the steady locomotion. These examinations quantify local stability of the human 

locomotion based on the relatively small size of perturbations. The maximum Floquet 

multiplier was widely used to quantify the orbital stability or stability of gait pattern of 

the human and biped robot locomotion. It was found to be able to differentiate between 

the stable and unstable gait pattern (Hobbelen and Wisse, 2007; and Granata and 

Lockhart 2008). The finite time Lyapunov exponents were used to quantify the 

sensitivity of the locomotion to the perturbation due to natural variation of human 

locomotion. It was found to predict instability in healthy human locomotion and higher 
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instability in the locomotion of fallers (Dingwell and Cusumano, 2000; Dingwell et al., 

2000). The statistic calculations of the inherent variation of the gait characteristics i.e. 

coefficient of variation of the stride time-stride width has not been found to be in 

relationship with recovery from perturbation(Dingwell and Marin, 2006). The similar 

limitation was found in the validation of zero moment point (ZMP), centroidal moment 

pivot (CMP) and foot rotation indicator (FRI) with human locomotion measurements 

(Brach et al., 2005; Brach et al., 2007). For the foot placement estimator (FPE), although 

it was found that the returning to steady state locomotion can be achieved by placing 

the foot slightly ahead or behind the FPE (Wight 2008; Wight 2009; Milard 2012), the 

validation of such recovery in human locomotion may be required. 

 

Defined by the maximum perturbation before the occurrence of fall, the global stability 

has been found to predict good quality of fall possibility (Shub, 1987; Hsu, 1987; 

Guckenheimer and Holmes, 1983). Global stability in term of robustness quantified by 

the basin of attraction was used to compare dynamic stability of the bipedal locomotion 

on different structural properties (Rummel et al., 2010; Wisse, 2004). Although, this 

global stability quantification is computationally intensive, its relationship with the 

local stability (gait pattern stability) can reduce the computational time in searching the 

area of the basin of attraction (Parker and Chua, 1989; Schwab and Wisse, 2001). The 

maximum allowable external perturbation was also used in the similar dynamic 

stability analysis, but it requires higher intensive computation compared to that of the 

basin of attraction (Hobbelen and Wisse, 2007; Pavol et al., 2002; Pijnappels et al., 

2008). With the incorporation of gait model, the global stability can be included in the 
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dynamic stability analysis in which large deviations from the steady locomotion are 

addressed.  

In this thesis, the dynamic stability of human walking on the effect of leg properties has 

been analysed with the incorporation of simple models of human walking. A simple 

model was adopted from a previous study (Geyer et al., 2006) and two simple models 

were developed in the thesis work. Different models were used to represent the centre 

of mass motion on different leg functions in corresponding to mechanical property of 

the human leg during walking motion. The global stability of human walking motion on 

different mechanical properties of the leg was quantified. The analysis of the dynamic 

stability of human walking on the wide variety of leg properties can provide insight into 

the difference dynamic stability between individual human walking motions. This can 

be an alternative to the comparison of walking stability between healthy and faller 

population. 
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Chapter 3 Three-dimensional Measurement of Human Walking 

Motion 

 

 

3.1 Introduction 

In Chapter 2, it was suggested by the previous studies that the dynamic stability 

analysis of human gait may require both measurement data and mathematical model to 

provide insight into the structural and dynamic properties in corresponding to the 

dynamic stability of human gait (Gunther and Blickhan, 2002, Hartmut, 2005; Geyer, 

2005, Hobbelen and Wisse, 2007). The measurement data of the CoM motion during 

human walking alone may be sufficient for the dynamic stability quantification (Bruijn 

et al., 2009; Kang and Dingwell, 2009; Granata and Lockhart, 2008). However, the 

incorporation of mathematical model may be required to provide insight into the effect 

of mechanical property on the dynamic stability of the walking motion. In such a 

deliberate study, both of the kinetic and kinematic measurement of human walking can 

play crucial roles in the development and validation of the human walking model, which 

can then improve the reliability of dynamic stability analysis. 

 

In this research work, the three-dimensional whole-body walking measurement was 

conducted to facilitate and validate the human walking model, which is aimed to 

improve the accuracy of human walking prediction and the reliability of dynamic 

stability analysis. In previous studies, the walking and running motion have been 

predicted by simple gait models (Gunther and Blickhan, 2002; Geyer et al., 2006; Maus 

et al., 2010). However, very few of which used the human gait measurement data to 

support and validate the predictions (Lipfert et al., 2012; Ludwig et al., 2012). The 
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integration of human walking measurement data and the simple walking model can 

ensure that the walking motion is predicted from the human parameter range. In 

addition, the flexibility of the simple model parameter allows a wide range of human 

parameter to be examined for the walking prediction and the corresponding dynamic 

stability. In this way, the accuracy of the human walking prediction and the reliability of 

dynamic stability analysis can be improved. 

In this chapter, the experimental protocol and process for three-dimensional whole-

body walking measurement were presented. The measurements have been conducted 

using a multi-camera motion analysis system and a force plate array. Eight subjects 

participated in the measurement at three self-selected walking speeds. A set of specially 

designed reflective marker clusters were used to capture the three-dimensional 

motions of all major body segment. The orientations and positions of each body 

segment were defined based on a set of anatomical landmarks. A software package 

GMAS (General Motion Analysis Software) (Ren et al., 2005)  was used to process the 

three-dimensional kinematic and kinetic data of the whole-body walking motions which 

was then used in the calculation of the whole-body CoM motion, CoP location and the 

ground reaction forces and moments.  

 

3.2 3D whole-body walking measurement 

Three-dimensional walking measurements were conducted to capture the whole-body 

walking motion at different walking speeds. Eight healthy male subjects participated in 

the measurement and were asked to walk at self-selected speed for slow, normal and 

fast walking. Prior to the participation, the subjects provided informed consent in 

accordance with the policies of Institutional Review Board Committee. Subjects were 
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asked to walking ten times at each self-selected speed. Motion data were recorded at 

150 Hz using an eight-camera motion analysis system (Qualisys, Sweden). Six force 

plates (Kistler, Switzerland) mounted flushed with the surface of the walking way were 

used (see Figure 3.1) to record ground reaction forces and moments at 1000 Hz. The 

array force plate and a long walking path allow the measurement at self-selected 

walking speed. 

 

 

Figure3.2 The measurement system comprising multi-camera motion analysis system (Qualisys, Sweden) 
and six force plates (Kistler, Switzerland) mounted flushed with the surface of the walking way. 
Measurement venue: Structure and Motion Lab, the Royal Veterinary College, London. 

 

3.2.1 Experimental protocol 

For each subject, the movement of 13 major body segments (the head, torso, pelvis, 

right and left humerus, right and left forearms, and both legs comprising thighs, shanks 

and feet) were recorded (see Figure 3.2). A set of specially designed thermoplastic 
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plates, each carrying a cluster of four reflective markers, were attached to each body 

segment (Ren et al., 2005, Ren et al., 2008) . A head band was used to carry the four 

markers on the head. An elastic hip belt was used to firmly locate the plastic plate 

carrying the four markers on the pelvis. In total, 52 reflective markers were used to 

capture whole-body motion during the walking trials (see Figure 3.2). The use of plastic 

plates eliminates the relative motion between the markers on a segment, thus 

increasing the accuracy of the recorded motion data (Ren et al., 2008).  

To describe the segment positions and orientations in a standardised way, anatomical 

landmarks and bone-embedded anatomical reference system are defined for each major 

segment. These landmarks and reference frames are based mainly on the 

recommendations of (Cappozzo et al., 1995) and (Vanderhelm and Pronk, 1995) with 

small adaptations as presented in (Ren et al., 2008). A detailed description of the 

anatomical coordinate system for each major body segment is described in Appendix A. 

Before the walking trials, a set of static calibration procedures were undertaken to 

locate the anatomical landmarks based on the CAST technique (Calibrated Anatomical 

System Technique)(Cappozzo et al., 1995). A wand with two reflective markers was 

used to determine the spatial positions of the anatomical landmarks that are not 

conveniently determined by reflective markers. This applies to landmarks: VERT, RASIS, 

LASIS, RPSIS and LPSIS (defined in Appendix A). Other anatomical landmarks were 

determined directly using reflective markers. Before the walking trials, the calibration 

markers were removed according to the CAST technique. 
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Figure 3.2 The marker clusters used to capture three-dimensional whole body motions including 13 major 
body segments: head, thorax, pelvis, right and left humerus, right and left forearms, and both legs comprising 
thighs, shanks and feet 

 

Also before the walking trials, the functional joint trials were conducted to determine 

the local coordinate of the major joints of the whole-body comprising shoulders, elbows, 

hips, knees and ankles. The shoulder joint centre is defined to be the functional 

humerothoracic joint centre which is the effective centre of rotation between the upper 

arm and the torso. As shoulder movement involves compound motions of the humerus, 

scapula and clavicle, it is unlikely that the centre of rotation is located at the centre of 
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the humeral head. The functional approach (Cappozzo, 1984); (Leardini et al., 1999) has 

been used to establish the humerothoracic joint centre as well as the hip joint centre, 

both of which are assumed to be ideal ball-and-socket joints. The subjects were asked to 

move the relevant segment (thigh or humerus) with respect to its proximal segment 

(pelvis or trunk) through a continuous sequence of motions including flexion, extension, 

abduction, adduction and circumduction at a self-selected velocity. A closed-form 

algorithm is employed to estimate the joint’s centre of rotation (Gamage and Lasenby, 

2002) in which the manual adjustment of optimisation parameters is not required. The 

positions of the other joint centres were determined directly from bony anatomical 

landmarks, for example, the knee joint centre coincides with the midpoint between the 

lateral epicondyle and medial epicondyle. The anatomical joint involved in the whole-

body walking measurements and the relevant anatomical landmarks used to estimate 

the joint centre positions are listed in Table 3.1. 

In walking trials, the technical marker clusters were used to capture the body segment 

motions. The marker data from walking trials functional joint trials and static 

calibration trials were processed by using GMAS software to provide 3D segmental 

positions and orientations for each sampled instant of time. 

Since the ground reaction forces are recorded in local coordinate system of the force 

plate. Thus, an additional force plate location trial is needed to determine the force plate 

position in the global reference frame. A set of technical markers were attached on each 

corner of the force plates to define the local coordinate. The coordinate transformation 

was conducted in the GMAS software to obtain the ground reaction forces in the global 

reference frame. 
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Table 3.1 Determination of the joint centre position (see Appendix A for anatomical landmark definitions) 

Joint Joint centre position 

Neck Projection of C7 on the y-axis of the head local coordinate system 

Waist 
Projection of the midpoint between RASIS & LASIS on the y-axis of the trunk local 

coordinate system 

Right 

shoulder 
Functional humerothoracic rotation centre 

Left shoulder Functional humerothoracic rotation centre 

Right elbow Midpoint between RMHU & RLHU 

Left elbow Midpoint between LMHU & LLHU 

Right hip Functional rotational centre 

Left hip Functional rotational centre 

Right knee Midpoint between RLEP & RMEP 

Left knee Midpoint between LLEP & LMEP 

Right ankle Midpoint between RMML & RLML 

Left ankle Midpoint between LMML & LLML 

 

3.2.2 Data analysis (GMAS, General Motion Analysis Software) (Ren et. al., 2008) 

In the GMAS software, all trials with more than 10 consecutive missing frames were 

discarded. After fill-gap processing, the data were filtered using a low pass zero lag 

fourth-order Butterworth digital filter with a cut-off frequency of 6.0 Hz. The segment 

positions and orientations were defined in an anatomically significant way. From the 

static calibration data, the relative positions of the anatomical landmarks with respect 

to the technical markers were obtained. For some anatomical landmarks i.e. shoulders 

and hips, the reconstruction based on dynamic calibration trials (functional method) 

was used. As the joint centre positions were described in local coordinate system of the 

adjacent segment, the transformation from local to global coordinate system was 
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employed. Thereafter, given the derived anatomical landmark position, the poses of the 

anatomical coordinate systems were obtained for each sampled instant of time. 

 

Given the poses of the anatomical coordinate systems, the location of segment mass 

centre was determined from the relevant anatomical landmarks, where some three-

dimensional anthropometric data was used (de Leva, 1996). The linear velocities and 

accelerations of the segment mass centre were then calculated using the finite 

difference methods (Bedford and Fowler, 1996 ; Hibbeler, 1997). For the ground 

reaction forces and moments, the transformation matrix from the force plate local 

coordinate system to the global reference coordinate system was derived and then used 

to transform the ground reaction forces and moments to the global reference frame. The 

location of the centre of pressure (CoP) was then determined by the application point of 

the ground reaction force in global reference frame. 

 

3.3 The calculation of motions of the centre of mass and the leg 

After the centre of mass motion of major body segments at each sampled instant of time 

was calculated by the GMAS software. The location (  ) and velocity (  ) of the whole-

body centre of mass in three-dimensional space can be calculated as given below. 

 

    
 

 
      

    
                                                                   (3.1) 

     
   

  
                                                                         (3.2) 

 



112 
 

   
   is the position vector of CoM location of     body segment.    is the mass of    body 

segment.    is whole-body mass. The location (  ) and velocity (  ) of the whole-body 

CoM in Equation 3.1-3.2 were used as initial condition to calculate the whole-body CoM 

motion (         ) by integrating ground reaction forces (Cavagna et al., 1983, 

Cavagna, 1975; Tesio et al., 2010) given by.  

 

             
                                                                (3.3) 

                   
 

                                                       (3.4) 

                                                                            (3.5) 

                                                                               (3.6) 

 

   and    are the recorded horizontal and vertical ground reaction force obtained from 

the  force plates.    and    are the horizontal and vertical velocities of the whole-body 

centre of mass.   
  and   

 
 are initial horizontal and vertical velocities of the whole-body 

centre of mass obtained from Equation 3.2 at the touchdown instant.   and   are the 

horizontal and vertical positions of the whole-body centre of mass.    and    are initial 

horizontal and vertical position of the whole-body centre of mass obtained from 

Equation 3.1 at the touchdown instant (td).  

 

Gait cycles are marked by two subsequence heel-strike or the touchdown (td) events of 

the same foot. The heel-strike is defined as the instant when the foot-ground contact 

initially occurs without exerted force. In the measurement, the GRF is initially detected 

when it is above zero. The numerical extrapolation (Bedford and Fowler, 1996 ; 
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Hibbeler, 1997) was applied to the GRF records to estimate the instance and CoP 

location at the zero GRF. Accordingly, the toe-off or the take-off (to) is defined as the 

final instant of the foot-ground contact when the GRF reduces to zero. A similar 

numerical extrapolation technique is used to estimate the instant and CoP location for 

the take-off (to). The leg length and leg angle were then calculated between the heel-

strike and toe-off of the same leg. 

 

3.4 Some measurement results  

The general information of individual subject is shown in Table 3.2. The distance 

between the whole-body CoM and the foot-ground contact point during still standing 

calculated from the measurement data is also shown. The 3D motion data of major body 

segments and the ground reaction forces processed in the GMAS software is shown in 

Figure 3.3 -3.15 and 3.17-3.18, respectively. The whole-body CoM motion obtained from 

kinetic-kinematic measurement data is shown in Figure 3.16. The whole-body CoM 

motion in sagittal plane calculated by using equation 3.1-3.2 is shown in Figure 3.19. 

The leg lengths and leg angles calculated in the fixed and moving contact conditions are 

shown in Figure 3.20. 
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Table 3.2 General information (age-weight-height) and the still-standing leg length (   ) of individual subject.  

Subject Age(year) Weight(kg) Height(cm)     (mm) 

No.1 26 67 177 895.17 

No.2 24 69 179 913.93 

No.3 31 53.5 165 839.81 

No.4 25 71 181 917.59 

No.5 22 79 180 931.66 

No.6 21 65.5 178 926.18 

No.7 22 72 183 919.08 

No.8 26 68 175 896.23 

 

 

 

 

Figure 3.3 Trajectories of the head’s centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 

 

 

 

 

Figure 3.4 Trajectories of the torso’s centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 
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Figure 3.5 Trajectories of the pelvis’s centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 

 

 

 

Figure 3.6 Trajectories of the right upper arm’s centre of mass in fore-aft (x), vertical (y) and lateral (z) 
coordinate during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is 
obtained from three good trials of the walking measurements of subject no.2 at self-selected normal walking 
speed.  

 

 

 

 

Figure 3.7 Trajectories of the left upper arm’s centre of mass in fore-aft (x), vertical (y) and lateral (z) 
coordinate during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is 
obtained from three good trials of the walking measurements of subject no.2 at self-selected normal walking 
speed.  
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Figure 3.8Trajectories of the right lower arm’s centre of mass in fore-aft (x), vertical (y) and lateral (z) 
coordinate during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is 
obtained from three good trials of the walking measurements of subject no.2 at self-selected normal walking 
speed. 

 

 

Figure 3.9 Trajectories of the left lower arm’s centre of mass in fore-aft (x), vertical (y) and lateral (z) 
coordinate during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is 
obtained from three good trials of the walking measurements of subject no.2 at self-selected normal walking 
speed. 

 

 

 

 

Figure 3.10 Trajectories of the right thigh’s centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 
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Figure 3.11 Trajectories of the left thigh’s centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 

 

 

 

Figure 3.12 Trajectories of the right shank’s centre of mass in fore-aft (x), vertical (y) and lateral (z) 
coordinate during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is 
obtained from three good trials of the walking measurements of subject no.2 at self-selected normal walking 
speed. 

 

 

 

Figure 3.13 Trajectories of the left shank’s centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle(between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 
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Figure 3.14 Trajectories of the right foot’s centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 

 

 

Figure 3.15 Trajectories of the left foot’s centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 

 

 

 

Figure 3.16 Trajectories of the whole-body centre of mass in fore-aft (x), vertical (y) and lateral (z) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set is obtained from three 
good trials of the walking measurements of subject no.2 at self-selected normal walking speed. 
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Figure 3.17 Fore-aft ground reaction forces (  ) for leading (red) and trailing (blue) foot during a gait cycle 
(between the consecutive heel–strikes of the same leg). The data set is obtained from three good trials of the 
walking measurements of subject no.2 at self-selected normal walking speed. 

 

 

 

 

 

Figure 3.18 Vertical ground reaction forces (  ) for leading (red) and trailing (blue) foot during a gait cycle 
(between the consecutive heel–strikes of the same leg). The data set is obtained from three good trials of the 
walking measurements of subject no.2 at self-selected normal walking speed. 
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Figure 3.19 Calculated displacement of whole-body centre of mass in fore-aft (x) and vertical (y) coordinate 
during a gait cycle (between the consecutive heel–strikes of the same leg). The data set from three good trials 
of the walking measurements of subject no.2 at self-selected normal walking speed is used for the 
calculations. 

 

 

Figure 3.20 Calculated leg lengths and leg angles for leading (blue and red) and trailing (black and magenta) 
leg and calculated centre of pressures for leading (blue and red) and trailing (black and magenta) foot in 
fixed (red and magenta) and moving contact (blue and black) conditions during a gait cycle (between the 
consecutive heel–strikes of the same leg). The data set from three good trials of the walking measurements of 
subject no.2 at self-selected normal walking speed is used for the calculations. 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100
0.86

0.88

0.9

0.92

0.94

0.96

0 10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

            

 
 
 
 
  
 
  

 
  
  
 
  

  
  
  

 
  
 
  

 
  
 
  

            



121 
 

Chapter 4 The Fundamentals of Mechanical Properties of Human Leg 

during Walking 

 

This chapter presents the mechanical properties of the human leg on the linearity and 

non-linearity of axial and tangential elasticity during human walking motion. The 

fundamentals of mechanical leg properties during human walking motion are proposed. 

The mechanical leg properties are extracted from human walking measurements at 

different self-selected walking speeds and on fixed and moving condition of foot-ground 

contact. 

 

4.1 Background 

Leg elasticity has involved in the broad study of human locomotion ranging from basic 

mechanical energy to the motion prediction by using spring-mass model. In the study of 

basic mechanical work, the leg elasticity is a crucial mechanical function for the proper 

exchanges between mechanical energies during the gait cycle (Cavagna et al., 1976; 

Cavagna et al., 1977 ). In human locomotion prediction, the spring stiffness is a crucial 

elastic leg property transforming the change in leg length to that in leg force and vice 

versa. This basic leg property aims to address the global elasticity of the whole-body 

structure as a consequence of joint elasticity (Alexander, 1988a; Alexander, 1988b; Hof, 

1990). In the prediction of human running, it was found that the spring stiffness is 

dependent on the running speed. For human walking prediction, the speed dependent 

of spring stiffness limits the prediction to the averaged walking speed of 1.5 m/s. 
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The studies of leg stiffness during the human locomotion have been based on the change 

in leg length and the total ground reaction force considered to apply along the leg axis 

(McMahon and Cheng, 1990; Lee and Farley, 1998; Morin et al., 2005; Morin et al., 2011; 

Blum et al., 2009; Lipfert et al., 2012). In fact, the total ground reaction force during the 

gait does not always apply along the leg axis. In joint level, when the human body is 

considered as a multi-segment system, it has been found that the coordination of joint 

elasticity and the geometry of multi-segment body during locomotion results in the 

centre of mass motion in parallel and perpendicular direction to the leg axis (Alexander, 

1988a; Alexander, 1988b; Hof, 1990; Gunther and Blickhan, 2002). Thus, the projection 

of the resultant force onto both directions needs to be addressed carefully to account for 

all corresponding mechanical properties of the human leg during locomotion. 

The rotational elasticity in human walking has been studied by using spring-mass model 

with hip joint and torso (Maus et al., 2010). This model addresses the relationship 

between the components of total ground reaction force, the axial and rotational 

elasticity during human walking. The nonlinear relationships between ground reaction 

force components, the axial and rotational elasticity were found. Although, the 

predicted ground reaction force and hip torque profile are slightly different from that 

from human walking experiments, the relationship between ground reaction force 

components and the axial and rotational elasticity were found to facilitate in human 

walking stabilisation (Maus et al., 2010). 

Most of the study of leg properties during the human locomotion primarily focused on 

linear elasticity, until it has been found recently that the changes in leg stiffness and rest 

length during the gait improve the human running prediction of the spring-loaded-

inverted pendulum model (Ludwig et al., 2012). This supports the previous findings 
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that the nonlinear elasticity can stabilise the spring leg robot after perturbation and 

touchdown impact. The soft nonlinear elasticity was found to stabilise the spring leg 

running after perturbation (Karssen and Wisse, 2011) while the hard nonlinear 

elasticity was found to stabilise the gait pattern after touchdown impact (Owaki et al., 

2006) 

Leg positioning i.e. leg angle at heel-strike and take-off has been found as one of the 

crucial adjustments for the contact duration and phase transition in animal and biped 

robot locomotion (Farley and Gonzalez, 1996; Geyer et al., 2005; Dudek and Full, 2006; 

Daley and Biewener, 2006). Predicted by the spring-mass model, the change of 

touchdown angle with the change in leg stiffness was found to regulate the energy 

transfers during the gait cycle (Blickhan, 1989; McMahon and Cheng, 1990; Farley and 

Gonzalez, 1996; Geyer et al., 2005; Geyer et al., 2006). However, such adjustment during 

human locomotion has not been fully investigated.  

 

In brief, the elastic properties and the leg positioning have been found as crucial 

mechanical properties of the human leg during locomotion. The proper combination of 

the axial and rotational or tangential stiffness, rest length and the leg positioning are 

required to predict the precise walking motion and phase transition. Depending on 

available human walking measurements and purpose of study, these leg properties 

during the walking motion can be estimated by different leg property definitions. In this 

chapter, the single valued force- displacement relationships are used to simplify the 

mechanical properties extraction on linear and nonlinear elasticity of human leg during 

walking motion. 
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4.2 The fundamentals of mechanical properties of the human walking leg 

Fundamental leg properties comprising leg stiffness, rest leg length and three force-free 

leg angles are proposed to express leg elasticity and phase transition, which are 

necessary mechanical properties to representation the human walking. In this section, 

the fundamentals of mechanical properties of the human leg are defined and extracted 

from the measurement data by a technique of minimum root-mean-squares error 

fitting. 

   

4.2.1 Axial stiffness and rest length 

In this study, the virtual leg is defined as a straight leg represented by a line connecting 

the centre of mass (CoM) and the foot-ground contact point (Figure 4.1). The foot-

ground contact point is defined in two conditions (Figure 4.2). The first condition 

considers the moving contact calculated from the fore-aft position of the centre of 

pressure (CoP) for each foot. The second condition considers the fixed contact defined 

by the centre of pressure (CoP) where the virtual leg on moving contact reaches vertical 

leg orientation.  
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Figure 4.1 The mechanical system of human walking represented by leg length (  ), leg angle ( ), contact 
angle (        ), axial (  ) and tangential    ) stiffness and axial     and tangential      force (as the 
projections of the total ground reaction force (  )).  

 

 

Figure 4.2 The virtual leg in moving contact condition (blue) is defined by a straight line connecting between 
the centre of mass (CoM) and the moving contact. The moving contact is defined by the location of the centre 
of pressure (CoP). The virtual leg in fixed contact condition (red) is defined by a straight line connecting 
between the centre of mass (CoM) and the fixed contact. The fixed contact (a) is defined by the location of the 
centre of pressure (CoP) at which the virtual leg on moving contact reaches the vertical leg orientation 
(dash).   

 

The leg stiffness comprises axial and tangential stiffness. The axial stiffness is derived 

from the leg compression-extension, the rest leg length and the projection of the total 

ground reaction force onto the virtual leg so called axial force. The axial stiffness (  ) 

and rest length (  ) will be extracted from the axial force-leg length relationship on both 
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linear and nonlinear elasticity of the virtual leg. For the linear elasticity, the axial force- 

leg length relationship is defined as 

 

        
                                                                        (4.1) 

 

where    is the projection of the total ground reaction force onto the virtual leg axis,   is 

the virtual leg length,      
  is the linear axial stiffness and    is the rest length which is 

the force-free leg length at initial and terminal contact. The force-free leg length (  ) is 

the leg length when the ground reaction force is zero during the ground contact (see Fig 

4.3). 

 

To represent the nonlinear elasticity, the axial force- leg length relationship is defined 

as 

 

 

 

 

Figure 4.3 The illustration of force-free leg length (  ) at initial and terminal contact when the ground 
reaction force (  ) is zero and force-free leg angle (  ) at initial contact (     

    ), mid-stance 

(      
   ) and terminal contact (     

    ). 
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                                                                        (4.2) 

    
         

                                                                    (4.3) 

 

where     
  is the nonlinear stiffness as a quadratic function of leg deflection       . 

      
  is basic linear stiffness.   is a coefficient of nonlinear stiffness.   is exponential 

power of nonlinear coefficient . The square of axial deflection       expresses the 

moderate strength of non-linearity. This exponential-quadratic form requires only two 

parameters to fit the axial-force leg length relationship. The preliminary examination on 

other nonlinear forms such as Fourier series, pure exponential and pure quadratic 

functions showed that more parameters are required while the RMSE is not significantly 

reduced. 

 

4.2.2 Tangential stiffness and force-free leg angles 

The tangential stiffness is derived from the angular deflection of the virtual leg and the 

projection of the total ground reaction force onto the perpendicular line of the virtual 

leg. The leg angle is defined as the angle between the virtual leg and the vertical. The 

angle made by virtual leg and the horizontal is defined as contact angle.  

 

The tangential stiffness (  ) and force-free leg angle (  ) will be extracted from the 

relationships between tangential force and leg angle. Both linear and nonlinear 

elasticity will be examined. The tangential force- leg angle relationship for linear 

elasticity is defined as 
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                                          (4.5)                                        

    

                     
  

  
         

          
  

           
           

                                       (4.6) 

 

where    is the projection of the total ground reaction force onto the perpendicular line 

of the virtual leg,   is the leg angle,   is the virtual leg length and      
  is the linear 

tangential stiffness and.    is the leg angle at touchdown,   
   and   

   are the leg angle 

at the first and second peak of the tangential force, respectively.   
   is the leg angle 

when the total ground reaction force applies through the leg axis and thus, the 

tangential force becomes zero.     is the leg angle at take-off.    is the rest angle or the 

force-free leg angle at initial contact (td), mid-stance and terminal contact (to). The 

force-free leg angle is the leg angle at which the tangential force is zero (see Fig 4.3). 

The illustrations of tangential leg properties are shown in Figure 4.4. The force-free leg 

angles were assumed to change discretely according to the change of tangential force.  

 

 

Figure 4.4 The illustrations of tangential leg properties comprising four of tangential stiffness (      ), 

three of force-free leg angles (      
          ) and leg angle at first and second force peak (  

        
  ) 
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For the nonlinear elasticity, the tangential force – leg angle relationship is defined by 

    
        

    

 
         

    

 
 

 

   

 
                                          (4.6) 

                                                                               (4.7) 

   
       

 
                                                                          (4.8) 

where     and   are the Fourier coefficients for the fluctuation of tangential force. The 

Fourier series were selected from the nonlinear functions including exponential and 

polynomial function that can give minimum RMS error by using minimum number of 

parameter. The preliminary examination on Fourier series in higher order showed that 

the RMSE is not significantly reduced. 

 

In order to compare between the linear and nonlinear elasticity, the stiffness on 

maximum force and displacement so called total stiffness ( )  (Wainwright et al., 1976) 

is used, which can be given by  

   
                 

         
                                                                     (4.9) 

for the axial stiffness and 

   
                 

         
                                                                  (4.10) 

for the tangential stiffness.  
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4.2.3 Leg property extraction 

To estimate the axial stiffness (  ) and the rest length (  ), the minimisation of root-

mean-square error (RMSE) is used to fit the force equations onto the axial force – leg 

length data sets obtained from the walking measurement. The data set of the virtual leg 

length is fed into Equation 4.1 to estimate the linear axial stiffness (  ) and the rest 

length (  ) that minimizes the difference between the measured force and calculated 

force quantified by root-mean-square error (RMSE). The minimization of the RMSE is 

operated by using optimisation function fmincon in MATLAB version 2010. With the 

similar scheme, Equation 4.2 and 4.3 are used to estimate the nonlinear axial stiffness 

(  ) and the corresponding rest length (  ). 

  

The linear tangential stiffness (  ) and force-free leg angle (  ) are estimated by feeding 

the data set of the leg angle and the leg length into Equation 4.4 and 4.5 and following 

the similar optimisation scheme. For the nonlinear elasticity of the tangential force, the 

Fourier coefficients (   ,   ), the leg angle at touchdown (   ) and take-off (   ) are 

estimated by feeding the measurement data of the leg angle and the leg length into 

Equation 4.6-4.8 and following the similar optimisation scheme. After the equation 

parameters were determined by the minimum RMSE fitting, the force equations are 

substituted into Equation 4.9 and Equation 4.10 to calculate the total stiffness or 

mechanical impedance ( ) for axial and tangential stiffness, respectively. The total 

stiffness ( ) is used to compare the linear and nonlinear elasticity. This extraction 

procedure is different from those in other studies in which the linear least squares 

method was used to find the axial stiffness and rest length that minimise the square 
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error regardless the violation of perfect elasticity (Lipfert et al., 2012; Coleman et al., 

2012).  

 For each subject, the axial force – leg length and tangential force – leg angle 

relationships in fixed and moving contact conditions are calculated from measurement 

data of the CoM, CoP and ground reaction force at each self-selected walking speed (see 

section 3.3-3.4 Chapter 3).  The leg properties for linear and nonlinear elasticity of the 

virtual leg are extracted. The diagram for the leg property extraction is shown in Figure 

4.5. 

 

 Figure 4.5 Extraction process for the axial stiffness (  ), rest length (  ), tangential stiffness (  ) and force-
free leg angles (  ) 

4.3 The results of mechanical properties of human walking leg 

This section presents the fundamental leg properties of a representative subject 

(Subject No. 2) and the average from all subjects. The fundamental leg properties for 

linear and nonlinear elasticity of the virtual leg in fixed and moving contact condition 

Processed data set of centre of mass (CoM), centre of pressure (CoP) and 

ground reaction force (GRF) 
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were extracted from the walking measurements at self-selected slow, normal and fast 

speed. 

 

4.3.1 Linear axial stiffness and rest length  

 

 

 

 

Figure 4.6  The fixed contact axial force – length data set (blue) at self-selected slow, normal and fast walking 

speed and linear elastic fits (red)from a representative subject (subject no.2) are shown. Axial force (       
 

) 

is normalised by body weight (BW), leg length (        ) is normalised by the leg length obtained during still 

standing (   ). Touchdown(td) and take-off are denoted by   (td) and   (to). Linear axial stiffness(     
 ) and 

the corresponding rest length (   )determined by the RMS fit are given for each walking speed.      
  is 

normalised by     and      .       is normalised by    . The data set is obtained from three good trials of the 
walking measurements of subject no.2 at each self-selected walking speed. For the linear elasticity,  

     
 

      
 

. 

 

Figure 4.6 shows that for all walking speeds, the measured leg length at touchdown is 

shorter than that at take-off, the measured leg length at maximum shortening is close to 

that during still standing (   ) and the linear elastic fitting underestimates the axial force 

at maximum leg shortening. 
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Figure 4.7  The moving contact axial force – length data set (blue) at self-selected slow, normal and fast 

walking speed and linear fits (red)from a representative subject (subject no.2) are shown. Axial force (      
 

) 

is normalised by body weight (BW), leg length (       ) is normalised by the leg length obtained during quite 
standing (   ). Touchdown(td) and take-off are denoted by   (td) and   (to). Axial linear stiffness(     

 ) and 

the corresponding rest length (   )determined by the RMS fit are given for each walking speed.      
  is 

normalised by     and      .       is normalised by    . The data set is obtained from three good trials of the 
walking measurements of subject no.2 at each self-selected walking speed. For the linear elasticity,  

     
 

      
 

. 

 

Figure 4.7 shows that for all walking speeds, the measured leg length at touchdown is 

longer than that at take-off. Similar to the fixed contact condition, the measured leg 

length at maximum shortening is close to that during still standing (   ). Compared with 

the linear elastic leg properties on fixed contact at the same speed, the linear elastic leg 

properties on moving contact have shorter rest length (  ) and higher total axial 

stiffness (     
 ).  

 

4.3.2 Nonlinear axial stiffness and rest length  
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Figure 4.8  The fixed contact axial force – length data set (blue) at self-selected slow, normal and fast walking 

speed and nonlinear fits (red)from a representative subject (subject no.2) are shown. Axial force (       
 

) is 

normalised by body weight (BW), leg length (        ) is normalised by the leg length obtained during still 

standing (   ). Touchdown(td) and take-off are denoted by   (td) and   (to). Total axial stiffness based on 

non-linar elasticity(     
       

) and the corresponding rest length (      
     

)determined by the rms fit are given for 

each walking speed.      
       

 is normalised by     and      .         
     

 is normalised by    . The data set is obtained 

from three good trials of the walking measurements of subject no.2 at each self-selected walking speed. 

 

Figure 4.8 shows that the nonlinear elastic fitting overestimates the axial force around 

maximum leg shortening for slow and normal walking. Compared with the linear elastic 

leg properties on the same contact condition at same walking speed, the nonlinear 

elastic leg properties have higher total axial stiffness (     
 ) and generally shorter rest 

length (  ). 
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Figure 4.9 The moving contact axial force – length data set (blue)at self-selected slow, normal and fast 
walking speed and linear fits (red)from a representative subject (subject no.2) are shown. Axial force (      

 ) 
is normalised by body weight (BW), leg length (      ) is normalised by the leg length obtained during still 
standing (   ). Touchdown(td) and take-off are denoted by   (td) and   (to). Total axial stiffness based on 
non-linar elasticity(     

      ) and the corresponding rest length (      
    )determined by the RMS fit are given for 

each walking speed.      
       is normalised by     and      .         

     is normalised by    . The data set is obtained 

from three good trials of the walking measurements of subject no.2 at each self-selected walking speed. 

 

Figure 4.9 shows that, for all walking speeds given here, the nonlinear elastic fitting 

overestimates the axial force when the leg is at the maximum leg shortening. Compared 

to the linear elastic leg properties in the same contact condition at the same walking 

speed, the nonlinear elastic leg properties have higher total axial stiffness (    
 ) and 

nearly the same rest length (  ). Compared to the nonlinear elastic leg properties in 

fixed contact condition at same walking speed, the nonlinear elastic leg properties on 

moving contact condition have higher total axial stiffness (     
 ) and shorter rest length 

(  ). 
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   4.3.3 Linear tangential stiffness and force-free leg angles  

 

Figure 4.10 The fixed contact tangential force – leg angle data set (blue) at self-selected slow, normal and fast 
walking speed and linear fits (red)from a representative subject (subject no.2) are shown. Tangential leg 
force (       

 ) is normalised by body weight (BW) and the leg length obtained during still standing (   ). Leg 

angle (       ) is in radian. Touchdown(td) and take-off are denoted by   (td) and   (to). Total tangential 

stiffness(     
 ) and the corresponding force-free leg angle (       )determined by the RMS fit are given for each 

walking speed.       
  is normalised by     and      or         .          is in radian. For the linear elasticity,  

    
      

 . The data set is obtained from three good trials of the walking measurements of subject no.2 at 
each self-selected walking speed. 

 

Figure 4.10 shows that in the fixed contact condition at all walking speeds, the absolute 

value of force-free leg angle at touchdown (   )  is smaller than that at take-off (   ). 

The total tangential stiffness (    
 ) is highest at the early stance. The force-free leg angle 

at mid stance (  
 ) hardly changes with walking speed. 
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Figure 4.11 The moving contact tangential force – leg angle data set (blue) at self-selected slow, normal and 
fast walking speed and linear fits (red)from a representative subject (subject no.2) are shown. Tangential leg 

force (      
 

) is normalised by body weight (BW) and the leg length obtained during still standing (   ). Leg 

angle (       ) is in radian. Touchdown(td) and take-off are denoted by   (td) and   (to). Total tangential 

stiffness(     
 ) and the corresponding force-free leg angle (       )determined by the RMS fit are given for each 

walking speed.      
  is normalised by     and      or         .          is in radian. For the linear elasticity,  

    
      

 . The data set is obtained from three good trials of the walking measurements of subject no.2 at 
each self-selected walking speed. 

 

Figure 4.11 shows that in moving contact condition, the absolute value of force-free leg 

angles at touchdown (   ) and take-off (   ) at each walking speed are nearly 

equivalent. Similar to that in fixed contact condition, the total tangential stiffness (    
 ) 

is highest at the early stance for all walking speeds. For linear elasticity, the total 

tangential stiffness (    
 ) in moving contact condition is higher than that in fixed contact 

condition at the same speed. 
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4.3.4 Nonlinear tangential stiffness and force-free leg angles  

 

Figure 4.12 The fixed contact tangential force – leg angle data set (blue) at self-selected slow, normal and fast 
walking speed and nonlinearfits (red)from a representative subject (subject no.2)are shown. Tangential leg 
force (       

 ) is normalised by body weight (BW) and the leg length obtained during still standing (   ). Leg 

angle (       ) is in radian. Touchdown(td) and take-off are denoted by   (td) and   (to). The total tangential 

stiffness(     
 ) and the corresponding force-free leg angle (       )determined by the RMS fit are given for 

each walking speed.      
  is normalised by     and     or         .          is in radian. The data set is obtained 

from three good trials of the walking measurements of subject no.2 at each self-selected walking speed. 

 

Figure 4.12 shows that in fixed contact condition for all walking speeds given here, the 

nonlinear elastic fitting underestimates the first peak of tangential force. In the same 

contact condition and at the same walking speed, total tangential stiffness (    
 ) of the 

nonlinear elasticity is lower than that of linear elasticity. 
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Figure 4.13 The moving contact tangential force – leg angle data set (blue) at self-selected slow, normal and 
fast walking speed and nonlinearfits (red)from a representative subject (subject no.2)are shown. Tangential 
leg force (      

 ) is normalised by body weight (BW) and the leg length obtained during still standing (   ). 
Leg angle (       ) is in radian. Touchdown(td) and take-off are denoted by   (td) and   (to). The total 

tangential stiffness(     
 ) and the corresponding force-free leg angle (       )determined by the RMS fit are 

given for each walking speed.      
  is normalised by     and     or                    is in radian. The data set is 

obtained from three good trials of the walking measurements of subject no.2 at each self-selected walking 
speed. 

 

Figure 4.13 shows that in moving contact condition at all walking speeds given here, the 

nonlinear elastic fitting underestimate the first peak of tangential force. In the same 

contact condition and at the same walking speed, the total tangential stiffness (    
 ) of 

nonlinear elasticity is lower than that of linear elasticity. However, this total tangential 

stiffness (    
 ) of nonlinear elasticity in moving contact condition is higher than that in 

fixed contact condition. 
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The summative values for both fixed and moving contact condition are list in Table 4.1-

4.2. 

Table 4.1 Axial properties during walking (        ) 

Axial properties 

Slow (1.12-1.31 m/s) Normal(1.35-1.54 m/s) Fast (1.58–1.8 m/s) 

moving CoP fixed CoP moving CoP fixed CoP moving CoP fixed CoP 

Total 
dynamic 
stiffness 

(  ) 

Linear 

Actual, 
(kN/m) 

12 ± 2.5 4.2  ± 0.8 11  ± 1.7 3.6  ± 0.9 11.2  ± 2.5 4 .0± 1.3 

Normalised 16.5  ± 2.0 5.7 ± 0.6 15.2  ± 1.8 5.0 ± 0.7 15.3  ± 2.2 5.4 ± 1.2 

Non-linear 

Actual, 
(kN/m) 

16.6  ± 4.1 5.8  ± 0.8 15.5  ± 3.5 5.2  ± 0.8 16  ± 3.5 5.6  ± 0.7 

Normalised 22.6  ± 3.9 8.0  ± 0.6 21.3  ± 3.5 7.1  ± 0.9 22.0  ± 3.1 7.7  ± 0.5 

Rest length 
(  ) 

Linear 

Actual,         
(m) 

0.960 ± 0.034 1.043 ± 0.033 0.962 ± 0.040 1.076 ± 0.041 0.964 ± 0.038 1.075 ± 0.049 

Normalised 1.062 ± 0.017 1.155 ± 0.033 1.064 ± 0.018 1.191 ± 0.033 1.066 ± 0.017 1.189 ± 0.043 

Non-linear 

Actual,          
(m) 

0.957 ± 0.030 1.045  ± 0.026 0.960 ± 0.037 1.048  ±  0.022 0.963 ± 0.034 1.045  ±  0.017 

Normalised 1.059 ± 0.018 1.157  ±  0.026 1.062 ± 0.018 1.161  ± 0.041 1.065  ± 0.016 1.157  ±  0.039 

 

 

Table 4.1 shows the axial properties comprising total axial stiffness (  ) and rest length 

(  ) during walking at self-selected slow, normal and fast speed. These are the averaged 

values for all participants. The total axial stiffness (  ) is normalised by body weight 

(  ) and leg length during still standing (   ). The rest length is normalised by leg 

length during still standing (   ).  

Due to the smaller leg deflection (    ), the axial stiffness in the moving contact 

condition is higher than that in fixed contact condition, which can be seen in Figure 4.7 

and 4.9. The total dynamic stiffness of nonlinear elasticity is higher than that of the 

linear elasticity in both contact conditions at all walking speeds. From both elasticity 

fittings in both contact conditions, the total axial stiffness (  ) and rest length (  ) are 

independent of walking speeds.  
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Table 4.2 Tangential properties during walking extracted from measurement data (        ) 

Tangential properties 

Slow(1.12-1.31 m/s) Normal(1.35-1.54 m/s) Fast(1.58–1.8 m/s) 

moving CoP fixed CoP moving CoP fixed CoP moving CoP fixed CoP 

Total dynamic 
stiffness (  ) 

Linear 

Actual   
         ) 

2.18 ± 0.70 0.76 ± 0.19 1.68 ± 0.48 0.73 ± 0.29 2.5 ± 0.81 0.68 ± 0.15 

0.39 ± 0.06 0.34 ± 0.13 0.33 ± 0.07 0.29 ± 0.07 0.29 ± 0.05 0.17 ± 0.31 

0.21 ± 0.05 0.24 ± 0.06 0.20 ± 0.04 0.22 ± 0.04 0.20± 0.04 0.12 ± 0.20 

0.93 ± 0.33 0.46 ± 0.13 0.85 ± 0.21 0.40 ± 0.06 0.90 ± 0.35 0.40 ± 0.08 

Normalised 

3.24 ± 0.74 1.17 ± 0.19 2.52 ± 0.43 1.12 ± 0.30 3.72 ± 0.94 0.96 ± 0.15 

0.59± 0.04 0.52 ± 0.13 0.49 ± 0.06 0.44 ± 0.07 0.44± 0.05 0.26 ± 0.31 

0.32± 0.04 0.36 ± 0.06 0.30 ± 0.05 0.34 ± 0.04 0.31 ± 0.03 0.19 ± 0.20 

1.38± 0.40 0.71 ± 0.13 1.32 ± 0.40 0.63 ± 0.06 1.39 ± 0.55 0.54 ± 0.08 

Non-linear 

Actual 
         ) 

1.26 ±0.12 0.57± 0.08 1.37 ± 0.142 0.55± 0.09 1.35 ± 0.20 0.50± 0.1 

0.29 ± 0.03 0.23 ± 0.08 0.35 ± 0.12 0.25 ± 0.07 0.30 ± 0.07 0.26 ± 0.08 

0.20 ± 0.05 0.21 ± 0.05 0.22 ± 0.04 0.2 ± 0.03 0.23 ± 0.14 0.21 ± 0.05 

0.52 ± 0.16 0.44 ± 0.10 0.59 ± 0.12 0.37 ± 0.06 0.62 ± 0.18 0.41 ± 0.10 

Normalised 

1.71 ± 0.12 0.91 ± 0.10 2.01 ± 0.16 0.89 ± 0.12 1.86 ± 0.25 0.82 ± 0.14 

0.40 ± .0.03 0.32 ± 0.10 0.49 ± 0.14 0.35 ± 0.08 0.43 ± 0.10 0.36 ± 0.10 

0.27 ± 0.05 0.29 ± 0.06 0.30 ± 0.04 0.27 ± 0.036 0.31 ± 0.19 0.29 ± 0.05 

0.70 ± 0.17 0.6 ± 0.13 0.82 ± 0.13 0.52 ± 0.08 0.85 ± 0.20 0.56 ± 0.11 

Contact angel 

(        ) 
or 

       ) 

Linear 

   ,           (deg) 66.5 ± 1.1 60.8 ± 0.8 66.0 ± 0.5 58.9 ± 0.8 65.6 ± 1.0 57.8 ± 0.5 

  
  ,            (deg) 69.1 ± 0.9 66.9 ± 0.9 68.8 ± 0.6 65.7 ± 0.9 67.6 ± 1.0 64.7 ± 1.2 

  
 ,             (deg) 82.2 ± 2.3 82.3 ± 1.4 82.6 ± 1.4 82.3 ± 1.9 83.9 ± 1.9 81.8 ± 1.8 

  
  ,            (deg) -73.1 ± 0.2 -70.6 ± 2.0 -71.9 ± 1.5 -68.9 ± 1.0 -72.3 ± 1.3 -68.7± 1.3 

   ,            (deg) -66.7 ± 2.3 -56.2 ± 2.4 -65.8 ± 0.8 -53.3 ± 1.5 -65.7 ± 0.9 -53.4 ± 1.3 

Non-linear 

   ,          (deg) 66.2 ± 1.3 60.8 ± 0.7 65.8 ± 0.4 59.0 ± 0.7 65.1 ± 1.07 57.9 ± 0.6 

  
  ,          (deg) 78.2 ± 0.7 70.0 ± 1.1 72.6 ± 0.6 69.1 ± 0.8 72.3 ± 1.07 68.0 ± 1.4 

  
 ,          (deg) 79.8± 1.6 82.9 ± 1.6 81.1 ± 1.6 82.6 ± 1.6 82.4 ± 1.5 82.2 ± 2.1 

  
  ,         (deg) -75.4 ± 1.2 -69.8 ±1.6 -74.3 ± 0.6 -68.3 ± 1.2 -74.2 ± 0.3 -67.3 ± 0.9 

   ,           (deg) -66 ± 2.2 -56.2 ± 2.3 -65.3 ± 0.8 -53.3 ± 1.6 -65.2 ± 0.9 -53.4 ± 1.2 

 

Table 4.2 shows the tangential properties comprising total tangential stiffness (  ) and 

contact angle (        ) during walking at self-selected slow, normal and fast speed. 

These are the averaged values for all participants. The total tangential stiffness (  ) is 
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normalised by body weight (  ) and leg length during still standing (   ). The contact 

angle is the angle between the virtual leg and horizontal or                 as shown 

in Figure 4.1. It comprises five different angles to address the changes in magnitude and 

direction of the tangential leg force during the contact as can be seen in Figure 4.3-4.4. 

   is the force-free leg angle at touchdown,   
   and   

   are the leg angle at the first and 

second peak of the tangential force, respectively.   
   is the force-free leg angle at mid-

stance when the total ground reaction force applies along the leg axis.     is the force-

free leg angle at take-off. The tangential stiffness is normalised by body weight (  ) 

and leg length during still standing (   ).  

The total tangential stiffness (  ) change according to the changes in magnitude and 

direction of the tangential force during the gait as can be seen in Figure 4.10-4.13. This 

total tangential stiffness (  ) in fixed contact condition is lower than that in moving 

contact condition. Similarly, the absolute value of contact angle at touchdown and take-

off in fixed contact condition is smaller than that in moving contact condition. The total 

stiffness of the nonlinear elasticity is lower than that of linear elasticity as the non-liner 

elastic fitting using second-order Fourier series in Equation 4.6-4.8 cannot capture the 

peak of the tangential force.  

In fixed contact condition, for both linear and nonlinear elasticity, the tangential 

stiffness and the absolute value of contact angle at touchdown and take-off decrease as 

the walking speed increases. However, in moving contact condition, the tangential 

stiffness and the absolute value of those contact angles are independent of the walking 

speed. Regardless of the walking speed, elasticity fitting and contact condition, the 

force-free contact angle at mid-stance (  
 ) is maintained at around 82.3 degree with 

respect to horizontal.  
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4.4 Discussion and conclusions 

In this chapter, the fundamentals of mechanical properties of human leg during walking 

have been proposed, which represent the minimal leg properties that are necessary to 

identify human leg mechanics during walking motion. The axial and tangential 

properties were extracted from the axial force-leg length and tangential force- leg angle 

relationships on the virtual leg during human walking. The effects of walking speed and 

foot-ground contact condition were investigated. 

The combination of the extracted linear axial stiffness (    
 ) and touchdown contact 

angle (   ) on the moving contact condition falls within the stable range of the leg 

parameters in the compliant leg model with axial elastic property developed by (Geyer 

et al., 2006). Their compliant leg model with axial elastic property was operated by axial 

leg force alone, which predicted that the axial stiffness is dependent on walking speed. 

Although, the changes of axial stiffness and contact angle in Table 4.1 and 4.2 are speed-

independent, it falls within the parameter range of (Geyer et al., 2006)’s compliant leg 

model, which can reproduce the stable walking motion at speed 1.0- 1.5 m/s.  

The speed independence of the linear axial properties in our study is consistent with 

that in (Lipfert et al., 2012); however, their normalised axial stiffness and contact angle 

are much higher. In their study, the total ground reaction force obtained from the 

walking and running measurement was considered to apply along the virtual leg. Such 

scheme provides the normalised axial stiffness between 31.7 to 45.8 for walking speed 

between 2.07 to 1.04 m/s. The periodic walking simulation was found only with the 

axial stiffness being 33.1 and contact angle being 74.8 degree at walking speed of 1.04 

m/s. On the same leg property definition, (Lipfert et al., 2012)’s axial stiffness during 

running is also higher than that of (Coleman et al., 2012) which used similar force 
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projection technique as our study to extract axial stiffness from human running 

measurement.  

For the nonlinear axial properties, the speed independence is also found. Only the hard 

nonlinear elasticity can achieve the minimum RMSE fits on the axial force- leg length 

data. Compared with the linear elastic fittings in the fixed contact condition, the 

nonlinear elastic fittings better fits the axial force- leg length data in early and mid 

stance; however, it overestimates the axial force when the leg is at the maximum leg 

shortening. 

There are no previous studies on the tangential leg properties from the walking 

measurement extraction. Only the hip torque profile during the gait cycle has been 

introduced in Maus et al. (2010). Such torque profile to stabilise the human upright 

walking agrees with our tangential force – leg angle relationship in Figure 4.10-4.13. 

The speed dependence is found in the tangential properties for linear and nonlinear 

elasticity on the fixed contact condition. However, the nonlinear fittings by using second 

order Fourier series on the tangential force- leg angle data underestimate the tangential 

stiffness in early and late stance.  

On the effects of foot- ground contact condition, the higher axial and tangential stiffness 

of the moving contact condition than that of the fixed contact condition are consistent 

with previous studies in (Bullimore and Burn, 2006;Whittington and Thelen, 2009). As 

the foot-ground contact moves forward during the stance, the shortening - lengthening 

(    ) and angular deflection (    ) of the virtual leg are reduced and thus, increase 

the total axial and tangential stiffness.   
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The effects of linear and nonlinear elasticity, foot-ground contact condition and ground 

reaction force decomposition underline the influence of leg property definition on the 

extracted leg properties. In fact, there is only a short period during the mid-stance that 

the direction of total ground reaction force coincides with the leg axis. By projecting the 

total ground reaction force onto the parallel and perpendicular line of the virtual leg, the 

axial and tangential stiffness can be estimated from the more realistic force-

displacement relationships. Compared to the linear elasticity, the nonlinear elasticity 

better fits on the axial force – leg length relationship of fixed contact condition. The 

different conditions of foot-ground contact lead to different force-displacement 

relationships and thus, the different leg properties as a result of leg property extraction 

on different leg definition. The implementation of these mechanical leg properties in 

human walking model is required to validate the leg property region in human walking 

prediction. 

In addition to the fitting, other calculations may also affect on leg properties extraction. 

One of which is the calculation for centre of mass motion. In our study, the centre of 

mass motion at the touchdown instant during walking is used as the initial motion for 

the integration of ground reaction force. Other studies prevented the signal drifts by 

starting the integration from the still standing (Blum et al., 2009; Lipfert et al., 2012). 

However, to study human walking at self-selected speed, the latter technique requires a 

long walking track or a measurement conducted on treadmill. It has been found that the 

variation of CoM velocity during the over-ground and treadmill walking are 

fundamentally different (White et al., 1998; Dingwell et al., 2001; Dierick et al., 2004; 

Schablowski and Gerner, 2006; AlGheshyan, 2012). This may lead to different 

estimations of CoM motion and thus different force-displacement relationships. In 
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(Lipfert et al., 2012), extracted from walking measurements on treadmill, it has been 

found that the rest length is shorter than the leg length at still standing. Such leg 

properties limit the implementation in compliant leg model with axial elastic property 

and thus some adjustments were required to validate those leg properties with human 

walking measurements. 

The speed independence of the extracted mechanical leg properties can be interpreted 

in many different ways. It may imply that the leg elasticity during human walking does 

not change with walking speed. More implication may be from the fitting function. The 

single valued force – displacement relationships used in all fittings has some limitations 

to extract the mechanical leg properties during human walking. As can be seen in Figure 

4.5-4.8, the measured axial force- leg length relationships in both contact conditions are 

non-conservative around the maximum leg shortening. By fitting the single valued force 

–length function onto such non-conservative relationship, the rest length is stretched to 

the maximum length to satisfy the spring leg equation (see Figure 4.6-4.9) and may 

affect on the extracted axial stiffness (see Equation 4.1- 4.3). Similarly, for the tangential 

properties on the moving contact condition, single valued force – angle function 

overestimates the absolute leg angle at touchdown and take-off (see Figure 4.10-4.13) 

and may affect on the extracted tangential stiffness (see Equation 4.4- 4.6). In such 

cases, the parametric equations may be required to express the multi-valued force–

angle and force-length functions for the extraction of axial and tangential leg properties 

from the force-displacement relationships during human walking. 

 

 

 



147 
 

Chapter 5 Posture - Dependent Properties of Human Leg during 

Walking 

 

This chapter presents the mechanical properties of human leg on the posture-

dependent variation of axial and tangential elasticity during human walking motion. 

The posture-dependent leg properties during human walking motion are proposed. 

These mechanical leg properties are extracted from human walking measurements at 

different self-selected walking speeds on fixed and moving condition of foot-ground 

contact. 

 

5.1 Background 

In Chapter 4, it was found that, obtained from the walking measurements, the 

relationships of axial force-leg length and tangential force-leg angle change after 

maximum leg shortening and mid-stance force-free leg angle (  
 ), respectively. These 

non-conservative force-displacement relationships reflex the different mechanical 

properties of human walking leg during the first and the second half of stance. In 

addition, it indicates the non-conservative mechanical energy in which the energy 

stored by leg shortening and first half of leg rotation is unbalance with the energy 

released during the leg lengthening and the second half of leg rotation. To predict the 

accurate human walking motion and dynamic stability, the mechanical properties of 

human walking leg in corresponding to such non-conservative mechanical energy need 

to be studied. 
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The variety coordination of complex muscle-tendon structure producing negative and 

positive work have been found in leg operation during human locomotion (Pollock and 

Shadwick, 1994; Lindstedt et al., 2002; Purslow, 2002; Roberts and Azizi, 2011). Such 

coordination may results in the dissipation, production and conservation of mechanical 

energy depending on the leg function performed during locomotion (Roberts and Azizi, 

2011). However, most of the explicit leg functions proposed for the human locomotion 

were based on the perfect elasticity (Morin et al., 2011; Blum et al., 2009; Lipfert et al., 

2012; Coleman et al., 2012) in which only the complete exchanges of mechanical 

energies are presented. The function and property of the leg permitting the mechanical 

energy dissipation and production remains an open question in human locomotion 

study. 

 

The explicit forms of energy dissipation have been developed in human walking 

modelling and insect locomotion study. In a study of the propulsion of human walking, a 

viscous-damped compliant leg model with curved feet predicted that the energy 

dissipation in visco-elastic element is hardly dependent on walking velocity (Kim and 

Park, 2011). An earlier study on insect running leg suggested a structural damping to 

represent the independence of energy dissipation on the leg oscillation frequency. This 

structural damping so called hysteretic damping was adopted from the vibration 

damping (Nashif et al., 1985; Fung, 1993) to study the energy dissipation embedded 

with stiffness and positioning of the leg. This frequency-independent energy dissipation 

was found as a part of self-stabilisation for small perturbation during insect running 

(Dudek and Full, 2006). However, this structural damping in biped locomotion has not 



149 
 

been recognised. This may be explained by the fact that insect locomotion has much 

wider range of leg rotational frequency compared to that of bipedal locomotion. Above 

all, the variety coordination of complex muscle-tendon structure makes the explicit 

forms of energy dissipation in the human leg during locomotion a remaining open 

question. 

  

Instead of the explicit sources of energy dissipation and production, some studies on the 

human and robotic leg properties based on non-linear elasticity with implicit form of 

energy dissipation may provide some clues for the changes of mechanical property of 

the human leg during locomotion. To represent energy dissipation, a study of human 

running motion estimated the leg properties by both linear and non-linear stiffness 

where the rest length was allowed to vary linearly with time. It suggested that the non-

linearity of leg stiffness and variation of rest length may be a general consequence of 

segmental geometry and non-linear elasticity of the leg joints, whereas the linearity of 

which requires the proper adjustment of both local properties (Gunther and Blickhan, 

2002). This is supported by the theoretical predictions of leg properties from the joint 

properties in segmented leg robots and running simulation (Raibert, 1986; Seyfarth, 

2000; Rummel and Seyfarth, 2008). These results of nonlinear leg properties imply the 

variation of leg properties due to the change of multi-segment geometry and joint 

properties. 

 

In the study of the stability of bipedal robot running with perturbation, the energy 

variation managed by leg property variation in arthropod running (Schmitt and Holmes, 
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2000a; Schmitt and Holmes, 2000b; Schmitt et al., 2002; Schmitt and Holmes, 2003) has 

been adopted in spring-loaded inverted pendulum model. The energy dissipation and 

production during the leg operation was represented by the prescribed force-free leg 

length as a sinusoidal function of time. The variation of force-free leg length allows the 

unbalance between elastic energy storage and the work done by spring relaxation. This 

results in the difference of force-free leg length at touchdown and take-off which adjusts 

the CoM velocity during late stance of walking as anticipation to external perturbation. 

This posture-dependent actuation of force-free leg length in conjunction with the 

proper change in touchdown leg angle from one to the next step (Seyfarth et al., 2003) 

corresponding to the mechanical energy variation was found to stabilise the biped 

running against large perturbation (Schmitt and Clark, 2009). As the implicit sources of 

the energy dissipation and production, such variation of force-free leg length and leg 

positioning may be utilised to study the walking motion and dynamic stability on non-

conservative system energy. 

 

5.2 Posture-dependent leg properties 

In this chapter, the variation of leg properties regulated by leg posture so called posture 

index are proposed to represent the posture-dependent elasticity of the virtual leg. The 

leg positioning, variable leg stiffness and variable force-free leg length are used as leg 

properties to facilitate non-conservative mechanical energy during human walking. In 

this section, the posture- dependent leg properties are defined and then extracted from 

the measurement data by data fitting. 

  



151 
 

5.2.1 Posture index  

Posture index is the proportion of leg posture change and the swept angle over the 

duration of foot-ground contact. The leg posture is determined by the difference 

between the instantaneous leg angle during the contact and leg angle at touchdown 

instant. Only the angle of ipsilateral leg, the leg that starts the considered walking step, 

is used to calculate the posture index. 

The leg angle during foot- ground contact in fixed contact condition is injective single-

valued function (Bartle, 1976); that is the leg angle changes with contact time and never 

returns to the same angle value (see Figure 5.1a). However, the leg angle in moving 

contact condition is different as some angle values are repeated after some contact 

times. As a result, the posture index at each contact instant in moving contact condition 

is not unique and cannot be used to regulate the leg property variation. 

  

In such a case,  the posture index of moving contact condition has to be calculated from 

the leg angle on fixed contact. This contact condition has foot-ground contact point fixed 

at the CoP location where the leg angle on moving contact condition reaches vertical leg 

orientation. The leg angle on this fixed contact can always be obtained from the 

available data on moving contact (see Figure 4.2 in Chapter 4). Thus, the posture index 

for both fixed and moving contact can be written as 

 

   
      

        
                                                              (5.1) 
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where  ,     and     are the angle of  ipsilateral leg on fixed contact condition during 

the stance, at touchdown and at take-off, respectively. The posture index begins with 0 

at the touchdown and terminates with 1 at the take-off (see Figure 5.1b). 

 

 

Figure 5.1 (a) Ipsilateral leg angle ( ) in radian during the foot- ground contact for fixed (solid) and moving 
contact (dash). (b) Posture index ( ) for both fixed and moving contact. The walking picture from left to right 
illustrates the ipsilateral leg (black) at touchdown, vertical leg orientation and take-off. The leg angle and 
posture index are calculated from the mean of measurement data of subject no.2 on self-selected normal 
walking. 

 

5.2.2 Posture-dependent axial properties 

Posture-dependent axial properties are defined by the axial stiffness and force-free leg 

length. The linear axial stiffness and the variation of force-free leg length regulated by 

posture index are used to capture the differences of axial force – leg length relationship 

during first and second half of stance. The variable force-free leg length managed by leg 

posture is also used to represent the energy variation during the gait. The posture-

dependent axial force – leg length equation for the fixed contact can be written as 
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                                                                        (5.2) 

    
     

                                                                        (5.3) 

                                                                                 (5.4) 

           
                 

            
 

   
                                 (5.5) 

 

where   
  is the axial force due to posture-dependent elasticity of the virtual leg ,   is the 

virtual leg length,        
  is the linear axial stiffness and     

     
 is the posture-dependent 

force-free leg length in fixed contact condition. This variable force-free leg length 

(    
     

) is a nonlinear function of posture index ( ). In other words, this rest length 

varies around the touchdown (   ) and take-off leg length (   ) (see Figure 5.2) with 

some deviation in proportional to excursion length (  ). The finite Fourier series (     ) 

represents the rest length fluctuation constrained to zero at initial and terminal contact. 

  
  and   

  are Fourier coefficients. The fifth-order of Fourier series is selected from the 

optimal number of Fourier coefficient that minimise the root-mean-square error. The 

preliminary examination on higher-order of Fourier series showed that the RMSE is not 

significantly reduced with the more number of Fourier coefficient. 
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Figure 5.2 The illustration of force-free leg length at initial contact (       
  ) and terminal contact (     

    ) and force-free leg angle (    ) at mid-stance when the direction of the total ground reaction force (  ) is 

coincident with leg axis and, thus the tangential force is zero. 

 

The posture-dependent force-free leg length (    ) requires additional term to represent 

the variation of force-free leg length on moving contact. This variable force-free leg 

length in moving contact condition (    
    ) can be written as  

 

    
                          

                                                  (5.6) 

    
                    

  
                                                              (5.7) 

 

where    represents the additional nonlinear term of force-free leg length in moving 

contact condition.     and     are the peak amplitude from the measurement data of leg 

angle and leg length, respectively (see Figure 5.3).                           

    

     

    

 

Mid-stance Terminal contact Initial contact 

   = 0    = 0 
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Figure 5.3 Peak amplitude of leg angle (  ) and leg length (  ) in moving contact condition obtained from the 
mean of measurement data of subject no.2 on self-selected normal walking. 

 

In order to compare the variation of force-free leg length in fixed and moving contact 

condition, the peak amplitude of force-free leg length is calculated by 

 

  
       

                                                                     (5.8) 

for the fixed contact and 

  
                                                                         (5.9) 

for moving contact (see Figure 5.3).  
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Figure 5.4 The force-free leg length (  
 ) and the peak amplitude (  

 ) in fixed and moving contact condition 
during the foot-ground contact (        ) extracted from the mean of measurement data of subject no.2 on 
self-selected normal walking speed.     and     are the force-free leg length at touchdown and take-off instant, 
respectively. 

 

5.2.3 Posture-dependent tangential properties 

Despite the instantaneous change as presented in Chapter 4, the tangential dynamic leg 

properties in this chapter are defined by posture-dependent tangential stiffness and a 

force-free leg angle. A fixed force-free leg angle and variation of tangential stiffness 

regulated by posture index are utilised to represent the posture-dependent tangential 

elasticity as a consequence of  nonlinear joint stiffness (Raibert, 1986; Seyfarth, 2000; 

Gunther and Blickhan, 2002;  Rummel and Seyfarth, 2008). This force-free leg angle is 

defined by force-free leg angle occur at the mid-stance when the total ground reaction 

force applies along the leg and thus, the tangential force becomes zero, which is 

equivalent to the force-free leg angle at mid-stance (  
 ) in Chapter 4 (see Figure 3.10-

3.13). The posture-dependent force- angle equation for both contact conditions can be 

written as 

 

  
   

  
    

 
                                                                         (5.10) 
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                                 (5.11) 

 

where   
  is the tangential leg force based on posture-dependent elasticity of the virtual 

leg ,       is the mid-stance force-free leg angle (see Figure 5.2).   
     is the posture-

dependent tangential stiffness in terms of finite Fourier series constraining tangential 

stiffness to zero at touchdown and take-off regardless of the touchdown and take-off 

angle value.   
  and   

  are Fourier coefficients of posture-dependent tangential 

stiffness.  

The variation of tangential stiffness is divided by the force-free leg angle into two 

phases. The first phase corresponds to the hard nonlinear elasticity in which the 

tangential stiffness increases from zero at the touchdown to the maximum value. The 

second phase corresponds to soft nonlinear elasticity in which the tangential stiffness 

decreases from the maximum value to zero at the take-off (see Figure 5.5). That is, this 

tangential stiffness is dependent on leg posture (      ) instead of the leg angular 

deflection         . 
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Figure 5.5 An example of two-phases nonlinear stiffness (a) divided by the force-free leg angle (    ) 

extracted from the mean of measurement data of subject no.2 on self-selected normal walking. The 

corresponding tangential force (b) is shown with the touchdown (td) and take-off being denoted by   (td) 

and  (to).    
       is normalised to body weight (  ) and leg length obtained during still standing (   ) or 

        . (       
 ) is normalised by              

 

 

The total stiffness ( ) is used to compare the tangential stiffness on different nonlinear 

elasticity. This total stiffness is calculated by 

       
  

      
  

           
                                                               (5.12) 

for hard nonlinear elasticity and 

       
  

       
   

           
                                                              (5.13) 

for soft nonlinear elasticity. 

 

5.2.4 Fitting procedure 

For the axial leg properties, the similar fitting method as in Chapter 4 is used. The only 

difference is that the mean value of measurement data set of axial force- leg length and 
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tangential force- leg angle at each self-selected walking speed are calculated to allow 

minimum root-mean-squares fitting on posture-dependent elasticity. The calculated 

mean value of measurement data set of leg length and leg angle including the peak 

amplitude of leg length (  ) and leg angle (  ) are fed into Equation 5.1- 5.7 to extract 

the linear axial stiffness and posture-dependent force-free leg length for fixed and 

moving contact conditions. The search of leg parameters of the axial force-length 

equations is operated using the optimisation function fmincon in MATLAB version 2010 

to minimise the root-mean-square error. An additional constraint is introduced to the 

search problem to ensure that the fluctuation of force-free leg length does not dominate 

the axial property extraction (see Equation 5.2).  

 

       
                                                                       (5.14)  

 

The Equation 5.14 constrains the peak amplitude of force-free leg length (  
 ) to be 

below the measured peak amplitude of leg length (  ) to ensure that the variation of 

force-free leg length will not override the extracted values of other axial properties. 

By solving the constrained optimisation problem for minimum RMSE, the eleven axial 

leg parameters comprising linear leg stiffness (      
 ) and Fourier coefficients of 

variable force-free leg length (  
    

 ) are determined. From the optimal solution, the 

peak amplitude of force-free leg length fluctuation (  
 ) is calculated by Equation 5.8 

and 5.9.            
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The posture-dependent tangential leg stiffness   
     and a force-free leg angle (    ) 

are estimated by feeding the measurement data set of the leg angle and leg length into 

Equation 5.1, 5.10 and 5.11. The eleven tangential leg parameters comprising a force-

free leg angle (    ) and Fourier coefficients of variable tangential stiffness (  
 ,   

 ) are 

determined. Then, the tangential force equations are substituted into Equation 5.12 and 

Equation 5.13 to calculate the total stiffness ( ) for hard and soft nonlinear elasticity, 

respectively. This total stiffness ( ) is used to compare between different nonlinear 

elasticity. The diagram for the extraction procedure is shown in Figure 5.6. 

The walking measurement and data processing allow for simultaneous analysis of 

kinetic-kinematic data during single walking step. This is sufficient to obtain the force-

displacement relationships of the virtual leg, however, limits the capture of touchdown 

angle variation from one to the next step. In this chapter, the variation of touchdown leg 

angle is considered between different walking trials on the same walking speed. 
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Figure 5.6 Extraction process for the axial stiffness (      
 ), peak amplitude of posture-dependent force-free 

leg length (   
   ), posture-dependent tangential stiffness (       

          
   ) and force-free leg angle (    ). 

 

5.3 Some fitting results 

For each subject, the measurement data of the CoM, CoP and GRF at each self-selected 

walking speed was processed in two contact conditions namely fixed and moving 

contact. The variations of leg properties are utilised to represent the posture-dependent 

elasticity of axial and tangential element of virtual leg to fit the force-displacement 

relationship of the virtual leg operation on non-conservative mechanical energy. The 

peak amplitude of variation of the posture-dependent force-free leg length and the total 

tangential stiffness are calculated.  

 

 

    
         

     
 

Processed data set of centre of mass (CoM), centre of pressure (CoP) and 

ground reaction force (GRF) 
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5.3.1 Linear axial stiffness (      
       

) and peak amplitude of variation of the force-free 

leg length (  
       

) 

 

Figure 3 

 

Figure 5.7 The fixed contact axial force – length data set (blue) at self-selected slow, normal and fast walking 
speed and posture-dependent elasticity fits (red) from a representative subject (subject no.2) are shown. 
Axial force (       

 ) is normalised by body weight (BW), leg length (        ) is normalised by the leg length 

obtained during still standing (   ). Touchdown(td) and take-off are denoted by   (td) and   (to). Linear axial 

stiffness(       
       

) and the corresponding peak amplitude of variation of the force-free leg length 

(  
       

)determined by the RMS fit are given for each walking speed.        
       

 is normalised by     and      .  

   
       

is normalised by    . The data set is obtained from three good trials of the walking measurements of 

subject no.2 at each self-selected walking speed. 

 

In Figure 5.7 for the fixed contact condition, the linear stiffness for the posture-

dependent elasticity of axial element of the virtual leg at different walking speeds is 

consistent with that for the linear elasticity except for the fast walking speed in which 

the posture-dependent elasticity fitting gives higher linear stiffness. Unlike the linear 

elasticity fitting, the posture-dependent elasticity fitting gives different leg length at 
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touchdown and take-off. For the representative subject shown here, the peak amplitude 

of force-free leg length variation is speed-dependent.  

 

 

Figure 4 

 

Figure 5.8 The moving contact axial force – length data set (blue) at self-selected slow, normal and fast 
walking speed and posture-dependent elasticity fits (red)from a representative subject (subject no.2) are 
shown. Axial force (      

 ) is normalised by body weight (BW), leg length (      ) is normalised by the leg 
length obtained during still standing (   ). Touchdown(td) and take-off are denoted by   (td) and   (to). The 
axial linear stiffness(       

 ) and the corresponding peak amplitude of variation of the force-free leg length 

(  
      ) determined by the RMS fit are given for each walking speed.        

  is normalised to  ,     .     
       is 

normalised to    . The data set is obtained from three good trials of the walking measurements of subject no.2 
at each self-selected walking speed. 

 

In Figure 5.8 for the moving contact condition, the linear stiffness for the posture-

dependent elasticity of axial element of the virtual leg on different walking speeds is 

consistent with that for the linear elasticity except for the fast walking speed in which 
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posture-dependent elasticity fitting provides higher linear stiffness. The variation of 

force-free leg length allows the different leg length at touchdown and take-off. In 

contrast to the fixed contact, the peak amplitude of variation of force-free leg length 

decreases with increased walking speed.  

 

5.3.2 Total tangential stiffness and force-free leg angle  

 

Figure 5.9 The fixed contact tangential force – leg angle data set (blue) at self-selected slow, normal and fast 
walking speed and posture-dependent elasticity fits (red)from a representative subject (subject no.2) are 
shown. Tangential leg force (       

 ) is normalised by body weight (BW) and the leg length obtained during 

quiet standing (   ). Leg angle (       ) is in radian. Touchdown(td) and take-off are denoted by   (td) and   

(to). The total tangential stiffness for hard (        
       

) and soft (        
       

) nonlinear stiffness and the 

corresponding force-free leg angle (    
     

) determined by the RMS fit are given for each walking speed. 

   
       

 is normalised by  ,      or         .      
     

 is in radian. The data set is obtained from three good trials of 

the walking measurements of subject no.2 at each self-selected walking speed. 

 

Despite the instantaneous changes of linear tangential stiffness extracted by linear 

elasticity fitting as in Chapter 4, the posture-dependent tangential stiffness allows the 

stiffness variation from hard to soft nonlinear stiffness across the force-free leg angle 

(    
     

). The total value of the posture-dependent tangential stiffness is distinct from 
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that of the linear tangential stiffness in Chapter 4. This is because their leg deflections 

correspond to different basic of force-free leg angle. However, the force-free leg angle 

(    
     

) extracted by the posture-dependent elasticity fittings is consistent to the force-

free leg angle during mid-stance (  
 ) extracted by linear elasticity fittings. The results 

from Figure 5.9 shows that the total tangential stiffness for hard nonlinear stiffness 

(        
       

) increases whereas that for soft nonlinear stiffness (        
       

) decreases with 

increased walking speed. 

 

Figure 5.10 The moving contact tangential force – leg angle data set (blue) at self-selected slow, normal and 
fast walking speed and posture-dependent elasticity fits (red)from a representative subject (subject no.2) 
are shown. Tangential leg force (     

 ) is normalised by body weight (BW) and the leg length obtained 
during still standing (   ). Leg angle (     ) is in radian. Touchdown(td) and take-off are denoted by   (td) 

and   (to). The total tangential stiffness for hard (        
      ) and soft nonlinear stiffness (        

      )  and the 

corresponding force-free leg angle (    
    ) determined by the RMS fit are given for each walking speed. 

   
       is normalised to     ,      or         .      

     is in radian. The data set is obtained from three good 

trials of the walking measurements of subject no.2 at each self-selected walking speed. 

 

In Figure 5.10 for the moving contact condition, the total tangential stiffness for hard 

nonlinear stiffness (       
      ) increases whereas the one for soft nonlinear stiffness 

(       
      ) decreases with walking speed. The force-free leg angle (    

    ) is consistent to 
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that in the fixed contact condition. The tangential force-leg angle relationship is 

precisely fitted during early and late stance compared with the results obtained in the 

same contact condition by the linear elastic fitting. 

 

5.3.3 Summative results for all subjects 

The actual and normalised values of the posture-dependent leg properties extracted 

from the measurement data for all three walking speeds and all the participants is 

processed. The summative values for both fixed and moving contact condition are list in 

Table 5.1-5.2. 

Table 5.1 Posture-dependent axial properties during walking (        ) 

Axial properties 

Slow(1.12-1.31 m/s) Normal(1.35-1.54 m/s) Fast(1.58–1.8 m/s) 

Moving CoP Fixed CoP Moving CoP Fixed CoP Moving CoP Fixed CoP 

Linear stiffness 
 (      

 )  

Actual 
(kN/m) 

11.06 ± 1.68 4.54 ± 0.99 9.83 ± 1.20 4.05 ± 1.28 12.00 ± 0.884 4.65 ± 1.37 

Normalised 15.24 ±1.60   6.21 ± 0.77 13.55 ± 1.16 5.50 ± 0.86 16.66 ± 1.45 6.31 ± 1.25 

Peak amplitude  
of force –free 

 leg length variation 
(  

 )  

Actual 
(m) 

0.050 ± 0.011 0.071 ± 0.008  0.046 ± 0.010  0.096 ± 0.019 0.042 ± 0.016 0.101 ± 0.017 

Normalised 0.056 ± 0.011 0.078 ± 0.010 0.050 ± 0.010 0.106 ± 0.024 0.046 ± 0.016 0.112 ± 0.020 

Touchdown 
 leg length 

(   )  

Actual 
(m) 

0.949 ± 0.030 1.015 ± 0.046 0.953 ± 0.035 1.030 ± 0.052 0.954 ± 0.038 1.046 ± 0.047 

Normalised 1.050 ± 0.017 1.123 ±0.018 1.054 ± 0.017 1.139 ± 0.027 1.056 ± 0.014 1.157 ± 0.019 

Excursion length  
(lf-l0)  

or  
(  ) 

Actual 
(m) 

-0.026 ± 0.008 0.037 ± 0.006 -0.018 ± 0.009 0.048 ± 0.014 -0.025 ± 0.011 0.047 ± 0.011 

Normalised -0.029 ± 0.009 0.041 ± 0.007 -0.020 ± 0.010 0.054 ± 0.017 -0.028 ± 0.011 0.053 ± 0.015 

 

Table 5.1 shows the axial leg properties comprising linear axial leg stiffness (      
 ), 

peak amplitude of force-free leg length variation (  
 ), touchdown (   ) and excursion 

leg length (  ) during walking at self-selected slow, normal and fast speed. These are 

the averaged values for all participants. The linear axial stiffness is normalised by the 

body weight (  ) and the leg length during quiet standing (   ). The peak amplitude of 
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force-free leg length variation (  
 ) is normalised by leg length during quiet standing 

(   ). The touchdown (   ) and excursion leg length (  ) are axial properties obtained 

from the mean value of the measurement data which were used directly in Equation 5.3 

to extract other axial properties. 

The change in linear axial stiffness of the posture-dependent leg properties (      
 ) is  

speed-independent and the axial stiffness extracted from walking at self-selected 

normal speed in both contact conditions is lowest compared to those extracted from 

walking at lower and higher self-selected speed. The peak amplitude of force-free leg 

length variation (  
 ) are speed-dependent for both contact conditions.    

  on the fixed 

contact increases while that on the moving contact decreased as the walking speed 

increases. 

The touchdown leg length (   ) slightly increases with the increased walking speed for 

both contact conditions. The inter-subject variation of the touchdown leg length (   ) at 

each walking speed is relatively low and less than 2.4% of the mean value. The 

excursion leg length (  ) representing the difference of force-free leg length at 

touchdown and take-off is hardly dependent of walking speed for both contact 

conditions. This excursion leg length (  ) is around 50% smaller than the peak 

amplitude of force-free leg length variation (  
 ) for all walking speed indicating that, 

the posture-dependent variation of force-free leg length is much greater than difference 

of force-free leg length at touchdown and take-off. 

 

 



168 
 

Table 5.2 Posture-dependent tangential leg properties during walking (        ) 

 

Table 5.2 shows the tangential leg properties including the total stiffness on hard 

(       
 ) and soft nonlinear elasticity (       

 ) and force-free contact angle (        ) 

during walking at each self-selected walking speed. These values are the average of the 

extracted posture-dependent leg properties from the posture-dependent elastic fitting 

of the tangential force-leg angle data of all participants. The total dynamic stiffness is 

normalised by the body weight (  ) and the leg length during quiet standing (   ). The 

touchdown (   ) and peak amplitude (  ) of leg angle are tangential properties 

obtained from the mean value of the measurement data which were used directly in 

Equation 5.1 and 5.7 to extract other tangential properties. 

The total stiffness of both hard and soft nonlinear elasticity is speed-dependent. The 

total dynamic stiffness of the hard nonlinear elasticity (       
 ) for fixed contact 

decreases while that for moving contact increases with walking speed. In the contrary, 

Tangential properties 

Slow(1.12-1.31 m/s) Normal(1.35-1.54 m/s) Fast(1.58–1.8 m/s) 

moving CoP fixed CoP moving CoP fixed CoP moving CoP fixed CoP 

Total dynamic stiffness  
on hardening  
elastic profile 

(       
       

) 

Actual   
 k  m rad ) 

0.243 ± 0.065 0.240 ± 0.069 0.256 ± 0.064 0.233 ± 0.059 0.279 ± 0.073 0.220 ± 0.038 

Normalised 0.368 ± 0.068 0.361 ± 0.074 0.386 ± 0.055 0.350 ± 0.055 0.423 ± 0.075 0.334 ± 0.029 

Total dynamic stiffness  
on softening  

elastic profile 

(       
       

) 

Actual   
(k  m rad ) 

0.204 ± 0.064 0.135 ± 0.026  0.187 ± 0.056 0.134 ± 0.035 0.179 ± 0.062 0.145 ± 0.036 

Normalised 0.306 ± 0.070 0.207 ± 0.035 0.283 ± 0.065 0.207 ± 0.058 0.269 ± 0.069 0.220 ± 0.044 

Force-free contact angle 
   + (    ) 

 (deg) 83.50 ± 3.38 82.43 ± 1.60 82.66 ± 1.50 82.43 ± 1.50 81.74 ± 2.06 81.92 ± 1.95 

Touchdown 
 contact angle 
   + (   ) (deg) 67.0 ± 1.1 61.0 ± 0.8 66.5 ± 0.5 59.0 ± 0.8 66.0± 1.0 58.0 ± 0.5 

Peak amplitude  
of leg angle 

   ) 
 

 (deg) 23.32 ± 0.92 29.41 ± 4.01 24.36 ± 0.63 31.93 ± 4.75 24.991 ± 1.26 33.02 ± 5.27 
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the total stiffness of the soft nonlinear elasticity (       
 ) for fixed contact increases 

while that for moving contact decreases with increased walking speed. The force-free 

contact angle during mid-stance (        ) for both contact conditions slightly 

decreases with the increased walking speed. In addition, this is consistent with the 

results obtained from linear elastic fitting in which the force-free contact leg angle in 

mid-stance (      
 ) in different contact conditions hardly changes with increased 

walking speed. The touchdown contact angle (        ) in both contact conditions 

also slightly decreases with walking speed. The inter-subject variation of this 

touchdown contact angle (        ) at each walking speed is relatively low or less 

than 2% of the mean value implying the common adjustment of touchdown leg angle 

with walking speed found in the participants of this study. The peak amplitude of leg 

angle (  ) increases with increased walking speed indicating that the maximum leg 

angle increases with increased walking speed.  
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Figure 5.11 The relationship between touchdown leg length (   ) and contact angle (        ) for fixed 
contact (square) and moving contact (circle) represented by correlation coefficient (r) are shown. The mean 
value with standard deviation of touchdown leg length (   ) and contact angle (        ) at different walking 
speed (a) as listed in Table 5.1 and 5.2 is shown. The relationship between the mean values of touchdown leg 
length and contact angle on different walking speeds (b) and correlation coefficients (r) calculated for each 
contact condition are shown. 

 

Indicated by correlation coefficients, the coupling between touchdown leg length (   ) 

and contact angle (        ) exists in both contact conditions. Since, the combination 

of touchdown leg length and contact angle directly indicates the touchdown height of 

the CoM. The increase of touchdown leg length with smaller touchdown contact angle 

along with the increased walking speed indicates the adjustment of touchdown height 

of the CoM. The correlation coefficients being close to one indicates the strong 

coordination between touchdown leg length and touchdown contact angle to adjust the 

touchdown height with walking speed. 
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Figure 5.12 The relationship between peak amplitude of force-free leg length variation (  
 ), total tangential stiffness of 

hard (       
 ) and soft nonlinear stiffness (       

 ) for fixed (square) and moving contact (circle) represented by correlation 

coefficient (r) is shown. The mean values with standard deviations of peak amplitude of force-free leg length variation 
(  

 ), total tangential stiffness of hard (       
 ) and soft nonlinear stiffness (       

 ) at different walking speed (a) as listed in 

Table 5.1 and 5.2 are shown. The relationship between the mean values of each combination on different walking speeds 
(b) and correlation coefficients (r) calculated for each contact condition are shown. 
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Indicated by correlation coefficients, the coupling between peak amplitude of force-free 

leg length variation (  
 ), total tangential stiffness of hard (       

 ) and soft nonlinear 

stiffness (       
 ) is found for both contact conditions. The three leg properties 

extracted in moving contact condition have stronger relationship than that extracted in 

fixed contact condition. 

Extracted by posture-dependent leg property definition, the change in linear axial 

stiffness of the posture-dependent leg properties (      
 ) is consistent with that 

extracted by the linear elasticity property definition in which the change in axial 

stiffness is speed-independent and the axial stiffness extracted from walking at self-

selected normal speed in both contact conditions is lowest compared to those extracted 

from walking at lower and higher self-selected speed (see Table 5.3 and Figure 5.13). 

 

Table 5.3 The comparison between linear stiffness extracted by linear elastic and posture-dependent leg 
property definitions 

Axial properties 
Slow(1.12-1.31 m/s) Normal(1.35-1.54 m/s) Fast(1.58–1.8 m/s) 

moving CoP fixed CoP moving CoP fixed CoP moving CoP fixed CoP 

Linear stiffness 
 (    

 ) 
(linear elastic) 

Actual 
(kN/m) 

11.06 ± 1.68 4.54 ± 0.99 9.83 ± 1.20 4.05 ± 1.28 12.00 ± 0.88 4.65 ± 1.37 

Normalised 15.24 ±1.60   6.21 ± 0.77 13.55 ± 1.16 5.50 ± 0.86 16.66 ± 1.45 6.31 ± 1.25 

Linear stiffness 
 (      

 ) 

(Posture-dependent) 

Actual 
(kN/m) 

12 ± 2.5 4.2  ± 0.8 11  ± 1.7 3.6  ± 0.9 11.2  ± 2.5 4 .0± 1.3 

Normalised 16.5  ± 2.0 5.7 ± 0.6 15.2  ± 1.8 5.0 ± 0.7 15.3  ± 2.2 5.4 ± 1.2 
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Figure 5.13 The comparison between normalised axial stiffness (   ) extracted by linear elastic and posture-
dependent leg property definitions. The normalised axial stiffness extracted by linear elastic leg property 
definition (red) in fixed () and moving () contact condition are shown in comparison to the normalised 
axial stiffness extracted posture-dependent leg property definition (blue) in fixed () and moving () 
contact condition at each self-selected walking speed. 

 

5.4 Discussions and conclusion 

In this chapter, the posture-dependent leg properties during human walking motion 

have been proposed. These mechanical leg properties were extracted from human 

walking measurements at different self-selected walking speeds in fixed and moving 

condition of foot-ground contact. The passive property is represented in terms of linear 

axial leg stiffness. The non-conservative axial force – leg length relationship is 

represented by the linear axial leg stiffness and the variation of force-free leg length 

during the foot-ground contact. The non-conservative tangential force – leg angle 

relationship is represented by the mid-stance force-free leg angle and the variation of 

tangential stiffness during the foot-ground contact. 

 Extracted by posture-dependent property definition, the changes in posture-dependent 

force-free leg length and tangential stiffness are speed-dependent.  However, the change 

in linear axial leg stiffness are speed-independent, which is consistent to those extracted 

by linear elasticity definition in Chapter 4 and a previous study  (Lipfert et al., 2012). 
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Indicated by the correlation coefficients, the couplings between the axial and tangential 

properties on the different walking speeds are found. The adjustment of touchdown 

height of the CoM is found as a results of the coupling between touchdown leg length 

(   ) and contact angle (        ). The coupling between peak amplitude of force-free 

leg length variation (  
 ), total tangential stiffness of hard (       

 ) and soft nonlinear 

elasticity (       
 ) in the moving contact condition is stronger than that in fixed contact 

condition. The coupling between the touchdown leg length and touchdown contact 

angle of posture-dependent leg properties are consistent to the results from the studies 

on running animals in which the adjustment of touchdown contact angle and 

touchdown leg length were found instead of leg stiffness (Farley et al., 1993, Blickhan et 

al., 2007). Those results suggested that no adjustment of leg stiffness may be required to 

increase or decrease running speed.  This is in contrast to the linear elastic properties in 

the spring-mass walking model (Geyer et al., 2006) in which the change of the 

touchdown contact angle (        ) with the change in axial leg stiffness (      
 ) along 

with change of walking speed was found.  

The couplings between posture-dependent properties in relations to the management 

of elastic energy are investigated. The adjustment of touchdown leg length (   ) and 

contact angle (        ) indicates the adjustment of leg positioning which is known as 

the management of mechanical energy exchanges between phase transitions (Farley 

and Gonzalez, 1996; Geyer et al., 2005; Daley and Biewener, 2006). The coupling 

between the peak amplitude of force-free leg length variation (  
 ), total tangential 

stiffness of hard (       
 ) and soft nonlinear elasticity (       

 ) potentially indicates the 

systematic storage- release, dissipation and production of mechanical energy managed 

by non-conservative force-displacement relationships of the posture-dependent axial 
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and tangential elasticity. This is supported by the running simulation results of the 

spring-loaded inverted pendulum  (SLIP) model with clock-driven variation of force-

free leg length (Schmitt and Clark, 2009). In this SLIP model, the mechanical energy 

fluctuation was managed by the proper combination of axial stiffness, the sinusoidal 

variation of force-free leg length and leg positioning comprising leg angle at touchdown 

and take-off. The fluctuation of force-free leg length on stance duration produces 

positive and negative work to facilitate the non-conservative leg function, which adjust 

the system momentum to get over external perturbation during running. The speed-

dependence of axial stiffness and the fluctuation of force-free leg length were found in 

stable running. More supporting evidence is found in the stable running of two-

segmented leg model with rotational elasticity at the knee joint (Rummel and Seyfarth, 

2008). The variation of force-free leg length with the two-segmented leg geometry was 

introduced to represent the nonlinear force-length relationship. Such variation of force-

free leg length was found to predict stable region closer to the parameter region of 

human running. In insects and biped animal i.e. guinea flaw, the variation of force-free 

leg length has been found as a feed-forward adjustment of mechanical energy against 

external perturbation (Dudek and Full, 2006; Daley and Biewener, 2006; Daley et al., 

2007). Although, such variation of force-free leg length as the anticipation to external 

perturbation has never been investigated in human walking, the different force-free leg 

length at heel-strike and take-off can be simply observed from the human walking 

measurements. To support such observed evidence, the implementation of the posture-

dependent free-force leg length in human walking model is performed in Chapter7.  
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The posture-dependent properties have many advantages over the linear and nonlinear 

elastic leg properties in Chapter 4 and the conventional passive leg properties in 

previous studies (Geyer et al., 2006; Seyfarth et al., 2006; Lipfert et al., 2012). The major 

advantage is the introduction of variable leg property to represent the change of axial 

force- leg length relationship after maximum leg compression and the change of 

tangential force- leg angle relationship after mid-stance force-free leg length. This 

allows the representation of the non-conservative force-displacement relationships of 

the human leg, which can facilitate in the study of the non-conserve system energy 

during the gait and the effect on human walking stability. In addition, the finding of the 

speed-dependence and the coupling between the posture-dependent properties 

indicates the coordination of leg mechanics to represent human walking at different 

speeds. This deliberate definition of the posture-dependent leg properties may render 

to provide insight into subject-specific property of the human leg.  
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Chapter 6 Human Walking Prediction and Dynamic Stability Quantification 

based on Fundamental Leg Properties 

 

6.1 Introduction 

In Chapter4, the fundamental leg properties extracted from the measured axial force-leg 

length relationship during human walking motion was found to locate within the 

parameter region of stable walking motion predicted by a compliant leg walking 

template (Geyer et al., 2006; Rummel et al., 2010). Those extracted from the measured 

tangential force-leg angle relationship also reproduces the tangential force in a similar 

profile as the predicted hip torque for the stable walking motion by spring –mass model 

with hip joint and torso(Maus et al., 2010). These fundamental leg properties have 

shown preliminarily the potential use as a fundamental template to represent the 

mechanical properties of the leg during human walking motion.  

To provide insight into the effect of fundamental leg properties on the human walking 

stability, the validity region of which in human walking prediction needs to be 

examined. In this chapter, the compliant leg walking template (Geyer et al., 2006) is 

adopted to use for the dynamic stability analysis of human walking based on the axial 

elastic leg property. A compliant leg model with axial and tangential elastic property 

(CATE) is proposed to take account of the rotational dynamics corresponding to 

tangential elasticity of the virtual leg and, therefore, allow the dynamic stability analysis 

of human walking based on axial and tangential elastic leg property. 
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6.2 Background 

The bipedal walking model based on compliant leg has been used to predict the human 

walking motion by using the minimal inputs of elastic leg properties comprising axial 

leg properties and initial contact angle (   
       ). In a particular range of walking 

motion, the proper combinations of axial leg stiffness (  ) and touchdown leg angle 

(   
       ) are required to produce periodic walking motion. However, this production is 

rather sensitive to the initial condition of the walking motion especially the initial 

forward speed (  
 ) which regulates the forward rotation of CoM with respect to the 

contact point. The proper horizontal speed allows sufficient duration for the upright 

CoM, which allows the proper energy transfer among potential, strain and kinetic 

energy. As a result, the proper oscillation of the CoM on the compliant leg is created, 

which regulates the initiation and termination of double support phase and forward 

progression the CoM to complete the walking step. In this model, the CoM oscillation 

increases with increased walking speed. The CoM becomes airborne and fails to 

complete walking cycle when the walking speed exceeds 1.5 m/s (Geyer et al., 2006). 

This walking speed limit of the compliant leg walking template restricts the human 

walking prediction based on the axial elastic leg properties to the moderate walking 

speed.  

Depending on the axial leg properties alone, the CoM motion predicted by compliant leg 

walking model is regulated by the touchdown contact angle (   
       ), axial stiffness 

(  ) and the initial condition of the CoM motion. The incorporation of the tangential 

component of the leg force or the rotational elasticity of the virtual leg may render to 

extend the walking speed range predicted by compliant leg walking model. 



179 
 

In this chapter, to examine the validity region for human walking prediction, the axial 

and tangential leg properties obtained from the human walking measurement in 

chapter 3 are fed into the simple walking models. Then, the prediction results are used 

to quantify the dynamic stability of human walking. The interrelation between the 

human walking motion predicted by the compliant leg model with axial elastic leg 

property (CAE) and that predicted by the compliant leg model with axial and tangential 

elastic leg property (CATE) is investigated. Using the CATE model, the effect of the 

rotational elasticity of the virtual leg on the dynamic stability of human walking is 

investigated. The assumption of energy conservation during human walking motion is 

used on both simple walking models. 

 

6.3 Human walking prediction based on fundamental leg properties 

Based on the best fits on the measurement data, the combinations of the fundamental 

leg property, for example, axial stiffness (  ) and force-free leg angle (  ) may not 

reproduce human walking motion. The examination for the validity region of this leg 

property for human walking prediction is required. 

For the validity region in predicting human walking motion, the fundamental leg 

property parameters comprising axial (  ) and tangential stiffness (  ), rest length (  ) 

and force-free angle (  ) are examined. The compliant leg model with axial elastic 

property (CAE) is used to examine the validity region of axial elastic leg property 

parameters comprising axial stiffness (  ), rest length (  ) and touchdown leg angle 

(   ). To examine the validity region of fundamental leg property parameters 

comprising axial (  ) and tangential stiffness (  ), rest length (  ) and force-free leg 
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angle (  ), the compliant leg model with axial and tangential elastic leg property (CATE) 

is proposed. The asymmetrical walking motion on the conservation of system energy is 

illustrated by the operation of axial-tangential elastic leg. The comparison between the 

human walking motion predicted by conventional and proposed model is presented. 

 

6.3.1 A simple model of human walking based on minimal leg properties 

For the minimal model such as compliant leg model with axial elastic property (CAE), a 

previous study using dynamic leg property parameters extracted from human walking 

measurement showed the successful prediction of human walking only at the slow 

walking or at speed of 1.04 m/s (Lipfert et al., 2012). This may be affected by the speed 

limitation of the compliant leg model with axial elastic property (CAE) and the 

definition of the dynamic leg property used in the extraction from human walking 

measurement. The accuracy and the validity region of the human walking prediction 

may be improved by a careful selection of the input parameters and the utilisation in the 

nature of the model. 

Despite the walking speed limit, the compliant leg model with axial elastic property 

(CAE) can be utilised as a human walking template based on minimal leg properties in 

which only the axial stiffness (  ) and the rest length (  ) are the required leg 

parameters. In order to utilise that minimal requirement, the input parameters in terms 

of initial motion and dynamic leg properties need to be selected and extracted carefully 

from human walking measurement. The prediction of the human walking motion may 

not be produced by directly feeding the measured inputs into the minimal model. The 

nature of the compliant leg model with axial elastic property (CAE), for examples, the 
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fixed rest length throughout walking cycle and the coupling between the walking speed 

and leg stiffness needs to be maintained such that the axial elasticity can be the only 

required leg mechanics to operate the walking model. Thus, some alteration in the input 

parameters, which are obtained from walking measurement, is required to allow some 

proper axial elasticity for the leg operation in this minimal walking model. In this way, 

the actual validity region of human walking prediction based on the axial elastic leg 

properties can be analysed. 

 The prediction of human walking motion based on the axial elasticity of the virtual leg 

requires the input parameters comprising the initial condition of the CoM and axial 

properties namely, the axial leg stiffness (  ), rest length (  ) and the touchdown 

contact angle (   
       ). In this minimal model, the symmetrical walking is assumed, 

and no influence of the swing leg is taken into account. The equations of motion of the 

CoM during a walking step can be given by 

                                                                                  (6.1) 

                                                                            (6.2) 

for the initial single support phase,  

                                                                            (6.3) 

                                                                          (6.4) 

for the double support phase and  

                                                                          (6.5) 

                                                                            (6.6) 
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for the final single support phase, where 

      
     

      

      
                                                                  (6.7) 

      
     

     

     
                                                                   (6.8) 

 

The leg length ( ) during the walking motion can be determined by 

                                                                             (6.9) 

                                                                        (6.10) 

 

The forward dynamics model begins at the vertical leg orientation (VLO) with the initial 

condition given by 

                         

                                                                                    (6.11) 

The transition from single to double support occurs when 

            
        .                                                    (6.12) 

The transition from double to single support occurs when 

          .                                                               (6.13) 
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The leg stiffness (   ) can be either a linear (    
 ) or non-linear stiffness (Equation 4.3) 

depending on the elasticity condition used in the extraction.   is the horizontal distance 

between the CoM and the contact point.   is the step number.    is the rest length. The 

touchdown contact angle (   
       ) is the angle between horizontal and the virtual leg 

at touchdown instant.   is the whole-body mass,   is gravity and   is the step length 

defined by the distance between the contact point of leading and trailing leg (see Figure 

6.1). The force equations of this model can be found in Appendix B.  

 

y

x

 

 

 

Figure 6.1 The minimal model of human walking based on axial elastic leg properties adopted from (Geyer et 
al., 2006) is shown. A walking step simulation begins with the initial single support at vertical leg orientation 
(VLO) of the trailing leg, enters the double support phase at the touchdown instant of the leading leg and 
then, enters the final single support at the take-off instant of the trailing leg before terminating the 
termination step at the consecutive vertical leg orientation (VLO).  

 

The equations of motion are numerically solved by using the numerical integrator 

(ode113) in MATLAB (R 2010a) with an integration step size of 0.001s and an absolute 

error tolerance of 0.001 metre. The input parameters comprising subject’s body mass 

( ), the initial condition (Equation 6.11), linear (    
 ) or non-linear leg stiffness 
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(Equation 4.3) and touchdown contact angle (        ) as presented in Chapter 4 are 

required.  

 

Due to the walking symmetry, it suffices to obtain a periodic walking motion from the 

100 repetition of a single step defined by two subsequent vertical leg orientations. At 

vertical leg orientation (VLO), the CoM motion reaches the apex or            and 

thus, the initial motion can be reduced to            ,          . The height (  ) and 

horizontal velocity (   ) of the CoM at the instant of vertical leg orientation are 

considered as state variables ( ) or   = [      ] and the periodic gait pattern is identified 

when the difference between the initial and consequent state after one walking step is 

smaller than absolute error tolerance or                
 
           when   = step 

number and   = state variable number. 

 

6.3.2 A simple model of human walking based on the fundamental leg properties 

The fundamental leg properties as presented in Chapter 3 require a compliant leg model 

with both of the axial and rotational elasticity during human walking. A compliant leg 

model with axial and tangential elastic property (CATE) is proposed in this section to 

take account of the rotational dynamics generated by the tangential elasticity of the 

virtual leg. An additional parameter, velocity angle (  
 ), the angle between the total and 

horizontal velocity of the CoM at vertical leg orientation is introduced to allow for the 

prediction of asymmetrical walking motion. The initial condition of the CoM motion and 

the fundamental leg properties comprising axial (  ) and tangential leg stiffness (  ), 

rest length (  ) and the three of force-free leg angles (  ) (see Equation 4.1, 4.4 and 4.5 



185 
 

in Chapter 3) are required in the examination of the validity region of human walking 

prediction. The equations of motion of the CoM during a walking step can be given by 

 

                                                                             (6.14) 

                                                                        (6.15) 

for the initial single support phase,  

                                                                     (6.16) 

                                                                  (6.17) 

for the double support phase and  

                                                                        (6.18) 

                                                                      (6.19) 

for the final single support phase, where 

      
      

      

      
                                                              (6.20) 

      
      

     

     
                                                              (6.21) 

      
      

      

         
                                                              (6.22) 

      
      

     

        
                                                               (6.23) 

            
 

 
                                                                (6.24) 
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                                                               (6.25) 

 

The linear axial (    
 ) and tangential stiffness (    

 ) and the force-free leg angle (  ) 

presented in Chapter 4 are used in Equation 6.20-6.23. The force equations for CATE 

model can be found in Appendix B. The same criteria used for the transitions between 

single and double support in the compliant leg model with axial elastic leg property 

(CAE) (see Equation 6.12 and 6.13) are adopted here. 

This forward dynamic model begins with the initial condition capable of representing 

both symmetrical and asymmetrical walking motion given by 

 

                         

                              
                                              (6.26) 

 

The velocity angle (  
 ) is introduced to represent the horizontal and vertical velocity of 

the CoM at the vertical leg orientation (see Figure 6.2). In this model, the vertical leg 

orientation (VLO)can occur before or after the apex of the CoM motion and possesses 

both vertical and horizontal velocity in which       
   

   
    

  represents the direction of 

the total velocity of the CoM (see Figure 6.2). The initial condition can be expressed by 

the CoM height (  ), the horizontal (    ) and vertical velocity (   ) for both symmetrical 

and asymmetrical walking motion. Hence, the state variables ( ) can be expressed by 

  = [     
 ] when   

  is the velocity angle introduced earlier in terms of horizontal (    ) 
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and vertical velocity (   ) and   = step number. The periodic motion is identified by the 

similar criterion as used in the axial elastic leg model. 

 

y

x

 

 

 

Figure 6.2 A Simple model of human walking based on axial-tangential elastic leg properties is shown. A 
walking step simulation begins with the initial single support at vertical leg orientation (VLO) of the trailing 
leg, enters the double support phase at the touchdown instant of the leading leg and then, enters the final 
single support phase at the take-off instant of the trailing leg before terminating the simulation step at the 
consecutive vertical leg orientation (VLO). It should be noted that the apex motion of the CoM does not occur 
at the vertical leg orientation.  

 

6.3.3 Human walking simulation 

For each individual subject, the extracted leg properties and the initial condition of CoM 

motion are fed into the simple walking models. The normalised value is not used in the 

simulation as in the compliant leg model the leg length at still standing (   ) is not a 

constant. This leg length varies with axial stiffness (  ) and, thus, should not be used in 

normalisation of the leg properties. In this case, the simulation results will be 

normalised by the rest length (  ). 
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Provided by the minimum RMSE fitting of the measurement data, none of the leg 

property combination extracted can lead the simple walking models to the periodic 

walking motion. We hypothesize that by given the extracted leg stiffness, the measured 

initial condition generates too low potential energy change between vertical leg 

orientation (VLO) and touchdown (td) to transfer to other forms of mechanical energies. 

Based on the conservation of the walking system energy, the proper energy exchanges 

among the potential, strain and kinetic energy are required to achieve a walking cycle 

simulation (Geyer et al., 2006; Rummel et al., 2010). The unsuccessful reproduction of 

periodic walking motion implies that the combination of measured initial condition 

(      ), the extracted leg stiffness (  ), rest length (  ) and touchdown contact angle 

(   
       ) cannot produce the proper works to satisfy such energy transfer requirement. 

Thus, to examine the validity region of human walking prediction based on the 

extracted axial stiffness, we allow the combination of the rest length (  ), touchdown 

contact angle (   
       ) and the initial condition comprising the height (  ) and 

horizontal velocity (   ) of the CoM to vary around 80-120 % of the mean of measured 

values; while the linear axial stiffness (    
 ) is maintained at the extracted value. For the 

non-linear stiffness (    
 ), the basic linear stiffness (      

 ) in Equation 4.3, Chapter 4 is 

maintained while the coefficients (   ) and other model parameters are allowed to 

penetrat within the defined allowance. Despite the absence of soft nonlinear stiffness 

from the minimum RMSE fitting as presented in Chapter 4, the validity region of soft 

nonlinear stiffness in human walking prediction can be examined at a similar energy 

level as that of the hard nonlinear stiffness. 

The leg property parameter search was conducted to find the nearest values to that of 

extracted leg property parameters, which can reproduce periodic walking motion. Each 
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parameter is examined at 1% increment above and below the extracted value, 

respectively. The search gives priority to the tangential stiffness (  ), rest length (  ), 

velocity angle, initial horizontal (   ) and vertical velocity of the CoM (   ), respectively. 

For the compliant leg model with axial and tangential elastic property (CATE), the 

similar allowance as in the compliant leg model with axial elastic property (CAE) is 

applied to the axial leg property. To examine the validity region of fundamental leg 

property in predicting the human walking motion, the tangential leg property are also 

allowed to vary around 80-120% of the extracted value while the velocity angle (  
 )  is 

maintained at the mean of measured value. 

  

6.3.4 Prediction results 

To provide insight into the individual walking motion, the measured initial condition 

and the extracted leg properties of a representative subject were investigated. Among 

the periodic walking motions predicted by the CAE and CATE models, the leg properties 

and initial conditions with smallest deviation from the extracted values and the mean of 

measured values were selected to show in Table 6.1. The total stiffness of the axial 

elasticity (  ) (see Equation 4.9) was calculated to compare between the linear, hard 

nonlinear and soft nonlinear stiffness. For the CATE model (see sub-section 4.3.2, 

Chapter 4,), in addition to the axial elastic properties (see Equation 4.1-4.3), the four 

linear tangential stiffness (  ) and three force-free leg angles (  ) (see Equation 4.4 -

4.6) are used in the prediction of periodic human walking motion. The total stiffness of 

the tangential elasticity (  ) (see Equation 4.10) was also calculated. 
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Predicted by the CAE model using the extracted linear axial stiffness (    
 ), the rest 

length (  ) and initial condition being within 8% above the extracted value and the 

means of measured values were found to produce a periodic motion of human walking 

at the walking speed of 1.18 m/s. With the hard nonlinear stiffness, the periodic walking 

solution is found with the total stiffness (  ) and initial condition being within 20% 

below the extracted value and means of measured values. Both of linear and nonlinear 

axial stiffness underestimates the walking speed and rest length (  ) obtained from 

human walking measurement. 

Predicted by the CATE model using the extracted velocity angle (  
 ) and linear axial 

stiffness (    
 ), the other leg properties and initial condition being within 5% below and 

above the extracted and mean values produced a periodic motion of human walking at 

the walking speed of 1.25 m/s. Similar to the prediction by the compliant leg model with 

axial elastic property (CAE), this model underestimates the walking speed and rest 

length (  ) while overestimates the CoM height at vertical leg orientation (  ). 

Within the given allowance, the leg properties on fixed contact fail to reproduce even a 

single cycle human walking. The proper combination of the leg properties and the initial 

condition of the CoM motion is required to reproduce the periodic motion of human 

walking by using simple walking models. 

The ground reaction force (GRF), CoM displacement (   ), leg length ( ) and leg angle 

( ) during a walking step of the periodic motion predicted by CAE model with linear 

and nonlinear stiffness and the CATE model with linear stiffness as shown in Table 6.1 

are compared and analysed (see Figure 6.3 -6.7). 
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Table6.1 The mechanical properties and initial conditions leading the periodic walking motion predicted by 
compliant leg model with axial elastic property (CAE) and compliant leg model axial and tangential elastic 
property (CATE) are shown. The parameter set is based on the walking measurements of subject no.2 at each 
self-selected walking speed. 

    Linear axial Nonlinear axial(hard) Nonlinear axial(soft) 
Linear axial and 

tangential 

    model Fitted model fitted model fitted model fitted 

   (    ) 10.98 10.98 11.08 17.94 13.3 - 10.98 10.98 

   
(     
   ) 

- - - - - - 

2.23 2.23 

0.45 0.43 

0.21 0.23 

1.07 1 

       0.968 0.982 0.972 0.986 0.972 - 0.972 0.982 

  
              70 67.5 69.5 67.5 69.5 - 

69.5 67.5 

85.4 83.5 

-68.2 -67.8 

       69 69 69 69 69 - 69 69 

          1.1 1.2 0.98 1.2 1.04 - 1.15 1.2 

       0.921 0.921 0.935 0.921 0.935 - 0.936 0.921 

  
        - - - - - - 7 7 
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Figure 6.3 The predicted vertical (a) and horizontal (b) ground reaction force by CAE model with linear 
(black), hard nonlinear (blue) and soft nonlinear (red) axial stiffness and by CATE model with linear axial-
tangential stiffness (green) as shown in Table 6.1 compared to the measured ground reaction force at self-
selected low waling speed (dot). The data set is obtained from three good trials of the walking measurements 
of subject no.2 at self-selected low walking speed.  
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Figure 6.4 The predicted CoM displacement (   ) by CAE model with linear (black), hard nonlinear (blue) 
and soft nonlinear (red) axial stiffness and by CATE model with linear axial-tangential stiffness (green)as 
shown in Table 6.1 compared to the measured CoM displacement (   ) at self-selected low walking speed 
(dot). The data set is obtained from three good trials of the walking measurements of subject no.2 at self-
selected low walking speed.  
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Figure 6.5 The predicted leg length ( ) by CAE model with linear (black), hard nonlinear (blue) and soft 
nonlinear (red) axial stiffness and by CATE model with linear axial-tangential stiffness (green) as shown in 
Table 6.1 in compared to the measured leg length at self-selected low speed (dot). The data set is obtained 
from three good trials of the walking measurements of subject no.2 at self-selected low walking speed.  

 

 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

t [s] 

  
 
  

        

          RMSE Linear axial                Nonlinear axial (hard)             Nonlinear axial (soft)                Linear axial and tangential 

                    0.098              0.088                        0.072            0.116         



195 
 

 

 

 

Figure 6.6 The predicted leg angle ( )  by CAE model with linear (black), hard nonlinear (blue) and soft 
nonlinear(red) axial stiffness and by CATE model with linear axial-tangential stiffness (green) as shown in 
Table 6.1 compared to the measured leg angle at self-selected low walking speed (dot). The data set is 
obtained from three good trials of the walking measurements of subject no.2 at self-selected low walking 
speed.  
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Figure 6.7 The predicted axial force-leg length relationship by CAE model with linear (black), hard nonlinear 
(blue) and soft nonlinear (red) axial stiffness and the linear axial-tangential stiffness (green) as shown in 
Table 6.1 compared to the axial force-leg length relationship obtained from linear elastic fitting (magenta) 
and three good trials of the walking measurements of subject no.2 at self-selected low walking speed (dot).  
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Figure 6.8 The predicted tangential force-leg angle relationship by CATE model with linear axial-tangential 
stiffness (green) as shown in Table 6.1 compared to the tangential force-leg angle relationship obtained from 
linear elastic fitting (magenta) and three good trials of the walking measurements of subject no.2 at self-
selected low walking speed (dot).  

 

In Figure 6.3, predicted by the compliant leg model with axial stiffness alone, the 

horizontal ground reaction force (  ) is well estimated while the vertical ground 

reaction force (  ) is generally underestimated. The peak magnitude of both vertical 

and horizontal ground reaction force is better predicted by using hard and soft 

nonlinear stiffness. These two types of nonlinear stiffness also prolong the contact 

duration compared to that predicted by using linear axial stiffness. The incorporation of 

linear tangential stiffness provides the best prediction of the peak magnitude of vertical 

ground reaction force but underestimates that of the horizontal ground reaction force. 

The linear tangential stiffness also prolongs the contact duration compared to that 

predicted by compliant leg model with linear axial stiffness alone. The asymmetry of the 

vertical and horizontal ground reaction force is well predicted by the compliant model 

with axial and tangential elastic leg property (CATE). 
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In Figure 6.4, all conditions of the leg stiffness underestimate the horizontal 

displacement of the CoM. The vertical displacement of the CoM is well predicted by the 

linear and hard nonlinear axial stiffness, while it is overestimated by the soft nonlinear 

axial stiffness and the incorporation of linear tangential stiffness. 

In Figure 6.5, obtained from the measurement, the non-conservative leg length after the 

mid-stance cannot be predicted by any compliant leg models. The maximum leg 

shortening in the early stance is well predicted by CAE model with linear and hard 

nonlinear stiffness. However, the leg shortening after the mid-stance predicted by both 

compliant leg models cannot be found in the leg length obtained from the measurement. 

In Figure 6.6, the nonlinearity of leg angle obtained from the human walking 

measurement cannot be predicted by any compliant leg models. However, the instant of 

vertical leg orientation is well predicted by both compliant leg models. 

In Figure 6.7, primarily due to the difference in rest lengths, the axial force-leg length 

relationships leading to the periodic walking motion shifts away from that provided by 

minimum RMSE fitting. Based on the compliant leg model with axial stiffness alone, the 

maximum axial force and maximum leg shortening are underestimated. However, by 

incorporating the linear tangential stiffness, the maximum leg shortening is 

overestimated and results in higher maximum axial force. 

In Figure 6.8, mainly due to the difference in force-free leg angles, the tangential force-

leg angle relationship leading to the periodic walking motion shifts away from that 

provided by minimum RMSE fitting. The CATE model using linear axial-tangential 

stiffness overestimates the leg angle ( ) during early stance while underestimates the 

tangential force during late stance.  
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The periodic walking motion predicted by CAE model well reproduces the vertical 

displacement of the CoM ( ) (RMSEs are 0.03, 0.024 and 0.028 m for linear, hard 

nonlinear and soft nonlinear axial elasticity, respectively), but underestimates the 

vertical ground reaction force (  ) (RMSEs are 124, 88.4 and 60.2 N for linear, hard 

nonlinear and soft nonlinear axial elasticity, respectively).  It also well reproduces the 

maximum leg shortening (RMSEs of the leg length are 0.098, 0.088 and 0.072 m for 

linear, hard nonlinear and soft nonlinear axial elasticity, respectively) but 

underestimates the maximum axial force (RMSEs of the axial force are 131.1, 121.5 and 

98.5 N for linear, hard nonlinear and soft nonlinear axial elasticity, respectively).  

For periodic walking motion predicted by CATE model, the asymmetrical ground 

reaction forces are well reproduced (RMSEs are 46.4 and 30.4 N for vertical and 

horizontal ground reaction force, respectively). The vertical ground reaction force (  ) 

is well reproduced (RMSE = 46.4 N) while the vertical displacement ( ) is 

overestimated (RMSE = 0.038 m). The maximum axial and tangential force is well 

reproduced (RMSEs are 86.3 and 38.5 N for the linear axial and tangential force, 

respectively) while the maximum leg shortening and the leg angle during the early 

stance are overestimated (RMSEs are 0.116 and 0.1 m for leg length and leg angle, 

respectively). 

Predicted by both compliant leg models, the horizontal displacements of the CoM (x) are 

underestimated (RMSEs are 0.52, 0.48, 0.44 and 0.40 m for linear axial, hard nonlinear 

axial, soft nonlinear axial and linear axial-tangential elasticity, respectively). The leg 

lengths are underestimated during the late stance. The nonlinear leg angle obtained 

from the walking measurement cannot be reproduced. 
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It is found in this chapter that different components of leg property affect on the 

predictions of different gait dynamics.  The CAE model using linear axial stiffness is 

proficient in predicting the vertical displacement of the CoM. The nonlinearity of axial 

stiffness in CAE model and the incorporation of tangential elasticity in CATE model 

prolong the stance duration to the linear axial stiffness in CAE model. The incorporation 

of tangential elasticity improves the prediction of vertical ground reaction force while 

overestimates the vertical displacement. It is interesting that the leg property 

component, which improves the prediction of vertical displacement, does not improve 

that of vertical ground reaction force and vice versa.  

In addition, none of the dynamic leg properties can predict the leg lengthening obtained 

from the late stance of human walking, which may be a major source of the 

underestimation of the horizontal displacement of the CoM. The leg shortening after the 

mid- stance predicted by both compliant leg models reproduces the second peak of the 

vertical ground reaction force while attenuates the forward progression of the CoM. On 

one hand, this re-shortening of the virtual leg is crucial for the elastic leg operation in 

carrying on the periodic walking motion, but on the other hand it is one of the major 

drawbacks in the prediction of the leg length and horizontal displacement of the CoM. 

 

6.4 Dynamic stability analysis of human walking motion 

In section 6.3, a periodic walking motion is identified when the absolute error of the 

state variables is smaller than the defined tolerance or               
 
           If 

              
 
          ,  one of the two fall modes namely a fall backwards and a trip 

will occurs in the further steps of walking simulation and the corresponding leg 
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properties of which will not be taken into account for the data analysis. In this section, 

the dynamic stability of the periodic walking motion is analysed. A periodic motion is 

stable, if it can return to original state at a given interval after a disturbance. In our 

study, the human walking motion is treated as a periodic motion in which the stability is 

investigated at the interval of vertical leg orientation (VLO). The Poincare map is 

created for the local stability analysis. The local stability is examined on different leg 

properties and then the change in the initial condition is introduced to evaluate the 

sensitivity of the dynamic stability to the initial condition. This sensitivity is used to 

quantify the global stability in term of robustness. 

 

6.4.1 The Poincare map and maximum Floquet multiplier 

From the periodic walking solutions at a particular interval of each walking step, the 

initial ( ) and the resulting state variables (    ) are captured to investigate the return 

tendency of the state variables. The collection of this capture throughout the 

consecutive walking steps is called Poincare map (see sub-section 2.4.1 in Chapter 2). 

This mapping of the state variables from one to the next walking step represents the 

tendency of the system’s state to return to the steady state. If         , it means that, at 

a specified interval of each walking step, the resulting state returns to initial state and 

will always return to this state in the further walking steps. This ideal state leading the 

system to the origin is so called a fixed point and the returning orbit of which is called 

the limit cycle. However, the system’s state starting close to the fixed point can also 

converge to steady state.  The convergence of the system’s state can be analytically 

examined by constructing the Jacobian matrix around the fixed point to evaluate the 

gradient of the Poincare map. With our simulation results, the Jacobian matrix can be 
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determined numerically as in the following scheme (Tedrake, 2004). First, on the 

periodic walking motion, the fixed point is estimated by the state variables at vertical 

leg orientation (VLO)that results in the smallest deviation between themselves and 

those at the consecutive step or                   
 
    when  = number of walking step 

and   = number of state variable. Then the gradient of the Poincare map around the 

fixed point or the Jacobian matrix can be created by exploiting the system’s state at the 

vertical leg orientation of all the walking steps (  = 100 steps). The matrix can be 

written by 

                                                                    (6.27) 

when 

   

       
           

 

   
       

           
 
                                          (6.28) 

         

       
         

 

   
       

         
 
                                                  (6.29) 

 

     is the     state variable at     step and   
  is the fixed point of     state variable. Then 

the eigenvalues of the Jacobian matrix are evaluated to calculate the rates at which the 

small perturbations introduced around the fixed point grow (divergence) or decay 

(convergence) across the consecutive walking steps. These eigenvalues so called 

Floquet multipliers suggest the stable periodic motion when the magnitude of the 

greatest value is smaller than one. In this stable periodic motion or stable gait pattern, 

the smaller the maximum Floquet multiplier is the faster convergence toward the fixed 
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point is. If the greatest magnitude of the Floquet multipliers is bigger than one while the 

magnitude of others are smaller than one, the initial condition ( ) of this periodic 

motion is called saddle point. This point can lead the system state back to the origin or 

away to infinity depending on the selected manifold. The stable manifold encircles all of 

the stable initial conditions of the dynamic system while the unstable manifold gathers 

with other unstable initial conditions out of the stable region. Thus, the saddle point can 

be used to draw the stable manifold, which establishes the boundary of the stable initial 

conditions (Steven, 1994). Apart from all, the unstable motion is identified when the 

Floquet multipliers cannot be classified by any of the above conditions. These Floquet 

multipliers indicate the divergence from the fixed point leading to one of the two fall 

modes mentioned earlier in this section. 

 

6.4.2 Basin of attraction 

As mentioned earlier in section 2.4.1 Chapter2, a basin of attraction is the set of initial 

conditions leading the system state to the fixed point. It quantifies the robustness or the 

sensitivity of the orbital stable system to the changes in the initial condition. In this 

chapter, the basin of attraction is a global stability quantification used to quantify the 

orbital stability of the periodic walking motions with different dynamic leg properties. 

For calculating the boundary of the basin of attraction two methods are applied. The 

first method requires a saddle point to draw the boundary of the stable initial 

conditions by iterating the stable manifold backwards in time (Shub, 1987; Steven, 

1994; Rummel et al., 2010). The second method is applied when the saddle point does 

not exist or the stable manifold cannot be calculated thoroughly, the fundamental 

method of steps-to-fall is applied to discretely identify the members in the basin of 
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attraction (Rummel et al., 2010). In this chapter, by steps-to-fall method, each member 

in the basin of attraction is selected by a raster scan through the grid of the initial 

conditions to examine the global stability. From the return map of the 100 walking 

steps, if the greatest Floquet multiplier of the state variables is less than one, it means 

the initial condition can lead the system state toward the fixed point and is contained in 

the basin of attraction. At the boundary of the basin the underlying grid is refined with a 

higher precision to establish a closed region of the stable initial condition. The area 

encircled by either method (see Figure 6.9) quantifies the global stability of the periodic 

walking motion in terms of robustness of the gait pattern provided by individual design 

of leg property. 

 

 

Figure 6.9 Examples of area (white) and region (red) of basin of attraction of human walking motion 
predicted by CAE model using the linear axial elastic leg properties and initial condition as shown in Table 
6.1. The leg properties are obtained from walking measurements of subject no.2 at self-selected low walking 
speed (dot). 
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The area of the basin of attraction is used to quantify the stability of the walking 

motions performed by the wide variety combinations of linear axial leg stiffness (    
 ) 

and touchdown contact angle (   
       ). The linear axial elastic property and 

touchdown contact angle (   
       ) extracted from the measurement data of a 

representative subject in Chapter 3 is fed into the compliant leg model with axial elastic 

property (CAE) to examine the global stability estimated by the area of basin of 

attraction. Only the moving contact condition is examined as the leg properties for fixed 

contact fails to reproduce periodic walking motion (see sub-section 6.3.4). To examine 

thoroughly the stable region of axial elastic leg property, the range of linear axial 

stiffness and touchdown contact angle is extended to the border in which the 

reproduction of ground reaction force and CoM motion of human walking minimally 

remain. That is; the RMSE of the vertical ground reaction forces and CoM displacements 

must be less than the given allowances, which are 130 N, 50 N, 0.6 m and 0.05 m, for the 

vertical and horizontal ground reaction forces and vertical and horizontal 

displacements respectively). For all combinations of axial stiffness (  ) and touchdown 

contact angle (   
       ), the rest length (  ) is fixed at 0.968 meter as  it is the nearest 

value to the extracted rest length, which can reproduce the periodic motion of human 

walking (see Table 6.1). The axial stiffness is normalised by the body weight and the 

rest length. 
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Figure 6.10 The contour plot of the area of basin of attraction of the stable walking motion corresponding to 
linear axial stiffness (    

 ) and touchdown contact angle (   
       ) is shown. The extracted linear axial 

stiffness (    
 ) and touchdown contact angle (   

       ) as shown in Table 6.1 is marked by green cross (+). The 
linear axial stiffness (    

 ) is normalised to body weight (BW) and rest length (  ). The touchdown contact 
angle (   

       ) is in degree (deg).  

 

Due to the walking speed limit of walking motion predicted by the compliant leg model 

with axial elastic property (CAE), the stable region of the linear axial leg properties 

shown in Figure 6.9 is limited at the maximum walking speed of 1.25 m/s. With the 

normalised axial stiffness being lower than 15, the area of basin of attraction is 

maximised at the touchdown contact angle of 67 degree. For the axial stiffness being 

higher than 15, the area of basin of attraction primarily increases with the bigger 

touchdown contact angle. The maximum area of basin of attraction is found with the 

combination of normalised stiffness of 16 and touchdown contact angle of 70 degree. 

With the nearby combinations, the area of basin of attraction decreases radically. It is 

interesting that the linear axial stiffness (    
 ) and touchdown contact angle (   

       ) in 
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Table 6.1 (normalised axial stiffness of 16.2 and touchdown contact angle of 70 degree) 

which is the nearest combination to the extracted values that can reproduce periodic 

motion exist within the region of maximum area of basin of attraction. 

 

6.4.4 Stable region predicted by nonlinear axial elastic property 

The similar schemes used in linear axial stiffness are applied to the nonlinear stiffness 

to examine for the global stability. For all combinations of the nonlinear axial stiffness 

and touchdown contact angle, the rest length is fixed at 1.0 meter to allow the 

estimation of basin of attraction based on both linear and nonlinear stiffness. At a 

particular touchdown contact angle, the basin of attraction of the linear and non-linear 

stiffness is compared based on the basic linear stiffness (      
 ) (see Equation 4.3, 

Chapter 4) and the stiffness ratio (  ).  The stiffness ratio (  ) is the ratio between the 

axial stiffness at the maximum and minimum axial force or     
 
         

  
 

 
       

  
  (see Figure 

6.10). This ratio (  ) greater and smaller than one indicate soft nonlinear and hard 

stiffness, respectively. The higher ratio for hard nonlinear stiffness and the lower ratio 

for soft nonlinear stiffness indicate the stronger nonlinearity. For the linear stiffness, 

the stiffness ratio (  ) is equal to one. 

Due to the intensive computation needed, the basin of attraction of the linear and non-

linear stiffness is estimated in the touchdown contact angle range of      to     with    

increment as this angle range is found to provide large areas of basin of attraction on 

the linear stiffness in section 6.4.3. The natural log scale is applied to the area of basin of 

attraction to show the radical change over the different leg stiffness. 
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Figure 6.11 The nonlinear axial stiffness in terms of basic linear stiffness (      
 ) and the stiffness at the 

maximum (            
 ) and minimum axial force (          

 ) is shown. 

 

 

 

 

Figure 6.12 The contour plot of the area of basin of attraction of the stable walking motion corresponding to 
nonlinear axial leg properties at touchdown contact angle (   

       ) of 67 degree is shown. The area of basin 
of attraction is shown on the contour line in the unit of            . The stiffness ratio (  ) indicates the 
nonlinearity of stiffness, the hard nonlinear stiffness is indicated by     ,  the soft nonlinear stiffness is 
indicated by      and linear stiffness is indicated by      . The basic linear axial stiffness (      

 ) is 

normalised to the body weight (BW) and rest length (  ).  
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Figure 6.13 The contour plot of the area of basin of attraction of the stable walking motion corresponding to 
nonlinear axial leg properties at touchdown contact angle (   

       ) of 68 degree is shown. The area of basin 

of attraction is shown on the contour line in the unit of            . The stiffness ratio (  ) indicates the 
nonlinearity of stiffness, the hard nonlinear stiffness is indicated by     ,  the soft nonlinear stiffness is 
indicated by      and linear stiffness is indicated by      . The basic linear axial stiffness (      

 ) is 

normalised to the body weight (BW) and unit leg length (  ).  
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Figure 6.14 The contour plot of the area of basin of attraction of the stable walking motion corresponding to 
non-linear axial leg properties at touchdown contact angle (   

       ) of 69 degree is shown. The area of basin 
of attraction is shown on the contour line in the unit of            . The stiffness ratio (  ) indicates the 
nonlinearity of stiffness, the hard nonlinear stiffness is indicated by     ,  the soft nonlinear stiffness is 
indicated by      and linear stiffness is indicated by      . The basic linear axial stiffness (      

 ) is 

normalised to the body weight (BW) and unit leg length (  ).  
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Figure 6.15 The contour plot of the area of basin of attraction of the stable walking motion corresponding to 
non-linear axial leg properties at touchdown contact angle (   

       ) of 70 degree is shown. The area of basin 
of attraction is shown on the contour line in the unit of            . The stiffness ratio (  ) indicates the 
nonlinearity of the stiffness, the hard nonlinear stiffness is indicated by     ,  the soft nonlinear stiffness is 
indicated by      and linear stiffness is indicated by      . The basic linear axial stiffness (      

 ) is 

normalised to the body weight (BW) and unit leg length (  ).  

 

In Figure 6.11-6.14, the global stability region represented by the existence of the 

contour of basin of attraction increases with the bigger touchdown contact angle. At 

touchdown contact angle (   
       ) of 67 degree, the maximum area of basin of 

attraction occurs at the normalised linear stiffness of 14 and at the soft nonlinear 

stiffness with        
  = 17.5 and    = 0.1. At touchdown contact angle (   

       ) of 68 

degree, the maximum area of basin of attraction occurs at the normalised linear 

stiffness of 15. At touchdown contact angle (   
       ) of 69 degree, the maximum area of 

basin of attraction occurs at the normalised linear stiffness of 15.5. Finally, at 

touchdown contact angle (   
       ) of 70 degree, the maximum area of basin of 

 

 

14 15 16 17 18 19 20 21 22
0.5

1

1.5

2

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

      
           

   
            

 
 
  

                                     
         



212 
 

attraction occurs at the normalised linear stiffness of 16.2 and at the soft nonlinear 

stiffness with      
  = 22 and    = 0.2.  

For all touchdown contact angles, the global stability region primarily spans over the 

hard nonlinear stiffness region in which the area of basin of attraction decrease rapidly 

toward the stiffness ratio (  ) of zero. The stability region of the soft nonlinear stiffness 

being smaller than that of the hard nonlinear stiffness indicates the higher sensitivity of 

the soft nonlinear stiffness to the global stability. However, the maximum area of basin 

of attraction is scattered in this region. 

 

6.4.5 Effects of stiffness change on walking stability 

The stable region of nonlinear stiffness in sub-section 6.4.3 showed that the change in 

the axial stiffness during the gait primarily destabilises the walking motion. These 

effects of stiffness change are in contrast to the findings in the stability analysis by using 

the spring leg running model. The soft nonlinear stiffness has been shown to stabilise 

the spring leg running after perturbation (Karssen and Wisse, 2011) while the hard 

nonlinear leg stiffness has been shown to stabilise running gait pattern on the 

occurrence of touchdown impact (Owaki et al., 2006). Since the effects of the nonlinear 

stiffness on running stability has not been summarised deliberately, we may 

hypothesise here that, in the stabilisations of compliant leg running  the leg stiffness 

may be considered as the rate of change of the leg force due to the leg compression. For 

the soft nonlinear stiffness, this rate of change decreases with the increased leg 

compression. On the introduction of disturbance such as the floor height variation, the 

motion is disturbed by the increasing of leg compression, but with the decreasing of the 
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leg force change around the maximum compression, the motion disturbance may be 

tolerated. For the hard nonlinear stiffness, the rate of change of leg force is minimal at 

the beginning of leg compression and increases with the higher leg compression. On the 

introduction of landing impact, the sudden change in the leg force is minimised at the 

beginning of the leg compression before the leg force increases rapidly around the 

maximum leg compression. This provides the energy balance during the running cycle 

and renders to stabilise the running gait pattern. 

 The change in leg stiffness during gait has been found to stabilise the compliant leg 

running model. However, such prediction may be more challenging when the stance 

phase contains both single and double-support as in walking. On the walking with the 

conservation of system energy, the closed-chain of the whole-body dynamic system 

during double-support phase constrains the dynamics of the two legs and requires 

precise energy exchanges to maintain gait cycle. This is underlined by the requirement 

of proper combination between the axial stiffness (  ), rest length (  ) and touchdown 

contact angle (   
       ) to stabilise the walking pattern predicted by the compliant leg 

model with linear axial stiffness as found in (Geyer et al., 2006; Rummel et al., 2010) 

and supported by our results in sub-section 6.4.3 . With the nonlinear axial stiffness, 

such proper combination is also required but the change in axial stiffness does not 

improve the global stability of the walking pattern. This may be affected by the change 

of strain energy transfer due to the change in axial stiffness, which changes the rate of 

energy transfers during the walking cycle and results in the improper energy exchanges. 

However, the global stability of the walking pattern with the external disturbance may 

be improved by such change in leg stiffness. The change in strain energy transfer in 

regulating the external disturbance as found in the compliant leg running model may 
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also benefit in the stabilisation of walking pattern with disturbance. This advantage of 

the nonlinear stiffness over the linear stiffness on human walking motion requires 

further investigation. 

 

 6.4.6 Stable region predicted by linear axial and tangential elastic leg property  

In sub-section 6.3.4, the CATE model operating with linear axial and tangential leg 

stiffness well predicts the walking speed and vertical ground reaction force but 

overestimates the vertical displacement of the CoM. This prediction of periodic walking 

motion is brought into the dynamic stability analysis (see sub-section 6.4.2) to 

investigate for the effect of rotational elasticity of the virtual leg on the dynamic stability 

during human walking. 

The leg properties for the linear axial and linear tangential elasticity in Table 6.1 are 

used in the dynamic stability analysis as they are the nearest values to the extracted leg 

properties, which can reproduce the periodic motion of human walking. The CAE model 

is used to examine the stability region of the walking motion performed by linear axial 

stiffness and the CATE model is used to examine the stability region of that affected by 

the incorporation of linear tangential stiffness. To compare between global stability 

predicted by these two compliant leg models. The initial velocity angle (  
 ) of axial-

tangential elastic model is fixed with the measured velocity angle (  
 ) of 7 degree (see 

Table 6.1). Thus, the Poincare map of the two walking systems can be considered from 

the VLO height (  ) and VLO horizontal velocity (   ) or   = [      ]. The global dynamic 

stability is quantified by the area of basin of attraction or the area of the total set of the 

initial state variables ( ) leading the resultant state variables to the fixed points. 
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In Figure 6.16, the area of basin of attraction is 62.5 (    )      for linear axial 

stiffness and 70.7 (    )      for the linear axial and tangential stiffness. The range of 

the VLO height for the stable periodic walking motion is 0.045 meter for linear axial 

stiffness and 0.056 meter with the incorporation of linear tangential stiffness. 

Interestingly, the range of VLO horizontal velocity for both leg properties are equivalent 

at 0.335 meter per second, but by incorporating the linear tangential stiffness this 

velocity range spans over the range of higher walking speed. By sharing the same linear 

axial elastic property with that used in the CAE model, the stable walking motion 

predicted by the CATE model with linear axial and tangential elastic leg property has a 

wider stable range of VLO height and higher stable range of VLO horizontal velocity. The 

vertical ground reaction force is underestimated during mid-stance. The stable walking 

motion predicted by CAE and CATE model shares a small region of basin of attraction of 

20.7 (    )      covering the VLO height (  ) from 0.92 to 0.946 meter and the VLO 

horizontal velocity (   ) from 0.935 to 1.16 meter per second. 
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Figure 6.16 The area of basin of attraction (white transparent) of human walking motion generated by the 
CAE model (red region) and CATE model (blue region) spanned in the state plane (VLO height    and 
horizontal velocity    ) is shown. The leg properties for the linear axial and linear tangential stiffness in Table 
6.1 are used. The        icons represent the vertical (  ) and horizontal   ) ground reaction force patterns 
during the gait predicted by CAE model (red icon) and CATE model (blue icon) using the initial condition 
nearby each icon. The measured initial condition (+) from Table 6.1 is shown. The leg properties are 
obtained from walking measurements of subject no.2 at self-selected low walking speed.  

 

6.4.7 Effects of linear tangential stiffness on the dynamic stability of human walking 

Quantified by the area of basin of attraction, the incorporation of linear tangential 

stiffness slightly is found to improve the global stability to the compliant leg model with 

linear axial elasticity. It enlarges the range of stable VLO height of the CoM and shifts the 

range of stable VLO horizontal velocity of the CoM closer to the measured velocity (see 

Table 6.1 and Appendix C). 

The enlarged range of stable VLO height and the shifted range of stable VLO horizontal 

velocity of the CoM may be affected by the incorporation of the angular motion due to 

the discrete changes in linear tangential stiffness. This angular motion affects on the 
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span of CoM velocity during the gait in which the horizontal and vertical velocity of the 

CoM is regulated by the tangential force especially after the mid-stance when the 

negative tangential force (see Figure6.8) resists the CoM motion and therefore, 

increases the velocity span of the gait cycle. This is supported by the prolonged stance 

duration and the decreased magnitude of horizontal ground reaction force compared to 

that predicted by the compliant leg model with linear axial elasticity alone (see Figure 

6.3). Such velocity regulation during the gait may allow proper coordination between 

CoM oscillation, double support termination and CoM progression to achieve walking 

step and consequently, allows the virtual leg operation for the wider range of CoM 

height and higher range of walking speed. 

 

Although, the stable walking motion predicted by the compliant leg model with linear 

axial and tangential elasticity underestimates the horizontal ground reaction force and 

vertical ground reaction force during mid-stance.  The predicted range of VLO forward 

velocity of the CoM and the walking speed is shifted closer to the measured values for 

the self-selected slow speed. This supports the potential use of the CATE model with 

fundamental leg properties to quantify the dynamic stability of human walking at self-

selected slow speed.  

 

6.5 Discussion 

Good quality predictions of human walking motion are provided by the proper 

combinations of the fundamental leg properties and the initial conditions of the CoM 

motion with reasonable deviations from the extracted leg properties and the measured 
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initial conditions. Different components of leg property are proficient in predicting 

different dynamics of walking motion. For example, the CAE model using linear axial 

elasticity is proficient in  predicting the vertical displacement of the CoM, the CAE model 

using soft nonlinear axial elasticity is proficient in predicting the horizontal ground 

reaction force and stance duration and the CATE model using linear axial-tangential 

stiffness is proficient in predicting the peak magnitude of vertical ground reaction force. 

However, none of the compliant leg models can effectively predict the total horizontal 

displacement, the nonlinear leg angle and the leg lengthening after the mid-stance of 

human walking. These limitations may be due to the axial force- leg length relationship 

of the elastic leg in which the change of leg force is always accompanied by the change 

in leg length. The leg shortening after the mid-stance is fundamental mechanics for the 

compliant leg operated in the conservation of system energy, which underestimates the 

human leg length during the second half of stance phase. Thus, for the realistic 

prediction of human walking, the change in elastic property after the mid-stance may be 

required such that the leg lengthening after mid-stance can be reproduced, and thus the 

CoM can progress further during late stance. 

The asymmetry of the walking motion is reproduced by incorporating the linear 

tangential stiffness with a trade-off of the underestimated horizontal ground reaction 

force and vertical ground reaction force during mid-stance. The nonlinear tangential 

force-leg angle relationship may be required such that the leg angle and thus, the 

vertical - horizontal force components can be better reproduced. In Chapter 4, a simple 

relationship between tangential force and leg angle was studied. However, based on the 

minimum RMSE fitting, the second order Fourier series was found to underestimate the 
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peak horizontal force. A more deliberate nonlinear relationship between tangential 

force and leg angle may be required. 

The quality of the human walking prediction using simple walking models is also 

influenced by the definitions of the leg property. The leg property has been found to 

vary with the definition of the leg force and displacement (Coleman et al., 2012). In 

Chapter 3, we already discussed the direction and decomposition of the total ground 

reaction force and suggested that, the axial stiffness may be overestimated by 

transferring the total ground reaction force to apply along the virtual leg. The human 

walking prediction using the CAE model based on such leg property definition (Lipferth 

et al., 2012) provided good quality prediction of the magnitude of vertical and 

horizontal ground reaction force and vertical displacement of the CoM. However, the 

stance duration was predicted at nearly half of the measured value and more 

importantly, the human walking prediction is limited to the walking speed of 1.04 m/s. 

This is in contrast to our predictions using the CAE and CATE model based on 

decomposed leg forces. The vertical ground reaction force is underestimated by the CAE 

model based on decomposed leg forces, but it is well predicted when the tangential 

elasticity is taken into account in the CATE model. By both compliant leg models 

operating with our leg property definitions, the stance duration is well predicted, and 

the walking speed is limited to 1.25 m/s. These controversies underline the influences 

of leg property definitions and the complexity of leg operation in human walking 

prediction.  

Based on the periodic motion predicted by the fundamental leg properties extracted 

from human walking measurement, the dynamic stability was quantified, and the effect 

of the different leg properties on the global dynamic stability were analysed. Although, 
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with the axial elastic properties alone (CAE model), the extracted leg properties cannot 

produce the periodic walking motion. The nearest neighbours of the extracted rest 

length (  ), axial stiffness (    
 ) and touchdown contact angle (   

       ) that can 

produce periodic motion are located in the region of maximum stable walking. This 

implies that, during walking, the mechanical property of the human leg may be adjusted 

for the maximal stability.  

The deterioration of global stability with the higher axial stiffness and smaller 

touchdown contact angle is found. This is in contrast to the finding by (Rummel et al., 

2010) in which bigger touchdown contact angle limits the stable initial conditions. Such 

relationship is valid only when the system energy of the walking motion is coupled with 

the leg stiffness. At particular leg stiffness, the system energy is fixed and thus, the 

initial height (  ) and initial velocity of the CoM (       ) are coupled based on the 

conserved system energy. In such motion system, the bigger touchdown contact angle 

(   
       ) increases the CoM height at touchdown (   ) and limits the range of initial 

height of the CoM (  ), the initial velocity of the CoM (       ) and thus the possibility of 

stable initial conditions.  

However, in the dynamic stability quantification of this chapter, the system energy is 

uncoupled from all leg properties and allowed to vary to reproduce periodic walking 

motion for each combination of dynamic leg properties. That is; all possibilities of the 

initial height (  ) and initial velocity of CoM (       ) were examined to quantify the 

dynamic stability performed by each combination of leg properties. In our walking 

motion system, the higher CoM height at touchdown (   ) may decrease the possibility 

of stable initial height (  ) but does not necessarily decrease the dynamic stability as 

the system energy is allowed to vary independently to reproduce periodic walking 
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motion. The deterioration of walking stability with the smaller touchdown contact angle 

and higher axial stiffness indicates that the late touchdown timing and the stiff leg may 

decrease stability of human walking.    

The change in axial stiffness primarily decreases the global stability compared to that 

performed by constant axial stiffness. Unlike the running motion with external 

disturbance predicted by complaint leg model with nonlinear leg stiffness, the walking 

motion on conserved system energy requires proper energy exchanges to maintain 

stable gait pattern (Geyer et al., 2006; Rummel et al., 2010). This requirement seems to 

be challenged by the change in axial stiffness in which the rate of change of strain 

energy regulated by the nonlinearity of leg stiffness limits the proper energy exchanges 

with other forms of mechanical energy. This is reflected by the lower number of initial 

conditions that can lead the proper gravitational and kinetic energy exchange toward 

the stable walking motion. However, the further investigation on the human walking 

with external perturbation may reveal benefits of the nonlinear stiffness in the gait 

pattern stabilisation. 

 With the higher complexity of leg properties, the incorporation of linear tangential 

elasticity improves the global stability of periodic walking motion. With a fixed velocity 

(  
 ), linear tangential stiffness enlarges the range of stable initial height of the CoM (  ), 

and shifts the range of stable initial horizontal velocity of the CoM (   ) close to the 

measured range of the human walking at self-selected low speed. The regulation of CoM 

velocity span provided by tangential elasticity plays a major role in shifting the effective 

range of walking prediction and stability quantification close to the measured range at 

self-selected slow speed of human walking. The underestimated horizontal ground 

reaction force and vertical ground reaction force during mid-stance performed by the 
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linear axial and tangential stiffness are one the major draw backs limiting the prediction 

of walking at higher speed. This may be improved by the coordination between axial 

and tangential stiffness. The change of the axial elasticity after the mid-stance 

incorporating with the nonlinearity of tangential elasticity is suggested for the more 

accurate and wider speed range of human walking prediction. Further investigation on 

the wider variety combination of axial and tangential leg properties may be required to 

provide the entire stable region in human walking range. The axial and tangential leg 

properties are crucial leg properties in the prediction and dynamic stability 

quantification of human walking. The linear elastic leg properties limit the prediction 

and dynamic stability quantification to the slow speed of human walking.  
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Chapter 7 Human Walking Prediction and Dynamic Stability Analysis 

based on the Posture - Dependent Leg Property 

 

7.1 Introduction 

 

In Chapter 6, the linear axial and tangential elasticity of the virtual leg operating on the 

conserved system energy were found to predict the human walking motion only at low 

speed. In addition, the fundamental leg shortening after the mid-stance described by the 

single valued force-length relationship of the linear and non-linear elasticity of the 

virtual leg was found to underestimate the CoM progression during the gait. The change 

of the axial elasticity after the mid-stance incorporating with the nonlinearity of 

tangential elasticity on the non-conservative energy of virtual leg operation was 

suggested to increase the range of human walking prediction and dynamic stability 

quantification. 

  

In this chapter, the posture-dependent leg property extracted from the human walking 

measurement as presented in Chapter 5 are used to allow the non-conservation of 

system energy during the gait cycle. Modified from the linear axial-tangential elastic leg 

model in Chapter 6, the posture-dependent elastic leg model is proposed to examine the 

validity region of the posture-dependent leg property in human walking prediction. The 

dynamic walking stability is quantified and the potential use of the modified axial-
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tangential elastic leg model as a walking template to quantify the dynamic stability of 

walking motion is investigated. 

 

7.2 Background 

The variation of system energy managed by a time-dependent leg property during the 

gait has been found to stabilise the biped machine walking after perturbations (Seipel 

and Holmes, 2007; Schmitt and Clark, 2009). This energy management during 

locomotion was adopted from the self-stabilisation dynamics performed by the 

embedded mechanism in insect running leg (Schmitt and Holmes, 2000a; Schmitt and 

Holmes, 2000b; Schmitt et al., 2002; Schmitt and Holmes, 2003). With the limitation of 

sensory feedback during the high speed running, the frequency-independent damping 

and the anticipated leg lengthening called the pre-flex have been revealed as two of the 

major designed mechanisms rendering in energy absorption and production to stabilise 

the insect running over rough terrain (Dudek and Full, 2006). The system energy 

management can be simply examined during insect and biped robot locomotion. A huge 

challenge in such examination during human locomotion is the measurement of strain 

energy. The measurement of force and displacement of the muscles and tendons in 

human leg would be required and the strained energy stored in and returned from soft 

tissue structures may be significant in some duration of the gait (Rose and Gamble, 

2006). Alternatively, this measurement may be conducted by considering the entire 

human leg as a spring in which the relationships between leg length, leg angle and 

resultant leg forces define the total strain energy of the walking system. By this way, the 

variation of the system energy can be examined and the effects on dynamic stability 

during human walking can be investigated. 
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In Chapter 5 and 6, in corresponding to the strain energy, we presented the force-

displacement relationships of the virtual leg operation based on the conservation of 

system energy during human walking motion. This fundamental elasticity renders in 

human walking prediction and dynamic stability quantification in terms of orbital 

stability. However, the changes in force –displacement relationships found during the 

second half of the measured gait drew our attention as it supports the previous studies 

of system energy variation contributing in dynamic stability of locomotion. Thus, in 

Chapter 5, we addressed the changes in force –displacement relationships by extracting 

the posture-dependent leg properties from the human walking measurement to capture 

the variation of leg property that allows energy variation. These posture-dependent leg 

properties require the examination of the validity region in human walking prediction 

such that the dynamic stability analysis can be performed on the human walking 

prediction. As a consequence, the effect of posture-dependent elastic leg property on the 

human walking motion and the dynamic stability can be investigated. The differences 

between the dynamic stability of conservative and non-conservative system can also be 

investigated. 

 

7.3 Human walking prediction based on posture-dependent leg properties 

In Chapter 5, the systematic changes of the posture-dependent leg properties with 

walking speed showed the potential use as a leg property template to represent human 

walking at different speed. However, based only on the minimum RMSE fitting, the 

combinations of these leg properties may not reproduce human walking motion. To 

provide the validity region of these leg parameters, the implementation in the human 

walking model is required. 
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7.3.1 A posture-dependent elastic leg model (PDE) 

In this chapter, a posture-dependent elastic leg model (PDE) is proposed. In this model, 

the axial and tangential properties of the virtual leg are regulated by walking posture 

index, which is defined by the leg angle of the ipsilateral leg, the leg which starts the 

considered gait cycle introduced in Chapter5. The posture-dependent leg properties 

comprising linear axial stiffness (      
 ), variable force-free leg length (    ), variable 

tangential stiffness (  
 ) and force-free leg angle (    ) extracted from human walking 

motion require axial-tangential elastic leg model which allows variability of force-

displacement relationships. In this section, the posture-dependent elastic leg model 

(PDE) is proposed to take account of the posture-dependent variation of leg properties. 

The equations of motion of the whole-body centre of mass are extended from those in 

the compliant leg model with axial and tangential elastic property (CATE) by 

introducing the leg property variations and the difference of leg length at the phase 

transitions. The equations of motion of the whole-body CoM motion during the walking 

motion expressed by the posture-dependent elastic leg model (PDE) can be written as 

                                                                               (7.1) 

                                                                          (7.2) 

for the initial single support phase,  

                                                                         (7.3) 

                                                                      (7.4) 

for the double support phase and  
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                                                                          (7.5) 

                                                                        (7.6) 

for the final single support phase. 

when  

         
        

      

      
                                                              (7.7) 

         
        

     

     
                                                              (7.8) 

     
        

      

         
                                                                  (7.9) 

     
        

     

        
                                                              (7.10) 

 

The linear axial (      
 ), posture-dependent tangential stiffness (  

 ), posture-dependent 

force-free leg length (    ) and the force-free leg angle (    ) as presented in Equation 

5.1 – 5.11, Chapter 5 are used in Equation 7.1-7.12. Similar to the compliant leg model 

with axial and tangential elastic property (CATE), the leg length ( ) and leg angle ( ) 

during the walking motion are expressed by 

                                                                             (7.11) 

                                                                        (7.12) 

            
 

 
                                                                (7.13) 

           
   

 
                                                               (7.14) 
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  is the horizontal distance between the CoM and the contact point. Here, the realistic 

criteria for the walking phase transitions are introduced. Due to the fact that the leg 

length at touchdown and take-off are not necessarily equivalent, the transition from 

single to double support is defined to occur when 

 

             
        .                                                           (7.15) 

and the transition from double to single support is identified when 

  
        .                                                                      (7.16) 

 

    is the leg length at touchdown   The touchdown contact angle (   
       ) is the angle 

between horizontal and the virtual leg at touchdown instant.   is the body mass,   is 

gravitational acceleration and   is the step length defined by the distance between the 

contact point of leading and trailing leg (see Figure 7.1). The force equations of this 

model can be found in Appendix B. 

This forward dynamic model begins with the initial condition defining either 

symmetrical or asymmetrical walking motion  

                         

                              
                                             (7.15) 
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when   is the step number. During human walking, the vertical leg orientation (VLO) can 

occur before, after or at the apex of the CoM motion in which       
   

   
    

  represents 

the direction of the total velocity of the CoM (see Figure 7.1). Hence the initial condition 

can be expressed only by the CoM height (  ) and the velocity angle (  
 ) in terms of 

    and     of for the asymmetric gait. Accordingly, the state variables ( ) can be 

expressed by   = [     
 ] and the periodic gait pattern is identified using a similar 

method as introduced in Chapter5.  

 

y

x

 

 

 

Figure 7.1 A posture-dependent elastic leg model (PDE) for human walking prediction. A walking step begins 
with the initial single support at vertical leg orientation (VLO) of the trailing leg, enters the double support 
phase at the touchdown instant (td) of the leading leg and finally, enters the final single support phase at the 
take-off instant (to) of the trailing leg before terminating the simulation walking step at the consecutive 
vertical leg orientation (VLO).  

 

7.3.2 Human walking simulation and mechanical energy calculation 

 The posture-dependent leg property and the initial condition of walking motion from 

each individual subject are fed into the posture-dependent elastic leg model. It was 

found that none of the combinations of the extracted leg properties and measured initial 
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conditions can generate a periodic walking motion. It is probably because the nonlinear 

relationships between the posture-dependent leg force and displacement requires 

accurate leg length and leg angle to create a proper fraction of axial and tangential 

forces (see Equation 5.1-5.11) and thus to achieve a walking cycle . To obtain the 

periodic walking motion, the initial condition comprising the height (  ), vertical and 

horizontal velocity (       ) of the CoM at vertical leg orientation is allowed to penetrate 

around 90-110 % of the measured values while the posture-dependent leg properties 

are maintained at the extracted values. In this way, the validity region of human walking 

prediction based on the extracted posture-dependent leg properties can be examined. 

The initial condition parameter search was conducted to find the nearest values to that 

of the measured initial condition, which can reproduce periodic walking motion. Each 

parameter is examined at 1% increment above and below the measured value, 

respectively. The search gives priority to the height (  ), the vertical and horizontal 

velocity (       ) of the CoM at vertical leg orientation, respectively. 

Another challenge of the human walking prediction is the variation of the system energy 

due to the non-conservative relationships of axial force-leg length and tangential force-

leg angle before and after the mid-stance. These realistic relationships may provide a 

better prediction of human walking by using a simple walking model but the variation 

of system energy may limit the repetition of walking motion. By using the posture-

dependent elastic leg model (PDE), the system energy of human walking is calculated as 

 

                                                                           (7.16) 

when 
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                                                                        (7.17) 

                                                                               (7.18)   

The elastic potential energy can be calculated by 

     
 

 
       

     
         

      
                                                 (7.19) 

during the single support phase, and by                      

    
 

 
       

      
               

         
 
   

               
       

              
                                     (7.20) 

during the double support phase.  

  ,   ,    and    are system, kinetic, gravitational potential and strain energy 

,respectively. In Chapter 5, the posture-dependent leg properties were introduced to 

represent the non-conservative force-displacement relationships and non-conserved 

elastic energy (Equation 7.19 and section 5.4 Chapter 5). This non-conserved elastic 

energy as a part of the energy exchanges during the walking gait may challenge the 

returning to original level of the system energy after a gait cycle (see Equation 7.16). 

Since the returning to steady state of state variables (       and    ) contained in 

Equation 7.17 and 7.18  defines the periodic motion. The returning to the original level 

of the corresponding kinetic (Equation 7.17) and gravitational potential energy 

(Equation 7.18) may be required. However, the mechanical energy exchanges regulated 

by the non-conservation of strain energy may limit the returning of those energies and, 

therefore, limit the generation of periodic walking motion. To gain insight into this 
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effect of posture-dependent leg properties on periodic walking motion, the energy 

management during the walking cycle needs to be investigated.  

 

7.3.3 Human walking prediction results and energy management during walking motion 

It was found that, with a given deviation from the extracted and measured value (see 

sub-section 7.3.2), none of the posture-dependent leg property and initial condition can 

generate the motion of hundred walking steps. The posture-dependent leg properties 

extracted in moving contact condition fail to generate even a single cycle of human 

walking motion. The simulations showed that the nonlinearity of leg angle during the 

early and late stance extracted from the measurement data in moving contact condition 

cannot be reproduced by the posture-dependent elastic leg model (PDE). In the 

nonlinear relationships between the forces and displacements of the virtual leg, the 

forces are highly sensitive to the change in leg angle (see Equation 5.1-5.11, Chapter 5). 

Therefore, the nonlinear leg angel may be required to achieve a periodic walking motion 

on moving contact. However, in fixed contact condition, a proper combination of initial 

condition and posture-dependent leg properties were found to be able to generate some 

walking cycles. At different walking speeds, the periodic walking motions maximally 

achieve 3-4 walking steps or 1-2 gait cycles. The corresponding leg properties and the 

initial condition with smallest deviations from measured values of a representative 

subject are listed in Table 7.1. 
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Table 7.1 The combinations of posture-dependent leg properties and the initial conditions that can generate 
periodic walking motion by using posture-dependent elastic leg model (PDE). The leg parameter set is 
predicted from the walking measurements of subject no.2 at each self-selected walking speed. 

 

    Slow (    = 1.2 m/s) Normal (    = 1.54 m/s) Fast (    = 1.78 m/s) 

    model measured model measured model measured 

Linear stiffness 
 (      

 ) (kN/m) 4.86 4.86 4.48 4.48 5.12 5.12 

Peak amplitude  
of force –free 

 leg length variation 
(  

 ) 

(m) 0.073 0.073 0.101 0.101 0.108 0.108 

Touchdown 
 leg length 

(   ) 
(m) 1.035 1.035 1.044 1.044 1.065 1.065 

Excursion length  
(       )  

or  
(  ) 

(m) 0.033 0.033 0.047 0.047 0.048 0.048 

Total dynamic 
stiffness  

on hardening  
elastic profile 

(       
       

) 

 k  m rad ) 0.29 0.29 0.26 0.26 0.23 0.23 

Total dynamic 
stiffness  

on softening  
elastic profile 

(       
       

) 

 k  m rad ) 0.14 0.14 0.15 0.15 0.17 0.17 

Force-free contact 
angle 

   - (  
 ) 

(deg) 82.4 82.4 82.4 82.4 82.1 82.1 

Touchdown 
 contact angle 
   - (   ) 

(deg) 61.3 61.3 60.3 60.3 58.1 58.1 

  (kg) 69 69 69 69 69 69 

    (m/s) 1.2 1.2 1.51 1.54 1.71 1.72 

   (m) 0.934 0.921 0.936 0.922 0.928 0.924 

  
  (deg) 6.9 6.9 5.7 5.7 5.6 5.6 

 

By maintaining all the posture-dependent leg properties, the initial conditions within 

2% deviation from the measured values were found to achieve at least three 

consecutive vertical leg orientations. The walking predictions can be achieved at low, 

normal and high speeds of human walking. The predicted CoM displacement, ground 

reaction force, leg length and leg angle are shown in Figure 7.2 – 7.5. 
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The horizontal and vertical ground reaction forces are well predicted for all walking 

speeds (RMSE are 15.6 -19.5 and 24.6-31.1 for horizontal and vertical ground reaction 

force, respectively. The horizontal displacement of the CoM is well predicted (RMSE = 

0.11-0.16) while the peak magnitude of the vertical displacement is generally 

overestimated (RMSE = 0.013-0.02). The leg length and leg lengthening after mid-stance 

is well predicted with an underestimated leg shortening during the early stance (RMSE, 

  = 0.061-0.073). For all walking speeds, the linear leg angle and stance duration are 

well predicted (RMSE,   = 0.06-0.09).  

 

 

 

 

Figure 7.2 The predicted vertical (a) and horizontal (b) ground reaction force by posture-dependent leg 
model (solid line) as shown in Table 7.1 compared to the measured ground reaction force at self-selected 
low, normal and high walking speeds (dot). The data set is obtained from three good trials of the walking 
measurements of subject no.2 at each self-selected walking speed. The root-mean square errors (RMSE) 

determined by the difference between the measured and predicted ground reaction forces (       ) are 
given for each walking speed. 
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RMSE,                 24.6                29.5                              31.1  

RMSE,                 17.4                15.9                                         19.5 
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Figure 7.3 The predicted CoM displacement (   ) between two consecutive touchdowns generated by the 
posture-dependent leg model (solid line) as shown in Table 7.1 compared to the measured CoM displacement 
(   ) at self-selected low, normal and high walking speeds (dot). The data set is obtained from three good 
trials of the walking measurements of subject no.2 at each self-selected walking speed. The root-mean square 
errors (RMSE) determined by the difference between the measured and predicted displacment of the CoM 

(    ) are given for each walking speed. 
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Figure 7.4 The predicted leg length ( ) during the contact ( ) by the dependent leg model (solid line) as shown 
in Table 7.1 compared to the measured leg length at self-selected low, normal and high walking speeds (dot). 
The data set is obtained from three good trials of the walking measurements of subject no.2 at each self-
selected walking speed. The root-mean square errors (RMSE) determined by the difference between the 

measured and predicted leg length (  ) are given for each walking speed. 
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Figure 7.5 The predicted leg angle ( )  during the contact ( ) by the posture-dependent leg model (solid line) 
as shown in Table 7.1 compared with the measured leg angle at self-selected low, normal and high walking 
speed (dot). The data set is obtained from three good trials of the walking measurements of subject no.2 at 
each self-selected walking speed. The root-mean square errors (RMSE) determined by the difference 
between the measured and predicted leg length ( ) are given for each walking speed. 

 

 

Although all the posture-dependent leg property parameters are maintained, the 

deviation of the initial condition from the measured values results in some deviations of 

the force-displacement relationships from the measurement (see Figure 7.6 and 7.7).  

The simulation results showed that at all walking speeds, the axial force- length 

relationship is reproduced with the underestimation of the leg length and axial force at 

the maximum leg shortening (RMSE = 28.4-32.5). However, the tangential force-leg 

angle relationship is well reproduced (RMSE = 22.4-24.1). 
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Figure 7.6 The reproduced axial force-leg length relationship by posture-dependent leg properties (solid 
line) as shown in Table 7.1 compared to the measured axial force-leg length relationship (dot) at self-
selected low, normal and high speed. The data set is obtained from three good trials of the walking 
measurements of subject no.2 at each self-selected walking speed. The root-mean square errors (RMSE) 
determined by the difference between the measured and predicted axial force (  ) are given for each 
walking speed. 

 

 

 

 

 

Figure 7.7 The reproduced tangential force-leg angle relationship by the posture dependent leg model(solid 
line) as shown in Table 7.1 compared to the measured tangential force-leg angle relationship (dot) at self-
selected low, normal and high speed. The data set is obtained from three good trials of the walking 
measurements of subject no.2 at each self-selected walking speed.  The root-mean square errors (RMSE) 
determined by the difference between the measured and predicted tangential force (  ) are given for each 
walking speed. 
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Figure 7.8 The mechanical energies including gravitational potential (b), kinetic (c) and strain energy (d) and 
the total energy (a) from touchdown to toe-off of the gait cycle at self-selected low (blue), normal (red) and 
high speed (black) predicted by PDE model as shown in Table 7.1 compared to the measured gravitational 
potential and strain energy at each walking speed (dot). The data set is obtained from three good trials of the 
walking measurements of subject no.2 at self-selected low walking speed. The root-mean square errors 
(RMSE) determined by the difference between the measured and predicted mechanical energies (  ,   ) are 
given for each walking speed. 

 

 

In Figure 7.8, the energy variation is predicted throughout the stance phase. Beginning 

with the double-support phase at touchdown of the leading leg, the system energy 

fluctuates before reducing to the minimum at the mid-stance. The kinematic and elastic 

energies are also minimised while the gravitational potential energy is maximised at the 
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changing to double-support phase with fluctuating energy. At take-off, the system 

energy for all walking speeds tends to return to the same level as that at the touchdown. 
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The kinematic energy changes progressively while the gravitational potential and strain 

energy change very slightly with the change of walking speed.  

 

7.3.4 Effects of non-conserved system energy on human walking prediction.  

In Chapter 5, the conserved strain energy of the virtual leg operation limited the human 

walking prediction to the low walking speed and thus, the non-conserved strain energy 

of the virtual leg operation was suggested for the wider prediction range of human 

walking motion. This was supported by the walking prediction results in sub-section 

7.3.3. The non-conserved strain energy predicted by the posture-dependent elastic leg 

model (PDE) extends the effective range of human walking motion to the normal and 

high walk speed (see Figure 7.2-7.7), compared to that predicted by CAE and CATE 

model. Better predictions of ground reaction forces, CoM elevation and progression are 

also achieved (see Figure 7.9 and 7.10). In terms of periodic motion, none of the 

combination of the initial condition and the posture-dependent leg property extracted 

from the measurement data based on the non-conservation of system energy can 

generate a hundred step of human walking. On contrary, the proper combinations of 

initial condition and linear axial and tangential elastic leg properties extracted from 

conserved system energy basis were found to be able to generate such periodic motion 

(see sub-section 6.3.4 and 6.4.5 in Chapter 6 ). To gain insight into the effect of system 

energy on the periodicity of the human walking, the mechanical energy in the stance 

phase of the virtual leg operation on conserved and non-conserved system energy is 

investigated. The comparison is shown in Figure 7.11. For the virtual leg operation on 

conserved system energy, none of the mechanical energies is in phase with other forms 

of the mechanical energy. However, for the virtual leg operation on non-conserved 
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system energy, the elastic and kinetic are quite in phase while the gravitational 

potential energy is quite out of phase with other forms of mechanical energy. Such 

energy exchanges may require precise combination of leg properties and initial 

condition for the proper coordination of elastic, gravitational and kinetic energy to 

achieve a gait cycle.  

 

 

               

 

 

Figure 7.9 The vertical (a) and horizontal (b) ground reaction forces predicted by the linear axial and 
tangential elastic leg model (red) as shown in Table 6.1 in Chapter 6 and the posture-dependent leg model 
(blue) as shown in Table 7.1 compared to the measured ground reaction forces at self-selected low speed 
(dot). The data set is obtained from three good trials of the walking measurements of subject no.2 at self-
selected low walking speed. The root-mean square errors (RMSE) determined by the difference between the 

measured and predicted ground reaction forces (      ) are given for the walking at self-selected slow 
speed. 
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Figure 7.10 The predicted CoM displacement (   ) between two consecutive touchdowns by the linear axial-
tangential elastic leg model (red) in Table 6.1 of Chapter 6 and by the posture-dependent leg model (blue) as 
shown in Table 7.1 compared to the measured CoM displacement (   ) at self-selected low speed (dot). The 
data set is obtained from three good trials of the walking measurements of subject no.2 at self-selected low 
speed. The root-mean square errors (RMSE) determined by the difference between the measured and 

predicted displacements of the CoM (   ) are given for the walking at self-selected slow speed. 
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Figure 7.11 The predicted mechanical energies including gravitational potential (b), kinetic (c) and strain 
energy (d) and the system energy (a) during the stance phase of human walking at low speed by CATE model 
operating with constant system energy (magenta) and PDE model operating with variable system energy 
(green) compared to the mean of the measured mechanical energies (     ) at self-selected low speed (dot). 
The data set is obtained from three good trials of the walking measurements of subject no.2 at self-selected 
low speed. The root-mean square errors (RMSE) determined by the difference between the measured and 

predicted mechanical energies (     ) are given. 
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is treated as periodic motion. The last two orbits before fall mode of the simulated gait 

cycles at each walking speed are shown in Figure 7.12 

 

 

Figure 7.12 The orbits of state variables (     
 ) of the last three vertical leg orientations (VLO) of the 

periodic walking motion at low, normal and high speed generated by PDE model with leg property in Table 
7.1. The initial VLO is represented by (     ) and the last VLO is represented by (      ).  

 

7.5 Discussion 

The validity region of posture-dependent leg property for human walking prediction 

was examined by using the posture-dependent elastic leg model (PDE) operating on 

non-conserved system energy. The variation of system energy during the gait was 

represented by the posture-dependent variation of the force-free leg length (    ) and 

the tangential leg stiffness (  
 ) extracted from the measurement data. With the 

variations of these leg properties, the explicit resources of energy absorption and 

production are not required, and the simplicity of the walking model can be maintained. 
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Compared to CATE model using linear elastic leg properties, the posture-dependent 

elastic leg model with posture-dependent elastic leg properties (PDE) has larger validity 

region of human walking prediction, which ranges from low to high speed of human 

walking motion. This may be a benefit of the changes in force-length relationship after 

the mid-stance due to the variation of system energy. Based on the posture-dependent 

variation of force-free leg length, the leg lengthening along with the increase of axial 

force was predicted after mid-stance. This improves the prediction accuracy of the 

ground reaction forces, CoM displacement and leg length and leg angle to the CATE 

model operating on conserved system energy. A better reproduction of the tangential 

force-leg angle relationship was also found. This supports the posture-dependent 

variation of the tangential stiffness in representing the nonlinear changes of the 

tangential stiffness from touchdown to toe-off. Only the axial force and leg shortening at 

the maximum leg shortening is underestimated. This may be due to the adjusted initial 

condition to achieve walking cycles. 

The energy variation challenges the reproduction of periodic walking motion by using 

the posture-dependent elastic leg model (PDE). The coordination of mechanical energy 

exchanges found in the energy management during the stance phase may require a 

proper combination of the initial condition and the posture-dependent leg properties to 

generate the periodic walking motion and make the stable walking motion. Only a 

couple of gait cycles were predicted before the fall mode occurs in the further steps. 

This is consistent with the findings in the bipedal robot with actuated force-free leg 

length (Schmitt and Clark, 2009). A fine tuning of the change in force-free leg length 

throughout the stance is required to produce partial asymptotical stable gaits or the gait 

at the edge of orbital stability. The variation of system energy in this bipedal robot was 
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designed for the stabilisation of biped running over rough terrain in which the variation 

of CoM velocity at the Poincare section was required to get over the energetic 

perturbation. For the stability of gait pattern, the use of touchdown angle variation was 

suggested (Schmitt and Clark, 2009) to adjust the CoM velocity at the Poincare section. 

However, as mentioned earlier in Chapter 5, our measurement on the change of 

touchdown angle is limited to only two consecutive touchdowns. This is insufficient to 

investigate the significant changes of touchdown angle between consecutive steps. 

Further development on dynamic stability quantification may need to introduce the 

energetic perturbation to the walking simulation to investigate for the rate of recovery 

by using the gait sensitivity norm (Hobbelen and Wisse, 2007)(see sub-section 2.4.1 

Chapter 2). 

  

The posture-dependent leg properties improves the validity region and quality of 

human walking prediction while introduces aperiodic walking motion as a consequence 

of the variation of state variable at the end of walking steps. This aperiodic motion may 

represent a daily-life walking in which the stochastic variation of system energy is 

anticipated to overcome the uneven walking surface, touchdown impact and take-off 

impact (Byl and Tedrake, 2009). Such walking system may require further study to 

analyse the stochastic stability or metastability in which the dynamic stability is 

quantified on the transient dynamic system (Talkner et al., 1987; Bovier, 2004; Bovier, 

2000; Weber, 2006). 
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Chapter 8 Conclusions and Future work 

 

 

8.1 Conclusions 

 

The objective of this thesis is to develop and validate computational framework based 

on mathematical models for the prediction and dynamic stability quantification of 

human walking motion, and to use this computational framework to analyse the effect 

of mechanical property of the human leg on dynamic stability of the walking motion. 

From the walking measurements, the extracted mechanical property of the human leg 

was used to predict the walking motion, which was then be used in dynamic stability 

analysis. The aim of the research work of this thesis is to provide a computational 

framework for dynamic stability analysis of human walking that is practical for clinical 

uses and can differentiate the dynamic stability of individuals. The research work 

described in this thesis includes three major parts, extraction of mechanical leg 

properties from gait measurements, development of simple models for human walking 

prediction and experimental validation, and dynamic stability quantification of human 

walking using the models. 

 

In Chapter4, fundamental leg properties were extracted by fitting single valued 

functions of the axial force- leg length and tangential force-leg angle onto the 

measurement data, which both of linear and nonlinear elastic property are considered. 

Using a minimum root-mean-square fitting, the fundamental leg properties comprising 
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axial stiffness, rest leg length, tangential stiffness and force-free leg angles for the 

walking at different speeds and on different contact conditions were presented. 

 It was found that the axial and tangential stiffness obtained in the moving contact 

condition are higher than that obtained in the fixed contact condition, which is 

consistent with the previous research (Bullimore and Burn, 2006; Whittington and 

Thelen, 2009). For the linear elastic property, the axial and tangential leg properties 

obtained are independent of walking speed change for both contact conditions. For the 

non-linear elastic property, only hard nonlinear elasticity can fit the axial force-leg 

length relationship but with an overestimation of maximum axial force. The tangential 

force during early and late stance was underestimated by the Fourier series 

representation of the tangential force-leg angle relationship. A lower linear axial 

stiffness and a longer rest length were found, compared to a previous study on treadmill 

walking with an assumption that the total ground reaction force applies along the leg 

(Lipfert et al., 2012). The tangential force-leg angle relationship generated by the 

tangential leg property agrees well with a hip torque profile that stabilises the human 

walking motion represented by spring-mass model with hip joint and torso (Maus et al., 

2010).  

 

In Chapter 5, the posture-dependent variation of leg properties allows for the fitting of 

non-conservative force-displacement relationships onto the gait measurement data. 

Under both contact conditions, the axial property parameters comprising the linear 

axial stiffness and posture-dependent force-free leg length were extracted from axial 

force-leg length relationship. The tangential property parameters comprising the force-

free leg angle and posture-dependent tangential stiffness were extracted from 
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tangential force-leg angle relationship. The results showed that the linear axial stiffness 

is independent of walking speed for both contact conditions. However, the other 

posture-dependent leg property parameters are dependent on walking speed but with 

different tendencies. 

 

In Chapter 6, the fundamental leg properties were implemented into simple walking 

models operated with constant system energy in Chapter 5.  In this thesis, the compliant 

leg model with axial elastic leg property (CAE) was used to examine the effect of both 

linear and nonlinear axial elastic properties on symmetrical walking motion. The 

complaint leg model with axial-tangential elastic leg property (CATE) was used to 

examine the effect of linear axial and tangential elastic leg properties on asymmetrical 

walking motion in which the velocity angle was introduced to represent the vertical leg 

orientation before or after the apex of the CoM position. 

It was found that, for both models, the leg length at touchdown and take-off are 

equivalent. Using the reasonably adjusted leg property parameters based on 

measurement data and initial conditions, the model based on fundamental leg 

properties in moving contact condition generated periodic motion of human walking 

only in the low speed range of 1.01 – 1.25 m/s. However, the model based on 

fundamental leg properties in fixed contact condition underestimated the maximum 

axial force, which results in a failure of gait cycle. The hard spring stiffness that 

reproduces periodic walking motion is lower than that extracted from the 

measurement. Interestingly, the soft spring stiffness, which cannot be extracted by the 

minimum RMSE fitting, can generate periodic walking motions.  
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Using the compliant leg model with axial elastic property alone (CAE), the vertical- 

horizontal ground reaction force and the stance duration was better predicted by the 

non-linear elasticity than by the linear elasticity. The CoM horizontal displacement and 

the leg length after the mid-stance were underestimated by both linear and non-linear 

axial elasticity. By using the compliant leg model with axial and tangential elasticity 

(CATE), the asymmetry of walking motion was represented. The peak magnitude of 

vertical ground reaction force and the stance duration were better predicted by the 

CATE model than by the CAE model while the underestimation of horizontal ground 

reaction force, horizontal displacement of the CoM and the leg length after mid-stance 

still persisted.  

Also in Chapter 6, the dynamic stability of the periodic walking motions was quantified 

in terms of orbital stability. The greatest Floquet multiplier of walking motions on 

different leg properties was calculated to identify the initial condition leading the 

walking motion to steady state. The global stability in terms of robustness was 

quantified by the area of basin of attraction containing all of those initial conditions. It 

was found that, using the CAE model with linear elasticity, the global stability improves 

with a bigger touchdown contact angle. Interestingly, the maximum region of global 

stability was close to the linear axial stiffness and touchdown contact angle value 

extracted from the measurement data of walking at self-selected low speed. On the 

effect of nonlinearity of leg stiffness, the global stability of periodic walking motion 

decreases rapidly with the stronger nonlinearity of leg stiffness. It is in contrast to the 

findings in running robots with perturbation where the hard spring absorbs the 

touchdown impact and the soft spring resists the energy disturbance due to the change 

in floor height. This suggests the different contributions that the leg properties have on 
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different type of stability. A proper combination of linear elastic leg property may be 

required to stabilise gait pattern while the nonlinearity of leg stiffness may be required 

to stabilise gait cycle after perturbation.  

With the incorporation of the tangential elasticity, the global stability improves slightly 

with a wider range of stable initial CoM height and the shifting of the stable initial 

horizontal velocity closer to the measured horizontal velocity. The stable region of the 

walking motion predicted by CATE model is also limited by the underestimation of 

vertical ground reaction force at mid-stance. To improve the prediction of vertical 

ground reaction force, the change of leg property from linear to nonlinear property after 

mid-stance was suggested to decrease the leg shortening and thus increase the CoM 

progression while reproducing the second peak of vertical and horizontal ground 

reaction force. The incorporation of the proper nonlinear tangential elasticity was also 

suggested to improve the reproduction of vertical and horizontal ground reaction force 

especially during mid-stance. 

 

In Chapter 7, the posture-dependent leg properties were implemented into a simple 

walking model operated with non-constant system energy. The posture-dependent 

elastic leg model (PDE) was used to examine the stable region of human walking 

prediction based on posture-dependent leg properties. The human walking motions 

were predicted from low to high speed (1.12 – 1.8 m/s) by the PDE model with posture-

dependent leg properties extracted from the fixed contact condition. The force-

displacement relationship represented by this model showed that a change in leg length 

and leg angle is not necessarily accompanied by a change in leg force and vice versa. The 

leg lengthening after mid-stance, the CoM progression, the stance duration and the 
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magnitude of the vertical and horizontal ground reactions were better predicted 

compared to the results of the linear axial-tangential elastic leg model.  

Also in Chapter 7, the mechanical energies in terms of strain, gravitational potential, 

kinetic and total energy were calculated to investigate the effect of energy management 

provided by posture-dependent leg properties on dynamic stability of human walking. 

The variation of state variables (          ) at the end of walking steps was found. It was 

also found that the mechanical energy profiles of this non-conservative system are quite 

different from those of conservative system that is orbital stable. These differences may 

affect on the orbital stability of the non-conservative system as the state variables 

(          ), which is used to consider the periodic motion, are parts of the variables in 

the mechanical energies. Thus, the return of mechanical energy after a walking step as 

found in the conservative system is required to generate the periodic motion. The 

model based on extracted posture-dependent leg properties reproduced only 1-2 gait 

cycles before falling over. This makes the identification of orbital stability impossible 

where a large number of repetitive walking motion is required. A similar phenomenon 

was also observed in biped running machine with a posture-dependent force-free leg 

length when a sharp tuning of leg properties were required to maintain the walking 

motion at the edge of orbital stability (Schmitt and Clark, 2009). The incorporation of 

the change in leg touchdown angle from one to the next step was suggested for the 

orbital stability quantification. However, the fluctuation of system energy was found to 

stabilise the biped machine with posture-dependent force-free leg length when running 

over rough terrain. This effect of system energy fluctuation on dynamic stability 

requires further investigation. 
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In summary, the proposed simple walking models showed potentials in human walking 

prediction as required in the reproduction of periodic walking motion for the 

quantification of orbital stability. The dynamic stability analysis using different leg 

properties provides guidance about the fundamental leg properties required for stable 

walking motion and the effects of leg property variation on the dynamic stability of 

human walking. A proper leg definition allows more realistic leg properties to be 

extracted from the measurement data and a more accurate prediction of the human 

walking motion. The dynamic stability analysis is more reliable when the dynamic 

stability is quantified on the accurate prediction of human walking and the wide variety 

of human leg properties. 

 

8.2 A computational framework for the motion prediction and dynamic stability 

analysis of human walking 

Based on the work in this thesis, a computational framework for the motion prediction 

and dynamic stability analysis of human walking motion is proposed. The framework 

involves the combined use of human gait measurements in leg properties extraction and 

the simple computational models to generate the periodic walking motion to allow the 

dynamic stability quantification of the gait pattern. The aim of the computational 

framework is to provide a predictive simulation template for use in the studies of 

dynamic stability on the subject-specific measurement base. 

A schematic diagram of the computational framework is illustrated in Figure 8.1. The 

initial conditions (          ) and mechanical leg properties (            
    ) extracted 

from force-displacement (         ) relationships of human walking 



254 
 

measurements are the inputs for the simple computational models to predict human 

walking motion (              ). In the parameter region that predicts human walking 

motion, the reproduction of periodic walking motion was examined. If no solution exists 

in the region of extracted leg properties and measured initial conditions, some 

refinement is allowed within a small range away from the measured values.  In this way, 

the periodic walking motion can be recreated by using the simple walking models 

operating in the established parameter region. Then, dynamic stability of the periodic 

walking motion is quantified by using a method for global stability analysis in terms of 

robustness. Finally, the dynamic stability of human walking motion with a wide variety 

of mechanical leg properties is obtained to better understand the leg property 

requirement to maintain walking stability. 

 

The core of this computational framework is the simple walking models which allow for 

a wide variety of mechanical leg properties and virtual leg operations to be examined 

for human walking prediction. This flexible platform for human walking prediction 

could gain the insight into the effect of the mechanical property of human leg on the 

dynamic stability during walking. 
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Figure 8.1 Schematic diagram of the computational framework for the motion prediction and dynamic 
stability analysis of human walking 
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8.3 Original contributions arising from this work 

In this thesis, many original works have been conducted to provide insight into the 

effects of leg properties on the stability of human walking. First of all, a large 

measurement database of human walking motion was created. It contains walking 

measurement data of 8 subjects on 3 self-selected walking speeds, which 10 trials were 

recorded at each walking speed. The whole-body centre of mass motion and the leg 

dynamics were calculated from the kinetic and kinematic measurement data. These 

calculations require only the kinetic-kinematic measurement data at the beginning of 

the walking step and kinetic data from the force plates during the walking step.  

And then, the mechanical property of the human leg was extracted from the 

measurement database. A leg property definition was adopted from a previous study 

(Lipfert et. al, 2012), and three different leg property definitions were proposed to 

extract mechanical property from different mechanical functions that human leg may 

perform during walking. These leg property definitions comprise linear axial elastic leg 

property, nonlinear axial elastic leg property, linear axial-tangential elastic leg property 

and posture-dependent elastic leg property. The effects of walking speed and foot-

ground contact condition comprising fixed and moving contact conditions on the leg 

property were investigated in each extraction. These leg property definitions and 

investigations are different from a previous study in which only the linear axial elastic 

property was extracted, and the moving location of foot-ground contact was only 

investigated. 

And then, the linear axial elastic leg property that allows for maximum global stability of 

the walking motion was predicted by using a compliant leg model with axial elastic 

property (CAE). The decrease of global stability with the stronger nonlinear leg stiffness 
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was also predicted by the same model. A compliant leg model with axial and tangential 

elastic property (CATE) was developed to examine the dynamic stability of human 

walking with axial and tangential elastic leg property. The CATE model predicts that the 

maximum speed for stable walking motion is increased by the incorporation of linear 

tangential elasticity. However, the dynamic stability quantification using CAE and CATE 

model is limited to the low speed walking (1.01 – 1.25 m/s) only. 

Posture-dependent elastic leg model (PDE) was developed to examine the dynamic 

stability of human walking with posture-dependent elastic leg property. By this model 

operating with variable system energy, the motions of the leg and the centre of mass 

were better predicted than by axial-tangential elastic leg model operating with constant 

system energy. By using PDE model, the effective range of human walking prediction is 

enlarged to 1.12 -1.8 m/s. This PDE model represents the variation of the CoM velocity 

at the end of walking steps, which restricts the orbital stability of walking motion.   

Finally, by using this flexible computational framework for the dynamic stability 

analysis, the effect of mechanical property of the leg on the dynamic stability of human 

walking was presented. In this computational framework, the deliberate leg property 

definitions can provide insight into the wide variety of the human leg property. To 

obtain the mechanical property of the human leg, only the measurement data of the 

ground reaction force during the walking motion and that of the centre of mass motion 

at the beginning of step is required. The simple models of human walking are flexible to 

the input parameters extracted from different conditions of human walking, and can 

predict the accurate motion of the centre of mass (CoM), which are the only motion 

required for dynamic stability quantification.  
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In summary, only the motion data of the CoM and the leg is required in this 

computational framework for the dynamic stability analysis of human walking. The 

minimal requirements from the human walking measurement to the dynamic stability 

quantification make this computational framework be flexible and practical for the 

clinical applications including the dynamic stability diagnostic in pathologic walking 

conditions. The further improvement in the leg property definition and the simple 

model will help to provide insight into the subject-specific leg property, which can then 

allow the differentiation between the dynamic stability of walking motion of individuals.  

 

8.4 Future work 

The accuracy of human walking measurement data affects directly on the extracted leg 

properties. For example, the data of the whole-body centre of mass motion during over 

ground and treadmill walking provide different range of leg properties. The whole-body 

centre of mass motion calculated by ground reaction force integration requires a good 

initial condition from the kinetic and kinematic measurements. Starting the ground 

reaction force records from standing still may assure low signal drift, but this may not 

be applicable for the measurement of over ground walking with subject-selected speeds 

as a very long walking track, a large number of force plates and a large volume of 

measurement will be required. Also, this may not be replaceable by the measurement 

on treadmill walking as these two types of measurement generally provide different 

ground reaction force profiles (AlGheshyan, 2012, Dierick et al., 2004; Schablowski and 

Gerner, 2006; White et al., 1998). An alternative calculation may be adopted from (Maus 

et al., 2011) where kinetic and kinematic records on standing still beginning are not 

required. By this way, although the calculation of centre of mass motion is more 
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complicated than the convention (Cavagna et al., 1983), the accurate whole-body CoM 

motion prediction can be provided. 

 

The definition of the mechanical property 

The definition of the mechanical property of the human leg may be improved to 

represent the explicit energy fluctuation, for example, the energy absorption and 

injection provided by the variation of leg properties. However, it has been found that 

the relationship between axial force, leg length and leg length change during the gait 

cycle is singular. In other word, the same combination between leg length and leg length 

change is responsible to more than one value of axial force. (Boonpratatong and Ren, 

2011a; Boonpratatong and Ren, 2011b). This phenomenon occurring during the mid 

stance may be a consequence of the multi-configurable ankle joint (Boonpratatong and 

Ren, 2010). This indicates that a constant stiffness incorporating with a constant 

viscous damping coefficient cannot be used to represent such singular function of leg 

force, leg length and leg length change. Further investigation on alternative terms to 

represent the energy fluctuation may be required. 

 

The effect of foot-ground contact on walking stability 

The effect of foot-ground contact on walking stability may need further investigation. 

The human walking model with foot segment may be required. A walking model with 

roller feet has been used to predict the centre of pressure during human walking motion 

(Whittington and Thelen, 2009). However, the rolling of whole-body centre of mass on 

such moving contact is still quite different from that on foot-ground contact during 
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human walking motion. Since the ankle joint has been found to perform different 

functions during the first and the second half of stance  (Boonpratatong and Ren, 2010). 

The multi-configuration of the ankle joint may be required to illustrate whole-body 

centre of mass motion on the moving foot-ground contact during human walking 

motion. Therefore, for the foot segment, the phase dependent rollover model of the foot 

(Ren et al., 2008; Ren et al., 2010) may be needed. The investigation into these effects 

may reveal the explicit dynamics of force-free leg length during human walking motion. 

 

The incorporation of variable leg touchdown 

To improve the orbital stability quantification of human walking motion using posture-

dependent leg property model, the incorporation of variable leg touchdown angle 

between walking steps may be required. The measurement set-up, leg property 

definition and human walking modelling need to be improved, accordingly. In human 

walking measurement, a longer walking track with more surface mounted force plates 

is required to capture the variation of leg touchdown angle between walking steps. The 

mechanical leg property definition needs to be modified accordingly to include the 

relationship between variable leg touchdown angle and other leg properties. The 

human walking model needs to be accordingly modified to accommodate this 

relationship over walking steps. The variation of the other leg properties between 

walking steps may also be captured by this improvement, which would provide the 

better prediction of human walking motion and, therefore, more realistic dynamic 

stability prediction.  
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The variable system energy as the anticipation of disturbance 

To gain better insight into the orbital stability of human walking motion by using 

posture-depending leg properties, the variable system energy as the anticipation of 

disturbance may be investigated. To achieve that, some perturbations need to be 

introduced to the walking simulations, which a proper method for orbital stability 

quantification on the perturbed walking motion i.e. gait sensitivity norm may be 

required (Hobbelen and Wisse, 2007). 

 

Generalisation of the mechanical property 

Lastly, more experimental studies are needed to generalise the mechanical property of 

human leg and improve the validations of human walking prediction. These two factors 

are very crucial to the reliability of the dynamic stability analysis of human walking on 

the effect of mechanical leg properties.  How stable is the walking of an individual 

human? This question needs further experimental investigations and computational 

studies. The high complexity of human walking model may not be the solution for a 

better prediction of human walking. The extraction of the crucial leg properties based 

on the available human walking measurements and the flexibility of model parameters 

may be a major key to differentiate the walking motion of one from the other, which can 

be further used to differentiate the dynamic stability of individuals. 
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Appendix A – Anatomical landmarks used in 3D gait measurement 
(Ren et al., 2005) 

 

Anatomical landmark Description Property 

Head     

VERT Vertex, the most cranial point of the head bony 

RTMJ Right temporomandibular joint bony 

LTMJ Left temporomandibular joint bony 

Trunk     

PXIP Xiphoid process bony 

IJUG Jugular notch bony 

C7SP Spinous process C7 bony 

T8SP Spinous process T8 bony 

Pelvis     

RASIS Right anterior superior spine bony 

LASIS Left anterior superior spine bony 

RPSIS Right posterior superior spine bony 

LPSIS Left posterior superior spine bony 

Right humerus     

RMHU Right medial humeral epicondyle bony 

RLHU Right lateral humeral epicondyle bony 

GJCR Right glenohumeral joint centre virtual 

Right forearm     

RRSY Right radial styloid bony 

RUSY Right ulnar styloid bony 

EJCR Right elbow joint centre virtual 

Left humerus     

LMHU Left medial humeral epicondyle bony 
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LLHU Left lateral humeral epicondyle bony 

GJCL Left glenohumeral joint centre virtual 

Left forearm     

LRSY Left radial styloid Bony 

LUSY Left ulnar styloid Bony 

EJCL Left elbow joint centre Virtual 

Right femur     

RLEP Right lateral epicondyle Bony 

RMEP Right medial epicondyle Bony 

HJCR Right hip joint centre Virtual 

Right shank     

RHFB Right apex of fibula head Bony 

RTTB Right tibial tuberosity Bony 

RMML Right medial malleolus Bony 

RLML Right lateral malleolus Bony 

Right foot     

CAR Upper ridge of the calcaneous Bony 

FMR Dorsal aspect of first metatarsal head Bony 

SMR Dorsal aspect of second metatarsal head Bony 

VMR Dorsal aspect of fifth metatarsal head Bony 

Left femur     

LLEP Left lateral epicondyle Bony 

LMEP Left medial epicondyle Bony 

HJCL Left hip joint centre Virtual 

Left shank     

LHFB Left apex of fibula head Bony 

LTTB Left tibial tuberosity Bony 
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LMML Left medial malleolus Bony 

LLML Left lateral malleolus Bony 

Left foot     

CAR Upper ridge of the calcaneous Bony 

FMR Dorsal aspect of first metatarsal head Bony 

SMR Dorsal aspect of second metatarsal head Bony 

VMR Dorsal aspect of fifth metatarsal head Bony 
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Appendix B – Force equations 

 

Chapter 6 

6.1A Compliant leg model with axial elastic property (CAE) 

 

            
 

      
                                                           (6.1A) 

            
 

      
                                                       (6.2A) 

for the initial single support phase.  

            
 

      
        

     

     
                                         (6.3A) 

            
 

      
        

 

     
   ,                                     (6.4A) 

for the double support phase and  

            
   

     
                                                      (6.5A) 

           
 

     
    ,                                                   (6.6A) 

for the final single support phase, where 

              ,                                                              (6.9) 

                 .                                                      (6.10) 

 

Ground reaction forces 

    
                

 

      
                                                  (A6.1) 
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                                                   (A6.2) 

 

    
               

   

     
                                                   (A6.3) 

 

    
      

        
 

     
                                                    (A6.4) 

 

 

6.2A Compliant leg model with axial and tangential elastic property (CATE) 
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                                    (6.15A) 

for the initial single support phase.  
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   ,                                (6.17A) 

for the double support phase and  

            
   

     
         

 

     
                                     (6.18A) 

           
 

     
        

   

     
    ,                                 (6.19A) 

for the final single support phase. 
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6.3A Ground reaction forces 
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Chapter 7 

7.1A Posture-dependent elastic leg model (PDE) 

 

For the PDE model, the equations of motion in terms of force are similar to those for the 

CATE model. The only difference is leg property variations (see Equation 5.1 – 5.11) and 

the difference conditions for phase transitions (see Equation 7.15-7.16). 
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Appendix C – Averaged CoM motion at vertical leg orientation 

 

Table C1 The averaged CoM motion comprising forward velocity (    , height   ) and velocity head (  ) at 
vertical leg orientation of individual subject 

Subject 
Slow Normal Fast 

                        

No.1 1.146 0.916 5.2 1.433 0.914 4.5 1.629 0.915 4.4 

No.2 1.23 0.921 6.9 1.54 0.922 5.7 1.72 0.924 5.6 

No.3 1.21 0.854 7.2 1.425 0.841 5.9 1.648 0.851 5.5 

No.4 1.24 0.904 5.1 1.372 0.886 4.8 1.619 0.889 4.6 

No.5 1.3 0.938 7.1 1.422 0.937 5.6 1.633 0.94 5.5 

No.6 1.252 0.941 6.3 1.404 0.938 5.7 1.653 0.94 5.7 

No.7 1.128 0.911 4.9 1.52 0.908 4.1 1.614 0.91 4.4 

No.8 1.147 0.915 7.1 1.46 0.914 5.9 1.616 0.913 5.7 
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Appendix D – Some source code for the core work 

 

Chapter 3 

3.1D. Calculation of the CoM motion 

 

global whole_body_CM  
global y_ref 
global touch_down_frame end_frame01 start_frame02 start_frame03 end_frame03 
global forceVerticalTot forceHxTot forceVertical03_vir forceHx03_vir 
global start_frame01  end_frame02 
global new_DoS2SS_vel_CMy new_DoS2SS_pos_CMy new_DoS2SS_vel_CMx 

new_DoS2SS_pos_CMx 

  
frame_rate = 150; %capturing frame rate (frame/sec) 

  

  
%exclude NaN data 
%%%%%%%%%%%%%%%%%%%%%% 
start_frame01 = 53; 

  
end_frame01 = 143; 

  
start_frame02 = 118; 

  
end_frame02 = 207; 

  
overlap = NaN(start_frame02 - start_frame01,1); 

  
touch_down_frame = start_frame02-start_frame01;%started from start_frame01 

  
m = 69;  
%%%%%%%%%%%%%%%%%%%%% 
g = 9.81; 

  
accyTotal = zeros(end_frame01-start_frame02,1); 
accxTotal = zeros(end_frame01-start_frame02,1); 
accx_on_1st = zeros(end_frame01-start_frame02,1); 
accx_on_2nd = zeros(end_frame01-start_frame02,1); 
accy_on_1st = zeros(end_frame01-start_frame02,1); 
accy_on_2nd = zeros(end_frame01-start_frame02,1); 
new_DoS2SS_vel_CMx = zeros(end_frame01-start_frame02,1); 
new_DoS2SS_vel_CMy = zeros(end_frame01-start_frame02,1); 
new_DoS2SS_pos_CMx = zeros(end_frame01-start_frame02,1); 
new_DoS2SS_pos_CMy = zeros(end_frame01-start_frame02,1); 

  

  
forceVertical03_temp = zeros(size(forceVertical01  

  
%force03 imitates force01 and force04 imitates force02 
%but start_frame03 can be adjusted as measurement data of force03's timing 

is not available 
start_frame03 = start_frame02+(2)+(start_frame02 - start_frame01); 
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end_frame03 = start_frame03+ (end_frame01 - start_frame01); 
 

%zero force frame included @b4 and @after contact 
forceVertical03_temp(start_frame03:end_frame03) = 

forceVertical01(start_frame01:end_frame01); 

 
%start 1st frame together with forceVertical01 
forceVertical03_vir = forceVertical03_temp;  

  

  
forceVertical00_temp = zeros(size(forceVertical02)); 

  
start_frame00 = start_frame01; 

  
end_frame00 = start_frame01 + (end_frame02 - start_frame03); 

  
forceVertical00_temp(start_frame00-2:end_frame00) = 

forceVertical02(start_frame03-2:end_frame02  
forceVertical00_vir = forceVertical00_temp ; 

  
if length(forceVertical01)< length(forceVertical03_vir) 
extend_size = length(forceVertical03_vir)-length(forceVertical01); 
forceVertical01(length(forceVertical01)+1:length(forceVertical03_vir))=zero

s(extend_size,1); 
forceVertical02(length(forceVertical02)+1:length(forceVertical03_vir))=zero

s(extend_size,1); 
forceVertical00_vir(length(forceVertical00_vir)+1:length(forceVertical03_vi

r))=zeros(extend_size,1); 
end   
totalVGRF = forceVertical00_vir + forceVertical01 + forceVertical02 + 

forceVertical03_vir; 

  
forceHx03_temp = zeros(size(forceHx01)); 

  
forceHx03_temp(start_frame03:end_frame03) = 

forceHx01(start_frame01:end_frame01);%zero force frame included @b4 and 

@after contact 

  
forceHx03_vir = forceHx03_temp ;%start 1st frame together with 

forceVertical01 

  
netGRF03 = sqrt(forceHx03_vir.^2 + forceVertical03_vir.^2) ; 

  
forceHx00_temp = zeros(size(forceHx02)); 

  
forceHx00_temp(start_frame00-2:end_frame00) = forceHx02(start_frame03-

2:end_frame02);  

  
forceHx00_vir = forceHx00_temp ; 

  
if length(forceHx01)< length(forceHx03_vir) 
extend_size = length(forceHx03_vir)-length(forceHx01); 
forceHx01(length(forceHx01)+1:length(forceHx03_vir))=zeros(extend_size,1); 
forceHx02(length(forceHx02)+1:length(forceHx03_vir))=zeros(extend_size,1); 
forceHx00_vir(length(forceHx00_vir)+1:length(forceHx03_vir))=zeros(extend_s

ize,1); 
end  
totalHGRF = forceHx00_vir + forceHx01 + forceHx02 + forceHx03_vir ; 
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forceVerticalTot = (totalVGRF-m*g)/m; %forceVertical01 

  
forceHxTot = totalHGRF/m; 

  

  
% whole-body motion on marker base started on forceplate01  

  
new_whole_body_CM_stance = whole_body_CM(start_frame01-

2:length(whole_body_CM),:);% include pos @zeroforce frame and extra frame 

for diff 

  
new_y_ref_stance = y_ref*ones(length(new_whole_body_CM_stance),1); 

  
Net_whole_body_CMy_stance = (new_whole_body_CM_stance(:,2)- 

new_y_ref_stance); 

  
Net_vel_whole_body_CMy_stance = 

frame_rate*[NaN;diff(Net_whole_body_CMy_stance)];% vel:mm/s |include vel 

@zeroforce frame 

  
Net_acc_whole_body_CMy_stance = 

[NaN;diff(Net_vel_whole_body_CMy_stance)];%mm/s/frame 

  

  
whole_body_CMx_stance = new_whole_body_CM_stance(:,1);% mm    

  
vel_whole_body_CMx_stance = 

frame_rate*[NaN;diff(whole_body_CMx_stance)];%mm/sec 

    
acc_whole_body_CMx_stance = 

[NaN;diff(vel_whole_body_CMx_stance)];%mm/sec/frame 

  

  
DoS2SS_vel_CMx  = 

vel_whole_body_CMx_stance(touch_down_frame+1:length(vel_whole_body_CMx_stan

ce),:);%include vel @zeroforce frame 

  
DoS2SS_vel_CMy = 

Net_vel_whole_body_CMy_stance(touch_down_frame+1:length(Net_vel_whole_body_

CMy_stance),:);include vel @zeroforce frame 

  

  
new_DoS2SS_pos_CMy(1)= Net_whole_body_CMy_stance(touch_down_frame+1);%pos 

@contact = start frame01-2+touchdown+1 = start frame01+touchdown-1 

  
new_DoS2SS_pos_CMx(1)= whole_body_CMx_stance(touch_down_frame+1);%pos 

@contact = start frame01-2+touchdown+1  

  

  
new_DoS2SS_vel_CMx(1) = DoS2SS_vel_CMx(1); 

  
new_DoS2SS_vel_CMy(1) = DoS2SS_vel_CMy(1); 
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%calculate position, velocity and acceleration started from touch down 
%position-2, touch down vel-1 and touch down acc-0 of leg02 

  
for n = 1:end_frame02-start_frame02+2 %from leg02 touchdown to end of DS of 

replicate leg01 on forceplate03 ; 

  
accyTotal(n) = (10^3/frame_rate)*forceVerticalTot(start_frame02+n-2); 

     
new_DoS2SS_vel_CMy(n+1,:) = new_DoS2SS_vel_CMy(n) + accyTotal(n);%vel@ next 

= vel@ forcezero + acc btw forcezero frame and the next 

  
new_DoS2SS_pos_CMy(n+1,:) = new_DoS2SS_pos_CMy(n) + 

(1/frame_rate)*new_DoS2SS_vel_CMy(n); 

  
accxTotal(n) = (10^3/frame_rate)*forceHxTot(start_frame02+n-2);%mm/s/frame 

  
new_DoS2SS_vel_CMx(n+1,:) = new_DoS2SS_vel_CMx(n) + accxTotal(n);% 

  
new_DoS2SS_pos_CMx(n+1,:) = new_DoS2SS_pos_CMx(n) + 

(1/frame_rate)*new_DoS2SS_vel_CMx(n); 

  

  
end 
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3.2D Calculation of leg force and length 

%% leg length for trailing and leading leg during double-single support 
%on fixed CoP 

  
global new_DoS2SS_pos_CMx new_DoS2SS_pos_CMy  
global new_DoS2SS_vel_CMx new_DoS2SS_vel_CMy 
global touch_down_frame 
global start_frame01 start_frame02 end_frame01 end_frame02 
global touch_down_whole_body_CMx touch_down_whole_body_CMy 
global touch_down_vel_whole_body_CMx touch_down_vel_whole_body_CMy 
global mean_CoPx01 step_length 
global normal_force02 
global free_length02  init_legVel02 end_length02 
global eff_velocity_actuator02 end_eff_velocity_actuator02 
global excursion02 end_excursion02 fCoP_velocity_actuator02 

  
global tangent_force02 
global free_angle02 int_diff_ang02  
global eff_angV02 
global rel_angle02 angle_leg02 

  
frame_rate = 150; %capturing frame rate (frame/sec) 

  

  
overlap = NaN(start_frame02 - start_frame01,1); 

  
touch_down_frame = start_frame02-start_frame01;%started from start_frame01 
%%%%%%%%%%%%%%%%%%%%% 

  
%global CoP 

  
new_glob_CoPx01 = glob_CoPx01(start_frame01:end_frame01,:); 

  
new_glob_CoPx02 = glob_CoPx02(start_frame02:end_frame02,:); 

  
new_glob_CoPz01 = glob_CoPz01(start_frame01:end_frame01,:); 

  
new_glob_CoPz02 = glob_CoPz02(start_frame02:end_frame02,:); 

  

  
%motion of Whole-body CoM 
%include the WCoM trajectory at contact(when force=0)and extra WCoM for the 

calculation of velocity = diff(whole_body_CM) 

  
% 
new_whole_body_CM01 = [extra_new_DoS2SS_pos_CMx(1:end_frame01-

start_frame02+3),extra_new_DoS2SS_pos_CMy(1:end_frame01-

start_frame02+3)];%(mm) 

  
new_whole_body_CM02 = [extra_new_DoS2SS_pos_CMx(1:end_frame02-

start_frame02+3), extra_new_DoS2SS_pos_CMy(1:end_frame02-

start_frame02+3)];%(mm) 

  
new_whole_bodyV_CM01 = [extra_new_DoS2SS_vel_CMx(1:end_frame01-

start_frame02+3),extra_new_DoS2SS_vel_CMy(1:end_frame01-start_frame02+3)]; 
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new_whole_bodyV_CM02 = [extra_new_DoS2SS_vel_CMx(1:end_frame02-

start_frame02+3),extra_new_DoS2SS_vel_CMy(1:end_frame02-start_frame02+3)]; 

  

  
touch_down_whole_body_CMx = new_DoS2SS_pos_CMx(1,1) 

;%new_whole_body_CM01(2,1) ;(mm) 

  
touch_down_whole_body_CMy = new_DoS2SS_pos_CMy(1,1) 

;%new_whole_body_CM01(2,2);(mm) 

  

  
touch_down_vel_whole_body_CMx = new_DoS2SS_vel_CMx(1,1) ;%(mm/sec) 

  
touch_down_vel_whole_body_CMy = new_DoS2SS_vel_CMy(1,1) ;%(mm/sec) 

  

  
%leg length on fixed CoP 

  
[CoM_CoP_value id_CoP_frame]= min(sqrt((new_glob_CoPx02-

(new_DoS2SS_pos_CMx(1:end-2))).^2));%CoP@vertical leg 

  
CoP_vert_leg02 = new_glob_CoPx02(id_CoP_frame); 

  

  
mean_CoPx01 = mean(new_glob_CoPx01)*ones(length(new_whole_body_CM01),1); 
 

mean_CoPx02 = CoP_vert_leg02*ones(length(new_whole_body_CM02),1); 

  
mean_CoPz01 = mean(new_glob_CoPz01)*ones(length(new_whole_body_CM01),1); 

  
mean_CoPz02 = mean(new_glob_CoPz02)*ones(length(new_whole_body_CM02),1); 

  

  
%step length and leg length 

  
step_length = mean_CoPx02(1) - mean_CoPx01(1); 

  

 
extra_length_fCoP01 = sqrt((new_whole_body_CM01(:,1)- mean_CoPx01).^2 + 

(new_whole_body_CM01(:,2)).^2); 

  
extra_length_fCoP02 = sqrt((new_whole_body_CM02(:,1)- mean_CoPx02).^2 + 

(new_whole_body_CM02(:,2)).^2); 

  
length_fCoP01 = extra_length_fCoP01(1:length(new_whole_body_CM01)); 

  
length_fCoP02 = extra_length_fCoP02(1:length(new_whole_body_CM02)); 

  
min_length_fCoP02 = min(length_fCoP02); 

  
max_length_fCoP02 = max(length_fCoP02); 

  
free_length02 = length_fCoP02(1); 

  
end_length02 = length_fCoP02(end); 
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excursion02 = length_fCoP02 - free_length02;% excursion starts @ zeroforce 

frame 

  
end_excursion02 = length_fCoP02 - end_length02;% excursion starts @ 

zeroforce frame 

  
%% 

  
% lengthening-shortening vel 

  
delx_new_whole_body_CM01 = new_whole_body_CM01(:,1)- 

mean_CoPx01(1);%displacement from reference 

  
delx_new_whole_body_CM02 = new_whole_body_CM02(:,1)- 

mean_CoPx01(1);%displacement from reference 

  
fCoP_velocity_actuator01 = 

(delx_new_whole_body_CM01.*new_whole_bodyV_CM01(:,1) + 

new_whole_body_CM01(:,2).*new_whole_bodyV_CM01(:,2))./sqrt(delx_new_whole_b

ody_CM01.^2 + new_whole_body_CM01(:,2).^2);%diff(extra_length_fCoP01)); 

  
fCoP_velocity_actuator02 = ((delx_new_whole_body_CM02 - 

step_length).*new_whole_bodyV_CM02(:,1) + 

new_whole_body_CM02(:,2).*new_whole_bodyV_CM02(:,2))./sqrt((delx_new_whole_

body_CM02 - step_length).^2 + 

new_whole_body_CM02(:,2).^2);%(diff(extra_length_fCoP02)); 

  
init_legVel02 = fCoP_velocity_actuator02(1) ; 

  
final_legVel02 = fCoP_velocity_actuator02(end) ; 

  
eff_velocity_actuator02 = (fCoP_velocity_actuator02 - 

init_legVel02)/init_legVel02 ; 

  
end_eff_velocity_actuator02 = (fCoP_velocity_actuator02 - 

final_legVel02)/final_legVel02 ; 

  

  
%leg angle wrt vertical  

  
extra_angle_leg01 =  atan((new_whole_body_CM01(:,1)- 

mean_CoPx01)./(new_whole_body_CM01(:,2)));%opposite to model angle 

  
extra_angle_leg02 =  atan((new_whole_body_CM02(:,1)- 

mean_CoPx02)./(new_whole_body_CM02(:,2)));%opposite to model angle 

  
angle_leg01 = extra_angle_leg01(1:length(new_whole_body_CM01)); 

  
angle_leg02 = extra_angle_leg02(1:length(new_whole_body_CM02)); 

  
angle_leg02_degree = angle_leg02 *180/pi; 

  

  
min_angle_leg02 = min(angle_leg02); 

  
max_angle_leg02 = max(angle_leg02); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
free_angle02 = angle_leg02(1); 

  
rel_angle02 = angle_leg02 - free_angle02; 

  

  
%speed of leg angle 

  
diff_angle_leg01 = (new_whole_bodyV_CM01(:,1).*new_whole_body_CM01(:,2)+ 

delx_new_whole_body_CM01.*new_whole_bodyV_CM01(:,2))./(delx_new_whole_body_

CM01.^2+new_whole_body_CM01(:,2).^2);%diff(extra_angle_leg01); 

  
diff_angle_leg02 = -(new_whole_bodyV_CM02(:,2).*(delx_new_whole_body_CM02-

step_length)-

new_whole_bodyV_CM02(:,1).*new_whole_body_CM02(:,2))./((delx_new_whole_body

_CM02- 

step_length).^2+new_whole_body_CM02(:,2).^2);%diff(extra_angle_leg02); 

  

  
t_angle01 = (2:1:length(angle_leg01)+1)';%1900:10:1990; 

  
new_t_angle01 = (1:1:length(angle_leg01)+1)'; 

  
extra_diff_angle_leg01 = 

interp1(t_angle01,angle_leg01,new_t_angle01,'cubic'); 

  

  
t_angle02 = (2:1:length(angle_leg02)+1)';%1900:10:1990; 

  
new_t_angle02 = (1:1:length(angle_leg02)+1)'; 

  
extra_diff_angle_leg02 = 

interp1(t_angle02,angle_leg02,new_t_angle02,'cubic'); 

  

  
diff_angle_leg01_test = frame_rate*diff(extra_diff_angle_leg01); 

  
diff_angle_leg02_test = frame_rate*diff(extra_diff_angle_leg02); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
int_diff_ang02 = diff_angle_leg02(1); 

  
eff_angV02 = (diff_angle_leg02 - int_diff_ang02)./int_diff_ang02; 

  

  
new_net_force02 = net_force02(start_frame02-1:end_frame02+1,:); 

  
new_angle_forceWrtVert02 = 

angle_forceWrtVert02(start_frame02:end_frame02,:); 

  

  
%Include force angle @ zeroforce frame; no force exert, force 
%direction must be calculated using extrapolation 
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init_slope_new_angle_forceWrtVert02 = diff(new_angle_forceWrtVert02(1:3)); 

  
init_new_angle_forceWrtVert02 = new_angle_forceWrtVert02(1)- 

(2*init_slope_new_angle_forceWrtVert02(1)-

init_slope_new_angle_forceWrtVert02(2)) ; 

  
fnl_slope_new_angle_forceWrtVert02 = 

diff(new_angle_forceWrtVert02((end_frame02-start_frame02-2):(end_frame02-

start_frame02+1))); 

  
fnl_new_angle_forceWrtVert02 = new_angle_forceWrtVert02(end_frame02-

start_frame02+1)+ (2*fnl_slope_new_angle_forceWrtVert02(2)-

fnl_slope_new_angle_forceWrtVert02(1)) ; 

  
new_angle_forceWrtVert02 = [init_new_angle_forceWrtVert02; 

new_angle_forceWrtVert02; fnl_new_angle_forceWrtVert02 ] ; 

  

 
%force decomposition into leg direction 

  
net_force_angle02 = -(angle_leg02  - new_angle_forceWrtVert02); 

  
normal_force02 = new_net_force02.* cos(net_force_angle02); 

  
tangent_force02 = new_net_force02.* sin(net_force_angle02); 
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Chapter 4 

4.1D. Curve fitting using root-mean-square errors 

4.1.1D Linear fitting of axial force 

function LeastSqrN = forceLinear_whole(coeff)  

  
global normal_force_fCoP_meas_collect 
global nForce_model 
global leg_length_fCoP_meas_collect 

  
k_linear = coeff(1); 
l0 = coeff(2); 

  
nForce_model = k_linear*0.001*(l0 - leg_length_fCoP_meas_collect) ; 

  

  
diff_force = nForce_model - normal_force_fCoP_meas_collect; 

  
LeastSqrN = norm(diff_force)/sqrt(length(diff_force)); 
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4.1.2D Linear fitting of tangential force 

 

function LeastSqrT_Linear = forceLinear_angleT5th02(var)  

  
global angle_leg_fCoP_meas_collect tangent_force_fCoP_meas_collect 
global tForce_model op_k op_angle 

 
angle_leg02 = angle_leg_fCoP_meas_collect ; 
init_angle02 = min(angle_leg02); 
final_angle02 = max(angle_leg02); 
angle_period = final_angle02-init_angle02; 

  
k1 = var(1); 
a_re01 = var(2); 
a_F0 = var(3); 
k3 = var(4); 
a_re02 = var(5); 

  
%-----partI 
angle_re01 = init_angle02 + a_re01*angle_period ; 

  
tForce_model = k1*(angle_leg02 - init_angle02).*(angle_leg02 <= 

angle_re01); 

  
%-----partII 
Ft_re1 = k1*(angle_re01 - init_angle02); 
angle_F0 = init_angle02 + a_F0*angle_period ; 

  
k2 = (0 - Ft_re1)/(angle_F0 - angle_re01); 

  
tForce_model = tForce_model + (angle_leg02 > angle_re01 & angle_leg02 <= 

angle_F0).* (k2*(angle_leg02 - angle_F0)); 

  
%-----partIII 
angle_re02 = init_angle02 + a_re02*angle_period ; 

  
tForce_model = tForce_model + (angle_leg02 > angle_F0 & angle_leg02 <= 

angle_re02).* (k3*(angle_leg02 - angle_F0)); 

  
%-----partIV 
Ft_re3 = k3*(angle_re02 - angle_F0); 

  
k4 = (0 - Ft_re3)/(final_angle02 - angle_re02 ); 

  
tForce_model = tForce_model + (angle_leg02 > angle_re02 & angle_leg02 <= 

final_angle02).* (k4*(angle_leg02 - angle_re02)+ Ft_re3); 

  
op_k = [k1;k2;k3;k4]; 
op_angle = [init_angle02;angle_re01;angle_F0;angle_re02;final_angle02]; 
 

%----- RMSE 
diff_force = tForce_model - tangent_force_fCoP_meas_collect; 

  
LeastSqrT_Linear = norm(diff_force)/sqrt(length(diff_force)); 
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4.1.3D Nonlinear fitting of axial force 

 

function LeastSqrN = forceBnln4_whole(coeff)  

  
global normal_force_fCoP_meas_collect 
global nForce_model nForce_model_ln 
global leg_length_fCoP_meas_collect 
global k_linear n k_linear_fit l0_fit  

  

  
k_linear = coeff(1); 
a0 = coeff(2); 
b0 = coeff(3); 
l0 = coeff(4); 

  

  
k_Bnln = k_linear*(1 + a0*exp(b0*n)*(0.001*l0 - 

0.001*leg_length_fCoP_meas_collect).^n-1); 

  
nForce_model = k_Bnln *0.001.*(l0 - leg_length_fCoP_meas_collect); 

  
nForce_model_ln = k_linear *0.001.*(l0 - leg_length_fCoP_meas_collect); 

  
diff_force = nForce_model - normal_force_fCoP_meas_collect; 

  
LeastSqrN = norm(diff_force)/sqrt(length(diff_force)); 
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4.1.4D Nonlinear fitting of tangential force 

function LeastSqrT = forceSeries_T2th02(coeff)  

  
% y = a0 + a1 * cos(pi*x/period) + b1 * sin(pi*x/period) + a2 * 

cos(2*pi*x/period)+ b2 * sin(2*pi*x/period); 
global tangent_force_fCoP_meas_collect  
global Q_period init_angle02  
global tForce_model angle_leg_fCoP_meas_collect LeastSqrT_test 

  
rel_angle_fCoP02 = angle_leg_fCoP_meas_collect - init_angle02; 

  
a1L = coeff(1); 
b1L = coeff(2); 
a2L = coeff(3); 
b2L = coeff(4); 

  

  
l1_term = a1L * (cos(2*pi*rel_angle_fCoP02/Q_period)-1)+ b1L * 

sin(2*pi*rel_angle_fCoP02/Q_period); 
l2_term = a2L * (cos(2*2*pi*rel_angle_fCoP02/Q_period)-1)+ b2L * 

sin(2*2*pi*rel_angle_fCoP02/Q_period); 

  
% stiffness = (l1_term + l2_term); 
% tForce_model = stiffness.*(rel_angle_fCoP02/Q_period) ;  
tForce_model = l1_term + l2_term; 

  
diff_force = tForce_model - tangent_force_fCoP_meas_collect; 

  
LeastSqrT_test = 

sum(diff_force);%.^2/length(diff_force);%sqrt((sum(diff_force).^2))/length(

diff_force); 
LeastSqrT = norm(diff_force)/sqrt(length(diff_force)); 
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Chapter 5 

5.1D. Parametric fitting of axial force 

 
function LeastSqrN = forceSeries_l0fq_kq_r_mean_N5th02(coeff)  
 

global mean_normal_force_fCoP_meas_collect 
global nForce_model_l0 
global mean_leg_length_fCoP_meas_collect mean_angle_leg_fCoP_meas_collect 
global free_length02 end_length02 
global elastic_term  posture excursion02_l0 fl0 fl0_rate  
global stiffness testSqrN 

  
init_angle = mean_angle_leg_fCoP_meas_collect(1); 

  
final_angle = mean_angle_leg_fCoP_meas_collect(end); 

  
posture = (mean_angle_leg_fCoP_meas_collect- init_angle)/(final_angle-

init_angle); 

  
free_length02 = mean_leg_length_fCoP_meas_collect(1); 

  
end_length02 = mean_leg_length_fCoP_meas_collect(end); 

  
a1L = coeff(1); 
b1L = coeff(2); 
a2L = coeff(3); 
b2L = coeff(4); 
a3L = coeff(5); 
b3L = coeff(6); 
a4L = coeff(7); 
b4L = coeff(8); 
a5L = coeff(9); 
b5L = coeff(10); 
stiffness = coeff(11); 

  
l1_term = a1L * (cos(2*pi*posture)-1)+ b1L * sin(2*pi*posture); 
l2_term = a2L * (cos(2*2*pi*posture)-1)+ b2L * sin(2*2*pi*posture); 
l3_term = a3L * (cos(2*3*pi*posture)-1)+ b3L * sin(2*3*pi*posture); 
l4_term = a4L * (cos(2*4*pi*posture)-1)+ b4L * sin(2*4*pi*posture); 
l5_term = a5L * (cos(2*5*pi*posture)-1)+ b5L * sin(2*5*pi*posture); 

  
nln_term = l1_term + l2_term + l3_term + l4_term + l5_term; 

  
fl0_rate = end_length02 - free_length02; 

  
fl0 = free_length02 + fl0_rate *(posture + nln_term); 
excursion02_l0 = fl0 - mean_leg_length_fCoP_meas_collect; 

  
elastic_term = stiffness.* 0.001.*excursion02_l0;  
nForce_model_l0 = elastic_term;  

  
diff_force = nForce_model_l0 - mean_normal_force_fCoP_meas_collect; 
testSqrN = sqrt(sum(diff_force)^2)/length(diff_force); 

  
LeastSqrN = norm(diff_force)/sqrt(length(diff_force)); 
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5.2D. Parametric fitting of tangential force 

function LeastSqrT = forceSeries_angleT5th02(coeff)  

  
global tangent_force02 
global tForce_model 
global rel_angle02 
global Q_period  

   
a1Q = coeff(1); 
b1Q = coeff(2); 

  
a2Q = coeff(3); 
b2Q = coeff(4); 

  
a3Q = coeff(5); 
b3Q = coeff(6); 

  
a4Q = coeff(7); 
b4Q = coeff(8); 

  
a5Q = coeff(9); 
b5Q = coeff(10); 

   
q1_term = a1Q * (cos(2*pi*rel_angle02/Q_period)-1)+ b1Q * 

sin(2*pi*rel_angle02/Q_period); 
q2_term = a2Q * (cos(2*2*pi*rel_angle02/Q_period)-1)+ b2Q * 

sin(2*2*pi*rel_angle02/Q_period); 
q3_term = a3Q * (cos(2*3*pi*rel_angle02/Q_period)-1)+ b3Q * 

sin(2*3*pi*rel_angle02/Q_period); 
q4_term = a4Q * (cos(2*4*pi*rel_angle02/Q_period)-1)+ b4Q * 

sin(2*4*pi*rel_angle02/Q_period); 
q5_term = a5Q * (cos(2*5*pi*rel_angle02/Q_period)-1)+ b5Q * 

sin(2*5*pi*rel_angle02/Q_period); 

  
tForce_model =  q1_term + q2_term + q3_term + q4_term + q5_term ; 

  
diff_force = tForce_model - tangent_force02; 

  
LeastSqrT = norm(diff_force)/sqrt(length(diff_force)); 
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Chapter 6 

6.1D. Human walking prediction using compliant leg model with axial elastic leg 

property (CAE) 

6.1.1D CAE model with linear elastic leg property 

 

%Simulation of each initial condition with a combination of CoM 
%height,linear leg stiffness,touch down angle and system energy 
%Fixed point = [y; atan(dy/dx)] 
%__ 
global k l0 mass stepLength g x_int_sing01 step_sizeSS step_sizeDS 

step_sizeSS2 
%--------------------------------------------------------- 
k = 12000;%N/m 
design_touch_down_angle = 67 * pi/180;%rad  
vx_int_sing01 = 1.53;%m/s 
%--------------------------------------------------------- 
l0 = 1;%m 
mass = 80;%kg 
g = 9.81;% m/s2 
k_dimless = k*l0/(mass*g); 

 
%% 

  
x_int_sing01 = 0.0; %m 

  
y_int_sing01 = 0.98 ;%m 

  
vy_int_sing01 = 0; 

  
delta_spring_length = l0 - y_int_sing01 ; % apex height at vertical leg 

only 

  
y_touch = l0*sin(design_touch_down_angle); 

  
sys_E = 0.5*mass*(vx_int_sing01^2 + vy_int_sing01^2)+ mass*g*y_int_sing01 + 

0.5*k*(delta_spring_length)^2; 

  

  

  
int_sing01 = [x_int_sing01 vx_int_sing01 y_int_sing01 vy_int_sing01]; 

   
x_new_cycle = []; 

  
delxHx_new_cycle = []; 

  
init_del_xs = []; 

  
norm_D_Ic = []; 

  
for cycle = 1:100 
step_sizeSS = 0.0001; 
res_SS = 2000 ; 
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end_spanSS = res_SS * step_sizeSS ; 
time_spanSS = 0:step_sizeSS:end_spanSS; %max = 1 millisec 

 
[ts1,xs] = 

ode113(@spring_leg_single01,time_spanSS,int_sing01(cycle,:),[],cycle); 

 
int_sing01_abs(cycle,:) = [xs(1,1)-

int_sing01(cycle,1),int_sing01(cycle,2:4)]; 

  
int_V_state(cycle) = int_sing01(cycle,2); 

  
map_point(cycle,:) = [int_sing01(cycle,3),int_V_state(cycle)]; 

  

  
for count01 = 1:res_SS 

  
del_xs(count01,:) = xs(count01,1)-int_sing01(cycle,1); 

     

 
l_trail01_SS(cycle,count01) = sqrt(del_xs(count01,:)^2+xs(count01,3)^2); 

  
angle_trail01_SS(cycle,count01) = 

atan(del_xs(count01,:)/xs(count01,3));%wrt vertical 

  
lead_angle(cycle,count01) = asin(xs(count01,3)/l0);%virtual angle when lead 

leg leaning to touched 

  
lead_angle_degree(cycle,count01) = lead_angle(cycle,count01)*180/pi; 

  
pSS(count01,:) =  k*(l0/sqrt(del_xs(count01,:) ^2+xs(count01,3)^2)-1);  

     
GRF_SSx(count01,:) = (pSS(count01,:).*del_xs(count01,:)) ; 

  
GRF_SSy(count01,:) = (pSS(count01,:)*xs(count01,3)); 

  
check_hight(cycle,count01) = xs(count01,3)- y_touch; 

  
    if ((check_hight(cycle,count01) <= 0.00004) && 

(check_hight(cycle,count01) >= -0.00004)) 

  
    touch_down_angle(cycle) = lead_angle(cycle,count01) ; 

  
    touch_down_angle_degree(cycle) = lead_angle_degree(cycle,count01); 

  
    touch_down_timeSS(cycle) = count01; 

     
    end 

  
end 

  
%% 
l_trail01_touch(cycle) = sqrt((xs(touch_down_timeSS(cycle),1)-

x_int_sing01(cycle))^2+xs(touch_down_timeSS(cycle),3)^2); 
trial_angle(cycle) = 

asin(xs(touch_down_timeSS(cycle),3)/l_trail01_touch(cycle)); 
trial_angle_degree(cycle) = trial_angle(cycle) * 180 / pi ; 
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stepLength(cycle) = l0*cos(touch_down_angle(cycle))+ 

l_trail01_touch(cycle)*cos(trial_angle(cycle)); 

  
x_int_db(cycle) = xs(touch_down_timeSS(cycle),1); 
vx_int_db(cycle) = xs(touch_down_timeSS(cycle),2); 
y_int_db(cycle) = xs(touch_down_timeSS(cycle),3); 
vy_int_db(cycle) =xs(touch_down_timeSS(cycle),4); 
int_db(cycle,:) = [x_int_db(cycle) vx_int_db(cycle) y_int_db(cycle) 

vy_int_db(cycle) ]; 

  
step_sizeDS =  step_sizeSS; 
res_DS = 2000 ; 
end_spanDS = res_DS * step_sizeDS ; 
time_spanDS = 0:step_sizeDS:end_spanDS; 

  
[td,xd] = ode113(@spring_double,time_spanDS,int_db(cycle,:),[],cycle); 

 
for count02 = 1:res_DS 

     
del_xd(count02,:) = xd(count02,1)-int_sing01(cycle,1); 

  
l_trail01_leave(cycle,count02) = sqrt(del_xd(count02,:)^2+ 

xd(count02,3)^2); 

  
angle_trail01_leave(cycle,count02) = atan(del_xd(count02,:)/xd(count02,3)); 

  
pDS(count02,:) = k*(l0/sqrt(del_xd(count02,:)^2+xd(count02,3)^2)-1); 

  
qDS(count02,:) = k*(l0/sqrt((stepLength(cycle)- 

del_xd(count02,:))^2+xd(count02,3)^2)-1); 

  
GRF_DSx_1(count02,cycle) = (- qDS(count02,:)*(stepLength(cycle)- 

del_xd(count02,:))); 

  
GRF_DSy_1(count02,cycle) = (qDS(count02,:)*xd(count02,3)); 

  
GRF_DSx(count02,:) = (pDS(count02,:)*del_xd(count02,:) ); 

  
GRF_DSy(count02,:) = (pDS(count02,:)*xd(count02,3)); 

  
l_lead02_DS(cycle,count02) = sqrt((stepLength(cycle)- 

del_xd(count02,:))^2+xd(count02,3)^2) ; 

  
angle_lead02_DS(cycle,count02) = atan((stepLength(cycle)- 

del_xd(count02,:))/xd(count02,3)) ;%wrt vertical 

  

  
check_length(cycle,count02) = l0 - l_trail01_leave(cycle,count02) ; 

  
    if (check_length(cycle,count02) <= 0.00005 && 

(check_length(cycle,count02) >= -0.00005)) 

  
    l_trail01_take_off(cycle) = l_trail01_leave(cycle,count02); 

  
    take_off(cycle) = count02; 

  
    end 
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end 

 

  
%% 
x_int_sing02(cycle) = xd(take_off(cycle),1); 
vx_int_sing02(cycle) = xd(take_off(cycle),2); 
y_int_sing02(cycle) = xd(take_off(cycle),3); 
vy_int_sing02(cycle) =xd(take_off(cycle),4); 
int_sing02(cycle,:) = [x_int_sing02(cycle) vx_int_sing02(cycle) 

y_int_sing02(cycle) vy_int_sing02(cycle) ]; 

  
l_trail01_start_SS2 = sqrt((xd(take_off(cycle),1)-x_int_sing01(cycle))^2+ 

xd(take_off(cycle),3)^2); 

  
step_sizeSS2 =  step_sizeDS; 

  
res_SS2 = 2000 ; 

  
end_spanSS2 = res_SS2 * step_sizeSS2 ; 

  
time_spanSS02 = 0:step_sizeSS2:end_spanSS2; 

  
[ts2,xs2] = 

ode113(@spring_leg_single02,time_spanSS02,int_sing02(cycle,:),[],cycle); 
 [maxValue(cycle) maxIndex(cycle)] = max(xs2(:,3)); 

  
for count03 = 1:res_SS2 

     
del_xs2(count03,:) = xs2(count03,1)-int_sing01(cycle,1); 

  
qS2(count03,:) = k*(l0/sqrt((stepLength(cycle)- del_xs2(count03,:))^2+ 

xs2(count03,3)^2)-1); 

  
lead_legAngle_SS2(cycle,count03) = atan(xs2(count03,3)/(stepLength(cycle)- 

del_xs2(count03,:))); 

  
angle_lead02_SS2(cycle,count03) = atan((stepLength(cycle)-

del_xs2(count03,:))/xs2(count03,3));%wrt vertical 

  
GRF_SS2x(count03,cycle) = (-qS2(count03,:)*(stepLength(cycle)- 

del_xs2(count03,:))); 

  
GRF_SS2y(count03,cycle) = (qS2(count03,:)* xs2(count03,3)); 

  
lead_forceAngle_SS2(count03,:) = 

atan(GRF_SS2y(count03,:)/GRF_SS2x(count03,:)); 

  
l_lead02_SS2(cycle,count03) = sqrt((stepLength(cycle)- 

del_xs2(count03,:))^2+ xs2(count03,3)^2) ; 

  
check_hight02(cycle,count03) = int_sing01(cycle,3)- xs2(count03,3); 

  
check_angle(cycle,count03) =   0.5*pi - lead_legAngle_SS2(cycle,count03); 

  
V_state(count03,:) = xs2(count03,2); 
diff_V_state(cycle,count03) = int_V_state(cycle)- V_state(count03,:); 
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diff_y_state(cycle,count03) = int_sing01(cycle,3)- xs2(count03,3); 

  
check_state(cycle,count03) = norm([diff_y_state(cycle,count03); 

diff_V_state(cycle,count03)]); 

  
    if count03== maxIndex(cycle) 

         
         max_height(cycle) = xs2(maxIndex(cycle),3); 
         if check_state(cycle,count03) <= 0.001; 

     
          endSS02(cycle) = count03 ; 

         
          end_check_state(cycle) = check_state(cycle,count03); 

         
          disp(['achieved cycle',num2str(cycle)]) 

         
        end 

     
    end   
end 

  

  
x_cycle{cycle} = 

{xs(1:touch_down_timeSS(cycle),:);xd(1:take_off(cycle),:);xs2(1:endSS02(cyc

le),:)}; 

  
delxHx_cycle{cycle} = 

{del_xs(1:touch_down_timeSS(cycle),:);del_xd(1:take_off(cycle),:);del_xs2(1

:endSS02(cycle),:)}; 

  
x_new_cycle =  [x_new_cycle;x_cycle{cycle}]; 

  
delxHx_new_cycle = [delxHx_new_cycle;delxHx_cycle{cycle}]; 

  
int_sing01(cycle+1,:) = xs2(endSS02(cycle),:); 

  
int_sing01_rel(cycle+1,:) = [xs2(endSS02(cycle),1)-

int_sing01(cycle,1),xs2(endSS02(cycle),2:4)]; 

  
x_int_sing01(cycle+1) = int_sing01(cycle+1,1); 

  
init_del_xs = [init_del_xs;del_xs2(endSS02(cycle),:)]; 

  
y_int_sing01(cycle+1) = int_sing01(cycle+1,3); 

  

             

                          
end 

 

%return map and Floquet multipliers 

 
             D_map_point = diff(map_point); 
             norm_map_point = []; 
             for map_row = 1:length(D_map_point) 
             norm_map_point = 

[norm_map_point;norm(D_map_point(map_row,:))]; 
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             end 
             [val_min_norm Id_lim_cycle]= min(norm_map_point); 

  
GRF_x = [GRF_DSx_1(1:take_off(cycle-1),cycle-1);GRF_SS2x(1:endSS02(cycle-

1),cycle-

1);GRF_SSx(1:touch_down_timeSS(cycle),:);GRF_DSx(1:take_off(cycle),:)]; 

  
GRF_y = [GRF_DSy_1(1:take_off(cycle-1),cycle-1);GRF_SS2y(1:endSS02(cycle-

1),cycle-

1);GRF_SSy(1:touch_down_timeSS(cycle),:);GRF_DSy(1:take_off(cycle),:)]; 

  
GRF_net = sqrt(GRF_x.^2+ GRF_y.^2); 

  
legLength = [l_lead02_DS(cycle-1,1:take_off(cycle-1))';l_lead02_SS2(cycle-

1,1:endSS02(cycle-

1))';l_trail01_SS(cycle,1:touch_down_timeSS(cycle))';l_trail01_leave(cycle,

1:take_off(cycle))']; 

  

  
sumGRF_DSx = GRF_DSx_1(:,cycle) + GRF_DSx ; 

  
sumGRF_DSx_step = GRF_DSx_1(1:take_off(cycle),cycle) + 

GRF_DSx(1:take_off(cycle),:) ; 

  

  
sumGRF_DSy = GRF_DSy_1(:,cycle) + GRF_DSy ; 

  
sumGRF_DSy_step = GRF_DSy_1(1:take_off(cycle),cycle) + 

GRF_DSy(1:take_off(cycle),:) ; 

  

  
netGRF_SS = sqrt(GRF_SSx.^2 + GRF_SSy.^2); 

  
netGRF_SS_step = sqrt(GRF_SSx(1:touch_down_timeSS(cycle),:).^2 + 

GRF_SSy(1:touch_down_timeSS(cycle),:).^2); 

  
netGRF_DS = sqrt(sumGRF_DSx.^2 + sumGRF_DSy.^2); 

  
netGRF_DS_step = sqrt(sumGRF_DSx(1:take_off(cycle),:).^2 + 

sumGRF_DSy(1:take_off(cycle),:).^2); 

  
netGRF_SS02 = sqrt(GRF_SS2x(:,cycle).^2 + GRF_SS2y(:,cycle).^2); 

  
netGRF_SS02_step = sqrt(GRF_SS2x(1:endSS02(cycle-1),cycle-1).^2 + 

GRF_SS2y(1:endSS02(cycle-1),cycle-1).^2); 

  

  
netGRF_step = [netGRF_SS_step;netGRF_DS_step;netGRF_SS02_step]; 
DnetGRF_step = diff(netGRF_step); 
sumDnetGRF_step = sum(DnetGRF_step); 

  

  
phase = length(x_new_cycle); 

  
for count_phase = 1:phase 
   length_x_new_cycle(count_phase) = length(x_new_cycle{count_phase}); 
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end 

  
sum_length = sum(length_x_new_cycle) ; 

  
renew_x_new_cycle = zeros(sum_length,4); 

  
renew_delxHx_new_cycle = zeros(sum_length,1); 

  
leg_length_cycle = zeros(sum_length,1); 

  
count_x_new_cycle = 1; 

  
%obtain CoM motion from cell array to matrix 

  
for count_phase = 1:phase 

  
    %for count_x_new_cycle = 1: sum_length  

     
        for count_x_inphase = 1:length(x_new_cycle{count_phase})  

             
            renew_x_new_cycle(count_x_new_cycle,:) = 

x_new_cycle{count_phase}(count_x_inphase,:); 

            
            renew_delxHx_new_cycle(count_x_new_cycle,:) = 

delxHx_new_cycle{count_phase}(count_x_inphase,:); 

             
            leg_length_cycle(count_x_new_cycle,:) = 

sqrt(renew_delxHx_new_cycle(count_x_new_cycle,:).^2+ 

renew_x_new_cycle(count_x_new_cycle,3).^2); 

             
            count_x_new_cycle = count_x_new_cycle + 1 ; 

             

             
        end 

     

  
end 

  
diff_leg_length_cycle = 

(1/step_sizeSS)*[diff(leg_length_cycle(1:2,:));diff(leg_length_cycle)]; 

  
%% 
%Distance btw apex point and 45 degree line 

  
fixed_point = map_point(Id_lim_cycle,:); 

  
% %  
fit_first = []; 
fit_next = []; 

 
[row_IC col_IC]= size(map_point); 

  
for count04 = 1:col_IC 

  
fit_first = [fit_first; map_point(1:end-1,count04)' - fixed_point(count04)' 

]; 
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fit_next = [fit_next; map_point(2:end,count04)' - fixed_point(count04)' ]; 

 
end 

  
Jmatrix = (fit_next * fit_first')*pinv(fit_first*fit_first'); 

 

  
FQmult = abs(eig(Jmatrix)); 
max_FQmult = max(FQmult); 
min_FQmult = min(FQmult); 

  

  
    if (max_FQmult < 1) 

  
    disp(['k                             |  ',num2str(k)]) 
    disp(['angle                         |  

',num2str(design_touch_down_angle*180/pi)]) 
    disp(['cycle                         |  ',num2str(cycle)]) 
    disp(['fixed point                   |  ',num2str(fixed_point)]) 
    disp(['y0                            |  ',num2str(y_int_sing01(1))]) 
    disp(['y transition                  |  ',num2str(y_touch)]) 
    disp(['Stable Floquet multiplier     |  ',num2str(max_FQmult)]) 

     
    elseif (max_FQmult > 1 && min_FQmult < 1) 

     
    disp(['k                             |  ',num2str(k)]) 
    disp(['angle                         |  

',num2str(design_touch_down_angle*180/pi)]) 
    disp(['cycle                         |  ',num2str(cycle)]) 
    disp(['fixed point                   |  ',num2str(fixed_point)]) 
    disp(['y0                            |  ',num2str(y_int_sing01(1))]) 
    disp(['y transition                  |  ',num2str(y_touch)]) 
    disp(['Saddle Floquet multiplier     |  ',num2str(max_FQmult)]) 

     
    else 

         
    disp(['k                             |  ',num2str(k)]) 
    disp(['angle                         |  

',num2str(design_touch_down_angle*180/pi)]) 
    disp(['cycle                         |  ',num2str(cycle)]) 
    disp(['fixed point                   |  ',num2str(fixed_point)]) 
    disp(['y0                            |  ',num2str(y_int_sing01(1))]) 
    disp(['y transition                  |  ',num2str(y_touch)]) 
    disp(['Unstable Floquet multiplier     |  ',num2str(max_FQmult)]) 

  
    end  
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6.1.2D CAE model with nonlinear elastic leg property 

%Simulation of each initial condition with a combination of CoM 
%height,non-linear(hard) leg stiffness,touch down angle and system energy 
%Fixed point = [y; atan(dy/dx)] 
%__ 

  
global k design_touch_down_angle sys_E a0 b0 a1 b1 n l0 mass stepLength g 

x_int_sing01 step_sizeSS step_sizeDS step_sizeSS2 
%--------------------------------------------------------- 
k = 10000;%N/m 
design_touch_down_angle = 69.5* pi/180;%rad  
b0 = 1.2 ; 
sys_E = 676; 
%--------------------------------------------------------- 
a0 = k ;  
a1 = 0 ; 
b1 = 1 ; 
n = 3; 

  
l0 = 0.972;%m 
mass = 69;%kg 
g = 9.81;% m/s2 
k_dimless = k*l0/(mass*g); 

 
touch_down_timeSS =[]; 
take_off = []; 
endSS02 = []; 
bound = 0; 
%% 

  
x_int_sing01 = 0.0 ; %m 

  
y_int_sing01 = 0.921;%m 

  
delta_spring_length = l0 - y_int_sing01 ; % apex height at vertical leg 

only 

  
y_touch = l0*sin(design_touch_down_angle); 

  
k_non = a0*exp(b0*n)*delta_spring_length^(a1+b1*n-1); 

  
k_hard = k + k_non ; 

  
vx_int_sing01 = sqrt(2*sys_E/mass - 2*g*y_int_sing01 - 

(k_hard*delta_spring_length^2)/mass); 

  
vy_int_sing01 = 0; 

  
int_sing01 = [x_int_sing01 vx_int_sing01 y_int_sing01 vy_int_sing01]; 

   
x_new_cycle = []; 

  
delxHx_new_cycle = []; 

  
init_del_xs = []; 

  
norm_D_Ic = []; 
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set_cycle = 50; 

  
for cycle = 1:set_cycle 

  

  
step_sizeSS = 0.0001; 
res_SS = 2000 ; 
end_spanSS = res_SS * step_sizeSS ; 
time_spanSS = 0:step_sizeSS:end_spanSS; %max = 1 millisec 

  
[ts1,xs] = 

ode113(@spring_basic_nln_single01,time_spanSS,int_sing01(cycle,:),[],cycle)

; 

 
int_sing01_abs(cycle,:) = [xs(1,1)-

int_sing01(cycle,1),int_sing01(cycle,2:4)]; 

  
int_tanV_state(cycle) = atan(int_sing01(cycle,4)/int_sing01(cycle,2)); 

     
map_point(cycle,:) = 

[int_sing01(cycle,3),atan(int_sing01(cycle,4)/int_sing01(cycle,2))]; 

  
for count01 = 1:res_SS 

  
del_xs(count01,:) = xs(count01,1)-int_sing01(cycle,1); 

     

 
l_trail01_SS(cycle,count01) = sqrt(del_xs(count01,:)^2+xs(count01,3)^2); 

  
angle_trail01_SS(cycle,count01) = 

atan(del_xs(count01,:)/xs(count01,3));%wrt vertical 

  
lead_angle(cycle,count01) = asin(xs(count01,3)/l0);%virtual angle when lead 

leg leaning to touched 

  
lead_angle_degree(cycle,count01) = lead_angle(cycle,count01)*180/pi; 

  
k_hard01(cycle,count01) = k + a0* exp(b0*n)*(l0- sqrt(del_xs(count01,:) ^2+ 

xs(count01,3)^2))^(a1+b1*n-1); 

  

  
pSS(count01,:) =  k_hard01(cycle,count01)*(l0/sqrt(del_xs(count01,:) 

^2+xs(count01,3)^2)-1);  

     
GRF_SSx(count01,:) = (pSS(count01,:)*del_xs(count01,:)) ; 

  
GRF_SSy(count01,:) = (pSS(count01,:)*xs(count01,3)); 

  
kinetic_E_SS(cycle,count01) = 0.5*mass*(xs(count01,2)^2+xs(count01,4)^2); 

  
potential_E_SS(cycle,count01) = mass*g*xs(count01,3); 

  
elastic_E_SS(cycle,count01) = 

0.5*k_hard01(cycle,count01)*(l_trail01_SS(cycle,count01)-l0)^2; 

  
check_energy_SS(cycle,count01) = kinetic_E_SS(cycle,count01) + 

potential_E_SS(cycle,count01) + elastic_E_SS(cycle,count01) ; 
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 check_hight(cycle,count01) = xs(count01,3)- y_touch; 

  
    if ((check_hight(cycle,count01) <= 0.00004) && 

(check_hight(cycle,count01) >= -0.00004)) 

  
    touch_down_angle(cycle) = lead_angle(cycle,count01) ; 

  
    touch_down_angle_degree(cycle) = lead_angle_degree(cycle,count01); 

  
    touch_down_timeSS(cycle) = count01; 

     
    end 

  
end 

  
%% 
l_trail01_touch(cycle) = sqrt((xs(touch_down_timeSS(cycle),1)-

x_int_sing01(cycle))^2+xs(touch_down_timeSS(cycle),3)^2); 
trial_angle(cycle) = 

asin(xs(touch_down_timeSS(cycle),3)/l_trail01_touch(cycle)); 
trial_angle_degree(cycle) = trial_angle(cycle) * 180 / pi ; 
stepLength(cycle) = l0*cos(touch_down_angle(cycle))+ 

l_trail01_touch(cycle)*cos(trial_angle(cycle)); 

  
x_int_db(cycle) = xs(touch_down_timeSS(cycle),1); 
vx_int_db(cycle) = xs(touch_down_timeSS(cycle),2); 
y_int_db(cycle) = xs(touch_down_timeSS(cycle),3); 
vy_int_db(cycle) =xs(touch_down_timeSS(cycle),4); 
int_db(cycle,:) = [x_int_db(cycle) vx_int_db(cycle) y_int_db(cycle) 

vy_int_db(cycle) ]; 

  
step_sizeDS =  step_sizeSS; 
res_DS = 2000 ; 
end_spanDS = res_DS * step_sizeDS ; 
time_spanDS = 0:step_sizeDS:end_spanDS; 

  
[td,xd] = 

ode113(@spring_basic_nln_double,time_spanDS,int_db(cycle,:),[],cycle); 

 
for count02 = 1:res_DS 

     
del_xd(count02,:) = xd(count02,1)-int_sing01(cycle,1); 

  
l_trail01_leave(cycle,count02) = sqrt(del_xd(count02,:)^2+ 

xd(count02,3)^2); 

  
angle_trail01_leave(cycle,count02) = atan(del_xd(count02,:)/xd(count02,3)); 

  
k_hard_Dp(cycle,count02) = k + a0 * exp(b0*n)*(l0- 

sqrt(del_xd(count02,:)^2+xd(count02,3)^2))^(a1+b1*n-1); 

  
k_hard_Dq(cycle,count02) = k + a0 * exp(b0*n)*(l0- sqrt((stepLength(cycle)- 

del_xd(count02,:))^2 + xd(count02,3)^2))^(a1+b1*n-1); 

  
pDS(count02,:) = 

k_hard_Dp(cycle,count02)*(l0/sqrt(del_xd(count02,:)^2+xd(count02,3)^2)-1); 
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qDS(count02,:) = k_hard_Dq(cycle,count02)*(l0/sqrt((stepLength(cycle)- 

del_xd(count02,:))^2+xd(count02,3)^2)-1); 

  
GRF_DSx_1(count02,cycle) = (- qDS(count02,:)*(stepLength(cycle)- 

del_xd(count02,:))); 

  
GRF_DSy_1(count02,cycle) = (qDS(count02,:)*xd(count02,3)); 

  
GRF_DSx(count02,:) = (pDS(count02,:)*del_xd(count02,:) ); 

  
GRF_DSy(count02,:) = (pDS(count02,:)*xd(count02,3)); 

  
kinetic_E_DS(cycle,count02) = 0.5*mass*(xd(count02,2)^2+xd(count02,4)^2); 

  
potential_E_DS(cycle,count02) = mass*g*xd(count02,3); 

  
l_lead02_DS(cycle,count02) = sqrt((stepLength(cycle)- 

del_xd(count02,:))^2+xd(count02,3)^2) ; 

  
angle_lead02_DS(cycle,count02) = -atan((stepLength(cycle)- 

del_xd(count02,:))/xd(count02,3)) ;%wrt vertical 

  

  
elastic_E_DS(cycle,count02) = 

0.5*k_hard_Dp(cycle,count02)*(l_trail01_leave(cycle,count02)-l0)^2 + 

0.5*k_hard_Dq(cycle,count02)*(l_lead02_DS(cycle,count02)-l0)^2 ; 

  
check_energy_DS(cycle,count02) = kinetic_E_DS(cycle,count02) + 

potential_E_DS(cycle,count02) + elastic_E_DS(cycle,count02) ; 

  
check_length(cycle,count02) = l0 - l_trail01_leave(cycle,count02) ; 

  
    if (check_length(cycle,count02) <= 0.00005 && 

(check_length(cycle,count02) >= -0.00005)) 

  
    l_trail01_take_off(cycle) = l_trail01_leave(cycle,count02); 

  
    take_off(cycle) = count02; 

  
    end 

  
end 

  

  
x_int_sing02(cycle) = xd(take_off(cycle),1); 
vx_int_sing02(cycle) = xd(take_off(cycle),2); 
y_int_sing02(cycle) = xd(take_off(cycle),3); 
vy_int_sing02(cycle) =xd(take_off(cycle),4); 
int_sing02(cycle,:) = [x_int_sing02(cycle) vx_int_sing02(cycle) 

y_int_sing02(cycle) vy_int_sing02(cycle) ]; 

  
l_trail01_start_SS2 = sqrt((xd(take_off(cycle),1)-x_int_sing01(cycle))^2+ 

xd(take_off(cycle),3)^2); 

  
step_sizeSS2 =  step_sizeDS; 

  
res_SS2 = 2000 ; 



296 
 

  
end_spanSS2 = res_SS2 * step_sizeSS2 ; 

  
time_spanSS02 = 0:step_sizeSS2:end_spanSS2; 

  
[ts2,xs2] = 

ode113(@spring_basic_nln_single02,time_spanSS02,int_sing02(cycle,:),[],cycl

e); 
 

 [maxValue(cycle) maxIndex(cycle)] = max(xs2(:,3)); 

  
for count03 = 1:res_SS2 

     
del_xs2(count03,:) = xs2(count03,1)-int_sing01(cycle,1); 

  
k_hard02(cycle,count03) = k + a0 * exp(b0*n)*(l0- sqrt((stepLength(cycle)- 

del_xs2(count03,:))^2+ xs2(count03,3)^2))^(a1+b1*n-1);  

  
qS2(count03,:) = k_hard02(cycle,count03)*(l0/sqrt((stepLength(cycle)- 

del_xs2(count03,:))^2+ xs2(count03,3)^2)-1); 

  
lead_legAngle_SS2(count03,:) = atan(xs2(count03,3)/(stepLength(cycle)- 

del_xs2(count03,:))); 

  
angle_lead02_SS2(cycle,count03) = -atan((stepLength(cycle)-

del_xs2(count03,:))/xs2(count03,3));%wrt vertical 

  
GRF_SS2x(count03,cycle) = (-qS2(count03,:)*(stepLength(cycle)- 

del_xs2(count03,:))); 

  
GRF_SS2y(count03,cycle) = (qS2(count03,:)* xs2(count03,3)); 

  
lead_forceAngle_SS2(count03,:) = 

atan(GRF_SS2y(count03,cycle)/GRF_SS2x(count03,cycle)); 

  
kinetic_E_SS2(cycle,count03) = 

0.5*mass*(xs2(count03,2)^2+xs2(count03,4)^2); 

  
potential_E_SS2(cycle,count03) = mass*g*xs2(count03,3); 

  
l_lead02_SS2(cycle,count03) = sqrt((stepLength(cycle)- 

del_xs2(count03,:))^2+ xs2(count03,3)^2) ; 

  
elastic_E_SS2(cycle,count03) = 

0.5*k_hard02(cycle,count03)*(l_lead02_SS2(cycle,count03)-l0)^2 ; 

  
check_energy_SS2(cycle,count03) = kinetic_E_SS2(cycle,count03) + 

potential_E_SS2(cycle,count03) + elastic_E_SS2(cycle,count03) ; 

   
check_hight02(cycle,count03) = int_sing01(cycle,3)- xs2(count03,3); 

  
tanV_state(count03,:) = atan(xs2(count03,4)/xs2(count03,2)); 

         
diff_y_state(cycle,count03) = int_sing01(cycle,3)- xs2(count03,3); 

  
diff_tanV_state(cycle,count03) = int_tanV_state(cycle)-

tanV_state(count03,:); 
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check_state(cycle,count03) = norm([diff_y_state(cycle,count03); 

diff_tanV_state(cycle,count03)]); 

  
    if count03== maxIndex(cycle) 

         
         max_height(cycle) = xs2(maxIndex(cycle),3); 
         if check_state(cycle,count03) <= 0.01; 

     
          endSS02(cycle) = count03 ; 

         
          end_check_state(cycle) = check_state(cycle,count03); 

         
          disp(['achieved cycle',num2str(cycle)]) 

         
        end 

     
    end   
end 

  
x_cycle{cycle} = 

{xs(1:touch_down_timeSS(cycle),:);xd(1:take_off(cycle),:);xs2(1:endSS02(cyc

le),:)}; 

  
delxHx_cycle{cycle} = 

{del_xs(1:touch_down_timeSS(cycle),:);del_xd(1:take_off(cycle),:);del_xs2(1

:endSS02(cycle),:)}; 

  
x_new_cycle = [x_new_cycle;x_cycle{cycle}]; 

  
delxHx_new_cycle = [delxHx_new_cycle;delxHx_cycle{cycle}]; 

  
int_sing01(cycle+1,:) = xs2(endSS02(cycle),:); 

  
int_sing01_rel(cycle+1,:) = [xs2(endSS02(cycle),1)-

int_sing01(cycle,1),xs2(endSS02(cycle),2:4)]; 

  
x_int_sing01(cycle+1) = int_sing01(cycle+1,1); 

  
init_del_xs = [init_del_xs;del_xs2(endSS02(cycle),:)]; 

  
y_int_sing01(cycle+1) = int_sing01(cycle+1,3); 

                 

              
end 

 

 %Return map and Floquet multiplier 

  
             D_map_point = diff(map_point); 
             norm_map_point = []; 
             for map_row = 1:length(D_map_point) 
             norm_map_point = 

[norm_map_point;norm(D_map_point(map_row,:))]; 
             end 
             [val_min_norm Id_lim_cycle]= min(norm_map_point); 
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k_hard = [k_hard_Dq(cycle-1,1:take_off(cycle-1)),k_hard02(cycle-

1,1:endSS02(cycle-1)),k_hard01(cycle,1:touch_down_timeSS(cycle)), 

k_hard_Dp(cycle,1:take_off(cycle))]; 

  
k_hard_max = max(k_hard); 

  
k_rel_hard = k_hard_max /min(k_hard); 

  
GRF_x = [GRF_DSx_1(1:take_off(cycle-1),cycle-1);GRF_SS2x(1:endSS02(cycle-

1),cycle-

1);GRF_SSx(1:touch_down_timeSS(cycle),:);GRF_DSx(1:take_off(cycle),:)]; 

  
GRF_y = [GRF_DSy_1(1:take_off(cycle-1),cycle-1);GRF_SS2y(1:endSS02(cycle-

1),cycle-

1);GRF_SSy(1:touch_down_timeSS(cycle),:);GRF_DSy(1:take_off(cycle),:)]; 

  
GRF_net = sqrt(GRF_x.^2+ GRF_y.^2); 

  
legLength = [l_lead02_DS(cycle-1,1:take_off(cycle-1))';l_lead02_SS2(cycle-

1,1:endSS02(cycle-

1))';l_trail01_SS(cycle,1:touch_down_timeSS(cycle))';l_trail01_leave(cycle,

1:take_off(cycle))']; 

  
legAngle = [angle_lead02_DS(cycle-1,1:take_off(cycle-

1))';angle_lead02_SS2(cycle-1,1:endSS02(cycle-

1))';angle_trail01_SS(cycle,1:touch_down_timeSS(cycle))';angle_trail01_leav

e(cycle,1:take_off(cycle))']; 

  

  
sumGRF_DSx = GRF_DSx_1(:,cycle) + GRF_DSx ; 

  
sumGRF_DSx_step = GRF_DSx_1(1:take_off(cycle),cycle) + 

GRF_DSx(1:take_off(cycle),:) ; 

  

  
sumGRF_DSy = GRF_DSy_1(:,cycle) + GRF_DSy ; 

  
sumGRF_DSy_step = GRF_DSy_1(1:take_off(cycle),cycle) + 

GRF_DSy(1:take_off(cycle),:) ; 

  

  
netGRF_SS = sqrt(GRF_SSx.^2 + GRF_SSy.^2); 

  
netGRF_SS_step = sqrt(GRF_SSx(1:touch_down_timeSS(cycle),:).^2 + 

GRF_SSy(1:touch_down_timeSS(cycle),:).^2); 

  
netGRF_DS = sqrt(sumGRF_DSx.^2 + sumGRF_DSy.^2); 

  
netGRF_DS_step = sqrt(sumGRF_DSx(1:take_off(cycle),:).^2 + 

sumGRF_DSy(1:take_off(cycle),:).^2); 

  
netGRF_SS02 = sqrt(GRF_SS2x(:,cycle).^2 + GRF_SS2y(:,cycle).^2); 

  
netGRF_SS02_step = sqrt(GRF_SS2x(1:endSS02(cycle-1),cycle-1).^2 + 

GRF_SS2y(1:endSS02(cycle-1),cycle-1).^2); 
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netGRF_step = [netGRF_SS_step;netGRF_DS_step;netGRF_SS02_step]; 
DnetGRF_step = diff(netGRF_step); 
sumDnetGRF_step = sum(DnetGRF_step); 

  

  

  
phase = length(x_new_cycle); 

  
for count_phase = 1:phase 

     
   length_x_new_cycle(count_phase) = length(x_new_cycle{count_phase}); 

     
end 

  
sum_length = sum(length_x_new_cycle) ; 

  
renew_x_new_cycle = zeros(sum_length,4); 

  
renew_delxHx_new_cycle = zeros(sum_length,1); 

  
leg_length_cycle = zeros(sum_length,1); 

  
count_x_new_cycle = 1; 

  
%obtain CoM motion from cell array to matrix 

  
for count_phase = 1:phase 

  
        for count_x_inphase = 1:length(x_new_cycle{count_phase})  

             
            renew_x_new_cycle(count_x_new_cycle,:) = 

x_new_cycle{count_phase}(count_x_inphase,:); 

            
            renew_delxHx_new_cycle(count_x_new_cycle,:) = 

delxHx_new_cycle{count_phase}(count_x_inphase,:); 

             
            leg_length_cycle(count_x_new_cycle,:) = 

sqrt(renew_delxHx_new_cycle(count_x_new_cycle,:).^2+ 

renew_x_new_cycle(count_x_new_cycle,3).^2); 

             
            count_x_new_cycle = count_x_new_cycle + 1 ; 

             
        end 

     

  
end 

  
diff_leg_length_cycle = 

(1/step_sizeSS)*[diff(leg_length_cycle(1:2,:));diff(leg_length_cycle)]; 

  
%% 
%Distance btw apex point and 45 degree line 

  
fixed_point = map_point(Id_lim_cycle,:); 
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fit_first = []; 
fit_next = []; 

 
[row_IC col_IC]= size(map_point); 

  
for count04 = 1:col_IC 

  
fit_first = [fit_first; map_point(1:end-1,count04)' - fixed_point(count04)' 

]; 
fit_next = [fit_next; map_point(2:end,count04)' - fixed_point(count04)' ]; 

 
end 

  
Jmatrix = (fit_next * fit_first')*pinv(fit_first*fit_first'); 

  

  
FQmult = abs(eig(Jmatrix)); 
max_FQmult = max(FQmult); 
min_FQmult = min(FQmult); 

  
    if (max_FQmult < 1) 

  
    disp(['k                             |  ',num2str(k)]) 
    disp(['angle                         |  

',num2str(design_touch_down_angle*180/pi)]) 
    disp(['cycle                         |  ',num2str(cycle)]) 
    disp(['fixed point                   |  ',num2str(fixed_point)]) 
    disp(['y0                            |  ',num2str(y_int_sing01(1))]) 
    disp(['y transition                  |  ',num2str(y_touch)]) 
    disp(['Stable Floquet multiplier     |  ',num2str(max_FQmult)]) 

     
    elseif (max_FQmult > 1 && min_FQmult < 1) 

     
    disp(['k                             |  ',num2str(k)]) 
    disp(['angle                         |  

',num2str(design_touch_down_angle*180/pi)]) 
    disp(['cycle                         |  ',num2str(cycle)]) 
    disp(['fixed point                   |  ',num2str(fixed_point)]) 
    disp(['y0                            |  ',num2str(y_int_sing01(1))]) 
    disp(['y transition                  |  ',num2str(y_touch)]) 
    disp(['Saddle Floquet multiplier     |  ',num2str(max_FQmult)]) 

     
    else 

         
    disp(['k                             |  ',num2str(k)]) 
    disp(['angle                         |  

',num2str(design_touch_down_angle*180/pi)]) 
    disp(['cycle                         |  ',num2str(cycle)]) 
    disp(['fixed point                   |  ',num2str(fixed_point)]) 
    disp(['y0                            |  ',num2str(y_int_sing01(1))]) 
    disp(['y transition                  |  ',num2str(y_touch)]) 
    disp(['Unstable Floquet multiplier     |  ',num2str(max_FQmult)]) 

  
    end  
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6.2D. Human walking prediction using compliant leg model with axial and tangential 

elastic leg property (CATE) 

 

6.2.1D CATE model with linear elastic leg property 

 
%% 
global k l0 kt_SS angH0_SS kt_DS angH0_DS mass stepLength g x_int_sing01 

step_sizeSS step_sizeDS step_sizeSS2 
global a_re01 a_F0 a_re02 kt1 kt3 
global init_angle02 final_angle02 

  
%--------------------------------------------------------- 
k = 10976;%N/m  
kt3 = -220; 

 
init_angle02 = -0.37; 
design_touch_down_angle = 0.5*pi - abs(init_angle02);%horizontal angle 

marks td timing, big angle = early td 
final_angle02 = 0.41; 
%--------------------------------------------------------- 
l0 = 0.972;%m 

  
a_re01 =  0.075;  
a_F0 = 0.39; 
a_re02 = 0.9; 

  
kt1= (1.07)*-kt3*(final_angle02-(init_angle02 + a_F0*(final_angle02-

init_angle02)))*(a_re02-a_F0)/(a_F0*(final_angle02-init_angle02)*a_re01);  
mass = 69;%kg 
g = 9.81;% m/s2 

  
%% 

  
toggle_check = 0; 

  
x_int_sing01 = 0.0; %m 

  
y_int_sing01 = 0.935;%m 

  
delta_spring_length = l0 - y_int_sing01; % apex height at vertical leg only 

  
y_touch = l0*sin(design_touch_down_angle); 

  

  
vx_int_sing01 = 1.15; 
vel_angle = 7*pi/180;  
vy_int_sing01 = vx_int_sing01*tan(vel_angle); 

  
int_sing01 = [x_int_sing01 vx_int_sing01 y_int_sing01 vy_int_sing01]; 

   
x_new_cycle = []; 

  
delxHx_new_cycle = []; 
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init_del_xs = []; 

  
norm_D_state = []; 

  
for cycle = 1:3 

  
step_sizeSS = 0.0001; 
res_SS = 3000 ; 
end_spanSS = res_SS * step_sizeSS ; 
time_spanSS = 0:step_sizeSS:end_spanSS; %max = 1 millisec 

 
[ts1,xs] = 

ode113(@spring_leg_newNT_single_asym01,time_spanSS,int_sing01(cycle,:),[],c

ycle); 

 
int_sing01_abs(cycle,:) = [xs(1,1)-

int_sing01(cycle,1),int_sing01(cycle,2:4)]; 

  
for count01 = 1:res_SS 

  
del_xs(count01,:) = xs(count01,1)-int_sing01(cycle,1); 

     
l_trail01_SS(cycle,count01) = sqrt(del_xs(count01,:)^2+xs(count01,3)^2); 

  
angle_trail01_SS(cycle,count01) = 

atan(del_xs(count01,:)/xs(count01,3));%wrt vertical 

  
angleH_trail01_SS(cycle,count01) = 

atan(xs(count01,3)/del_xs(count01,:));%wrt horizontal 

  
lead_angle(cycle,count01) = asin(xs(count01,3)/l0);%virtual angle when lead 

leg leaning to touched wrt horizontal 

  
lead_angle_degree(cycle,count01) = lead_angle(cycle,count01)*180/pi; 

  
nForce_model_SS(count01,cycle) =  k*(l0-l_trail01_SS(cycle,count01)); 

  
Fnx_SS(count01,:)= nForce_model_SS(count01,cycle)* 

del_xs(count01,:)/l_trail01_SS(cycle,count01); 

  
Fny_SS(count01,:)= nForce_model_SS(count01,cycle)* 

xs(count01,3)/l_trail01_SS(cycle,count01); 

  

  
%%%%%%%%%%% 

  
angle_period = final_angle02-init_angle02; 
        %-----partI 

  
        angle_re01 = init_angle02 + a_re01*angle_period ; 

  
        tForce_model_SS(count01,cycle) = 

kt1*(angle_trail01_SS(cycle,count01) - 

init_angle02).*(angle_trail01_SS(cycle,count01) <= angle_re01); 

  
        %-----partII 
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        Ft_re1 = kt1*(angle_re01 - init_angle02); 
        angle_F0 = init_angle02 + a_F0*angle_period ; 

  
        kt2 = (0 - Ft_re1)/(angle_F0 - angle_re01); 

  
        tForce_model_SS(count01,cycle) = tForce_model_SS(count01,cycle) + 

(angle_trail01_SS(cycle,count01) > angle_re01 & 

angle_trail01_SS(cycle,count01) <= angle_F0).* 

(kt2*(angle_trail01_SS(cycle,count01) - angle_F0)); 

  
        %-----partIII 
        angle_re02 = init_angle02 + a_re02*angle_period ; 

  
        tForce_model_SS(count01,cycle) = tForce_model_SS(count01,cycle) + 

(angle_trail01_SS(cycle,count01) > angle_F0 & 

angle_trail01_SS(cycle,count01) <= angle_re02).* 

(kt3*(angle_trail01_SS(cycle,count01) - angle_F0)); 

  
        %-----partIV 
        Ft_re3 = kt3*(angle_re02 - angle_F0); 

  
        kt4 = (0 - Ft_re3)/(final_angle02 - angle_re02 ); 

  
        tForce_model_SS(count01,cycle) = tForce_model_SS(count01,cycle) + 

(angle_trail01_SS(cycle,count01) > angle_re02 & 

angle_trail01_SS(cycle,count01) <= final_angle02).* 

(kt4*(angle_trail01_SS(cycle,count01) - angle_re02)+ Ft_re3); 

  
Ftx_SS(count01,:)= tForce_model_SS(count01,cycle)* 

xs(count01,3)/l_trail01_SS(cycle,count01); 

  
Fty_SS(count01,:)= -tForce_model_SS(count01,cycle)* 

del_xs(count01,:)/l_trail01_SS(cycle,count01); 

  
%%%%%%%%%%%% 

     
GRF_SSx(count01,:) = Fnx_SS(count01,:) + Ftx_SS(count01,:); 

  
GRF_SSy(count01,:) = Fny_SS(count01,:)+ Fty_SS(count01,:); 

  

  
check_hight(cycle,count01) = xs(count01,3)- y_touch; 

  
    if ((check_hight(cycle,count01) <= 0.0001) && 

(check_hight(cycle,count01) >= -0.0001)) 

  
    touch_down_angle(cycle) = lead_angle(cycle,count01) ; 

  
    touch_down_angle_degree(cycle) = lead_angle_degree(cycle,count01); 

  
    touch_down_timeSS(cycle) = count01; 

     
    end 

  
end 

  
%% 
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l_trail01_touch(cycle) = sqrt((xs(touch_down_timeSS(cycle),1)-

x_int_sing01(cycle))^2+xs(touch_down_timeSS(cycle),3)^2); 
trail_angle(cycle) = 

asin(xs(touch_down_timeSS(cycle),3)/l_trail01_touch(cycle)); 
trail_angle_degree(cycle) = trail_angle(cycle) * 180 / pi ; 
stepLength(cycle) = l0*cos(touch_down_angle(cycle))+ 

l_trail01_touch(cycle)*cos(trail_angle(cycle)); 

  
x_int_db(cycle) = xs(touch_down_timeSS(cycle),1); 
vx_int_db(cycle) = xs(touch_down_timeSS(cycle),2); 
y_int_db(cycle) = xs(touch_down_timeSS(cycle),3); 
vy_int_db(cycle) =xs(touch_down_timeSS(cycle),4); 
int_db(cycle,:) = [x_int_db(cycle) vx_int_db(cycle) y_int_db(cycle) 

vy_int_db(cycle) ]; 

  
step_sizeDS =  step_sizeSS; 
res_DS = 3000 ; 
end_spanDS = res_DS * step_sizeDS ; 
time_spanDS = 0:step_sizeDS:end_spanDS; 

  
kt_DS = kt_SS*(angH0_SS - trail_angle(cycle))/(angH0_DS - 

trail_angle(cycle)); 

  
[td,xd] = 

ode113(@spring_leg_newNT_double_asym,time_spanDS,int_db(cycle,:),[],cycle); 

 
for count02 = 1:res_DS 

     
del_xd(count02,:) = xd(count02,1)-int_sing01(cycle,1); 

  
l_trail01_leave(cycle,count02) = sqrt(del_xd(count02,:)^2+ 

xd(count02,3)^2); 

  
l_lead02_DS(cycle,count02) = sqrt((stepLength(cycle)- 

del_xd(count02,:))^2+xd(count02,3)^2) ; 

  
angle_trail01_leave(cycle,count02) = 

atan(del_xd(count02,:)/xd(count02,3));%wrt vertical 

  
angleH_trail01_leave(cycle,count02) = 

atan(xd(count02,3)/del_xd(count02,:)); 

  
angle_lead02_DS(cycle,count02) = - atan((stepLength(cycle)- 

del_xd(count02,:))/xd(count02,3)) ;%wrt vertical 

  
angleH_lead02_DS(cycle,count02) = atan(xd(count02,3)/(stepLength(cycle)- 

del_xd(count02,:))) ; 

  
nForce_model_trail(count02,cycle) =  k*(l0 - 

l_trail01_leave(cycle,count02)); 

  
nForce_model_lead(count02,cycle) =  k*(l0 - l_lead02_DS(cycle,count02)); 

  
Fnx_DS_lead(count02,cycle) = -

(nForce_model_lead(count02,cycle)*(stepLength(cycle)- 

del_xd(count02,:))/l_lead02_DS(cycle,count02)) ; 
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Fny_DS_lead(count02,cycle) = 

(nForce_model_lead(count02,cycle)*xd(count02,3)/l_lead02_DS(cycle,count02))

; 

  
Fnx_DS(count02,:) = 

(nForce_model_trail(count02,cycle)*del_xd(count02,:)/l_trail01_leave(cycle,

count02)) ; 

  
Fny_DS(count02,:) = 

(nForce_model_trail(count02,cycle)*xd(count02,3)/l_trail01_leave(cycle,coun

t02)); 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %-----part I 

         
        tForce_model_lead(count02,cycle) = 

kt1*(angle_lead02_DS(cycle,count02) - 

init_angle02).*(angle_lead02_DS(cycle,count02) <= angle_re01); 

  
        %-----part II 

         
        tForce_model_lead(count02,cycle) = tForce_model_lead(count02,cycle) 

+ (angle_lead02_DS(cycle,count02) > angle_re01 & 

angle_lead02_DS(cycle,count02) <= angle_F0).* 

(kt2*(angle_lead02_DS(cycle,count02) - angle_F0)); 

  
        %-----part III 

  
        tForce_model_trail(count02,cycle) = 

(angle_trail01_leave(cycle,count02) > angle_F0 & 

angle_trail01_leave(cycle,count02)<= angle_re02).* 

(kt3*(angle_trail01_leave(cycle,count02) - angle_F0)); 

  

                 
        %-----partIV 

         
        tForce_model_trail(count02,cycle) = 

tForce_model_trail(count02,cycle) + (angle_trail01_leave(cycle,count02) > 

angle_re02 & angle_trail01_leave(cycle,count02) <= final_angle02).* 

(kt4*(angle_trail01_leave(cycle,count02) - angle_re02)+ Ft_re3); 

         

         
%%%%%%%%%% 

  
Ftx_DS_lead(count02,cycle)= 

tForce_model_lead(count02,cycle)*xd(count02,3)/l_lead02_DS(cycle,count02); 

  
Fty_DS_lead(count02,cycle)=  

tForce_model_lead(count02,cycle)*(stepLength(cycle)- 

del_xd(count02,:))/l_lead02_DS(cycle,count02); 

  

  
Ftx_DS(count02,:)= tForce_model_trail(count02,cycle)* 

xd(count02,3)/l_trail01_leave(cycle,count02); 
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Fty_DS(count02,:)= -tForce_model_trail(count02,cycle)* 

del_xd(count02,:)/l_trail01_leave(cycle,count02) ; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
GRF_DSx_lead(count02,cycle) = Fnx_DS_lead(count02,cycle) + 

Ftx_DS_lead(count02,cycle); 

  
GRF_DSy_lead(count02,cycle) = Fny_DS_lead(count02,cycle)+ 

Fty_DS_lead(count02,cycle); 

  
GRF_DSx(count02,:) = Fnx_DS(count02,:)+ Ftx_DS (count02,:) ; 

  
GRF_DSy(count02,:) = Fny_DS(count02,:)+ Fty_DS(count02,:); 

  

  
GRF_DSx_sum(count02,cycle) = GRF_DSx_lead(count02,cycle)+ 

GRF_DSx(count02,:); 

  
GRF_DSy_sum(count02,cycle) = GRF_DSy_lead(count02,cycle)+ 

GRF_DSy(count02,:); 

  

  
check_length(cycle,count02) = l0 - l_trail01_leave(cycle,count02) ; 

  
    if (check_length(cycle,count02) <= 0.0001 && 

(check_length(cycle,count02) >= -0.0001)) 

  
    l_trail01_take_off(cycle) = l_trail01_leave(cycle,count02); 

  
    take_off(cycle) = count02; 

  
    end 

  
end 

  

  
%% 
x_int_sing02(cycle) = xd(take_off(cycle),1); 
vx_int_sing02(cycle) = xd(take_off(cycle),2); 
y_int_sing02(cycle) = xd(take_off(cycle),3); 
vy_int_sing02(cycle) =xd(take_off(cycle),4); 
int_sing02(cycle,:) = [x_int_sing02(cycle) vx_int_sing02(cycle) 

y_int_sing02(cycle) vy_int_sing02(cycle) ]; 

  
l_trail01_start_SS2 = sqrt((xd(take_off(cycle),1)-x_int_sing01(cycle))^2+ 

xd(take_off(cycle),3)^2); 

  
step_sizeSS2 =  step_sizeDS; 

  
res_SS2 = 4000 ; 

  
end_spanSS2 = res_SS2 * step_sizeSS2 ; 

  
time_spanSS02 = 0:step_sizeSS2:end_spanSS2; 

  
toggle_check = 0 ; 
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 [ts2,xs2] = 

ode113(@spring_leg_newNT_single_asym02,time_spanSS02,int_sing02(cycle,:),[]

,cycle); 
 [maxValue(cycle) maxIndex(cycle)] = max(xs2(:,3)); 

  
for count03 = 1:res_SS2 

     
del_xs2(count03,:) = xs2(count03,1)-int_sing01(cycle,1); 

  
l_lead02_SS2(cycle,count03) = sqrt((stepLength(cycle)- 

del_xs2(count03,:))^2+ xs2(count03,3)^2) ; 

  
angleH_lead02_SS2(cycle,count03) = atan(xs2(count03,3)/(stepLength(cycle)- 

del_xs2(count03,:))); 

  
angle_lead02_SS2(cycle,count03) = -atan((stepLength(cycle)-

del_xs2(count03,:))/xs2(count03,3));%wrt vertical 

  
nForce_model_SS2(count03,cycle) = k*(l0 - l_lead02_SS2(cycle,count03)); 

  
Fnx_SS2(count03,cycle) = -nForce_model_SS2(count03,cycle)* 

(stepLength(cycle)- del_xs2(count03,:))/l_lead02_SS2(cycle,count03); 

  
Fny_SS2(count03,cycle) = nForce_model_SS2(count03,cycle)* 

xs2(count03,3)/l_lead02_SS2(cycle,count03); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
        %-----part I 

         
        tForce_model_SS2(count03,cycle) = 

kt1*(angle_lead02_SS2(cycle,count03) - 

init_angle02).*(angle_lead02_SS2(cycle,count03) <= angle_re01); 

  
        %-----part II 

         
        tForce_model_SS2(count03,cycle) = tForce_model_SS2(count03,cycle) + 

(angle_lead02_SS2(cycle,count03) > angle_re01 & 

angle_lead02_SS2(cycle,count03) <= angle_F0).* 

(kt2*(angle_lead02_SS2(cycle,count03) - angle_F0)); 

  
        %-----part III 

  
        tForce_model_SS2(count03,cycle) = tForce_model_SS2(count03,cycle) 

+(angle_lead02_SS2(cycle,count03) > angle_F0 & 

angle_lead02_SS2(cycle,count03)<= angle_re02).* 

(kt3*(angle_lead02_SS2(cycle,count03) - angle_F0)); 

  

         

         
Ftx_SS2(count03,cycle)= tForce_model_SS2(count03,cycle)* 

xs2(count03,3)/l_lead02_SS2(cycle,count03); 

  
Fty_SS2(count03,cycle)= tForce_model_SS2(count03,cycle)* 

(stepLength(cycle)- del_xs2(count03,:))/l_lead02_SS2(cycle,count03); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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GRF_SS2x(count03,cycle) = Fnx_SS2(count03,cycle)+ Ftx_SS2(count03,cycle); 

  
GRF_SS2y(count03,cycle) = Fny_SS2(count03,cycle)+ Fty_SS2(count03,cycle); 

  
lead_forceAngle_SS2(count03,:) = 

atan(GRF_SS2y(count03,:)/GRF_SS2x(count03,:)); 

  
check_hight02(cycle,count03) = int_sing01(cycle,3)- xs2(count03,3); 

  
check_angle(cycle,count03) =   angle_lead02_SS2(cycle,count03); 

  
angle_head(cycle,count03) = atan(xs2(count03,4)/xs2(count03,2)); 

  
temp_state_end(count03,:)= [xs2(count03,2),angle_head(cycle,count03)]; 

  
temp_state_org(count03,:) = 

[int_sing01(cycle,2),atan(int_sing01(cycle,4)/int_sing01(cycle,2))]; 

  
check_state(cycle,count03) = norm(temp_state_org(count03,:)- 

temp_state_end(count03,:)); 

  

  
       if ((check_angle(cycle,count03) <= 0.001) && 

(check_angle(cycle,count03) >= -0.001)) 

            
           if toggle_check == 0 

            
           upright_time (cycle)= count03; 

            
           upright_state(cycle) = check_state(cycle,count03); 

                       
           upright_height(cycle) = xs2(count03,3); 

            
           toggle_check = 1; 

            

           
            if check_state(cycle,count03) <= 0.15; 

                 

                 
            state_end(cycle,:)=[xs2(count03,2),angle_head(cycle,count03)]; 

  
            state_org(cycle,:) = 

[int_sing01(cycle,2),atan(int_sing01(cycle,4)/int_sing01(cycle,2))]; 

     
            endSS02(cycle) = count03 ; 

         
            end_check_state(cycle) = check_state(cycle,count03); 

         
            disp(['achieved cycle',num2str(cycle)]) 

         
            end 

             
%              toggle_check = 0 ; 

             
           end 
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       end    

          
   end 
toggle_check = 0 ;  

  
x_cycle{cycle} = 

{xs(1:touch_down_timeSS(cycle),:);xd(1:take_off(cycle),:);xs2(1:endSS02(cyc

le),:)}; 

  
delxHx_cycle{cycle} = 

{del_xs(1:touch_down_timeSS(cycle),:);del_xd(1:take_off(cycle),:);del_xs2(1

:endSS02(cycle),:)}; 

  
x_new_cycle =  [x_new_cycle;x_cycle{cycle}]; 

  
delxHx_new_cycle = [delxHx_new_cycle;delxHx_cycle{cycle}]; 

  
int_sing01(cycle+1,:) = xs2(endSS02(cycle),:); 

  
state_org(cycle+1,:) = state_end(cycle,:); 

  
int_sing01_abs(cycle+1,:) = [ xs2(endSS02(cycle),1)-

int_sing01(cycle+1,1),int_sing01(cycle+1,2:4)]; 

  
x_int_sing01(cycle+1) = int_sing01(cycle+1,1); 

  

  
init_del_xs = [init_del_xs;del_xs2(endSS02(cycle),:)]; 

  
y_int_sing01(cycle+1) = int_sing01(cycle+1,3); 

  

             
norm_state(cycle,:) = norm(state_org(cycle,:)); %%% 

                
               %% 
        if cycle ==1 

                
        figure; 
        

plot(xs(1:touch_down_timeSS(cycle),1),xs(1:touch_down_timeSS(cycle),3),'-

bo','MarkerSize',3) 
        hold on 
        plot(xd(1:take_off(cycle),1),xd(1:take_off(cycle),3),'-

ro','MarkerSize',3) 
        hold on 
        plot(xs2(1:endSS02(cycle),1),xs2(1:endSS02(cycle),3),'-

ko','MarkerSize',3) 
        grid on 
        title('displacement') 

  
        figure; 
        

plot(xs(1:touch_down_timeSS(cycle),2),xs(1:touch_down_timeSS(cycle),4),'-

bo','MarkerSize',3) 
        hold on 
        plot(xd(1:take_off(cycle),2),xd(1:take_off(cycle),4),'-

ro','MarkerSize',3) 
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        hold on 
        plot(xs2(1:endSS02(cycle),2),xs2(1:endSS02(cycle),4),'-

ko','MarkerSize',3) 
        grid on 
        title('velocity') 

  
        end              
end 

  
%GRF one leg 
GRF_x = [GRF_DSx_lead(1:take_off(cycle-1),cycle-

1);GRF_SS2x(1:endSS02(cycle-1),cycle-

1);GRF_SSx(1:touch_down_timeSS(cycle),:);GRF_DSx(1:take_off(cycle),:)]; 

  
GRF_y = [GRF_DSy_lead(1:take_off(cycle-1),cycle-

1);GRF_SS2y(1:endSS02(cycle-1),cycle-

1);GRF_SSy(1:touch_down_timeSS(cycle),:);GRF_DSy(1:take_off(cycle),:)]; 

  
GRF_net = sqrt(GRF_x.^2+ GRF_y.^2); 

  

  
Ft_cycle = [tForce_model_lead(1:take_off(cycle-1),cycle-

1);tForce_model_SS2(1:endSS02(cycle-1),cycle-

1);tForce_model_SS(1:touch_down_timeSS(cycle),cycle);tForce_model_trail(1:t

ake_off(cycle),cycle)]; 

  
legLength = [l_lead02_DS(cycle-1,1:take_off(cycle-1))';l_lead02_SS2(cycle-

1,1:endSS02(cycle-

1))';l_trail01_SS(cycle,1:touch_down_timeSS(cycle))';l_trail01_leave(cycle,

1:take_off(cycle))']; 

  
legAngle = [angle_lead02_DS(cycle-1,1:take_off(cycle-

1))';angle_lead02_SS2(cycle-1,1:endSS02(cycle-

1))';angle_trail01_SS(cycle,1:touch_down_timeSS(cycle))';angle_trail01_leav

e(cycle,1:take_off(cycle))']; 

 

  

  
%GRF both legs 
sumGRF_DSx = GRF_DSx_lead(:,cycle) + GRF_DSx ; 

  
sumGRF_DSx_step = GRF_DSx_lead(1:take_off(cycle),cycle) + 

GRF_DSx(1:take_off(cycle),:) ; 

  

  
sumGRF_DSy = GRF_DSy_lead(:,cycle) + GRF_DSy ; 

  
sumGRF_DSy_step = GRF_DSy_lead(1:take_off(cycle),cycle) + 

GRF_DSy(1:take_off(cycle),:) ; 

  

  
netGRF_SS = sqrt(GRF_SSx.^2 + GRF_SSy.^2); 

  
netGRF_SS_step = sqrt(GRF_SSx(1:touch_down_timeSS(cycle),:).^2 + 

GRF_SSy(1:touch_down_timeSS(cycle),:).^2); 

  
netGRF_DS = sqrt(sumGRF_DSx.^2 + sumGRF_DSy.^2); 
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netGRF_DS_step = sqrt(sumGRF_DSx(1:take_off(cycle),:).^2 + 

sumGRF_DSy(1:take_off(cycle),:).^2); 

  
netGRF_SS02 = sqrt(GRF_SS2x(:,cycle).^2 + GRF_SS2y(:,cycle).^2); 

  
netGRF_SS02_step = sqrt(GRF_SS2x(1:endSS02(cycle-1),cycle-1).^2 + 

GRF_SS2y(1:endSS02(cycle-1),cycle-1).^2); 

  

  
netGRF_step = [netGRF_SS_step;netGRF_DS_step;netGRF_SS02_step]; 
DnetGRF_step = diff(netGRF_step); 
sumDnetGRF_step = sum(DnetGRF_step); 

 

  
%%return map and Floquet multipliers 

  
phase = length(x_new_cycle); 

  
for count_phase = 1:phase 

     
   length_x_new_cycle(count_phase) = length(x_new_cycle{count_phase}); 

     
end 

  
sum_length = sum(length_x_new_cycle) ; 

  
renew_x_new_cycle = zeros(sum_length,4); 

  
renew_delxHx_new_cycle = zeros(sum_length,1); 

  
leg_length_cycle = zeros(sum_length,1); 

  
count_x_new_cycle = 1; 

  
%obtain CoM motion from cell array to matrix 

  
for count_phase = 1:phase 

  
    %for count_x_new_cycle = 1: sum_length  

     
        for count_x_inphase = 1:length(x_new_cycle{count_phase})  

             
            renew_x_new_cycle(count_x_new_cycle,:) = 

x_new_cycle{count_phase}(count_x_inphase,:); 

            
            renew_delxHx_new_cycle(count_x_new_cycle,:) = 

delxHx_new_cycle{count_phase}(count_x_inphase,:); 

             
            leg_length_cycle(count_x_new_cycle,:) = 

sqrt(renew_delxHx_new_cycle(count_x_new_cycle,:).^2+ 

renew_x_new_cycle(count_x_new_cycle,3).^2); 

             
            count_x_new_cycle = count_x_new_cycle + 1 ; 

             
            %count_x_new_cycle_odd(count_x_new_cycle) =   
        end 
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    %end     

  
end 

  
diff_leg_length_cycle = 

(1/step_sizeSS)*[diff(leg_length_cycle(1:2,:));diff(leg_length_cycle)]; 

  
%% 
%Distance btw apex point and 45 degree line 

  
actual_state = [norm_state(1:end-1,:), norm_state(2:end,:)]; 

  
ref_state = [norm_state(1:end-1,:), norm_state(1:end-1,:)]; 

  

  
D_state = actual_state - ref_state; 
norm_D_state = norm(D_state); 
[val_min_norm Id_lim_cycle]= min(norm_D_state); 

  

  
fixed_point = state_org(Id_lim_cycle,:); 

  

  
fit_first = []; 
fit_next = []; 

  

  
[row_IC col_IC]= size(state_org); 

  
for count04 = 1:col_IC 

  
fit_first = [fit_first; state_org(1:end-1,count04)' - fixed_point(count04)' 

]; 

  
fit_next = [fit_next; state_org(2:end,count04)' - fixed_point(count04)' ]; 

  
end 

  
sqr_fit_first = fit_first*fit_first'; 

  
dfit_first = det(fit_first*fit_first'); 

  

 
Jmatrix = (fit_next * fit_first')*pinv(fit_first*fit_first'); 

  

  
FQmult = eig(Jmatrix); 
max_FQmult = max(abs(FQmult)); 

  
disp(['k                        |  ',num2str(k)]) 
disp(['angle                    |  

',num2str(design_touch_down_angle*180/pi)]) 
disp(['cycle                    |  ',num2str(cycle)]) 
disp(['fixed point              |  ',num2str(fixed_point)]) 
disp(['y0                       |  ',num2str(y_int_sing01(1))]) 
disp(['y transition             |  ',num2str(y_touch)]) 
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disp(['Max Floquet multiplier   |  ',num2str(max_FQmult)]) 
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Chapter 7 

7.1D. Human walking prediction using posture-dependent elastic leg model (PDE) 

global l0 lf q0 qf fl0 fq0  
global angle_leg02 length_fCoP02 tForce_model_q0 
global mass stepLength g x_int_sing01 step_sizeSS step_sizeDS step_sizeSS2 
global LeastSqrN_l0 LeastSqrT %stiffnessN stiffnessT 

  
mass = 69;%kg 
g = 9.81;% m/s2 

  
l0 = length_fCoP02(1);%(m) 
lf = length_fCoP02(end);%(m) 
q0 = angle_leg02(1); 
qf = angle_leg02(end); 

  
[minFt IDminFt] = min(abs(tForce_model_q0(10:end-10))); 
fq0 = angle_leg02(10+IDminFt); 

  
y_touch = zeros(1,1); 

  
y_touch(1) = 0.001*l0*cos(q0); 

  
%CoM motion @ vertical leg angle 

  
toggle_check = 0; 

  
x_int_sing01 = 0; %mm 

  
y_int_sing01 = 0.924;%mm  

  
vx_int_sing01 = 1.6; 

  
vy_int_sing01 = 0.17; 

  
vel_angle = atan(vy_int_sing01/vx_int_sing01); 

  
vel_angle_deg = atan(vy_int_sing01/vx_int_sing01)*180/pi; 

  

  
int_sing01 = [x_int_sing01 vx_int_sing01 y_int_sing01 vy_int_sing01]; 

   
x_new_cycle = []; 

  
delxHx_new_cycle = []; 

  
init_del_xs = []; 

  
norm_D_Ic = []; 

  
for cycle = 1:2 

  
step_sizeSS = 0.0001;%max = 1 millisec 
res_SS = 2000; 
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end_spanSS = res_SS * step_sizeSS ; 
time_spanSS = 0:step_sizeSS:end_spanSS; %max = 1 millisec 
toggle = 0 ; 

  
[ts1,xs] = 

ode113(@nln_legFnfq_NTsingle01,time_spanSS,int_sing01(cycle,:),[],cycle); 

 
int_sing01_abs(cycle,:) = [xs(1,1)-

int_sing01(cycle,1),int_sing01(cycle,2:4)]; 

  
    for count01 = 1:res_SS 

  
    del_xs(count01,:) = xs(count01,1)-int_sing01(cycle,1); 

  
    l_trail01_SS(cycle,count01) = 

sqrt(del_xs(count01,:)^2+xs(count01,3)^2); 

  
    angle_trail01_SS(cycle,count01) = 

atan(del_xs(count01,:)/xs(count01,3));%wrt vertical 

  
    lead_angle_SS(cycle,count01) = asin(xs(count01,3)/(0.001*l0));%virtual 

angle when lead leg leaning to touch 

  
    lead_angle_SS_degree(cycle,count01) = 

lead_angle_SS(cycle,count01)*180/pi; 

     

     
    sin_angle_trail(cycle,count01) = 

del_xs(count01,:)/l_trail01_SS(cycle,count01); 

     
    cos_angle_trail(cycle,count01) = 

xs(count01,3)/l_trail01_SS(cycle,count01); 

  
    posture(count01,:) = (angle_trail01_SS(cycle,count01) - q0)/(qf - q0); 

  
    a1L = LeastSqrN_l0(1); 
    b1L = LeastSqrN_l0(2); 
    a2L = LeastSqrN_l0(3); 
    b2L = LeastSqrN_l0(4); 
    a3L = LeastSqrN_l0(5); 
    b3L = LeastSqrN_l0(6); 
    a4L = LeastSqrN_l0(7); 
    b4L = LeastSqrN_l0(8); 
    a5L = LeastSqrN_l0(9); 
    b5L = LeastSqrN_l0(10); 
    stiffnessN = LeastSqrN_l0(11); 

  

         
    l1_term = a1L * (cos(2*pi*posture(count01,:))-1)+ b1L * 

sin(2*pi*posture(count01,:)); 
    l2_term = a2L * (cos(2*2*pi*posture(count01,:))-1)+ b2L * 

sin(2*2*pi*posture(count01,:)); 
    l3_term = a3L * (cos(2*3*pi*posture(count01,:))-1)+ b3L * 

sin(2*3*pi*posture(count01,:)); 
    l4_term = a4L * (cos(2*4*pi*posture(count01,:))-1)+ b4L * 

sin(2*4*pi*posture(count01,:)); 
    l5_term = a5L * (cos(2*5*pi*posture(count01,:))-1)+ b5L * 

sin(2*5*pi*posture(count01,:)); 
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     nln_term = l1_term + l2_term + l3_term + l4_term + l5_term ; 

  
    fl0_rate = lf - l0; 
    fl0(cycle,count01) = l0 + fl0_rate*(posture(count01,:) + nln_term); 

      
    excursion02_l0(cycle,count01) = fl0(cycle,count01) - 

1000*l_trail01_SS(cycle,count01); 

  
    nForce_angSS(count01,:) = stiffnessN .* 0.001.* 

excursion02_l0(cycle,count01); 

     

     
    Fnx_SS(count01,:)= nForce_angSS(count01,:)* 

sin_angle_trail(cycle,count01); 

  
    Fny_SS(count01,:)= nForce_angSS(count01,:)* 

cos_angle_trail(cycle,count01); 

  

     

     
    rel_angle_q0(cycle,count01) = fq0 - angle_trail01_SS(cycle,count01); 

  
    a1Q = LeastSqrT(1); 
    b1Q = LeastSqrT(2); 
    a2Q = LeastSqrT(3); 
    b2Q = LeastSqrT(4); 
    a3Q = LeastSqrT(5); 
    b3Q = LeastSqrT(6); 
    a4Q = LeastSqrT(7); 
    b4Q = LeastSqrT(8); 
    a5Q = LeastSqrT(9); 
    b5Q = LeastSqrT(10); 

  

  
    q1_term = a1Q * (cos(2*pi*posture(count01,:))-1)+ b1Q * 

sin(2*pi*posture(count01,:)); 
    q2_term = a2Q * (cos(2*2*pi*posture(count01,:))-1)+ b2Q * 

sin(2*2*pi*posture(count01,:)); 
    q3_term = a3Q * (cos(2*3*pi*posture(count01,:))-1)+ b3Q * 

sin(2*3*pi*posture(count01,:)); 
    q4_term = a4Q * (cos(2*4*pi*posture(count01,:))-1)+ b4Q * 

sin(2*4*pi*posture(count01,:)); 
    q5_term = a5Q * (cos(2*5*pi*posture(count01,:))-1)+ b5Q * 

sin(2*5*pi*posture(count01,:)); 

  

  
    stiffnessT(cycle,count01) = q1_term + q2_term + q3_term + q4_term + 

q5_term ; 

  
    tForce_kq0SS(cycle,count01) = stiffnessT(cycle,count01) .* 

rel_angle_q0(cycle,count01); 

     
    Ftx_SS(count01,:)= tForce_kq0SS(cycle,count01)* 

cos_angle_trail(cycle,count01); 

  
    Fty_SS(count01,:)= -tForce_kq0SS(cycle,count01)* 

sin_angle_trail(cycle,count01); 
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    GRF_SSx(count01,:) =  Fnx_SS(count01,:) + Ftx_SS(count01,:); 

  
    GRF_SSy(count01,:) =  Fny_SS(count01,:) + Fty_SS(count01,:); 

  

  
    check_hight(cycle,count01) = xs(count01,3)- y_touch; 

     
    check_angle_trail(cycle,count01) = angle_trail01_SS(cycle,count01)-

0.364;%trail leg angle at lead leg td 

  
        if ((check_hight(cycle,count01) <= 0.00005) && 

(check_hight(cycle,count01) >= -0.00005)) 

 
            if toggle == 0 

                 
            touch_down_timeSS(cycle) = count01; 

                 
            touch_down_angle(cycle) = 

lead_angle_SS(cycle,touch_down_timeSS(cycle)) ; 

  
            touch_down_angle_degree(cycle) = 

lead_angle_SS_degree(cycle,touch_down_timeSS(cycle)); 

  
            angle_leg_touch_down(cycle) = 0.5*pi - 

touch_down_angle(cycle);%wrt virtical 

  
            angle_trail_leg_touch_down(cycle) = 

angle_trail01_SS(cycle,touch_down_timeSS(cycle));%wrt virtical 

             
            end 

             
            toggle = 1; 

             
        end 

  
    end 

     

     
trail_angle(cycle)= 0.5*pi - angle_trail_leg_touch_down(cycle); 
trail_angle_degree(cycle) = trail_angle(cycle) * 180 / pi ; 
l_trail01_touch(cycle) = l_trail01_SS(cycle,touch_down_timeSS(cycle)); 
stepLength(cycle) = 0.001*l0*cos(touch_down_angle(cycle))+ 

l_trail01_touch(cycle)*cos(trail_angle(cycle)); 

  
x_int_db(cycle) = xs(touch_down_timeSS(cycle),1); 
vx_int_db(cycle) = xs(touch_down_timeSS(cycle),2); 
y_int_db(cycle) = xs(touch_down_timeSS(cycle),3); 
vy_int_db(cycle) =xs(touch_down_timeSS(cycle),4); 
int_db(cycle,:) = [x_int_db(cycle) vx_int_db(cycle) y_int_db(cycle) 

vy_int_db(cycle) ]; 

  
step_sizeDS =  step_sizeSS; 
res_DS = 3000 ; 
end_spanDS = res_DS * step_sizeDS ; 
time_spanDS = 0:step_sizeDS:end_spanDS; 
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[td,xd] = 

ode113(@nln_legFnfq_NTdouble,time_spanDS,int_db(cycle,:),[],cycle); 

  
for count02 = 1:res_DS 

     
del_xd(count02,:) = xd(count02,1)-int_sing01(cycle,1); 

  
l_trail01_leave(cycle,count02) = sqrt(del_xd(count02,:)^2+ 

xd(count02,3)^2); 

  
l_lead02_DS(cycle,count02) = sqrt((stepLength(cycle)- 

del_xd(count02,:))^2+xd(count02,3)^2) ; 

  
angle_trail01_leave(cycle,count02) = atan(del_xd(count02,:)/xd(count02,3)); 

  
angle_lead02_DS(cycle,count02) = -atan((stepLength(cycle)- 

del_xd(count02,:))/xd(count02,3)) ;%wrt vertical 

  

  
sin_trail_DS(cycle,count02) = 

del_xd(count02,:)/l_trail01_leave(cycle,count02); 

     
cos_trail_DS(cycle,count02) = xd(count02,3)/l_trail01_leave(cycle,count02); 

  
sin_lead_DS(cycle,count02) = (stepLength(cycle)- 

del_xd(count02,:))/l_lead02_DS(cycle,count02); 

  
cos_lead_DS(cycle,count02) = xd(count02,3)/l_lead02_DS(cycle,count02); 

  

  

  
posture_trail(cycle,count02) = (angle_trail01_leave(cycle,count02) - 

q0)/(qf-q0); 

  
posture_lead(cycle,count02) = (angle_lead02_DS(cycle,count02) - q0)/(qf-

q0); 

  

           
    %---------------------------------------------------------------------- 

  
    l1_term_trail = a1L * (cos(2*pi*posture_trail(cycle,count02))-1)+ b1L * 

sin(2*pi*posture_trail(cycle,count02)); 
    l2_term_trail = a2L * (cos(2*2*pi*posture_trail(cycle,count02))-1)+ b2L 

* sin(2*2*pi*posture_trail(cycle,count02)); 
    l3_term_trail = a3L * (cos(2*3*pi*posture_trail(cycle,count02))-1)+ b3L 

* sin(2*3*pi*posture_trail(cycle,count02)); 
    l4_term_trail = a4L * (cos(2*4*pi*posture_trail(cycle,count02))-1)+ b4L 

* sin(2*4*pi*posture_trail(cycle,count02)); 
    l5_term_trail = a5L * (cos(2*5*pi*posture_trail(cycle,count02))-1)+ b5L 

* sin(2*5*pi*posture_trail(cycle,count02)); 

  

  
    nln_term_trail = l1_term_trail + l2_term_trail + l3_term_trail + 

l4_term_trail + l5_term_trail ; 

  
    fl0_trail(cycle,count02) = l0 + fl0_rate*(posture_trail(cycle,count02) 

+ nln_term_trail); 
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    excursion02_l0_trail(cycle,count02) = fl0_trail(cycle,count02) - 

1000*l_trail01_leave(cycle,count02); 

  
    nForce_ang_trail(count02,:) = stiffnessN .* 0.001.* 

excursion02_l0_trail(cycle,count02) ; 

     
    Fnx_trail_DS(count02,:)= nForce_ang_trail(count02,:)* 

sin_trail_DS(cycle,count02); 

  
    Fny_trail_DS(count02,:)= nForce_ang_trail(count02,:)* 

cos_trail_DS(cycle,count02); 

     

     
    q1_term_trail = a1Q * (cos(2*pi*posture_trail(cycle,count02))-1)+ b1Q * 

sin(2*pi*posture_trail(cycle,count02)); 
    q2_term_trail = a2Q * (cos(2*2*pi*posture_trail(cycle,count02))-1)+ b2Q 

* sin(2*2*pi*posture_trail(cycle,count02)); 
    q3_term_trail = a3Q * (cos(2*3*pi*posture_trail(cycle,count02))-1)+ b3Q 

* sin(2*3*pi*posture_trail(cycle,count02)); 
    q4_term_trail = a4Q * (cos(2*4*pi*posture_trail(cycle,count02))-1)+ b4Q 

* sin(2*4*pi*posture_trail(cycle,count02)); 
    q5_term_trail = a5Q * (cos(2*5*pi*posture_trail(cycle,count02))-1)+ b5Q 

* sin(2*5*pi*posture_trail(cycle,count02)); 

  

  
    stiffnessT_trail(cycle,count02) = q1_term_trail + q2_term_trail + 

q3_term_trail + q4_term_trail + q5_term_trail ; 

     
    rel_angle_trail(cycle,count02) = fq0 - 

angle_trail01_leave(cycle,count02); 

  
    tForce_kq0_trail(cycle,count02) = stiffnessT_trail(cycle,count02) .* 

rel_angle_trail(cycle,count02); 

     
    Ftx_trail_DS(count02,:)= tForce_kq0_trail(cycle,count02)* 

cos_trail_DS(cycle,count02); 

  
    Fty_trail_DS(count02,:)= -tForce_kq0_trail(cycle,count02)* 

sin_trail_DS(cycle,count02); 

         

  
       %------------------------------------------------------------------ 

        

         
    l1_term_lead = a1L * (cos(2*pi*posture_lead(cycle,count02))-1)+ b1L * 

sin(2*pi*posture_lead(cycle,count02)); 
    l2_term_lead = a2L * (cos(2*2*pi*posture_lead(cycle,count02))-1)+ b2L * 

sin(2*2*pi*posture_lead(cycle,count02)); 
    l3_term_lead = a3L * (cos(2*3*pi*posture_lead(cycle,count02))-1)+ b3L * 

sin(2*3*pi*posture_lead(cycle,count02)); 
    l4_term_lead = a4L * (cos(2*4*pi*posture_lead(cycle,count02))-1)+ b4L * 

sin(2*4*pi*posture_lead(cycle,count02)); 
    l5_term_lead = a5L * (cos(2*5*pi*posture_lead(cycle,count02))-1)+ b5L * 

sin(2*5*pi*posture_lead(cycle,count02)); 
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    nln_term_lead = l1_term_lead + l2_term_lead + l3_term_lead + 

l4_term_lead + l5_term_lead ; 

  
    fl0_lead(cycle,count02) = l0 + fl0_rate*(posture_lead(cycle,count02) + 

nln_term_lead); 

      
    excursion02_l0_lead(cycle,count02) = fl0_lead(cycle,count02) - 

1000*l_lead02_DS(cycle,count02); 

     
    nForce_ang_lead(cycle,count02) = stiffness .* 0.001.* 

excursion02_l0_lead(cycle,count02) ; 

         
    Fnx_lead_DS(count02,:)= -nForce_ang_lead(cycle,count02)* 

sin_lead_DS(cycle,count02); 

  
    Fny_lead_DS(count02,:)= nForce_ang_lead(cycle,count02)* 

cos_lead_DS(cycle,count02); 

     

     
    q1_term_lead = a1Q * (cos(2*pi*posture_lead(cycle,count02))-1)+ b1Q * 

sin(2*pi*posture_lead(cycle,count02)); 
    q2_term_lead = a2Q * (cos(2*2*pi*posture_lead(cycle,count02))-1)+ b2Q * 

sin(2*2*pi*posture_lead(cycle,count02)); 
    q3_term_lead = a3Q * (cos(2*3*pi*posture_lead(cycle,count02))-1)+ b3Q * 

sin(2*3*pi*posture_lead(cycle,count02)); 
    q4_term_lead = a4Q * (cos(2*4*pi*posture_lead(cycle,count02))-1)+ b4Q * 

sin(2*4*pi*posture_lead(cycle,count02)); 
    q5_term_lead = a5Q * (cos(2*5*pi*posture_lead(cycle,count02))-1)+ b5Q * 

sin(2*5*pi*posture_lead(cycle,count02)); 

  

  
    stiffnessT_lead(cycle,count02) = q1_term_lead + q2_term_lead + 

q3_term_lead + q4_term_lead + q5_term_lead ; 

     
    rel_angle_lead(cycle,count02) = fq0 - angle_lead02_DS(cycle,count02); 

  
    tForce_kq0_lead(cycle,count02) = stiffnessT_lead(cycle,count02) .* 

rel_angle_lead(cycle,count02); 

     
    Ftx_lead_DS(count02,:)= tForce_kq0_lead(cycle,count02)* 

cos_lead_DS(cycle,count02); 

  
    Fty_lead_DS(count02,:)= tForce_kq0_lead(cycle,count02)* 

sin_lead_DS(cycle,count02); 

  

  
GRF_DSx(count02,:) = Fnx_trail_DS(count02,:)+ Ftx_trail_DS(count02,:);%each 

leg 

  
GRF_DSx_1(count02,cycle) = Fnx_lead_DS(count02,:)+ Ftx_lead_DS(count02,:) ; 

  

  
GRF_DSy(count02,:) = Fny_trail_DS(count02,:)+ Fty_trail_DS(count02,:) ; 

  
GRF_DSy_1(count02,cycle) =  Fny_lead_DS(count02,:)+ Fty_lead_DS(count02,:); 
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check_length(cycle,count02) = lf - l_trail01_leave(cycle,count02) ; 

  

  
     if (GRF_DSy(count02,:) <= 1 && (GRF_DSy(count02,:) >= -1)) 

  

 
     l_trail01_take_off(cycle) = l_trail01_leave(cycle,count02); 

  
     take_off(cycle) = count02; 

  
    end 

  
end 

  

  
%% 

  
x_int_sing02(cycle) = xd(take_off(cycle),1); 
vx_int_sing02(cycle) = xd(take_off(cycle),2); 
y_int_sing02(cycle) = xd(take_off(cycle),3); 
vy_int_sing02(cycle) =xd(take_off(cycle),4); 
int_sing02(cycle,:) = [x_int_sing02(cycle) vx_int_sing02(cycle) 

y_int_sing02(cycle) vy_int_sing02(cycle) ]; 

  
l_trail01_start_SS2 = sqrt((xd(take_off(cycle),1)-x_int_sing01(cycle))^2+ 

xd(take_off(cycle),3)^2); 

  
step_sizeSS2 =  step_sizeDS; 

  
res_SS2 = 2000 ; 

  
end_spanSS2 = res_SS2 * step_sizeSS2 ; 

  
time_spanSS02 = 0:step_sizeSS2:end_spanSS2; 

  
[ts2,xs2] = 

ode113(@nln_legFnfq_NTsingle02,time_spanSS02,int_sing02(cycle,:),[],cycle); 
toggle_check = 0; 

  
for count03 = 1:res_SS2 

     
del_xs2(count03,:) = xs2(count03,1)-int_sing01(cycle,1); 

  
l_lead02_SS2(cycle,count03) = sqrt((stepLength(cycle)- 

del_xs2(count03,:))^2+ xs2(count03,3)^2) ; 

  
lead_legAngle_SS2(cycle,count03) = atan(xs2(count03,3)/(stepLength(cycle)- 

del_xs2(count03,:))); 

  
angle_lead02_SS2(cycle,count03) = - atan((stepLength(cycle) - 

del_xs2(count03,:))/xs2(count03,3));%wrt vertical 

  
angle_lead02_SS2_deg(cycle,count03) = (- atan((stepLength(cycle) - 

del_xs2(count03,:))/xs2(count03,3)))*180/pi;%wrt vertical 

  
sin_lead_SS2(cycle,count03) = (stepLength(cycle) - 

del_xs2(count03,:))/l_lead02_SS2(cycle,count03); 
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 cos_lead_SS2(cycle,count03) = xs2(count03,3)/l_lead02_SS2(cycle,count03); 

  
posture_lead_SS2(cycle,count03) = (angle_lead02_SS2(cycle,count03) - 

q0)/(qf-q0); 

  

  
        l1_term_lead_SS2 = a1L * 

(cos(2*pi*posture_lead_SS2(cycle,count03))-1)+ b1L * 

sin(2*pi*posture_lead_SS2(cycle,count03)); 
        l2_term_lead_SS2 = a2L * 

(cos(2*2*pi*posture_lead_SS2(cycle,count03))-1)+ b2L * 

sin(2*2*pi*posture_lead_SS2(cycle,count03)); 
        l3_term_lead_SS2 = a3L * 

(cos(2*3*pi*posture_lead_SS2(cycle,count03))-1)+ b3L * 

sin(2*3*pi*posture_lead_SS2(cycle,count03)); 
        l4_term_lead_SS2 = a4L * 

(cos(2*4*pi*posture_lead_SS2(cycle,count03))-1)+ b4L * 

sin(2*4*pi*posture_lead_SS2(cycle,count03)); 
        l5_term_lead_SS2 = a5L * 

(cos(2*5*pi*posture_lead_SS2(cycle,count03))-1)+ b5L * 

sin(2*5*pi*posture_lead_SS2(cycle,count03)); 

  
        nln_term_lead_SS2 = l1_term_lead_SS2 + l2_term_lead_SS2 + 

l3_term_lead_SS2 + l4_term_lead_SS2 + l5_term_lead_SS2 ; 

         
        fl0_lead_SS2(cycle,count03) =  l0 + 

fl0_rate*(posture_lead_SS2(cycle,count03) + nln_term_lead_SS2); 

        
        excursion02_l0_lead_SS2(cycle,count03) = 

fl0_lead_SS2(cycle,count03) - 1000*l_lead02_SS2(cycle,count03); 

         
        nForce_angSS2(cycle,count03) = stiffness *0.001* 

excursion02_l0_lead_SS2(cycle,count03); 

         
        Fnx_lead_SS2(count03,:) = -nForce_angSS2(cycle,count03)* 

sin_lead_SS2(cycle,count03); 

         
        Fny_lead_SS2(count03,:) = nForce_angSS2(cycle,count03)* 

cos_lead_SS2(cycle,count03); 

  

         

         
        q1_term_lead_SS2 = a1Q * 

(cos(2*pi*posture_lead_SS2(cycle,count03))-1)+ b1Q * 

sin(2*pi*posture_lead_SS2(cycle,count03)); 
        q2_term_lead_SS2 = a2Q * 

(cos(2*2*pi*posture_lead_SS2(cycle,count03))-1)+ b2Q * 

sin(2*2*pi*posture_lead_SS2(cycle,count03)); 
        q3_term_lead_SS2 = a3Q * 

(cos(2*3*pi*posture_lead_SS2(cycle,count03))-1)+ b3Q * 

sin(2*3*pi*posture_lead_SS2(cycle,count03)); 
        q4_term_lead_SS2 = a4Q * 

(cos(2*4*pi*posture_lead_SS2(cycle,count03))-1)+ b4Q * 

sin(2*4*pi*posture_lead_SS2(cycle,count03)); 
        q5_term_lead_SS2 = a5Q * 

(cos(2*5*pi*posture_lead_SS2(cycle,count03))-1)+ b5Q * 

sin(2*5*pi*posture_lead_SS2(cycle,count03)); 
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        stiffnessT_leadSS2(cycle,count03) = q1_term_lead_SS2 + 

q2_term_lead_SS2 + q3_term_lead_SS2 + q4_term_lead_SS2 + q5_term_lead_SS2 ; 

  
        rel_angle_leadSS2(cycle,count03) = fq0 - 

angle_lead02_SS2(cycle,count03); 

  
        tForce_kq0_leadSS2(cycle,count03) = 

stiffnessT_leadSS2(cycle,count03) .* rel_angle_leadSS2(cycle,count03); 

  
        Ftx_lead_SS2(count03,:)= tForce_kq0_leadSS2(cycle,count03)* 

cos_lead_SS2(cycle,count03); 

  
        Fty_lead_SS2(count03,:)= tForce_kq0_leadSS2(cycle,count03)* 

sin_lead_SS2(cycle,count03); 

  

  

  
GRF_SS2x(count03,cycle)  = Fnx_lead_SS2(count03,:)+ 

Ftx_lead_SS2(count03,:); 

  
GRF_SS2y(count03,cycle) = Fny_lead_SS2(count03,:)+ Fty_lead_SS2(count03,:); 

  
lead_forceAngle_SS2(count03,:) = 

atan(GRF_SS2y(count03,:)/GRF_SS2x(count03,:)); 

   

   
check_hight02(cycle,count03) = int_sing01(cycle,3)- xs2(count03,3); 

  
check_state(cycle,count03) = norm(int_sing01(cycle,2:4)- xs2(count03,2:4)); 

  

 
check_angle(cycle,count03) = angle_lead02_SS2(cycle,count03); 

  
       if ((check_angle(cycle,count03) <= 0.005) && 

(check_angle(cycle,count03) >= -0.005)) 

            
           if toggle_check == 0 

            
           upright_state(cycle) = check_state(cycle,count03); 

            
           upright_height(cycle) = xs2(count03,3); 

            
           toggle_check = 1; 

  

     
          endSS02(cycle) = count03 ; 

         
          end_check_state(cycle) = check_state(cycle,count03); 

         
          disp(['achieved cycle',num2str(cycle)]) 

         
          end 

         
       end   
end 
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x_cycle{cycle} = 

{xs(1:touch_down_timeSS(cycle),:);xd(1:take_off(cycle),:);xs2(1:endSS02(cyc

le),:)}; 

  
delxHx_cycle{cycle} = 

{del_xs(1:touch_down_timeSS(cycle),:);del_xd(1:take_off(cycle),:);del_xs2(1

:endSS02(cycle),:)}; 

  
x_new_cycle =  [x_new_cycle;x_cycle{cycle}]; 

  
delxHx_new_cycle = [delxHx_new_cycle;delxHx_cycle{cycle}]; 

  
int_sing01(cycle+1,:) = xs2(endSS02(cycle),:); 

  
int_sing01_abs(cycle+1,:) = [ xs2(endSS02(cycle),1)-

int_sing01(cycle+1,1),int_sing01(cycle+1,2:4)]; 

  
x_int_sing01(cycle+1) = int_sing01(cycle+1,1); 

  
init_del_xs = [init_del_xs;del_xs2(endSS02(cycle),:)]; 

  
y_int_sing01(cycle+1) = int_sing01(cycle+1,3); 

  

             
             D_int_sing01(cycle,:) = int_sing01_abs(cycle+1,:)- 

int_sing01_abs(cycle,:) ; 
             norm_D_Ic = [norm_D_Ic; norm(D_int_sing01(cycle,:))]; 
             [val_min_norm Id_lim_cycle]= min(norm_D_Ic); 

              

              
end 

  
legLength = [l_lead02_DS(cycle-1,1:take_off(cycle-1))';l_lead02_SS2(cycle-

1,1:endSS02(cycle-

1))';l_trail01_SS(cycle,1:touch_down_timeSS(cycle))';l_trail01_leave(cycle,

1:take_off(cycle))']; 

  
legAngle = [angle_lead02_DS(cycle-1,1:take_off(cycle-

1))';angle_lead02_SS2(cycle-1,1:endSS02(cycle-

1))';angle_trail01_SS(cycle,1:touch_down_timeSS(cycle))';angle_trail01_leav

e(cycle,1:take_off(cycle))']; 

  

  
fl0_cycle = 0.001*[fl0_lead(cycle-1,1:take_off(cycle-1))'; 

fl0_lead_SS2(cycle-1,1:endSS02(cycle-1))'; 

fl0(cycle,1:touch_down_timeSS(cycle))'; 

fl0_trail(cycle,1:take_off(cycle))']; 

  
nForce = [nForce_ang_lead(cycle-1,1:take_off(cycle-

1))';nForce_angSS2(cycle-1,1:endSS02(cycle-

1))';nForce_angSS(1:touch_down_timeSS(cycle),:);nForce_ang_trail(1:take_off

(cycle),:)]; 

  
tForce = [tForce_kq0_lead(cycle-1,1:take_off(cycle-

1))';tForce_kq0_leadSS2(cycle-1,1:endSS02(cycle-
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1))';tForce_kq0SS(cycle,1:touch_down_timeSS(cycle))';tForce_kq0_trail(cycle

,1:take_off(cycle))']; 

  
netForce_test = sqrt(nForce.^2 + tForce.^2); 

  
GRF_x = [GRF_DSx_1(1:take_off(cycle-1),cycle-1);GRF_SS2x(1:endSS02(cycle-

1),cycle-

1);GRF_SSx(1:touch_down_timeSS(cycle),:);GRF_DSx(1:take_off(cycle),:)]; 

  
GRF_y = [GRF_DSy_1(1:take_off(cycle-1),cycle-1);GRF_SS2y(1:endSS02(cycle-

1),cycle-

1);GRF_SSy(1:touch_down_timeSS(cycle),:);GRF_DSy(1:take_off(cycle),:)]; 

  
GRF_net = sqrt(GRF_x.^2+ GRF_y.^2); 

  

  
sumGRF_DSx = GRF_DSx_1(:,cycle) + GRF_DSx ; 

  
sumGRF_DSx_step = GRF_DSx_1(1:take_off(cycle),cycle) + 

GRF_DSx(1:take_off(cycle),:) ; 

  

  
sumGRF_DSy = GRF_DSy_1(:,cycle) + GRF_DSy ; 

  
sumGRF_DSy_step = GRF_DSy_1(1:take_off(cycle),cycle) + 

GRF_DSy(1:take_off(cycle),:) ; 

  

  
netGRF_SS = sqrt(GRF_SSx.^2 + GRF_SSy.^2); 

  
netGRF_SS_step = sqrt(GRF_SSx(1:touch_down_timeSS(cycle),:).^2 + 

GRF_SSy(1:touch_down_timeSS(cycle),:).^2); 

  
netGRF_DS = sqrt(sumGRF_DSx.^2 + sumGRF_DSy.^2); 

  
netGRF_DS_step = sqrt(sumGRF_DSx(1:take_off(cycle),:).^2 + 

sumGRF_DSy(1:take_off(cycle),:).^2); 

  
netGRF_SS02 = sqrt(GRF_SS2x(:,cycle).^2 + GRF_SS2y(:,cycle).^2); 

  
netGRF_SS02_step = sqrt(GRF_SS2x(1:endSS02(cycle-1),cycle-1).^2 + 

GRF_SS2y(1:endSS02(cycle-1),cycle-1).^2); 

  

  
netGRF_step = [netGRF_SS_step;netGRF_DS_step;netGRF_SS02_step]; 
DnetGRF_step = diff(netGRF_step); 
sumDnetGRF_step = sum(DnetGRF_step); 

  

  
phase = length(x_new_cycle); 

  
for count_phase = 1:phase 

     
   length_x_new_cycle(count_phase) = length(x_new_cycle{count_phase}); 

     
end 
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 sum_length = sum(length_x_new_cycle) ; 

  
renew_x_new_cycle = zeros(sum_length,4); 

  
renew_delxHx_new_cycle = zeros(sum_length,1); 

  
leg_length_cycle = zeros(sum_length,1); 

  
count_x_new_cycle = 1; 

  
%obtain CoM motion from cell array to matrix 

  
for count_phase = 1:phase 

  

  
        for count_x_inphase = 1:length(x_new_cycle{count_phase})  

             
            renew_x_new_cycle(count_x_new_cycle,:) = 

x_new_cycle{count_phase}(count_x_inphase,:); 

            
            renew_delxHx_new_cycle(count_x_new_cycle,:) = 

delxHx_new_cycle{count_phase}(count_x_inphase,:); 

             
            leg_length_cycle(count_x_new_cycle,:) = 

sqrt(renew_delxHx_new_cycle(count_x_new_cycle,:).^2+ 

renew_x_new_cycle(count_x_new_cycle,3).^2); 

             
            count_x_new_cycle = count_x_new_cycle + 1 ; 

             
        end 

 
end 

  
diff_leg_length_cycle = 

(1/step_sizeSS)*[diff(leg_length_cycle(1:2,:));diff(leg_length_cycle)]; 

  
%% 
%Distance btw apex point and 45 degree line 

  
fixed_point = int_sing01_abs(Id_lim_cycle,:); 

  
fit_first = []; 
fit_next = []; 

 
[row_IC col_IC]= size(int_sing01_abs); 

  
for count04 = 1:col_IC 

  
fit_first = [fit_first; int_sing01_abs(1:end-1,count04)' - 

fixed_point(count04)' ]; 

 
fit_next = [fit_next; int_sing01_abs(2:end,count04)' - 

fixed_point(count04)' ]; 

 
end 
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sqr_fit_first = fit_first*fit_first'; 

 
dfit_first = det(fit_first*fit_first'); 

 
Jmatrix = (fit_next * fit_first')*pinv(fit_first*fit_first'); 

 

  
FQmult = abs(eig(Jmatrix)); 
max_FQmult = max(FQmult); 

  
disp(['kn(N/m)                  |  ',num2str(stiffnessN)]) 
disp(['angle(deg)               |  ',num2str(q0*180/pi)]) 
disp(['cycle                    |  ',num2str(cycle)]) 
disp(['l0 rate(m/cycle)         |  ',num2str(0.001*fl0_rate)]) 
disp(['y0(m)                    |  ',num2str(y_int_sing01(1))]) 
disp(['y transition(m)          |  ',num2str(y_touch)]) 
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