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Let E, be the map x —— exp(pxr) where exp denotes the exponential map deter-
mined by the usual power series. It defines an exponential ring (Z,, +,-,0,1, E,). The
goal of the thesis is to study the model theory of this structure. In particular, we are
interested by the question of the decidability of this theory.

The main theorem of the thesis is:

Theorem. If the p-adic Schanuel’s conjecture is true, then the theory of (Z,,+,-,0,1, E,)
15 decidable.

The proof involves:

e A result of effective model-completeness (chapters 3 and 4): If F' is a family of
restricted analytic functions (i.e. power series with coefficients in the valuation
ring and convergent on Z,) closed under decomposition functions and such that
the set of terms in the language Lr = (+,-,0,1, f; f € F) is closed under deriva-
tion, then we prove that the theory of Z, in the language Lr is model-complete.
And furthermore, if each term of Lr has an effective Weierstrass bound, then
the model-completeness is effective.

e A resolution of the decision problem for existential formulas (assuming Schanuel’s
conjecture) in chapter 5.

We also consider the problem of the decidability of the structure (O,,+,-,0,1,|, E,)
where O, denotes the valuation ring of C,. We give a positive answer to this question
assuming the p-adic Schanuel’s conjecture.
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T a tuple (zq,--- ,x,)

|I| =iy + -+ 1, where [ € N”
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C,  The completion of Q%9

F, Finite field with p elements

vp,v The p-adic valuation
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R[X]® The ring of exponential polynomials, page 29
O,{X}[[pl]s The ring of separated power series, page 103
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L., The language of restricted analytic functions, page 27

LD The expansion of L,, by a division symbol
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L., The language of p-adic exponential rings, page 28
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Chapter 1

Introduction

Let E, be the map z —— exp(pxr) where exp(x) denotes the power series ) x™/nl.
This map is well-defined on Z,. It determines an exponential ring (Z,,+,-,0,1, E,)
i.e. aring R together with a morphism from the additive group (R, +,0) to the mul-
tiplicative group (R*,-,1). The goal of the thesis is to study the model theory of this
exponential ring.

We define L.,,, the language of p-adic exponential rings, as the expansion of the lan-
guage of p-adically closed fields Lp = (+,+,0,1, P,;n € N) by a function symbol for
E,. Let Zy ¢y denote the structure with underlying set Z, and natural interpretations
for the elements of the language L.,,. This should be thought as the p-adic equivalent

of the structure R.,, where we restrict the exponential to a compact interval.

The main goal of the thesis is to prove:

Theorem. If the p-adic Schanuel’s conjecture is true, then the theory of Zyeqp s

decidable.

The proof is split in two main parts: first, in chapters 3 and 4, we prove a result
of effective model-completeness. Then in chapter 5, assuming Schanuel’s conjecture,

we show the decidability of the existential part of the theory.

In chapter 3, we prove a result of strong model-completeness based on the quantifier
elimination in Zy 4n. Zp ., denotes the structure with underlying set Z, in L,,, the

language Lp expanded by all restricted analytic functions (in the sense of J. Denef, L.

11



CHAPTER 1. INTRODUCTION 12

van den Dries [4]). In [4], it is proved that the theory of Z, ., eliminates the quantifiers
in the language £,,, expanded by a division symbol D.

Let Lg be a reduction of this language i.e. we consider a family of restricted analytic
functions F' and Lp is the expansion of Lp by the elements of F. It is immediate
from the proof of the quantifier elimination in £2 that Z, admits the elimination of
quantifiers in EIZ/)VF where Wy denotes the Weierstrass system generated by the Lp-
terms.

In chapter 3, we show that the functions in Wy are strongly definable in L. For this,
we require that the set of Lp-terms is closed under derivation and that the structure
(V,+,-,0,1, f; f € F) is existentially definably interpretable in our structure (where V
could be the valuation ring of any finite algebraic extension of Q,). The last assumption
is not true for general F'. So, we will expand F' by a family of decomposition functions
(i.e. functions so that the above structure becomes existentially definably interpretable
in the expanded language). Under these hypotheses, we can prove the main result of

the chapter:

Theorem 3.4.2. Let F be a family of restricted analytic functions. Assume that
the set of Lr-terms is closed under derivation. Let F be the extension of F' by the

decomposition functions of each f € F. Then, L, 5 18 strongly model-complete in L.

In chapter 4, we study the effectivity of the above theorem. The main issue is
that in the proof of 3.4.2 some steps use Noetherian properties and so may not be
effective. We show in theorem 4.3.1 that under the assumption that each £zterm has
an effective Weierstrass bound (i.e. the Noetherian property is effective for the terms
in the language), L, is effectively model-complete in the language L. This part
of the proof involves results of tropical analytic geometry. As the reader may not be

familiar with these results, we include in appendix A an introduction to this topic.

In section 4.4 as a particular case of the above results, we consider F' = {E,}. In
that case, let £,pc denote the expansion of L by the decomposition functions. In
this section, we will give a proof due to A. Macintyre in [8] that any £,pc-term has

an effective Weierstrass bound. And therefore,
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Theorem 4.4.5. The theory of Z, in the language L,pc s effectively strongly model-

complete.

Let us remark that these results can be easily generalised to any finite algebraic

extension.

By theorem 4.4.5, the decidability of Z, .., can be reduced to the decidability of
the £,pc-existential formulas in Z,. We consider this problem in chapter 5. We follow
the same strategy that the one proposed in [11] to solve the equivalent problem in R.

Let (f1,---, fn) be a system of L,gc-terms in n variables. Let U be the formula

dxy, - 2, f1(T) = - = fu(T) = 0 # det J(T),

where J denotes the Jacobian of the system. Then, assuming that the formula is true
in Z,, it is not hard to check this property. Indeed, by the analytic Hensel’s lemma
2.1.7, W is true in Z, iff there is ¢ € Z" such that for all ¢

o( () > 20( det J(@)).

So, if we want to check that W is true, we just have to enumerate all tuples in Z" and
find one that satisfies the above inequality.

We reduce the general case to this nonsingular case via a desingularization theorem:
let f be a Lypc-term. We prove in theorem 5.1.5 that if f(X) has a root in Z, then

there are £,pc-terms fi,---, f, and @ € Z; such that

f@) = fi(@)=--- = fu(@) =0 # det J(a).

Then, in lemma 5.2.1, assuming the p-adic Schanuel’s conjecture and that f is a L.z-
term, we show that there is such a system (fi,---, f,) of Lesp-terms such that any
nonsingular solution b is a root of f. In fact, roughly speaking, f is almost in the
ideal generated by fi,---, f, (note that we can check effectively this property). So,
the existence of such a b implies Z, E 3T f(x) = 0. This implies that the positive
existential theory of Z, .., is decidable if Schanuel’s conjecture is true (Proposition
5.2.3).

The general case leads to some difficulties: First, we have to deal with inequalities

(lemma 5.2.2). Second, we have to generalise our results to £,gc-terms. In particular,
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lemma 5.2.1 is generalised in lemma 5.2.4. In the same section 5.2.2, we prove the

main theorem of the thesis:

Theorem 5.2.5. Assume that the p-adic version of Schanuel’s conjecture holds. Then,

the theory of Z, in the language Lypc 15 decidable.

Finally, in chapter 6, we consider the problem of the decidability of the theory of
O,, the valuation ring of C,, in the language L., = (+,—,-,0,1,], E,). We use the
same techniques that for Z, .,,,. First, we prove the effective model-completeness of the
theory. Here, we use the quantifier elimination result due to Lipshitz |7]. Instead of
restricted power series, we consider Weierstrass system composed by separated power
series (in the sense of Lipshitz). The model-compleness (theorem 6.2.11) is here rather
immediate if we assume the set of Lp-terms closed under derivation (since we don’t
need to add decomposition functions as our field is algebraically closed). Once again,
we can prove the effectivity of the model-completeness using the results of tropical
analytic geometry (theorem 6.3.6).

Then, we prove that the existential part of the theory is decidable. We show that
any existential formula realised in our structure is realised in the valuation ring of
some finite algebraic extension (proposition 6.4.1). So, as we can enumerate all finite

algebraic extensions and by the main result of the thesis,

Theorem 6.4.2. Assume that the p-adic Schanuel’s conjecture is true. Then, the

theory of (Op.eap, +,—,+,0,1,|, E,) in the language of exponential ring is decidable.



Chapter 2

Preliminaries

2.1 Background

In the first part of this chapter, we introduce some background on the notions of p-
adic numbers and p-adic analysis. We will also fix some notations that will be used

throughout the thesis. We refer to the index for an overview of the main notations.

2.1.1 p-adic numbers

We will denote by v, (or when the context is clear by v) the p-adic valuation. Let us

recall that this map is defined by:

v, Z\{0} — Z

m = p"k +—— n where (p, k) = 1.
We set v,(0) = co. We can extend v, to Q via the relation
vp(a/b) = vp(a) — vp(b).
This map is a valuation. In general,

Definition 2.1.1. Let R be a commutative ring with unity, let (I', <) be an abelian
ordered group and let oo be an element such that a < oo for all a € I'. A valuation is

a map v: R — T'U{oo} such that for all a,b € R:
(1) v(a-b) =wv(a)+ v(b);

(11) v(a) = 0o iff a = 0;

15



CHAPTER 2. PRELIMINARIES 16
(iii) v(a+b) > min{v(a),v(b)}.

A field K (resp. a ring) equipped with a valuation is called wvalued field (resp.
valued ring). The group I' is called value group. A valued ring R determines a local
ring Op defined by

Or ={z| v(z) > 0}.

We call this ring the valuation ring. Its maximal ideal is
Mr ={z| v(z) >0}

The quotient field Og/Mpg is called the residue field. We will denote this field by
R and we denote by  the canonical map R — R. We use the same notation for

canonical extensions of the residue map (to polynomial rings for instance).

Let us remark that the p-adic valuation determines a distance on Q:

d(w,y) = |z = yl, = p~ .

We call this distance p-adic distance (p-adic norm or p-adic absolute value) and denote
it by |-| when the context is clear. It is not hard to see that the p-adic distance
satisfies all the properties of an absolute value (non-negativity, positive-definiteness,
multiplicativeness and the triangle inequality). Actually, it satisfies a stronger property
than the triangle inequality: by property (iii) in the definition of a valuation, this

distance satisfies the ultrametric property:

|z + ylp < max{|zly, |ylp}-

The field of p-adic numbers is the completion of Q with respect to this distance (i.e.
is the quotient of the ring of Cauchy sequences in Q (with respect to |.|,) by the ideal
of the null sequences). We denote this field by Q,. Note that v, extends uniquely to
Q,. Therefore, (Q,,v,) is a valued field. Its value group is Z. The valuation ring of
Q, is denoted by Z, and is called the ring of p-adic integers. Let us remark that this
ring is the completion of Z with respect to ||, The maximal ideal of Q, is pZ, and
its residue field is isomorphic to IF).

Alternatively, we could have defined Z, as the inverse limit of the projective system

(Z/)p"Z,7n,n € Ny) (where m,, : Z/p" ™' Z — Z/p"Z is the canonical projection) and set
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Q, = Frac Z,. The two definitions determine isomorphic, homeomorphic topological
fields.
A crucial property of Q, is that the field is henselian:

Definition 2.1.2. A walued field (K, v) is called henselian if the valuation extends

uniquely to any finite Galois extension.

Note that if (K,v) is a valued field and L is an extension of K (not necessarily
algebraic), then v can always be extended to a valuation on L. The henselian property
claims the uniqueness of this extension (when L is an algebraic extension of K).

Equivalently, we may define an henselian field by any of the below properties:

Proposition 2.1.3. Let (K,v) be a valued field. Then, the following assertions are

equivalent:
(1) K is henselian;

(ii) For all f € K|[X], if there exists a € K such that f(a) = 0 # f/(a), then there
exists a unique b € K such that f(b) =0 and b —a = 0;

(ii1) For all f € K[X], if there ezists a € K such that v(f(a)) > 2v(f'(a)), then there
exists a unique b € K such that f(b) =0 and v(a — b) > v(f'(a)).

In the case of Q,, condition (ii) is the famous Hensel’s lemma. Condition (iii) is
sometimes called in the litterature Hensel-Rychlik lemma (or just Hensel’s lemma).
Let K = Q,(«) be a finite algebraic extension of Q, of degree n. As Q, is henselian,
the valuation v, extends uniquely to K. We will also denote by v, this extension. We
can describe precisely the valuation of an element of K:

Let P(X) = X"+ a; X" '+ .-+ +a, € Q,[X] be the minimal polynomial of a. The
norm from K over Q, is

Nk, (a) == (=1)"ay.

Equivalently, N, () = ][ a; where ; are the conjugates of o over Q,, or Nk, (o) =
det A, where A, is the matrix of the QQ,-linear map determined by the multiplication

by o in K. If g € K, then

Nklo,(B) == (NQP(B)‘QP(B))[KQP(B)]_
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Then, the unique absolute value on K extending |-|, is (up to equivalence of absolute

value):
18l> = [Nk, (B

This determines the unique extension of v, to K:

Up(ﬁ) = 1ng‘ﬁ‘p-

Let us note that K is complete with respect to this distance. Also, let us remark that
the value group of K is 1Z for some e € N (called the ramification indez) while its
residue field is a finite algebraic extension of F, (say of degree p’). Then, one can show
that n = e- f. We call an element with smallest positive valuation prime element.
Such an element generates the maximal ideal of the valuation ring.

The algebraic closure of Q, (denoted leg) is an extension of infinite degree. This field
is not complete with respect to the (unique extension of the) valuation v,. We denote
its completion by C,. Note that C, is an algebraically closed field. This field is the
p-adic analogue of the complex field for the real numbers (i.e. is both complete and
algebraically closed). Both C, and leg have for value group Q and for residue field
IFZZQ. Note that Z, (or the valuation ring of any finite extension of Q) is a compact
ring. But, this is not the case of the valuation ring of C,. Actually, this ring is not
even locally compact.

We can learn a bit more on the structure of the finite algebraic extensions using

Krasner’s lemma:

Proposition 2.1.4 (Krasner’s lemma). Let a,b € leg. Let ay,--- ,a, be the conju-

gates of a over Q,. Assume that for all 1 <i<mn
Up(b —a) > v,(a; — a).

Then, Q,(a) C Q,(b).

This lemma can be used to prove that any finite algebraic extension K is contained
in an extension of the type Q,(/5) where 3 is algebraic over Q. It also implies that
there are finitely many extensions of a given degree n.

Finally, we fix some notations: we will denote by O, the valuation ring of C, and by

9N, its maximal ideal.
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2.1.2 p-adic analysis

We are mainly interested by analytic functions and their properties. In particular, we
are interested by the zeros of such a function. For the rest of this section, K will be a
finite algebraic extension of Q, with prime element 7. We denote by K[[X]] the set
of formal power series in the variables X = (X1,---,X,,) with coefficients in K.

Let > a, be a series with coefficients in K. Let us recall that, by the ultrametric

property, > a, is convergent in K iff v(a,) — oo. It implies that a power series

f= Zalyl is well-defined at T iff v(a;Z’) — oo when I — oo.

Ezxample. e The series exp(X) := Y. 2~ is well-defined at z iff v(z) > 1/(p — 1);

e log(1+z) = > (—1)""2" is well-defined iff v(z) > 0.

Definition 2.1.5. Let U be an open subset of K". We say that a function f : U — Q,
is analytic on U if for all@ € U, there exists a neighbourhood Vy = {T | v(x;—a;) > 7t}

ofa in U and F(X) € K[[X]] such that for all T € O},
f(a+nlz) = F(z).

For instance, exp(X) and log(X) are analytic functions on pﬁOK (the set of
element in K with valuation greater than 1/(p — 1)) and 1+ 7O respectively. Note
that exp determines a bijection between pp%l Ok and 1 —l—pp%l Ogk. The inverse is given
by the restriction of log. However, there is no global analytic exponentiation on Q,
(though as a morphism of groups, exp can be extended to C, but this extension is not
unique and there is no canonical choice for such an extension).

Let us remark that the function

1 itz e pZ,
f1Zy—=Zy:x+—
0 otherwise
is analytic. There is no notion of analytic continuation in K. For our purpose, this is
an issue in the case of non-locally compact valued field. In C,, we say that a function
is analytic on U if in the above definition F(Z) = f(Z) is defined everywhere on U.
Note that in K, the sets of analytic functions on a bounded open set in the sense of

the above definition and in the sense of C, are morally the same: a function analytic

on a compact set in K™ is completely determined by finitely many power series.
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We will denote by K{X} the ring of analytic functions on O% defined by a single

power series. We have that

KX} = {3 X" € KIX]: v(fi) = o0}

This ring is sometimes called Tate ring. It comes with a norm (called Gauss norm)

defined by
171 = |32 4% || = supl il

As v(f;) — oo, the supremum is actually a maximum in the above definition. We
denote by Ox{X} the subset of elements with Gauss norm less than 1. Note that it
coincides with the ring of elements in K{X} with coefficients in Ox. We call this ring
the ring of restricted analytic functions. We are interested by the functions in this ring;
in particular, by the zeros of these functions in O,. Let us remark that we can extend
canonically the residue map to O,{X}. Tt determines a map : O,{X} — F,[X].
First, we present an analytic version of Hensel’s lemma. It allows to lift non-singular
solutions of a system of equations from the residue field to the valuation ring.

We will take the following notations:

Let b be a tuple. Then, v(b) denotes the minimal valuation among the coordinates of
b. Given a system of analytic functions f = (fi,---, fa), by f(b) = 0, we mean that
fi(b) = 0 for all . We take similar notations for congruence, multiplication of matrix
by vectors, etc

We define the differential of an analytic map as usual by:

Definition 2.1.6. Let f : U — K™ where U is an open subset of K™. Leta in U.
We set |al, := max{|a;|,}. If there exists a linear map A between K™ and K™ such

that B B
o @B f@ — 47,
Rp—0 A,

then we say that f is differentiable at @ and we note A = Df(T).

=0,

Assume f = (f1, -+, fm) : U — K™ differentiable at @, the matrix associated to

Df(a) is the Jacobian matrix given by

0 — ) _
L@ - L@
Ofm (= Ofm (=
Ye@) .. Y=(a)
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Here is the extension of Hensel’s lemma for systems of analytic functions:

Theorem 2.1.7 (Analytic Hensel’s lemma). Let f = (f1,---, fi) be a system of el-

ements in Z,{X1,---,X:}. Let Jp(X) denote the Jacobian matriz of the system.

Assume that there is a € Z; such that
det J¢(@) # 0 and v(f(@)) > 2v(det J¢(a)) +r,
where r is any nonnegative integer. Then, there is a unique b € Ly, such that
v(b—a) > v(det Jy(@)) +r and f(b) = 0.

As it seems that this version does not appear exactly in the litterature, we include

a proof for the sake of completeness:

Proof. (1) If v( det J¢(a)) = 0:
We will construct by induction a sequence (by,)nen of tuple of integers such that

each b, is uniquely determined and:

(a) f(bn) =0 mod p"* 1

Clearly, choosing by carefully, such a sequence admits a limit b with f(b) = 0 and
v(b—a) >r.

Let by be the unique element in {0,--- ,p"*!' — 1} such that by = @ mod p'+.
Then, f(by) = f(a) =0 mod p'*': the initial conditions are satisfied.

Assume that we have defined by - - - ,b,. We want to find b, satisfying the above
conditions. By conditions (b) and (c), such an element has to be of the form:
byt = by +cp™ ! with ¢ € {0,...,p — 1}*. Consider the local Taylor expansion

around b,,:

f(EnH) = f(l;n + Epn+r+1) = f(gn) + Jfa_)n)épwrrJrl +pn+r+2<-~-)

= f(gn) _|_Jf(5n)6pn+r+l mod pn+r+2’

where J¢(b,,)¢ denotes the product of matrices.

Indeed, as the f;’s have coefficients in Z,, for all o multi-index greater than 1,
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0 fi

L (b,). 5 (ep)> ™Y s at least n+ 1 + 2. In fact,

the valuation of the element

the partial derivative and the factorial term correspond to the ath coefficient of
f (which belongs to Z,) and the other part of the element has clearly valuation
greater than n +r + 2.

As f(b,) =0 mod p"* L, £(b,) =ep" ! mod p" "+ for some € € {0,...,p —

1}t. Therefore, condition (a) would implies that:

f(bn+1> = Epn—&-r—l—l 4 Jf(z_)n)éprﬁr-i-l =0 mod pn+r+2
or equivalently
€+ Ji(b,)c=0 mod p.
But, J;(b,) = Jp(by) = Jy(@) mod p. So, det Jy(b,) # 0 mod p. Therefore,

J¢(b,) mod p is invertible as a matrix with coefficients in F,. It means that ¢ is
uniquely determined by the above equation and the condition ¢ € {0,...,p — 1}

The first case is done.

We will deduce the general case from the first:

From the Taylor expansion of f;, we obtain the formal relation:
FX4Y) = X))+ T, (XY + ) gin(X, V)YV
jk

Let V be an element of valuation v(det Jy(@)). In the above expression, we set

X =aand Y =V Z, ie. we obtain the system

fi@+vz) fi(@) Ry(Z)
' | Nevon@-zev2| |,
fl@a+vz) (@) Ry(Z)
where Ry, -, Ry € (Z)2Z,{Z}. We define a new system h = (h1,--- ) €
(Z,{Z})" by

h(Z) h@+VvZ7)
= V_lJf(a)_l . :

hi(Z) filla+V2Z)
= +Z4 ()
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where by hypothesis, v(¢) > r. So, we have that v(h(0)) > r and v(det J,(0)) = 0.
By the first case, there exists a unique d such that h(d) = 0 and v(d) > r.
Let b = @ + Vd. It is immediate from the above equations that f(b) = 0 and
v(@—1b) > v(V)+r = v(det J;(@) + 7. The uniqueness of b is an immediate
consequence of the uniqueness of d.

This concludes the proof of the theorem. O

Corollary 2.1.8. The same result holds for power series with coefficients in the val-

uation ring of K a finite algebraic extension of Q.

For this, we just have to replace in the proof of theorem 2.1.7 p by 7, and F, by
the residue field K.

Let f € Oxg{X} nonzero. Then, the coefficients of f contain a lot of informations
on the roots of f.

For instance, one can see that f has finitely many roots in Ok:

Theorem 2.1.9 (Strassmann’s theorem). Let f = > a, X" € Og{X} nonzero. Let
N be the largest index among the indexes i such that |a;| = max,|a,|. Then, f has at

most N zeros in Ok.
We can actually say more:

Theorem 2.1.10 (Weierstrass preparation theorem). Let f = Y a,X" € Og{X}
nonzero. Let N be the largest index among the indexes i such that |a;| = max,|ay]|.
Then, there exist k € N, a monic polynomial P of degree N and h(X) € Ox{X}
invertible (i.e. is in 1+ mxOx{X}) such that

F(X) = m P(X)R(X).

It implies that f has exactly N roots in O, (counting multiplicities).
We can do better: the coefficients of f actually determine the valuation of the roots

of f. For this, we need to introduce the notion of Newton polygons.

Let f(z) be a power series with coefficients in O,. Assume that the coefficient

of degree 0 is nonzero (if this not the case, divide by z™ for an suitable n). The



CHAPTER 2. PRELIMINARIES 24

Newton polygon of a polynomial f is defined as the lower convex closure of A :=
{P, = (i,v(a;)) | © € N}. If a; = 0, we consider P; as a point to "infinity".

In general, the Newton polygon of f is obtained as follow: we consider the set of points
A as above. Rotate the y-axis counterclockwise. If it hits a point P; € A, break the
line and keep going. When the line hits infinitely many points in A (see figure 2.1 (a))
or when the line cannot continue to rotate without missing points in A (see figure 2.1

(b)), stop. The Newton polygon of f is the line obtained after this operation.

(0> v(ao)) (0> v(ao))

(i, v(ai)) (i, v(a))

(a) The line hits infinitely many (b) The line cannot rotate without

points. missing points.

Figure 2.1: The Newton polygon of two series.

Theorem 2.1.11. Let f(X) = a; X" € K[[X]] be a power series such that ag # 0.
Then,

1. Let X be the least upper bound of all slopes of the Newton polygon, then the radius
of convergence of f is p* (or all K if )\ is not finite). Note that the series may

only converge on the open ball of radius p* (and not on the closed ball)!

2. Let (i,v(a;)) and (j,v(a;)) be two consecutive points where the line breaks, then
vl(az)~v(a)

f has exactly 7 — 1 roots of valuation i in the algebraic closure of K

(counting multiplicities).

3. If f € Ox{X}, let P be the polynomial given in the Weierstrass preparation
theorem (say, this polynomial has degree N ). Then, the Newton polygon of P
coincides with the Newton polygon of f until the point of coordinates (N,v(ay)).
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The goal of appendix A ’tropical analytic geometry’ is to present a generalisation
of this result to systems of restricted analytic functions with several variables.
To conclude this part, we give a generalisation of the Weirstrass preparation theorem

to power series with several variables.

Definition 2.1.12. Let f € Ox{X,Y}. We say that f is regular of order d in Y if
FX,Y) =Y 4 ag (X)Y 4 4 a(X)

where a;(X) € K[X] and f denotes the image of f under the residue map.

Theorem 2.1.13. Let f € Ox{X,Y} regular of order d in'Y. Then,

e (Weierstrass division theorem) for every g € O{X,Y}, there exist a (unique)
Q € Ox{X,Y} and (unique) Ay, --- , Ag_1 € O{X} such that

9=Qf +(Ag Y 4+ A).
o (Weierstrass preparation theorem) there exist a (unique) unit U € Og{X,Y}

and (unique) Ag, -+, Ag_1 € Ox{X} such that

f=U "+ A YT+ 4 A).

2.2 Model theory of the p-adic numbers

2.2.1 p-adically closed fields

In this text, we will consider the theory of the p-adic numbers in the language of valued
rings

ﬁv - <+7 ) '707 ]-7V>7

where V' is a predicate for the valuation ring. We will not consider the case of multi-

sorted languages like in [1].

A model of the theory of Q, in the language £, is called a p-adically closed field.

Definition 2.2.1. We say that a valued field (K, v) is p-adically closed if it satisfies

the following scheme of axioms:
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o (K,v) is a valued field of characteristic zero;

e v(K™) is a Z-group, i.e. is an abelian ordered group such that for all n € Ny, for

all x € K*, there exists y € K* such that v(z) = nv(y) + i for some 0 < i < n;
e K =T, and v(p) = 1;
e K is henselian.

It should be clear how one can write the above properties in the language of valued
fields. Indeed, the relation v(z) > v(y) is equivalent to zy~' € V. So, for instance,

the axiom v(p) = 1 can be written formally as
pEVAP  ¢VANz(zeV Az ¢V)sapleV).

Note that the value group is not a definable group in our theory. However, it is
interpretable because v(K*) = K*/U where U is the set of elements in V' with zero
valuation. Similarly, the residue field is V/pV'.

Clearly, Q, is a p-adically closed field. Also, it is known since [1], that the above
scheme of formulas axiomatizes a complete theory.

Note that in some texts, p-adically closed fields hold for models of the theory of a
finite algebraic extension L of QQ,. In this case, we need to replace the third axiom by
K = L and v(p) = e (the ramification index of K over Q).

The theory of p-adically closed fields is model-complete and decidable (see [1]) but
does not admit quantifier elimination in the language of valued fields. We consider the

following expansion of language:
Lp=(+,—,-,0,1,V,P;;n € Np),

where P, are unary predicates interpreted in Q, by
P(x)=Jyz=y

i.e. P, is the group of nth powers (together with zero). We call Lp the language of
p-adically closed fields (or rings). Let us remark that the predicate V' is not necessary

in this language. Indeed,

QyFu(z) >0+ P(1 + pa?)
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if p#£2or
Q, Fv(z) >0 < P3(1 + pr?)

if p = 3. It turns out that the groups of nth-powers are the only obstruction to

quantifier elimination:

Theorem 2.2.2 (A. Macintyre |9]). The theory Th(Q,,+,—,-,0,1,V, P,) admits elim-

wnation of quantifiers.

Let us remark that if K is a finite algebraic extension of Q,, then
Th(K,+,—,-,0,1,V, P,) also admits elimination of quantifiers (see [13] for instance).
Also, note that by decidability of the theory, the above quantifier elimination is ef-

fective: given a Lp-formula, one can compute an equivalent quantifier-free £ p-formula.

The goal of this thesis is to study the theory of Z, in the language Lp expanded
by a symbol for an exponential function. This language can be seen as a reduction of
a well-known expansion of the language Lp: the expansion by all restricted analytic
functions. The model theory of Z, in this language was first studied by J. Denef and
L. van den Dries in [4].

We denote by L, the language
Lani=LpU{fif €Z,{X0, -+, Xu},n € Mo},
where f € Z,{X} is interpreted in Q, by
fx) itz eZ;
0 otherwise .

The theory of Z, does not admit elimination of quantifier in this language. But it is

the case for the expansion

Ll =L, U{D}
where D is a binary function interpreted in Q, by

-1 .
i () > o(y)
D(z,y) =
0 otherwise.
We denote by Qpan (resp. Z,an) the structure (Q,, f (f € Z,{X}), D, P.(n € Ny))

(resp. (Zy, f (f € Z,{X}), D, P,(n € Ny)) ). The main theorem of [4] is
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Theorem 2.2.3 (J. Denef, L. van den Dries). Th(Z, .,) admits elimination of quan-
tifiers.

Note that once again this result can be extended to finite algebraic extensions.
Also, this theory is the main (non-trivial) example of a P-minimal theory. This notion
of P-minimality was introduced in [5] as an equivalent of o-minimality for the field of

real numbers.

Definition 2.2.4. Let L be an expansion of Lp and let M be an L-structure. We say
that M = (M, ---) is P-minimal if for all M' = (M',---) elementary equivalent to
M, any definable subset of M' is quantifier-free definable by a Lp-formula.

It is proved in [6] that

Theorem 2.2.5 (D. Haskell, D. Macpherson, L. van den Dries). Q, 4y, is P-mimimal.

2.2.2 p-adic exponential rings

Finally, we introduce the structure that will be studied in this thesis: the p-adic
exponential rings. We also give in this section some well-known properties of this
structure.

As we have seen in section 2.1.2, there is no global analytic exponential function
defined on Q,. The power series exp(z) = Y 2" /n! is only convergent for x such that
v(z) > 1/(p — 1). Therefore, the function x —— exp(pz) is well-defined on Z, (if
p # 2). We call p-adic exponential ring a model of the theory of Z, in the language of
p-adically closed rings together with a function symbol E), interpreted in Z, by

exp(pz) ifp#2

exp(p?z) otherwise.
We denote the language of this theory by L., and the structure (Z,, +, -, E,,0,1, P,)
is denoted by Zj ¢,,. Note that in our proofs we will not discuss the case p = 2. Yet,
our results remain true if p = 2. It should be obvious how one can extend our proofs
to this case (usually, it is sufficient to replace p by 4).
Note also that this structure is an exponential ring in the sense of [15].
We will denote by Z,[ X% the ring of exponential polynomials (or E,-polynomials) as

defined in [15]|. As it will be useful later, let us recall the construction of this ring:
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Let (R, E)) be an exponential ring i.e. a commutative ring R with unity and a morphism
E between (R, +) and (R*,-). We want to define R[X]¥ the ring of E-polynomials.
We define by induction a ring Rj and an ideal Ax. We also define Ej a morphism of
groups between the additive group of Ry and the group of units of Ry,q. If & = —1,
we set R = R. If Kk = 0, we set Ry = R[X] and Ay = (Xy,---,X,). Then,
Ry = R_1 ® Ay and we define E_; as the composition R B R Ry.
Assume that we have defined Ey_1, Ri_1, Ry, Ay such that we have R, = Ri_1 ® Ay
and Ej_; is a morphism of groups between R;_; and the group of units of R;. Then,
let exp(Ax) be a multiplicative copy of (A, +) (i.e. exp(A) is a multiplicative group
and we are given an isomorphism exp : Ay — exp(Ax)). We set Ry := Rylexp(Ay)]
and Agiq := the Ry-submodule of Ry, generated by the elements of the type exp(a)
for a € A\ {0}. Finally, we define Fy: Let © € Ry. Then, x = 2/ + a for some
' € Ri_1 and a € A,. We define Ey(z) := Ep_1(2') - exp(a).
We set

R[X]" := lim Ry.

Let us remark that the functions Fj, determine an exponential map on R[X]¥ (given
by E(z) = Ex(z) if x € Ry).

Let r € R. Then it is proved in [15] that there exists a unique derivation on R[X]¥,
trivial on R such that X’ = 1 and E(Q) = rQ'E(Q) for all Q € R[X]¥. Note that
this derivation maps Ry to itself.

Furthermore, we can define a degree on the elements of R[X]¥:

Let P € A; (where k > 0). We can write P(X) as Y., 7:E,(a;) for some ay,--- , ay
distinct nonzero elements of Aj_;. Then, we set t(P) := h.

If P e Ry = R[X], we put t(P) =0if P =0 and ¢{(P) = d+ 1 where d is the degree
of P as a polynomial otherwise.

Let P € R[X]¥. Let us remark that we can uniquely decompose P as P = Py+---+ P,
where Py € Ry and P, € A, for all 0 < 7 < s. We can now define the degree of P

(denoted d(P)) as the ordinal
d(P) :=t(Ps)w® + - - + t(P)w + t(P).

Note that d(P) = 0 iff P = 0. The following well-known lemma will be useful later:
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Lemma 2.2.6. Let P € R[X]¥ nonzero. Then, there exists Q € R[X|¥ such that
d(Q) < d(P) and d((E(—Q)P)") < d(P) (where ' denotes a natural derivative like

above).
Proof. Let P = Fy+ ---+ P, like above.
e If I is nonzero, take () = 0. Then,
d(Q) =0 <d(P)
by definitions. And, as R}, is closed under ’ for all &,
d(Py) < d(Fp) and  t(P}) < t(F;) for all i > 0.
Note also that P/ € A;. So, as d(S) = >, d(S;) for all S € R[X]¥,
A((E(-Q)PY) = d(P) < d(P).
e Otherwise, let ¢« > 0 such that P; is nonzero and P; = 0 for all j < 7. Let
Py =73, 1iE(a;) like before. Take @ = a;. Then,
d(Q) < w'H(Q) <w' < d(P).

And,

h s !
d((E(-a;)P)) =d <r1 +3 rE(aj—a)+ Y Pk>

=2 k=it1
h s
= d(r}) + Y d(r(rj(a; — a;) +75)E(a; — a;)) + > d(F)
j=2 k=i+1

<)W' 4 (b= Dw' + ) H(Phw
k

< d(P).
[l

The p-adic exponential rings were first introduced by A. Macintyre in [10]. Let us
remark that in this paper, the author considers the function (1+p)® instead of E,. As
observed in this paper, our exponential ring is closed under derivation (in the sense of
p-adic analysis). Therefore, proposition (4.1) of [15] holds for our ring: there is one-to-
one correspondence between L.,,-terms (the E,-polynomials) and their interpretation

in the model (the E,-polynomial functions). Also (remark (4.6) of [15]),
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Proposition 2.2.7. Identities in the language L., which hold in Z, are derivable
from the axioms of E-rings and the positive diagram of (Z,, E,).

The main question of this thesis is the following:
Problem 1. Is the theory of Z,, .., decidable?

First, let us remark that we cannot expect to answer this question via quantifier

elimination in the natural language:

Proposition 2.2.8. In the language L.y, the theory of Zy, ., does not admit quantifier

elimination.

The proof is the same that for the theory of Z, in the language L,,:

Proof. First, let us remark that the graph of D is a definable set in the language L.,
D(z,y) =z iff (v(z) >v(y) ANy#0Az=2-y)V ((v(z) <v(y)Vy=0)Az=0). We

claim now that we cannot eliminate the quantifier in the formula:
U(z,y,2) = 3H(D(z,y) =t Az =yEy(t)).

Let us remark that the definable set corresponding to the formula ¥ is given by

the graph of the (definable) function

yEp(z/y) ifv(z) = v(y) and y # 0

Y otherwise.

flx,y) =

We denote by I'(f) this graph. We remark two important properties of this function:

1. fis not an algebraic function i.e. there is no polynomial P(X,Y, Z) with coeffi-

cients in Z, such that P(z,y, f(z,y)) = 0 for all z,y € Z,.

2. For all t € Z,, f(tz, ty) =tf(x,y).

Consider (Fy,---, Fy), where F;’s are p-adic analytic functions from U (an open
neighborhood of 0 in Z3) to Z,. If we show that I'(f)NU doesn’t belong to the boolean
algebra generated by sets of the types {F; = 0}, { P.(F;)} then we have finished because
this algebra contains the collection of all sets definable by a quantifier-free formula in

our language.

We argue by contradiction: suppose that I'(f) N U is a boolean combination of

such sets.
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Claim 1. We can assume that for some i, F; vanishes on T'(f)NU.

Proof. Otherwise, there is a ¢ such that for all i, F;(c) # 0. This means that we can
find a subset of I'(f) N U defined by finite unions and intersections of sets of the form:
{F; # 0}, {P.(F;)} and {—P(F;)}. But all these sets contain an open ball in Z3:

e {F, # 0} is open.

o {P.(F)}: {Pe(x)} = {Pi(x) Ao # 0} U{0}. The left part is open by Hensel’s

lemma. As Fj is continuous, {Py(F;)} contains a open set.

o {~PUR)}Y: {~Pul@)} = {Pu(a)} = {Palw) Aw # 0} O {x # 0}. The left part
is open as a closed subgroup of Z;. The right part is the complement of a closed

set.
So, I'(f) N U contains a open subset which gives a contradiction. O

Without loss of generality, we may assume that : = 1. We now write F} = Py +
P, + --- where P, are homogeneous polynomials of degree r. As for all t € Z,,

f(tx, ty) = tf(z,y), for all z,y € U, we have:
0= Fl(t.%’,ty,tZ) - PO(xvya Z) + tPl('rayWZ) +t2P2(CL’,y, Z) o

So, P.(X,Y, Z) vanishes on I'(f)NU for all r. Let r with P, #Z 0. Then, P.(z,y, f(x,y)) =
0 for all z,y € Z,. This gives a contradiction with the fact that f is not an algebraic

function. O

An other approach to solve the decidability problem is to prove the effective model-

completeness:
Problem 2. Is the theory of Z, ., model-complete?

We will answer to this question in chapter 3 and 4. We will see that in some nice
expansion of our language the theory is effectively model-complete.
Chapter 5 will give a (conditional) solution to the problem of the decidability:
We will prove that one can determine the truth value of existential sentences in our
expansion of the language L.,,. Our proof relies on the p-adic Schanuel’s conjecture.
We obtain the decidability of the theory only under the condition that this conjecture

is true.
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Finally, let us remark that L.,, is a sublanguage of L,,. Therefore, by theorem

2.2.5,
Corollary 2.2.9. Z, .., is P-minimal.

It means that all properties of P-minimal theories hold for T'h(Z, .,). For instance,

our theory does not have the independence property.

Remark. Note that the function E, is well-defined on Ok where K is any algebraic
extension of Q,. Therefore, we may ask the same questions for the theory of Ok in the
language of p-adic exponential ring. It turns out that our results can be generalised
to any finite algebraic extension. We shall not discuss this case in details as it should

be clear from the case Z,, ., how one can prove the general case.



Chapter 3

Strong model-completeness

Let L., be the expansion of the language of p-adically closed rings by all restricted
analytic functions. In 1988, J. Denef and L. van den Dries showed in [4] that the
theory of Z, in this language expanded by a division symbol admits the elimination
of quantifiers. Now, let F' be any family of restricted analytic functions. We denote
by Lr the language of p-adically closed rings expanded by symbols for elements of
F. Let Z, r be the Lp-structure with underlying set Z, and natural interpretations
for the symbols of the language. One may not expect anymore that the theory of
Z,r admits quantifier elimination (even if we expand the language by the division
symbol). However, in this chapter, we will show that under the assumption that the
set of Lp-terms is closed under derivation and decomposition functions (to be defined

later), the theory of Z, p is strongly model-complete:

Definition 3.0.1. Let M be a L-structure with underlying set M. We say that M is
strongly model-complete if for any L-formula V(7), there is an existential L-formula

zP(Z,7y), where ® is quantifier-free, such that for alla € M",
ME V(a) <» Izd(7,a),

and furthermore, for each @ such that M F V(a), there is a unique tuple bin M™ such
that M = ®(b,a).
A set X is strongly definable if

X={aecM"| MEFIyd(a,b7y)},
and, for each @ € X, there is a unique tuple ¢ in M™ such that M F ®(a, b, c). A

34
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function is strongly definable if its graph and the complement of its domain are strongly

definable.

We will denote a formula of the type Iy (z,7) A V?(@(E,E) — Z = y) by
Aly®(z,y). Let us remark that a structure is strongly model-complete iff any for-
mula is equivalent in this structure to a formula of the type 3lgd (T, 7).

Also, note that any theory that admits elimination of quantifiers is strongly model-

complete.

The proof of the main theorem of this chapter is due to A. Macintyre in the special
case ' = {E,} (|8], unpublished). We expand here the ideas of the proof to a more
general family of functions. The case F' = {E,} leads to some simplifications which
will be discussed at the end of the next chapter.

Actually, the proof uses the same strategy that the main theorem of [16]. In this paper,
L. van den Dries shows that the structure with underlying set R in the language of
fields expanded by symbols for the functions exp, sin and cos (restricted to the interval

[0, 1]) is strongly model-complete. His proof relies on two main points:

First, we observe that in the proof of the quantifier elimination of Z,, 4, in [4], we
do not need all analytic functions. It is actually sufficient to consider a family closed
under Weierstrass division (i.e. a Weierstrass system, to be defined later). We will

recall this fact in the next section.

Second, L. van den Dries shows that the set of strong existential definable func-
tions in his language forms a Weierstrass system. The central argument is that one
can interpret the structure (C, +, -, exp, sin, cos) (where the functions are restricted to
the unit box). The proof does not work in the language of (restricted) exponential

fields.

We adapt this strategy in the p-adic setting. In this case, we need to add functions
so that the structure with underlying set V' and natural interpretations for the symbols
of L is definably interpretable (here V' can be any valuation ring of a finite algebraic

extension of Q,). We will develop this point in section 3.3. Finally, in section 3.4,
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we will prove that if the set of £p-terms is closed under derivation and if F denotes
the expansion of F' defined in section 3.3, then the theory of Z 5 is strongly model-

complete.

3.1 Quantifier elimination and Weierstrass system

Definition 3.1.1. A Weierstrass system over Z, is a family of rings Z,[X1,--- , X,],
n € N, such that for all n, the following conditions hold:
1. Z[X] C Z,[X] C Z,{ X} where X = (X1, , X,);
2. For all permutations o of {1,--- ,n}, if f(X) € Z,[X], then f(Xoq), -+, Xow)) €
Z,[X1;
3. If f € Z,[X] has an inverse g in Z,{X}, then g € Z,[X];

4. Let k € Z. If f € Z,[X] is divisible by k in Z,{X}, then f/k € Z,[X];

5. (Weierstrass division) If f € Zy[X1, -+, Xut1] and f is regular of order d in

Xni1, then, for all g € Z,[ X1, -+, Xny1], there are Ag,--- , As1 € Z,[X']

(where X' = (X1, ,X,))and Q € Z,[X] such that
9(%) = Q) - F(X) + (X Aa (X) + - + A(X7)).
It is well-known that
Lemma 3.1.2. Let (Z,[X1,--- , X,])n be a Weierstrass system. Then,

(a) forall f(X,Y) € Z,[X,Y], forall g1, -+ . gm € Z,[X], f(X,0:1(X), -, gm(X)) €
Z,[X];
(b) for all f(X) € Z,[X], for all i, $-(X) € Z,[X].
Proof. (a) By Weierstrass division,
FX.T) = DX V)0 (X)) + Br(K Voo Yo,
where Ry € Z,[X,Ya,-+,Y;,]. So, by induction,

fXY) =Ui(X,Y)(Y1 = g1(X)) + - + Un(X,Y) (Vi = gin(X)) + Rn(X),

where R,, € Z,[X]. And, clearly, f(X,g1(X), +, gm(X)) = Rn(X).
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(b) We may assume i = 1. By Weierstrass division,
f(X1+ H, Xo,-++, X,) — f(X) =U(X,H)H? + Ry (X)H + Ry(X),

where Ry, Ry € Z,[X]. It is not hard to see that Ry = 0 and R, = 88—){1(?).

O

Actually, (Z,[X1, -+, X,])n contains all the analytic functions that we need to
carry on the proof of the quantifier elimination in [4]. The crucial construction of the

proof is the following:

Given f(X,Y) =" aI(X)YI € Z,{X,Y}, there exists fe Z,{X,V,Y} such that

e for all Z,v(T) C Z, which satisfy a first-order condition (depending on f only),

f(fv ?> = al<§>f<§7 @(f),?)

e f(X,V,Y) is preregular of order I.

Definition 3.1.3. Let f(X) = Zalyf € Z,{X}. We say that f is preregular of
order [ if la;| =1 and |as| < 1 for all J > I (we use the lexicographical order). We

say that f s preregular if it is prereqular of some order.

It is well known that

Lemma 3.1.4. Let f(X) = Zalyl € Z,{X} preregular of order I. Then, there
exists an automorphism T : Z,{ X} — Z,{Z} such that T(f) is regular in Z,

Actually, the automorphism 7T is a composition of a permutation of the variables

and of a function of the type:

X’i ’—>Zz—ZTeLl lfl<n,
X, — Z,.

So, in particular, if f € Z,[X], then T(f) € Z,[Z]. Also,

Lemma 3.1.5. Let f(X,Y) = ZaI(Y)VI € Z,|X,Y]. Then, the above function f
belongs to Z,[X,V,Y].
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Proof. First, we recall the construction of the function f

Let 7 € Z';. Assume that the following formula is satisfied in Z,:

(@) = (@ £0) AN (las@) < lar@ ) A A (las@)] < las@)])
<! \§|<<Jd

where I € N*, |I| =4y + -+ + i, and d is like in the following lemma:

Lemma 3.1.6 (lemma 1.4 in [4]). Let f(X,Y) = S a/(X)Y' € Z,{X,Y}. Then,
there is d € N such that for all I with |I| > d,

where bry € Z,{ X} with ||brs|| < 1.

Then, assuming that Z, F (%), a; ()" f(Z,Y) is preregular of order I and

0 @@ 7) =Y (0@ /a@)V + 7+ Y (a@)/a@)7

J<1I I<J\|J|<d

+ 3 A (@ /@@ ) brs(@) + b (@)
|K|>d  J<I

+ Y @) (as@)/ (@) 7
I<J,|J|<d

We define:

X, V,Y)= ZVJY v 4 > opvY
J<I

I<J|J|<d

+ Z ZVJbKJ )+ brr(X) + Z pVibrs(X) v

|K|>d \ J<I I<J,|J|<d

Then, f(X,V,Y) is preregular of order I and for all T such that u;(Z) holds and for

vy(T) = as(T)/ar() ifJ <1

a;(T)/pa;(T) otherwise,

we have
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Then,

and

J<I I<J|J|<d

So, as a Weierstrass system is closed under derivation and composition, if f;(X,Y) €
Z,[X,Y] for all J, we are done.

Let g(X,Y) = f(X,Y) — > l<d a;(X)Y. Let us remark that g € Z,[X,Y].

Let {Iy,---,I;} be an enumeration of all |J| < d. By induction on k, we will define

(uniquely determined) functions Uy, - -+ , Uy, Ry € Z,[X,Y] such that
g = G,]lUl + - +a[kUk +Rk

Let I be an index such that [la;(X)| = maxj<4f{||as;(X)|}. Without loss of gen-
erality, we can assume that I; = I. Let t € N such that p~* = |la;(X)||. Then,
ptg,p~tas;(X) € Z,[X,Y] for all J and ay, is preregular. So, there exists an auto-
morphism T like in lemma 3.1.4 such that T} (p~tas, (X)) is regular in Z,. So, by the

Weierstrass division theorem, there exists a unique U'1(Z,Y) € Z,[Z,Y] and a unique

R\ € Z,[Z,Y] (polynomial in Z,) such that
Ti(p™'9) = U Ti(p~"ar, (X)) + Ry

So, if we apply 77! and multiply by p’ the above equality, we obtain (unique) Uy, Ry €

Z,[X,Y] such that
9(77 ?> =an (7) U1 (Y) + Ry (77 ?)

where T1(p~*R;) is polynomial in Z,,.
We carry on by induction with § := g—ar,U; and we obtain Uy - -+ , Uy, Ry € Z,[Z,Y]
with the required properties and such that for some automorphism 7', T'(Ry) is poly-
nomial in Z,,.
But, as

g=apfr, + - +arfr, +0,

by uniqueness (note that the functions are actually unique in Z,{X,Y}), U; = f;, and
therefore f;, € Z,[X,Y]. O
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Now, it should be clear how we can adapt the proof of the elimination in [4] to

prove quantifier elimination in the following language:

Fix a Weierstrass system W = (Z,[ X1, , Xp])nen. Let L5, be the extension of
the language (+,—,-,0,1, P,;n € N) by symbols f for each f € Z,[ X1, -+, X,] and
D, a division symbol, interpreted in Z, by:

z/y if v(x) >wv(y) and y #0

0 otherwise.

D(z,y) =

Let Z,w be the structure with underlying set Z, and natural interpretations for the

symbol of £E.. Then, it is straightforward from [4] that
Proposition 3.1.7. The theory Z,w admits elimination of quantifiers in L{).

Note that the graph of the function D is strongly definable in Ly,. So, as an

immediate corollary of the above proposition, we have

Corollary 3.1.8. The theory Z,w 1is strongly model-complete in Ly .

3.2 Weiestrass system generated by a family of func-
tions

Let F' be a a family of restricted analytic functions. As before, we denote by Lp the
expansion of the language of p-adically closed rings by the elements of F'.

Surely, if W is a Weierstrass system that contains F, the theory of Z, eliminates the
quantifiers in the language L£E,. However, it may be hard to give an explicit descrip-
tion of the functions in W. In this section, we will define W, the Weierstrass system
generated by the Lp-terms. The construction of this system gives us a control on the
functions in Wg. In particular, for all f € Wy, there exists a finite collection of func-
tions fi, -+, fr € F from which one can construct f using polynomial combinations,
Weiestrass divisions, permutations of the variables and inverses. Using this system, we
will obtain a result of strong model-completeness: we will see that any function in Wg
is actually strongly definable (under some assumptions on F'). Furthermore, in the

next chapter, we will see that under further conditions on F' the model-completeness
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is actually effective.

We define the Weierstrass system generated by the Lp-terms by:
For each n, let W}OT)L be the set of Lp-terms with n variables.
We define W}?}LH) by induction on m. Assume that we have defined W}’?L for each

n € N and for each & < m. Then, W}ZH) is the ring generated by:
(a) Wiy c W™
(b) For all f € Wi, for all permutations o, f(X,ay, -, Xow) € WiV,

(c) Forall f € W}({Z), if fis invertible in Z,{X}, then f~! € WSZH)'

Y

(d) For all f € Wé‘”:l) and for all k € Z, if f is divisible by k in Z,{X}, then f/k €
W(m+1).

Fn )

(e) For each f € W}”Z)Jrl of order d in X4, for each g € W}?:L)Jrl, the functions
Ao, - Ag1 € Zy{X1, -, Xy} and Q € Z,{X1, -+, X141} given by the Weier-
strass division and their partial derivatives belong to W}Tlﬂ) and W}Tlfl) respec-

tively.

Let Wg,, :=,, WI(JZ) It is clear that these sets determine a Weierstrass system over
Z,. We denote this system by Wr. Then, by proposition 3.1.7, the theory of Z, w,
admits elimination of quantifiers in £}, . We will show that each function of Wi is
strongly definable in £ (under extra assumptions on F).

Also, note that by definition, for all f € WIE{ZH), there exists, g1, , g € WI(JZ)JFI such
that f is obtained from g, --- , g, using one of the above operations and polynomial
combinations. We denote this property by f € (g1, , gr). Now, it is clear that there
exist Lp-terms fi,---, fr such that f € (fi,---, fx). Indeed, by induction, we find a
(finite) collection of functions g1, - , gmk, such that for all ¢,7, g;; € Wg)s(m) and
Git1; € (g1, Giky)- As, W}(,Oi is, by definition, the set of Lp-terms with n variables,
we have that f € (f1, -+, fx) for some Lp-terms fi,-- -, fx.

Furthermore,

Lemma 3.2.1. Let U(X) = Yy, -, Y,0(X,Y) be a Lp-formula where ¢ is quantifier-

free. Then, there exists ¢’ a ,C{?VF -formula such that

Z,F vY(\p(Y) 32y, Ze (X, 7)).
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Furthermore, for any subterm f in ¢' (not involving D), there exists a subterm g in ¢

and Py, -+, P, polynomials with coefficients in 7 such that f € (g, P1, -+ , Py)

This follows immediately from the proof of proposition 3.1.7. Furthermore, by in-
duction, there exists a quantifier-free [,{?VF—formula ©(X) equivalent to ¥ such that for
any term f in ¢, f € (g1, - ,q, P, -+, Ps) where ¢1,--- , g, are the Lp-terms in ¥

and P, ---, P are polynomials with coefficients in Z.

3.3 Interpretation of finite algebraic extensions

Let F' be a family of restricted analytic functions and Wr be the Weierstrass system
generated by the Lp-terms. The goal for the rest of this chapter is to prove that the
functions in W are strongly existentially definable in Lp.

First, we illustrate the main idea of the existential definition on a simple example:
Let f be a Lp-term of order d in X, 1. Then, by the Weierstrass preparation theorem,
there are Ay, -+, Ag_1 € W}l,)l and a unit U € WST)LH such that:

F(X1 e Xup) = | X + A (X)X + -+ A(X0)| - U(X),

where X' = (X;,---,X,). We want to give an existential definition of the functions
AOa U 7Ad717 U.
Fix o/ = (21, - ,2n) € Z. It is rather clear that U(a’, X) is strongly definable in

terms of f and Ay(2’), -+, Ag_1(2'). We will give the explicit definition of the graph
of U later and focus now on the definition of the coefficients A;.

Let ay,--- , a4 be the roots of P(X) := Y A;(z/) X"+ X< in @; (note that these are

—~

exactly the roots of f(2/, X) in Q, with nonnegative valuation). Then, the coefficients
A;(z') are uniquely determined by ay,---,aq4. For instance, if the roots are non-

singular (i.e. if oy # o for all i # j), the coeflicients A;(z’) are uniquely determined

by the system:
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Other systems determine the coefficients in the case where the roots are singular (we
will give these definitions later). The above relation leads to an existential formula
which determines the graphs of the functions A;. However, the existential quantifiers
in this formula quantify over elements in @Vp (the a;’s). We want a definition in Z,.
In order to obtain such a definition, we first show that we can actually quantify over
a finite algebraic extension of Q, (which depends only on f). Then, we will see how

one can interpret such an extension in 7Z,.

It is well known that the p-adic field @, has finitely many algebraic extensions of a
given degree (see proposition 2.1.4). So, we can construct a sequence of finite algebraic

extensions K7 C Ky C --- such that:

e K, is the splitting field of @,,(X) polynomial of degree N, with coefficients in
Q;

o K, =Q,(B,) and V,, := Ok, = Z,(f3,) for all B, root of Q,;
e any extension of degree n is contained in K.

Let us remark that for any choice of 2/ € Ly, a1, a4 € Kq. Also, it is well-known

that the structure of ring is interpretable in Z,:

Lemma 3.3.1. For all d, the structure (Vg,+,-,0,1, Py;n € N) is ezistentially defin-
ably interpretable in (Z,,+,-,0,1, P,;n € N).

Proof. For this, we identify V; with its structure of Z,-module. Let () be the minimal
polynomial of 5, over Q,. We know that this polynomial have coefficients in Q (with
nonnegative valuation). Let D be the degree of Q. Then, Vj; is isomorphic to Zz?

where the addition is the addition componentwise and the multiplication is defined by

(xla e ,ZED) “Va <y17 Tt 7yD> - ( Z xzy]tz]b R Z szygtng) )

1<ij<D 1<i,j<D

where the t,;;, € Q N Z, are determined by

+j k
. = th‘jkﬁm
!
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Let f € F. Then, f defines an analytic function on V;. So, we can consider
the structure (Vy,+,-,0,1,P, (n € N), f;f € F). We want that this structure is
existentially definably interpretable in Z, p. In general, this does not seem to be the
case. So, we will add function symbols in our language so that the latter structure is
interpretable in our expansion of language. For this, it is actually sufficient to describe
the decomposition of f in the basis of V; over Z,. Fix f € F and y = > y;8; € VF

(where y; € Z';). We decompose f(y) in the basis of V; over Z,,:

fly) =7 (Z yiﬁé) = co.5.4(Y) + c1pa@Ba+ - + enr (@B

where = (y1,--- ,yn,). It determines functions ¢; 4 from ZENe to Z,. We call
these functions the decomposition functions of f in K4 Note that these functions are
independent of the choice of ;. Indeed, for all ¢ in the Galois group of K, over Q,
(denoted by Gal(K4/Q,)),

=1 <Z yiﬁgi) = co.74(T) + cLpa(@)B] + -+ eny-1,5.a(@)87

by continuity of 0. Let F := F U {cifa| f€F, de Nandi < Ny}. Then, by

definition,

Lemma 3.3.2. For all d, the structure (Vy,+,-,0,1, P, (n € N), f; f € F) is existen-

tially definably interpretable in Zpﬁ.

One may wonder if we need to add more functions to interpret the structure
(Va,+,,0,1,P, (n € N), f; f € ﬁ) in Z, 5. However this is not the case. Indeed,

let us remark that the ¢; 4(7) are linear combinations of the f(y?):
co,1,a(y) fy™)
. _ Vﬁl .
Ng-1,14(7) fyoNa)

where V' is the Vandermonde matrix of the roots of (); and o; are the elements of

Gal(K4/Q,). So, as power series,

cipa®) =Y ailyf (Z R; @)52) ;

where a, € QN Z, and R; is a polynomial with coefficients in Z, N Q. Therefore, the

above relation holds for all 77 € VlkN“’. So,
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Proposition 3.3.3. For all d, the structure (Vg,+,-,0,1,P, (n € N), f; f € ﬁ) is

existentially definably interpretable in Z, .

To conclude this section, we observe that if the set of Lp-terms is closed under
derivation, so is the set of Lz-terms. This follows immediately from the above equal-

ities.

3.4 Existential definition of the EWﬁ-terms

Now that we can interpret finite algebraic extensions in our structure, we are able
to formalise the existential definition given at the beginning of section 3.3. Let us
remark that in order to get the existential definitions, we will need to express that a
function has a root of higher multiplicity. For this, we use the partial derivatives of the
function. That is why we assume that the set of Lp-terms is closed under derivation

in the next proposition.

Proposition 3.4.1. Let I be a family of functions in Z,{X}. Assume that the set of
Lp-terms is closed under derivation. Let F be the extension of F' by the decomposition

functions in Kq of each f € F (for alld € N). Let g € Wg. Then,
e g 15 strongly definable in Lz.
e For all d, the structure (Vg, g) is (strongly definably) interpretable in Z, .

Given a function f € Z,{X;,---, X, }, we denote the set {g%;l <i<n k€ N}
by [f].

Proof. The proof is very similar to the corresponding results in [16]. The definitions
given in the below claims are roughly the same that in the real case.
Recall that for all f € ngfl), there exist g1, -+ ,gx € WF@”:BH such that f €

(g1, , gk). So, it is sufficient to prove by induction on m that

1. For all f € Wg::rl), f and its derivatives are strongly definable in terms of

functions in WU  (and their derivatives);
F.n+1

2. The definitions remain true uniformly over the algebraic extensions V; i.e. the
graphs of the extension f: VI — V; and of its derivatives are strongly definably

interpretable in terms of functions in Wl(;;)ﬂ (and their derivatives).

)
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By definition of the language £z and by proposition 3.3.3, it is clear that the extensions
of the functions in WI;OL to Vj are interpretable. So, we assume by induction that the
graph of the extension to V; of any function in ng)l (or one of its derivative) is strongly
definably interpretable in our structure for all d, for all n and for all £ < m.
LﬁfenguTmmf:Pgbnwﬁ%mmePeﬂﬂanM~h&mﬂmmmm
of the type (a)-(e) in the definition of Weierstrass system generated by the £p-terms.
If the functions fi,--- , fr satisfy properties 1. and 2., then f also satisfies these
properties. Indeed, the graph of f is strongly definable in terms of fi,--- , fx as (T, y)
is a point of the graph of f iff

So, we can assume that f is a function of the type (a)-(e).

The cases where f is obtained as the division by k of a function g € W](;ZL) or is a
function in Wg;) are obvious.

If f(X) = g(Xo1), » Xo(n)) Where o is a permutation of {1,---,n} then the tuple
(Z,y) belongs to the graph of f iff

ZpE I Nty =z,00 Ny = g(1).

Therefore, both the graphs of f, of its derivatives and their extensions to Vj are
existentially definable in terms of [g].

If f is the inverse of a function g, then (Z,y) belongs to the graph of f iff

yg(7) = 1.

So, we are reduced to the following case:
Let f,g € Wg:l)ﬂ where f has order din X, ;. Then, there are Ag,--- ,A4_1 € Wﬁ(ﬁ;ﬂ)
(m+1)
and @) € Wﬁ,nﬂ such that

9=Qf+(%4Xﬁ}w~+A0.

We have to prove that Ay, -+, As_1,Q (and their derivatives) are strongly definable

in Z, and that the definitions work uniformly over the algebraic extensions V;.

Claim 2. Ay, .-, Ay are strongly definable in terms of [f, g].
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Proof. Fix T € Zj.

Let ay,---,aq be the roots of f(Z,X,41) in V; (we take in account multiplicities).
Then, Ay(Z),- -, Aq_1(T) are uniquely determined by these roots.
Indeed, first assume that the roots are distinct. In this case, Ay(Z), -, Aq_1(T) are

determined by the relations:

a; # aj for all 4, j

f(@,a;) =0 for all i

1 Q1 Oéilil Ao(f) g(f, Oél)
1 ag - Ozz_l Ay 1(T) 9(T, ayg)

If f(z, X,+1) admits singular roots, say oy = ap and «o; # «; for all ¢ # j, 4, j # 2 for
instance, then we replace the d equations f(Z,a1) = -+ = f(T,aq) =0 by f(T, 1) =
%(E, ar) = f(T,a3) = -+ = f(T,aq) = 0. The functions A; are determined in this
case by the relations:
a; #aj foralli#j, j#2
f(@,a;) =0 for all ¢ # 2

x5 (@ o) =0
1 a; - af ! Aop(T) 9(T, o)
0 1 - (d—1)at? Ay (7) (7, )
1 az --- ag ! Ay(T) = 9(T, a3)
1 ag --- ad! Aq—1(T) 9(T, ag)

For each configuration of multiplicities of the roots of f(Z, X,,11), the coefficients A;
are completely determined by a system like above. We proceed to a disjunction over
all possible cases to define the graphs of Ay, -+, Ag1 on Z:

Let WU(Z, Ag(T), -+, Aq_1(T), @) be the disjunction of all possible system like above.

Then, the following formula gives an existential definition of the graphs of Ag, - -+, Ag_1:
dog - raq € Vg U(T, Ap(T), -+, Aar (T), @).

Let us remark that the above definitions are existential definitions in V;. We interpret

this formulas in Z,. So, formally, the a;’s are replaced by tuples, the additions,
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multiplications (in Vj; in U) are replaced by their interpretation in Z,. Similarly, the
functions f, g, their derivatives are also replaced by their interpretations in Z, (which
exists by inductive hypothesis).

Note also that the «a;’s are only unique up to permutation. It means that so far, we
have only existentially defined the graphs of the A;’s. We transform this existential
definition into a strong existential formula using [3]. In this paper, J. Denef gives
a formula of definable selection for finite sets i.e. a quantifier free formula D(z, X)
(where X is a new predicate) such that for all X (o) a predicate corresponding to a

finite set in Q,:
Q, FE vy, -+ v /\Z.X(vi)/\/\m.v,-%vj]
— oy, - E”US[/\Z-X(UZ') AN D(vi, X) NN i # 5

We use this formula with X equals to the set {aq, -+, a4} to get a strong definition

of the graphs of the A;’s. O

Note that the above formula works uniformly over the algebraic extensions. There-
fore, the graphs of the Als as functions from V' to V, are also strongly definably

interpretable.

Claim 3. Q and its derivatives (with respect to X, 1) are strongly definable in terms

Of [fag]7A07"' 7Ad—1~

Proof. Let g:=g— 3 A X},,. Then, g=Q - f. Fix T € Z7.

o If f(Z)#0, then
Q) = (@) / f(@).

o If f(T) = 0# 520=(2), as 52— (T) = Q(T) - 5722~ (7) + 585 (T) - (),

99 of

QF) = 55— /55— @

e We proceed similarly for the other cases. Let us remark that if f(Z7) = --- =

&TJQ(E) = 0, then necessarly, a)a(#(f) 2 0. In this case, we have that:
n+1 n+1
_ o9 2
Q(T) (T) (@).

B X4 OX
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A disjunction over all above cases gives a definition of the graph of Q.

Also, we can define a)?? -
If f(7) #0, a8 5 = Q 55y + oxey -

a)a(il - (a)?il —Q 6Xn+1>/ /
We have a similar equality in the case where f(f) =0# d)?f (T). Again, we have to
do a disjunction over all ¢ < d such that aXl ( ) # 0 and 6§kf (7) =0 for all k < 1.
By induction on j, we can define Q smularly O]

1
Again, the above formula works uniformly over finite algebraic extensions. So, the

graphs of () and its derivative with respect to X, as functions from Vd”Jrl to Vy are

strongly existentially definably interpretable.

In the next claim, we will use the following notations: let I = (i1,---,7;) where

ir € {1,---,n}, then

A 90 n
oxX; 0X; 0X; "
oiQ 0 o

_ . 0.
aX[aX,"YZ+1 ale aXZl aXfH_l

Claim 4. For all I = (iy,--- ,4;) and for all j, %IXA; and —2229 qre strongly definable

ax,ax; T

in terms of [f, g].

Proof. We prove the claim by induction on the length of I. First, we prove that

OR ()7 . .
gg}?, R o e ax?il are strongly definable in terms of [f, g] for all i < n and for
all j.

Let g; := ‘99 - Q- 88—)](: (where @ < n). Let us remark that by claim 3, g; is strongly

definable in terms of [f, g]. We derive the equality g = Qf + >, A, XF,, + X2 | with

respect to X; and obtain that

8Ak

n—i—l'

We apply claims 2 and 3 with this equality to get the strong definitions of %, R 86’4—;{;1,
8(:iQ
8X,;0X3,

Let I = (i1, -+ ,4;). Let : € {1,--- ,n} and I’ = (4,41, -+ ,4;). Assume that the claim
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is proved for the derivatives with respect to I. Let gy := % - Q- % (where g is

defined by induction on the length of ). As (by induction),

Again, we apply claims 2 and 3 with this equality to get the strong definitions of

o' Ao | . o' Aay _079Q
3XI/ ) ) BXI/ ) 8XI’8X¥1 .
This completes the proof of the claim 4. O

This proves that Ag, -+, Ag_1, @ and their derivatives are strongly definable func-

tions in terms of functions in Wém)

i and therefore completes the proof of the propo-

sition.

[]

The main theorem of this section follows immediately from propositions 3.1.7 and

3.4.1

Theorem 3.4.2. Let F be a family of restricted analytic functions. Assume that
the set of Lp-terms is closed under derivation. Let F be the extension of F' by the

decomposition functions of each f € F. Then, L, i is strongly model-complete in Lz



Chapter 4

Effective model-completeness

In this chapter, we are interested by the effectivity of the theorem 3.4.2 i.e. is there
an algorithm which takes for entry a £z-formula W(Z) and returns a strong existential
formula ¢(Z) equivalent to W (Z)?

In chapter 3, we have given an explicit description of ¢ except for the use of proposition
3.1.7. So, if we can prove that this step can be done effectively, we are done. This
proposition relies on the elimination of quantifiers in [4]. In the proof of this theorem,
most of the steps are either clearly effective or the effectivity is already well understood
(e.g. elimination of quantifier in Z,, lemma 3.1.5). We will focus our attention to the
most awkward step with respect to the effectivity: the use of lemma 1.4 in [4]. First,

let us recall this lemma.

Lemma 4.0.1 (lemma 1.4 in [4]). Let f(X,Y) = EaI(Y)XI € Z,{X,Y}. Then,
there is d € N such that, for all I with |I| > d,

where byy € Z,{Y '} with ||brs|| < 1.

The existence of d follows from the Noetherian property of the ring Z,{Y}. Tt is a

priori not obvious that one can compute effectively such a bound.

Definition 4.0.2. Let f € Z,{X,Y}. We say that f has an effective Weierstrass
bound if one can compute d(f) a upper bound for the smallest integer d like in lemma

4.0.1.

o1
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A Weierstrass system for which there is an algorithm which compute d(f) for each
function f of the system is called an effective Weierstrass system.
The main theorem of this chapter is that under the assumptions of theorem 3.4.2 and
assuming that we can compute the above d for any Lz-term, the Weierstrass system
W is effective. And therefore, the theory of L, i is effectively model-complete.
This follows from an induction on the complexity of the functions in the Weierstrass
system. We will develop this in section 4.1. In sections 4.2 and 4.3, we prove the main
theorem of this chapter. In section 4.2, we compute an effective bound of the mixed
volume of a system of analytic equations with effective Weierstrass bound. This notion
of mixed volume comes from tropical analytic geometry and will allow us in section 4.3
to compute the effective Weierstrass bound of any function in the Weierstrass system
generated by the L£z-terms (under the above assumptions).
Finally, in the last section, we discuss the special case of Z, .. In particular, we
apply our main result to show that the Weierstrass system generated by the closure
under decomposition functions of the L.,,-terms is effective. Therefore, this shows
that the theory of Z, in the language of p-adic exponential rings expanded by the

decomposition functions is effectively model-complete.

4.1 Effective Weierstrass system

For the rest of this chapter, we fix F' a family of restricted analytic functions. We
assume that the set of Lp-terms is closed under derivation. We also assume that this
family is an effective family of restricted analytic functions i.e. that F is recursively
enumerable and that, for all 7, there exists some algorithm D which takes for entries

functions f in F' and returns a Lp-term g such that % =g.

Definition 4.1.1. A Weierstrass system (Z,[X1, -, Xu])nen is called effective if
there exists an algorithm which takes for entries functions f of the system and returns

an integer d(f) such that, for all I with |I| > d(f),

a(Y)= > b(Y)a,¥),

|J]<d(f)

where f(X,Y) = ZaI(Y)XI and byy € Z,{Y'} with ||brs|| < 1.
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It should be clear from chapter 3 that if the Weierstrass system generated by the
L zterms is effective then the strong model-completeness in theorem 3.4.2 is effective.

We will now assume that F' satisfies:

Hypothesis (W). Let f(X,Y) be a Lp-term. Then, f has an effective Weierstrass

bound.

Let Wr be the Weierstrass system generated by the £p-terms. We will show that,
under the hypothesis (W), Wr is an effective Weierstrass system. Therefore, the the-
orem 3.4.2 is effective assuming that F (the expansion of F' by the decomposition
functions) satisfies hypothesis (W): under these hypotheses, W5 is an effective Weier-
strass system which implies the effective model-completeness of the theory of L, .
First, we show that the integer d(f) can be computed for each term in our language

(for any length of the variable X). This proposition is due to A. Macintyre in [8].

Proposition 4.1.2. Let F' be any effective family of restricted analytic functions.
Assume that F satisfies hypothesis (W). Then, there exists a computable function D
from the set of Lp-terms to N such that for all Lp-term f(X,Y), if d is the smallest
integer like in lemma 4.0.1, then d < D(f).

Proof. Let f(X,Y) =Y aI(Y)XI. Let d be the smallest integer like in lemma 4.0.1.

Then, for all y € Z;, one of the following formulas is satisfied in Z,:

Z¥)= ) asY) =0,
|J|<d

(V) = N\ vl @) <vlas@)A - N o(a(Y) <v(asY))

J<I I<J, |J|<d
Fix § € Z;" and assume p; ¢(y) where i, # 0 (unless Z(y) is satisfied, we can assume

that this is the case). Then,

o' @FE5) =Y (a@/a@) X + X+ 3 (as@)/m@) X

J<I I<J, |J|<d

- Z {Z (aJ@)/aI@)> bics (7) + br1(Y)

\K|>d ~ J<I
K

£ Y (w@/a®)bem X"

I<J, |J|<d
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We introduce new variables V;; and replace the quotients a;/a; by V; or pV; according
if J<TITorl<J |J|<d. Itdefines a function:

XV =Svx"+X'+ Y X

J<I I<J, |J|<d

+ Z Z Vibky + bgr + Z pVibr s X"

K J<1I I<J, |J|<d

Then, f(X,7) = a;(@) f(X,7,7) where v; = a;(¥)/a;(§) or as(¥)/par(@). And, if we

proceed to change of variables

X; — Z; — Z" 'if i<n
Xn — Zy,

the function f(?, v,7) has order S = i, + i,_1d + -+ + i1d" ' in Z, (where [ =
(11, ,1,)). By the Weierstrass preparation theorem,

f(zavay) = <Z§+AS—1(ZM'” 7Zn—1vvay)+"'+A0(Zla'” aZn—lavay))U(77V7y)'

And ,

So, for any zy,- -+ ,z,_1 € Z,, f(Zn, 2, 7) has exactly S roots (counting multiplicities)
in O,. By Strassmann theorem 2.1.9, the integer d(f) given by hypothesis (W) deter-
mines an effective upper bound of S and therefore of d (unless I = (0,---,0) for all

7, in which case, we can take D(f) = 1). O

As we have seen in this proof, if we want to prove that W is an effective Weierstrass
system, it is actually sufficient to prove the following:
Let f(X,Y) be a Ly,-term. Then, one can compute an upper bound S(f) on the
number of roots (counting multiplicities) of the function f(X,7) in O, (if this number
is finite). We want that this bound does not depend on the choice of the parameters
y €L,
In that case, f has an effective Weierstrass bound given by S(f) + 1.
Let f be a function in our Weierstrass system. Then, there are integers n and m—+1 such
that f € Wgﬁﬂ). Also, f has an existential definition in terms of functions in WFn foE

as we have seen in chapter 3, there exist g;,--- , g € W}Twl such that f € (g1, , gr)-
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So, we proceed by induction: assuming that we can compute d(gy),- -, d(gx), we will
show that we can effectively bound the number of solutions in O, of f(X,z’) = 0
(uniformly over 2’ € Z7~'). And therefore, we will find an effective bound of S(f) in
terms of d(g1), -, d(gx).

The basic step of the induction is given by proposition 4.1.2. The cases where f
is obtained from a function g € W}? by inversion, permutation of the variables or
division by an integer are rather easy. The main difficulty is the case where f is
obtained using Weierstrass division. In this case, by the definitions given in the claims
2 to 4 in proposition 3.4.1, we see that zeros of such a function correspond to zeros of
systems of n’ equations in W}"Z} (with ¢ parameters) .

We will now bound the number of solutions in (O})" of a general system of n analytic
functions with n variables (uniformly over some parameters). For this, we will use

results of tropical analytic geometry (see appendix A).

4.2 Effective bound for the mixed volume of a system
with effective Weierstrass bound.

In this section, we will use results of tropical analytic geometry due to J. Rabinoff (see
[14]). We refer to appendix A for an overview of the results and notions that we need

for this section.

Let f = Za;yl € Z,{X}. First, note that f € Q,([0,00)") := Q,{X}. So,
it makes sense to apply the results of appendix A in our setting. We recall some

notations:
vert,(f) == {(I,v,(ar)) | a; # 0 and v,(ar) + (I,v) < wv,(ay) + (J,v) VJ},

where (-, -) denotes the scalar product, v € [0, +00)".

And, the Newton complex of f, denoted by New(f), is the set of cells

Yo = ’?v(f) = W(COHU(UGTtU(f))),

where 7 denotes the projection along the n first coordinates and v € [0, 00)™. Let us
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recall that the polyhedron 7, is the convex closure of a finite subset of R". Finally,

Trop(f) = {v € (RU{oo})" | v=(0,(1), -+ ,vy(ws))
for some T € O, such that f(z) = 0}.

Let f = (fi,-++, fa) be a system of functions in Z,{X;,---,X,,Y}. We assume
that each f; satisfies our inductive hypothesis. It means that each f; has an effective
Weierstrass bound d(f;). We will also assume that any derivative of f; has an effective
Weierstrass bound (this will be our actual inductive hypothesis).

We want to bound the number of solutions of the system uniformly over the parame-
ters Y (whenever there is finitely many solutions for this choice of parameters). Fix
yE Z'g and assume that the number of solutions of the system in O} is finite for this
choice of parameters. We recall the main results of [14]: there is a relation between
the number of solutions of the system and the Newton complex:

If 7 is a solution of the system in O} with non-zero coordinates such that trop(T) :=
(v(z1),- -+ ,v(z,)) € R™ is an isolated point of (), Trop(f;), then the number of solu-
tions in O with valuation trop(7) is exactly (counting multiplicity) the mixed volume

of the polyhedrons

m(conv(vertyopa) (f1))), -+, m(conv(vertopz)(frn)))-

We denote this volume by

Mv(ﬁv(fl)a e 7’3/v(fn))

On the other hand, if v := trop(Z) is not isolated in (Trop(f;). Let C' =), % (fi) =
{v € NTrop(fi) | verty(f;) 2 vert,(f;) for all i}. Then, C' is a I-affine polyhedron
contained in ("), Trop(f;) and which contains v. We want to apply theorem A.4.4 to
determine the maximal number of roots with valuation in this component. Assume
that all the hypothesis of this theorem are satisfied. Then, the number of solutions in

Or with valuation in C' (the compactification of C) is (counting multiplicities):

i(C,Trop(f1), - ,Trop(fn)) := Z i(v, Trop(fi) + evy, -+, Trop(f,) + €v)),

vep

for any suitable perturbation of the system P (P is a finite set).

We will now prove that one can compute integers D; and D, such that
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o MV (%(f1), - ,%(fn)) and i(v, Trop(fi) + vy, -+, Trop(f,) + €vl,)) are both

less than D; (independently on the choice of 7,7, v and v); and,

e (\Trop(f;) can obtained as the union of less than Dy isolated points and con-

nected components C' like above. Furtermore, D5 is a bound for the cardinality

of P.

With this, we will be able to bound the number of solutions of our system with non-
zero coordinates.

The crucial point of the proof is that under our inductive hypothesis, we are able to
compute a box such that the (support of the) Newton complex of f; is contained in

this box:

Lemma 4.2.1. Let f € Z,{X,Y} such that f and all its derivatives have an effective
Weierstrass bound. Then, we can effectively find an integer E(f) such that for all
Y € Z,, either f7(X) := f(X,7) is identically zero or New(fz) C Bmax(E(f)).

In this lemma, Bpax(E) denotes the set {/ € R™ | maxy{|ix|} < E}. Note also

that we have identify New(f) and its support.

Proof. Let us recall that an element of New(f) is the projection of a set wvert,(f)
(for v € R", v = trop(T) for some T € (O;)") i.e. is the set of indexes J such that
v(ay(@)) + (v, J) reaches the minimum of the set {v(a;(y)) + (v, I); I € N"} for some
v € [0,00)". So, it is sufficient to show that for all v € [0,00)" the projection of the
set vert,(f) is contained in Bp.x(E(f)) for suitable (computable) E(f).

As f has an effective Weierstrass bound, we know that there exists d(f) (computable)

such that for all |I| > d(f),
ar(Y)= Y bu(¥V)a, ),
[J]<d(f)
where by; € Z,{Y'} with ||bs]| < 1. Fix § € Z, and assume f; # 0 i.e. ar(y) # 0 for
some |I| < d(f). First, let us remark that for all I such that iy,--- 4, > d(f), for all
7 € (O;)", we can find J with |.J| < d(f) such that

w(ar(@) + (1. trop@) > min {v(bsx (7)) +vlax(®) + (K. trop(@)))

> v(ay(y)) + (J, trop(T)).
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If n =1, take E(f) = d(f) and we are done by the above inequality.

In the general case, we already know by the above inequality that no index [ that
satisfies i1, -+ ,4, > d(f) can be a point of vert,(f). It remains to bound indexes in
vert,(f) with at least one coordinate less than d(f).

Fix 1 <k <mnand1<s<d(f). Fix a coefficient I whose kth coordinate is s. Then,
al(y)YI is the (i1, 51,8, iks1," ,in)th coefficient of the function f,,(X,7)X;
where

— 0°
X3 = s

Then, as fsx has an effective Weierstrass bound, there is d(f, s, k) := d(fsx) such that
for all 1 with max; 4, {i;} > d(f,s, k),

(X1, Xee1,0, Xppr, -+, X0, 9).

v(ar@) + Y i) > min{o(ag, - g s, a0 @) + Y vz}

Ik Ik
where the min is taken in {J" : |J'| = |(J1, k-1, Jkt1, - »Jn)| < d(f,s,k)}. We
set:

E'(f) = max max {d(f,k,s),d(f)}.

k<n s<d(f)
If n = 2, we can take E(f) = E'(f). Otherwise, we can compute E(fs;) for all
s <d(f) and k < n by induction: we proceed like above with f = f, ;. Then, we take

E(f) = max o { E(fsr), £'(f)}- 0

We can now bound effectively the number of roots (counting multiplity) of the

system f with isolated tropicalization.

Lemma 4.2.2. Let f = (1, , fn) € (Z,{X,Y})" such that f; and all its derivatives
have an effective Weierstrass bound for all i. Then, one can compute integers Dy and

Dy (depending only on f) such that for ally € Z, either () V(f:(X,7)) is infinite, or

N Trop(fi(X,7)) has less than D, isolated points and for each such a point the tropical

intersection multiplicity of f at this point s less than D.

In particular, under these hypotheses, whenever the system f has finitely may so-
lutions in (O,)", it has less than D, - Dy solutions in (Oy)" with isolated tropicalization

(counting multiplicities).

Proof. Assume that we have choosen 7 such that the number of solutions of the system

is nonzero and finite. Then, by lemma 4.2.1, New(f;) is contained in By,ax(E(f;))-
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Let us remark that the number of polygons with integral coordinates for the ver-
tices contained in By (F(f;)) is finite. Let Dy be the maximum of the mixed vol-
umes MV (Py,--- , P,) where each P, runs accross the different polygons contained in

Buax(E(fi))- Then, by theorem A.3.3, D, satisfies the conditions of our lemma.

Let us recall that the points of (\Trop(fi(X,7)) are determined by a system
of linear equations. Fach equation corresponds to an half-hyperplane contained in
Trop(f;(X,7)) (determined by some 7, in the notation of appendix A). As these
half-hyperplanes are in bijection with the faces of New(f;) (the %,’s, see proposition
A.2.4), we can bound the number of systems:

Consider the polygon contained in Byax(E(f;)) with the maximal number of faces (say
this polygon has d; faces). Note that d; is computable. Then, Trop(f;(X,%)) has at
most d; half-hyperplanes. So, the number of isolated points contained in the intersec-
tion of all Trop(f;(X,7)) is no more than [],d;. We define D; to be the product of
all d;’s. O

We will now determine a bound for the number of roots such that the tropicalization
lies on a non-proper intersection of () Trop(f;).
First, we recall some facts from appendix A:
Let fi, -+, fn € Z,{X}, fi = quyl. Let C be a connected component of
(Trop(f;) N P where P = [0,00)". Then, there exist vy,---,v, € N* and T such
that, for all ¢ € (0,71, the intersection

P = ﬂ(Trop(fi) +ev;) N (P + ev;)

is a finite set of points.

Assume that C is a I'-affine polyhedron and that the polyhedron (", conv({I | fi #
0}) is pointed (i.e. has dimension n). Then, by theorem A.4.4, the number of solutions
of our system with valuation in the compactification of the component C' is equal to
the tropical intersection multiplicity along C'. And, by definition, this number is equal
to the sum of tropical intersection multiplicities after pertubation of the system by e
ie.

i(C,Trop(fi), -+, Trop(fn)) = Z i(v, Trop(fi) +evi,--- , Trop(fn) + cvy,).

veP
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Let us remark now that, like in lemma 4.2.2, as the half-hyperplanes of Trop(f;) are in
bijection with the faces of the Newton complex, one can compute effectively a bound
for the number of connected components of the type C' = ()7,(fi) (which actually
cover (Trop(f;)).
On the other hand, let f = a; X € Z,{X} and f/(X) = S d/ X = f(X& ") (so,
Trop(fi) = Trop(fi) +ev;). Let T € O and t € O, with valuation ¢ and I € N" such
that

v(a;7') = m}n{v(ajf‘])}.
Then, for 7' = xtvi,

v(ayT) = v(a @t ) = mjin{v(ajyjt*<‘]’ﬁ>)} = m}n{v(af]FJ)}.

Therefore, New(f) and New(f’) are both contained in the box given in lemma 4.2.1. Tt
means that we can find an effective bound for i(v, Trop(fi) +evy, -+, Trop(fn) +ev,)
for all v € P and for the cardinality of P like in lemmas 4.2.1 and 4.2.2.

The above paragraph shows that we can compute a bound for the number of
connected components C' = ()7,(f;) that cover Trop(f;) and that, for each such a
C, we can bound the number of solutions of our system with tropicalization in C.
This shows that we can give a bound for the number of solutions (O5)" of the system
assuming that (), conv({I | fi; # 0}) is pointed.

We are now ready to prove:

Theorem 4.2.3. Let f = (f1,-++ , fn) € Z,{X, Y }" such that f; and all its derivatives
have an effective Weierstrass bound for each i. Then, there exists S(f) computable in
terms of the fis such that for ally € Zy, either the system fy has infinitely many roots
or it has less than S(f) roots in (O})".

Proof. Lemma 4.2.2 gives us a bound N(f) for the number of roots with isolated
tropicalization. It remains to count the roots with non-isolated tropicalization.

If ),conv({l | fir # 0}) is pointed, we are done by the above paragraph. Let
us remark that in this case, the number S(f) is determined using only the effective
Weierstrass bound of the f;’s (and their derivatives).

In order to guarantee that the above polyhedron is pointed, we apply the following

transformations to our system:
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e If the variable X; does not occur in f;, we set f'; := f; - (1 + p°X;). We apply
this transformation for all 7, 7 when necessary.
Then, the number of solutions of the system (f'y,---, f’,) in Oy is the same
that the number of solutions of the system (fi,---, f,) (indeed, the polynomial
(1+ p°X;) has no root in O, and more generally no root with valuation greater
than —s). Also, f7 has the same effective Weierstrass bound that the Weierstrass
bound of f;. Note that the box B (E(f!)) in which lies the Newton complex

of f! does not depend on the choice of s.

o Let (]71, cee ﬁl) be the system obtained after the change of variables X; — X, —
p'Z; applied to the system (f';,--- , f'.) (where Z is a new parameter). Then, for
t large enough (take t at least || f;]|), E has the same effective Weierstrass bound
that f;. Also, for a suitable choice of z € Zy, the number of non-zero solutions
of the system (]71, e ,fn) is finite and is an upper bound for the number of
non-zero solutions of the system (fi,---, f,). Furtermore, for the same choice

of Z, we have that (), conv({I | }‘;7[ # 0}) is pointed.

As, N, conv({1 | f;; £ 0}) is pointed, we can compute a bound S(f) on the number
of non-zero solutions of the system (]71, e 7]‘A;) Indeed, this number is determined by
the effective Weierstrass bound of the ﬁ-’s (which are computable as we have discussed

above). Note that, S(f) does not depend on our choices of s,t. We set S(f) :=

S(f)+N(f). 0

Remark. Let fi,-+ , fo € Z,{X1, -+ ,X,,Y} and

g1 9m € Zpl X1, X, Xpi1, o+ 5 Xy, Y] Then, we can find an effective
bound like in theorem 4.2.3 for the number of solutions of the system

(fio Sur g1, 5 gm) In (OF)" X (C))™

In fact, we can apply the results of appendix A in K(P) where P = [0, 00) X [r;, 00). It
allows us to bound the number of solutions in (O3)" x (C;)™ with valuation at least ;
(for the last coordinates). Indeed, it is easy to see that we can compute a box in which
lies New(g;). It implies that we can compute the bound with the same method that
in theorem 4.2.3. Furthermore, let us remark that the box does not depend on the
choice of r;. Therefore, the bound for the number of solutions obtained is independent

on the choice of r;. It means that we have actually computed a bound for the number
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of solutions in (O)" x (C;)™.

4.3 Proof of the main theorem

We can now prove the main theorem of this chapter:

Theorem 4.3.1. Let F be an effective family of restricted analytic functions such that
the set of Lp-terms is closed under derivation. Let F be the extension of F' by all
decomposition functions of elements in F. Assume that F satisfies hypothesis (W).

Then, the theory of Z,  is effectively strongly model-complete in the language L.

Proof. For this, as we have seen, it is actually sufficent to prove that W is an effective
Weierstrass system. Let f € Wg?b We have to show that f has an effective Weierstrass
bound. We proceed by induction on k and we show that for any f € Wékr)l, f and each
of its derivatives admit an effective Weierstrass bound. The basic step of the induction
is proposition 4.1.2.

So assume that for all n, for all £ < m and for all g € W}ki, g and all its derivatives
have an effective Weierstrass bound. Let H € ng:fl). We want to compute d(H)
(or more generaly, d(G) where G denotes a derivatives of H). By definition of the

Weierstrass system generated by the £z-terms, H is a polynomial combination one of

the following possibilities:
(a) h e Wf;;) In that case, we can compute d(h) by inductive hypothesis.

(m) : X
(b) There are f € Wﬁ,n and a permutation o such that h(X) = f(X,q), -, Xom))-
In that case, we can compute d(f) by inductive hypothesis and d(h) = d(f). The

same holds for any derivative of h.

(c) Thereis f € Wg;) such that f is invertible in Z,{X} and h = f~!. In that case,
d(f) = d(h) = 1. Also, d (aayh) =d (—%iﬁ) =d (%) and similarly for the

higher derivatives.

(d) There are f € Wgr;) and k € Z such that h = f/k. In that case, we can compute
d(f) by inductive hypothesis and d(h) = d(f). The same holds for any derivative
of h.
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(e) There are f € Wg;l)ﬂ of order d in X, and g € Wig?:z)ﬂ such that h is one of the
functions ag, -+ ,a4-1 € Zp{ X1, -, Xpn} or Q € Z,{Xy1,---, X1} given by the

Weierstrass division.

In the last case, h (or any of its derivatives) is actually determined by a system
of equations (see claims 2 to 4 in proposition 3.4.1). Let us remark that by in-

ductive hypothesis, we can compute d(f) and d(g). More generally, let h(X) =
P(X,ao(X),- - ,as(X)) where P is any polynomial with coefficients in Z. Then,

Claim 5. h and all its derivatives have an effective Weierstrass bound.

Proof. Let d(h) be the smallest integer like in lemma 4.0.1. We want to compute a
bound of d(h). For this, it is sufficient to bound S(h), the number of roots in O,
of h(Z,7) = P(Z,a0(2,9), - ,as(2,9),7), for any 7 C Z2"*~! such that this number
is finite (where Z = X; and 7 denotes now (x2, - ,&n_1,Y1, - ,Yk)). Fix ¥ such

that the number of roots is finite. Let us remark that z is a solution of h(Z,7) if

z,tg, - -+, ts,ag, - - - as are solutions of the system of equations:
f(t07 Z??) =0
f(tsa Zay) =0
Lty -+ 1 o 9(to,7)
1ty -+ g g(ts,y)
L P(Z7a07"' 7asay) =0

if t; # t; for all ¢ # j. To make sure that this last condition is satisfied, we introduce

the variables ¢;; 0 < i < j < s and add to the system the equations:

Note that this system has finitely many solutions in (0,)%*3 x (C,)¢*+*)/2 if h(Z,7)
has finitely many solutions in O,. By theorem 4.2.3 and the remark after, one can
compute a bound for the number of solutions of the system in (07)2+3 x (Ck)(*+9/2,
It remains to count the number of solutions with at least one zero coordinate.

Clearly, for all z, the a;’s are uniquely determined and the ¢;’s are unique up to

permutation. So, the system have less than (s + 1)! solutions with z = 0.



CHAPTER 4. EFFECTIVE MODEL-COMPLETENESS 64

We proceed now by induction on the number of non-zero variables a; and t; involved.
If all a; and t; are zeros, let us remark that one of the equations P(z,0,---,0,7) =0
or f(0,2,7) = 0 has a finite number of solutions (otherwise, the system has infinitely
many solutions). Then, the number of solutions of the system with a; = ¢; = 0 for all
i, 7 is no more than the minimum between the (computable) bounds on the number of
solutions of these two equations.

If t; = 0, there is two cases:

1. The equation f(0,Z,y) = 0 has a finite number of solutions. In this case, there
is a computable bound S(f) of this number (determined by d(f) by Strassmann
theorem). Also, as remarked before, for z fixed, the a;’s are uniquely determined
and the t;’s are unique up to permutation. So, number of solutions of the system

with ¢; is no more than S(f) - (s+ 1)! in this case.

2. If the equation f(0,Z,y) = 0 has infinitely many solutions, then any z € O, is
solution of this equation. So, the number of solutions of our system with ¢; =0
is the same that the number of solutions of the subsystem where one removes the
equation f(¢;,Z,7) = 0 and fix t; = 0 in the others. This number is computable
by inductive hypothesis and theorem 4.2.3.

As a bound for the number of solutions when ¢t; = 0, we take the maximum of the
bounds obtained in each case.

Similarly, if a; = 0, it means that the function a;(Z,7) vanishes at z.

1. If this function has finitely many roots, the (finite) number of solutions of the
system is no more than (s + 1)! times the (finite) number of solutions of the
system

9(to. )
flto,2,9) == flts,2,9) = D : =0
9(ts,y)

where D is the ith line of the matrix
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The number of roots of this system is computable by inductive hypothesis and

theorem 4.2.3.

2. If a;(z,5) = 0 for all z, one simply removes the equation defining a; and fix
a; = 0 in the others. The number of solution of the new system has to be finite

and we can bound this number by induction.

As a bound for the number of solutions when a; = 0, we take the maximum of the
bounds obtained in each case.

Then, we take the sum of the bounds obtained in each case. It gives us a bound for
the number of solutions of the above system in (O,)23 x (C,)¢*+)/2,

We proceed similarly for the definitions of the Weierstrass coefficients in the cases
where the ¢;’s have multiplicities greater than 1. A bound for d(h) is given by the sum
of the bounds obtained in all possible cases.

Let ' be a derivative of h. We can compute d(h') in a similar way using the definitions
given in the claims 3 and 4 in proposition 3.4.1.

]

The cases where h is equal to a function @ like in (e) or one of its derivative is
obtained similarly using systems given in proposition 3.4.1. With the same argument,
we can compute d(H) for a general function in Wg:rl). Indeed, H is just a polynomial
combination of functions of type (a)-(e) and so is also determined by a system of

equations whose functions (and their derivatives) have an effective Weierstrass bound

(see proposition 3.4.1).

4.4 Special case: the p-adic exponential ring

In this section, we will discuss the results of chapter 3 and of section 4.3 of this chapter
in the special case F' = {E,}. In this case, Lp is the language L., of p-adic exponential
rings.

First, let us remark that the set of £Lp-terms is closed under derivation. So, the theorem
3.4.2 can be applied: the theory of Z, j in the language of p-adic exponential rings

expanded by decomposition functions is strongly model-complete.



CHAPTER 4. EFFECTIVE MODEL-COMPLETENESS 66

However, note that we dont need to add all decomposition functions in the language.
Indeed, let K,, = Q,(f,) as defined in chapter 3. As E,(>"x;8)) =[] Ep(z;5%), it is
sufficient to add the decomposition functions of E,(z;37) for each j,n. Say,

Ep(2B)) = Cojn(®) + C1jn(®) B + -+ + Cnye1,jn () B

Once again, the functions ¢; ;,, can be obtained as linear combinations of the F(z;537)

determined by the relation:

(Gm@)) =V (Bl(B)2))

where V' is the Vandermonde matrix of the roots of P, , the minimal polynomial of

6\/711+67\/711
2

oeGal(Kn/Qp)

By, over Z,. These are the p-adic versions of the identities cosz = and

oV To_g—vTa
2v/—1
Note that it may happen that v(det V) > 0 in the above relation, which is a slight

sinx = in the complex field.

issue in some of our proofs. For this reason, we will work with the functions ¢; j,, =
Cijn - N(det V), where N = Nk g, is the norm from K, over Q,. The functions ¢; ;,
are called trigonometric functions.

We will consider the theory of Z, in the language of rings expanded by the predicates
Py (k € N), the functions E, and ¢; j,, n € N, 0 <4,j < N,. This language will be
denoted by L,gc. Let Z,pc denote the structure with underlying set Z, and natural
interpretations for the symbols in this language. Like in chapter 3, Z,gc is strongly
model-complete. This case was first proved by A. Macintyre (|8], unpublished).

It turns out that this model-completeness result is effective. For this, by theorem
4.3.1, it is sufficient to show that the set of £,pc-terms satisfies hypothesis (W). We

will give a proof of this fact. This proof is due to A. Macintyre in [8].

First, we prove the following technical lemma:

Lemma 4.4.1. There exist computable functions B(f),C(f) : Z,[z, 7> — Qs¢ such
that C(f) # 0 and for all f € Z[x,g]", for all X € Z3, for all B C Zy, if for all k,
110kf
e >
! (A k! amk(0’6)> =0,
then, for all a € Zy, for all k > B(f),

oF —
v G%@—é(a,ﬂ)) > k- C(f).
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Remark. In this lemma, we will denote the function E, by E. Note that we only prove
the case p # 2 but it should be obvious how one can compute the functions B and C'

in the case p = 2.

Proof. We proceed by induction on d,(f) the degree of f in = (see chapter 2 section
2.2.2).

If d.(f) =0, we set B(f) =C(f) = 1.

Suppose now d,(f) > 0. Then, by lemma 2.2.6, we can effectively construct g such that
d.(g9) < d.(f) and d, (%;g)f) < d.(f). By inductive hypothesis, we can compute

Blg), C(g), B (2522 and ¢ (22521).
(a) We find B(E(—g)f),C(E(—g)f) as follows:
Take A # 0 and assume for all &,

110°E(=g)f
U\NET og

Then, in particular, for all k,

(i (255 ) -

So, by inductive hypothesis,

(2 () ) oo (200

for all k> B (22000),

=
=

(1 1 9 E(—g)f

S gL 0D) ~ vk )20

It means that

v (l 1 akHE(_g)f(a,B)> > k.C (W) —w(k+1)

N
=t [ (TR -

But, as v(k + 1) < log,(k + 1), ”(kkjll) — 0as k — oo and 5 >

for all k. So,

1
2

we define

Y

C(E(-g)f) = %C (8E(a;g)f) _ 10%“

where p is the least integer such that log: C’ <M> We set

B(E(-9)f) = B (W) +
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(b) We find B(E(g)),C(E(g)) as follows:
First, note that v(E(g(0,7))) = 0 for all 5. Therefore, if for all £,
1 1 0°E(9(0,7))
A CASAR VU I
! <)\ K Ok 20,
then v(\) < 0. So, without loss of generality, we may assume A = 1.

Let h := E(g). Then,

on _ oy,

oz Loz

And, by induction, we can show that for all k,
1 OF1ih 10%g107h

=p
it+j=k

1 ak—i—lh
(% (E—agijrl) Z 1.
Also, let us remark that if £+ 1 > B(g) and (k+ 1)C(g) > 1,then
1 ak+lg
v (Haxk“) = L
So, for all k +1 > max{B(g),C(g)"'},
1 ak—l—lh
! (EW) =2

Let D(g) := max{B(g),C(g)"'} and k41 := (n —1)D(g). By induction, we show
that

k! 9kt il Qi+l jl i

So, for all k,

Claim 6. For all k+1 > k,,
1 ak+1h
v <E—8xk+1) Z n.

We have already proved the claim for n = 1,2. So, we assume that the property
is true for all [ < n and prove the claim for n + 1.
Let i + j = k. Tt is sufficient to show that

y (1 0" lg 1 8jh> > .

il Oz j1 Oz

First, let us remark that if ;7 > k,,, the above inequality holds by inductive hy-
pothesis.

In general, if ks < j < ksyq for some 0 < s < n, then

10h S
v F% = 8
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In this case, we have that k — kyyy <1 < k—ks. So,iftk+12>Fk, ., 1+12>
(kn+1 —ksi1) = (n—s)D(g). Therefore, i +1 > B(g) and (i+1)C(g) > n—s. So,

v l@”lg >n—s
i Oxitl ) — ’

This proves the claim.

By the claim, for all k +1 > nD(g),
1 ak—Hh

1 8k+1h
v (EW) > (k+1)c,

if we find n, ¢ such that n > (k+ 1)c and (k + 1) > nD(g).
Let ¢ = %D(g)_l. Then, for all £+ 1> 4D(g), let n = [(k + 1)c].
We have that (k+1)c <n < (k+ 1)c+ 1. So,

So,

D(g)™ +2D(g)" < D(g)™"

+1<
- 4

oo, 1
E+17— E+17 2
It means that we have found n such that n > (k+ 1)c and (k + 1) > nD(g).

So, for all k +1 > 4D(g),

1 ak—i—lh
v (EW) > (k+1)c,

which implies

;@ — iw _ (k+1)
S\ Dtor ) ~ "\ wlaar )~

2(k;+1)c—v(k+1):(k+1)(c—“(’““))

k+1
logp(k—i-l))
k+1 /-

> (k‘—l—l)(c—

log,,(N+1)

Let N be the least integer such that —5—

< ¢/2. The following functions satisfy

the properties of the lemma:

C(E(g)) :==¢/2=1D(g9)",
B(E(g)) = N +4D(g).
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(¢) Finally, we find B(f),C(f) as follows:
Let us remark that f = E(g) - (E(—g)f). By (a) and (b), we know the functions
B and C relative to F(g) and E(—g)f. This will allow us to compute B(f) and
C(f). By Leibniz’s rule,

10"E(=9)f _ > 19E(—g) 10f
K oxk o' Oxt gloxd |

i+j=k
So, assume that for all k,

<11a’ff
v

Then, for all k,
110"E(=g)f =
VI > 0.
“(Ak! DzF (0’5)) =0

We take:

C(f) = = min{C(E(g)), C(E(~g) )}

2
B(f) = 2max{B(E(g)), B(E(=g)[)}-
Assume k > B(f). By Leibniz’s rule again,

1ok (1)) 10B(g)1 & (1
P (xf> 2 [7 or 71907 (XE(_f’)f)}'

itj=

Fix i, 7 such that i + j = k. Then, either i > k/2 > B(f)/2 or j > k/2 > B(f)/2.
In the first case, i > B(E(g)). So,

10°E(g) 1 & (1 19'E(g)
(—. o 10w (xE<_9>f>)2”(a px )

> iC(E(g)) > 2iC(f)

> kC(f).
In the second case, j > B(FE(—g)f). So,

(R () = (125 1)

> jC(E(=g9)f) = 25C(f)
> kC(f).

This completes the proof of the lemma.
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Now, we can prove the existence of an effective Weierstrass bound for E-polynomials:

Proposition 4.4.2. There ezists a computable function D(f) : Z]x,y]"» — N such
that for all Ey-polynomials f(z,7) € Zlz, g|®, if f(x,7) = >, a;i(y)a’ (where a;(y) €
Zp{y}) and

k(y) = max{i| v(ai()) = min{v(a;(7))}},
then, for all B, either k(B) = oo (i.e. f(x,B) is identically zero) or k(B) < D(f).

Proof. Clearly, a;(y) = + aif(O,@). Fix § € Zy" and assume k(B) finite. Let A = a,(5)

il Ozt

where ¢ is chosen as the maximal index such that the valuation of a;(5) is minimal.

Then, for all 7,
110°f, —
2 > 0.
! (/\z'!axim’ﬁ)) =0

So, by lemma 4.4.1, for all k£ > B(f),

v (1 ! é)kf(o,B)) > kC(f) > 1for k> C(f)L.

N
It means that v(ai(8)) > A for all k > C(f)~', k& > B(f). So, by choice of A,
k(B) < max{C(f)~", B(f)}. Take D(f) = max{[C(f)"'1, B(f)}. O

Extending this result to general £,gc-terms with one variable X should be obvious
once we have extended lemma 4.4.1. Let us remark that, for all such terms f, there
is a maximal integer such that one of the ¢; ;, occurs in the terms. Let 6(f) be this

integer. Then, for all m > 0(f), f defines a function from V,, to V,,.

Lemma 4.4.3. There exist computable functions B and C' from the set of Lypc-terms
to Qsq such that C(f) # 0 and for all f(X,Y), for all m > 0(f), for all X € V¥ and
for all a, B C V,,,, if for all k,

1105 —
v (XHW(O’ﬂo >0,

then, for all a € Vi, for all k > B(f),

oF —
v (%%a—gj,if(a,m) > k- O(f).

Proof. We reduce this lemma to lemma 4.4.1. Consider a subterm ¢; ;,,(¢) occuring in
f, we want to replace this term by a linear combination of E,-polynomials. We know

that there exist 7o, -, Yo(p)—1 and 011, -+, da(s)—1)6(f)—1) in Vo(p) such that:

Cign(T) = Z di; E (7).
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We replace the 7; and d;; by new free variables ¢; and u;;. We substitute the subterm
Cikn(g) by the term Y wu;; E(t;g). We carefully replace any occurence of a ¢; ., and
construct an exponential polynomial f*(z,7,%,%). Let us remark that for all o, 5 C
Va(s), we have:

fla, B) = fH(a, B,7,9).
And similarly for all the derivatives (with respect to X). Inspecting the proof of
lemma 4.4.1, one can see that it works uniformly over V,,,. The functions B and C are

therefore computable using this latter. O
And we can easily extend proposition 4.4.2:

Proposition 4.4.4 (A. Macintyre [8]). There exists a computable function D(f) from
the set of Lypc-terms to N such that for all L,pc-terms f(x,y) (say, f(z,y) =

> ai(@)at where a;(y) € Z,{y}) and
k(y) = max{i | v(a;(y)) = min{v(a;(7))}},
then, for all B, either k(B) = oo (i.e. f(x,B) is identically zero) or k(3) < D(f).

The above proposition tells us exactly that the set of £,pc-terms satisfies the

hypothesis (W). From this and theorem 4.3.1, it follows

Theorem 4.4.5. The theory of Zppc in the language Lyopc is effectively strongly

model-complete.



Chapter 5

Decidability

We are now interested by the decidability of the full theory of Z,.;,. In chapter
4, we have proved that the theory of the corresponding L,pc-structure is effectively
model-complete. It implies that the problem of the decidability can be reduced to the
following question: is there an algorithm A which takes for entry an existential £,pc-
sentence and which returns true if this sentence is true in Z,,? Let us remark that we do
not require that this algorithm returns false (or stops) if the formula is false. Indeed,
let ¥ be an existential £,gc-sentence. Then, by effective model-completeness, we can
compute an existential £,gc-formula ¢ equivalent to =W. We can run in parallel the
algorithm A for the sentences W and . One of the two procedure eventually stops
and returns true. This determines the truth value of our formula ¥ in Z,.

We are now given an existential sentence ¥ in £,gc. It is not hard to see that such a

formula is effectively equivalent to a disjunction of formulas of the type:
Jzy -+ 3y f(T) = 0N g(T) #0,

where f and g are L,pc-terms. Indeed, it is easy to reduce ¥ to a disjunction of

conjunctions of equalities and inequalities. And, because
for all x,y € Z,, (z,y) = (0,0) iff 2* + py* = 0,

a system of equalities is equivalent to a single equation. First, we will discuss the
case where f, g are L.,,-terms. We will see later how we can extend our results to the
general case.

Our strategy is very similar to the strategy used for the same problem in the real case

73
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(see [11]). In particular, the use of Newton algorithm is here substituted by Hensel’s
lemma:

Let f1,-- -, fn be Legp-terms with n variables. We can determine if the system (f,- -, f)
has non-singular roots in Z; using the analytic Hensel’s lemma 2.1.7. Indeed, assume

that there exists b € Zg such that

fi(®) = -+ = fu(b) = 0 # det Jy(b),

where J; denotes the Jacobian of the system f = (fi,---, fn). Then, because Z is

dense in Z,, there exists @ € Z" such that
det Je(a) # 0 and v(f(a)) > 2 - v(det J¢(a)).

Conversely if such a @ € Z" exists, by the analytic Hensel’s lemma, our system has a
non-singular solution in Z,. So, the following algorithm stops and returns true if the

formula

3y -+ 3, det Jp(T) # 0 )\ f:(T) =0
is true in Zj:

Algorithm 1. Let ay,az,--- be an enumeration of Z".
For all v, if
det Jp(a;) # 0 and v(f(a;)) > 2 - v(det J¢(a@)),

return true. Otherwise, go to the next step in the enumeration.

Let us note that this procedure runs forever if the system fi,--- , f, doesn’t have
a non-singular solution in Zj.
In the first section of this chapter, we will prove that for any L.,,-term g with n
variables, there exists a system f = (fi,---, f,) of Leyp-terms such that g has a
solution which is also a non-singular solution of f. As we have seen, the existence of
this latter solution can be checked effectively. We will see in section 5.2 that, assuming
a conjecture in transcendence degree theory, it implies the decidability of Z, .,,. We
will discuss a bit more the role of this conjecture in sections 5.2.3 and 5.3: in section
5.3, we will give a weaker conjecture that also implies (and in fact, is equivalent to)
the decidability of our theory. In section 5.2.3, we will see that we can determine the

truth of some sentences with one existential quantifier unconditionnally.
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5.1 Desingularization of exponential systems

Let F be a subset of Z,{X}. We assume that the set of Lp-terms is closed under
derivation. The example that we have in mind is the case where F is the set of
trigonometric functions and £,.

In this section, we consider a system of equations f = (fi,---, f,) where the f/s are
Lp-terms with m variables. Assuming that the above system has a solution in Z,, we
want to show that there exists a system of Lp-terms g = (g1, - , gm) such that there
is a non-singular zero of the system g which is also a zero of the system f. We will
actually prove the result for all finite algebraic extensions of @Q,. This result is the
p-adic version of theorem 5.1 in [17]. We will work with Noetherian differential rings
like in [17]. The outline of the proof is actually the same that in the real case.
Within this section, K will denote a finite algebraic extension of Q,. The implicit
function theorem will play an important role in our proof. We state now this result in

the p-adic context.

In chapter 2, we have defined the differential Df(@) of an analytic map. Given
a linear map A between K"™™ and K", we can define two linear maps A, : K" —
K" :h+—— A(h,0) and A4, : K™ — K" : k — A(0,k). Then, A(h,k) = A,h+ Ak.
In the case where A = Df(a) as above, the matrix associated to A, is the matrix
composed of the partial derivatives with respect to the nth first variables. Similarly,
A, is the matrix composed of the partial derivatives with respect to the mth last
variables.
Using these notations, we state the p-adic analytic implicit function theorem (see [2]

for instance):

Theorem 5.1.1 (Implicit function theorem). Let f : U x V. — K™ be an analytic
map (where U x V is an open subset of K™ x K™) such that f(a,b) = 0 for some
(@b) € Ux V. Let A= Df(a,b). Assume A, invertible. Then, there exist Uy C U
and Uy C V, both open and containing @ and b respectively, such that for all T € Uy
there is a unique y € Uy with f(z,7y) = 0.

Furthermore, the map g defined by g(T) = § from Uy to Uy is analytic and satisfies
g(@) =b, (T, g(T) =0 for allT € Uy and Dg(T) = —A,' A,.
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Let us remark that if the function f and the open sets U,V are definable, then so
is the function ¢g. Indeed, we can assume that the U;’s are open balls and the function
g is determined by the relations (7, ¢(Z)) € Uy x Us and f(Z,g(%)) = 0. Also, the

derivatives of g are definable via the relation Dg(T) = —A, " A,.

We are now given a system fi,---, f, of Lp-terms. We first observe that such a
system can be reduced to a single equation in K : indeed, as v(Of) = %Z for some
ecN:

for all z,y € K, (z,y) = (0,0) iff 2* + 7y* = 0,

where 7 is an element of minimal positive valuation.

So, we can consider systems with a single Lp-term. We view K as a Lp-structure
(where f € F' is interpreted by the map restricted to the valuation ring, i.e. the
interpretation of f takes value f(z) for x € Ok and value 0 for ¢ Ok). We also add
to the language Lz symbols for the language of rings and constant symbols for a basis
of K over Q, (such that this basis is also a basis of Ok over Z,). We are interested by
the local behaviour of the definable analytic maps (especially, in what happens in the
valuation ring). We consider the ring of such maps where we identify two maps which

coincide on a open set i.e. the ring of germs:

Definition 5.1.2. Given a neighbourhood system N in K™ (i.e. a non-empty collec-
tion of non-empty open Lp-definable subsets of K™ closed under finite intersection),
&M (N~ is the set of all (f,U) where U € N and f : U — K is a Lp-definable
function such that f is analytic on U.

We define an equivalence relation on &™ (N)~ by:

(f1,Ur) ~ (fo, Us) iff f1 and fo coincide on a neighbourhood i.e. there is U € N such
that U C Uy NUy and for all x € U, fi(x) = fo(x). We denote by [f,U] the class of
(.0).

The ring of germs is the set ™ (N) = 8"(N)~ /~ equipped with the natural opera-

tions of addition and multiplication.

Let us remark that &™ (A) is a unital differential ring.

As a special case of neighbourhood system, we have the collection of all definable
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open neighbourhoods of a point P. We denote the ring of germs in this case by & (P).
Let P € K' and Q € K™ and let fi,---, f,, be analytic maps in &™) (P, Q). Let
f=(f1,---, fm)- Assume that f(P, Q) =0 and det J¢(P, Q) # 0ie. fi(P,Q) =0 for

all 7 and
of of1
o (P,Q) --- oL (P,Q)
det : : # 0,
ai{i:l (Pa Q) e ai{_::n (P7 Q)

ie. f;(P,Q) =0 for all i and the vectors

(7 e r@) o (R0 g (r.0)

0141 T Ox Litm 0x141 "oz Litm

are K-linearly independent. We denote these vectors by dpgf;. By the analytic
implicit function theorem, there are Up x Uy C U and &' = (P4, - - - , Pyypy) analytic
from Up to Ug such that fi(Z, ®;11(T), -, Prym(T)) =0 for all T € Up.

As the f;’s and U are definable, this guarantees that the map @’ is definable analytic.
Therefore, ® determines a germ in & (P).

Let () = (91(Z), -+ , P11 (T)) where &;(T) = z; for i <[ and ®,,; as above. We

denote the morphism of rings

sHm(P.Q) — &U(P)
1,0 — [f(®), U]

by . The kernel of this map is the set of germs which vanish (locally) on the set of
zeros of the system (fy, -, fin) around (P, Q). In particular, fi=0 (and therefore,

gf =0) in 8O (P).

Lemma 5.1.3. Let fi,-- -, fm, (P,Q) as above. For all g € &+™) (P, Q),
dpofi, - dpqofm.dpgg are linearly independent over K iff dpg # 0.

The proof is word to word the same that lemma 4.7 in [17].

Proof. Let fn41 = g. Assume that > a;dpgf; = 0 with at least one non-zero a;.
Then, as dpgfi, - ,dpofm are K-linearly independent, a,,+1 # 0. Also, using the
chain rule, we can deduce the relations:

af; 0 Z
o =3 5 (RGP ()

L
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But, by definition of the map /\, for i < m, Tf vanishes on a neighbourhood of P
J

and therefore using the two above equalities, we find:

Of st~ 3}2 acbl of; B
8xj (P) - a’m1+1 Z 8@ Z 8ZEJ (; aia_xl(Pa Q)) —

i<m+1

or equivalently d,g = 0.
Conversely, if dpgfi, -+ ,dpgfm+1 are linearly independent. We denote by A the
n x (m+ 1) matrix with columns dpg f;. Then, by linear independence of the above

vectors, ker A has dimension n — (m + 1) = [ — 1. Using, the equality (x), we deduce

0P, 0P, B 0 fmi1
(8_55](P)’ ’a_xj(P)> A= (07... ’07 (’)3;]- (P)) .

Therefore, as by definition % (P) = §;; (the Kronecker symbol) for all 1 < i,5 <[,

that:

the vectors (%(P), e %‘I’? (P)) for 1 < j <[ are linearly independent. So, at least

# 0 for some

one of these vectors does not lie in ker A which means that 8f’"“( P)
Tj

j <l ie dpg=0. =

We fix now some notations: let fi, -, f,, : U — K be analytic functions (where

U C K™ open). Then,

Vrs(fi, o fm) ={P €V (fi, s fm) | dpfi,--+ ,dpfm are K-linearly independent}.

Proposition 5.1.4. Let P € K" and let M be a Noetherian subring of &™) (P)
closed under differentiation. Let m € N and [f1,U1], -, [fm,Un] € M. Assume
PeV™(fi,--+, fm). Then, exactly one of the following is true:

(a) n=m; or,

(b) m<n and for all [h, W] € M with h(P) = 0, h vanishes on U N V"™ (f1,--+, fun)

for some U open neighbourhood of P; or,
(¢c) m<n and for some [h, W] € M, P € V"*(f1, -+, fm, h).

Again the proof is similar to the real case [17]. Note that for this proposition,
we need to consider analytic functions in our case (instead of infinitely differentiable

functions in [17]).



CHAPTER 5. DECIDABILITY 79

Proof. If m < n, say n = | + m, then the vectors dpfi,--- ,dpf, are linearly in-

dependent. Without loss of generality, we will assume that the matrix A(P) =

<g—f(P)> is invertible. Let A be the map T ——det A(T). On a neigh-
T 1<i<m,l+1<j<n

bourhood U of P, this map is invertible. Let A = [\, U]. We define M* := M[A™!].

Assume P = (P, ) € K™, We define the " _map as before. Then, M\*, the image

of M* by this map, is Noetherian. And, by the implicit function theorem, we have

LIRS of1
Oxy Oxr
. _ _A_l 7
0P, Ofm
Oxr Oxy

which means that % € M. Therefore using the chain rule, we find that M is closed
J

under differentiation.

Let I ={g € M~ | g(P,) =0}

1. If I = {0}. Suppose g = [h,W] € M and h(P) = 0. Then, g(P;) = 0 and
therefore g € I i.e. g = 0. By definition of the map A7 it exactly means that
h is vanishing on a neighbourhood of P in V™*(fy, -+, f).

2. If I # {0}, I is not closed under differentiation. Otherwise for all g € I, the
partial derivatives of ¢g vanish at P;. This implies that all the coefficients of the
power series defining g around P are zero and therefore g = 0 in M. So, there is
g € M* such that g € I and % ¢ I. It means that g(P;) =0 (i.e. g(P) = 0) and
%(Pl) # 0. But, for some integer s, A°g € M. Let f = A°g. Then, f(P) =0
and X

of
8%

(Pr) = (sAS‘l(R)gig(Pl)) + (XS(Pl) gf@) # 0.

So, dpf # 0 and therefore by lemma 5.1.3, P € VS (fryeoe s fs f)-

We are now able to state the desingularization theorem:
Let U be an open definable neighbourhood of the origin contained in OF%. Then,
{U} forms a neighbourhood system. We denote the correspondent ring of germs by
s (U).
Let us recall that K = Q,(a1,- - ,as) and that for this choice of oy, - -, ay,

Z(aq,- -+ ,as) is dense in the valuation ring of K.
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Theorem 5.1.5. Let M be a Noetherian subring of &™) (U) which contains

Z(Q)[xq, -+ ,x,], is closed under differentiation and such that for all g € M, the
germ of g is equivalent to a definable analytic function given by a power series with
coefficients in the valuation ring.

Let f € M. Assume that S is a non-empty definable subset of V(f), open in V(f).
Then, there exist fi,--- , fn € M such that SOV™(f1, -+, fn) # 9.

Our desingularization result is an immediate corollary of this theorem:
Let f be a Lp-term. Then, we apply the above theorem with U = Og, M the ring
generated over Z(@) by the subterms of f and S = V(f). The theorem exactly says
that if V(f) # @, then there are Lp-terms fi,--- , f, and @ € O} such that

f@) = fi(@) == fu(@) = 0 # det Jy, ... 1,)(@).

Proof. First, for all Q € S, we set Io = {g € M | g(Q)=0}. As M is Noetherian,
there is some R in S such that Ip is maximal within the collection of all Ig. Let
g1, -+, gn be generators of Ig and g = > 72"V g2 (where 7 is a prime element of K
which can be assumed to be one of the «;). So, g(z) = 0 iff g;(z) = 0 for all 7. Then,
ReV(giNnSandforal Q € V(g) NS, Ir = Ip.

Choose m maximal such that for some fi,---, fr, € M, R€ V™ (f1, -+, fm)-

By contradiction, assume that m < n; say n =m + (.

Note that up to a Z(@)-linear change of variables, we may assume R as close to the
origin as we will need (more precisely, we need that the neighbourhood Wx below
contains the origin). First, we will now prove that V(g) N S and V™(fi, -, fim)

locally coincide.

(a) V(g) NS CV™(fr,---, fu):
Indeed, R € V"™ (f1, -+, fm). So, f; € Igforalliand det E ¢ I (where E denotes
the matrix (g-fj) with K-linearly independent vectors). As, for all Q@ € V(g)N S,
Ig = Ig, it means that f; € Ig and det E ¢ 1. So, Q € V™(fi, -+, fm)-

(b) Let Q € V(g)N S, h € M then Q ¢ V™ (f1, -, fm, h):
If we assume @ € V™ (fi, -+, fm,h), arguing like in (a), we would find R €
V™ (f1, -, fm,h) which contradicts the maximality of m.
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(c) For all @ € V(g) NS, there is Wg an open neighbourhood of ) such that Wy N
V(9)NS = Won V(i , fn):
By the point (b) and the proposition 5.1.4, the only possibility is that there is W’
open neighbourhood of @ such that g vanishes on W/ NV (f .-+ | f..). As f € Ig,
it means that V(f) 2 V(g) and therefore that f vanishes on W/'NV"™(f,--- | fi.).
So, WV™(fy, -+, fm) CW'NV(g)NV(f). We have that S is open in V(f). So,
for some W" open neighbourhood of Q, W"NS = W"NV(f). Take Wy = W' NnW”

and we are done.

We are given fi,---, f. Without loss of generality, we may assume that the
matrix A = (%) has non-vanishing determinant at R = (P, Q). Let
i/ 1<i<mil1<j<n

®,.1(T), -+, D,(T) given by the implicit function theorem and let ®;(Z) = z; for i <.
First, let us remark that up to a change of variables, we can assume that ®;(P) and
%(P) (where ¢ > [ > j) lies in the maximal ideal M.

Indeed, by a change of variables of the type (X1, -+, X,) — (X1 =Ny, -+, X, — N,)
(where N; € N(@) is a suitable approximation of P;, @Q);), we can assume that the
implicit functions are defined on a neighbourhood of 0. This means that we can assume
v(P) >t and v(®;(P)) = v(Q) > t (where ¢ could be any nonnegative integer). Also,

we know that for all r <

0P 1 ofr

oz Oxy
(X> = _Ail (Xaq)l+1(X)7 J(I)TL<X>) (51)

00y, Ofm

Oxr oz,

We consider the change of variables
(Xh e X Xy, e 7Xn) — (Xh... ,XthH/Wt,... ’Xn/ﬂ-t).

Denote by f the function obtained after this change of variables. Then, for all i < m,

8ﬁ<]3@): %(RQ) for j <1
O Tt L(P,Q) forl+1<j<n,

where (]3, @) = (P, 7'Q). So, A(ﬁ, @) = %A(P, Q). For t large enough, A(JB, @) has

negative valuation. Therefore, by the relation (5.1),

v (‘ﬁ)i(ﬁ, @)) > 0.

al’j
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Without loss of generality, we will assume that such a changement has be done and

will denote (P, Q) by (P, Q) and similarly for the functions.

Let hy(X) = S2(X; — Ny)? for all N = (Ny,---, N,,) € Z]ay, -+, a,]". We want
Ohn a}}N>'

to apply Hensel’s lemma to the functions <6_X'1" T

Our goal is to prove that for a point (P, Q’), close enough from (P, Q), the vectors
dipronfis- - diprgy fms diprgyhn are linearly dependent. For this, by lemma 5.1.3,
it is sufficient to check that the above partial derivatives vanish at P’.

We want to prove that if we choose N carefully, for all 7, ‘g’i‘—)g(P) has valuation at
least 2v( det J(P)) + ¢ + 1 where J is the Jacobian of the system, ¢ is the radius of
the open set Wg given in (c). Then, the analytic Hensel’s lemma gives us a root P,

e-close from P.

Claim 7. det J(P) # 0.

Proof. We compute the following derivatives using the chain rule :

_ gﬁg(m = > 2+ (ou(P) - Ni) gi’:(P).

1<k<n

gi :

9g; . Ohy B 0, . 0D, 0%,
an(P) a anaXi<P) =22 (8XZ- (F)- an(P)> 2 (q’k(P) _N’f> anaXi(P)'

We want to prove that the Jacobian of g = (g1, --¢,) is non vanishing at P.
In the above sum, let us denote ), 2 - %(P) 9%:(P) by By; and the other terms

| 9X;
Y2 ((I)k(P) — N,.C> a?;_g&(P) by Cj;. Then, let S; be the permutation group of
{1,---,1} and sgn(o) be the signature of an element o € S;. We have:

det Jy(P) = sgn(o) [ [ Jiots

oES;
= Z sgn(a) H(Bw(i) + Cio(i))

where in the sum (---), each element contains at least one factor of the form

(@k(P) - Nk).
If det B # 0, then, for Ny a suitable approximation of ®,(P), the valuation of det

Jy(P) is given by the valuation of det B (let us remark that in this case this valuation
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does not depend on N). And therefore, det J,(P) # 0.

We remark that for all £ < [, % : % = 0;j5 (0 is the Kronecker delta). So, if we

denote by D;; the sum over k > [ in B;;/2, we have: 1B =Id+ D and

1
§det B = ; sgn(o). H (51'(7(1') + Dicr(i))

- <det D—HDM) +H(1+Dii>.

Now, assume by contradiction that det B = 0. Let us recall that for all 7+ > [, for

all k,
v (gf;k (P)) >0 (%).

Therefore, v(D;;) > 0 and as det B =0,

v (det D- HDM) — (H(1 + DZ-Z-)) ~0.

We deduce from these relations that v( det D) = 0. This is a contradiction with (k).

This completes the proof of the claim. O

Now, for Ny € Z[ay, -+ , a,] a suitable approximation of ®(P), g;(P) has valua-
tion at least 2v( det J(P)) + ¢ + 1 (as we have seen the valuation of J(P) does not
depend on N in this case). So, by Hensel’s lemma, there exists P’ (e-close from P)
such that for all i, g;(P") =0 i.e dphy = 0.

Let Q' = (P11 (P'), -, P,(P")). Then, (P',Q) € V"(fi,---, fm) and by lemma
5.1.3, dipr.onfi, -+ s dipr .o fms dipr,onhi are linearly dependent over K.

But, as (P',Q’) is in Wg (if we pick € small enough), we have that (P, Q') €
V™ (fi,-+, fm) N Wg C V(g) N'S. Then, by an argument similar to the proof of
(a), dipgyfis- -+, dp,g) fm, dipoyhn are also linearly dependent for all NV suitable ap-
proximation of ®(P). As dp)fi, - ,dpo)fm are linearly independent, it implies
that d(pg)yhy lies in the linear span of the other vectors.

Let N' = (Ny,--+ , N;_1, N; +p', Niyq,--- , N,,), then N’ is also a suitable approxima-
tion of ®(P) (for all t; large enough) and therefore d(pgyhn- lies in the same vector
space. But then, (0,---,p",0,---,0) = (dipgyhn —d(pg)hn)/2 lies in the linear span
of dipo)fi,--+ ,dpg)fm for all ¢, which contradicts that m < n. O
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5.2 Decidability of the existential theory of Z, .,

In this section, we will give a (conditional) proof of the decidability of the theory
of Zy exp. We decompose our proof in two steps. First, we will consider the case of
positive existential L.,p)-sentences. The algorithm follows the strategy of the real case
with Hensel’s lemma playing the role of Newton’s algorithm. In this part, our proof
is conditionnal : as for the real case, Schanuel’s conjecture is involved and we can
guarantee that our algorithm stops only if the p-adic version of this conjecture is true.
In this part, we will also give an algorithm which takes for entry a general existential
Lezp-sentence and which returns true if this sentence is true in Z,. However, this al-
gorithm does not stop if the sentence is false.

We obtain the decidability of the full theory via the result of effective model-completeness
4.4.5 of chapter 4. We will see that the algorithm for the decidability of existential
L..p-formulas can be extended naturally to formulas in the language £,5c. The main
theorem will therefore follow. In the last part, we will discuss the one variable case. In
this situation, p-adic Schanuel’s conjecture is proved. We will see how our above argu-
ments can be adapted to determine whether or not a system of exponential equations

and inequations with one variable has a solution in Z,.

5.2.1 Decidability of positive existential sentences

First, it is easy to see that any existential L.,,-sentence is (effectively) equivalent to

a disjunction of sentences of the type:
3oy -3, \ F3(@) = 0N \G;(T) #0,
J J

where F; and G, are in Z[xy, -+, Ty, P71, -+ PP

Let us remark that to any such exponential polynomial F' corresponds a polynomial

in Z[xy, -+ ,x9,]. And conversely, to a polynomial P € Z[xy, - ,xs,| corresponds a
unique element of Z[zy, -+, x,,eP™ -+  eP*]. We will denote by Fp this exponential
polynomial.

We start with the case where only equalities are involved. Once again, as for all z,y €
Zy (x,y) = (0,0) iff 22 + py? = 0, we are reduced to the case of a single exponential

polynomial, say Fp(zy,---,z,). Then, using the desingularization theorem, we can
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almost already determine if Fip has a root in Z,:

The idea of the algorithm is the following: if Fp admits a root @ in Zy, then we know
by the theorem 5.1.5 that there are Fp,,--- , Fp, and b such that Fp(b) = 0 and b is
a non-singular zero of the system G = (Fp,,---,Fp,). Let s = v(detJg(b)). Now,
using Hensel’s lemma, non-singular zeros of the system G are determined by zeros in
Z/p*7Z. Therefore, we have that the following procedure stops if the system G has a
7ero:

For all tuple of integer t check if the conditions of Hensel’s lemma are satisfied i.e. if
Ja(t) # 0 and v(G(t)) > 2v(detJa(t)). If yes, the system admits a non-singular zero
around t.

Conversely, if the system admits a non-singular root, such a tuple exists by density
of Z in Z,. This procedure is almost what we need. It just remains to deduce that

Fp(b) = 0 from the knowledge that G(b) = 0. This is the case whenever P is in the

ideal generated by Py, -- , P,. Indeed, b determines a zero of each P;:
Pi(bl, . ’an’epbl’ e 7€pbn) = (0 iff FR;(b17 e 7[)”) =0.

The next lemma will give us exactly what we need : up to multiplication by a poly-
nomial Q (such that Q does not vanish at (by,--- ,b,, e, --- eP’)), P isin the ideal
generated by some @)y, -, @, like above.

The key point of this lemma is that we can determine the transcendence degree of
Q(by, -+ , by, ePbr ... ePn) over Q. This is where Schanuel’s conjecture turns out to
be helpful.

The first thing to observe is that as b is a non-singular zero of the system G, we

certainly have that
trdegoQ(by, - - -, by, et .. ePn) <.

We actually need equality which can be obtained using a p-adic version of Schanuel’s

conjecture:

Conjecture (p-adic Schanuel’s Conjecture). Let n > 1 and ty,--- ,t, in C, (with
valuation at least 1/(p — 1)) linearly independent over Q.

Then, the field Q(ty, -+ ,t,, e, - e'") has transcendence degree at least n over Q.

Using the p-adic version of Schanuel’s conjecture, like in [11], we can prove:
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Lemma 5.2.1. Letn > 1, P € Z[xy, -+ ,Ta,).
Assume that Fp = P(xy,-++ Ty, el -+ eP™) has a zero and that for all zeros a of
Fp, its components ay,--- ,a, are Q-linearly independent.

Then, there exist by,--- ,b, € Z, and Q,Q1,- -+ ,Qn,S1, - Sp € Z[x1,- -+ , T2y Such
that b is a zero of Fp and a non-singular zero of G = (Fg,,--+ , Fp,), that Fg(b) # 0

and that QP =Y. Q;S;
This lemma guarantees the existence of a system such that the non-singular zeros

of this system are roots of Fp.

Proof. Let Py,--- , P, given by theorem 5.1.5 and b € V(Fp) N V"™ (Fp,,--- , Fp,).
By the above discussion, the transcendence degree of Q(by, -+« , by, e’ - ..  eP’n) over

Q is exactly n. We apply the following claim with m = 2n, »r = n and
I={h€Zlxy, - ,x2,] | h(by, -+ ,bp,Pr, - ePln) = 0}:

Claim 8. Let m,r > 1, I prime ideal of Z[xy,- -+ , 2] with I NZ = {0} and
trdegg Frac (Zlxy,--- ,xm|/I) = 1.
Then, there is Q € Z[T] with Q ¢ I such that QI is generated by m — r elements.

As trdeg Frac(Z[z]/I) = trdegoQ(b1, - - , b, Ep(b1),- -+ , Ey(by)) = n by Schanuel’s
conjecture, we can apply the claim.
Let @4, --,Q, be generators of Q1. Then, the properties of the lemma are satisfied
except that b may be a singular zero of our system. But, as P, € I, QP; = Y SiiQ;

for some S;; € Z[Z]. Using the chain rule on this relation, we find that

- an (9FQ
F, F E(
a(b)- 8x] Z s (0 (99(:] ®)

As Fy(b) # 0, we deduce that b is a non-singular zero of G. O

We will now discuss the effectivity of some basic computations that will occur in
our algorithm.
The first issue is to compute the valuation of an exponential polynomial evaluated at
a given integer.
Let f € Z[xy, - xp, el -+ eP"] and a tuple of integer . Then, we are able to
determine if f(¢) = 0 and compute the valuation of f(%):

Let us remark that we can assume that f(f) is a finite sum of the form

ft)=s Z a;e?
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where the a;’s are integer and s € Z;. As, ¢? is transcendental over Q, f(#) = 0 iff
a; = 0 for all 7. If this is not the case, using the Taylor expansion, we can determine
the remainder of f(£) modulo p™ for all n. The valuation is determined by the smallest
n such that f(¢) 0 mod p™.

The last issue to solve is the condition that the non-singular zero b should not be a
zero of the function Fy given in the lemma 5.2.1. In fact, as Fp has no root in a
neighbourhood of b, it is sufficient to be able to check that Fj has no root in a given
open set. This recursive procedure will also be useful when we will consider general

existential sentences.

Lemma 5.2.2. Let U = @ + p'Zy be an open set (where @ € 7", t € N) and let
g =191, ,9r) be k exponential functions. Then, there is a recursive procedure which

returns yes if there is no zero of g inside U.

Proof. We just have to check that the valuation of g is bounded on U.
Let us remark that if there is ¥ € U such that g(y) = 0, then for all s > ¢, there are
boi, -+ ,bsi € {0,--+ ,p— 1}, i < n such that

aiEZbﬁpj mod p' andg(ijlpj,--- ,Z@kﬁ) =0 mod p**'.
J

Actually, the b;;’s are the digits of b; a suitable approximation of y;.
So, the converse states that: if there is s > ¢ such that for all by;, - - - ,bg; € {0,--- ,p—1}

such that for all : <n

a; = Z bjipj mod p',
J
we have
Q(Zbglp]>7zbjkp7> 7_é0 mOdps+17
J J
then, there is no 7 € U such that ¢(7) = 0.

But these last conditions are recursively enumerable. The following algorithm does

the job:

Algorithm 2. Given U =a+p'Z7, g = (g1, , gr)-
Proceed to an enumeration of all s € N, s > t. Check if for all by,--- b, € Z/p°Z
with v(@ —b) > t, gi(b) Z 0 mod p**' for all i. If yes, return true. Otherwise go to

the next step.
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This completes the proof of the lemma. n

Let us remark that this algorithm never stops if the system has a root in U. In our
situation, it does not matter. Indeed, we are guaranteed that [y has no such a root

for a suitable U.

Proposition 5.2.3. If Schanuel’s conjecture is true, the positive existential theory of

the structure (Z,,+,-,0,1, E,) is decidable.

Proof. Let ¢ be a positive existential sentence of our theory. Without loss of generality,
we can assume that

=32, F,(T) =0

for some P € Z[ Xy, -+, Xao,].

First, we give an algorithm that returns true if the sentence is satisfied (and never stop
otherwise). We are given Fp and we want to know if this function admits a solution
in Zy. Assume that this is the case. Then, lemma 5.2.1 gives us the existence of
exponential polynomial functions G = (Fyg,, - - , Fp, ) such that any non-singular zero
of G is a zero of Fp. So, proceed to an enumeration over all possible system G and
polynomials ), S;; like in the lemma. Using Hensel’s lemma, we can determine if G
has a non-singular root in an open U. If our sentence is satisfied, there exists such an
open set U which contains a solution of G' and does not contain a root of Fy. So, we
proceed to an enumeration of all open set of the type U = E+ptZZ foralla e Nt € N
and on each such a set we check if the conditions of Hensel’s lemma are satisfied for
some tuple in U and if Fg has no root in U (via lemma 5.2.2).

We give now the algorithm. If Schanuel’s conjecture is true, this algorithm returns
true whenever Fp has at least one root in Z; and the components of any of its roots
are linearly independent. If these conditions are not satisfied, this algorithm may run

forever.

Algorithm 3. Givenn > 1,P € Z[xy, -, Zay,].

Proceed to an enumeration of Q,Q1,- -+ ,Qn, S1,- -+, Sy € Zlxy, -+, Tay]

and all ay,--- ,a,,t,s € N, s >t

Given such a 3n + 3-uple, first check if QP = > Q;S;. If not go to the next step (of

the enumeration,).
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Otherwise, check if

and if

o(Fg,)(@) > v(det (%) @) +t.
If not, go to the next step.
If this is the case (there is a root of the system G in U := @+ p'Zy ), for all bj; €
{0,---,p— 1}, where 0 < j < s, 1 < i < n, let b = > byp’ check if whenever
v(b—a) > t, we have

Fo(b) 20 mod p*t.
If yes (Fg does not admit root in U ), return true. Otherwise, go to the next step.

Finally, let us recall that in the above algorithm, we need to assume that the com-
ponents of any root of Fp are linearly independent. But, without loss of generality,
we can assume that this is the case:

Indeed, let Fp be an exponential polynomial. We proceed to an enumeration over all
possible relations of Z-linear dependence between the variables and we run in parallel
the following procedure:

For each relation, we remove one of the variable according to this relation. Let ]3; be
the exponential polynomial obtained after this transformation. We remark that F;
has a root iff Fp has a root that satisfies the Z-linear relation used to construct ]3;.
We apply the algorithm 3 with entry ]/51/:. If the components of any root of ]?1/: are
linearly independent, then algorithm 3 returns true (in the case where Fp has a root)
and the truth of our formula is determined. If ED has a root with components linearly
dependent, we restart the procedure with Fp := F;.

This procedure stops and returns true in the case where Fp has a root in Z,,.

Now, we can determine the truth of a positive existential sentence : we run in
parallel the algorithm 2 and algorithm 3 with entries P. If Fp has no root in Zj, the
algorithm 2 stops and we return false. If not, then Fp has a root and algorithm 3

stops, in which case, we return true. O

Remark. It is not hard to see that the algorithms 2 and 3 can be adapted to determine
the truth of positive existential sentences in (Og,,+,-,0,1, E,) where (Ky) is the
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family of algebraic extensions defined in chapter 3 section 3.3.

Let us also remark that the algorithm 3 can be easily modified to take as entries

general existential sentences. Indeed, such a sentence has the form

Jay -+ 32, Fp(E) = 0N [\ Fr,(T) # 0.

J

Therefore, we just have to check that Fg; has no root in U (exactly like we did for
Fg). However, it is not clear that we can find a procedure that stops if such a sentence
is false. This can be reduced to the following question: is there a procedure that stops
if V(Fp) CV(Fg,,---,Fgr,)? If n =1, we can actually solve this problem. This will
be developped in the last part of this section. It is not obvious that the one variable
strategy can be adapted for n greater than one. In order to avoid this issue, we extend
proposition 5.2.3 to the language £,gc and use the effective model-completeness of the
theory. The decidability of the full theory is then clear: apply the above procedure in
parallel for the sentence and (the existential sentence equivalent to) its negation. One
of the two procedure has to stop and therefore determines the truth of the sentence in

Z

D

5.2.2 Decidability of the L,gc-sentences

First, we recall the notations of chapter 4 section 4.4: let K,, = Q,(3,) as defined
in this part. Let d, be the degree of the extension. As we know, the trigonometric
functions ¢; j,, can be obtained as a polynomial combination of the functions eP*(%:)”

(where o € Gal(K,/Q,)) via the relations:

CO,i,n<x>
— N det V .V—1< px(ﬁ%)“) 7
Kaly (et V) ‘ ceGal(k./Qp)
Cdn—l,i,n(x)
where V' is the Vandermonde matrix of the roots of Pg,, the minimal polynomial of
Br, over Z,.

Let ¢ be an existential £,pc-sentence with n quantifiers. Then, there is N such that

any term of the formula has the form

f(@) = P(@, e, coun(T), -, Cay-1.d4y-1.8(T)) =t Fp(T)
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for some P(Z,Y,, -+ .Y, ) € Z[T,To,- - ,Yp,) (Where Ly = d} — dy). Let us remark
that the ring generated by the exponential and trigonometric functions is closed under
derivation. Therefore, we can apply theorem 5.1.5:

Let f be a L,gc-term. Assume that V(f) # @. Then, there exist Qy,---,Q, €
Z[T,Yy," -+ , 1) such that V*(Fy,, - F, )NV (f) # @. This implies that there is a
root @ of f such that:

trdeg@@(ala crt, Qp, epa1’ T ’epan’ Co,1,dn (al)a e achfl,del,N(an))
dy—1
— trdegQQ(al, ey, €PN P ePubN . ’epanﬁN ) <dy-n.
Let us remark that 1,5y, -, j'f,’v_l are Q,-linearly independent. Using Schanuel’s
conjecture (in C,), we find that the above relation is actually an equality (if ay,--- , a,

are Q-linearly independent). With this, we prove as before:

Lemma 5.2.4. Letn > 1, P€ Z[X,Y¢, -+, Y]

Assume that Fp = P(xy, -+, &y, €P" o+ eP™ o1 N(T1), "+ s CNay—1.dy—1(Tn)) has a
zero in Ly, and that the components of any zero of Fp are Q-linearly independent.
Then, there ezist ay,- -+ ,a, € Z, and R, Ry,--+ , Ryy, S1,++ Sty € Z[X, Yo, -+, Y]
(where Ty = (Ly —dn +2) - n) such that @ is a zero of Fp and a non-singular zero of

a subsystem of G = (Fr,,- -, Fr, ), that Fr(@) # 0 and that RP =}, R;S;.
Proof. We apply claim 8 with
I={heZX Yo, - Yyl | k(@ Ey(a),corn(@), - ,Cay-1,ay-1,5(@)) = 0},

m = (L3 +2)-n and r = dy - n. Then, by the claim, there exist R & I, Ry, -+ , Ry,
generators of RI (where Ty = m —r) and Sy, -+, St such that RP = ) R;S;. Also,

as Q; € I for all 7, like in lemma 5.2.1, it implies that @ € V”S(Fﬁl, e vFRZ) for some

—~

Rl"'aELE{Rlv"'aRTN}- [
If we are given ¢ an existential £,gc-sentence of the form:

3oy, 2 Fp(T) = 0 A J\ Fa,(Z) #0,

it is quite easy to adapt the algorithm 3 to construct an algorithm that returns yes if

the sentence is true in Z, (and never stops otherwise):

1. Enumerate all R, Ry,---, Ry, 51, - Sty and B=a —|—ka;}.
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2. If RP =Y R;S;, check if a subsystem E S R’:L has a unique non-singular root

in B using Hensel’s lemma.

3. If this is the case, use the algorithm 3 to determine if the following formula is

true in Vy:

TTEBATEV™(R - ,R)ATEV(Ry, -, Rpy).
We use the version of algorithm 3 for formulas in Ky and in the above formula, we
replace the trigonometric functions by their polynomial expression in exponential
terms. Note that this procedure never stops if the above formula is false but it

doesn’t matter.

4. If the above formula is true, then the system Ry, --- , Rr, has a root in Z; N B.
So, Fp has a root in Zg N B. It remains to check that F4, and Iz have no root

in B. If this is the case, ¢ is true.

Now, we use effectivity of the theorem 4.4.5 to obtain a sentence v equivalent to the
negation of the sentence ¢. Surely, our algorithm stops either for ¢ or ¢». We can
therefore determine the truth value of ¢ in Z, by running in parallel the algorithm for
@ and 1.

The main theorem follows:

Theorem 5.2.5. Assume that the p-adic version of Schanuel’s conjecture holds. Then,

the theory of Zypc in the language L, o is decidable.

Also, by the remark after proposition 5.2.3, it is not hard to extend the above

theorem to finite algebraic extensions.

5.2.3 One variable case

In this section, we prove that we can effectively determine the truth of formulas of the
type: dxP(x,eP”) = 0N Q(z, eP*) # 0, where P, @ are polynomials with coefficients in

Z., without assuming Schanuel’s conjecture.

Proposition 5.2.6. Given fi, -, fi,q1, -+ ,gs € Z[x,eP*], the truth of the formula
dx A; fi(z) = 0 Ak, gi(z, €P®) # 0 is decidable in Z,.



CHAPTER 5. DECIDABILITY 93

As usual, we reduce the above proposition to the case s =t = 1.
Let us remark that for a formula of the type JxP(x,eP*) = 0, the algorithms 2 and
3 determine the truth of this formula. Here is the complete algorithm for the one-
variable case. More precisely, the next algorithm determines the truth of the formula

dz € U P(x,eP”) = 0 in Z, where U is an open ball.

Algorithm 4. Given P € Z[z,y|,U = a + p"Z,.

Proceed to an enumeration of R,Q,S € Z[x,y| and t,m € N;m > n withv(a —t) >n
Given such a tuple, check if for all b; € {0,--- ,p—1}, 0 < j < m, such that
v(a— > bjp’) > n, we have

Fp (Z bipi> #0 mod p™T.

If yes (Fp does not a admit root in U ), return false.
If not, check if RP = > QS. If not go to the next step.
Otherwise, check if:

Flo(t) #0
and if
v(Fo(t)) > 2-v(F'g(t)) + n.

If this is not the case, go to the next step.
If yes (there is a root of Fg in U), check if for all b; € {0,--- ,p—1}, 0 < j < m,
with v(t — > b;p?) > v(F'g(t)) +n we have

Fr (Z bipi> #0 mod p™*.

If yes (the root of Fy found using Hensel’s lemma is not a root of Fg), return true.

Otherwise, go to the next step.

Let us remark that in the one variable case, (the complex) Schanuel’s conjecture
is a theorem of C. Hermite. A p-adic version of this theorem has been proven by K.
Malher in [12]. So, the above algorithm will stop if Fp has a solution in U. For the
general situation, we have to consider inequalities. However, we don’t want to use
the theorem 4.4.5. Indeed, the existential sentence equivalent to the negation of our
sentence may have more than one quantifier and therefore it would require Schanuel’s

conjecture to determine if this negation is true in Z,. As we have stated before, it is
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sufficient to determine effectively if V (Fp) C V(Fp).

We know that any non-zero analytic function h (from Z, to itself) has only finitely
many roots in Z,. Also, if h has a non-singular root a, then by Hensel’s lemma, there
is t € Z such that v(h(t)) > 2v(h/(t)) and furthermore, a is the unique root such that
v(a —t) > v(h'(t)). The idea is now to prove that for all roots a in a open set U, we
can recursively determine an open subset V of U such that a is the unique root of A
in V. In fact, we will construct recursively a partition {U;} of U such that on each
element U; of the partition either our function has a unique root in U; or the function
has no root in U;. Before writing down the algorithm, we recall that if we are given
f, g two E-polynomials then they have a common root in U iff f? + pg? has a root in
U. So, we can determine if a system of equations with one variable has a common root
using algorithm 4. Our algorithm asks as entries Fp, U as before and {Uy,--- ,Us} a
collection of disjoint open sets contained in U such that Fp has at most one root in
U;. We allow s = 0. The algorithm returns a partition {Uy,--- ,Ux} of U with the

above properties.

Algorithm 5. We are given P € Zlz,y], U = a + p"Z, and {Uy,--- ,Us} disjoint
open sets satisfying our condition.

If U =, U;, return {Uy,--- ,Us}. Otherwise, let U' = U\ (U, U;).

Proceed to an enumeration of all t € U' N7Z and all n,l € N.

Let ¢ = makaHl{v(Fé,k) (t)),n}.

If ¢ = 400, go to the next step of the enumeration.

Let Ugyq be the open ball of centre t and radius p~=.

Check if one of the following conditions is true running algorithm /4 in parallel with

the enumeration of the t,n,l’s:
(a) Fp has no root in Usyq; or,

(b) The system (Fp, Fp, - -- ,Fg)) admits a root in Ugyy, the system (Fp, Fp, - - - 7F1(Jl+1))
has no root in Ugyy (i.e. Fp has a root of order | in Usyq) and U(F}()l)(t)) >
QU(FI(QZH)(t)) (the root is unique).

If for Usyq either (a) or (b) is satisfied, apply algorithm & with entries Fp,U and
{U1,--+ ,Uss1}. Otherwise go to the next step.
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As Fp has only finitely many roots and by compactness of Z,, the algorithm stops.
Indeed, for U,y sufficiently small, if condition (a) does not hold, this open set contains

a unique root of Fp:
Claim 9. If condition (b) is satisfied, then Fp has a unique root in Ug, .

Proof. Surely, by (b), Fp admits a root of order . And, if Fp admits another root in
Usy1, the root has order strictly less than [. Indeed, the system (Fp, Fp,- - ,FI(DZH))
does not have a root in Ugyy by (b). And, by Hensel’s lemma, F](Dl) admits a unique
root a in Ugyq. Let b be another root of Fp of order k < [ (assume k maximal for this
property). Then, by Hensel’s lemma, F](Dk) admits a unique root in the ball of centre
b and radius U(Flgkﬂ)(b)) (by maximality of k, this radius is finite). Now, for ¢ like in
the above algorithm, we have v(t — b) > . And so, by definition of ¢ (and because Fp

is analytic),

As F](Dk)(a) = 0, by uniqueness of b, a = b. a

Finally, we give the algorithm that determines the truth value of the formula ¢ =
dxFp(x) = 0 A Fg(x) # 0. The idea is to split , using algorithm 5, Z,, into open sets

such that on each such an open set U either
e Fp(z) has no root in U; or,
e ['p admits a root in U and F( has no root in U; or,
e ['p and Iy have both a unique root in U.

In the two first cases, the local truth of the formula ¢ is obvious. In the last case, our
formula is true if the system (Fp, Fp) has no root in U (by uniqueness of the roots).
This problem is solved by algorithm 4. Also, it is clear how we can extract the truth

of the formula if we can determine its local truth.

Algorithm 6. Let Uy, --- ,Uy be the open sets returned by the algorithm 5 applied
with P, Z, and s = 0.
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Let Vi, -+, Vi be the open sets returned by the algorithm & applied with Q,U; and
s =0.

Let V = {Vi,--- , Vit } be the partition of Z, by the Vi;’s.

For oll 1 <i < M, remove from V the set V; if Fp has no root in V;.

If V is now empty, return false.

Otherwise, if there is V; € V such that F has no root in 'V, return true.

Otherwise, for all i:

Check using algorithm 4 if the system (Fp, Fg) has a no solution in V;.

If this is the case (the unique solution of Fp in V; is different from the unique solution
of Fy in'V;), return true. Otherwise, remove V; from V.

If V is now empty, return false.

This completes the proof of the proposition.

5.3 Weak Schanuel’s conjecture

As we have seen, the decidability of the p-adic exponential ring is settled if Schanuel’s
conjecture is true. In this section, we introduce a weaker conjecture that also implies
(and actually is equivalent to) the decidability.

In this section, we will denote by P, the set of £,gc-terms with n variables.

Conjecture 5.3.1. There is F : P>* —s Qo computable such that for all f1,--- | fu,
91, s Gn € Pp, for all a € V™(f1,--+, fn) and for all B € V™ (g1, -+ ,gn), either
Oé:ﬁ or |a_ﬁ|p Z F(fla 7fn7.gla"' agn)

Note that if the theory of the p-adic exponential rings (with the trigonometric func-
tions) is decidable then the conjecture is true. In particular, the p-adic Schanuel’s con-
jecture implies conjecture 5.3.1. Indeed, as both V™*(f;,--- | f,) and V™*(g1, -+, gn)
are finite, there exists k € N such that either « = 8 or v(aw — ) < k. Enumerate all

k € N and test the truth value of the formula ¥}, in Z, where
U =5 (T € V(i J) ATE V(g1 90) AT AT) — (@ —F) < k.

Define F(f1, -+, fn, g1, + ,gn) as p~ where N is the smallest integer such that Wy
is true. On the other hand,
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Proposition 5.3.2. If conjecture 5.5.1 is true, then Z,pc s decidable.

Proof. Let ¥ be a formula of the type 3T¢(T) = 0 A h(T) # 0. As Zypc is effectively
model-complete, it is sufficient to find an algorithm that stops if the formula is true
(and may run forever otherwise). We proceed to an enumeration of all open sets
B =a+ ka;j where @ € N and k£ € N. For any such an open set B, we have a
procedure that stops if for all T € B, h(Z) # 0. Let B = a—l—pRZZ be an open set with
this property. It is sufficient to find an algorithm that returns true if there is § € B
such that g(5) = 0.

Assume that such a g exists. Then, by theorem 5.1.5, there exists g1, - - , g, € P, such
that V(g)NV"™(gq,- -+ ,g,)NB # &. We proceed to an enumeration of all fi,--- , f,, €
P,.. Assume that at some step of the enumeration, we have found fi,--- , f,, such that
there exists o € V(g) N V™(f1,---, fn) N B (eventually, we will find such a system).
We give now a recursive condition that will implies the existence of a. Let us remark

that
(a1) either dg(a) := (‘9—5, . ,6‘1—{) () #0;

(by) or, dg(a) :=

/N

99 ... ﬂ)(a)zo

oz’ ) Oxp
If (a;) holds, there are A\j(a),---, A\, (a) € Q, not all zeros such that

dg(a) = Z_ Ai(@)0fi(a).

Without loss of generality, we can assume that A\;(a) # 0. Then,

) 9
8—51(04) %(OO of of
Ofi(g) ... 2(q)
Ofo 0f2 0z1 Ozn
(@) o g(@) . .
b o = Ai(a) : : # 0
: ' O (q) ... Or(q)
O fn O fn ox O0xn,
ge(@) o g () 1
Therefore, « € V"(g, f2,+ -+, fn) N B. Using algorithm 1, we can check the existence
of a non-singular solution of the system (g, fo,---, f,) in B. Surely, if this the case,

then our formula is satisfied in Z,. And if our formula is satisfied, then this system

has a non-singular solution in B whenever (a;) is true.

Now, assume that (b;) holds. For all 4, let g;(a) := g—i(a) = 0. Again, we have

two possibilities for each i:
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(ag) either dg;(a) = (gfi,"' ; 35;) () # 0;

(bg) or, 8g2(04) - (ggiy Tty gg;) (Oé) =0

If (aq) is satisfied for some i, as before a € V"™ (fy, -+, fi—1,9i,- -+, [n) for some j.
Also, note that (g + g:;)(o) = 0 # 8((%;92 (a) = 379’;(04) for some k. Then, as above,

aeV™(fi,--, fi-1,9+gi,- -+, fn) for some j'.

Let A1) — (hyy- shn) = (fi, s fj—1, i 5 fn) and

h® = (- jl;) = (fr, s fire,9+ G f)-

Let us recall that for all ¢, for all v, € V™*(hy, -+, h,) N B and
for all v, € V"S(li, . ,ﬁ:) N B, there exist ¢, ¢, € Z™ such that

v(t; —vi) > e +o(det Jyo(t;)) + R
and that by Hensel’s lemma the existence of such a t; with
v(R(t;)) > 2v(det Jyo (t)) +e+ R

implies the existence of the root +; in B. Also, if we enumerate all tuple in Z" N B,

we can find effectively such tuples 1, t5.

So, we can find t1, 1 like above for € := F(hy,--- ,hn,ii, -+ h,) + 1 where F is the
function in conjecture 5.3.1.
Now, if v(t; — ta) > ¢, then 73 = 2. So, we can check effectively the existence of a

tuple

v e Vns(fh'" 7fj71;gz'7"' 7fn>mvns(f17”' ij’fhg—i_gia"' 7fn)mB

Let us remark that if v is any point in this intersection, then g(v) = g(v) + gi(7) =0
and therefore our formula is true in Z,. As we have seen, such a point exists if ¥ is

true in B and under the conditions (by) and (as).

If (by) is satisfied for all ¢, we keep going this procedure inductively.
Assume that (bg), --- , (by) are satisfied for all indexes at each step. Then, for each

I=(ir, i)y g1 1= 22() = 0.
We have two possibilities for all I:

(k1) either 9g;(a) = (%2, , 22) (@) £ 0;
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(besn) or, dgr(a) = (92, 22) () =0

If (a,,+1) is satisfied for some index I, we can check that our formula is true in Z,

like for the case (a).

If (by41) is satisfied for all I, we go to the next step of the induction.

Finally, let us recall that we can find recursively an integer d such that if for all
|I| < d, %(a) = 0, then g = 0 (see proposition 4.4.4). So, for |I| large enough, the
case (b)) never occurs (unless g = 0 in which case, checking the truth of the formula

is trivial) and our procedure stops (if « exists). O



Chapter 6

Decidability of Oy cqp

Let E, be the exponential function as before. Then, £, can be extended canonically
to an exponential function on the valuation ring of the algebraic closure of Q, and on
O,. We have seen that the theory of the structure Z, .., (or any of its finite algebraic
extensions) is decidable if Schanuel’s conjecture is true. One may ask if the same
holds for the theory of the structure with underlying set O, in the language of valued
exponential rings. We denote this latter structure by O, ¢;,. The main theorem of this

chapter is:

Theorem 6.0.1. If the p-adic Schanuel’s conjecture is true, then the theory of O, cap

1s decidable.

The strategy is the same that for Z, .,,: First, we prove a result of effective model-
completeness. Then, we show (assuming Schanuel’s conjecture) that the existential
part of the theory is decidable.

The result of model-completeness also relies on a result of quantifier elimination in the
language with full (restricted) analytic structure. The result in this case is due to L.
Lipshitz |7]. It turns out to be more complicated that the case Z,, 4, (the main reason
being that O, is not locally compact). Indeed, we need to add all functions in the
ring of separated power series. We introduce this ring and give the result of quantifier
elimination in section 6.2. In section 6.3, we will discuss the effectivity of this result:
let F' be any family of functions in the ring of separated power series. Assuming that
the set of Lp-terms is closed under derivation and that each f € F has an effective

Weierstrass set, we will show that the Weierstrass system generated by the £p-terms is

100



CHAPTER 6. DECIDABILITY OF Opgxp 101

effective. And therefore, the theory of O, is effectively model-complete in the language
Lp.

Note that we didn’t mention decomposition functions. In fact, in this situation, we
don’t need these functions. Indeed, let us recall that the Weierstrass coefficients ob-
tained using the Weierstrass preparation theorem with a function f can be described
as a polynomial combination of the zeros of f with nonnegative valuation. As our
underlying set is algebraically closed, it already contains these roots and therefore we
don’t need to add functions to existentially define the Weierstrass coefficients.
Finally in section 6.4, we prove the main result of this chapter. But first, let us recall

some basic facts on the model theory of algebraically closed valued fields.

6.1 Algebraically closed valued fields and exponential

Let K be an algebraically closed valued field (ACVF) with value group I'. We denote
by £, = {+,—,-,0,1,| } the language of ACVF i.e. the language of rings expanded
by | a binary relation symbol interpreted by

x|y iff v(z) < v(y).
We may also consider the theory of ACVF in a two sorted language

Lr = {+x,—x, 'k, 0k, 1x,v,|, +r, —r, Or, cor, <r}.
Where this language is interpreted in K by:

e The first sort is K and +x, — g, 'k, Ok, 1k are the natural interpretations of the

language of rings;

e The second sort is the value group (with the point to infinity) and +r, —r, Or, cor,

<r are the natural interpretations of the language of ordered groups;
e visamap K — ['U{oo} interpreted by the valuation;
e | is interpreted like above.

Then, (an extension of) a classical result due to A. Robinson tell us that
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Theorem 6.1.1. The theory of ACVF is axiomatized by (i) (K,T',v) is a valued field,
(11) there are x,y € K* such that v(z) < v(y), (111) K is algebraically closed, (iv) the
characteristics of K and K. Furthermore, this theory admits quantifier elimination in

the languages L, or Lr.

Remark. Here, we will replace v by a function symbol |-| interpreted by the p-adic

norm. The sort I' will be replaced by |K™|.

Let K = C,. Then, the function E, : O, — O, : * +—— exp(px) defines an
exponential function on O,. We denote by L.,, the language £, U{E,} and by O, cap
the structure with underlying set O, and natural interpretations for the symbols of

Lerp. The goal of this chapter is to prove the decidability of the theory of O, cyp.

6.2 The ring of separated power series and quantifier
elimination

As for the case of Z,, the quantifier elimination in the language with restricted analytic
functions relies on two main facts: Weierstrass preparation theorems and quantifier
elimination in the language of valued fields (theorem 6.1.1). However, as C, is not
locally compact, it leads to some difficulties. Instead of OP{Y}, L. Lipshitz consider in
7] functions in the ring of separated power series i.e. nice’ power series in O,{X }[[7]]
where the variables p will be evaluated in the maximal ideal 9, (i.e. a power series
in this ring determines a function from O x M to O,). We give now the definition

of this ring:

Definition 6.2.1. Fiz 7 with 0 < |n| < 1. Let Ry C O, be the mazimal discrete
valuation ring contained in O, with prime element © and such that Ry/(mw) = F.
For all {a;}ic, C O, with |a;] — 0, let Ro{a;} be the completion of Ryla;,i € w).

Let Rofa H{X} = {f = S 0,X" € Rofa}[XT] | [b,] - 0}.

Let Ro{a; }{ X }[[p]] be the ring of formal power series in p with coefficients in Ro{a;}{X}.
Then, for all €, for all f € Ro{a;}{X}[[p]], there is i. and g € Rolag, - ,a;., X][[p]]
such that || f — g|| < e. Also, Ro{a;}{X}[[p]] is complete.

Let S{a;{X}[pll = {m*f | a € N,f € Ro{ai}{X}[[p]]}. We define the ring of
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separated power series by:

C{X Al = | S{aHX} 7]
{ai}

where the union is taken over all sequences {a;} like above. Let O,{X}[[p]]s be the
ring of all f € C,{X}[[p]]s with || f|| <1 i.e.

O {X}[7lls = | Rola: HX} [7])-

{ai}
Let f(X,p) € Op{x}[[pl]s. Then, f determines a function from OF x M? to O,.
Note also that

Lemma 6.2.2. Let f € O,[X, 0", then f € O,{X}[[7]]-

This follows immediately from the definitions. Actually, we have that for any
f€Z,{X,Y,Z}, for any z € O’;, f(X,p,2) € O,{X [P
It turns out that the ring O,{X }[[p]]; is closed under (some appropriate versions of the)
Weierstrass division with respect to the variables X and p. We state now these results.

We take the following notation: if § = (y1,--- ,y,) is a tuple, ¥ := (y1,- -+ , Yn_1)-

Definition 6.2.3. Let f = Y a;(X,p) Xy € O X }[plls where a; € O,{X }H[As.
Suppose that ap is a unit and that for all © > 1, a; = b; + pc; for some b;,c; €
O X Y[Pls with ||b;]] < 1. Then, we say that f is regular in X, of order I. We say

that f 1s regular in X, of it s reqular of order n for some n.

Remark. If f € O,{X}[[p]]s, then f is a unit if f =1 — g — h where g € O, {X }[[7]]s,
lgll < 1 and h € (p)O,{X}H[plls- In this case, f~1=3",(g+ h)".

In order words, f is regular of order [ in X, if f is congruent to a monic polynomial
of degree [ in X3, modulo the ideal generated by 9, and p.
The next result is due to L. Lipshitz (proposition 2.3.1 in [7]):

Proposition 6.2.4. [Weierstrass division theorem with respect to the variables X | Let
f € O,{X}[[pl]s regular in Xy of order I, g € O,{ X }[[p]]s with ||g|| = 1. Then, there
are ¢ € O XHDs» ro, -+ ri1 € O{X H[plls such that

g=qf + Z%Xziw

i<l
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In particular, for g = X}, we have f = (X}, — > 1 X4,) U where U € O,{X}[[p]]s is

a unit.

Note that in the last case, for all 7 € Oﬁ@ for all w € mtj,ﬁ
f@w) =0iff 2}, = > r(@ @), = 0.

And for all 7, @, f(T', X, w) has exactly [ roots with in O, (counting multiplicities)

We define now regularity with respect to the variables p

Definition 6.2.5. Let f =Y a,(X)p” € O,{X }[pl]s such that ||f|| =1, a,. 05 =1
and for all v = (0,---,0,7), i <, |la,|| < 1. We say that f is regular in py of order
l. We say that f is regular in py if it is regular of order n for some n.
In other words, f is congruent to ply modulo the ideal generated by 9, p1, -+ , py—1
I+1

and py .

We have a preparation result for the variables p (proposition 2.4.1 in [7]):

Proposition 6.2.6. [Weierstrass preparation theorem with respect to the variables p/
Let f € O{X}[plls reqular in py of order I, g € O{X}[plls with ||g]| = 1. Then,
there are ¢ € O{X}[Plls, 70, s11-1 € O {X}[P]]s such that

g=af+>_ripl.

i<l
In particular, for g = ply, we get [ = (ply — S riply) U where U € O {X}[plls is a

unit and furthermore r; = v, + p'r! with ||r}]| < 1 and ||p'r!] < 1.
Again in the last case, for all ¥ € (’)é”, for all w € imév,
f(@,©) =0iff wy = ) (@ w)wy =0.

And for all 7, &', f(Z,w', py) has exactly [ roots with in 91, (counting multiplicities)

We consider the structure O, in the 3-sorted language £, s with sorts:

(1) O,, the valuation ring. We have in the language symbols for the functions +,-, —, 0,1
(This sort will be called sort 1);

(2) 9, its maximal ideal (called sort 2). We have symbols for the functions +, -, —, 0, 1;

(3) |C,| the valuation group (called sort 3) in the language of ordered groups.
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Also, we also add a symbol for the functions |.| : O, — |C,|.

We will consider the sort 91, as a subset O,,. So, any function, variable or constant of
the sort 91, will also be considered as a function, variable or constant of the sort O,.
We denote by L,, the expansion of £, where we add function symbols for each

f € O,{X}[[p]]s- We define division symbols on O,:

zfy if z] <yl #0
Do(w,y) : Op — Oyt (w,y) —
0 otherwise,

and

zfy il |zl <|y[#0

Dy (z,y) : O; — M, : (z,y) —
0 otherwise.

Then, L2 denotes L,, U{Dy, D1}.

Theorem 6.2.7. [L. Lipshitz [7] theorem 3.8.1] (O,, M, |C,|) admits elimination of

quantifiers in LD .

It is immediate from the proof that we don’t need to add all the function symbols
in the ring of separated power series to get quantifier elimination. It is sufficient to
add symbols for a family of functions closed under Weierstrass division (with respect

to the variables of sort 1 and sort 2). As in chapter 3, we define:

Definition 6.2.8. A separated Weierstrass system over O, is a family of rings
Opl X1, . Xn, p1, -+ 5 pmls, nym € N, such that for all n,m, the following conditions
hold:

1. Z[X,p] € O,[X,p)s € O{X}H[p]ls;

I

2. For all permutations o of {1,--- ,n} and 7 of {1,--- ,m}, if f(X,p) € O,[X, 7],
then f(Xa(l)a T ;Xa(n)) Pr1), " 710'r(m)) € Opﬂy7 ﬁ]]s;

3. If f € O,[X,0]s and pif € O{X}[[p]] (where g € Q), then pif € O,[X,p]s;
4. If f € O[X,pls has an inverse g in O,{X}[[p]], then g € O,[X,7]s;

5. (Weierstrass division with respect to variables of sort 1) If f € Op[[Y/7Xn+1,ﬁ]]s
and f is reqular of order d in X,,1, then, for all g € Op[[yl,XnH,ﬁ]]s with
lgll = 1, there are ro,- -+ ,r4_1 € (/)p[[yl,ﬁ]]s and Q € O,[X,p]s such that

9(X.5) = QX.5) - [(X,0) + (Xiira i (,5) + -+ 10(X7, 7).
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6. (Weierstrass division with respect to variables of sort 2) If f € O,[X, 7, pms1]s
and f is reqular of order d in py,41, then, for all g € Opﬂyl,ﬁ]]s with ||g|| = 1,

there are o, -+ ,ra—1 € Op[ X, 7']s and Q € O,[X, p|s such that
9(X.7) = QX,7) - F(X.7) + (phtira s (K 7) + - +10(X, 7).

Let W be a separated Weierstrass system. We denote by Ly the expansion of £,y
by function symbols for elements in W. L&, denotes the expansion of Ly, by Dy, D;.

Then, it is immediate from the proof of theorem 6.2.7 that
Theorem 6.2.9. (0,, M, |C,|) admits elimination of quantifiers in LF,.

Let F be a family of separated power series. As in chapter 3, we can define the
separated Weierstrass system generated by the Lp-terms. We denote this system by
Wpg.

Let us remark that if the set of Lp-terms is closed under derivation, then any function
f € Wr is existentially definable. Indeed, let f be a separated power series regular
of order d (with respect to a variable of sort 1 or 2) and g with ||g|| = 1. Then, the
functions defined by the Weierstrass division are existentially definable in terms of the
derivatives of f and ¢. This is an easy consequence of proposition 3.4.1. In fact, we
can use the same existential definitions that those given in this proposition. Note that
here we don’t need to use decomposition functions: our field is already algebraically
closed and therefore the roots of f with nonnegative (resp. positive) valuation live in
our structure. From this, we can show by induction on the complexity of the function
f € Wp that f is existentially definable in terms of a finite number of functions in F'

(and their derivatives). Therefore,

Theorem 6.2.10. Let F' be a family of separated power series. Assume that the set of

Lp-terms is closed under derivation. Then, (O,,M,, |C,|) is model-complete in L.

Now, note that any L.,,-formula is equivalent to a L, )-formula in C,. And, it is

obvious that the set of Lp,)-terms is closed under derivation. So,

Theorem 6.2.11. The theory of the structure O, cqp is model-complete.
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6.3 Effective model-completeness

In this section, we want to prove the effectivity of theorem 6.2.11. As for the case
of Zy exp, We are reduced to compute an effective "Weierstrass bound’. Indeed, if we
inspect to proof of theorem 6.2.7 in [7], we see that every step is effective except for the
use of proposition 2.7.1. In fact, this proposition use the fact that the ring O,{X }{[p]

is Noetherian and therefore may not be effective. We recall this proposition:

Proposition 6.3.1. [L. Lipshitz [7] proposition 2.7.1] Let f = 3 a,, (X, )Y 5" €
O {X, Y[\ Plls. Then, there is a finite set Ty =Ty x 'y, € NM x NV such that for
all (o, B) € NM*N and for all (u,v) € Ty, there are guas(X,\) € O {X}H[N]s such
that:

(Z) Cbaﬁ (77 X) = Z(M,V)Erf gﬁ“’aﬁ (77 X) altV (77 X) 7' and,

(ii) if B ¢ L'y, and there is vy € I'y, with § < vy, then for all (p,v) € 'y with v > 8
and all o« € NM, g,5,, € (M, O {X}H[N]]s; and,

(iii) for all vy € Ty,, for all & & Tty Guvawe € (9, N)OR{ X }H[NJs-

Let f =Y a,(X)p" € O,{X}[[p]ls- Suppose that a,, = 1 and ||a,| < 1 for all
v < 1. In this case, we say that f is prereqular of order vy. Then, we can make a

change of variables of the type

pi — pi + pi for i < N

Pn — PN

for suitable choice of e; such that f is regular in p,. Similarly, let f =" a,(X, Y"
with a,, = 1 and for all > pg, a, = b, + pc, where ||b,|| < 1 and ||pc,| < 1. In this
case, we say that f is preregular of order jy. Then after a change of variables of the
type

yi — yi +yyy fori < M

Ym — Ym
for suitable choice of e;, f is regular in y,,.
It means that if f is preregular of order g or 1y then after a change of variables it

becomes regular. Note that these change of variables can be done effectively.

Let f(X,Y,\D) = Zu,u auw(X, X)?“ﬁ”. Then, we say that f is preregular of order
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(po, o) if auem, = 1 and for all v < 1y and all g or for v = vy and all p > py,
A € (MM, N)O,{X}[[N]]s. In this case, > Qe (X, N)Y" is preregular of order .
Then, the set I'; of in proposition 6.3.1 determines a bound on the order of preregu-
larity:

Let f =Y au(X,NY'0" € O{X,Y}H[\5l,. FixT € OY,w e MY, Then(if f is

not identically zero), there is f(Z,Y,@,p) € O,{Y }[[p]]s preregular of order (uo, )

for some (o, 1v9) € I'y and such that

f(f7 ?7 w, X) = Quo,vo (fv w)f(fv Y: (:57 ﬁ)

Let I' := I'y and fix J a finite subset of I and (p, 1) € J. We define the first-order
formula
MJ,(MO,VO)(Y7 X) = /\ |aW(Y, X)| = |aMoV0(X’ X)|
(r)eJ\{(ko,v0)}

A Apovo (77 X) 7é OA

A 13w (5N < g (X))
(p,v)e\J

If none of the formula M, .,)(T,®) is satisfied in O, then

>|

f@Y,w,\) =0.

Otherwise, there is a non-empty J C I' such that O, F M., (T,w) for some
(1o, o) € J (g is the smallest v such that (u,v) € J for some p and pg is the largest
p such that (u, 1) € J). In that case,

Auv = aMOVoDO(a/W’ auol/o) V(u, V) €J \ {(,UO, VO)}a

and
Apy = arooDl (alw? aroo) V(,u, V) el \ J.

Furthermore, for all («, 5) ¢ T,

Qop = Z Juvaplpuy
(mv)er

= Z guvaﬁarooDO(auV> auouo> + GuoroaBuovo
(mv)ed
(V) #(1o5v0)

+ Z guyaﬂaHOVoDl(auwa#ol/o)?
(p,v)eT\J
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where g,,45 are like in proposition 6.3.1. So,

/= ‘%Vo{ D Dol )Y 0+ Y0P
(wv)ed
(1,v)#(105v0)

+ Z Dl(a/W? auow))?#ﬁy
(p,v)er\J

+ Z [ Z GuvapDo( @, o)
(

a,B)¢r (wr)ed
(1,v)#(p0,v0)

F Guovoes + Z uvop Dy (@, auol/o)}?apﬂ}
(m,v)eT\J

= CL.Uol/of,'

Let f be the power series where we replace the Do(auw, uu)'s by new variables X,
of sort 1 and the D (a,., a,y,)’s by new variables A, of sort 2. By the properties of

Guvap, | is preregular of order (ug, 1) € I'.

Definition 6.3.2. Let f be a separated power series. We say that f has an effective
Weierstrass set iof one can compute a set I'y like in proposition 6.3.1. We say that
a separated Weierstrass system W s effective if there is a recursive procedure which

takes for entry a function f in W and return a set I'y like in proposition 6.5.1.
Lemma 6.3.3. Let f € Z[X,Y,p, \|®*. Then, f has an effective Weierstrass set.

Proof. Fix T € O and @ € M)’ such that O, E My (., (Z,©) for some non-empty
J C Ty Let po = (p1, -+, pur) and vy = (v, -+ ,vy).

Fix j an index such that v; # 0. If such an index exists, we can assume j = J. Then,
up to a change of variables (which will be denoted by T}), the function f (as defined
before) is regular in T;(\;) of order S(J). So, the function T,(f(z,7,@,7,\,)) has
exactly S(J) roots in 9, respectively.

If there is no index j such that v; # 0, let ¢ be an index such that p; # 0. Without
loss of generality, we may assume ¢ = I. Then, up to a change of variables (which
will be denoted by 77), the function f (as defined before) is regular in T7(Y7) of order

S(I). So, the functions T7(f (7,7, Y, w,T)) has exactly S(I) roots in O,,.
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Note that in both case these roots are in one-to-one correspondence with the roots
of f(Z,7,Yr,w,T) and f(T,7,w,7,\;)) respectively.
As f has an effective Weierstrass bound (in the sense chapter 4), one can compute a
bound on S(I) and S(J). Let S be a upper bound of all possible S(k)’s computed as

above. Then, we conclude that I'y is contained in the (computable) set
{(n,v) | pi,v; < Storalli <I,j<J}
[

Note that if f € Z,{X,Y} has an effective Weierstrass bound, then the separated
power series f(X,7) has an effective Weierstrass set. This follows from the proof of
the above lemma. Let us also remark that as in chapter 4, if we want to compute
the effective Weierstrass set of a function f € O,{X}[[p]]s, it is sufficient to bound
effectively the number of roots (counting multiplicities) of the function in O, (resp.
in 9,) uniformly over the parameters (z1,--- ,%—1,Tit1, -+ , TN, P) € Oévfl X Dﬁzj)w
(resp. the parameters (T, p1, -+ , pi—1, Pit1, -, pu) € ON x M=) for all i whenever

for this choice of parameters this number is finite.

Let F' be an effective family of separated power series such that each f € F has

an effective Weierstrass set. Let Wyr be the separated Weierstrass system generated
by the Lp-terms. We want to prove that Wy is an effective separated Weierstrass
system. Fix f € Wr. We have to prove that f has an effective Weierstrass set. We
use the same strategy that in chapter 4: we proceed by induction on the complexity
of f and prove that one can compute the Weierstrass set in terms of the Weierstrass
sets of fi,---, fn (and their derivatives) where f;’s are the functions involved in the
existential definition of f.
For this, we use the same results of tropical analytic geometry to compute a bound
on the number of roots of f uniformly over the choice of parameters. Note that in
the case where we want to bound the number of roots in 91,, we use the results to
estimate the number of roots with valuation in [1/n,00) and prove that the bound
does not depend on the choice of n (for all n large enough).

To do this, as we have seen in chapter 4, it is sufficient to prove the following:
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Lemma 6.3.4. Let f € O,{X,Y}[[p,\]]s such that f and all its derivatives have an
effective Weierstrass set. Then, we can effectively find an integer E(f) such that for all
T € (’)5, forallw € i)ﬁg, either f(Z,Y,@, \) is identically zero or New(f(Z,Y,w, \)) C
Brax(E(f))-

Proof. Let f(X,Y,p,)\) = Z(W/) auw(X, ﬁ)?“XV. Note that if f is identically zero the
lemma is trivially satisfied. Fix ,© such that f(Z,Y,@,\) is not identically zero.
To keep the notation simpler, we will not indicate the parameters T, anymore. So,
f(@,Y,w,\) will be denoted by f(Y,)) (similarly for the coefficients a,).

Let us recall that New(f) := New(f(Y,))) is the collection of cells which are the

convex closure of

m(vertam () = { (0 0) | 0(apono) + {1000, T) = ming ) (v(ay) + oo, 70},

where v € [0,00)N,w € [1/n,00) (for some fixed n), and (-,-) denotes the usual
scalar product.
We will prove that there exists a (computable) finite set I such that for all (u,v) ¢ T,

for all v € [0,00)",w € (0, 00)M,
(,v) ¢ W(vert@@)(f)).
In particular, we will show that for all (1, ) ¢ I, there is (po, %) € I such that
(@) + (1, 0) + (L, ) > v(augw,) + (1o, 0) + (o, W)-

In that case, New(f) C T (independently of the choice of n).
Let I'y = I'y x I'y like in proposition 6.3.1. Then, for all («, 3)

Aap = Z Guvappy-

(u,v)ely
We define
T = max max {,v;},
(u,v)ely 1<i<N
1552 M
and

Tp:={(p,v) | i <T,v; <T foralli,j} =Tp x Ipa,

where p = (p1,- -+, pun), v=(v1,- -+ ,vm)-
We show the existence of I’ by induction on (N, M).

First, we prove the basic steps:
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e If N=1,M =0. Let a ¢ I'py. Then,

o(aa) + (0 0) > min{o(a,) + v(gua)} + (a0)

= v(au,) + V(gupa) + (o, v) for some py € I'y

> v(a,) + (1o, ),
as V(gupa) > 0 and a > pg. We take I'=Dp.

o If N=0,M = 1. Let § ¢ I'gy. Then,

v(ag) + {8, w) = min{v(a,) + v(gup)} + (B, w)
= v(ay,) + v(gvp) + (B, v) for some vy € I'y

> v(ay,) + (v, w),

as v(gup) > 0, B> 1y and w > 0. We take I'=Tp.

We take the following notations: Z := (Y, \), % := (v,w) and if T = (x1,--- ,x,) then
Ti = (X1, Tie1, Tig1, " 5 Tn)-

We give now the construction of [ in the general case:

e First, let us remark that that if v = («, ) is such that ~; > T for all ¢, then

v(Gag) + (1) 2 min {v(au) + v(guwas)} + (1,7)

= U(a/mm) + v(Quouoaﬁ) + <’y,ﬂ> for some Yo = (MO; VO) € Ff

> U(auol/0> + <’}/0,ﬂ>,

as V(Gugroap) > 0 if vo = (0,---,0) and for all 4,5,k o > po;, B; > 1o, and

wy, > 0.

o Let 1 <k< M+ Nand1<s<T. Fix~vy¢I'gsuch that 7, = s. We define

10°f

fs,k = ;a_Ziz

(Zh T 7ZkJ—17 07 Zk+17 ) ZM+N) = Z b’VYkZl’Zk
Then, a,Z' = b5, Z . So,

U(a’y) + <’77ﬂ> = U(b’m) + <’}/,U>.
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S
375
2y

hypothesis, there is a computable l:(fs,k) such that for all 7, ¢ ff(fs,k),

Furthermore, I'y , = I'ss; (and is computable by hypothesis). Also, by inductive
’ B}

’U(bﬁk> + <;}/k7ﬁk> > U<b"fk0) + <P)7k07 ak>

for some Vo = (701, - 770M+N—1) € f(fs,k)-

So, we have that for all v such that 4, = s there is 7 such that v, = s,
/}70]{ & F(f&k-) and

U(CL'Y) + <7’ﬂ> > U(CL,YO) + <707ﬂ>
We set
F(fS,k) = {’Y | % =38, % € f(fS,k)}

Let I" := T's U cpensen Urcocr D(for)- Let B(f) = maxq,er maxi;{p;, vj}
and D(f) = {(m,v) | i < E(f),v; < E(f) forall i < M,j < N}.
Then, by definitions, [ has the required properties and E(f) satisfies the condi-

tions of the lemma.

This concludes the proof of the lemma.

From this lemma and arguing like in chapter 4, we can prove:

Theorem 6.3.5. Let F' be an effective family of separated power series. Assume that
the set of Lr-terms is closed under derivation and that each Lp-term has an effective
Weierstrass set. Then, the theory of (O,, M, |C,|) is effectively model-complete in the

language L.
As a particular case, we have:

Theorem 6.3.6. The theory of O, c.p is effectively model-complete.

6.4 Decidability

We will now prove the decidability of O, ., assuming Schanuel’s conjecture. By the

last theorem, we are reduced to determine the truth of existential L.,,-sentences.
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Actually, we just need an algorithm that stops if the formula is true. It is quite easy to

see that any existential formula is equivalent to a disjunction of formulas of the form:
3z A fi(T) = 0 A 1g;(T) |00 ()],

where f;,9;,h; € Z[ X1, , Xy, Ep(X1), -+, Ep(X,,)] and O holds for <, < or =.
Let Z%9 denote the valuation ring of Q4.

It turns out that is sufficient to find a realisation of the formula in Zglg :

Proposition 6.4.1. Any existential L.,,-sentence with parameters in Zglg realised in

O, 1s realised in Zglg.

Remark. Actually, the same result holds for any Lpg-formula where F' is any set of
restricted power series with coefficients in the valuation ring of some finite algebraic

extension of Q, such that the set of Lp-terms is closed under derivation.

Proof. In this proof, f;, gj, ... will be elements of Z[ X, -, X, E,(X1),-- -, Ep(X,)],
m will be a parameter in Zglg. We will prove the proposition by induction on the
complexity of the formula. We proceed also by induction on n the number of variables
and we prove that for all realisations 7 of the formula in O,, we can find a realisation

of the formula in Z" e-close from T (for all & small enough).

(1) Let ¥ = 3IX f(X,m) = 0.
Assume that there is T € O, such that f(z,m) = 0. Assume that f(z,2’,m) =
> ai(x’,m)z} where ' = (xg, -+, xp).

Let d(f) be the smallest integer like in lemma 4.0.1. Then,

e If a;(2/,m) = 0 for all i such that i < d(f), we find by induction on the
number of variables that there is & € (Z29)"~! e-close from 2’ such that
a;(t/,m) = 0 for all i < d(f). In this case, the formula VU is realised by any
tuple (by, ). In particular, if |b; — 1| < &, (by, V) is e-close from 7.

o If ap(z/,m) # 0 and a;(2/,m) = 0 for all i # k, i < d(f). Then, T =
(0,9, -+ ,x,) (note that in this case, T is the unique solution of the equation
f(X,2’,m) = 0). As before, let ¢ be a realisation e-close from z’ of the
formula

X N\ a(X7,m) =0.

i<d(f)
ik
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If ¢ is small enough, a,(#,m) # 0 and therefore, (0,2, - ,t,) € Zglg is a

realisation of U,

o If a;(z/,m) # 0 for at least two i < d(f). Let I be the set of indexes such
that a;(z/,/m) # 0. Then, there exists ¢ such that for all 3/ € (9;;_1 with
ly — 2| <e

la;(2",m)| = |a;(y/,m)| foralliel
la;(y',m)| <6 otherwise,

where

Let t € (Z49)"~! such that [t — 2’| < e. Then, as the (restriction until the
index d(f) of the) Newton polygons of f(X,2’,m) and f(X,#,m) are equals,
we find that the formula 3X f(X,#,m) is realised in O, and all its realisations

lie in Zglg . In particular, there exists a realisation e-close from x.

(2) Let ¥ =3IXf1(X,Y,m) =---= fi(X,Y,m) = 0.
Let (@, 5) be a realisation of the formula in O,. We define

F(X\Y,Zm) =Y _ fi(X Y,m)z*
= Z aij(Y, m)YZZ]
(4,)€N?
So, for all z € O, F(@, 3,2z, m) = 0.
By inductive hypothesis, there exists ¢ in Zg% such that for all |i| < d(F) for all
j<d(550,2))
|laij(@,m)| = |a;;(¢,m)| and [&@ — ¢ < e.

Let Ky := Q,(m,¢) C K; C --- be a sequence of algebraic extensions of QQ, such
that any finite algebraic extension of K of degree n is contained in K,. Let 7,

denote a prime element of K,,. Let us remark that for all d € Ok, ,
F(e¢,d, m,,m) = 0iff f;(¢,d, m) =0 for all i.

But, for all n large enough, there is d,, € O, such that F'(¢,d,, m,, m) = 0. Indeed,
the Newton polygons of the functions F (@, Y, m,,m) and F(¢, Y, m,,m) are equals

(until the coefficients i > d(F') but these latter are irrevelant by choice of d(F"))



CHAPTER 6. DECIDABILITY OF Opgxp 116

and so the existence of # implies the existence of such a d,,.
By the Weierstrass preparation theorem, for some |(7,7)| < d(F) and after a
suitable change of variables, we can factorize

F@,T,Z,m)=a(c,m) - UleT,Z,m)- [Ts +Y Ae Z2m)T'|.

I<s

So, in fact, dy € K. Therefore,

fi(@,ds) =+ = fr(¢,ds) =0 and |(¢,ds) — (@, )| < e
which proves our claim for the formula W.

(3) General case: U = A, f;(X,m) = 0N, lg; (X, m)|0;]h; (X, m)|.
Let 7 be a realisation of the formula in O,.
If g;(z,m) =0 or h;(Z,m) = 0 for some j, we remove the condition
g;(T,m)0;h;(z,m) in ¥ and replace it by ¢;(z,m) = 0 A 00;h;(T,m) (or respec-
tively by h;(T,m) = g;(z,m) = 0). So, without loss of generality, we may assume
that the formula has the form
U= AL m) =0\ 0 < |g;(X,m)|0|h; (X, )|
? J
By the case (2), we know that for all e, there is T, € Z3' e-close from T which
realises the formula 3X A; f;(X,m) = 0. But, for all € small enough, |g;(Z.,m)| =
\g; (T, m)| and |hy(T.,m)| = |hi(T,m)| for all j,k. It means that, for all £ small

enough, 7. is a realisation of ¥ in Zglg e-close from 7.

We can now prove the main theorem of this section:

Theorem 6.4.2. Assume that the p-adic Schanuel’s conjecture is true. Then, the

theory of Oy cqp in the language of exponential ring is decidable.

Proof. Let ¥ be an existential sentence. Then, by proposition 6.4.1, O, F ¥ iff
2499 = W, So, the formula is true iff it is true in some algebraic extension of Q,. Let
K be a finite algebraic extension of Q,. If Schanuel’s conjecture is true, we have an
algorithm that determines the truth of ¥ in Ok. We just have to run an enumeration

of all finite algebraic extensions K of Q, and return true if ¥ is true in Ok. O
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Let us remark that we don’t need that Schanuel’s conjecture is true in C, but only

in leg.
Furthermore, let K, be the family of extensions defined in chapter 3. If K, .., denotes

the structure with underlying set Ok, in the language of exponential ring. Then,

Corollary 6.4.3. If the theory of K, czp 15 decidable for all n, then the theory of Op cap

in the language of exponential ring is decidable.

In particular, if a version of conjecture 5.3.1 for finite algebraic extensions is true,

then the theory of O, .., in the language of exponential ring is decidable.



Appendix A

Tropical analytic geometry

Within this chapter K will denote a field complete with respect to val a valuation
with val(K*) C R. We will denote by |-| = exp~>®() the absolute value attached to
the valuation. Also, we set I' := val((K%9)*).

The goal of this section is to generalise theorem 2.1.11 on Newton polygons to systems
of n restricted analytic functions with n variables. These results are due to J. Rabinoff.
The reader can find the proofs and further references in [14].

In the first part, we introduce some definitions of convex geometry. Then, in the second
section, we define the generalisation of the Newton polygon: the Newton polyhedron
and the tropicalization of an analytic function. We state the generalisations of theorem
2.1.11 in sections A.3 and A 4.

Note that our definitions may be slightly different from [14]. Actually, we just use
particular cases of the result (i.e. when the functions involved are power series well-
defined on a neighbourhoud of the origin) and define the notions according to this these

special cases.

A.1 Convex geometry

In this section, we introduce the basic definitions of convex geometry and we define
the compactification of a polyhedron. We will need this notion to state theorem A.4.4.
First, we fix some notations for the rest of this section:

Ng will denote the n dimensional real vector space R and Mg its dual. (-,-) : Mg X

Ngr — R denotes the canonical map. We also fix N = Z™ and M = Homg(N,Z). We

118
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denote by Nr the tensor N ®z I'.

Definition A.1.1. An (affine) half-space in Ng is a subset of the form
H={veNr| (u,v) <a},

for some u € Mg \ {0},a € R. The space is called linear if we can take a = 0. We
say that H 1s I'-affine if a € Np and u € M.

An affine space in Nr is the translated of a linear subspace. Any such a space can
be obtained as a finite intersection between the (topological) boundaries of some half-
spaces.

A polyhedron in Ng is a non-empty intersection of finitely many half-spaces. We say
that a polyhedron is T'-affine if all the half-spaces of the intersection can be assumed
I'-affine.

Let P be a polyhedron and v € Mg. We define

face,(P)={v e P| (u,v) > (u,v") for allv' € P}.

A face of P is a non-empty set of the form F = face,(P). We write F < P.
We define the dimension of P as

Span(P) = the smallest affine subspace containing P,
dim(P) = dim Span(P).

Let S C Nr. We define the convex closure of S by
conv(S) = ﬂ H,
where the intersection is taken over all half-spaces H such that H O S.

The compactification of a polyhedron is essentially the polyhedron itself together
with points to infinity. We start with the definition of the compactification of Ng with

respect to a special case of polyhedron: the cones.

Definition A.1.2. A cone in Ny is a (non-empty) finite intersection of linear half-
spaces 1 NR.

We say that a cone is pointed if {0} is a face of the cone.

Lemma A.1.3. Let vy,--- ,v, € Ng. Then, 0 = > v;R>q is a cone. Furthermore,

any cone in Ngr can be written in this form.
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Let 0 = > v;R5 be a cone. The dual cone is the cone
o/ =(V{ue M| (uwv) <0}

Let us remark that ¢vV = o.

The annihilator of a cone o is the annihilator of the vector space Span(o):
ot ={u€ Mg | {u,v) =0 forallveao}.

Let R be the additive monoid RU {—0o0} equipped with the topology generated by the
usual topology on R and intervals of the type [—o00,a) for a € R.

Definition A.1.4. Let o be a cone. The partial compactification of Ng with respect
to o is the space Ng(0) = Homp_,(0",R) of monoid homomorphisms respecting mul-
tiplication by elements in R, equipped with the topology of pointwise convergence.

We use the notation (-,-), to denote the canonical map 0¥ x Ngr(o) — R.

Roughly, it means that we add points to infinity in the direction of o. This is made

precise by
Proposition A.1.5. [Proposition 3.4 in [14]] Let 0 C Nr be a cone.
(i) Let T < o and let v € Ng/Span(T). We define t(v) by:

(u, 1(v))y = (u,v) fuet No

—o00  otherwise,

foru € o¥. Then, 1(v) is a well-defined element of Ngr (o) and

L H Ngr/T — Ngr(0)

T<0
is a bijection. Furthermore, for all T < o, the map ¢ restricted to Nr/T is a
topological embedding.
(i) If 0¥ = . wiR>o, then the map
.

v— ((u1,0)g, -, (Up,v)s) : Nr(0) = R

15 a topological embedding with closed image.
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(i) For T < o, the inclusion 0" < 71 induces a topological embedding Ngr (1) —

Ngr (o) with open image.
FEzrample A.1.1. Let 0 = R5¢(0,1) + R5¢(1,0). Then, o is a cone in Ng. The faces of
o are: 1 = R>((0,1), 2 = R>0(1,0), {(0,0)} and o. The partial compactification of
Ngr with respect to o is (isomorphic to):
Ngr(o) = Nr H Ngr/Span(m) H Ngr/Span(rs) H Ngr/Span(o)
~r*]] ({+oo} x R) IT (R x {+oo}) [ T4 (+o0, +00)}.

R x {oc) RIS

{0} xR

Figure A.1: The partial compactification of R? with respect to o.

Definition A.1.6. Let P C Ngr be a polyhedron. The cone of unbounded direction of
P is the cone U(P) dual of

UP) :={ue Mr| face,(P)+# o}.
We say that P is pointed if o is pointed.

Definition A.1.7. Let P C Ny be a polyhedron and o = U(P). The compactification
P of P is the closure of P in Ngr(c).

Proposition A.1.8 (Proposition 3.19 in [14]). Let P = (_{v € Nr | (u;,v) < a;}
be a pointed polyhedron, o = U(P) and P be the closure of P in Nr(c). Then,
P = 1L, 7 (P), where we identify Ng(c) = [],., Nr/Span(t) and 7, : Nr —
Ngr/Span(T) is the canonical projection.

Furthermore, for all T < o,
7.(P) ={v € Nr/Span(r) | (u,v), < ma;;:(u, V') for allu € 0¥}
v'e

= {v € Ng/Span(t) | (u;,v) < a; for all u; € T+}.
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and,

P={u:0"—=R| (u,v), < ma;)((u,v'> for allu e oV},
v'e

Ezample A.1.2. Let P = {(z,y) e R? | = > 1, y,> 1,z +y > 2}. Then, U(P) is
the cone o of example A.1.1. The compactification of P is the closure of P in Nr(o).

With the notations of the above proposition, P = [1,~, 7 (P). As we have seen, the
faces of o are 71 = R>((0,1), 72 = R>((1,0), {(0,0)} and o. So,

T (P) ={(z,y) € Nr/Span(n) | ©>1, y > Lv+y>2}
= {+oo} x [1, +o0)
Trn(P) =[1,400) x {+o0}
Ty (P) =P
mo(P) = {(+00, +00)}

[1,00) x {o0} {(00,0})
,,,,,,, —_— e

i P {00} x [1,00)

Figure A.2: The compactification of P.

A.2 Tropicalization and Newton polyhedron

For the rest of this section P will denote a polyhedron in R™ of the form [, ., [ri, 00),

r; € T'. We will denote by P = [[,[ri, 00] its compactification. We define

K(P) = {Z ayzt | a, € K and val(a,) + (u,v) —>oon€P},

u€ENn
where the convergence is taken on the complement of the finite subsets of N™. Let us
note that elements f € K(P) correspond to functions which are analytic on the ball

of radius exp(—r;) in K. For instance, if P = [][0,00), K(P) = K{z1 --- ,2,}.
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Let T € K™. The tropicalization of T, denoted by trop(Z), is the tuple formed by the
valuations of the x;’s:

trop(z) = (val(xy), - - - ,val(xy)).
Let f € K(P). We define the tropicalization of f as the closure of the set
{v € P| there exists T € (K%9)" such that f(7) = 0 and trop(T) = v},

where the closure is taken in P. We will denote this set by Trop(f).
This set is actually completely determined by the coefficients of f:
Let 0 =U(P), T <o and f =) a,z"* € K(P). The height graph of f with respect to
T 18
H(f,7)={(u,val(a,)) | —u€ac’Nr N Ma,#0}C ("N NM)xR.
Fix v € Ng/Span(t). Let
vert,(f) = {(uw,val(a,)) € H(f,7) | val(a,) + (u,v) < val(ay) + (u',v)

for all monomials a,Z" of f}.

This is the set of points such that the linear functional (v, 1) reaches its minimun. As

f € K(P), val(a,) + (u,v) = co. So, vert,(f) is actually a finite set. Furthermore,
Lemma A.2.1 (lemma 8.2 in [14]). Let f € K(P) nonzero. Then,
(i) vertp(f) = U, ep vert,(P) is finite.

(i) There exists € > 0 such that for all f' =5 d " € K(P) with

If=f1= sup {lay—d'u|-exp({u,v))} <e
ueN? veP

and o', = 0 for all w such that a, = 0, we have vert,(f) = vert,(f’) for all

vEP.

We define the initial form of f with respect to v to be

iny(f) = Z a,T" € Klx].

(u,val(ay))€Everty (f)

Let us remark that

vert,(f) = {(u,val(a,)) | a,xT" is a monomial of in,(f)}.
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Ezample A.2.1. Let f=p* +p*X + X? + X? 4+ 37 . p" X" € K([0,00)). Then,

={(2,0),(3

={(2,0)} for all v € (0,1)

={(0,2),(2,0)}
=1{(2,0)

conZ)(wT‘to(f))

Figure A.3: vertp(f)

Let us remark that | J,.p conv(vert,(f)) is exactly the Newton polygon of f (in
the sense of section 2.1.2) restricted to its segments with negative slope. This part of

the Newton polygon describes the multiplicity of the roots of f with valuation in P.

Let f € K(P). Fix t € (K9)" such that f(f) = 0. By the ultrametric inequality,
we have that for some u, v’ € N" distinct, val(a,t") = val(au/ful) = min, {val(a,t")}.
So, if v = val(t) € Trop(f), inv,(f) is not a monomial. A crucial result in [14] is that

the converse is true:

Lemma A.2.2 (lemma 8.4 in [14]). Let f € K(P) nonzero. Then,
Trop(f) = {v € P| inv,(f) is not a monomial}.
Trop(f) N Ng is actually a very simple subset of Ng : a polyhedral complex.

Definition A.2.3. A polyhedral complex is a finite collection Il of polyhedra in Ng
(called faces or cells of I1) such that

o if PP €ll, PNP # &, then PN P is a face of P and a face of P';

e forall Pell,F < P, F €1l
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The support of I1, denoted |I1| is the set | Jpey P. The dimension of I1 is the dimension
of the highest dimensional cell of 11.

For v € Trop(f) N Ngr, we define

Yo = {v" € Trop(f) N Nr | verty(f) 2 vert,(f)}.

Actually, if Trop(f) is non-empty, the collection {~,,v € Trop(f)NNgr} is a polyhedral
complex in Ngr of codimension at least 1 (i.e. all maximal cells have dimension at
most n — 1). The support of this complex is exactly Trop(f) N Nr. We will denote by
Trop(f) N Ng the complex as well as its support.

Let 7 : N x R — N denote the projection on the first factor. We define

5o = m(conv(vert,(f))).

This a bounded polyhedron. The Newton complex of f is the collection of polyhedra
{% | v € P}. We denote by New(f) this set. Note that in general this set is
not a polyhedral complex: some face of a polyhedron in New(f) may not belong to
New(f). Indeed, a face of a polyhedron 5, may correspond to the projection of a
set conv(vert,(f)) where v ¢ P. Let us remark that it is a polyhedral complex in
the case where f is polynomial and we consider the set of all ¥, for v € Nr. The
support of New(f) is |[New(f)| = conv{u € N | (u,val(a,)) € vert,(f) for some
v e Trop(f) N Nr}.

The complexes New(f) and Trop(f) N Nr are dual to each other in the following

sense:
Proposition A.2.4. 1. For all v,v" € Trop(f) N Nr, Yo < Yo iff Y0 = Y-

2. For allv € Trop(f) N Nr, 7, and v, are orthogonal in the sense that the linear
subspace of Nr associated to the affine span of v, is orthogonal to the linear
subspace of Mg associated to the affine span of 7,. Furthermore, dim(v,) +
dim(%,) = dim(NR).

The above proposition implies that we have one-to-one correspondence between

cells of Trop(f) N Nr and positive dimensional polyhedra in New(f).
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Ezample A.2.2. (a) Let f=p* +p°X + X? + X? 4+ 37 p" X" € K([0,00)) as in

example A.2.1.

Then,
Yo = {0}
%o = [0,1] for all v € (0,1)
"= {1}
Yo = [1,00) for all v € (1, 00)
and

Yo = [2,3]

¥, = {2} for all v € (0,1)

F1 = 1[0,2]

F» = {0} for all v € (1, 00).
By theorem 2.1.11, we already know that f has exactly one zero of valuation 0
and two zeros of valuation 1 in leg. Let us remark that this coincides with the

volumes of 7y and %4;. The main theorem of the section A.3 is a generalisation of

this observation.
(b) Let f(x,y) = px + aP 4+ y?. We have four possibilities for in,(f):

(1) iny(f) = pxr + 2P when

1 1
Vv E {V = (Vl,l/g) ’ 1+ v =pry < pVQ} = (pTl,pTl) + (0, 1)R>O =:7.
(2) iny(f) = px + y* when
e {v=( )| 1+ < pvi} ! ! +11R>0
v = (v, v = pu. o= — - - e~
v 1, V2 1 = PV < Py p—l’p—l ’p Y2
(3) iny(f) = 2P + y? when
1 1 >0
ve{v=(v,1n)| prn=pr <lty}= P R +(—1, —=1)R"" =: ~s.

(4) in,(f) = pxr + 2P + y* when

{ —( )| 1 - - }— —1 —1 =
€ Vv 1200 % +v 1 12 DYy
v 1,2 1 pr1 pra 1 1 Y4
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Let v € 71. The corresponding cell in the Newton complex is 43 = m(conv(vert,(f))) =

conv{(1,0),(p,0)}.

84!

VY2

V4

V3

(a) Trop(f) N Nr (b) New(f)

Where in the above figure, we take P = (—oo, +00)? (with the obvious extensions
of the definitions). If P = [r,00) X [s,00), then Trop(f) N Ng is the intersection
between the set described in the above figure and P. New(f) is the collection of
all ¥; such that v; N P has the same dimension that ;.

A.3 Multiplicity formula

Definition A.3.1. Let Py,--- , P, be bounded polyhedra in Ngr. The Minkowsky sum
of Pp,---, P, is
P]_++Pn:{vl++vn‘vlepz}

For A € Rxo, we set AP, = {Xv | v € B}. We define the function
Vpl...pn : Rgo — R
(A, A) — vol(MPL+ -+ A\ Fy)

where vol 1s an Euclidean volume form in Nr normalized such that the volume of
a fundamental domain for the lattice N is one. The function Vp,..p, is actually a
homogeneous polynomial in Ay --- N\, of degree n. The mixed volume MV (P, ---P,)
is defined to be the coefficient of the Ay - - - \,-term of Vp,..p, .

Example A.3.1. e If P =a,b] C R, then MV (P)=b—a.
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o If P= [O, 1]2, Q= [1,2]2 C RQ, MP 4+ X0 = [)\2,)\1 + 2)\2}
So,
VOl( AP + AaQ) = (M + A2)? = AT + 2\ g + A3,

and MV (P, Q) = 2.
e Let P=1[0,1]%, @ =[0,1] x {0} and R = {0} x [0,1] in R?. Then,
AP 4290 = [0, M+ o] X [0, \1] and vol(M P 4+ AsQ) = (A1 + M)At = A2+ Ao
So, MV (P,Q) = 1. And,
AMQ + AR =10, A\1] x [0, Ao] and vol(MQ + A2R) = A As.
So, MV (Q, R) = 1.

Definition A.3.2. Let P = [][[r;,00) be a polyhedron (where r; € val(K*)). Let
Fiooo fa € K(P). We define

V(fi) ={T € (K“)" | fi(T) =0 and trop(T) € P}.

LetY =, V(fi). Fiz v e NpN P. The intersection multiplicity of fi,---, f, over v

is the dimension of the space Y Ntrop™ ({v}):

ix(v, fi -, fa) = dimg (Y Ntrop™ ({v}), Oyvrerop-1({o}))-

Note that ix (v, f1,-+ -, fn) is finite if Y Ntrop='({v}) is a finite sel, in which case

ig(v, fi oo fa) = Z dimg Oyyg.

trop(€)=v

We refer to [14] for a formal definition of the dimensions of the space Y Ntrop™ ({v})
and dimgOy¢. Note that the dimension dimg Oy is a generalisation of the intersec-
tion multiplicity of an algebraic variety at a point £&. For our purpose, the intuitive
meaning of ’intersection multiplicity’ is sufficient. In our applications, we just need
to know that the above dimension bounds the cardinality of the space defined by Y
(whenever this space is finite).

It turns out that the intersection multiplicity of a system over an isolated point in

(Trop(f;) is equal to the mixed volume of cells in New(f;):
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Theorem A.3.3. [Theorem 11.7in [14]] Let P be a polyhedron as before, let f1,--- , fn €
K(P) and let v € (), Trop(f;) be an isolated point such that v is in the interior of P
orv € P and ik (v, f1,- -, fa) is finite. Let §; = m(conv(vert,(f;))) € New(f;) be the

polyhedron corresponding to v € Trop(f;). Then,

Z.K</U7fl7'” 7fn) :MV<;Y17 7;}/71)

In particular, assume that the system (fi,---, f,) has finitely many solutions in
K. Let N be the number of solutions with valuation v (where v is an isolated point

of Trop(fi)). Then, N < MV (51, , ).

Ezample A.3.2. o Let f(X) = a; X"
Let v € Trop(f) NR. Let i be the minimal index such that (i, v(a;)) € vert,(f)
and j be the maximal index such that (j,v(a;)) € vert,(f).
Then, v, = w(conv(vert,(f))) = [i, j]. So, by the above theorem, the number of
zeros of f with valuation v is MV (v,) = j — i (counting multiplicities).

On the other hand, as (7, v(a;)), (j,v(a;)) € vert,(f),
v(a;) +v-i=wv(aj)+v-jJ.

So, the slope of the segment conv(vert,(f)) = conv((i,v(a;)), (j,v(a;))) is

v(a;) — v(a:)

J—1

= —.
It shows that theorem A.3.3 is a generalisation of theorem 2.1.11.

e We consider the sytem

AX)Y) =X2-2X —-Y?+1
f2<X7 Y) = X? _p2Y2-

Then,
TT'Op(fl) = REQ(O, 1) U Rzg(l, O) U Rzg(—l, —1)
Trop(fy) = (1,0)+ (1, D)R.

So, Trop(fi) N Trop(fs) = {(1,0)}. Let v = (1,0). Then,

verty(f1) = { ((0, 0), 0), ((07 2), 0) }

Pri= A (f1) = com{(o,O), (0,2)}.
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And,

vert,(f») = {((2, 0), ) ((0, 2), 2)}

Therefore,
MPL+ APy = conv{(2)\2, 0), (271 + 2)a,0), (0,2X5), (2)a, 2>\2)},

UOl()\lpl + )\2P2) = 2)\2 . (2)\1 + 2/\2 - 2)\2) == 4)\1)\2

MV (P, Py) = 4.
o)
¢ %
P2
&
Py ©
— ———>

Figure Ad: P, + P,

So, by the theorem, the number of solutions of the system (fi(z,y), fo(z,y)) =
(0,0) is 4 (counting multiplicities). And indeed, one can compute that the solu-

tions of this system are
g_ p 1 p 1 p -1 p -1
C\W\p—-1p—1)"\p+1'p+1) ' \p—-1p—1)"\p+1"p+1/)"

A.4 Non-proper intersection multiplicity

In the last theorem, we have seen that we can compute >, . _, dimOyg using the
Newton complex of the functions f; whenever v is an isolated point of (\Trop(f;).
In this section, we will see how to compute a more general case (i.e. where the sum
is taken over trop(§) € C for more general C' C (Trop(f;)). The idea is that we

can apply a small perturbation to the system so that, after perturbation, the set C'
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corresponds to a finite set of points C. Then, we apply theorem A.3.3 to compute
the intersection multiplicity at each point of C. It turns out that the sum of these
intersection multiplicities over C is in relation with the sum of the multiplicities of the
roots of the original system with valuation in C'. However, this gives us an equality

only with Ztmp(g)eé dimQy¢, where C'is the compactification of C.

Definition A.4.1. Let P = (), {v € Nr | (w;,v) < a;} be a polyhedron in Ng. A
thickening of P is a polyhedron of the form
P = m{v € Nr | (u;,v) <a;+e}.

More generally, iof 11 is a polyhedral complex, a thickening P of Il is a collection of
polyhedra of the form P = {P'| P € Il}, where P’ is a thickening of P. We set

P| = U P’ and  int(P) = Uint(P/),
where int(P') denotes the interior of P'.

For the rest of this section, we fix P;,---, P, ['-affine polyhedra of the type
[I;[rij,00) and fi,---, f, € K(P) nonzero. Let C' be a connected component of
(Trop(f;). Then, the intersection between a thickening of C' and a suitable small
perturbation of the Trop(f;)’s is finite:

Lemma A.4.2. Let C be a connected component of (\Trop(f;) and let P be a thick-
ening of C' such that |P| N (", Trop(f;) = C. Then, there exist vy,---,v, € N and

e € Roo N T such that for all t € (0,¢], the intersection
PIn () (Trop(f:) + to:)

is a finite set of points contained in int(P).

Let P = [],[ri,00) be a polyhedron in Ng. We fix ¢t € I" and ¢ in some algebraic
extension of K such that v(§) = t.

We denote by fthe image of the map:

K(P) — K(P)
f(xla"' 7-Tn) — f($1£_1,"' 7xn€_1)
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where P :=[][[r; - p', 00). Then, Trop(f) = Trop(f) +t. Let us remark that Trop(f)
and New(f) are independent of the choice of & with v(¢) = ¢ (indeed, these sets are
determined by the valuations of the coefficients of f) It means that after a change
of variables like above, the intersection between the tropicalization and a thickening
of C is finite. It leads to the definition of the stable tropical intersection multiplicity

along C"

Definition A.4.3. Let fi,---,f, € K(P) be nonzero and let v € (\Trop(f;) an
isolated point. The stable tropical intersection multiplicity of Trop(fi),-- -, Trop(f.)
at v is defined to be

i<U7TT0p(f1)7 e ,TTOp(fn)) = MV(’%, T 7’3%)

where 4; = ww(conv(vert,(f;))) € New(f;). Let C C (\Trop(f;) be a connected com-
ponent and let P,vy,---v,,e like in lemma A.4.2. The stable tropical intersection

multiplicity of Trop(fi),--- ,Trop(f,) along C is defined to be

i(C, Trop(fi), - ,Trop(f,)) = Z i(v, Trop(f1) +evi,--- , Trop(fn) + €v,),
where the (finite) sum is taken over all v in |P| N[, (Trop(fi) + 51},-).

The main result of this section is that (under extra assumptions) the stable tropical
intersection multiplicity is equal to the sum of the multiplicities of the points of (" V'(f;)
with valuation in C' (when this sum is finite). This implies that the above definition
is well-defined in that case and independent of all choices.

It follows from theorem 12.11 in [14] that:

Theorem A.4.4. Let fi,---, f, € K(P). Let S(f;) = conv{u : fi, # 0} (where f;,
denotes the coefficients of f;). Assume that dim(M;S(f;)) = n. Let C C (\Trop(f;) be
a T-affine polyhedron and C its compactification. Let Y := (\V(f;). Assume that the
number of £ € Y with valuation in C is finite. Then,
i(C, Trop(fi),--- ,Trop(f,)) = Z dimgOyg.
trop(§)eC

In particular, assume that the system f = (f1,--, f,) has finitely many solutions
in K and satisfies the hypothesis of the theorem. The typical example of C' we have
in mind is C' = 7, (when this set is non-empty). Then, by the above theorem, the
number of solutions of f with valuation v is bounded by i(~,, Trop(fi), -, Trop(f.))
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Example A.4.1. Let p # 2. And, let
AXY) =2X -V —1
L(X)Y) =X+Y -2,
Let P = [0,00)%. We compute the number of solution of the system f;(X,Y) =

f2(X,Y) = 0 using the above theorem:

First, let us remark that

R? N TTOp(fl) = R? N T’I‘Op(fg) = (07 1)RZO H<17 O)RZO H(_L _1>RZO-

Let C' = PN Trop(fi). Let ty,ta € O,. We apply the following perturbation to our

system:
AXY) =26X —t,Y —1
R(X)Y) =X+Y 2.
Then, RN Trop(f2) = R2 N Trop(f,) and

R* N Trop(fi) =(—v1, —v2) + (0, DR [ [ (—v1, —v2) + (0, )R
H(—Uh —vg) + (—vg, —v1)Rxg
where v; 1= v,(t;). Assume v; > vy > 0.
Then, R? N Trop(fg) N Trop(fl) = {(—vg, —v2); (—v; — v3, —v; — v2)}. So, by the

theorem, independently of any choice,

Z(Cv TTOp(fl)a e 7T’r0p(fn)) = i((_v% _U2)7 Trop(fﬂrl)a TTOp(ﬁ))
+i((—v1 — va, —v1 — v2), Trop(f1), Trop(f2)).

Now, we compute the two mixed volumes:

1. Let vy = (—vg,—vy). Then, vert,,l(Trop(fl)) = {((O,l),O), ((0,0),O)} and
vertu (Trop(f2)) = {((0,1),0), ((1,0),0) }. So,

MV (5 (1)) (f2)) = 1.

2. Let vy = (—v1—vy, —v; —v3). Then, vert,, (Trop(f1)) = {((O, 1), O), ((1, O),O)}
and vert,, (Trop(f2)) = {((O, 1), 0), ((1, 0), O) } So,
MV (30, (J1)), 3 (f2)) = 0.

This show that i(C, Trop(fi), -+ ,Trop(f.)) = 1. And indeed, the unique solution of
the system is (1, 1).
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