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Let Ep be the map x 7−→ exp(px) where exp denotes the exponential map deter-
mined by the usual power series. It de�nes an exponential ring (Zp,+, ·, 0, 1, Ep). The
goal of the thesis is to study the model theory of this structure. In particular, we are
interested by the question of the decidability of this theory.
The main theorem of the thesis is:

Theorem. If the p-adic Schanuel's conjecture is true, then the theory of (Zp,+, ·, 0, 1, Ep)
is decidable.

The proof involves:

� A result of e�ective model-completeness (chapters 3 and 4): If F is a family of
restricted analytic functions (i.e. power series with coe�cients in the valuation
ring and convergent on Zp) closed under decomposition functions and such that
the set of terms in the language LF = (+, ·, 0, 1, f ; f ∈ F ) is closed under deriva-
tion, then we prove that the theory of Zp in the language LF is model-complete.
And furthermore, if each term of LF has an e�ective Weierstrass bound, then
the model-completeness is e�ective.

� A resolution of the decision problem for existential formulas (assuming Schanuel's
conjecture) in chapter 5.

We also consider the problem of the decidability of the structure (Op,+, ·, 0, 1, |, Ep)
where Op denotes the valuation ring of Cp. We give a positive answer to this question
assuming the p-adic Schanuel's conjecture.
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Index of Notation

x a tuple (x1, · · · , xn)

|I| = i1 + · · ·+ in where I ∈ Nn

K∗, R∗ The set of nonzero elements of a �eld K (resp. a ring R)

R× The set of invertible elements of a ring R

Kalg The algebraic closure of K

Gal(L/K) The Galois group of L over K

N The set of nonnegative integers

N0 The set of positive integers

Z The set of integers

Q The set of rational numbers

R The set of real numbers

R>0,R≥0 The set of positive (resp. nonnegative) real numbers

Qp The �eld of p-adic numbers

Zp The ring of p-adic integers

Cp The completion of Qalg
p

Fp Finite �eld with p elements

vp, v The p-adic valuation
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|.|p, |.| The p-adic distance

OK The valuation ring K

MK The maximal ideal of OK

K The residue �eld of a valued �eld K

Op The valuation ring of Cp

Mp The maximal ideal of Op

NK|Qp The norm from K over Qp, page 17

R[[X]] The ring of formal power series with coe�cients in R

R{X} The ring of restricted analytic functions, page 20

R[X]E The ring of exponential polynomials, page 29

Op{X}[[ρ]]s The ring of separated power series, page 103

Zp[[X1, · · · , Xn]] A Weierstrass system, page 36

Op[[X1, · · · , Xn, ρ1, · · · , ρm]]s A separated Weierstrass system, page 105

‖f‖ The Gauss norm of f , page 20

VK(f), V (f) The set of zeros of f in K

Trop(f) The tropicalization of f , page 123

LP The language of p-adic �elds, page 26

Lan The language of restricted analytic functions, page 27

LDan The expansion of Lan by a division symbol

Zp,an The structure (Zp, f(f ∈ Zp{X}), D, Pn(n ∈ N0)), page 27

Lexp The language of p-adic exponential rings, page 28

Zp,exp The structure (Zp,+, ·, Ep, 0, 1, Pn;n ∈ N), page 28
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LpEC The language of p-adic exponential rings expanded by the trigonometric func-

tions, page 66

ZpEC The structure with underlying set Zp and natural interpretations for the symbols

in the language LpEC

LF The language (+, ·, 0, 1, f(f ∈ F ), Pn(n ∈ N)) where F is a family of restricted

analytic functions

Zp,F The structure with underlying set Zp and natural interpretations for the symbols

in the language LF



Chapter 1

Introduction

Let Ep be the map x 7−→ exp(px) where exp(x) denotes the power series
∑
xn/n!.

This map is well-de�ned on Zp. It determines an exponential ring (Zp,+, ·, 0, 1, Ep)

i.e. a ring R together with a morphism from the additive group (R,+, 0) to the mul-

tiplicative group (R×, ·, 1). The goal of the thesis is to study the model theory of this

exponential ring.

We de�ne Lexp, the language of p-adic exponential rings, as the expansion of the lan-

guage of p-adically closed �elds LP = (+, ·, 0, 1, Pn;n ∈ N) by a function symbol for

Ep. Let Zp,exp denote the structure with underlying set Zp and natural interpretations

for the elements of the language Lexp. This should be thought as the p-adic equivalent

of the structure Rexp where we restrict the exponential to a compact interval.

The main goal of the thesis is to prove:

Theorem. If the p-adic Schanuel's conjecture is true, then the theory of Zp,exp is

decidable.

The proof is split in two main parts: �rst, in chapters 3 and 4, we prove a result

of e�ective model-completeness. Then in chapter 5, assuming Schanuel's conjecture,

we show the decidability of the existential part of the theory.

In chapter 3, we prove a result of strong model-completeness based on the quanti�er

elimination in Zp,an. Zp,an denotes the structure with underlying set Zp in Lan, the

language LP expanded by all restricted analytic functions (in the sense of J. Denef, L.

11



CHAPTER 1. INTRODUCTION 12

van den Dries [4]). In [4], it is proved that the theory of Zp,an eliminates the quanti�ers

in the language Lan expanded by a division symbol D.

Let LF be a reduction of this language i.e. we consider a family of restricted analytic

functions F and LF is the expansion of LP by the elements of F . It is immediate

from the proof of the quanti�er elimination in LDan that Zp admits the elimination of

quanti�ers in LDWF
where WF denotes the Weierstrass system generated by the LF -

terms.

In chapter 3, we show that the functions in WF are strongly de�nable in LF . For this,

we require that the set of LF -terms is closed under derivation and that the structure

(V,+, ·, 0, 1, f ; f ∈ F ) is existentially de�nably interpretable in our structure (where V

could be the valuation ring of any �nite algebraic extension ofQp). The last assumption

is not true for general F . So, we will expand F by a family of decomposition functions

(i.e. functions so that the above structure becomes existentially de�nably interpretable

in the expanded language). Under these hypotheses, we can prove the main result of

the chapter:

Theorem 3.4.2. Let F be a family of restricted analytic functions. Assume that

the set of LF -terms is closed under derivation. Let F̃ be the extension of F by the

decomposition functions of each f ∈ F . Then, Zp,F̃ is strongly model-complete in LF̃ .

In chapter 4, we study the e�ectivity of the above theorem. The main issue is

that in the proof of 3.4.2 some steps use Noetherian properties and so may not be

e�ective. We show in theorem 4.3.1 that under the assumption that each LF̃ -term has

an e�ective Weierstrass bound (i.e. the Noetherian property is e�ective for the terms

in the language), Zp,F̃ is e�ectively model-complete in the language LF̃ . This part

of the proof involves results of tropical analytic geometry. As the reader may not be

familiar with these results, we include in appendix A an introduction to this topic.

In section 4.4 as a particular case of the above results, we consider F = {Ep}. In

that case, let LpEC denote the expansion of LF by the decomposition functions. In

this section, we will give a proof due to A. Macintyre in [8] that any LpEC-term has

an e�ective Weierstrass bound. And therefore,
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Theorem 4.4.5. The theory of Zp in the language LpEC is e�ectively strongly model-

complete.

Let us remark that these results can be easily generalised to any �nite algebraic

extension.

By theorem 4.4.5, the decidability of Zp,exp can be reduced to the decidability of

the LpEC-existential formulas in Zp. We consider this problem in chapter 5. We follow

the same strategy that the one proposed in [11] to solve the equivalent problem in R.

Let (f1, · · · , fn) be a system of LpEC-terms in n variables. Let Ψ be the formula

∃x1, · · · , xnf1(x) = · · · = fn(x) = 0 6= det J(x),

where J denotes the Jacobian of the system. Then, assuming that the formula is true

in Zp, it is not hard to check this property. Indeed, by the analytic Hensel's lemma

2.1.7, Ψ is true in Zp i� there is t ∈ Zn such that for all i

v(fi(t)) > 2v( det J(t)).

So, if we want to check that Ψ is true, we just have to enumerate all tuples in Zn and

�nd one that satis�es the above inequality.

We reduce the general case to this nonsingular case via a desingularization theorem:

let f be a LpEC-term. We prove in theorem 5.1.5 that if f(X) has a root in Znp , then

there are LpEC-terms f1, · · · , fn and a ∈ Znp such that

f(a) = f1(a) = · · · = fn(a) = 0 6= det J(a).

Then, in lemma 5.2.1, assuming the p-adic Schanuel's conjecture and that f is a Lexp-

term, we show that there is such a system (f1, · · · , fn) of Lexp-terms such that any

nonsingular solution b is a root of f . In fact, roughly speaking, f is almost in the

ideal generated by f1, · · · , fn (note that we can check e�ectively this property). So,

the existence of such a b implies Zp � ∃xf(x) = 0. This implies that the positive

existential theory of Zp,exp is decidable if Schanuel's conjecture is true (Proposition

5.2.3).

The general case leads to some di�culties: First, we have to deal with inequalities

(lemma 5.2.2). Second, we have to generalise our results to LpEC-terms. In particular,
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lemma 5.2.1 is generalised in lemma 5.2.4. In the same section 5.2.2, we prove the

main theorem of the thesis:

Theorem 5.2.5. Assume that the p-adic version of Schanuel's conjecture holds. Then,

the theory of Zp in the language LpEC is decidable.

Finally, in chapter 6, we consider the problem of the decidability of the theory of

Op, the valuation ring of Cp, in the language Lexp = (+,−, ·, 0, 1, |, Ep). We use the

same techniques that for Zp,exp. First, we prove the e�ective model-completeness of the

theory. Here, we use the quanti�er elimination result due to Lipshitz [7]. Instead of

restricted power series, we consider Weierstrass system composed by separated power

series (in the sense of Lipshitz). The model-compleness (theorem 6.2.11) is here rather

immediate if we assume the set of LF -terms closed under derivation (since we don't

need to add decomposition functions as our �eld is algebraically closed). Once again,

we can prove the e�ectivity of the model-completeness using the results of tropical

analytic geometry (theorem 6.3.6).

Then, we prove that the existential part of the theory is decidable. We show that

any existential formula realised in our structure is realised in the valuation ring of

some �nite algebraic extension (proposition 6.4.1). So, as we can enumerate all �nite

algebraic extensions and by the main result of the thesis,

Theorem 6.4.2. Assume that the p-adic Schanuel's conjecture is true. Then, the

theory of (Op,exp,+,−, ·, 0, 1, |, Ep) in the language of exponential ring is decidable.



Chapter 2

Preliminaries

2.1 Background

In the �rst part of this chapter, we introduce some background on the notions of p-

adic numbers and p-adic analysis. We will also �x some notations that will be used

throughout the thesis. We refer to the index for an overview of the main notations.

2.1.1 p-adic numbers

We will denote by vp (or when the context is clear by v) the p-adic valuation. Let us

recall that this map is de�ned by:

vp : Z \ {0} −→ Z

m = pnk 7−→ n where (p, k) = 1.

We set vp(0) =∞. We can extend vp to Q via the relation

vp(a/b) = vp(a)− vp(b).

This map is a valuation. In general,

De�nition 2.1.1. Let R be a commutative ring with unity, let (Γ, <) be an abelian

ordered group and let ∞ be an element such that a <∞ for all a ∈ Γ. A valuation is

a map v : R→ Γ ∪ {∞} such that for all a, b ∈ R:

(i) v(a · b) = v(a) + v(b);

(ii) v(a) =∞ i� a = 0;

15



CHAPTER 2. PRELIMINARIES 16

(iii) v(a+ b) ≥ min{v(a), v(b)}.

A �eld K (resp. a ring) equipped with a valuation is called valued �eld (resp.

valued ring). The group Γ is called value group. A valued ring R determines a local

ring OR de�ned by

OR = {x | v(x) ≥ 0}.

We call this ring the valuation ring. Its maximal ideal is

MR = {x | v(x) > 0}.

The quotient �eld OR/MR is called the residue �eld. We will denote this �eld by

R and we denote by the canonical map R → R. We use the same notation for

canonical extensions of the residue map (to polynomial rings for instance).

Let us remark that the p-adic valuation determines a distance on Q:

d(x, y) = |x− y|p := p−vp(x−y).

We call this distance p-adic distance (p-adic norm or p-adic absolute value) and denote

it by |·| when the context is clear. It is not hard to see that the p-adic distance

satis�es all the properties of an absolute value (non-negativity, positive-de�niteness,

multiplicativeness and the triangle inequality). Actually, it satis�es a stronger property

than the triangle inequality: by property (iii) in the de�nition of a valuation, this

distance satis�es the ultrametric property :

|x+ y|p ≤ max{|x|p, |y|p}.

The �eld of p-adic numbers is the completion of Q with respect to this distance (i.e.

is the quotient of the ring of Cauchy sequences in Q (with respect to |.|p) by the ideal

of the null sequences). We denote this �eld by Qp. Note that vp extends uniquely to

Qp. Therefore, (Qp, vp) is a valued �eld. Its value group is Z. The valuation ring of

Qp is denoted by Zp and is called the ring of p-adic integers. Let us remark that this

ring is the completion of Z with respect to |·|p. The maximal ideal of Qp is pZp and

its residue �eld is isomorphic to Fp.

Alternatively, we could have de�ned Zp as the inverse limit of the projective system

(Z/pnZ, πn, n ∈ N0) (where πn : Z/pn+1Z→ Z/pnZ is the canonical projection) and set
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Qp = Frac Zp. The two de�nitions determine isomorphic, homeomorphic topological

�elds.

A crucial property of Qp is that the �eld is henselian:

De�nition 2.1.2. A valued �eld (K, v) is called henselian if the valuation extends

uniquely to any �nite Galois extension.

Note that if (K, v) is a valued �eld and L is an extension of K (not necessarily

algebraic), then v can always be extended to a valuation on L. The henselian property

claims the uniqueness of this extension (when L is an algebraic extension of K).

Equivalently, we may de�ne an henselian �eld by any of the below properties:

Proposition 2.1.3. Let (K, v) be a valued �eld. Then, the following assertions are

equivalent:

(i) K is henselian;

(ii) For all f ∈ K[X], if there exists a ∈ K such that f(a) = 0 6= f ′(a), then there

exists a unique b ∈ K such that f(b) = 0 and b− a = 0;

(iii) For all f ∈ K[X], if there exists a ∈ K such that v(f(a)) > 2v(f ′(a)), then there

exists a unique b ∈ K such that f(b) = 0 and v(a− b) > v(f ′(a)).

In the case of Qp, condition (ii) is the famous Hensel's lemma. Condition (iii) is

sometimes called in the litterature Hensel-Rychlik lemma (or just Hensel's lemma).

Let K = Qp(α) be a �nite algebraic extension of Qp of degree n. As Qp is henselian,

the valuation vp extends uniquely to K. We will also denote by vp this extension. We

can describe precisely the valuation of an element of K:

Let P (X) = Xn + a1X
n−1 + · · · + an ∈ Qp[X] be the minimal polynomial of α. The

norm from K over Qp is

NK|Qp(α) := (−1)nan.

Equivalently, NK|Qp(α) =
∏
αi where αi are the conjugates of α over Qp or NK|Qp(α) =

det Aα where Aα is the matrix of the Qp-linear map determined by the multiplication

by α in K. If β ∈ K, then

NK|Qp(β) :=
(
NQp(β)|Qp(β)

)[K:Qp(β)]
.
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Then, the unique absolute value on K extending |·|p is (up to equivalence of absolute

value):

|β|p = |NK|Qp(β)|1/np .

This determines the unique extension of vp to K:

vp(β) := − logp|β|p.

Let us note that K is complete with respect to this distance. Also, let us remark that

the value group of K is 1
e
Z for some e ∈ N (called the rami�cation index ) while its

residue �eld is a �nite algebraic extension of Fp (say of degree pf ). Then, one can show

that n = e · f . We call an element with smallest positive valuation prime element.

Such an element generates the maximal ideal of the valuation ring.

The algebraic closure of Qp (denoted Qalg
p ) is an extension of in�nite degree. This �eld

is not complete with respect to the (unique extension of the) valuation vp. We denote

its completion by Cp. Note that Cp is an algebraically closed �eld. This �eld is the

p-adic analogue of the complex �eld for the real numbers (i.e. is both complete and

algebraically closed). Both Cp and Qalg
p have for value group Q and for residue �eld

Falgp . Note that Zp (or the valuation ring of any �nite extension of Qp) is a compact

ring. But, this is not the case of the valuation ring of Cp. Actually, this ring is not

even locally compact.

We can learn a bit more on the structure of the �nite algebraic extensions using

Krasner's lemma:

Proposition 2.1.4 (Krasner's lemma). Let a, b ∈ Qalg
p . Let a1, · · · , an be the conju-

gates of a over Qp. Assume that for all 1 ≤ i ≤ n

vp(b− a) > vp(ai − a).

Then, Qp(a) ⊆ Qp(b).

This lemma can be used to prove that any �nite algebraic extension K is contained

in an extension of the type Qp(β) where β is algebraic over Q. It also implies that

there are �nitely many extensions of a given degree n.

Finally, we �x some notations: we will denote by Op the valuation ring of Cp and by

Mp its maximal ideal.



CHAPTER 2. PRELIMINARIES 19

2.1.2 p-adic analysis

We are mainly interested by analytic functions and their properties. In particular, we

are interested by the zeros of such a function. For the rest of this section, K will be a

�nite algebraic extension of Qp with prime element πK . We denote by K[[X]] the set

of formal power series in the variables X = (X1, · · · , Xn) with coe�cients in K.

Let
∑
an be a series with coe�cients in K. Let us recall that, by the ultrametric

property,
∑
an is convergent in K i� v(an) → ∞. It implies that a power series

f =
∑
aIX

I
is well-de�ned at x i� v(aIx

I)→∞ when I →∞.

Example. � The series exp(X) :=
∑

Xn

n!
is well-de�ned at x i� v(x) > 1/(p− 1);

� log(1 + x) =
∑

(−1)n+1 xn

n
is well-de�ned i� v(x) > 0.

De�nition 2.1.5. Let U be an open subset of Kn. We say that a function f : U → Qp

is analytic on U if for all a ∈ U , there exists a neighbourhood Va = {x | v(xi−ai) > πhk}

of a in U and F (X) ∈ K[[X]] such that for all x ∈ OnK,

f(a+ πhKx) = F (x).

For instance, exp(X) and log(X) are analytic functions on p
1
p−1OK (the set of

element in K with valuation greater than 1/(p− 1)) and 1 +πKOK respectively. Note

that exp determines a bijection between p
1
p−1OK and 1+p

1
p−1OK . The inverse is given

by the restriction of log. However, there is no global analytic exponentiation on Qp

(though as a morphism of groups, exp can be extended to Cp but this extension is not

unique and there is no canonical choice for such an extension).

Let us remark that the function

f : Zp → Zp : x 7−→

 1 if x ∈ pZp
0 otherwise

is analytic. There is no notion of analytic continuation in K. For our purpose, this is

an issue in the case of non-locally compact valued �eld. In Cp, we say that a function

is analytic on U if in the above de�nition F (x) = f(x) is de�ned everywhere on U .

Note that in K, the sets of analytic functions on a bounded open set in the sense of

the above de�nition and in the sense of Cp are morally the same: a function analytic

on a compact set in Kn is completely determined by �nitely many power series.
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We will denote by K{X} the ring of analytic functions on OnK de�ned by a single

power series. We have that

K{X} =
{∑

fIX
I ∈ K[[X]] : v(fI)→∞

}
.

This ring is sometimes called Tate ring. It comes with a norm (called Gauss norm)

de�ned by

‖f‖ =
∥∥∥∑ fIX

I
∥∥∥ = sup

I
|fI |.

As v(fI) → ∞, the supremum is actually a maximum in the above de�nition. We

denote by OK{X} the subset of elements with Gauss norm less than 1. Note that it

coincides with the ring of elements in K{X} with coe�cients in OK . We call this ring

the ring of restricted analytic functions. We are interested by the functions in this ring;

in particular, by the zeros of these functions in Op. Let us remark that we can extend

canonically the residue map to Op{X}. It determines a map : Op{X} −→ Fp[X].

First, we present an analytic version of Hensel's lemma. It allows to lift non-singular

solutions of a system of equations from the residue �eld to the valuation ring.

We will take the following notations:

Let b be a tuple. Then, v(b) denotes the minimal valuation among the coordinates of

b. Given a system of analytic functions f = (f1, · · · , fn), by f(b) = 0, we mean that

fi(b) = 0 for all i. We take similar notations for congruence, multiplication of matrix

by vectors, etc

We de�ne the di�erential of an analytic map as usual by:

De�nition 2.1.6. Let f : U −→ Km where U is an open subset of Kn. Let a in U .

We set |a|p := max{|ai|p}. If there exists a linear map A between Kn and Km such

that

lim
|h|p→0

|f(a+ h)− f(a)− Ah|p
|h|p

= 0,

then we say that f is di�erentiable at a and we note A = Df(x).

Assume f = (f1, · · · , fm) : U −→ Km di�erentiable at a, the matrix associated to

Df(a) is the Jacobian matrix given by
∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

 .
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Here is the extension of Hensel's lemma for systems of analytic functions:

Theorem 2.1.7 (Analytic Hensel's lemma). Let f = (f1, · · · , ft) be a system of el-

ements in Zp{X1, · · · , Xt}. Let Jf (X) denote the Jacobian matrix of the system.

Assume that there is a ∈ Ztp such that

det Jf (a) 6= 0 and v(f(a)) > 2v(det Jf (a)) + r,

where r is any nonnegative integer. Then, there is a unique b ∈ Znp such that

v(b− a) > v(det Jf (a)) + r and f(b) = 0.

As it seems that this version does not appear exactly in the litterature, we include

a proof for the sake of completeness:

Proof. (1) If v( det Jf (a)) = 0:

We will construct by induction a sequence (bn)n∈N of tuple of integers such that

each bn is uniquely determined and:

(a) f(bn) ≡ 0 mod pn+r+1;

(b) bn ≡ bn−1 mod pn+r;

(c) 0 ≤ bn < pn+r+1.

Clearly, choosing b0 carefully, such a sequence admits a limit b with f(b) = 0 and

v(b− a) > r.

Let b0 be the unique element in {0, · · · , pr+1 − 1}t such that b0 ≡ a mod pr+1.

Then, f(b0) ≡ f(a) ≡ 0 mod pr+1: the initial conditions are satis�ed.

Assume that we have de�ned b0 · · · , bn. We want to �nd bn+1 satisfying the above

conditions. By conditions (b) and (c), such an element has to be of the form:

bn+1 = bn + cpn+r+1 with c ∈ {0, . . . , p− 1}t. Consider the local Taylor expansion

around bn:

f(bn+1) = f(bn + cpn+r+1) = f(bn) + Jf (bn)cpn+r+1 + pn+r+2(...)

≡ f(bn) + Jf (bn)cpn+r+1 mod pn+r+2,

where Jf (bn)c denotes the product of matrices.

Indeed, as the fi's have coe�cients in Zp, for all α multi-index greater than 1,
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the valuation of the element ∂αfi
∂xα

(bn). 1
α!
.(cip)

α.(n+r+1) is at least n+ r+ 2. In fact,

the partial derivative and the factorial term correspond to the αth coe�cient of

f (which belongs to Zp) and the other part of the element has clearly valuation

greater than n+ r + 2.

As f(bn) ≡ 0 mod pn+r+1, f(bn) ≡ epn+r+1 mod pn+r+2 for some e ∈ {0, . . . , p−

1}t. Therefore, condition (a) would implies that:

f(bn+1) ≡ epn+r+1 + Jf (bn)cpn+r+1 ≡ 0 mod pn+r+2

or equivalently

e+ Jf (bn)c ≡ 0 mod p.

But, Jf (bn) ≡ Jf (b0) ≡ Jf (a) mod p. So, det Jf (bn) 6≡ 0 mod p. Therefore,

Jf (bn) mod p is invertible as a matrix with coe�cients in Fp. It means that c is

uniquely determined by the above equation and the condition c ∈ {0, . . . , p− 1}t.

The �rst case is done.

(2) We will deduce the general case from the �rst:

From the Taylor expansion of fi, we obtain the formal relation:

fi(X + Y ) = fi(X) + Jfi(X)Y +
∑
j,k

gijk(X,Y )YjYk.

Let V be an element of valuation v(det Jf (a)). In the above expression, we set

X = a and Y = V Z, i.e. we obtain the system
f1(a+ V Z)

...

ft(a+ V Z)

 =


f1(a)
...

ft(a)

+ V · Jf (a) · Z + V 2


R1(Z)

...

Rt(Z)

 ,

where R1, · · · , Rn ∈ (Z)2Zp{Z}. We de�ne a new system h = (h1, · · · , ht) ∈

(Zp{Z})t by 
h1(Z)

...

ht(Z)

 := V −1Jf (a)−1 ·


f1(a+ V Z)

...

ft(a+ V Z)



=


c1

...

ct

+ Z + (· · · )
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where by hypothesis, v(c) > r. So, we have that v(h(0)) > r and v(det Jh(0)) = 0.

By the �rst case, there exists a unique d such that h(d) = 0 and v(d) > r.

Let b = a + V d. It is immediate from the above equations that f(b) = 0 and

v(a − b) > v(V ) + r = v(det Jf (a)) + r. The uniqueness of b is an immediate

consequence of the uniqueness of d.

This concludes the proof of the theorem.

Corollary 2.1.8. The same result holds for power series with coe�cients in the val-

uation ring of K a �nite algebraic extension of Qp.

For this, we just have to replace in the proof of theorem 2.1.7 p by πK and Fp by

the residue �eld K.

Let f ∈ OK{X} nonzero. Then, the coe�cients of f contain a lot of informations

on the roots of f .

For instance, one can see that f has �nitely many roots in OK :

Theorem 2.1.9 (Strassmann's theorem). Let f =
∑
anX

n ∈ OK{X} nonzero. Let

N be the largest index among the indexes i such that |ai| = maxn|an|. Then, f has at

most N zeros in OK.

We can actually say more:

Theorem 2.1.10 (Weierstrass preparation theorem). Let f =
∑
anX

n ∈ OK{X}

nonzero. Let N be the largest index among the indexes i such that |ai| = maxn|an|.

Then, there exist k ∈ N, a monic polynomial P of degree N and h(X) ∈ OK{X}

invertible (i.e. is in 1 + πKOK{X}) such that

f(X) = πkKP (X)h(X).

It implies that f has exactly N roots in Op (counting multiplicities).

We can do better: the coe�cients of f actually determine the valuation of the roots

of f . For this, we need to introduce the notion of Newton polygons.

Let f(x) be a power series with coe�cients in Op. Assume that the coe�cient

of degree 0 is nonzero (if this not the case, divide by xn for an suitable n). The
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Newton polygon of a polynomial f is de�ned as the lower convex closure of A :=

{Pi = (i, v(ai)) | i ∈ N}. If ai = 0, we consider Pi as a point to "in�nity".

In general, the Newton polygon of f is obtained as follow: we consider the set of points

A as above. Rotate the y-axis counterclockwise. If it hits a point Pi ∈ A, break the

line and keep going. When the line hits in�nitely many points in A (see �gure 2.1 (a))

or when the line cannot continue to rotate without missing points in A (see �gure 2.1

(b)), stop. The Newton polygon of f is the line obtained after this operation.

(0, v(a0))

(i, v(ai))

(a) The line hits in�nitely many

points.

(0, v(a0))

(i, v(ai))

· · ·

(b) The line cannot rotate without

missing points.

Figure 2.1: The Newton polygon of two series.

Theorem 2.1.11. Let f(X) =
∑
aiX

i ∈ K[[X]] be a power series such that a0 6= 0.

Then,

1. Let λ be the least upper bound of all slopes of the Newton polygon, then the radius

of convergence of f is pλ (or all K if λ is not �nite). Note that the series may

only converge on the open ball of radius pλ (and not on the closed ball)!

2. Let (i, v(ai)) and (j, v(aj)) be two consecutive points where the line breaks, then

f has exactly j − i roots of valuation
v(aj)−v(ai)

i−j in the algebraic closure of K

(counting multiplicities).

3. If f ∈ OK{X}, let P be the polynomial given in the Weierstrass preparation

theorem (say, this polynomial has degree N). Then, the Newton polygon of P

coincides with the Newton polygon of f until the point of coordinates (N, v(aN)).
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The goal of appendix A 'tropical analytic geometry' is to present a generalisation

of this result to systems of restricted analytic functions with several variables.

To conclude this part, we give a generalisation of the Weirstrass preparation theorem

to power series with several variables.

De�nition 2.1.12. Let f ∈ OK{X,Y }. We say that f is regular of order d in Y if

f(X,Y ) = Y d + ad−1(X)Y d−1 + · · ·+ a0(X)

where ai(X) ∈ K[X] and f denotes the image of f under the residue map.

Theorem 2.1.13. Let f ∈ OK{X,Y } regular of order d in Y . Then,

� (Weierstrass division theorem) for every g ∈ OK{X,Y }, there exist a (unique)

Q ∈ OK{X,Y } and (unique) A0, · · · , Ad−1 ∈ OK{X} such that

g = Qf + (Ad−1Y
d−1 + · · ·+ A0).

� (Weierstrass preparation theorem) there exist a (unique) unit U ∈ OK{X,Y }

and (unique) A0, · · · , Ad−1 ∈ OK{X} such that

f = U(Y d + Ad−1Y
d−1 + · · ·+ A0).

2.2 Model theory of the p-adic numbers

2.2.1 p-adically closed �elds

In this text, we will consider the theory of the p-adic numbers in the language of valued

rings

Lv = (+,−, ·, 0, 1, V ),

where V is a predicate for the valuation ring. We will not consider the case of multi-

sorted languages like in [1].

A model of the theory of Qp in the language Lv is called a p-adically closed �eld.

De�nition 2.2.1. We say that a valued �eld (K, v) is p-adically closed if it satis�es

the following scheme of axioms:
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� (K, v) is a valued �eld of characteristic zero;

� v(K∗) is a Z-group, i.e. is an abelian ordered group such that for all n ∈ N0, for

all x ∈ K∗, there exists y ∈ K∗ such that v(x) = nv(y) + i for some 0 ≤ i < n;

� K = Fp and v(p) = 1;

� K is henselian.

It should be clear how one can write the above properties in the language of valued

�elds. Indeed, the relation v(x) ≥ v(y) is equivalent to xy−1 ∈ V . So, for instance,

the axiom v(p) = 1 can be written formally as

p ∈ V ∧ p−1 /∈ V ∧
(
∀x(x ∈ V ∧ x−1 /∈ V )→ xp−1 ∈ V

)
.

Note that the value group is not a de�nable group in our theory. However, it is

interpretable because v(K∗) ∼= K∗/U where U is the set of elements in V with zero

valuation. Similarly, the residue �eld is V/pV .

Clearly, Qp is a p-adically closed �eld. Also, it is known since [1], that the above

scheme of formulas axiomatizes a complete theory.

Note that in some texts, p-adically closed �elds hold for models of the theory of a

�nite algebraic extension L of Qp. In this case, we need to replace the third axiom by

K = L and v(p) = e (the rami�cation index of K over Qp).

The theory of p-adically closed �elds is model-complete and decidable (see [1]) but

does not admit quanti�er elimination in the language of valued �elds. We consider the

following expansion of language:

LP = (+,−, ·, 0, 1, V, Pn;n ∈ N0),

where Pn are unary predicates interpreted in Qp by

Pn(x) ≡ ∃y x = yn

i.e. Pn is the group of nth powers (together with zero). We call LP the language of

p-adically closed �elds (or rings). Let us remark that the predicate V is not necessary

in this language. Indeed,

Qp � v(x) ≥ 0↔ P2(1 + px2)
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if p 6= 2 or

Qp � v(x) ≥ 0↔ P3(1 + px3)

if p = 3. It turns out that the groups of nth-powers are the only obstruction to

quanti�er elimination:

Theorem 2.2.2 (A. Macintyre [9]). The theory Th(Qp,+,−, ·, 0, 1, V, Pn) admits elim-

ination of quanti�ers.

Let us remark that if K is a �nite algebraic extension of Qp, then

Th(K,+,−, ·, 0, 1, V, Pn) also admits elimination of quanti�ers (see [13] for instance).

Also, note that by decidability of the theory, the above quanti�er elimination is ef-

fective: given a LP -formula, one can compute an equivalent quanti�er-free LP -formula.

The goal of this thesis is to study the theory of Zp in the language LP expanded

by a symbol for an exponential function. This language can be seen as a reduction of

a well-known expansion of the language LP : the expansion by all restricted analytic

functions. The model theory of Zp in this language was �rst studied by J. Denef and

L. van den Dries in [4].

We denote by Lan the language

Lan := LP ∪
{
f ; f ∈ Zp{X1, · · · , Xn}, n ∈ N0

}
,

where f ∈ Zp{X} is interpreted in Qp by f(x) if x ∈ Znp
0 otherwise .

The theory of Zp does not admit elimination of quanti�er in this language. But it is

the case for the expansion

LDan := Lan ∪ {D}

where D is a binary function interpreted in Qp by

D(x, y) =

 xy−1 if v(x) ≥ v(y)

0 otherwise.

We denote by Qp,an (resp. Zp,an) the structure (Qp, f (f ∈ Zp{X}), D, Pn(n ∈ N0))

(resp. (Zp, f (f ∈ Zp{X}), D, Pn(n ∈ N0)) ). The main theorem of [4] is
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Theorem 2.2.3 (J. Denef, L. van den Dries). Th(Zp,an) admits elimination of quan-

ti�ers.

Note that once again this result can be extended to �nite algebraic extensions.

Also, this theory is the main (non-trivial) example of a P -minimal theory. This notion

of P -minimality was introduced in [5] as an equivalent of o-minimality for the �eld of

real numbers.

De�nition 2.2.4. Let L be an expansion of LP and letM be an L-structure. We say

that M = (M, · · · ) is P -minimal if for all M′ = (M ′, · · · ) elementary equivalent to

M, any de�nable subset of M ′ is quanti�er-free de�nable by a LP -formula.

It is proved in [6] that

Theorem 2.2.5 (D. Haskell, D. Macpherson, L. van den Dries). Qp,an is P -mimimal.

2.2.2 p-adic exponential rings

Finally, we introduce the structure that will be studied in this thesis: the p-adic

exponential rings. We also give in this section some well-known properties of this

structure.

As we have seen in section 2.1.2, there is no global analytic exponential function

de�ned on Qp. The power series exp(x) =
∑
xn/n! is only convergent for x such that

v(x) > 1/(p − 1). Therefore, the function x 7−→ exp(px) is well-de�ned on Zp (if

p 6= 2). We call p-adic exponential ring a model of the theory of Zp in the language of

p-adically closed rings together with a function symbol Ep interpreted in Zp by

Ep(x) =

 exp(px) if p 6= 2

exp(p2x) otherwise.

We denote the language of this theory by Lexp and the structure (Zp,+, ·, Ep, 0, 1, Pn)

is denoted by Zp,exp. Note that in our proofs we will not discuss the case p = 2. Yet,

our results remain true if p = 2. It should be obvious how one can extend our proofs

to this case (usually, it is su�cient to replace p by 4).

Note also that this structure is an exponential ring in the sense of [15].

We will denote by Zp[X]Ep the ring of exponential polynomials (or Ep-polynomials) as

de�ned in [15]. As it will be useful later, let us recall the construction of this ring:
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Let (R,E) be an exponential ring i.e. a commutative ring R with unity and a morphism

E between (R,+) and (R×, ·). We want to de�ne R[X]E the ring of E-polynomials.

We de�ne by induction a ring Rk and an ideal Ak. We also de�ne Ek a morphism of

groups between the additive group of Rk and the group of units of Rk+1. If k = −1,

we set R−1 = R. If k = 0, we set R0 = R[X] and A0 = (X1, · · · , Xn). Then,

R0 = R−1 ⊕ A0 and we de�ne E−1 as the composition R
E→ R ↪→ R0.

Assume that we have de�ned Ek−1, Rk−1, Rk, Ak such that we have Rk = Rk−1 ⊕ Ak
and Ek−1 is a morphism of groups between Rk−1 and the group of units of Rk. Then,

let exp(Ak) be a multiplicative copy of (Ak,+) (i.e. exp(Ak) is a multiplicative group

and we are given an isomorphism exp : Ak → exp(Ak)). We set Rk+1 := Rk[exp(Ak)]

and Ak+1 := the Rk-submodule of Rk+1 generated by the elements of the type exp(a)

for a ∈ Ak \ {0}. Finally, we de�ne Ek: Let x ∈ Rk. Then, x = x′ + a for some

x′ ∈ Rk−1 and a ∈ Ak. We de�ne Ek(x) := Ek−1(x′) · exp(a).

We set

R[X]E := lim−→Rk.

Let us remark that the functions Ek determine an exponential map on R[X]E (given

by E(x) = Ek(x) if x ∈ Rk).

Let r ∈ R. Then it is proved in [15] that there exists a unique derivation on R[X]E,

trivial on R such that X ′ = 1 and E(Q)′ = rQ′E(Q) for all Q ∈ R[X]E. Note that

this derivation maps Rk to itself.

Furthermore, we can de�ne a degree on the elements of R[X]E:

Let P ∈ Ak (where k > 0). We can write P (X) as
∑h

i=1 riEp(ai) for some a1, · · · , ah
distinct nonzero elements of Ak−1. Then, we set t(P ) := h.

If P ∈ R0 = R[X], we put t(P ) = 0 if P = 0 and t(P ) = d + 1 where d is the degree

of P as a polynomial otherwise.

Let P ∈ R[X]E. Let us remark that we can uniquely decompose P as P = P0 + · · ·+Ps
where P0 ∈ R0 and Pi ∈ Ai for all 0 < i ≤ s. We can now de�ne the degree of P

(denoted d(P )) as the ordinal

d(P ) := t(Ps)ω
s + · · ·+ t(P1)ω + t(P ).

Note that d(P ) = 0 i� P = 0. The following well-known lemma will be useful later:
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Lemma 2.2.6. Let P ∈ R[X]E nonzero. Then, there exists Q ∈ R[X]E such that

d(Q) < d(P ) and d((E(−Q)P )′) < d(P ) (where ′ denotes a natural derivative like

above).

Proof. Let P = P0 + · · ·+ Ps like above.

� If P0 is nonzero, take Q = 0. Then,

d(Q) = 0 < d(P )

by de�nitions. And, as Rk is closed under ′ for all k,

d(P ′0) < d(P0) and t(P ′i ) ≤ t(Pi) for all i > 0.

Note also that P ′i ∈ Ai. So, as d(S) =
∑

i d(Si) for all S ∈ R[X]E,

d((E(−Q)P )′) = d(P ′) < d(P ).

� Otherwise, let i > 0 such that Pi is nonzero and Pj = 0 for all j < i. Let

Pi =
∑

j≤h rjE(aj) like before. Take Q = a1. Then,

d(Q) ≤ ωi−1t(Q) < ωi ≤ d(P ).

And,

d((E(−ai)P )′) = d

(r1 +
h∑
j=2

rjE(aj − ai) +
s∑

k=i+1

Pk

)′
= d(r′1) +

h∑
j=2

d(r(rj(aj − ai)′ + r′j)E(aj − ai)) +
s∑

k=i+1

d(P ′k)

≤ t(r′1)ωi−1 + (h− 1)ωi +
∑
k

t(P ′k)ω
k

< d(P ).

The p-adic exponential rings were �rst introduced by A. Macintyre in [10]. Let us

remark that in this paper, the author considers the function (1+p)x instead of Ep. As

observed in this paper, our exponential ring is closed under derivation (in the sense of

p-adic analysis). Therefore, proposition (4.1) of [15] holds for our ring: there is one-to-

one correspondence between Lexp-terms (the Ep-polynomials) and their interpretation

in the model (the Ep-polynomial functions). Also (remark (4.6) of [15]),
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Proposition 2.2.7. Identities in the language Lexp which hold in Zp are derivable

from the axioms of E-rings and the positive diagram of (Zp, Ep).

The main question of this thesis is the following:

Problem 1. Is the theory of Zp,exp decidable?

First, let us remark that we cannot expect to answer this question via quanti�er

elimination in the natural language:

Proposition 2.2.8. In the language Lexp, the theory of Zp,exp does not admit quanti�er

elimination.

The proof is the same that for the theory of Zp in the language Lan:

Proof. First, let us remark that the graph of D is a de�nable set in the language Lexp:

D(x, y) = z i� (v(x) ≥ v(y) ∧ y 6= 0 ∧ x = z · y) ∨ ((v(x) < v(y) ∨ y = 0) ∧ z = 0). We

claim now that we cannot eliminate the quanti�er in the formula:

Ψ(x, y, z) ≡ ∃t(D(x, y) = t ∧ z = yEp(t)).

Let us remark that the de�nable set corresponding to the formula Ψ is given by

the graph of the (de�nable) function

f(x, y) =

 yEp(x/y) if v(x) ≥ v(y) and y 6= 0

y otherwise.

We denote by Γ(f) this graph. We remark two important properties of this function:

1. f is not an algebraic function i.e. there is no polynomial P (X, Y, Z) with coe�-

cients in Zp such that P (x, y, f(x, y)) = 0 for all x, y ∈ Zp.

2. For all t ∈ Zp, f(tx, ty) = tf(x, y).

Consider (F1, · · · , Fk), where Fi's are p-adic analytic functions from U (an open

neighborhood of 0 in Z3
p) to Zp. If we show that Γ(f)∩U doesn't belong to the boolean

algebra generated by sets of the types {Fi = 0}, {Pk(Fi)} then we have �nished because

this algebra contains the collection of all sets de�nable by a quanti�er-free formula in

our language.

We argue by contradiction: suppose that Γ(f) ∩ U is a boolean combination of

such sets.
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Claim 1. We can assume that for some i, Fi vanishes on Γ(f) ∩ U .

Proof. Otherwise, there is a c such that for all i, Fi(c) 6= 0. This means that we can

�nd a subset of Γ(f)∩U de�ned by �nite unions and intersections of sets of the form:

{Fi 6= 0}, {Pk(Fi)} and {¬Pk(Fi)}. But all these sets contain an open ball in Z3
p:

� {Fi 6= 0} is open.

� {Pk(Fi)}: {Pk(x)} = {Pk(x) ∧ x 6= 0} ∪ {0}. The left part is open by Hensel's

lemma. As Fi is continuous, {Pk(Fi)} contains a open set.

� {¬Pk(Fi)}: {¬Pk(x)} = {Pk(x)}c = {Pk(x) ∧ x 6= 0}c ∩ {x 6= 0}. The left part

is open as a closed subgroup of Z∗p. The right part is the complement of a closed

set.

So, Γ(f) ∩ U contains a open subset which gives a contradiction.

Without loss of generality, we may assume that i = 1. We now write F1 = P0 +

P1 + · · · where Pr are homogeneous polynomials of degree r. As for all t ∈ Zp,

f(tx, ty) = tf(x, y), for all x, y ∈ U , we have:

0 = F1(tx, ty, tz) = P0(x, y, z) + tP1(x, y, z) + t2P2(x, y, z) + · · · .

So, Pr(X, Y, Z) vanishes on Γ(f)∩U for all r. Let r with Pr 6≡ 0. Then, Pr(x, y, f(x, y)) =

0 for all x, y ∈ Zp. This gives a contradiction with the fact that f is not an algebraic

function.

An other approach to solve the decidability problem is to prove the e�ective model-

completeness:

Problem 2. Is the theory of Zp,exp model-complete?

We will answer to this question in chapter 3 and 4. We will see that in some nice

expansion of our language the theory is e�ectively model-complete.

Chapter 5 will give a (conditional) solution to the problem of the decidability:

We will prove that one can determine the truth value of existential sentences in our

expansion of the language Lexp. Our proof relies on the p-adic Schanuel's conjecture.

We obtain the decidability of the theory only under the condition that this conjecture

is true.
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Finally, let us remark that Lexp is a sublanguage of Lan. Therefore, by theorem

2.2.5,

Corollary 2.2.9. Zp,exp is P -minimal.

It means that all properties of P -minimal theories hold for Th(Zp,exp). For instance,

our theory does not have the independence property.

Remark. Note that the function Ep is well-de�ned on OK where K is any algebraic

extension of Qp. Therefore, we may ask the same questions for the theory of OK in the

language of p-adic exponential ring. It turns out that our results can be generalised

to any �nite algebraic extension. We shall not discuss this case in details as it should

be clear from the case Zp,exp how one can prove the general case.



Chapter 3

Strong model-completeness

Let Lan be the expansion of the language of p-adically closed rings by all restricted

analytic functions. In 1988, J. Denef and L. van den Dries showed in [4] that the

theory of Zp in this language expanded by a division symbol admits the elimination

of quanti�ers. Now, let F be any family of restricted analytic functions. We denote

by LF the language of p-adically closed rings expanded by symbols for elements of

F . Let Zp,F be the LF -structure with underlying set Zp and natural interpretations

for the symbols of the language. One may not expect anymore that the theory of

Zp,F admits quanti�er elimination (even if we expand the language by the division

symbol). However, in this chapter, we will show that under the assumption that the

set of LF -terms is closed under derivation and decomposition functions (to be de�ned

later), the theory of Zp,F is strongly model-complete:

De�nition 3.0.1. LetM be a L-structure with underlying set M . We say thatM is

strongly model-complete if for any L-formula Ψ(y), there is an existential L-formula

∃xΦ(x, y), where Φ is quanti�er-free, such that for all a ∈Mn,

M � Ψ(a)↔ ∃xΦ(x, a),

and furthermore, for each a such that M � Ψ(a), there is a unique tuple b in Mm such

that M � Φ(b, a).

A set X is strongly de�nable if

X = {a ∈Mn | M � ∃yΦ(a, b, y)},

and, for each a ∈ X, there is a unique tuple c in Mm such that M � Φ(a, b, c). A

34
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function is strongly de�nable if its graph and the complement of its domain are strongly

de�nable.

We will denote a formula of the type ∃yΦ(x, y) ∧ ∀z
(

Φ(x, z) → z = y
)

by

∃!yΦ(x, y). Let us remark that a structure is strongly model-complete i� any for-

mula is equivalent in this structure to a formula of the type ∃!yΦ(x, y).

Also, note that any theory that admits elimination of quanti�ers is strongly model-

complete.

The proof of the main theorem of this chapter is due to A. Macintyre in the special

case F = {Ep} ([8], unpublished). We expand here the ideas of the proof to a more

general family of functions. The case F = {Ep} leads to some simpli�cations which

will be discussed at the end of the next chapter.

Actually, the proof uses the same strategy that the main theorem of [16]. In this paper,

L. van den Dries shows that the structure with underlying set R in the language of

�elds expanded by symbols for the functions exp, sin and cos (restricted to the interval

[0, 1]) is strongly model-complete. His proof relies on two main points:

First, we observe that in the proof of the quanti�er elimination of Zp,an in [4], we

do not need all analytic functions. It is actually su�cient to consider a family closed

under Weierstrass division (i.e. a Weierstrass system, to be de�ned later). We will

recall this fact in the next section.

Second, L. van den Dries shows that the set of strong existential de�nable func-

tions in his language forms a Weierstrass system. The central argument is that one

can interpret the structure (C,+, ·, exp, sin, cos) (where the functions are restricted to

the unit box). The proof does not work in the language of (restricted) exponential

�elds.

We adapt this strategy in the p-adic setting. In this case, we need to add functions

so that the structure with underlying set V and natural interpretations for the symbols

of LF is de�nably interpretable (here V can be any valuation ring of a �nite algebraic

extension of Qp). We will develop this point in section 3.3. Finally, in section 3.4,
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we will prove that if the set of LF -terms is closed under derivation and if F̃ denotes

the expansion of F de�ned in section 3.3, then the theory of Zp,F̃ is strongly model-

complete.

3.1 Quanti�er elimination and Weierstrass system

De�nition 3.1.1. A Weierstrass system over Zp is a family of rings Zp[[X1, · · · , Xn]],

n ∈ N, such that for all n, the following conditions hold:

1. Z[X] ⊆ Zp[[X]] ⊆ Zp{X} where X = (X1, · · · , Xn);

2. For all permutations σ of {1, · · · , n}, if f(X) ∈ Zp[[X]], then f(Xσ(1), · · · , Xσ(n)) ∈

Zp[[X]];

3. If f ∈ Zp[[X]] has an inverse g in Zp{X}, then g ∈ Zp[[X]];

4. Let k ∈ Z. If f ∈ Zp[[X]] is divisible by k in Zp{X}, then f/k ∈ Zp[[X]];

5. (Weierstrass division) If f ∈ Zp[[X1, · · · , Xn+1]] and f is regular of order d in

Xn+1, then, for all g ∈ Zp[[X1, · · · , Xn+1]], there are A0, · · · , Ad−1 ∈ Zp[[X ′]]

(where X ′ = (X1, · · · , Xn))and Q ∈ Zp[[X]] such that

g(X) = Q(X) · f(X) +
(
Xd−1
n+1Ad−1(X ′) + · · ·+ A0(X ′)

)
.

It is well-known that

Lemma 3.1.2. Let (Zp[[X1, · · · , Xn]])n be a Weierstrass system. Then,

(a) for all f(X,Y ) ∈ Zp[[X,Y ]], for all g1, · · · , gm ∈ Zp[[X]], f(X, g1(X), · · · , gm(X)) ∈

Zp[[X]];

(b) for all f(X) ∈ Zp[[X]], for all i, ∂f
∂Xi

(X) ∈ Zp[[X]].

Proof. (a) By Weierstrass division,

f(X,Y ) = U1(X,Y )(Y1 − g1(X)) +R1(X,Y2, · · · , Ym),

where R1 ∈ Zp[[X,Y2, · · · , Ym]]. So, by induction,

f(X,Y ) = U1(X,Y )(Y1 − g1(X)) + · · ·+ Um(X,Y )(Ym − gm(X)) +Rm(X),

where Rm ∈ Zp[[X]]. And, clearly, f(X, g1(X), · · · , gm(X)) = Rm(X).
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(b) We may assume i = 1. By Weierstrass division,

f(X1 +H,X2, · · · , Xn)− f(X) = U(X,H)H2 +R1(X)H +R0(X),

where R0, R1 ∈ Zp[[X]]. It is not hard to see that R0 = 0 and R1 = ∂f
∂X1

(X).

Actually, (Zp[[X1, · · · , Xn]])n contains all the analytic functions that we need to

carry on the proof of the quanti�er elimination in [4]. The crucial construction of the

proof is the following:

Given f(X,Y ) =
∑
aI(X)Y

I ∈ Zp{X,Y }, there exists f̃ ∈ Zp{X,V , Y } such that

� for all x, v(x) ⊂ Zp which satisfy a �rst-order condition (depending on f only),

f(x, Y ) = aI(x)f̃(x, v(x), Y ).

� f̃(X,V , Y ) is preregular of order I.

De�nition 3.1.3. Let f(X) =
∑
aIX

I ∈ Zp{X}. We say that f is preregular of

order I if |aI | = 1 and |aJ | < 1 for all J > I (we use the lexicographical order). We

say that f is preregular if it is preregular of some order.

It is well known that

Lemma 3.1.4. Let f(X) =
∑
aIX

I ∈ Zp{X} preregular of order I. Then, there

exists an automorphism T : Zp{X} −→ Zp{Z} such that T (f) is regular in Zn

Actually, the automorphism T is a composition of a permutation of the variables

and of a function of the type: Xi 7−→ Zi − Zei
n if i < n,

Xn 7−→ Zn.

So, in particular, if f ∈ Zp[[X]], then T (f) ∈ Zp[[Z]]. Also,

Lemma 3.1.5. Let f(X,Y ) =
∑
aI(X)Y

I ∈ Zp[[X,Y ]]. Then, the above function f̃

belongs to Zp[[X,V , Y ]].
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Proof. First, we recall the construction of the function f̃ :

Let x ∈ Zkp. Assume that the following formula is satis�ed in Zp:

µI(x) ≡
(
aI(x) 6= 0

)
∧
∧
J<I

(
|aJ(x)| ≤ |aI(x)|

)
∧
∧
I<J
|J |<d

(
|aJ(x)| < |aI(x)|

)
,

where I ∈ Nn, |I| = i1 + · · ·+ in and d is like in the following lemma:

Lemma 3.1.6 (lemma 1.4 in [4]). Let f(X,Y ) =
∑
aI(X)Y

I ∈ Zp{X,Y }. Then,

there is d ∈ N such that for all I with |I| ≥ d,

aI(X) =
∑
|J |<d

bIJ(X)aJ(X),

where bIJ ∈ Zp{X} with ‖bIJ‖ < 1.

Then, assuming that Zp � µI(x), aI(x)−1f(x, Y ) is preregular of order I and

a−1
I (x)f(x, Y ) =

∑
J<I

(
aJ(x)/aI(x)

)
Y
J

+ Y
I

+
∑

I<J,|J |<d

(
aJ(x)/aI(x)

)
Y
J

+
∑
|K|≥d

{∑
J<I

(
aJ(x)/aI(x)

)
bKJ(x) + bKI(x)

+
∑

I<J,|J |<d

bKJ(x)
(
aJ(x)/aI(x)

)}
Y
K
.

We de�ne:

f̃(X,V , Y ) =
∑
J<I

VJY
J

+ Y
I

+
∑

I<J,|J |<d

pVJY
J

+
∑
|K|≥d

∑
J<I

VJbKJ(X) + bKI(X) +
∑

I<J,|J |<d

pVJbKJ(X)

Y
K
.

Then, f̃(X,V , Y ) is preregular of order I and for all x such that µI(x) holds and for

vJ(x) :=

 aJ(x)/aI(x) if J < I

aJ(x)/paI(x) otherwise,

we have

f(x, Y ) = aI(x)f̃(x, v(x), Y ).

Now, we have to prove that f̃ ∈ Zp[[X,V , Y ]].

For all |J | < d, we de�ne:

fJ(X,Y ) =
∑
|K|≥d

bKJ(X)Y
K
.
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Then,

f(X,Y ) =
∑
|J |<d

aJ(X)Y
J

+
∑
|J |<d

aJ(X)fJ(X,Y )

and

f̃(X,V , Y ) =
∑
J<I

VJ(Y
J

+ fJ(X,Y )) + Y
I

+ fI(X,Y ) +
∑

I<J,|J |<d

pVJ(Y
J

+ fJ(X,Y )).

So, as a Weierstrass system is closed under derivation and composition, if fJ(X,Y ) ∈

Zp[[X,Y ]] for all J , we are done.

Let g(X,Y ) := f(X,Y )−
∑
|J |<d aJ(X)Y . Let us remark that g ∈ Zp[[X,Y ]].

Let {I1, · · · , Ik} be an enumeration of all |J | < d. By induction on k, we will de�ne

(uniquely determined) functions U1, · · · , Uk, Rk ∈ Zp[[X,Y ]] such that

g = aI1U1 + · · ·+ aIkUk +Rk.

Let I be an index such that ‖aI(X)‖ = max|J |<d{‖aJ(X)‖}. Without loss of gen-

erality, we can assume that I1 = I. Let t ∈ N such that p−t = ‖aI(X)‖. Then,

p−tg, p−taJ(X) ∈ Zp[[X,Y ]] for all J and aI1 is preregular. So, there exists an auto-

morphism T1 like in lemma 3.1.4 such that T1(p−taI1(X)) is regular in Zn. So, by the

Weierstrass division theorem, there exists a unique U ′1(Z, Y ) ∈ Zp[[Z, Y ]] and a unique

R′1 ∈ Zp[[Z, Y ]] (polynomial in Zn) such that

T1(p−tg) = U ′1T1(p−taI1(X)) +R′1.

So, if we apply T−1
1 and multiply by pt the above equality, we obtain (unique) U1, R1 ∈

Zp[[X,Y ]] such that

g(X,Y ) = aI1(X)U1(X) +R1(X,Y )

where T1(p−tR1) is polynomial in Zn.

We carry on by induction with g̃ := g−aI1U1 and we obtain U2 · · · , Uk, Rk ∈ Zp[[Z, Y ]]

with the required properties and such that for some automorphism T , T (Rk) is poly-

nomial in Zn.

But, as

g = aI1fI1 + · · ·+ aIkfIk + 0,

by uniqueness (note that the functions are actually unique in Zp{X,Y }), Ui = fIi and

therefore fIi ∈ Zp[[X,Y ]].
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Now, it should be clear how we can adapt the proof of the elimination in [4] to

prove quanti�er elimination in the following language:

Fix a Weierstrass system W = (Zp[[X1, · · · , Xn]])n∈N. Let LDW be the extension of

the language (+,−, ·, 0, 1, Pn;n ∈ N) by symbols f for each f ∈ Zp[[X1, · · · , Xn]] and

D, a division symbol, interpreted in Zp by:

D(x, y) =

 x/y if v(x) ≥ v(y) and y 6= 0

0 otherwise.

Let Zp,W be the structure with underlying set Zp and natural interpretations for the

symbol of LDW . Then, it is straightforward from [4] that

Proposition 3.1.7. The theory Zp,W admits elimination of quanti�ers in LDW .

Note that the graph of the function D is strongly de�nable in LW . So, as an

immediate corollary of the above proposition, we have

Corollary 3.1.8. The theory Zp,W is strongly model-complete in LW .

3.2 Weiestrass system generated by a family of func-

tions

Let F be a a family of restricted analytic functions. As before, we denote by LF the

expansion of the language of p-adically closed rings by the elements of F .

Surely, if W is a Weierstrass system that contains F , the theory of Zp eliminates the

quanti�ers in the language LDW . However, it may be hard to give an explicit descrip-

tion of the functions in W . In this section, we will de�ne WF , the Weierstrass system

generated by the LF -terms. The construction of this system gives us a control on the

functions in WF . In particular, for all f ∈ WF , there exists a �nite collection of func-

tions f1, · · · , fk ∈ F from which one can construct f using polynomial combinations,

Weiestrass divisions, permutations of the variables and inverses. Using this system, we

will obtain a result of strong model-completeness: we will see that any function in WF

is actually strongly de�nable (under some assumptions on F ). Furthermore, in the

next chapter, we will see that under further conditions on F the model-completeness
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is actually e�ective.

We de�ne the Weierstrass system generated by the LF -terms by:

For each n, let W
(0)
F,n be the set of LF -terms with n variables.

We de�ne W
(m+1)
F,n by induction on m. Assume that we have de�ned W

(k)
F,n for each

n ∈ N and for each k ≤ m. Then, W
(m+1)
F,n is the ring generated by:

(a) W
(m)
F,n ⊂ W

(m+1)
F,n ;

(b) For all f ∈ W (m)
F,n , for all permutations σ, f(Xσ(1), · · · , Xσ(n)) ∈ W (m+1)

F,n ;

(c) For all f ∈ W (m)
F,n , if f is invertible in Zp{X}, then f−1 ∈ W (m+1)

F,n ;

(d) For all f ∈ W (m)
F,n and for all k ∈ Z, if f is divisible by k in Zp{X}, then f/k ∈

W
(m+1)
F,n ;

(e) For each f ∈ W
(m)
F,n+1 of order d in Xn+1, for each g ∈ W

(m)
F,n+1, the functions

A0, · · · , Ad−1 ∈ Zp{X1, · · · , Xn} and Q ∈ Zp{X1, · · · , Xn+1} given by the Weier-

strass division and their partial derivatives belong to W
(m+1)
F,n and W

(m+1)
F,n+1 respec-

tively.

Let WF,n :=
⋃
mW

(m)
F,n . It is clear that these sets determine a Weierstrass system over

Zp. We denote this system by WF . Then, by proposition 3.1.7, the theory of Zp,WF

admits elimination of quanti�ers in LDWF
. We will show that each function of WF is

strongly de�nable in LF (under extra assumptions on F ).

Also, note that by de�nition, for all f ∈ W (m+1)
F,n , there exists, g1, · · · , gk ∈ W (m)

F,n+1 such

that f is obtained from g1, · · · , gk using one of the above operations and polynomial

combinations. We denote this property by f ∈ 〈g1, · · · , gk〉. Now, it is clear that there

exist LF -terms f1, · · · , fk such that f ∈ 〈f1, · · · , fk〉. Indeed, by induction, we �nd a

(�nite) collection of functions g0,1, · · · , gm,km such that for all i, j, gi,j ∈ W (i)
F,s(i,j) and

gi+1,j ∈ 〈gi,1, · · · , gi,ki〉. As,W
(0)
F,n is, by de�nition, the set of LF -terms with n variables,

we have that f ∈ 〈f1, · · · , fk〉 for some LF -terms f1, · · · , fk.

Furthermore,

Lemma 3.2.1. Let Ψ(X) ≡ ∃Y1, · · · , Ynφ(X,Y ) be a LF -formula where φ is quanti�er-

free. Then, there exists φ′ a LDWF
-formula such that

Zp � ∀X
(

Ψ(X)↔ ∃Z1, · · · , Zn−1φ
′(X,Z)

)
.
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Furthermore, for any subterm f in φ′ (not involving D), there exists a subterm g in φ

and P1, · · · , Pm polynomials with coe�cients in Z such that f ∈ 〈g, P1, · · · , Pm〉

This follows immediately from the proof of proposition 3.1.7. Furthermore, by in-

duction, there exists a quanti�er-free LDWF
-formula ϕ(X) equivalent to Ψ such that for

any term f in ϕ, f ∈ 〈g1, · · · , gl, P1, · · · , Ps〉 where g1, · · · , gl are the LF -terms in Ψ

and P1, · · · , Ps are polynomials with coe�cients in Z.

3.3 Interpretation of �nite algebraic extensions

Let F be a family of restricted analytic functions and WF be the Weierstrass system

generated by the LF -terms. The goal for the rest of this chapter is to prove that the

functions in WF are strongly existentially de�nable in LF .

First, we illustrate the main idea of the existential de�nition on a simple example:

Let f be a LF -term of order d in Xn+1. Then, by the Weierstrass preparation theorem,

there are A0, · · · , Ad−1 ∈ W (1)
F,n and a unit U ∈ W (1)

F,n+1 such that:

f(X1, · · · , Xn+1) =
[
Xd
n+1 + Ad−1(X ′)Xd−1

n+1 + · · ·+ A0(X ′)
]
· U(X),

where X ′ = (X1, · · · , Xn). We want to give an existential de�nition of the functions

A0, · · · , Ad−1, U .

Fix x′ = (x1, · · · , xn) ∈ Znp . It is rather clear that U(x′, X) is strongly de�nable in

terms of f and A0(x′), · · · , Ad−1(x′). We will give the explicit de�nition of the graph

of U later and focus now on the de�nition of the coe�cients Ai.

Let α1, · · · , αd be the roots of P (X) :=
∑
Ai(x′)X

i + Xd in Q̃p (note that these are

exactly the roots of f(x′, X) in Q̃p with nonnegative valuation). Then, the coe�cients

Ai(x′) are uniquely determined by α1, · · · , αd. For instance, if the roots are non-

singular (i.e. if αi 6= αj for all i 6= j), the coe�cients Ai(x′) are uniquely determined

by the system: 
1 α1 · · · αd−1

1

...
...

...

1 αd · · · αd−1
d

 ·


A0(x′)
...

Ad−1(x′)

 =


αd1
...

αdd

 .
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Other systems determine the coe�cients in the case where the roots are singular (we

will give these de�nitions later). The above relation leads to an existential formula

which determines the graphs of the functions Ai. However, the existential quanti�ers

in this formula quantify over elements in Q̃p (the αi's). We want a de�nition in Zp.

In order to obtain such a de�nition, we �rst show that we can actually quantify over

a �nite algebraic extension of Qp (which depends only on f). Then, we will see how

one can interpret such an extension in Zp.

It is well known that the p-adic �eld Qp has �nitely many algebraic extensions of a

given degree (see proposition 2.1.4). So, we can construct a sequence of �nite algebraic

extensions K1 ⊆ K2 ⊆ · · · such that:

� Kn is the splitting �eld of Qn(X) polynomial of degree Nn with coe�cients in

Q;

� Kn = Qp(βn) and Vn := OKn = Zp(βn) for all βn root of Qn;

� any extension of degree n is contained in Kn.

Let us remark that for any choice of x′ ∈ Znp , α1, · · · , αd ∈ Kd. Also, it is well-known

that the structure of ring is interpretable in Zp:

Lemma 3.3.1. For all d, the structure (Vd,+, ·, 0, 1, Pn;n ∈ N) is existentially de�n-

ably interpretable in (Zp,+, ·, 0, 1, Pn;n ∈ N).

Proof. For this, we identify Vd with its structure of Zp-module. Let Q be the minimal

polynomial of βd over Qp. We know that this polynomial have coe�cients in Q (with

nonnegative valuation). Let D be the degree of Q. Then, Vd is isomorphic to ZDp
where the addition is the addition componentwise and the multiplication is de�ned by

(x1, · · · , xD) ·Vd (y1, · · · , yD) =

( ∑
1≤i,j≤D

xiyjtij1, · · · ,
∑

1≤i,j≤D

xiyjtijD

)
,

where the tijk ∈ Q ∩ Zp are determined by

βi+jd =
∑
k

tijkβ
k
d .
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Let f ∈ F . Then, f de�nes an analytic function on Vd. So, we can consider

the structure (Vd,+, ·, 0, 1, Pn (n ∈ N), f ; f ∈ F ). We want that this structure is

existentially de�nably interpretable in Zp,F . In general, this does not seem to be the

case. So, we will add function symbols in our language so that the latter structure is

interpretable in our expansion of language. For this, it is actually su�cient to describe

the decomposition of f in the basis of Vd over Zp. Fix f ∈ F and y =
∑
yiβ

i
d ∈ V k

d

(where yi ∈ Zkp). We decompose f(y) in the basis of Vd over Zp:

f(y) = f
(∑

yiβ
i
d

)
= c0,f,d(y) + c1,f,d(y)βd + · · ·+ cNd−1,f,d(y)βNd−1

d ,

where y = (y1, · · · , yNd). It determines functions ci,f,d from ZkNdp to Zp. We call

these functions the decomposition functions of f in Kd. Note that these functions are

independent of the choice of βd. Indeed, for all σ in the Galois group of Kd over Qp

(denoted by Gal(Kd/Qp)),

f(yσ) = f
(∑

yiβ
σ
d
i
)

= c0,f,d(y) + c1,f,d(y)βσd + · · ·+ cNd−1,f,d(y)βσn
Nd−1,

by continuity of σ. Let F̃ := F ∪ {ci,f,d | f ∈ F, d ∈ N and i ≤ Nd}. Then, by

de�nition,

Lemma 3.3.2. For all d, the structure (Vd,+, ·, 0, 1, Pn (n ∈ N), f ; f ∈ F ) is existen-

tially de�nably interpretable in Zp,F̃ .

One may wonder if we need to add more functions to interpret the structure

(Vd,+, ·, 0, 1, Pn (n ∈ N), f ; f ∈ F̃ ) in Zp,F̃ . However this is not the case. Indeed,

let us remark that the ci,f,d(y) are linear combinations of the f(yσ):
c0,f,d(y)

...

cNd−1,f,d(y)

 = V −1


f(yσ1)

...

f(yσNd )

 ,

where V is the Vandermonde matrix of the roots of Qd and σi are the elements of

Gal(Kd/Qp). So, as power series,

ci,f,d(y) =
∑

aiβ
i
df
(∑

Ri(y)βid

)
,

where ai ∈ Q ∩ Zp and Ri is a polynomial with coe�cients in Zp ∩Q. Therefore, the

above relation holds for all y ∈ V kNd
l . So,
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Proposition 3.3.3. For all d, the structure (Vd,+, ·, 0, 1, Pn (n ∈ N), f ; f ∈ F̃ ) is

existentially de�nably interpretable in Zp,F̃ .

To conclude this section, we observe that if the set of LF -terms is closed under

derivation, so is the set of LF̃ -terms. This follows immediately from the above equal-

ities.

3.4 Existential de�nition of the LW
F̃
-terms

Now that we can interpret �nite algebraic extensions in our structure, we are able

to formalise the existential de�nition given at the beginning of section 3.3. Let us

remark that in order to get the existential de�nitions, we will need to express that a

function has a root of higher multiplicity. For this, we use the partial derivatives of the

function. That is why we assume that the set of LF -terms is closed under derivation

in the next proposition.

Proposition 3.4.1. Let F be a family of functions in Zp{X}. Assume that the set of

LF -terms is closed under derivation. Let F̃ be the extension of F by the decomposition

functions in Kd of each f ∈ F (for all d ∈ N). Let g ∈ WF̃ . Then,

� g is strongly de�nable in LF̃ .

� For all d, the structure (Vd, g) is (strongly de�nably) interpretable in Zp,F̃ .

Given a function f ∈ Zp{X1, · · · , Xn}, we denote the set
{
∂kf
∂Xk

i
; 1 ≤ i ≤ n, k ∈ N

}
by [f ].

Proof. The proof is very similar to the corresponding results in [16]. The de�nitions

given in the below claims are roughly the same that in the real case.

Recall that for all f ∈ W
(m+1)

F̃ ,n
, there exist g1, · · · , gk ∈ W

(m)

F̃ ,n+1
such that f ∈

〈g1, · · · , gk〉. So, it is su�cient to prove by induction on m that

1. For all f ∈ W
(m+1)

F̃ ,n
, f and its derivatives are strongly de�nable in terms of

functions in W
(m)

F̃ ,n+1
(and their derivatives);

2. The de�nitions remain true uniformly over the algebraic extensions Vd i.e. the

graphs of the extension f : V k
d → Vd and of its derivatives are strongly de�nably

interpretable in terms of functions in W
(m)

F̃ ,n+1
(and their derivatives).
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By de�nition of the language LF̃ and by proposition 3.3.3, it is clear that the extensions

of the functions in W
(0)

F̃ ,n
to Vd are interpretable. So, we assume by induction that the

graph of the extension to Vd of any function inW
(k)

F̃ ,n
(or one of its derivative) is strongly

de�nably interpretable in our structure for all d, for all n and for all k ≤ m.

Let f ∈ W (m+1)

F̃ ,n
. Then, f = P (f1, · · · , fk) where P ∈ Z[Y ] and f1, · · · , fk are functions

of the type (a)-(e) in the de�nition of Weierstrass system generated by the LF -terms.

If the functions f1, · · · , fk satisfy properties 1. and 2., then f also satis�es these

properties. Indeed, the graph of f is strongly de�nable in terms of f1, · · · , fk as (x, y)

is a point of the graph of f i�

Zp � ∃t1 · · · ∃tk
∧

ti = fi(x) ∧ y = P (t1, · · · , tk).

So, we can assume that f is a function of the type (a)-(e).

The cases where f is obtained as the division by k of a function g ∈ W
(m)

F̃ ,n
or is a

function in W
(m)

F̃ ,n
are obvious.

If f(X) = g(Xσ(1), · · · , Xσ(n)) where σ is a permutation of {1, · · · , n} then the tuple

(x, y) belongs to the graph of f i�

Zp � ∃t ∧i ti = xσ(i) ∧ y = g(t).

Therefore, both the graphs of f , of its derivatives and their extensions to Vd are

existentially de�nable in terms of [g].

If f is the inverse of a function g, then (x, y) belongs to the graph of f i�

yg(x) = 1.

So, we are reduced to the following case:

Let f, g ∈ W (m)

F̃ ,n+1
where f has order d inXn+1. Then, there are A0, · · · , Ad−1 ∈ W (m+1)

F̃ ,n

and Q ∈ W (m+1)

F̃ ,n+1
such that

g = Qf +
(
Ad−1X

d−1
n+1 + · · ·+ A0

)
.

We have to prove that A0, · · · , Ad−1, Q (and their derivatives) are strongly de�nable

in Zp and that the de�nitions work uniformly over the algebraic extensions Vd.

Claim 2. A0, · · · , Ad−1 are strongly de�nable in terms of [f, g].
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Proof. Fix x ∈ Znp .

Let α1, · · · , αd be the roots of f(x,Xn+1) in Vd (we take in account multiplicities).

Then, A0(x), · · · , Ad−1(x) are uniquely determined by these roots.

Indeed, �rst assume that the roots are distinct. In this case, A0(x), · · · , Ad−1(x) are

determined by the relations:

αi 6= αj for all i, j

f(x, αi) = 0 for all i
1 α1 · · · αd−1

1

...
...

...

1 αd · · · αd−1
d




A0(x)
...

Ad−1(x)

 =


g(x, α1)

...

g(x, αd)

 .

If f(x,Xn+1) admits singular roots, say α1 = α2 and αi 6= αj for all i 6= j, i, j 6= 2 for

instance, then we replace the d equations f(x, α1) = · · · = f(x, αd) = 0 by f(x, α1) =

∂f
∂Xn+1

(x, α1) = f(x, α3) = · · · = f(x, αd) = 0. The functions Ai are determined in this

case by the relations:

αi 6= αj for all i 6= j, j 6= 2

f(x, αi) = 0 for all i 6= 2

∂f
∂Xn+1

(x, α1) = 0

1 α1 · · · αd−1
1

0 1 · · · (d− 1)αd−2
1

1 α3 · · · αd−1
3

...
...

...

1 αd · · · αd−1
d





A0(x)

A1(x)

A2(x)
...

Ad−1(x)


=



g(x, α1)

∂g
∂Xn+1

(x, α1)

g(x, α3)
...

g(x, αd)


.

For each con�guration of multiplicities of the roots of f(x,Xn+1), the coe�cients Ai

are completely determined by a system like above. We proceed to a disjunction over

all possible cases to de�ne the graphs of A0, · · · , Ad−1 on Znp :

Let Ψ(x,A0(x), · · · , Ad−1(x), α) be the disjunction of all possible system like above.

Then, the following formula gives an existential de�nition of the graphs ofA0, · · · , Ad−1:

∃α1 · · ·αd ∈ Vd Ψ(x,A0(x), · · · , Ad−1(x), α).

Let us remark that the above de�nitions are existential de�nitions in Vd. We interpret

this formulas in Zp. So, formally, the αi's are replaced by tuples, the additions,
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multiplications (in Vd in Ψ) are replaced by their interpretation in Zp. Similarly, the

functions f, g, their derivatives are also replaced by their interpretations in Zp (which

exists by inductive hypothesis).

Note also that the αi's are only unique up to permutation. It means that so far, we

have only existentially de�ned the graphs of the Ai's. We transform this existential

de�nition into a strong existential formula using [3]. In this paper, J. Denef gives

a formula of de�nable selection for �nite sets i.e. a quanti�er free formula D(x,X)

(where X is a new predicate) such that for all X(v) a predicate corresponding to a

�nite set in Qp:

Qp � ∃v1, · · · , vs
[∧

iX(vi) ∧
∧
i,j vi 6= vj

]
→ ∃!v1, · · · ∃!vs

[∧
iX(vi) ∧

∧
iD(vi, X) ∧

∧
i,j vi 6= vj

]
.

We use this formula with X equals to the set {α1, · · · , αd} to get a strong de�nition

of the graphs of the Ai's.

Note that the above formula works uniformly over the algebraic extensions. There-

fore, the graphs of the A′is as functions from V n
d to Vd are also strongly de�nably

interpretable.

Claim 3. Q and its derivatives (with respect to Xn+1) are strongly de�nable in terms

of [f, g], A0, · · · , Ad−1.

Proof. Let g̃ := g −
∑
AiX

i
n+1. Then, g̃ = Q · f . Fix x ∈ Znp .

� If f(x) 6= 0, then

Q(x) = g̃(x)
/
f(x).

� If f(x) = 0 6= ∂f
∂Xn+1

(x), as ∂g̃
∂Xn+1

(x) = Q(x) · ∂f
∂Xn+1

(x) + ∂Q
∂Xn+1

(x) · f(x),

Q(x) =
∂g̃

∂Xn+1

(x)
/ ∂f

∂Xn+1

(x).

� We proceed similarly for the other cases. Let us remark that if f(x) = · · · =

∂d−1f

∂Xd−1
n+1

(x) = 0, then necessarly, ∂df
∂Xd

n+1
(x) 6= 0. In this case, we have that:

Q(x) =
∂dg̃

∂Xd
n+1

(x)
/ ∂df

∂Xd
n+1

(x).
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A disjunction over all above cases gives a de�nition of the graph of Q.

Also, we can de�ne ∂Q
∂Xn+1

:

If f(x) 6= 0, as ∂g̃
∂Xn

= Q · ∂f
∂Xn+1

+ ∂Q
∂Xn+1

· f ,

∂Q

∂Xn+1

=
( ∂g̃

∂Xn+1

−Q · ∂f

∂Xn+1

)/
f.

We have a similar equality in the case where f(x) = 0 6= ∂f
∂Xn+1

(x). Again, we have to

do a disjunction over all i ≤ d such that ∂if
∂Xi

n+1
(x) 6= 0 and ∂kf

∂Xk
n+1

(x) = 0 for all k < i.

By induction on j, we can de�ne ∂jQ

∂Xj
n+1

similarly.

Again, the above formula works uniformly over �nite algebraic extensions. So, the

graphs of Q and its derivative with respect to Xn+1 as functions from V n+1
d to Vd are

strongly existentially de�nably interpretable.

In the next claim, we will use the following notations: let I = (i1, · · · , il) where

ik ∈ {1, · · · , n}, then

∂IAi
∂XI

=
∂

∂Xi1

· · · ∂

∂Xil

Ai

∂I,jQ

∂XI∂X
j
n+1

=
∂

∂Xi1

· · · ∂

∂Xil

∂j

∂Xj
n+1

Q.

Claim 4. For all I = (i1, · · · , il) and for all j, ∂
IAi
∂XI

and ∂I,jQ

∂XI∂X
j
n+1

are strongly de�nable

in terms of [f, g].

Proof. We prove the claim by induction on the length of I. First, we prove that

∂R0

∂Xi
, · · · , ∂Rd−1

∂Xi
, ∂(i),jQ

∂Xi∂X
j
n+1

are strongly de�nable in terms of [f, g] for all i ≤ n and for

all j.

Let gi := ∂g
∂Xi
− Q · ∂f

∂Xi
(where i ≤ n). Let us remark that by claim 3, gi is strongly

de�nable in terms of [f, g]. We derive the equality g = Qf +
∑

k AkX
k
n+1 +Xd

n+1 with

respect to Xi and obtain that

gi =
∂Q

∂Xi

f +
∑
k

∂Ak
∂Xi

Xk
n+1.

We apply claims 2 and 3 with this equality to get the strong de�nitions of ∂A0

∂Xi
, · · · , ∂Ad−1

∂Xi
,

∂(i),jQ

∂Xi∂X
j
n
.

Let I = (i1, · · · , il). Let i ∈ {1, · · · , n} and I ′ = (i, i1, · · · , il). Assume that the claim
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is proved for the derivatives with respect to I. Let gI′ := ∂gI
∂Xi
− Q · ∂f

∂Xi
(where gI is

de�ned by induction on the length of I). As (by induction),

gI =
∂IQ

∂XI

f +
∑
k

∂IAk
∂XI

Xk
n+1,

we derive this equality with respect to Xi and get that

gI′ =
∂I
′
Q

∂XI′
f +

∑
k

∂I
′
Ak

∂XI′
Xk
n+1.

Again, we apply claims 2 and 3 with this equality to get the strong de�nitions of

∂I
′
A0

∂XI′
, · · · , ∂

I′Ad−1

∂XI′
, ∂I

′,jQ

∂XI′∂X
j
n
.

This completes the proof of the claim 4.

This proves that A0, · · · , Ad−1, Q and their derivatives are strongly de�nable func-

tions in terms of functions in W
(m)

F̃ ,n+1
and therefore completes the proof of the propo-

sition.

The main theorem of this section follows immediately from propositions 3.1.7 and

3.4.1

Theorem 3.4.2. Let F be a family of restricted analytic functions. Assume that

the set of LF -terms is closed under derivation. Let F̃ be the extension of F by the

decomposition functions of each f ∈ F . Then, Zp,F̃ is strongly model-complete in LF̃ .



Chapter 4

E�ective model-completeness

In this chapter, we are interested by the e�ectivity of the theorem 3.4.2 i.e. is there

an algorithm which takes for entry a LF̃ -formula Ψ(x) and returns a strong existential

formula ϕ(x) equivalent to Ψ(x)?

In chapter 3, we have given an explicit description of ϕ except for the use of proposition

3.1.7. So, if we can prove that this step can be done e�ectively, we are done. This

proposition relies on the elimination of quanti�ers in [4]. In the proof of this theorem,

most of the steps are either clearly e�ective or the e�ectivity is already well understood

(e.g. elimination of quanti�er in Zp, lemma 3.1.5). We will focus our attention to the

most awkward step with respect to the e�ectivity: the use of lemma 1.4 in [4]. First,

let us recall this lemma.

Lemma 4.0.1 (lemma 1.4 in [4]). Let f(X,Y ) =
∑
aI(Y )X

I ∈ Zp{X,Y }. Then,

there is d ∈ N such that, for all I with |I| ≥ d,

aI(Y ) =
∑
|J |<d

bIJ(Y )aJ(Y ),

where bIJ ∈ Zp{Y } with ‖bIJ‖ < 1.

The existence of d follows from the Noetherian property of the ring Zp{Y }. It is a

priori not obvious that one can compute e�ectively such a bound.

De�nition 4.0.2. Let f ∈ Zp{X,Y }. We say that f has an e�ective Weierstrass

bound if one can compute d(f) a upper bound for the smallest integer d like in lemma

4.0.1.

51
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A Weierstrass system for which there is an algorithm which compute d(f) for each

function f of the system is called an e�ective Weierstrass system.

The main theorem of this chapter is that under the assumptions of theorem 3.4.2 and

assuming that we can compute the above d for any LF̃ -term, the Weierstrass system

WF̃ is e�ective. And therefore, the theory of Zp,F̃ is e�ectively model-complete.

This follows from an induction on the complexity of the functions in the Weierstrass

system. We will develop this in section 4.1. In sections 4.2 and 4.3, we prove the main

theorem of this chapter. In section 4.2, we compute an e�ective bound of the mixed

volume of a system of analytic equations with e�ective Weierstrass bound. This notion

of mixed volume comes from tropical analytic geometry and will allow us in section 4.3

to compute the e�ective Weierstrass bound of any function in the Weierstrass system

generated by the LF̃ -terms (under the above assumptions).

Finally, in the last section, we discuss the special case of Zp,exp. In particular, we

apply our main result to show that the Weierstrass system generated by the closure

under decomposition functions of the Lexp-terms is e�ective. Therefore, this shows

that the theory of Zp in the language of p-adic exponential rings expanded by the

decomposition functions is e�ectively model-complete.

4.1 E�ective Weierstrass system

For the rest of this chapter, we �x F a family of restricted analytic functions. We

assume that the set of LF -terms is closed under derivation. We also assume that this

family is an e�ective family of restricted analytic functions i.e. that F is recursively

enumerable and that, for all I, there exists some algorithm D which takes for entries

functions f in F and returns a LF -term g such that ∂If
∂XI = g.

De�nition 4.1.1. A Weierstrass system (Zp[[X1, · · · , Xn]])n∈N is called e�ective if

there exists an algorithm which takes for entries functions f of the system and returns

an integer d(f) such that, for all I with |I| ≥ d(f),

aI(Y ) =
∑
|J |<d(f)

bIJ(Y )aJ(Y ),

where f(X,Y ) =
∑
aI(Y )X

I
and bIJ ∈ Zp{Y } with ‖bIJ‖ < 1.
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It should be clear from chapter 3 that if the Weierstrass system generated by the

LF̃ -terms is e�ective then the strong model-completeness in theorem 3.4.2 is e�ective.

We will now assume that F satis�es:

Hypothesis (W). Let f(X, Y ) be a LF -term. Then, f has an e�ective Weierstrass

bound.

Let WF be the Weierstrass system generated by the LF -terms. We will show that,

under the hypothesis (W), WF is an e�ective Weierstrass system. Therefore, the the-

orem 3.4.2 is e�ective assuming that F̃ (the expansion of F by the decomposition

functions) satis�es hypothesis (W): under these hypotheses, WF̃ is an e�ective Weier-

strass system which implies the e�ective model-completeness of the theory of Zp,F̃ .

First, we show that the integer d(f) can be computed for each term in our language

(for any length of the variable X). This proposition is due to A. Macintyre in [8].

Proposition 4.1.2. Let F be any e�ective family of restricted analytic functions.

Assume that F satis�es hypothesis (W). Then, there exists a computable function D

from the set of LF -terms to N such that for all LF -term f(X,Y ), if d is the smallest

integer like in lemma 4.0.1, then d ≤ D(f).

Proof. Let f(X,Y ) =
∑
aI(Y )X

I
. Let d be the smallest integer like in lemma 4.0.1.

Then, for all y ∈ Zmp , one of the following formulas is satis�ed in Zp:

Z(Y ) ≡
∧
|J |<d

aJ(Y ) = 0,

or, for some |I| < d,

µI,f (Y ) ≡
∧
J<I

v(aI(Y )) ≤ v(aJ(Y )) ∧
∧

I<J, |J |<d

v(aI(Y )) < v(aJ(Y )).

Fix y ∈ Zmp and assume µI,f (y) where i1 6= 0 (unless Z(y) is satis�ed, we can assume

that this is the case). Then,

a−1
I (y)f(X, y) =

∑
J<I

(
aJ(y)/aI(y)

)
X
J

+X
I

+
∑

I<J, |J |<d

(
aJ(y)/aI(y)

)
X
J

+
∑
|K|≥d

{∑
J<I

(
aJ(y)/aI(y)

)
bKJ(y) + bKI(y)

+
∑

I<J, |J |<d

(
aJ(y)/aI(y)

)
bKJ(y)

}
X
K
.
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We introduce new variables VJ and replace the quotients aJ/aI by VJ or pVJ according

if J < I or I < J, |J | < d. It de�nes a function:

f̃(X,V , Y ) =
∑
J<I

VJX
J

+X
I

+
∑

I<J, |J |<d

pVJX
J

+
∑
K

∑
J<I

VJbKJ + bKI +
∑

I<J, |J |<d

pVJbKJ

X
K
.

Then, f(X, y) = aI(y)f̃(X, v, y) where vJ = aJ(y)/aI(y) or aJ(y)/paI(y). And, if we

proceed to change of variables Xi −→ Zi − Zdn−i
n if i<n

Xn −→ Zn,

the function f̃(Z, v, y) has order S = in + in−1d + · · · + i1d
n−1 in Zn (where I =

(i1, · · · , in)). By the Weierstrass preparation theorem,

f̃(Z, V , y) =
(
ZS
n+AS−1(Z1, · · · , Zn−1, V , y)+· · ·+A0(Z1, · · · , Zn−1, V , y)

)
U(Z, V , y).

And ,

f(Z, y) = aI(y)f̃(Z, v, y).

So, for any z1, · · · , zn−1 ∈ Zp, f(Zn, z′, y) has exactly S roots (counting multiplicities)

in Op. By Strassmann theorem 2.1.9, the integer d(f) given by hypothesis (W) deter-

mines an e�ective upper bound of S and therefore of d (unless I = (0, · · · , 0) for all

y, in which case, we can take D(f) = 1).

As we have seen in this proof, if we want to prove thatWF is an e�ective Weierstrass

system, it is actually su�cient to prove the following:

Let f(X, Y ) be a LWF
-term. Then, one can compute an upper bound S(f) on the

number of roots (counting multiplicities) of the function f(X, y) in Op (if this number

is �nite). We want that this bound does not depend on the choice of the parameters

y ∈ Znp .

In that case, f has an e�ective Weierstrass bound given by S(f) + 1.

Let f be a function in our Weierstrass system. Then, there are integers n andm+1 such

that f ∈ W (m+1)
F,n . Also, f has an existential de�nition in terms of functions in W

(m)
F,n+1:

as we have seen in chapter 3, there exist g1, · · · , gk ∈ W (m)
F,n+1 such that f ∈ 〈g1, · · · , gk〉.
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So, we proceed by induction: assuming that we can compute d(g1), · · · , d(gk), we will

show that we can e�ectively bound the number of solutions in Op of f(X, x′) = 0

(uniformly over x′ ∈ Zn−1
p ). And therefore, we will �nd an e�ective bound of S(f) in

terms of d(g1), · · · , d(gk).

The basic step of the induction is given by proposition 4.1.2. The cases where f

is obtained from a function g ∈ W
(m)
F,n by inversion, permutation of the variables or

division by an integer are rather easy. The main di�culty is the case where f is

obtained using Weierstrass division. In this case, by the de�nitions given in the claims

2 to 4 in proposition 3.4.1, we see that zeros of such a function correspond to zeros of

systems of n′ equations in W
(m)
F,n′ (with t parameters) .

We will now bound the number of solutions in (O∗p)n of a general system of n analytic

functions with n variables (uniformly over some parameters). For this, we will use

results of tropical analytic geometry (see appendix A).

4.2 E�ective bound for the mixed volume of a system

with e�ective Weierstrass bound.

In this section, we will use results of tropical analytic geometry due to J. Rabino� (see

[14]). We refer to appendix A for an overview of the results and notions that we need

for this section.

Let f =
∑
aIX

I ∈ Zp{X}. First, note that f ∈ Qp〈[0,∞)n〉 := Qp{X}. So,

it makes sense to apply the results of appendix A in our setting. We recall some

notations:

vertv(f) := {(I, vp(aI)) | aI 6= 0 and vp(aI) + 〈I, v〉 ≤ vp(aJ) + 〈J, v〉 ∀J},

where 〈·, ·〉 denotes the scalar product, v ∈ [0,+∞)n.

And, the Newton complex of f , denoted by New(f), is the set of cells

γ̌v = γ̌v(f) := π(conv(vertv(f))),

where π denotes the projection along the n �rst coordinates and v ∈ [0,∞)n. Let us
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recall that the polyhedron γ̌v is the convex closure of a �nite subset of Rn. Finally,

Trop(f) = {v ∈ (R ∪ {∞})n | v = (vp(x1), · · · , vp(xn))

for some x ∈ Op such that f(x) = 0}.

Let f = (f1, · · · , fn) be a system of functions in Zp{X1, · · · , Xn, Y }. We assume

that each fi satis�es our inductive hypothesis. It means that each fi has an e�ective

Weierstrass bound d(fi). We will also assume that any derivative of fi has an e�ective

Weierstrass bound (this will be our actual inductive hypothesis).

We want to bound the number of solutions of the system uniformly over the parame-

ters Y (whenever there is �nitely many solutions for this choice of parameters). Fix

y ∈ Zkp and assume that the number of solutions of the system in Onp is �nite for this

choice of parameters. We recall the main results of [14]: there is a relation between

the number of solutions of the system and the Newton complex:

If x is a solution of the system in Onp with non-zero coordinates such that trop(x) :=

(v(x1), · · · , v(xn)) ∈ Rn is an isolated point of
⋂
i Trop(fi), then the number of solu-

tions in Onp with valuation trop(x) is exactly (counting multiplicity) the mixed volume

of the polyhedrons

π(conv(verttrop(x)(f1))), · · · , π(conv(verttrop(x)(fn))).

We denote this volume by

MV (γ̌v(f1), · · · , γ̌v(fn)).

On the other hand, if v := trop(x) is not isolated in
⋂
Trop(fi). Let C =

⋂
i γv(fi) =

{v′ ∈
⋂
Trop(fi) | vertv′(fi) ⊇ vertv(fi) for all i}. Then, C is a Γ-a�ne polyhedron

contained in
⋂
i Trop(fi) and which contains v. We want to apply theorem A.4.4 to

determine the maximal number of roots with valuation in this component. Assume

that all the hypothesis of this theorem are satis�ed. Then, the number of solutions in

Onp with valuation in C (the compacti�cation of C) is (counting multiplicities):

i(C, Trop(f1), · · · , T rop(fn)) :=
∑
ν∈P̃

i(ν, Trop(f1) + εṽ1, · · · , T rop(fn) + εṽ′n),

for any suitable perturbation of the system P̃ (P̃ is a �nite set).

We will now prove that one can compute integers D1 and D2 such that
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� MV (γ̌v(f1), · · · , γ̌v(fn)) and i(ν, Trop(f1) + εṽ1, · · · , T rop(fn) + εṽ′n)) are both

less than D1 (independently on the choice of x, y, ν and ṽ); and,

�

⋂
Trop(fi) can obtained as the union of less than D2 isolated points and con-

nected components C like above. Furtermore, D2 is a bound for the cardinality

of P̃ .

With this, we will be able to bound the number of solutions of our system with non-

zero coordinates.

The crucial point of the proof is that under our inductive hypothesis, we are able to

compute a box such that the (support of the) Newton complex of fi is contained in

this box:

Lemma 4.2.1. Let f ∈ Zp{X,Y } such that f and all its derivatives have an e�ective

Weierstrass bound. Then, we can e�ectively �nd an integer E(f) such that for all

y ∈ Zp, either fy(X) := f(X, y) is identically zero or New(fy) ⊆ Bmax(E(f)).

In this lemma, Bmax(E) denotes the set {I ∈ Rn | maxk{|ik|} ≤ E}. Note also

that we have identify New(f) and its support.

Proof. Let us recall that an element of New(f) is the projection of a set vertν(f)

(for ν ∈ Rn, ν = trop(x) for some x ∈ (O∗p)n) i.e. is the set of indexes J such that

v(aJ(y)) + 〈ν, J〉 reaches the minimum of the set {v(aI(y)) + 〈ν, I〉; I ∈ Nn} for some

ν ∈ [0,∞)n. So, it is su�cient to show that for all ν ∈ [0,∞)n the projection of the

set vertν(f) is contained in Bmax(E(f)) for suitable (computable) E(f).

As f has an e�ective Weierstrass bound, we know that there exists d(f) (computable)

such that for all |I| ≥ d(f),

aI(Y ) =
∑
|J |<d(f)

bIJ(Y )aJ(Y ),

where bIJ ∈ Zp{Y } with ‖bIJ‖ < 1. Fix y ∈ Zp and assume fy 6≡ 0 i.e. aI(y) 6= 0 for

some |I| < d(f). First, let us remark that for all I such that i1, · · · , in ≥ d(f), for all

x ∈ (O∗p)n, we can �nd J with |J | < d(f) such that

v(aI(y)) + 〈I, trop(x)〉 ≥ min
|K|<d(f)

{v(bIK(y)) + v(aK(y)) + 〈K, trop(x)〉}

> v(aJ(y)) + 〈J, trop(x)〉.
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If n = 1, take E(f) = d(f) and we are done by the above inequality.

In the general case, we already know by the above inequality that no index I that

satis�es i1, · · · , in ≥ d(f) can be a point of vertν(f). It remains to bound indexes in

vertν(f) with at least one coordinate less than d(f).

Fix 1 ≤ k ≤ n and 1 ≤ s ≤ d(f). Fix a coe�cient I whose kth coordinate is s. Then,

aI(y)X
I
is the (i1, · · · , ik−1, s, ik+1, · · · , in)th coe�cient of the function fs,k(X, y)Xs

k

where

fs,k(X, y) = (1/s!)
∂sf

∂xsk
(X1, . . . , Xk−1, 0, Xk+1, · · · , Xn, y).

Then, as fs,k has an e�ective Weierstrass bound, there is d(f, s, k) := d(fs,k) such that

for all I with maxj 6=k{ij} ≥ d(f, s, k),

v(aI(y)) +
∑
l 6=k

ilv(xl) > min{v(a(j1,··· ,jk−1,s,jk+1,··· ,jn)(y)) +
∑
l 6=k

jlv(xl)}.

where the min is taken in {J ′ : |J ′| = |(j1, · · · , jk−1, jk+1, · · · , jn)| < d(f, s, k)}. We

set:

E ′(f) = max
k≤n

max
s≤d(f)

{d(f, k, s), d(f)}.

If n = 2, we can take E(f) = E ′(f). Otherwise, we can compute E(fs,k) for all

s ≤ d(f) and k ≤ n by induction: we proceed like above with f = fs,k. Then, we take

E(f) = maxs,k{E(fs,k), E
′(f)}.

We can now bound e�ectively the number of roots (counting multiplity) of the

system f with isolated tropicalization.

Lemma 4.2.2. Let f = (f1, · · · , fn) ∈ (Zp{X,Y })n such that fi and all its derivatives

have an e�ective Weierstrass bound for all i. Then, one can compute integers D1 and

D2 (depending only on f) such that for all y ∈ Zmp , either
⋂
V (fi(X, y)) is in�nite, or⋂

Trop(fi(X, y)) has less than D1 isolated points and for each such a point the tropical

intersection multiplicity of f at this point is less than D2.

In particular, under these hypotheses, whenever the system f has �nitely may so-

lutions in (Op)n, it has less than D1 ·D2 solutions in (O∗p)n with isolated tropicalization

(counting multiplicities).

Proof. Assume that we have choosen y such that the number of solutions of the system

is nonzero and �nite. Then, by lemma 4.2.1, New(fi) is contained in Bmax(E(fi)).



CHAPTER 4. EFFECTIVE MODEL-COMPLETENESS 59

Let us remark that the number of polygons with integral coordinates for the ver-

tices contained in Bmax(E(fi)) is �nite. Let D2 be the maximum of the mixed vol-

umes MV (P1, · · · , Pn) where each Pi runs accross the di�erent polygons contained in

Bmax(E(fi)). Then, by theorem A.3.3, D2 satis�es the conditions of our lemma.

Let us recall that the points of
⋂
Trop(fi(X, y)) are determined by a system

of linear equations. Each equation corresponds to an half-hyperplane contained in

Trop(fi(X, y)) (determined by some γv in the notation of appendix A). As these

half-hyperplanes are in bijection with the faces of New(fi) (the γ̌v's, see proposition

A.2.4), we can bound the number of systems:

Consider the polygon contained in Bmax(E(fi)) with the maximal number of faces (say

this polygon has di faces). Note that di is computable. Then, Trop(fi(X, y)) has at

most di half-hyperplanes. So, the number of isolated points contained in the intersec-

tion of all Trop(fj(X, y)) is no more than
∏

i di. We de�ne D1 to be the product of

all di's.

We will now determine a bound for the number of roots such that the tropicalization

lies on a non-proper intersection of
⋂
Trop(fi).

First, we recall some facts from appendix A:

Let f1, · · · , fn ∈ Zp{X}, fi =
∑
fi,IX

I
. Let C be a connected component of⋂

Trop(fi) ∩ P where P = [0,∞)n. Then, there exist v1, · · · , vn ∈ Nn and T such

that, for all ε ∈ (0, T ], the intersection

P̃ :=
⋂

(Trop(fi) + εvi) ∩ (P + εvi)

is a �nite set of points.

Assume that C is a Γ-a�ne polyhedron and that the polyhedron
⋂
i conv({I | fi,I 6=

0}) is pointed (i.e. has dimension n). Then, by theorem A.4.4, the number of solutions

of our system with valuation in the compacti�cation of the component C is equal to

the tropical intersection multiplicity along C. And, by de�nition, this number is equal

to the sum of tropical intersection multiplicities after pertubation of the system by ε

i.e.

i(C, Trop(f1), · · · , T rop(fn)) =
∑
ν∈P̃

i(ν, Trop(f1) + εv1, · · · , T rop(fn) + εvn).
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Let us remark now that, like in lemma 4.2.2, as the half-hyperplanes of Trop(fi) are in

bijection with the faces of the Newton complex, one can compute e�ectively a bound

for the number of connected components of the type C =
⋂
γv(fi) (which actually

cover
⋂
Trop(fi)).

On the other hand, let f =
∑
aIX

I ∈ Zp{X} and f ′(X) =
∑
a′IX

I
:= f(Xit−vi) (so,

Trop(f ′i) = Trop(fi) + εvi). Let x ∈ Onp and t ∈ Op with valuation ε and I ∈ Nn such

that

v(aIx
I) = min

J
{v(aJx

J)}.

Then, for x′ = xtvi ,

v(a′Ix
′) = v(aIx

′It−〈I,v〉) = min
J
{v(aJx′

J
t−〈J,v〉)} = min

J
{v(a′Jx

′J)}.

Therefore, New(f) andNew(f ′) are both contained in the box given in lemma 4.2.1. It

means that we can �nd an e�ective bound for i(ν, Trop(f1) + εv1, · · · , T rop(fn) + εvn)

for all ν ∈ P̃ and for the cardinality of P̃ like in lemmas 4.2.1 and 4.2.2.

The above paragraph shows that we can compute a bound for the number of

connected components C =
⋂
γv(fi) that cover Trop(fi) and that, for each such a

C, we can bound the number of solutions of our system with tropicalization in C.

This shows that we can give a bound for the number of solutions (O∗p)n of the system

assuming that
⋂
i conv({I | fi,I 6= 0}) is pointed.

We are now ready to prove:

Theorem 4.2.3. Let f = (f1, · · · , fn) ∈ Zp{X,Y }n such that fi and all its derivatives

have an e�ective Weierstrass bound for each i. Then, there exists S(f) computable in

terms of the f ′is such that for all y ∈ Znp , either the system fy has in�nitely many roots

or it has less than S(f) roots in (O∗p)n.

Proof. Lemma 4.2.2 gives us a bound N(f) for the number of roots with isolated

tropicalization. It remains to count the roots with non-isolated tropicalization.

If
⋂
i conv({I | fi,I 6= 0}) is pointed, we are done by the above paragraph. Let

us remark that in this case, the number S(f) is determined using only the e�ective

Weierstrass bound of the fi's (and their derivatives).

In order to guarantee that the above polyhedron is pointed, we apply the following

transformations to our system:
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� If the variable Xi does not occur in fj, we set f
′
j := fj · (1 + psXi). We apply

this transformation for all i, j when necessary.

Then, the number of solutions of the system (f ′1, · · · , f ′n) in Onp is the same

that the number of solutions of the system (f1, · · · , fn) (indeed, the polynomial

(1 + psXi) has no root in Op, and more generally no root with valuation greater

than −s). Also, f ′j has the same e�ective Weierstrass bound that the Weierstrass

bound of fj. Note that the box Bmax(E(f ′i)) in which lies the Newton complex

of f ′i does not depend on the choice of s.

� Let (f̃1, · · · , f̃n) be the system obtained after the change of variables Xi 7−→ Xi−

ptZi applied to the system (f ′1, · · · , f ′n) (where Z is a new parameter). Then, for

t large enough (take t at least ‖fj‖), f̃j has the same e�ective Weierstrass bound

that fj. Also, for a suitable choice of z ∈ Znp , the number of non-zero solutions

of the system (f̃1, · · · , f̃n) is �nite and is an upper bound for the number of

non-zero solutions of the system (f1, · · · , fn). Furtermore, for the same choice

of z, we have that
⋂
i conv({I | f̃i,I 6= 0}) is pointed.

As,
⋂
i conv({I | f̃i,I 6= 0}) is pointed, we can compute a bound S(f̃) on the number

of non-zero solutions of the system (f̃1, · · · , f̃n). Indeed, this number is determined by

the e�ective Weierstrass bound of the f̃i's (which are computable as we have discussed

above). Note that, S(f̃) does not depend on our choices of s, t. We set S(f) :=

S(f̃) +N(f).

Remark. Let f1, · · · , fn ∈ Zp{X1, · · · , Xn, Y } and

g1 · · · , gm ∈ Zp[X1, · · · , Xn, Xn+1, · · · , Xn+m, Y ]. Then, we can �nd an e�ective

bound like in theorem 4.2.3 for the number of solutions of the system

(f1, · · · , fn, g1, · · · , gm) in (O∗p)n × (C∗p)m.

In fact, we can apply the results of appendix A in K〈P 〉 where P = [0,∞)× [ri,∞). It

allows us to bound the number of solutions in (O∗p)n× (C∗p)m with valuation at least ri

(for the last coordinates). Indeed, it is easy to see that we can compute a box in which

lies New(gi). It implies that we can compute the bound with the same method that

in theorem 4.2.3. Furthermore, let us remark that the box does not depend on the

choice of ri. Therefore, the bound for the number of solutions obtained is independent

on the choice of ri. It means that we have actually computed a bound for the number
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of solutions in (O∗p)n × (C∗p)m.

4.3 Proof of the main theorem

We can now prove the main theorem of this chapter:

Theorem 4.3.1. Let F be an e�ective family of restricted analytic functions such that

the set of LF -terms is closed under derivation. Let F̃ be the extension of F by all

decomposition functions of elements in F . Assume that F̃ satis�es hypothesis (W).

Then, the theory of Zp,F̃ is e�ectively strongly model-complete in the language LF̃ .

Proof. For this, as we have seen, it is actually su�cent to prove thatWF̃ is an e�ective

Weierstrass system. Let f ∈ W (k)

F̃ ,n
. We have to show that f has an e�ective Weierstrass

bound. We proceed by induction on k and we show that for any f ∈ W (k)

F̃ ,n
, f and each

of its derivatives admit an e�ective Weierstrass bound. The basic step of the induction

is proposition 4.1.2.

So assume that for all n, for all k ≤ m and for all g ∈ W (k)

F̃ ,n
, g and all its derivatives

have an e�ective Weierstrass bound. Let H ∈ W
(m+1)

F̃ ,n
. We want to compute d(H)

(or more generaly, d(G) where G denotes a derivatives of H). By de�nition of the

Weierstrass system generated by the LF̃ -terms, H is a polynomial combination one of

the following possibilities:

(a) h ∈ W (m)

F̃ ,n
. In that case, we can compute d(h) by inductive hypothesis.

(b) There are f ∈ W (m)

F̃ ,n
and a permutation σ such that h(X) = f(Xσ(1), · · · , Xσ(n)).

In that case, we can compute d(f) by inductive hypothesis and d(h) = d(f). The

same holds for any derivative of h.

(c) There is f ∈ W (m)

F̃ ,n
such that f is invertible in Zp{X} and h = f−1. In that case,

d(f) = d(h) = 1. Also, d
(
∂h
∂Xi

)
= d

(
− ∂f
∂Xi

h2
)

= d
(
∂f
∂Xi

)
and similarly for the

higher derivatives.

(d) There are f ∈ W (m)

F̃ ,n
and k ∈ Z such that h = f/k. In that case, we can compute

d(f) by inductive hypothesis and d(h) = d(f). The same holds for any derivative

of h.
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(e) There are f ∈ W (m)

F̃ ,n+1
of order d in Xn+1 and g ∈ W (m)

F̃ ,n+1
such that h is one of the

functions a0, · · · , ad−1 ∈ Zp{X1, · · · , Xn} or Q ∈ Zp{X1, · · · , Xn+1} given by the

Weierstrass division.

In the last case, h (or any of its derivatives) is actually determined by a system

of equations (see claims 2 to 4 in proposition 3.4.1). Let us remark that by in-

ductive hypothesis, we can compute d(f) and d(g). More generally, let h(X) =

P (X, a0(X), · · · , as(X)) where P is any polynomial with coe�cients in Z. Then,

Claim 5. h and all its derivatives have an e�ective Weierstrass bound.

Proof. Let d(h) be the smallest integer like in lemma 4.0.1. We want to compute a

bound of d(h). For this, it is su�cient to bound S(h), the number of roots in Op
of h(Z, y) = P (Z, a0(z, y), · · · , as(z, y), y), for any y ⊂ Zn+k−1

p such that this number

is �nite (where Z = X1 and y denotes now (x2, · · · , xn−1, y1, · · · , yk)). Fix y such

that the number of roots is �nite. Let us remark that z is a solution of h(Z, y) if

z, t0, · · · , ts, a0, · · · as are solutions of the system of equations:

f(t0, z, y) = 0
...

f(ts, z, y) = 0
1 t0 · · · ts0
...

...
...

1 ts · · · tss




a0

...

as

 =


g(t0, y)

...

g(ts, y)


P (z, a0, · · · , as, y) = 0

if ti 6= tj for all i 6= j. To make sure that this last condition is satis�ed, we introduce

the variables tij 0 ≤ i < j ≤ s and add to the system the equations:

tij · (ti − tj)− 1 = 0.

Note that this system has �nitely many solutions in (Op)2s+3 × (Cp)
(s2+s)/2 if h(Z, y)

has �nitely many solutions in Op. By theorem 4.2.3 and the remark after, one can

compute a bound for the number of solutions of the system in (O∗p)2s+3× (C∗p)(s2+s)/2.

It remains to count the number of solutions with at least one zero coordinate.

Clearly, for all z, the ai's are uniquely determined and the tj's are unique up to

permutation. So, the system have less than (s+ 1)! solutions with z = 0.
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We proceed now by induction on the number of non-zero variables ai and tj involved.

If all ai and tj are zeros, let us remark that one of the equations P (z, 0, · · · , 0, y) = 0

or f(0, z, y) = 0 has a �nite number of solutions (otherwise, the system has in�nitely

many solutions). Then, the number of solutions of the system with ai = tj = 0 for all

i, j is no more than the minimum between the (computable) bounds on the number of

solutions of these two equations.

If tj = 0, there is two cases:

1. The equation f(0, Z, y) = 0 has a �nite number of solutions. In this case, there

is a computable bound S(f) of this number (determined by d(f) by Strassmann

theorem). Also, as remarked before, for z �xed, the ai's are uniquely determined

and the ti's are unique up to permutation. So, number of solutions of the system

with tj is no more than S(f) · (s+ 1)! in this case.

2. If the equation f(0, Z, y) = 0 has in�nitely many solutions, then any z ∈ Op is

solution of this equation. So, the number of solutions of our system with tj = 0

is the same that the number of solutions of the subsystem where one removes the

equation f(tj, Z, y) = 0 and �x tj = 0 in the others. This number is computable

by inductive hypothesis and theorem 4.2.3.

As a bound for the number of solutions when tj = 0, we take the maximum of the

bounds obtained in each case.

Similarly, if ai = 0, it means that the function ai(Z, y) vanishes at z.

1. If this function has �nitely many roots, the (�nite) number of solutions of the

system is no more than (s + 1)! times the (�nite) number of solutions of the

system

f(t0, z, y) = · · · = f(ts, z, y) = D ·


g(t0, y)

...

g(ts, y)

 = 0

where D is the ith line of the matrix
1 · · · ts0
...

...

1 · · · tss


−1

.
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The number of roots of this system is computable by inductive hypothesis and

theorem 4.2.3.

2. If ai(z, y) = 0 for all z, one simply removes the equation de�ning ai and �x

ai = 0 in the others. The number of solution of the new system has to be �nite

and we can bound this number by induction.

As a bound for the number of solutions when ai = 0, we take the maximum of the

bounds obtained in each case.

Then, we take the sum of the bounds obtained in each case. It gives us a bound for

the number of solutions of the above system in (Op)2s+3 × (Cp)
(s2+s)/2.

We proceed similarly for the de�nitions of the Weierstrass coe�cients in the cases

where the ti's have multiplicities greater than 1. A bound for d(h) is given by the sum

of the bounds obtained in all possible cases.

Let h′ be a derivative of h. We can compute d(h′) in a similar way using the de�nitions

given in the claims 3 and 4 in proposition 3.4.1.

The cases where h is equal to a function Q like in (e) or one of its derivative is

obtained similarly using systems given in proposition 3.4.1. With the same argument,

we can compute d(H) for a general function inW
(m+1)

F̃ ,n
. Indeed, H is just a polynomial

combination of functions of type (a)-(e) and so is also determined by a system of

equations whose functions (and their derivatives) have an e�ective Weierstrass bound

(see proposition 3.4.1).

4.4 Special case: the p-adic exponential ring

In this section, we will discuss the results of chapter 3 and of section 4.3 of this chapter

in the special case F = {Ep}. In this case, LF is the language Lexp of p-adic exponential

rings.

First, let us remark that the set of LF -terms is closed under derivation. So, the theorem

3.4.2 can be applied: the theory of Zp,F̃ in the language of p-adic exponential rings

expanded by decomposition functions is strongly model-complete.
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However, note that we dont need to add all decomposition functions in the language.

Indeed, let Kn = Qp(βn) as de�ned in chapter 3. As Ep(
∑
xjβ

j
n) =

∏
Ep(xjβ

j
n), it is

su�cient to add the decomposition functions of Ep(xjβ
j
n) for each j, n. Say,

Ep(xβ
j
n) = c̃0,j,n(x) + c̃1,j,n(x)βn + · · ·+ c̃Nn−1,j,n(x)βNn−1

n .

Once again, the functions c̃i,j,n can be obtained as linear combinations of the E(xjβ
j
n)

determined by the relation:(
c̃i,j,n(x)

)
i<Nn

= V −1
(
Ep((β

j
n)σx)

)
σ∈Gal(Kn/Qp)

,

where V is the Vandermonde matrix of the roots of Pβn , the minimal polynomial of

βn over Zp. These are the p-adic versions of the identities cosx = e
√
−1x+e−

√
−1x

2
and

sinx = e
√
−1x−e−

√
−1x

2
√
−1

in the complex �eld.

Note that it may happen that v(det V ) > 0 in the above relation, which is a slight

issue in some of our proofs. For this reason, we will work with the functions ci,j,n :=

c̃i,j,n ·N(det V ), where N = NKn|Qp is the norm from Kn over Qp. The functions ci,j,n

are called trigonometric functions.

We will consider the theory of Zp in the language of rings expanded by the predicates

Pk (k ∈ N), the functions Ep and ci,j,n, n ∈ N, 0 ≤ i, j < Nn. This language will be

denoted by LpEC . Let ZpEC denote the structure with underlying set Zp and natural

interpretations for the symbols in this language. Like in chapter 3, ZpEC is strongly

model-complete. This case was �rst proved by A. Macintyre ([8], unpublished).

It turns out that this model-completeness result is e�ective. For this, by theorem

4.3.1, it is su�cient to show that the set of LpEC-terms satis�es hypothesis (W). We

will give a proof of this fact. This proof is due to A. Macintyre in [8].

First, we prove the following technical lemma:

Lemma 4.4.1. There exist computable functions B(f), C(f) : Zp[x, y]Ep → Q≥0 such

that C(f) 6= 0 and for all f ∈ Z[x, y]Ep, for all λ ∈ Z∗p, for all β ⊂ Zp, if for all k,

v

(
1

λ

1

k!

∂kf

∂xk
(0, β)

)
≥ 0,

then, for all α ∈ Zp, for all k ≥ B(f),

v

(
1

λ

1

k!

∂kf

∂xk
(α, β)

)
≥ k · C(f).
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Remark. In this lemma, we will denote the function Ep by E. Note that we only prove

the case p 6= 2 but it should be obvious how one can compute the functions B and C

in the case p = 2.

Proof. We proceed by induction on dx(f) the degree of f in x (see chapter 2 section

2.2.2).

If dx(f) = 0, we set B(f) = C(f) = 1.

Suppose now dx(f) > 0. Then, by lemma 2.2.6, we can e�ectively construct g such that

dx(g) < dx(f) and dx

(
∂E(−g)f

∂x

)
< dx(f). By inductive hypothesis, we can compute

B(g), C(g), B
(
∂E(−g)f

∂x

)
and C

(
∂E(−g)f

∂x

)
.

(a) We �nd B(E(−g)f), C(E(−g)f) as follows:

Take λ 6= 0 and assume for all k,

v

(
1

λ

1

k!

∂kE(−g)f

∂xk
(0, β)

)
≥ 0.

Then, in particular, for all k,

v

(
1

λ

1

k!

∂k

∂xk

(
∂E(−g)f

∂x

)
(0, β)

)
≥ v

(
1

λ

1

k!

∂k+1E(−g)f

∂xk+1
(0, β)

)
− v(k + 1) ≥ 0.

So, by inductive hypothesis,

v

(
1

λ

1

k!

∂k

∂xk

(
∂E(−g)f

∂x

)
(α, β)

)
≥ k · C

(
∂E(−g)f

∂x

)
,

for all k ≥ B
(
∂E(−g)f

∂x

)
.

It means that

v

(
1

λ

1

(k + 1)!

∂k+1E(−g)f

∂xk+1
(α, β)

)
≥ k.C

(
∂E(−g)f

∂x

)
− v(k + 1)

= (k + 1)

[
k

k + 1
C

(
∂E(−g)f

∂x

)
− v(k + 1)

k + 1

]
.

But, as v(k + 1) ≤ logp(k + 1), v(k+1)
k+1

→ 0 as k → ∞ and k
k+1
≥ 1

2
for all k. So,

we de�ne

C(E(−g)f) =
1

2
C

(
∂E(−g)f

∂x

)
−

logp µ

µ
,

where µ is the least integer such that
logp µ

µ
< 1

2
C
(
∂E(−g)f

∂x

)
. We set

B(E(−g)f) = B

(
∂E(−g)f

∂x

)
+ µ.
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(b) We �nd B(E(g)), C(E(g)) as follows:

First, note that v(E(g(0, y))) = 0 for all y. Therefore, if for all k,

v

(
1

λ

1

k!

∂kE(g(0, y))

∂xk

)
≥ 0,

then v(λ) ≤ 0. So, without loss of generality, we may assume λ = 1.

Let h := E(g). Then,
∂h

∂x
= p

∂g

∂x
h.

And, by induction, we can show that for all k,

1

k!

∂k+1h

∂xk+1
= p

∑
i+j=k

1

i!

∂i+1g

∂xi+1

1

j!

∂jh

∂xj
.

So, for all k,

v

(
1

k!

∂k+1h

∂xk+1

)
≥ 1.

Also, let us remark that if k + 1 ≥ B(g) and (k + 1)C(g) ≥ 1,then

v

(
1

k!

∂k+1g

∂xk+1

)
≥ 1.

So, for all k + 1 ≥ max{B(g), C(g)−1},

v

(
1

k!

∂k+1h

∂xk+1

)
≥ 2.

Let D(g) := max{B(g), C(g)−1} and kn+1 := (n− 1)D(g). By induction, we show

that

Claim 6. For all k + 1 ≥ kn,

v

(
1

k!

∂k+1h

∂xk+1

)
≥ n.

We have already proved the claim for n = 1, 2. So, we assume that the property

is true for all l ≤ n and prove the claim for n+ 1.

Let i+ j = k. It is su�cient to show that

v

(
1

i!

∂i+1g

∂xi+1

1

j!

∂jh

∂xj

)
≥ n.

First, let us remark that if j ≥ kn, the above inequality holds by inductive hy-

pothesis.

In general, if ks ≤ j < ks+1 for some 0 ≤ s < n, then

v

(
1

j!

∂jh

∂xj

)
≥ s.



CHAPTER 4. EFFECTIVE MODEL-COMPLETENESS 69

In this case, we have that k − ks+1 < i ≤ k − ks. So, if k + 1 ≥ kn+1, i + 1 ≥

(kn+1−ks+1) = (n− s)D(g). Therefore, i+ 1 ≥ B(g) and (i+ 1)C(g) ≥ n− s. So,

v

(
1

i!

∂i+1g

∂xi+1

)
≥ n− s.

This proves the claim.

By the claim, for all k + 1 ≥ nD(g),

v

(
1

k!

∂k+1h

∂xk+1

)
≥ n.

So,

v

(
1

k!

∂k+1h

∂xk+1

)
≥ (k + 1)c,

if we �nd n, c such that n ≥ (k + 1)c and (k + 1) ≥ nD(g).

Let c = 1
2
D(g)−1. Then, for all k + 1 ≥ 4D(g), let n = d(k + 1)ce.

We have that (k + 1)c ≤ n ≤ (k + 1)c+ 1. So,

n

k + 1
≤ c+

1

k + 1
≤ 1

2
D(g)−1 +

1

4
D(g)−1 ≤ D(g)−1.

It means that we have found n such that n ≥ (k + 1)c and (k + 1) ≥ nD(g).

So, for all k + 1 ≥ 4D(g),

v

(
1

k!

∂k+1h

∂xk+1

)
≥ (k + 1)c,

which implies

v

(
1

(k + 1)!

∂k+1h

∂xk+1

)
= v

(
1

k!

∂k+1h

∂xk+1

)
− v(k + 1)

≥ (k + 1)c− v(k + 1) = (k + 1)
(
c− v(k + 1)

k + 1

)
≥ (k + 1)

(
c−

logp(k + 1)

k + 1

)
.

Let N be the least integer such that
logp(N+1)

N+1
< c/2. The following functions satisfy

the properties of the lemma:

C(E(g)) := c/2 = 1
4
D(g)−1,

B(E(g)) = N + 4D(g).
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(c) Finally, we �nd B(f), C(f) as follows:

Let us remark that f = E(g) · (E(−g)f). By (a) and (b), we know the functions

B and C relative to E(g) and E(−g)f . This will allow us to compute B(f) and

C(f). By Leibniz's rule,

1

k!

∂kE(−g)f

∂xk
=
∑
i+j=k

[
1

i!

∂iE(−g)

∂xi
1

j!

∂jf

∂xj

]
.

So, assume that for all k,

v

(
1

λ

1

k!

∂kf

∂xk
(0, β)

)
≥ 0.

Then, for all k,

v

(
1

λ

1

k!

∂kE(−g)f

∂xk
(0, β)

)
≥ 0.

We take:

C(f) =
1

2
min{C(E(g)), C(E(−g)f)},

B(f) = 2 max{B(E(g)), B(E(−g)f)}.

Assume k ≥ B(f). By Leibniz's rule again,

1

k!

∂k

∂xk

(
1

λ
f

)
=
∑
i+j=k

[
1

i!

∂iE(g)

∂xi
1

j!

∂j

∂xj

(
1

λ
E(−g)f

)]
.

Fix i, j such that i+ j = k. Then, either i ≥ k/2 ≥ B(f)/2 or j ≥ k/2 ≥ B(f)/2.

In the �rst case, i ≥ B(E(g)). So,

v

(
1

i!

∂iE(g)

∂xi
1

j!

∂j

∂xj

(
1

λ
E(−g)f

))
≥ v

(
1

i!

∂iE(g)

∂xi

)
≥ iC(E(g)) ≥ 2iC(f)

≥ kC(f).

In the second case, j ≥ B(E(−g)f). So,

v

(
1

i!

∂iE(g)

∂xi
1

j!

∂j

∂xj

(
1

λ
E(−g)f

))
≥ v

(
1

j!

∂j

∂xj

(
1

λ
E(−g)f

))
≥ jC(E(−g)f) ≥ 2jC(f)

≥ kC(f).

This completes the proof of the lemma.
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Now, we can prove the existence of an e�ective Weierstrass bound forE-polynomials:

Proposition 4.4.2. There exists a computable function D(f) : Z[x, y]Ep −→ N such

that for all Ep-polynomials f(x, y) ∈ Z[x, y]Ep, if f(x, y) =
∑

i ai(y)xi (where ai(y) ∈

Zp{y}) and

k(y) = max{i | v(ai(y)) = min
j
{v(aj(y))}},

then, for all β, either k(β) =∞ (i.e. f(x, β) is identically zero) or k(β) ≤ D(f).

Proof. Clearly, ai(y) = 1
i!
∂if
∂xi

(0, y). Fix β ∈ Zmp and assume k(β) �nite. Let λ = at(β)

where t is chosen as the maximal index such that the valuation of ai(β) is minimal.

Then, for all i,

v

(
1

λ

1

i!

∂if

∂xi
(0, β)

)
≥ 0.

So, by lemma 4.4.1, for all k ≥ B(f),

v

(
1

λ

1

k!

∂kf

∂xk
(0, β)

)
≥ kC(f) > 1 for k > C(f)−1.

It means that v(ak(β)) > λ for all k > C(f)−1, k ≥ B(f). So, by choice of λ,

k(β) ≤ max{C(f)−1, B(f)}. Take D(f) = max{dC(f)−1e, B(f)}.

Extending this result to general LpEC-terms with one variable X should be obvious

once we have extended lemma 4.4.1. Let us remark that, for all such terms f , there

is a maximal integer such that one of the ci,j,n occurs in the terms. Let θ(f) be this

integer. Then, for all m ≥ θ(f), f de�nes a function from Vm to Vm.

Lemma 4.4.3. There exist computable functions B and C from the set of LpEC-terms

to Q≥0 such that C(f) 6= 0 and for all f(X, Y ), for all m ≥ θ(f), for all λ ∈ V ∗m and

for all α, β ⊂ Vm, if for all k,

v

(
1

λ

1

k!

∂kf

∂xk
(0, β)

)
≥ 0,

then, for all α ∈ Vm, for all k ≥ B(f),

v

(
1

λ

1

k!

∂kf

∂xk
(α, β)

)
≥ k · C(f).

Proof. We reduce this lemma to lemma 4.4.1. Consider a subterm ci,k,n(g) occuring in

f , we want to replace this term by a linear combination of Ep-polynomials. We know

that there exist γ0, · · · , γθ(f)−1 and δ11, · · · , δ(θ(f)−1)(θ(f)−1) in Vθ(f) such that:

ci,k,n(x) =
∑

δijE(γjx).
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We replace the γi and δij by new free variables ti and uij. We substitute the subterm

ci,k,n(g) by the term
∑
uijE(tjg). We carefully replace any occurence of a ci,k,n and

construct an exponential polynomial f+(x, y, t, u). Let us remark that for all α, β ⊂

Vθ(f), we have:

f(α, β) = f+(α, β, γ, δ).

And similarly for all the derivatives (with respect to X). Inspecting the proof of

lemma 4.4.1, one can see that it works uniformly over Vm. The functions B and C are

therefore computable using this latter.

And we can easily extend proposition 4.4.2:

Proposition 4.4.4 (A. Macintyre [8]). There exists a computable function D(f) from

the set of LpEC-terms to N such that for all LpEC-terms f(x, y) (say, f(x, y) =∑
i ai(y)xi where ai(y) ∈ Zp{y}) and

k(y) := max{i | v(ai(y)) = min
j
{v(aj(y))}},

then, for all β, either k(β) =∞ (i.e. f(x, β) is identically zero) or k(β) ≤ D(f).

The above proposition tells us exactly that the set of LpEC-terms satis�es the

hypothesis (W). From this and theorem 4.3.1, it follows

Theorem 4.4.5. The theory of ZpEC in the language LpEC is e�ectively strongly

model-complete.



Chapter 5

Decidability

We are now interested by the decidability of the full theory of Zp,exp. In chapter

4, we have proved that the theory of the corresponding LpEC-structure is e�ectively

model-complete. It implies that the problem of the decidability can be reduced to the

following question: is there an algorithm A which takes for entry an existential LpEC-

sentence and which returns true if this sentence is true in Zp? Let us remark that we do

not require that this algorithm returns false (or stops) if the formula is false. Indeed,

let Ψ be an existential LpEC-sentence. Then, by e�ective model-completeness, we can

compute an existential LpEC-formula ϕ equivalent to ¬Ψ. We can run in parallel the

algorithm A for the sentences Ψ and ϕ. One of the two procedure eventually stops

and returns true. This determines the truth value of our formula Ψ in Zp.

We are now given an existential sentence Ψ in LpEC . It is not hard to see that such a

formula is e�ectively equivalent to a disjunction of formulas of the type:

∃x1 · · · ∃xn f(x) = 0 ∧ g(x) 6= 0,

where f and g are LpEC-terms. Indeed, it is easy to reduce Ψ to a disjunction of

conjunctions of equalities and inequalities. And, because

for all x, y ∈ Zp, (x, y) = (0, 0) i� x2 + py2 = 0,

a system of equalities is equivalent to a single equation. First, we will discuss the

case where f, g are Lexp-terms. We will see later how we can extend our results to the

general case.

Our strategy is very similar to the strategy used for the same problem in the real case

73
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(see [11]). In particular, the use of Newton algorithm is here substituted by Hensel's

lemma:

Let f1, · · · , fn be Lexp-terms with n variables. We can determine if the system (f1, · · · , fn)

has non-singular roots in Znp using the analytic Hensel's lemma 2.1.7. Indeed, assume

that there exists b ∈ Znp such that

f1(b) = · · · = fn(b) = 0 6= det Jf (b),

where Jf denotes the Jacobian of the system f = (f1, · · · , fn). Then, because Z is

dense in Zp, there exists a ∈ Zn such that

det Jf (a) 6= 0 and v(f(a)) > 2 · v(det Jf (a)).

Conversely if such a a ∈ Zn exists, by the analytic Hensel's lemma, our system has a

non-singular solution in Zp. So, the following algorithm stops and returns true if the

formula

∃x1 · · · ∃xn det Jf (x) 6= 0
∧
i

fi(x) = 0

is true in Zp:

Algorithm 1. Let a1, a2, · · · be an enumeration of Zn.

For all i, if

det Jf (ai) 6= 0 and v(f(ai)) > 2 · v(det Jf (ai)),

return true. Otherwise, go to the next step in the enumeration.

Let us note that this procedure runs forever if the system f1, · · · , fn doesn't have

a non-singular solution in Znp .

In the �rst section of this chapter, we will prove that for any Lexp-term g with n

variables, there exists a system f = (f1, · · · , fn) of Lexp-terms such that g has a

solution which is also a non-singular solution of f . As we have seen, the existence of

this latter solution can be checked e�ectively. We will see in section 5.2 that, assuming

a conjecture in transcendence degree theory, it implies the decidability of Zp,exp. We

will discuss a bit more the role of this conjecture in sections 5.2.3 and 5.3: in section

5.3, we will give a weaker conjecture that also implies (and in fact, is equivalent to)

the decidability of our theory. In section 5.2.3, we will see that we can determine the

truth of some sentences with one existential quanti�er unconditionnally.
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5.1 Desingularization of exponential systems

Let F be a subset of Zp{X}. We assume that the set of LF -terms is closed under

derivation. The example that we have in mind is the case where F is the set of

trigonometric functions and Ep.

In this section, we consider a system of equations f = (f1, · · · , fn) where the f ′is are

LF -terms with m variables. Assuming that the above system has a solution in Zp, we

want to show that there exists a system of LF -terms g = (g1, · · · , gm) such that there

is a non-singular zero of the system g which is also a zero of the system f . We will

actually prove the result for all �nite algebraic extensions of Qp. This result is the

p-adic version of theorem 5.1 in [17]. We will work with Noetherian di�erential rings

like in [17]. The outline of the proof is actually the same that in the real case.

Within this section, K will denote a �nite algebraic extension of Qp. The implicit

function theorem will play an important role in our proof. We state now this result in

the p-adic context.

In chapter 2, we have de�ned the di�erential Df(a) of an analytic map. Given

a linear map A between Kn+m and Kn, we can de�ne two linear maps Ax : Kn −→

Kn : h 7−→ A(h, 0) and Ay : Km −→ Kn : k 7−→ A(0, k). Then, A(h, k) = Axh+Ayk.

In the case where A = Df(a) as above, the matrix associated to Ax is the matrix

composed of the partial derivatives with respect to the nth �rst variables. Similarly,

Ay is the matrix composed of the partial derivatives with respect to the mth last

variables.

Using these notations, we state the p-adic analytic implicit function theorem (see [2]

for instance):

Theorem 5.1.1 (Implicit function theorem). Let f : U × V → Km be an analytic

map (where U × V is an open subset of Kn × Km) such that f(a, b) = 0 for some

(a, b) ∈ U × V . Let A = Df(a, b). Assume Ay invertible. Then, there exist U1 ⊂ U

and U2 ⊂ V , both open and containing a and b respectively, such that for all x ∈ U1

there is a unique y ∈ U2 with f(x, y) = 0.

Furthermore, the map g de�ned by g(x) = y from U1 to U2 is analytic and satis�es

g(a) = b, f(x, g(x)) = 0 for all x ∈ U1 and Dg(x) = −A−1
y Ax.
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Let us remark that if the function f and the open sets U, V are de�nable, then so

is the function g. Indeed, we can assume that the Ui's are open balls and the function

g is determined by the relations (x, g(x)) ∈ U1 × U2 and f(x, g(x)) = 0. Also, the

derivatives of g are de�nable via the relation Dg(x) = −A−1
y Ax.

We are now given a system f1, · · · , fn of LF -terms. We �rst observe that such a

system can be reduced to a single equation in K : indeed, as v(OK) = 1
e
Z for some

e ∈ N:

for all x, y ∈ K, (x, y) = (0, 0) i� x2 + πy2 = 0,

where π is an element of minimal positive valuation.

So, we can consider systems with a single LF -term. We view K as a LF -structure

(where f ∈ F is interpreted by the map restricted to the valuation ring, i.e. the

interpretation of f takes value f(x) for x ∈ OK and value 0 for x /∈ OK). We also add

to the language LF symbols for the language of rings and constant symbols for a basis

of K over Qp (such that this basis is also a basis of OK over Zp). We are interested by

the local behaviour of the de�nable analytic maps (especially, in what happens in the

valuation ring). We consider the ring of such maps where we identify two maps which

coincide on a open set i.e. the ring of germs:

De�nition 5.1.2. Given a neighbourhood system N in Kn (i.e. a non-empty collec-

tion of non-empty open LF -de�nable subsets of Kn closed under �nite intersection),

G(n)(N )− is the set of all 〈f, U〉 where U ∈ N and f : U −→ K is a LF -de�nable

function such that f is analytic on U .

We de�ne an equivalence relation on G(n)(N )− by:

〈f1, U1〉 ∼ 〈f2, U2〉 i� f1 and f2 coincide on a neighbourhood i.e. there is U ∈ N such

that U ⊆ U1 ∩ U2 and for all x ∈ U , f1(x) = f2(x). We denote by [f, U ] the class of

〈f, U〉.

The ring of germs is the set G(n)(N ) = G(n)(N )−/∼ equipped with the natural opera-

tions of addition and multiplication.

Let us remark that G(n)(N ) is a unital di�erential ring.

As a special case of neighbourhood system, we have the collection of all de�nable
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open neighbourhoods of a point P . We denote the ring of germs in this case byG(n)(P ).

Let P ∈ K l and Q ∈ Km and let f1, · · · , fm be analytic maps in G(l+m)(P,Q). Let

f = (f1, · · · , fm). Assume that f(P,Q) = 0 and det Jf (P,Q) 6= 0 i.e. fi(P,Q) = 0 for

all i and

det


∂f1
∂xl+1

(P,Q) · · · ∂f1
∂xl+m

(P,Q)
...

...

∂fm
∂xl+1

(P,Q) · · · ∂fm
∂xl+m

(P,Q)

 6= 0,

i.e. fi(P,Q) = 0 for all i and the vectors(
∂f1

∂xl+1

(P,Q), · · · , ∂f1

∂xl+m
(P,Q)

)
, · · · ,

(
∂fm
∂xl+1

(P,Q), · · · , ∂fm
∂xl+m

(P,Q)

)
are K-linearly independent. We denote these vectors by dP,Qfi. By the analytic

implicit function theorem, there are UP ×UQ ⊂ U and Φ′ = (Φl+1, · · · ,Φl+m) analytic

from UP to UQ such that fi(x,Φl+1(x), · · · ,Φl+m(x)) = 0 for all x ∈ UP .

As the fi's and U are de�nable, this guarantees that the map Φ′ is de�nable analytic.

Therefore, Φ′ determines a germ in G(l)(P ).

Let Φ(x) = (Φ1(x), · · · ,Φl+m(x)) where Φi(x) = xi for i ≤ l and Φl+i as above. We

denote the morphism of rings

G(l+m)(P,Q) −→ G(l)(P )

[f, U ] 7−→ [f(Φ), U ]

bŷ. The kernel of this map is the set of germs which vanish (locally) on the set of

zeros of the system (f1, · · · , fm) around (P,Q). In particular, f̂i ≡ 0 (and therefore,

∂f̂i
∂xj
≡ 0) in G(l)(P ).

Lemma 5.1.3. Let f1, · · · , fm, (P,Q) as above. For all g ∈ G(l+m)(P,Q),

dP,Qf1, · · · dP,Qfm, dP,Qg are linearly independent over K i� dP ĝ 6= 0.

The proof is word to word the same that lemma 4.7 in [17].

Proof. Let fm+1 = g. Assume that
∑
aidP,Qfi = 0 with at least one non-zero ai.

Then, as dP,Qf1, · · · , dP,Qfm are K-linearly independent, am+1 6= 0. Also, using the

chain rule, we can deduce the relations:

∂f̂i
∂xj

(P ) =
∑
l

∂fi
∂xl

(P,Q)
∂Φl

∂xj
(P ) (∗).
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But, by de�nition of the map ̂, for i ≤ m, ∂f̂i
∂xj

vanishes on a neighbourhood of P

and therefore using the two above equalities, we �nd:

∂f̂m+1

∂xj
(P ) = a−1

m+1

∑
i≤m+1

ai
∂f̂i
∂xj

(P ) =
∑
l

∂Φl

∂xj
(P )

(∑
i

ai
∂fi
∂xl

(P,Q)

)
= 0,

or equivalently dpĝ = 0.

Conversely, if dP,Qf1, · · · , dP,Qfm+1 are linearly independent. We denote by A the

n × (m + 1) matrix with columns dP,Qfi. Then, by linear independence of the above

vectors, kerA has dimension n− (m + 1) = l − 1. Using, the equality (∗), we deduce

that: (
∂Φ1

∂xj
(P ), · · · , ∂Φn

∂xj
(P )

)
· A =

(
0, · · · , 0, ∂f̂m+1

∂xj
(P )

)
.

Therefore, as by de�nition ∂Φi
∂xj

(P ) = δij (the Kronecker symbol) for all 1 ≤ i, j ≤ l,

the vectors
(
∂Φ1

∂xj
(P ), · · · , ∂Φn

∂xj
(P )
)
for 1 ≤ j ≤ l are linearly independent. So, at least

one of these vectors does not lie in kerA which means that ∂f̂m+1

∂xj
(P ) 6= 0 for some

j ≤ l, i.e. dP ĝ = 0.

We �x now some notations: let f1, · · · , fm : U −→ K be analytic functions (where

U ⊂ Kn open). Then,

V (f1, · · · , fm) = {P ∈ U | f1(P ) = · · · = fm(P ) = 0},

V ns(f1, · · · , fm) = {P ∈ V (f1, · · · , fm) | dPf1, · · · , dPfm are K-linearly independent}.

Proposition 5.1.4. Let P ∈ Kn and let M be a Noetherian subring of G(n)(P )

closed under di�erentiation. Let m ∈ N and [f1, U1], · · · , [fm, Um] ∈ M . Assume

P ∈ V ns(f1, · · · , fm). Then, exactly one of the following is true:

(a) n=m; or,

(b) m<n and for all [h,W ] ∈ M with h(P ) = 0, h vanishes on U ∩ V ns(f1, · · · , fm)

for some U open neighbourhood of P ; or,

(c) m<n and for some [h,W ] ∈M , P ∈ V ns(f1, · · · , fm, h).

Again the proof is similar to the real case [17]. Note that for this proposition,

we need to consider analytic functions in our case (instead of in�nitely di�erentiable

functions in [17]).
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Proof. If m < n, say n = l + m, then the vectors dPf1, · · · , dPfm are linearly in-

dependent. Without loss of generality, we will assume that the matrix A(P ) =(
∂fi
∂xj

(P )
)

1≤i≤m,l+1≤j≤n
is invertible. Let λ be the map x 7−→det A(x). On a neigh-

bourhood U of P , this map is invertible. Let Λ = [λ, U ]. We de�ne M∗ := M [Λ−1].

Assume P = (P1, P2) ∈ K l×m. We de�ne thê-map as before. Then, M̂∗, the image

of M∗ by this map, is Noetherian. And, by the implicit function theorem, we have
∂Φl+1

∂xr
...

∂Φn
∂xr

 = −Λ−1


∂f1
∂xr
...

∂fm
∂xr

 ,

which means that ∂Φi
∂xj
∈M∗. Therefore using the chain rule, we �nd that M̂∗ is closed

under di�erentiation.

Let I = {g ∈ M̂∗ | g(P1) = 0}.

1. If I = {0}. Suppose g = [h,W ] ∈ M and h(P ) = 0. Then, ĝ(P1) = 0 and

therefore ĝ ∈ I i.e. ĝ = 0. By de�nition of the map ̂, it exactly means that

h is vanishing on a neighbourhood of P in V ns(f1, · · · , fm).

2. If I 6= {0}, I is not closed under di�erentiation. Otherwise for all g ∈ I, the

partial derivatives of g vanish at P1. This implies that all the coe�cients of the

power series de�ning g around P are zero and therefore g = 0 in M̂∗. So, there is

g ∈M∗ such that ĝ ∈ I and ∂ĝ
∂xi

/∈ I. It means that ĝ(P1) = 0 (i.e. g(P ) = 0) and

∂ĝ
∂xi

(P1) 6= 0. But, for some integer s, Λsg ∈ M . Let f = Λsg. Then, f(P ) = 0

and
∂f̂

∂xi
(P1) =

(
sΛ̂s−1(P1)

∂Λ̂

∂xi
ĝ(P1)

)
+

(
λ̂s(P1)

∂ĝ

∂xi
(P1)

)
6= 0.

So, dP f̂ 6= 0 and therefore by lemma 5.1.3, P ∈ V ns(f1, · · · , fm, f).

We are now able to state the desingularization theorem:

Let U be an open de�nable neighbourhood of the origin contained in OnK . Then,

{U} forms a neighbourhood system. We denote the correspondent ring of germs by

G(n)(U).

Let us recall that K = Qp(α1, · · · , αs) and that for this choice of α1, · · · , αs,

Z(α1, · · · , αs) is dense in the valuation ring of K.
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Theorem 5.1.5. Let M be a Noetherian subring of G(n)(U) which contains

Z(α)[x1, · · · , xn], is closed under di�erentiation and such that for all g ∈ M , the

germ of g is equivalent to a de�nable analytic function given by a power series with

coe�cients in the valuation ring.

Let f ∈ M . Assume that S is a non-empty de�nable subset of V (f), open in V (f).

Then, there exist f1, · · · , fn ∈M such that S ∩ V ns(f1, · · · , fn) 6= ∅.

Our desingularization result is an immediate corollary of this theorem:

Let f be a LF -term. Then, we apply the above theorem with U = OK , M the ring

generated over Z(α) by the subterms of f and S = V (f). The theorem exactly says

that if V (f) 6= ∅, then there are LF -terms f1, · · · , fn and a ∈ OnK such that

f(a) = f1(a) = · · · = fn(a) = 0 6= det J(f1,··· ,fn)(a).

Proof. First, for all Q ∈ S, we set IQ = {g ∈ M | g(Q) = 0}. As M is Noetherian,

there is some R in S such that IR is maximal within the collection of all IQ. Let

g1, · · · , gN be generators of IR and g =
∑

i π
2(i−1)g2

i (where π is a prime element of K

which can be assumed to be one of the αi). So, g(x) = 0 i� gi(x) = 0 for all i. Then,

R ∈ V (g) ∩ S and for all Q ∈ V (g) ∩ S, IR = IQ.

Choose m maximal such that for some f1, · · · , fm ∈M , R ∈ V ns(f1, · · · , fm).

By contradiction, assume that m < n; say n = m+ l.

Note that up to a Z(α)-linear change of variables, we may assume R as close to the

origin as we will need (more precisely, we need that the neighbourhood WR below

contains the origin). First, we will now prove that V (g) ∩ S and V ns(f1, · · · , fm)

locally coincide.

(a) V (g) ∩ S ⊆ V ns(f1, · · · , fm):

Indeed, R ∈ V ns(f1, · · · , fm). So, fi ∈ IR for all i and det E /∈ IR (where E denotes

the matrix
(
∂fi
∂xj

)
with K-linearly independent vectors). As, for all Q ∈ V (g)∩ S,

IQ = IR, it means that fi ∈ IQ and det E /∈ IQ. So, Q ∈ V ns(f1, · · · , fm).

(b) Let Q ∈ V (g) ∩ S, h ∈M then Q /∈ V ns(f1, · · · , fm, h):

If we assume Q ∈ V ns(f1, · · · , fm, h), arguing like in (a), we would �nd R ∈

V ns(f1, · · · , fm, h) which contradicts the maximality of m.
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(c) For all Q ∈ V (g) ∩ S, there is WQ an open neighbourhood of Q such that WQ ∩

V (g) ∩ S = WQ ∩ V ns(f1, · · · , fm):

By the point (b) and the proposition 5.1.4, the only possibility is that there is W ′

open neighbourhood of Q such that g vanishes onW ′∩V ns(f1, · · · , fm). As f ∈ IR,

it means that V (f) ⊇ V (g) and therefore that f vanishes onW ′∩V ns(f1, · · · , fm).

So,W ′∩V ns(f1, · · · , fm) ⊆ W ′∩V (g)∩V (f). We have that S is open in V (f). So,

for someW ′′ open neighbourhood of Q,W ′′∩S = W ′′∩V (f). TakeWQ = W ′∩W ′′

and we are done.

We are given f1, · · · , fm. Without loss of generality, we may assume that the

matrix ∆ =
(
∂fi
∂xj

)
1≤i≤m;l+1≤j≤n

has non-vanishing determinant at R = (P,Q). Let

Φl+1(x), · · · ,Φn(x) given by the implicit function theorem and let Φi(x) = xi for i ≤ l.

First, let us remark that up to a change of variables, we can assume that Φi(P ) and

∂Φi
∂xj

(P ) (where i > l ≥ j) lies in the maximal ideal MK .

Indeed, by a change of variables of the type (X1, · · · , Xn) 7−→ (X1−N1, · · · , Xn−Nn)

(where Ni ∈ N(α) is a suitable approximation of Pi, Qi), we can assume that the

implicit functions are de�ned on a neighbourhood of 0. This means that we can assume

v(P ) > t and v(Φi(P )) = v(Q) > t (where t could be any nonnegative integer). Also,

we know that for all r ≤ l


∂Φl+1

∂xr
...

∂Φn
∂xr

 (X) = −∆−1


∂f1
∂xr
...

∂fm
∂xr

 (X,Φl+1(X), · · · ,Φn(X)). (5.1)

We consider the change of variables

(X1, · · · , Xl, Xl+1, · · · , Xn) 7−→ (X1, · · · , Xl, Xl+1/π
t, · · · , Xn/π

t).

Denote by f̃ the function obtained after this change of variables. Then, for all i ≤ m,

∂f̃i
∂xj

(P̃ , Q̃) =


∂fi
∂xj

(P,Q) for j ≤ l

π−t ∂fi
∂xj

(P,Q) for l + 1 ≤ j ≤ n,

where (P̃ , Q̃) = (P, πtQ). So, ∆̃(P̃ , Q̃) = 1
πt

∆(P,Q). For t large enough, ∆̃(P̃ , Q̃) has

negative valuation. Therefore, by the relation (5.1),

v

(
∂Φ̃i

∂xj
(P̃ , Q̃)

)
> 0.
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Without loss of generality, we will assume that such a changement has be done and

will denote (P̃ , Q̃) by (P,Q) and similarly for the functions.

Let hN(X) :=
∑

(Xi − Ni)
2 for all N = (N1, · · · , Nn) ∈ Z[α1, · · · , αs]n. We want

to apply Hensel's lemma to the functions
(
∂ĥN
∂X1

, · · · , ∂ĥN
∂Xl

)
.

Our goal is to prove that for a point (P ′, Q′), close enough from (P,Q), the vectors

d(P ′,Q′)f1, · · · , d(P ′,Q′)fm, d(P ′,Q′)hN are linearly dependent. For this, by lemma 5.1.3,

it is su�cient to check that the above partial derivatives vanish at P ′.

We want to prove that if we choose N carefully, for all i, ∂ĥN
∂Xi

(P ) has valuation at

least 2v( det J(P )) + ε + 1 where J is the Jacobian of the system, ε is the radius of

the open set WR given in (c). Then, the analytic Hensel's lemma gives us a root P ′,

ε-close from P .

Claim 7. det J(P ) 6= 0.

Proof. We compute the following derivatives using the chain rule :

gi :=
∂ĥN
∂Xi

(P ) =
∑

1≤k≤n

2 ·
(

Φk(P )−Nk

)∂Φk

∂Xi

(P ).

∂gi
∂Xj

(P ) =
∂2ĥN
∂Xj∂Xi

(P ) =
∑
k

2 ·
(∂Φk

∂Xi

(P ) · ∂Φk

∂Xj

(P )
)

+ 2 ·
(

Φk(P )−Nk

) ∂2Φk

∂Xj∂Xi

(P ).

We want to prove that the Jacobian of g = (g1, · · · gn) is non vanishing at P .

In the above sum, let us denote
∑

k 2 · ∂Φk
∂Xi

(P ) · ∂Φk
∂Xj

(P ) by Bij and the other terms∑
k 2 ·

(
Φk(P ) − Nk

)
∂2Φk

∂Xj∂Xi
(P ) by Cij. Then, let Sl be the permutation group of

{1, · · · , l} and sgn(σ) be the signature of an element σ ∈ Sl. We have:

det Jg(P ) =
∑
σ∈Sl

sgn(σ)
∏

Jiσ(i)

=
∑

sgn(σ)
∏

(Biσ(i) + Ciσ(i))

= det B + (· · · ),

where in the sum (· · · ), each element contains at least one factor of the form(
Φk(P )−Nk

)
.

If det B 6= 0, then, for Nk a suitable approximation of Φk(P ), the valuation of det

Jg(P ) is given by the valuation of det B (let us remark that in this case this valuation
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does not depend on N). And therefore, det Jg(P ) 6= 0.

We remark that for all k ≤ l, ∂Φk
∂Xi
· ∂Φk
∂Xj

= δijk (δ is the Kronecker delta). So, if we

denote by Dij the sum over k > l in Bij/2, we have:
1
2
B = Id+D and

1

2
det B =

∑
σ∈Sr

sgn(σ).
∏(

δiσ(i) +Diσ(i)

)
=
(
det D −

∏
Dii

)
+
∏(

1 +Dii

)
.

Now, assume by contradiction that det B = 0. Let us recall that for all i > l, for

all k,

v

(
∂Φi

∂Xk

(P )

)
> 0 (∗).

Therefore, v(Dii) > 0 and as det B = 0,

v
(
det D −

∏
Dii

)
= v

(∏
(1 +Dii)

)
= 0.

We deduce from these relations that v( det D) = 0. This is a contradiction with (∗).

This completes the proof of the claim.

Now, for Nk ∈ Z[α1, · · · , αs] a suitable approximation of Φk(P ), gi(P ) has valua-

tion at least 2v( det J(P )) + ε + 1 (as we have seen the valuation of J(P ) does not

depend on N in this case). So, by Hensel's lemma, there exists P ′ (ε-close from P )

such that for all i, gi(P
′) = 0 i.e dP ′ĥN = 0.

Let Q′ = (Φl+1(P ′), · · · ,Φn(P ′)). Then, (P ′, Q′) ∈ V ns(f1, · · · , fm) and by lemma

5.1.3, d(P ′,Q′)f1, · · · , d(P ′,Q′)fm, d(P ′,Q′)hN are linearly dependent over K.

But, as (P ′, Q′) is in WR (if we pick ε small enough), we have that (P ′, Q′) ∈

V ns(f1, · · · , fm) ∩ WR ⊆ V (g) ∩ S. Then, by an argument similar to the proof of

(a), d(P,Q)f1, · · · , d(P,Q)fm, d(P,Q)hN are also linearly dependent for all N suitable ap-

proximation of Φ(P ). As d(P,Q)f1, · · · , d(P,Q)fm are linearly independent, it implies

that d(P,Q)hN lies in the linear span of the other vectors.

Let N ′ = (N1, · · · , Ni−1, Ni + pti , Ni+1, · · · , Nn), then N ′ is also a suitable approxima-

tion of Φ(P ) (for all ti large enough) and therefore d(P,Q)hN ′ lies in the same vector

space. But then, (0, · · · , pti , 0, · · · , 0) = (d(P,Q)hN ′−d(P,Q)hN)/2 lies in the linear span

of d(P,Q)f1, · · · , d(P,Q)fm for all i, which contradicts that m < n.
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5.2 Decidability of the existential theory of Zp,exp

In this section, we will give a (conditional) proof of the decidability of the theory

of Zp,exp. We decompose our proof in two steps. First, we will consider the case of

positive existential Lexp-sentences. The algorithm follows the strategy of the real case

with Hensel's lemma playing the role of Newton's algorithm. In this part, our proof

is conditionnal : as for the real case, Schanuel's conjecture is involved and we can

guarantee that our algorithm stops only if the p-adic version of this conjecture is true.

In this part, we will also give an algorithm which takes for entry a general existential

Lexp-sentence and which returns true if this sentence is true in Zp. However, this al-

gorithm does not stop if the sentence is false.

We obtain the decidability of the full theory via the result of e�ective model-completeness

4.4.5 of chapter 4. We will see that the algorithm for the decidability of existential

Lexp-formulas can be extended naturally to formulas in the language LpEC . The main

theorem will therefore follow. In the last part, we will discuss the one variable case. In

this situation, p-adic Schanuel's conjecture is proved. We will see how our above argu-

ments can be adapted to determine whether or not a system of exponential equations

and inequations with one variable has a solution in Zp.

5.2.1 Decidability of positive existential sentences

First, it is easy to see that any existential Lexp-sentence is (e�ectively) equivalent to

a disjunction of sentences of the type:

∃x1 · · · ∃xn
∧
j

Fj(x) = 0 ∧
∧
j

Gj(x) 6= 0,

where Fi and Gj are in Z[x1, · · · , xn, epx1 , · · · , epxn ].

Let us remark that to any such exponential polynomial F corresponds a polynomial

in Z[x1, · · · , x2n]. And conversely, to a polynomial P ∈ Z[x1, · · · , x2n] corresponds a

unique element of Z[x1, · · · , xn, epx1 , · · · , epxn ]. We will denote by FP this exponential

polynomial.

We start with the case where only equalities are involved. Once again, as for all x, y ∈

Zp (x, y) = (0, 0) i� x2 + py2 = 0, we are reduced to the case of a single exponential

polynomial, say FP (x1, · · · , xn). Then, using the desingularization theorem, we can
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almost already determine if FP has a root in Zp:

The idea of the algorithm is the following: if FP admits a root a in Znp , then we know

by the theorem 5.1.5 that there are FP1 , · · · , FPn and b such that FP (b) = 0 and b is

a non-singular zero of the system G = (FP1 , · · · , FPn). Let s = v(detJG(b)). Now,

using Hensel's lemma, non-singular zeros of the system G are determined by zeros in

Z/p2sZ. Therefore, we have that the following procedure stops if the system G has a

zero:

For all tuple of integer t check if the conditions of Hensel's lemma are satis�ed i.e. if

JG(t) 6= 0 and v(G(t)) > 2v(detJG(t)). If yes, the system admits a non-singular zero

around t.

Conversely, if the system admits a non-singular root, such a tuple exists by density

of Z in Zp. This procedure is almost what we need. It just remains to deduce that

FP (b) = 0 from the knowledge that G(b) = 0. This is the case whenever P is in the

ideal generated by P1, · · · , Pn. Indeed, b determines a zero of each Pi:

Pi(b1, · · · , bn, epb1 , · · · , epbn) = 0 i� FPi(b1, · · · , bn) = 0.

The next lemma will give us exactly what we need : up to multiplication by a poly-

nomial Q (such that Q does not vanish at (b1, · · · , bn, epb1 , · · · , epbn)), P is in the ideal

generated by some Q1, · · · , Qn like above.

The key point of this lemma is that we can determine the transcendence degree of

Q(b1, · · · , bn, epb1 , · · · , epbn) over Q. This is where Schanuel's conjecture turns out to

be helpful.

The �rst thing to observe is that as b is a non-singular zero of the system G, we

certainly have that

trdegQQ(b1, · · · , bn, epb1 , · · · , epbn) ≤ n.

We actually need equality which can be obtained using a p-adic version of Schanuel's

conjecture:

Conjecture (p-adic Schanuel's Conjecture). Let n ≥ 1 and t1, · · · , tn in Cp (with

valuation at least 1/(p− 1)) linearly independent over Q.

Then, the �eld Q(t1, · · · , tn, et1 , · · · , etn) has transcendence degree at least n over Q.

Using the p-adic version of Schanuel's conjecture, like in [11], we can prove:
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Lemma 5.2.1. Let n ≥ 1, P ∈ Z[x1, · · · , x2n].

Assume that FP = P (x1, · · · , xn, epx1 , · · · , epxn) has a zero and that for all zeros a of

FP , its components a1, · · · , an are Q-linearly independent.

Then, there exist b1, · · · , bn ∈ Zp and Q,Q1, · · · , Qn, S1, · · ·Sn ∈ Z[x1, · · · , x2n] such

that b is a zero of FP and a non-singular zero of G = (FQ1 , · · · , FQn), that FQ(b) 6= 0

and that QP =
∑

iQiSi.

This lemma guarantees the existence of a system such that the non-singular zeros

of this system are roots of FP .

Proof. Let P1, · · · , Pn given by theorem 5.1.5 and b ∈ V (FP ) ∩ V ns(FP1 , · · · , FPn).

By the above discussion, the transcendence degree of Q(b1, · · · , bn, epb1 , · · · , epbn) over

Q is exactly n. We apply the following claim with m = 2n, r = n and

I = {h ∈ Z[x1, · · · , x2n] | h(b1, · · · , bn,pb1 , · · · , epbn) = 0}:

Claim 8. Let m, r ≥ 1, I prime ideal of Z[x1, · · · , xm] with I ∩ Z = {0} and

trdegQ Frac (Z[x1, · · · , xm]/I) = r.

Then, there is Q ∈ Z[x] with Q /∈ I such that QI is generated by m− r elements.

As trdeg Frac(Z[x]/I) = trdegQQ(b1, · · · , bnEp(b1), · · · , Ep(bn)) = n by Schanuel's

conjecture, we can apply the claim.

Let Q1, · · · , Qn be generators of QI. Then, the properties of the lemma are satis�ed

except that b may be a singular zero of our system. But, as Pi ∈ I, QPi =
∑
SijQj

for some Sij ∈ Z[x]. Using the chain rule on this relation, we �nd that

FQ(b) · ∂FPi
∂xj

(b) =
∑
k

FSik(b)
∂FQk
∂xj

(b).

As FQ(b) 6= 0, we deduce that b is a non-singular zero of G.

We will now discuss the e�ectivity of some basic computations that will occur in

our algorithm.

The �rst issue is to compute the valuation of an exponential polynomial evaluated at

a given integer.

Let f ∈ Z[x1, · · ·xn, epx1 , · · · , epxn ] and a tuple of integer t. Then, we are able to

determine if f(t) = 0 and compute the valuation of f(t):

Let us remark that we can assume that f(t) is a �nite sum of the form

f(t) = s
∑

aie
pi
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where the ai's are integer and s ∈ Z∗p. As, ep is transcendental over Q, f(t) = 0 i�

ai = 0 for all i. If this is not the case, using the Taylor expansion, we can determine

the remainder of f(t) modulo pn for all n. The valuation is determined by the smallest

n such that f(t) 6≡ 0 mod pn.

The last issue to solve is the condition that the non-singular zero b should not be a

zero of the function FQ given in the lemma 5.2.1. In fact, as FQ has no root in a

neighbourhood of b, it is su�cient to be able to check that FQ has no root in a given

open set. This recursive procedure will also be useful when we will consider general

existential sentences.

Lemma 5.2.2. Let U = a + ptZnp be an open set (where a ∈ Zn, t ∈ N) and let

g = (g1, · · · , gk) be k exponential functions. Then, there is a recursive procedure which

returns yes if there is no zero of g inside U .

Proof. We just have to check that the valuation of g is bounded on U .

Let us remark that if there is y ∈ U such that g(y) = 0, then for all s ≥ t, there are

b0i, · · · , bsi ∈ {0, · · · , p− 1}, i ≤ n such that

ai ≡
∑
j

bjip
j mod pt and g

(∑
bj1p

j, · · · ,
∑

bjkp
j
)
≡ 0 mod ps+1.

Actually, the bji's are the digits of bi a suitable approximation of yi.

So, the converse states that: if there is s ≥ t such that for all b0i, · · · , bsi ∈ {0, · · · , p−1}

such that for all i ≤ n

ai ≡
∑
j

bjip
j mod pt,

we have

g

(∑
j

bj1p
j, · · · ,

∑
j

bjkp
j

)
6≡ 0 mod ps+1,

then, there is no y ∈ U such that g(y) = 0.

But these last conditions are recursively enumerable. The following algorithm does

the job:

Algorithm 2. Given U = a+ ptZnp , g = (g1, · · · , gk).

Proceed to an enumeration of all s ∈ N, s ≥ t. Check if for all b1, · · · , bn ∈ Z/psZ

with v(a − b) ≥ t, gi(b) 6≡ 0 mod ps+1 for all i. If yes, return true. Otherwise go to

the next step.
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This completes the proof of the lemma.

Let us remark that this algorithm never stops if the system has a root in U . In our

situation, it does not matter. Indeed, we are guaranteed that FQ has no such a root

for a suitable U .

Proposition 5.2.3. If Schanuel's conjecture is true, the positive existential theory of

the structure (Zp,+, ·, 0, 1, Ep) is decidable.

Proof. Let ϕ be a positive existential sentence of our theory. Without loss of generality,

we can assume that

ϕ ≡ ∃x1 · · ·xnFp(x) = 0

for some P ∈ Z[X1, · · · , X2n].

First, we give an algorithm that returns true if the sentence is satis�ed (and never stop

otherwise). We are given FP and we want to know if this function admits a solution

in Znp . Assume that this is the case. Then, lemma 5.2.1 gives us the existence of

exponential polynomial functions G = (FQ1 , · · · , FQn) such that any non-singular zero

of G is a zero of FP . So, proceed to an enumeration over all possible system G and

polynomials Q, Sij like in the lemma. Using Hensel's lemma, we can determine if G

has a non-singular root in an open U . If our sentence is satis�ed, there exists such an

open set U which contains a solution of G and does not contain a root of FQ. So, we

proceed to an enumeration of all open set of the type U = a+ptZnp for all a ∈ Nn, t ∈ N

and on each such a set we check if the conditions of Hensel's lemma are satis�ed for

some tuple in U and if FQ has no root in U (via lemma 5.2.2).

We give now the algorithm. If Schanuel's conjecture is true, this algorithm returns

true whenever FP has at least one root in Znp and the components of any of its roots

are linearly independent. If these conditions are not satis�ed, this algorithm may run

forever.

Algorithm 3. Given n ≥ 1, P ∈ Z[x1, · · · , x2n].

Proceed to an enumeration of Q,Q1, · · · , Qn, S1, · · · , Sn ∈ Z[x1, · · · , x2n]

and all a1, · · · , an, t, s ∈ N, s ≥ t

Given such a 3n + 3-uple, �rst check if QP =
∑
QiSi. If not go to the next step (of

the enumeration).
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Otherwise, check if

det

(
∂FQi
∂xj

)
(a) 6= 0,

and if

v(FQi)(a) > v
(
det

(
∂FQi
∂xj

)
(a)
)

+ t.

If not, go to the next step.

If this is the case (there is a root of the system G in U := a + ptZnp), for all bij ∈

{0, · · · , p − 1}, where 0 ≤ j ≤ s, 1 ≤ i ≤ n, let bi =
∑
bijp

j check if whenever

v(b− a) ≥ t, we have

FQ(b) 6≡ 0 mod ps+1.

If yes (FQ does not admit root in U), return true. Otherwise, go to the next step.

Finally, let us recall that in the above algorithm, we need to assume that the com-

ponents of any root of FP are linearly independent. But, without loss of generality,

we can assume that this is the case:

Indeed, let FP be an exponential polynomial. We proceed to an enumeration over all

possible relations of Z-linear dependence between the variables and we run in parallel

the following procedure:

For each relation, we remove one of the variable according to this relation. Let F̃P be

the exponential polynomial obtained after this transformation. We remark that F̃P

has a root i� FP has a root that satis�es the Z-linear relation used to construct F̃P .

We apply the algorithm 3 with entry F̃P . If the components of any root of F̃P are

linearly independent, then algorithm 3 returns true (in the case where F̃P has a root)

and the truth of our formula is determined. If F̃P has a root with components linearly

dependent, we restart the procedure with FP := F̃P .

This procedure stops and returns true in the case where FP has a root in Zp.

Now, we can determine the truth of a positive existential sentence : we run in

parallel the algorithm 2 and algorithm 3 with entries P . If FP has no root in Znp , the

algorithm 2 stops and we return false. If not, then FP has a root and algorithm 3

stops, in which case, we return true.

Remark. It is not hard to see that the algorithms 2 and 3 can be adapted to determine

the truth of positive existential sentences in (OKN ,+, ·, 0, 1, Ep) where (KN) is the
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family of algebraic extensions de�ned in chapter 3 section 3.3.

Let us also remark that the algorithm 3 can be easily modi�ed to take as entries

general existential sentences. Indeed, such a sentence has the form

∃x1 · · · ∃xnFP (x) = 0 ∧
∧
j

FRj(x) 6= 0.

Therefore, we just have to check that FRj has no root in U (exactly like we did for

FQ). However, it is not clear that we can �nd a procedure that stops if such a sentence

is false. This can be reduced to the following question: is there a procedure that stops

if V (FP ) ⊆ V (FR1 , · · · , FRs)? If n = 1, we can actually solve this problem. This will

be developped in the last part of this section. It is not obvious that the one variable

strategy can be adapted for n greater than one. In order to avoid this issue, we extend

proposition 5.2.3 to the language LpEC and use the e�ective model-completeness of the

theory. The decidability of the full theory is then clear: apply the above procedure in

parallel for the sentence and (the existential sentence equivalent to) its negation. One

of the two procedure has to stop and therefore determines the truth of the sentence in

Zp.

5.2.2 Decidability of the LpEC-sentences

First, we recall the notations of chapter 4 section 4.4: let Kn = Qp(βn) as de�ned

in this part. Let dn be the degree of the extension. As we know, the trigonometric

functions ci,j,n can be obtained as a polynomial combination of the functions epx(βin)σ

(where σ ∈ Gal(Kn/Qp)) via the relations:
c0,i,n(x)

...

cdn−1,i,n(x)

 = NKn|Qp(det V ) · V −1
(
epx(βin)σ

)
σ∈Gal(Kn/Qp)

,

where V is the Vandermonde matrix of the roots of Pβn , the minimal polynomial of

βn over Zp.

Let ϕ be an existential LpEC-sentence with n quanti�ers. Then, there is N such that

any term of the formula has the form

f(x) = P (x, epx, c0,1,N(x), · · · , cdN−1,dN−1,N(x)) =: FP (x)
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for some P (x, y0, · · · , yLN ) ∈ Z[x, y0, · · · , yLN ] (where LN = d2
N − dN). Let us remark

that the ring generated by the exponential and trigonometric functions is closed under

derivation. Therefore, we can apply theorem 5.1.5:

Let f be a LpEC-term. Assume that V (f) 6= ∅. Then, there exist Q1, · · · , Qn ∈

Z[x, y0, · · · , yLN ] such that V ns(FQ1 , · · ·FQn)∩V (f) 6= ∅. This implies that there is a

root a of f such that:

trdegQQ(a1, · · · , an, epa1 , · · · , epan , c0,1,dN (a1), · · · , cdN−1,dN−1,N(an))

= trdegQQ(a1, · · · , an, epa1 , · · · , epan , epa1βN · · · , epanβ
dN−1

N ) ≤ dN · n.

Let us remark that 1, βN , · · · , βdN−1
N are Qp-linearly independent. Using Schanuel's

conjecture (in Cp), we �nd that the above relation is actually an equality (if a1, · · · , an
are Q-linearly independent). With this, we prove as before:

Lemma 5.2.4. Let n ≥ 1, P ∈ Z[X,Y 0, · · · , Y LN ].

Assume that FP = P (x1, · · · , xn, epx1 , · · · , epxn , c0,1,N(x1), · · · , cN,dN−1,dN−1(xn)) has a

zero in Zp and that the components of any zero of FP are Q-linearly independent.

Then, there exist a1, · · · , an ∈ Zp and R,R1, · · · , RTN , S1, · · ·STN ∈ Z[X,Y 0, · · · , Y LN ]

(where TN = (LN − dN + 2) · n) such that a is a zero of FP and a non-singular zero of

a subsystem of G = (FR1 , · · · , FRTN ), that FR(a) 6= 0 and that RP =
∑

iRiSi.

Proof. We apply claim 8 with

I = {h ∈ Z[X,Y 0, · · · , Y LN ] | h(a,Ep(a), c0,1,N(a), · · · , cdN−1,dN−1,N(a)) = 0},

m = (L2
N + 2) · n and r = dN · n. Then, by the claim, there exist R 6∈ I, R1, · · · , RTN

generators of RI (where TN = m− r) and S1, · · · , STN such that RP =
∑
RiSi. Also,

as Qi ∈ I for all i, like in lemma 5.2.1, it implies that a ∈ V ns(FR̃1
, · · · , FR̃n) for some

R̃1 · · · , R̃n ∈ {R1, · · · , RTN}.

If we are given ϕ an existential LpEC-sentence of the form:

∃x1, · · · , xnFP (x) = 0 ∧
∧
i

FAi(x) 6= 0,

it is quite easy to adapt the algorithm 3 to construct an algorithm that returns yes if

the sentence is true in Zp (and never stops otherwise):

1. Enumerate all R,R1, · · · , RTN , S1, · · ·STN and B = a+ pkZnp .
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2. If RP =
∑
RiSi, check if a subsystem R̃1 · · · , R̃n has a unique non-singular root

in B using Hensel's lemma.

3. If this is the case, use the algorithm 3 to determine if the following formula is

true in VN :

∃x x ∈ B ∧ x ∈ V ns(R̃1 · · · , R̃n) ∧ x ∈ V (R1, · · · , RTN ).

We use the version of algorithm 3 for formulas inKN and in the above formula, we

replace the trigonometric functions by their polynomial expression in exponential

terms. Note that this procedure never stops if the above formula is false but it

doesn't matter.

4. If the above formula is true, then the system R1, · · · , RTN has a root in Znp ∩B.

So, FP has a root in Znp ∩ B. It remains to check that FAi and FR have no root

in B. If this is the case, ϕ is true.

Now, we use e�ectivity of the theorem 4.4.5 to obtain a sentence ψ equivalent to the

negation of the sentence ϕ. Surely, our algorithm stops either for ϕ or ψ. We can

therefore determine the truth value of ϕ in Zp by running in parallel the algorithm for

ϕ and ψ.

The main theorem follows:

Theorem 5.2.5. Assume that the p-adic version of Schanuel's conjecture holds. Then,

the theory of ZpEC in the language LpEC is decidable.

Also, by the remark after proposition 5.2.3, it is not hard to extend the above

theorem to �nite algebraic extensions.

5.2.3 One variable case

In this section, we prove that we can e�ectively determine the truth of formulas of the

type: ∃xP (x, epx) = 0∧Q(x, epx) 6= 0, where P,Q are polynomials with coe�cients in

Z, without assuming Schanuel's conjecture.

Proposition 5.2.6. Given f1, · · · , ft, g1, · · · , gs ∈ Z[x, epx], the truth of the formula

∃x ∧i fi(x) = 0 ∧k gk(x, epx) 6= 0 is decidable in Zp.
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As usual, we reduce the above proposition to the case s = t = 1.

Let us remark that for a formula of the type ∃xP (x, epx) = 0, the algorithms 2 and

3 determine the truth of this formula. Here is the complete algorithm for the one-

variable case. More precisely, the next algorithm determines the truth of the formula

∃x ∈ U P (x, epx) = 0 in Zp where U is an open ball.

Algorithm 4. Given P ∈ Z[x, y], U = a+ pnZp.

Proceed to an enumeration of R,Q, S ∈ Z[x, y] and t,m ∈ N,m ≥ n with v(a− t) ≥ n

Given such a tuple, check if for all bj ∈ {0, · · · , p − 1}, 0 ≤ j ≤ m, such that

v(a−
∑
bjp

j) ≥ n, we have

FP

(∑
bip

i
)
6≡ 0 mod pm+1.

If yes (FP does not a admit root in U), return false.

If not, check if RP =
∑
QS. If not go to the next step.

Otherwise, check if:

F ′Q(t) 6= 0

and if

v(FQ(t)) > 2 · v(F ′Q(t)) + n.

If this is not the case, go to the next step.

If yes (there is a root of FQ in U), check if for all bj ∈ {0, · · · , p − 1}, 0 ≤ j ≤ m,

with v(t−
∑
bjp

j) ≥ v(F ′Q(t)) + n we have

FR

(∑
bip

i
)
6≡ 0 mod pm+1.

If yes (the root of FQ found using Hensel's lemma is not a root of FR), return true.

Otherwise, go to the next step.

Let us remark that in the one variable case, (the complex) Schanuel's conjecture

is a theorem of C. Hermite. A p-adic version of this theorem has been proven by K.

Malher in [12]. So, the above algorithm will stop if FP has a solution in U . For the

general situation, we have to consider inequalities. However, we don't want to use

the theorem 4.4.5. Indeed, the existential sentence equivalent to the negation of our

sentence may have more than one quanti�er and therefore it would require Schanuel's

conjecture to determine if this negation is true in Zp. As we have stated before, it is
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su�cient to determine e�ectively if V (FP ) ⊆ V (FQ).

We know that any non-zero analytic function h (from Zp to itself) has only �nitely

many roots in Zp. Also, if h has a non-singular root a, then by Hensel's lemma, there

is t ∈ Z such that v(h(t)) > 2v(h′(t)) and furthermore, a is the unique root such that

v(a− t) > v(h′(t)). The idea is now to prove that for all roots a in a open set U , we

can recursively determine an open subset V of U such that a is the unique root of h

in V . In fact, we will construct recursively a partition {Ui} of U such that on each

element Ui of the partition either our function has a unique root in Ui or the function

has no root in Ui. Before writing down the algorithm, we recall that if we are given

f, g two E-polynomials then they have a common root in U i� f 2 + pg2 has a root in

U . So, we can determine if a system of equations with one variable has a common root

using algorithm 4. Our algorithm asks as entries FP , U as before and {U1, · · · , Us} a

collection of disjoint open sets contained in U such that FP has at most one root in

Ui. We allow s = 0. The algorithm returns a partition {U1, · · · , UN} of U with the

above properties.

Algorithm 5. We are given P ∈ Z[x, y], U = a + pnZp and {U1, · · · , Us} disjoint

open sets satisfying our condition.

If U =
⋃
i Ui, return {U1, · · · , Us}. Otherwise, let U ′ = U \ (

⋃
i Ui).

Proceed to an enumeration of all t ∈ U ′ ∩ Z and all n, l ∈ N.

Let ε = maxk≤l+1{v(F
(k)
P (t)), n}.

If ε = +∞, go to the next step of the enumeration.

Let Us+1 be the open ball of centre t and radius p−ε.

Check if one of the following conditions is true running algorithm 4 in parallel with

the enumeration of the t, n, l's:

(a) FP has no root in Us+1; or,

(b) The system (FP , F
′
P , · · · , F

(l)
P ) admits a root in Us+1, the system (FP , F

′
P , · · · , F

(l+1)
P )

has no root in Us+1 (i.e. FP has a root of order l in Us+1) and v(F
(l)
P (t)) >

2v(F
(l+1)
P (t)) (the root is unique).

If for Us+1 either (a) or (b) is satis�ed, apply algorithm 5 with entries FP , U and

{U1, · · · , Us+1}. Otherwise go to the next step.
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As FP has only �nitely many roots and by compactness of Zp, the algorithm stops.

Indeed, for Us+1 su�ciently small, if condition (a) does not hold, this open set contains

a unique root of FP :

Claim 9. If condition (b) is satis�ed, then FP has a unique root in Us+1.

Proof. Surely, by (b), FP admits a root of order l. And, if FP admits another root in

Us+1, the root has order strictly less than l. Indeed, the system (FP , F
′
P , · · · , F

(l+1)
P )

does not have a root in Us+1 by (b). And, by Hensel's lemma, F
(l)
P admits a unique

root a in Us+1. Let b be another root of FP of order k < l (assume k maximal for this

property). Then, by Hensel's lemma, F
(k)
P admits a unique root in the ball of centre

b and radius v(F
(k+1)
P (b)) (by maximality of k, this radius is �nite). Now, for t like in

the above algorithm, we have v(t− b) > ε. And so, by de�nition of ε (and because FP

is analytic),

v(F
(k)
P (b)− F (k)

P (t)) > ε ≥ v(F
(k)
P (t)).

Which means that v(F
(k)
P (b)) = v(F

(k)
P (t)). But, then,

v(a− b) ≥ min{v(a− t), v(b− t)} > ε ≥ v(F
(k)
P (t)) = v(F

(k)
P (b)).

As F
(k)
P (a) = 0, by uniqueness of b, a = b.

Finally, we give the algorithm that determines the truth value of the formula ϕ ≡

∃xFP (x) = 0 ∧ FQ(x) 6= 0. The idea is to split , using algorithm 5, Zp into open sets

such that on each such an open set U either

� FP (x) has no root in U ; or,

� FP admits a root in U and FQ has no root in U ; or,

� FP and FQ have both a unique root in U .

In the two �rst cases, the local truth of the formula ϕ is obvious. In the last case, our

formula is true if the system (FP , FQ) has no root in U (by uniqueness of the roots).

This problem is solved by algorithm 4. Also, it is clear how we can extract the truth

of the formula if we can determine its local truth.

Algorithm 6. Let U1, · · · , UN be the open sets returned by the algorithm 5 applied

with P,Zp and s = 0.
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Let V1i, · · · , VMi,i be the open sets returned by the algorithm 5 applied with Q,Ui and

s = 0.

Let V = {V1, · · · , VM} be the partition of Zp by the Vij's.

For all 1 ≤ i ≤M , remove from V the set Vi if FP has no root in Vi.

If V is now empty, return false.

Otherwise, if there is Vi ∈ V such that FQ has no root in Vi, return true.

Otherwise, for all i:

Check using algorithm 4 if the system (FP , FQ) has a no solution in Vi.

If this is the case (the unique solution of FP in Vi is di�erent from the unique solution

of FQ in Vi), return true. Otherwise, remove Vi from V.

If V is now empty, return false.

This completes the proof of the proposition.

5.3 Weak Schanuel's conjecture

As we have seen, the decidability of the p-adic exponential ring is settled if Schanuel's

conjecture is true. In this section, we introduce a weaker conjecture that also implies

(and actually is equivalent to) the decidability.

In this section, we will denote by Pn the set of LpEC-terms with n variables.

Conjecture 5.3.1. There is F : P2n
n −→ Q>0 computable such that for all f1, · · · , fn,

g1, · · · , gn ∈ Pn, for all α ∈ V ns(f1, · · · , fn) and for all β ∈ V ns(g1, · · · , gn), either

α = β or |α− β|p ≥ F (f1, · · · , fn, g1, · · · , gn).

Note that if the theory of the p-adic exponential rings (with the trigonometric func-

tions) is decidable then the conjecture is true. In particular, the p-adic Schanuel's con-

jecture implies conjecture 5.3.1. Indeed, as both V ns(f1, · · · , fn) and V ns(g1, · · · , gn)

are �nite, there exists k ∈ N such that either α = β or v(α − β) ≤ k. Enumerate all

k ∈ N and test the truth value of the formula Ψk in Zp where

Ψk ≡ ∀x, y
(
x ∈ V ns(f1, · · · , fn) ∧ y ∈ V ns(g1, · · · , gn) ∧ x 6= y

)
−→ v(x− y) ≤ k.

De�ne F (f1, · · · , fn, g1, · · · , gn) as p−N where N is the smallest integer such that ΨN

is true. On the other hand,
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Proposition 5.3.2. If conjecture 5.3.1 is true, then ZpEC is decidable.

Proof. Let Ψ be a formula of the type ∃xg(x) = 0 ∧ h(x) 6= 0. As ZpEC is e�ectively

model-complete, it is su�cient to �nd an algorithm that stops if the formula is true

(and may run forever otherwise). We proceed to an enumeration of all open sets

B = a + pkZnp where a ∈ Nn and k ∈ N. For any such an open set B, we have a

procedure that stops if for all x ∈ B, h(x) 6= 0. Let B = a+ pRZnp be an open set with

this property. It is su�cient to �nd an algorithm that returns true if there is β ∈ B

such that g(β) = 0.

Assume that such a β exists. Then, by theorem 5.1.5, there exists g1, · · · , gn ∈ Pn such

that V (g)∩V ns(g1, · · · , gn)∩B 6= ∅. We proceed to an enumeration of all f1, · · · , fn ∈

Pn. Assume that at some step of the enumeration, we have found f1, · · · , fn such that

there exists α ∈ V (g) ∩ V ns(f1, · · · , fn) ∩ B (eventually, we will �nd such a system).

We give now a recursive condition that will implies the existence of α. Let us remark

that

(a1) either ∂g(α) :=
(
∂g
∂x1
, · · · , ∂g

∂xn

)
(α) 6= 0;

(b1) or, ∂g(α) :=
(
∂g
∂x1
, · · · , ∂g

∂xn

)
(α) = 0

If (a1) holds, there are λ1(α), · · · , λn(α) ∈ Qp not all zeros such that

∂g(α) =
∑
i

λi(α)∂fi(α).

Without loss of generality, we can assume that λ1(α) 6= 0. Then,

∣∣∣∣∣∣∣∣∣∣∣∣

∂g
∂x1

(α) · · · ∂g
∂xn

(α)

∂f2
∂x1

(α) · · · ∂f2
∂xn

(α)
...

...

∂fn
∂x1

(α) · · · ∂fn
∂xn

(α)

∣∣∣∣∣∣∣∣∣∣∣∣
= λ1(α)

∣∣∣∣∣∣∣∣∣
∂f1
∂x1

(α) · · · ∂f1
∂xn

(α)
...

...

∂fn
∂x1

(α) · · · ∂fn
∂xn

(α)

∣∣∣∣∣∣∣∣∣ 6= 0

Therefore, α ∈ V ns(g, f2, · · · , fn) ∩ B. Using algorithm 1, we can check the existence

of a non-singular solution of the system (g, f2, · · · , fn) in B. Surely, if this the case,

then our formula is satis�ed in Zp. And if our formula is satis�ed, then this system

has a non-singular solution in B whenever (a1) is true.

Now, assume that (b1) holds. For all i, let gi(α) := ∂g
∂xi

(α) = 0. Again, we have

two possibilities for each i:
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(a2) either ∂gi(α) =
(
∂gi
∂x1
, · · · , ∂gi

∂xn

)
(α) 6= 0;

(b2) or, ∂gi(α) =
(
∂gi
∂x1
, · · · , ∂gi

∂xn

)
(α) = 0

If (a2) is satis�ed for some i, as before α ∈ V ns(f1, · · · , fj−1, gi, · · · , fn) for some j.

Also, note that (g + gi)(α) = 0 6= ∂(g+gi)
∂xk

(α) = ∂gi
∂xk

(α) for some k. Then, as above,

α ∈ V ns(f1, · · · , fj′−1, g + gi, · · · , fn) for some j′.

Let h(1) = (h1, · · · , hn) := (f1, · · · , fj−1, gi, · · · , fn) and

h(2) = (h̃1, · · · , h̃n) := (f1, · · · , fj′−1, g + gi, · · · , fn).

Let us recall that for all ε, for all γ1 ∈ V ns(h1, · · · , hn) ∩B and

for all γ2 ∈ V ns(h̃1, · · · , h̃n) ∩B, there exist t1, t2 ∈ Zn such that

v(ti − γi) > ε+ v(det Jh(i)(ti)) +R

and that by Hensel's lemma the existence of such a ti with

v(h(i)(ti)) > 2v(det Jh(i)(ti)) + ε+R

implies the existence of the root γi in B. Also, if we enumerate all tuple in Zn ∩ B,

we can �nd e�ectively such tuples t1, t2.

So, we can �nd t1, t2 like above for ε := F (h1, · · · , hn, h̃1, · · · , h̃n) + 1 where F is the

function in conjecture 5.3.1.

Now, if v(t1 − t2) > ε, then γ1 = γ2. So, we can check e�ectively the existence of a

tuple

γ ∈ V ns(f1, · · · , fj−1, gi, · · · , fn) ∩ V ns(f1, · · · , fj′−1, g + gi, · · · , fn) ∩B.

Let us remark that if γ is any point in this intersection, then g(γ) = g(γ) + gi(γ) = 0

and therefore our formula is true in Zp. As we have seen, such a point exists if Ψ is

true in B and under the conditions (b1) and (a2).

If (b2) is satis�ed for all i, we keep going this procedure inductively.

Assume that (b2), · · · , (bk) are satis�ed for all indexes at each step. Then, for each

I = (i1, · · · , ik), gI := ∂Ig
∂xI

(α) = 0.

We have two possibilities for all I:

(ak+1) either ∂gI(α) =
(
∂gI
∂x1
, · · · , ∂gI

∂xn

)
(α) 6= 0;
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(bk+1) or, ∂gI(α) =
(
∂gI
∂x1
, · · · , ∂gI

∂xn

)
(α) = 0

If (an+1) is satis�ed for some index I, we can check that our formula is true in Zp
like for the case (a2).

If (bn+1) is satis�ed for all I, we go to the next step of the induction.

Finally, let us recall that we can �nd recursively an integer d such that if for all

|I| < d, ∂Ig
∂xI

(α) = 0, then g ≡ 0 (see proposition 4.4.4). So, for |I| large enough, the

case (b|I|) never occurs (unless g ≡ 0 in which case, checking the truth of the formula

is trivial) and our procedure stops (if α exists).



Chapter 6

Decidability of Op,exp

Let Ep be the exponential function as before. Then, Ep can be extended canonically

to an exponential function on the valuation ring of the algebraic closure of Qp and on

Op. We have seen that the theory of the structure Zp,exp (or any of its �nite algebraic

extensions) is decidable if Schanuel's conjecture is true. One may ask if the same

holds for the theory of the structure with underlying set Op in the language of valued

exponential rings. We denote this latter structure by Op,exp. The main theorem of this

chapter is:

Theorem 6.0.1. If the p-adic Schanuel's conjecture is true, then the theory of Op,exp
is decidable.

The strategy is the same that for Zp,exp: First, we prove a result of e�ective model-

completeness. Then, we show (assuming Schanuel's conjecture) that the existential

part of the theory is decidable.

The result of model-completeness also relies on a result of quanti�er elimination in the

language with full (restricted) analytic structure. The result in this case is due to L.

Lipshitz [7]. It turns out to be more complicated that the case Zp,an (the main reason

being that Op is not locally compact). Indeed, we need to add all functions in the

ring of separated power series. We introduce this ring and give the result of quanti�er

elimination in section 6.2. In section 6.3, we will discuss the e�ectivity of this result:

let F be any family of functions in the ring of separated power series. Assuming that

the set of LF -terms is closed under derivation and that each f ∈ F has an e�ective

Weierstrass set, we will show that the Weierstrass system generated by the LF -terms is

100
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e�ective. And therefore, the theory of Op is e�ectively model-complete in the language

LF .

Note that we didn't mention decomposition functions. In fact, in this situation, we

don't need these functions. Indeed, let us recall that the Weierstrass coe�cients ob-

tained using the Weierstrass preparation theorem with a function f can be described

as a polynomial combination of the zeros of f with nonnegative valuation. As our

underlying set is algebraically closed, it already contains these roots and therefore we

don't need to add functions to existentially de�ne the Weierstrass coe�cients.

Finally in section 6.4, we prove the main result of this chapter. But �rst, let us recall

some basic facts on the model theory of algebraically closed valued �elds.

6.1 Algebraically closed valued �elds and exponential

Let K be an algebraically closed valued �eld (ACVF) with value group Γ. We denote

by Lv = {+,−, ·, 0, 1, | } the language of ACVF i.e. the language of rings expanded

by | a binary relation symbol interpreted by

x|y i� v(x) ≤ v(y).

We may also consider the theory of ACVF in a two sorted language

LΓ := {+K ,−K , ·K , 0K , 1K , v, |,+Γ,−Γ, 0Γ,∞Γ, <Γ}.

Where this language is interpreted in K by:

� The �rst sort is K and +K ,−K , ·K , 0K , 1K are the natural interpretations of the

language of rings;

� The second sort is the value group (with the point to in�nity) and +Γ,−Γ, 0Γ,∞Γ,

<Γ are the natural interpretations of the language of ordered groups;

� v is a map K −→ Γ ∪ {∞} interpreted by the valuation;

� | is interpreted like above.

Then, (an extension of) a classical result due to A. Robinson tell us that
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Theorem 6.1.1. The theory of ACVF is axiomatized by (i) (K,Γ, v) is a valued �eld,

(ii) there are x, y ∈ K∗ such that v(x) < v(y), (iii) K is algebraically closed, (iv) the

characteristics of K and K. Furthermore, this theory admits quanti�er elimination in

the languages Lv or LΓ.

Remark. Here, we will replace v by a function symbol |·| interpreted by the p-adic

norm. The sort Γ will be replaced by |K∗|.

Let K = Cp. Then, the function Ep : Op −→ Op : x 7−→ exp(px) de�nes an

exponential function on Op. We denote by Lexp the language Lv ∪ {Ep} and by Op,exp
the structure with underlying set Op and natural interpretations for the symbols of

Lexp. The goal of this chapter is to prove the decidability of the theory of Op,exp.

6.2 The ring of separated power series and quanti�er

elimination

As for the case of Zp, the quanti�er elimination in the language with restricted analytic

functions relies on two main facts: Weierstrass preparation theorems and quanti�er

elimination in the language of valued �elds (theorem 6.1.1). However, as Cp is not

locally compact, it leads to some di�culties. Instead of Op{X}, L. Lipshitz consider in

[7] functions in the ring of separated power series i.e. 'nice' power series in Op{X}[[ρ]]

where the variables ρ will be evaluated in the maximal ideal Mp (i.e. a power series

in this ring determines a function from Onp ×Mm
p to Op). We give now the de�nition

of this ring:

De�nition 6.2.1. Fix π with 0 < |π| < 1. Let R0 ⊂ Op be the maximal discrete

valuation ring contained in Op with prime element π and such that R0/(π) ∼= Falgp .

For all {ai}i∈ω ⊂ Op with |ai| → 0, let R0{ai} be the completion of R0[ai, i ∈ ω].

Let R0{ai}{X} = {f =
∑
bνX

ν ∈ R0{ai}[[X]] | |bν | → 0}.

Let R0{ai}{X}[[ρ]] be the ring of formal power series in ρ with coe�cients in R0{ai}{X}.

Then, for all ε, for all f ∈ R0{ai}{X}[[ρ]], there is iε and g ∈ R0[a0, · · · , aiε , X][[ρ]]

such that ‖f − g‖ < ε. Also, R0{ai}{X}[[ρ]] is complete.

Let S{ai}{X}[[ρ]] = {π−αf | α ∈ N, f ∈ R0{ai}{X}[[ρ]]}. We de�ne the ring of
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separated power series by:

Cp{X}[[ρ]]s :=
⋃
{ai}

S{ai}{X}[[ρ]]

where the union is taken over all sequences {ai} like above. Let Op{X}[[ρ]]s be the

ring of all f ∈ Cp{X}[[ρ]]s with ‖f‖ ≤ 1 i.e.

Op{X}[[ρ]]s =
⋃
{ai}

R0{ai}{X}[[ρ]].

Let f(X, ρ) ∈ Op{x}[[ρ]]s. Then, f determines a function from Onp ×Mm
p to Op.

Note also that

Lemma 6.2.2. Let f ∈ Op[X, ρ]Ep, then f ∈ Op{X}[[ρ]]s.

This follows immediately from the de�nitions. Actually, we have that for any

f ∈ Zp{X,Y , Z}, for any z ∈ Okp , f(X, ρ, z) ∈ Op{X}[[ρ]]s.

It turns out that the ringOp{X}[[ρ]]s is closed under (some appropriate versions of the)

Weierstrass division with respect to the variables X and ρ. We state now these results.

We take the following notation: if y = (y1, · · · , yn) is a tuple, y′ := (y1, · · · , yn−1).

De�nition 6.2.3. Let f =
∑
ai(X

′
, ρ)X

i

M ∈ Op{X}[[ρ]]s where ai ∈ Op{X
′}[[ρ]]s.

Suppose that ak is a unit and that for all i > l, ai = bi + ρci for some bi, ci ∈

Op{X
′}[[ρ]]s with ‖bi‖ < 1. Then, we say that f is regular in XM of order l. We say

that f is regular in XM if it is regular of order n for some n.

Remark. If f ∈ Op{X}[[ρ]]s, then f is a unit if f = 1− g − h where g ∈ Op{X}[[ρ]]s,

‖g‖ < 1 and h ∈ (ρ)Op{X}[[ρ]]s. In this case, f−1 =
∑

l(g + h)l.

In order words, f is regular of order l in XM if f is congruent to a monic polynomial

of degree l in XM modulo the ideal generated by Mp and ρ.

The next result is due to L. Lipshitz (proposition 2.3.1 in [7]):

Proposition 6.2.4. [Weierstrass division theorem with respect to the variables X] Let

f ∈ Op{X}[[ρ]]s regular in XM of order l, g ∈ Op{X}[[ρ]]s with ‖g‖ = 1. Then, there

are q ∈ Op{X}[[ρ]]s, r0, · · · , rl−1 ∈ Op{X
′}[[ρ]]s such that

g = qf +
∑
i<l

riX
i
M .
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In particular, for g = X l
M , we have f =

(
X l
M −

∑
riX

i
M

)
U where U ∈ Op{X}[[ρ]]s is

a unit.

Note that in the last case, for all x ∈ OMp , for all ω ∈MN
p ,

f(x, ω) = 0 i� xlM −
∑

ri(x
′, ω)xiM = 0.

And for all x′, ω, f(x′, XM , ω) has exactly l roots with in Op (counting multiplicities)

We de�ne now regularity with respect to the variables ρ

De�nition 6.2.5. Let f =
∑
aν(X)ρν ∈ Op{X}[[ρ]]s such that ‖f‖ = 1, a(0,··· ,0,l) = 1

and for all ν = (0, · · · , 0, i), i < l, ‖aν‖ < 1. We say that f is regular in ρN of order

l. We say that f is regular in ρN if it is regular of order n for some n.

In other words, f is congruent to ρlN modulo the ideal generated byMp, ρ1, · · · , ρN−1

and ρl+1
N .

We have a preparation result for the variables ρ (proposition 2.4.1 in [7]):

Proposition 6.2.6. [Weierstrass preparation theorem with respect to the variables ρ]

Let f ∈ Op{X}[[ρ]]s regular in ρN of order l, g ∈ Op{X}[[ρ]]s with ‖g‖ = 1. Then,

there are q ∈ Op{X}[[ρ]]s, r0, · · · , rl−1 ∈ Op{X}[[ρ′]]s such that

g = qf +
∑
i<l

riρ
i
N .

In particular, for g = ρlN , we get f =
(
ρlN −

∑
riρ

i
N

)
U where U ∈ Op{X}[[ρ]]s is a

unit and furthermore ri = r′i + ρ′r′′i with ‖r′i‖ < 1 and ‖ρ′r′′i ‖ ≤ 1.

Again in the last case, for all x ∈ OMp , for all ω ∈MN
p ,

f(x, ω) = 0 i� ωlN −
∑

ri(x
′, ω)ωiN = 0.

And for all x, ω′, f(x, ω′, ρN) has exactly l roots with in Mp (counting multiplicities)

We consider the structure Op in the 3-sorted language Lv,M with sorts:

(1) Op, the valuation ring. We have in the language symbols for the functions +, ·,−, 0, 1

(This sort will be called sort 1);

(2) Mp its maximal ideal (called sort 2). We have symbols for the functions +, ·,−, 0, 1;

(3) |Cp| the valuation group (called sort 3) in the language of ordered groups.
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Also, we also add a symbol for the functions |.| : Op −→ |Cp|.

We will consider the sort Mp as a subset Op. So, any function, variable or constant of

the sort Mp will also be considered as a function, variable or constant of the sort Op.

We denote by Lan the expansion of Lv,M where we add function symbols for each

f ∈ Op{X}[[ρ]]s. We de�ne division symbols on Op:

D0(x, y) : O2
p −→ Op : (x, y) 7−→

 x/y if |x| ≤ |y| 6= 0

0 otherwise,

and

D1(x, y) : O2
p −→Mp : (x, y) 7−→

 x/y if |x| < |y| 6= 0

0 otherwise.

Then, LDan denotes Lan ∪ {D0, D1}.

Theorem 6.2.7. [L. Lipshitz [7] theorem 3.8.1] (Op,Mp, |Cp|) admits elimination of

quanti�ers in LDan.

It is immediate from the proof that we don't need to add all the function symbols

in the ring of separated power series to get quanti�er elimination. It is su�cient to

add symbols for a family of functions closed under Weierstrass division (with respect

to the variables of sort 1 and sort 2). As in chapter 3, we de�ne:

De�nition 6.2.8. A separated Weierstrass system over Op is a family of rings

Op[[X1, · · · , Xn, ρ1, · · · , ρm]]s, n,m ∈ N, such that for all n,m, the following conditions

hold:

1. Z[X, ρ] ⊆ Op[[X, ρ]]s ⊆ Op{X}[[ρ]]s;

2. For all permutations σ of {1, · · · , n} and τ of {1, · · · ,m}, if f(X, ρ) ∈ Op[[X, ρ]]s,

then f(Xσ(1), · · · , Xσ(n), ρτ(1), · · · , ρτ(m)) ∈ Op[[X, ρ]]s;

3. If f ∈ Op[[X, ρ]]s and p
qf ∈ Op{X}[[ρ]] (where q ∈ Q), then pqf ∈ Op[[X, ρ]]s;

4. If f ∈ Op[[X, ρ]]s has an inverse g in Op{X}[[ρ]], then g ∈ Op[[X, ρ]]s;

5. (Weierstrass division with respect to variables of sort 1) If f ∈ Op[[X
′
, Xn+1, ρ]]s

and f is regular of order d in Xn+1, then, for all g ∈ Op[[X
′
, Xn+1, ρ]]s with

‖g‖ = 1, there are r0, · · · , rd−1 ∈ Op[[X
′
, ρ]]s and Q ∈ Op[[X, ρ]]s such that

g(X, ρ) = Q(X, ρ) · f(X, ρ) +
(
Xd−1
n+1rd−1(X ′, ρ) + · · ·+ r0(X ′, ρ)

)
.
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6. (Weierstrass division with respect to variables of sort 2) If f ∈ Op[[X, ρ′, ρm+1]]s

and f is regular of order d in ρm+1, then, for all g ∈ Op[[X
′
, ρ]]s with ‖g‖ = 1,

there are r0, · · · , rd−1 ∈ Op[[X, ρ′]]s and Q ∈ Op[[X, ρ]]s such that

g(X, ρ) = Q(X, ρ) · f(X, ρ) +
(
ρd−1
m+1rd−1(X, ρ′) + · · ·+ r0(X, ρ′)

)
.

LetW be a separated Weierstrass system. We denote by LW the expansion of Lv,M
by function symbols for elements in W . LDW denotes the expansion of LW by D0, D1.

Then, it is immediate from the proof of theorem 6.2.7 that

Theorem 6.2.9. (Op,Mp, |Cp|) admits elimination of quanti�ers in LDW .

Let F be a family of separated power series. As in chapter 3, we can de�ne the

separated Weierstrass system generated by the LF -terms. We denote this system by

WF .

Let us remark that if the set of LF -terms is closed under derivation, then any function

f ∈ WF is existentially de�nable. Indeed, let f be a separated power series regular

of order d (with respect to a variable of sort 1 or 2) and g with ‖g‖ = 1. Then, the

functions de�ned by the Weierstrass division are existentially de�nable in terms of the

derivatives of f and g. This is an easy consequence of proposition 3.4.1. In fact, we

can use the same existential de�nitions that those given in this proposition. Note that

here we don't need to use decomposition functions: our �eld is already algebraically

closed and therefore the roots of f with nonnegative (resp. positive) valuation live in

our structure. From this, we can show by induction on the complexity of the function

f ∈ WF that f is existentially de�nable in terms of a �nite number of functions in F

(and their derivatives). Therefore,

Theorem 6.2.10. Let F be a family of separated power series. Assume that the set of

LF -terms is closed under derivation. Then, (Op,Mp, |Cp|) is model-complete in LF .

Now, note that any Lexp-formula is equivalent to a L{Ep}-formula in Cp. And, it is

obvious that the set of L{Ep}-terms is closed under derivation. So,

Theorem 6.2.11. The theory of the structure Op,exp is model-complete.
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6.3 E�ective model-completeness

In this section, we want to prove the e�ectivity of theorem 6.2.11. As for the case

of Zp,exp, we are reduced to compute an e�ective 'Weierstrass bound'. Indeed, if we

inspect to proof of theorem 6.2.7 in [7], we see that every step is e�ective except for the

use of proposition 2.7.1. In fact, this proposition use the fact that the ring Op{X}[[ρ]]s

is Noetherian and therefore may not be e�ective. We recall this proposition:

Proposition 6.3.1. [L. Lipshitz [7] proposition 2.7.1] Let f =
∑
aµν(X,λ)Y

µ
ρν ∈

Op{X,Y }[[λ, ρ]]s. Then, there is a �nite set Γf = Γf1 × Γf2 ⊆ NM ×NN such that for

all (α, β) ∈ NM+N and for all (µ, ν) ∈ Γf , there are gµναβ(X,λ) ∈ Op{X}[[λ]]s such

that:

(i) aαβ(X,λ) =
∑

(µ,ν)∈Γf
gµναβ(X,λ)aµν(X,λ); and,

(ii) if β /∈ Γf2 and there is ν0 ∈ Γf2 with β < ν0, then for all (µ, ν) ∈ Γf with ν > β

and all α ∈ NM , gαβµν ∈ (Mp, λ)Op{X}[[λ]]s; and,

(iii) for all ν0 ∈ Γf2, for all α /∈ Γf1, gµναν0 ∈ (Mp, λ)Op{X}[[λ]]s.

Let f =
∑
aν(X)ρν ∈ Op{X}[[ρ]]s. Suppose that aν0 = 1 and ‖aν‖ < 1 for all

ν < ν0. In this case, we say that f is preregular of order ν0. Then, we can make a

change of variables of the type ρi → ρi + ρein for i < N

ρn → ρN

for suitable choice of ei such that f is regular in ρn. Similarly, let f =
∑
aµ(X, ρ)Y

µ

with aµ0 = 1 and for all µ > µ0, aµ = bµ + ρcµ where ‖bµ‖ < 1 and ‖ρcµ‖ ≤ 1. In this

case, we say that f is preregular of order µ0. Then after a change of variables of the

type  yi → yi + yeiM for i < M

yM → yM

for suitable choice of ei, f is regular in yM .

It means that if f is preregular of order µ0 or ν0 then after a change of variables it

becomes regular. Note that these change of variables can be done e�ectively.

Let f(X,Y , λ, ρ) =
∑

µ,ν aµν(X,λ)Y
µ
ρν . Then, we say that f is preregular of order
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(µ0, ν0) if aµ0ν0 = 1 and for all ν < ν0 and all µ or for ν = ν0 and all µ > µ0,

aµν ∈ (Mp, λ)Op{X}[[λ]]s. In this case,
∑

µ aµν0(X,λ)Y
µ
is preregular of order µ0.

Then, the set Γf of in proposition 6.3.1 determines a bound on the order of preregu-

larity:

Let f =
∑
aµν(X,λ)Y

µ
ρν ∈ Op{X,Y }[[λ, ρ]]s. Fix x ∈ ONp , ω ∈ MM

p . Then(if f is

not identically zero), there is f̃(x̃, Y , ω̃, ρ) ∈ Op{Y }[[ρ]]s preregular of order (µ0, ν0)

for some (µ0, ν0) ∈ Γf and such that

f(x, Y , ω, λ) = aµ0,ν0(x, ω)f̃(x̃, Y , ω̃, ρ).

Let Γ := Γf and �x J a �nite subset of Γ and (µ0, ν0) ∈ J . We de�ne the �rst-order

formula

MJ,(µ0,ν0)(X,λ) ≡
∧

(µ,ν)∈J\{(µ0,ν0)}

|aµν(X,λ)| = |aµ0ν0(X,λ)|

∧ aµ0ν0(X,λ) 6= 0∧∧
(µ,ν)∈Γ\J

|aµν(X,λ)| < |aµ0ν0(X,λ)|.

If none of the formula MJ,(µ0,ν0)(x, ω) is satis�ed in Op then

f(x, Y , ω, λ) ≡ 0.

Otherwise, there is a non-empty J ⊂ Γ such that Op � MJ,(µ0,ν0)(x, ω) for some

(µ0, ν0) ∈ J (ν0 is the smallest ν such that (µ, ν) ∈ J for some µ and µ0 is the largest

µ such that (µ, ν0) ∈ J). In that case,

aµν = aµ0ν0D0(aµν , aµ0ν0) ∀(µ, ν) ∈ J \ {(µ0, ν0)},

and

aµν = aµ0ν0D1(aµν , aµ0ν0) ∀(µ, ν) ∈ Γ \ J.

Furthermore, for all (α, β) /∈ Γ,

aαβ =
∑

(µ,ν)∈Γ

gµναβaµν

=
∑

(µ,ν)∈J
(µ,ν)6=(µ0,ν0)

gµναβaµ0ν0D0(aµν , aµ0ν0) + gµ0ν0αβaµ0ν0

+
∑

(µ,ν)∈Γ\J

gµναβaµ0ν0D1(aµν , aµ0ν0),
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where gµναβ are like in proposition 6.3.1. So,

f = aµ0ν0

{ ∑
(µ,ν)∈J

(µ,ν) 6=(µ0,ν0)

D0(aµν , aµ0ν0)Y
µ
ρν + Y

µ0
ρν0

+
∑

(µ,ν)∈Γ\J

D1(aµν , aµ0ν0)Y
µ
ρν

+
∑

(α,β)/∈Γ

[ ∑
(µ,ν)∈J

(µ,ν)6=(µ0,ν0)

gµναβD0(aµν , aµ0ν0)

+ gµ0ν0αβ +
∑

(µ,ν)∈Γ\J

gµναβD1(aµν , aµ0ν0)
]
Y
α
ρβ
}

=: aµ0ν0f
′.

Let f̃ be the power series where we replace the D0(aµν , aµ0ν0)
′s by new variables Xµν

of sort 1 and the D1(aµν , aµ0ν0)'s by new variables λµν of sort 2. By the properties of

gµναβ, f̃ is preregular of order (µ0, ν0) ∈ Γ.

De�nition 6.3.2. Let f be a separated power series. We say that f has an e�ective

Weierstrass set if one can compute a set Γf like in proposition 6.3.1. We say that

a separated Weierstrass system W is e�ective if there is a recursive procedure which

takes for entry a function f in W and return a set Γf like in proposition 6.3.1.

Lemma 6.3.3. Let f ∈ Z[X,Y , ρ, λ]Ep. Then, f has an e�ective Weierstrass set.

Proof. Fix x ∈ ONp and ω ∈ MM
p such that Op � MJ,(µ0,ν0)(x, ω) for some non-empty

J ⊂ Γf . Let µ0 = (µ1, · · · , µI) and ν0 = (ν1, · · · , νJ).

Fix j an index such that νj 6= 0. If such an index exists, we can assume j = J . Then,

up to a change of variables (which will be denoted by TJ), the function f̃ (as de�ned

before) is regular in TJ(λJ) of order S(J). So, the function TJ(f̃(x, y, ω, τ ′, λJ)) has

exactly S(J) roots in Mp respectively.

If there is no index j such that νj 6= 0, let i be an index such that µi 6= 0. Without

loss of generality, we may assume i = I. Then, up to a change of variables (which

will be denoted by TI), the function f̃ (as de�ned before) is regular in TI(YI) of order

S(I). So, the functions TI(f̃(x, y′, YI , ω, τ)) has exactly S(I) roots in Op.
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Note that in both case these roots are in one-to-one correspondence with the roots

of f(x, y′, YI , ω, τ) and f(x, y, ω, τ ′, λJ)) respectively.

As f has an e�ective Weierstrass bound (in the sense chapter 4), one can compute a

bound on S(I) and S(J). Let S be a upper bound of all possible S(k)'s computed as

above. Then, we conclude that Γf is contained in the (computable) set

{(µ, ν) | µi, νj ≤ S for all i ≤ I, j ≤ J}.

Note that if f ∈ Zp{X,Y } has an e�ective Weierstrass bound, then the separated

power series f(X, ρ) has an e�ective Weierstrass set. This follows from the proof of

the above lemma. Let us also remark that as in chapter 4, if we want to compute

the e�ective Weierstrass set of a function f ∈ Op{X}[[ρ]]s, it is su�cient to bound

e�ectively the number of roots (counting multiplicities) of the function in Op (resp.

in Mp) uniformly over the parameters (x1, · · · , xi−1, xi+1, · · · , xN , ρ) ∈ ON−1
p ×MM

p

(resp. the parameters (x, ρ1, · · · , ρi−1, ρi+1, · · · , ρM) ∈ ONp ×MM−1
p ) for all i whenever

for this choice of parameters this number is �nite.

Let F be an e�ective family of separated power series such that each f ∈ F has

an e�ective Weierstrass set. Let WF be the separated Weierstrass system generated

by the LF -terms. We want to prove that WF is an e�ective separated Weierstrass

system. Fix f ∈ WF . We have to prove that f has an e�ective Weierstrass set. We

use the same strategy that in chapter 4: we proceed by induction on the complexity

of f and prove that one can compute the Weierstrass set in terms of the Weierstrass

sets of f1, · · · , fn (and their derivatives) where fi's are the functions involved in the

existential de�nition of f .

For this, we use the same results of tropical analytic geometry to compute a bound

on the number of roots of f uniformly over the choice of parameters. Note that in

the case where we want to bound the number of roots in Mp, we use the results to

estimate the number of roots with valuation in [1/n,∞) and prove that the bound

does not depend on the choice of n (for all n large enough).

To do this, as we have seen in chapter 4, it is su�cient to prove the following:
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Lemma 6.3.4. Let f ∈ Op{X,Y }[[ρ, λ]]s such that f and all its derivatives have an

e�ective Weierstrass set. Then, we can e�ectively �nd an integer E(f) such that for all

x ∈ ORp , for all ω ∈MS
p , either f(x, Y , ω, λ) is identically zero or New(f(x, Y , ω, λ)) ⊆

Bmax(E(f)).

Proof. Let f(X,Y , ρ, λ) =
∑

(µ,ν) aµν(X, ρ)Y
µ
λ
ν
. Note that if f is identically zero the

lemma is trivially satis�ed. Fix x, ω such that f(x, Y , ω, λ) is not identically zero.

To keep the notation simpler, we will not indicate the parameters x, ω anymore. So,

f(x, Y , ω, λ) will be denoted by f(Y , λ) (similarly for the coe�cients aµν).

Let us recall that New(f) := New(f(Y , λ)) is the collection of cells which are the

convex closure of

π
(
vert(v,w)(f)

)
=
{

(µ0, ν0) | v(aµ0ν0) + 〈µ0ν0, vw〉 = min(µ,ν){v(aµν) + 〈µν, vw〉}
}
,

where v ∈ [0,∞)N , w ∈ [1/n,∞)M (for some �xed n), and 〈·, ·〉 denotes the usual

scalar product.

We will prove that there exists a (computable) �nite set Γ̃ such that for all (µ, ν) /∈ Γ̃,

for all v ∈ [0,∞)N , w ∈ (0,∞)M ,

(µ, ν) /∈ π
(
vert(v,w)(f)

)
.

In particular, we will show that for all (µ, ν) /∈ Γ̃, there is (µ0, ν0) ∈ Γ̃ such that

v(aµν) + 〈µ, v〉+ 〈ν, w〉 > v(aµ0ν0) + 〈µ0, v〉+ 〈µ0, w〉.

In that case, New(f) ⊆ Γ̃ (independently of the choice of n).

Let Γf = Γ1 × Γ2 like in proposition 6.3.1. Then, for all (α, β)

aαβ =
∑

(µ,ν)∈Γf

gµναβaµν .

We de�ne

T = max
(µ,ν)∈Γf

max
1≤i≤N
1≤j≤M

{µi, νj},

and

ΓB := {(µ, ν) | µi ≤ T, νj ≤ T for all i, j} = ΓB1 × ΓB2,

where µ = (µ1, · · · , µN), ν = (ν1, · · · , νM).

We show the existence of Γ̃ by induction on (N,M).

First, we prove the basic steps:
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� If N = 1,M = 0. Let α /∈ ΓB1. Then,

v(aα) + 〈α, v〉 ≥ min
µ∈Γ1

{v(aµ) + v(gµα)}+ 〈α, v〉

= v(aµ0) + v(gµ0α) + 〈α, v〉 for some µ0 ∈ Γ1

> v(aµ0) + 〈µ0, v〉,

as v(gµ0α) > 0 and α > µ0. We take Γ̃ = ΓB.

� If N = 0,M = 1. Let β /∈ ΓB2. Then,

v(aβ) + 〈β, w〉 ≥ min
ν∈Γ2

{v(aν) + v(gνβ)}+ 〈β, w〉

= v(aν0) + v(gν0β) + 〈β, v〉 for some ν0 ∈ Γ2

> v(aν0) + 〈ν0, w〉,

as v(gν0β) ≥ 0, β > ν0 and w > 0. We take Γ̃ = ΓB.

We take the following notations: Z := (Y , λ), u := (v, w) and if x = (x1, · · · , xn) then

x̌i := (x1, · · · , xi−1, xi+1, · · · , xn).

We give now the construction of Γ̃ in the general case:

� First, let us remark that that if γ = (α, β) is such that γi > T for all i, then

v(aαβ) + 〈γ, u〉 ≥ min
(µ,ν)∈Γf

{v(aµν) + v(gµναβ)}+ 〈γ, u〉

= v(aµ0ν0) + v(gµ0ν0αβ) + 〈γ, u〉 for some γ0 = (µ0, ν0) ∈ Γf

> v(aµ0ν0) + 〈γ0, u〉,

as v(gµ0ν0αβ) > 0 if ν0 = (0, · · · , 0) and for all i, j, k αi > µ0i, βj > ν0j and

wk > 0.

� Let 1 ≤ k ≤M +N and 1 ≤ s ≤ T . Fix γ /∈ ΓB such that γk = s. We de�ne

fs,k =
1

s!

∂sf

∂Zs
k

(Z1, · · · , Zk−1, 0, Zk+1, · · · , ZM+N) =:
∑

bγ̌kŽ
γ̌k
k .

Then, aγZ
γ

= bγ̌kZ
γ
. So,

v(aγ) + 〈γ, u〉 = v(bγ̌k) + 〈γ, u〉.
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Furthermore, Γfs,k = Γ ∂sf
∂Zs
k

(and is computable by hypothesis). Also, by inductive

hypothesis, there is a computable Γ̃(fs,k) such that for all γ̌k /∈ Γ̃(fs,k),

v(bγ̌k) + 〈γ̌k, ǔk〉 > v(bγ̌k0) + 〈γ̌k0, ǔk〉

for some γ̌k0 = (γ01, · · · , γ0M+N−1) ∈ Γ̃(fs,k).

So, we have that for all γ such that γk = s there is γ0 such that γ0k = s,

γ̌0k ∈ Γ̃(fs,k) and

v(aγ) + 〈γ, u〉 > v(aγ0) + 〈γ0, u〉

We set

Γ̌(fs,k) := {γ | γk = s, γ̌k ∈ Γ̃(fs,k)}.

Let Γ′ := ΓB
⋃

1≤k≤M+N

⋃
1≤s≤T Γ̌(fs,k). Let E(f) = max(µ,ν)∈Γ′ maxi,j{µi, νj}

and Γ̃(f) = {(µ, ν) | µi ≤ E(f), νj ≤ E(f) for all i ≤M, j ≤ N}.

Then, by de�nitions, Γ̃ has the required properties and E(f) satis�es the condi-

tions of the lemma.

This concludes the proof of the lemma.

From this lemma and arguing like in chapter 4, we can prove:

Theorem 6.3.5. Let F be an e�ective family of separated power series. Assume that

the set of LF -terms is closed under derivation and that each LF -term has an e�ective

Weierstrass set. Then, the theory of (Op,Mp, |Cp|) is e�ectively model-complete in the

language LF .

As a particular case, we have:

Theorem 6.3.6. The theory of Op,exp is e�ectively model-complete.

6.4 Decidability

We will now prove the decidability of Op,exp assuming Schanuel's conjecture. By the

last theorem, we are reduced to determine the truth of existential Lexp-sentences.
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Actually, we just need an algorithm that stops if the formula is true. It is quite easy to

see that any existential formula is equivalent to a disjunction of formulas of the form:

∃x ∧i fi(x) = 0 ∧j |gj(x)|�j|hj(x)|,

where fi, gj, hj ∈ Z[X1, · · · , Xn, Ep(X1), · · · , Ep(Xn)] and � holds for <,≤ or =.

Let Zalgp denote the valuation ring of Qalg
p .

It turns out that is su�cient to �nd a realisation of the formula in Zalgp :

Proposition 6.4.1. Any existential Lexp-sentence with parameters in Zalgp realised in

Op is realised in Zalgp .

Remark. Actually, the same result holds for any LF -formula where F is any set of

restricted power series with coe�cients in the valuation ring of some �nite algebraic

extension of Qp such that the set of LF -terms is closed under derivation.

Proof. In this proof, fi, gj, ... will be elements of Z[X1, · · · , Xn, Ep(X1), · · · , Ep(Xn)],

m will be a parameter in Zalgp . We will prove the proposition by induction on the

complexity of the formula. We proceed also by induction on n the number of variables

and we prove that for all realisations x of the formula in Op, we can �nd a realisation

of the formula in Zalgp ε-close from x (for all ε small enough).

(1) Let Ψ ≡ ∃Xf(X,m) = 0.

Assume that there is x ∈ Op such that f(x,m) = 0. Assume that f(x1, x′,m) =∑
i ai(x

′,m)xi1 where x′ = (x2, · · · , xn).

Let d(f) be the smallest integer like in lemma 4.0.1. Then,

� If ai(x′,m) = 0 for all i such that i < d(f), we �nd by induction on the

number of variables that there is b′ ∈ (Zalgp )n−1 ε-close from x′ such that

ai(b′,m) = 0 for all i < d(f). In this case, the formula Ψ is realised by any

tuple (b1, b′). In particular, if |b1 − x1| < ε, (b1, b′) is ε-close from x.

� If ak(x′,m) 6= 0 and ai(x′,m) = 0 for all i 6= k, i < d(f). Then, x =

(0, x2, · · · , xn) (note that in this case, x is the unique solution of the equation

f(X, x′,m) = 0). As before, let t′ be a realisation ε-close from x′ of the

formula

∃X ′
∧

i<d(f)
i 6=k

ai(X ′,m) = 0.
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If ε is small enough, ak(t′,m) 6= 0 and therefore, (0, t2, · · · , tn) ∈ Zalgp is a

realisation of Ψ.

� If ai(x′,m) 6= 0 for at least two i < d(f). Let I be the set of indexes such

that ai(x′,m) 6= 0. Then, there exists ε such that for all y′ ∈ On−1
p with

|y′ − x′| < ε

|ai(x′,m)| = |ai(y′,m)| for all i ∈ I

|ai(y′,m)| < δ otherwise,

where

δ = min
i∈I
{|ai(x′,m)|}.

Let t ∈ (Zalgp )n−1 such that |t − x′| < ε. Then, as the (restriction until the

index d(f) of the) Newton polygons of f(X, x′,m) and f(X, t′,m) are equals,

we �nd that the formula ∃Xf(X, t′,m) is realised in Op and all its realisations

lie in Zalgp . In particular, there exists a realisation ε-close from x1.

(2) Let Ψ ≡ ∃Xf1(X,Y,m) = · · · = fk(X,Y,m) = 0.

Let (α, β) be a realisation of the formula in Op. We de�ne

F (X,Y, Z,m) :=
∑
i

fi(X,Y,m)Z2(i−1)

=
∑

(i,j)∈N2

aij(X,m)Y iZj.

So, for all z ∈ Op, F (α, β, z,m) = 0.

By inductive hypothesis, there exists c in Zalgp such that for all |i| < d(F ) for all

j < d
(
∂iF
∂Y i

(0, Z)
)
|aij(α,m)| = |aij(c,m)| and |α− c| < ε.

Let K0 := Qp(m, c) ⊆ K1 ⊆ · · · be a sequence of algebraic extensions of Qp such

that any �nite algebraic extension of K0 of degree n is contained in Kn. Let πn

denote a prime element of Kn. Let us remark that for all d ∈ OKn ,

F (c, d, πn,m) = 0 i� fi(c, d,m) = 0 for all i.

But, for all n large enough, there is dn ∈ Op such that F (c, dn, πn,m) = 0. Indeed,

the Newton polygons of the functions F (α, Y, πn,m) and F (c, Y, πn,m) are equals

(until the coe�cients i ≥ d(F ) but these latter are irrevelant by choice of d(F ))
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and so the existence of β implies the existence of such a dn.

By the Weierstrass preparation theorem, for some |(i, j)| < d(F ) and after a

suitable change of variables, we can factorize

F (c, T, Z,m) = aI(c,m) · U(c, T, Z,m) ·
[
T s +

∑
l<s

Al(c, Z,m)T l
]
.

So, in fact, ds ∈ Ks. Therefore,

f1(c, ds) = · · · = fk(c, ds) = 0 and |(c, ds)− (α, β)| < ε

which proves our claim for the formula Ψ.

(3) General case: Ψ ≡
∧
i fi(X,m) = 0

∧
j |gj(X,m)|�j|hj(X,m)|.

Let x be a realisation of the formula in Op.

If gj(x,m) = 0 or hj(x,m) = 0 for some j, we remove the condition

gj(x,m)�jhj(x,m) in Ψ and replace it by gj(x,m) = 0 ∧ 0�jhj(x,m) (or respec-

tively by hj(x,m) = gj(x,m) = 0). So, without loss of generality, we may assume

that the formula has the form

Ψ ≡
∧
i

fi(X,m) = 0
∧
j

0 < |gj(X,m)|�|hj(X,m)|.

By the case (2), we know that for all ε, there is xε ∈ Zalgp ε-close from x which

realises the formula ∃X ∧i fi(X,m) = 0. But, for all ε small enough, |gj(xε,m)| =

|gj(x,m)| and |hk(xε,m)| = |hk(x,m)| for all j, k. It means that, for all ε small

enough, xε is a realisation of Ψ in Zalgp ε-close from x.

We can now prove the main theorem of this section:

Theorem 6.4.2. Assume that the p-adic Schanuel's conjecture is true. Then, the

theory of Op,exp in the language of exponential ring is decidable.

Proof. Let Ψ be an existential sentence. Then, by proposition 6.4.1, Op � Ψ i�

Zalgp � Ψ. So, the formula is true i� it is true in some algebraic extension of Qp. Let

K be a �nite algebraic extension of Qp. If Schanuel's conjecture is true, we have an

algorithm that determines the truth of Ψ in OK . We just have to run an enumeration

of all �nite algebraic extensions K of Qp and return true if Ψ is true in OK .
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Let us remark that we don't need that Schanuel's conjecture is true in Cp but only

in Qalg
p .

Furthermore, let Kn be the family of extensions de�ned in chapter 3. If Kn,exp denotes

the structure with underlying set OKn in the language of exponential ring. Then,

Corollary 6.4.3. If the theory of Kn,exp is decidable for all n, then the theory of Op,exp
in the language of exponential ring is decidable.

In particular, if a version of conjecture 5.3.1 for �nite algebraic extensions is true,

then the theory of Op,exp in the language of exponential ring is decidable.



Appendix A

Tropical analytic geometry

Within this chapter K will denote a �eld complete with respect to val a valuation

with val(K∗) ⊆ R. We will denote by |·| = exp−val(·) the absolute value attached to

the valuation. Also, we set Γ := val((Kalg)∗).

The goal of this section is to generalise theorem 2.1.11 on Newton polygons to systems

of n restricted analytic functions with n variables. These results are due to J. Rabino�.

The reader can �nd the proofs and further references in [14].

In the �rst part, we introduce some de�nitions of convex geometry. Then, in the second

section, we de�ne the generalisation of the Newton polygon: the Newton polyhedron

and the tropicalization of an analytic function. We state the generalisations of theorem

2.1.11 in sections A.3 and A.4.

Note that our de�nitions may be slightly di�erent from [14]. Actually, we just use

particular cases of the result (i.e. when the functions involved are power series well-

de�ned on a neigbourhoud of the origin) and de�ne the notions according to this these

special cases.

A.1 Convex geometry

In this section, we introduce the basic de�nitions of convex geometry and we de�ne

the compacti�cation of a polyhedron. We will need this notion to state theorem A.4.4.

First, we �x some notations for the rest of this section:

NR will denote the n dimensional real vector space R and MR its dual. 〈·, ·〉 : MR ×

NR → R denotes the canonical map. We also �x N ∼= Zn and M ∼= HomZ(N,Z). We

118
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denote by NΓ the tensor N ⊗Z Γ.

De�nition A.1.1. An (a�ne) half-space in NR is a subset of the form

H = {v ∈ NR | 〈u, v〉 ≤ a},

for some u ∈ MR \ {0}, a ∈ R. The space is called linear if we can take a = 0. We

say that H is Γ-a�ne if a ∈ NΓ and u ∈M .

An a�ne space in NR is the translated of a linear subspace. Any such a space can

be obtained as a �nite intersection between the (topological) boundaries of some half-

spaces.

A polyhedron in NR is a non-empty intersection of �nitely many half-spaces. We say

that a polyhedron is Γ-a�ne if all the half-spaces of the intersection can be assumed

Γ-a�ne.

Let P be a polyhedron and u ∈MR. We de�ne

faceu(P ) = {v ∈ P | 〈u, v〉 ≥ 〈u, v′〉 for all v′ ∈ P}.

A face of P is a non-empty set of the form F = faceu(P ). We write F ≺ P .

We de�ne the dimension of P as

Span(P ) = the smallest a�ne subspace containing P,

dim(P ) = dim Span(P ).

Let S ⊂ NR. We de�ne the convex closure of S by

conv(S) =
⋂

H,

where the intersection is taken over all half-spaces H such that H ⊇ S.

The compacti�cation of a polyhedron is essentially the polyhedron itself together

with points to in�nity. We start with the de�nition of the compacti�cation of NR with

respect to a special case of polyhedron: the cones.

De�nition A.1.2. A cone in NR is a (non-empty) �nite intersection of linear half-

spaces in NR.

We say that a cone is pointed if {0} is a face of the cone.

Lemma A.1.3. Let v1, · · · , vr ∈ NR. Then, σ =
∑
viR≥0 is a cone. Furthermore,

any cone in NR can be written in this form.
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Let σ =
∑
viR≥0 be a cone. The dual cone is the cone

σ∨ =
⋂
i

{u ∈MR | 〈u, vi〉 ≤ 0}.

Let us remark that σ∨∨ = σ.

The annihilator of a cone σ is the annihilator of the vector space Span(σ):

σ⊥ = {u ∈MR | 〈u, v〉 = 0 for all v ∈ σ}.

Let R be the additive monoid R∪{−∞} equipped with the topology generated by the

usual topology on R and intervals of the type [−∞, a) for a ∈ R.

De�nition A.1.4. Let σ be a cone. The partial compacti�cation of NR with respect

to σ is the space NR(σ) = HomR≥0
(σ∨,R) of monoid homomorphisms respecting mul-

tiplication by elements in R≥0, equipped with the topology of pointwise convergence.

We use the notation 〈·, ·〉σ to denote the canonical map σ∨ ×NR(σ)→ R.

Roughly, it means that we add points to in�nity in the direction of σ. This is made

precise by

Proposition A.1.5. [Proposition 3.4 in [14]] Let σ ⊂ NR be a cone.

(i) Let τ ≺ σ and let v ∈ NR/Span(τ). We de�ne ι(v) by:

〈u, ι(v)〉σ :=

 〈u, v〉 if u ∈ τ⊥ ∩ σ∨

−∞ otherwise,

for u ∈ σ∨. Then, ι(v) is a well-de�ned element of NR(σ) and

ι :
∐
τ≺σ

NR/τ → NR(σ)

is a bijection. Furthermore, for all τ ≺ σ, the map ι restricted to NR/τ is a

topological embedding.

(ii) If σ∨ =
∑

i≤r uiR≥0, then the map

v 7−→ (〈u1, v〉σ, · · · , 〈ur, v〉σ) : NR(σ) ↪→ Rr

is a topological embedding with closed image.
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(iii) For τ ≺ σ, the inclusion σ∨ ≺ τ⊥ induces a topological embedding NR(τ) ↪→

NR(σ) with open image.

Example A.1.1. Let σ = R≥0(0, 1) + R≥0(1, 0). Then, σ is a cone in NR. The faces of

σ are: τ1 = R≥0(0, 1), τ2 = R≥0(1, 0), {(0, 0)} and σ. The partial compacti�cation of

NR with respect to σ is (isomorphic to):

NR(σ) = NR

∐
NR/Span(τ1)

∐
NR/Span(τ2)

∐
NR/Span(σ)

= R2
∐(

{+∞}× R
)∐(

R× {+∞}
)∐

{(+∞,+∞)}.

NR(σ)

•{(∞,∞})R× {∞}

{∞} × R

Figure A.1: The partial compacti�cation of R2 with respect to σ.

De�nition A.1.6. Let P ⊂ NR be a polyhedron. The cone of unbounded direction of

P is the cone U(P ) dual of

U(P )∨ := {u ∈MR | faceu(P ) 6= ∅}.

We say that P is pointed if σ is pointed.

De�nition A.1.7. Let P ⊂ NR be a polyhedron and σ = U(P ). The compacti�cation

P of P is the closure of P in NR(σ).

Proposition A.1.8 (Proposition 3.19 in [14]). Let P =
⋂r
i=1{v ∈ NR | 〈ui, v〉 ≤ ai}

be a pointed polyhedron, σ = U(P ) and P be the closure of P in NR(σ). Then,

P =
∐

τ≺σ πτ (P ), where we identify NR(σ) ∼=
∐

τ≺σNR/Span(τ) and πτ : NR →

NR/Span(τ) is the canonical projection.

Furthermore, for all τ ≺ σ,

πτ (P ) = {v ∈ NR/Span(τ) | 〈u, v〉σ ≤ max
v′∈P
〈u, v′〉 for all u ∈ σ∨}

= {v ∈ NR/Span(τ) | 〈ui, v〉 ≤ ai for all ui ∈ τ⊥}.
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and,

P = {u : σ∨ → R | 〈u, v〉σ ≤ max
v′∈P
〈u, v′〉 for all u ∈ σ∨}.

Example A.1.2. Let P = {(x, y) ∈ R2 | x ≥ 1, y,≥ 1, x + y ≥ 2}. Then, U(P ) is

the cone σ of example A.1.1. The compacti�cation of P is the closure of P in NR(σ).

With the notations of the above proposition, P =
∐

τ≺σ πτ (P ). As we have seen, the

faces of σ are τ1 = R≥0(0, 1), τ2 = R≥0(1, 0), {(0, 0)} and σ. So,

πτ1(P ) = {(x, y) ∈ NR/Span(τ1) | x ≥ 1, y ≥ 1, x+ y ≥ 2}

= {+∞}× [1,+∞)

πτ2(P ) = [1,+∞)× {+∞}

π{(0,0)}(P ) = P

πσ(P ) = {(+∞,+∞)}

P

[1,∞)× {∞}

{∞} × [1,∞)

•{(∞,∞})

Figure A.2: The compacti�cation of P .

A.2 Tropicalization and Newton polyhedron

For the rest of this section P will denote a polyhedron in Rn of the form
∏

1≤i≤n[ri,∞),

ri ∈ Γ. We will denote by P =
∏

i[ri,∞] its compacti�cation. We de�ne

K〈P 〉 =

{∑
u∈Nn

aux
u | au ∈ K and val(au) + 〈u, v〉 → ∞ ∀v ∈ P

}
,

where the convergence is taken on the complement of the �nite subsets of Nn. Let us

note that elements f ∈ K〈P 〉 correspond to functions which are analytic on the ball

of radius exp(−ri) in Kn. For instance, if P =
∏

[0,∞), K〈P 〉 = K{x1 · · · , xn}.
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Let x ∈ Kn. The tropicalization of x, denoted by trop(x), is the tuple formed by the

valuations of the xi's:

trop(x) = (val(x1), · · · , val(xn)).

Let f ∈ K〈P 〉. We de�ne the tropicalization of f as the closure of the set

{v ∈ P | there exists x ∈ (Kalg)n such that f(x) = 0 and trop(x) = v},

where the closure is taken in P . We will denote this set by Trop(f).

This set is actually completely determined by the coe�cients of f :

Let σ = U(P ), τ ≺ σ and f =
∑
aux

u ∈ K〈P 〉. The height graph of f with respect to

τ is

H(f, τ) = {(u, val(au)) | −u ∈ σ∨ ∩ τ⊥ ∩M,au 6= 0} ⊂ (σ∨ ∩ τ⊥ ∩M)× R.

Fix v ∈ NR/Span(τ). Let

vertv(f) = {(u, val(au)) ∈ H(f, τ) | val(au) + 〈u, v〉 ≤ val(au′) + 〈u′, v〉

for all monomials au′x
u′ of f}.

This is the set of points such that the linear functional (v, 1) reaches its minimun. As

f ∈ K〈P 〉, val(au) + 〈u, v〉 → ∞. So, vertv(f) is actually a �nite set. Furthermore,

Lemma A.2.1 (lemma 8.2 in [14]). Let f ∈ K〈P 〉 nonzero. Then,

(i) vertP (f) =
⋃
v∈P vertv(P ) is �nite.

(ii) There exists ε > 0 such that for all f ′ =
∑
a′ux

u ∈ K〈P 〉 with

|f − f ′| = sup
u∈Nn,v∈P

{|au − a′u| · exp(〈u, v〉)} < ε

and a′u = 0 for all u such that au = 0, we have vertv(f) = vertv(f
′) for all

v ∈ P .

We de�ne the initial form of f with respect to v to be

inv(f) =
∑

(u,val(au))∈vertv(f)

aux
u ∈ K[x].

Let us remark that

vertv(f) = {(u, val(au)) | auxu is a monomial of inv(f)}.
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Example A.2.1. Let f = p2 + p2X +X2 +X3 +
∑

n≥1 p
nXn+3 ∈ K〈[0,∞)〉. Then,

vert0(f) = {(2, 0), (3, 0)}

vertv(f) = {(2, 0)} for all v ∈ (0, 1)

vert1(f) = {(0, 2), (2, 0)}

vertv(f) = {(2, 0)} for all v ∈ (1,∞)

•

•

conv(vert
1 (f)) •

conv(vert0(f))

•

•

•

Figure A.3: vertP (f)

Let us remark that
⋃
v∈P conv(vertv(f)) is exactly the Newton polygon of f (in

the sense of section 2.1.2) restricted to its segments with negative slope. This part of

the Newton polygon describes the multiplicity of the roots of f with valuation in P .

Let f ∈ K〈P 〉. Fix t ∈ (Kalg)n such that f(t) = 0. By the ultrametric inequality,

we have that for some u, u′ ∈ Nn distinct, val(aut
u
) = val(au′t

u′
) = minw{val(awt

w
)}.

So, if v = val(t) ∈ Trop(f), invv(f) is not a monomial. A crucial result in [14] is that

the converse is true:

Lemma A.2.2 (lemma 8.4 in [14]). Let f ∈ K〈P 〉 nonzero. Then,

Trop(f) = {v ∈ P | invv(f) is not a monomial}.

T rop(f) ∩NR is actually a very simple subset of NR : a polyhedral complex.

De�nition A.2.3. A polyhedral complex is a �nite collection Π of polyhedra in NR

(called faces or cells of Π) such that

� if P, P ′ ∈ Π, P ∩ P ′ 6= ∅, then P ∩ P ′ is a face of P and a face of P ′;

� for all P ∈ Π, F ≺ P , F ∈ Π.
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The support of Π, denoted |Π| is the set
⋃
P∈Π P . The dimension of Π is the dimension

of the highest dimensional cell of Π.

For v ∈ Trop(f) ∩NR, we de�ne

γv = {v′ ∈ Trop(f) ∩NR | vertv′(f) ⊇ vertv(f)}.

Actually, if Trop(f) is non-empty, the collection {γv, v ∈ Trop(f)∩NR} is a polyhedral

complex in NR of codimension at least 1 (i.e. all maximal cells have dimension at

most n− 1). The support of this complex is exactly Trop(f)∩NR. We will denote by

Trop(f) ∩NR the complex as well as its support.

Let π : N× R −→ N denote the projection on the �rst factor. We de�ne

γ̌v = π(conv(vertv(f))).

This a bounded polyhedron. The Newton complex of f is the collection of polyhedra

{γ̌v | v ∈ P}. We denote by New(f) this set. Note that in general this set is

not a polyhedral complex: some face of a polyhedron in New(f) may not belong to

New(f). Indeed, a face of a polyhedron γ̌v may correspond to the projection of a

set conv(vertv(f)) where v /∈ P . Let us remark that it is a polyhedral complex in

the case where f is polynomial and we consider the set of all γ̌v for v ∈ NR. The

support of New(f) is |New(f)| = conv{u ∈ N | (u, val(au)) ∈ vertv(f) for some

v ∈ Trop(f) ∩NR}.

The complexes New(f) and Trop(f) ∩ NR are dual to each other in the following

sense:

Proposition A.2.4. 1. For all v, v′ ∈ Trop(f) ∩NR, γv ≺ γv′ i� γ̌v � γ̌v′.

2. For all v ∈ Trop(f) ∩NR, γv and γ̌v are orthogonal in the sense that the linear

subspace of NR associated to the a�ne span of γv is orthogonal to the linear

subspace of MR associated to the a�ne span of γ̌v. Furthermore, dim(γv) +

dim(γ̌v) = dim(NR).

The above proposition implies that we have one-to-one correspondence between

cells of Trop(f) ∩NR and positive dimensional polyhedra in New(f).
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Example A.2.2. (a) Let f = p2 + p2X + X2 + X3 +
∑

n≥1 p
nXn+3 ∈ K〈[0,∞)〉 as in

example A.2.1.

Then,

γ0 = {0}

γv = [0, 1] for all v ∈ (0, 1)

γ1 = {1}

γv = [1,∞) for all v ∈ (1,∞)

and

γ̌0 = [2, 3]

γ̌v = {2} for all v ∈ (0, 1)

γ̌1 = [0, 2]

γ̌v = {0} for all v ∈ (1,∞).

By theorem 2.1.11, we already know that f has exactly one zero of valuation 0

and two zeros of valuation 1 in Qalg
p . Let us remark that this coincides with the

volumes of γ̌0 and γ̌1. The main theorem of the section A.3 is a generalisation of

this observation.

(b) Let f(x, y) = px+ xp + yp. We have four possibilities for inv(f):

(1) inv(f) = px+ xp when

v ∈ {ν = (ν1, ν2) | 1 + ν1 = pν1 < pν2} =

(
1

p− 1
,

1

p− 1

)
+ (0, 1)R>0 =: γ1.

(2) inv(f) = px+ yp when

v ∈ {ν = (ν1, ν2) | 1+ν1 = pν2 < pν1} =

(
1

p− 1
,

1

p− 1

)
+

(
1,

1

p

)
R>0 =: γ2.

(3) inv(f) = xp + yp when

v ∈ {v = (ν1, ν2) | pν1 = pν2 < 1+ν1} =

(
1

p− 1
,

1

p− 1

)
+(−1,−1)R>0 =: γ3.

(4) inv(f) = px+ xp + yp when

v ∈ {ν = (ν1, ν2) | 1 + ν1 = pν1 = pν2} =

(
1

p− 1
,

1

p− 1

)
=: γ4.
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Let v ∈ γ1. The corresponding cell in the Newton complex is γ̌1 = π(conv(vertv(f))) =

conv{(1, 0), (p, 0)}.

γ3

γ1

γ2

γ4

(a) Trop(f) ∩NR

γ̌1

γ̌2 γ̌3

γ̌4

(b) New(f)

Where in the above �gure, we take P = (−∞,+∞)2 (with the obvious extensions

of the de�nitions). If P = [r,∞) × [s,∞), then Trop(f) ∩ NR is the intersection

between the set described in the above �gure and P . New(f) is the collection of

all γ̌i such that γi ∩ P has the same dimension that γi.

A.3 Multiplicity formula

De�nition A.3.1. Let P1, · · · , Pn be bounded polyhedra in NR. The Minkowsky sum

of P1, · · · , Pn is

P1 + · · ·+ Pn = {v1 + · · ·+ vn | vi ∈ Pi}.

For λ ∈ R≥0, we set λPi = {λv | v ∈ Pi}. We de�ne the function

VP1···Pn : Rn
≥0 −→ R

(λ1, · · · , λn) 7−→ vol(λ1P1 + · · ·+ λnPn)

where vol is an Euclidean volume form in NR normalized such that the volume of

a fundamental domain for the lattice N is one. The function VP1···Pn is actually a

homogeneous polynomial in λ1 · · ·λn of degree n. The mixed volume MV (P1 · · ·Pn)

is de�ned to be the coe�cient of the λ1 · · ·λn-term of VP1···Pn.

Example A.3.1. � If P = [a, b] ⊂ R, then MV (P ) = b− a.
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� If P = [0, 1]2, Q = [1, 2]2 ⊂ R2, λ1P + λ2Q = [λ2, λ1 + 2λ2].

So,

vol(λ1P + λ2Q) = (λ1 + λ2)2 = λ2
1 + 2λ1λ2 + λ2

2,

and MV (P,Q) = 2.

� Let P = [0, 1]2, Q = [0, 1]× {0} and R = {0} × [0, 1] in R2. Then,

λ1P +λ2Q = [0, λ1 +λ2]× [0, λ1] and vol(λ1P +λ2Q) = (λ1 +λ2)λ1 = λ2
1 +λ1λ2.

So, MV (P,Q) = 1. And,

λ1Q+ λ2R = [0, λ1]× [0, λ2] and vol(λ1Q+ λ2R) = λ1λ2.

So, MV (Q,R) = 1.

De�nition A.3.2. Let P =
∏

[ri,∞) be a polyhedron (where ri ∈ val(K∗)). Let

f1, · · · , fn ∈ K〈P 〉. We de�ne

V (fi) = {x ∈ (Kalg)n | fi(x) = 0 and trop(x) ∈ P}.

Let Y =
⋂
i V (fi). Fix v ∈ NΓ ∩ P . The intersection multiplicity of f1, · · · , fn over v

is the dimension of the space Y ∩ trop−1({v}):

iK(v, f1 · · · , fn) = dimKΓ(Y ∩ trop−1({v}),OY ∩trop−1({v})).

Note that iK(v, f1, · · · , fn) is �nite if Y ∩ trop−1({v}) is a �nite set, in which case

iK(v, f1 · · · , fn) =
∑

trop(ξ)=v

dimKOY,ξ.

We refer to [14] for a formal de�nition of the dimensions of the space Y ∩trop−1({v})

and dimKOY,ξ. Note that the dimension dimKOY,ξ is a generalisation of the intersec-

tion multiplicity of an algebraic variety at a point ξ. For our purpose, the intuitive

meaning of 'intersection multiplicity' is su�cient. In our applications, we just need

to know that the above dimension bounds the cardinality of the space de�ned by Y

(whenever this space is �nite).

It turns out that the intersection multiplicity of a system over an isolated point in⋂
Trop(fi) is equal to the mixed volume of cells in New(fi):
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Theorem A.3.3. [Theorem 11.7 in [14]] Let P be a polyhedron as before, let f1, · · · , fn ∈

K〈P 〉 and let v ∈
⋂
i Trop(fi) be an isolated point such that v is in the interior of P

or v ∈ P and iK(v, f1, · · · , fn) is �nite. Let γ̌i = π(conv(vertv(fi))) ∈ New(fi) be the

polyhedron corresponding to v ∈ Trop(fi). Then,

iK(v, f1, · · · , fn) = MV (γ̌1, · · · , γ̌n).

In particular, assume that the system (f1, · · · , fn) has �nitely many solutions in

Kalg. Let N be the number of solutions with valuation v (where v is an isolated point

of
⋂
Trop(fi)). Then, N ≤MV (γ̌1, · · · , γ̌n).

Example A.3.2. � Let f(X) =
∑
aiX

i.

Let v ∈ Trop(f) ∩ R. Let i be the minimal index such that (i, v(ai)) ∈ vertv(f)

and j be the maximal index such that (j, v(aj)) ∈ vertv(f).

Then, γ̌v = π(conv(vertv(f))) = [i, j]. So, by the above theorem, the number of

zeros of f with valuation v is MV (γ̌v) = j − i (counting multiplicities).

On the other hand, as (i, v(ai)), (j, v(aj)) ∈ vertv(f),

v(ai) + v · i = v(aj) + v · j.

So, the slope of the segment conv(vertv(f)) = conv((i, v(ai)), (j, v(aj))) is

v(aj)− v(ai)

j − i
= −v.

It shows that theorem A.3.3 is a generalisation of theorem 2.1.11.

� We consider the sytem f1(X, Y ) = X2 − 2X − Y 2 + 1

f2(X, Y ) = X2 − p2Y 2.

Then,

Trop(f1) = R≥0(0, 1) ∪ R≥0(1, 0) ∪ R≥0(−1,−1)

Trop(f2) = (1, 0) + (1, 1)R.

So, Trop(f1) ∩ Trop(f2) = {(1, 0)}. Let v = (1, 0). Then,

vertv(f1) =
{(

(0, 0), 0
)
,
(

(0, 2), 0
)}

P1 := γ̌v(f1) = conv
{

(0, 0), (0, 2)
}
.
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And,

vertv(f2) =
{(

(2, 0), 0
)
,
(

(0, 2), 2
)}

P2 := γ̌v(f2) = conv
{

(2, 0), (0, 2)
}
.

Therefore,

λ1P1 + λ2P2 = conv
{

(2λ2, 0), (2λ1 + 2λ2, 0), (0, 2λ2), (2λ2, 2λ2)
}
,

vol(λ1P1 + λ2P2) = 2λ2 · (2λ1 + 2λ2 − 2λ2) = 4λ1λ2

MV (P1, P2) = 4.

P
1 +
P
2

•

•

P
2

•

•

P1

Figure A.4: P1 + P2

So, by the theorem, the number of solutions of the system (f1(x, y), f2(x, y)) =

(0, 0) is 4 (counting multiplicities). And indeed, one can compute that the solu-

tions of this system are

S =

{(
p

p− 1
,

1

p− 1

)
,

(
p

p+ 1
,

1

p+ 1

)
,

(
p

p− 1
,
−1

p− 1

)
,

(
p

p+ 1
,
−1

p+ 1

)}
.

A.4 Non-proper intersection multiplicity

In the last theorem, we have seen that we can compute
∑

trop(ξ)=v dimOY,ξ using the

Newton complex of the functions fi whenever v is an isolated point of
⋂
Trop(fi).

In this section, we will see how to compute a more general case (i.e. where the sum

is taken over trop(ξ) ∈ C for more general C ⊂
⋂
Trop(fi)). The idea is that we

can apply a small perturbation to the system so that, after perturbation, the set C
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corresponds to a �nite set of points C̃. Then, we apply theorem A.3.3 to compute

the intersection multiplicity at each point of C̃. It turns out that the sum of these

intersection multiplicities over C̃ is in relation with the sum of the multiplicities of the

roots of the original system with valuation in C. However, this gives us an equality

only with
∑

trop(ξ)∈C dimOY,ξ, where C is the compacti�cation of C.

De�nition A.4.1. Let P =
⋂
i{v ∈ NR | 〈ui, v〉 ≤ ai} be a polyhedron in NR. A

thickening of P is a polyhedron of the form

P ′ =
⋂
i

{v ∈ NR | 〈ui, v〉 ≤ ai + ε}.

More generally, if Π is a polyhedral complex, a thickening P of Π is a collection of

polyhedra of the form P = {P ′ | P ∈ Π}, where P ′ is a thickening of P . We set

|P| =
⋃

P ′ and int(P) =
⋃

int(P ′),

where int(P ′) denotes the interior of P ′.

For the rest of this section, we �x P1, · · · , Pn Γ-a�ne polyhedra of the type∏
j[rij,∞) and f1, · · · , fn ∈ K〈P 〉 nonzero. Let C be a connected component of⋂
Trop(fi). Then, the intersection between a thickening of C and a suitable small

perturbation of the Trop(fi)'s is �nite:

Lemma A.4.2. Let C be a connected component of
⋂
Trop(fi) and let P be a thick-

ening of C such that |P| ∩
⋂
i Trop(fi) = C. Then, there exist v1, · · · , vn ∈ N and

ε ∈ R≥0 ∩ Γ such that for all t ∈ (0, ε], the intersection

|P| ∩
⋂
i

(
Trop(fi) + tvi

)
is a �nite set of points contained in int(P).

Let P =
∏

i[ri,∞) be a polyhedron in NR. We �x t ∈ Γ and ξ in some algebraic

extension of K such that v(ξ) = t.

We denote by f̃ the image of the map:

K〈P 〉 −→ K〈P̃ 〉

f(x1, · · · , xn) 7−→ f(x1ξ
−1, · · · , xnξ−1)
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where P̃ :=
∏

[ri · pt,∞). Then, Trop(f̃) = Trop(f) + t. Let us remark that Trop(f̃)

and New(f̃) are independent of the choice of ξ with v(ξ) = t (indeed, these sets are

determined by the valuations of the coe�cients of f̃). It means that after a change

of variables like above, the intersection between the tropicalization and a thickening

of C is �nite. It leads to the de�nition of the stable tropical intersection multiplicity

along C:

De�nition A.4.3. Let f1, · · · , fn ∈ K〈P 〉 be nonzero and let v ∈
⋂
Trop(fi) an

isolated point. The stable tropical intersection multiplicity of Trop(f1), · · · , T rop(fn)

at v is de�ned to be

i(v, Trop(f1), · · · , T rop(fn)) = MV (γ̌1, · · · , γ̌n)

where γ̌i = π(conv(vertv(fi))) ∈ New(fi). Let C ⊂
⋂
Trop(fi) be a connected com-

ponent and let P , v1, · · · vn, ε like in lemma A.4.2. The stable tropical intersection

multiplicity of Trop(f1), · · · , T rop(fn) along C is de�ned to be

i(C, Trop(f1), · · · , T rop(fn)) =
∑

i(v, Trop(f1) + εv1, · · · , T rop(fn) + εvn),

where the (�nite) sum is taken over all v in |P| ∩
⋂
i

(
Trop(fi) + εvi

)
.

The main result of this section is that (under extra assumptions) the stable tropical

intersection multiplicity is equal to the sum of the multiplicities of the points of
⋂
V (fi)

with valuation in C (when this sum is �nite). This implies that the above de�nition

is well-de�ned in that case and independent of all choices.

It follows from theorem 12.11 in [14] that:

Theorem A.4.4. Let f1, · · · , fn ∈ K〈P 〉. Let S(fi) = conv{u : fiu 6= 0} (where fiu
denotes the coe�cients of fi). Assume that dim(∩iS(fi)) = n. Let C ⊂

⋂
Trop(fi) be

a Γ-a�ne polyhedron and C its compacti�cation. Let Y :=
⋂
V (fi). Assume that the

number of ξ ∈ Y with valuation in C is �nite. Then,

i(C, Trop(f1), · · · , T rop(fn)) =
∑

trop(ξ)∈C

dimKOY,ξ.

In particular, assume that the system f = (f1, · · · , fn) has �nitely many solutions

in Kalg and satis�es the hypothesis of the theorem. The typical example of C we have

in mind is C = γv (when this set is non-empty). Then, by the above theorem, the

number of solutions of f with valuation v is bounded by i(γv, T rop(f1), · · · , T rop(fn)).
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Example A.4.1. Let p 6= 2. And, let f1(X, Y ) = 2X − Y − 1

f2(X, Y ) = X + Y − 2.

Let P = [0,∞)2. We compute the number of solution of the system f1(X, Y ) =

f2(X, Y ) = 0 using the above theorem:

First, let us remark that

R2 ∩ Trop(f1) = R2 ∩ Trop(f2) = (0, 1)R≥0

∐
(1, 0)R≥0

∐
(−1,−1)R≥0.

Let C = P ∩ Trop(f1). Let t1, t2 ∈ Op. We apply the following perturbation to our

system:  f̃1(X, Y ) = 2t1X − t2Y − 1

f̃2(X, Y ) = X + Y − 2.

Then, R2 ∩ Trop(f̃2) = R2 ∩ Trop(f2) and

R2 ∩ Trop(f̃1) =(−v1,−v2) + (0, 1)R≥0

∐
(−v1,−v2) + (0, 1)R≥0∐

(−v1,−v2) + (−v2,−v1)R≥0

where vi := vp(ti). Assume v1 > v2 > 0.

Then, R2 ∩ Trop(f̃2) ∩ Trop(f̃1) = {(−v2,−v2); (−v1 − v2,−v1 − v2)}. So, by the

theorem, independently of any choice,

i(C, Trop(f1), · · · , T rop(fn)) = i((−v2,−v2), T rop(f̃1), T rop(f̃2))

+i((−v1 − v2,−v1 − v2), T rop(f̃1), T rop(f̃2)).

Now, we compute the two mixed volumes:

1. Let ν1 = (−v2,−v2). Then, vertν1(Trop(f̃1)) =
{(

(0, 1), 0
)
,
(

(0, 0), 0
)}

and

vertν1(Trop(f̃2)) =
{(

(0, 1), 0
)
,
(

(1, 0), 0
)}

. So,

MV (γ̌ν1(f̃1)), γ̌ν1(f̃2)) = 1.

2. Let ν2 = (−v1−v2,−v1−v2). Then, vertν2(Trop(f̃1)) =
{(

(0, 1), 0
)
,
(

(1, 0), 0
)}

and vertν1(Trop(f̃2)) =
{(

(0, 1), 0
)
,
(

(1, 0), 0
)}

. So,

MV (γ̌ν1(f̃1)), γ̌ν1(f̃2)) = 0.

This show that i(C, Trop(f1), · · · , T rop(fn)) = 1. And indeed, the unique solution of

the system is (1, 1).
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