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Abstract 

The original research in this thesis is by Simon Jonathan Bennie for the degree of 
Doctor of Philosophy in 2013 in the subject of Theoretical Chemistry. The work was 
conducted at The University of Manchester in the School of Chemistry. 

The zero field splittings (ZFS) of inorganic molecules were studied with a view to 
understanding the applicability of new methods in Density Functional Theory (DFT). 
The initial thrust of this work was to benchmark the three methods available: Pederson 
Kahana, quasirestricted orbitals and the coupled perturbed equations. Simple 3d 
monometallic systems were studied with a unique focus on the effect of adjusting the 
basis set size of the metal. We also studied the effect of a range of commonly available 
functionals. We found that by using a large quadruple zeta basis set that the results of 
general gradient approximation (GGA) functionals can be improved. Hybrid functionals 
were found not to be as accurate as the GGAs and are often degraded by going to a 
larger basis. The degree of accuracy appears to be a function of the covalency of the 
metal to ligand bond as measured by the Mayer bond orders and Mulliken charges. We 
also present the results for complete active space self consistent field calculations and 
ZFS values for restricted open DFT determinants coupled with the multi-reference 
configuration interaction methods of obtaining the ZFS. 

Chapter 5 of this work focuses of the characterisation of a more complex di-
chromium system called Kremer’s dimer. This system has three magnetically active 
spin states each of which has well-defined ZFS values. Under the broken symmetry 
method we found no functional to be able to qualitatively reproduce the ordering of the 
spin state or the ZFS. Through analysis of the natural orbitals and spin eigenvalues we 
determined that this is due to a strong amount of multi-configurational character. Simple 
complete active space self consistent field (CASSCF) calculations were found to 
reproduce the experimental spin ladder. Multi-reference configuration interaction on the 
CASSCF solutions were found to accurately calculate the experimental ZFS values, 
with state optimised calculations being the most accurate choice for the CASSCF.  

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

11 

Declaration 

No portion of the work referred to in the thesis has been submitted in support of an 

application for another degree or qualification of this or any other university or other 

institute of learning; 

 

Copyright 

The author of this thesis (including any appendices and/or schedules to this thesis) 

owns certain copyright or related rights in it (the “Copyright”) and s/he has given The 

University of Manchester certain rights to use such Copyright, including for 

administrative purposes. 

Copies of this thesis, either in full or in extracts and whether in hard or electronic 

copy, may be made only in accordance with the Copyright, Designs and Patents Act 

1988 (as amended) and regulations issued under it or, where appropriate, in accordance 

with licensing agreements which the University has from time to time. This page must 

form part of any such copies made. 

The ownership of certain Copyright, patents, designs, trade marks and other 

intellectual property (the “Intellectual Property”) and any reproductions of copyright 

works in the thesis, for example graphs and tables (“Reproductions”), which may be 

described in this thesis, may not be owned by the author and may be owned by third 

parties. Such Intellectual Property and Reproductions cannot and must not be made 

available for use without the prior written permission of the owner(s) of the relevant 

Intellectual Property and/or Reproductions. 

Further information on the conditions under which disclosure, publication and 

commercialisation of this thesis, the Copyright and any Intellectual Property and/or 

Reproductions described in it may take place is available in the University IP Policy 

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant 



 

 
 

12 

Thesis restriction declarations deposited in the University Library, The University 

Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and 

in The University’s policy on Presentation of Theses. 

  



 

 
 

13 

Dedication. 

 

To my father: your support every day of my life has made this thesis possible. You 

have been my source of strength through all the bad times and my source of laughter in 

the good times. You are without a doubt my idol and hero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

14 

Acknowledgments. 

 

This work was funded by the Engineering and Physical Sciences Research Council 

(EPSRC), under the supervision of Dr J. J. W. McDouall and Prof. D. Collison, both of 

whose advice and guidance was critical in this work. 

 

I would like to acknowledge Dr M. Vincent for his technical support and useful 

discussions and Dr N. Burton who supported my application to this Ph.D and has 

offered me continuing encouragement over the last 5 years. 

 

The Author. 

Simon Bennie graduated from The University of Manchester in 2009 with an upper 

second-class masters degree in chemistry. His interest in computational chemistry 

started in his third year when he undertook an unpaid internship with Prof. P. L. A. 

Popelier. He conducted his 4th year research project on the magnetic properties of 

actinides under the supervision of Dr N. Burton. During his Ph.D he has presented two 

posters on his research and has given oral presentations numerous times, including at 

the American Chemical Society meeting in Philadelphia. His final year oral presentation 

won first prize for the Inorganic/Physical sections, leading him to present at the regional 

Dalton meeting. He has attended numerous workshops such as the Oxford Theoretical 

Chemistry Summer School and the Electronic Structure Workshop in Essen. In the last 

year he has finished a separate 4 month research project for the Science and Technology 

Facilities Council (STFC). Chapter 5 of this thesis was published in the Journal of 

Computational and Theoretical Chemistry.1 

 

 



 

 
 

15 

Chapter 1: Introduction 

1.1  The importance of spin-nano magnets. 

The data storage industry is fast approaching the limit of the traditional bulk magnets 

used in computer hard drives. The ferromagnets that have been employed since IBM 

introduced the technology in 1953 are fundamentally limited, since the data becomes 

more volatile as the bit is made smaller. This has been termed the super-paramagnetic 

limit.2,3 Increasingly sophisticated methods are being used to evade this limit, such as 

perpendicular storage4 or using different substrates in disk construction. The issue is 

that as the domain of these bulk ferromagnets decreases, the potential for spontaneous 

demagnetisation (randomisation of spin orientation) becomes greater. Currently the bulk 

magnetic domain (which is made out of many small magnetic grains) is around the 

order of 100 nm.5,6 Instead of continuing to evade this limit it is possible to take a 

“bottom up” chemical approach to the construction of the magnetic bit. The ultimate 

goal of the nano-magnet is to create a molecule that is stable at room temperature, that 

retains its spin orientation for long periods and that can be easily read or manipulated. If 

this can be achieved then a new age of quantum storage is possible. 

 

1.2 The single molecule magnet and the potential of quantum storage. 

The single molecule magnet7,8 (SMM) is one approach to creating a molecular bit. 

Each individual molecule is used to store data as the orientation of its electronic spin. 

The critical equation that governs the eligibility of an SMM takes the form 

 

 E = D S! (1.1) 

 

where E is the energy of the spin reversal barrier, S is the total spin of the system and 

D is the large component of the magnetic anisotropy. The energy barrier dictates the 
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temperature up to which the spin retains its stability and thus controls the magnetic half 

life of a nano-magnet. The issue of constructing large energy barriers is a chemical 

problem with two avenues to exploit, either the total spin of the system or the magnetic 

anisotropy could be increased. The current experimental trend is to construct ever larger 

clusters of inorganic molecules that contain multiple spin-unpaired electrons.9 To create 

a molecule with a large paramagnetic ground state there are three main options; using a 

heterometallic system where the metal spins are unbalanced, a homometallic system that 

contains an odd number of metal centres or a spin frustrated system. There is on-going 

research into the applicability of f block elements10,11 to attain ever higher ground state 

spins. A limitation of this approach is becoming apparent in that although the energy 

barrier scales as S2, the D tensor tends to scale as ~S-2 and thus renders the barrier 

increasing with spin of the order of S0. 12,13 A second factor in the construction of an 

SMM that must be considered is the magnetic anisotropy, D, which determines the 

spacing between the various spin states along the energy barrier. 

 

 

Figure 1: Diagram of the SMM energy barrier for an S = 4 system. 
 

Where in Figure 1 Ms is the projection of spin in the Sz direction (the spin 

quantisation axis). To create an SMM, D must be negative as this guarantees a ground 

state where the spin is all aligned along Sz and thus has a defined orientation for 

manipulation. As the molecule is excited and accesses higher lying Ms states, the spin is 
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less orientated along Sz until it reaches the top of the energy barrier where Ms = 0 and is 

no longer orientated along that axis, at this point data would be lost. A discussion of the 

quantum tunnelling mechanism is outside the work of this thesis. D is a difficult 

parameter to control chemically as in inorganic systems it is dominated by spin-orbit 

coupling (SOC) and is extremely sensitive to ligand effects. It is this phenomenon that 

is the primary concern in this work. 

 

1.3  The role of theory in developing new magnetic molecules. 

Theoretical chemistry has some clear advantages in elucidating what is needed to 

create large D values. We are able to break D into its component factors of spin-spin 

interaction and spin-orbit coupling. We are then able to break down the spin-orbit 

coupling further and analyse the way its components influence its magnitude. Being 

able to calculate large SMMs is however out of the reach of pure wavefunction methods 

due to their high computational cost, instead we must turn to density-functional theory 

(DFT), which has a much better scaling factor. Recently, Frank Neese developed new 

methods of calculating the ZFS in a DFT framework, however it remains unclear if DFT 

in its current form is able to accurately model the coupling of the excited spin states 

needed to calculate D. Some analogy can be made to the electronic g factor which is 

now readily studied in theory with a good degree of accuracy.14 However, this is where 

the current limit of theoretical chemistry lies as the g value only involves the coupling 

of electronic configurations of the same spin and the D value requires the coupling of 

excited states that can vary from the state of interest by S ±1. It is not clear that DFT is 

able to accurately model excited states of this nature as it is a theory of the ground state 

density. DFT studies so far show qualitative agreement with experiment.15  The historic 

calculations of ZFS were done with ab initio methods.16
’
17 In this work we present a 

comparison of different methods to calculate D as well as data on the sensitivity of this 
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value to the choice of functional. We also present the current limit of DFT at calculating 

inorganic systems and show how multi-configurational methods are required in certain 

situations. 
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Chapter 2: Theoretical basis of this work. 

2.1.1  Many electron wavefunctions. 

Quantum chemistry is the study of different approximations to replicate the physical 

intricacies of the motion of electrons as they interact around nuclei. The complexity of 

the field arises because it does not follow the basic recipe of classical mechanics, i.e. to 

take in certain parameters such as charge or momentum and to predict the positions of a 

moiety such as an electron at some point in the future. The fundamental attribute in the 

quantum nature of matter is that position and momentum cannot be simultaneously 

known, this accords with the Heisenberg uncertainty principle and is what renders 

classical mechanics to be inapplicable for small systems. By substituting the momentum 

function with the derivative of position (px → d/dx) one can come to the time dependent 

Schrödinger equation and with the further separation of the time variable to the time 

independent Schrödinger equation (equation 2.1). This is the wave equation for the 

motion of an electronic system under the restrictions of quantum mechanics (i.e. within 

boundary conditions) as a steady state and without relativistic considerations.  

  

HΨ = EΨ 

 

(2.1) 

 

Where H is the Hamiltonian of the system and Ψ is the many electron wavefunction. 

Each wavefunction is a function of the position of multiple electrons and nuclei: 

 

 HΨ(x!, x!, x!,…    , x!,R!,R!,R!,…    ,R!)

= EΨ(x!, x!, x!,…    , x!,R!,R!,R!,…    ,R!) 
(2.2) 

 

where each electron has the space and spin position xi and the nuclei at Ri. 
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2.1.2  The meaning of the wavefunction and operators. 

According to Born’s interpretation, the wavefunction is a probability amplitude, only 

its square provides the statistical information on the position of electrons. The 

wavefunction is not an observable and can be complex; instead its presence is 

experimentally inferred from the observable one electron density ρ(r), a quantity that we 

discuss in section 2.4. 

Applying a Hermitian operator to the wavefunction allows the determination of a 

property. In the case of the Schrödinger equation the operator is the Hamiltonian and the 

property that it exposes (its eigenvalue) is the energy of that electronic wavefunction. 

The Hamiltonian function of classical mechanics is a special formulation that 

describes the energy of a system as the potential energy plus the kinetic energy. When 

the quantum mechanical momentum substitutions are made, the many electron 

Hamiltonian takes the form 

  

H =   −
∇!!

2 −
∇!!

2M!
−

Z!
r!"

!

!!!

!

!!!

!

!!!

!

!!!

+     
Z!Z!
R!"

!

!!!

+
1
r!"

!

!!!

 

 

(2.3) 

 

 

where the ∇! is the Laplacian operator or kinetic energy operator. This operator is 

constructed out of the square of the momentum operator (the derivative of the electronic 

position) as is needed when describing momentum in quantum mechanics. With some 

algebraic manipulation, equation 2.3 can be rendered in spherical coordinates and 

solved to find the hydrogenic orbitals. Such one electron cases are the only time in 

which the Schrödinger equation is exactly solvable. It is the final inter-electron term 

that causes difficulty in quantum chemistry as it is a many-body problem. 
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2.1.3  The form of the wavefunction and eigenequations. 

The quantisation of nature does not allow a continuum of solutions for the energy of 

matter, instead it must have discrete values. The use of an eigenequation enforces 

quantisation by selecting functional forms that are harmonics within the boundary 

conditions of the system. The wavefunction must be finite, continuous and single valued. 

When applying the Hamiltonian operator to a wavefunction one wishes to find the 

eigenfunctions which correspond to the possible electronic energy levels. This means 

that the operator returns the same function that it has acted on multiplied by a constant. 

The derivative in the kinetic term of the Schrödinger equation means that acceptable 

functions from which to form a basis are exponentials, sines and cosines. 

 

2.1.4  Energy operator and the Born-Oppenheimer approximation. 

The small mass of electrons means that as they orbit heavy nuclei they are able to 

respond effectively instantaneously to any change in nuclear coordinates. This opens up 

an avenue to reduce the computational cost of the full Hamiltonian. It can be said that 

the electronic wavefunction depends explicitly on the electronic coordinates but only 

parametrically on the nuclear coordinates. By removing the nuclear kinetic energy term 

and the nuclear repulsive energy from equation 2.3 we arrive at the Born-Oppenheimer 

Hamiltonian. 

 
H =   −

∇!!

2 −
!

!!!

Z!
r!"

!

!!!

!

!!!

Z!Z!
R!"

!

!!!

+
1
r!"

!

!!!

 (2.4) 

 

By applying equation 2.4 one is able to neglect the kinetic motion of the nuclei and 

calculate the electronic energy for a fixed molecular geometry. To recover the total 

energy the nuclear-nuclear repulsion has to be added to the end of the electronic 

structure calculation, but this need only be calculated once per geometry.   
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2.1.5  Spin operators. 

The electronic Schrödinger equation (2.1) covers the Cartesian degrees of freedom 

that an electron possesses. The Stern-Gerlach experiments18 proved that under the 

influence of a homogeneous external field, B, atoms with an unpaired electron are 

divided according to the energy of their interaction with the external field into a doublet. 

The origin of this interaction can only be explained by electrons possessing an internal 

degree of freedom that has been termed ‘spin’ or internal angular momentum. Because 

the electron is a charged particle this ‘internal motion’ creates a small magnetic field 

that determines the electron’s interaction with external fields (as exploited in EPR). 

When the electron’s field is aligned with B it is deflected along the direction of the field 

(lowered in energy in EPR), when anti-aligned the electron is deflected against the 

direction of B (raised in energy in EPR). This property is manifestly similar to the 

angular momentum of an electronic orbit, but is not an accurate description of the 

physical reality as spin is a pure quantum phenomenon. The key feature of electronic 

spin is that it obeys the same rules as traditional quantised angular momentum,19 the 

main difference is that it is of half integer value opposed to the unit values observed in 

orbital motion.  

  

S! S,M! = S S+ 1 S,M!  

 

(2.5) 

 

  

S! =   S S+ 1 =
N! − N!

2
N! − N!

2 + 1  

 

(2.6) 

 

Operating S2 from equation 2.5 on a state returns the total spin magnitude of that 

state as an eigenvalue, this means that it sums the spin components along the three axes 
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that the spin could be aligned and returns the total possible value.  

  

S! S,M! = M!   S,M!  

 

(2.7) 

 

The Sz operator in equation 2.7 provides the spin in the Z direction as Ms eigenvalues 

(the same values as in Figure 1). These two spin operators commute ([S2,Sz]=0) and thus 

can be simultaneously observed, but the three spin directions, Sz, Sx and Sy, do not 

commute. In the absence of magnetic contributions there is no energetic impetus to 

align the spin along Sz, Sx or Sy and thus the Ms values are all degenerate. The lifting of 

this degeneracy can be achieved by an external field or by the zero field splitting (ZFS). 

The use of the non-relativistic Hamiltonian in most electronic structure calculations 

means that the choice of axis of quantisation for spin is arbitrary and is usually just 

defined as Sz. 
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Figure 2: Vector cone diagram showing the possible spin orientations of the spin along 
the z direction.  

 

The vector model of coupling for visualising Ms is shown in Figure 2. Each vector 

cone indicates the amount of spin in the Sz direction. When Ms = 3 then the state has all 

its spin aligned along Sz. When Ms = 0 there is no spin in the Sz direction, however 

because of the commutation rules of the spin components it is not possible to determine 



 

 
 

25 

along which axis the spin is actually aligned. The cones become wider as the 

uncertainty of the remaining spin direction increases.   

Within the Schrödinger equation the effect of spin can be added by enforcing 

antisymmetry, but only to the level of neglecting the magnetic effects that arise from 

angular momentum. To fully calculate spin properties the Dirac equation must be 

employed (section 2.7).  

 

2.1.6  The spin orbital. 

In quantum chemistry the wavefunction is decomposed into a product of one electron 

functions that chemists call orbitals. From equation 2.2 the wavefunction can be 

described as the function of an electronic state made out of the electron coordinates (and 

time). Adding the spin variable to the Cartesian coordinates results in orbitals of the 

form: 

  

ϕ(x) = φ(r)σ(s) 

 

(2.8) 

 

The σ indicates the addition of a spin coordinate to the electronic degrees of freedom. 

The spin function is either α or β and represents the electron spin as being +½ or -½ 

respectively. This total one electron function is called a spin orbital. 

 

2.1.7  Slater determinants and antisymmetry. 

 By adding spin as a fourth variable to the electron in non relativistic wavefunctions 

no additional physics is recovered. To achieve a better description of the many electron 

wavefunction we are required to enforce the Pauli exclusion principle, which states that 

any two fermions must be antisymmetric under interchange of their coordinates. To 

illustrate this we construct an example wavefunction of two fundamental quantum 
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particles, which can be found either at r1 or r2. Because fundamental particles are 

indistinguishable it is not possible to label a particular one as being at a position and 

thus the probability |Ψ|2 must be the same if the labels are switched. 

  

Ψ ! = a r! b r! ! =    a r! b r! ! 

 

(2.9) 

 

The wavefunction must reflect this and thus must be a linear combination of the two 

possibilities. 

  

Ψ r!, r! =
1
2
(a r! b r! ± a r! b r! ) 

 

(2.10) 

 

The particles in equation 2.10 have two possible arrangements giving rise to two 

equally probable combinations, the symmetric combination (+) or the antisymmetric 

combination (-). If the symmetric combination is taken then the probability (|Ψ|2) of 

finding both particles is additive and thus greatest when they occupy the same point in 

space; this is the case for bosons such as photons. When the antisymmetric combination 

is taken then the probability of both particles being found at the same point in space is 

zero; this is the case for electrons. If a and b are the same, as would be the case when 

the electrons have the same quantum number, then the particles occupy all the same 

positions in space and the antisymmetric combination evaluates to zero. This means that 

there is zero probability of finding two electrons in the same state, this is the Pauli 

exclusion principle. 

The antisymmetry principle is backed by spectroscopic evidence, this is most often 

argued based on the excited states of helium.20 No antisymmetric triplet states or 

symmetric singlet states have been observed, this is because for a triplet state only the 

spatial terms can be interchanged and for the singlet state only the spin terms can be 



 

 
 

27 

interchanged. 

 In quantum chemistry antisymmetry on is achieved by using Slater determinants. 

For a two electron wavefunction this takes the form: 

  

Ψ =
1
2
ψ r! α(1) ψ r! β(1)
ψ r! α(2) ψ r! β(2)

 

 

(2.11) 

 

The 1/ 2 is a normalisation of the wavefunction and enforces statistical probability 

of finding an electron when integrated over all space to be 1. If any two columns of a 

Slater determinant are interchanged then the wavefunction changes in sign, making the 

wavefunction obey the antisymmetry principle. When any two columns are the same the 

determinant evaluates to zero, this is in effect a statement that the probability is zero for 

finding the two electrons in the same state. The Slater determinant also introduces the 

physics of electron spin pairing, by allowing the electrons to possess the same spatial 

component provided that they possess opposite spins. In a Slater determinant every 

electron is associated with every orbital and the indistinguishability of electrons is 

achieved. It is the combinations of Slater determinants that form the basis of quantum 

chemistry. 

 

2.2    The Hartree-Fock operator. 

2.2.1  The Hartree operator. 

The multi-electron wavefunction introduced in equation 2.1 can be made tractable by 

introducing simplifications to the way the electrons interact. The first simplification is 

to replace the multi-electron Hamiltonian with a series of non-interacting one electron 

Hamiltonians. 
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H =    h(i)
!

!!!

 

 

(2.12) 

 

Each Hamiltonian h(i) contains all the physical interactions of that electron with its 

surrounding environment. Combining all the one electron functions (orbitals) and their 

eigenvalues gives: 

  

h i ϕ! x!

!

!!!

= ε!  ϕ! x!

!

!!!

 

 

(2.13) 

 

We are thus able to use this approximation as a starting point to construct the many 

electron wavefunction. The issue with the Hartree product is that it violates the 

antisymmetry principle and the indistinguishability of electrons by labelling each 

electron as belonging to a particular orbital χ.  

 

2.2.2  The Fock operator and electron exchange. 

Requiring the wavefunction to be antisymmetric and thus to be represented by a 

Slater determinant, as discussed in section 2.1.7, accounts for indistinguishability. In a 

Slater determinant the electrons of the same spin are said to be correlated, this means 

that their motion reflects the position of the other electrons in their environment. The 

reason this occurs is because the action of a Slater determinant creates a Fermi hole 

round each electron that makes the probability of finding two electrons of the same spin 

occupying the same point in space, zero. Thus for a single determinant wavefunction the 

position of an electron explicitly depends on the position of other electrons with parallel 

spin. To describe the electronic interaction in a molecular environment the final 

electron-electron term of the Born-Oppenheimer Hamiltonian must be considered. 
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H = h!

!

!!!

+
1
r!"

!

!  !!

 

 

(2.14) 

 

The first term describes the non interacting energy of the electron; its potential 

energy with respect to the nucleus and its kinetic energy. The second term is the two-

electron term that can be broken into two components J and K. Each electron 

experiences a Coulombic mean field from the other electrons, described by the two-

electron Coulomb operator J. This electronic repulsion term makes electrons interact 

with the mean field of the other electrons in the environment. 

  

J!" =    ψ!∗ 1 ψ!∗ 2
1
r!"

ψ! 1 ψ!(2) dv!dv! 

 

(2.15) 

 

A second term that arises from the use of Slater determinates is the exchange 

operator, this is a non-local two-electron operator K. The exchange term results directly 

from the matrix elements of combining the Slater determinant with the Hartree one 

electron model. The exchange operator switches the position of the electrons in the 

Coulomb integral. The effect of the exchange operator is to reduce the repulsion of 

same spin electrons and thus localise them. The form of the K integral is given below.  

  

K!" =    ψ!∗ 1 ψ!∗ 2
1
r!"

ψ! 2 ψ!(1) dv!dv! 

 

(2.16) 

 

Thus to get the energy of any molecular system the Hartree-Fock operator for a 

closed shell system has the form 
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E =    Ψ H Ψ = h!!

!

!  !  !

+
1
2    (2J!" − K!")

!

!!!

!

!!!

 

 

(2.17) 

 

From this equation it is clear that there is a double counting of certain Coulomb 

interactions, in effect the self interaction of an electron, this is exactly cancelled by the 

exchange integral. Thus it is clear that the total energy of the Hartree-Fock 

wavefunction is lower than the Hartree solution and in fact the HF solution is the lowest 

energy solution possible with a single determinant. 

 

2.2.3  The Roothaan-Hall equations. 

The Hartree-Fock equations are only exactly numerically solvable in atomic 

calculations. Roothaan showed that by introducing a truncated basis set of known 

functions that the HF equations could approximately be solved analytically. 

  

ψ! =    C!!ϕ!  

!

!  !  !

 

 

(2.18) 

  

where Cµi is the coefficient of function ϕ!  for orbital i. This converts the calculations 

of molecular orbitals into a matrix problem. By substituting this into the Fock equation 

we arrive at  

 

  

FΨ = f! C!!ϕ!  
!!

=    ε! C!!ϕ!  
!!

 

 

(2.19) 

 

To calculate the expectation values this equation is multiplied through by the 
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complex conjugate of the wavefunction. This results in the formation of the overlap 

matrix S and the Fock matrix F. The final form of the Roothaan-Hall equation is then 

 

 FC = SCϵ (2.20) 

 

The aim of this equation is to find C matrices (orbital coefficients) that diagonalise 

the Fock matrix. However, the orbitals from atomic orbitals are not orthogonal, to 

correct this the overlap matrix has to be diagonalised as a step in solving this eigenvalue 

equation. 

 

2.2.4  Self consistent field and variation theorem. 

Because the Fock equation depends on the form of the wavefunction it operates on it 

is not possible to solve the equation exactly, instead a guess starting point is needed and 

the HF equation is iteratively solved until the energy of the system is minimised.  

  

Ψ! H Ψ!   ≥   Ε! 

 

(2.21) 

 

Any trial wavefunction Ψ! must result in a higher in energy than the true solution. 

The procedure to solve the Roothaan-Hall equation in order to obtain the eigenvalues is 

well described in Szabo and Ostland.21 The most critical aspect is that by taking a set of 

trial coefficients and inputting them into the Roothaan-Hall equation it is possible to 

calculate a new set of transformed coefficients from the diagonalised Fock matrix. 

 



 

 
 

32 

2.2.5  Restricted, restricted open and unrestricted calculations. 

There are two possible electronic situations in chemistry, true closed-shell situations 

where there is no EPR information and open-shell calculations, which are magnetically 

active. Open-shell S = 0 systems such as diradicals can be of the second category. The 

equations shown so far are the closed-shell form but can be extended to the open shell 

situations. To tackle open shell molecules there are two main methods, based on either 

restricted open determinants or unrestricted determinants. The Restricted Open Hartree-

Fock (ROHF) form is a direct extension of the normal closed shell methodology with 

the addition of open shell orbitals into the determinant. The Unrestricted Hartree-Fock 

(UHF) introduces an extra degree of variational freedom to the wavefunction, whereby 

the α and β orbitals are not required to have the same energies or spatial form, they are 

said to have broken spin symmetry. Broken symmetry orbitals have a lower symmetry 

than the molecular symmetry. 

 

 

Figure 3: Pictorial representation of spin symmetry breaking for ROHF (left) and UHF 
(right) determinants. 
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The UHF method is most commonly used in open-shell quantum chemistry as it 

introduces some desirable characteristics into the wavefunction. Figure 3 shows the α 

and β electrons to have different spatial components, which allows the UHF solutions to 

reproduce homolytic dissociation, whilst the ROHF solution is only able to find the 

ionic dissociation. This is because in restricted calculations the electron pairs must have 

the same spatial function and upon dissociation must be both localised on the same 

atom even if the homolytic dissociation is of lower energy. This has implications for 

other chemical situations where there can be degeneracy such as in the case of the d 

block metals being studied in this work. 

 

2.2.6  Spin eigenfunctions and spin contamination 

UHF wavefunction calculations have a fundamental flaw in that they do not form 

spin eigenfunctions as occurs for ROHF determinants (providing their unpaired 

electrons are parallel). This means that the expectation values of the S! operator on 

UHF wavefunctions have deviations which make them larger than the ideal ROHF 

expectation value. To evaluate the expectation value from the S! operator in UHF 

calculations we use the form: 

  

s! =   
N! − N!

2
N! − N!

2 + 1 + N! − Ψ!! Ψ!
!

!
!!

!

!!

!

 

 

(2.22) 

 

The expectation value for S! for an UHF calculation deviates from the ROHF, by the 

overlap density between the α and β electrons. The reason for this deviation is that by 

allowing the spin orbitals to break degeneracy in an open shell state the α electrons are 

lowered in energy as they experience more exchange than the β electrons, which has the 

effect of introducing contamination of higher spin states. The same methodology can be 
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applied to calculating unrestricted singlet states, but there must be an impetus for the 

alpha and beta electrons to break degeneracy such as mixing the HOMO with its 

antibonding partner.  The introduction of spin contamination significantly affects spin 

density and properties that are spin dependent and is the reasoning behind the quasi-

restricted-orbital (QRO) method developed by Neese, which we discuss in section 

2.8.5.5. Within the unrestricted DFT context it is not appropriate to calculate S!in the 

same way for UHF because DFT is based on a fictitious non-interacting system. The 

more rigorous methods 22 , 23  of calculating the spin magnitude are not commonly 

implemented in quantum codes. The regular UHF method of calculating spin 

contaminations is the most common method and this is the method used throughout this 

work. 

 

2.3  Electron correlation. 

2.3.1  The mean field problem and correlation. 

 The main issue with the Hartree-Fock method is that it is a mean field method, 

where the full Hamiltonian has been replaced by a model two-electron Hamiltonian. 

Because of this approximation the HF energy is above the true energy of the system as 

the electrons of opposite spin are not correlated.  

  

E!" = E!"##$%&'(") − E!"#$% 

 

(2.23) 

 

The correlation energy is defined as the difference between the HF solution and the 

exact solution to the many body problem. 
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2.3.2  CI approaches. 

To improve the HF energy it is possible to systematically improve the wavefunction 

by introducing more states into the HF equations. These states are different Slater 

determinants that represent excited electronic states.  

  

Ψ! =    C!!Φ!
!

 

 

(2.24) 

 

The total wavefunction Ψ is made up of a linear combination of determinants, and 

the challenge is to minimise the energy of the system by variation of the coefficients, 

those states with large coefficients C!! are most important to the wavefunction. The 

inclusion of additional configurations further correlates the wavefunction and reduces 

the energy of the system. The increased number of Coulomb integrals that arise from 

the configurations increases the repulsion between the electrons and results in the 

structure delocalising to minimise the repulsion.  

 

2.3.3  The systematic improvement of the wavefunction. 

The inclusion of all possible determinants is not realistic for most molecular systems 

as the number of configurations quickly rises with the number of orbitals, the scaling 

problem is described by the binomial coefficient24: 

  

2K
N =   

2K   !
2K− N !N! 

 

(2.25) 

 

where there are N electrons and K orbitals. The difficulty in performing the full 

configuration interaction (CI) has led to the development of a range of truncation 

schemes reducing the computational cost. Approximations that are most commonly 

used include determinants with a restricted number of excitations, normally based 
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around CI and coupled cluster (CC). There are also methods explicitly designed to 

improve the spectroscopic properties such as Spectroscopy Orientated CI (SORCI) and 

Difference Dictate CI (DDCI)25,26. 

 

2.3.4  The unrestricted natural orbitals. 

The HF canonical molecular orbitals are only one of a possible infinite selection of 

different orbitals that can be used to describe the same state. These orbitals generally 

maintain molecular symmetry and are useful because they are eigenvectors of the Fock 

operator. However, other acceptable solutions can be formed by a unitary 

transformation of the orbitals. One such solution is the natural orbitals (NOs), formed 

by the diagonalisation of the density matrix. The NOs are generally easier to interpret 

with chemical arguments and have the advantage that CI calculations started from them 

are generally more convergent. They are also used in multi-configurational calculations 

where multiple configurations contribute to a single set of orbitals that can conveniently 

be represented by the NOs. The Fock operator restricts the orbitals to be occupied as 2, 

1 or 0, in the NO the values can be any value between 0-2. This same methods can be 

extended to unrestricted methods creating the unrestricted natural orbitals (UNOs) 

 

2.4  The Kohn-Sham equations. 

The fundamental concept of density functional theory (DFT) is that there is a way of 

directly obtaining the energy of a molecular system from its probability density. The 

basis of this concept originates from the uniform electron gas model by Thomas and 

Fermi in 1927.27,28 This was improved in 1951 by Slater,29 who also later devised the 

popular Xα functional.30 The proof of density → energy mapping came from the 

Hohenberg-Kohn theorems in 1964. The basis of all DFT comes from the proof that the 

non-degenerate ground state of a system is uniquely described by the external potential 
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that is determined by the density. 

  

ρ! ⇒ N, Z!,R! ⇒ H   ⇒   Ψ! ⇒ E! 

 

(2.26) 

 

The electronic density thus encompasses all the variables in the system and can be 

used to create the molecular Hamiltonian, which in turn, can be used to define the Ψ! 

that provides the energy of the system. Because the total energy of the system is the 

functional of the density, then so are its physical components. 

  

E! ρ! = T ρ! +   E!! ρ! + E!" ρ!    

 

(2.27) 

 

where T is the kinetic energy Eee is the electron-electron repulsion and ENe is the 

potential energy of the electron nuclear attraction. The electron-electron repulsion can 

be broken down into classical Coulombic repulsion and nonclassical contributions. 

  

E!! ρ! =   
1
2

ρ r! ρ r!
r!"

  dr!dr! + E!"# ρ!  

 

(2.28) 

 

From this equation it can be seen that the Coulombic repulsion of the electrons can 

be calculated as an integral over space, leaving the nonclassical, quantum, terms to be 

evaluated. 

 

 

 

 

 

 



 

 
 

38 

2.4.1   A short cut to the dynamical correlation. 

The probabilistic description of the wavefunction gives rise to the central quantity in 

DFT, the electronic density.31  

  

ρ r = N … Ψ(x!, x!, x!,…    , x!) ! ds!dx!… dx! 

 

(2.29) 

 

Where Ψ is integrated over the volume element dr1 to result in the one-electron 

density. ρ r  is the probability of finding an electron in a volume of space and, due to 

indistinguishability, the probability of finding any electron in a volume element is N 

times the one electron probability. The electron density is dependent on the 3 spatial 

coordinates of the electron opposed to the 4N variables (3 space and 1 spin) that are 

required in the wavefunction methods, making the many body problem far more 

tractable. The antisymmetry principle is reflected in the electron density through the 

reduced (or two particle) density matrix32,33: 

 

γ x!, x!; x!! , x!!   

= N N− 1    … Ψ(x!, x!, x!,…    , x!)Ψ∗ x!! , x!! , x!,…    , x!   dx!… dx! 

(2.30) 

 

This equation integrates over all the electronic positions other than the x!!  and x!!  

coordinates.  This can be expanded into a familiar wavefunction form34,35 

 

γ x!, x!; x!! , x!!   

= ψ!∗ 1! ψ!∗ 1 ψ!∗ 2! ψ!∗ 2
!

!!!

!

!!!

− ψ!∗ 1! ψ! 1 ψ!∗ 2! ψ! 2  

(2.31) 

 

This reduced density matrix can be expanded to be in the form of the antisymmetic 



 

 
 

39 

interaction that occurs in the HF equations. Thus we show the relation between 

antisymmetry and electron density, however this is not a recipe for how to generate this 

density. The reduced density matrix can be turned into the pair density by making x!!  = 

x! and x!!  = x! and thus making: 

 

ρ x!, x! = N N− 1 … Ψ(x!, x!, x!,…    , x!) !   dx!… dx! 

 

(2.32) 

 

This is a critical quantity in DFT as it contains all the information on the pairwise 

interaction between the electrons and thus provides the information on how electrons 

distribute with regard to each other when they are in the volume elements x! and x!. 

 

2.4.2  Coulomb and Fermi holes.  

To provide a better physical description it is necessary for any functional not only to 

describe the Fermi correlation, as in HF theory, but also to describe the many body 

Coulomb correlation. Because all electron-electron interaction is encompassed by the 

pair density it thus must be possible to describe these two types of correlation as 

parameters of this matrix. Because the pair density can be integrated to the one electron 

density plus the electron-electron interaction we are able to continue from equation 2.28 

and define the nonclassical interactions as the effect of the exchange correlation hole. 

  

    H!" x!; x! =
ρ x!, x!
ρ r!

− ρ r!    

 

(2.33) 

 

The pair exchange correlation H!" x!; x!  can be obtained as the component of the 

pair density that is not due to the classical interaction of electrons. 
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E!! ρ! =   

1
2

ρ r! ρ r!
r!"

+   
1
2

ρ r! H!" x!; x!
r!"

  dr!dr! (2.34) 

 

The first term is the spin-independent Coulomb repulsion of the two reference 

electrons. The exchange correlation hole is further composed of two factors, the Fermi 

hole, hx, that affects the electronic density by carving a hole around each electron that 

perturbs electrons of the same spin and the Coulomb hole, hc, that describes the 

interactions of electrons of opposite spins. If the correct form of hxc was known then the 

many body problem would be solved. The exchange hole is the larger contributor to the 

energy as in post-HF calculations and its correct, non local, description should result in 

the cancellation of self interaction exactly as occurs through the exchange integral in HF 

theory.36 A key restriction of Fermi holes is that their integration over all space must 

equal -1. 

  

   H! r!, r! dr! = −1 

 

(2.35) 

 

Evaluation the exchange contribution at any point in space for any electron should 

give a negative value as it reduces the chance of another electron of the same spin being 

found in that region of space. The integral evaluates to -1 because the space r!  contains 

the spin of the reference electron and thus there are N-1 other electrons left.  

The effect of the Coulomb hole is to redistribute the electron density and results in 

the zero change to the electronic density over all space: 

  

     H! r!, r! dr! = 0 

 

(2.36) 

 

This is because the Coulomb hole is independent of the electronic spin and thus does 

not change the chance of finding the electron over all space. The Coulomb hole is 
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strongly negative around the space of the reference electron (where the electrostatic 

interaction is largest) and becomes positive further away from the reference electron. 

This has the effect of delocalising electrons. 

 

2.4.3  The Kohn-Sham orbitals and their meaning. 

The contribution of Kohn and Sham (KS) in 1965 was to conjecture that the basis of 

the poor kinetic energy in DFT originated from a deficiency in the Thomas Fermi model. 

Their solution was to construct the electronic density from a fictitious, non-interacting 

reference system made of orbitals.  

  

    f!"φ = ε!φ 

 

(2.37) 

 

Where f!" is the one electron Kohn-Sham operator which includes the kinetic and 

potential energy required to make this fictitious system replicate the total electronic 

density of the real system. The Kohn-Sham method uses a single reference determinant 

to create a set of antisymmetrised non-interacting orbitals, it is a key feature of this 

method that it allows a method for DFT to reflect the density in equation 2.30. 

The use of one electron orbitals means that the noninteracting kinetic energy 

recovers the majority of the true kinetic energy and allows the rest to be dealt with in an 

approximate manner. The result is that the Exc term is slightly modified in the KS 

description: 

  

  E!" ρ = T ρ − T! ρ + E!"# ρ    

 

(2.38) 

 

This new exchange correlation term now contains a kinetic term that accounts for the 

error in the non interacting term T! ρ  as well as the non classical interactions E!"# ρ . 
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The kinetic energy correction can be described by approximations, the result is that the 

majority of the kinetic energy is now qualitatively correct. The key advantage of this 

approach is that the many body problem of the wavefunction has now been split from 

one function of 30 parameters (in the case of 10 electrons) to 10 equations of 3 

parameters. 

 

2.4.4  Parameterisation of the exchange correlation. 

The Exc functional contains all the terms that remain unknown and picking a form 

that describes the interactions has led to an array of functionals (colloquially known as 

the ‘ZOO’ of functionals).37 Because the exchange and correlation term are separate it is 

trivial to create permutations of functionals. The major question that remains in DFT is 

how to describe the exchange-correlation term, there are many different, increasingly 

sophisticated, methods to describe this unknown functional. Methods generally start by 

looking at the local spin density and are corrected for the gradient of the electronic 

density. Some deficiency was found to occur still at this level based on the long range 

self-interaction of electrons, this led to the mixing in of a portion of HF exchange. More 

recently there has been work to add the kinetic energy gradient and range-separated 

hybrids.38 Some more exotic DFT methods have also been devised to account for static 

correlation such as CAS-DFT.39 

 

2.4.5  The local density approximation. 

The basis of all the functionals used in this work is the homogeneous electron gas 

(HEG) introduced by Thomas and Fermi in 1927 and reintroduced by Kohn and 

Sham.40 The combination of KS theory and HEG gives rise to the local density 

approximation (LDA).  

 



 

 
 

43 

   E!"!"# ρ =    ρ r   (ε! (ρ r )+ε!(ρ r ) (2.39) 

 

The LDA finds the exchange correlation of a particle at r multiplied by the density of 

electrons in that space. This means that the exchange-correlation is a function of the 

density in the space  r. The exchange term takes the form41 

  

  E!!"# ρ = −
3
4
3
π

!
!

(ρ r )! ! 

 

(2.40) 

 

This is Slater’s exchange term.42 The correlation term was computed using quantum 

Monte Carlo in 1980 by Alder.43 The LDA can be extended to account for spin 

polarisation relatively simply by separating the α and β density and operating on them 

independently, creating the local spin density approximation (LDSA). This is the 

situation for a perfect bulk metal with smeared nuclear charge and is successful in 

materials science, but the LDA alone does not find common use in quantum chemistry.  

 

2.4.6  The Generalised Gradient Approximation (GGA). 

The first correction to this approximate model is to account for the fact that the 

electrons do not move in a homogeneous positive environment, the point charges of the 

nuclei create areas where the electron density varies quickly, leading to the HEG 

breaking down. The initial attempt to account for the inhomogeneity of the density was 

to introduce the gradient of the electronic density in the gradient expansion 

approximation (GEA), where it was found that the LDA was only the first term in a 

Taylor expansion of the gradient terms.  

  

  E!"!!" ρ =    ρ r   ε!"( ρ r   ∇ρ r ) 

 

(2.41) 
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where ∇ρ r  is the gradient dependence of the density at r. 2.41 shows a simplified 

GGA exchange-correlation term that neglects spin. The GEA was found to perform 

worse than the LDA because it violated the conditions in equation 2.35 and 2.36.44 This 

is corrected by imposing cut-offs that truncate the range errors of the functional. Thus 

by using the gradient we are able to take the density at a point and infer some 

information about the non-local environment.  

 

2.4.7  The self interaction problem. 

The general gradient approximation reaches chemical accuracy (chapter 8.6 of 

Cramer’s book45 provides an overview), however there is an issue with GGAs tending 

to overestimate the electronic interaction, resulting in density that is too diffuse. This 

originates in the local nature of DFT exchange. The issue arises in the classical 

interaction term J ρ  of the electronic interaction, to be correct there must be an exact 

cancellation of this term to reduce the electron self interaction: 

  

  0 =   
1
2

ρ r! ρ r!
r!"

dr!dr! −   E!" ρ  

 

(2.42) 

 

Thus the interaction of an electron with its own density should be cancelled by the 

exchange correlation functional, however this is upheld for the one electron case in a 

few functionals (PKZB and TPSS). 

 HF theory’s exchange is non local and exactly cancels any Coulomb self interaction 

as it depends on the electron over all space. DFT treats exchange as a local feature and 

thus it is not able to account for the self-interaction problem and the electrons interact 

with themselves in an unphysical way. Treating this condition has become the obsession 

of modern DFT. 
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2.4.8  The Hybrid functional. 

One method of solving the issue of the long range self interaction was to turn to the 

situation where the solution is known, HF theory. By mixing in a degree of HF 

exchange46 we are able to reduce the self interaction until a desired empirical accuracy 

is achieved. This is done at the expense of having to evaluate the exchange integrals, but 

is still cheaper than the time required to reach the comparable accuracy with post-HF 

methods. 

  

  E!"
!"#$%& = aE!!" + 1− a E!!"# +   E!!"# 

 

(2.43) 

 

The exchange-correlation thus has mixed in a fraction a of exact exchange. E!" for 

the B3LYP functional contains empirically fitted parameters and has the form 

 

  

E!"!"#$% = 1− a E!!"# + a  E!"!" + bE!!"" + cE!!"# + 1− c E!!"# 

 

(2.44) 

 

There are three parameters that can be varied in the B3LYP functional, the first term 

describes the portion of local density exchange and the second term describes the 

counterpoise HF contribution. The third term describes the Becke 8847 general gradient 

correction and the last two terms describe the portion of Lee, Yang and Parr48 

correlation and the LDA correlation contribution. In equation 2.44 b = 0.72, c = 0.81 

and most importantly the HF exchange has a prefactor of a = 0.2. The B3LYP 

functional thus mixes in 20% HF exchange, whilst the other hybrids focused on in this 

work, PBE0, mixes in 25% exact exchange. As will be demonstrated later in this work, 

the inclusion of exact exchange has a profound effect on the quantum chemical 

interpretation of the wavefunction. 



 

 
 

46 

2.4.9  Meta functionals. 

To correct the form of the functional in DFT further it is possible to include 

information from the Laplacian of the local density ∇!ρ r  into the exchange correlation 

functional.49 

  

E!"!""# ρ =    ρ r   ε!" (ρ r   ∇ρ r ∇!ρ r ) 

 

(2.45) 

 

In addition there are corrections for the kinetic energy of the Kohn-Sham orbitals 

though this kinetic energy density.  

 

2.4.10 Choice of functionals. 

It is not possible to use all the functionals available instead we select a subset of well 

tested, commonly available, functionals. The majority of which are GGA functionals. 

The functionals we have chosen with the Becke47 exchange term are the BLYP48 

functional, the BP8650 and the BPW9151, 52 , 53 functional. We also use the PBE54 

functional of Perdew and the OLYP55,56 functional of Handy. 

For hybrid functionals we have chosen the B3LYP57 functional and the PBE058 

functional because they allow for direct comparison to their pure GGA analogues. 

There are three meta-functionals used in this work as they represent the forefront of 

DFT methods that are readily available in quantum chemical codes. The first is the 

meta-GGA TPSS functional by Tao et al.59 The second two are the meta-GGA M06-L60 

and the meta-hybrid M0661, both come from the Minnesota family of functionals 

parameterised in the Truhlar group. 

 

2.4.11 The DFT grid. 

The two electron integrals in DFT are not normally solvable using analytic methods 
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as is done in HF theory, instead they are usually evaluated using a numerical quadrature 

which can be selected depending on a desired accuracy. DFT uses atom centred, radially 

expanding, grids that are most dense closest to the nucleus where there is the most 

electron density. Each radial shell has a number of angular points selected according to 

the property of interest. 

  

E!" ρ =    ρ r    ε!" ρ r ≈    W!ρ R!

!"#$

!

ε!" ρ R!  

 

(2.46) 

 

 where the grid coordinates are at RI and WI are the weights of the grid. The issue 

with this approach is that it introduces numerical noise into calculations and this is still 

an area of active research.62 Due to this work being focused on transition metals and 

properties that are on the spectroscopic energy scale (~1cm-1 = 4.5×10-6 Hartree) we 

have chosen highly dense grids, especially for the metal.  

It is possible to perform DFT calculations without numerical grids63, but most 

quantum codes do not have such methods implemented. 

 

2.4.12 The limits of DFT. 

Whilst DFT has had tremendous success in most applications, its implementations 

are nearly always empirically tuned and often parameterised against experimental data 

sets. Because of the dependence on a subset of properties and molecules it is unlikely 

that this approach will generate the universal functional, but the wide variety of 

functionals means that it may be possible to find one that is accurate for magnetic 

properties such as the ZFS. 

Another problem occurs in situations where single determinant methods are not able 

to correctly calculate properties. In modern quantum chemistry such systems fall under 

the realm of ab initio multi-configurational techniques that we describe in the next 
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section (2.5). Because DFT has been proven to have the potential to be exact it must be 

possible to replicate multi-configurational character via a single determinant, however 

the form that the functional must take to achieve this remains unknown. 

 

2.4.13 The broken symmetry approach. 

The electronic density should reflect the molecular symmetry of a system, this means 

that the electronic configuration of a state will generally be described by a set of 

spatially symmetric orbitals. However this becomes an issue in single determinant DFT 

as it has insufficient flexibility to find lower energy solutions. In certain cases it can be 

advantageous to create a wavefunction that breaks the molecular symmetry in order to 

obtain a better final energy. One such situation is the exchange coupling between spin 

states. Taking a metal homonuclear dimer as an example, there exist multiple possible 

spin states that can be the ground state, usually either a high spin ferromagnetic state 

(where spins on the metals align), or an antiferromagnetic low-spin state (where the 

spins on the metals anti-align). Standard DFT tends to fail at calculating the energy 

separation between these states, often calculating the symmetric low spin state to be too 

high in energy. The solution to this came from Noodleman64, where we obtain the 

following expression for J 

   

  E!" − E!" = 2S!S!J 

 

(2.47) 

 

Where the broken symmetry EBS solution is a configuration of orbitals that localises 

the spin to different atoms, the localised spin maximises the exchange terms and thus 

results in this state being lower in energy than a symmetrically correct solution. The 

reason that this solution is not found in the initial SCF despite being variationally lower 

in energy is that there is no impetus for the spin density to localise. Although this 
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method recovers a portion of multi-configurational character it causes much greater spin 

polarisation than the corresponding symmetric spin state. To form a broken symmetry 

solution one has first to calculate the high spin state and then use this to start the lower 

spin state, the details as how to accomplish this vary, but inspection of the resulting 

density is necessary to make sure that a true broken symmetry solution is found.  

 

2.5 Multi-configuration techniques 

2.5.1 The break down of the single determinant approximation. 

The HF equations provide a one determinant solution that is appropriate to 

equilibrium systems with no degeneracy. However, many chemical situations arise 

when the true state may only be describable as a linear combination of determinants. 

Such cases are called multi-configurational wavefunctions and are characterised as 

having static correlation, meaning correlation that is not related to the Coulombic 

limitation of the mean-field approximation. Situations that are characterised by static 

correlation are bond dissociations, rotations of certain functional groups where the 

HOMO and LUMO become degenerate and metal systems where the d and f orbitals 

enable charge transfer states (the case this work is concerned with). The contribution of 

multiple determinants to the ground state means that a set of orbitals must be 

variationally adjusted to incorporate the effect of all the determinants. This area of 

quantum chemistry comes under the umbrella of multi-configurational self consistent 

field procedures (MCSCF), of these methods the simplest is the Complete Active Space 

Self Consistent Field (CASSCF)65,66, which is the focus of Kremer’s dimer in chapter 5. 
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2.5.2 The complete active space self consistent field technique. 

The CASSCF method involves a selection of orbitals that are expected to contribute 

to the multi-configurational character of a system and then creating all possible 

configurations that could occur within these orbitals. There are three types of orbitals in 

a CASSCF, the core orbitals that have a frozen configuration, the active orbitals that can 

take any configuration of a defined multiplicity and the virtual orbitals which remain 

unoccupied during the SCF.  

 

 

Figure 4: Pictorial representation of a CASSCF active space. For both a ground state 
determinant and an excited state. 

 

Because multiple configurations contribute to the active space the orbitals can have 

non integer occupancies.  
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Ψ! =    ψ!C!!
!

!

 

 

(2.48) 

 

For state A the CASSCF wavefunction is composed of N determinants that are 

electronic permutations within the active space. Determinants are only one choice of 

function with which to build the active space, another is the configuration state function 

(CSF) which is a symmetry adapted function that remains a spin eigenfunction, CSFs 

are linear combinations of Slater determinants. 

 The Hamiltonian in CASSCF is written in second quantised form67  

  

H =    h!"E!" +
1
2 pq rs E!"E!" − δ!"E!"
!,!,!,!!,!

 

 

(2.49) 

 

The first term contains the usual one electron Hamiltonian modified by E!", which is 

a excitation operator: 

 

 E!" = a!!! a!!
!!!,!

   (2.50) 

 

This unitary group operator is constructed from the creation and annihilation operator. 

In this case this unitary operator is an excitation operator moving the electron in orbital 

q into orbital p. The second term in equation 2.49 is the two electron integral (pq|rs) 

followed by two unitary excitation operators and their anticommutation product δqr. The 

energy of the CASSCF ΨA state from equation 2.49 is thus: 

 

 E! = Ψ! H Ψ! = φ! h φ!
!"

γ!"! + pq rs
!"#$

  Γ!"#$!  (2.51) 
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Where γ!"!  is the first order reduced density matrix and Γ!"#$!  is the second order 

reduced density matrix. The CI coefficients C!!  of these reduced density matrices can be 

respectively expressed as: 

   

γ!"! = C!!

!"

C!!γ!"!  

 

(2.52) 

  

Γ!"! = C!!

!"

C!!Γ!"#$!  

 

(2.53) 

 

Where γ!"!  describes the coupling between any two determinants under Epq and Γ!"#$!  

describes the coupling between any two determinants through E!"E!" − δ!"E!". From 

this the orbitals φ and CI coefficients C!!  are varied until the energy of the system in 

minimised.  

 

2.5.3 Weyl’s formula 

The number of possible configurations in a CASSCF is far smaller than the binomial 

seen in equation 2.25 because of the restriction that is placed on the acceptable 

configurations. The permutations are dependent on the spin S of the systems as well as 

the number of orbitals M and electrons N in the active space. To calculate the number of 

configurations Weyl’s formula is used68: 

 

 𝑁!"# =
2𝑆 + 1
𝑀 + 1

𝑀 + 1
𝑁 2− 𝑆

𝑀 + 1
𝑁 2+ 𝑆 + 1  (2.54) 

 

Thus we arrive at the number of configurations that are included in the CASSCF 

active space. The CASSCF calculation is defined by the following notation; a 6 electron 
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in 10 orbital active space would be a CASSCF(6,10) and the number of configurations 

depends on the multiplicity of the system. For example for S=0 the number of 

configurations of a CASSCF(6,10) is 4950, a CASSCF(6,20) is 379,050 and a 

CASSCF(6,30) is 4,562,425. Thus a careful selection of active space is critically 

important in running efficient and economic calculations.  

 

2.5.4 Maintaining spin eigenfunctions. 

Configuration state functions are symmetry adapted linear combinations of 

determinants, their main advantage over determinants is that they are spin 

eigenfunctions and help to reduce the CI expansion. They are built by selecting 

determinants that are of a particular configuration and combining them so they become 

spin eigenfunctions. 

 

 Ψ = C!ψ!  
!

 (2.55) 

 

Where ψm are sets of excited configurations and CM is the coefficient of the 

contribution of that determinant to the CSF. A review of the different methods to form 

CSFs is given in McWeeny and Sutcliffe.69 
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2.6 Basis sets 

2.6.1 Gaussian functions 

To solve the Roothan equation a set of functions must be selected from which to 

form a basis. The most obvious solution is the hydrogenic orbitals from the direct 

solution of the one electron Schrödinger equation, however they are difficult to work 

with programmatically. A simpler option is Slater orbitals, which have their radial 

component modified to a simpler form that removes the nodes in the radial component. 

The most common type of function used is the Gaussian function, these introduce a 

further simplification to the radial term that has the form. 

  

g r = N  x!  y!  z!  e!!!! 

 

(2.56) 

 

where N is a normalisation constant, α is known as the orbital exponent and i j and k 

describe the form of the function, i.e if it is s p d or f type. Despite the simplicity of 

Gaussians they have the advantage that a product rule can be applied to them, which 

vastly reduces their computational expense when computing integrals.70 

 

2.6.2 Contracted functions 

The loss of the nuclear cusp and an increased radial decay from the r2 term in the 

exponent means that the Gaussian functions do not represent the radial hydrogenic 

orbitals well, to recover a portion of the hydrogenic shape Gaussians are contracted into 

groups which are expressed as a series of contraction coefficients that determine their 

weighting to the total product Gaussian. The coefficients remain the same during the 

calculation, so that each contracted set of functions has only one entry in the C matrix of 

the Roothan equation. This gives rise to the Slater Type Orbitals N Gaussian (STO-NG) 

basis type where N is the number of functions that are included in the contraction, these 
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are considered minimal bases as there are only enough functions to contain the required 

number of electrons. An improvement over minimal basis sets is to describe each orbital 

with a series of functions, each of which is included in the C matrix and thus has its 

contribution varied throughout the SCF. These multi zeta functions are labelled 

according to how many functions are used to describe each orbital. 

 

2.6.3 Split valence basis sets. 

A compromise between the expense of multi zeta functions and minimal basis sets is 

the split valence basis set where the number of independent functions is larger in the 

valence region and the core region is made up of sets of contracted functions. These 

basis sets are the most commonly used in quantum chemistry as they allow the SCF 

variation freedom to lower the energy of the valence region. The famous Pople71 type 

basis sets are of this type and are defined according to their split of functions. For 

instance the 6-31G basis72 on carbon uses 6 contracted functions for the 1s orbital and 

then for the valence 2s and 2p orbitals uses two functions, one made of 3 contracted 

functions and one made of a single primitive, totalling 10 primitive Gaussian functions 

or 3 contracted functions. The contracted functions proportions are directly varied as the 

coefficients making up the molecular orbitals. The basis sets in this work usually are of 

the split valence type of Schaefer and Ahlrichs73,74,75 such as SVP TZVP and QZVP, 

where SV stands for split valence (two primitives) polarisation and TZVP stands for 

triple zeta valence polarisation, etc. 

 

2.6.4 Polarisation functions 

An improvement of the split valence basis sets is the inclusion of functions with 

higher angular momentum than the functions needed in the minimal set76, for example 

adding p type orbitals to hydrogen or d type orbitals to carbon. Doing this provides an 
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additional variational degree of freedom to the SCF and can significantly lower the 

energy of molecular systems.  

 

Basis Hydrogen Carbon, Oxygen, Nitrogen 3d metal 

SVP (4s,1p)/[2s,1p] (7s,4p,1d) /[3s,2p,1d] (14s,9p,5d,1f)/[5s,3p,2d,1f] 

TZVP (5s,1p)/[3s,1p] (11s,6p2d,1f)/[5s,3p,2d,1f] (17s,11p,7d,1f)/[6s,4p,4d,1f] 

QZVP   (24s,18p,9d,3f,1g)/[11s,6p,5d,3f,1g] 

Table 1: The number of primitives in the round brackets and the number of contracted 
functions in square brackets [] 

 

From Table 1 it can be seen that the main group elements gain f type polarisation 

functions with the TZVP basis and the 3d metal gains g type functions with the QZVP 

basis. The addition of these functions is important to the ZFS as they provide variational 

freedom to the valence region, where the ZFS occurs. 

 

2.6.5 Decontraction of a basis set. 

This work makes use of a decontracted QZVP basis on the metal centres, 

decontraction involves the separation of the sets of contracted functions allowing each 

function to be independently varied in the SCF. So for the 3d metal [11s,6p,5d,3f,1g] → 

[24s,18p,9d,3f,1g]. This greatly increases the number of functions on the metal and 

represents the number of primitives going from 84 to 153, each of which is 

independently varied in forming the MOs. 

 

2.6.6 Auxiliary basis sets and the resolution of the identity approximation. 

A common method of accelerating calculations is to introduce an auxiliary basis in 

order to break apart the 4 centre two electron integrals into sets of three centre two 

electron integrals. Often this is done with a specially constructed set of auxiliary 
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functions, but can also be auto constructed from the decontracted form of the main basis 

set. It is important to stress that this method has the potential to be exact as long as the 

auxiliary basis is infinite. The use of truncated auxiliary basis sets leads to a small 

(0.1mEh) error in the energy.77 The forms of the integrals in the resolution of the 

identity (RI) approximation are78: 

  

pq rs = pq K K L !! L rs
!"

 

 

(2.57) 

  

pq K =
φ!∗ r φ! r K(r!)

r− r!  

 

(2.58) 

 

 where the integral is now over three indexes rather than 4. (K|L) is the overlap of the 

two auxiliary functions.79  

 

2.7 Relativistic theory in chemistry. 

2.7.1 The special theory of relativity and the 1s electron. 

Einstein’s formulation of special relativity can be written for a free particle in motion 

as  

  

H = (m!c! + p!c!)! ! 

 

(2.59) 

 

Trying to marry this with the time dependent Schrödinger equation results in  

  

H!Ψ = m!c! + p!c! Ψ =   −h!   ∂!/   ∂t!  Ψ 

 

(2.60) 

 

To avoid time variance of the density Dirac factorised the square of the operator and 

tried to solve the linear factors of the square root.  
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cα   ∙ p+ eA c − eϕ+ βmc! Ψ = ih   ∂/   ∂t  Ψ 

 

(2.61) 

 

Equation 2.61 represents the fully relativistic Hamiltonian of fermionic particles. The 

square brackets contain the terms necessary to describe the Dirac Hamiltonian, the α 

and β terms are operators that act on the spin space of the particle. These operators are 

further decomposed into a set of 4 matrices that comprise the Pauli spin matrices. The 

operation of these matrices necessitates a 4 component wavefunction.  

 

  

Ψ! =

Ψ!
Ψ!
Ψ!
Ψ!

=
Ψ!
Ψ!

 

 

(2.62) 

 

It is usual to eliminate the small component as it corresponds to the positronic states. 

Such eliminations go back to before the proof of the Dirac equation to work by Pauli.80  

 

2.7.2 The Dirac equation and the origin of spin. 

Elimination of the small terms is done through looking at the relativistic limits of the 

Dirac equation, resulting in the small component being 2-4 orders of magnitude smaller 

than the large component depending on the nuclear charge.81 The separation of the large 

and small components eventually leads to the following relativistic Hamiltonian. 

  

p!

2m−
Ze!

4πr−
p!

8m!c! +
Ze!L ∙ S
8πm!c!r! +

Ze!h!

8m!c! δ
!(r) Ψ = EΨ 

 

(2.63) 

 

The first two terms in 2.63 are the normal terms seen in the Schrödinger equation, the 
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kinetic and potential energy. The third term introduces a relativistic mass velocity 

correction to the kinetic term (hence its m3c2 dependence), this term is treated using the 

Zero Order Regular Approximation (ZORA) in this work. The 4th term couples the 

electron’s angular momentum terms and is the origin of the spin orbit coupling. The 

mechanism of this interaction is through the various degrees of motion of the charged 

particle, each of which generates a magnetic field that slightly perturbs the energy of the 

electron. The final term is the Darwin term, primarily a correction to the s-type orbitals 

that is not independently considered in this work.  

 

2.7.3 The zero order regular approximation. 

In this work we test the kinetic relativistic correction in order to quantify the effect of 

the contraction of the s electrons.82 This effect is expected to be minor for the 3d metals 

due to their low nuclear charge (and hence potential), but its quantification is important 

when moving to the heavier elements. The ZORA method in this work is the scalar 

relativistic version and neglects the spin orbit terms83 that we later introduce with 

perturbation theory. The spin orbit correction in the ZORA would not account for the 

state mixing needed in the ZFS and it is not variationally stable. 

  

h!"#$ = v− p
c!

2c! − Vp 

 

(2.64) 

 

The form of the ZORA used with this work is the spin free version implemented in 

ORCA, which involves a model potential for V according to van Wüllen.84 This is 

based on a potential: 

  

V!"#$% = −
Z!

r− R!
+

ρ!"#$%(r!)
r− r! dr! + V!"!"#

!

ρ!"#$%  

 

(2.65) 
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The van Wüllen ZORA potential is constructed from a simplified spherical density 

around each atom, comprised from a series of s type Gaussians. These single atom 

densities are summed and then Vee and V!"!"# is evaluated over the entire molecule. 

Once the model potential has been constructed it can easily be interfaced with the 

normal Kohn-Sham one electron kinetic term in the following way. 

 

 
ϕ!   T!"#$ ϕ! = ϕ!   T ϕ!   +    ∇ϕ!∗ r

V r
2c! − V r

∇ϕ!(r)  (2.66) 

 

Thus with this method a model calculation is performed with the ZORA formalism, 

then the SCF procedure is started and the ZORA model potential is used to adjust the 

one-electron matrix elements. This model potential does not depend on the Kohn-Sham 

orbitals used in the SCF and means that the model potential only needs to be calculated 

once during the set up on the SCF and not during each cycle. A clear advantage of this 

model for this work is that it can be used in the spin free form and it allows us to apply 

relativistic components independently of each other. 

 

2.7.4 Effect of the scalar relativistic correction on a basis set. 

The effect of the relativistic scalar correction imparted by the ZORA potential is that 

electrons in the region close to the nucleus experience a relativistic mass increase that 

contracts their orbits.  
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Figure 5: The radial amplitude of the 1s orbital of the Fe atom in the decontracted 
QZVP basis calculated at B3LYP.  

 

The illustrative example in Figure 5 shows the nuclear region of iron to have a 

slightly elevated probability amplitude, whilst the region further from the nucleus has 

reduced probability amplitude. The Figure highlights a minute relativistic change for 

iron. This will, in turn, affect the orbitals higher up in the manifold. A similar effect is 

the origin of the coloration of gold. 
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2.8  Spin in chemistry 

2.8.1  Electron paramagnetic resonance. 

EPR85 is the electronic analogue of nuclear magnetic resonance (NMR). The two 

phenomena are observed independently because the magnetic moment of the electron is 

600 times larger86 than that of a proton. In EPR a magnetic field is swept in strength 

across a sample in a microwave cavity. This external field interacts with the field of all 

the electrons. These fields emanate from the coupling of the various types of angular 

momenta. If the electron field is aligned with the external field then its energy is 

lowered, if it is anti-aligned then its energy is raised according to the Zeeman splitting. 

Figure 6: A diagram of electronic splitting relating HBO and ZFS correction to the 
EPR spectra. 

 

The spectrometer accesses this splitting using a fixed frequency microwave beam 

that excites the electron from being in one spin orientation into its opposite spin 

orientation, this can only occur for unpaired electrons due to the Pauli principle. 

Because the photon is of a fixed energy, as the field sweeps different transitions occur 

and from this, information on the local electronic environment is observed. Several 

factors cause the electron to couple with its molecular environment, if any nuclei have a 

non-zero spin then they interact with the electron and further split the electronic energy 

levels. This phenomenon is called hyperfine coupling. The electron is additionally 
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affected by its g value, which in matrix form describes the strength of the coupling of 

the electron to the external field along each spatial axis. This factor is dependent on the 

molecular symmetry through the spin density. The remaining contribution in EPR 

occurs when there are multiple unpaired electrons, such as in di-radicals or metal-

containing systems. This is the ZFS and is the focus of this work. 

 

2.8.2 The phenomenological spin-Hamiltonian 

EPR makes use of a phenomenological spin Hamiltonian87 in order to avoid the cost 

of solving the full Schrödinger equation. The spin Hamiltonian contracts the normal 

spatial (non-spin dependent) terms into tuneable parameters and results in a 

Hamiltonian that contains spin operators acting on a spin space. In practice the spin 

Hamiltonian is used to reproduce the spectra that are seen in EPR by careful tuning of 

parameters according to chemical knowledge. The spin Hamiltonian acts on a truncated 

Hilbert space that includes only spin variables: 

 

 H! S,M! = E   S,M!  (2.67) 

 

This Hamiltonian is able to calculate the relative splitting between energy levels due 

to spin related phenomena qualitatively, but is not able to quantitatively determine 

electronic energy levels as is done in the Born Oppenheimer Hamiltonian. The 

Hamiltonian has the form88,89: 

 

 H! = SDS+ βBgS+ SA(!)l(!) + β!Bg!
(!)l(!) + l(!)Q(!)l(!)

!

+ S(!)J(!")S(!)
!!!

 
(2.68) 

 

The Spin Hamiltonian is composed of several terms that depend on the spin of the 
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electrons S and the spin of the nuclei l. The first term in equation 2.68 describes the ZFS 

and the second term the g matrix. The third term sums over all the nuclear spin 

interactions such as the hyperfine A, the nuclear-field interaction and the quadrapole Q. 

The final term is the spin-spin exchange coupling.  

 

2.8.3 Experimental observation of ZFS. 

ZFS90 was originally discovered in 1958 in naphthalene di-radicals, however interest 

in the phenomenon has rapidly increased over the last two decades since the discovery 

of the first SMM.91 In molecules with multiply unpaired electrons each electron 

generates a magnetic field dependent on its environment and the intersection of these 

fields along each axis causes a magnetic perturbation of the energy levels. ZFS occurs 

independently of the external field and if strong can break the degeneracy of the Ms 

levels enough to prevent any observable EPR transitions, to de-convolute such 

situations either high frequency EPR is needed or zero-field EPR.92 
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Figure 7: Cartoon of possible interactions between two electrons, with a fictitious point 
of spin at the top of the orbitals added for clarity. 

 

The ZFS comprises more than the direct dipolar interaction between spins, it 

describes all of the possible interactions between all unpaired electrons through their 

magnetic fields. Each form of angular motion that an electron possesses generates a 

magnetic field and each of these interacts with the other unpaired electrons in the 

environment. For computational convenience it is common to separate these into dipolar 

terms and spin-orbit terms. 
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2.8.4 The origin of ZFS and the use of tensors. 

The matrix form of the ZFS Hamiltonian is 

 

 
H!"# = SDS =    S!  S!  S!   

D!! D!" D!"
D!" D!! D!"
D!" D!" D!!

  
S!
S!
S!

 (2.69) 

 

When D is diagonalised it is equivalent to finding a coordinate system where the 

splitting is maximised. In this diagonal form HZFS becomes 

 

 H!"# = D S!! −
1
3 (S S+ 1 ) + E   S!! + S!!  (2.70) 

 

Once the 9 component D tensor has been diagonalised (D) there are three elements 

for D which are collected into two values: 

 

 D = D!! −
1
2 (D!! + D!!) 

(2.71) 

 

Which describes the axial contribution to the ZFS and is the important factor in the 

construction of SMMs. D is defined by the direction with the largest degree of splitting 

and according to 2.70 it assigned the axis of Sz. Along this axis the energy levels all 

split according to the Zeeman interaction. Because Sx, Sy and Sz do not commute along 

other axes the Zeeman splitting becomes distorted and all the Ms levels have 

components that can interact with the external field. 

  A second factor that arises from the HZFS is the rhombic splitting E, this occurs as 

an additional breaking of the sublevel degeneracy within each Ms state providing the 

system is of integer total spin (non-Kramer type systems). 
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 E =   
1
2 (D!! + D!!) 

(2.72) 

  

E is half the splitting between the Ms = +1/-1 levels, it should not be observed for 

transitions within higher spin states due to the conservation of angular momentum of the 

photon, although an exception occurs when the external field is weak giving rise to a 

half field phenomenon.93 E describes the splitting perpendicular to the major axis of 

quantisation and is termed the rhombic splitting. The axes of D are assigned to so that: 

 

 D! > D! > D!  (2.73) 

  

Often E is not provided, instead the E/D ratio is given as the rhombicity. The 

rhombicity describes the degree of the anisotropy in the molecule. It is defined as being 

0<E/D<1/3, when it reaches its 1/3 limit it describes a system where all the sub levels 

are split equally, rendering the sign of D irrelevant. 

 

2.8.5 Perturbation theory. 

To correct the HBO wavefunctions with magnetic terms there are two possible routes, 

either variationally or via a perturbative technique. In this work the focus is on 

perturbative techniques, where there is an assumption that the majority of the physics is 

captured by a zero order wavefunction, this wavefunction can then be adjusted with a 

small correction for the term of interest. 

 

H = H! + H! 

 

(2.74) 

 

 An alternative method is to calculate the additional terms variationally within the 

SCF, this method has been more applied to the calculation of the g value by Neese who 
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states that this method may be applicable to the ZFS94. 

 

2.8.5.1  The spin-spin contribution. 

The first order contribution to the ZFS is the spin-spin contribution, this represents 

the explicit interactions of the ground state spin density. The form used in this work for 

DFT is based on the formula95,96 

 

D!"!! =
1
2

α!

S 2S− 1

× OSS
r!"!δ!" − 3 r!" !

r!" !
r!"!!  !  !!

{2S!"S!" − S!"S!" − S!"S!"} OSS  

(2.75) 

 

 

This equation links the radial distance between two electrons rij to their spin vectors 

S! along the x y and z axis. The first term’s denominator becomes zero when S < 1 and 

this enforces the requirement for multiple unpaired electrons for the ZFS. The r!"! 

denominator is reduced to ~r!"!  due to its numerator. The final part in the {} brackets 

describes all possible direct spin couplings of any two electrons.  

 

2.8.5.2  The spin-orbit contribution. 

The second order contribution to the ZFS is the spin-orbit contribution There are 

three components to the spin orbit coupling that must be accounted for, the discussion 

here is largely based on the description of Harriman.97 All the operators contribute to 

the form of 

 

H!" = iβ! H!!    ∙ S!  
!

 (2.76) 
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Each electron’s orbital components H!! are coupled along each spin axis. The major 

component of the spin-orbit coupling is the one electron spin-orbit term: 

 

H!" =   −g!! Z!
!

K!!(r!")
r!"×  ∇!
r!"!

 

 

(2.77) 

 

This is the direct coupling of electron j with its angular momentum  ∇! respective to 

nucleus v. The spin-other orbit terms are the interaction of electron j with the field 

generated by the orbit of electron k (∇!). 

 

H!"" =   4
(r! − r!)×  ∇!

r!"!!(!!)

 

 

(2.78) 

 

An electron-electron spin-orbit term describes coupling interactions of two electrons 

by their orbital angular moment. 

  

H!!"# =   g!!
(r! − k!)×  ∇!

r!"!!

 

 

(2.79) 

 

The last two operators are commonly combined into a single “spin-other orbit” 

Hamiltonian. The spin-orbit terms are thus a collection of Hamiltonians that describe 

the possible magnetic interactions that can occur between electrons, dependent on 

orbital angular momenta. 
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2.8.5.3  The spin-orbit mean field operator 

In the method implemented in ORCA, the last two terms are collected and the 

resultant spin-orbit Hamiltonian is divided into one and two electron components.98 

  

H!"#
(!) =

α!

2 Z!r!"!!L!"s!
!!

 

 

(2.80) 

 

  

H!"#
(!) = −

α!

2 r!"!!L!" s! + 2s!
!!  !!

 

 

(2.81) 

 

This is the Bret Pauli spin orbit operator. Two electron terms can be treated by the 

mean field approximation of Hess et al,99 which has been shown to be accurate for g 

values.100 

 

 φ! z!!"#$ φ! =    φ! h!!"#!!" φ! + 

                                                   P!"
!"

φ!φ!   g!!" φ!φ!   

−
3
2 φ!φ! g!!"   φ!φ! −

3
2 φ!φ! g!!"   φ!φ!  

(2.82) 

 

The first term in equation 2.82 describes the one electron spin orbit interaction. The 

second term describes a mean field Coulomb interaction between two electrons, 

followed by two exchange terms. The 1 electron coupling Hamiltonian is: 

 

 
g!!" = −

α!

2 L!"r!"
!! (2.83) 

 

The two electron coupling Hamiltonian is: 
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h!!"#!!" = −

α!

2 Z!r!"!!L!";!
!!

 
 

(2.84) 

 

In ORCA there are additional approximations added to this technique, such as 

simplifying the first two electron Coulomb integral with the RI approximation. The final 

two terms are approximated by one-centre terms (1X, for 1 centre exchange) and they 

are much smaller than the Coulomb term. 
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2.8.5.4  The Pederson-Khanna method. 

The first method we consider is the Pederson-Khanna method101 (PK),  

  

D!"!"# = −
1
4S!

ψ!
! h!SOC ψ!

! ψ!
! h!SOC ψ!

!

ε!
! − ε!

!
!!,!!

+
1
4S!

ψ!! h!SOC ψ!! ψ!! h!SOC ψ!!

ε!! − ε!!!!,!!

−
1
4S!

ψ!! h!SOC ψ!
! ψ!

! h!SOC ψ!!

ε!
! − ε!!!!,!!

−
1
4S!

ψ!
! h!SOC ψ!! ψ!! h!SOC ψ!

!

ε!! − ε!
!

!!,!!

 

(2.85) 

 

From this method there are 4 distinct classes of configurations that are included in 

the perturbation, the first two describe the transition of an electron that does not change 

the spin (ΔS=0) α → α transition β → β. The second two terms are ‘Spin flip’102 

transitions where electrons change spin. The linear response of the wavefunction to each 

perturbation is contained in the second bracket and denominator.103 

  

Linear  response  of  wavefunction = U!" =
ψ!!! h!SOC ψ!

!!

ε!! − ε!
!  

 

(2.86) 

 

 where ψ!!!  is the perturbed set of orbitals. The program of this method is to 

determine the matrix elements between different states according to the spin orbit 

coupling and then determine the change of the wavefunction to this perturbation.  
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2.8.5.5  The quasi-restricted orbit method. 

In 1998 Neese and Solomon derived equations for ZFS using arguments based on the 

Spin Hamiltonian using the Clebsch-Gordan Coefficients. From this they worked out 

sum over state equations for the ZFS that include the ΔS=+/-1 transitions 

 

D!"
!"#! ! = −

1
S! Δ!!!

! !!!!

× 0SS h!!" i s!,!
!

bSS

× bSS h!!" i s!,!
!

0SS   

D!"!"#—! = −
1

S(2S− 1) Δ!!!

!(!!!!!!)

× 0SS h!!" i s!,!!
!

bS− 1S− 1

× bS− 1S− 1 h!!" i s!",!!
!

0SS   

                                  D!"
!"#! !! = −

1
S+ 1 2S+ 1 Δ!!!

! !!!!!!

× 0SS h!!" i s!,!!
!

bS+ 1S+ 1

× bS+ 1S+ 1 h!!" i s!,!!
!

0SS  

(2.87) 

 

This expression calculates all the possible state interactions that are important to the 

ZFS.  D!"
!"#!(!) describes the two electron interaction of the reference state 0SS  with 

another state of the same multiplicity   bSS  along each set of Cartesian components 

(K, L   ∈ x, y, z).  D!"
!"#! !! describes states where an α → β transition occurs. The final 

equation is the sum over states for the β → α transitions (usually ligand transfer states). 
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The Δ!!! term is the energy difference between these states. The other novel component 

of these equations is that the spin prefactors change with the multiplicity, a feature 

absent from the PK method.  

 In a 2006 paper Neese102 reworked the ZFS equations for use with quasi-restricted 

orbitals in order to regain states that are spin eigenfunctions, this is opposed to the 

unrestricted form of Pederson and Khanna. He achieved this by diagonalisation of the 

density matrix to form the UNOs and using the occupation of these orbitals to 

diagonalise the α and β Fock matrices. This set of quasi-restricted orbitals (QROs) is 

used to form excited determinants in a form reminiscent of a CI expansion, it very 

closely reflects the transition classes described in the PK method, resulting in equations 

of the form. 

  

D!"!"# = −
1
4S!

ψ! h!SOC ψ! ψ! h!SOC ψ!

ε!
! − ε!

!
!,!

−
1
4S!

ψ! h!SOC ψ! ψ! h!SOC ψ!
ε!! − ε!!!,!

+
1
4

1
S(2S− 1)

ψ! h!SOC ψ! ψ! h!SOC ψ!

ε!
! − ε!!!!!

+
1
2

1
S+ 1 (2S+ 1)

ψ! h!SOC ψ! ψ! h!SOC ψ!

ε!! − ε!
!

!,!

 

(2.88) 
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where 

 i = Doubly  occupied  orbital 

p = Singly  occupied  orbital 

q = Distinct  singly  occupied  orbital 

a = Virtual  orbital 

ε = Orbital  energy 

(2.89) 

 

The QRO method is a limited set of excitations and does not include the ability to 

account for the linear response of the exact exchange. Because this method is a 

perturbative approach based on configuration interaction arguments, it is not applicable 

when there is significant spin polarisation. A further limitation is that the final term that 

describes DOMO → VIRTUAL is missing several types of excitation and is scaled by a 

factor of two compared to the other excitations. van Wüllen showed that the neglect of 

these excitations causes errors when including molecular cofactors such as anions or 

glassing materials103. The term QRO is used to represent both the orbital truncation and 

the response equations, in this work it shall refer to the ZFS perturbative method unless 

otherwise stated. 

 

2.8.5.6  The coupled perturbed method. 

A further development came from Neese who connected the perturbation approach to 

analytical derivatives as is done for a variety of properties such as dipole moments, 

polarisabilities and vibrational frequencies. The basis of this reasoning is that 

perturbation parameters can be expanded as a collection of derivatives 

  

E! = E! + λ!E! + λ!E!… . .= E! + λ
d!E!
dλ + λ!

d!E!
dλ! …… 

 

(2.90) 

 

where λ is the perturbation parameter that can be taken to infinite order. Because the 
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SOC is a second order perturbation the series is truncated to the second derivative. The 

SOC is a spin dependent parameter and the perturbation acts on the spin density of the 

system which has the form P!"
! = 0SS S!"

(!) 0SS , where S!"
(!) is the spin operator for a 

given spin state. This means that when m=0 then it is the ground state spin, when -1 is 

the spin of an β → α transition state and +1 is for an α → β electron transition. The 

perturbation for the coupled-perturbed (CP) method is x!
!  where m is the spin state 

with respect to the ground state (0, +/-1). By describing the effect of spin-orbit coupling 

as the change of the spin-density, a clear connection is made with the ZFS, which can 

be viewed as a magnetic distortion of the spin-density that originates from the magnetic 

interaction of electrons. The coupled equations use the following relations: 

 

 ∂E
∂x!

! = h!!"#P!"
!

!"

  

∂!E
∂x!

! ∂x!
∆! = h!!"#

!"

∂P!"
!

∂x!
∆!  

 

 (2.91) 

 

The change of energy with respect to the first order perturbation is separated into 

spatial components h!!"#  and the spin components P!"
! . The second order energy 

change is the change of the spin-density with respect to the coupling of the excited state 

spin-orbit interaction. 
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                      D!"

!"#   ! = −
1
4S!

∂P!"
!

∂x!
! µμ   h!!"#   ν

!"

D!"
!"# !!

= −
1

2S 2S− 1
∂P!"

!

∂x!
!! µμ   h!!"#   ν

!"

D!"
!"#(!!)

= −
1

2 S+ 1 (2S+ 1)
∂P!"

!

∂x!
!! µμ   h!!"#   ν

!"

  

 

 

 

 

(2.92) 

 

The ZFS contribution is found by calculating the derivative of the ground state spin-

density components with respect to a perturbation that describes the coupling by the 

spin-orbit operator. For example the contribution of +1 states is calculated from the 

ground state density (P!"
! ) coupling with the perturbation of the spin orbit terms 

emanating from all the +1 states.  

For exact electronic structure calculations this method is as exact as taking an infinite 

sum over states. During his derivation Neese argues that this method is computationally 

a more manageable route. A key benefit of this method is that it allows the calculation 

of properties even with exact exchange. Neese further showed that the PK methods can 

be reformulated within the derivative framework and other than the spin prefactors, is 

equivalent. Van Wüllen103 improved this method further by creating a single sum-over-

states term for the ZFS in order to remove problems with nearby closed shell molecules, 

however this improvement has not yet been included in ORCA. All the calculations in 

this work are done without counter ions or co-molecules, so we expect any difference 

between the two methods to be small in our case. 
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2.8.5.7  Quasi degenerate perturbation theory. 

Because DFT is a ground state property it is not clear that it is the correct framework 

from which to get accurate ZFS value. Furthermore because of the limitation of current 

functionals in multi-configurational situations it becomes attractive to turn to full multi-

configurational techniques. In these methods normal perturbative corrections break 

down as the energy difference between states becomes zero. 

 

 ψ!!" H!" + H!"# ψ!!!
! =   δ!"δ!!!δ!!!E!

! + ψ!!" H!"# ψ!!!
!

 (2.93) 

 

This technique relies on first generating the diagonalised interactions between states 

using the HBO operator (δ!"δ!!"δ!!"E!
(!)), then calculating their matrix elements under 

spin orbit coupling and finally diagonalising the resulting matrix to gain the perturbed 

energy levels. This method has the advantage that it can calculate the SOC for any 

starting state provided that it is input as a spin-eigenfunction. 
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2.9  Population analysis. 

2.9.1 The Mulliken populations analysis. 

A key issue in interpreting quantum chemical calculations is the disconnect between 

chemically intuitive concepts and the values which result from quantum chemical 

calculations. Many methods exist to extract properties such as charges and bond 

strengths from calculations, however all are based on the concept of partitioning the 

wavefunction in ways that do not correspond to any observable. In this work we use 

standard population analysis techniques to describe charges and bond orders with the 

aim of creating a useful description of the effect of different functionals. The most 

common approach for studying atomic charges is Mulliken population analysis. This 

method is based on using only the orbital coefficients and the overlap matrix for the 

molecular orbitals. Mulliken population analysis looks at the overlap between orbitals 

on adjacent atomic centres and weights their contribution according to the electronic 

density. Mulliken population analysis makes the assumption that atomic orbitals remain 

a valid concept from which to partition molecular orbitals.  

 

 Q! =   Z! − P!!
!  ∈  !

− (PS)!"
!!!  !  ∈  !  

 (2.94) 

 

The Mulliken charge Q for atomic centre A with a nuclear charge Z is shown in 

Equation 2.94. The overlap of all the functions µ centred on A is compared with those 

functions centred on other atoms ν.  P is the density matrix and S is the overlap matrix. 

During the work of this thesis an effort was made to replace the Mulliken approach with 

a custom programmed Roby operator, but this method was found not to be as generally 

applicable due to a reliance on using a minimal basis set. 

 

2.9.2 The Mayer bond order. 
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An extension to this method is the Mayer bond order104, which provides a measure of 

orbital overlap between two basis centres.  

  

B!" =    (PS)!"(PS)!"
!  ∈  !!  ∈  !  

+ (P!!!S)!"(P!!!S)!" 

 

(2.95) 

 

Where the overlap is taken as the sum of the functions summed over two atomic 

centres. 

 

  



 

 
 

81 

Chapter 3: Methodology and technical details. 

3.1  The version of ORCA 

Gaussian 09105 is not able to calculate the ZFS as it lacks proper spin-orbit coupling 

treatment (opting for an effective potential method).  Gaussian also lacks the ability to 

calculate electronic spin-spin coupling. To calculate the ZFS we had to use the ORCA 

computational suite, which includes the three methods of calculating the ZFS we have 

discussed. All of the monometallic results that we present were initially calculated in 

ORCA 2.8, which unfortunately carried an error in the computation of the spin-spin 

interaction. This forced us to recalculate all the results that we present here in ORCA 

2.9. 

 

3.2  Methodology of program use and structure preparation. 

All of the geometries used in this thesis were crystal structures obtained from the 

Chemical Database Service106 using the ConQuest107 program. The hydrogen positions 

of the structures were then optimised using Gaussian 09 at the TZVP basis level using 

BLYP for the monometallic molecules and B3LYP for Kremer’s dimer. The hydrogen 

positions were confirmed to be at a local minimum through the checking that the 

harmonic frequencies were all real valued. Where possible, comparisons were 

performed between ORCA and Gaussian final SCF energies to make sure that artificial 

convergences were avoided. 

 

3.3 Integration grids. 

The ZFS is a property bound to the valence region of atoms, it thus can be expected 

to be strongly affected by certain aspects of computational chemistry, such as the 

number of valence basis functions and the degree of polarisation. Critically it can be 

expected that since the ZFS is of the order of 1 cm-1 the integration grid is important. To 
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ensure that a sufficient grid has been selected we performed calculations on Fe3+
, which 

has a d5 configuration. Because the calculation is of spherical symmetry the magnetic 

interaction should be found to be isotropic in the d5 case and thus the D and E/D should 

both equal zero. We found that ORCA GRID5 was more than sufficient to result in E/D 

being 0. We further went beyond this by specifying the metal atoms to have additional 

radial accuracy of 11. This ensures for the decontracted calculations that the steep 

functions are fully accounted for. 

 

3.4 The use of QZVP-SVP. 

This work uses the notation QZVP-SVP to define a basis set where the metal atom 

uses a decontracted QZVP and the ligands have a normal SVP basis. This choice was 

made in order to test both the basis set dependence of the functionals and to ensure that 

the basis is flexible enough to allow the scalar relativistic corrections to affect the 

orbitals.  

 

 

 

 



Chapter 4:  Single metal molecules. 

To test the applicability of DFT with the new methods to calculate the ZFS, we ran a 

series of calculations on a collection of monometallic molecules in a simple ligand 

environment. Shown in Table 2 are the molecules that have been studied and the ZFS 

values along with the source of the crystallographic structure. 

 

Molecule d orbital 

occupancy 

Experimental Data 

D / cm-1 E / cm-1 EPR X-ray 

V(acac)3 d2 +7.47 1.92 108 109 

Cr(acac)3 d3 ±0.59 0.05 110 111 

Mn(acac)3 d4 -4.52 0.25 112 113 

Fe(acac)3 d5 -0.14 0.03 114 115 

[Fe(mal)3]3- d5 ±0.12 0.03 114 116 

Table 2: The experimental zero field splitting and d electron count of the molecules in 
this study.  

 

The magnetic properties we used for comparison for V(acac)3 were resolved using 

high frequency EPR at 25T, it is the most anisotropic molecule of this study with a large 

positive axial splitting of 7.47 cm-1. No previous theoretical studies on the ZFS of this 

system have been identified in the literature. Cr(acac)3 has been characterised using Q 

band EPR, and to the best of our knowledge no theoretical calculations have been 

performed on this system. The magnetic properties of Mn(acac)3 are well studied with a 

large negative splitting, which serves as a model example of the original SMM 

(Mn12O12).117 Neese has conducted studies on Mn(acac)3 using a number of theoretical 

techniques.102 Several structures of Mn(acac)3 exist, a geometry which includes Jahn-

teller distortions and metal to ligand bond lengths close to the structure reported by 
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Neese was chosen for study in this work. Fe(acac)3 and [Fe(mal)3]3- were characteriested 

in the same EPR study using Q and X band EPR. Both molcules can be expected to 

have similar ZFS properties due to their electronic and structural similarities. The study 

of the malonate alows for the testing of anionic magnetic marterials, however we have 

exluded the [Co(NH3)6]3+ counter ion for computational expediancy. Both of these 

systems were calculated by Neese in 2009 using the PBE functional where he reported 

results inline with experiment.118 
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4.1 Vanadium tris-acetylacetonate - V(acac)3. 

4.1.1 DFT results. 

V(acac)3 is a distorted octahedral molecule with a d2 electronic configuration. High 

frequency electron paramagnetic resonance (HFEPR) provides zero field splitting (ZFS) 

values of D = 7.27 cm-1, E = 1.92 cm-1 and E/D = 0.264.  

 

Figure 8: Left: Spin density for V(acac)3 studied at the B3LYP-TZVP level. Isosurface 
rendered at 0.004 a.u. Right: The splitting diagram from the ZFS Hamiltonian for the 
triplet state. 

  
To understand the theoretical parameters that strongly influence ZFS we combined 

seven density functionals with the three orbital response methods available within the 

ORCA suite. 

 

 

D 

S =1 

MS = ±1 

MS = 0 
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Figure 9: The calculated axial splitting (D cm-1) for seven functionals and three spin 
orbit response methods in the QZVP-SVP basis on the left hand side columns and the 
TZVP basis on the right hand side columns. The Mulliken metal charge is represented 
by bars and the average Mayer bond order of the metal-to-ligand interaction is 
represented by lines. 

 

The Mulliken charge and Mayer bond orders shown in Figure 9 can be used to 

represent the covalency of the metal-to-ligand interaction, this chemical region is highly 

important to the ZFS as it generally describes the extent of the spin density in Figure 8. 

The QZVP-SVP basis set results in lower Mulliken charges and higher Mayer bond 

orders than TZVP, although an exception is shown for the Mulliken charge of the 

OLYP functional. The GGAs are more covalent than the hybrid functionals, this is a 

well known feature arising from self interaction errors in DFT that cause electron 

delocalisation. The exact exchange in the hybrids is an attempt to correct this and 

manifests as increased ionicity. The GGA-QRO combination results in the largest D 

splittings, however with the hybrid functionals the QRO method has the smallest 

splitting by 2 cm-1. The discrepancy in the performance of the QRO ZFS method is 

because its formulation lacks certain spin transitions (e.g. β to β transitions) that are 

required to describe the range of relevant excitations needed in the ZFS.  

The GGAs are slightly more accurate with the QZVP-SVP basis, however the 

accuracy of the hybrids is reduced. The bias of the QZVP-SVP basis on the metal 

clearly enhances the covalency (self-interaction delocalisation) of the GGAs and 
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appears to be important for increasing D. The difference between the GGA functionals 

is of the order of 0.2 cm-1 for this molecule, whereas the hybrids are less consistent and 

in the case of B3LYP-PK D is found to be negative. The incorrect sign of this 

calculation originates from the size of its rhombicity (0.29), which is close to the 1/3 

limit that renders the sign of D irrelevant.  

In summary the GGAs with the QZVP-SVP basis are slightly more accurate, but also 

show a significant saving in the number of basis functions, which drop from 822 for 

TZVP to 561 for QZVP-SVP. 

Additional calculations of the BP86, BLYP, PBE0 and B3LYP functionals were run 

without the ZORA correction and the D splittings were found to vary only by ~ 1% of 

the relativistic calculations. 

 

4.1.2 Multi-configurational results. 

An alternative approach to using DFT with an approximate orbital response method 

is to utilise multi-configuration ab initio techniques with quasi-degenerate perturbation 

theory (QDPT) to determine the sub-level splitting. This method is more involved in its 

set-up as it requires specification of configurations with the desired multiplicity and 

then finding their spin-orbit coupling elements. By using this technique we are able to 

move away from qualitative DFT considerations to a quantitative discussion of how 

many determinants are required to reach an arbitrary accuracy. Our initial approach was 

to follow the methodology of Neese where one averages 5 active d orbitals in the 

CASSCF from the ground state triplet with the S_ (singlet) states. For accurate 

description of the magnetic corrections it is necessary to correlate the d orbitals, to 

achieve this we swapped orbitals with significant d coefficients from the virtual space 

into the active space. It is important to make a distinction between the inclusion of 

states in the orbital optimisation step and the inclusion of states in the QDPT. We ran 
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two types of state averaged calculations, one that only included the triplet states in the 

SCF and a second that introduced singlet states into the SCF. Scalar relativistic 

corrections were included in the form of the zero-order regular approximation (ZORA). 

In all three calculations the QDPT included the 10 triplet states and 15 singlet states. 

The singlet states should be expected to be magnetically inactive. 

 

Number of roots ZORA Spin-spin D 
(cm-1) 

Spin-orbit D 
(cm-1) 

total D 
(cm-1) 

total E/D 
(cm-1) 

10 triplets 15 singlets NO 0.6066 -20.74 -20.89 0.09 

10 triplets NO 0.5274 -15.76 -15.88 0.09 

10 triplets YES 0.5770 -19.71 -19.82 0.09 

Table 3: Summary of results from the state averaged CASSCF(2,5) at the TZVP level. 
 

The state averaged calculations in Table 3 show the D splitting to be more than twice 

the experimental number of 7.27 cm-1, which is in contrast with the earlier DFT 

calculations that had D splittings too small by over 50%. The large splitting originates 

from the SOC, which also gives rise to a negative splitting sign in line with experiment. 

By turning to a more detailed analysis of the energy levels we find some interesting 

features that highlight some of the limits in quantum chemical calculations. These 

results are found in an appendix of this chapter. 

Restricting the state-averaging to include only the 10 triplet states results in a 

similarly large D of -15.94 cm-1arising from the spin-orbit term. A reduction of 5 cm-1 

from the earlier SA-CASSCF that included the singlet contributions to the orbitals. E is 

also smaller with a value of 1.57 cm-1 and E/D is thus 0.11.  

The scalar relativistic corrections from ZORA were not found to improve the D 

values. The gap between states A → B increases to 3.9 cm-1 and the state B → C gap to 

-21.73 cm-1
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The ORCA suite uses only configurations of the ground state multiplicity when 

calculating the spin density used in the SSC and we thus do not find that it varies much 

from 0.6 cm-1, this indicates that including the singlet state configurations does not have 

much effect on the orbitals. 

We conclude the state-averaged results by noting that the overestimation of the 

splitting by a factor of two is not unreasonable for a calculation with no dynamic 

correlation and a small active space. 

 

Orbital  90 91 92 93 94 

dz2  17.4 23.7 1.9 32.4 2.8 

dxz  11.9 6.9 0.8 16.5 4.9 

dyz  7.1 24.9 2.8 27.2 25.1 

dx2-y2  52.4 40.1 83.8 2.8 1.5 

dxy  7.6 1.3 0.5 12.2 30.7 

 Occupation 1.00 1.00 0 0 0 

Table 4: The occupation and coefficients of the d orbitals for a state optimised 
CASSCF(2,5). 

 

The large D values from the SA-CASSCF may indicate that the forcing of multi-

configurational character is producing orbitals that are inappropriate for the ZFS. 

Turning to state-optimised CASSCF(2,5) (SO-CASSCF) wavefunctions, we show in 

Table 4 that the density is localised to orbitals 90 and 91. This indicates that this 

molecule is adequately described by a single determinant. By applying QDPT to this 

wavefunction we find D = 1.2 cm-1, E = 0.12 cm-1 and E/D as 0.1. This underestimation 

of splitting is similar to the earlier DFT results. The spin-spin component of D was 

found to be 0.48 cm-1, which is fairly consistent with the state-averaged CASSCF values 

found earlier. 
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4.1.4 Restricted open shell determinants with QDPT. 

The lack of electronic density in the virtual orbitals for the state optimised 

calculation shows that a  

minant can adequately describe this molecule. The accuracy of the QRO method with 

the GGAs shown earlier indicates that using restricted orbitals may be a fruitful avenue 

of investigation, possibly because it maintains the orbitals as spin eigenfunctions. The 

orbitals from any restricted open shell calculation can be used with QDPT, providing 

one rotates the virtual orbitals into a configuration that includes as much d character in 

the configuration space as possible. In contrast to CASSCF this arrangement results in 

the QDPT performing a CI on a selected active space without any optimisation of the 

orbitals.  

 

Basis Method 
Spin-spin 

D (cm-1) 

Spin-orbit 

D (cm-1) 

Total 

D (cm-1) 

Total 

E/D 

TZVP HF 0.31 0.63 0.86 0.10 

QZVP-SVP HF 0.30 0.63 0.85 0.09 

TZVP PBE0 0.73 1.00 1.69 0.13 

QZVP-SVP PBE0 0.74 1.08 1.78 0.12 

TZVP PBE 0.87 1.19 2.00 0.09 

QZVP-SVP PBE 0.87 1.28 2.11 0.08 

Table 5: The QDPT ZFS values from restricted open electronic structure methods. 
 

Table 5 shows the results for the restricted open shell calculations for three electronic 

structure methods with decreasing amounts of HF exchange. We chose the PBE 

functional for its fair performance in the earlier DFT results as well as its hybrid 

analogue PBE0. We also provide results from ROHF calculations to show the effect of 
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not optimising the virtual orbitals as one would do in a CASSCF.  

 The D splitting becomes smaller as the amount of HF exchange is increased, 

both for the SOC and SSC terms. The ROHF calculation has the smallest spin-spin D 

splitting, However, we find this calculation to have the largest metal Mulliken spin 

density (1.95) pointing to a more localised spin than PBE0 (1.85) and PBE (1.64). The 

smaller D value, despite the localised spin, can be rationalised by turning to the SSC 

rhombicity which we find for ROHF to be ~0.25; compared to PBE at ~0.18. The high 

rhombicity indicates that the spin is spread over the three axes and thus results in 

weaker dipolar interaction. 

The largest D in Table 4 is from RO-PBE and should be comparable to the QRO 

numbers shown earlier for this functional, however we find it to be 37% smaller than 

the earlier PBE-QRO results. It is not possible to say if this indicates that the process of 

forming the QROs from the UNOs is maintaining some desirable orbital character from 

the original unrestricted calculation or if the QRO-ZFS method's neglect of certain spin 

transitions is leading to larger splitting magnitudes. 

The magnitude of D for all methods improves upon using the QZVP-SVP basis. We 

find a general trend of increasing covalency when going down Table 5 in line with HF 

exchange decreasing. The D from the ROHF calculation is 0.85 cm-1, smaller by ~0.2 

cm-1 than the earlier SO-CASSCF. This highlights the importance of optimising the 

weakly occupied orbitals in the CASSCF active space. The virtual orbitals for the 

ROHF (Table 6) were found to be more delocalised across the molecule (less d orbital 

centric), as would be expected for uncorrelated orbitals.  
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Orbitals 90 91 92 93 94 

dz2 11.7 30.4 12.7 -0.3 -0.9 

dxz 1.8 17.3 15.8 -0.1 7.0 

dyz 15.5 16.7 4.4 29.1 -0.7 

dx2-y2 69.0 24.5 -0.1 -0.1 11.8 

dxy 0.1 8.7 3.9 4.9 12.0 

Occupation 1.00 1.00 0 0 0 

Table 6: The occupation and coefficients of the d orbitals for the TZVP ROHF method. 
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4.2 Chromium-tris-acetylacetonate - Cr(acac)3. 

The experimental anisotropy values of this molecule are D = ±0.59 cm-1, E = 0.05 

cm-1 and thus E/D = 0.085. 

Figure 10: Left: Spin density for Cr(acac)3 studied at the B3LYP-TZVP level. Isosurface 
rendered at 0.004 a.u. Right: The splitting diagram from the ZFS Hamiltonian for the 
quartet state, shown for D < 0. 
 

4.2.1 DFT results. 

Figure 11: The calculated axial splitting (D cm-1) for seven functionals and three spin 
orbit response methods in the QZVP-SVP basis on the left hand side columns and the 
TZVP basis on the right hand side columns. The Mulliken metal charge is represented 
by bars and the average Mayer bond order of the metal-to-ligand interaction is 
represented by lines. 

 

For the GGA functionals the QRO ZFS method was found to result in larger D 

splitting values than the CP and PK methods by ~0.1 cm-1. The hybrids, whereas, were 

found to be less accurate with this ZFS method by around 0.2 – 0.3 cm-1. The CP 

method does not vary much across functional or basis set, the only exception being 

S = 3/2 

MS = ± 1/2 
 

MS = ± 3/2 
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PBE0 at the QZVP-SVP basis level where it results in a positive sign and a splitting 

~0.1 cm-1 smaller than the other results with this method. The PK method is similarly 

invariant across the GGAs, but has positive D splitting values with the QZVP-SVP 

basis set for the hybrids. PBE0 gives a splitting of 0.63 cm-1, this is the only calculation 

of Cr(acac)3 where D is greater than the experimental number. The QRO response is 

more accurate with the QZVP-SVP basis, by ~0.1 cm-1 for the GGA functionals and by 

~0.06 cm-1 for the hybrid-QRO combination.  

 The three combinations with positive splitting are PBE0-CP, PBE0-PK and 

B3LYP-PK, which have the respective rhombicities of 0.3, 0.3 and 0.1. The origin of 

the rhombicity for PBE0-CP and B3LYP-PK is the spin-spin term, which has a different 

large axis of splitting to the SOC. The spin-spin term thus contributes heavily to the E 

value and results in the system having rhombic anisotropy. PBE0-PK has a large 

positive spin orbit term which originates from the PK method having 4 times the pre-

factor term for the β to α channel than that of the CP method. All the other functionals 

calculate E/D to be smaller than experiment, giving better agreement with the axial 

anisotropy. 

The QZVP-SVP basis is shown in Figure 11 to produce higher Mayer bond orders 

than the TZVP basis. The bond order for this basis is lower for the OLYP and PBE0 

functionals and this corresponds to the higher Mulliken metal charges. Of all the 

combinations tested BLYP is the most covalent functional for this molecule and with 

the QRO method has the most accurate D splitting of the DFT data by ~0.01 cm-1. The 

OLYP-CP, OLYP-PK and PBE0-PK are more accurate with the QZVP-SVP basis and 

this is despite the metal being described as more ionic. This indicates the decontracted 

basis to have better flexibility for calculating the ZFS. 
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4.2.2 Multi-configurational results. 

State optimised CASSCF(3,5) calculations at the TZVP basis level were found not to 

spread density within the active space and indicate a single determinant ground state 

into the SCF. The splitting values from this calculation are D = -0.27 cm-1 and E/D = 

0.003, half of the experimental axial splitting. The rhombicity is only 3% of the 

experimental value but agrees with the anisotropy being generally axial. 

 

Number of roots ZORA 
Spin-spin  

D (cm-1) 

Spin-orbit 

 D (cm-1) 

Total  

D (cm-1) 

Total 

 E/D 

10 quartet 40 doublet NO -0.090 -0.336 -0.425 0.014 

10 quartet 40 doublet YES -0.090 -0.334 -0.424 0.015 

10 quartets NO -0.090 -0.341 -0.431 0.015 

10 quartets YES -0.090 -0.340 -0.430 0.015 

Table 7: Summary of results from the state averaged CASSCF at the TZVP level 
including the population numbers. 

 

In Table 7 we present state averaged CASSCF(3,5) results for orbitals formed from 

both the quartet ground state and calculations that include the doublet excited states. 

The spin-spin term consistently contributes 0.09 cm-1 to the splitting, this is a result of 

the spin density being formed exclusively from the quartet states. The spin-orbit 

contribution is also consistent for these calculations, splitting the sub-levels by -0.43 

cm-1. These splitting numbers show that the inclusion of the doublet states in the SCF 

has little effect on the converged orbitals. Furthermore we find the splitting values are 

not affected by removing the ZORA relativistic corrections. These state averaged D 

splitting values are twice the magnitude of the state optimised numbers and also possess 

a rhombicity in better agreement with experiment. 
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4.2.3 Restricted open shell determinants with QDPT. 

 

Basis Method Spin-spin D (cm-1) Spin-orbit D (cm-1) Total D (cm-1) total E/D 

TZVP HF -0.09 -0.15 -0.24 0.03 

QZVP-SVP HF -0.03 -0.05 -0.08 0.07 

TZVP PBE0 -0.31 -0.11 -0.42 0.08 

QZVP-SVP PBE0 -0.10 -0.21 -0.31 0.01 

TZVP PBE -0.11 0.34 -0.44 0.33 

QZVP-SVP PBE -0.11 0.36 0.45 0.32 

Table 8: The QDPT ZFS values from restricted open electronic structure methods. 

 

Results from restricted open shell determinants with QDPT are shown in Table 8, the 

results from the TZVP basis ROHF calculation is similar to the earlier state optimised 

CASSCF values. The small difference can be attributed to these ROHF calculations 

lacking any optimisation of the unoccupied active orbitals.  The PBE-QZVP-SVP 

combination is the closest to the experimental D value, however this method calculates 

the system to have rhombic anisotropy and thus results in a positive D value. The PBE 

functional with the TZVP basis is 0.15 cm-1 less than experiment, although the system 

was again calculated to be rhombic. The flip in the sign of D occurs because of the 0.02 

cm-1 reduction in the SOC for the QZVP-SVP basis and together with the rhombicity 

causes the sign to change. PBE0 results in the correct rhombicity and D splitting values 

that are 0.17 cm-1 from experiment, making it the best of the methods in this set.  
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4.3 Manganese-tris-acetylacetonate  - Mn(acac)3. 

The experimental results for Mn(acac)3 are D = -4.52 cm-1, E = 0.25 cm-1 and thus 

E/D = 0.055 making the system axial. 

 
Figure 12: Left: Spin density for Mn(acac)3 studied at the B3LYP-TZVP level. 
Isosurface rendered at 0.004 a.u. Right: The splitting diagram from the ZFS 
Hamiltonian for the pentet state. 

 

4.3.1 DFT results. 

Figure 13: The calculated axial splitting (D cm-1) for seven functionals and three spin 
orbit response methods in the QZVP-SVP basis on the left hand side columns and the 
TZVP basis on the right hand side columns. The Mulliken metal charge is represented 
by bars and the average Mayer bond order of the metal-to-ligand interaction is 
represented by lines. 
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All the DFT functionals in Figure 13 at the TZVP basis level calculate the D splitting 

to be much smaller than the experimental value of -4.5 cm-1, the best result from this 

basis is the PBE-QRO combination that finds 30% of the experimental value (1.33 cm-1). 

The PBE and PBE0 functionals both give a positive axial splitting and a low rhombicity. 

This molecule has been extensively studied by Neese, and he reports that his numbers 

agree well with experimental data. However, using the TZVP basis it has not been 

possible to replicate his success. It is notable that the crystal structure that is reported 

here has minor differences of the order of 0.01 Å for the metal-to-ligand bond lengths 

compared to the structure he uses in his calculations. To check the validity of these 

results, a second crystal structure for this molecule was tested and we found that the 

numbers were of the same scale as above for the TZVP basis. 

We discovered that by moving to the QZVP-SVP basis the magnitude of D is 

dramatically increased. The hybrid functionals with the CP and PK methods agree well 

with the experimental number, but have an incorrect sign of splitting. The inversion of 

sign cannot be attributed to the rhombicity in these calculations as the E/D values for 

the PK set are ~0.06, a good agreement with the expected axiality of the molecule. 

PBE0-CP and PBE0-PK are the only combinations that result in axial splitting greater 

than experiment for this molecule. The majority of the splitting for these two 

combinations occurs in the α to α and β to β spin channels which have the same pre-

factor in CP and PK and hence are similar in Figure 13. The GGA functionals are 

consistently more accurate with the QRO ZFS method, with a difference of around 1.0 

cm-1 from experiment. The most accurate functional is the BLYP functional with an 

error of 23.8% (1 cm-1) and the least accurate is OLYP which was 1.6 cm-1 from 

experiment. 

The spin-spin coupling contribution is negligible for the TZVP basis, whereas it 

contributes ~0.4 cm-1 with the QZVP-SVP basis.  
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Population analysis in Figure 13 shows that at the QZVP-SVP level the hybrid 

functionals have more cationic Mulliken charges on the metal than the GGAs. An 

exception to this is found for OLYP, which is also the least accurate GGA functional for 

calculating D in this basis. The accuracy of OLYP for calculating D does improve with 

the QZVP-SVP basis despite the lower covalency, which may be indicative of the 

decontracted basis being better at forming the valence space. The most covalently 

bonded functional with the QZVP-SVP basis is BLYP with the QRO response method 

and this corresponds to the most accurate result for D with the correct sign. 

 

4.3.2 Multi-configurational results. 

 

Number of roots Basis Spin-spin D 
(cm-1) 

Spin-orbit D 
(cm-1) 

total D 
(cm-1) 

total E/D 

(cm-1) 

5 pentets 45 triplets QZVP-SVP 1.446 3.06 4.07 0.135 

5 pentets QZVP-SVP 1.980 3.682 4.171 0.1342 

Table 9: Summary of results from the state averaged CASSCF at the QZVP-SVP level 
including the population numbers. 

 

Multi-configurational calculations at the TZVP basis level for Mn(acac)3 all resulted 

in splitting below one wave number. When the triplet states were included in the orbital 

configurations available to the MRCI the spin-orbit coupling made the triplet 

contributions lower in energy than the pentet states by 3000 wavenumbers. Shown in 

Table 9 are the results of QZVP-SVP basis, both of which have the correct state 

ordering and splitting values nearly exactly that of experiment. The inclusion of triplet 

states in the CASSCF reduces the sublevel splitting. 
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4.3.3 Restricted open shell determinants with QDPT. 

Mn(acac)3 was confirmed to be a single-configuration wavefunction by running state 

optimised CASSCF calculations over 5 d orbitals at the TZVP basis level. No electron 

density is found in the virtual orbitals of the active space and indicates a pure ROHF 

solution. The resultant D splitting from this calculation is -0.015 cm-1 and is highly 

rhombic with an E/D value of 0.29. 

 

Basis Method Spin-spin D (cm-1) Spin-orbit D (cm-1) Total D (cm-1) total E/D 

TZVP HF ~ ~ ~ ~ 

QZVP-SVP HF -0.52 -2.52 -3.04 0.03 

TZVP PBE0 -0.26 -0.27 -0.40 0.20 

QZVP-SVP PBE0 -0.46 -2.70 -3.15 0.00 

TZVP PBE -0.06 0.39 0.36 0.09 

QZVP-SVP PBE -0.40 -2.47 -2.87 0.06 

Table 10: The QDPT ZFS values from restricted open electronic structure methods. 

 

The D splitting values from QDPT in Table 10 are similar to the perturbed DFT 

calculations shown earlier for both basis sets. The TZVP basis resulted in much smaller 

D values than the QZVP-SVP basis. A possible contributive factor is that to obtain d 

centric valence orbitals for the CASSCF active space the TZVP calculations had to be 

started from the QRO orbitals of a converged unrestricted calculation. The ROHF 

calculation at the TZVP level did not converge to d centric valence orbitals and thus 

was excluded from these results. The QZVP-SVP basis reasonably reproduces the 

experimental D and E/D values, with PBE0 having the highest accuracy with a splitting 

of -3.15 cm-1. Despite a lack of dynamical correlation the ROHF calculation reasonably 

replicates the D splitting at 2 cm-1 (32%) less than the experimental value. 

For both crystal structures of Mn(acac)3 that we tested in this work the QZVP-SVP 
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basis results in higher molecular energy than for the TZVP basis. Other systems in this 

work find the converse to be the case and this may indicate insufficient flexibility of the 

basis to account for geometric distortions in this molecule.  We find similar results for 

calculations without ZORA. 
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4.4 Iron-tris-acetylacetonate  - Fe(acac)3. 

Experimental splitting values for this compound are D = -0.14 cm-1, E = 0.03 cm-1 

and thus E/D = 0.214 making the molecule rhombically distorted. 

  
Figure 14: Left: Spin density for Fe(acac)3 studied at the B3LYP-TZVP level. Isosurface 
rendered at 0.004 a.u. Right: The splitting diagram from the ZFS Hamiltonian for the 
sextet state. 

 

4.3.1 DFT results. 

Figure 15: The calculated axial splitting (D cm-1) for seven functionals and three spin 
orbit response methods in the QZVP-SVP basis on the left hand side columns and the 
TZVP basis on the right hand side columns. The Mulliken metal charge is represented 
by bars and the average Mayer bond order of the metal-to-ligand interaction is 
represented by lines. 

 

When discussing the ZFS of the molecule it is necessary to emphasise the small size 

of the splitting and the high rhombicity that makes the sign of D harder to determine. 

Figure 15 shows that there is little to distinguish the results of the GGA functionals, the 

worst of which is the OLYP functional that finds D to be below 0.08 cm-1. The hybrid 
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functionals did not calculate the splitting with as much accuracy as the GGAs and 

generally only managed 50% of the experimental splitting. The QZVP-SVP basis is 

again found to create more covalent interactions around the metal. The GGA-QRO 

combination showed larger D splitting values by 0.1 – 0.2 cm-1. The GGA-CP 

combinations results in the most accurate splitting values, with the PBE functional 

calculating D exactly. 

The sign of D is found to vary with both basis sets, this is because of the high 

rhombicity of ~0.3 for many of the calculations. High rhombicities indicates a situation 

where the splitting is highly anisotropic between the three axis (i.e. the gap between the 

sub-levels of x, y and z axis is similar). For such calculations a correct or consistent sign 

cannot necessarily be obtained as the choice of the major axis is not definable in the 

rhombic limit. 

The spin-spin coupling does not vary much between the two basis sets for Fe(acac)3 

and is inconsistent across functional type with values between 8% (0.01 cm-1) and 28% 

(0.03 cm-1) of the total D value. 

 

4.4.2 Restricted open shell determinants with QDPT. 

Basis Method Spin-spin D (cm-1) Spin-orbit D (cm-1) Total D (cm-1) total E/D 

TZVP HF -0.01 -0.01 0.01 0.03 

QZVP-SVP HF -0.01 0.01 0.01 0.06 

TZVP PBE0 -0.03 -0.02 -0.05 0.11 

QZVP-SVP PBE0 -0.03 -0.02 -0.05 0.11 

TZVP PBE -0.04 0.02 -0.03 0.10 

QZVP-SVP PBE -0.04 0.01 -0.03 0.04 

Table 11: The QDPT ZFS values from restricted open electronic structure methods. 
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A CASSCF(5,5) for a sextet state has only one possible configuration and thus our 

discussion is limited to restricted open determinants with QDPT. The most accurate D 

values in Table 11 were from the PBE0-QZVP-SVP combination at 32% of experiment, 

additionally this method had the highest rhombicity at 0.109. The spin-spin term was 

found to increase as the amount of HF exchange was reduced and all calculations found 

this term to be highly axial. The spin-orbit term for the ROHF and PBE calculations is 

highly rhombic at over 0.27 and thus results in a positive sign. For PBE the spin-spin 

term dominates the splitting and thus the total sign agrees with experiment. PBE0 has a 

spin-orbit rhombicity of 0.23, and a negative D splitting that coincides with the spin-

spin component, resulting in the most accurate result. 
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4.5 Iron-tris-malonate  - [Fe(mal)3]3-. 

[Fe(mal)3]3- has experimental values similar to Fe(acac)3 with D = ± 0.12 cm-1, E = 

0.03 cm-1 and E/D = 0.25 making the system highly rhombic. The sign for this molecule 

is not experimentally assigned and thus little comment can be made as to the 

performance of the functionals in this respect. 

 
Figure 16: Left: Spin density for [Fe(mal)3]3- studied at the B3LYP-TZVP level. 
Isosurface rendered at 0.004 a.u. Right: The splitting diagram from the ZFS 
Hamiltonian for the sextet state shown for D < 0.  
 

4.5.1 DFT results. 

 
Figure 17: The calculated axial splitting (D cm-1) for seven functionals and three spin 
orbit response methods in the QZVP-SVP basis on the left hand side columns and the 
TZVP basis on the right hand side columns. The Mulliken metal charge is represented 
by bars and the average Mayer bond order of the metal-to-ligand interaction is 
represented by lines. 

 

The [Fe(mal)3]3- system, shown in Figure 17, is more covalent with the QZVP-SVP 
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basis. The GGA functionals form negative Mulliken charges for this basis, except for 

the OLYP functional. For both basis sets OLYP is the least accurate GGA for 

calculating the D splitting. The BLYP functional is both the most covalent and the most 

accurate functional for calculating D. Hybrid functionals are generally less accurate than 

the GGAs, although the PBE0-CP combination manages to calculate the splitting 

exactly, however with the TZVP basis this combination only recovers 30% of the 

experimental splitting.   

The CP ZFS method results in splitting numbers ~0.1 cm-1 larger than the QRO 

method which is larger by this amount again than the PK method. The hybrid 

functionals find a positive D with CP and PK. This contrasts with the negative sign for 

these ZFS methods with the GGA functionals. The QRO ZFS method is not found to be 

consistent in calculating a sign of D. 

 The E/D values were found to vary for all combinations of functionals and basis sets, 

for example BP86-PK has a rhombicity of 0.05 for QZVP-SVP and then 0.28 for the 

TZVP basis, we attribute this to the fact that the E value is 0.03 for this system may be 

reaching the limits of the numerical precision for the SOMF(1X) operators evaluation of 

spin-orbit effects. 
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4.5.2 Restricted open shell determinants with QDPT. 

Basis Method Spin-spin D (cm-1) Spin-orbit D (cm-1) Total D (cm-1) total E/D 

TZVP HF -0.01 0.02 0.02 0.12 

QZVP-SVP HF -0.01 0.02 0.02 0.09 

TZVP PBE0 -0.02 -0.02 -0.04 0.03 

QZVP-SVP PBE0 -0.02 -0.02 -0.04 0.03 

TZVP PBE -0.02 -0.02 -0.05 0.16 

QZVP-SVP PBE -0.02 -0.02 -0.05 0.15 

Table 12: The QDPT ZFS values from restricted open electronic structure methods. 

 

The sign of the spin-spin and spin-orbit terms are coincident for the DFT calculations 

in Table 12 and combine to result in a negative D. All the calculations find smaller D 

splitting values than experiment, the most accurate numbers were obtained with PBE 

where both the D and E/D values were around half of the experimental values. The 

ROHF determinant finds only 13% of the experimental splitting, as the wavefunction is 

uncorrelated this is unsurprising.  

 

4.6 Conclusions for monometallic systems. 

The use of density functional theory to calculate the ZFS is shown to be reasonably 

accurate for a range of molecules with different magnitudes of axial splitting.  The use 

of the large de-contracted QZVP basis on the metal with a small SVP basis on the 

ligands provides more accurate splitting values and also reduces the computational cost, 

possibly opening a route to calculations of larger magnetic molecules. The sign of the 

splitting is generally found to be accurate for the GGA functionals, although ambiguity 

clearly arises in the case of Fe(acac)3 and [Fe(mal)3]3- where the magnitude of splitting 

is small and the rhombicity high. It may be necessary to replace the SOMF(1X) operator 



 

108 

in molecules with such small splitting values with the full SOMF operator, or another 

more accurate spin-orbit operator.  

The hybrid functionals predict more ionic electronic structures compared to the 

GGAs, which we characterise by the Mayer bond order and Mulliken charge. By 

moving to the QZVP-SVP basis we find that the covalency is generally enhanced for 

the GGA functionals and combined with the QRO method is a way of increasing the 

magnitude of the splitting. Although we do not attribute this success purely as a 

parameter of the electronic populations, we do feel that this may be a good guide for 

picking better functionals for calculating the ZFS phenomenon. The OLYP functional is 

a clear outlier for the GGAs, throughout this work and other than for [Fe(mal)3]3-
 it is 

more ionic with the QZVP-SVP basis. However, its ZFS values do show a small 

improvement in spite of its ionicity. The best DFT-ZFS combination for these 

molecules is BLYP-QRO with the QZVP-SVP basis (although PBE is a close second), 

which averaged over all results was 20% away from the experimental values. For many 

cases this combination provides the largest splitting magnitudes and the most consistent 

accuracy. The hybrid functionals are generally less accurate and have a wider variation 

in their ZFS values, this lack of consistency makes them hard to recommend with the 

current ZFS methods. The covalency is useful in characterising the shortcomings of 

these functionals for calculating ZFS, however other factors may need to be explored. 

For instance the HOMO-LUMO gap for the hybrid functionals is larger than the GGAs 

because the HF exchange reduces the self-interaction. Greater energy gaps between spin 

states could reduce their coupling and whether this is the root of the issue with hybrid 

functionals is open to further investigation. 

Care should be taken when assigning the component energy levels of ZFS, as in the 

case of V(acac)3 the axis of quantisation can sometimes be incorrectly chosen which can 

result in ostensibly bad Ms values, however clarification of the identity of the sub-levels 



 

109 

can be restored with the application of the Zeeman operator. 

The single-configurational character for all these systems led us to try restricted open 

calculations coupled with QDPT. The results are somewhat encouraging and the ROHF 

method performs surprisingly well for the Cr and Mn systems. Restricted open DFT 

appears to be the better choice for QDPT, probably because of its improved description 

of the electronic density, although we do not feel it possible to recommend one 

functional over the other. The choice of functional warrants expanded study. Whilst the 

QDPT with single determinants did not provide the best results of our research it may 

be a more systematic route to improving D, by enabling the active space to be 

selectively and systematically expanded, providing more correlated spin orbit 

interactions. A particularly interesting route would be to employ one of the many multi-

configuration DFT methods described in the literature. 
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4.7  Appendix. 

In this appendix we examine an interesting diversion into the characterisation of the 

Ms states through the application of the Zeeman operator for the V(acac)3. 

 

  Energy (cm-1) Contribution weight Ms 

STATE A 0 0.19 1 

   0.60 0 

   0.19 -1 

     

STATE B 4.24 0.33 1 

   0.33 0 

   0.01 0 

   0.33 -1 

     

STATE C 22.88 0.47 1 

   0.06 0 

   0.47 -1 

Table 13: The SS+SOC spectra of the ZFS effect on the SA-CASSCF(2,5) over all triplet 
and singlet routes.  

 

The micro-state splitting from the CASSCF(2,5) averaged over the triplet and singlet 

states is shown in Table 13. The ZFS is a measure of degeneracy breaking between the 

spin-projections (Ms value) at zero field, in most calculations the Ms number of each 

state can be identified by looking at the contributive weights. However, the weights in 

Table 13 cannot correspond to the energy level splitting that one would expect from the 

ZFS Hamiltonian. We find Ms = 0 to dominate state A and Ms = ±1 to dominate states B 

and C, this determination gives a D splitting (Ms = 0 → ±1) of 4.24 cm-1 and an E 



 

111 

splitting (Ms = +/- 1 → -/+ 1) of 18.64 cm-1. The E/D would thus be greater than 0.33 

and is clearly incorrect. According to the ZFS Hamiltonian the largest splitting (D) is a 

measure of the splitting along the primary axis of quantisation (Sz) and combined with 

the rules of extracting splitting from the full ZFS tensor this restricts rhombicity to less 

than 1/3.   

The primary quantisation axis in experiment is assigned according to the external 

laboratory frame (the direction of the magnetic field) and D is determined by observing 

the transitions in the Zeeman splitting of the Ms states in the Sz orientation. In Born-

Oppenheimer calculations the assignment of Sz is arbitrary because all spin directions 

are isotropic and all spin projections (Ms) are degenerate. When the ZFS perturbation is 

applied to these calculations it is done in the molecular frame (without a magnetic field) 

and will not necessarily assign the primary axis of quantisation correctly. Because the 

spin coupling is anisotropic the degree to which it varies along the different axis 

determines which direction should be Sz. Thus it is not possible to definitively know the 

Sz direction before the calculation of D. And furthermore, the Ms values will not 

necessarily be those from the Sz direction, such as is the case in Table 13. To find the 

orientation that has good Ms values (the axis that corresponds to Sz) a rotation of the 

molecular frame is needed. The energy of the states in Table 13 would not change upon 

such a rotation as they are at zero field, all that is achieved is ensuring that the Ms 

weights reported in the energy spectra are those that correspond to the Sz direction as 

must be the case when properly defining D.  

It is possible to find the correct orientation by applying a magnetic field and then 

rationalising the Zeeman splitting of the sublevels: 
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Figure 18: The effect of a magnetic field on the splitting of the first three energy levels 
from Table 13. The magnetic field is iterated in 1000 Gauss units on the three principal 
axes. Top left: x axis. Top right: z axis. Bottom: y axes. These number have been 
normalised to the ZFS by removing the stabilisation constant. 

 

In Figure 18 we have attempted to replicate a high frequency EPR (HFEPR) 

experiment by applying a magnetic field along the x, y and z axis in 1000 gauss 

increments up to 80000 Gauss. Without ZFS perturbation these states would all be at 0 
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cm-1 and would split according to the g matrix. It is quickly apparent that the y direction 

has the behaviour that is expected of a triplet as is represented in Figure 8. States A and 

B split in the form of Ms = ±1 and state C is not affected by the magnetic field as would 

be expected for a Ms = 0 state. The splitting along the z direction shows all the states to 

be affected by the magnetic field and thus proves that this axis has no valid Ms = 0 sub-

level. This is clear evidence that the y direction is the direction that we should be 

concerned with when applying the ZFS Hamiltonian and would be the axis chosen in 

experiment.  

The spin-spin and spin-orbit contributions do not have coincident large axes of 

splitting for this calculation. The diagonalised D tensor from the spin-spin component 

has the directional splitting as y>x>z, whilst the SOC has the directions z>x>y. When 

these two components do not align it is conceivable that there would be some difficulty 

in choosing the direction from which to find Ms for the total splitting. 

An alternative method to extract the anisotropy is to consider only the energy levels 

and assign the splitting according to the degeneracy rules that arise from the ZFS 

Hamiltonian. In the case of a triplet (shown in Figure 8) we should find a large splitting 

between the 0 → ±1 states and small splitting within the ±1 states, which applied 

against Table 13 would give D as -20.88 cm-1 and E as 2.12 cm-1, resulting in an E/D 

value of 0.11. These splitting values are more than twice the experimental values and 

possess a smaller rhombicity. 
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Chapter 5:  Kremer's dimer. 

5.1  Experimental data. 

Most SMMs are based on large clusters of metal centres held together in an organic 

framework, this approach is taken in order to make the barrier of spin reversal larger by 

increasing the total spin of the system. Depending on the chemical environment metals 

in these frameworks can interact in different ways to produce either a ferromagnetic 

coupling or an antiferromagnetic coupling between the metals.  

 

 

Figure 19: Structure of Tris(µ-hydroxo)bis[(1,4,7-trimethyl-1,4,7-
triazacyclononane)chromium(III)]3+.  Hydrogens on terminal ligands omitted for clarity. 
C grey, Cr light blue, H white, O red, N dark blue.    

 
Kremer’s dimer119,120 (Figure 19) is a well characterised candidate for studying the 

ZFS of two coupled metal centres. The molecule consists of two chromium(III) ions 

bridged by three super-exchange pathway µ-OH ions and each metal is capped by a 

neutral tridentate triazacyclononane ligand. The crystal structure that we use here was a 

tris-cation, tris-iodide salt, although we exclude the anions from this work. The removal 

of the anion is computationally expedient and avoids the long range closed shell 



 

 
 

115 

contributions identified by van Wullen103. Together the two chromium atoms possess 

six magnetically active electrons, which couple to produce four magnetically distinct 

spin states. The ground state for this system is the magnetically inactive 

antiferromagnetic S = 0 state, and then in accordance with the Heisenberg exchange 

interaction Hamiltonian is the S = 1 state, then the S = 2 state and the highest energy S = 

3 state. The energy separation between these states and their respective ZFS values has 

been well characterised by experiment (Figure 20).  

 

 

Figure 20: Experimentally determined energy levels and their axial ZFS values. 
Relative energies and D in cm-1. 

 

 

5.2 DFT calculations of the spin ladder. 

Obtaining the correct order of spin states with DFT is our initial focus as a 

replication of the experimental ladder would be a good indicator of the validity of the 

converged solutions to which the ZFS perturbation is applied. Figure 3 shows the 

energy levels using various exchange-correlation functionals. The spin ladder was 

calculated for each functional starting with the converged S = 3 state from which the 

next lower spin state, was started and so on. For each broken symmetry state the correct 
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pairing of orbitals was checked through a visual inspection of the orbitals as well as 

analysis of the Mulliken spin densities. For the S = 1 state it was found that the solution 

with equivalent spins on both Cr atoms was of higher energy than the solution reported 

in Table 14. This can be rationalised by considering the nature of the exchange 

interactions in broken symmetry solutions. The aim of the broken symmetry approach is 

to produce a lower energy state through allowing the wavefunction to possess a lower 

spatial symmetry than the molecular geometry. Such states are achieved by starting low 

spin states from high spin solutions as we have done here. The reduction in energy 

occurs because of the localisation of like spins, which are correlated by the exchange 

term, is stronger at shorter distances. The solutions corresponding to Table 14 shows the 

alpha electrons to be localised on Cr1 and the beta electrons on Cr2 and thus there are 

greater exchange interactions for this solution than the symmetric ground state.  

 B3LYP PBE TPSS M06 M06-L 

 Cr1 Cr2 Cr1 Cr2 Cr1 Cr2 Cr1 Cr2 Cr1 Cr2 

S = 0 2.97 -2.97 2.90 -2.90 2.88 -2.88 3.16 -3.16 2.87 -2.87 

S = 1 2.99 -0.94 2.90 -0.84 2.86 -0.86 3.23 -1.04 2.92 -0.85 

S = 2 3.04 1.07 2.89 1.25 2.84 1.14 3.29 1.14 2.93 1.24 

S = 3 3.07 3.07 3.09 3.09 3.05 3.05 3.36 3.36 3.12 3.12 

Table 14: The Mulliken spin densities for the chromium atoms for various DFT 
functionals. 
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Septet state. 

 
Pentet state. 

 
Triplet state. 

 
Singlet state. 

Figure 21. The spin density calculated from the M06 functional for the 4 spin states 
with the iso surface rendered at 0.004 a.u. 
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Many calculations were performed in which occupied and virtual orbitals were 

swapped and re-optimised in an attempt to ensure that a global minimum was reached 

for each spin multiplicity. Shown in Figure 21 is the spin density of Kremer’s dimer 

using the M06 functional for the 4 spin states. As the multiplicity decreases the amount 

of alpha spin density on the left chromium is found to decrease until the singlet state 

where there is only beta density present. This reflects Table 14 where for the pentet state 

the spin on Cr2 is reduced to 1.14 (one alpha electron) and the spin density plot shows 

the spin to be localised on the left Cr. The Mulliken spin on Cr2 is dominated by the 

two beta electrons and can be seen to be localised on the left Cr in the spin density plot.  

 

Figure 22: Ordering of energy levels of spin S = 0, 1, 2, 3. Experimental results are 
shown on an expanded scale and also on the same scale as the DFT calculations. 
Relative energies in cm–1. The basis set is QZVP-SVP. 

 

The broken symmetry results in Figure 22 show the singlet-septet gap to be correctly 

ordered for B3LYP, PBE, M06 and M06-L, however the TPSS functional results in an 

inverted ladder. The experimental energy gap of 784 cm-1 between the S = 0 and S = 3 

states is most closely replicated by the hybrid functionals, B3LYP and M06, with errors 

of 128 cm–1 and 265 cm–1 respectively. The PBE and M06-L functionals resulted in an 

energy gap that is too large by approximately a factor of two. For all of the functionals 

tested the S = 1 and S = 2 states were problematic and are many thousands of 

wavenumbers too high in energy. It is clear from these results that standard DFT is not 
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able to qualitatively reproduce the spin energy ladder of Kremer’s dimer.  

 

5.4 Spin contamination. 

State S(S+1) B3LYP PBE TPSS M06 M06-L 

S = 0 0 2.99 2.89 2.79 3.06 2.97 

S = 1 2 3.93 3.82 3.60 3.99 3.90 

S = 2 6 6.96 6.72 6.63 6.96 6.79 

S = 3 12 12.04 12.05 12.03 12.11 12.07 

Table 15: The 𝑆!eigenvalues for each spin state with the density functionals used. 
 

The eigenvalues of S! shown in Table 15 indicate that the S = 0, S = 1, and S = 2 

states are of broken spin symmetry for all functionals used. The S = 3 state possesses 

least spin contamination for any functional as any higher multiplicity states lie much 

higher in the energy manifold. The presence of such high spin contaminations means 

that to achieve a lower energy solution DFT is incorporating character of higher spin 

states and can be indicative of the converged state not being adequately described by the 

unrestricted methodology. Although it must be stated that some caution is warranted as 

to the definition of S! in the context of DFT. 

  



 

 
 

120 

5.5 ZFS from DFT. 

 

State Expt. 

D 

B3LYP 

CP 

B3LYP 

QRO 

PBE 

CP 

PBE 

QRO 

TPSS 

CP 

TPSS 

QRO 

S = 1 2.2 -0.73 - 3.13 - -3.63 - 

S = 2 0.08 14.33 0.27 1.63 0.9 1.37 0.66 

S = 3 0.24 0.068 0.05 0.12 0.14 0.10 0.12 

Table 16: D values (cm–1) obtained with DFT and the CP or QRO methods. 

 

The D splittings corresponding to the states shown in Figure 22 are given in Table 16. 

The QRO results for the triplet states have been omitted since the degree of spin 

contamination precludes returning the unrestricted natural orbitals to spin 

eigenfunctions as is done to form the QROs.  

For the S = 1 state, the B3LYP-CP method is the wrong sign for D and gives a 

splitting 1.5 cm-1 (67%) smaller than experiment. Conversely the PBE-CP and TPSS-CP 

methods produce values too large by ~1 cm-1. For the S =2 state the QRO method 

produces values of D three times that of the experimental value. The CP method results 

in D splitting more than two orders of magnitude greater than experiment, and is 

particularly inaccurate with the B3LYP with a splitting of 14.33 cm-1. All of the tested 

combinations of density functionals and CP or QRO methods resulted in D values that 

are too large for the S = 2 state. The D values for the S = 3 state are universally too 

small, but do approach the experimental value within a factor of two. In this case, where 

the QRO method is most applicable because of the small degree of spin contamination, 

very little difference was observed between the CP and QRO results. Despite having the 

best gap between the S = 0 and S = 3 states for the energy ladder, the B3LYP is 

decidedly the least accurate ZFS values of the three functionals. 
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5.6 CASSCF orbitals. 

5.7.1 CASSCF (6,6). 

The larger degree of spin contamination for the broken spin symmetry solutions 

obtained for Kremer’s dimer suggest the presence of multi-configurational character. 

Given the poor ordering of the spin state ordering, and the values of D, it may be 

assumed that the degree of multi-configurational character is sufficiently strong that the 

broken symmetry density functional approach does not adequately deal with it. To 

investigate this suggestion we performed complete active space self-consistent field 

(CASSCF) calculations. We began with the ground state (S = 0) by finding the 10 

molecular orbitals comprised of the 3d orbitals of the Cr atoms. The six lowest energy 

of these orbitals were included in the active space along with the six electrons coming 

from the metal centers. Following orbital optimisation the six orbitals shown in Figure 

23 were obtained. 
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Figure 23: The active orbitals from the CASSCF(6,6)/SVP for the S = 0 state and their 
natural orbital occupation numbers. 
 

  

1.09 1.03 

1.03 0.97 

0.97 0.91 
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5.7.2 CASSCF(6,10). 

The MOs for the CASSCF are proven to be of good d configuration in Figure 23. 

The natural orbital occupation numbers are shown alongside each orbital and it can be 

seen that the S = 0 state is an open-shell spin-paired state with each orbital having an 

occupancy of about 1. This reflects the physical situation which the broken symmetry 

approach attempts to reproduce by allowing the spatial component of the α and β to 

have the freedom to localise away from each other. The dominant configuration state 

function (CSF) has a coefficient of only 0.28, with the next 20 most significant CSFs 

having coefficients of about 0.1. These data all indicate a strongly multi-configurational 

structure. A similar situation was found for the S = 1 and S = 2 states. Accordingly, we 

performed a number of state-optimised CASSCF and state-averaged (SA-CASSCF) 

calculations, including the remaining 3d orbitals i.e. CASSCF(6,10) calculations, to 

characterise the spin states. Figure 24 shows the converged orbitals of the SA-

CASSCF(6,10). The SA-CASSCF(6,10) calculations correspond to an equal weight 

averaging over the lowest root (most dominant state) of each spin multiplicity. The 

strongly occupied orbitals are qualitatively indistinguishable from those of the state 

optimised CASSCF(6,6). The 4 virtual orbitals added to the active space show only a 

small amount electronic density occupation. It should be stressed that their inclusion is 

critical in the calculation of the ZFS as they are still coupled via the SOC operator. 

Figure 25 shows the ordering of energy levels obtained from CASSCF(6,10) and SA-

CASSCF(6,10) calculations.  
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Figure 24: The active orbitals at the SA-CASSCF(6,10)/SVP level. The averaging is 
over the ground state for each spin multiplicity. Natural orbital occupation numbers are 
shown.  
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5.8 CASSCF spin ladder. 

 

 Figure 25: Relative ordering of energy levels from CASSCF(6,10) and SA-
CASSCF(6,10) calculations, see text. Relative energies in cm–1. 

 

It is apparent from Figure 25 that both the state averaged and state optimised 

CASSCF calculations correctly reproduce the state ordering, although the energy gaps 

are a factor of two smaller than experiment. This is in stark contrast to the results from 

DFT shown in Figure 22. The SA-CASSCF calculations produce slightly smaller 

energy gaps. We also tried increasing the size of the basis on the Cr atoms to triple ζ and 

including ZORA corrections but these had relatively little effect on the energy level 

splittings.  

 

5.9 SA-CASSCF root convergence. 

Turning now to the calculation of D, we used a QDPT framework to calculate the 

ZFS, in which states corresponding to the roots of the CASSCF method are mixed under 

the spin-orbit operator. All the necessary states for the ZFS are accounted for by 

including spin states with ΔS = 0, ±1 for each reference state, e.g. for the S = 2 reference 

state, S = 1, S = 2 and S = 3 states are included in the QDPT. A large span of state 

energies, amounting to an interval >6 eV, were allowed to mix in the spin orbit 

treatment, these correspond to spin-orbit coupling with spin anisotropic states of larger 

multiplicity (i.e. those which have their spin projection degeneracy broken by the spin-
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orbit operator) which lie much higher in the virtual space. We varied the number of 

states of each spin multiplicity that were included in the state-averaged ZFS calculations. 

The variations in the calculated D values are shown in Table 17. 

 

Spin state Expt. D 10 states 20 states 30 states 40 states 50 states 

S = 1 2.2 -0.653 -2.199 -1.913 -1.923 -1.767 

S = 2 0.08 0.121 0.138 -0.097 -0.029 -0.048 

S = 3 0.24 -0.006 0.413 0.166 0.092 0.142 

Table 17: D values (cm–1) from SA-CASSCF(6,10) calculations. The number of states 
specified refers to the number taken from each of the S = 0, 1, 2, 3 states. 

 

We cannot expect monotonic convergence for this process with respect to the 

number of roots included from the state averaging, because the inclusion of increasing 

numbers of higher lying states will degrade the description of the lower lying electronic 

states. From the results in Table 17 we find a reasonable stability of the results with the 

inclusion of 40 – 50 states from each spin multiplicity. The best results compare well 

with the small splitting from experiment for the S = 2 state and the large splitting of the 

S = 1 state. 

 

5.10 State averaged ZFS. 

We also investigated the effect on the results from varying the different spin states 

included in the state-averaging process. Table 18 shows D to be relatively insensitive to 

the spin states that are included in the state-averaging. The results of the [0,1,2,3] set 

(third column) are the same as the 50 state selection in Table 17. The D splittings 

closest to experiment are obtained when using orbitals averaged without the S = 0 state. 

In particular the [1,2,3] configuration gives results reasonably comparable to experiment. 

The S = 0 state is irrelevant to the ZFS values as it is magnetically inactive and any 
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orbital character it contributes to the SCF does not enhance the relevant orbitals for the 

spin-orbit term or the spin density which defines the spin-spin contribution. Removal of 

the S = 0 states changes the sign of D in the S = 2 state, showing the importance of 

choosing an appropriate set of spin states in the state-averaging process. 

 

Spin state Expt. |D| [0,1,2,3] [0,1,2] [1,2,3] [2,3] 

S = 1 2.2 -1.767 -1.767 -1.943 - 

S = 2 0.08 -0.048 -0.035 0.016 -0.143 

S = 3 0.24 0.142 - 0.155 0.173 

  Table 18: D values (cm–1) obtained with the inclusion of different spin multiplicities in 
the state-averaging process. All calculations refer to SA-CASSCF(6,10). The spin states 
included are given in square brackets are.  

 

5.11 State optimised ZFS. 

The ZFS values were calculated with orbitals optimised for each reference (ground 

state) spin multiplicity, see Table 19. This means that each state was optimised without 

the SCF mixing in contributions from configurations of different multiplicities. When 

doing the ZFS calculations these orbitals are used for the S = ±1 states without any 

optimisation. The S = 1 optimised orbitals resulted in a D value that is too large (by 0.4 

cm-1), this was not observed in any of the other CASSCF calculations of this state. For 

the S = 2 state, D is 0.019 cm-1 larger than experiment when calculated with S = 2 

optimised orbitals (column 4) and is amongst the best values for this state that we have 

obtained. For the S = 3 state, D differs from experiment by just 0.053 cm-1. An 

interesting trend can be found when comparing this result to the state averaged values 

from Table 18. We find an improved agreement with experiment of the D splitting upon 

removal of the averaging of other states, i.e. removal of the S = 0 state increases the 

splitting by 0.012 cm-1, the additional removal of the S = 1 state further improves the 

value by another 0.019 cm-1 and using state optimised (S = 3) orbitals yields a further 
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improvement of 0.014 cm-1. This can be traced to the fact that the S = 3 is the highest 

lying state and has a large energy gap with the S = 2 state, it appears the character of the 

other states may be causing degradation of D for the S = 3 state. 

 

State Optimised Expt. |D| D (S = 1) D (S = 2) D (S = 3) 

S = 1 2.2 -2.608 -2.008 Not included 

S = 2 0.08 0.044 0.027 -0.141 

S = 3 0.24 Not included 0.175 0.187 

  Table 19: D values (cm–1) obtained with state optimised orbitals. Bold values on the 
diagonal shown are the D values from orbitals optimised for that spin state.  

 

5.12 Spin-spin and spin-orbit contributions of the ZFS. 

An advantage that theoretical chemistry has to offer experiment is the ability to 

extract the components of the ZFS and provide analysis that can aid in the design of 

SMMs. Using the SA-CASSCF results that we have described, we illustrate that the SS 

contribution to D for this molecule is not insignificant, see Table 20. The S = 1 state 

shows a large contribution, -0.67 cm-1 which adds to the SOC component. The S = 2 and 

S = 3 state have negative SS components which act to reduce the overall anisotropy. In 

particular, the SS contribution for the S = 2 state is larger than the SOC contribution. In 

the earlier discussion we mentioned the S = 2 state optimised orbitals have a different 

sign for D to the state averaged set (Table 18), this can be traced to an increase in the 

SOC term, which goes from 0.063 cm-1 to 0.150 cm-1 upon using state optimised 

orbitals. The degree of this contribution is significant and shows that its inclusion is 

necessary in any future calculation of ZFS values. 
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Spin state Expt.|D| Spin-spin cm-1 Spin-orbit cm-1 Total cm-1 

S = 1 2.2 -0.673 -1.091 -1.767 

S = 2 0.08 -0.107 0.063 -0.048 

S = 3 0.24 -0.015 0.159 0.142 

Table 20: The breakdown of the spin-spin and spin-orbit components for the SA-
CASSCF [0,1,2,3]. 
 
5.13 The Rhombic term. 

5.13.1 SO-CASSCF. 

 The rhombic splitting parameter (E), being half the splitting between the Ms= ±1 

microstates, was also calculated. Kremer’s120 analysis assumes C3h symmetry to derive 

the D values. C3h implies axial symmetry and E = 0. Symmetry this high does not allow 

enough degrees of freedom for the X and Y components of D to vary and create 

rhombic anisotropy. 

 

State Optimised E (S = 1) E (S = 2) E (S = 3) 

S = 1 0.029 0.027 - 

S = 2 0.007 0.008 0.019 

S = 3 - 0.019 0.024 

Table 21: E values (cm–1) obtained with state optimised orbitals. Bold values on the 
diagonal shown are the E values from orbitals optimised for that spin state.  
  



 

 
 

130 

5.13.2  SA-CASSCF. 

Spin state [0,1,2,3] [0,1,2] [1,2,3] [2,3] 

S = 1 0.003 0.003 0.006 - 

S = 2 0.002 0.001 0.002 0.006 

S = 3 0.003 - 0.004 0.020 

Table 22: E values (cm–1) obtained with the inclusion of different spin multiplicities in 
the state-averaging process. All calculations refer to SA-CASSCF(6,10). The spin states 
included are given in square brackets.  
 

E was less than 0.03 cm-1 for all of the states and methods utilised. The state-

optimised orbitals in Table 21 have much larger E splitting values than those from the 

state-averaged calculations in Table 22. This resembles the smaller D splitting found for 

orbital averaged CASSCF shown earlier. An observation of note is that the S = 2 E 

splitting in Table 21, when compared with its partner D points to substantial rhombicity 

(E/D = 0.3). The EPR experiments do not indicate any rhombicity. The calculated 

magnitude of E reported here is small enough to be around the margin of error for 

electronic calculations and thus may be too small to draw general conclusions from. 

 

5.14 QZVP-SVP results. 

Additional to the work published on Kremer’s dimer we have performed state 

optimised calculations using the QZVP-SVP basis. The splitting between spin states 

was found to be S = 0 → S = 1 = 47 cm-1, S = 1 → S = 2 = 131 cm-1, S = 2 → S = 3 189 

cm-1. This improves upon the state optimised results of SVP in Figure 25 by around 10 

cm-1. The S = 1 state was found to have a D of -1.55 cm-1, S = 2 was found to have a D 

splitting of 0.105 cm-1 and the S = 3 state was found to have a splitting of 0.108 cm-1. 

The most significant change is the S = 2 state has double the splitting of the SVP results. 

The monometallic results in chapter 4 are often more accurate with the decontracted 

QZVP basis with GGAs, however the hybrid functionals do not share this basis set 
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dependence. CASSCF calculations using the QZVP–SVP basis have little dynamic 

correlation and show a slight degradation of accuracy with the increase in the metal 

basis. This may indicate that to improve the accuracy of these calculations the inclusion 

of dynamic correlation is necessary. 

 

5.15 Conclusions. 

The challenges to the calculation of electronic structure posed by Kremer’s dimer 

make the molecule an excellent test case for some of the current standard DFT 

techniques. The simple CASSCF techniques we have employed here are able to 

correctly treat the various spin states, but fall short of quantitative accuracy, as would be 

expected in the absence of treatment of the dynamic electron correlation. Reasonable 

agreement with experiment for D values can be obtained with a state averaged set of 

orbitals, however the best results are obtained with state-optimised orbitals. The spin-

spin coupling is necessary in gaining good D splitting values. E values were calculated 

to be close to zero, in line with the experimental analysis based on C3h symmetry.  
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Chapter 6: Summary, Conclusions and future work. 

The momometalic systems show that there is clearly need for more study on the 

effect of basis when calculating the ZFS. The QRO method was found to be the most 

accurate method for the monometallic systems, however the limitation of its 

applicability is highlighted by Kremer’s dimer, which has large amounts of spin 

contamination. The QZVP-SVP basis is shown to be an accurate approximation 

compared to the balanced TZVP basis. Using a large basis on the metal highlights an 

interesting route to improving the values of the ZFS and simultaneously decreasing the 

cost of the calculations. The Mn(acac)3 system was shown to be more subtle than the 

literature suggests, however by increasing the basis it is possible to accurately calculate 

the ZFS for both CASSCF and DFT calculations. The labelling of the sub-state splitting 

was explored for V(acac)3 and by using the Zeeman operator it is possible to correctly 

tease out the identity of the sub states. 

Kremer’s dimer was found to be a difficult molecule for DFT to accurately calculate 

due to its multi-configurational character. This molecule presents an interesting case 

where DFT fails entirely and shows how simple CASSCF calculations are able to 

accurately reproduce the experimental data. The limits of DFT may become an issue 

when larger SMM candidates are being studied and careful analysis should be put into 

the determination of whether the ground state can be approximated by a single 

determinant. State optimised CASSCF calculations prove to be the most accurate at 

determining the splitting values and it is our recommendation that this method is chosen 

over state averaged calculations where possible. 

The results from Kremer’s dimer do not suggest a bright future for DFT at 

calculating the properties of large SMMs. If candidate molecules can be guaranteed to 

be suitably singly configurational, then from the results presented here we suggest that 

GGA functionals be used with a large basis set on the metal.  However, it is likely that 
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such systems will be similar multi-metallic compounds and thus careful consideration is 

needed to ensure that the system does not require multi-configurational treatment. In 

this vein we have started work on a tetra iron system121 and have been able to obtain 

DFT values for the ZFS in good agreement with experiment. Unfortunately, analysis of 

the solution shows that the broken symmetry result has a large amount of spin 

contamination. Performing a CASSCF calculation would require a multi-billion 

configuration active space. Such a calculation is currently not possible and may indicate 

that current techniques in quantum chemistry are unable to scale to the type of large 

SMMs being studied by the inorganic community. A critical test of this will be to see if 

a restricted active space self-consistent field (RASSCF) calculation is capable of 

capturing enough of the multi-configurational character to make such calculations 

feasible.  

A possible route to reach quantitative ab-initio accuracy at calculating the ZFS for 

large molecules is to try calculations that marry DFT with ab-initio methods. Recently, 

the author of this report started work on quantum embedding development, where post 

Hartree-Fock calculations can be embedded exactly in DFT wavefunctions. Once 

embedding can be extended to open shell systems Kremer’s dimer serves as the perfect 

test-bed for such a methods applicability to SMMs. Another possibility would be to test 

such embedding methods on dimers of Cr7Ni wheels122 where it may be possible to treat 

the linkers to the coupled cluster singles, doubles and pertubative triples (CCSD(t)) ” 

gold standard” level. Using these more exotic techniques we believe that it may be 

possible to apply theory to state of the art large SMMs. 
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