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Urinary catheters are indispensable in healthcare and, with an ageing population, their 

use will continue to increase. However, they are commonly associated with colonisation 

and urinary tract infections (UTIs) caused by the attachment of bacteria to the catheter 

surface. Application of a novel cationic compound as a catheter coating may have a 

significant impact on the costs associated with treatment of UTIs and reduce the need 

for catheter replacement, as well as decreasing the number of UTI associated morbidity 

and mortality. Cationic compounds in particular are known to interact with the 

negatively charged outer membrane of bacteria, therefore have a broad spectrum of 

activity. The purpose of this study was to source and evaluate a novel cationic 

antimicrobial for use as a potential coating to impede biofilm formation on urinary 

catheters, and to investigate the cellular response to the selected lead compound.  

 

This research has demonstrated that the antimicrobial activity of commercially available 

Byotrol™ was superior to that of polyamines and quaternary ammonium compounds that 

were screened. Using high-throughput antimicrobial assays, such as the minimum 

inhibitory concentration and microtitre plate biofilm forming assays, the inhibitory 

concentrations of Byotrol™ were found to range from 3 µg/mL to 15 µg/mL for 

planktonic cultures, and 3 µg/mL to 20 µg/mL for the biofilm growth of uropathogenic 

bacteria. Furthermore, the minimum biofilm eradication concentration assay 

demonstrated that 200-1000 µg/mL Byotrol™ was able to eradicate an established 

biofilm. Byotrol™ may also have significant potential as a device coating, as pre-coating 

data on glass slides and microtitre plates with the compound inhibited bacterial growth 

on the surface at concentrations of 400 µg/mL for E. coli, and 1000 µg/mL K. 

pneumoniae. Atomic force microscopy validated the expectation that higher 

concentrations of Byotrol™ coated a surface more evenly than lower concentrations. 

Using two-dimensional gel electrophoresis, the metabolic protein tryptophanase was 

seen to be significantly over-expressed when E. coli K12 was treated with sub-

inhibitory concentrations of Byotrol™. A transcriptomic approach using RNA-Seq 
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demonstrated that a majority of the differentially expressed genes were identified in 

cells that were challenged with 4 times the minimum inhibitory concentration of 

Byotrol™. Genes associated with protein synthesis and stress response were 

significantly up-regulated. Interestingly, the global gene regulators AI-2 and indole 

were significantly up-regulated, which may have an influence on the expression of 

genes related to motility, biofilm formation and acid-resistance. Genes associated with 

chemotaxis and motility, acid-resistance and iron transport were significantly down-

regulated, particularly in cells challenged with Byotrol™. 

 

Byotrol™ displayed antimicrobial activity both in suspension and as a coating. 

Identification of differentially expressed genes and proteins, when the bacteria were 

treated and challenged with Byotrol™, has, for the first time, revealed the bacterial cell’s 

response to this biocide. The findings may enable the development of strategies to 

prevent or better manage catheter associated urinary tract infection (CAUTI). 
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Indwelling urinary catheters are commonly used in the nosocomial environment and as 

with many medical devices, are susceptible to colonisation by bacteria. Complications 

arise when bacteria attach to the surface of the device and develop into biofilms, leading 

to infection. Once a biofiolm has formed, it is notoriously difficult to treat; therefore the 

catheter needs to be replaced. In the hectic health care setting, catheter replacement 

often does not happen as frequently as is required to avoid infection, which may 

contribute to catheter associated urinary tract infections (CAUTIs). CAUTIs are one of 

the most common nosocomial infections. Moreover, every catheter that is replaced is an 

additional expense to the health service, and the procedure is a discomfort to the patient. 

 

This project endeavored to identify inhibitors of biofilms formed by Gram-negative 

uropathogenic bacteria. As a mature biofilm is difficult to eradicate, the efforts of this 

research were focused on inhibiting the initial growth, attachment and proliferation of 

bacterial cells. This was achieved by screening cationic compounds, which are known to 

have the potential to be antimicrobial in nature. The inhibitor most successful at 

reducing planktonic and biofilm growth was then evaluated further using proteomic and 

transcriptomic analyses. Proteomics and transcriptomics are often used to evaluate the 

expression of proteins and genes when cells are under the stress of treatment. These are 

also useful tools to analyse the metabolic pathways involved in biofilm formation in 

relation to the planktonic phenotype. 

 

Genes and proteins are up-regulated or over-expressed if they are essential for the 

growth and survival of bacteria when in the presence of sub-inhibitory concentrations of 

the novel inhibitor. Knowledge of how bacteria respond to a biocide is important in 

understanding how they may adapt and survive under stress conditions. 

 

 

1. 1 The bacterial biofilm 

As long ago as 1683, Anthonie van Leeuwenhoek, out of curiosity, scraped a pungent 

deposit off his teeth and used his home-made microscope to examine what it was. This 

was the first microscopic visualisation of bacteria and the discovery of the biofilm 

(Costerton, 2007a). 
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A biofilm is a multilayer community of bacterial cells embedded in a hydrated 

extracellular polymeric substance, enabling the colonisation of a living or inert surface, 

or phase boundary. This subsequently contributes to the virulence of the organisms 

within the biofilm matrix and is the main cause of antimicrobial resistance (Flemming et 

al., 2000; Sadovskaya et al., 2005). The biofilm is the preferred way for bacteria to live 

and therefore is their natural state of existence (Jefferson, 2004). 

 

However, since the research by Robert Koch, for which he won a Nobel Prize in 1905, 

microbiologists have concentrated their efforts on understanding bacteria in pure 

culture, in the free-living planktonic form. Thankfully, the study of biofilms was taken 

up again many decades later in the 1930s and 40s by ZoBell and Anderson whose 

research focussed on biofilm formation from sea water, on glass surfaces (Zobell & 

Anderson, 1936; Zobell, 1943). Inspired by the research of ZoBell and Anderson, the 

now highly reputable Canadian scientist J. William Costerton and his team of 

researchers began their quest to further the understanding of the biofilm phenotype and 

it’s prevalence and importance in many different environments. 

 

It has since been deduced that microbial biofilms form in a myriad of environments and 

are ubiquitous in nature (Costerton et al., 1995; Macfarlane & Macfarlane, 2006). In 

fact, over 99% of microorganisms on Earth live as a biofilm (Vu et al., 2009). Much of 

the early research on biofilms was done in natural aquatic environments ranging from 

the fresh alpine streams in the Bugaboo Mountains of Southern British Columbia to the 

deep waters of the oceans (Costerton et al., 1987; Trachoo, 2003; Zobell & Anderson, 

1936). 

  

From this extensive research, it was determined that biofilms can grow well in any 

environment which have an adequate nutrient supply (Costerton & Lewandowski, 1995) 

including most abiotic surfaces and all natural ecosystems (Costerton, 2007a). For 

example, biofilms can be found on all plants and vegetation that support the growth of 

polymicrobial biofilms that grow both as commensal and pathogenic communities on 

plant roots, tissues, phloem and xylem, seeds, stems and leaves, and the surrounding 

soil and rhizosphere (Danhorn & Fuqua, 2007). 

 

Microbial biofilms also form as commensal communities on biotic surfaces in a diverse 

number of sites of the healthy human body, each with different and challenging 
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environments. The relatively dry environment of the skin, for example, is host to a wide 

range of bacterial and fungal biofilms; the human vagina has its own ecosystem of 

bacteria and yeasts that change at different stages of the menstrual cycle, and at 

different stages of a female’s life (Costerton, 2007b). The early colonisation of the 

intestinal mucosa has been the topic of research for decades (MacFarlane & Macfarlane, 

2003; Macfarlane & Dillon, 2007). Biofilms in the intestine are dynamic populations 

that competitively occupy binding sites on intestinal endothelial cells that would 

otherwise be targets for pathogenic adhesins.  In the intestines, the natural flora of 

bacterial biofilms also play important roles in digestion and metabolism. Natural 

biofilms often consist of multiple species of microorganisms, but in some cases can also 

exist as single species (Mah & O'Toole, 2001). 

 

Much research has been dedicated to understanding biofilm formation and the 

pathogenesis of disease. One of the most common biofilms that we encounter day-to-

day is formed on the tooth surface, known as dental plaque, predominantely caused by 

Acinomyces and Streptococcus spp. Growth of a biofilm on the tooth can lead to dental 

caries and gingivitis (Stenudd et al., 2001). In immunocompromised hosts such as those 

with cystic fibrosis, biofilm formation of the mucosal surface of the lungs has also been 

studied in great depth (Sriramulu et al., 2005). Delayed wound healing is often a 

predisposing factor for biofilm formation often caused by Pseudomonas spp. (Guo & 

Dipietro, 2010). 

 

Biofilm formation on any abiotic surface is also a great concern that expands to, and 

encompasses, all manner of industries and disciplines. These include engineering, 

ecology, industrial aquatic environments, the food processing and beverage industries, 

metal industries, water and oil piping industries and medicine as biofilm formation can 

cause surface biocorrosion, pipe blockage, contamination and infection (Costerton, 

2007b; Trachoo, 2003; Van & Michiels, 2005). However, there has never been a more 

important implication of biofilm formation on abiotic surfaces, than the bacterial 

colonisation of medical biomaterials. It is this that is of great importance and which 

needs to be understood in greater depth. Medical devices such as artificial heart valves, 

prosthetic devices, surgically implanted devices, contact lenses, wound drainage tubes, 

dressings, intrauterine contraception devices, sutures, intravenous catheters and urinary 

catheters are frequently colonised with biofilms, and can cause chronic infection and 

even mortality (Costerton et al., 1987). Table 1. 1 highlights the range of 
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microorganisms that are associated with different indwelling medical devices. Each of 

these devices has their own challenging environments, which the bacteria associated 

with colonisation have adapted to in order to survive. This therefore presents great 

challenges in our efforts to eradicate bacterial growth and control infection. 

 

 
Table 1. 1. Microorganisms associated with the colonisation of different medical 
devices.  
(Donlan, 2001b; Donlan & Costerton, 2002; Mermel et al., 2001; Mulla & Revdiwala; 
Revdiwala et al., 2011). 
 

Medical Device Microorganisms 
  

Prosthetic heart valves Coagulase-negative staphylococci, enterococci, Gram-

negative coccobacilli, S. aureus, streptococci 

  

Central venous catheters C. albicans, coagulase-negative staphylococci,  

E. feacalis, K. pneumonia, P. aeruginosa, S. aureus 

  

Contact lenses Candida spp., E. coli, Fusarium spp. P. aeruginosa, 

Proteus spp., S. aureus, S. epidermidis, Serratia spp.  

  

Intrauterine devices C. albicans, Corynebacterium spp., enterococci, Group 

B Streptococci, Micrococcus spp., S. aureus, S. 

epidermidis  

  

Urinary catheters E. aerogenes, E. coli, E. faecalis, K. pneumonia, P. 

aeruginosa, P. mirabilis, P. vulgaris, S. epidermidis  
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1. 2. Biofilm formation and structure 

In any natural environment, it is less common that a single species biofilm will form. A 

biofilm is more likely to consist of a range of species, thereby making natural biofilms a 

unique and complex environment (Sutherland, 2001). 

 

 

1. 2. 1.  Stages of biofilm formation 

A biofilm is in a constant state of change and adaptation and biofilm formation is a 

complex multi-step process that occurs as a combination of two separate factors: genetic 

and physico-chemical (Wimpenny et al., 2000). Although the intricacies of biofilm 

formation may differ from species to species and strain to strain, and may vary 

depending on the environment in which the biofilm is formed, the fundamental stages of 

biofilm formation are, on the whole, universal. Figure 1.1 shows the stages of biofilm 

formation under flow conditions. 

 

 

1. 2. 1. 1. Stage 1a: Surface conditioning 

In order for bacteria to attach to a surface, a conditioning layer is required prior to the 

initial attachment stage (Busscher et al., 2000). This is the first true stage of biofilm 

formation. The conditioning layer in a urinary catheter is formed of organic compounds, 

which include proteins, electrolytes, surface active compounds and cholesterol 

(Schneider, 1996). 

 

 

1. 2. 1. 2. Stage 1b: Cell – surface interaction and attachment 

The next stage of biofilm formation is cell – surface interaction; the stage of initial 

attachment, which occurs rapidly (Hussain et al., 1997). The interaction of primary 

colonisers to a surface can occur in two ways: passively, due to Brownian motion, 

gravity, diffusion or the flow of liquid or air, all involving interaction forces (Brown & 

Smith, 2003) or actively, due to positioning mechanisms such as flagella motility and 

surface appendages (de Kievit & Iglewski, 2003). 

 

Attachment involving interaction forces, or electrostatic forces, charge interactions and 

hydrophobicity, result in reversible adherence of bacteria to a surface by a single pole 
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(Brown & Smith, 2003) (Figure 1. 1; stage 1). The duration of this type of attachment 

depends greatly on the strength of the force. Irreversible attachment is a much more 

stable state which occurs when the long axis of the bacterial cell body is positioned 

parallel to the surface, and adherence proteins and extracellular proteins are expressed 

or secreted to cement the bacteria to the surface (Brown & Smith, 2003; Toutain et al., 

2004) (Figure 1. 1;  stage 1 and stage 2). 

 

The degree to which uropathogenic organisms cause infection depends largely on their 

virulence factors. The capsule, siderophores, lipopolysaccharide, cytotoxic necrotising 

factor, proteases and surface adhesins such as the flagella, curli and pili are all important 

virulence factors, some of which play a vital role in biofilm formation (Hatt & Rather, 

2008; Johnson, 1991; Lejeune, 2003). 

 

Flagella motility enables 3 forms of movement: gliding, darting and twitching, all of 

which are important mechanisms for the positioning of microorganisms. The flagella 

motility of Pseudomonas aeruginosa bring the organism in close contact with the 

surface, and their type IV pili enable attachment to the surface due to twitching motility, 

whereby cells are propelled across a surface, increasing their opportunity for attachment 

(de Kievit & Iglewski, 2003; O'Toole & Kolter, 1998). Twitching motility is also a 

feature of Escherichia coli (Brown & Smith, 2003) which enable them to attach to 

surfaces with their fimbriae (Stoodley et al., 2000). 

 

All surface adhesins are important virulence factors of E. coli (Hatt & Rather, 2008; 

Johnson, 1991). Although the surface components expressed on laboratory strains of E. 

coli can differ to clinical pathogenic strains of E. coli and possibly differ even more on 

commensal strains (Reisner et al., 2006), the one adhesin that is common to all strains 

of E. coli are the type 1 fimbriae and these are significant in attachment to the surface 

for biofilm formation (Johnson et al., 2006; Van & Michiels, 2005). In fact, the type 1 

fimbriae are conserved among most species of the Enterobacteriaceae, including 

Klebsiella pneumoniae which requires the type 1 fimbriae for attachment and 

colonisation of the cells in the bladder (Kil et al., 1997). 
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1. 2. 1. 3. Stage 2: Cell accumulation and microcolony formation 

The second stage is cell accumulation which involves cell-cell co-adhesion (Figure 1. 1; 

stage 2). A multi-layer of bacterial cells form microcolonies as mid-late colonisers 

adhere to primary colonisers. This occurs over a period of a few hours (Busscher et al., 

2000). 

 

 

1. 2. 1. 4. Stage 3: Extracellular polymeric substance production 

After initial attachment and adhesion, the cells rapidly develop into multicellular, 

multilayered colonies which embed themselves into the extracellular matrix that they 

secrete (Sutherland, 2001) (Figure 1. 1; stage 3). This matrix is an extracelluar 

polymeric substance (EPS), which consists of polysaccharides, proteins, nucleic acids, 

lipids, multivalent cations and inorganic particles (Mayer et al., 1999). The EPS is 

essential to the structure and function of a biofilm, so much so that the EPS forms 

approximately 50-90% of the total biofilm mass (Donlan, 2002). The EPS matrix allows 

for further cell - cell interactions (Toutain et al., 2004) providing protection for the 

bacteria, as well as cementing them to the surface they are attached to, and 

concentrating nutrients and communication molecules (Davies, 2000). In Gram-negative 

bacteria, the EPS is anionic due to negatively charged compounds present such as 

uronic acids and pyruvate. Divalent cations within the biofilm, such as magnesium and 

calcium, are therefore able to enhance the binding force of the biofilm rendering it more 

stable (Vu et al., 2009). 

 

One of the most important components of the EPS is extracellular DNA (eDNA) 

(Flemming et al., 2007; Whitchurch et al., 2002). eDNA is thought to come from lysed 

cells, however, instead of being carriers of genetic information as is the known function 

of genomic DNA, eDNA forms part of the structure of a biofilm (Bockelmann et al., 

2006). In one study, eDNA is a prerequisite for P. aeruginosa alginate production, 

without which, this species is not able to establish a biofilm (Whitchurch et al., 2002), 

highlighting that eDNA is an important structural component of the EPS. 

 

Different species within a biofilm will produce differing amounts of EPS. Furthermore, 

it may be that bacteria of the same species in different environments produce different 

amounts of EPS depending on the stress conditions encountered. The level of EPS 

production is different depending on the physiological state of the biofilm and the 
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availability and balance of carbon and other limiting nutrients - the greater the amount 

of carbon, the greater the EPS synthesis (Sutherland, 2001). Taking all this into 

consideration, the bacterial biofilm when viewed at any one time, under any set of 

conditions or isolated from any environment, will differ considerably and will certainly 

not be uniform (Mayer et al., 1999; Sutherland, 2001). 

 

As well as varying degrees of EPS synthesis, different species and strains of bacteria 

may produce different types of polysaccharides which form part of the EPS. For 

example, much study has been done on the properties, structure and function of P. 

aeruginosa, which in some environments over-produces a very mucoid 

exopolysaccharide called alginate. The degree to which alginate is expressed varies and 

is often not present in biofilms formed in vitro, however, wherever alginate is produced 

by P. aeruginosa, the thickness of the biofilm is enhanced, and the resistance of the 

bacterial cells to host factors and antibiotics increases (Jefferson & Pier, 2003). 

 

 

1. 2. 1. 5. Stage 4: Biofilm maturation 

In the fourth stage of biofilm formation, the biofilm grows and matures (Figure 1. 1, 

stage 4). It forms a complex architecture of channels and pores where the bacteria can 

move within the EPS (of which more is produced). The biofilm at its more mature stage 

of life consists of voids, whereby nutrients can freely move into the matrix and waste 

products are removed (Costerton et al., 1994). In P. aeruginosa biofilms, for example, 

at around 6 days of biofilm growth, a thick mushroom-like structure develops. This 

distinct structure contains important water filled channels that enable the transport of 

nutrients and oxygen into the biofilm matrix, and the flow of waste products out (de 

Kievit & Iglewski, 2003; Jefferson & Pier, 2003). 

 

 

1. 2. 1. 6. Stage 5: Detachment 

Detachment of portions of the biofilm (Figure 1. 1; stage 5) occurs when cells separate 

due to physical mechanisms such as shear forces, which can cause sloughing and 

erosion, or direct contact with the biofilm resulting in abrasion. Chemical factors may 

stimulate detachment, for example substrate changes, nutrient changes and changes in 

the EPS. It is also suggested that some strains detach due to biological factors. 

Examples of programmed cell release have been described in P. aeruginosa (de Kievit 
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& Iglewski, 2003), where quorum sensing molecules which are involved in cell-cell 

communication, can build up to activate cell-density-dependent genes which are 

expressed to synthesise proteins that encourage detachment. The release of enzymes and 

compounds that enhance detachment by inducing the dispersement of cells and the 

degradation of the EPS can also result in detachment (Davies, 2000; Moore et al., 

2000). Detachment is integral to biofilm life as detached cells can reattach to the surface 

downstream of the parent biofilm, and form a new biofilm (Figure 1. 1; stage 5). 

 

 

 
 

 

 

Figure 1. 1. The stages of biofilm formation under flow conditions.  
1. Stage 1, cell-surface interaction, initial reversible attachment and irreversible 
attachment; 2. stage 2, cell accumulation and formation of microcolonies; 3. stage 3, 
secretion of extracellular matrix; 4. stage 4, biofilm maturation; 5. stage 5, detachment 
and dispersion (Monroe, 2007). P. aeruginosa microscope images. a-c. DAPI stained 
cells; d. chromosomal green fluorescent stained cells; e. LIVE/DEAD BacLight Kit 
(Boles et al., 2005; Bordi & de Bentzmann, 2011). 
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1. 3. Quorum sensing and microbial biofilms 

Cell-cell signalling, or quorum sensing, is the intercellular mechanism of 

communication that communities of bacterial cells utilise to behave in a collective 

manner for advantageous gains. There is a great deal of evidence to show that quorum 

sensing has a significant role in biofilm formation, including biofilm maturation, 

immune evasion, antibiotic tolerance and virulence factor production (Brown & Smith, 

2003; Williams & Camara, 2009).  

 

The quorum sensing system has two components: a transcriptional activator and an 

autoinducer, which is a signalling molecule that acts to up- or down-regulate gene 

expression upon the basis of cell density, so that each bacterial cell can alter the 

expression of certain genes in accordance with the development of the biofilm (Brown 

& Smith, 2003; Jefferson & Pier, 2003). Cell-cell signalling plays an extremely vital 

role in the physiological state of cells during biofilm formation (Prigent-Combaret et 

al., 1999). Signal diffusion within the biofilm is dependent on the permeability of the 

biofilm matrix and the degree of hydrophobicity within the matrix. The understanding is 

that a dense biofilm matrix would concentrate the signalling molecule and a hydrophilic 

signalling molecule would diffuse away from a highly hydrophobic matrix (Brown & 

Smith, 2003). 

 

Gram-negative bacteria produce N-acyl homoserine lactones (AHLs) which are signal 

molecules produced by the LuxI family of autoinducers (Williams, 2007). The LuxR 

family are response regulators. When AHL is bound, the configuration of LuxR is 

altered, which triggers the activation of transcription (Rasmussen et al., 2005). P. 

aeruginosa has LuxI and LuxR homologues called Las (LasI-LasR) and Rhl (RhlI-

RhlR) that control virulence factors such as proteases, pyocyanin, elastase and 

surfactants such as rhamnolipids (Pesci et al., 1997; Van Gennip et al., 2009). In order 

to produce diverse virulence factors, in addition to the AHL pathway, P. aeruginosa has 

a second pathway called 4-quinolones (4QS), one of the most important of which is the 

Pseudomonas quinolone signal (PQS) (Lesic et al., 2007). 

 

There is also another autoinducer called autoinducer-2 (AI-2), which mediates quorum 

sensing in both Gram-positive and Gram-negative bacteria, and as such, in most cases, 

is referred to as the ‘universal autoinducer’ (Schauder et al., 2001). As this autoinducer 
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is present in a broad spectrum of bacterial species, it is implicated in interspecies 

communication. AI-2 is a metabolic product of 4,5-dihydroxy-2,3-pentanedione (DPD) 

(Tavender et al., 2008), as outlined in the pathway: 

 

 
 

S-adenosylmethione (SAM) is converted to S-adenosylhomocysteine (SAH). The 

enzyme Pfs catalyses SAH to S-ribosylhomocysteine. The luxS gene encodes LuxS 

which acts on DPD to produce AI-2 and homocysteine (Brito et al., 2013). 

 

The LuxS protein is responsible for the synthesis of AI-2, which accumulates 

extracellularly and then sensed and internalised by the lsr operon in the bacterial cell. 

The regulatory network for the uptake of AI-2 in E. coli is the LsrABCD transporter 

complex (Li et al., 2007). The lsrB gene encodes the periplasmic AI-2 binding protein 

LsrB, lsrC and lsrD encode the channel proteins LsrC and LsrD, lsrA encodes the 

ATPase protein, LsrA, which provides the energy for the internalisation of AI-2 (Xavier 

& Bassler, 2005). LsrK phosphorylates AI-2 and the phosphorylated AI-2 in turn 

represses LsrR expression, thereby inducing the transcription of the lsr operon (Brito et 

al., 2013). The lsr operon and its role in AI-2 transport are shown in Figure 1. 2. 

 

In addition to biofilm formation, there are other advantages for bacterial cells that utilise 

the AI-2 system of quorum sensing. These include enabling them to migrate to a more 

nutrient rich environment, encouraging sporulation, plus all of the benefits that bacterial 

cells enjoy within the shelter and protection of the EPS matrix, as described earlier 

(Section 1. 2. 1. 4), which are only to be had in a biofilm community and not when cells 

are in the planktonic state (de Kievit & Iglewski, 2003).  
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Figure 1. 2. Diagram demonstrating the function of the lsr operon in the transport of 
autoinducer-2 (AI-2) (pentagons). AI-2 is synthesised intracellularly by LuxS and 
accumulates extracellularly. LsrB binds AI-2 in the periplasm and internalised by 
LsrBCDA. LsrK phosphorylates AI-2 which induces the expression of the lsr operon by 
repressing LsrR, the repressor of the lsr operon (adapted from (Xavier & Bassler, 2005). 
  

 

1. 4. Epidemiology of catheter-associated urinary tract infections 

Catheters are used in a variety of clinical situations for administering a range of 

therapeutic treatments and for fluid exchange from the body (Revell, 2003). The 

different catheters used are displayed in Table 1. 2. 
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Table 1. 2. Catheters and comments on their uses. 
  

Catheter Type Comments 

  

Coude tip (Foley) Most commonly used urinary catheter1. Can be used 

transiently or long-term. Implicated in 80% of urinary 

tract infections2. 

  

Tunnelled CVC (PICC) Long-term use for introduction of chemotherapeutic 

agents and for haemodialysis patients3. Surgically 

inserted3.  

  

Non-tunnelled CVC  

(PICC, SICC, JICC) 

Most commonly used CVC, therefore it accounts for 

90% of catheter related septicaemia4. Surgically 

inserted into the chest or neck to administer blood, 

nutrients, medication or fluids directly into the 

subclavian artery. 

  

Peripheral catheter (PICC) Catheter inserted into the vein in the arm. Short-term 

use for the administration of intravenous antibiotics 

and chemotherapy. Rarely associated with bloodstream 

infection4. 
 

1(Jacobsen et al., 2008); 2(Kunin, 2009); (Meares, 1991) 3(Allon, 2003); 4(Mermel et al., 
2001). Note: CVC, central venous catheter; PICC, peripherally inserted central catheter; 
SICC, subclavian inserted central catheter; JICC, jugular inserted central catheter. 
 

 

1 4. 1. Urethral catheters 

In clinical practice, 15-25% of patients have a urethral catheter during their hospital stay 

(Hooton et al., 2010); therefore this catheter is of particular interest to this study. There 

are a number of indwelling urinary catheters and the choice of catheter and duration of 

catheterisation depends on the patient and the purpose. The Foley catheter is an 

indwelling, self-retaining, closed drainage urethral catheter which was invented by 

Fredrick E. B. Foley in the 1930s (Lawrence & Turner, 2005). Foley designed this 
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catheter with a balloon tip that is inflated in the bladder to hold the catheter in place 

(Figure 1. 3) (Jacobsen et al., 2008). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

The Foley catheter is the most common catheter used for long term hospitalised patients 

and the elderly in long-term community health care with bladder dysfunctions and 

incontinence (Getliffe & Newton, 2006; Ramakrishnan & Mold, 2005).  

 

The formation of biofilms on urethral catheters and the subsequent clinical presentation 

depend on five main factors: the duration of catheterisation; the host immune status and 

their susceptibility to infection; the type of catheter and therefore the surface of the 

catheter; the quality of catheter care and the strains of bacteria involved (Wong and 

Hooton, 2005). The lifecycle of a catheter is presented in Figure 1. 4 and shows the 

possible stages of a catheter’s life which can be targeted to prevent or reduce catheter 

infection (Meddings & Saint, 2011).  

 

In general, if catheterisation is minimised (Figure 1. 4, stage 1) and sterile techniques 

are used at stages 1, 3 and 4 of Figure 1. 4, the incidence of a catheter associated urinary 

tract infection (CAUTI) is reduced (Allepuz-Palau et al., 2004; Cornia et al., 2003; 

Thornton & Andriole, 1970; Topal et al., 2005).  

 

 
 

Figure 1. 3. Foley catheter insertion in females and males. 
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Figure 1. 4. The lifecycle of a catheter. Stages of a catheter’s lifetime at which 
interventions for reduction or prevention of infection can be applied (Meddings & Saint, 
2011). 
 
 

The over-use and unnecessary use of catheterisation is of great concern due to the risk 

of CAUTI, so much so, that research and interventions to reduce the use of urinary 

catheters is very much current, and the recommendation is always to re-evaluate the 

need for catheterisation in the first instance (Andreessen et al., 2012; Fakih et al., 2010; 

Hooton et al., 2010; Knoll et al., 2011; van den Broek et al., 2011). The busy nature of 

the clinical situation results in clinical staff prolonging the duration of catheterisation 

beyond that which is recommended and necessary (Meddings & Saint, 2011). The risk 

of developing a CAUTI increases by 5-10% for each day a catheter is inserted 

(Costerton, 2007b; Hatt & Rather, 2008). 80% of UTIs are caused by urinary catheters 

(Kunin, 2009; Meares, 1991) and as such are associated with a higher incidence of 

infection compared to other catheters (Ramakrishnan and Mold, 2005) contributing to 

an increase in hospital costs (Saint, 2000; Tambyah et al., 2002). The estimated cost of 

urinary catheterisation and catheter related complication in the U.K. is approximately 

£40 million each year (Rawlinson & Clark, 2004). Although over-use of catheterisation 

is a great problem in the nosocomial environment (Fakih et al., 2010), there is still not a 

suitable alternative in the cases where catheterisation is the correct option for the patient 

(Meddings & Saint, 2011). 
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1. 4. 2. Uses and duration of catheterisation 

Stickler suggested that short term catheterisation or intermittent catheterisation with a 

clean intermittent catheter (CIC) (up to 7 days) does not pose a great risk, with 10-50% 

of catheterised patients developing infections (Stickler, 1996). Short-term catheters and 

CIC are used during urological surgery, relief of urinary tract obstruction, for women 

whilst they are giving birth, and to accurately measure urine output in critically ill 

patients. It is long-term catheters that pose a greater risk of infection. Long-term 

catheterisation (7 days or more) is commonly used for patients who have severe 

incontinence when other treatment types have failed; with patients who have a spinal 

cord injury who therefore have neurogenic bladder with urinary retention; incontinent 

patients with intractable skin breakdown and patients with a urinary obstruction which 

is untreatable or cannot be rectified immediately with surgery. It is suggested that all 

patients that have been catheterised for greater than 28 days will experience a CAUTI at 

some point during this period of catheterisation (Cravens & Zweig, 2000; Stickler, 

1996). 

 

 

1. 5. Gram-negative organisms involved in UTI infection 

Not only is the most common nosocomial infection the urinary tract infection (UTI) but 

a catheter associated UTI (CAUTI) is one of the most prevalent bacterial infections of 

hospitals (Hatt & Rather, 2008; Jacobsen et al., 2008; Johnson et al., 2006; Trautner & 

Darouiche, 2004). 

 

The most common Gram-negative bacteria implicated in UTIs are E. coli, P. 

aeruginosa, K. pneumoniae, Enterobacter and Proteus mirabilis. UTIs are also caused 

by Candida albicans, coagulase-negative staphylococci and enterococci (Donlan, 

2001a; Emori & Gaynes, 1993). E. coli cause 70-95% of all UTI infections (Anderson 

et al., 2003). 

 

E. coli are facultatively anaerobic, Gram-negative bacilli that are a part of the 

Enterobacteriaceae family (Barrow & Feltham, 2003). These bacteria are amongst the 

first genera of bacteria to colonise the gastrointestinal tract of humans, hours after birth 

(Van & Michiels, 2005), and are the predominant facultative organism in the colon that 

form part of the commensal enteric microflora (Hudault et al., 2001; Yan & Polk, 

2004). As well as the commensal strains, there are five pathogenic groups of E. coli that 
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are found in the enteric tract of the human host, and can cause debilitating and life-

threatening diarrhoea. These are classified according to the serotype, namely: 

enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli, enterotoxic E. coli, 

enteroinvasive E. coli and enteroaggregative E. coli (Trabulsi et al., 1996). As well as 

enteropathogenic E. coli, there are extraintestinal E. coli, the main sub-group of which 

are uropathogenic E. coli (UPEC) (Kuhnert et al., 2000). A number of these strains form 

biofilms that cause chronic UTIs and CAUTIs (Wiles et al., 2008). 

 

P. aeruginosa in most conditions grows as an aerobic, motile, Gram-negative bacterium 

(Barrow & Feltham, 2003). It is a saprophyte that is ubiquitous in soil and water 

environments but is an opportunistic pathogen that is commonly found to colonise the 

anaerobic mucous membrane of the cystic fibrosis lungs, as well as the moist 

environment of the urinary tract and the indwelling catheter (Pitt, 2007). 

 

K. pneumoniae is a capsulate, non-motile, Gram-negative bacilli, commonly isolated 

from human faeces and water. In humans it colonises mucosal surfaces and is found as a 

saprophyte of the nasopharynx. In hospitals, the prevalence of K. pneumoniae is much 

more apparent, with carrier rates increasing with increasing length of stay (Podschun & 

Ullmann, 1998). It is a common cause of urinary tract infection, especially in patients 

with a spinal cord injury who are catheterised long term (Greenwood, 2007b; Kil et al., 

1997). 

 

Proteus mirabilis is another Gram-negative bacillus implicated in catheter biofilm 

formation and is a highly motile organism, enabling Proteus to characteristically swarm 

over the surface of solid media when grown in the laboratory. Proteus is often isolated 

from hospitalised patients who have undergone surgery or catheterisation, and 

septicaemia due to Proteus is a complication of urinary tract infection. P. mirabilis and 

K. pneumoniae are both urease-producers and this creates alkaline conditions in the 

urine which can lead to the formation of calculi in the urinary tract (Greenwood, 2007a). 

The ability to produce urease enables 98% of P. mirabilis, 63.6% of K. pneumoniae and 

32.6% of P. aeruginosa isolates to form unique crystalline biofilms, which in some 

cases can encrust the surface of long-term indwelling catheters, blocking the catheter so 

that it is no longer fit for purpose (Gorman & Jones, 2003; Hatt & Rather, 2008). 
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1. 6. The pathogenesis of catheter-associated urinary tract infections 

There is evidence to demonstrate that the UPEC that colonise a catheter, are the same as 

the strains that originate in the intestine of the host and are found in the faecal flora, and 

therefore must originate from the same source (Agarwal et al., 2012). The most 

common routes of urinary tract infection mainly involve faecal flora ascending to the 

bladder and kidneys via the urethra. The bacteria that colonise the distal urethra attach 

to the external surface of the catheter or the lumen of the catheter, as it is inserted into 

the bladder (Hooton, 2000; Jacobsen et al., 2008). 

 

Often, patients are catheterised out of convenience and alternatives to catheterisation are 

not sufficiently explored. Once a patient is catheterised, healthcare professionals may 

forget to monitor the patient regularly, which can lead to catheters remaining inserted 

for longer than is recommended (Saint et al., 2000). The key to minimising a CAUTI is 

to first avoid the unnecessary use of catheterisation. If a patience meets the requirements 

for catheterisation, then the second, and most important consideration to avoid infection 

is to ensure that guidelines for aseptic insertion of the catheter is followed in order to 

maintain a sterile closed system. Finally, subsequent care and monitoring of the catheter 

should be maintained (Cohen & Dawe, 2009). In general, it has long been known that 

the lumen of a catheter is colonised when a sterile closed drainage system is not 

maintained (Geng et al., 2012; Kunin & Mccormac, 1966). 

 

Another common route of infection is incomplete voiding of the bladder, whereby 

bacteria from the urinary meatus migrate to the bladder and proliferate using the urine 

as a nutrient source. They can then colonise the catheter (Hashmi et al., 2003).  

 

 

1. 6. 1. Eradication of infection  

Common microbiological practice has evolved to suggest that the most effective way to 

eradicate infection is by the administration of systemic antibiotics, and these remain as 

the main forms of therapy for the treatment and prevention of infections. The choice of 

an antimicrobial for systemic infections is determined by the minimum inhibitory 

concentration (MIC) for each antibiotic against each specific bacterial strain. However, 

standard susceptibility tests are against planktonic bacterial cells and do not necessarily 
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correlate to the susceptibility to antibiotics by the same strains of bacteria when they are 

in a biofilm (Cerca et al., 2005). 

 

In most cases, UTIs in healthy patients are asymptomatic and do not require treatment 

(Tambyah, 2004), however, complications with UTIs, CAUTIs and kidney infections 

include prostatitis, cystitis, pyelonephritis haematuria and sepsis. Sepsis can cause death 

but the incidence is less than 1% in catheterised patients (Wang, 2002). There are also 

problems and complications associated with the increase in multi-drug resistant 

uropathogenic organisms, not to mention the increase in costs to hospitals and health 

care providers in managing UTIs and CAUTIs (Johnson et al., 2006). 

 

E. coli infections are routinely treated with ampicillin, co-amoxiclav, 

trimethoprim/sulfamethoxazole, nalidixic acid, tetracycline and fluoroquinolones 

(Kariuki et al., 2007). Of these, E. coli has developed the greatest resistance to 

trimethoprim/sulfamethoxazole, ampicillin and tetracycline (Dromigny et al., 2005). 

 

P. aeruginosa infections are often treated with aminoglycosides, ciprofloxacin, 

piperacillin or ceftazidime (Zelenitsky et al., 2003), however, multi-drug resistant 

strains can be resistant to a whole host of antibiotics including piperacillin, 

cefoperazone, ceftazidime, aztreonam, imipenem, cefepime, cefpirome, ofloxacin, 

ciprofloxacin, minocycline, and aminoglycosides (Hsueh et al., 1998). 

 

Klebsiella spp. are notoriously naturally multi-drug resistant and have the ability to 

acquire resistance readily (Anderl et al., 2000). They produce β-lactamases and 

carbapenemases, as such, Klebsiella spp. which have these resistance conferring 

enzymes are unable to be treated with ampicillin and other broad-spectrum penicillins, 

cephalosporins, monobactams, carbapenems, fluoroquinolones and aminoglycosides 

(Munoz-Price et al., 2010). Commonly, K. pneumoniae infection is treated with β-

lactamase stable cephalosporins, fluoroquinolones, aminoglycosides, co-amoxiclav, 

trimethoprim and nitrofurantoin (Pallett & Hand, 2010). Polymyxins remain the most 

effective antibiotic against even the most resistant Klebsiella spp (Zavascki et al., 

2007).  Resistance and sensitivity profiles of Klebsiella to drugs used are monitored 

carefully (Anderl et al., 2000; Munoz-Price et al., 2010). 
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Most strains of P. mirabilis are not β-lactamase producers and are therefore, on the 

whole, sensitive to benzylpenicillin, ampicillin and other β-lactam antibiotics, as well as 

aminoglycosides and cephalosporins, colistin, ciprofloxacin, rifampicin, naldixic acid 

and nitrofurantoin (O'Hara et al., 2000). There is resistance mounting to ampicillin, 

tetracycline, erythromycin, chloramphenicol and generally to aminoglycosides and 

cephalosporins such as cefotaxime, which are now considerably less effective than they 

once were against P. mirabilis (Jombo et al., 2012). 

 

In general, there is growing resistance of uropathogenic organisms to trimethoprim and 

sulfamethizole, two of the most frequently prescribed antibiotics for urinary tract 

infection (Bjerrum et al., 1999). The prevention and treatment of any systemic infection 

or UTI is imperative but even with increasing resistance of planktonic bacterial cells, 

treatment options are still available. Biofilms, as opposed to planktonic cells that cause 

CAUTIs, present clinicians and microbiologists with an entirely different set of 

challenges. These will be discussed further in the following sections. 

 

 

1. 7. Mechanisms of biofilm-associated antimicrobial resistance 

Biofilms are intrinsically more resistant to antimicrobials than their planktonic 

counterparts (Zhang et al., 2011). An established biofilm can cause systemic infection 

in the host when the lumen of the indwelling catheter is subjected to the flow of urine at 

dynamic rates, which increases the opportunity for the upper layers of the biofilm to be 

detached from the extracellular polysaccharide and sent into the urinary tract and 

potentially into the circulation, often in large concentrations (Ryder, 2005). Although 

systemic antimicrobials can be administered to eradicate the infection in the host, the 

biofilm on a catheter surface is significantly more tenacious so until it is removed, will 

continue to grow, slough, and re-offend, causing another systemic infection. There are 

some well researched mechanisms of antimicrobial resistance that are mainly attributed 

to phenotypic factors of biofilms, thereby conferring innate antimicrobial resistance. 

These are the potential lack of antibiotic penetration, antimicrobial modification by 

enzymes, efflux mechanisms and repair systems, slow growth or no growth of the cells 

within a biofilm, the varied microenvironment in terms of oxygen concentration and 

other chemical gradients, all contribute to the resistance of cells to antibiotics and the 

host immune system (Brown & Smith, 2003). 
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1. 7. 1. The exopolymeric matrix 

The EPS, the most notable feature of the biofilm, as well as its role in providing 

structure to the biofilm, also confers protection to the bacterial cells within the biofilm. 

The EPS has the ability to act as a barrier to antimicrobials and host immune cells 

(Bordi & de Bentzmann, 2011). Klebsiella spp. are well known multi-drug resistant 

organisms and also have many mechanisms that protect them from the action of drugs 

and the host immune response, such as the complex polysaccharide capsule and long 

chain lipopolysaccharide that protects the bacteria from serum complement activity 

(Merino et al., 1992). 

 

However, there is evidence to suggest that some antimicrobials do penetrate the biofilm, 

for instance, fluoroquinolones readily diffuse through the K. pneumoniae and P. 

aeruginosa biofilm (Anderl et al., 2000; Vrany et al., 1997) and tetracycline can rapidly 

diffuse in the E. coli biofilm (Stone et al., 2002).  

 

For the most part, the EPS delays penetration of antimicrobials (Mah & O'Toole, 2001). 

It may also be that the targets for conventional antibiotics against planktonic cells are 

not found to be the same when these cells are in a biofilm, which is a new and 

interesting concept for exploration (Costerton, 2007a; Mah & O'Toole, 2001). Due to 

evidence suggesting that the EPS is not completely impenetrable to antimicrobials, there 

must be other mechanisms, which add to the antimicrobial resistance of biofilms. 

 

 

1. 7. 2. Persister cells 

Persister cells are one of the most troublesome sub-population of cells in a biofilm. This 

is because these cells, which are in the depths of a biofilm, are often slow growing as a 

stress response survival mechanism which is induced by nutrient limitation and it is 

known that slow growing cells have antimicrobial tolerance (Costerton et al., 1999). 

Persister cells in general are in a low metabolic physiological state, which also reduces 

the expression of genes encoding metabolic proteins, but enhances the expression of 

toxin genes that have a role in ensuring that metabolic processes are repressed (Shah et 

al., 2006).  There are also genes that are specifically expressed in persister cells, for 

example the hip locus in P. aeruginosa and E. coli, and the sulA and relA gene in E. coli 

that repress cell division and DNA synthesis (Black et al., 1991; Piddock & Walters, 

1992). Persister cells greatly contribute to the overall antimicrobial resistance of 



Chapter 1. Introduction 

56 

 

biofilms (Dawson et al., 2011; Keren et al., 2004) and are the main cause of re-infection 

(Lewis, 2001). 

 

 

1. 7. 3. Horizontal gene transfer 

There are multi-drug resistant bacteria, such as E. coli, that confer their resistance to 

mobile genetic elements such as plasmids, gene cassettes and transposons (Saenz et al., 

2004). Due to the close proximity of cells within a biofilm, and the function of the EPS 

to concentrate not only communication molecules and nutrients, but also eDNA, there is 

active gene transfer between cells that encourage cross-resistance of cells within a 

biofilm (Madsen et al., 2012). Conjugation and transformation both occur more often in 

a biofilm community rather than when cells are in the planktonic state (Sorensen et al., 

2005).  

 

 

1. 7. 4. Evasion of host defences 

The biofilm mode of growth offers a range of mechanisms to evade the host immune 

system. Phagocytes have reduced activity in ingesting cells that are in clumps of biofilm 

(Leid et al., 2002). Leukocytes are not able to penetrate the biofilm matrix, as is the case 

for IgG, depending on the amount of EPS (Zhu et al., 2001). Although biofilms do 

trigger cytokines and the release of macrophages, these probably do more harm to the 

host than the biofilm. Oxidative burst releases oxygen species, which are also not 

effective, as they are deactivated in the outer layers of the biofilm faster than they can 

diffuse into the depths of the biofilm. So overall, the host defences are disarmed in the 

face of a mature biofilm (Hassett et al., 1999). 

 

 

1. 8. Novel approaches to inhibit biofilm formation 

Biofilm formation on urinary catheters has long been a recognised problem since the 

first latex Foley catheter resulted in a catheter-associated urinary tract infection. 

CAUTIs are implicated in the highest rate of nosocomial infection and are a huge 

expense to health care institutions (Tambyah et al., 2002). This is because 

uropathogenic biofilms that cause CAUTIs are notoriously stubborn against our 

attempts to eradicate them. Systemically administered antibiotics alone are not ideal for 
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the eradication of a catheter biofilm, and once a biofilm has formed on a catheter, the 

catheter will most certainly have to be removed (Stamm & Hooton, 1993). This is 

discomforting for the patient and is also expensive for the health service (Polonio et al., 

2001; Saint, 2000). The hope therefore lies with preventing a biofilm from forming in 

the first place (Donlan, 2001b). 

 

The relentless rise in the incidence of antibiotic resistance in bacterial pathogens, as 

well as the relatively low rate of discovery and development of new, clinically useful 

antibiotics, has refocused attention on the potential of new antimicrobial and anti-

biofilm therapies. Efforts have been made to intervene during the key stages of biofilm 

development and to inhibit genes and proteins that are unique and specific to the biofilm 

phenotype.  

 

 

 
 
Figure 1. 5. Intervening at the stages of biofilm formation. Stages of biofilm formation 
at which novel approaches to biofilm inhibition can be applied (Bordi & de Bentzmann, 
2011). 
 

 

Although Figure 1. 5 describes 6 key stages at which to intervene and inhibit the 

progression of biofilm formation, steps 1, 2 and 5 concentrate on preventing initial 

attachment and the early stages of biofilm formation. It is therefore evident that 

preventing these early stages is far more attractive and within our reach to achieve 

success. The later stages of biofilm formation become increasingly complicated, 

especially as we are still learning about the intricate behaviours of bacteria within a 
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mature biofilm. The following sections will illustrate the nature of some of the 

interventions used to inhibit the uropathogenic bacteria E. coli, P. aeruginosa and K. 

pneumoniae from forming a biofilm, as these bacteria are of interest to this study. 

 

 

1. 8. 1. Limiting initial adhesion and interaction of bacterial cells 

Stage 2 of Figure 1. 5 suggests that as adhesion of bacterial cells to a surface is one of 

the most crucial stages of biofilm formation, this is a stage for intervention by novel 

anti-adhesive measures. Lactobacilli, a commensal organism of the vagina, produce 

antimicrobial biosurfactants, which have been evaluated for their use as an antimicrobial 

against uropathogenic bacteria (Velraeds et al., 1996; Velraeds et al., 1997). However, 

in general, lactobacilli are inhibitory to uropathogenic bacteria in an additional way; 

they are able to adhere to human uroepithelial cells both as whole cells and non-viable 

cell wall fragments that results in the competitive exclusion of uropathogenic bacteria. 

There may be some use in harnessing these natural mechanisms that our commensal 

bacteria utilise against pathogenic bacteria, as an antimicrobial therapy (Velraeds et al., 

1996).  

 

Before a bacterium is able to attach to a surface, flagella synthesis and pili are important 

in getting the bacterial cell as close to a surface as possible without the bacterial cell 

itself being under the stress of electrostatic repulsion forces of the surface (Jenkins et 

al., 2004). Inhibition of flagella synthesis is an attractive option to inhibit bacterial 

attachment. FleQ is thought to be the ‘master switch’ for flagella synthesis of all flagella 

(apart from FliA), therefore inhibition of the fleQ gene could go a long way in inhibiting 

the complex but tightly regulated synthesis of flagella (Dasgupta et al., 2003; Tart et al., 

2006). FliC is an important gene in the synthesis of flagella. One of the most recent 

attempts to inhibit FliC is by Dong and co-workers, who found that inhibition of FliC in 

P. aeruginosa by salicylic acid has been shown to reduce motility. This may have an 

impact on the ability of this bacteria to form biofilms (Dong et al., 2012). 

 

Mannosides, which target FimH, have been used as a therapeutic agent against UPEC 

organisms. FimH, at the top of type 1 pili bind to mannosylated receptors on 

uroepithelial cells and are consequently able to form intracellular bacterial communities 

within the cells of the bladder. These bacteria are able to evade most exogenous 

bacterial defences. Mannosides have been tested in murine models and have 
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demonstrated an ability to bind to FimH, thereby inhibiting attachment (Kostakioti et 

al., 2012; Wellens et al., 2008). 

 

There are also antimicrobial surfaces that kill bacteria upon contact. These will be 

discussed in Section 1. 8. 4. 1. 

 

 

1. 8. 2. Limiting communication: quorum sensing inhibitors 

Inhibiting quorum sensing (QS) in bacteria appears to be an attractive option in the 

battle to combat antimicrobial resistance in biofilms (Kohler et al., 2010) (Stage 3 of  

Figure 1. 5). This is because QS is the main system of regulating virulence factors and 

contributes to biofilm maturation (Williams & Camara, 2009).  

 

Inhibiting the various pathways involved in coding for the autoinducers is where most 

research has focussed (Ni et al., 2009). There appear to be four main modes of quorum 

sensing inhibitors: i) analogs of autoinducers that interfere with natural autoinducer 

function; ii) antimicrobials that target quorum sensing, iii) furanone derivatives and iv) 

enzymes which inactivate autoinducers by degradation (Janssens et al., 2008; Nalca et 

al., 2006; Ni et al., 2009).  

 

Analogs of autoinducers include the first set of inhibitors of the PQS pathway in P. 

aeruginosa that is a halogenated anthranilic acid analog. This represses MvfR-

dependant gene expression. MvfR is a key transcriptional regulator that is essential for 

the full pathogenicity of P. aeruginosa (Lesic et al., 2007; Xiao et al., 2006). There are 

also antimicrobials that target quorum sensing such as azithromycin, a macrolide 

antibiotic that is a successful inhibitor of quorum sensing and alginate production in P. 

aeruginosa (Hoffmann et al., 2007; Nalca et al., 2006; Skindersoe et al., 2008), as are 

ciprofloxacin and ceftazidime (Skindersoe et al., 2008). Furanone derivatives are also 

well studied quorum sensing inhibitors. They act by blocking AI-2 signalling and as AI-

2 is known to be active in many species of bacteria, it may be regarded as a broad-

spectrum quorum sensing inhibitor (Ren et al., 2004b). More recently, garlic extracts 

have been tested as quorum sensing inhibitors in the first human randomised control 

clinical trial of a quorum sensing inhibitor of P. aeruginosa in cystic fibrosis suffers 

(Bjarnsholt et al., 2005; Rasmussen et al., 2005; Smyth et al., 2010). This trial did not 

show significant results but did have an effect with the improvement of lung function 
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(Smyth et al., 2010). Bjarnsholt and co-workers have demonstrated that garlic extracts 

decrease quorum sensing making bacteria more sensitive to tobramycin (Bjarnsholt et 

al., 2005). 

 

There are many advantages to targeting QS pathways: first, by inhibiting QS the 

bacteria are still viable, which will enable the host defence system to have time to build 

a robust immune response without the need to use antibiotics. Second, the target is quite 

specific, so the host flora, which is beneficial to the host, is not eliminated and third, as 

the bacteria are not necessarily killed, there is a lower chance of the QS inhibitors 

causing selective pressure and enhancing antimicrobial resistance (Rasmussen et al., 

2005). 

 

There are some disadvantages: the target will unlikely be broad spectrum as there are a 

variety of QS molecules; if a biofilm has formed, then QS may not be active and 

therefore the target is not valid; QS is quite complex and is not just relevant for biofilm 

formation. There may be down-stream consequences to inhibiting the pathways and 

products of QS. The study by Kohler (2010), highlights one important caveat which 

suggests that inhibiting the resistance of bacteria that utilise QS, can encourage the 

prevalence of bacteria that are not reliant on the same form of resistance (Brackman et 

al., 2011; Kohler et al., 2010). In another study it has been suggested that quorum 

sensing inhibitors increase the resistance of bacteria to conventional antibiotics 

(Brackman et al., 2011). 

 

 

1. 8. 3. Reactivating metabolic activity 

Stage 4 of Figure 1. 5 suggests that reactivating the metabolic activity of cells may help 

with eradicating a biofilm. Cells that are in the depths of the biofilm matrix are often in 

an inactive or slow growing state, however, if the top layers of a biofilm are removed by 

shear force, for example, then fresh nutrients can be supplied to the dormant cells. This 

will stimulate their growth in the exponential state, which is where bacteria are most 

metabolically active, making them more sensitive to antimicrobials that target actively 

growing cells. Biofilm disruption may also result in the dilution of cell signals, thereby 

reducing the signal molecules that encourage bacteria to be inactive and therefore less 

susceptible to antimicrobials (Fux et al., 2003). 
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1. 8. 4. Developing anti-adhesive surfaces: urinary catheter surfaces which 

reduce bacterial colonisation 

Strategies to inhibit the structure and function of biofilms often present varied 

challenges due to the complex nature of biofilms and diversity of biofilm phentotypes 

across species. For this reason, efforts to reduce colonisation have been attempted, 

before the structure of a mature biofilm develops and becomes complex. These attempts 

include using materials that reduce bacterial attachment as suggested in Stage 5 of 

Figure 1. 5. Surface topography and surface properties are an important factor in biofilm 

formation. The smoother the surface, the less surface area available for the attachment 

of a bacterial cell, in addition to this, a smooth surface will expose the bacteria to sheer 

forces that can help in removing a biofilm (Donlan, 2002). Surface hydrophobicity or 

hydrophilicity can also be of great importance to how attractive a surface is to a 

bacterial cell for initial attachment (Boks et al., 2008), and research suggests that 

hydrophobic surfaces are more favourable to a bacterial cell for attachment (Absolom, 

1988; Doyle, 2000).  

 

Catheters are made from a large variety of materials. Urinary catheters were originally 

made from natural latex rubber due to its relative low cost and great flexibility. 

However, it also had a high incidence of toxicity, caused increased latex 

hypersensitivity in patients, low biocompatibility, blockage of the catheter lumen due to 

encrustation and a high level of bacterial colonisation (Lawrence & Turner, 2005; 

Ramakrishnan & Mold, 2005). As a result of these problems other catheter materials 

were sought such as silicone, polytetrafluoroethylene (PTFE or Teflon®), 

polyvinylchloride (PVC) and polyurethane. Silicone catheters overcome some of the 

problems associated with encrustation and catheter blocking but the surface still 

encourages bacterial adhesion and biofilm formation (Ryder, 2005). Bacterial adherence 

to silicone is much higher than to polyurethane or Teflon® (Lopezlopez et al., 1991).  

The hydrogel-coated catheter has shown the most promise in reducing biofilm 

formation (Bologna et al., 1999). Hydrogels are polymers that have been used to form 

thin layers on latex and silicone that increase the lubricity and smoothness of a catheter 

surface thereby reducing bacterial adhesion (Jones et al., 2004). Hydrogels have been 

used as ideal candidates for antimicrobial impregnation (Ahearn et al., 2000). 
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1. 8. 4. 1. The use of antimicrobials as catheter coatings 

A relatively recent approach to overcome CAUTI is the development of antimicrobial 

catheter coatings, and with the incorporation of biofilm inhibitors that target genes or 

proteins that are instrumental in biofilm formation, this novel catheter surface could 

prove to be the most advantageous combination in preventing biofilm formation, or at 

least prolonging the life of the catheter (Wood, 2009). There are important criteria for 

an ideal antimicrobial to be incorporated into a biomaterial. It should be broad 

spectrum, its activity should last for the lifetime of the device without reduction by the 

substances flowing over it, it should not select for drug-resistant organisms and it 

should be active against all organisms that it is likely to interact with, and at a 

concentration that is bactericidal, as the application of sub-inhibitory levels of inhibitor 

can induce resistance or select for resistance in the bacteria (Stickler, 2000). Although 

all of these criteria are difficult to meet, there are some valid attempts that have been 

made, which will be discussed below. 

 

 

1. 8. 4. 1. 1. Silver as an antimicrobial coating 

Silver (Ag) and silver containing compounds are long standing antimicrobials (Burrell, 

2003). The use of silver nitrate in wound management was first approved by the United 

States Food and Drug Administration (FDA) in the 1920s. However, during the golden 

age of antibiotic discovery, the use of silver diminished and antibiotic treatment of 

bacterial infections became standard practise (Demling, 2001). Silver once again 

became useful in the management of wounds but this time silver nitrate was combined 

with sulfadiazine, in a commercially available cream marketed as ‘Silvazine’. This had 

a greater spectrum of antimicrobial activity than either alone (Fox, 1968; George et al., 

1997). Although different silver species have differing levels of antimicrobial activity, 

overall, silver is synergistic with existing antibiotics, in that the susceptibility of 

bacterial cells, including those in biofilms, to conventional antibiotics such as 

nitrofurazone, is increased in the presence of silver (Johnson et al., 1999; Kostenko et 

al., 2010; McDonnell & Russell, 1999; Saint et al., 1998). 

 

Silver is now commonly used in a number of commericially available products in the 

cosmetic and domestic setting (Silver et al., 2006). The use of silver in the medical 

setting is also increasing, with large companies such as Johnsan and Johnson, and Smith 

& Nephew, UK, who market wound dressings impregnated with silver, that are 
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commercially available (Atiyeh et al., 2007; Lee et al., 2005; Silver et al., 2006). 

Hydrogel-coated latex catheters impregnated with silver containing compounds on both 

the outer surface and lumen of the catheter has shown some effectiveness, however, 

only in the short-term (Bologna et al., 1999; Verleyen et al., 1999). From studies such 

as these, and the success of silver impregnated wound dressings, there was a lot of 

interest in silver as a urinary catheter coating; however there is conflicting evidence in 

the literature as to the efficacy of silver in the clinical environment. More recent large 

scale clinical trials with catheters coated with hydrogels and/or silver did not show 

significant inhibitory activity compared to non-coated silicone catheters (Johnson et al., 

2006; Srinivasan et al., 2006; Thibon et al., 2000). 

 

Moreover, the main challenge of the urinary catheter is the hugely mixed population of 

resistant microorganisms that form a biofilm and cause infection, including bacteria, 

which display heavy metal resistance (Woods et al., 2009). Silver resistant E. coli 

display active efflux of Ag+ and have also been found to have mutations in the outer 

membrane porins, both important mechanisms conferring silver resistance that are 

thought to be chromosomally encoded (Franke et al., 2001; Li et al., 1997). Silver 

resistant P. aeruginosa has been isolated from burn patients who have been treated with 

silver coated wound dressings (Modak & Fox, 1981). Furthermore, silver is also known 

to be cytotoxic after long-term use (Ahamed et al., 2010; Atiyeh et al., 2007). 

 

 

1. 8. 4. 1. 2. Antibiotics as catheter coatings 

Minocycline and rifampin have been tested alone and in combination as an 

antimicrobial coating of catheters, including urethral catheters, however, the 

combination of the two antibiotics showed good inhibitory activity against Gram-

positive and Gram-negative bacteria, as well as C. albicans for up to two weeks (Hanna 

et al., 2006; Maki & Tambyah, 2001; Raad et al., 1998).  

 

Gentamycin, an aminoglycoside, has been studied as a coating incorporated into 

polyethylene-co-vinylacetate and polyethylene oxide, and when released slowly, 

showed antimicrobial activity for 5-7 days against Gram-positive and Gram-negative 

bacteria (Cho et al., 2003). The same group developed catheters of the same material 

but coated with the flouroquinoline antibiotic norofloxacin. This antibiotic was released 

continuously for up to 10-30 days with antimicrobial activity against E. coli¸ K. 
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pneumoniae, and P. vulgaris (Park et al., 2003). As gentamycin is commonly used to 

treat UTI, Dave and co-workers have recently developed a novel polycaprolactone 

biocatalytic polymer coating impregnated with gentamycin sulphate, which showed 

inhibitory activity against E. coli, P. aeruginosa and S. auerus (Dave et al., 2011). 

 

Nitrofurazone, a broad-spectrum antibiotic against organisms that cause CAUTI, when 

compared to a silver hydrogel coated catheter, showed greater efficacy (Johnson et al., 

1999; Maki & Tambyah, 2001; Regev-Shoshani et al., 2011). Although antibiotics have 

shown short term efficacy against bacteria, there is the risk of bacteria developing 

resistance to the antimicrobials used, especially if these antibiotics are leached from the 

catheter coating at sub-inhibitory concentrations (Tambyah, 2004). 

 

 

1. 8. 4. 1. 3. Nitric oxide as a catheter coating 

There have been many attempts to study nitric oxide (NO) as a coating of medical 

devices (Deupree & Schoenfisch, 2009; Hetrick et al., 2009; Privett et al., 2010). 

Recently, catheters impregnated with gaseous NO were found to not only be 

antimicrobial, but due to its slow release, created a zone of inhibition around the 

catheter thereby killing planktonic as well as biofilm cells (Regev-Shoshani et al., 

2010). Although it is suggested in the literature that bacteria have mechanisms to 

counter the toxicity of NO (Husain et al., 2008), this is thought to deplete after some 

time, making cells more susceptible to NO, especially at high concentrations (Poole, 

2005b). The research by Regav-Shoshani and co-workers showed that a catheter coated 

with NO demonstrated inhibitory activity for up to 14 days (Regev-Shoshani et al., 

2010). Mostly, research has been directed towards the delivery systems to release NO, 

so more work will be required to investigate the safety, efficacy and cost-effectiveness 

of NO in vivo (Schairer et al., 2012). 

 

 

1. 8. 4. 1. 4. Antimicrobial peptides as catheter coatings 

Natural antimicrobial peptides are the focus of many research groups, with thousands of 

peptides having been discovered against all manner of species. In fact, in 2009 it was 

reported by Wang and co-workers that as many as 944 antibacterial peptides have been 

isolated (Wang et al., 2009a), a number which is undoubtedly increasing year by year. 

Natural antimicrobial peptides have some key characteristics in common: i) they are 
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mostly cationic; ii) they are short in length and small in size and molecular weight and 

iii) they have amphipathic properties as part of their structures. These 3 things alone 

enable peptides to interact closely with the anionic bacterial membrane, their main 

target for growth inhibition (van 't Hof et al., 2001). Covalently attaching peptides to 

biomaterials has been the focus of research for some years now. This has been 

attempted on different surfaces, including contact lenses (Haynie et al., 1995; Willcox 

et al., 2008). 

 

Although microbial resistance to peptides is relatively low due to the mode of action of 

antimicrobial peptides, there are some resistance mechanisms that have evolved. Gram-

negative bacteria have modified the lipid A component of their outer membrane that 

reduces the negative charge, thereby reducing the interaction between the anionic 

membrane and the cationic peptides (Nizet, 2006). Another mechanism is to bind and 

inactivate the peptide. Schmidtchen and co-workers found that this has been achieved 

by bacteria, including P. aeruginosa, that secrete proteases. These proteases release 

dermatan sulphate that can subsequently bind to and inactivate the antimicrobial 

peptide, human α-defensin (Schmidtchen et al., 2001). As well as proteolytic 

degradation of the peptides, the other main disadvantage is the potentially high cost as 

well as the potential for humans to develop allergies to the peptides (Bradshaw, 2003). 

 

 

1. 9. Novel antimicrobial compounds used in this study 

In this study, natural polyamines, quaternary ammonium compounds, including 

polyquaternium compounds, and polybiguanides have been evaluated for their efficacy 

against planktonic cells and the early stages of biofilm growth. 

 

 

1. 9. 1. Polyamines as biocides 

Polyamines, which are natural biogenic polycationic compounds, are known to interact 

with porins (Iyer & Delcour, 1997). Porins may be involved in biofilm formation 

(Barrios et al., 2006; Orme et al., 2006) therefore polyamines may be potential 

inhibitors of biofilm formation. 
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Previous studies have demonstrated that polyamines interact with porins, specifically 

OmpC and OmpF, inducing and prolonging their incidence of closure (Iyer & Delcour, 

1997). OmpC and OmpF, like other porins, are predominantly open and are responsible 

for the permeability of the cell membrane to nutrients and hydrophilic compounds 

(Samartzidou & Delcour, 1999). The polyamines spermine, spermidine, cadaverine and 

putrescine are of interest to this study due to their interaction with the porins and 

proteins in the polyanionic bacterial outer membrane, particularly as OmpA was shown 

to be important in the development of a biofilm (Barrios et al., 2006; Orme et al., 2006). 

 

 

1. 9. 2. Quaternary ammonium compounds and biguanides as biocides 

A range of compounds that have antimicrobial activity have been used successfully as 

disinfectants and antiseptics. The most common of these include biguanides, such as 

polyhexamethylene biguanide (PHMB) and quaternary ammonium compounds (QACs) 

(McDonnell & Russell, 1999) (also known as quaternary ammonium salts or quats). 

QACs are cationic compounds, which although diverse in their structures, all have a 

positively charged nitrogen atom covalently bonded to four alkyl groups (NR4
+) in 

common. This offers the compound stability in terms of its charge, regardless of the pH 

of the solution. QACs and PHMB are commercially available and routinely used as the 

active ingredient in many antimicrobial and sanitising products, in swimming pools and 

as environmental biocides, due to their wide spectrum of activity against bacteria, 

yeasts, viruses and fungi (Kim et al., 2011; Nohr & Macdonald, 1994). Novel to this 

study is the determination of polyquaternium compounds as antimicrobials. Apart from 

Polyquaternium-1 (Polyquad®, Alcon Laboratories Inc. USA), which is used as a novel 

preservative in contact lens solutions (Codling et al., 2003b; Rolando et al., 2011) and 

Polyquaternium-6 (Polydiallyldimethylammonium chloride or Poly-DADMAC) 

(BIOGUARD™ Nimbus® Technology, Quick-Med Technologies Inc. USA), most other 

polyquaterniums have not been studied for their antimicrobial potential, especially 

against clinical isolates. 

 

The mode of action of QACs and PHMB, although not exactly the same, have much in 

common, in that they increase the permeability of the outer membrane by binding to the 

polyanionic lipopolysaccharides (LPS) which decorate the outer portion of the outer 

membrane. They are antimicrobial due to their ability to disorganise and destabilise the 

LPS and permeabilise the outer membrane (Vaara, 1992; Wilkinson & Gilbert, 1987). 



Chapter 1. Introduction 

67 

 

1. 9. 2. 1. Antimicrobial resistance to quaternary ammonium compounds 

Quaternary ammonium compounds (QACs) have been used in the domestic and food 

industries as disinfectants for some time due to their broad spectrum of activity, 

however, when bacteria are exposed to sub-inhibitory doses of biocides such as QACs, 

resistance can emerge. It is well documented that P. aeruginosa are intrinsically one of 

the least sensitive strains of bacteria to biocides such as PHMB and the QAC 

benzalkonium chloride (BAC) (Gilbert & Moore, 2005; Langsrud et al., 2003). This is 

likely to be due to their alginate biofilm, however, they are also known to have 

multidrug efflux pumps which are the main mechanism conferring QAC resistance to 

not only P. aeruginosa, but bacteria in general (Poole, 2005a). Gram-positive bacteria 

have been well reported to accommodate QAC efflux pumps, of which many are 

plasmid encoded. S. aureus in particular have a whole host of qac genes. The efflux 

systems in Gram-negative bacteria, which generally give rise to QAC resistance, are 

also multidrug efflux transporters. In relation to E. coli and K. pneumoniae, P. 

aeruginosa has the most efflux encoding qac genes, which may explain its increased 

resistance to QACs. The most common efflux determinants that give rise to QAC 

resistance in the organisms relevant to this study are outlined in Table 1. 3. 

 
 
 
Table 1. 3. Summary of efflux determinants relevant to the compounds and organisms 
used in the current study (Poole, 2005a).  
Note: QAC: quaternary ammonium compound; BAC: benzalkonium chloride 
 

Efflux determinant Biocide Organisms 
   

QacE QAC K. pneumoniae, P. aeruginosa1 

QacEΔ1 QAC K. pneumoniae, P. aeruginosa1 

QacG QAC P. aeruginosa2 

PmpM BAC P. aeruginosa3 

YhiUV-TolC BAC E. coli4 

 
1(Kazama et al., 1998); 2(Laraki et al., 1999); 3(He et al., 2004); 4(Nishino & Yamaguchi, 2001). 

 

 

Unlike the Gram-positive qac genes, Gram-negative qac genes are chromosomally 

encoded. However, the most common efflux determinant in E. coli, K. pneumoniae and 
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P. aeruginosa are qacE and qacEΔ1 (Poole, 2005a). These genes are encoded on mobile 

integron elements, the same genetic elements that encode for antibiotic resistance 

(Hardwick et al., 2008) in particular, class 1 integrons (Gillings et al., 2009a; Gillings et 

al., 2009b; Hardwick et al., 2008). 

 

Despite the qacE and qacEΔ1 genes encoding for resistance to QACs, one particular 

study by Kucken (2000), noted that there was not a significant difference in QAC 

resistance in bacteria that did or did not possess these genes. Therefore, this suggests 

that the qacE and qacEΔ1 genes are not the most essential factor to determining 

bacterial susceptibility to QACs (Kucken et al., 2000). 

 

QACs are still attractive alternatives to conventional antimicrobials due to their broad 

spectrum of activity and use in a variety of settings. In the 50 or more years that QACs 

have been used as antimicrobials, only a few resistance mechanisms threaten their 

antimicrobial activity. A PubMed search for ‘quaternary ammonium compound 

resistance’ revealed just 74 hits. In comparison to a similar search for ‘silver resistance’, 

which revealed over 1500 hits. In addition to this, when trying to determine the range of 

quaternary ammonium compounds being investigated as antimictobials, there are 14852 

PubMed hits and only 8070 hits for ‘silver antimicrobial’. This is an indication that 

QAC resistance is not of great concern and is certainly an attaractive alternative to 

silver, another widely used biocide in the clinical setting. With approaches to change the 

presentation of QACs, for example as a coating, there is every hope that QACs will 

continue to be the most commonly used and effective antimicrobials, especially at 

concentrations that are fully biocidal.  
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1. 10. The aims of this research 

The literature review detailed in the introduction shows that biofilm formation on any 

medical device is a great problem in the nosocomial environment. The urinary catheter 

is one of the most commonly used medical devices, frequently required to treat urinary 

incontinence in older patients and patients with long term bladder dysfunctions. 

Systemic and chronic infections are a result of biofilm formation on the surface of 

urinary catheters (Costerton et al., 1999). It has long been evident that an established, 

mature biofilm is notoriously difficult to eradicate, therefore the most effective method 

to impede biofilm development is to avoid or reduce the initial adhesion of bacteria to 

the catheter surface. The nonspecific attachment of bacteria onto any surface is a key 

determinant in subsequent biofilm formation, therefore, many approaches have been 

adopted to prevent bacterial attachment to surfaces of medical devices (Banerjee et al., 

2011; Knetsch, 2011). Cationic compounds represent a suitable antimicrobial as they 

define a structurally diverse class of antimicrobials with a broad spectrum of activity 

(Banerjee et al., 2011). 

 

To prevent biofilm formation, it would be desirable for future generations of materials 

to move towards incorporating novel inhibitors of functions vital to biofilm attachment 

and integrity. Anti-biofilm coatings containing novel cationic compounds may be 

efficacious and have a significant impact in the clinical setting, particularly on the costs 

associated with device replacement and in reducing patient morbidity and mortality. 

Observing antimicrobial activity in isolation is informative, but a deeper understanding 

of the effect of a biocide on cells may give additional benefit. 

 

The aims of this project are to (1) identify a novel antimicrobial cationic compound and 

(2) understand the response of the bacteria at gene and protein level, when treated and 

challenged with the antimicrobial cationic compound. The objectives set in order to 

achieve these aims are described in the next two sections: 

 

 

1. 10. 1. Aim 1: Identify a novel antimicrobial cationic compound 

Natural polyamines and quaternary ammonium compounds will be screened for their 

antimicrobial action against the planktonic and biofilm phenotypes of Gram-negative 

uropathogenic bacteria. Strains tested will be the laboratory strain E. coli K12 and 
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clinical isolates of E. coli, K. pneumoniae and P. aeruginosa which were isolated from 

urinary tract infections, as these are the organisms most commonly identified in a 

CAUTI. The screening of antimicrobial cationic compounds will be achieved by first 

gaining an understanding of how effective the compounds are against planktonic growth 

using the minimum inhibitiory concentration (MIC) assay and viable cell counts; and 

second, using microscopy and the high throughput method of the microtitre plate 

biofilm formation assay, to observe the effectiveness of the compounds on early stages 

of biofilm formation. The compound with the most potent inhibitory action against all 

of the bacterial species used in the study will be assessed further for their effectiveness 

as a surface coating, and against established biofilms. 

 

 

1. 10. 2. Aim 2: Analyse the response of bacteria when treated with a novel 

antimicrobial cationic compound 

The compound with the most potent antimicrobial activity will be used above and below 

the MIC to reveal the effect that it is having on protein and gene expression of E. coli, 

the organism most commonly isolated from CAUTI. 

 

Two-dimensional gel electrophoresis (2DGE) has been successful in identifying over-

expressed proteins in the biofilm phenotype as potential targets of biofilm inhibition 

(Orme et al., 2006). A proteomic approach using 2DGE will therefore be used in the 

current study to identify proteins that are differentially expressed between the biofilm 

and planktonic phenotypes when treated and challenged with the inhibitory compound 

identified in comparison to control (untreated) samples. Planktonic cells will also be 

treated with the inhibitory compound at sub-inhibitory concentrations and challenged at 

4 times the MIC. This will give the transcription profile of bacteria grown continuously 

with the compound at low concentrations, and when grown for a short period at high 

concentrations. A transcriptomic analysis of the cell’s gene expression levels under 

these different conditions will be performed using RNA-Seq. 
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2. 1. Bacterial strains, media and growth conditions 

E. coli K12 sub-strain MG1655/XL1-blue, a well characterised laboratory strain with a 

K12 phage (Stratagene), and clinical isolates of E. coli, K. pneumoniae and P. 

aeruginosa obtained from urinary tract infections were used in this study, and were 

kindly supplied by the Central Manchester Foundation Trust (CMFT) (Clinical Sciences 

Building 2, Manchester, U.K.). Clinical isolates were identified by Vitek® 2 

(BioMérieux, Inc.) by the staff at the CMFT. Stocks were stored at -80°C in 80% 

glycerol (Fisher Scientific Ltd.). Stock bacteria were cultured for 18 hours on Luria-

Bertani, or more correctly, lysogeny broth (LB) agar plates (Table 2. 1) every two 

weeks. The working culture plates were stored at 4°C. Overnight cultures were prepared 

by inoculating 10 mL LB broth, in a 50 mL Falcon tube, with several colonies from the 

working culture plates, which were incubated for 18 hours with shaking at 200 r. p. m. 

All cultures and assays were incubated in an aerobic atmosphere at 37°C unless 

otherwise stated. 

 

Table 2. 1. Reagents for growth medium. 
 

LB broth 10 g tryptone1 

 5 g yeast extract1 

 10 g NaCl2 

 made up to 1 L with distilled water 

  

LB agar 10 g tryptone1 

 5 g yeast extract1 

 10 g NaCl2 

 15 g agar3 

 made up to 1 L with distilled water 

 
Suppliers*: 1Becton, Dickenson Ltd.; 2 Fisher Scientific Ltd.; 3 Melford Laboratories 
Ltd. 
 
*All suppliers used throughout this thesis are based in the United Kingdom (U.K.), 
unless otherwise stated. 
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2. 2. Biofilm flow through system 

The biofilm forming phenotype of the bacteria used in this study was essential for the 

assays assessing biofilm growth. This was achieved by growing bacteria under the flow 

of media, which enhances the signalling molecules required for quorum sensing and up-

regulating the expression of biofilm genes (Purevdorj et al., 2002; Stoodley et al., 

1999). The biofilm flow through system was developed by S. Sandiford, as outlined in 

her Ph. D. thesis (Sandiford, 2010). A schematic diagram of the model is shown in 

Figure 2. 1. 10 titanium balls (4 mm diameter) were placed in a plastic housing (5 mL 

pipette tip) and attached to the top of a Duran bottle, which would collect effluent. The 

plastic housing containing the balls was then connected by clear PVC tubing (0.5 mm 

diameter) to a supply of LB broth. The system was autoclaved and sterile LB broth was 

delivered through the tubing and over the balls to moisten and condition the surface 

using a peristaltic pump (Watson Marlow Peristaltic Pump P-3, Pharmacia Fine 

Chemicals). The balls were inoculated by injecting through the plastic housing with 3 

mL of an overnight culture of organism grown in LB broth using a sterile needle and 

syringe. The cells were left to adhere at 37°C for 5-10 minutes, after which time LB 

broth was delivered at a rate of 2 mL/minute by means of a peristaltic pump for 30 

minutes. The balls were washed with sterile water at the same flow rate to remove any 

planktonic growth, after which media delivery was continued for a further 2-3 days to 

produce the maximum biofilm yield. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 1. Schematic representation of the biofilm flow through model. 
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Bacterial cells were removed by carefully collecting the titanium balls and washing the 

housing with 10 mL sterile water, collecting the cells into a sterile tube. Biofilm cells 

were centrifuged at maximum speed (3500 x g) (Sorvall® Legend RT, Kendro 

Laboratory Products, Germany) for 20 minutes at 4°C. The supernatant was decanted 

and the pellet was re-suspended and washed with 4 mL of Solution A (Table 2. 2) and 

centrifuged at 3500 x g for another 20 minutes at 4°C. This was repeated one more time. 

Cells were re-suspended in 500 µL of protein extraction buffer (Table 2. 2) and stored at 

-80°C until required. 

 

 

Table 2. 2. Buffers and reagents for the biofilm flow through system. 
 

Protein extraction buffer 5 M Urea1 

 2 M Thiourea2 

 0.25% (w/v) CHAPS2 

 0.25% (v/v) Triton-X-1002 

 10% (v/v) Propan-2-ol3 

 12.5% (v/v) Butanol3 

 5% (v/v) Glycerol3 

 1 mM Sodium metavanadate2 

 Complete Mini EDTA-free Protease Inhibitor 

Cocktail tablet4 

  

Solution A 50 mM Tris-HCl (pH 7.5)3 

 150 mM NaCl3 

 Complete Mini EDTA-free Protease Inhibitor 

Cocktail tablet4 

 
Suppliers: 1National Diagnostics; 2Sigma-Aldrich Company Ltd.; 3Fisher Scientific 
Ltd.; 4Roche Applied Science. 
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2. 3. Preparation of bacteria for western blot to detect the presence of 

OprF in P. aeruginosa 

 
2. 3. 1. Planktonic growth 

Five P. aeruginosa colonies were taken from growth on an LB agar plate and used to 

inoculate 20 mL of LB broth and incubated for 18 hours aerobically at 200 r. p. m. at 

37°C. 

 

 

2. 3. 2. Biofilm and planktonic growth 

Glass slides (Thermo Scientific) were placed in a plastic container and seeded with a 

1/100 dilution of an overnight culture in LB broth and incubated at 37°C for 4-6 hours 

without agitation, on the basis that bacterial cells need a conditioning layer to promote 

adhesion to a surface (Kokare et al., 2009). The layer of media components allowed for 

the initial attachment of bacteria to the glass surface. After the initial incubation period, 

the planktonic growth was decanted carefully into a separate sterile tube for further 

purification and analysis, and the glass slides were carefully washed by submerging the 

slides in sterile PBS and gently rocking for 2 minutes, the PBS was decanted. This was 

repeated two more times. The glass slides were transferred to a fresh container and 

submerged in fresh LB broth. The slides were incubated for a further 18 hours at 37°C, 

without shaking.  

 

Planktonic cells were decanted into a sterile tube and glass slides were washed in 3 

volumes of PBS as described previously. The remaining attached biofilm cells were 

removed by scraping the biofilm off the glass slides into a sterile petri dish and washing 

the slides by pipetting 2 mL volumes of a protein extraction buffer (Table 2. 2). Biofilm 

cells collected in Solution A were carefully transferred to a 50 mL tube, and the final 

volume of the biofilm suspension was made to 20 mL with protein extraction buffer. 

 

 

2. 3. 3. Preparation of proteins of P. aeruginosa  

Cell suspensions in protein extraction buffer were thawed rapidly by running cold water 

over the tubes. Cells were centrifuged at maximum speed (13200 x g) (Mini Spin, 

Eppendorf, Germany) for 15 minutes. The supernatant containing solubilised protein 
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was transferred to a clean Eppendorf tube, and the insoluble material in the pellet was 

discarded. 

 

Proteins were precipitated by adding 3 volumes of 10% (v/v) ice cold trifluoroacetic 

acid (Sigma-Aldrich Company Ltd.) in 10% (v/v) acetone (Fisher Scientific Ltd.) to the 

solubilised protein and left at -20°C for 30 minutes. After this period, precipitated 

protein was harvested by centrifugation at 13200 x g for 15 minutes and the supernatant 

discarded. The protein pellet was washed with 300 µL of 10% (v/v) ice cold ethanol and 

harvested by centrifugation at 13200 x g for 15 minutes. The supernatant was carefully 

removed with a pipette and discarded. The pellet was left to air dry, and 200 µL of 

protein extraction buffer (Table 2. 2) was used to solubilise the protein with the aid of 

vortexing and repeated pipetting. 

 

 

2. 4. SDS-PAGE and western blot 

The reagents and buffers for SDS-PAGE and western blot analysis are outlined in Table 

2. 3. 
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Table 2. 3. Reagents and buffers for SDS-PAGE and western blot analysis. 
 

SDS loading buffer 120 mM Tris (pH 6.8)1 

 20% (v/v) Glycerol1 

 4% (w/v) SDS1 

 0.1% (w/v) bromophenol blue2 

 8% (v/v) β-mercaptoethanol2 

  

Resolving gel (12%) 3.35 mL distilled water 

 2.5 mL 1.5 M Tris-HCl (pH 8.8)1 

 100 µL 10% (w/v) SDS1 

 4 mL 30% Acylamide bis-acrylamide (29:1)3 

 100 µL 10% (w/v) Ammonium persulphate4 

 10 µL TEMED5 

  

Stacking gel (4%) 3.05 mL distilled water 

 1.25 mL 5 M Tris-HCl (pH 6.8)1 

 50 µL 10% (w/v) SDS1 

 650 µL 30% Acylamide bis-acrylamide (29:1)3 

 50 µL 10% (w/v) Ammonium persulphate4 

 10 µL TEMED5 

  

TBS-T buffer 100 mM Tris1 

 150 mM NaCl1 

 0.05% (v/v) Tween-202 

  

Blocking buffer TBS-T buffer 

 5% (w/v) Dried skimmed milk powder6 

  

Transfer buffer 25 mM Tris1 

 150 mM Glycine1 

 20% Methanol1 

  

Suppliers: 1Fisher Scientific Ltd.; 2Sigma-Aldrich Company Ltd. 3Bio-Rad 
Laboratories, Inc.; 4BDH, AnalaR; 5Fluka; 6Marvel. 
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20 µL biofilm and planktonic protein sample were each heated to 100°C for 5 minutes 

with 5 µL sodium dodecyl sulfate (SDS) loading buffer (total volume 25 µL) before 

loading in a 1.5 mm thick 12% polyacrylamide gel containing SDS (Table 2. 3). 10 µL 

of Precision Protein Duel Colour marker (Bio-Rad Laboratories, Inc.) was also loaded 

into the gel as a molecular weight marker. The samples were separated by 

electrophoresis by applying 120 V for 40 minutes or until the samples and marker were 

1 cm from the bottom of the gel. The gel with the resolved proteins was incubated in 

transfer buffer and placed on a gentle rocker for 10 minutes. The proteins were 

transferred to a nitrocellulose membrane (Hybond™ -ECL, 0.44 µm, Amersham™) using 

a Semi-Dry blotting apparatus (Bio-Rad Trans-Blot® Semi-dry transfer cell) at 15 V for 

1 hour. The filters and membrane were moistened in transfer buffer (Table 2. 3). After 

transfer the membrane was washed briefly in TBS-T (Table 2. 3) before being incubated 

in blocking buffer for 20–30 minutes with gentle rocking, at room temperature. For 

immunodetection, the membrane was incubated with the primary antibody, anti-OprF 

monoclonal antibody MA7-3 (kindly provided by Prof. Hancock, University of British 

Columbia, Canada (Rawling et al., 1995), which was diluted 1/5000 in blocking buffer, 

overnight at 4°C with gentle rocking. The membrane was washed 4 times with TBS-T 

for 5 minutes each and incubated in a 1/2000 dilution of secondary antibody (polyclonal 

goat anti-mouse IG/HRP, Dako, Denmark) in blocking buffer for 1.5 hours at room 

temperature, with gentle rocking. Proteins were detected by incubating the membrane in 

the reagents of the ECL Plus™ western blotting detection kit (Amersham™) for 1 minute 

at room temperature. The membrane was immediately transferred to a 

chemiluminescence film (Amersham Hyperfilm™ ECL, GE Healthcare) in the dark and 

developed by incubating in 1:5 fixer solution (GBX Fixer/Replenisher, Kodak® 

processing chemicals for autoradiography films, Sigma-Aldrich Company Ltd.), 

washing in clean water and incubating in 1:5 developer solution (GBX 

Developer/Replenisher, Kodak® processing chemicals for autoradiography films, 

Sigma-Aldrich Company Ltd.), until bands were able to be visualised. 

 

 

2. 5. Preparation of antimicrobial agents 

All antimicrobials were prepared in sterile distilled water with the pH adjusted to 7 with 

0.1 M sodium hydroxide (Fisher Scientific Ltd.). Fresh stock solutions were made every 

2 weeks, and dilutions were freshly prepared from the stocks, for each assay, 
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immediately before dispensing into the wells. Concentrations were made at 2 times the 

final concentration required for the assay, according to the CLSI guidelines (CLSI, 

2009). 

 

 

2. 5. 1. Polyamines 

Spermine (cat. no.: S1141), spermidine (cat. no.: S2626), cadaverine (cat. no.: D22606) 

and putrescine (cat. no.: D1,320-8) were used in this study. All polyamines were 

supplied by Sigma-Aldrich Company Ltd. A 100 mM stock of each polyamine was 

dissolved in Tris-HCl (Fisher Scientific Ltd.) (pH 7.0). Stocks were stored at -20°C. 500 

mM stocks of spermine were prepared in the same way to test inhibition at higher 

concentration ranges for this polyamine. 

 

 

2. 5. 1. 1. Buffered polyamines 

50 mM stocks of each polyamine were prepared by diluting the 100 mM stocks in 

sterile phosphate buffered saline (PBS) (Sigma-Aldrich Company Ltd.), (pH 6.5 with 

concentrated hydrochloric acid). Stocks were stored at -20°C.  

 

 

2. 6. Quaternisation of polyamines 

The quaternisation reactions were carried out in parallel for each polyamine, in a 

Carousel 6 Parallel Reactor. 0.5 g of each polyamine was introduced in each reactor 

used, together with 1.5 times excess of potassium carbonate (Sigma-Aldrich Company 

Ltd.), compared to that required for the neutralisation of the amine groups present on 

each polyamine. 20 mL of methanol (Fisher Scientific Ltd.) was added to the reactor. 

Methyl iodide (Sigma-Aldrich Company Ltd.) was added gently with a pipette under 

nitrogen, in 3 times molar excess in relation to what was required for the quaternisation 

of the amines. The reaction was stirred at room temperature for 30 minutes, and then 

brought to 60°C overnight. Each solution was added drop-wise to 4 pre-weighed tubes 

for each polyamine, each containing 25 mL tetrahydrafuran (THF) (Sigma-Aldrich 

Company Ltd.). A precipitate was formed. This precipitate was centrifuged at 3500 x g 

for 5 minutes. The supernatant was decanted and the precipitate was re-suspended in 

fresh THF. This was repeated two more times. The final precipitate was dissolved in 20 
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mL water and freeze-dried. The tubes containing the final product were re-weighed to 

ensure any excess water had evaporated during freeze-drying. The products were 

characterised through 1H-NMR (D2O). 100 mM stocks of freeze-dried preparations of 

polyamines were prepared by dissolving in sterile distilled water. Stocks were stored at -

80°C. 

 

 

2. 7. Quaternary ammonium compounds 

The quaternary ammonium compounds used in this study are listed in Table 2. 4. 20 

mM stocks of each quaternary ammonium compound were prepared in sterile distilled 

water. 

 

Table 2. 4.  Quaternary ammonium compounds used in this study. 
 

Quaternary ammonium compound Tradename 

Polyquaternium-4 (PQ-4)1 Cellquat® LS-50 

Polyquaternium-6 (PQ-6)2  

Polyquaternium-7 (PQ-7)2  

Polyquaternium-10 (PQ-10)2  

Polyquaternium-28 (PQ-28)2  

Polyquaternium-37 (PQ-37)3  

Byotrol™ 4 G32 formulation 

PHMB* (20 wt% in water)5 Vantocil 

DDQ (40 wt% in water)6 Bardac 2240 

BAC (50 wt% in water)7 Acticide BAC 50M 
 

Suppliers: 1AkzoNobel; 2A & E Connock (Perfumery & Cosmetics) Ltd.; 3Cognis GmbH 

(Germany); 4Byotrol™ Technology Ltd.; 5Arch Chemicals; 6 Lonza; 7 Thor. 

 

*PHMB is a polymeric biguanide and is not classified as a quaternary ammonium compound 

(QAC), but as it is a component of Byotrol™, it was tested alongside the other QACs. 
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2. 7. 1. Determination of the molecular weights for the quaternary ammonium 

compounds 

Size exclusion chromatography (SEC) was carried out using the columns from TSK-

GEL Filtration Columns (Supelco). Two different SEC systems were used: a low 

molecular weight and high molecular weight system. The particular columns used in 

these systems are shown in Table 2. 5. This procedure was kindly performed by the staff 

at the Organic Materials Innovation Centre (OMIC), University of Manchester. 
 
 
Table 2. 5. Summary of columns used for size exclusion chromatography (SEC). 
Molecular weight (Mw) range based on polyethylene oxide calibration. 
 
 

System Columns Mw range (Da) 

   
Low molecular weight G2000PW <2000 

 G3000PW <50,000 

   

High molecular weight G4000PW 2000-300,000 

 G5000PW 4000-1000,000 

 

 

 

All SEC systems used a Gilson 132 refractive index detector, with at a flow rate of 0.5 

mL/minute of a citric acid 0.1 M buffer at 25 ̊C, calibrated using polyethylene oxide 

standards.  

 

 

2. 8. Monitoring of pH 

The pH of each concentration of inhibitor and controls were taken after the incubation 

time using pH indicator strips (Precision Laboratories, Inc.). Two readings for each 

concentration and each control on every plate were taken and an average was 

determined. 
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2. 9. Determination of the minimum inhibitory concentration (MIC) of 

antimicrobial agents under study 

The minimum inhibitory concentration (MIC) of the antimicrobials was determined 

using standard methods (CLSI, 2009). Briefly, a stock concentration of antimicrobial 

was prepared in sterile distilled water with the pH adjusted to 7. This was used to 

prepare a range of dilutions in sterile distilled water, at double the final concentration 

required.  100 µL of each concentration was dispensed into 8 replicate wells of a flat 

bottomed non-tissue culture treated polystyrene 96 well microtitre plate (cat. no.: 

655161, Greiner Bio-one Ltd.) with a sterile lid (cat. no.: 656161, Greiner Bio-one 

Ltd.). 100 µL of a 1:50 dilution of overnight cultures of bacteria were prepared in LB 

broth and dispensed into each well containing concentrations of the antimicrobial. Eight 

technical replicates were prepared on each plate for each concentration tested. A 

minimum of 3 biological replicates were performed for each experiment. 

 

Positive growth controls were prepared by inoculating eight wells with 100 µL 1:50 

dilutions of bacteria and 100 µL of sterile distilled water in which the antimicrobial was 

prepared. Negative controls were prepared in a further eight wells by dispensing 100 µL 

of LB broth and 100 µL sterile distilled water. The microtitre plates were incubated 

under aerobic, static conditions for 18 hours at 37ºC. 

 

After the incubation period, the optical density (OD) at 595 nm (OD595) of planktonic 

growth was measured to quantify the MIC using a spectrophotometer (BMG Labtech 

FLUstar OPTIMA). The average OD from the eight negative control wells were 

subtracted from the OD of all test wells. The MIC is determined as the lowest 

concentration of antimicrobial that completely inhibits visual bacterial growth, or an 

OD595 of <0.05 (Ho et al., 2011).   

 

 

2. 10. Microtitre plate biofilm formation assay 

After determining the MIC (Section 2. 9) excess media and any planktonic cells were 

decanted from the microtitre plate and each well was washed once with 200 µL sterile 

phosphate buffered saline (PBS). The plate was left in an inverted position to air dry 

overnight at room temperature. Each well was stained with 150 µL of 0.4% (w/v) 

crystal violet (Sigma-Aldrich Company Ltd.) at room temperature for 10 minutes and 
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washed with running tap water until the excess stain was removed and the running water 

appeared colourless. The plate was inverted and left to dry overnight at room 

temperature. The biofilm density was quantified by solubilising the crystal violet stain 

with 200 µL 99.5% ethanol (Fisher Scientific Ltd.) and measuring the OD595 of 

solubilised crystal violet in each well using a spectrophotometer plate reader (BMG 

Labtech FLUstar OPTIMA). The average OD from the eight negative control wells 

were subtracted from the OD of all test wells. A minimum of 3 biological replicates 

were performed for each experiment. 

 

 

2. 11. Glass chamber slide biofilm formation assay 

Antimicrobial concentrations and inoculum were prepared as described in Section 2. 9. 

Wells of a glass chamber slide (Lab-Tek™ Chamber slide™, Nunc) were filled with 150 

µL of antimicrobial agent and 150 µL of a 1:50 dilution of inoculum. One well was 

used for each concentration, with one well on each slide prepared as a negative control 

and one well on each slide prepared as a growth control. The slides were incubated for 

18 hours, after which they were inverted to decant the solutions in the wells. Each well 

was washed in 1 mL sterile PBS and slides were left in an inverted position to dry at 

room temperature overnight. Each well was stained with 250 µL 0.4% crystal violet for 

10 minutes, and washed in running water until the water ran clear. The slides were left 

in an inverted position to dry at room temperature, overnight. The biofilm density was 

determined by solubilising the crystal violet in 300 µL ethanol, 200 µL of solubilised 

crystal violet was transferred to wells of a microtitre plate and the OD595 was 

determined using a spectrophotometer plate reader (BMG Labtech FLUstar OPTIMA). 

The quantification of biofilm density was determined as described in Section 2. 10.  

 

 

2. 12. Viable cell counts 

The Miles and Misra method (Miles et al., 1938) was used to determine the viability of 

planktonic cells in the form of colony forming units per mL (CFU/mL). Briefly, a 1:10 

dilution series from 10-1 to 10-7 from each concentration tested was prepared in sterile 

PBS. 20 µL of each dilution was dropped, in triplicate, onto LB agar plates and 

incubated overnight at 37ºC. The countable dilution used was the dilution that produced 
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no more than thirty colonies per 20 µL drop of sample dispensed. Finally, the total 

viable cell counts are expressed as CFU/mL by using the following formula: 

 

Viable cell count x dilution factor 
Volume dispensed (mL) 

 
 
 

2. 13. Pre-coating polystyrene microtitre plates and glass with Byotrol™ 	  

Wells of a microtitre plate were filled with 200 µL Byotrol™ and wells of an 8 chamber 

glass slide (Lab-Tek™ Chamber slide™, Nunc) were filled with 300 µL Byotrol™ at 

increasing concentrations and incubated for 18 hours at 37°C. A larger volume of 

Byotrol™ was required to cover the surface of the wells on a glass chamber slide. After 

incubation, excess Byotrol™ was decanted and the microtitre plates and glass chamber 

slides were re-incubated for a further 18 hours at 37°C to allow for evaporation of 

water. A 1:100 dilution of overnight cultures of bacteria were prepared in LB broth, and 

a volume the same as that of Byotrol™ was dispensed to each well containing 

concentrations of the pre-coated antimicrobial and incubated for 8 hours at 37°C. Eight 

technical replicates were prepared on a microtitre plate, and 4-11 biological replicates 

were performed. On each glass chamber slide one technical replicate was prepared, and 

a minimum of 4 biological replicates were performed. After the incubation period, the 

wells of the microtitre plate were washed with PBS, stained and the stain was 

solubilised as for the microtitre plate biofilm formation assay. Wells of the glass 

chamber slide were washed with 1 mL PBS, stained with 250 µL crystal violet and the 

stain was solubilised with 300 µL ethanol. 200 µL solubilised stain from each well on 

the glass chamber slide was transferred to a fresh well of a microtitre plate and OD 

measurements were read as for the microtitre plate biofilm formation assay.  

 

 

2. 14. MBEC (Minimum Biofilm Eradication Concentration) assay	  

200 µL of a 1:100 dilution of an overnight culture was dispensed into wells of a 

microtitre plate. A lid with protruding pegs (Transferable Solid Phase Screening 

System, Nunc) was placed into the wells and incubated under static conditions for 18 

hours at 37ºC. The pegs were transferred to a microtitre plate containing 200 µL sterile 

PBS and shaken to remove any non-adhered bacterial cells. The pegs were then placed 

in a microtitre plate containing a concentration range of each antimicrobial which was 



Chapter 2. Materials and Methods 

85 

 

prepared in the same manner as described for the MIC assay and microtitre plate biofilm 

production assay. The plates were incubated under static conditions for 18 hours. The 

pegs were then placed in 200 µL PBS and shaken briefly to remove non-adhered cells 

before being immediately placed in 200 µL fresh sterile media and incubated for a 

further 18 hours at 37ºC to allow for re-growth of viable bacterial cells on the pegs. 

After incubation, the lid with protruding pegs was removed and the OD595 of the plates 

containing any planktonic growth were read. The pegs were washed in 200 µL PBS and 

allowed to dry overnight at room temperature before placing the pegs in 200 µL 0.4% 

crystal violet for 15 minutes. The pegs were washed in running water and left to air dry 

overnight at room temperature. The biofilm density was quantified by solubilising the 

crystal violet stain with 200 µL 99.5% ethanol and measuring the OD595 of solubilised 

crystal violet using a spectrophotometer plate reader (BMG Labtech FLUstar 

OPTIMA). The average OD from the eight negative control wells were subtracted from 

the average OD from the eight technical replicates of each concentration in the test 

wells. 

 

 

2. 15. Bright field microscopy 

8 well glass chamber slides were used to analyse biofilms by bright field microscopy. 

Each well had 150 µL of a solution of antimicrobial agent and 150 µL of a 1:50 dilution 

of inoculum prepared from an overnight culture as described previously (Section 2. 9). 

One well on each slide contained a positive growth control prepared with 150 µL 

inoculum and 150 µL water, and one well was prepared as a negative control with 150 

µL media and 150 µL water. After incubation for 18 hours at 37ºC under static 

conditions, the wells were washed with 1 mL PBS and immediately stained with 0.4% 

crystal violet for 10 minutes. Excess stain was washed with running water and the slide 

was left to dry in an inverted position overnight. The chambers were removed and 

microscopy images were collected on an Olympus BX51 upright microscope using a 

100x/1.30 UPlanFln objective. Images were captured using a Coolsnap HQ camera 

(Photometrics) through MetaVue Software (Molecular Devices). Images were then 

processed and analysed using ImageJ (http://rsb.info.nih.gov/ij). 
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2. 16. Non-contact mode atomic force microscopy (AFM)  

Wells of a glass chamber slide were pre-coated with 300 µL Byotrol™ at increasing 

concentrations, overnight at 37°C. After incubation, excess Byotrol™ was decanted and 

the slides were re-incubated for a further 18 hours at 37°C to allow for evaporation of 

water. 

 

The glass slides with pre-coated Byotrol™ were secured to a metal disc using double 

sided tape and installed on the AFM scanner. An area of 20 µm2 was scanned. 

Calibration of the AFM scanner was kindly performed prior to each experiment by Peter 

Wills (Ph. D. student, OMIC, University of Manchester). 

 

Images were acquired in non-contact mode, whereby a cantilever attached to a sharp tip 

does not touch the coated surface. The cantilever is oscillated at a point which is greater 

than its resonance frequency; when the cantilever comes into contact with the van der 

Waals forces that extend above the coated glass surface, there is a decrease in the 

resonance frequency. To maintain a constant resonance frequency, the tip is adjusted 

appropriately and by measuring this adjustment in surface distance, the surface 

topography can be obtained. 

 

 

2. 17. Preparation of E. coli K12 grown to mid-exponential phase for 

two dimensional gel electrophoresis and transcriptomic analysis 

Proteins and RNA were extracted from a 1:100 dilution of an overnight culture of E. 

coli K12 grown to mid-exponential phase (approx. 5 hours) in a shaking incubator at 

200 r. p. m, 37ºC. The time at which to harvest cells growing at mid-exponential phase 

was determined by preparing an 8 hour growth curve (Figure 2. 2). Two-dimensional 

gel electrophoresis was performed with proteins extracted from the mid-exponential 

phase of growth in order to make a direct comparison to the transcriptomics results. 

Cells harvested at the mid-exponential phase are most viable as there are plenty of 

nutrients available and due to high metabolic activity, RNA yields are optimal (Qiagen, 

2005). 
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Figure 2. 2. An 8 hour growth curve of E. coli K12 grown under 3 conditions: E. coli 
K12 was grown without Byotrol™ (growth control); treated with sub-MIC Byotrol™ and 
grown for 5 hours without Byotrol™ then challenged for 2 hours with 4 times MIC 
Byotrol™. Error bars indicate the standard deviation. 
 

 

Protein and RNA were extracted from a planktonic growth control; planktonic growth 

with sub-MIC Byotrol™ (0.6 µg/mL), which is 20% of the MIC; and planktonic growth 

challenged with 4 times the MIC Byotrol™ (10.5 µg/mL) for a further two hours. Cell 

growth was monitored by measuring the OD595 at 1 hour intervals. 

 

 

2. 18. Preparation of bacteria grown for 24 hours for two dimensional 

gel electrophoresis 

Proteins were extracted at the stationary phase of growth (16-24 hours), as this was the 

phase of growth used for the microtitre plate assays to determine the MIC. 

 

 

2. 18. 1. Biofilm and planktonic growth control  

1 g of glass wool (Sigma-Aldrich Company Ltd.) was weighed as a single piece and 

placed into 50 mL of LB broth in a 250 mL conical flask, which was then autoclaved. A 

1:100 dilution of an overnight culture of E. coli K12 was used to inoculate the 50 mL 

LB broth and incubated in a shaking incubator at 200 r. p. m. for 24 hours at 37ºC to 
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ensure sufficient biofilm mass was obtained for subsequent analyses. The planktonic 

cells were decanted equally into Falcon tubes and biofilm cells were washed by 

immersing the glass wool in 20 mL sterile PBS and vortexing briefly. The glass wool 

was then immersed in a fresh 20 mL volume of PBS and sonicated (VibraCell™ 

Sonics®, Sonics & Materials Inc.) for 30 seconds, 3 times with 30 second intervals to 

remove biofilm cells from the glass wool. The biofilm cell suspension in PBS was kept 

on ice before whole cell extraction. 

 

 

2. 18. 2. Biofilm and planktonic growth in sub-MIC Byotrol™  

The biofilm and planktonic cells were grown as described in Section 2. 17 but in the 

presence of 0.6 µg/mL Byotrol™. 

 

 

2. 19. Preparation of whole cell protein extracts for two dimensional gel 

electrophoresis 

Planktonic and biofilm cells were harvested by separating the bacterial culture equally 

into 50 mL tubes and centrifuging at 3500 x g for 20 minutes at 4°C. The pellets 

containing whole cells were washed 3 times by re-suspending and centrifuging in 10 

mL PBS at 3500 x g for 10 minutes at 4°C to remove excess media components. 

 

The final pellets were re-suspended in 1 mL rehydration buffer and pooled. The 

suspension was left for 10 minutes at room temperature and sonicated on ice for 30 

seconds 3 times, with 30 second intervals to limit frothing and overheating. 

 

 

Table 2. 6. Components of rehydration buffer. 
 

Rehydration buffer 2% (w/v) CHAPS1 

 0.05% (w/v) DTT2 

 1 mM Sodium metavanadate1 

 0.25% (v/v) Triton-X-1001 

 Made up in 9 M Urea3 

 

Suppliers: 1Sigma-Aldrich Company Ltd.; 2Melford Laboratories Ltd.; 3National Diagnostics. 



Chapter 2. Materials and Methods 

89 

 

Proteins were precipitated by adding ice cold acetone and ice cold trifluoroacetic acid to 

the solubilised protein in an 8:1:1 ratio, respectively. The proteins were precipitated 

overnight at -20°C. After this period, precipitated protein was harvested by 

centrifugation at 3500 x g for 20 minutes at 4°C, and the supernatant discarded. The 

protein pellet was washed 3 times by re-suspending and centrifuging the pellet with 1 

mL of 80% ice cold ethanol at 13200 x g for 1 minute. The supernatant was carefully 

removed with a pipette and discarded. The pellet was left to air dry until no more 

acetone was present. The pellet was dissolved in 1 mL rehydration buffer at room 

temperature with vortexing and pipetting every 10 minutes for 1 hour.  

 

Proteins were harvested by centrifugation at 13200 x g for 15 minutes. The supernatant 

containing protein was carefully transferred to a fresh, clean Eppendorf tube. The pellet 

containing cell debris was discarded. 

 

 

2. 20. Determination of total protein concentration 

To quantify the total protein concentration extracted from the bacterial cells, the 

Bradford Assay was used (Bradford, 1976). A standard curve (see Appendix A) was 

prepared using dilutions of rehydration buffer in bovine serum albumin (BSA) (BSA 

protein assay standard II, Bio-Rad Laboratories, Inc.). Concentrations of BSA prepared 

were 0.0 mg/mL (rehydration buffer alone) 0.2 mg/mL, 0.5 mg/mL, 0.8 mg/mL, 1.2 

mg/mL and 1.5 mg/mL (BSA alone). 10 µL of each standard and test samples were 

dispensed in triplicate into wells of a microtitre plate, to which 200 µL Bradford 

Reagent (Sigma-Aldrich Company Ltd.) was added. The plate was shaken gently to mix 

the contents of the wells. Plates were incubated at room temperature for 15 minutes. 

OD595 measurements of the standards and samples were taken using a 

spectrophotometer (BMG Labtech FLUstar OPTIMA). A calibration curve was plotted 

from the standards, from which original protein extract concentration was adjusted to 

200 µg concentrations by diluting in rehydration buffer. Protein extracts were stored at -

80°C in 250 µL aliquots until required, when they were thawed on ice to prevent protein 

degradation.  
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2. 21. Two dimensional gel electrophoresis (2DGE) 

Reagents and buffers for 2DGE are outlined in Table 2. 7. 

 

2. 21. 1. Active rehydration 

Rehydration was performed by transferring 250 µL protein extract containing 1% (v/v) 

carrier ampholyte (Bio-Lyte® 3-10 buffer 100x, Bio-Rad Laboratories, Inc.) evenly into 

one lane of an iso-electric focussing tray, leaving 1 cm at each end where the electrodes 

are present. The IPG strip was allowed to reach room temperature and the backing strip 

was carefully removed. The acidic end of the strip was aligned with the anode when 

being placed gel side down on the protein solution, taking care to ensure all bubbles 

were removed. Active rehydration was performed by applying a 50 V potential 

difference across the strip for 18 hours. During this time the strip was overlaid with 

mineral oil (Bio-Rad Laboratories, Inc.) to prevent the strip from drying and to ensure 

the protein sample did not evaporate. 

 

Table 2. 7. Reagents and buffers for two-dimensional gel electrophoresis. 
 

IPG equilibration base buffer 6 M Urea1 

 2% (w/v) SDS2 

 50 mM Tris-HCl (pH 8.8)2 

 20% (v/v) Glycerol2 

  

Reducing equilibration buffer 2% (w/v) DTT3 to IPG equilibration base 

buffer  

  

Alkylating equilibration buffer 2.5% (w/v) Iodoacetamide4 to IPG 

equilibration base buffer  

  

SDS running buffer 27 mM Tris-HCl pH 8.52 

 190 mM Glycine2 

 0.1% (w/v) SDS2   

 made up to 1 L with distilled water 

 

Suppliers: 1National Diagnostics; 2Fisher Scientific Ltd.; 3Melford Laboratories Ltd.; 4Sigma-

Aldrich Company Ltd.; 5Bio-Rad Laboratories, Inc.; 6BDH, AnalaR; 7Fluka. 
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Table 2. 7. Continued. 

 

 

Suppliers: 1National Diagnostics; 2Fisher Scientific Ltd.; 3Melford Laboratories Ltd.; 4Sigma-

Aldrich Company Ltd.; 5Bio-Rad Laboratories, Inc.; 6BDH, AnalaR; 7Fluka. 

 
 

Resolving gel (10%) 20.25 mL distilled water 

 12.5 mL 1.5 M Tris-HCl (pH 8.8)2 

 500 µL 10% (w/v) SDS2 

 16.5 mL 30% Acylamide bis-acrylamide (29:1)5 

 250 µL 10% (w/v) Ammonium persulphate6 

 25 µL TEMED7 

  

Overlay agarose 1% (w/v) agarose2 in SDS running buffer 

 A few crystals of bromophenol blue4 

  

Gel fixing solution 500 mL ethanol2 

 100 mL acetic acid2 

 made up to 1 L with distilled  water 

  

Developing solution: Silver Stain 

Plus™ kit Silver Complex Solution5 

 Reduction Moderator Solution5 

 Image Development Reagent5 

 Development Accelerator Reagent5 

  

Silver stain stop buffer/Storage 

solution 5% (v/v) acetic acid2 in distilled water 
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2. 21. 2. Iso-electric focussing (1st dimension separation of proteins) 

The first dimension separation enables the proteins to migrate through the gel in 

response to the voltage applied until they reach their isoelectric point (pI). Each protein 

will carry a charge at different pH. The pI of a protein is the pH at which the protein has 

a net neutral charge, whereby the protein carries an equal number of positive and 

negative charges. Since the proteins have no net charge, they are not affected by the 

voltage applied when they reach their pI and will cease to migrate.  

 

After 18 hours of rehydration under active conditions, electrode wicks (Bio-Rad 

Laboratories, Inc.) were dampened with 10 µL of ultra-pure deionised water (Sigma-

Aldrich Company Ltd.). These were carefully placed between the electrodes and the 

strip to prevent the strip from burning under the increasing voltage being applied during 

the first dimension separation. For the 17 cm strip with a pH range of 3-10 and 5-8, the 

IEF program outlined in Table 2. 8 was used. After IEF, the oil can be carefully drained 

from the strips and the strips can be placed in storage trays, gel side up, and frozen at -

20°C until required for the second dimension separation (Section 2. 21. 4). 

 

 

Table 2. 8. IEF program used for first dimension separation of proteins using a 17 cm 
IPG strip. Step 1 ensures salts are removed and are not carried through into the 
separation steps. Steps 2-7 mediate the electrophoretic mobility of proteins along the pH 
gradient on the strip. The focussing of proteins occurs during step 8. Step 9 is important 
for holding the proteins in their positions to minimise diffusion from their iso-electric 
point. 
 

Step Voltage Volt-Hours Time (hours) Ramp 

     

1 500  2 Rapid 

2 750  1 Linear 

3 1000  1 Linear 

4 1500  1 Linear 

5 2000  1 Linear 

6 2750  1 Linear 

7 3750  1 Linear 

8 5000 55000  Rapid 

9 500  Hold Rapid 
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2. 21. 3. Equilibration 

Frozen strips were allowed to thaw for 15 minutes at room temperature before briefly 

being washed in SDS running buffer (Table 2. 7). The proteins were then reduced by 

equilibration in 2% w/v DTT (Table 2. 7) for 20 minutes followed by alkylation in 2.5% 

w/v iodoacetamide (Table 2. 7) for 20 minutes, each on an orbital shaker at room 

temperature. The strip was again equilibrated in SDS running buffer for 5 minutes. 

 

 

2. 21. 4. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) (2nd dimension 

separation of proteins) 

The second dimension separation is used to resolve proteins according to their 

molecular weight. A 10% resolving gel was prepared (Table 2. 7). 5 µL Precision 

Protein Duel Colour marker was loaded onto an electrode wick and placed on the top 

left of the gel as a molecular weight marker. The IPG strip was placed on top of the gel 

with the acidic (+) end on the left and the basic (-) end on the right, and overlaid with 

1% agarose prepared in SDS running buffer which contained a few crystals of 

bromophenol blue to visualise the migration of the proteins. Crystals of bromophenol 

blue were obtained by inserting the end of a pipette tip into the container of 

bromophenol blue to a depth of approximately 1 mm and transferring the attached 

grains to the overlay agarose solution. Prior to each use, the overlay agarose was heated 

in a microwave until the agarose had dissolved and was allowed to cool to touch before 

applying to the IPG strip. 

 

The protein samples were separated by applying a current of 40-90 mA for 4-6 hours or 

until the samples and marker were 1 cm from the bottom of the gel. The gels were kept 

cool by circulating cold water through the heat exchanger in the core of the apparatus. 

Once complete, the gel was removed and incubated in gel fixing solution (Table 2. 7) 

with gentle agitation overnight. 

 

 

2. 21. 5. Silver staining of gels 

Gels were washed thoroughly in distilled water for at least an hour, with a change of 

water every 30 minutes. The Bio-Rad Silver Stain Plus protocol was followed, with 

reagents from the Bio-Rad Silver Stain Plus Kit prepared freshly at room temperature in 

low light conditions. 100 mL of the mixture of reagents were added to each gel and 
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allowed to develop in low light conditions on an orbital shaker until protein spots 

became visible. A 5% (v/v) acetic acid solution was used to stop the silver stain 

development reaction, and gels were stored in this solution until further analysis. 

 

 

2. 21. 6. Interpretation of two-dimensional gels and analysis of differentially 

expressed proteins 

For each growth condition and cell phenotype, protein extraction and separation was 

performed a minimum of 3 times from at least 3 biological replicates. Analysis to 

determine differentially expressed proteins was performed by eye. Images of gels were 

taken on the FluorChem™ 5500 imager using the AlphaEase FC (FluorChem™ 5500) 

software. The intensity of differentially expressed proteins was determined by 

measuring an area within the protein spot using the Spot Denso Analysis Tool. The area 

for each spot was kept consistent. This generated an Integrated Density Value which 

was used to determine the fold difference in protein expression between the same 

proteins extracted from cells grown under different conditions and in different 

phenotypes. The unpaired two-tailed student’s t-test was used to assess the statistical 

significance of differentially expressed proteins. This tests the null hypothesis: that there 

is no statistical significance between the two groups. A value of <0.05 is considered to 

be statistically significant, i.e. the null hypothesis is rejected. The t-test was performed 

using Microsoft Excel’s statistics function; however the formulation on which this is 

based is expressed below: 

 

 
 

 

 

 

2. 21. 7. Protein identification by LC-MS/MS analysis 

Protein identification by liquid chromatography mass spectrometry/mass spectrometry 

(LC-MS/MS) was performed by the Biological Mass Spectrometry Core Research 

Facility, University of Manchester. 

X = mean; T and C = the two groups being compared; n = sample size. 
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2. 21. 7. 1. Digestion 

Samples for MS/MS analysis were prepared by excising and dehydrating protein spots 

in acetonitrile followed by vacuum centrifugation. Dried gel pieces were reduced with 

10 mM DTT and alkylated with 55 mM iodoacetamide. Gel pieces were then washed 

alternately with 25 mM ammonium bicarbonate followed by acetonitrile. This was 

repeated, and the gel pieces dried by vacuum centrifugation. These proteins were 

proteolysed at 37°C for 18 hours with 5 µL trypsin (12.5 ng/µL) in 45 µL ammonium 

bicarbonate (25 nM).  

 

 

2. 21. 7. 2. LC MS/MS 

Digested samples were analysed by LC-MS/MS using an UltiMate® 3000 Rapid 

Separation LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a LTQ Velos 

Pro (Thermo Fisher Scientific, Waltham, MA) mass spectrometer. 

 

Peptide mixtures were loaded onto a 75 mm x 250 µm i.d. 1.7 µm BEH C18, analytical 

column (Waters). For separation and elution, a gradient from 92% buffer A (0.1% (v/v) 

formic acid in water) and 8% buffer B (0.1% (v/v) formic acid in acetonitrile) to 33% 

buffer B was used, over 44 minutes at 300 nL/minute. Peptides were eluted directly into 

the MS/MS for analysis. Calibration of the MS/MS was performed externally using 

phosphoglucose tryptic digests as a standard for both stages. 

 

 

2. 21. 7. 3. Data analysis of proteins 

Data produced were searched using Mascot (Matrix Science), against the Uniprot 

database (version 3. 6. 2) with taxonomy of E. coli K12 selected. Data were validated 

using Scaffold (Proteome Software, Portland, OR).  

 

 

2. 22. Preparation of RNA for transcriptomics 

E. coli K12 was grown as described in Section 2. 17. In order to ensure that the cell 

concentration was within the parameters set by the protocol, trial growth curves were 

prepared and colony counts using the Miles and Misra method (as described in Section 

2. 12) were performed every hour for 8 hours. Mid-exponential growth of E. coli K12 
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was determined to have a cell count of 1x106 CFU/mL. As this concentration of cells 

was high for the assay, the cells were diluted 1:4 in LB media before continuing with 

the steps outlined in the protocol. The RNA for each growth condition was divided into 

10 technical replicates to ensure sufficient RNA was yielded. The RNA of E. coli K12 

was extracted using the Qiagen RNeasy® Protect Bacteria Mini Kit (Qiagen) as directed 

by the RNAprotect® Bacteria Reagent Handbook, Protocol 1 and 7 (Qiagen, 2005). 

Each RNA sample was treated with DNase twice with the Qiagen RNAse free on 

column DNAse kit according to the instructions in Appendix B of the RNAprotect® 

Bacteria Reagent Handbook (Qiagen, 2005), to ensure sufficient DNase digestion. 

Elution for each of the samples was performed with 30 µL RNAse free water. This was 

carried out twice for each column and eluates were pooled. The RNA concentrations 

were determined using the NanoDrop spectrophotometer (NanoDrop Technologies, 

Inc.) according to the manufacturer’s instructions. 

  

The integrity of the RNA was determined first by visualisation on a 2% agarose gel (E-

Gel® SizeSelect™ 2% Agarose, Invitrogen™). 20 µL 1:2 dilution total RNA in RNAse 

free water (Qiagen) was loaded into the 2% agarose. A lane on the gel was loaded with 

20 µL 1:2 dilution DNA ladder (HyperLadder™ 100 bp, formerly HyperLadder™ IV, 

Bioline) in water. A voltage was applied by placing the E-gels® in the supplied Power 

Base (Invitrogen™). RNA bands were visualised under U.V. light and images were 

taken on the FluorChem™ 5500 imager using the AlphaEase FC (FluorChem™ 5500) 

software. RNA samples, for which the 16S and 23S rRNA bands were not distinctly 

observed, were discarded. Good quality RNA visualised on the agarose gel were diluted 

to 1-2 ng in RNAse-free water for further validation of RNA integrity by the Genomic 

Technologies Core Facility, University of Manchester using the Agilent 2100 

Bioanalyzer (Agilent Technologies) and Agilent RNA 6000 Pico Kit. The 

electropherogram determined the integrity of the samples. In all cases the samples were 

of a high quality, ready for further processing and analysis. 

 

 

2. 22. 1. Quality control and preparation of transcripts 

Staff at the Centre for Genomic Research, University of Liverpool, carried out this 

work. Ribosomal RNA depletion was performed on 5 µg of total RNA using the 

Epicentre Ribo-Zero™ rRNA Removal Kit (Meta-Bacteria) (Epicentre Biotechnologies, 

USA). The library preparation of the depleted RNA was carried out using the Epicentre 
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ScriptSeq v2 kit (Epicentre Biotechnologies, USA) using 40-50 ng of material and 10 

cycles of PCR. For each sample, the whole of the PCR product was multiplexed and 

each sample was pooled and loaded on a single lane of a HiSeq Sequencing Platform 

(Illumia Inc. USA). Raw data were provided in the form of FASTQ files. 

 

 

2. 22. 2. Data analysis of transcripts 

The RNA-seq results from the Illumina system were output in FASTQ format. To 

calculate gene expression levels, RNA-seq analysis was performed using the 

commercially available CLC Genomics Workbench 6 platform and the CLC Main 

Workbench version 6.8.2 (http://www.clcbio.com/genomics/).  

 

The individual trimmed sequence reads in the FASTQ files were mapped to the E. coli 

K12 sub-strain MG1655 reference genome (Accession number NC_000913). The RNA-

seq analysis was carried out for sequence reads obtained from the growth control E. coli 

K12 (Growth control), E. coli K12 treated with sub-MIC Byotrol™ (Treated) and E. coli 

K12 challenged with 4 times MIC Byotrol™ (Challenge) separately using default 

parameters. Only the forward (R1) reads were used as this provided sufficient data 

which were not any further enhanced by the reverse (R2) reads. 

 

 

2. 22. 2. 1. Expression analysis: Data normalisation 

A gene is considered to be differentially expressed if a change in read counts between 

genes of different experimental samples is statistically significant (Fang et al., 2012). 

The differential expression between the three growth conditions was derived by first 

normalising data within a sample using reads per kilobase per million mapped reads 

(RPKM) values (Mortazavi et al., 2008). 

 

 

 

 

 

This method of normalisation accounts for differences in transcript length as well as 

library size, within a sample. 

 

RPKM =  
number of reads of the transcript 

total reads 

1000000 

transcript length 

1000 
x 
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Secondly, data was normalised based on the total number of reads, which takes into 

account differences in library size for each sample, and the proportion of counts that 

make up the total sum of counts in a sample. This was done using Kal’s Z-test (Kal et 

al., 1999). 

 

As these data were analysed for relative abundance, the methods of normalisation took 

into account the ratio of the number of reads in relation to the total number of 

transcripts. The same methods were used across all of the samples. 

  

The threshold for the fold change in expression based on these parameters was set as an 

expression value of ≤5 for down-regulated genes and ≥5 for up-regulated genes. The 

statistical significance of any differences in expression was determined by p-values of 

<0.001 and False Discovery Rate (FDR) p-values of <0.05, which were calculated by 

the CLC genomics software. 

 

 

2. 22. 2. 2. Generation of summary data and KEGG maps in MG-RAST 

A breakdown of the sequence data or ‘summary data’ shown in Section 6. 2 and KEGG 

(Kyoto Encyclopedia of Genes and Genomes) maps of transcripts that were uniquely 

expressed under the different growth conditions, shown in Appendix D.10, were 

generated using the Metagenomics-RAST (MG-RAST) analysis server 

(http://metagenomics.anl.gov/). All genes were annotated against GenBank and the 

M5NR protein database. The MG-RAST project database for this current study is 

available for public access: (http://metagenomics.anl.gov/linkin.cgi?project=3132). 

 

 

2. 22. 2. 3. Analysis of unmapped reads 

NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to align the unmapped 

reads to the nucleotide collection (nr) database for prokaryotes. BLAST results were 

filtered to eliminate matches with an E-value of less than 10e-6 (Strong et al., 2013). 

Results from the BLAST search are presented in Appendix D. 11. 
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3. 1. Polyamine interaction with porins 

Porins such as the outer membrane protein A (OmpA) are involved in biofilm formation 

(Barrios et al., 2006; Orme et al., 2006), polyamines are known to interact with porins 

(Iyer et al., 2000), therefore polyamines were investigated as potential inhibitors of 

biofilm formation in this chapter. 

 

Polyamines are natural biogenic polycationic compounds. The polyamines spermine, 

spermidine and putrescine are produced during the decarboxylation stages of the L-

ornithine pathway (Figure 3. 1) and the polyamine cadaverine is a product of the lysine 

degradation pathway (Figure 3. 2) (Iyer & Delcour, 1997). With the exception of 

spermine, which is associated only with eukaryotes, the other 3 polyamines are 

endogenous to both eukaryotes and prokaryotes (Iyer & Delcour, 1997; la Vega & 

Delcour, 1996).  

 

Previous studies have investigated the interaction of polyamines with outer membrane 

proteins on single cells in a planktonic bacterial culture (Katsu et al., 2002; Wortham et 

al., 2007). There have also been studies that have used electrophysiological techniques 

such as patch clamp on giant cells or spheroplasts to investigate the effect of the 

polyamine cadaverine on porin function (Ingham et al., 1990; la Vega & Delcour, 

1996). These studies demonstrated that cadaverine interacts with porins, specifically 

OmpC and OmpF, inducing and prolonging their incidence of closure (Iyer & Delcour, 

1997). OmpC and OmpF, like other porins, are predominantly open and are responsible 

for the permeability of the cell membrane to nutrients and hydrophilic compounds 

(Samartzidou & Delcour, 1999). 

 

Spermine, spermidine, cadaverine and putrescine are of interest to this study due to their 

interaction with the porins and proteins in the polyanionic bacterial outer membrane, 

particularly as OmpA was shown to be important in the development of a biofilm 

(Barrios et al., 2006; Orme et al., 2006). 
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Figure 3. 1. The synthesis of the polyamines spermine, spermidine and putrescine 
used in this study. Ornithine decarboxylation resulting in the biosynthesis of 
putrescine, spermidine and spermine. 

Figure 3. 2. The synthesis of the polyamine cadaverine used in this study. L-Lysine 
decarboxylation resulting in the biosynthesis of cadaverine. 
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3. 2. Optimisation of bacterial growth on a microtitre plate 

The microtitre plate biofilm formation assay is the preferred method for the high-

throughput analysis of biofilm formation and inhibition as it enables a high number of 

technical replicates for each concentration of potential inhibitors at a single time point 

for each bacterial strain. Bacterial growth on the surface of a microtitre plate varies 

from plate to plate and bacterial strain to bacterial strain, therefore, in order to measure 

the antimicrobial effect of the compounds used in this study, it was necessary to ensure 

that the conditions allow for sufficient biofilm formation. This can be determined by 

measuring the optical density (OD) after solubilising a biofilm that was stained with 

crystal violet. For this reason, the behaviour of each bacterial strain used in this study 

was optimised for biofilm formation. 

 

 

3. 2. 1. Optimisation of bacterial growth on different microtitre plate surfaces 

Bacteria do not readily attach to all surfaces; attachment is dependant on hydrophobic 

interactions, charge and surface roughness (Deighton et al., 2001; Li & Logan, 2004). 

Therefore, the surface on which the bacteria are expected to adhere has to be taken into 

consideration. Bacteria were grown on 3 different microtitre plate surfaces: a non-tissue 

culture treated plate, a tissue-culture treated plate and a non-tissue culture plate treated 

with poly-D-lysine (Figure 3. 3). Poly-D-lysine, due to its net positive charge, is used in 

mammalian cell culture to promote cell binding to the plate surface (Harrison et al., 

2010). Bacterial adherence to a non-tissue culture treated plate was greater than on a 

tissue culture treated plate. A non-tissue culture treated plate, which was coated with 

poly-D-lysine did not promote biofilm formation (Figure 3. 3). 

 

 

3. 2. 2. Optimisation of the minimum growth time which allows for biofilm 

visualisation after staining 

The time taken for bacteria to adhere to the surface with sufficient density to be 

visualised by crystal violet staining was also optimised. E. coli K12 and the clinical 

isolates of K. pneumoniae and P. aeruginosa were grown on microtitre plates for 4, 6, 8 

and 18 hours, then washed and stained with crystal violet. The stain was solubilised and 

the OD595 was obtained to determine the time taken to achieve sufficient biofilm growth. 
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The results in Figure 3. 4 demonstrate that as time increased, biofilm formation 

increased. This was observed for all of the bacteria, with P. aeruginosa forming the 

most biofilm, followed by E. coli K12 and then K. pneumoniae. As 18 hours enabled 

sufficient biofilm development, this was the time point used for the microtitre plate 

biofilm formation assays in this study. 

 

 
 

 

 

 

 

Figure 3. 3. Optimisation of bacterial growth on different microtitre plate surfaces. E. 
coli K12 and the clinical isolates of K. pneumoniae and P. aeruginosa were grown for 
18 hours at 37°C, on 3 different microtitre plates: non-tissue culture treated, tissue 
culture treated and a non-tissue culture treated plate treated with poly-D-lysine. The 
results are expressed as the mean of nine replicate wells involving 3 biological 
replicates for each strain. Error bars indicate the standard error of the mean. 
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Figure 3. 4. Minimum growth time required for biofilm formation which can be 
visualised by crystal violet staining. E. coli K12 and the clinical isolates of K. 
pneumoniae and P. aeruginosa were grown for 4, 6, 8 and 18 hours at 37°C to 
determine the optimal growth time which allows for sufficient biofilm to be visualised 
by crystal violet staining. The results are expressed as the mean of nine replicate wells 
involving 3 biological replicates for each strain. Error bars indicate the standard error of 
the mean. 
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3. 3. The effect of polyamines and pH on bacterial growth 

E. coli K12 biofilms were grown on microtitre plates for 18 hours at 37ºC in the 

presence of each of the polyamines to assess their effect on biofilm growth (Figure 3. 

5). At 10 mM spermine, spermidine and cadaverine, growth was reduced to ~30% of the 

growth control. At 10 mM putrescine, growth was reduced to ~70% of that of the 

control. 

 

The glass chamber slide assay was compared to the microtitre plate biofilm formation 

assay (Figure 3. 6). The glass chamber slide assay was useful for the visualisation of 

bacteria by microscopy and therefore it was necessary to ensure that bacterial growth 

and inhibition showed the same trend as on the microtitre plate surface. The trend in 

growth and inhibition of biofilms did not differ between the two different surfaces 

(Figure 3. 6). The results of the glass chamber slide assay demonstrated a decrease in 

biofilm formation to ~40% of the growth control when treated with 1 mM spermine and 

at concentrations greater than this there was no visible growth. At 10 mM, growth was 

reduced to ~25% and ~10% by spermidine and cadaverine, respectively. Putrescine 

appeared to be less potent at these concentrations; it reduced growth to ~70% at 10 mM.  

It was also clear from the results in Figure 3. 5 and Figure 3. 6 that there was a 

correlation between an increase in pH as the concentrations of polyamines increase 

above 1 mM. For this reason it was difficult to determine if a decrease in biofilm 

formation was a consequence of the inhibitory effects of increasing pH or the inhibitory 

effects of the polyamine. In order to elucidate any actual inhibitory activity of 

polyamines, a series of experiments were performed, which are described in the rest of 

this chapter. 
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Figure 3. 5. The microtitre plate biofilm formation assay to determine the biofilm 
inhibitory concentration of the polyamines spermine, spermidine, cadaverine and 
putrescine against E. coli K12 biofilm formation grown for 18 hours at 37°C. The 
results are expressed as the mean of nine replicate wells involving 3 biological 
replicates for each strain. Error bars indicate the standard error of the mean. 
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Figure 3. 6. The glass chamber slide assay to determine the biofilm inhibitory 
concentration of the polyamines spermine, spermidine, cadaverine and putrescine 
against E. coli K12 biofilms grown for 18 hours at 37°C.  The results are expressed as 
the mean of nine replicate wells involving 3 biological replicates for each strain. Error 
bars indicate the standard error of the mean. 
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3. 3. 1. The effect of pH alone on bacterial growth 

To determine if the inhibition of bacterial growth was due to a pH effect or to an 

increase in polyamine concentration, an assay was performed with increasing 

concentrations of sodium hydroxide (NaOH). E. coli K12 was grown in the presence of 

increasing concentrations of NaOH. The pH was recorded for the growth control and for 

each concentration of NaOH (Figure 3. 7).  

 

 

 
Figure 3. 7. The effect of increasing concentrations of sodium hydroxide (NaOH) on E. 
coli K12 biofilm growth. The bars indicate the average biofilm growth, the black line 
indicates the pH. The results are expressed as the mean of 3 replicate wells involving 3 
biological replicates for each strain. Error bars indicate the standard error of the mean. 
 
 

 

Figure 3. 7 demonstrate that the growth of E. coli K12 was reduced to ~70% at 10 mM 

NaOH where the pH was 8, and ~20% at 16.6 mM NaOH where the pH was 8.5. At pH 

8.5, E. coli K12 growth was reduced to ~10% with spermine, ~25-50% with spermidine 

and ~10-30% with cadaverine (Figure 3. 6). This suggests that there may be some 

inhibitory effect imposed by the polyamines and inhibition was not solely down to the 

effect of an increase in pH. To test this further, polyamines were quaternised and 

buffered to eliminate the effect of increasing pH on biofilm growth. 
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3. 3. 2. The effect of quaternised polyamines on biofilm formation on 

microtitre plates  

As primary amines, polyamines act as weak bases, therefore, in a solution of pH <10, 

the polyamines are able to accept hydrogen ions from their solution and increase their 

positive charge. This decrease in H+ ions of the solution increases the pH of the 

solution. A quaternary amine, also known as a quaternary ammonium ion, has a stable 

charge independent of the pH of their solution. The polyamines used in this study were 

quaternised to stabilise the pH. As an example of the stages involved in quaternisation, 

the quaternisation of spermine is detailed in Figure 3. 8. The same reaction was 

performed for each of the polyamines used in this study whereby NH2 and NH groups 

were replaced with methyl groups.  

 

To ensure that the polyamines had been fully quaternised, characterisation of the 

quaternised polyamine was performed using 1H NMR, the spectra of which are 

displayed in Figure 3. 9 to Figure 3. 13. Each peak on the NMR spectra relates to a 

hydrogen atom present in the quaternised polyamine. The number of hydrogen atoms 

represented by the peak is detailed at the base of the peak. In the spectra, the quaternised 

groups are represented by the peaks labelled ‘A’ (and also ‘C’ for spermine and 

spermidine). When the spectra were compared to the structure of each quaternised 

polyamine, it confirmed that the polyamines were successfully quaternised. 
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Figure 3. 8. The reaction scheme demonstrating the quaternisation of spermine. The six 
hydrogen atoms of the four primary amines of spermine reacted with methyl iodide to 
produce hydrogen iodide. The methyl groups replace each of the hydrogen atoms 
associated with the nitrogen atoms to form quaternary ammonium groups. This reaction 
completes the quaternisation of spermine.  
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Figure 3. 9. Characterisation of quaternised spermine. a) 1H NMR (D20) spectrum of a 
stationary sample of quaternised spermine. Capital letters from A-D correspond to the 
groups which are circled on the structure of quaternised spermine (part b); b) structure 
of quaternised spermine showing the number of hydrogen atoms associated with each 
carbon atom (e.g. 9 H) below the structure and capital letters from A-D which identify 
the groups which correspond to the peaks on the NMR spectrum. 
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Figure 3. 10. Characterisation of quaternised spermidine. a) 1H NMR (D20) spectrum of 
a stationary sample of quaternised spermidine. Capital letters from A-D correspond to 
the groups which are circled on the structure of quaternised spermidine (part b); b) 
structure of quaternised spermidine showing the number of hydrogen atoms associated 
with each carbon atom (e.g. 9 H) below the structure and capital letters from A-D which 
identify the groups which correspond to the peaks on the NMR spectrum. 
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Figure 3. 11. Characterisation of quaternised cadaverine. a) 1H NMR (D20) spectrum of 
a stationary sample of quaternised cadaverine. Capital letters from A-D correspond to 
the groups which are circled on the structure of quaternised cadaverine (part b); b) 
structure of quaternised cadaverine showing the number of hydrogen atoms associated 
with each carbon atom (e.g. 9 H) below the structure and capital letters from A-D which 
identify the groups which correspond to the peaks on the NMR spectrum. 
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Figure 3. 12. Characterisation of quaternised putrescine. a) 1H NMR (D20) spectrum of 
a stationary sample of quaternised putrescine. Capital letters from A-D correspond to 
the groups which are circled on the structure of quaternised putrescine (part b); b) 
structure of quaternised putrescine showing the number of hydrogen atoms associated 
with each carbon atom (e.g. 9 H) below the structure and capital letters from A-D which 
identify the groups which correspond to the peaks on the NMR spectrum. 



Chapter 3. Polyamines 

115 

 

The quaternised polyamines were tested to elucidate their potential inhibitory activity 

against biofilm growth. When quaternised, the pH remained constant at 7. The 

minimum biofilm inhibitory results, displayed in Table 3. 1 demonstrate that none of the 

quaternised polyamines inhibited the biofilm growth of any of the isolates tested.  

 
 
Table 3. 1. The minimum biofilm inhibitory concentration of quaternised polyamines 
on E. coli K12, and clinical isolates of K. pneumoniae and P. aeruginosa biofilm 
formation grown for 18 hours at 37°C, analysed by the microtitre plate assay. The 
results are expressed as mM and mg/mL concentrations. 
 

 

 Minimum biofilm inhibitory concentration 

 E. coli K12 K. pneumoniae 
clinical isolate 

P. aeruginosa 
clinical isolate 

    
Quaternised spermine >10 mM >10 mM >10 mM 
 >2 mg/mL >2 mg/mL >2 mg/mL 
    
Quaternised spermidine >10 mM >10 mM >10 mM 
 >1.5 mg/mL >1.5 mg/mL >1.5 mg/mL 
    
Quaternised cadaverine >10 mM >10 mM >10 mM 
 >1 mg/mL >1 mg/mL >1 mg/mL 
    
Quaternised putrescine >10 mM >10 mM >10 mM 
 >0.9 mg/mL >0.9 mg/mL >0.9 mg/mL 
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3. 3. 3. The effect of buffered spermine on biofilm formation and planktonic 

growth on microtitre plates 

Alongside testing the effect of quaternised polyamines on biofilm growth, polyamines 

were buffered in PBS. E. coli K12, and clinical isolates of K. pneumoniae and P. 

aeruginosa were grown on microtitre plates for 18 hours in the presence of buffered 

spermine with the pH adjusted to 7 to assess inhibition of biofilm growth (Figure 3. 13) 

and planktonic growth (Figure 3. 14) without the influence of an increase in pH. A 

higher concentration range of 0.1 mM to 200 mM spermine was used to determine the 

effects that concentrations greater than 10 mM had on bacterial growth, as this was the 

highest concentration tested previously.  

 

Spermine started to inhibit biofilm growth at 80 mM. At this concentration biofilm 

growth was reduced to ~60% of the growth control for E. coli K12, ~90% for K. 

pneumoniae and ~60% for P. aeruginosa (Figure 3. 13). Planktonic growth was 

assessed to determine if spermine was able to reach the outer membrane proteins of 

cells that were not protected by the biofilm matrix. Planktonic growth was reduced to 

~60-65% for both E. coli K12 and P. aeruginosa at 80 mM spermine. 80 mM and 100 

mM spermine did not inhibit planktonic growth of K. pneumoniae; however 200 mM 

spermine reduced planktonic growth to ~40% (Figure 3. 14). 
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Figure 3. 13. The MIC assay to determine the effect of spermine with the pH adjusted to 7, 
against E. coli K12, and clinical isolates of K. pneumoniae and P. aeruginosa biofilm 
formation grown for 18 hours at 37°C and analysed by the microtitre plate biofilm 
formation assay. The results are expressed as the mean of 16 replicate wells involving two 
biological replicates for each strain. Error bars indicate the standard error of the mean. 
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Figure 3. 14. The microtitre plate biofilm formation assay to determine the effect of 
spermine with the pH adjusted to 7, against E. coli K12, and clinical isolates of K. 
pneumoniae and P. aeruginosa biofilm cells grown for 18 hours at 37°C and analysed 
by the MIC assay. The results are expressed as the mean of 16 replicate wells involving 
two biological replicates for each strain. Error bars indicate the standard error of the 
mean. 
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3. 4. Western blot analysis of OprF 

A previous study showed that OmpA is over-expressed in E. coli biofilms (Orme et al., 

2006). It was hypothesised that outer membrane protein F (OprF), an OmpA homologue 

in P. aeruginosa, would also be over-expressed in the biofilm phenotype. Alongside the 

assays to determine the antimicrobial activity of the polyamines, western blot analysis 

was performed to determine if OprF, a ~34 kDa protein, is over-expressed in the biofilm 

phenotype compared to the planktonic phenotype. This assay would therefore validate 

OmpA and its homologue, OprF, as potential targets for the inhibition of P. aeruginosa 

biofilm formation. In this experiment OprF expression in planktonic bacteria was 

compared to that in the biofilm phenotype. The western blot displayed in Figure 3. 15 

showed that there was not a change in OprF protein expression between the biofilm and 

planktonic phenotypes suggesting that it may not be a suitable target for biofilm 

inhibition. 

 

 
 

 

 
 
 

Figure 3. 15. Western blot analysis of OprF from P. aeruginosa probed with 
monoclonal antibody MA7-3. Lane 1: Biofilm grown for 18 hours on glass slides, 
static; Lane 2: Planktonic growth after 18 hours shaking. Both samples contained the 
same concentration of protein as determined by the Bradford assay. This western blot is 
a representation of a minimum of 3 biological replicates. 
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3. 5. Discussion 

The work in this chapter was designed to determine if polyamines inhibit biofilm 

formation. Polyamines are known to interact with porins, and previous studies have 

demonstrated the importance of porins in biofilm formation (Barrios et al., 2006; Orme 

et al., 2006). Furthermore, a literature search did not reveal any previous studies on the 

interaction of extracellular polyamine on a population of cells in a biofilm, therefore to 

examine the effect of exogenous polyamine on biofilm growth is novel. 

 

Polyamines at increasing concentrations have an increasing pH (Figure 3. 5 and Figure 

3. 6). The experiments conducted with the polyamines not sufficiently buffered 

suggested that inhibition of biofilm formation occurred due to treatment with 

polyamines, particularly spermine. This effect was, however, most likely due to the non-

specific action of a high pH environment. The polyamines were buffered with PBS to 

keep the pH constant at 7, after which, biofilm inhibition was not observed (Figure 3. 

13). Alongside these experiments, the polyamines were quaternised to stabilise the pH 

and remove any inhibitory effect caused by an increase in pH. Biofilm inhibition was 

not seen with the quaternised polyamines against E. coli K12 and the clinical isolates of 

K. pneumoniae and P. aeruginosa. This further demonstrated that the inhibition 

observed with the polyamine solutions that were not buffered was mainly due to an 

increase in pH. Overall, this study did not result in complete bacterial inhibition with 

concentrations of up to 10 mM polyamine with the quaternised and buffered 

polyamines.  

 

Polyamines are essential to all living cells. Due to their polycationic nature they are 

known to bind and stabilise negatively charged macromolecules, such as DNA and 

RNA and molecules involved in translation; they are therefore associated with cell 

growth (Schuber, 1989; Wortham et al., 2007). Polyamines are also important in 

protecting DNA from free radicals by inactivating them thereby reducing oxidative 

stress. P. mirabilis mutants deficient in the polyamine putrescine have reduced growth 

and swarming (Wortham et al., 2007). Polyamines are also essential for protecting the 

bacterial cell, for instance, when the bacterial cell is in an acidic environment, cadverine 

synthesis is up-regulated as cadaverine neutralises external pH. Cadaverine therefore 

protects the cell from acidic conditions (Samartzidou & Delcour, 1999).  
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Studies have shown that extracellular polyamine may have a less potent effect on 

membrane protein function than endogenous periplasmic polyamine (Iyer & Delcour, 

1997). Spermine is found at concentrations of approximately ~10 µM-30 µM in the 

eukaryotic cell. In the bacterial cell, spermidine concentrations can range from 0.05 

mM–10 mM, and up to 50 mM of cadaverine and putrescine (Iyer & Delcour, 1997). 

They are possibly present at considerably higher concentrations in the periplasmic space 

close to the cell envelope, between the inner and outer membranes, as this is where the 

enzymes required for their synthesis, and transporters required for their export, are 

present (Iyer & Delcour, 1997). The bacteria utilise this endogenous polyamine for 

growth and protection (Samartzidou & Delcour, 1999; Schuber, 1989; Wortham et al., 

2007). This may be the reason that concentrations lower than 10 mM for all the 

extracellular polyamines that were used in the assays of this study, did not inhibit 

biofilm growth (Figure 3. 13). For this reason, the effect of spermine on planktonic and 

biofilm growth was determined by increasing the concentration range up to 200 mM 

(Figure 3. 13 and Figure 3. 14). These higher concentrations are likely to be toxic to the 

epithelial cells of the urinary tract if used as a catheter coating; however it demonstrated 

that inhibition of bacterial growth by using a higher concentration range was more 

successful. An inhibitory effect was seen with spermine at 80 mM reducing E. coli K12 

and P. aeruginosa biofilm growth to ~60% of the growth control. K. pneumoniae 

biofilm formation was not reduced to the same degree as the other bacteria at 80 mM 

and 200 mM spermine was required to reduce growth to ~40% (Figure 3. 13).  

 

Although this study revealed that polyamines are not useful inhibitors of porin function 

and did not prevent biofilm formation by uropathogenic bacteria, it did allow for the 

optimisation of experimental conditions for the potential inhibitors that are described in 

Chapter 4. 
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The work described in this chapter appears in the publication:  

Govindji, N., Wills, P., Upton, M., Tirelli, N. & Webb, M. (2013). The anti-biofilm 

effects of Byotrol™. Journal of	  Applied Microbiology, 114 (5) 1285-93. 

 

4. 1. Quaternary ammonium compounds as biocides 

Quaternary ammonium compounds (QACs) (also known as quaternary ammonium salts 

or quats), are polyatomic cations with varying and diverse structures that have a 

common chemical motif of a positively charged nitrogen atom covalently bonded to 

four alkyl groups (NR4
+). The covalent bonding of the carbons to the nitrogen group 

means that they do not dissociate in acid-base reactions, and therefore offer the QAC a 

stable permanent positive ionic charge independent of the pH of the solution in which 

they may be (Walker, 2007). QACs are commercially available and routinely used as 

the active ingredient in many antimicrobial and sanitising products due to their wide 

spectrum of activity against bacteria, yeasts, viruses and fungi (Nohr & Macdonald, 

1994).	  

 

 

4. 1. 1. QACs: mode of action 

The QACs used in this study are membrane active surfactants with a broad spectrum 

activity. Cationically charged biocides adsorb to the cell envelope by ionic interactions 

with anionic membrane proteins, the lipopolysaccharides and the negatively charged 

phosphate head of the phospholipid bilayer of the outer membrane, they then 

permeabilise the outer membrane allowing diffusion to the cytoplasmic membrane 

(Ahlstrom, 1995; Gilbert, 1985; Ikeda et al., 1984; Wortham et al., 2007).  

 

At high concentrations of QAC, the outer and cytoplasmic membranes are completely 

perturbed and the cell content is released (Ikeda et al., 1984). This mode of action is 

similar to the action of most cationic detergents and is therefore relatively non-specific 

(Denyer, 1995). At MIC levels, the mode of action has more specific consequences: the 

antimicrobial integrates into the membrane and alters the phase-transition temperature. 

At physiological temperatures, the bacterial membrane is in a fluid phase, however with 

the interaction of QACs the membrane develops a liquid-crystalline structure and this 

results in a loss of physiological and osmoregulatory functions (Gilbert & Moore, 

2005).  
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4. 2. The susceptibility of bacterial growth to polyquaterniums 

A group of QACs have been designated the term polyquaterniums (PQs) by the 

International Nomenclature for Cosmetic Ingredients (INCI). Polyquaterniums are 

polycationic polymers that have a QAC as an active part of their structure. They are 

commonly used in the cosmetic and domestic cleaning industry as stabilising agents and 

solution thickeners (Jachowicz et al., 2008; Ribeiro et al., 2004), however, some also 

have known antimicrobial properties. PQ-1, for example, is known to have 

antimicrobial and antifungal properties and is used as a sanitiser in contact lens 

solutions (Codling et al., 2003a; Codling et al., 2003b; Jones et al., 2002). 

 

A range of different PQs were tested against the uropathogenic organisms previously 

described.  The details of each polyquaternium (PQ) are outlined in Table 4. 1. The 

commercial names of the compounds, as designated by the INCI, will be used 

throughout. The numbering of PQs is based on the order in which these PQs appear in 

the INCI’s registry. 

 

 

Table 4. 1. Nomenclature of polyquaternium compounds used in this study. 
 

Commercial (INCI) name Chemical name 
 
Polyquaternium-4 (PQ-4) 

 
Cellulose, 2-hydroxyethyl ether, polymer with N,N-
dimethyl-N-2-propen-1-yl-2-propen-1-aminium 
chloride, graft (1:1) 

  
Polyquaternium-6 (PQ-6) Poly(diallyldimethyl ammonium) chloride 
  
Polyquaternium-7 (PQ-7) Poly(acrylamide-co-diallyldimethylammonium 

chloride)  
  
Polyquaternium-10 (PQ-10) Hydroxyethyl cellulose ethoxylate, quaternised 
  
Polyquaternium-28 (PQ-28) Poly(vinylpyrrolidone-co-methacrylamidopropyl 

trimethylammonium chloride) 
  
Polyquaternium-37 (PQ-37) Poly(2-dimethylamino)ethyl methacrylate methyl 

chloride 
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Figure 4. 1 a. Polyquaternium compounds used in this study. 
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Figure 4. 2 b. Polyquaternium compounds used in this study (continued). 
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It is suggested in the literature that molecular weight is a significant factor in the 

antimicrobial activity of a quaternary ammonium compound (Engler et al., 2011). 

Therefore the Mw of the compounds used in this study were determined by gel 

permeation chromatography size exclusion chromatography (SEC). The relevance of the 

size of these compounds will be evaluated in Section 4. 3. 
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Table 4. 2. Molecular weight (Mw) of polyquaternium compounds. 

 

Polyquaternium Molecular weight (Mw) (kDa) 

  

Polyquaternium-4 460 

  

Polyquaternium-6 12 

  

Polyquaternium-6 38 

  

Polyquaternium-6 400 

  

Polyquaternium-10 750 

  

Polyquaternium-28 990 

  

Polyquaternium-37 1900 

 

 

Alongside the PQs, the proprietary antimicrobial Byotrol™ was also tested against E. 

coli K12, and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa. Byotrol™ 

contains a mixture of QACs (benzalkonium chloride and didecyl dimethyl ammonium 

chloride) and a polymeric biguanide (polyhexamethylene biguanide). A more in-depth 

introduction to Byotrol™ is given in Section 4. 4 where there is further analysis of this 

compound.  

 

These compounds were added with the bacterial inoculum at 0 hours and incubated for 

18 hours at 37°C. A summary showing the MIC and biofilm inhibitory concentrations 

of the polyquaterniums and Byotrol™ are presented in Table 4. 3 and Table 4. 4 

respectively. Dose response data for planktonic and biofilm cells are shown in Figure 4. 

3 to Figure 4. 16. All data represent the mean of over 24 replicates, involving a 

minimum of 3 biological replicates for each strain. 
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Table 4. 3. The minimum inhibitory concentration (MIC) of polyquaternium (PQ) 
compounds and Byotrol™ for the planktonic growth of E. coli K12 and the clinical 
isolates of E. coli, K. pneumoniae and P. aeruginosa.  
 
 

 
*PQ-6 is a 12 kDa compound. 

 Minimum inhibitory concentration (MIC) (µg/mL) 

 E. coli K12 E. coli clinical 
isolate 

K. pneumoniae 
clinical isolate 

P. aeruginosa 
clinical isolate 

     
PQ-4 2000 1000 >5000 5000 
     
PQ-6* 15 15 30 30 
     
PQ-7 5000 5000 5000 5000 
     
PQ-10 5000 5000 5000 5000 
     
PQ-28 >5000 >5000 >5000 >5000 
     
PQ-37 >1000 >1000 >1000 >1000 
     
Byotrol™  3 3 15 15 
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Table 4. 4. The minimum biofilm inhibitory concentration of polyquaternium (PQ) 
compounds and Byotrol™ for the biofilm growth of E. coli K12 and the clinical isolates 
of E. coli, K. pneumoniae and P. aeruginosa. 

 
 
*PQ-6 is a 12 kDa compound. 

 

It is clear from the results presented in Table 4. 3 and Table 4. 4 that as the molecular 

weight increased, the antimicrobial activity of the compounds decreased. The 

compounds with the most inhibitory action were Polyquaternium-6 (PQ-6) and 

Byotrol™.  Interestingly, Polyquaternium-7 (PQ-7), which is a copolymer with repeating 

units of PQ-6 and acrylamide, had an MIC of greater than 5 mg/mL and also did not 

inhibit biofilm formation at the same concentration (Table 4. 3). PQ-7 consists of the 

relatively antimicrobial PQ-6 as one of its monomer units (Figure 4. 1 a), however when 

PQ-6 is co-polymerised with acrylamide to make PQ-7, it has a reduced antimicrobial 

effect than PQ-6 alone. 

 

The MIC and minimum biofilm inhibitory concentrations were greater than 1 mg/mL 

for the other polyquaternium compounds tested and were therefore not considered to be 

active as antimicrobials. The dose response results for each of these compounds against 

the planktonic and biofilm growth of each organism used in this study are shown in 

Figure 4. 3 to Figure 4. 16. 

 Minimum biofilm inhibitory concentration (µg/mL) 

 E. coli K12 E. coli clinical 
isolate 

K. pneumoniae 
clinical isolate 

P. aeruginosa 
clinical isolate 

 
PQ-4 

 
1000 

 
1000 

 
>5000 

 
5000 

     
PQ-6* 15 15 30 30 
     
PQ-7 >5000 >5000 >5000 >5000 
     
PQ-10 >5000 >5000 >5000 >5000 
     
PQ-28 2000 5000 >5000 >5000 
     
PQ-37 1000 >1000 >1000 >1000 
     
Byotrol™  3 5 15 30 
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Figure 4. 3. The dose response of Polyquaternium-4 against the planktonic cells of E. 
coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 4. The dose response of Polyquaternium-4 against the biofilm cells of E. coli 
K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 5. The dose response of Polyquaternium-6 (12 kDa) against the planktonic 
cells of E. coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, 
grown for 18 hours. 



Chapter 4. Quaternary Ammonium Compounds 

134 

 

 
Figure 4. 6. The dose response of Polyquaternium-6 (12 kDa) against the biofilm cells 
of E. coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown 
for 18 hours. 
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Figure 4. 7. The dose response of Polyquaternium-7 against the planktonic cells of E. 
coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 



Chapter 4. Quaternary Ammonium Compounds 

136 

 

 
Figure 4. 8. The dose response of Polyquaternium-7 against the biofilm cells of E. coli 
K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 9. The dose response of Polyquaternium-10 against the planktonic cells of E. 
coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 10. The dose response of Polyquaternium-10 against the biofilm cells of E. 
coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 11. The dose response of Polyquaternium-28 against the planktonic cells of E. 
coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 12. The dose response of Polyquaternium-28 against the biofilm cells of E. 
coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 13. The dose response of Polyquaternium-37 against the planktonic cells of E. 
coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 14. The dose response of Polyquaternium-37 against the planktonic cells of E. 
coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 
hours. 
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Figure 4. 15. The dose response of Byotrol™ against the planktonic cells of E. coli K12 
and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 hours. 
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Figure 4. 16. The dose response of Byotrol™ against the biofilm cells of E. coli K12 
and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown for 18 hours. 
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4. 3. The susceptibility of bacteria to Polyquaternium-6 (PQ-6) 

As PQ-6 (12 kDa) demonstrated the most antimicrobial activity of the polyquaternium 

compounds tested in this study, this was studied in more detail. There is evidence to 

suggest that increasing molecular weights may alter the antimicrobial effect of a 

polyquaternium (Engler et al., 2011). To determine the effect of increasing molecular 

weights on bacterial growth, a range of molecular weights of PQ-6 were synthesised by 

Peter Wills at the Organic Material Innovation Centre (OMIC), University of 

Manchester. The 3 molecular weights of PQ-6 tested were 12 kDa, 38 kDa, and 400 

kDa. Increasing concentrations of PQ-6 were tested against the bacterial isolates used in 

this study which were grown under static conditions at 37°C for 18 hours. The results, 

summarised in Table 4. 5 and Table 4. 6 show that as the molecular weight increased, 

the antimicrobial effect decreased. The dose response results for PQ-6 (12 kDa) against 

planktonic growth and biofilm growth are shown in Figure 4. 5 and Figure 4. 6; and for 

PQ-6 (38 kDa) and PQ-6 (400 kDa) in Figure 4. 17 to Figure 4. 20.  

 

To confirm the inhibitory effects observed for PQ-6 (12 kDa), viable cell counts and 

bright-field microscopy were performed. The viable cell counts (Figure 4. 21) validate 

the MIC results (Table 4. 3) for the planktonic phenotype of bacteria treated with PQ-6 

(12 kDa). The microscopy results (Figure 4. 22) also validate the minimum biofilm 

inhibitory concentration (Table 4. 4) results for the biofilm phenotype of bacteria grown 

treated with PQ-6 (12 kDa). The viable cell counts and bright field microscopy results 

correlate with the MIC and biofilm inhibition trend of inhibition demonstrated with PQ-

6 (12 kDa). 
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Table 4. 5. The minimum inhibitory concentration of increasing molecular weights of 
Polyquaternium-6 (PQ-6) compounds for the planktonic growth of E. coli K12 and the 
clinical isolates of E. coli, K. pneumoniae and P. aeruginosa. 
 
 
 

 
 
 
Table 4. 6. The minimum biofilm inhibitory concentration of increasing molecular 
weights of Polyquaternium-6 (PQ-6) compounds for the planktonic growth of E. coli 
K12 and the clinical isolates of E. coli, K. pneumoniae and P. aeruginosa. 
 

 Minimum biofilm inhibitory concentration  (µg/mL) 

 E. coli K12 E. coli clinical 
isolate 

K. pneumoniae 
clinical isolate 

P. aeruginosa 
clinical isolate 

     
PQ-6 
12 kDa 

15 15 30 30 

     
PQ-6 
38 kDa 

20 30 200 60 

     
PQ-6  
400 kDa 

20 100 400 100 

     
 

 Minimum inhibitory concentration (MIC) (µg/mL) 

 E. coli K12 E. coli clinical 
isolate 

K. pneumoniae 
clinical isolate 

P. aeruginosa 
clinical isolate 

     

PQ-6 
12 kDa 

15 15 30 30 

     
PQ-6 
38 kDa 

20 20 20 20 

     
PQ-6 
400 kDa 

20 50 50 100 
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Figure 4. 17. The dose response of Polyquaternium-6 (38 kDa) against the planktonic 
cells of E. coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, 
grown for 18 hours. 
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Figure 4. 18. The dose response of Polyquaternium-6 (38 kDa) against the biofilm cells 
of E. coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, grown 
for 18 hours. 
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Figure 4. 19. The dose response of Polyquaternium-6 (400 kDa) against the planktonic 
cells of E. coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, 
grown for 18 hours. 
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Figure 4. 20. The dose response of Polyquaternium-6 (400 kDa) against the biofilm 
cells of E. coli K12 and clinical isolates of E. coli, K. pneumoniae and P. aeruginosa, 
grown for 18 hours. 
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Figure 4. 21. Viable cell counts determining the activity of increasing concentrations of 
Polyquaternium-6 (12 kDa) against the planktonic cells of E. coli K12 and the clinical 
isolates of E. coli, K. pneumoniae and P. aeruginosa grown for 18 hours. Growth is 
presented as the colony forming units/mL (CFU/mL) from an average of a minimum of 
3 biological replicates. Error bars indicate the standard deviation. 
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Figure 4. 22. Bright field microscopy of biofilms treated with Polyquaternium-6 (12 
kDa) Bright field microscopy images (100x magnification) showing the effects of 
increasing concentrations of Polyquaternium-6 on the biofilm formation of E. coli K12 
and the clinical isolates of E. coli, K. pneumoniae and P. aeruginosa grown for 18 hours 
and stained with crystal violet. 
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4. 4. The susceptibility of bacteria to the proprietary antimicrobial 

Byotrol™ and its individual components: PHMB, BAC and DDQ 

Byotrol™ is a commercially available solution and is the active ingredient in sanitisers, 

detergents and cleaning agents used in the domestic environment as well as the food 

industry and clinical setting. Byotrol™ consists of alkyl dimethyl benzyl ammonium 

chloride (BAC) (4%), didecyl dimethyl ammonium chloride (DDQ) (6%), and 

poly(hexamethylene biguanide) (PHMB) (10%). The structures of the constituents of 

Byotrol™ are shown in Figure 4. 23.  

 

 

 
 
Figure 4. 23. The individual constituents of Byotrol™: BAC, DDQ and PHMB.
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PHMB is a polymeric biguanide compound which has a hydrophobic backbone, off 

which are cationic groups that confer its antibacterial properties (Gilbert & Moore, 

2005). Research on PHMB began during the 1940s and 1950s, and it is now commonly 

used in the domestic industry in cleaning solutions, disinfectant, as environmental 

biocides, in swimming pools for sanitisation and in a wide range of antiseptic materials 

and solutions including hand sanitisers. It is also present in commercially available 

wound dressings and contact lens solutions (Gilbert & Moore, 2005; Kim et al., 2011). 

The mode of action of PHMB has the same overall effect as QACs in that the cell is 

perturbed and the cell content is released, however the mechanism is slightly different. 

The positively charged divalent cations (Mg2+ and Ca2+) that stabilise the lipid bilayer 

are displaced by the charged nitrogen of the QAC, which, in effect, solubilises and 

disintegrates the bacterial outer membrane allowing entry into the cell (Wilkinson & 

Gilbert, 1987). 

 

Benzalkonium chloride (BAC) and didecyl dimethyl ammonium chloride (DDQ, also 

known as DDAC) are quaternary ammonium surfactants in Byotrol™. The BAC used in 

this study has a 12-16 alkyl chain length, as this is known to be the optimum chain 

length for antimicrobial activity (Halvax et al., 1990). BAC is currently the most widely 

used preservative in ophthalmic solutions due to its broad spectrum of activity and 

known chemical compatibility with many different classes of therapeutic agents, 

presumably due to its ability to perturb the bacterial membrane (Kaur et al., 2009; 

Rolando et al., 2011). It has also been investigated as a central venous catheter coating 

(Jaeger et al., 2001). DDQ is also a widely used biocide in the environmental industries 

(Brooks, 2001). Ioannou and co-workers identified that DDQ can cause autolysis of 

Staphylococcus aureus at low concentrations (9-18 µg/mL), however they did not 

perform testing of this on Gram-negative organisms (Ioannou et al., 2007). 

 

The activity of Byotrol™ and its individual constituents (PHMB, BAC and DDQ) were 

tested against the planktonic and biofilm phenotypes of all the organisms used in this 

study. The results are summarised in Table 4. 7 and Table 4. 8 and details of the dose 

response data are displayed in Figure 4. 15 and Figure 4. 16. All data represent the 

mean of over 24 replicates, involving a minimum of 3 biological replicates for each 

strain. 
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Table 4. 7. Minimum inhibitory concentrations (MICs) of Byotrol™ and its constituents, 
PHMB, DDQ and BAC against E. coli K12 and the clinical isolates of E. coli, K. 
pneumoniae and P. aeruginosa. 
 

 Minimum inhibitory concentration (MIC) (µg/mL) 

 E. coli K12 E. coli clinical 
isolate 

K. pneumoniae 
clinical isolate 

P. aeruginosa 
clinical isolate 

 
Byotrol™ 

 
3 

 
3 

 
15 

 
15 

     

PHMB 15 60 100 200 

     

DDQ 20 30 100 100 

     

BAC 60 100 100 400 

 
 
 

 

Table 4. 8. Minimum biofilm inhibitory concentrations of Byotrol™ and its constituents, 
PHMB, DDQ and BAC against E. coli K12 and the clinical isolates of E. coli, K. 
pneumoniae and P. aeruginosa.  
 

 Minimum biofilm inhibitory concentration (µg/mL) 

 E. coli K12 E. coli clinical 
isolate 

K. pneumoniae 
clinical isolate 

P. aeruginosa 
clinical isolate 

     
Byotrol™ 3 5 15 20 

     

PHMB 20 60 100 400 

     

DDQ 20 30 30 200 

     

BAC 60 100 60 400 
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Byotrol™ displayed antimicrobial activity against the planktonic and biofilm 

phenotypes. The MICs range from 3 µg/mL for planktonic E. coli K12 to 15 µg/mL for 

planktonic P. aeruginosa (Table 4. 7).  The minimum biofilm inhibitory concentrations 

that range from 3 µg/mL for biofilm E. coli K12 to 20 µg/mL for biofilm P. aeruginosa 

(Table 4. 8). A comparison between the results in the two tables show that Byotrol™ 

displayed a much greater degree of antimicrobial activity than its individual 

constituents. 

 

The antimicrobial activity of Byotrol™ against the bacterial isolates was validated by 

viable cell counts and bright field microscopy. Viable cell counts are a measure of 

planktonic cells (Figure 4. 24) therefore confirmed the inhibition of planktonic cells as 

shown by the MIC results (Table 4. 7); bright field microscopy shows an image of cells 

attached to a surface (Figure 4. 25) therefore validate biofilm formation as shown by the 

minimum biofilm inhibitory results (Table 4. 8). Although the viable cell counts were 

higher for all the bacteria in relation to the MIC results, apart from the E. coli clinical 

isolate that was the same (3 µg/mL); the trend was the same for all both the viable cell 

counts and MIC results. The results of the bright field microscopy showed a decrease in 

cell growth at 5 µg/mL, 20 µg/mL and 15 µg/mL for E. coli K12, the clinical isolates of 

E. coli, K. pneumoniae and P. aeruginosa, respectively (Figure 4. 25). The microscopy 

results demonstrated that as the concentration of Byotrol™ increased, the number of 

bacterial cells decreased (Figure 4. 25), which correlate with the minimum biofilm 

inhibitory concentrations shown in Table 4. 7. 
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Figure 4. 24. Viable cell counts determining the activity of increasing concentrations of 
Byotrol™ against the planktonic cells of E. coli K12 and the clinical isolates of E. coli, 
K. pneumoniae and P. aeruginosa grown for 18 hours. Growth is presented as the 
colony forming units/mL (CFU/mL) from an average of a minimum of 3 biological 
replicates. Error bars indicate the standard deviation. 
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Figure 4. 25. Bright field microscopy of biofilms treated with Byotrol™. Bright field 
microscopy images (100x magnification) showing the effects of increasing 
concentrations of Byotrol™ on the biofilm formation of E. coli K12 and the clinical 
isolates of E. coli, K. pneumoniae and P. aeruginosa grown for 18 hours and stained 
with crystal violet. 
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4. 4. 1. Pre-coating a surface with Byotrol™ 

In order to test the effect of Byotrol™ on initial bacterial attachment, Byotrol™ was 

coated onto a glass surface (Figure 4. 26) and a polystyrene microtitre plate surface 

(Figure 4. 27) prior to the introduction of inoculum. Pre-treating a glass surface also 

enabled the visualisation of the coating with atomic force microscopy (Section 4. 4. 1. 

2). These data suggest that there was little difference between pre-coating a glass 

surface and pre-coating a polystyrene microtitre plate. On both the glass surface and 

microtitre plate the inhibitory concentration for E. coli K12 and E. coli clinical isolate 

was 400 µg/mL, for K. pneumoniae the inhibitory concentration was 1 mg/mL and for 

P. aeruginosa is greater than 1 mg/mL. 
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Figure 4. 26. The effects of a Byotrol™ coated glass surface on biofilm development.  
A glass surface was pre-coated with Byotrol™ for 18 hours and seeded with E. coli K12 
and the clinical isolates of E. coli, K. pneumoniae and P. aeruginosa for 8 hours.  The 
extent of biofilm formation was determined by crystal violet staining. The absorbance 
values of the solubilised stain displayed represent the mean of over 24 experiments, 
involving a minimum of 3 biological replicates for each strain. Error bars indicate the 
standard error of the mean. 
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Figure 4. 27. The effects of a Byotrol™ coated polystyrene surface on biofilm 
development.  
A microtitre plate was pre-coated with Byotrol™ for 18 hours and seeded with E. coli 
K12 and the clinical isolates of E. coli, K. pneumoniae and P. aeruginosa for 8 hours.  
The extent of biofilm formation was determined by crystal violet staining. The 
absorbance values of the solubilised stain displayed represent the mean of over 24 
experiments, involving 3 biological replicates for each strain. Error bars indicate the 
standard error of the mean. 
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4. 4. 1. 2. Atomic force microscopy of a glass surface pre-coated with Byotrol™ 

Non-contact atomic force microscopy (AFM) was performed on a surface with 

increasing concentrations of Byotrol™ (Figure 4. 28). This was to confirm how evenly a 

surface was being coated by Byotrol™, thereby providing an insight into the mode of 

action of Byotrol™ as a potential antimicrobial coating. AFM also gave an indication of 

the depth of the coating. The results demonstrate that there was full coverage of the 

surface at both concentrations (Figure 4. 28 a). A scratch showed the depth of the 

coating at 5 µg/mL Byotrol™ to be approximately 20 nm, and approximately 60 nm with 

a 1 mg/mL coating of Byotrol™. It was clear that as the concentration of Byotrol™ 

increased, the coating depth increased. (Figure 4. 28 b). Inhibition is greatest when the 

surface is fully and evenly coated. 
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Figure 4. 28. The coating potential of Byotrol™: a) atomic force microscopy images of 
a glass surface coated with 5 µg/mL and 1 mg/mL Byotrol™ for 18 hours; b) a scratch 
was made across the surface to indicate the depth of the coatings. The film depth was 
determined by measuring the distance across the scratches in 3 distinct areas. 
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4. 4. 2. Eradication of an established biofilm with Byotrol™: MBEC assay 

system 

The MIC and microtitre plate biofilm formation assays used in this study have tested the 

effect of QACs and Byotrol™ in suspension against planktonic cells. This has been 

useful in identifying antimicrobials that inhibit planktonic cells, which subsequently 

reduce the number of viable cells remaining to establish a biofilm. Of the bacterial 

inhibitors tested, Byotrol™ was proven to be superior. It was therefore useful to 

determine if Byotrol™ was cabable of removing an established biofilm, as this may 

increase it’s use in the clinical environment. 

 

The MBEC (minimum biofilm eradication concentration) assay system is the first high 

throughput method that has been developed which tests the susceptibility of established 

biofilms to antimicrobials, as well as giving an MIC for the planktonic growth which is 

shed from a biofilm (Ceri et al., 1999). This was determined for Byotrol™. Biofilms 

were allowed to grow on pegs for 18 hours, challenged with Byotrol™ for 18 hours and 

surviving biofilm cells were allowed to recover in fresh media for 18 hours. The pegs 

with biofilm growth were stained and the stain solubilised. The MBEC value is defined 

as the minimum concentration of antimicrobial that inhibits the re-growth of biofilm 

cells in recovery media (Sawasdidoln et al., 2010). The ‘P-MIC’, the minimum 

inhibitory concentration of the cells which were shed from the pegs during challenge 

with Byotrol™ (Sawasdidoln et al., 2010), was also determined (Figure 4. 30). The 

MBEC results showed some residual crystal violet staining of Byotrol™ on the pegs at 1 

mg/mL, however the P-MIC data clearly demonstrated that biofilm was eradicated 

(Figure 4. 30), and generally there was a similar trend between this and the MBEC. As 

the literature suggests, once a biofilm is established, it is more difficult to eradicate 

(Lewis, 2001). The eradication of an 18 hour biofilm with Byotrol™ gave an MBEC 

which was approximately 40-60% higher than the P-MIC and minimum biofilm 

inhibitory concentrations. 
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Figure 4. 29. Eradication of an 18 hour biofilm: Minimum biofilm eradication 
concentration (MBEC) determining the activity of increasing concentrations of 
Byotrol™ on a biofilm grown on polystyrene pegs for 18 hours and treated with 
Byotrol™ for 18 hours under static conditions at 37°C. Bacterial cells were allowed to 
recover in fresh media for 18 hours. The extent of biofilm formation was determined by 
crystal violet staining and solubilised. The absorbance values of the solubilised stain 
displayed represent the mean of over 24 experiments, involving a minimum of 3 
biological replicates for each strain. Error bars indicate the standard error of the mean. 
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Figure 4. 30. P-MIC for planktonic cells shed from a biofilm: The activity of increasing 
concentrations of Byotrol™ on a biofilm grown on polystyrene pegs for 18 hours and 
treated with Byotrol™ for 18 hours under static conditions at 37°C. The growth of 
planktonic cells shed from the biofilm grown on the pegs was determined by reading the 
absorbance. The absorbance values represent the mean of over 24 experiments, 
involving minimum of 3 biological replicates for each strain. Error bars indicate the 
standard error of the mean. 
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4. 5. Discussion 

Biofilm formation on the surface of urinary catheters is a great expense to the health 

service (Polonio et al., 2001).  Due to the inherent resistance of bacteria to conventional 

antimicrobials, colonised catheters routinely have to be removed to reduce the risk of 

systemic infection (Trautner & Darouiche, 2004).  The overall outcome of this research 

should be to support efforts designed to reduce the incidence of CAUTI and prolong the 

life of a urinary catheter. 

 

 

4. 5. 1. The difference between E. coli, K. pneumoniae and P. aeruginosa 

For all of the compounds tested, there was a trend whereby the E. coli laboratory strain 

was the most sensitive, followed by the E. coli clinical isolate, K. pneumoniae and then 

finally, P. aeruginosa. Genes that confer fitness to bacteria may be deleted or become 

non-functioning as a result of serial passage of laboratory strains over the years 

(Koskiniemi et al., 2012), and this may be why the laborarory strain of E. coli was more 

sensitive to the compounds tested. Most of the QACs showed less inhibition against P. 

aeruginosa. Biocides that have a broad spectrum of activity and non-specific mode of 

action may cause non-specific resistance mechanisms, for example, in P. aeruginosa, 

the hyper-expression of multidrug efflux pumps. This may explain the increased 

tolerance of P. aeruginosa to biocides. There may also be changes to the outer 

membrane which reduces the permeability of the membrane to the biocide (Gilbert, 

2005). Previous studies have found that P. aeruginosa has a higher Mg2+ content 

compared to other Gram-negative bacteria, which increases the outer membrane 

stability, as divalent cations increase lipopolysaccharide-lipopolysaccharide 

interactions. In comparison to the PQs tested, the marginally higher MIC of Byotrol™ 

for P. aeruginosa compared to that of the other organisms does not alter the fact that 

Byotrol™ was still the most superior inhibitor tested in this study.  

 

 

4. 5. 2. The effect of molecular weight on inhibition of bacterial growth  

There was a correlation between molecular weight and antimicrobial activity for the 

compounds tested in this study. The increasing molecular weights tested for PQ-6 

demonstrated that the higher the molecular weight, the lower its inhibitory activity. A 

reduction in inhibitory activity of higher molecular weight compounds compared to 
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lower molecular weight compounds can be explained by understanding the relationship 

between the polycations on a polymer chain, and the counter-ions associated with the 

cations. It has been suggested that there is a link between the conformation of PQ-6 in 

solution and its corresponding MICs, as the molecular weight of the PQ-6 effects the 

molecule’s conformation (Peter Wills, personal communication). Lower molecular 

weight samples (12 kDa and 38 kDa) are suggested to be in a more rod like 

conformation compared to the higher molecular weight (400 kDa) sample, suggested to 

be in a more coil like conformation. With this in mind, it was proposed that when the 

conformation of PQ-6 is more coil-like compared to a rod-based conformation, some 

poly-cations would be less accessible to the bacteria (Figure 4. 31). In addition to this, 

the conformation of the molecule can also affect its charge density properties, with the 

coil conformation believed to enhance the counter ion condensation phenomena, 

thereby reducing the full antimicrobial potential of the positive charge (Wills, 2013). 

 

 
 

 

 

In this study, the difference between the polyquaterniums and PHMB should have been 

greater, given the known antimicrobial effect of PHMB (Allen et al., 2006; Gilbert et 

al., 1990; Gilbert & Moore, 2005), however, there was only a 5-10 fold difference 

between PQ-6 (12 kDa compound) which has an MIC of 15-30 µg/mL for all of the 

organisms tested, and PHMB which has an MIC of 15 µg/mL for E. coli K12 and 200 

µg/mL for P. aeruginosa (Table 4. 7). This may be because of the molecular weight of 

PHMB used in this study was not high enough in relation to that of PQ-6. Gilbert and 

Figure 4. 31. The folding effect of polyquaterniums as the polymer chain length 
increases and the molecular weight increases. The positive charges are closer together 
when a polymer folds, and this reduces its antimicrobial effect, as the positive charge is 
sequestered by the counter-ion. 
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co-workers have demonstrated that as the molecular weight of PHMB increases, the 

biocidal effect also increases (Gilbert et al., 1990); Gilbert, 2005). 

 

 

4. 5. 3.  Validation of MIC and minimum biofilm inhibitory concentrations 

For the most inhibitory compounds, Byotrol™ and PQ-6 (12 kDa), MIC and minimum 

biofilm inhibitory concentrations were validated with viable cell counts and bright field 

microscopy. The level of planktonic cells was proportional to the biofilm cells that 

adhered to the microtitre plate surface (Ymele-Leki & Ross, 2007). It was therefore 

important to validate the MIC with the viable cell count of planktonic cells. The viable 

cell counts of bacteria grown treated with Byotrol™ showed a positive correlation with 

the MIC results. Lower MIC values in relation to the viable cell counts are to be 

expected as the viable cell count will show greater sensitivity to growth than an OD 

measurement of the turbidity of bacterial growth. Biofilm growth can be validated by 

microscopy, as the bacterial cells are attached to the glass surface. Microscopy was 

performed for PQ-6 (12 kDa) and Byotrol™. The images presented were a representative 

of at least 3 replicates and inhibition of growth was compared to the growth control by 

visual inspection. In all cases, the minimum biofilm inhibitory concentration and the 

reduction in cells shown by the microscopy images were complementary. 

 

 

4. 5. 4. The effect of Byotrol™ on bacterial growth 

PHMB was the most potent of all the individual cationic biocides tested in the current 

study. This is the main active component in Byotrol™; therefore it is unsurprising that 

the Byotrol™ solution was by far the most efficacious antimicrobial tested against all of 

the organisms in this study. 

 

In the literature, PHMB had an MIC of 3.5 µg/mL for a strain of E. coli K12 (Allen et 

al., 2006). In the current study, the MIC for E. coli K12 was 15 µg/mL (Table 4. 7), 

suggesting that the strains tested in the study by Allen and co-workers may have a 

greater tolerance, or the PHMB is of a higher molecular weight. 

 

The testing of polyquaterniums and Byotrol™ to determine the MIC and minimum 

biofilm inhibitory concentration was performed by growing bacteria in a suspension of 

media containing the cationic compound.  This suggests that these compounds may be 
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killing planktonic bacteria before cells are able to attach to the surface to form a biofilm.  

Pre-coating the surface of a glass slide and microtitre plate determined whether cells 

that come into contact with the surface are inhibited from proliferating.  

 

Like-for-like concentrations used for pre-coating a surface with Byotrol™ and in 

suspension demonstrated that precoating was not as effective against planktonic cells as 

indicated by the pre-coating data and the MIC results. Pre-coating was also not as 

effective as the inhibition against an established biofilm, as demonstrated by the MBEC 

assay. This may be because PHMB adheres to the surface with the highest affinity 

(Borkovec & Papastavrou, 2008), leaving BAC and DDQ to go back into solution. 

Although PHMB is active on the surface as a coating, it has greater potency when in 

solution with BAC and DDQ, as the Byotrol™ MIC results showed. DDQ and BAC in 

solution, without PHMB, are also not as effective as inhibitors. Therefore, it may be that 

the lower level of inhibition on a pre-treated surface may be due to PHMB, BAC and 

DDQ not forming a lasting and permanent film on the surface of the glass. Once the 

bacterial suspension is added to the pre-coated surface, PHMB, BAC and DDQ may 

return to solution allowing bacteria to adhere to the surface. Also, when pre-coating the 

surface with Byotrol™, the suspension was decanted after 18 hours and only the 

compounds that were attracted to the surface in that time would dry to form a coating. 

Therefore, if it is the case that Byotrol™ is re-suspended after pre-coating, the 

concentration of Byotrol™ in the bacterial suspension would be lower than the 

concentration of Byotrol™ used to determine the MIC and microtitre plate biofilm 

formation assay. These factors may explain the reason for the higher concentrations 

required to inhibit bacterial growth when a surface is coated with Byotrol™. 

 

As the Byotrol™ formulation was the compound that demonstrated the greatest 

antimicrobial activity of the compounds tested in this study, this was taken forward for 

proteomic and transcriptomic analysis against E. coli K12. This further investigation 

would elucidate the effect that Byotrol™ has on the transcription and translation by 

bacteria, that is related to bacterial growth, metabolism and survival. 

 



Chapter 5. Proteomics 

171 

 

 
 

Chapter 5 
Proteomic analysis of the 

E. coli K12 in response to Byotrol™ 
5.  Proteomic analysis of E. coli K12 biofilm and planktonic 

phenotypes in response to Byotrol™ 
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5. 1. Proteomic analysis of E. coli K12 

Proteomics is the large scale study of the structure, function and interactions of proteins 

in a cell (Tyers & Mann, 2003). Unlike genomic and transcriptomics analysis, the 

analysis of a bacterial cell’s proteome is the most accurate and direct method to yield a 

picture of that organism’s living state at a given time point, under specific conditions 

(Lubec et al., 1999). 

 

 

5. 1. 2. Two-dimenstional gel electrophoresis (2DGE) 

The 2DGE technique enables the separation of a large number of proteins from the 

whole bacterial cell to a unique spot in the acrylamide gel that is related to its mass and 

charge. The protein can then be excised and identified by mass spectrometry. 2DGE 

also offers the advantage of easy identification of multiple post-translational 

modifications of a protein, seen as a ‘spot train’ on gels (Suh et al., 2008). 

	  

	  

5. 1. 2. 1. Isoelectric focussing: the separation of proteins in the first dimension 

In the first dimension, proteins migrate through a strip of acrylamide gel along which is 

a pH gradient. Electrolytes are added to assist protein migration. A protein, which is in a 

pH range below its pI will be positively charged and will migrate to the cathode, and a 

negatively charged protein will migrate towards the electrode. Once the protein reaches 

its pI, or the point at which the net charge of the protein is zero, it will cease to migrate. 

In this way the proteins are separated according to their pI in the first dimension.  

 

 

5. 1. 2. 2. SDS PAGE: the separation of proteins in the second dimension 

In the second dimension, proteins are separated at 90° to the first dimension. The 

protein complexes are denatured by SDS (sodium dodecyl sulphate), which also gives 

all of the proteins a net negative charge, so when a current is passed through the gel, the 

proteins will migrate to the cathode. Separation of proteins in this dimension is based on 

the mass of the protein. This method of protein resolution maximises the separating 

power of 2DGE to identify the largest possible number of proteins extracted from the 

bacterial cell.  
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5. 1. 2. 3. Visualisation of resolved proteins 

There are 3 common ways to visualise proteins. The first is the colloidal Coomassie 

blue staining which has a detection limit of approximately 50 ng protein, it is the least 

sensitive stain used.  The second is silver staining, which can detect proteins with 10-

100 fold greater sensitivity than Coomassie blue staining. Finally, a molecular probe 

based dye, Sypro® Ruby, allows for fluorescence detection of proteins and is the most 

sensitive of the 3 stains. Sypro® Ruby can enable visualisation of even very low 

concentrations of proteins with a lower detection limit of 0.25 – 1 ng protein. Sypro® 

Ruby staining also has a wider linear dynamic range for better quantification (Berggren 

et al., 2000). Silver staining is used in this study for its higher sensitivity than 

Coomassie blue staining at a relatively low cost in relation to Sypro® Ruby stain. 

 

In this chapter, the application of 2DGE to study the differential expression of proteins 

between E. coli K12 isolates in the biofilm and planktonic phenotypic states will be 

discussed. Byotrol™ was determined to be the most successful inhibitor of E. coli K12 

bacterial growth (Chapter 4); therefore both the biofilm and planktonic phenotypes were 

studied with and without the treatment of Byotrol™ at sub-minimum inhibitory 

concentrations (sub-MIC) at 24 hours growth. The expression of proteins from the 

planktonic phenotype was also studied at mid-exponential phase (5 hours growth) as 

this was when cells were most actively growing. The different growth conditions 

described for proteomic analysis in this chapter are summarised diagrammatically in 

Figure 5. 1. 
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Figure 5. 1. Diagram outlining the growth conditions for E. coli K12 cells from which 
proteins were extracted for analysis. 
 

 

5. 2. Optimisation of 2DGE 

Optimisation of the 2DGE method was imperative in order to obtain reproducible gels. 

The factors optimised were the extraction buffer, the IPG strips for first dimension 

separation and the percentage SDS-polyacrylamide gel. 

 

 

5. 2. 1. Optimisation to reduce horizontal protein streaking and increased 

protein resolution in 2DGE 

In the early separations, a large accumulation of protein at the anode was observed 

along with significant horizontal streaking (Figure 5. 2 and Figure 5. 3 a). Dithiothreitol 

(DTT), although required for efficient protein resolution, can have an adverse effect if 

the concentration is not optimised. DTT is a reducing agent for 2DGE, used in the 

rehydration buffer and prior to alkylation, as it cleaves the inter-molecular disulfide 

bonds, thereby achieving protein unfolding (Gundry et al., 2009). To ascertain the 

optimum concentration of DTT to use in the rehydration buffer that is used to extract 
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bacterial whole cell protein, a range of DTT concentrations were investigated. The 

proteins extracted were then subjected to IEF on individual 17 cm, pH 3-10 IPG strips 

(Figure 5. 2). 1.0 – 0.1% DTT did not facilitate complete separation of proteins in the 

first dimension. 0.05% DTT concentration allowed for the greatest resolution of 

proteins. 

 

 
 

 
  

Figure 5. 2. Optimisation of the DTT concentration used for protein extraction. 200 µg 
of protein extracted from planktonic cells grown for 24 hours using an extraction buffer 
with a range of DTT concentrations were resolved on 17 cm, pH 3-10 IPG strips. 
Arrows indicates the furthest distance to which the proteins are resolved.  
 

 

The second dimension separation was performed to determine if the 0.05% DTT 

concentration reduced horizontal streaking in the SDS-polyacrylamide gel. A 

comparison between proteins extracted in a buffer with 1.0% DTT and a buffer with 

0.05% DTT is demonstrated in Figure 5. 3. 
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Figure 5. 3. 2DGE optimisation of DTT concentration.  
a) proteins extracted with 1.0% DTT. b) proteins extracted with 0.05% DTT. 200 µg of 
protein extracted from planktonic cells grown for 24 hours, resolved by isoelectric 
focussing on a 17 cm, pH 3-10 IPG strip and then on a 10% SDS-PAGE gel. Proteins 
were visualised by silver staining. 
 

 

It is clear that the reduced concentration of DTT reduced horizontal protein streaking; 

therefore 0.05% DTT concentration was used in the rehydration buffer for all future 

protein extractions. The dark horizontal streaks that can be seen in Figure 5. 3 b) are due 

to excess protein marker loading. 

 

 

5. 2. 2. Optimisation of IPG strip pH range 

Although the 0.05% DTT facilitated the best resolution in the first dimension on the pH 

3-10 IPG strip, the proteins still did not migrate along the maximum length of the strip 

to the highest pH (pH 10). Two gels that demonstrate how proteins are more 

concentrated around a narrow pH range, are shown in Figure 5. 4. A majority of the 

proteins, which were focussed over the pH 3-10 range and resolved in the second 

dimension separation, had an iso-electric point within the pH 5-8 range. An IPG strip 

with a pH 5-8 range has greater resolving power and therefore would increase the 

number of protein spots that are able to be visualised. For these reasons, 17 cm IPG 

strips with a narrow pH range of 5-8 were used in future protein separations. In most 

cases proteins are visible up to approximately 100 kDa in the second dimension. 
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Figure 5. 4. 2DGE of proteins using 17 cm, pH 3-10 IPG strips. 200 µg of protein 
extracted from planktonic cells grown for 24 hours, resolved by isoelectric focussing 
and then on a 10% SDS-PAGE gel. Proteins were visualised by silver staining. Each gel 
represents a separate biological replicate. 
 

 

5. 3. Proteomic comparison of planktonic and biofilm cells grown for 

24 hours (growth controls) 

Proteins were extracted from E. coli K12 planktonic cells and biofilm cells both grown 

for 24 hours. As these were growth controls, they were grown in the absence of 

Byotrol™. Figure 5. 5 shows a comparison between 3 replicate gels for each of the two 

phenotypes. The gels demonstrated that there was good overall reproducibility between 

biological and technical replicates. Reproducibility is critical for an accurate 

comparison of differentially expressed proteins. 
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Figure 5. 5. Replicate gels displaying resolved proteins extracted from planktonic and 
biofilm cells of E. coli K12 demonstrate reproducibility. 
a) 3 replicate gels of proteins extracted from planktonic cells grown for 24 hours 
(growth control); b) 3 replicate gels of proteins extracted from biofilm cells grown for 
24 hours (growth control). All proteins were separated using iso-electric focussing in 
the first dimension, 10% SDS-PAGE in the second dimension and visualised by silver 
staining. 
 

 

A comparison between the two phenotypes, shown in Figure 5. 5, revealed several 

proteins that were differentially expressed between bacteria in the planktonic phenotype 

and biofilm phenotype grown for 24 hours.  Representative gels from Figure 5. 5 are 

enlarged in Figure 5. 6 for a clearer visualisation of the differentially expressed proteins. 

Differentially expressed proteins of the planktonic and biofilm phenotypes are labelled 

with numbered white arrows, which correspond to the protein name as described in 

Table 5. 1. Circled proteins are landmark proteins used to orientate the gels and for 

reference points. The landmark protein identified is phosphoglycerate kinase (labelled 

‘a’ on the figures). For all of the gels, any small differences in expression levels are not 
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statistically significant when using the Student’s unpaired t-test. The areas where 

differentially expressed proteins are situated in the gels are highlighted in the white 

boxed areas and are enlarged in Figure 5. 7 and Figure 5. 8 for a more clear 

visualisation of the differentially expressed proteins. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5. 6. Identification of differentially expressed proteins extracted from the 
growth controls of the planktonic and biofilm phenotypes of E. coli K12: a) proteins 
extracted from planktonic cells grown for 24 hours (growth control); b) proteins 
extracted from biofilm cells grown for 24 hours (growth control). Numbered white 
arrows indicate proteins which are differentially expressed. Proteins in the white circle 
(a) are landmark proteins. 
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The identification of differentially expressed proteins was achieved by mass 

spectrometry. The results are presented in Table 5. 1. The greater the number of 

peptides that match a protein, the higher the chances are that the protein identification is 

accurate. The standard practice is to assume that greater than 2 matched peptides are 

considered fully identified. A working group for the standardisation of protein 

identification have acknowledged that this method is, in most cases, likely to generate 

true positive results (Carr et al., 2004). The proteins identified as differentially 

expressed between the planktonic and biofilm phenotypes were tryptophanase and D-

ribose binding periplasmic protein. As with all of the proteins identified in this study, by 

comparing the experimental pI (isoelectric point) and molecular weight (Mw) with the 

predicted pI and Mw, a confirmation of protein identity can be made. These results 

showed a good correlation between the experimental and predicted pI and Mw in all of 

the proteins identified. The range for the experimental pI is due to the different isoforms 

of the protein. 
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Table 5. 1. The identification of differentially expressed proteins by mass spectrometry.  
Proteins were identified after extraction from the planktonic and biofilm phenotypes of 
E. coli K12 grown for 24 hours. The protein label corresponds to numbering in the gels 
in Figure 5. 7 and Figure 5. 8. The protein name and accession number were taken from 
a search on the UniProt E. coli K12 database. The number of matched peptides were 
derived from the number of peptides which accurately matched the protein sequence, a 
number >2 is considered to be fully identified. The predicted pI (isoelectric point) and 
Mw (molecular weight) were derived from the Compute pI/Mw tool (ExPASy, SIB 
Bioinformatics Resource Portal). The experimental pI and Mw were derived from the 
gels. 
 

Protein 

Label 

Protein name 

(UniProt accession 

number) 

Number of 

matched 

peptides 

Predicted/ 

Experimental 

pI 

Predicted/ 

Experimental 

Mw (Da) 

     

1-6 Tryptophanase 

(TNAA_ECOLI) 

6, 8, 12, 9, 10, 7 

respectively 

5.88/ 

~6.2-7 

52773.46/ 

~50000 

     

7-10 D-ribose binding 

periplasmic protein 

(RBSB_ECOLI) 

12, 16, 12, 15 

respectively 

6.85/ 

~6-6.8 

30950.48/ 

~22000 
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Figure 5. 7 and Figure 5. 8 show the enlarged detail of regions with differentially 

expressed proteins from Figure 5. 6. The differentially expressed proteins were 

quantified and the results are represented in Table 5. 2. 

 

 
 
 
Figure 5. 7. The enlarged detail of tryptophanse up-regulated in the biofilm phenotype 
when compared to the planktonic phenotype of E. coli K12: a) tryptophanase extracted 
from planktonic cells grown for 24 hours; b) tryptophanase extracted from biofilm cells 
grown for 24 hours. Differentially expressed proteins are indicated with numbered 
arrows. 
 
 

 
 

 

 
 
Figure 5. 8. The enlarged detail of D-ribose periplasmic binding protein down-
regulated in the biofilm phenotype when compared to the planktonic phenotype of E. 
coli K12: a) D-ribose periplasmic binding protein extracted from planktonic cells grown 
for 24 hours; b) D-ribose periplasmic binding protein extracted from biofilm cells 
grown for 24 hours.  Differentially expressed proteins are indicated with numbered 
arrows. 
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For all differentially expressed proteins identified in this study, a statistical comparison 

was performed using the unpaired t-test as described in Section 2. 21. 16. t-values <0.05 

were considered to be statistically different, thereby disproving the null hypothesis 

which states that protein expression for the two phenotypes or the different conditions, 

are not different.  

 

Tryptophanase was up-regulated in the planktonic phenotype grown for 24 hours, D-

ribose binding periplasmic protein was down-regulated in the same phenotype. 

 

 
 
Table 5. 2. Statistical analysis of differentially expressed proteins extracted from the 
planktonic and biofilm phenotypes of E. coli K12 grown for 24 hours. Protein labels 
correspond to numbering in Figure 5. 7 and Figure 5. 8. The fold induction and 
repression of proteins in the biofilm phenotype is calculated by using the integrated 
density values of proteins differentially expressed in the biofilm growth control in 
relation to the planktonic growth control. t-values were calculated using the unpaired 
two-tailed t-test. A t-value of <0.05 is considered statistically significant. 
 

Protein 

Label 

Protein name Integrated density value Fold 

induction (+)/ 

repression (-) 

t-value 

Planktonic 

growth 

control 

Biofilm 

growth 

control 

      

 Landmark protein 57838 58741 1.02 0.93 

      

1-6 Tryptophanase -6351 11368 -1.8 (+) <0.0001 

      

7-10 D-ribose binding 

periplasmic 

protein 

62858 28058 0.4 (-) <0.0001 
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5. 4. Proteomic comparison of planktonic cells grown with and without 

Byotrol™ (growth control) for 24 hours. 

Proteins were extracted from E. coli K12 planktonic cells grown with and without 

Byotrol™ (Figure 5. 9). Planktonic cells grown with Byotrol™ were treated with a sub-

minimum inhibitory concentration (sub-MIC) of Byotrol™ (0.6 µg/mL) for 24 hours at 

37°C (Figure 5. 9 b). Figure 5. 9 shows a comparison of 3 replicate gels for each of the 

growth conditions. The gels demonstrated that there was good reproducibility between 

replicates. Representative gels are enlarged in Figure 5. 10 for a clearer visualisation of 

differentially expressed proteins. 

 

 
 

Figure 5. 9. Replicate gels displaying resolved proteins extracted from planktonic cells 
of E. coli K12 grown a) without Byotrol™ (growth control) and b) with sub-MIC 
Byotrol™ 24 hours. All proteins were separated using iso-electric focussing in the first 
dimension and 10% SDS-PAGE in the second dimension and visualised by silver 
staining. 
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A comparison between the 2 growth conditions shown in Figure 5. 9 revealed 

differentially expressed proteins in the planktonic phenotype with and without 

Byotrol™. Numbered white arrows correspond to the protein name as described in 
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Table 5. 3. Circled proteins are landmark proteins (labelled ‘a’ on the figures). The 

white boxed areas with differentially expressed proteins are enlarged in Figure 5. 11 and 

Figure 5. 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5. 10. Identification of differentially expressed proteins extracted from 
planktonic cells grown for 24 hours a) without Byotrol™ (growth control) and b) treated 
with Byotrol™. Numbered white arrows indicate differentially expressed proteins. 
Proteins in the white circle (a) are landmark proteins. 



Chapter 5. Proteomics 

187 

 

Differentially expressed proteins identified by mass spectrometry were tryptophanase, 

D-ribose binding periplasmic protein, dihydrolipoyl dehydrogenase and serine 

hydroxymethytransferase (Table 5. 3). There was a good correlation between the 

predicted and experimental pI and Mw, therefore confirming protein identity. The range 

for the experimental pI is likely to be due to the different isoforms of the protein. 
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Table 5. 3. Identification of differentially expressed proteins by mass spectrometry.  
Proteins were identified from 2DGE analysis of the planktonic phenotypes of E. coli 
K12 grown with and without Byotrol™ for 24 hours. The protein label corresponds to 
numbering in the gels in Figure 5. 10. The protein name and accession number were 
taken from a search on the UniProt E. coli K12 database. The number of matched 
peptides were derived from the number of peptides which accurately matched the 
protein sequence, a number >2 is considered to be fully identified. The predicted pI 
(isoelectric point) and Mw (molecular weight) were derived from the Compute pI/Mw 
tool (ExPASy, SIB Bioinformatics Resource Portal). The experimental pI and Mw were 
derived from the gels. 
 
 
 

Protein 

Label 

Protein name 

(UniProt 

accession 

number) 

Number of 

matched 

peptides 

% 

coverage 

Predicted/ 

Experimental 

pI 

Predicted/ 

Experimental 

Mw (Da) 

      

1a-6a Tryptophanase 

(TNAA_ECOLI) 

6, 8, 12, 9, 10, 7 9-18% 5.88/ 

~6.2-7 

52773.46/ 

~50000 

      

7a-10a D-ribose binding 

periplasmic 

protein 

(RBSB_ECOLI) 

12, 16, 12, 15 35-57% 6.85/ 

~6-6.8 

30950.48/ 

~22000 

      

11-16 Dihydrolipoyl 

dehydrogenase 

(DLDH_ECOLI) 

5-12 11-26% 5.79/ 

~6 

50688.49/ 

~50000 

      

17-20 Serine 

hydroxymethy-

transferase 

(D3QN42_ECOC

B) 

8-10 17-19% 6.03/ 

~6.5 

45316.59/ 

~43000 
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Differentially expressed proteins in Figure 5. 10 were highlighted in the white boxed 

areas and enlarged in Figure 5. 11 and Figure 5. 12 for closer visualisation. The 

differentially expressed proteins were quantified statistically and described in Figure 5. 

5. 

 

 

 
Figure 5. 11. The enlarged detail of up-regulated proteins identified in the planktonic 
phenotype of E. coli K12 grown for 24 hours when a) treated with Byotrol™, compared 
to b) E. coli K12 planktonic cells grown without Byotrol™ (growth control). Numbered 
white arrows indicate proteins which are differentially expressed.  
 
 
 

 

Figure 5. 12. The enlarged detail of down-regulated proteins identified in the planktonic 
phenotype of E. coli K12 cells grown for 24 hours a) without Byotrol™ (growth control) 
and b) treated with Byotrol™. Numbered white arrows indicate proteins which are 
differentially expressed. 
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Statistical analysis confirmed that the identified proteins were all up-regulated in the 

planktonic phenotype treated with sub-MIC Byotrol™ for 24 hours, with the exception 

of D-ribose binding periplasmic protein which was down-regulated (Table 5. 4). 

 

 

Table 5. 4. The statistical analysis of differentially expressed proteins extracted from 
the planktonic phenotypes of E. coli K12 grown with and without Byotrol™ for 24 
hours.  
Protein labels correspond to numbering in Figure 5. 11 and Figure 5. 12. The fold 
induction and repression of proteins in the planktonic phenotype were calculated by 
using the integrated density values of proteins differentially expressed under the two 
conditions. t-values were calculated using the unpaired two-tailed t-test. A t-value of 
<0.05 is considered statistically significant. 
 
 

Protein 

Label 

Protein name Integrated density value Fold 

induction (+)/ 

repression (-) 

t-value 

Planktonic 

growth 

control 

Planktonic 

treated with 

Byotrol™  

      

 Landmark protein 57838 30172 0.52 0.09 

      

1a-6a Tryptophanase -5025 25636 -5.1 (+) <0.0001 

      

7a-10a D-ribose binding 

periplasmic 

protein 

68861 101529 1.5 (+) <0.0001 

      

11-16 Dihydrolipoyl 

dehydrogenase 

3746 21467 5.7 (+) 0.003 

      

17-20 Serine 

hydroxymethy-

transferase 

2784 17139 6.2 (+) 0.004 
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5. 5. Proteomic comparison of planktonic and biofilm cells treated with 

sub-MIC Byotrol™ for 24 hours  

Proteins were extracted from E. coli K12 planktonic cells and biofilm cells treated for 

24 hours with sub-MIC Byotrol™. Figure 5. 13 shows a comparison between a 

minimum of 3 replicate gels for each of the growth conditions. The gels demonstrated 

that there is good overall reproducibility between biological and technical replicates. 

Representative gels are enlarged in Figure 5. 14. 

 

 

 
 
 
Figure 5. 13. Replicate gels displaying resolved proteins extracted from a) planktonic 
and b) biofilm cells of E. coli K12 treated with sub-MIC Byotrol™ for 24 hours. All 
proteins were separated using iso-electric focussing in the first dimension, 10% SDS-
PAGE in the second dimension and visualised by silver staining.  
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Figure 5. 14 shows differentially expressed proteins between the planktonic and biofilm 

phenotypes treated with sub-MIC Byotrol™ grown for 24 hours. The proteins that were 

consistently differentially expressed across 3 replicate gels are annotated with numbered 

white arrows. Circled proteins are landmark proteins (labelled ‘a’ on the figures). 

Differentially expressed proteins are highlighted in the white boxes and are enlarged in 

Figure 5. 15 for closer visualisation. 
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Proteins were identified by comparing the experimental pI and Mw with the predicted 

pI and Mw. Table 5. 5 shows that there is good correlation between the experimental 

and predicted pI and Mw in all of the proteins identified. The differentially expressed 

proteins were quantified statistically and described in Table 5. 6. 

Figure 5. 14. Identification of differentially expressed proteins extracted from a) 
planktonic and b) biofilm cells treated with sub-MIC Byotrol™ for 24 hours. Numbered 
white arrows indicate proteins which are differentially expressed. Proteins in the white 
circle (a) are landmark proteins. 
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Table 5. 5. The identification of differentially expressed proteins by mass spectrometry.  
Proteins were identified from 2DGE analysis of the planktonic and biofilm phenotypes 
of E. coli K12 grown for 24 hours. The protein label corresponds to numbering in the 
gels in Figure 5. 14. The protein name and accession number were taken from a search 
on the UniProt E. coli K12 database. The number of matched peptides were derived 
from the number of peptides which accurately matched the protein sequence, a number 
>2 is considered to be fully identified. The predicted pI and Mw (molecular weight) 
were derived from the Compute pI /Mw tool (ExPASy, SIB Bioinformatics Resource 
Portal). The experimental pI and Mw were derived from the gels. 
 
 

Protein 

Label 

Protein name 

(UniProt 

accession 

number) 

Number of 

matched 

peptides 

%  

coverage 

Predicted/ 

Experimental 

pI 

Predicted/ 

Experimental 

Mw (Da) 

      

21, 22 Lactaldehyde 

dehydrogenase 

(ALDA_ECOLI) 

16, 2 5%, 35% 5.07/ 

~5 

52272.79/ 

~55000 

 
 

 

 

 

 
 
 
Figure 5. 15. The enlarged detail of lactaldehyde dehydrogenase up-regulated in a) 
planktonic cells of E. coli K12 when compared to b) biofilm cells treated with sub-MIC 
Byotrol™ for 24 hours. Numbered white arrows indicate differentially expressed 
proteins. 
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Table 5. 6 shows that lactate dehydrogenase was down-regulated in the biofilm 

phenotype treated with sub-MIC Byotrol™ for 24 hours. 

 
 
Table 5. 6. The statistical analysis of differentially expressed proteins extracted from 
the planktonic and biofilm phenotypes of E. coli K12 treated with sub-MIC Byotrol™ 
for 24 hours. 
Protein labels correspond to numbering in Figure 5. 15. The fold induction and 
repression of proteins in the biofilm phenotype were calculated by using the integrated 
density values of proteins differentially expressed under the two conditions. t-values 
were calculated using the unpaired two-tailed t-test. A t-value of <0.05 is considered 
statistically significant. 
 
 

Protein 

Label 

Protein name Integrated density value Fold 

induction (+)/ 

repression (-) 

t-value 

Planktonic 

treated with 

Byotrol™  

Biofilm 

treated with 

Byotrol™ 

 Landmark 
protein 

50321 36122 0.72 0.22 

	    	   	   	    

21, 22 Lactaldehyde 

dehydrogenase 

27405 9309 3 (-) 0.01 
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5. 6. Proteomic comparison of planktonic cells grown to mid-

exponential phase (5 hours), with and without Byotrol™  

Proteins were extracted from planktonic cells of E. coli K12 grown to mid-exponential 

phase (5 hours) and treated for 5 hours with sub-MIC Byotrol™ (0.6 µg/mL). Planktonic 

cells were also grown for 5 hours and challenged for 2 hours with 4 times the MIC of 

Byotrol™ (10.5 µg/mL). This was performed to allow comparison with the experiments 

described in Chapter 6, where RNA extracted from these same cells grown under the 

same conditions have been analysed to identify differentially expressed genes. 

 

Figure 5. 16 shows a comparison between 3 replicate gels for each of the growth 

conditions, of which representative gels are enlarged in Figure 5. 17. The gels 

demonstrated good overall reproducibility between biological and technical replicates. 

Proteins identified as differentially expressed across the replicates are annotated with 

numbered white arrows. Circled proteins are landmark proteins (labelled ‘a’ on the 

figures). Differentially expressed proteins were situated in the gels are highlighted in the 

white boxed areas and are enlarged in Figure 5. 18 and Figure 5. 19 for closer 

visualisation of the differentially expressed proteins. 
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Figure 5. 16. Replicate gels displaying resolved proteins extracted from the planktonic 
phenotype of E. coli K12 grown under 3 conditions: a) growth to mid-log phase (5 
hours); b) growth treated with sub-MIC Byotrol™ (0.6 µg/mL) for 5 hours; c) growth 
for 5 hours, challenged for 2 hours with 4 times MIC Byotrol™ (10.5 µg/mL). All 
proteins were separated using iso-electric focussing in the first dimension, 10% SDS-
PAGE in the second dimension and visualised by silver staining. 
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Figure 5. 17. Identification of differentially expressed proteins extracted from the planktonic 
phenotype of E. coli K12 grown under 3 conditions: a) growth to mid-log phase (5 hours); b) 
growth treated with sub-MIC Byotrol™ (0.6 µg/mL) for 5 hours; c) growth for 5 hours, 
challenged for 2 hours with 4 times MIC Byotrol™ (10.5 µg/mL). Differentially expressed 
proteins are indicated with numbered arrows. Proteins in the white circle (a) are landmark 
proteins. The white boxed areas are enlarged in Figure 5. 18 and Figure 5. 19. 
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Table 5. 5 shows that there was good correlation between the experimental and 

predicted pI and Mw in all of the proteins analysed by mass spectrometry, which 

therefore confirmed protein identity. 

 
 

Table 5. 7. Identification of differentially expressed proteins by mass spectrometry. 
Proteins were identified from 2DGE analysis of the planktonic phenotype of E. coli K12 
grown to mid-exponential phase (5 hours) under 3 growth conditions. The protein label 
corresponds to numbering on the gels in Figure 5. 18 and Figure 5. 19. The protein 
name and accession number were taken from a search on the UniProt E. coli K12 
database. The number of matched peptides were derived from the number of peptides 
which accurately match the protein sequence, a number >2 is considered to be fully 
identified. 
 

Protein 

Label 

Protein name 

(UniProt 

accession number) 

Number of 

matched 

peptides 

% 

coverage 

Predicted/ 

Experimental 

pI 

Predicted/ 
Experimental 

Mw (Da) 
 

      

23 Enolase 

(ENO_ECOLI) 

9 19% 5.32/ 

~5.8 

45654.95/ 

~43000 

      

24 Glucose-1-

phosphatase 

(AGP_ECOLI) 

7 7% 5.48/ 

~5.8 

45682.91/ 

~43000 

      

7a D-ribose binding 

periplasmic protein 

 (RBSB_ECOLI) 

9 35% 6.85/ 

~6-6.8 

30950.48/ 

~22000 
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Figure 5. 18 and Figure 5. 19 show the enlarged regions containing differentially 
expressed proteins from Figure 5. 17. These proteins were quantified and described in 
Table 5. 8. 
 
 
 

 
 
Figure 5. 18. The enlarged detail of differentially expressed proteins of the planktonic 
phenotype of E. coli K12 grown a) to mid-exponential phase (5 hours) without 
Byotrol™; b) to mid-exponential phase (5 hours) with sub-MIC Byotrol™; c) to mid-
exponential phase (5 hours) without Byotrol™ and challenged for 2 hours with 4 times 
MIC (10.5 µg/mL) Byotrol™. Numbered white arrows indicate differentially expressed 
proteins. 
 

 

 
 
Figure 5. 19. The enlarged detail of differentially expressed proteins of the planktonic 
phenotype of E. coli K12 grown a) to mid-exponential phase (5 hours) without 
Byotrol™; b) to mid-exponential phase (5 hours) with sub-MIC Byotrol™; c) to mid-
exponential phase (5 hours) without Byotrol™ and challenged for 2 hours with 4 times 
MIC (10.5 µg/mL) Byotrol™. Numbered white arrows indicate differentially expressed 
proteins. 
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Table 5. 8 shows a statistical comparison of the differentially expressed proteins 

extracted from E. coli K12 when grown under the 3 growth conditions. Although 

enolase and D-ribose binding periplasmic protein showed a difference in mean spot 

density (according to the integrated density value), the t-value suggested that the 

difference was not statistically significant (Table 5. 8). Glucose-1-phosphatase was 

significantly down-regulated when planktonic cells were treated with Byotrol™ for 5 

hours, however appeared not to be down-regulated when challenged with Byotrol™ for 

2 hours. 
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Table 5. 8. The statistical analysis of differentially expressed proteins extracted from 
the planktonic phenotype of E. coli K12 grown for 5 hours. Protein labels correspond to 
numbering in Figure 5. 18 and Figure 5. 19. The fold induction and repression of 
proteins in the biofilm phenotype were calculated by using the integrated density values 
of proteins differentially expressed under the two conditions. t-values were calculated 
using the unpaired two-tailed t-test. A t-value of <0.05 is considered statistically 
significant. 

Protein 

Label 

Integrated density value Fold 

induction (+)/ 

repression (-) 

t-value 

 Growth 

control 

Byotrol™ Challenge   

      

    Growth control vs Cells treated with 

Byotrol™ 

Landmark 

protein 

43535 26935  0.62 0.49 

23 27983 -63162  -0.4 (-) 0.23 

24 24763 7281  3.4 (-) 0.05 

7a 48894 12006  4.1 (-) 0.30 

      

    Growth control vs Cells challenged 

with Byotrol™ 

Landmark 

protein 

43535  48337 1.11 0.69 

23 27983  22272 1.3 (-) 0.36 

24 24763  23142 1.1 (-) 0.8 

7a 48894  45066 1.1 (-) 0.88 

      

    Cells treated with Byotrol™ vs Cells 

challenged with Byotrol™ 

Landmark 

protein 

 26935 48337 1.79 0.28 

23  -63162 22272 1.3 (+) 0.25 

24  7281 23142 -17.7 (+) 0.05 

7a  12006 45066 1.8 (+) 0.24 
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A summary comparing the differentially expressed proteins in relation to the growth 

control are displayed in Table 5. 9. 

 

Table 5. 9. Comparison of protein expression changes between the different growth 
conditions and phenotypes of E. coli K12: ↑ indicates the up-regulation of the protein in 
relation to the growth control; ↓ indicates the down-regulation of the protein in relation 
to the growth control; − indicates no difference in expression in relation to the growth 
control. 
 

 24 hours growth Mid-exponential 

phase growth 

(5 hours) 

 Planktonic Biofilm Planktonic 

Protein name Byotrol™ 

treated 

Byotrol™ 

treated 

Byotrol™ 

treated 

Challenge 

(2 hours) 

Tryptophanase  ↑ ↓ − − 

     
D-ribose periplasmic 

binding protein 

↑ ↑ ↑ ↓ 

     
Serine 

hydroxymethyltransferase  

↑ − − − 

     
Lactaldehyde 

dehydrogenase  

↑ − − − 

     
Dihydrolipoyl 

dehydrogenase  

↑ − − − 

     
Glucose-1-phosphatase  − − ↓ − 
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5. 7. Discussion 

This chapter describes the use of proteomics to evaluate the effect that sub-MIC 

Byotrol™ concentrations have on E. coli K12 protein expression. 2DGE revealed that 6 

proteins were differentially expressed between the planktonic and biofilm phenotypes, 

grown with and without Byotrol™.  

 

The main artifact which was consistently observed during protein separation was the 

horizontal ‘spot trains’, more accurately termed ‘charge trains’ in this instance. These 

are individual protein spots with the same identity, but with different charges. Spot 

trains represent isoforms often formed by post-translational modifications (PTMs), or 

conformers that are proteins that have different conformations which separate to 

different isoelectric points in the first dimension (Deng et al., 2012). PTMs commonly 

refer to phosphorylation and glycosylation (Rabilloud, 1996), however, glycosylated 

proteins often have an increased size and lower pH, so proteins resolve with different 

masses and charges. Other PTMs include deamination, desufuration, protein acylation 

and alkylation, which result in minor changes in the charge of a protein. A possible 

explanation for the charge trains observed in the gels from this study could be oxidation 

(Kleinert et al., 2007; Perdivara et al., 2010). Oxidation is a common problem with 

proteins rich in cysteine residues, which appears to be the case for tryptophanase and D-

ribose periplasmic subunit (Arnitz et al., 2006), and possibly for the other proteins 

identified. Oxidation can be limited by the addition of the reducing agent dithiothreitol 

(DTT) that prevents protein folding by limiting disulfide bond formation by cysteine 

residues (Gundry et al., 2009). Although standard protocols suggest that 10-20 minutes 

for reduction and alkylation is sufficient, Galvani and co-workers suggested that charge 

trains were due to incomplete reduction and alkylation, and recommended performing 

these steps for 6 hours (Galvani et al., 2001). In fact, the same group suggested that 

reduction and alkylation at just the step after isoelectric focussing was far from being 

optimal (Herbert et al., 2001). 

 

With the early separations performed in this study, the concentration of DTT in the 

rehydrtation buffer was too high. This resulted in accumulation of proteins at the anode 

and increased horizontal streaking. A reason for this may be due to the thiol groups of 

DTT being ionised at high pH during IEF, causing DTT to migrate towards the 

electrode. This may have resulted in lower concentrations of DTT in the gel, so proteins 
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became less soluble as they reformed disulfide bonds (Herbert et al., 1998), thereby 

reducing protein migration to the cathode. To overcome this Gorg and co-workers 

(1995) suggested adding DTT to the electrode wick at the cathode during IEF. 

However, if the concentration of DTT is too high there may be excessive 

electroendosmosis (the counter-flow of water ions) which can cause protein 

precipitation leading to horizontal streaking (Hoving et al., 2002). By using a lower 

concentration of DTT in the rehydration buffer there was reduced horizontal streaking 

and sharper spots, this phenomonen was also observed by Valcu & Schlink (2006). 

Herbert and co-workers (1998) suggest replacing DTT with the non-ionic reducing 

agent tributyl phosphine (TBP) which is altogether possibly a better alternative. 

 

Despite the charge trains, which are often observed with 2DGE, differentially expressed 

proteins were evident from the gels. The proteins identified were all metabolic enzymes 

(Zhang et al., 2007). 

 

 

5. 7. 1. Landmark protein: phophoglycerate kinase 

Proteins consistently expressed at the same level under all growth conditions were 

identified on each gel in order to ensure gels were loaded equally, and to locate the 

proteins expressed despite any inconsistencies in the protein resolution. The landmark 

protein identified was phosphoglycerate kinase. This is a highly conserved protein and 

is not susceptible to protease cleavage (Young et al., 2007). This protein is essential to 

the growth of all organisms, and in E. coli is responsible for the degradation of glucose 

and binding of ATP in the glycolysis pathway (Song et al., 2012).  

 

 

5. 7. 2. Tryptophanase and indole production 

Tryptophanase catalyses the following reaction: 

 

 

 
 

There was an increase in tryptophanase when planktonic cells were treated with a sub-

inhibitory concentration of Byotrol™ for 24 hours, suggesting that tryptophanase may be 
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important in cell survival. Studies have suggested that indole induces proteins that play 

a role in enabling the cell to survive (Hu et al., 2010; Lee et al., 2010). 

 

Although tryptophanase was over-expressed in planktonic cells treated with Byotrol™, 

tryptophanase was not over-expressed when biofilm cells were treated with Byotrol™ for 

24 hours, which may be because Byotrol™ was not entering the biofilm matrix in 

sufficient quantities to have a detectable effect on tryptophanase expression. 

 

Tryptophanase was over-expressed in biofilm cells grown for 24 hours without 

Byotrol™. In addition to this, tryptophanase was also induced in the stationary phase of 

planktonic growth when cells were grown for 7 hours (5 hours growth plus 2 hours 

challenge) (Figure 5. 17). This correlates to the results where tryptophanase was over-

expressed in biofilm cells because when cells enter stationary phase, the cells are 

thought to reflect the state of the biofilm phenotype (Zhang et al., 2007). 

 

Tryptophanase may be a useful target for bacterial growth inhibition and biofilm 

inhibition as it was over-expressed when the cell was under stress and when cells had 

been growing for a longer period, especially as it is known that indole, which is the 

product of the reaction that tryptophanase catalyses, is important in regulating biofilm 

formation (Lee et al., 2007a). Indole represses bacterial motility and controls biofilm 

formation by inducing sdiA (quorum sensing signal autoinducer-I, a LuxR homolog), 

therefore is considered to be an extracellular signalling molecule (Wang et al., 2001). 

There is evidence to suggest that a mutant strain of E. coli deficient of tryptophanase 

was unable to form a biofilm on polystyrene or adhere to human pneumocyte cells (Di 

Martino et al., 2002). Interestingly, Domka and co-workers found that although P. 

aeruginosa did not produce indole, its ability to form a biofilm increased in the presence 

of indole, as its motility was repressed (Domka et al., 2006; Lee et al., 2007a). This 

would be consistent with the knowledge that P. aeruginosa does not require motility 

once attachment to a surface occurs (Klausen et al., 2003). 

 

 

5. 7. 3.  D-ribose periplasmic binding protein 

D-ribose periplasmic binding protein (rbsB) was down-regulated in the biofilm 

phenotype suggesting that rbsB is not essential to biofilm growth. This was consistent 

with the results of this laboratory previously (Orme, 2006). It was however up-regulated 
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in the planktonic phenotype treated with a sub-inhibitory concentration of Byotrol™ at 

both mid-exponential phase of growth (5 hours) and 24 hours of growth, therefore may 

be important in cell survival under antimicrobial stress. The function of rbsB is to bind 

D-ribose and recognise substrates such as carbohydrates for transport and chemotaxis 

across the cytoplasmic membrane. This system is similar for other sugars such as L-

arabinose and D-galactose, and is also known as an osmotic stress sensitive transport 

system (Binnie et al., 1992).  

 

 

5. 7. 4.  Serine hydroxymethyltransferase 

When planktonic cells were under the antimicrobial stress of Byotrol™ for 24 hours, 

serine hydroxymethyltransferase were up-regulated. This is an enzyme that catalyses the 

following reaction: 

 

 

 

Serine and glycine are essential amino acids. The up-regulation of serine 

hydroxymethyltransferase may indicate that cells required amino acids for protein 

synthesis and cell repair when under the stress of Byotrol™. 

 

 

5. 7. 5. Lactaldehyde dehydrogenase 

Lactaldehyde dehydrogenase expression increased in the planktonic phenotype when 

cells were under the antimicrobial stress of Byotrol™ for 24 hours. The catalytic 

function of lactaldehyde dehydrogenase is to convert lactaldehyde to lactate, which is 

subsequently converted to pyruvate, especially when oxygen is in short supply (Di 

Costanzo et al., 2007). An increase of lactaldehyde dehydrogenase in the planktonic 

phenotype when the cell was under the antimicrobial stress of Byotrol™ may be due to 

the cell’s need to produce pyruvate. Pyruvate is an intermediate in several metabolic 

pathways. The majority of pyruvate is converted to acetyl-coenzyme A (acetyl coA), 

which is key to cell metabolism and ATP production (Castano-Cerezo et al., 2009). 

Therefore the products of lactaldehyde dehydrogenase catalysis facilitate processes that 

are usually required for cell growth, but may be used for cell repair (Zhang & Rock, 
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2009) when a cell is under attack from an antimicrobial such as Byotrol™, whose mode 

of action compromises the integrity of the cell membrane (Berney et al., 2006). 

 

 

5. 7. 6.  Dihydrolipoyl dehydrogenase 

Dihydrolipoyl dehydrogenase was up-regulated in planktonic cells treated with 

Byotrol™ for 24 hours. This enzyme is part of a complex that consists of 3 enzymes that 

transform pyruvate to acetyl-coenzyme A (acetyl coA) via pyruvate decarboxylation. 

This enzyme is therefore an essential part of the citric acid cycle and important in ATP 

production. Acetyl coA, the product of dihydrolipoyl dehydrogenase, is also important 

in peptidoglycan synthesis and therefore the bacterial cell up-regulates the production of 

acetyl coA to aid in cell wall repair (Liu et al., 2012). Cell wall repair may be important 

when the cell is under the stress of Byotrol™, as its primary mode of action is likely to 

be cell wall perturbation. 

 

 

5. 7. 7.  Glucose-1-phosphatase 

Glucose-1-phosphatase was repressed when E. coli K12 was treated with Byotrol™ for 5 

hours. Glucose-1-phosphatase is a key enzyme found in the periplasm that is required 

for the growth of E. coli as it is the main glucose scavenger. This enzyme is involved in 

the catabolism of glucose-1-phosphate to glucose and phosphate (Lee et al., 2003). Its 

represstion suggests that the cell may not require the function of this enzyme under 

stress as it is not actively growing so the need for glucose as a carbon source is reduced. 

Glucose-1-phosphatase was not repressed when the cells were challenged with Byotrol™ 

for 2 hours suggesting treatment with Byotrol™ for 2 hours was not long enough to have 

an effect on the production of glucose-1-phosphatase. 

 

 

5. 7. 8.  Conclusion 

The proteins identified were all metabolic enzymes (Zhang et al., 2007), being involved 

particulary in protein synthesis and cellular repair, however the over-expression of the 

enzyme tryptophanase may be significant in the production of indole, a known global 

regulator of essential stress related functions. When indole is induced in E. coli, biofilm 

formation is reportedly decreased by down-regulating motility; acid resistance decreases 

and amino acid synthesis is up-regulated (Hirawaka et al., 2010; Lee et al., 2007a). The 
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influence that indole has on bacterial metabolism and stress response is shown in Figure 

5. 20. The regulation by indole on other cellular processes is described in more detail in 

Chapter 7. 

 

 

 

 

 

Figure 5. 20. Indole as a global regulator of cellular functions in E. coli.  
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Chapter 6 
Transcriptomic analysis of   

E. coli K12 in response to Byotrol™ 
6.  Transcriptomic analysis of the E. coli K12 planktonic 

phenotype in response to Byotrol™  
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6. 1. An introduction to RNA-seq 

Prior to the advent of RNA-Seq, also called Whole Transcriptome Shot-gun Sequencing 

(WTSS), microarrays were the gold standard for transciptomic studies. Microarrays are 

chips or solid supports, which carry a large array of immobilised probes. The probes can 

be genomic DNA, cDNA or oligonucleotides of known sequence to which target cDNA 

or genomic DNA of unknown or known sequence hybridises. Target-probe 

hybridisation is detected by chemluminescence- or fluorophore-labelled targets with 

each experimental sample labelled to produce different colours. This enables the target 

to be identified based on the sequence of the probe to which it is hybridised and the 

intensity of emitted light can be used to quantify the expression levels of the target. 

Expression patterns can be compared with other microarray expression patterns to 

determine differential expression (Hegde et al., 2000).  

 

Microarrays are designed for comparative studies, however they only provide limited 

information about absolute gene expression levels. This is due to cross-hybridisation 

causing high background levels and differences in hybridisation efficiencies and 

specificities for different probes (Royce et al., 2007). 

 

RNA-seq is a relatively new approach, which has been developed to characterise the 

transcriptome profile of a population of cells (Wang et al., 2009). The transcriptome 

refers to all the RNA molecules in a cell, including mRNA, non-coding RNA such as 

tRNA and rRNA and small RNAs. Transcriptomics involves high-throughput 

technology, which is relatively low in cost, given the vast amount of data generated and 

the great capacity to recover a variety of information. The RNA-seq method was used in 

this chapter to quantify the differential expression levels of genes under different 

conditions (Wang et al., 2009b).  

 

Using high-throughput deep-sequencing technologies, RNA-seq is sensitive to the level 

of single transcript resolution, and offers accurate quantification of transcript expression 

levels, which has not been possible to the same resolution previously with microarrays 

(Su et al., 2011; Wang et al., 2009b; Wilhelm et al., 2010). The technology is sensitive 

enough to differentiate between paralogous sequences (i.e. duplicated genes that have 

different positions on the same genome) (Fu et al., 2009). In relation to microarrays, it 
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is suggested that RNA-seq also has a lower level of background signal (Kogenaru et al., 

2012). 

 

 

6. 1. 1. Principles of RNA-Seq 

The sequencing depth or library size is the term used to describe the total number of 

sequence reads which map to the genome that are produced during a sequencing run. 

The gene length is the number of base pairs of a gene and the gene counts refer to the 

number of reads that match to a gene (Figure 6. 1). Also, the greater the gene or 

transcript length, the greater the number of reads that have the potential to match to the 

gene. The expression of a gene is directly proportional to the number of reads that map 

to that gene (Marioni et al., 2008). Therefore, normalisation is required in order to 

account for the fact that a gene may appear to be up-regulated within a sample as 

demonstrated by a high count, when in fact the transcipts for a gene may appear to 

represent a greater proportion of the library than any other individual gene. Likewise, if 

the library size is larger in one sample than another, then it may automatically generate 

more reads for a particular gene than a sample where the library size is smaller. 

 

 
 

Figure 6. 1. Illustration of the terms used to describe the principles of RNA-Seq. The 
number of reads is related to the sequencing depth. Each read is mapped to a reference 
genome and the number of genes that map to a gene is referred to as the gene count. The 
gene count is related to the length of the gene. 
 

 



Chapter 6. Transcriptomics 

213 

 

6. 2.  Global gene expression of E. coli K12 when treated and 

challenged with Byotrol™  

The high throughput sequence data generated using Illumina technology was used to 

identify many differentially expressed transcripts from three growth conditions: i) 

Growth control: E. coli K12 growth control, cells grown to mid-exponential phase (5 

hours); ii) Treated: E. coli K12 grown in the presence of sub-inhibitory concentrations 

of Byotrol™ to mid-exponential phase (5 hours); and iii) Challenge: E. coli K12 cells 

grown to mid-exponential phase (5 hours) and challenged with 4 times the MIC of 

Byotrol™ for 2 hours.  

 

The Illumina sequencing platform generated 69.4 MB sequence data containing a total 

of 48,656,483 (representing 4,816,532,343 bp), 39,978,722 (3,942,347,192 bp) and 

32,541,123 (3,196,309,920 bp) high quality reads in the growth control, Byotrol™ 

treated and challenged cells, respectively.  

 

Analysis of the sequences using the MG-RAST server and CLC workbench 

demonstrated that, for the growth control, Byotrol™ treated and challenged cells, a total 

of 34,635,530, 26,435,638 and 20,940,394 reads, respectively, mapped to the E. coli 

K12 sub-strain MG1655 complete genome database. A detailed breakdown of the 

sequenced data for each of the growth conditions is outlined in Figures 6. 2 to 6. 7. 
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Figure 6. 2. Breakdown of E. coli K12 growth control sequences into 5 distinct 
categories. 
4,421,979 sequences (9.1%) failed to pass the quality control (QC) pipeline. Of the 
sequences that passed QC, 6,259,053 sequences (12.9%) contained ribosomal RNA 
genes. Of the remainder, 20,636,885 sequences (42.4%) contained predicted proteins 
with known functions and 12,845,010 sequences (26.4%) contained predicted proteins 
with unknown function. 4,493,556 sequences (9.2%) had no rRNA genes or predicted 
proteins. 

Figure 6. 3. Analysis flowchart with detailed breakdown of sequences of E. coli K12 
growth control.  
4,421,979 sequences failed quality control. Of the 44,234,504 sequences that passed 
quality control, 33,481,895 (75.7%) produced a total of 2,527,941 predicted protein 
coding regions. Of these predicted protein features, 1,878,788 (74.3% of features) 
were assigned an annotation using at least one of the MG-RAST protein databases 
(M5NR) and 649,153 (25.7% of features) had no significant similarities to the protein 
database (orfans). 1,658,571 features (88.3% of annotated features) were assigned to 
functional categories. 
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Figure 6. 5. Breakdown of sequences of E. coli K12 cells treated with sub-MIC 
Byotrol™, into 5 distinct categories (treated). 
3,611,687 sequences (9.0%) failed to pass the quality control (QC) pipeline. Of the 
sequences that passed QC, 5,509,164 sequences (13.8%) contained ribosomal RNA 
genes. Of the remainder, 18,766,468 sequences (46.9%) contained predicted proteins 
with known functions and 8,510,610 sequences (21.3%) contained predicted proteins 
with unknown function. 3,580,793 sequences (9.0%) had no rRNA genes or predicted 
proteins. 
 

Figure 6. 4. Analysis flowchart with detailed breakdown of sequences of E. coli K12 
treated with sub-MIC Byotrol™ (treated).  
3,611,687 sequences failed quality control. Of the 36,367,035 sequences that passed 
quality control, 27,277,078 (75.0%) produced a total of 2,077,259 predicted protein 
coding regions. Of these predicted protein features, 1,753,917 (84.4% of features) were 
assigned an annotation using at least one of the MG-RAST protein databases (M5NR) 
and 323,342 (15.6% of features) had no significant similarities to the protein database 
(orfans). 1,535,923 features (87.6% of annotated features) were assigned to functional 
categories. 
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Figure 6. 7. Breakdown of E. coli K12 cells grown to mid-exponential phase and 
challenged with 4 times MIC Byotrol™ 2 hours, into 5 distinct categories (challenge). 
3,044,869 sequences (9.4%) failed to pass the quality control (QC) pipeline. Of the 
sequences that passed QC, 4,232,575 sequences (13.0%) contained ribosomal RNA 
genes. Of the remainder, 15,634,805 sequences (48.0%) contained predicted proteins 
with known functions and 6,399,633 sequences (19.7%) contained predicted proteins 
with unknown function. 3,229,241 sequences (9.9%) had no rRNA genes or predicted 
proteins. 

Figure 6. 6. Analysis flowchart with detailed breakdown of sequences of E. coli K12 
grown to mid-exponential phase and challenged with 4 times MIC Byotrol™ 2 hours 
(challenge). 
3,044,869 sequences failed quality control. Of the 29,496,254 sequences that passed 
quality control, 22,034,438 (74.7%) produced a total of 1,525,950 predicted protein 
coding regions. Of these protein features, 1,279,875 (83.9% of features) were assigned 
an annotation using at least one of the MG-RAST protein databases (M5NR) and 
246,075 (16.1% of features) had no significant similarities to the protein database 
(orfans). 1,106,640 features (86.5% of annotated features) were assigned to functional 
categories. 
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6. 3. Genes differentially expressed in reponse to Byotrol™ 

Bacteria differentially express a number of genes to enable the cell to adapt to any 

changes in environmental conditions, including stresses, in order to survive or grow 

optimally. A description of genes induced or repressed in response to the stress stimulus 

from the biocide Byotrol™, are presented. 

 

Relative gene expression was determined through the following comparisons: growth 

control vs. treated; treated vs. challenge; and growth control vs. challenge. RNA-seq 

analysis revealed that sequence reads mapped to a total of 4496 genes in all three 

conditions.  

 

The proportion of differentially expressed genes compared to the total number of genes 

(4496 genes) is presented diagrammatically in Figure 6. 8. Genes were considered 

differentially expressed if the fold change was ≥2 for up-regulated genes or ≤2 for 

down-regulated genes (Yu, et al., 2011). 4345 genes were differentially expressed in the 

growth control cells when compared to the challenged cells and 151 genes were not 

differentially expressed. 3904 genes were differentially expressed in the cells treated 

with Byotrol™ when compared to cells challenged with Byotrol™and 592 were not 

differentially expressed and 3862 genes were differentially expressed when growth 

control cells were compared to cells challenged cells, whereas 634 genes were not 

differentially expressed. 

Figure 6. 8. Total number of differentially expressed genes (fold change of ≤2 and ≥2) 
in the three different growth conditions: growth control, cells treated wtih Byotrol™ 
(treated) and cells challenged with Byotrol™ for 2 hours after 5 hours of growth 
(challenge). 
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Of the genes that were differentially expressed, the number of genes which had a fold 

change of ≤5 and ≥5 were of most interest as these were considered highly differentially 

expressed (Yu, et al., 2011). The number of genes that were significantly differentially 

expressed in this category (p-value 0.001) is presented in Figure 6. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 9 shows 12 genes were differentially expressed in the growth control 

compared to treated cells, 105 genes were differentially expressed in the growth control 

compared to challenge cells and 118 genes were differentially expressed in treated cells 

compared to challenge cells. No genes were differentially expressed in all three 

conditions or in the growth control when compared to both the treated cells and 

challenge cells. However 74 genes were differentially expressed in cells challenged 

compared to the growth control and treated cells. 7 genes were differentially expressed 

in treated cells compared to the growth control and challenge cells. 

 

Figure 6. 9. Venn diagram demonstrating the distribution of highly differentially 
expressed genes (fold change of ≤5 and ≥5) when compared across the different 
growth conditions (growth control, E. coli K12 cells treated with sub-MIC Byotrol™ 
and E. coli K12 cells challenged with 4 times MIC Byotrol™). 
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Of the differentially expressed genes in the growth control compared to treated cells, 10 

genes were observed to be up-regulated and 2 genes were down-regulated. In the  

challenge cells compared to treated cells, 46 genes were up-regulated and 72 were 

down-regulated. Finally a comparison of the challenge cells and growth control 

identified 40 genes that were up-regulated and 65 genes that were down-regulated 

(Figure 6. 10). The genes that are up and down-regulated are elaborated on in greater 

detail in Table 6. 3 to Table 6. 8. 
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Figure 6. 10. Proportion of up and down regulated genes as a total of the genes 
differentially expressed (fold change of ≤5 and ≥5) under the three different growth 
conditions 
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6. 4.  Classification of differentially expressed genes according to 

function 

Genes that are differentially expressed can be classified according to their function.  

Classification of the differentially expressed genes in functional groups revealed which 

functional groups of genes were most affected during exposure to Byotrol™. Also, an 

indication of the number of genes most significantly altered in relation to the three 

growth conditions (growth control, Byotrol™ treated and challenged cells), are 

summarised in Tables 6. 1 and 6. 2, and presented graphically in Figure 6. 11. 

 

The data displayed in Tables 6. 1 and 6. 2 and Figure 6. 11 demonstrate that although a 

greater variety of gene functions were up-regulated when cells were treated or 

challenged with Byotrol™, a greater number of genes were down-regulated for specific 

gene functions, namely flagella synthesis and ion transport, specifically iron. A greater 

number of genes involved in transcription regulation were up-regulated in cells 

challenged with Byotrol™. 

 

Across all of the gene functions, there were a greater number of genes that were 

differentially expressed in cells challenged with Byotrol™ when compared to the growth 

control and Byotrol™ treated cells. An exception to this was the up-regulation of genes 

in Byotrol™ treated cells in comparison to the growth control. These genes are involved 

in protein synthesis, antibiotic resistance or membrane biosynthesis and DNA synthesis. 

 

Genes and operons relating to these functional groups will be discussed according to 

their differential expression. 
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6. 5. Genes differentially expressed in E. coli K12 cells treated with 

Byotrol™  compared to the growth control  

In cells treated with a sub-inhibitory concentration of Byotrol™ for 5 hours, 10 genes 

were up-regulated in comparison to the growth control (Table 6. 3). The gene with the 

greatest fold change was tnaC (~100-fold up-regulated). When up-regulated, tnaC 

enables the transcription of the enzyme tryptophanase, which in turn catalyses the 

reaction producing indole and the amino acid tryptophan (Lee et al., 2007a). Although a 

majority of the genes that were up-regulated in the treated cells compared to the growth 

control have an unknown function, the characterised genes encode proteins which are 

involved in protein synthesis, such as tnaC and DNA replication, such as ybbW. 

 

In cells treated with a sub-inhibitory concentration of Byotrol™ for 5 hours, 2 genes 

were down-regulated in comparison to the growth control (Table 6. 3). The gene with 

the greatest fold change of down-regulated genes was cysW (~33-fold down-regulated), 

which is involved in sulphate transport.  

 
 



Chapter 6. Transcriptomics 

226 

 

Table 6. 3. Genes in E. coli K12 that were differentially expressed in response to 
treatment with Byotrol™ compared to the growth control. Genes with a fold change ≥5 
and ≤5 are displayed. 
 

Gene 

UniProt 
accession 
number Function and/or product 

Fold 
Changea  p-valueb 

tnaC P0AD89 Leader pepide in trytophanase biosynthesis 102.48 1.69E-06 
hyi P30147 Hydroxypyruvate isomerase 15.1 4.04E-07 

gudP Q46916 D-glucarate transporter 14.42 2.56E-11 
glxR P77161 Cyclic AMP receptor 13.49 3.00E-04 
ybbW P75712 Purine and pyrimidine transporter 9.37 5.64E-04 

gcl P0AEP7 Glyoxylate carboligase  8.91 1.13E-06 
ykgS  Uncharacterised 7.08 1.28E-04 
wcaD P71238 Putative colanic acid polymerase 6.48 8.01E-07 
gudX Q46915 D-glucarate dehydratase 5.63 1.17E-04 
appC P26459 Cytochrome bd-II oxidase subunit I 5.53 9.81E-09 
cysW P0AEB0 Membrane-bound sulphate transport protein -32.86 2.96E-11 
ydjO P0AD89 Uncharacterised protein -6.92 8.78E-03 

 

a Fold change based on normalised values; b p-value (≤0.001). 

 

 

6. 6. Genes differentially expressed in E. coli K12 cells challenged with 

Byotrol™ compared to cells treated with Byotrol™  

 

6. 6. 1. Genes up-regulated in E. coli K12 cells challenged with Byotrol™ 

compared to cells treated with Byotrol™  

In mid-exponential phase cells that were challenged with Byotrol™ for 2 hours, 76 genes 

were up-regulated in comparison to cells treated with Byotrol™ for 5 hours (Table 6. 4). 

The gene with the greatest fold change was yadN, a fimbria protein, which was up-

regulated 75 times more than in cells treated with Byotrol™. A majority of genes up-

regulated have an unknown function or have not been characterised, however overall, 

genes involved in transport were up-regulated under these conditions. This includes 

genes of the cys operon, involved in sulphate transport and genes of the lsr operon, 

involved in the uptake of autoinducer-2 (AI-2).  
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Table 6. 4. Genes in E. coli K12 up-regulated in response to challenge with Byotrol™ 

compared to treatment with Byotrol™. Genes with a fold change ≥5 are displayed. 
 

Gene 
UniProt 
Entry Function and/or product 

Fold 
Changea  p-valueb 

yadN P37050 Putative fimbrial-like protein 75.05 4.38E-03 
yjfI  Inner membrane protein 36.6 1.19E-09 

cysU P16701 Sulphate transport system permease protein 22.15 2.22E-16 

napD P0A9I5 Twin-arginine signal-peptide-binding chaperone 
for NapA 20.42 2.21E-12 

fixB P31574 Flavoprotein subunit required for anaerobic 
carnitine metabolism 20.37 3.64E-11 

gspC P45757 Component of GspC-O secreton complex 17.49 3.73E-14 
iraM P75987 RpoS stabiliser during Mg2+ starvation 17.06 1.48E-10 
cysW P0AEB0 Membrane-bound sulphate transport protein 16.78 5.41E-06 

fdrA Q47208 Multicopy suppressor of dominant negative ftsH 
mutations 16.64 2.20E-04 

lsrA P77257 Autoinducer-2 import ATP-binding protein 16.04 8.88E-16 
cysA P16676 Sulphate-transporting ATPase 15.85 6.76E-11 

yjfJ P0AF78 Predicted transcriptional regulator effector 
protein 14.23 1.26E-06 

ydjO  Function unknown 13.94 3.04E-05 
pspD P0AFV8 Peripheral inner membrane phage-shock protein 13.83 9.33E-15 

elfA P75855 FimA homolog, predicted fimbrial-like adhesin 
protein 13.73 3.23E-10 

napB P0ABL3 Periplasmic nitrate reductase, cytochrome 
c550 protein 13.3 1.25E-08 

cysD P21156 Sulphate adenylyltransferase 13.2 8.54E-13 

csgD P52106 Transcriptional activator for csgBA and other 
genes 12.25 9.95E-04 

ymgC P75994 Function unknown 11.24 1.15E-06 

lsrC P76141 Component of LsrA/LsrC/LsrD/LsrB ABC 
transporter, Autoinducer-2 (AI-2) uptake 11.04 5.75E-06 

pspC P0AFN2 PspC transcriptional regulator; toxin of a PspC-
PspB toxin-antitoxin pair 10.73 8.88E-16 

napG P0AAL3 Quinol dehydrogenase 10.57 4.21E-05 
ivbL P03061 ilvB operon leader peptide 10.23 6.66E-16 
fixC P68644 Carnitine metabolism 9.57 1.83E-03 
yhaI P64592 Function unknown 9.53 5.56E-06 
ygiL P39834 Predicted fimbrial-like adhesin protein 9.46 1.40E-04 
yegJ P76334 Function unknown 8.79 2.56E-04 
yigG P27843 Required for swarming phenotype 8.29 6.71E-03 

umuD P0AG11 DNA polymerase V subunit 8.09 6.19E-04 

agaV P42904 N-acetylgalactosamine-specific enzyme IIB 
component of phosphotransferase system (PTS) 7.88 4.77E-05 

yiaO P37676 Extracytoplasmic solute receptor protein 7.76 2.28E-05 

ariR P75993 RcsB connector protein for biofilm and acid 
resistance regulation 7.39 5.77E-11 

paaZ P77455 Enoyl-CoA hydratase 7.29 2.34E-04 

leuB P30125 Component of 3-isopropylmalate 
dehydrogenase 7.22 1.18E-10 

matA P71301 Putative transcriptional regulator for mat genes 
(malonyl-CoA decarboxylase) 7.06 5.43E-06 

ycaL P43674 putative heat shock protein 7.03 1.48E-04 
fadM P77712 Acyl-CoA thioester hydrolase 6.95 2.74E-07 

 

a Fold change based on normalised values; b p-value (≤0.001). 
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Table 6. 4. Continued. 

 

Gene 
UniProt 
Entry Function and/or product 

Fold 
Changea  p-valueb 

yrhB P46857 Stable heat shock chaperone 6.86 5.82E-03 
cysN P23845 Gtp subunit of ATP sulfurylase 6.83 5.51E-13 

nanC P69856 Probable N-acetylneuraminic acid outer 
membrane channel protein 6.64 7.18E-06 

yhiL P37629 Putative dehydrogenase with NAD(P) binding 6.31 6.14E-05 
lsrB P76142 Autoinducer-2-binding protein LsrB 6.24 5.26E-13 
ygbJ Q46888 Putative dehydrogenase with NAD(P) binding 6.16 4.70E-06 
sbp P0AG78 Periplasmic sulphate-binding protein  6.16 7.82E-09 

agaA P42906 Putative N-acetylgalactosamine-6-phosphate 
deacetylase 6.13 3.36E-04 

yagH P77713 Predicted xylosidase/arabinosidase 6.13 1.11E-15 
ygbL Q46890 Putative aldolase class 2 protein 6.06 1.24E-03 
psuK P30235 Pseudouridine kinase 6 1.53E-06 
lsrR P76141 Transcriptional regulator LsrR 5.9 1.78E-15 
ybfG P37003 Uncharacterised protein 5.85 8.89E-04 
bssR P0AAY1 Biofilm regulator 5.79 2.54E-06 
ymgI A5A611 Uncharacterised protein 5.75 1.17E-05 
napC P0ABL5 Cytochrome c-type protein 5.71 8.28E-13 
yiiE P0ADQ5 Putative transcriptional regulator 5.7 8.20E-03 
yfhL P52102 Ferrodoxin-like protein 5.69 7.92E-08 
ydeJ P0ACW0 Uncharacterised protein 5.68 1.52E-10 
thiC P30136 Phosphomethylpyrimidine synthase 5.65 4.15E-14 

bioA P12995 Adenosylmethionine-8-amino-7-oxononanoate 
aminotransferase 5.65 1.31E-03 

ybbD P33669 Uncharacterised protein 5.57 6.79E-03 
nudI P52006 Nucleoside triphosphatase  5.56 2.65E-05 
ydeO P76135 HTH-type transcriptional regulator 5.54 2.01E-03 
ilvN P0ADF8 Acetolactate synthase isozyme 1 small subunit 5.47 9.77E-13 

yagG P75683 CP4-6 prophage sugar transporter 5.4 1.05E-09 
pspF P37344 DNA-binding transcriptional activator 5.39 1.41E-08 
yjbM P32694 Function unknown 5.36 4.76E-08 
yjhP P39367 Phage-like element, predicted methyltransferase 5.35 1.44E-06 
envR P0ACT2 DNA-binding transcriptional regulator 5.31 3.21E-03 
ygaQ P76616 Uncharacterised protein 5.26 9.21E-04 
yncJ P64459 Uncharacterised protein 5.15 6.88E-06 
recN P05824 DNA repair protein 5.11 1.57E-11 
ybfO P77779 Uncharacterised protein 5.09 4.82E-05 

yeiL P0A9E9 DNA-binding transcriptional activator of 
stationary phase nitrogen survival 5.05 1.80E-03 

 

a Fold change based on normalised values; b p-value (≤0.001). 
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6. 6. 2. Genes down-regulated in E. coli K12 cells challenged with Byotrol™ 

compared to  cells treated with Byotrol™  

In cells challenged with 4 times MIC Byotrol™ for 2 hours after growth for 5 hours, 47 

genes were down-regulated in comparison to cells treated with Byotrol™ for 5 hours 

(Table 6.  5). The gene most greatly down-regulated was flgB (~32-fold) which encodes 

the  basal-body of flagella. Other genes associated with the synthesis of flagella were 

also down-regulated, including flgC (~21-fold), flgD (~11-fold), flgE (~9-fold), flgF 

(~6-fold), fliA (~16-fold), fliM (~9-fold), fliF (~6-fold). The genes encoding 

components of flagella are shown in Figure 6. 12. Also down-regulated under these 

conditions was tnaC (~12-fold), the gene encoding the leader peptide of the 

tryptophanase operon tnaCAB.  

Figure 6. 12. Components of flagella and the genes involved in the synthesis of flagella 
apparatus. Genes highlighted within a box are those that are differentially expressed in 
the current study (Image adapted from California, 2012). 
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Table 6. 5. Genes in E. coli K12 down-regulated in response to challenge with 
Byotrol™ in comparison to cells treated with Byotrol™. Genes with a fold change ≤5 are 
displayed. 
 

Gene 
UniProt 
Entry Function and/or product 

Fold 
Changea  p-valueb 

flgB P0ABW9 Flagellar basal-body rod protein FlgB -31.58 1.95E-03 
hdeD P0AET5 Acid-resistance membrane protein -22.02 2.38E-08 
yhiD P0AFV2 Putative Mg2+ transport inner membrane ATPase -21.58 9.09E-06 
ydiY P76206 Putative outer membrane protein, acid inducible -21.28 4.00E-15 
flgC P0ABX2 Flagellar basal-body rod protein -21.04 7.46E-05 
fes P13039 Enterochelin esterase -17.59 1.63E-13 
fliA P0AEM6 Component of RNA polymerase sigma 28 -16.36 2.03E-05 
alsK P32718 D-allose kinase -15.73 2.33E-14 
hyi P30147 Hydroxypyruvate isomerase -15.66 3.66E-07 

glxR P77161 Tartronate semialdehyde reductase, NADH-
dependent -14.93 2.57E-04 

bglJ P39404 Transcriptional activator protein  -13.37 1.63E-13 
entB P0ADI4 Isochorismatase  -12.84 1.40E-13 
tnaC P0AD89 Tryptophanase leader peptide -11.77 1.97E-05 

nrdF P37146 Ribonucleoside-diphosphate reductase 2 subunit 
beta -11.72 1.07E-11 

flgD P75936 Basal-body rod modification protein -10.69 1.46E-05 
rpiB P37351 Allose 6-phosphate isomerase -9.57 8.42E-09 
gudP Q46916 Probable glucarate transporter -9.28 3.33E-10 
flgE P50610 Flagellar hook subunit protein -9.18 3.22E-15 
entS P24077 Enterobactin exporter -8.88 2.66E-13 
fliM P06974 Flagellar motor switch protein -8.73 7.92E-03 
entH P0A8Y8 Thioesterase -8.09 7.25E-13 
arnC P77757 Undecaprenyl phosphate-L-Ara4FN transferase -7.9 4.60E-04 
nrdI P0A772 Protein that stimulates ribonucleotide reduction -7.87 6.97E-07 

mcrC P15006 McrBC restriction endonuclease -7.83 4.78E-06 
gadE P63204 Transcriptional regulator  -7.44 8.86E-10 
mdtE P37636 Multidrug resistance protein  -7.26 2.76E-06 

ais C4ZU94 Lipopolysaccharide core heptose(II)-phosphate 
phosphatase -7.22 5.69E-03 

gcl P0AEP7 Component of glyoxylate carboligase -7.15 3.18E-06 

arnD P76472 Probable 4-deoxy-4-formamido-L-arabinose-
phosphoundecaprenol deformylase -6.99 9.42E-04 

arnA P77398 Bifunctional polymyxin resistance protein -6.92 6.60E-08 
gudD P0AES2 Glucarate dehydratase -6.78 1.55E-15 
yfaH P45505 Uncharacterised protein -6.46 9.25E-05 
fecR P23485 Regulation of iron dicitrate transport -6.45 9.42E-05 
cspA P0A9X9 Cold shock protein  -6.45 3.46E-06 
fliF P25798 Flagellar basal body M-ring protein -6.44 4.38E-04 

fepC P23878 Component of ferric enterobactin ABC 
transporter 

-6.29 8.10E-10 

iap P10423 Alkaline phosphatase isozyme conversion protein -6.1 1.91E-09 
flgF P75938 Flagellar basal-body rod protein  -6.08 6.22E-03 
pyrI P0A7F3 Aspartate carbamoyltransferase regulatory chain -5.99 5.66E-07 
fecI P23484 Probable RNA polymerase sigma factor  -5.94 1.21E-05 

fhuD P07822 Ferric hydroxamate uptake protein D -5.7 1.17E-05 
gadC P63235 Extreme acid sensitivity protein -5.62 1.22E-09 
yjdP Q6BEX5 Uncharacterised protein -5.38 1.23E-12 
kdpA P03959 Potassium-transporting ATPase A chain -5.22 8.72E-04 
uraA P0AGM7 Uracil transporter  -5.19 1.01E-05 
ydhO P76190 Endopeptidase  -5.13 5.55E-16 
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6. 7. Genes differentially expressed in E. coli K12 cells challenged with 

Byotrol™ compared to the growth control  

 

6. 7. 1. Genes up-regulated in E. coli K12 cells challenged with Byotrol™ 

compared to the growth control  

In cells challenged with 4 times MIC Byotrol™ for 2 hours after 5 hours of growth, 65 

genes were down-regulated in comparison to the growth control (Table 6. 6). Many of 

the genes differentially expressed under these conditions have an unknown function, 

however the characterised protein that was most highly over-expressed was csgD (25 

fold), which is involved in transcriptional regulation. Genes of the lsr operon were up-

regulated in cells challenged with Byotrol™, namely lsrA (~11-fold), lsrB (~5-fold), 

lsrC (~11.5-fold) and lsrR (~6.5-fold). The gene with the highest fold change was iraM, 

which is up-regulated when magnesium ions are not present, thereby inducing RpoS. 
  
Table 6. 6. Genes in E. coli K12 that were up-regulated in response to challenge with 
Byotrol™ compared to the growth control. Genes with a fold change greater 5 compared 
to untreated cells are displayed. 
 

Gene 
Uniprot 
Entry Function and/or product 

Fold 
Changea  p-valueb 

iraM P75987 RpoS stabiliser during Mg2+ starvation 36.17 1.85E-11 
yjbS P58036 Function unknown 27.19 7.92E-03 

csgD P52106 DNA-binding transcriptional activator in two-
component regulatory system 25.39 4.44E-04 

yjfI P0AF76 Inner membrane protein 21.72 3.40E-09 

ariR P75993 RcsB connector protein for biofilm and acid 
resistance regulation 16.58 1.77E-13 

rrsA  rRNA 16.28 2.22E-04 
yjfJ P0AF78 Predicted transcriptional regulator effector protein 16.26 9.00E-07 

pspD P0AFV8 Peripheral inner membrane phage-shock protein 16.1 3.55E-15 
ymgC P75994 Function unknown 15.36 4.49E-07 
ymgI A5A611 Function unknown 15.27 1.95E-07 
rrlG  rRNA 15.14 3.37E-03 
gspC P45757 Protein secretion protein for export 14.94 8.84E-14 
elfA P75855 Predicted fimbrial-like adhesion protein 14.61 2.45E-10 
yegJ P76334 Function unknown 14.29 9.05E-05 
rrlE  rRNA 12.84 3.60E-03 
pspC P0AFN2 Transcriptional regulator 12.06 4.44E-16 

napD P0A9I5 Twin-arginine signal-peptide-binding chaperone 
for NapA 12 2.77E-11 

fixB P31574 Flavoprotein subunit required for anaerobic 
carnitine metabolism 11.98 3.47E-10 

 

a Fold change based on normalised values; b p-value (≤0.001). 
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Table 6. 6. Continued. 

Gene 
Uniprot 
Entry Function and/or product 

Fold 
Changea  p-valueb 

lsrC P77672 Autoinducer-2 (AI-2) uptake ABC transporter 11.59 4.97E-06 
ydeJ P0ACW0 Function unknown 11.56 1.50E-13 
yhaI P64592 Predicted inner membrane protein 10.84 3.59E-06 

lsrA P77257 Autoinducer-2 (AI-2) uptake; essential for aerobic 
growth 10.84 1.53E-14 

ycaL P43674 Putative heat shock protein 9.67 5.45E-05 
leuB P30125 Beta-Isopropylmalate dehydrogenase 8.71 2.24E-11 
ygbJ Q46888 Putative dehydrogenase with NAD(P) binding 8.35 9.51E-07 

matA P71301 Putative transcriptional regulator for mat genes 
(fimbrillin genes) 8.16 2.76E-06 

yedN P76321 Function unknown 7.83 5.78E-05 
fdrA Q47208 Protein transporter 7.77 9.02E-04 
napB P0ABL3 Small subunit of periplasmic nitrate reductase 7.67 1.79E-07 

nanC P69856 N-acetylneuraminic acid outer membrane channel 
protein 7.52 3.88E-06 

recN P05824 Protein used in recombination and DNA repair 7.16 1.53E-13 
ygbL Q46890 Predicted class II aldolase 7.02 8.09E-04 

agaV P42904 N-acetylgalactosamine-specific enzyme IIB 
component of phosphotransferase system (PTS) 6.83 8.08E-05 

ygiL P39834 Predicted fimbrial-like adhesin protein 6.68 3.82E-04 
yccJ P0AB14 Function unknown 6.64 8.47E-10 
yedR P76334 Inner membrane protein 6.59 1.32E-07 

agaA P42906 Predicted truncated N-acetylgalactosamine-6-
phosphate deacetylase 6.54 2.67E-04 

yegP P76402 Conserved protein 6.51 1.53E-09 

lsrR P76141 lsrACDBFGE operon regulator for autoinducer-2 
(AI-2) uptake 6.45 4.44E-16 

yhiL P37629 Uncharacterised protein 6.32 6.12E-05 

bioA P12995 Adenosylmethionine-8-amino-7-oxononanoate 
aminotransferase 6.28 9.35E-04 

yohC P0AD17 Predicted inner membrane protein 6.16 1.18E-03 
hokD P0ACG6 Small toxic membrane polypeptide 6.06 3.57E-03 
ibpB P0C058 Heat-inducible protein of HSP20 family 5.86 2.67E-11 
yagH P77713 Predicted xylosidase/arabinosidase 5.83 2.66E-15 
yagG P75683 Predicted sugar transporter 5.8 4.72E-10 
napG P0AAL3 Quinol dehydrogenase 5.62 3.37E-04 
ilvN P0ADF8 Acetohydroxy acid synthase 5.57 7.39E-13 
paaZ P77455 Enoyl-CoA hydratase 5.51 6.16E-04 
cnu P64467 Origin of replication (OriC) binding protein 5.38 3.68E-06 

rcnA P76425 Probable nickel and cobalt efflux system 5.35 5.89E-07 
ybfG P37003 Uncharacterised protein 5.3 1.25E-03 
pspF P37003 DNA-binding transcriptional activator 5.28 1.73E-08 

yeiL P0A9E9 DNA-binding transcriptional activator of 
stationary phase nitrogen survival 5.23 1.59E-03 

lsrB P76142 Autoinducer-2 (AI-2) uptake 5.15 8.53E-12 
astE P76215 Succinylglutamate desuccinylase 5.13 2.47E-09 
yjbM P32694 Function unknown 5.08 7.99E-08 

proW P14176 High-affinity transport for glycine, betaine, and 
proline 5.07 1.51E-03 

ygbK Q46889 Function unknown 5.04 1.90E-08 
ydaF P0ACW0 Rac prophage putative protein 5.01 7.31E-03 
yfdF P76505 Uncharacterised protein 5 1.89E-09 

 

a Fold change based on normalised values; b p-value (≤0.001). 
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6. 7. 2. Genes down-regulated in E. coli K12 cells challenged with Byotrol™ 

compared to the growth control  

In cells challenged with 4 times MIC Byotrol™ for 2 hours, 40 genes were down-

regulated in comparison to the growth control (Table 6. 7). The gene with the greatest 

fold change was flgB, which encodes a flagellar protein, and as for the E. coli K12 cells 

treated with Byotrol™ when compared to cells challenged wth Byotrol™, other genes 

involved in flagella synthesis and motility were also down-regulated (genes of the flg 

operon and fli operon). The subsequent characterised proteins also down-regulated were 

associated with the als operon, which encode components of the D-allose ABC 

transporter. Ion transport, flagellar synthesis, carbohydrate metabolism and protein 

synthesis were all down-regulated functions when challenged cells were compared to 

the growth control. 
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Table 6. 7. Genes in E. coli K12 that were down-regulated in response to challenge with 
Byotrol™ compared to the growth control. Genes with a fold change greater 5 compared 
to untreated cells are displayed. 

Gene UniProt 
Entry Function and/or product Fold 

Changea p-valueb 

flgB P0ABW9 Flagellar basal-body rod protein FlgB -24.35 7.33E-03 
fes P13039 Enterochelin esterase -20.5 7.77E-16 

alsA P32721 Component of D-allose ABC transporter -18.94 1.46E-12 
alsC P32720 Component of D-allose ABC transporter -17.5 2.15E-06 
ydiY P76206 Uncharacterised protein -16.85 6.92E-12 
alsE P32719 Allose-6-P 3-epimerase -15.11 7.77E-16 
nrdF P37146 Ribonucleoside diphosphate reductase 2 -14.86 3.66E-15 
arnC P77757 Undecaprenyl phosphate-L-Ara4FN transferase -14.69 1.66E-07 

ais C4ZU94 Lipopolysaccharide core heptose(II)-phosphate 
phosphatase -13.63 2.56E-05 

flgC P0ABX2 Flagellar basal-body rod protein FlgC -11.5 5.86E-03 
fliA P0AEM6 Component of RNA polymerase sigma 28 -11.42 6.27E-04 

arnA P77398 Bifunctional polymyxin resistance protein -10.46 7.23E-13 
entH P0A8Y8 Thioesterase -9.9 2.22E-16 

arnD P76472 Probable 4-deoxy-4-formamido-L-arabinose-
phosphoundecaprenol deformylase -9.59 3.79E-05 

nrdI P0A772 Flavotoxin required for NrdEF cluster assembly -9.55 1.47E-08 

entS P24077 Component of EntS-TolC Enterobactin Efflux 
Transport System 

-8.21 4.25E-12 

flgE P50610 Flagellar hook subunit protein -7.5 7.02E-12 

fepC P23878 Component of ferric enterobactin ABC 
transporter 

-7.47 3.16E-12 

fecI P23484 RNA polymerase, sigma19 factor -7.46 2.18E-07 
tdcE P42632 Pyruvate formate-lyase -7.45 1.42E-10 

fecR P23485 Transmembrane signal transducer for ferric citrate 
transport -7.14 2.62E-05 

flgD P75936 Flagellar biosynthesis, initiation of hook assembly -6.87 1.37E-03 

entA P15047 Component of 2,3-dihydro-2,3-
dihydroxybenzoate dehydrogenase 

-6.67 1.23E-08 

bglJ P39404 BglJ transcriptional regulator -6.64 3.98E-06 
ygfF P52037 Putative NAD(P) binding oxidoreductase -6.53 9.28E-10 
yfaH P45505 Function unknown -6.35 1.15E-04 
ynjE P78067 Thiosulphate sulfur transferase -6.28 3.38E-11 

mcrC P15006 MrcC subunit of 5-methylcytosine restriction 
system -6.23 1.08E-04 

tdcD P11868 Propionate kinase, anaerobic -6.21 3.96E-05 
fliF P25798 Flagellar basal body M-ring protein -6.2 6.36E-04 
alsB P39265 Periplasmic Allose-binding protein -6.14 9.46E-10 

rbsR P0ACQ0 Transcriptional repressor for the ribose 
rbsDACBK operon -5.78 5.00E-15 

uraA P0AGM7 Uracil permease -5.71 1.88E-06 
yqgC P64570 Function unknown -5.58 2.10E-13 
arnB P77690 UDP-4-amino-4-deoxy-L-arabinose synthase -5.52 6.00E-09 
fhuD P07822 Ferric hydroxamate uptake protein D -5.36 2.99E-05 
ydhO P76190 Endopeptidase  -5.34 1.11E-16 
exbD P0ABV2 Biopolymer transport protein ExbD -5.3 4.44E-16 
fepG P23877 Ferrienterobactin transporter -5.2 5.43E-04 
fhuB P06972 Ferrichrome-dependent iron uptake -5.13 2.87E-10 

a Fold change based on normalised values; b p-value (≤0.001). 
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The data displayed in Tables 6. 3 to 6. 7 outline the number genes that were up and 

down-regulated in each condition. There are, however, genes that were up-regulated in 

one condition but down-regulated in another and these are detailed in Table 6. 8. Of the 

two comparisons (treated vs. growth control and challenge vs. treated), overall, genes 

were most greatly differentially expressed in cells treated with Byotrol™ when 

compared to the growth control. 

 

 

Table 6. 8. Genes up-regulated in one growth condition and down-regulated in another. 
 

Gene UniProt 
entry Gene function 

Fold change 
expression in 
treated cells 
compared to 

growth 
control 

Fold change 
expression in 

challenged 
cells 

compared to 
treated 

Fold change 
expression in 

challenged 
cells 

compared to 
growth 
control 

cysW P0AEB0 Sulphate transport protein -32.86 +16.78 ND* 
gcl P0AEP7 Glyoxylate carboligase +8.91 -7.15 ND* 

glxR P77161 2-hydroxy-3-oxopropionate 
reductase +13.49 -14.93 ND* 

gudP Q46916 D-glucarate transporter +14.42 -9.28 ND* 
tnaC P0AD89 Tryptophanase leader peptide +102.48 -11.77 ND* 
hyi P30147 Hydroxypyruvate isomerase +15.1 -15.66 ND* 

tnaC P0AD89 Tryptophanase leader peptide +102.48 -11.77 ND* 
ydjO P76210 Unknown function -6.92 +13.94 ND* 

 
*‘ND’ No Difference. 
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6. 8.  Unmapped reads 

The data shows that the total number of unmapped reads were approximately 14 million 

(29% of total reads), 13.5 million (34% of total reads) and 11.6 million (36% of total 

reads) for the growth control, treated and challenge cells, respectively. An NCBI 

BLAST search of the unmapped reads for E. coli K12 growth control cells revealed the 

identity of the complete genomes or complete sequences to which the unmapped reads 

align (Figure 6. 13). The greatest proportion of the unmapped reads aligned to the E. 

coli APEC 078 genome (58%), followed by 8% of the unmapped reads that map to the 

E. coli K12 F plasmid. The number of reads which map to each of the genomes and 

sequences identified are displayed in Table 6. 9. 

 

 

Table 6. 9. Genomes and sequences identified by BLAST to which unmapped reads 
align and the range of hits (reads) to the genome or sequence. 
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Figure 6. 13. Identification of unmapped reads in E. coli K12 growth control cells. 
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6. 9. Discussion 

The presence of the biocide Byotrol™ evoked many genome-wide expression changes 

covering a variety of functional gene groups in E. coli K12. The induction and 

repression of a diverse group of genes occured when cells are both treated with 

Byotrol™ for the duration of growth to mid-log phase at sub-inhibitory concentrations, 

and challenged with the biocide for 2 hours at 4 times the MIC. 

 

 

6. 9. 1.  Genes up-regulated in response to Byotrol™ 

 

6. 9. 1. 1.  Up-regulation of genes associated with transcriptional regulation and 

DNA binding 

Allen and co-workers (2006) found that PHMB, which is the main biocidal component 

in Byotrol™, degrades the DNA of the cell. It is therefore not surprising that the cell’s 

response to the presence of PHMB, is to protect the DNA. In this study, recN and umu 

genes were induced. These genes are involved in DNA shielding (Allen et al., 2006). 

RecN is a unique DNA repair gene, which is related to recA (Meddows et al., 2005), 

also identified by Allen and co-workers as being up-regulated in the presence of PHMB 

(Allen et al., 2006). UmuD is another gene whose protein product is involved in DNA 

repair and which is regulated by RecA. When DNA is damaged, the cell attempts to 

continue DNA synthesis by producing single stranded DNA, which in turn permits the 

formation of RecA. The production of RecA leads to the expression of the umuDC 

operon (Ohta et al., 1999). This operon may be utilised in the recombinational repair of 

DNA which has been damaged, and increases protein stability, although exactly how 

proteins are stabilised is unclear (Frank et al., 1996). The RecN protein is induced when 

the cell is exposed to DNA damaging agents, whereby RecN forms oligomers that 

interact with the DNA, protecting it from exonucleases (McKenzie et al., 2000). 

 

 

6. 9. 1. 2. Up-regulation of genes involved in protein synthesis 

Sulphur is an essential element that is required for the biosynthesis of certain proteins as 

it is a component of some amino acids (Fuentes et al., 2007; Mendez et al., 2011). The 

cys operons encode sulphur-containing amino acids such as methionine and cysteine, 

which may be required for protein repair after biocidal damage (Mendez et al., 2011). In 
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addition to this, in sulphur containing nucleic acids, di-sulphide bonds are repaired 

under stress, and these di-sulphide bonds are important in maintaining DNA stability 

under changes in the pH of the environment (Dolinnaia & Borisova, 2000). In cells 

treated with Byotrol™ there was an up-regulation of genes associated with sulphate 

binding and transport, namely cysA, cysD, cysU, cysW. Gunasekera and co-workers also 

described the cys gene clusters as being related to stress response in E. coli K12, 

particularly to heat shock, however it is postulated that genes that are associated with a 

specific stress response such as heat, may also be induced in other stress conditions 

(Gunasekera et al., 2008). In addition to this, cysteine is a precursor of glutathione, 

which is important as a defence against oxidative stress by maintaining a reduced 

environment in the cytosol. Exactly how this is achieved has not been studied in great 

detail, but there is definite induction of glutathione upon oxidative stress (Carmel-Harel 

& Storz, 2000). 

 

 

6. 9. 1. 3. Up-regulation of genes specific to stress response 

The phage shock protein (Psp) stress response system is responsible for repairing 

damage to the inner membrane of the cell and maintenance of the proton-motive force 

across the inner membrane (Brissette et al., 1990). The pspC, pspD and pspF genes 

were up-regulated in cells challenged with Byotrol™. Although Psp is induced in 

response to phage shock, it is also up-regulated under other conditions including 

secretin production, blockage of protein export or phospholipid biosynthesis, extreme 

osmotic or heat shock and high ambient pH (Huvet et al., 2011). It may be for this 

reason that it was induced at high concentrations of Byotrol™. 

 

IraM was up-regulated (~36-fold) when cells were challenged with Byotrol™ compared 

to the growth control. iraM is involved in the induction of σS (RpoS) sub-unit of RNA 

polymerase particularly upon magnesium ion (Mg2+) starvation (Hengge-Aronis, 2002). 

QACs act by displacing the Mg2+ ions that stabilise the outer membrane of E. coli, 

consequently, the cell wall is perturbed causing cell lysis (Gilbert & Moore, 2005). At 

bactericidal concentrations, PHMB also causes DNA damage (Allen et al., 2006). RpoS 

is rapidly induced upon stress, including osmotic stress, DNA damage, nutrient 

deprivation, heat and cold shock and acid shock (Battesti et al., 2011), furthermore, 

RpoS may be induced as a stress response which induces biofilm related genes, as RpoS 
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is essential for biofilm formation (Hengge-Aronis, 2002). The induction of biofilm 

formation as a stress response will be discussed further in Section 6. 9. 5. 

 

 

The small heat shock protein of E. coli, IbpB, was also up-regulated in cells challenged 

with Byotrol™ (~6-fold). The ibpB gene is up-regulated under antimicrobial stress as 

well as elevated temperatures and acts as an anti-oxidant (Hansen et al., 2004). The role 

of IbpB, with the assistance of other chaperones, is to re-fold denatured proteins and 

prevent their aggregation (Veinger et al., 1998). 

 

 

6. 9. 1. 4. Up-regulation of genes involved in quorum sensing 

Quorum sensing is the cell-cell signalling mechanism used by bacteria to control gene 

expression in response to cell density, which can regulate bacterial pathogenicity by 

regulating the coordinated expression of virulence factors, toxin production, motility 

and biofilm formation. In the current study, the lsr operon was up-regulated when cells 

were treated and challenged with Byotrol™ compared the growth control. Autoinducer-2 

(AI-2), a signalling molecule used for bacterial intercellular communication, is 

transported into the cell via the genes encoded by the lsr operon, therefore it is likely 

that the AI-2 is still effectively internalised under biocidal stress. Previous studies have 

found that AI-2 production is directly related to growth rate (DeLisa et al., 2001; Ren et 

al., 2004a). Cells that are in the exponential phase of growth have an increasing level of 

AI-2 (Ren et al., 2004a). DeLisa and co-workers also found that AI-2 expression was 

closely affected by environmental stress such as changes in levels of glucose, oxygen, 

extreme temperature, ethanol stress and oxidative stress and observed an initial decrease 

in AI-2 followed by oscillating levels particularly in the presence of ethanol and heat 

stress (Zhang et al., 2007). lsr up-regulation may be continuous in response to 

Byotrol™, however, with regard to the relationship between growth rate, ethanol and 

heat stress, and AI-2 expression, the up-regulation of the lsr operon in the current study 

may be a snapshot of AI-2 gene regulation, and perhaps if gene expression was studied 

at various time points for a longer period, an oscillating pattern of lsr gene expression 

may also have been observed. 
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6. 9. 1. 5. Up-regulation of pili and curli fimbriae genes 

The study by Allen and co-workers, as with the current study, demonstrated that pili and 

curli fimbriae genes were up-regulated, which was exemplified by the up-regulation of 

elfA (a fimA homolog), ygiL and csgD, when cells were treated and challenged with 

Byotrol™. csgD was up-regulated ~36-fold in cells challenged with Byotrol™ when 

compared to the growth control. csgD is the master regulator for adhesive curli fimbriae 

expression and is necessary for transcription of the first operon which encodes csgBAC, 

as well as the second operon encoding the csgDEFG operon (Gophna et al., 2001). 

csgD may be up-regulated because the pili and fimbriae are suggested to be important in 

cell aggregation; it is possible that increased cell aggregation will protect cells in the 

middle of the aggregate from the damaging effects of the biocide (Allen et al., 2006). It 

is also possible that the up-regulation of fimbriae genes is due to the up-regulation of 

RpoS (Section 6. 9. 1. 3), as curli expression is dependent on RpoS (Arnqvist et al., 

1994; Barnhart & Chapman, 2006). 

 

 

6. 9. 2. Genes down-regulated in response to Byotrol™  

In a comparison of the genes expressed by the E. coli K12 growth control and the genes 

expressed when cells are treated or challenged with Byotrol™, a greater proportion were 

down-regulated in the challenged cells. These will be discussed further in the following 

sections. 

 

 

6. 9. 2. 1. Down-regulation of genes involved in flagellar synthesis 

Flagella are required for motility and chemotaxis in E. coli (Vladimirov et al., 2010; 

Zhao et al., 2007). In the current study, the flgB, flgC, flgD and flgE genes of the 

flagella-associated operon flgBCDEFGHIJKL were down-regulated in cells both treated 

and challenged with Byotrol™, as were genes of the fli operon involved in the synthesis 

of structural components of flagella. Furthermore, matA, which is a repressor of 

flagellar genes, was up-regulated when cells were challenged with Byotrol™, although 

perhaps not induced at sub-inhibitory concentrations of Byotrol™ when cells were 

treated with Byotrol™. It is likely that the whole operon was down-regulated but as 

Allen and co-workers (2006) suggest, perhaps due to differences in transcript stability, 

not all of the genes were reverse transcribed. Previous studies have also demonstrated 

that genes associated with flagella synthesis are down-regulated in the presence of 
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PHMB (Allen et al., 2006), which suggests that motility was not the main priority of E. 

coli when under the stress the Byotrol™. There is also a suggestion by Allen and co-

workers (2006) that cellular damage caused by PHMB forces the E. coli to switch from 

flagella synthesis to curli synthesis, as curli fimbriae allow the cells to aggregate in 

order to protect themselves from PHMB damage.  

 

 

6. 9. 2. 2. Down-regulation of genes involved in central metabolism 

An important feature of the stress response is conservation of energy (Weber et al., 

2005). Gene expression studies show a repression of genes associated with cell growth 

when cells are under stress (Barker et al., 2001; Weber et al., 2005). This is exemplified 

by the D-allose (als) operon, which is involved in carbohydrate metabolism. D-allose 

can be utilised by E. coli as a carbon source, and therefore, when growth is repressed as 

a stress response, this operon is not required, as growth is not the cell’s priority under 

conditions of stress (Kim et al., 1997). 

 

 

6. 9. 2. 3. Down-regulation of genes involved in iron transfer 

Iron is an essential microelement for bacteria for aerobic metabolism and growth 

(Ouyang & Isaacson, 2006; Vagrali, 2009) and bacteria produce mechanisms of iron 

uptake called siderophores, which, under iron starvation scavenge iron from the 

environment (Andrews et al., 2003). In E. coli, there are a number of iron transport 

systems which are involved in the transport of ferrichrome and ferric-hydroxamate, 

ferric-enterobactin (FeEnt), and ferric-citrate (Ouyang & Isaacson, 2006);Waldron & 

Robinson, 2009). These pathways were all down-regulated in E. coli K12 when 

challenged with Byotrol™. 

 

Enterobactin, encoded by the ent operon, is one of the major siderophores of E. coli 

(Ehmann et al., 2000). The proteins encoded by the fep operon as well as fes are 

involved in the transport of FeEnt into the bacterial cell. FepA facilitates the initial 

binding of FeEnt, FepB transports FeEnt across the periplasmic membrane, FepD and 

FepG are cytoplasmic transmembrane proteins that receive FeEnt from FepB, which is 

facilitated by FepC (Raymond et al., 2003). Overall, in cells challenged with Byotrol™ 

compared to the growth control and also when cells challenged with Byotrol™ were 

compared to cells treated with Byotrol™, the fep operon and fes were down-regulated 
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along with the ent genes which encode enterobactin (-20.5 to –5.2-fold down-

regulation). 

 

Although iron is essential for growth in bacteria, there is an optimum intracellular 

concentration, which is different for each species. If the intracellular concentration of 

iron is too high, it may lead to oxidative damage caused by free radicals within the 

bacterial cell (Andrews et al., 2003). As the action of Byotrol™ is likely to result in 

damage of the outer membrane, perhaps the need for chelating iron and transporting it 

across the membrane is reduced.  

 

As with the transport of iron, many genes associated with the cytoplasm and periplasm 

which have transport and binding functions, were down-regulated in cells challenged 

with Byotrol™ when compared to the growth control and treated cells. This may also be 

due to the damage caused by biocidal action to the outer membrane of the bacterial cell 

whereby the activities of transport systems across the membrane are disturbed or 

required to a lesser degree than when the membrane is intact (Torres et al., 2001). 

 

 

6. 9. 2. 4. Down-regulation of specific stress response genes 

The gad genes form two operons: the gadA operon and the gadBC operon. gadA and 

gadB encode isoforms of glutamate decarboxylase and gadC encodes glutamate γ-

amino butyric acid (GABA), a membrane associated antiporter that exchanges 

exogenous glutamate for intracellular GABA (Castanie-Cornet & Foster, 2001). GadE 

is required for the activation of gadA and gadBC expression, therefore if gadE is down-

regulated, gadA and gadBC are also down-regulated (Hirakawa et al., 2010). Previous 

studies have demonstrated that the acid-resistance genes gadA, gadB and gadE 

(previously yhiE), and hdeD are up-regulated in low pH environments and under 

continuous heat stress, however, they are down-regulated under osmotic stress 

(Gunasekera et al., 2008; Tucker et al., 2002). In the current study, the gad operons and 

hdeD were also down-regulated in the presence of biocidal stress, particularly when 

cells were challenged with Byotrol™ compared to cells treated with Byotrol™. The exact 

function of the protein product of hdeD is unclear, however as for the gad operons, 

hdeD is involved in acid-resistane. Lee and co-workers suggest that AI-2 has a 

regulatory effect on gad and hde expression, whereby AI-2 repressed the expression of 

the gad and hde genes 6-18-fold (Lee et al., 2007a). 
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The cold shock protein encoded by cspA was down-regulated (-6.45-fold) in cells 

challenged with Byotrol™ compared to cells treated with Byotrol™. cspA encodes a 

protein that has a function related to the adaption to adverse conditions and a previous 

study has found that this protein is up-regulated in the presence of biocidal stress, 

particularly BAC, in E. coli and Salmonella biofilms (Mangalappalli-Illathu & Korber, 

2006). It is possible that the down-regulation of cspA in cells challenged with Byotrol™, 

which was demonstrated by this current study, is due to the high concentrations used. 

The up-regulation of the cold shock protein may only occur when cells are exposed to 

an optimum sub-lethal concentration, therefore as the concentration of the biocide 

increases, the expression of the cold shock protein is induced up to a certain 

concentration of biocide, after which the biocide concentration increases to a level 

whereby the cold shock protein is not required. 

 

 

6. 9. 3. Correlation of gene expression with protein expression 

 

6. 9. 3. 1. D-ribose periplasmic binding protein 

In the current study, rbsR was down-regulated (~6-fold) in cells challenged with 

Byotrol™ when compared to both the growth control and Byotrol™ treated cells. This 

gene encodes a DNA binding transcriptional repressor, RsbR, which represses the 

transcription of the ribose operon (rbsDACBK) (Mauzy & Hermodson, 1992; Shimada 

et al., 2013). When rsbR is down-regulated, the ribose operon continues to be 

functional, which correlates with the up-regulation of RsbB protein, as discussed in 

Chapter 5, Section 5. 7. 3. However, rsbB was not observed to be up-regulated in the 

transcriptomics data of the current study, the reason for which is unclear.  

 

 

6. 9. 3. 2. Tryptophanase and indole production 

In cells treated with Byotrol™ the expression of tnaC was up-regulated (~100-fold) in 

relation to the growth control. However when cells were challenged, the expression of 

tnaC was down-regulated (~11-fold). tnaC encodes the leader peptide in the tnaCAB 

operon, involved in tryptophan and indole metabolism. tnaC may be induced when cells 

are continuously under the pressure of growing in the presence of an inhibitor, as amino 

acids such as tryptophan are required for growth and protein repair, which is paramount 

to cell survival under such conditions. However, when cells are transiently or acutely 
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challenged with a biocide as they are when challenged with Byotrol™, this amino acid 

may not be as essential to survival in the short term. Instead other functions such as the 

up-regulation of fimbriae take priority, as discussed in Section 6. 9. 1. 5. Indole is the 

product of tryptophan catalysis and therefore tryptophanase regulation has an effect on 

the production of indole. As discussed previously, indole is a known global regulator in 

E. coli of genes associated with acid stress and motility (Hirakawa et al., 2010). 

Therefore, as indole is expressed in cells treated with Byotrol™, motility is down-

regulated, but also, as indole is repressed in cells challenged with Byotrol™, acid-

resistance is also repressed. The up-regulation of trytophanase gene expression 

correlates with the up-regulation of tryptophanase protein expression in treated cells, as 

discussed in Chapter 5, Section 5. 7. 2. 

 

 

6. 9. 4. Genes both up and down-regulated under the same condition 

When grouping genes into the functional categories of protein synthesis, flagella 

synthesis, DNA replication, ion transport, transcription regulation and energy 

production, it is clear that some genes are up-regulated and others from the same group 

are down-regulated even though cells were exposed to the same growth condition. For 

example, in cells challenged with Byotrol™ compared to the cells treated with Byotrol™, 

stress response genes were both up and down-regulated. The ibpB gene involved in 

stress response was up-regulated (~6-fold), the hdeD gene encoding a membrane protein 

involved in acid-resistance, is a stress response protein which was down-regulated (~22-

fold). This apparently conflicting trend in the differential expression of genes according 

to their function is most likely due to the way in which genes were grouped into very 

broad functional categories. The grouping does not account for the complexity involved 

in the regulation of genes for a particular function. 

 

 

6. 9. 5. Induction of biofilm-related genes under stress 

The induction of RpoS which in turn may be related to the up-regulation of fimbriae 

curli (Barnhart & Chapman, 2006), which are known to be induced during the early 

stages of biofilm formation (Blumer et al., 2005), may suggest that planktonic cells 

were up-regulating genes related to biofilm formation. Tryptophanse was also down-

regulated in challenged cells (~11-fold), thereby repressing the production of indole. 

Indole is known to inhibit biofilm formation (Lee et al., 2007b), therefore the repression 
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of indole may encourage biofilm formation. AI-2 and RpoS were also up-regulated, 

both proteins regulate biofilm forming genes (Barnhart & Chapman, 2006; Li et al., 

2007). Furthermore, previous studies have suggested that when biofilm forming genes 

are up-regulated, acid-resistance genes are down-regulated (Lee et al., 2007a), which 

was also demonstrated in this study, whereby gad and hde genes were down-regulated. 

Perhaps biocidal damage induced biofilm formation as a stress response (Landini, 2009; 

Shemesh et al., 2010). 

 

 

6. 9. 6. Greater differential expression of genes in cells challenged with 

Byotrol™ compared to cells treated with Byotrol™  

The continuous presence of an antimicrobial is thought to induce a stress response, as 

demonstrated with the cells treated with sub-MIC Byotrol™ for 5 hours. However genes 

expressed when cells are in this state of stress are thought to be up or down-regulated 

initially, but then settle into a steady state (Gunasekera et al., 2008). However, an acute 

or short period of stress, as demonstrated with the cells challenged with 4 times 

Byotrol™ for 2 hours after growth for 5 hours, requires the cell to induce genes 

associated with shock response (Gunasekera et al., 2008). Perhaps for this reason, a 

greater number of differentially expressed genes are observed in the cells challenged 

with Byotrol™ in comparison to the cells treated with Byotrol™ for 5 hours at a sub-

inhibitory concentration. 

 

 

6. 9. 7. Unmapped reads 

Approximately 30% of the sequence reads obtained in the current study did not map to 

the reference E. coli K12 genome. The particular strain of E. coli K12 MG1655 used in 

this current study carries an XL-1 blue phage and therefore contains a Lambda cloning 

vector. Perhaps some of the unmapped reads map to this vector. The high percentage of 

unmapped reads which mapped to the E. coli APEC 078 strain and the high number of 

reads against the E. coli Xuzhou, an O157:H7 strain, as well as the other strains 

identified by the BLAST search, indicated that there was some environmental or 

sampling contamination. Previously published RNA-Seq data also produced 

approximately 5-20% unmapped reads (Wang et al., 2009b; Yi et al., 2011). A study 

which has evaluated the identity of unmapped reads concluded that commonly, the 
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reason for unmapped reads is due to rRNA which has not been successfully removed 

(Yi et al., 2011). 
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The purpose of the studies presented in this thesis was to identify a novel cationic 

antimicrobial compound that has the potential for the treatment or prevention of 

infections caused by Gram-negative uropathogens. As part of this, data to better 

understand how a selected antimicrobial might perform as a catheter coating, and as an 

antimicrobial against an established biofilm is presented. Also, studies to elucidate the 

biological response of E. coli, the most common cause of CAUTI, to a selected 

antimicrobial, are presented. Genes and proteins that were differentially expressed 

demonstrated how these bacteria adapt to certain antimicrobial stresses. 

 

There is no doubt that an established and mature biofilm is difficult to treat. There is a 

need to understand the behaviour of mature biofilms, as the treatment challenges of this 

stage of the biofilm phenotype are significantly more diverse and different to a young 

biofilm. However, intervening at the early stages of biofilm development and inhibiting 

planktonic cells before they are able to attach to a surface is most desirable. For this 

reason the inhibition of viable planktonic bacteria that could potentially attach to the 

surface was evaluated at 18 hours with the microtitre plate biofilm formation assay and 

at 8 hours for the pre-coating assay.  

 

A study by Amin and co-workers (2009) revealed that the Gram-negative bacteria E. 

coli, K. pneumoniae and P. aeruginosa, as well as Enterobacter spp. are the most 

commonly isolated organisms from a colonised urinary catheter (Amin & Wareham, 

2009). Crystalline biofilms commonly caused by P. mirabilis and K. pneumoniae are a 

common problem for catheterised patients, and are notoriously difficult to treat. 

However, as K. pneumoniae is the second most prevalent organism isolated from a 

CAUTI after E. coli, the latter was prioritised for use in the current study. Although 

coagulase-negative staphylococci such as S. epidermidis are a cause of CAUTI, they are 

often contaminants of a catheter when the device is being inserted, also, Gram-positive 

bacteria account for less than 3% of CAUTI (Hooton et al., 2010). This being the case, 

Gram-positive bacteria were not tested in this study. The effect of antimicrobials against 

a mixed population of bacterial species relevant to UTI has also not been studied. 

Studying mixed populations is always a challenge and something that surely all biofilm 

researchers aspire to investigate once the challenges of mono-culture biofilms have been 

overcome and a greater understanding of biofilm behaviour is gained from single 

species biofilms. 
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7. 1. The search for a novel cationic antimicrobial 

During the course of the current study, natural compounds and QACs were tested for 

their antimicrobial potential. The initial search for natural compounds such as 

polyamines was abandoned in the light of the fact that QACs, with their stable cationic 

charge, would likely be superior, providing antimicrobial action at lower concentrations. 

The antibacterial properties of a QAC depends on the size (molecular weight), the 

length of hydrophobic chains in the quaternary ammonium groups, and the counter-

anion (Chen et al., 2000).  Of the QACs tested, as described in Chapter 4, many did not 

display inhibitory activity against planktonic or biofilm cells. In fact, this was also 

demonstrated when the natural polyamines were quaternised (Chapter 3). The counter 

ion associated with the quarternary ammonium group of the quaternised polyamines is 

iodide (I-), which may result in quenching of the positive charge associated with the 

nitrogen group, as iodide is such a large negatively charged ion. The current study did 

demonstrate that, overall, low molecular weight cationic polyquaterniums are better 

inhibitors than the higher molecular weight compounds tested, as described in Chapter 

4. The current study also supports the theory associated with the antimicrobial activity 

of quaternary ammonium compounds and poly-cationic compounds in relation to 

molecular weight, which is based on a bell-shaped curve, whereby very low and very 

high molecular weight compounds have less antimicrobial activity (Chen et al., 2000).  

This suggests it may be possible to identify a compound that displays optimal 

characteristics for potent antimicrobial activity. 

 

Of the antimicrobials screened in the current study, Byotrol™, a novel formulation of 

QACs and PHMB described in Chapter 4, displayed the greatest antimicrobial activity 

both in suspension and as a coating, inhibiting the growth of planktonic cells and early 

biofilm growth of Gram-negative uropathogenic organisms. However, as well as 

screening for inhibitory compounds using the MIC assay and microtitre plate biofilm 

formation assay, bacteria were also exposed for 8 hours to a surface pre-coated with 

Byotrol™. This assay attempted to determine if bacteria were likely to be killed upon 

contact with a Byotrol™ coated surface, rather than in suspension as was the case for the 

microtitre plate biofilm formation assay (Chapter 4, Section 4. 2). For the pre-coating of 

a microtitre plate, Byotrol™ was dried onto the surface. This method of coating may be 

temporary as Byotrol™ may come away from the surface once a suspension of bacteria 

is added, as Byotrol™ is soluble in water. In addition to this, it was difficult to quantify 
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the exact concentration of Byotrol™ that was coated onto the surface as much of it was 

decanted, therefore it is likely that the concentrations adhered to the surface were lower 

than what was initially dispensed onto the surface. Even given these limitations with the 

method of pre-coating used in this study, it was useful for gaining an initial 

understanding of Byotrol™’s pre-coating potential and activity as a coating. In order to 

ensure that a sufficient amount of Byotrol™ had coated a surface, AFM was used. This 

confirmed that a solution with a concentration of 1 mg/mL Byotrol™, when dispensed 

onto a surface, was still sufficient to cover a surface consistently. Also, initial AFM 

results demonstrated that there was a greater thickness in the coating as the 

concentration increased, which suggests that a higher concentration of Byotrol™ on a 

surface may have a longer lasting effect than lower concentrations, however further 

replicates would need to be performed to confirm this fully. 

 

In order to place these findings in context with the clinical situation whereby the 

catheter will be exposed to urine under flow, a method to coat the surface of a catheter 

more permanently would need to be employed. The stability and lifetime of this coating 

under flow would also be an important factor in the success of Byotrol™ as a catheter 

coating. It would be sensible to presume that the more stable the coating, the longer the 

catheter’s lifetime would be. That being the case, any uroepithelial cell toxicity 

associated with long-term use of Byotrol™ would also need to be assessed. It should be 

noted that PHMB, the most potent antimicrobial compound in the Byotrol™ 

formulation, is already widely used in the environmental and clinical setting, including 

wound care dressings and contact lens solutions (Kingsley & Kiernan, 2013). Although 

PHMG (polyhexamethyleneguanide hydrochloride) is no longer approved for use, the 

safety aspects of continued use of PHMB is still under investigation. A detailed review 

of the studies surrounding the alleged carcinogenic nature of PHMB has concluded that 

the effect is minimal at the concentrations tested. In addition to this, it may be that the 

manner in which PHMB is applied, has an impact on how adverse the effects of PHMB 

is on health (Agency, 2011). The United States Environmental Protection Agency has 

noted that PHMB does not have adverse effects to human health. In addition to this, 

Materials Safety and Data Sheets for PHMB outline that there is not a great risk of 

toxicity by PHMB (Appendix E. 1). Tests with PHMB against mammalian cells and in 

studies with human participants also did not show significant adverse affects (EPA, 

2004a; EPA, 2004b), and given the concentrations that are proposed to be used, it is not 

likely that cytotoxicity will be a major cause for concern. 
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7. 2. The effects of Byotrol™ on the biological pathways of E. coli 

In this study, technology to elucidate both protein and mRNA expression was 

important, as no one approach will facilitate a comprehensive understanding of a cell’s 

physiology and adaptability under antimicrobial stress. Transcriptomics enables the 

study of the transcriptome of a cell, a dynamic entity that reflects a snapshot of the 

organism’s response to a changing environment (Zhang et al., 2010a). Proteomics is a 

direct method to yield a picture of an organism’s living state at a given time point, under 

specific conditions (Lubec et al., 1999). Researchers have used various proteomic and 

transcriptomic technologies to understand the metabolic activity of bacterial cells that 

are under the stress of an external factor such as antimicrobials.  

 

In comparison to the high throughput and relatively low cost of transcriptomics, 

proteomics is far more time consuming and has many limitations. The challenges of 

proteomics include the low level of coverage of information retrieved due to variations 

in protein hydrophobicity, protein stability and abundance, protein size and charge and 

modifications of proteins caused by components in the various buffers and reagents 

required for growth of cells, extraction, purification and resolution (Hedge, 2003). The 

challenges associated with proteomics make the steps involved difficult to standardise 

and fully control (Koomen et al., 2008). 2DGE although notoriously difficult to 

reproduce, often with low resolution and low detection limits, is the most common way 

to analyse whole cell protein (Meleady, 2011; Sauer, 2003). The main limitation of 

2DGE is the inter-gel variation. Newer technologies have helped to overcome some of 

the limitations of 2DGE, for example, fluorescently tagged proteins enable higher 

detection levels and greater sensitivity the gold standard of which is two dimensional 

difference gel electrophoresis (2D-DIGE) (May et al., 2012).  2D-DIGE allows for the 

comparison of up to three different protein samples, each labelled with different 

fluorescent dyes. The samples are then resolved simultaneously on the same 2D gel 

(Alban et al., 2003).  

 

The use of an internal control is what brings 2D-DIGE into its element. An internal 

control is a reference control, which involves pooling all of the samples at equal 

concentrations and labelling them with one fluorescent dye. This internal standard is run 

with the individual samples on the same gel. By comparing the sample protein spot to 

its corresponding reference spot, a true measure of induced biological change can be 
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elucidated (Marouga et al., 2005). This is not possible with 2DGE whereby only one 

sample can be resolved per gel.  

 

Despite any limitations of 2DGE, the importance of proteomics should not be 

underestimated. Proteins are the functional components of cells, therefore an 

understanding of which proteins are expressed and repressed under different conditions 

and during expression of different phenotypes, provides us with more practical and 

applicable information than can be predicted by the mRNA expression levels alone 

(Gygi et al., 1999; Zhang et al., 2010b).  

 

As RNA-seq is still a relatively new technology, and under development, it presents 

some challenges. In order to construct a cDNA library, several stages are involved, 

including the fragmentation of large mRNA or cDNA molecules so that they can be 

processed by deep-sequencing technologies (Wang et al., 2009b). For this current study, 

the Illumina Sequencing system was used, which produces short reads (100 bp). 

Another, more practical challenge is related to bioinformatics. RNA-Seq produces a 

very large volume of data, which can be difficult to process on some systems so the 

appropriate hardware and software that can handle this type of data should be 

considered before starting analysis (Wang et al., 2009b). 

 

Although transcriptomics is not without its flaws, as described, it is extremely sensitive, 

with the capacity to detect even low abundance transcripts and subtle changes in mRNA 

expression (Lundberg et al., 2010). The relatively new RNA-Seq technology is 

continually being assessed to identify and remove any limitations, however, to date, this 

technology is by far the best method to analyse the transcript of a cell (Lopez-Casado et 

al., 2012). 

 

A greater number of transcripts were identified as differentially expressed compared to 

the number of proteins. This may be because of the limitations of the proteomic 

technique employed, which therefore did not reveal a significant proportion of the 

proteins that had been expressed. It is also important to consider that cellular gene 

transcripts are not necessarily translated into proteins. In the current study there was a 

positive correlation between the up-regulation of genes transcribed and the over-

expression of proteins, i.e. the proteins that were identified as over-expressed when 
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treated or challenged with Byotrol™ have corresponding genes that were also up-

regulated. 

 

Proteomics and transcriptomics have revealed that the enzyme tryptophanase, encoded 

by tnaCAB was differentially expressed. Tryptophanase is responsible for the 

metabolism of indole, a known gene regulator of acid resistance, biofilm formation and 

motility in E. coli (Hirakawa et al., 2010), which may be potentially important for 

biofilm and planktonic survival in the presence of Byotrol™. The importance of the 

proteins identified as differentially expressed in planktonic and biofilm growth when 

treated and challenged with Byotrol™ would have to be validated by western blot. 

Likewise, differentially expressed genes identified by RNA-seq, such as those identified 

as being important in transcription regulation, fimbriae synthesis, stress response, and 

the induction of biofilm related genes need to be validated with quantitative-reverse 

transcriptase PCR (q-rtPCR) and their protein products, validated by western blot 

analysis. 

 

 

7. 3. Proposals for use of Byotrol™ as a novel catheter coating 

A catheter surface itself contributes to the effectiveness of adherence of bacteria to the 

material, and the organism’s ability to produce the necessary components of a biofilm 

(Ryder, 2005). Therefore, current therapeutic options to reduce the formation of 

biofilms on catheter surfaces include using new material surfaces that are inherently 

more resistant to bacterial adhesion.  Products being developed for a suitable catheter 

material should have the following criteria: they should be biocompatible, flexible, 

comfortable for the patient, durable, strong, have a low coefficient of friction and 

minimise bacterial adhesion and catheter encrustation. A hydrogel that coats a silicone 

or latex catheter would appear to fit these criteria (Cox et al., 1989; Zhu & Marchant, 

2011). 

 

Hydrogels are synthetic, three dimensional, cross-linked polymer networks that are ideal 

as drug delivery systems (Gou et al., 2008).  Therefore, not only do the inherent 

properties of hydrogels reduce adhesion of bacteria, but they can also be manipulated to 

allow the incorporation of inhibitors into their structure, which can be released in a 

controlled manner. Hydrogels are sensitive to external parameters such as pH and 
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temperature, so, depending on the overall charge of the hydrogel, the degree of cross-

linking and the conditions of its external environment, the hydrophobicity of the 

hydrogel will alter and an embedded drug can be released (Satish et al., 2006).  

Hydrogels have already been used for the incorporation of antimicrobial agents 

including chlorohexidine, benzalkonium chloride, triclosan and silver, either alone, or in 

combination (Stickler, 2000; Fontana et al., 2006). Future work could therefore assess 

Byotrol™’s potential as an antimicrobial incorporated into a hydrogel surface, however, 

perhaps due to the size of PHMB, the degree of polymer cross-linking would have to be 

adjusted. Also, exactly how the main components of Byotrol™ adhere to a surface 

would have to be investigated in greater depth. 

 

 

7. 4. Conclusion 

The investigations in the current work presented here have provided an important 

insight into the effect that a range of antimicrobial compounds have on the growth of 

planktonic cells and on the initial stages of biofilm formation. From these 

investigations, the current study has highlighted the inhibitory potential of a novel 

cationic biocide, Byotrol™, and has demonstrated the global gene expression response 

and protein complement of E. coli during exposure Byotrol™. This has strengthened the 

understanding of how bacteria can adapt and survive to biocidal stress, and this 

information can be used to develop strategies to prevent or better manage CAUTI. 
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