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Abstract

How can science possibly understand the organ through which the Universe knows

itself? The scientiVc method can be used to study how electro-chemical signals repre-

sent information in the brain. However, modelling it by simulating its structures and

functions is a computation- and communication-intensive task. Whilst supercom-

puters oUer great computational power, brain-scale models are challenging in terms

of communication overheads and power consumption. Dedicated neural hardware

can be used to enhance simulation performance, but it is often optimised for speciVc

models. While performance and Wexibility are desirable simulation features, there is

no perfect modelling platform, and the choice is subordinate to the speciVc research

question being investigated. In this context SpiNNaker constitutes a novel parallel

architecture, with communication and memory accesses optimised for spike-based

computation, permitting simulation of large spiking neural networks in real time.

To exploit SpiNNaker’s performance and reconVgurability fully, a neural network

model must be translated from its conceptual form into data structures for a parallel

system. This thesis presents a Wexible approach to distributing and mapping neural

models onto SpiNNaker, within the constraints introduced by its specialised archi-

tecture. The conceptual map underlying this approach characterizes the interaction

between the model and the system: during the build phase the model is placed on

SpiNNaker; at runtime, placement information mediates communication with de-

vices and instrumentation for data analysis. Integration within the computational

neuroscience community is achieved by interfaces to two domain-speciVc languages:

PyNN and Nengo. The real-time, event-driven nature of the SpiNNaker platform is

explored using address-event representation sensors and robots, performing visual

processing using a silicon retina, and navigation on a robotic platform based on a

cortical, basal ganglia and hippocampal place cells model. The approach has been

successfully exploited to run models on all iterations of SpiNNaker chips and devel-

opment boards to date, and demonstrated live in workshops and conferences.
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Chapter 1

Introduction

The application of the scientiVc method to quantitative study of how physical phe-

nomena relate to human responses can be tracked down to the early days of psy-

chophysics, with Ernst Weber and Gustav Fechner systematically studying the dis-

crimination power of the visual system based on controlled intensity changes. Since

then the brain has been identiVed as the location where perception, cognition and be-

haviours take place. As a consequence, models of mental activity based on empirical

observation of nervous cells and of brain structures have been produced. Anatomical

and functional data from neuro-biologists have revolutionised the understanding of

how the nervous system processes information from its sensory organs, and how it

adapts its behaviour within the environment.

Theories of the mind are progressively taking into account these observations [Den-

net, 1993, Edelman, 1993]: underneath the self-perception of a unitary conscious

state, many parallel, hierarchical systems work in concert or compete [Edelman,

1987] to determine responses of an individual to his environment. This paralleliza-

tion is expressed both with distinct, functionally specialised areas [Tononi et al.,

1998], such zas the visual cortex for visual processing or Broca’s area for speech

production, and in the elements constituting such brain areas: neurons and their

connections. Since the beginning of the last century scientists have been observing

neurons and the way they are organised, as reported by early drawings of Santi-

ago Ramon y Cajal (Figure 1.1), inspired by the observation of neural tissue using

Golgi’s method, la reazione nera. The observations which led Hodgkin and Huxley

to be awarded a Nobel Prize for Medicine and Physiology in 1963 formed the basis

of the formalization of mathematical models of the electro-chemical dynamical be-

haviour of nervous cells, identifying the action potential (or spike), and its eUects on

18
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Figure 1.1: Three drawings by Santiago Ramon y Cajal, taken from the book Com-
parative study of the sensory areas of the human cortex.
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the synaptic connection between neurons, as the means of communication between

neural cells.

The study of a system such as the brain, formed by many elementary compo-

nents working in parallel and capable of rapidly elaborating information in a fault

tolerant way, has attracted the attention of mathematicians, physicists, biologists,

psychologists, neurocognitive and computer scientists. This has developed in the

computational neuroscience discipline, whose ultimate aim is, in the words of Se-

jnowski, Koch, and Churchland, "to explain how electrical and chemical signals are
used in the brain to represent and process information. This goal is not new, but much
has changed in the last decade. More is known now about the brain because of advances
in neuroscience, more computing power is available for performing realistic simulations
of neural systems, and new insights are available from the study of simplifying models
of large networks of neurons. Brain models are being used to connect the microscopic
level accessible by molecular and cellular techniques with the systems level accessible by
the study of behavior" [Sejnowski et al., 1988].

Large-scale models of biologically inspired neural networks [Markram, 2006] are

an essential tool to test hypotheses regarding the mechanisms of information pro-

cessing in the brain, or to exploit the computational capabilities of networks of neu-

rons [Furber and Brown, 2009, Maass and Markram, 2004]. Accurate models relating

behaviour to brain and neural activity [Moran et al., 2011] would lead to more accu-

rate understanding of brain-related diseases, and of the functions that robotics and

machine learning are trying to mimic with cognitive computing [Ananthanarayanan

et al., 2009].

1.1 Background

The study of how information is represented and elaborated in the nervous system

opens possibilities for engineers and computer scientists to explore alternative com-

putational paradigms inspired by neuroscience [Aleksander, 1990]. The history of

artiVcial neural networks brings together researchers from diUerent disciplines: the

Vrst artiVcial neuron, the Threshold Logic Unit proposed in 1943 by Mcculloch and

Pitts [1943], is a simple unit performing the sum of its inputs and becomes active

when that sum exceeds a threshold; a neuron can connect to other neurons to propa-

gate its activity, introducing a neural base algebra (see Figure 1.2). Following Hebb’s

principle (often simpliVed as neurons that Vre together, wire together) published in his
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Figure 1.2: Neural operations from A logical calculus of the ideas immanent in nervous
activity [Mcculloch and Pitts, 1943].
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The Organization of Behaviour book, networks of neurons become plastic, and there-

fore capable of learning, for example using back propagation to classify inputs in a

supervised way. In 1958 Rosenblatt introduced the Perceptron, a neural network that

learns from its inputs to linearly separate them. Models of neurons became increas-

ingly sophisticated, with the binary activation output of neurons being substituted

by a continuous value, and therefore enhancing the representation capabilities of

neural networks. In 1982 HopVeld’s studies of multi-layered, recurrent networks

enabled models of network of neurons that can learn to discriminate inputs in an

unsupervised way.

While establishing themselves as pillars in the machine learning Veld, this type of

neural network progressively abandoned Vdelity with their biological counterparts.

Spiking neurons were introduced as more accurate, biologically inspired models of

neural cells, which can therefore be used to explain the activity, normal or patho-

logical, of the human brain. The interest in modelling the brain is shared inside and

outside the scientiVc community, as demonstrated by the attention of funding bodies,

such as the EU with the Human Brain Project1, DARPA and IBM with the SyNAPSE
Project2 and the US with the Brain Activity Map project [Alivisatos et al., 2012].

In spiking models every neuron is characterised by its membrane potential dy-

namics, as directly observed in vivo and in vitro, and modelled mathematically by

several authors, as reviewed in Izhikevich [2004]. Action potentials are assumed to

be stereotypical events, carrying the information in the time of their occurrence to

other neurons. Time relations are essential features of spiking neural networks, as

information is encoded in spike timing. Methods to encode and decode spiking infor-

mation have consequently been presented [Izhikevich, 2006b, Thorpe and Gautrais,

1998, Eliasmith and Anderson, 2003], and timing activity has been studied in detailed

models of the thalamocortical system Izhikevich and Edelman [2008]. Such timing

properties of spiking neurons have also been used to account for the fast response

of the visual system, capable of discriminating and appraising visual scenes [Thorpe

et al., 1996], or associate visual stimulation to high level concepts to neural activity

very rapidly [Quian Quiroga et al., 2005].

The number of neurons, spikes transmitted in the network and of synapse ac-

tivations in large networks makes simulation on standard parallel computers chal-

lenging, due to synchronization and communication overheads [Plesser et al., 2007].

1http://www.humanbrainproject.eu
2http://www.ibm.com/synapse

http://www.humanbrainproject.eu
http://www.ibm.com/synapse
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Study of eXcient modelling technologies is therefore a key research area for compu-

tational neuroscientists [Morrison et al., 2005]; dedicated hardware emerges then as a

natural candidate simulation substrate which exploits parallelism to circumvent soft-

ware limitations. With the seminal work of Mead [1989] the neuromorphic approach
was introduced: electronic analog circuits, constituting Very-Large-Scale-Integration

systems (VLSI), can be used to replicate membrane potential dynamics of neurons at

the transistor level, and can be combined in parallel, fast, and power eXcient devices

for biologically-inspired computation. The real-time nature of these devices is im-

plicit in the assumption that time models itself, as information is represented in the

timing of occurrence of an event such as the transmission of an action potential.

Using the address-event-representation (AER) protocol [Mahowald, 1992] devices

become event-driven, with parallel elements communicating their address to con-

nected units. This principle has been used to implement VLSI visual systems, known

as silicon retinas to denote their biological inspiration. Silicon retina cells respond

to local changes in light intensity by emitting an event, signalling the location of the

cell in the visual array, in a completely parallel and asynchronous way; within the

AER approach there is no concept of a “frame”, and events occur and are processed

in real time, taking advantage of the reduced redundancy in the visual information.

The use of such fast VLSI systems for vision and computation has been presented in

an integrated neuromorphic/AER system, the EU funded project CAVIAR [Serrano-

Gotarredona et al., 2009]. CAVIAR is a visual processing system comprising several

AER chips and interfaces, modelled with 45k neurons and 5M synapses, capable of

fast recognition and tracking. However, only few large-scale parallel systems for

real-world real-time sensory processing, learning, and generating complex motor

outputs have been implemented.

The cost and eUort of producing custom solutions, the availability of just a few

specimens, and their steep learning curve for non-hardware experts make them a

scarce resource in the computational neuroscience community. More Wexible, read-

ily available solutions are oUered by oU-the-shelf parallel hardware such as Field-

programmable gate arrays (FPGAs) and Graphics processing units (GPUs), and can

be used to run large scale models in real or accelerated time [Fidjeland et al., 2009,

Moore et al., 2012]. Nonetheless due to the speciVcity of hardware solutions, the vast

majority of neural simulations run instead on standard desktop computers, using

custom code or domain-speciVc neural languages [Brette et al., 2007]. This leads to a

gap between neural modellers and neuromorphic, parallel hardware, which is often



24 CHAPTER 1. INTRODUCTION

only used by its creators and a few experts. To be a generic platform for neural ex-

ploration, both atomic elements (neurons and synapses) and connection topologies

must be easily conVgurable and extensible. Very few projects focus on a software

abstraction layer, which can easily reconVgure the hardware and make it accessible

to non-hardware experts [Nageswaran et al., 2007, Brüderle et al., 2011].

In this context the SpiNNaker system [Furber et al., 2006a] oUers an alternative

set of performances in terms of reconVgurability, scalability and power consumption,

thanks to its bespoke packet switched communication infrastructure [Plana et al.,

2007] that Wexibly connects the ARM cores, the digital computational nodes of the

platform. EXcient neural kernels can be programmed for the platform [Jin et al.,

2008] to communicate using event address representation and propagate spikes in

a network model [Jin et al., 2010]. The methods to distribute and conVgure such

neural kernels on the parallel SpiNNaker system, starting from abstract deVnitions

of the model, are the central contribution of this thesis, which make large, Wexible,

real-time simulation possible.

1.2 Motivation and Research aims

The research presented in this thesis aims to introduce an approach to map arbi-

trary spiking neural network models on the SpiNNaker system, with the novel set

of constraints that need to be evaluated when distributing a model on the hardware

platform. Cornelis et al. [2012] introduce the term monolithic applications when de-

scribing neural network simulators, pointing to the diXculties associated in shar-

ing and maintaining software which integrates user interface, data access code and

computational algorithms. This hampers the growth of the Veld, as pointed out by

the authors of PyNN (a domain-speciVc neural network language), because Science
rests upon the three pillars of open communication, reproducibility of results and build-
ing upon what has gone before [Davison et al., 2008]. If monolithic applications are

frequent in software for neural simulation, hardware systems are often tightly opti-

mised for a particular neural or network model, and architectural speciVcities require

the knowledge of custom conVguration software and procedures to run models on

them.

To avoid building a monolithic system, only accessible by its creators, the compo-

nents of the problem have been modularised in a Wexible approach that exposes the

reconVgurability of the platform to non-hardware experts through two widely used,
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domain-speciVc simulation languages. The central requirement of the mapping ap-

proach is to be open to new hardware or modelling resources, Wexibly adapting to

multiple neural or network models. Further advantages in integrating the platform

with languages used in the community include the possibility to verify the platform

and compare the results and performance with other neural simulators. The Vnal aim

of the research is to oUer SpiNNaker as an open, conVgurable platform for rapid ex-

perimentation of diUerent real-time, real-world embedded complex neural network

models.

1.3 Contributions and Publications

The main contribution of this work is the design and development of a Wexible

method to conVgure a parallel architecture such as SpiNNaker, exposing its pro-

grammability and advantages through standard, neural-oriented languages.

The main challenge of allocating models to small SpiNNaker systems is to iden-

tify the algorithms and the data structures involved in the simulation [Jin, Galluppi,

Patterson, Rast, Davies, Temple, and Furber, 2010]. Using this method it is possible

to simulate networks with limited numbers of neurons and neural models: scaling

up the system is diXcult, as it is conVgured with lists describing each single neuron

and connection. By using neurons and synapses as mapping entities, placing and

translating the model is a complex task, as the number of synapses in the system

potentially increases quadratically with the number of neurons. The lists are then

compiled and allocated to the platform with a monolithic software, which implicitly

contains translation methods and system descriptions. This makes integration of

new neural models [Rast, Galluppi, Jin, and Furber, 2010a], plasticity algorithms [Jin,

Rast, Galluppi, Khan, and Furber, 2009] and diUerent network topologies accessible

only through a steep learning curve or by SpiNNaker experts.

The introduction of PyNN as a user interface language [Galluppi, Rast, Davies,

and Furber, 2010] abstracts the platform from the user, oUering the possibility to

change neural and connectivity parameters rapidly. It hides all the hardware-dependent,

low-level steps such as mapping the model onto a parallel system, compiling the data

structures describing it and running the simulation on the platform. Networks can

be conVgured Wexibly using PyNN, making simulations with heterogeneous neural

models and network topologies possible [Rast, Galluppi, Davies, Plana, Patterson,

Sharp, Lester, and Furber, 2011b] (a unique feature in spiking neural hardware, which
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is generally optimised for single neural models), and the mapping and translation

methods have been used to run models on robots [Davies, Patterson, Galluppi, Rast,

Lester, and Furber, 2010] and to validate the platform [Rast, Navaridas, Jin, Galluppi,

Plana, Miguel-Alonso, Patterson, Lujan, and Furber, 2011c].

As the size of SpiNNaker machines increases from a few cores to hundreds, the

original mapping and translation methods become onerous. The process is there-

fore redesigned [Galluppi, Davies, Rast, Sharp, Plana, and Furber, 2012d] and mod-

ularised: the process itself transforms an initial representation of the model at the

neural-language level to an intermediate one where the model is placed onto the

system, and then to a Vnal representation where the model is translated and loaded

on the platform. Inspired by the PyNN High Level API, Populations and Projections
(rather than neurons and synapses) are identiVed as the fundamental model-level

entities, making placing, routing [Davies, Navaridas, Galluppi, and Furber, 2012b],

and translating large models possible. Hardware, software and modelling resources,

along with translation methods, are separated from the mapping algorithms, and are

accessed dynamically while placing and translating the model. Neural kernels are

rewritten to a C-level SpiNNaker API [Sharp, Plana, Galluppi, and Furber, 2011] and

become resources available to the system, making the introduction of new neural

models simpler.

Such features make the mapping approach very Wexible and able to be extended

rapidly: exposing the system reconVgurability makes exploring diUerent models, in-

cluding alternative plasticity algorithms [Davies, Galluppi, Rast, and Furber, 2012a],

easily possible. Decoupling the user interface from the mapping and translating al-

gorithms enables the use of other neural languages and neural frameworks, such as

demonstrated by the integration of Nengo and the Neural Engineering Framework

(NEF) principles on SpiNNaker [Galluppi, Davies, Furber, Stewart, and Eliasmith,

2012c]. Custom NEF neural kernels are integrated in the mapping approach, while

the user can interact with the platform transparently through Nengo.

Hardware resources such as larger SpiNNaker systems, AER sensors or robots

are also integrated within the mapping approach, exploiting the real-time nature

of the SpiNNaker platform. Such integration is demonstrated in a visual selection

model with a silicon retina [Galluppi, Brohan, Davidson, Serrano-Gotarredona, Car-

rasco, Linares-Barranco, and Furber, 2012a], and in a cortical, basal ganglia and hip-

pocampal place cells model running on a robotic platform [Galluppi, Conradt, Stew-

art, Eliasmith, Horiuchi, Tapson, Tripp, Furber, and Etienne-Cummings, 2012b]. The
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mapping approach has been tested with the current generations of SpiNNaker ma-

chines (up to 864 cores), making biologically accurate [Sharp, Galluppi, Rast, and

Furber, 2012] and large scale [Stromatias, Galluppi, Patterson, and Furber, 2013] sim-

ulation possible, and enabling the architecture’s scalability and power consumption

[Painkras, Plana, Garside, Temple, Gallupi, Patterson, Lester, Brown, and Furber,

2012] to be evaluated. Scaling up the system required rewriting and optimization

of some of the modules, such as the one responsible for writing synaptic structures.

This has been optimised and parallelised, hinting at the possibility of using the ab-

stract representation to generate such structures directly on the SpiNNaker system,

exploiting its own inherent parallelism.

The research has contributed to place SpiNNaker within the computational neu-

roscience community by oUering a Wexible mapping approach, capable of accom-

modating new neural and computational models, and new hardware resources. The

mapping approach and the software infrastructure used to conVgure the system, the

SpiNNaker Package, has been used to run many models on all generations of SpiN-

Naker hardware produced to date, including those already described and the ones in

Rast et al. [2010b, 2011a, 2013], Davies et al. [2011], Patterson et al. [2012a] and Khan

et al. [2010]. The research has frequently been inspired by collaborations within the

SpiNNaker group or with other groups at workshops, as one of its main goals is

to integrate diUerent research approaches into a uniVed translation method. Con-

tributions (peer-reviewed and in workshops) which are relevant for the thesis are

highlighted in the following sections.

1.3.1 Journal Papers

• A. D. Rast, J. Navaridas, X. Jin, F. Galluppi, L. A. Plana, J. Miguel-Alonso, C. Pat-

terson, M. Lujan, and S. Furber, Managing Burstiness and Scalability in Event-
Driven Models on the SpiNNaker Neuromimetic System International Journal of

Parallel Programming, 2011. Contributed to the doughnut hunter experiment

(section 6.2.1). Ran the experiments and write sections 6.3.1 (which can be

found in this thesis in Section 5.2.6) and 6.3.2.

• A. Rast, F. Galluppi, S. Davies, L. Plana, C. Patterson, T. Sharp, D. Lester, and

S. Furber, Concurrent heterogeneous neural model simulation on real-time neu-
romimetic hardware, Neural Networks, vol. 24, pp. 961-978, 2011. Conducted
all the experiments and wrote section 5 of the paper; portions of it can be found
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in Section 5.2.4.

• T. Sharp, F. Galluppi, A. D. Rast, and S. B. Furber, Power-eXcient simulation
of detailed cortical microcircuits on SpiNNaker., The Journal of Neuroscience

Methods, Mar. 2012. Provided the PyNN to SpiNNaker mapping infrastruc-

ture. Contributed by designing and running the experiments and analysing

the results.

• S. Davies, F. Galluppi, and A. D. Rast, A forecast-based STDP rule suitable for
neuromorphic implementation, Neural Networks, 2012. Integrated the STDP

kernel with PyNN in the mapping approach proposed in Chapter 5. Con-

tributed in designing the experiments and analysing results.

• E. Painkras, L. A. Plana, S. Member, J. Garside, S. Temple, F. Galluppi, S. Mem-

ber, C. Patterson, D. R. Lester, A. D. Brown, and S. Furber, SpiNNaker : A 1W
18-core System-on-Chip for Massively-Parallel Neural Net Simulation, IEEE Jour-

nal of Solid State Circuits, August 2013. Contributed to the results reported in

sec. VII.B (which can be found in Section 5.2.6).

1.3.2 Conference Papers

• F. Galluppi, A. Rast, S. Davies, and S. Furber, A general-purpose model transla-
tion system for a universal neural chip, in Neural Information Processing. The-

ory and Algorithms, 2010, pp. 58-65. The paper forms part of Chapter 5.

• F. Galluppi and S. Furber, Representing and decoding rank order codes using poly-
chronization in a network of spiking neurons, Neural Networks (IJCNN), The

2011 International Joint Conference on, pp. 943-950, Jul. 2011. Results from

this paper can be found in Section 2.3.5 and Appendix A.

• F. Galluppi, S. Davies, S. Furber, T. Stewart, and C. Eliasmith, Real time on-chip
implementation of dynamical systems with spiking neurons, in Neural Networks

(IJCNN), The 2012 International Joint Conference on, 2012, pp. 1-8. Results

from this paper can be found in Chapter 5.

• F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber, A Hierar-
chical ConVguration System for a Massively Parallel Neural Hardware Platform,
in Proceedings of the ACM 9th conference on Computing Frontiers, 2012, pp.
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183-192. This publication describes the Population/Projection abstraction used

to conVgure the system, and it forms parts of Chapter 4.

• F. Galluppi, K. Brohan, S. Davidson, T. Serrano-Gotarredona, J. A. Carrasco, B.

Linares-Barranco, and S. Furber, A real-time, event-driven neuromorphic system
for goal-directed attentional selection, in Neural Information Processing, 2012,

pp. 226-233. This paper forms parts of Chapter 6.

• F. Galluppi, J. Conradt, T. Stewart, C. Eliasmith, T. Horiuchi, J. Tapson, B. Tripp,

S. Furber, and R. Etienne-Cummings, Live Demo: Spiking ratSLAM: Rat hip-
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1.3.3 Workshops

Workshops and engagement in the neuromorphic community had a fundamental role

in the research, enabling collaborations and exploration of diUerent models and sim-

ulation strategies. Many early results and prototypes for the experiments described

in this thesis have been developed during workshops; in particular:

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2010: introduced

the PyNN-SpiNNaker integration with the LIF and Izhikevich models 3; the

results from this workshop form parts of Chapter 5.

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2011: interfacing

SpiNNaker with a robot through wireless.

• Telluride Neuromorphic Cognition Engineering Workshop 2011: integrated the

Neural Engineering Framework Principles on SpiNNaker4; the results from this

workshop form parts of Chapter 5.

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2012: visual selec-
tion model with a silicon retina5; the results form parts of Chapter 6.

• Telluride Neuromorphic Cognition Engineering Workshop 2012: integrating the

NEF, SpiNNaker and the robot6; Vrst tests with the ratSLAMmodel7; the results

from this workshop form parts of Chapter 6.

1.4 Thesis outline

The thesis comprises 7 chapters:

• Chapter 2 describes how neural dynamics can be mathematically modelled,

and how biologically inspired computational frameworks and models can be

produced with them.

• Chapter 3 presents diUerent tools for neural simulation, both in hardware and

software, available in the computational neuroscience community.

3https://capocaccia.ethz.ch/capo/wiki/2010/spinn10
4http://neuromorphs.net/nm/wiki/ng11/results/Spinnaker
5https://capocaccia.ethz.ch/capo/wiki/2012/spinnakerpynn12
6http://neuromorphs.net/nm/wiki/act12/results/Combined
7http://neuromorphs.net/nm/wiki/act12/results/OmniSpiNN

https://capocaccia.ethz.ch/capo/wiki/2010/spinn10
http://neuromorphs.net/nm/wiki/ng11/results/Spinnaker
https://capocaccia.ethz.ch/capo/wiki/2012/spinnakerpynn12
http://neuromorphs.net/nm/wiki/act12/results/Combined
http://neuromorphs.net/nm/wiki/act12/results/OmniSpiNN
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• Chapter 4 introduces the SpiNNaker platform and the approach to map a

model onto the system.

• Chapter 5 presents the integration of the mapping approach with two domain-

speciVc languages, PyNN and Nengo, and contains the accuracy and perfor-

mance evaluation of the system and modelling software.

• Chapter 6 demonstrates how novel network models can be modelled on the

system using SpiNNaker, PyNN, Nengo, AER sensors and a robot, within a

Wexible, open and eXcient neural platform.

• The Conclusions summarizes the salient parts of the research, and presents

how it can be expanded in the future to model complex neural systems.



Chapter 2

Computation with Spiking Neurons

2.1 Introduction

Improvements in recording instruments and the introduction of increasingly com-

plex paradigms helped neuroscientists accumulate evidence of the importance of

the codiVcation mechanisms used by the nervous system to represent and process

information. In particular, observation, recording and modelling of action poten-

tials [Hodgkin and Huxley, 1952] has given rise to the hypothesis that the precise

time of action potential generation [Shadlen and Movshon, 1999] of a neuron, rather

than simply its Vring rate [Achard and Bullmore, 2007], could be the information

coding in the brain. This hypothesis is supported by a considerable amount of bio-

logical evidence related to timing precision of action potentials both in vivo [Lindsey

et al., 1997, Chang et al., 2000] and in vitro [Mao et al., 2001]

Increasing the level of biological Vdelity of neurons in a model of a network of

neurons is an important step towards understanding how information is processed

by the central nervous system, both structurally [Binzegger et al., 2004] and func-

tionally [Dehaene et al., 2003]. A better understanding of how behaviour links to

neural circuitry and synaptic transmission [Moran et al., 2011] also makes it possible

to study neuro-psychological pathological cases.

Somemodels aim to Vnd emerging functions from the structural data known from

biology, exploiting the biological Vdelity and measurable parameters of the neurons.

Some quantitative descriptions of the cortex, based on anatomical data [Binzegger

et al., 2009], which explore the regularity of the laminar organization of the thalamo-

cortical system [Thomson and Lamy, 2007], have been proposed. Large-scale models

33
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of the cerebral cortex based on such data have been produced [Markram, 2006, Anan-

thanarayanan et al., 2009]. Such models use biological data as constrained parameters

for neurons and connections, and aim to reproduce higher level data such as fMRI

readings, brain oscillations, and synchronization between diUerent areas [Izhikevich

and Edelman, 2008]. Other approaches can be considered more functional, where

neural dynamics and quantities act as biological constraints in modelling speciVc

cognitive functions [Dehaene et al., 1998]. Some functions can be modelled using

attractor networks [Amit, 1992], networks that can represent information by settling

to a (dynamically) stable state with their self-sustained, persistent activity. For ex-

ample, functions such as memory can be associated to brain areas that are believed

to use attractor representation, such as the hippocampus [Wills et al., 2005].

From another perspective spike based computation is also very appealing to engi-

neers because of its computational power [Maass, 1997] and the possibility of build-

ing very power- and computationally- eXcient silicon neurons [Mead, 1990] which

can be used to replicate fast behavioural responses. For example Thorpe et al. [1996]

have studied the speed of processing of the visual system in a recognition task, where

subjects were asked to discriminate between scenes with or without animals while

event related potentials (ERPs) where recorderd; they found diUerential activity in

the frontal cortex starting at 150ms and peaking at 180ms, signalling the diUer-

ent functional state associated with the two possible answers. More recently, Quian

Quiroga et al. [2005] have found medial temporal lobe neurons capable of respond-

ing to high-level concepts presented visually (such as the picture of Jennifer Aniston)

300-600ms after the stimulus onset.

This chapter describes some of these models, starting from single components:

neurons and synapses. DiUerent mathematical models have been introduced to model

biophysical quantities of neural systems with diUerent degrees of accuracy and diUer-

ent dynamics, and are reviewed in the Vrst part of this chapter. The rest of the chap-

ter illustrates some structural and functional models of networks of spiking neurons,

showing how information can be encoded and decoded using spike-based strategies.

The models presented here form just a small subset of the ones that in the rich re-

search environment of the computational neuroscience community.
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Figure 2.1: Neuron structure, from Thompson [1967].

2.2 Bioinspired models of neurons and synapses

Neurons are the cells that process information in the nervous system, by propagat-

ing electro-chemical signals through action potentials - stereotypical all-or-nothing

signals transmitted as a variation of potential across the nervous cell. Neurons are

not electrically neutral, due to the presence of ions in their cell body and thanks to

dynamical modiVcations of the electric permeability of the cell membrane when an

electro-chemical stimulation is received. The Wux of ions entering and exiting the

cell causes a current Wow through the membrane, mostly ascribed to Na+, K+ and

Cl− ions [Kandel et al., 1991, Thompson, 1967].

While there are many diUerent classes of neuron in the nervous system, each

neuron can be subdivided into 4 components (Figure 2.1 from Thompson [1967]):

• Soma: comprises the nervous cell body, responsible for its metabolism.

• Synapse (Terminal Button): a structure mediating message passing between

two nervous cells. Information Wows in the form of electro-chemical signals

(neurotransmitters) from one cell to the other; the two cells are therefore iden-

tiVed respectively as pre- and post-synaptic neuron.

• Dendrites: short nervous terminations which grow from the soma into an

arborization, which widely varies accordingly to the neural type. They can

be considered the input of the neuron, as they translate chemical signals car-

ried by neurotransmitters released by the pre-synaptic neuron into an electric
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signal.

• Axon: the nervous Vbre which departs from the soma and carries the action

potential towards other nervous cells. In order to rapidly carry the action po-

tential at long distances without attenuation some axons are coated with a

myelin sheath.

Synapses are the elements used to interconnect neurons in a network, permit-

ting neural signal transmission and elaboration, by altering the electrical state of the

post-synaptic cell. There are two kinds of synapses: electric and chemical. Elec-

tric synapses, also known as gap junctions, communicate through direct bidirectional

current injection between two neurons which can be modelled using Ohm’s law. The

inter-synaptic cleft is usually very narrow, so it is often considered continuous. This

kind of communication is very rapid but as there is no gain in the signal amplitude

like in the chemical synapses, little current Wows through the membrane. In chemical

synapses there is no direct contact between the pre-synaptic and the post-synaptic

neuron. Signal transmission is mediated by molecules called neurotransmitterswhich
travel in the synaptic cleft binding to particular post-synaptic neuron receptors. This

kind of transmission is slower, but ampliVes the signal and can make the eUects of

the incoming spike last longer.

The transmission process is illustrated in Figure 2.2: the arrival of the action po-

tential at the end of the axon induces a depolarization of the membrane opening the

voltage dependent Ca2+ channels, which enter the cell due to the concentration gra-

dient. Once inside, the calcium ions actively participate in the fusion of the vescicles

in the inter-synaptic cleft and the consequent release of the neurotransmitter they

contain. Neurotransmitters travel through the synaptic cleft and bind to the corre-

sponding receptors situated on the post-synaptic cell. Neurotransmitters can control

the opening of ion channels, hence controlling the variance of conductance of the

membrane and its potential.

2.2.1 Neural Models

As factors governing neural activity become clearer, neurons modelling biological

quantities, with much more Vdelity than classical sigmoidal units, have been intro-

duced. In particular, variations in the membrane potential, caused by the opening

and closing of ionic channels, are modelled by a set of ordinary diUerential equa-

tions. These equations can model a subportion of the membrane or be representative
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Figure 2.2: Signal transmission in a chemical synapses, from Kandel et al. [1991].

of a whole neuron, considered as a point.

Some models are said to be spiking as they produce action potentials (spikes),

pulses of activity carrying information in the time of their occurrence [Gerstner et al.,

1994]. A number of these models are now reviewed.

Hodgkin-Huxley Model

The section starts by reviewing the Hodgkin-Huxley (HH) model, which takes into

account how ionic currents shape the potential of the cellular membrane of the neu-

ron. Based on that, models which simplify the HH model are shown; such models

can simplify the original one both spatially, considering the neuron as a point, and

computationally, by simplifying the equations needed to simulate the membrane dy-

namics of a neuron. The section is concluded by diUerent models of synapses as

observed phenomenologically.

In 1939 Alan Hodgkin and Andrew Huxley proposed a model explaining the elec-

tric Wuctuation observed in a giant squid’s nervous cellular membrane (Figure 2.3),

by modelling the ionic mechanisms governing the generation and transmission of an

axon potential as variable conductances [Hodgkin and Huxley, 1939]. All subsequent

spiking neural models are based on this model; it is therefore of interest to examine

this model in detail, as it constitutes a point of reference for all the other models

used.
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Figure 2.3: First published intracellular recording of an action potential, from
Hodgkin and Huxley [1939].

The model divides the currents Wowing through the membrane into an ionic cur-

rent (Iion) and a capacitive one (C dV
dt
), which charge the cell membrane:

I = C
dV

dt
− Iion (2.1)

The ionic current takes into account the contribution of the diUerent ionic chan-

nels present in the membrane, and can therefore be subdivided according to the ion

transported such as:

Iion = INa + IK + Ileak = gNa(V − ENa) + gK(V − EK) + gleak(V − Eleak) (2.2)

where INa and IK represent the sodium and potassium ionic currents and Ileak rep-

resents a leakage current caused prevalently by Cl− ions; the former two can be

considered as time-variable conductances, while the latter is constant. ENa, EK and

Eleak are called reverse potentials, and represent the membrane potential at which

the current Wowing in a certain type of channels is equal to zero. The term V − Ei
it’s called driving force, and a current can be expressed as gi(V − Ei) [Dayan and

Abbott, 2001a]. The conductance based model, so derived, can be represented in the

equivalent circuit in Figure 2.4 from Hodgkin and Huxley [1952].

In such a model conductances can be viewed as a multitude of ionic gates which

have a probability to be opened or closed (hence permitting or blocking the passage

of a particular ion with its charge). It is possible to calculate the probability p of the

portion of open ionic gates in a population, and their phase transaction in time as:
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Figure 2.4: Circuit equivalent model for the HH neuron, from Hodgkin and Huxley
[1952].

dp

dt
= α(V )(1− p)− β(V )p (2.3)

where α and β are empirically determined functions of the membrane potential V,
which represent the rate of transaction from a closed to an open state (and vice versa)

of a particular ionic gate. A single gate’s inVnitesimal contribution to the overall total

conductance that can be therefore be written as:

g = GmaxΠipi

where the conductance g is calculated as the maximum conductanceGmax multiplied

by product of the inVnitesimal probabilities pi.

Hodgkin and Huxley modelled Na conductances with 3 opening (m) and 1 closing

(h) gate and K conductances with 4 activating gates (n), each modelled with equa-

tion 2.3. They can therefore be written as

gNa = GNam
3h

gK = GKn
4

where GNa and GK are the sodium and potassium conductances respectively, and

substituted in eq. 2.2
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Figure 2.5: Activation and deactivation of function n, m, h during the generation of
an axon potential. The Vrst plot shows the membrane potential, while the remaining
plots show the dynamics of the n,m and h variables.

I = GNam
3h(V − ENa) +GKn

4(V − EK) + gleak(V − Eleak) (2.4)

The model can be used to explain the generation of an axon potential, as shown

in Figure 2.5. During the rest state the net sum of currents Wowing through the

membrane potential is 0. If the membrane gets depolarised up to the Na equilibrium
point ENa (e.g. through synaptic inputs or by means of an electrode), this leads

to an increase of opened Na gates as modelled by m which increases with V and

depolarizes the membrane, leading to the upstroke of an action potential. Na gates

are subsequently inactivated by the h function, which tends to 0 when V increases,

pushing the membrane towards the EK equilibrium point, hence activating the K
current with a slight delay and re-polarizing the membrane (the down-stroke) below
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the rest potential (after-hyperpolarization); while the function h deactivates the Na
conductance, the neuron is not sensitive to any input (the cell is said to be in its

refractory period).

The Hodgkin-Huxley neuron models the shape of the action potential explicitly,

due to the inactivating function of Na channels and the activation function of the K

channels. If spikes are considered as stereotypical events, carrying information in the

timing of their occurrence, the shape does not need explicit modelling. Some simpler

models based on this assumption have been introduced and are treated below.

Leaky Integrate-and-Fire

As the Hodgkin-Huxley model describes, it is the openings of Na channels that lead

to an action potential; this typically happens whenever the potential of the mem-

brane rises above the voltage-dependent Na channel equilibrium point. This point

can be considered a threshold potential, after which the membrane potential goes into

the upstroke/downstroke routine generating an action potential. If that is considered

an all-or-nothing, stereotypical event, carrying information only in the timing of its

occurrence (and not in its shape), it is not necessary to model the exact mechanism

underlying the action potential generation, as is done in the HH model by explicit

modelling of the Na and K conductances; it can be abstracted away. This is the

approach taken in the Leaky Integrate-and-Fire (LIF) model, initially postulated by

Lapicque in 1907 [Abbott, 1999, Dayan and Abbott, 2001b]. The main assumption is

that, whenever a threshold potential Vth is crossed, an action potential is generated

and the neuron is “reset” to a potential Vreset < Vthreshold, taking into account the

after-hyperpolarization of K+ ions.

Consequently the model works only around the rest state of the neuron, greatly

simplifying the model. The dynamics of the membrane potential can therefore be

written as:

C
dV

dt
= I − gleak(V − Eleak)

if V > Vthreshold → V = Vreset (2.5)

where I is an external input current, the second term of the Vrst equation represents

the dispersion towards the equilibrium potentialEleak; as gleak is voltage independent
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the equation is usually written in the form:

C
dV

dt
=
Vrest − V +RI

τm

where Vrest, τm and R are called resting potential, membrane time constant and mem-
brane resistance respectively.

The LIF model has the advantage of being a linear model and can therefore be

treated analytically; it is also very computational eXcient, if compared to the HH

model. However it models observed variations in the threshold potential [Badel et al.,

2008], and in the upstroke dynamics of an action potential poorly. Nonetheless, be-

ing the simplest, most eXcient neuron to simulate, it is widely used in large scale

simulations.

Izhikevich

From a dynamical system point of view the neuron can be considered a bistable

system, having two stable attractors, one for the resting state and one for the spiking

regime [Izhikevich, 2006a]; the former depends on the leakage currents, while the

second corresponds to the activation of the Na channels. Between the two stable

attractors there’s an unstable attractor, which can be considered as the threshold

point of a neuron, the potential where the neuron goes from a resting to a spiking

state. The cycle is completed by the outgoing Wow of K+ ions which repolarize the

membrane after an action potential, bringing the system towards the resting state.

It is therefore possible to reduce the HH model to a planar system; if the phase

plane of the variable v representing the membrane potential, and the variable n rep-

resenting the activation of K currents are considered, the space can be subdivided

into 4 regions, accordingly to the 2 nullclines, as shown in Figure 2.6:

(a) V and n increasing: both Na and K currents lead to the depolarization of the

membrane and to the generation of an action potential

(b) V decreasing, n increasing: Na currents start deactivating but K currents are still

active, repolarizing the membrane after the action potential

(c) V decreasing, n decreasing: both currents are not active, leading to an absolute

refractory state

(d) V increasing, n decreasing: V is increased (e.g. because of synaptic inputs) but

the leaking currents lead the system towards the rest stable attractor
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Figure 2.6: Phase-plane description of the planer system modelling the resting and
spiking attractors, from Izhikevich [2006a].

It is possible to approximate the system with two variables, the Vrst variable (v)
representing the membrane potential and a second (u) accounting for the activation

of K and the inactivation of Na currents. The v-nullcline can be approximated by

a parabola, while the u-nullcline can be approximated with a line. As I (considered

a free parameter taking into account inputs) varies, the system might undergo bi-

furcations, changing behaviour qualitatively. The study of the system through its

bifurcations can be used to obtain a good approximation to the HH model around

the rest equilibrium [Izhikevich, 2003]:

dv

dt
= 0.04v2 + 5v + 140− u+ I

du

dt
= a(bv − u) (2.6)

with the addition of the reset conditions:

if v > 30mV → v = c, u = d

where the parameters have the following meanings (also illustrated in Figure 2.7): a
represents the decay rate of the variable u, b represents the coupling between u and
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Figure 2.7: Graphical representation of the parameters in the Izhikevich model from
Izhikevich [2006a].

v, c represents the reset potential for v and d represents the reset value for u.

It must be noted that the value of 30 mV does not represent a spiking threshold,

but rather a cutoU value where the neuron is considered to go towards the spiking

equilibrium and can then be reset, under the assumption that the shape of the action

potential is stereotypical, carries no information, and therefore does not need to be

modelled explicitly.

The model is particularly eXcient if compared to the HHmodel, and can therefore

be used in large scale simulations with more biological Vdelity than the LIF model.

In particular, if compared to the LIF neuron, the Izhikevich neuron can model a large

variety of spiking behaviours (such as bursting or chattering) observed in vitro and
in vivo [Izhikevich, 2004].

Adaptive Exponential Integrate-and-Fire

The Izhikevich neuron can be considered to be an adaptive quadratic integrate-and-

Vre model; the adaptive exponential integrate-and-Vre (AdEx LIF or just AdEx [Brette
and Gerstner, 2005]) has an exponential voltage dependence, coupled with a slow

variable which models threshold adaptation. The model can be described by the

equations:
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C
dv

dt
= −gL(V − EL) + gL∆T exp

V − VT
∆T

− w + I

τw
dw

dt
= a(V − EL)− w (2.7)

with the addition of the reset conditions modelling the downstroke:

if v > 30mV → v = vreset, w = w + b

where w is the slow variable taking into account adaptation, gL and EL are the

leaking conductance and reverse potential, VT is the rheobase current, ∆T models

the sharpness of the Na channels’ activation function and therefore the upstroke of

an action potential and b models the eUects of calcium dependent potassium chan-

nels during an action potential, coupled with awhich models after-hyperpolarization

(subthreshold adaptation). The AdEx model has the advantage of being biologically

plausible and capable of reproducing spiking behaviours such as bursting, phasic

spiking etc. Its parameters also relate to empirical, measurable quantities in biology,

and can therefore be compared to the response of neurons using simple electrophys-

iological protocols. If compared with the Izhikevich model [Gerstner and Brette,

2009], the AdEx model shares the ability to reproduce Vring patterns at a low com-

putational cost; however the AdEx shows better modelling of the spike upstroke and

subthreshold dynamics.

2.2.2 Synaptic Models

Glutamate and GABA (γ-aminobutyric acid) are the most common excitatory and

inhibitory neurotransmitters respectively. Ionotropic receptors for glutamate are

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic) and NMDA (N-Methyl

D-Aspartate receptor) [Dayan and Abbott, 2001b]. AMPA receptors are fast and their

eUects last the order of 10 ms. NMDA receptors by comparison have more prolonged

eUects on the post-synaptic neuron, on the scale of hundreds of milliseconds; they

also have a unique characteristic: they are voltage-dependent. An NMDA receptor

will open only if the post-synaptic neuron membrane is already depolarised.

Regarding inhibitory receptors, gamma-aminobutyric acid receptorsGABAA are

fast ionotropic receptors which allow rapid injection of Cl− ions into the cell, while
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Figure 2.8: Synaptic models, from Dayan and Abbott [2001b].

GABAB are metabotropic receptors which lead to an outward K+ current with an

eUect lasting hundreds of milliseconds [Destexhe et al., 1994].

A synaptic interaction can be modelled as follows: in the Vrst phase the neuro-

transmitter binds to a closed receptor and opens it. In the second phase the transmit-

ter unbinds from the receptor, closing it. The neurotransmitter is then degraded

and reabsorbed by the pre-synaptic neuron. These can be modelled as a rate of

ion channel opening as in the Hudgkin-Huxley model [Hodgkin and Huxley, 1939],

hence as a variation of the conductance g. When an action potential arrives at the

pre-synaptic terminal, the transmitter concentration rises rapidly causing channels

to open. Following the release of the neurotransmitter, diUusion out of the cleft,

enzyme-mediated degradation, and pre-synaptic uptake mechanisms will lead to a re-

duction of the transmitter concentration thus closing the ion channels. For ionotropic

receptors like AMPA the Vrst phase can occur in the order of fractions of a millisec-

ond, while for NMDA receptors it can take longer as shown in Figure 2.8. The vari-

ation of conductance in time can be analytically modelled with diUerent diUerential

equations [De Schutter, 2009]:

• First order kinetic (Figure 2.9a): in this case the Vrst phase (binding of the

neurotransmitter) is considered to be instantaneous, and the conductance g
jumps to its maximum value upon the arrival of the spike modelled as an im-

pulse arriving at t0, and can therefore be written as δ(t− t0). This is followed
by an exponential decay with a time constant τ . This decay can be modeled

as gsyn(t) = gmaxe
−(t−t0)/τ as shown in Figure 2.8(A). The diUerential equation

describing the change of conductance in time will be

τ
dgsyn(t)

dt
= −gsyn + gmax · δ(t− t0) (2.8)
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Figure 2.9: Synaptic models: Vrst order kinetic decay with an instantaneous rise (b)
alpha functions (c) diUerence of two exponentials, after De Schutter [2009]. For each
synapse models the variation of the synaptic current gsyn (EPSC - Excitatory Post
Synaptic Potential) and the eUects on the membrane potential v(t) (EPSP - Excitatory
Post Synaptic Potential) to an incoming spike are shown.
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• Alpha functions (Figure 2.9b): for some synapses the binding time of the

receptor cannot be modelled as instantaneous, as the rising time can have im-

pact on network dynamics [Vreeswijk et al., 1994]. The alpha functions model

a conductance that has a rising phase that is not inVnitely fast, but has a certain

rise time and then decays exponentially. It can be described by the equation

gsyn(t) = gmax
t− t0
τ
· e1−(t−t0)/τ (2.9)

and the diUerential equation will be identical to the one in the previous case.

There is a single τ constant controlling the conductance dynamics, hence the

binding and unbinding phases are correlated.

• DiUerence of exponential (Figure 2.9c): the two processes can be modelled

using two separate time constants τrise and τdecay and the conductance can be

expressed as a diUerence between two exponentials each modelling one phase

of the process as follows:

gsyn(t) = gmaxf(e−(t−t0)/τdecay − e−(t−t0)/τrise) (2.10)

where the normalization factor f is included to ensure that the amplitude equals

gmax.

NMDA synapses have another feature: their ionic channels are voltage dependent

because they are blocked by Mg2+ ions, hence they open only if the post-synaptic

neuron membrane is already depolarised. The conductanceGNMDA then varies with

the membrane potential and diUerent concentrations of magnesium ions [Mg2+], and

this relation can be modelled [Jahr and Stevens, 1990]:

GNMDA = (1 +
[Mg2+]

2.57mM
eV/16.13mV )−1 (2.11)

Such a relation is represented in Figure 2.10.

The property of the NMDA receptor to open only if the pre-synaptic cell and

the post-synaptic are active together can be used as a coincident neural activity de-

tector to synchronize signals between diUerent areas. More generally speaking, the

diUerent synaptic dynamics and their eUects on network behaviours are themselves

subjects of research [Durstewitz, 2009].
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Figure 2.10: Variation of conductance with post-synaptic membrane potential in
NMDA synapses, from Dayan and Abbott [2001b].

2.3 Spiking Models

The so-called third generation of neural networks [Maass, 1996] introduces a diUer-

ent set of functions and parameters to model neurons; these both model biological

neurons more precisely [Hodgkin and Huxley, 1952] and increase the computational

power of networks of neurons if compared to classical sigmoidal units [Maass, 1997].

Such networks rely on the propagation of an all-or-none signal, the action poten-

tial, which asynchronously carries information to its connected units by means of its

timing.

Millisecond precise Vre timing has been observed in groups of neurons recorded

in vivo [Mao et al., 2001]; time precision and coding of pulses in time and the intro-

duction of axonal delays have been proved to enhance the representational power of

networks of spiking neurons [Maass et al., 1991]. Consequently models taking ad-

vantage of the timing distribution of spikes have been produced. Some of them, such

as rank order coding [Thorpe and Gautrais, 1998] exploit the possibility to code in-

formation in the timings of the spikes in order to take account of the fast recognition

responses of the visual system [Thorpe et al., 1996]: a high complex visual discrimi-

nation task (is there an animal in the scene?) can be performed within 150 ms, when

diUerential activity can be detected in the frontal areas. Figure 2.11 shows the dif-

ference between correct go and no-go tasks in the ERP readings: after 150 ms from

the stimulus onset (third slice) a clear diUerence appears in the frontal electrodes,

showing two diUerent states associated with the answer to the task. From this study
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Figure 2.11: Speed of processing of the visual system in a recognition task,
from Thorpe et al. [1996]. DiUerential activity in ERP readings during a visual dis-
crimination task. After 150 ms from the stimulus onset (third slice) a clear diUerence
appears in the frontal electrodes, showing two diUerent states associated with the
answer to the task (go or no-go).

the authors conclude that at 150 ms the visual system has processed enough infor-

mation to perform the task and, considering the number of visual areas involved in

such processing and the neural dynamics, neurons in each stage have time to emit

only one action potential, thus suggesting a time-coding mechanism. With polychro-
nization Izhikevich [2006b] has introduced a framework to explore how convergent

delays and plasticity can generate time locked group patterns, and has demonstrated

its great representational power [Izhikevich et al., 2004]. It is based on the concept

that post-synaptic neurons are sensitive to precise timings of their aUerents due to

axonal delays, which can compensate for the latencies in the input neurons and en-

hance post-synaptic response for particular timing patterns.

Such examples of the nervous system’s ability to process an input quickly and

respond with an adaptive behaviour that can be selected from a vast repertoire,

along with its inherent parallelism, hint at a diUerent computational mechanism to

be explored. While some authors try to replicate biological structures to understand

the underlying computational mechanisms, others focus on more functional mod-

els, proposing coding, decoding and computational frameworks based on networks

of spiking neurons. In the next section some of these structural and computational

models will be reviewed.
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2.3.1 Biologically inspired models

By increasing the biological Vdelity of neurons and synapses it is possible to ex-

plore and model biological data and evaluate the quality of the models by com-

parison. Some authors therefore try to build structures inspired by their biologi-

cal counterparts and investigate their functionality. A signiVcant number of studies

have collected data on the neocortex, the site of higher cognitive activities whose

structure is stunningly regular, both across its area and across diUerent mammalian

species [Binzegger et al., 2009, Thomson and Lamy, 2007]. Several models of the

thalamo-cortical system have been presented in the literature with coarser or Vner

biological details.

Izhikevich and Edelman [2008] have produced a model inspired by the chara-

teristic circuitry and distribution of neurons and synapses determined by Binzegger

et al. [2004] and by original data from DTI studies. The model comprises one million

multicompartimental neurons based on the model presented in Izhikevich [2003], dif-

ferent AMPA, GABA and NMDA receptors (as described in the previous section) and

dopamine-modulated Spike-timing-dependent plasticity (STDP) [Izhikevich, 2007].

The model shows correlation with activity as reported in literature with Functional

magnetic resonance imaging (fMRI) studies [Fox et al., 2005]. One of the results of

the model which shows the importance of timing coding is that, by altering only one

spike, the activity of the whole system diverges in less than a second. This result is

also in accordance with the results in London et al. [2010], which present a model

based on in vitro recordings, where the perturbation of a single spike generates 28

extra spikes in the post-synaptic targets; as a consequence of the latter the authors

conclude that the cortex must be using a rate code, as spike-based computation is

shown to be too noisy by their experiments.

A more detailed thalamo-cortical model has been presented by the Blue Brain

Project [Markram, 2006], whose aim is to replicate electro-physiological behaviour

observed using a multi-neuron patch-clamp approach developed within the group, on

an IBM Blue Gene supercomputer [Gara and Moreira, 2011]. As of today the project

has simulated a rat cortical column of 10,000 neurons and 108 synapses, running 300

times slower than real-time.

Such models explore the mysteries of the brain, but it is not clear how to evaluate

their results, as the models diUer radically in their level of abstraction components

modelled and in the data they compare to. This methodology can be used to evalu-

ate structural models of other areas of the brain also; for example, Humphries et al.
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[2009] presented a model of the striatum, the main input of the basal ganglia, a struc-

ture involved in planning and decision, based on Izhikevich neurons. Other authors

focus more on functionality: for example Dehaene et al. [2003] built a neural ar-

chitecture based on cortical columns modelled with spiking neurons, and tested the

network with a classical neuro-psychological task, the attentional blink Raymond

et al. [1992], to link neuro-physiological data to subjective experiences (also known

as qualia, neural correlates of consciousness [Chalmers, 1995]). SimpliVed mod-

els of the cortical circuitry have also been used as a computational unit for a large

system or to abstract its computational properties, as for example with liquid state

machines [Maass et al., 2003]. In this model a cortical column is modelled as a stereo-

typical recurrent circuit of leaky integrate-and-Vre neurons which constitute a liquid,
a medium in which perturbations are representative of present and past inputs. A

readout neuron can therefore be used to decode such a (dynamical) state. The latter

model shows how a structure can be used to perform computation, and serve as a

bridge with models introduced in the next paragraphs, which focus more on compu-

tation.

2.3.2 Rank Order Coding

The rank order coding [Thorpe and Gautrais, 1998] approach has been introduced to

explain the ability of the visual system to process information quickly. Spike order is

used to carry the information in a feed-forward network rather than by coding it in

the rate; for example to explain the fast face recognition observed in monkeys [Van

Rullen et al., 1998]. With the Vrst observable diUerences in the temporal lobe starting

after 100 ms and several synaptic stages required to arrive to the infero-temporal cor-

tex (IT) where object recognition happens, a rate code requiring more than one spike

per stage cannot be used. Neurons have thus only one spike to code the information,

and do so in the timing of emission of an action potential. Information is subse-

quently passed through a retinal stage comprising ON-OFF ganglion cells and a layer

modelling V1 orientation selectively cells [Hubel and Wiesel, 1965]. Information is

then passed to a layer trained to respond to increasingly complex combinations of

features as seen in higher temporal areas such as V4 and IT.

Rank order coding has proven to be a biological eUective explanation in several

tasks involving image recognition [Delorme and Thorpe, 2001]; Vrst spikes have also

been considered more signiVcant (carrying more information), conVrming the pos-

sibility of fast recognition and restoration with few spikes [Sen and Furber, 2006].
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A

B

C

D

Figure 2.12: Rank order codes. (a) code with no repetition, all neurons Vring; (b)
intensity coded in the spike time; (c) N-of-M rank order code (only a subset N of the
M neurons Vre).

Thorpe et al. [2004] have proposed a system for visual processing and object identi-

Vcation with SpikeNet, which is based the principles described in this section. Rank

order coding also shares properties with N-of-M codes which have been coded in a

sparse distributed memory [Furber et al., 2007].

Examples of how to code information in the timings of spikes are given in Figure

2.12. A rank order code can be expressed as a sequence (with no repetition) of the

input neurons (case (a), neurons Vring in the order A-D-C-B). If two neurons can have

the same position, the rank order code can be considered to code the intensity of the

stimulation: neurons that receive a more intense stimulation Vre Vrst [Van Rullen

et al., 1998] (case (b), neurons A and D receiving more stimulation than neurons B

and C). If only a subset of the input population is considered information can be

coded in a N-of-M rank order code [Furber et al., 2007] (case (c), 3-of-4 code with

neurons Vring in the order C-B-D). To decode the rank order code, a neuron provided

with shunting inhibition is often used [Chance and Abbott, 2000]: by decreasing the

eUectiveness of a synapse as the number of spikes received, order discrimination can

be achieved [Delorme, 2003].
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2.3.3 Neural Engineering Framework

The Neural Engineering Framework (NEF, Eliasmith and Anderson [2003]) describes

how biologically relevant variables can be encoded and processed in the dynamic

neural activity of recurrently connected networks. This approach can be used to

introduce complex control-theoretic models into spiking neural networks, including

standard attractor network models [Eliasmith, 2005]. The NEF is captured by three

principles:

1. Representation in neurons is deVned by the combination of nonlinear encod-

ing (exempliVed by neuron tuning curves) and weighted linear decoding.

2. Transformations of neural representations are functions of variables that are

represented by neural populations. Transformations are determined using an

alternately weighted linear decoding which describes the transformation.

3. Neural dynamics are characterised by considering neural representations as

control theoretic state variables. Thus, the dynamics of neurobiological sys-

tems can be analysed using control theory.

Nonlinear encoding is obtained by translating an analog value to a spike train for

each neuron i in the encoding population as follows:

δ(t− tin) = Gi[αi〈x · ei〉+ J biasi ] (2.12)

where the spiking activity δ(t − tin) is given by Gi, a nonlinear function describing

the neural model, a gain factor αi (which in the scalar case is either 1 or -1), the value

x to be encoded, the encoder e and a bias current J biasi . Encoding can be viewed as

capturing the characteristic response (tuning curve) of a neuron to a speciVc stimulus

space, demonstrated, for example, by tuning curves found in the visual system for

orientation [Celebrini et al., 1993]. Tuning curves express the relation between the

value of the stimulus and the spike response of a neuron, according to its preference

(tuning) to the stimulus value.

An example of encoding is illustrated in Figure 2.13; this depicts the response of

two example neurons out of a large population to an input stimulus x: the Vrst neuron
(blue tuning curve on the left) responds to negative values of x, by increasing its Vring
rate as the input tends to -1; the second neuron (green tuning curve on the right)

responds to positive values of the input x instead. The response of the two neurons to
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Figure 2.13: Tuning curve examples: (a) Two example neurons out of a heterogenous
encoding population to an input stimulus x: the Vrst neuron (blue tuning curve)
responds to negative values of x, by increasing its Vring rate as the input tends to -1;
the second neuron (green tuning curve) responds to positive values of x by increasing
its Vring rate as the input tends to +1 (b) input stimulation (c, d) The sub-threshold
voltage response of the two neurons to a step input is shown: the Vrst neuron Vres
steadily when the input is negative, while it goes silent when the input is positive, as
encoded by the second neuron which starts Vring steadily.
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a step input is shown in Figure 2.13(a): the Vrst neuron Vres steadily when the input

is negative, while it goes silent when the input is positive, as encoded by the second

neuron which starts Vring steadily. The original stimulus vector can be estimated by

using decoding vectors d which can be found by a least square method [Eliasmith

and Anderson, 2003], and coupled with a simple model of the post-synaptic current

h(t) (a decaying exponential). Together, these give the following decoding scheme:

x̂ =
∑
i,n

h(t− tn)di (2.13)

where h(t− tn) is the convolution of the original spike train with the post-synaptic

current (PSC) [De Schutter, 2009].

Encoding and decoding together deVne the neural population code. Conveniently,

encoding and decoding can be used to compute neural connection weights. Specif-

ically, connection weights can be calculated knowing the decoders for the source

population and the encoders of the target population. Suppose the function y = x

is to be computed, representations for x and y are deVned as above. Connection

weights to compute this function in the y population are determined as:

δ(t− tjm) =Gj[αj〈(y = x) · ej〉+ J biasj ]

= Gj[αj〈x̂ · ej〉+ J biasj ]

= Gj[αj〈
∑
i,n

h(t− tn)di · ej〉+ J biasj ]

= Gj[αj
∑
i,n

ωijh(t− tn) + J biasj ]

So, in a fully spiking network with connection weights ωij = 〈di · ej〉, we can decode

the output of the y population to determine the input values x (i.e., it is computing

y = x). Critically, decoders can also be estimated to compute an arbitrary function

f(x) other than identity, thus permitting a broad class of computations through trans-

formational decoders df(x)i . All such computations will be feedfoward, however, and

it should be noted that the accuracy of the computation is dependent on the number

of neurons in the two populations and their neural properties. In particular, mean

squared error is proportional to 1/N, where N is the number of neurons in the neural

population [Eliasmith, 2005].

The introduction of neural dynamics allows variables represented by a neural

population to be control theoretic state variables and hence to apply modern control
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theory [Lewis and Kamen, 1994] methods to engineer and analyse time dynamics

of network models, thus integrating standard attractor models and complex con-

trol [Eliasmith, 2005]. Notably, the post synaptic currents dominate the dynamics of

the neural system, so a general mapping between any dynamical system and a re-

currently connected network that accounts for the diUerence in dynamics between

our PSC model and ideal integration can be determined. For the simple case of an

exponential PSC and a linear time-invariant (LTI) system, recurrent and feedforward

weights can be computed from the input and dynamics matrices of the LTI system.

SpeciVcally, a widely used model for the PSC with a time constant τ is the expo-

nential function (as described in sec. 2.2.2) in the form h(t) = e−t/τ/τ , which has as a

Laplace transform h′(s) = 1/(1+sτ). The input and dynamics matrices (respectively

A and B) of LTI systems are transformed to their neural equivalents, obtaining:

A′ = τA + I (2.14)

B′ = τB

where A′ and B′ are transformation matrices describing the dynamics in the neural

system. These can be included directly in the recurrent and feedforward connection

weights derived above. For example, the recurrent weights would be ωij = 〈diA′ ·ej〉.

More generally weights are the result of the multiplication of 3 matrices:

ωij = dFβi ·Mαβ · eαj (2.15)

where the terms are: the decoding matrix from an input population β which can be

written as dFβi , decoding some function F; the encoding matrix for the target popula-
tion α written as eαj ; the transformation matrixMαβ that deVnes the transformation

between populations. In the case of feed-forward computationsMαβ is the identity

matrix and the function is computed by the transformational decoders dFβi ; in the

case of recurrent connections, α and β index the same population of neurons; in

the case of mono-dimensional representation encoders and decoders are scalar; in

the case of multidimensional representation dFβi and eαj are vectors. Functions and

transformations are then deVned only by weights in the neural space.

The Neural Engineering Framework oUers a uniVed approach to building com-

plex dynamical systems in the neural space, using only spiking neuron models, PSC

models, and connection weights. These models can represent arbitrary functions,
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while considering biological characteristics (e.g. tuning curves) as constraints. All

parameters are estimated directly from neural data, or using the representationmethod

described above. In this sense no parameters need be tuned, as they are either cal-

culated using the framework or estimated from neurobiological data. The NEF has

been successfully used in modelling a wide variety of neural systems including those

involved in sensory processing [Eliasmith et al., 2002], motor control [J et al., 2011],

and cognitive functions [Eliasmith, 2007] such as decision making, both matching

experimental data (neural and behavioural), and making a variety of novel predic-

tions [Stewart and Eliasmith, 2010].

In particular in Stewart et al. [2010b] the NEF has been used to model how the

basal ganglia performs action selection and planning. The model parameters and

structure are inspired by Gurney et al. [2001], and are biologically plausible. The

model is tested with the Tower of Hanoi task [Stewart and Eliasmith, 2011], showing

reaction times and error rates comparable to those of human subjects. The frame-

work can also be used to manipulate language-like structures [Stewart et al., 2011] by

using Holographic Reduced Representation [Plate, 1995], a type of vector symbolic

architecture. Basic features of an entity (e.g. form or colour) are bounded to a real-

isation of the feature (e.g. square for form and red for colour) and can be combined

together with a superimposition operator, leading to a compositional structure.

The functional approach taken with the NEF makes building a complex archi-

tecture in neurons possible. Recently SPAUN (Semantic Pointer Architecture Unifed

Network), a cognitive architecture based on the framework principles, has been pro-

posed [Eliasmith et al., 2012]. The model is capable of solving some classical cogni-

tive tasks by using computational sub-modules which perform perception, cognition

and action, using the same architecture. The basal ganglia module recruits some of

the cognitive and action modules as the task is selected and performed. Figure 2.14

shows the architecture of SPAUN: the model consists of a working memory system,

an action selection (basal ganglia) system, a visual input and a motor output system,

and Vve general neural information processing subsystems, which are dynamically

recruited by the basal ganglia to perform a particular task.

Using the same architecture and parameters, the model can perform diUerent

tasks, such as hand-written digit recognition, serial working memory recollection,

addition by counting and simple question answering about an input sequence [Stew-

art et al., 2012]. SPAUN is a distributed architecture capable of induction, as shown

in the rapid variable creation task, where a pattern is completed by generalising from
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Figure 2.14: SPAUN architecture, from Eliasmith et al. [2012]. The model consists of
a working memory system, an action selection (basal ganglia) system, a visual input
and a motor output system, and Vve general neural information processing subsys-
tems which are recruited dynamically by the basal ganglia to perform a particular
task.

previous examples. This task requires the capability of rapidly creating a symbolic

variable in a syntactic structure, and binding it to unseen elements. In SPAUN the

experiment is performed by presenting three example lists associated with a correct

answer (eg. 0094 → 94, 0014 → 14, and 0024 → 24) to the model. Generalisation

by induction is tested by presenting a new list (0074), to which the model produces

the right answer (74). The task shows generalisation after a few input examples, and

does not require neural rewiring as the syntactic structure and the variable are repre-

sented in the working memory and in the Transform Calculation cortical component,

which drives the basal ganglia information routing to solve the task.

2.3.4 Polychronization

While rank order coding is used to exploit temporal properties in the source (pre-

synaptic) neurons, polychronization can be used to organize and tune post-synaptic

neurons to respond by compensating time diUerences in the inputs with the axonal

delay, so as to increase their response [Izhikevich, 2006b]. Polychronous neurons will

then be sensitive to certain time locked input patterns, but not to others.

The idea of polychronization is illustrated in its simplest form in Figure 2.15. The

neurons are interconnected with diUerent delays so that only precise time patterns

of the input neurons will have their inputs converge into the output neurons at the
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Figure 2.15: Polychronization: (a) example network: neurons 1-2-3 connect to neu-
rons A-B with conduction delays indicated on the arrows; (b-d) vertical lines denote
pre-synaptic neuron (1-2-3) spike timing; arrows point to the spike time arrival at
the post-synaptic neurons (A-B); (b) synchronous Vring of the pre-synaptic neurons
does not elicit a strong PSP in either of the post-synaptic neurons, because the spikes
arrive at diUerent times due to diUerent conduction delays; (c) if pre-synaptic neu-
rons Vre in the order 3-2-1 their spikes converge to neuron A due to compensation
through the axonal delay, and have no eUect on neuron B; (d) if input neurons Vre
in the reverse order (1-2-3) their spikes will converge onto neuron B and arrive in
sparse order to neuron A.
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same moment.

An example network is presented in Figure 2.15: neuron A receives input from

neurons 1, 2 and 3 with delays 1, 2 and 4 ms; neuron B receives inputs with delays

3, 2 and 1 ms respectively (b) if input neurons Vre together their contribution arrives

in sparse order to the post-synaptic neuron (green) eliciting a weak response (c) if

neurons Vre in a precise time pattern (at ms 4, 3 and 1 respectively) their spikes

converge to neuron A due to compensation through the axonal delay while having

no eUect on neuron B (d) if input neurons Vre at 2, 3 and 4 ms their spikes will

converge onto neuron B and arrive in sparse order to neuron A.

The emergence of groups in regular structures has also been explored in Izhike-

vich et al. [2004]. When a plastic randomly interconnected spiking network with

delays is stimulated, the activity self organizes into polychronous groups thanks to

the interplay between delays and plasticity. This mechanism leads to an increased

representational power of the network, which can have more groups than neurons,

as each neuron can be a subpart of a diUerent polychronous group, while also con-

sidering time dynamics and the ability to represent an internal state as the persistent

activity of some groups, as observed in vivo [Chang et al., 2000, Tetko and Villa, 2001].

The abstraction of polychronization from neurons into a computational frame-

work is shown in Izhikevich and Hoppensteadt [2009]. In this work pulses of tem-

poral and spatial patterns of activity propagate as circular waves in a medium com-

prising transponders - agents which generate a pulse upon the receipt of more co-

incident pulses. Transponders are reminiscent of neurons in a network, but their

biological properties have been stripped away, going towards an event based compu-

tational method called Polychronous Wavefront Computation. As the author remarks

this framework cannot be characterised as a neural network, but rather as a frame-

work where "the eUect of each pulse depends exclusively on its timing relative to other
pulses and the location of transponders"; in other words, it’s a completely event-driven

framework where information is encoded in timing.

2.3.5 Rank order codes and polychronization combined

As a conclusion to this section an approach where rank order coding and polychro-

nization are considered as complementary is presented [Galluppi and Furber, 2011];

the Vrst model is used by an input population to code information and the second by

a higher dimensional population of post-synaptic polychronous neurons. This pop-

ulation is able to represent the codes presented in the pre-synaptic input layer, and a
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Figure 2.16: The output neuron Vres only when the learned code is presented.

neuron can be trained to discriminate an arbitrary selected code. Rank order coding

can be used to encode information in the spike timings of an input population and

polychronization can be used by a post-synaptic neuron to decode a temporal pat-

tern emitted by a source population by compensating the latencies with the axonal

delays.

Polychronization, then, seems the natural candidate to decode rank order coded

inputs. By observing again Figure 2.15 Vring patterns in neurons 1, 2 and 3 can

be modelled by two distinct rank order codes, and the two output neurons A and

B as responders to a particular rank order code. In theory, a network exploiting

connection delay values can be devised to compute the number of neurons requested

and their combination. Instead, in the approach proposed, a polychronous layer is

connected to the input source with random delays. This layer acts as a spiking neural

implementation of a sparse distributed memory [Furber et al., 2007] in spiking neural

networks which is able to store and recall rank order codes.

Results show that the mechanism can be used to encode an input with a rank

order which can be decoded by a neuron connected to a polychronous layer, even in

the presence of noise, as shown in Figure 2.16. The model details are presented in

Appendix A.
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2.4 Summary

This chapter has presented how biophysical properties of neural components can

be characterised mathematically into models of neurons and synapses. Computa-

tional models were then presented along with discussions of the mechanisms used

to encode and decode information in spiking neurons. The models reviewed in this

chapter are just a small subset of a very large number of diUerent models proposed

within the modelling computational neuroscience community, working at diUerent

levels of abstraction - from molecules to behaviour [Sejnowski, 2003]. Basic elements

- neurons and synapses - were introduced and it was discussed how models relate to

their biological counterparts. Some computational properties that emerge when such

neurons are coupled together in networks were presented, Vrst by examining mod-

els that try to mimic the structure of the thalamocortical system, then by shifting

progressively towards models where structure supports computation, showing how

the selection of a particular neural, synaptic or network model is dependent on the

scientiVc question being investigated.

The variety of approaches in neural modelling are reWected in the growing num-

ber of diUerent emerging tools for spiking neural simulation. Some tools are ori-

ented to the simulation of neurons in great detail [Hines and Carnevale, 2001, Bower

and Beeman, 2007], others are more oriented to the simulation of large networks

[Gewaltig and Diesmann, 2007], others try to capture a simulator-independent de-

scription of the network [Raikov et al., 2011, Davison et al., 2008, Goddard et al.,

2001]. Some models are too computationally demanding to be simulated on a stan-

dard computer, and therefore a variety of diUerent hardware solutions have been

proposed.

The next chapter reviews the diversity of these approaches and challenges, and

solutions proposed to simulate networks of spiking neurons, in hardware and soft-

ware.



Chapter 3

Tools for Neural Simulation

3.1 Introduction

Simulation of networks of spiking neurons can follow two distinct paths. The Vrst is

simulation on standard computers, using proprietary neural code (written for exam-

ple in C) or domain speciVc simulation languages and engines (such as NEST [Plesser

et al., 2007] or Brian [Goodman, 2008]). The advantages of using standard simula-

tors are in interoperability and ease of use, since they abstract all the network in-

stantiation and programming management from end users; this comes at the cost

of eXciency [Brette et al., 2007]. Since simulating large scale networks of biolog-

ically plausible neurons is a challenging task requiring scalable computational and

communication resources, a second approach is to run the simulation on dedicated

hardware platforms. As a consequence, diUerent hardware approaches have been

proposed to simulate neural networks. Some models are simulated taking advantage

of recent developments in computational infrastructure that can be scaled up. There-

fore simulations usually take place on supercomputers [Ananthanarayanan et al.,

2009], general purpose hardware such as FPGAs [Maguire et al., 2007] or dedicated

neuromorphic hardware [Schemmel et al., 2010, Wijekoon and Dudek, 2008]. How-

ever, access to hardware resources is often limited, and tailored to a speciVc platform

or model [Choi et al., 2004]; every approach has diUerent scalability, programmabil-

ity, precision and power consumption characteristics.

This chapter will present the diUerent approaches for simulating spiking neu-

ral networks, by Vrst introducing diUerent software simulators oriented to diUerent

modelling needs, and some description languages, which try to standardize model

deVnitions to encourage sharing between research groups. The rest of the chapter

64
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describes diUerent approaches to simulate spiking neural networks, on dedicated or

oU-the-shelf parallel hardware, showing diUerences and characteristics of each sys-

tem.

3.2 Software Simulators

The range of behaviours and details that computational neural scientists need to

model is very large and, not surprisingly, many scientists prefer to build their own

simulation environment using Matlab, C++ or Python, as for example SpikeNet, a

visual processing system proposed by Thorpe et al. [2004]. This tendency is also re-

Wected in a survey done by the NeuroDebian Initiative1, with Matlab and C++ being

the most commonly used languages. However the lack of a standard way to de-

scribe neural networks and results [Crook et al., 2012] limits the possibility for the

Veld to grow by discouraging reuse of software and replication of modelling results,

as well as validation of existing models [Cannon et al., 2007, Nordlie et al., 2009].

To support modellers some domain-speciVc, neural-oriented languages and simula-

tors have been developed; such simulators have the advantage of being reusable and

exchangeable between diUerent groups, promoting sharing of knowledge and vali-

dation of models. These languages and simulators oUer standard conceptual entities

(neuron, synapses, connections, probes etc.) to build a neural network, either with a

scripting language or with a GUI, and to control the entities, run experiments, collect

and analyse data. They often come with implementations of standard models such

as those presented in the previous chapter, and some have the possibility to extend

the neural model library. Their key-concept is to oUer the user abstracted, domain-

speciVc, conceptual entities such as neurons and synapses, translating them into the

appropriate mathematical form to solve such equations numerically, oUering an ab-

stract entry point for writing neural network models which are then easy to share

and build upon. In the last years the introduction of standard packages [Davison

et al., 2008, Raikov et al., 2011] has increased the standardisation in the Veld, towards

a uniVed way to describe spiking neural network models and run experiments with

reproducible, shareable data. The most used simulators for networks of spiking neu-

rons accordingly to the NeuroDebian survey cited beforehand will be reviewed in

this sections.

1For complete results check http://neuro.debian.net/survey/2011/results.html

http://neuro.debian.net/survey/2011/results.html
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3.2.1 NEURON

NEURON [Carnevale, 2007] is a modelling and simulation tool which is oriented to

the simulation of very Vne detailed neurons which can then be connected in complex

networks [Hines and Carnevale, 1997]. It lets the user model the surface of multi-

dendritic neurons, yielding complex, detailed neuron models. The simulator oUers

users the possibility to work with abstract models, while the internal engine oUers

the infrastructure to simulate it. NEURON is written in a proprietary language called

NMDOL which has Python bindings open for extension [Hines and Carnevale, 2000].

It also oUers a GUI which lets the user select the parameters of the model and run

them on parallel hardware. It is a very appealing instrument for neuroscientists

because it helps model the physical properties of the neurons, but also for network

modelling if expanded through the Python bindings; it also supports some degree

of parallelization [Brette et al., 2007]. NEURON is a widely used tool with a large

userbase, with more than 860 publications recorded by 20092.

3.2.2 GENESIS

GENESIS (the GEneral NEural SImulation System - Bower et al. [1998]) is a tool for

realistic simulation, based on physical structures and biological properties [Bower

and Beeman, 2007]. Users can conVgure abstract objects and can interact with the

simulation, even with the use of a GUI, while the computation is carried on in the

underlying GENESIS simulation engine written in C. The structure of GENESIS is

shown in Figure 3.1, where it can be seen that the script interpreter can be used to

drive the internal simulation engine and communicate with the user front-end, hence

separating the diUerent concerns involved in the simulation. GENESIS has a long

history of simulation and is now being renewed with the GENESIS-3/Neurospaces

initiative, using separation of concerns as a key design principle [Cornelis et al.,

2012].

3.2.3 NEST

NEST (NEural Simulation Tool) [Dupuy et al., 1990, Gewaltig and Diesmann, 2007] is

a tool able to simulate eXciently networks composed of standard neuron models as

described in Section 2.2.1. It is oriented to the simulation of networks with more than

2http://www.neuron.yale.edu/neuron/what_is_neuron#userbase

http://www.neuron.yale.edu/neuron/what_is_neuron#userbase
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Figure 3.1: GENESIS structure, from Bower et al. [1998]. DiUerent modules perform-
ing user control, data representation visualisation and transformation are separated
following the separation of concerns principle [Cornelis et al., 2012].

104 neurons and 107 − 109 synapses. NEST can be programmed using SLI, a stack-

based custom language; however recently a Python interface has been introduced to

make the simulator more accessible [Eppler et al., 2008]. NEST uses nodes (neurons,

groups of neurons and devices) and connections between nodes to model networks of

spiking neurons interconnected arbitrarily, along with synaptic models and plasticity

methods. The simulator has a good user base and publications, demonstrating its use

as a simulation tool3; in Potjans et al. [2011] for instance, NEST is used to model

the eUects of dopamine on temporal diUerence learning in a biologically plausible

architecture. Nest oUers a Message Passing Interface (MPI) optimisation to distribute

the model on cluster computers [Plesser et al., 2007], exploiting the parallelism of the

architecture to run large networks eXciently [Morrison et al., 2005]. This approach

is however limited by the collective communication functions adopted for the MPI

data exchange scheme [Eppler et al., 2007].

3.2.4 Brian

Brian [Goodman, 2008] is a neural network simulator entirely written in Python ori-

ented to the simulation of large networks of point neurons. The choice of Python

as a native language (rather than using C/C++ like GENESIS and NEST) lets the

user run simulations and plot and analyse data in the same environment; this is also

equipped with eXcient Python packets for numeric and vector-based computation

3http://www.nest-initiative.org/index.php/Publications

http://www.nest-initiative.org/index.php/Publications
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Figure 3.2: Example code and execution results from Brian, from Goodman [2008].
The Brian code implementing the model is shown on the left: 3,200 excitatory and
800 inhibitory neurons, organised in 2 subgroups, are recurrently and sparsely con-
nected. The right part of the Vgure shows the mathematical form of the equations
implemented and the results of the script execution.

such as Scipy and Numpy; while the integration with PyLab lets the user easily cre-

ate graphics, integration with Sympy introduces dimensionality checks. With Brian

a user can directly input the equations to be solved by the simulator in standard

notation or use a standardised neuron model, making the simulator very Wexible.

Brian is an excellent choice as an entry simulator as it oUers a very expressive

Python based language which is also very eXcient (25% slower than C for large net-

works) and also supports the use of cluster computers or GPUs [Brette and Goodman,

2012] as a parallel platform for simulation. Figure 3.2 shows an example Brian pro-

gram, the mathematical methods used to model neurons and the result of the simula-

tion. The network comprises 3,200 excitatory and 800 inhibitory neurons recurrently

and sparsely connected, and is often used as a neural benchmark [Brette et al., 2007].

3.2.5 Nengo

Nengo [Stewart et al., 2009] is the tool used to implement the Neural Engineering

Framework principles (see sec. 2.3.3), giving the user the possibility to map a wide

range of neuro-computational dynamics to spiking neural networks; it is a software

speciVc to a modelling framework rather than general purpose. Nengo oUers a graph-

ical user interface and a scripting language to build neural groups and interconnects
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Figure 3.3: Example of a basal ganglia network model running in Nengo. Action
selection if performed by a basal ganglia module by evaluating the value of Vve dif-
ferent actions.

them based on the desired function, computing all the neural parameters and con-

nection weights. It also oUers a benchmark to interact with running simulations and

save data as shown in Figure 3.3, where the simulation workbench is used to control

the input into a basal ganglia model [Stewart and Eliasmith, 2011]. Nengo is very

easy to use overall, and coupled with the ability of the NEF to calculate appropriate

connection weights for functions and dynamical systems, it allows the rapid building

of complex networks. A simple network, where a neural population B is performing

the square of the value represented by another neural population A, is described in

Nengo with the following code4 (see Appendix C.2.1):

import ne f

# C r e a t e t h e ne twork o b j e c t
ne t =ne f . Network ( ’ Squar ing ’ )

# C r e a t e a c o n t r o l l a b l e i n p u t f u n c t i o n wi th a s t a r t i n g v a l u e o f 0
ne t . make_input ( ’ i npu t ’ , [ 0 ] )

4http://ctnsrv.uwaterloo.ca/docs/html/demos/squaring.html

http://ctnsrv.uwaterloo.ca/docs/html/demos/squaring.html
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#Make a p o p u l a t i o n wi th 100 neurons , 1 d imen s i on
ne t . make ( ’A ’ , 1 0 0 , 1 )

#Make a p o p u l a t i o n wi th 100 neurons , 1 d imen s i o n s
ne t . make ( ’B ’ , 1 0 0 , 1 , s t o r a g e _ cod e = ’B ’ )

ne t . connec t ( ’ i npu t ’ , ’A ’ ) # Connec t t h e i n p u t t o A

# Connec t A and B wi th t h e d e f i n e d f u n c t i o n app r ox ima t ed i n t h a t c o n n e c t i o n
ne t . connec t ( ’A ’ , ’B ’ , func=lambda x : x [ 0 ]∗ x [ 0 ] )
ne t . add_to_nengo ( )

The model shown in Figure 3.3 can be written in Nengo as follows5 (see Appendix

C.2.1):

import ne f

import nps

D=5

ne t =ne f . Network ( ’ B a s a l Gang l i a ’ ) # C r e a t e t h e ne twork o b j e c t

# C r e a t e a c o n t r o l l a b l e i n p u t f u n c t i o n
# wi th a s t a r t i n g v a l u e o f 0 f o r each o f D d imen s i o n s
ne t . make_input ( ’ i npu t ’ , [ 0 ]∗D)

# Make a p o p u l a t i o n wi th 100 neurons , 5 d imen s i on s , and s e t
# t h e s imu l a t i o n mode t o d i r e c t
ne t . make ( ’ ou tpu t ’ , 1 ,D , mode= ’ d i r e c t ’ )

#Make a b a s a l g a n g l i a model w i th 50 n eu r on s p e r a c t i o n
nps . b a s a l g a n g l i a . make_ba s a l _gang l i a ( net , ’ i npu t ’ , ’ ou tpu t ’ ,D ,

same_neurons= Fa l s e , neurons =50 )

ne t . add_to_nengo ( )

A Vve dimensional input, representing the value of Vve diUerent actions, is cre-

ated and connected to a basal ganglia module which performs action selection.

3.2.6 Towards a Standard

The proliferation of diUerent user and standard languages, and the diXculties in

exchanging models and verifying results have led some research groups towards the

creation of representations for spiking neural network models.

One of the Vrst moves in that direction has been introduced with NeuroML [God-

dard et al., 2001], an XML based language able to describe models, data and methods

in neurocomputational disciplines, storing the model speciVcation and its formalism.

5http://ctnsrv.uwaterloo.ca/docs/html/demos/basalganglia.html

http://ctnsrv.uwaterloo.ca/docs/html/demos/basalganglia.html


3.2. SOFTWARE SIMULATORS 71

Figure 3.4: NeuroML structure, from www.neuroml.org/introduction.php.

NeuroML is a declarative language in the sense that it describes components of the

model, including imperative portions of code to be inserted in standard interfaces.

Its main goal is to be a vehicle of information between scientists. It aims therefore to

be clear, portable and modular, and is represented at diUerent levels which describe

the following properties:

• MorphML: neuroanatomic properties of the neuron, such as morphology of

the soma and of its dendritic tree[S et al., 2005]

• ChannelML: synaptic interactions, ionic channels and extracellular ionic con-
centration models

• NetworkML: describing a 3D network of neurons and their interconnections

This need has more recently been addressed by the Multiscale Modeling pro-

gram of the International Neuroinformatics Coordinating Facility (INCF6) with the

introduction of NineML (Network Interchange for Neuroscience Modeling Language

[Raikov et al., 2011]), a declarative language for describing network models of point

spiking neurons. It identiVes as conceptual entities neurons, synapses, populations

of neurons and patterns of interconnection between them (projections) and deVnes

their mathematical abstractions. NineML comprises an Abstraction Layer which de-

Vnes the entities and a User Layer which lets a user build a model using such entities.

Production of interfacing facilities with Python and XML are provided, to be sup-

ported by the available simulation packages already described.

6http://www.incf.org/

www.neuroml.org/introduction.php
http://www.incf.org/
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Figure 3.5: PyNN Architecture, from Davison et al. [2008].

3.2.7 PyNN

The declared object of PyNN is to "write the code for a model once, run it on any sup-
ported simulator without modiVcation" [Davison et al., 2008]. It is a standard descrip-

tion language written in Python to model networks of point spiking neurons. If com-

pared with the speciVcation languages described above, PyNN is able to run network

models with any supported simulator, from those mentioned in the previous chapter,

and in neuromorphic hardware [Brüderle et al., 2009]. Figure 3.5 shows the simu-

lators supported by PyNN; the neural kernels are separated from the user-language

interface through the creation of simulator-speciVc PyNN modules and their Python

bindings.

PyNN oUers, natively, a standard description language and the interface to several

back-end simulators, making it an ideal choice when running and comparing models

with diUerent simulators and platforms or that need to be shared with groups using

diUerent architectures.

It comprises a standardised set of neural models (including the conductance and

current based LIF models with exponential and alpha currents synapses and the AdEx

neuron) and connections (along with several interconnection pattern algorithms)

equipped with fast and slow synapse dynamics (plasticity). It also has facilities for

distributed computing and handling of pseudo-random numbers.

With PyNN it is straightforward to compare diUerent simulating platforms, as

shown in Figure 3.6, as it oUers, also, a standard way to save data. The model can

be represented in PyNN and run on diUerent simulators with a script such as the

one presented here (and in Appendix C.1.1). The simulator name can be passed as a

parameter to the Python script, and then can be initialised with the setup() call:
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s imula tor_name = g e t _ s c r i p t _ a r g s ( 1 ) [ 0 ]

exec ( " from pyNN.% s impor t ∗ " % s imula tor_name )

p . s e tup ( t ime s t e p = 1 . 0 , min_de lay = 1 . 0 , max_delay = 1 0 . 0 )

An integrate-and-Vre, conductance based neuron (IF_cond_exp) receives connec-
tions from two spike sources. The LIF neuron can be instantiated as a Population of

1, and the parameters can be deVned in a dictionary as follows:

i f c e l l = p . P opu l a t i on ( 1 , p . IF_cond_exp , c e l l _pa r ams , l a b e l = ’ IF_cond_exp ’ )

c e l l _ p a r ams = { ’ i _ o f f s e t ’ : . 1 , ’ t a u _ r e f r a c ’ : 3 . 0 , ’ v _ r e s t ’ : −65 .0 ,

’ v _ th r e sh ’ : −51 .0 , ’ tau_syn_E ’ : 2 . 0 ,

’ t a u_ syn_ I ’ : 5 . 0 , ’ v _ r e s e t ’ : −70 .0 ,

’ e_rev_E ’ : 0 . , ’ e _ r e v _ I ’ : −80 . }

Two SpikeSourceArray populations are created using a predeVned list of spike

times as a parameter to control their activity.

s p i k e _ s ou r c eE = p . Popu l a t i on ( 1 , p . Sp ikeSourceArray ,

{ ’ s p i k e _ t ime s ’ : [ [ i for i in range ( 5 , 1 0 5 , 1 0 ) ] , ] } , l a b e l = ’ s p i k e _ sou r c eE ’ )

s p i k e _ s o u r c e I = p . Popu l a t i on ( 1 , p . Sp ikeSourceArray ,

{ ’ s p i k e _ t ime s ’ : [ [ i for i in range ( 1 5 5 , 2 5 5 , 1 0 ) ] , ] } , l a b e l = ’ s p i k e _ s o u r c e I ’ )

The spike sources are then connected to the LIF neuron using the Projection
method:

connE = p . P r o j e c t i o n ( sp ike_ sour ceE , i f c e l l ,

p . OneToOneConnector ( we igh t s = 0 . 0 0 6 , d e l a y s =2 ) , t a r g e t = ’ e x c i t a t o r y ’ )

connI = p . P r o j e c t i o n ( s p i k e _ s ou r c e I , i f c e l l ,

p . OneToOneConnector ( we igh t s = 0 . 0 2 , d e l a y s =4 ) , t a r g e t = ’ i n h i b i t o r y ’ )

Finally recording methods for the neurons in the model are set, and the simula-

tion is executed for 200 ms:

i f c e l l . r e co rd_v ( )

i f c e l l . r e co rd_gsyn ( )

i f c e l l . r e c o r d ( )

s p i k e _ s ou r c eE . r e co r d ( )

s p i k e _ s o u r c e I . r e c o r d ( )

p . run ( 2 0 0 . 0 )

Results obtained running the model with diUerent simulators are shown in Figure

3.6.

Some standardised data analysis and plotting tools are oUered by NeuroTools [Yger
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Figure 3.6: An example of using PyNN, adapted from http://neuralensemble.org/

trac/PyNN/.

et al., 2009], in an eUort to unify and promote code sharing for data analysis as well.

For all these reasons PyNN has rapidly acquired popularity in the neuromorphic

community as it oUers a way to check and validate neuromorphic platforms, and

their precision and operative ranges, with standard neural languages [Brüderle et al.,

2011, Galluppi et al., 2010].

3.3 Simulation on dedicated platforms

While simulation in software makes Wexible and exploratory modelling accessible

to a wide community, larger models require more computational resources. Sim-

ulating large number of nodes (neurons) and interconnections (synapses) on stan-

dard computers is a very challenging task, both for computation and for commu-

nication. To overcome such diXculties, alternative hardware architectures and ap-

proaches to spiking network simulation have been proposed; each tries to exploit the

intrinsic parallelism of neural networks directly in hardware. EXciently mapping a

neural network onto a hardware substrate is a nontrivial task, due to the massive

parallelism and communication bandwidth required by the high connectivity. Scal-

ing on supercomputers has proven to be challenging [Morrison et al., 2005]: two

of the biggest and more biologically inspired models of the thalamocortical system

http://neuralensemble.org/trac/PyNN/
http://neuralensemble.org/trac/PyNN/
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[Markram, 2006, Ananthanarayanan et al., 2009] run on an IBM Blue Gene [Gara and

Moreira, 2011]. However such a methodology is not otpimal, and IBM itself, through

the SyNAPSE initiative, is investigating alternative approaches such as the creation

of a neuromorphic core [Merolla et al., 2011], a very power eXcient digital neuromor-

phic chip. Alternative approaches include using more ready-available hardware such

as FPGAs [Cassidy et al., 2011, Moore et al., 2012] or GPUs [Fidjeland and Shanahan,

2010]. These solutions try to exploit the inherent parallelism and communication

characteristics of neural networks in order to explore non-classical computing archi-

tectures and computational methods. The rest of the section analyses these diUerent

solutions.

3.3.1 Supercomputers

The IBM Blue Gene has been used in brain modelling at diUerent levels of abstraction,

from the ion-channel level to point neurons. The Blue Brain Project [Markram, 2006]

at EPFL, for instance, uses it for simulating plastic neural networks on 8,000 CPUs.

The project has produced a detailed model of a 10,000 neuron cortical column based

on a 14 day old rat somatosensory non-barrel cortex. This network simulates neurons

with a precise biological Vdelity down to the ion-channel level, and its simulation

language is based on NEURON. The model is continually reVned and released to the

community every 6 months.

Ananthanarayanan et al. [2009], within the IBM/DARPA SyNAPSE Program, have

taken a simpler approach to simulate only point neurons by building a massive cor-

tical simulator called C2. They have simulated a large thalamo-cortical system on a

Dawn Blue Gene/P supercomputer with 147,456 CPUs and 144 TB of memory. Their

largest simulation is a system with 1.6 billion neurons and 8.87 trillion synapses,

corresponding to a cat’s brain or 4.5% of the human brain. The total time for sim-

ulation is 173 seconds (for 1 second of model time at 3.89 Hz Vring rate), with the

(MPI based) communication component consuming 71 seconds. From their predic-

tions (reported in Figure 3.7) a 100% scale, real-time human-brain simulation could

be achieved in 2018 by a supercomputer with 4 petabytes of memory and running at

>1 exaWops. This is predicted by extrapolating the trends for the top 500 supercom-

puters (purple and green) and their simulation approach (cyan). At June 2013 the

twice-yearly TOP500 list of the world’s most powerful supercomputers7 reports the

Tianhe-2 (MilkyWay-2) of the National University of Defense Technology in China

7www.top500.org

www.top500.org
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Figure 3.7: Estimation for a full-brain, real-time simulation from Ananthanarayanan
et al. [2009].

as the fastest supercomputer, with 3,120,000 processors achieving 33,862 TFlops/s

(in line with IBM’s prevision, purple line in Figure 3.7) and consuming 17,808 kW.

The SyNAPSE group has recently announced8 a simulation of 53 × 1010 neurons

and 1.37× 1014 synapses, running 1542× slower than real time on the Sequoia IBM

BlueGene/Q system installed at DOE’s Lawrence Livermore National Laboratory, a

supercomputer ranked as third in the TOP500 list with 17,173 TFlop/s and consuming

7,890 kW.

Both the approaches described run hundreds of times slower than real time. Such

a use of supercomputers is generally tightly optimised to the model simulated, and

accessibility to such computational resources is not widespread. One attempt to make

neural modelling more Wexible and accessible has been done with an implementation

of NEST for MPI [Plesser et al., 2007]. Distributing and mapping arbitrary models

to a cluster is a non-trivial task, due to the necessity to balance the load accurately

through the nodes, which need to be synchronised [Morrison et al., 2005]. Since

(blocking) communication is costly, spikes are buUered and sent at every time step,

corresponding to the minimum delay in the model. Further, in general, MPI frames

with their size introduce overheads, making meeting the communication constraints

8IBM Report: 1014: http://www.modha.org/blog/SC12/RJ10502.pdf

http://www.modha.org/blog/SC12/RJ10502.pdf
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in spiking neural networks harder. Finally, the power requirements make the scaling

of models challenging.

3.3.2 Neuromorphic Hardware

Challenges in simulating large scale models on standard and super computers have

pushed some researchers to explore alternative architectures, exploiting the possi-

bility of building fast and eXcient neurons in silicon [Mead, 1990, Indiveri et al.,

2011] by developing neuromorphic Application SpeciVc Integrated Circuits (ASIC) ,

constituting Very-Large-Scale Integration systems (VLSI).

Such systems can be used to eUect a speciVc neural model in silicon [Indi-

veri et al., 2006] but, while such an approach is very power- and compute- eX-

cient [Hynna and Boahen, 2006], it comes at the price of reconVgurability, since

the neural model or the connectivity [Choi et al., 2004] is hard-wired. While direct

wiring of local neurons is often used, some systems [Merolla et al., 2007, Brüderle

et al., 2011] use an FPGA-like lookup to overcome connectivity limitations, combin-

ing analogue neural simulation with digital packet-based spike communication to

support more general connectivity patterns, albeit at lower density. Another way to

enhance reconVgurability of such hardware is to use an FPGA for storing connectiv-

ity information in a multi-chip analogue SNN system [Vogelstein et al., 2007].

The DARPA SyNAPSE project itself not only simulates on supercomputers, but to

meet power and performance needs has produced a digital neurosynaptic core [Merolla

et al., 2011]. This neuromorphic chip contains 256 leaky integrate-and-Vre neurons

arranged in a 16x16 array and implemented in CMOS hardware. Each neuron has

1,024 synapses interconnected with the neurons through a crossbar, making a total

of 262,144 synapses per core, consuming 45pJ per spike. The chip is able to match

simulations run in software.

After producing a “Spikey” mixed-signal chip [Pfeil et al., 2013] capable of mod-

elling 128,000 synapses, as part of the BrainScaleS project the University of Hei-

delberg has developed the HICANN (High Input Count Analog Neural Network)

chip supporting wafer scale integration for improved connectivity [Schemmel et al.,

2010]. Several neural network models implemented on PyNN have been simulated

on the former architecture [Brüderle et al., 2011], and they establish eUectively a set

of test cases to apply to diUerent neural network platforms. DiUerent wafers can

communicate with a bandwidth up to 44 billion events/second. A full system with

352 HICANN chips can simulate up to 180,000 adaptive exponential IF neurons and
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Figure 3.8: Design drawing of the BrainScaleS Neural Network Hardware Module
from http://brainscales.kip.uni-heidelberg.de/.

40 million 4-bit synapses, equipped with a digital circuit for STDP, running 10,000

faster than real time. A concept design of the system is shown in Figure 3.8.

The Brain in Silicon Project at Stanford University has built Neurogrid [Boahen,

2006, Gao et al., 2012], a platform based on programmable analog chips. Each chip

can model 65,000 two-compartment neurons. Neurogrid uses an AER-based packet

switched network based on a binary tree connecting 16 chips, scaling up to a system

with 1 million neurons running in real time at 1W. With the exception of a subset of

connections that can be arbitrarily routed through an FPGA, interconnectivity pat-

terns are generally local between connected chips; a space decay constant (diUusion

term) can be used in order to adjust the propagation radius of a spike and enable it

to reach more surrounding neurons [Lin et al., 2006].

3.3.3 Field-Programmable Gate Arrays

Developing a custom chip is a time and resource consuming research eUort. Field-

Programmable Gate Arrays (FPGA) can be used as exploratory standalone tools, as

their reconVgurability addresses the low Wexibility of neural models cast into silicon

- a process which is more power eXcient and embeddable, but also more costly and

time consuming if compared to mixed hardware/software codesign [Reyneri, 2003].

http://brainscales.kip.uni-heidelberg.de/
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Figure 3.9: A 16-FPGA Bluehive system, from Moore et al. [2012].

Cassidy et al. [2011] have presented a 1 million neuron FPGA system oriented to real-

time scene analysis. The system is equipped with 2 GSI Technologies 36Mb QDR

SRAMs that hold the mapping and the synaptic weights and eUectively limits the

interconnectivity in the system. FPGAs have proven to be good exploration tools;

however mapping very high connection densities in FPGAs is challenging due to

the circuit-switched architecture, and cost and power consumption make scalability

diXcult [Maguire et al., 2007].

As an alternative approach the University of Cambridge has recently proposed

Bluehive [Moore et al., 2012], a system of 64 FPGAs each capable of simulating 64,000

neurons and 64 million synapses. The system is designed to deliver high-bandwidth

and low latency communication; this is obtained through the use of 12 SATA3 bidi-

rectional links with a bandwidth of 6 Gb/s each - suXcient to guarantee latencies «

1 ms with a lightly loaded network for FPGA-to-FPGA communication. The system

supports models of Izhikevich neurons built with arbitrary topologies. As communi-

cation with memory limits the number of neurons that can be modelled in real-time

on the platform, each FPGA is equipped with 2 DDR2 slots which can hold up to 8

GiB of oU-chip memory with high-access bandwidth peaking at 12.8 GB/s. Such a

memory system gives the advantage that the platform can be reconVgured with a

diUerent network description without resynthesizing the FPGA. An example of a 16

FPGA Bluehive system is presented in Figure 3.9
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3.3.4 Graphics Processing Units

Graphical Processing Units (GPUs) are mass-market devices comprising hundreds of

cores with high memory-access bandwidth; with their inherent parallelism they of-

fer a reasonable alternative for medium-scale neural modelling. GPUs are frequently

used to increase performance in parallel programming; speed-ups from tens to thou-

sands times over standard CPUs have been reported; however some of these studies

lack in methodology and fail to replicate such results on more rigorous tests with

benchmark kernels [Lee et al., 2010], only achieving a 2.5x speedup. Another ma-

jor limiting factor is power, which aUects scalability: a typical GPU consumes ∼200
W/chip, even more than an FPGA [Tse et al., 2009].

Programming a GPU is a non trivial task. The NeMo platform [Fidjeland et al.,

2009] is a GPU-based system able to run large-scale models up to 40,000 Izhikevich

neurons delivering 400 million spikes per second in real-time on an nVidia Tesla

C1060 GPU, consuming 187 W (6 mW/neuron or alternatively 467 nW/spike). The

system can arbitrarily be conVgured to diUerent topologies; Bhuiyan et al. [2010]

present a study of performance improvements using GPUs to run spiking neural net-

works of Izhikevich and Hodgkin-Huxley neurons. They report their limiting factor

for the simulation as the access to memory, as GPUs are primarily suited to high

computation-to-communication-ratio models. However as reported in Moore et al.

[2012], neural network simulation is communication bound. In fact the maximum

available bandwidth for GPUs can be accessed only using ideal memory access pat-

terns. Programming a GPU is a very specialised task, as the architecture needs to be

taken carefully into consideration to use it eXciently. Mapping arbitrary models to

a GPU is then a non-trivial task, due to the requirement of having coalescent mem-

ory data structures to minimize memory access overheads [Brette and Goodman,

2012], and it is therefore a niche for experts. In order to open GPU-based modelling

to a wider community the NeMo project has proposed a method to conVgure and

run arbitrary models on GPUs by interfacing them with a PyNN-inspired C++ inter-

face [Fidjeland et al., 2012], making it accessible to non hardware experts.

3.3.5 Address Event Representation

Address Event Representation (AER - Mahowald [1992]) is a spike-inspired real-time

communication mechanism, where time models itself, as the information is encoded

in the timing of occurrence of the event. Following this abstraction diUerent sensing,
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Figure 3.10: A working CAVIAR prototype asssembled in April 2005 at the CAVIAR
workshop and its schematics, from the project resources website http://www.ini.

uzh.ch/~tobi/caviar/.

processing and actuating spike-based custom systems have been developed.

The use of AER as a standard communication protocol enables such systems to be

interconnected, as done in the EU funded project Context Aware Vision using Image-
based Active Recognition (CAVIAR) project - [Serrano-Gotarredona et al., 2009]. The

project shows the advantages of using event based representation rather than con-

ventional image (frame) based approaches in terms of performance and power con-

sumption by building a visual processing system composed of four custom AER chips

and Vve AER interfaces (see Figure 3.10).

The sensory system comprises a neuromorphic silicon retina [Lichtsteiner et al.,

2008], an asynchronous vision sensor which emits events signalling the location of

contrast changes. The sensor has a very low latency (down to 15 µs) in emitting an

event and a wide dynamic range of operation due to the logarithmic representation

of the intensity.

To support the silicon retina, other custom mixed-signals chips were produced.

A programmable kernel 2-D convolution processing chip was used to detect circular

objects of various size by convolving the events with a circular Vlter. Such convo-

lutional chips [Serrano-Gotarredona et al., 2006] are fast feature extractors which

work on the principle of convolutional networks [LeCun and Bengio, 1995]. The

event Wow produced by the silicon retina is convolved with a kernel representing a

http://www.ini.uzh.ch/~tobi/caviar/
http://www.ini.uzh.ch/~tobi/caviar/
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spatial feature and connected to a feature map. Every neuron in the feature map is

connected to a subgroup of units of the retina - its receptive Veld - and implements

the convolution kernel in the interconnection weights. The feature map represents

the result of this operation, the matching of the receptive Veld with the convolution

kernel. DiUerent features can be extracted in parallel as was done, for example, with

oriented bars in the primary visual cortex [Hubel and Wiesel, 1962].

Feature and spatial competition is implemented in a 2-D winner-take-all (WTA)

object chip composed of integrate-and Vre neurons [Oster et al., 2008], which Vlters

the convolutional signal enhancing contrast. The learning of spatio-temporal activity

patterns, representing the trajectory of an object, is performed by a chip introducing

delay lines to represent diUerent time instants in space and by a learning chip capa-

ble of Hebbian Learning. Finally a tracking system, controlled by the WTA module,

keeps the object in the Veld of view. Overall the system comprises 45k spiking neu-

rons and 5M synapses, is capable of fast recognition and tracking, and in particular

is able to discriminate two distinct shapes rotating on a disk, whose positions can be

extracted at level of the object chip. Such a project presents many of the characteris-

tics that show why the neuromorphic approach is appealing for fast, asynchronous

response time and its low power consumption. The developed ASICs and interfaces

are presented in Figure 3.10.

3.4 SpiNNaker

This section presents SpiNNaker (a contraction of “Spiking Neural Network Archi-

tecture”), a novel architecture developed by the Advanced Processor Technologies

Group at the University of Manchester [Furber et al., 2006b]. This oUers a diUer-

ent sets of trade-oUs if compared to standard computers, VLSI neuromorphic chips,

FPGAs and GPUs. It proposes a specialised architecture for simulating networks of

spiking neurons while maintaining Wexibility in neural model and network topology

speciVcation.

SpiNNaker is a digital multi-core multi-chip architecture, comprising a mixture

of oU-the-shelf, programmable digital components (ARM968 cores) and a bespoke

reconVgurable packet switched network infrastructure. Each SpiNNaker chip con-

tains 18 identical ARM968 processors designed to model various types of neural and

synaptic dynamics, up to ∼1000 neurons per core [Furber and Temple, 2008], each

receiving inputs from 1000 neurons Vring at 10Hz. Chips are interconnected using 6
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asynchronous links in a toroidal mesh that forms the full version of the system, scal-

able to 60,000 chips for a total of more than a million ARM cores. Spikes propagate

in the system, using a multicast routing mechanism, through a packet-switched link

fabric. Synaptic information is kept in an Synchronous Dynamic Random-Access

Memory (SDRAM) chip which can also be used to store simulation results.

The use of many RISC-based processors brings the advantages of reconVgurabil-

ity and power consumption (1W for a single SpiNNaker chip equipped with 18 ARM

cores), while the network infrastructure is designed to overcome the limitations in

communication encountered when scaling up architectures mentioned in the previ-

ous chapter. The strongest points of the SpiNNaker architecture are the low-power

consumption (as energy - not the number of cores - is the main cost in running

large-scale models), the network infrastructure (designed for eXciently multicast-

ing small packets through the system), and its programmability (both in terms of

neural dynamics and network topology). In this sense SpiNNaker hints at supercom-

puter approaches for their programmability, but oUers a much low-power, real-time

oriented system; while not reaching the performance and power consumption typi-

cal of custom analog neuromorphic hardware, it oUers greater reconVgurability and

scalability over such systems.

Exposing such reconVgurability comes at a cost: there must be a process which

maps a neural network model to the system, conVguring the platform. Such a process

needs to be capable of eXciently distributing the load across a SpiNNaker machine,

while also exposing its reconVgurability. Information about the model is distributed

across diUerent components and diUerent chips of the SpiNNaker system. The net-

work model needs to be translated into SpiNNaker data structures that will then

be used to conVgure diUerent parts, such as the Tightly-coupled memory (TCM) of

the ARM cores, the SDRAM and the Multicast Router content-addressable memory

(CAM) of each chip. In the next paragraphs the architecture will be analysed more

in depth, with special regards to the ways to conVgure it.

3.4.1 Architecture

The SpiNNaker System is a programmable, asynchronous, massively-parallel multi-

core system oriented to the simulation of heterogeneous, large-scale, models of spik-

ing neural networks [Furber et al., 2006b]. Each SpiNNaker chip contains 18 ARM968

cores embedded in a programmable, packet based, network on chip [Plana et al.,
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2007], oUering a novel combination of programmability, low-power and communi-

cation performance. Each SpiNNaker chip contains 100 million transistors in a 102

mm2 die, stitch-bonded together with a 128 MByte SDRAM chip in a single BGA

package. Action potentials are encoded as source-based AER [Lazzaro et al., 1993,

Mahowald, 1992] packets, and transmitted through a Multicast (MC) Router capable

of handling one packet per clock cycle if unimpeded. Every core has a local Tightly-

Coupled Memory (TCM - 32KByte for instructions and 64KByte for data), while each

core has access through a dedicated DMA controller to a 1 Gbit SDRAM shared by

the 18 ARM cores within a single chip; this has an aggregate memory bandwidth

of 5.6 Gbit/s. SDRAM is partitioned into regions containing core-speciVc synap-

tic information, eliminating the issue of memory sharing across the system. The

memory system is thus locally to every chip, circumventing the challenges needed

on, e.g. GPUs to access memory [Bhuiyan et al., 2010] and maintain process co-

herency [Nageswaran et al., 2007], while keeping power consumption lower than on

such systems. This makes every node independent, as the execution needs only local

available data, while communication with other nodes is completely asynchronous.

A chip diagram is presented in Figure 3.11.

Each chip can be connected to 6 adjacent neighbours in a toroidal mesh us-

ing bi-directional asynchronous links yielding an aggregate spiking bandwidth of

1.5 Gbit/s [Patterson et al., 2012b], supporting reconVgurable arbitrary connectiv-

ity [Furber et al., 2006a]. An example 4x4 system without wrap-around is presented

in Figure 3.12: each SpiNNaker chip (numbered in red) is connected to its neighbours

through 6 bidirectional asynchronous links (numbered in black).

Vainbrand and Ginosar [2011] have analysed diUerent interconnection strategies

for spike-based communication, and conclude that a MC mesh Network-on-Chip is

the most suitable interconnect architecture for reconVgurable neural network im-

plementations. The custom packet-switching network [Plana et al., 2007] is easily

reconVgurable by changing the MC routing tables and more wire-eXcient than a

circuit-switched architecture [Maguire et al., 2007, Cassidy et al., 2011].

The SpiNNaker System oUers an alternative set of trade-oUs to neuromorphic

chips [Hynna and Boahen, 2006] and programmable, high-performance computing

systems [Ananthanarayanan et al., 2009]. While being outperformed in absolute

power consumption [Indiveri et al., 2006, Merolla et al., 2007] or speed [Schem-

mel et al., 2010] by dedicated analog hardware, and in representational Wexibility
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Figure 3.11: SpiNNaker chip diagram, after [Plana et al., 2007]. Each SpiNNaker chip
contains 18 ARM968 cores embedded in a programmable, packet based, network on
chip. Action potentials are encoded as source-based AER packets, and transmitted
through a Multicast Router capable of handling one packet per clock cycle if unim-
peded. Every core has a local Tightly-Coupled Memory and access through the Sys-
tem NoC to a dedicated DMA controller, used to access a 1 Gbit SDRAMwithin every
chip.

Figure 3.12: Inter-chip connectivity for a 4x4 system without wrap-around. Each
SpiNNaker chip (numbered in red) is connected to its neighbours through 6 bidirec-
tional asynchronous links (numbered in black).
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by general-purpose computers, SpiNNaker oUers a scalable and completely recon-

Vgurable platform for exploration of a wide range of network models, within a low

power budget of 1 W/Chip [Furber and Brown, 2009]. The full system is designed to

contain up to 65,536 chips and more than a million cores.

3.4.2 Hardware ReconVgurability

From a computational and communication point of view each ARM core oUers Wex-

ibility in the complexity and number of neurons modelled and the way they are

integrated in a conVgurable network based on the Multicast Router. The number of

neurons which can be modelled on a single core depends on factors including the

activity of the neurons, the computational power needed to solve the equations de-

scribing the neural dynamics in real time, the number of synapses and the memory

occupancy. The software that allocates neurons on board must facilitate exploring

such trade-oUs to experiment with diUerent conVgurations. As introduced in the

previous section, the SpiNNaker system is an architecture with multiple dimensions

of reconVgurability, in particular:

• Application reconVgurability: individual cores in the system can be con-

Vgured to run diUerent applications, for instance diUerent neural, synaptic or

plasticity kernels, or non-neural applications such as data collection and on-

board analysis. Each application needs to be conVgured with its parameters

(e.g. governing the neural equations). Seamless integration of new applications

into the existing framework is critical to have them as available resources in

system deployment.

• Connection reconVgurability: the MC router system permits arbitrary net-

work topologies to be mapped through a 2-stage routing and lookup system

which is able to route a spike eXciently to many diUerent destination neu-

rons placed anywhere in the system. Spikes are encoded as source-based AER

events: The MC routers manage the Vrst routing stage through the leading

Veld of the routing key (processor coordinates in the system); the lookup phase

deals with the second Veld of the routing key (neuron id within a processor).

The Veld deVnitions themselves are not Vxed but programmable through mask

bits in the router.
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Figure 3.13: Neural Simulation Events. Neural equations are solved during a Neu-
ral Event and a Spike Event is produced if a particular condition is met. Spikes are
encoded as source-based AER packets and are routed to their destination cores by
the MC routers. On the post-synaptic chip synapses are retrieved locally using a
source-based lookup to access SDRAM; synaptic inputs are then injected into the
target neurons (Synaptic Event).

3.4.3 Neural Applications

While the SpiNNaker system is a general purpose scalable parallel machine, its ar-

chitecture is designed for the simulation of large networks of spiking neurons; these

can be modelled eXciently by representing spikes as stereotypical events encoded

in an MC packet. Neural applications (or kernels) are based on a set of APIs [Sharp

et al., 2011] written in C which expose the event-driven nature of the system. From

a user perspective 3 events can be distinguished (Figure 3.13):

• Timer Event (Neural Event): each core contains a programmable timer gen-

erating interrupts at conVgurable time steps, for example at every millisecond.

At each time step, for each neuron, the equations are solved and spikes gener-

ated as required.

• Spike Event (MC packet): a spike is produced if during the neural evaluation
a condition is met (e.g. the membrane potential crosses a threshold).

• DMA Done (Synaptic Event): once a spike arrives at its destinations, DMA

retrieves the relative synaptic information from SDRAM and the input is in-

jected into the post-synaptic neurons.

Figure 3.13 shows how events interact: at each time step a Timer Event is pro-
duced, locally to the chip. Neural equations are solved (according to the neural appli-

cation, parameters and state variables) and a Spike Event is produced if a condition is
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Figure 3.14: Single neuron dynamics. The neuron is injected with 4 pulses of current.

met (e.g. the membrane potential crosses a threshold). Spikes are encoded as source-

based AER packets and are routed to their destination cores by the MC routers. On

the post-synaptic chip synapses are retrieved locally using a source-based lookup to

access SDRAM; synaptic inputs are then injected into the target neurons (Synaptic
Event) according to the synaptic model used [Jin et al., 2010]. Sharp et al. [2011]

describe how to build a neural application on top of the API that abstracts the SpiN-

Naker hardware layer. Some other aspects need to be taken into consideration how-

ever when building an application kernel for SpiNNaker: most notably the absence of

a Floating Point Unit, support for complex mathematical operations on the ARM968

cores and their limited local memory. Figure 3.14 from Rast et al. [2010a] shows the

simulation of a Leaky-Integrate and-Fire neuron compared to the Brian simulator

(more results can be found in Appendix B).

Neural applications use run-time, model-dependent data to conVgure neural dy-

namics and connectivity. These need to be compiled for the system, translating the

model (neurons and synapses with associated parameters) into SpiNNaker data struc-

tures. Such data structures are presented in Figure 3.15 and include the individual

neural parameters (such as the threshold potential for the LIF neuron), the routing

tables to route spikes from source to destinations, the lookup table to retrieve synap-

tic data from memory and the synaptic data itself (weights, delays, type of synapse,

etc.). To load a model on the system the model must Vrst be mapped, allocating

model resources (neurons, synapses) to system resources (TCM, SDRAM, MC Router

CAM); the data structure representing the instantiation of the model on a physical

system must then be compiled and loaded into the machine.
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Figure 3.15: Functional blocks on a section of a SpiNNaker Chip.

Since SpiNNaker cores can be conVgured as desired any synaptic dynamics can be

implemented, within the constraints of the simulation speed (more complex synapses

will take more instructions to process, hence lowering the number of neurons per

core or decreasing the simulation speed). To reconVgure and expand a system of

thousands of chip and up to about a million cores rapidly, data structure creation

needs to be as Wexible and eXcient as possible. The next section presents the ap-

proach proposed to solve this problem.

3.5 Summary

This chapter reviewed the principal approaches to spiking neural simulation, by in-

troducing diUerent software approaches and presenting hardware solutions to run

fast, large-scale models. The richness of instruments and tools replicates the variabil-

ity of modelling approaches which was tentatively captured in the previous chapter.

To overcome memory-access and bandwidth-limitation problems, alternative ar-

chitectures for neural simulation have been proposed. However such approaches are

rarely interoperable, making model sharing hard within the community and nega-

tively impacting the development of the Veld [Crook et al., 2012, Nordlie et al., 2009].

With alternative architectures the problem becomes more evident, as hardware so-

lutions typically have their own Vxed architecture which does not support arbitrary

interconnectivity [Choi et al., 2004] or neural models [Millner et al., 2010], rarely
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supports general description languages and does not have the reconVgurability of

standard computers. However running simulations on supercomputers has its own

challenges in communication [Morrison et al., 2005] and power consumption. While

this vast choice of diUerent, optimised approaches is beneVcial for researchers, it

also constitutes a hurdle to greater collaboration between research groups. There-

fore some standard ways to describe networks have been identiVed; such languages

are a step forward towards enabling scientiVc collaboration.

In this context this chapter has introduced the SpiNNaker system; a novel conVg-

urable digital platform that supports the simulation of large real-time neural network

models with an alternative set of constraints to standard or neuromorphic architec-

tures. The central contribution of this thesis can be found in the next chapter, which

presents an approach to represent models on a digital distributed platform in order

to expose its reconVgurability and ability to meet the standards emerging in the spik-

ing networks community; such an approach will constitute the basis for running on

SpiNNaker all the models presented in this thesis.



Chapter 4

ConVguring a universal neural
system

4.1 Introduction

The previous chapter analysed the proliferation of diUerent tools and approaches for

spiking neural network simulation from a software view and discussed alternative ar-

chitectural approaches. It also presented the SpiNNaker platform with its alternative

set of trade-oUs in power consumption, scalability and reconVgurability if compared

to neural simulations running on oU-the-shelf computing platforms or on ASICs.

SpiNNaker is a digital, programmable platform and the model features, such as

neural model kernel, network topology, neural parameters and synaptic informa-

tions, are all speciVed in software. While the system architecture oUers a low-power,

scalable, fully conVgurable platform for modelling neural networks, its innate paral-

lelism and distribution of information raises challenges regarding application map-

ping, loading and running [Khan et al., 2010, Rast et al., 2010b].

This chapter addresses these challenges by describing an open system to map

models onto the SpiNNaker platform. The approach proposed deVnes the entities

involved in translating a model into compiled data structures to be distributed on a

parallel system, and the algorithms used in the process. The approach separates the

model from the system through an intermediate, generic representation; it also sepa-

rates the data (entities and diUerent representations) from the algorithms performing

the translation from the user interface.

91
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As a result, the reconVgurability of SpiNNaker is exposed in a user-friendly hard-

ware abstraction of the platform through interfaces with domain-speciVc neural lan-

guages, described in the next chapter. The Wexibility of the proposed translation

method is the key feature that enables all the experimental contributions presented

in this work.

4.2 Model to Hardware

So far, how the biological observations of nervous cells can be modelled mathemat-

ically has been examined, and the diUerent approaches to software and hardware

infrastructures that can be introduced to facilitate simulations by oUering high-level

conceptual entities. The SpiNNaker system and its architecture has been presented,

along with neural kernels that need to be conVgured to run simulations. What is

missing is a way to transform a conceptual network model into a simulation running

on parallel hardware. Further, in general, the problem can be seen as a way to encode

a model, map it and allocate it on a physical, parallel system. Conceptual entities are

encoded into neural kernels and need to be conVgured to be allocated; once they are

allocated, they consume a speciVc resource on the system such as the TCM of a core,

SDRAM or connectivity resources; these can be modelled as conceptual entities as

well: the system produces resources that are consumed by model entities.

In this context an approach to decouple the model speciVcation stage and the

generation of data structures representing the model on the SpiNNaker platform is

presented. This approach can be used to conVgure diUerent types of computational

nodes (neurons) connected in an arbitrary way and map them to a dedicated archi-

tecture. The complexity of the problem becomes rapidly intractable if allocation of

single neurons and synapses on the system is attempted, as done by Jin, Galluppi,

Patterson, Rast, Davies, Temple, and Furber [2010]. The input to the system itself is a

list of neural parameters and connections (as shown in Figure 4.1), making even slight

modiVcations to the model onerous, as explicit modiVcations to the list are required.

The system topology and the translation methods are embedded in amonolithic soft-
ware, which uses neurons and synapses as entities for placing and routing, making

scalability diXcult.

Instead, by organising neurons into homogeneous populations, the system main-

tains hierarchical information about the model, using it to drive the allocation on

the system in a simpler way than by considering single neurons. To demonstrate
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Figure 4.1: Example neural and connection input lists. Explicit modiVcations are
required for any change in the network model.

the proposed approach an implementation of the abstraction layer, which translates

a model from diUerent front-ends and allocates it on the SpiNNaker machine, is pre-

sented in the following sections. Results, obtained using this conVguration approach,

are in the following sections. Finally, the chapter ends by discussing the challenges

and potential of such an approach and its overall implications.

4.2.1 The mapping approach

By introducing a translation level (map or system level) from one to the other layer,

the approach eUectively decouples the device from the neural network model level.

This layer needs to reWect the availability of a variety of models (neural, synaptic,

plasticity), their allocation on the system, and the conVguration of the connections

between neurons, in order to transform the high-level representation into an on-

chip representation. It also needs to be able to represent the resources present in the

system, from both a software and hardware point of view. This layer then becomes

central to any model-to-machine interaction: at boot time for conVguring the system,

at runtime for real-time interaction and for data analysis. Therefore it needs to be

eXcient, as the potential of a real-time conVgurable device is wasted if the time or

complexity to conVgure and interact with it becomes unmanageable. It also needs to

scale up to conVgure networks with millions of neurons and billions of connections.

Finally, it must be compatible with diUerent programming languages or modelling

approaches to leverage the hardware reconVgurability fully.
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We represent information at the Population (group of neurons) and Projection
(bundle of single connections between Populations) level, as most of the languages

considered use this representation natively [Davison et al., 2008, Stewart et al., 2009,

Gewaltig and Diesmann, 2007]. This greatly simpliVes the allocation, mapping and

generation processes as against Wattening out the whole network at a neuron level,

using hierarchical information to eUect the translation from the model and place

it on the device. Atomic reconVgurability (single neurons and synapses) is main-

tained, but is pushed to the data Vle generation step in a way which can easily be

ported on-chip and parallelised. The 2-stage routing/lookup system lets the router

deal only with Populations, greatly saving routing entries and lowering the complex-

ity through interval routing [Van Leeuwen, 1987] (where a routing interval can be

considered as either the set of routing keys in a Population or in a core, depending

on the granularity of the mapping algorithm). This greatly simpliVes the routing

problem, as illustrated in Davies et al. [2012b], and reconVgurability both for arbi-

trary connectivity between Populations and for easy integration of new cell types

constituting Populations. To maximise system scalability, all the data of this layer

is represented in SQL format, taking advantage of a “language agnostic" representa-

tion which can easily be accessed from diUerent languages with high performance

database technologies. The following sections explain the structure and function of

this layer by presenting an implementation which is able to translate models from

diUerent front-ends and drive data structure generation.

4.2.2 Partitioning and ConVguration Manager

The function of PACMAN - the PArtitioning and ConVguration MANager, is to trans-

form the high-level representation of a neural network into a physical on-chip im-

plementation. PACMAN is based on a database that holds three representations of

the neural network (Figure4.2), which can be thought as directed graphs:

• Model Level, the network as speciVed in the high-level language (such as

PyNN or Nengo).

• System Level, the network as partitioned into partPopulations that can Vt into
a single computing core, Projections, probes and inputs being split accordingly.

• Device Level, a map distributing the model to system components.
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Model Library 
neural models 

System Library 
system geometry 

and status 

Device Level 
groups 

core map 

System Level 
partPopulations 

partProjections 

Model Level 
Populations 

and Projections 

High Level Interface 
(PyNN, NEST, Nengo, etc.) 

Splitting and Grouping 
using SQL defined rules 

Mapping 
groups to available cores 

using SQL defined constraints 

Binary File Generation 

Figure 4.2: PACMAN structure. PACMAN is based on a database that holds three
representations of the neural network, and a process that transforms a model written
in a domain speciVc neural language such as PyNN or Nengo into binaries that can
be loaded and executed on the system.

Populations

partPopulations

Neurons

Projections

partProjections

Synapses

Model Level

System Level

Device Level

nodes connections

Figure 4.3: Hierarchical Approach. At the Model level the entities considered are
Population of neurons and Projections between them; at the system level Popula-
tions and Projections are split into their corresponding partPopulations and partPro-
jections, grouping together neurons from a single population that can be modelled
on a single ARM core; at the Device level, after the mapping and routing process,
neural and synaptic entities are expanded, Wattening out the hierarchy.
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Figure 4.4: Example network composed of 2 Populations and a Spike Detector inter-
connected

These representations are speciVc for every network instantiated, while theModel
and System Libraries are imported to represent information about the system re-

sources and geometry and the models available. Such translations enable the net-

work to be mapped and deployed on the SpiNNaker system, by generating the bina-

ries needed to conVgure the simulation components and topology, implementing the

hierarchical approach described in Figure 4.3. PACMAN itself (Figure 4.2) is divided

into 4 diUerent steps:

• Splitting, responsible for splitting neural Populations which will not Vt in a

single core (because of memory or computational complexity limitations) into

partPopulations that will Vt in a core.

• Grouping, responsible for collating partPopulations which can be run using

the same application code to Vt more of them onto a single core. The result of

this operation is a group, a collection of neurons which may belong to one or

more partPopulations and that can Vt in a single core.

• Mapping, responsible for allocating neural groups to processors and calculat-

ing routing. At this stage the model is placed onto the device.

• Binary Vle generation, which creates the actual data binaries from the parti-

tioned and mapped network.

Figure 4.4 illustrates an example, showing a common scenario where one exci-

tatory (red circle) and one inhibitory (blue triangle) population of neurons are in-

terconnected [Brette et al., 2007]; a spike detector device is placed to record spike
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activity. PACMAN splits Populations into partPopulations according to their size (in

the example the result is 6 excitatory and 2 inhibitory partPopulations), and Projec-
tions between them into partProjections, maintaining connectivity unaltered. Finally,

it maps partPopulations to physical cores at the Device level.

population neurons/core oUset x y p ID range key range
Excitatory 500 0 0 0 1 0-499 0x0800-0x09F4

Excitatory 500 500 0 0 2 500-999 0x1000-0x11F4

Excitatory 500 1000 0 0 3 1000-1499 0x1800-0x19F4

Excitatory 500 1500 0 0 4 1500-1999 0x2000-0x21F4

Excitatory 500 2000 0 0 5 2000-2499 0x2800-0x29F4

Excitatory 500 2500 0 0 6 2500-2999 0x3000-0x31F4

Inhibitory 500 0 0 0 7 0-499 0x3800-0x39F4

Inhibitory 500 500 0 0 8 500-999 0x4000-0x41F4

Table 4.1: PACMAN Example: an excitatory population of 3000 neurons and an in-
hibitory population of 1000 neurons are interconnected. The excitatory population is
divided into 6 partPopulations of 500 neurons each, while the inhibitory population
is divided into 2 partPopulations of 500 neurons each. The mapping stage assigns ev-
ery partPopulation to a speciVc core, and assigns to each neuron a unique ID within
the core and a unique routing key.

Table 4.1 shows an example, where an excitatory population of 3000 neurons and

an inhibitory population of 1000 neurons are interconnected. The excitatory pop-

ulation is divided into 6 partPopulations of 500 neurons each, while the inhibitory

population is divided into 2 partPopulations of 500 neurons each. The mapping stage

assigns every partPopulation to a speciVc core, and consequently every neuron to a

unique routing key within the routing key space interval assigned to that core, en-

abling the possibility of using interval routing [Van Leeuwen, 1987]. The advantages

of using a hierarchical approach, by using partPopulations and partProjections as

mapping and routing entities, is evident even in a small-scale example such as this.

If we suppose a 10% connection probability between (and within) the populations

we have a total of 3000 + 1000 = 4000 neurons and 4000× 4000× .1 = 1, 600, 000

synapses. The mapping entities are reduced in number from 4K neurons to 8 partPop-

ulations, and the number of entities to be routed from 1.6M synapses to 64 partPro-

jections (as every partPopulation is connected to each other with a 10% probability).

The hierarchical approach introduced in this Chapter makes mapping large-scale

problems such as the ones described in the following Chapters possible.
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4.2.3 Algorithms

Rules for Splitting and Grouping can be deVned in SQL format to represent arbitrary

constraints, which can be easily incorporated in the framework. For example, split-

ting can be done on the basis of the maximum number of a certain neural type a core

can model in real time, while grouping can be applied to neurons using the same

neural/plasticity model and having compatible mapping constraints. This informa-

tion can be passed to the Mapper stage along with model-speciVc data provided by

the high-level generation tool, giving it all the information needed to generate each

portion of the network locally. The Mapping stage can take into account constraints

also deVned in SQL on a Population basis. This makes interaction with external tools

and user-entered constraints simple; if none are speciVed, groups are assigned to

available cores on a Vrst-come Vrst-serve basis. The System Library (Figure 4.2) rep-

resents available resources of the system, holding a representation of the system size,

geometry and functional status so as to map around malfunctioning resources. This

process can also diUerentiate between multiple users accessing separate parts of the

machine independently. When users request resources, PACMAN will grant access

only to chips allocated to them.

Output from the Mapper is a hierarchical physical description of the entire net-

work. At this point the description still contains abstract objects rather than single

neurons or synapses. The mapper organises this information in a way such that bi-

nary Vle generation can be easily parallelised, evaluating the table produced by the

mapper core by core. This is in turn passed to an Object File generator (which for the

moment resides on the Host but could eventually be migrated to an on-SpiNNaker

implementation) which Wattens the network and generates the actual data binaries

for the system. The neural and connectivity structures are computed by retrieving

the translation, size and position of the parameters in the neural structure from the

Model Library. Parameters can be deVned as single values, random distributions or

lists explicitly deVning the parameter values for each neuron or synapse.

4.2.4 Data Representation

The entities involved in the three representations are shown in the entity-relationship

diagram in Figure 4.5. Particularly important entities and relationships are:

• Populations of neurons and Projections between them, as described in the
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model, are the fundamental entities at the Model Level representation. Avail-
able translations methods for neurons and connections are mapped in the

model library. Neural parameters for the instantiated Populations are repre-

sented in the cell_instantiation, which links it to a speciVc neural model (and

translation method) contained in the model library through cell_methods.
Projections, their parameters and plasticity algorithms are linked to their trans-

lation methods in the model library in an analogous way.

• partPopulations and partProjections are a partitioned translation of the

Model View representation, and constitute de System Level representation. Pop-
ulations and Projections are partitioned, accordingly to customizable splitting

and grouping rules, into entities that can be mapped on single processors.

• The processors entity describes the geometry and size of the available SpiN-

Naker system, by listing all the available chips and cores, arranged in an XY
grid of chips with 16 . Malfunctional cores can be reported at this stage, and

are mapped out during the mapping phase.

• Groups of partPopulations, and their corresponding partProjections are

linked to available processors through the map entity. The Device Level rep-
resentation is obtained in this way, and the model is mapped to an instanti-

ation of a SpiNNaker system, and it is possible to use the map to translate

system level entities (e.g. routing keys) to model entities (e.g. a neuron in a

Population) and viceversa.

Instantiation of single neurons and synapses on speciVc chips and cores can occur

now that the model has been placed on the system, using the high-level, hierarchical

Populations and Projections structures contained in the model structure.

4.2.5 Design and implementation choices

The SpiNNaker system is situated in the computational neuroscience ecosystem; this

is steadily producing novel models, approaches, and measurement and data analysis

techniques. The design is an open system which can rapidly accommodate diUerent

types of model, network, neural framework and hardware conVguration available.

PACMAN does this by using a data model which represents the conceptualization of

the entities involved in the process: system resources, modelling resources, and the

three representations of the problem (model, system, device). PACMAN comprises
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Figure 4.5: PACMAN entity-relationship diagram.
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the process which accesses this data, and performs a transformation of the model

between such representations, hence creating a map from the model to the system

and vice versa.

Following the separation of concerns principle [Parnas, 1972] the process has

been modularised, and plug-ins can be inserted between PACMAN’s modules for

application-speciVc requirements, customizing the control Wow of PACMAN. Data is

stored in a database, hence separating it from the control Wow; modules access data

through an abstract interface; this hides the information about data organization,

making exploring diUerent data storage techniques possible. The process can then

be modularised, as shown in the previous section, and new system or modelling re-

sources can rapidly be added as translation methods for standard neural languages.

More importantly, it is possible to alter the control Wow of the process by condition-

ally executing modules, meeting the requirement of Wexibility.

Python has been chosen as the implementation language as many of the tools de-

scribed are written in Python or have Python bindings [Davison et al., 2008, Gewaltig

and Diesmann, 2007, Stewart et al., 2009, Carnevale, 2007, Goodman, 2008, Yger et al.,

2009]. An SQLite database has been chosen to represent the data, and PACMAN in-

teracts with it through a data access object (DAO) module.

4.2.6 Introducing new types

The previous section presented how cells can be divided into populations and placed

on the system according to their connectivity. Within this framework, new neural

[Galluppi et al., 2012c], synaptic [Sharp et al., 2011] and plasticity [Davies et al.,

2012a] models can easily be integrated. All these elements have a representation

in the Model Library which contains the translation methods for those objects into

the SpiNNaker data structure. Using this approach, new models based on the event-

driven API can easily be incorporated in a neural application framework presented

in Sharp et al. [2011], and generated using the approach described. PACMAN can be

used to specify the translations (order, data types, size) of the parameters describing

the neural model. This makes exploration of new models with the machine rapid,

exploiting the ARM cores’ programmability.



102 CHAPTER 4. CONFIGURING A UNIVERSAL NEURAL SYSTEM

4.2.7 Compatible front-ends

Typically, dedicated hardware platforms have their own proprietary front-end, or

oUer compatibility with a single standard one [Brüderle et al., 2011, Nageswaran

et al., 2007] or don’t address compatibility with a standard description language at

all [Bhuiyan et al., 2010, Cassidy et al., 2011]. An intermediate model-to-system

translation layer which eUectively decouples the front-end model language from the

hardware back-end conVguration has been proposed. As a result of this operation it

is possible to plug in diUerent front-ends, analysis or representation tools to the sys-

tem by interfacing with PACMAN, as the process of conVguring and compiling the

data structures is the same regardless of the language used. The Population/Projec-

tion abstraction is already built into many of the front-ends considered, making the

integration seamless. The Model Library stores the neuron, synapse, plasticity and

connector models, containing language-neutral translation methods for the models

available on the system.

• PyNN: as an emerging standard, PyNN is a central tool that can be used to

exchange and validate models and results between diUerent groups or com-

pare neuromorphic hardware [Nageswaran et al., 2007, Brüderle et al., 2011].

The High Level API is implemented as a natural extension of the Population
and Projection objects used in the language. OneToOne, AllToAll, FixedProba-
bility and FromList connectors are supported (which subsumes the remaining

connector types, e.g. DistanceDependent). As discussed in Section 3.2.7, PyNN

supports standard cells and plasticity methods; this is extended to incorpo-

rate the Izhikevich neural model and to test novel plasticity algorithms [Davies

et al., 2012a].

• Nengo: in contrast to the other front-ends considered, Nengo [Stewart et al.,

2009] is speciVc to the Neural Engineering Framework, which computes con-

nection and weights between groups of neurons to achieve the desired neural

computation [Eliasmith and Anderson, 2003]. It demonstrates the Wexibility of

the system, in that it proves possible to translate a model from Nengo to PAC-

MAN and generate the correct structures for the model, by implementing an

encoding and a decoding cell type [Galluppi et al., 2012c].

• NEST: a preliminary NEST plugin based on PyNEST [Eppler et al., 2008] has

been developed which can be used to create populations of neurons and con-

nections between them. Population and Projection concepts are modelled in
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NEST through the Create and Connect commands, while the Device object in
NEST nicely maps to a generic application core doing parallel data collection

and analysis rather than neural simulation.

To analyse the system or the output data collected from it, diUerent types of tool can

also be integrated within the current framework:

• I/O mapping: in addition to being used at model generation time, PACMAN

can be used to translate information Wowing from/to the system at run time,

and also makes the mapping of AER devices [Lazzaro et al., 1993] in the sys-

tem manageable as another system resource. This lets the end user work

exclusively at the model level; PACMAN manages the translation to the De-

vice level when sending/retrieving information to speciVc populations or neu-

rons when, for example, interfacing with data visualisation software [Patterson

et al., 2012a], with a peripheral [Galluppi et al., 2012a] or both [Galluppi et al.,

2012b].

• Network Analysis tools: it is possible to consider Populations and Projec-
tions (or their part versions) as nodes and edges of a graph. A weight can

then be introduced on the edges, representing the connection density between

two populations. It is also possible to represent the Device level in this way,

considering cores and routes between cores as nodes and edges, and using the

connection density metric to optimize the placement of cores on the system,

for example, by clustering the most connected cores or by using existing graph

representation/analysis tools (such as Networkx or GraphML). Those can di-

rectly be interfaced with the Mapping stage at SQL level to improve placement

of the model on the device.

4.3 Results

The approach proposed, and particularly the integration with PyNN (see Section

3.2.7), makes running tests with diUerent sets of models on the platform straightfor-

ward, and, in fact, it has been used to conVgure the three generations of SpiNNaker

system produced to date: the Vrst test chip (containing 2 ARM cores per chip), a 4-

chip board and a 48-node board. The following section describes some basic testing

which has been run to validate both hardware and software infrastructure as they

have been developed and introduced.
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Example Benchmark Network

The network, presented as an example in Section 4.2.1 (Figure 4.4), can be used to

study the balance of excitation and inhibition in a neural network, and is commonly

considered a spiking neural network benchmark [Brette et al., 2007], as it can easily

be scaled up while maintaining the oscillatory network dynamics, presented in Figure

4.6 for a model with 5000 neurons, intact. The model [Vogels and Abbott, 2005]

consists of a network of excitatory and inhibitory neurons, connected via current-

based Vrst order synapses (injected current with instantaneous rise and exponential

decay, IF_curr_exp in PyNN’s terms) with a 2% probability of interconnection. The

network is an example distributed with PyNN1, and it can be executed on diUerent

simulators by changing the arguments to this script (see Appendix C.1.2):

usage = " " " Usage : py thon VAbenchmarks . py < s imu l a t o r > <benchmark >
< s imu l a t o r > i s e i t h e r neuron , n e s t , b r i a n o r pc s im
<benchmark > i s e i t h e r CUBA or COBA . " " "

s imulator_name , benchmark = g e t _ s c r i p t _ a r g s ( 2 , usage )

exec ( " from pyNN.% s impor t ∗ " % s imula tor_name )

The excitatory and inhibitory populations are instantiated with a single command

line each, and their sizes can be derived by desired model size, keeping a 4:1 ratio

between excitatory and inhibitory cells in order to maintain the network dynamics

stable across diUerent network size.

n = 5000 # number o f c e l l s
r _ e i = 4 . 0 # number o f e x c i t a t o r y c e l l s : number o f i n h i b i t o r y c e l l s
n_exc = i n t ( round ( ( n∗ r _ e i / ( 1 + r _ e i ) ) ) ) # number o f e x c i t a t o r y c e l l s
n_inh = n − n_exc # number o f i n h i b i t o r y c e l l s

e x c _ c e l l s = Popu l a t i on ( n_exc , c e l l t y p e , c e l l _pa r ams , l a b e l = " E x c i t a t o r y _ C e l l s " )

i n h _ c e l l s = Popu l a t i on ( n_inh , c e l l t y p e , c e l l _pa r ams , l a b e l = " I n h i b i t o r y _ C e l l s " )

The sets of parameters cell_params for the 2 populations modelled need to be

expressed only once, and these parameters are saved in a dictionary and are applied

to all the neurons in the population:

c e l l t y p e = I F _ cu r r _ e xp

# C e l l p a r ame t e r s
a r ea = 2 0 0 0 0 . # (um^2 )
tau_m = 2 0 . # (ms )

1The full script is available at http://neuralensemble.org/trac/PyNN/wiki/
Examples/VogelsAbbott

http://neuralensemble.org/trac/PyNN/wiki/Examples/VogelsAbbott
http://neuralensemble.org/trac/PyNN/wiki/Examples/VogelsAbbott
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cm = 1 . # ( uF / cm^2 )
g_ l e ak = 5e−5 # ( S / cm^2 )
v_ th r e sh = −50. # (mV)
v _ r e s e t = −60. # (mV)
t _ r e f r a c = 5 . # (ms ) ( c lamped a t v _ r e s e t )
v_mean = −60. # (mV) ’mean ’ membrane p o t e n t i a l , f o r c a l c u l a t i n g CUBA we i g h t s
t au_exc = 5 . # (ms )
t au_ inh = 1 0 . # (ms )

a r ea = a r ea ∗1e−8
cm = cm∗ a r ea ∗1000
Rm = 1e−6/( g_ l e ak ∗ a r ea )

c e l l _ p a r ams = {

’ tau_m ’ : tau_m , ’ tau_syn_E ’ : t au_exc , ’ t a u_ syn_ I ’ : t au_ inh ,

’ v _ r e s t ’ : E_ leak , ’ v _ r e s e t ’ : v _ r e s e t , ’ v _ th r e sh ’ : v_ thresh ,

’cm ’ : cm , ’ t a u _ r e f r a c ’ : t _ r e f r a c , ’ i _ o f f s e t ’ : 0 }

Projections within and between the 2 populations are created with a probabilistic

connector (FixedProbabilityConnector), with each neuron having a 2% probability to

be connected to any other neuron.

# s e t t i n g c o n n e c t i o n pa r ame t e r s

Gexc = 0 . 2 7 # ( nS )
Ginh = 4 . 5 # ( nS )

w_exc = 1e−3∗Gexc ∗ ( E rev_exc − v_mean ) # ( nA ) we i gh t o f e x c i t a t o r y s y n a p s e s
w_inh = 1e−3∗Ginh ∗ ( E rev_ inh − v_mean ) # ( nA )
de l ay = 1 . 0

# d e f i n i n g c o n n e c t o r s
exc_conn = F i x e d P r o b a b i l i t yConn e c t o r ( pconn , we igh t s =w_exc , d e l a y s = de l ay )

inh_conn = F i x e d P r o b a b i l i t yC onn e c t o r ( pconn , we igh t s =w_inh , d e l a y s = de l ay )

# c r e a t i n g P r o j e c t i o n s
c onne c t i on s = { }

c onne c t i on s [ ’ e2e ’ ] = P r o j e c t i o n ( e x c _ c e l l s , e x c _ c e l l s , exc_conn , t a r g e t = ’ e x c i t a t o r y ’ )

c onne c t i on s [ ’ e 2 i ’ ] = P r o j e c t i o n ( e x c _ c e l l s , i n h _ c e l l s , exc_conn , t a r g e t = ’ e x c i t a t o r y ’ )

c onne c t i on s [ ’ i 2 e ’ ] = P r o j e c t i o n ( i n h _ c e l l s , e x c _ c e l l s , inh_conn , t a r g e t = ’ i n h i b i t o r y ’ )

c onne c t i on s [ ’ i 2 i ’ ] = P r o j e c t i o n ( i n h _ c e l l s , i n h _ c e l l s , inh_conn , t a r g e t = ’ i n h i b i t o r y ’ )

Figures 4.8 and 4.9 present the performance of PACMAN with diUerent network

sizes. This network represents a worst-case scenario, as every partPopulation (and

consequently every core in the system) is interconnected and every partProjection is

probabilistic. The overhead of creating partProjections is maximal as they are then

utilised with only 2% connection density.

It is worth noticing that the length of the input script to be compiled does not

change when scaling the network up, conversely to the approach to conVgure the
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Figure 4.6: Example Benchmark Network Dynamics. An excitatory (blue) and an
inhibitory (red) population are interconnected, giving rise to the oscillatory activity
reported in the raster plot.

platform presented in Jin et al. [2010], where every neuron and every synapse needed

to be explicitly parametrised, mapped and routed.

SynVre Chain

SynVre chains are well-studied systems of accurate signal propagation in networks

of spiking neurons [Vogels and Abbott, 2005]; a simpliVed model oUers an ideal map-

ping benchmark, since scaling the number of units while keeping the network dy-

namics intact is a relatively easy task. As the network is scaled up the interconnec-

tion probability is scaled down so as not to change the dynamics [Brüderle et al.,

2011]. Figure 4.7 shows the general connectivity pattern of the synVre chain: each

layer is composed of a population of excitatory neurons (red circles) and a population

of inhibitory neurons (blue triangles); each excitatory population is interconnected

with both the inhibitory and excitatory population in the next layer in a feed-forward

inhibition fashion [Kremkow et al., 2010] to make it stable; the inhibitory popu-

lation suppresses the corresponding excitatory population. Figure 4.7 presents the

results for a run of a synVre chain composed of 60 nodes of 100 excitatory + 25 in-

hibitory neurons each; the Vrst population stimulates the single propagation through

the chain; Vgure 4.9 summarises build times for diUerent nodes/network sizes. The

placing process (splitting, grouping and mapping populations and projections to the
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Figure 4.7: Results from a synVre chain of 60 nodes of 100+25 neurons each, inter-
connected as shown in the left part of the Vgure. Activity is propagated from one
layer to the other, as shown in the raster plot (top right). The mean network Vring
rate is shown in the bottom-right part of the Vgure.

system) is fast for every experiment, with a maximum in SynVre #2 which contains

more nodes and populations.

Randomly Connected Network

The previous two examples have dealt with very diUerent interconnectivity patterns:

in the Vrst, any given neuron has a Vnite probability to connect to any other neuron

in the network. In the second there is a Vxed feed-forward connection topology,

where each population projects to the next level or receives projections from the

inhibitory cells in the same layer.

To study intermediate classes of topologies a network where populations are ran-

domly interconnected is introduced; neurons are injected with random currents as so

to sustain activity. While neural dynamics are of limited interest, this model can be

used to explore diUerent mappings on the system as the number of populations and

their interconnections varies, and it can, for instance, represent how signals from

a group of functionally specialised neural populations are integrated [Tononi et al.,

1998]. This network topology takes advantage of fewer (but denser) partProjections

between cores and can therefore be considered as an intermediate case.

Results from the script presented in Appendix C.1.2 are reported in Figure 4.8

and 4.9 and demonstrate that as the indexing overhead is reduced (few partProjec-

tions) and the probability of synaptic connection is high (50%, making dense Pro-

jections), synapse generation is considerably faster than in the Example Benchmark
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Figure 4.8: 2x2 PACMAN performance analysis. For a given model topology, the
number of synapses created per second is constant, leading to a linear scaling up
of execution time when adding more synapses. The time to build synapses is the
dominant cost in all simulated models.
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Example Network #1

4,000 320,000 8 1.98 0.04 56.43 1.56
Example Network #2

8,000 1,280,000 16 2.13 0.14 215 3.22
Example Network #3

20,000 8,000,000 40 2.46 0.91 1323 9.6

Synfire #1
40 nodes, 250 neurons/node 10,000 292,500 20 2.3 0.14 44.7 3.4

Synfire #2
100 nodes, 250 neurons/node 25,000 742,500 50 2.5 0.37 123.79 8.35

Synfire #3
10 nodes, 2500 neurons/node 25,000 675,000 50 2.36 0.16 198 8.34

Random Network #1
50 populations, 5 projections 12,500 6,262,500 25 2.17 0.17 262.9 4.25

Random Network #2
120 populations, 5 projections 30,000 15,030,000 60 2.29 0.43 643.9 10.29

Random Network #3
50 populations, 10 projections 12,500 14,075,000 25 2.28 0.3 577.7 4.26

Figure 4.9: Time building results for models run on a 2x2 system. The time to build
synapses is the dominant cost in all simulated models. Mapping takes advantages
of the Population/Projection abstraction: in the last network reported in the table,
instead of mapping 12,500 neurons, 25 partPopulations (cores) need to be mapped;
instead of routing 14M synapses, only 50 × 10 = 500 partProjections need to be
routed, as each of the 50 populations is connected randomly to the other 10 popula-
tions.

Network. It is worth noting that, for a given model topology, the number of synapses

created per second is constant (see Figure 4.8), leading to a linear scaling up of exe-

cution time when adding more synapses.

4.4 PACMAN for larger systems

In previous sections an approach for conVguring 2x2 systems has shown that the

limiting factor for large systems is the generation of complex data structures (see

Figure 4.8) that need to be indexed by every core in every chip. The same approach

can be used to test bigger systems without simulating the data structure creation. As

models that maintain their dynamics under scaling have been chosen, the number of

neurons per population can simply be increased to Vll a much larger system. System

size and geometry can easily be modiVed by adding entries in the Model Library
representing new chips: PACMAN will then consider them in the mapping phase as

available resources. To test how the population-based placing approach works on

bigger systems, a network of 16x16 SpiNNaker chips is simulated, assuming 16 cores

available for neural modelling per chip for a total of 4,096 cores available for neural

simulation.
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Figure 4.10: Results from mapping and routing models on a 16x16 system. Scaling
up the system shows further advantages of the mapping approach proposed, based
on the Population/Projection abstraction: in the last network reported in the table,
instead of mapping 2,000,000 neurons, only 4,000 partPopulations (cores) need to be
mapped; instead of routing 9,000,000,000 synapses, only 80,000 partProjections need
to be routed.

Results

Figure 4.10 presents the build times for each PACMAN stage and model speciVcation;

as in the previous section, cores model 500 LIF neurons each. The Splitting stage is

responsible for re-indexing Projections into partProjections, and as their number in-

creases the process takes longer, as does the routing necessary to route such partPro-

jections. This is evident from the last plot: the time to build is directly proportional

to the number of partProjections in the system. As the previous section discusses, the

example benchmark network is worst-case, both for the placing strategy and for the

system itself. It is no surprise then that, regardless of the neuron and synapse count,

this is the model that takes longest to build. A model with fewer, but more dense,

Projections (such as the Random Network) takes less time to build despite having

4× more neurons and twice as many synapses as the Example Network. The Syn-

Vre Chain Network is the fastest to build, as it has fewer Projections/synapses, but

stresses the Grouper, since inhibitory Populations can be grouped in pairs together

in a core. The Mapping stage is trivial in all cases as no constraints are imposed,

and hence it just needs to allocate groups to cores serially. These results show the
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potential of the system with diUerent connectivity patterns, and hint at the ones that

are easier to model on the machine.

4.5 Revisiting PACMAN for 48-chip boards

The results presented in the previous section show the limits of the Vrst implemen-

tation of PACMAN: the component responsible for writing the synapses in SDRAM

is under-performing for a 4-chip board and cannot be scaled up to conVgure the next

generation of SpiNNaker machine, the 48-node board with 864 ARM cores (103 ma-
chine); the splitter is shown to be the critical component when systems are scaled

up. While the neural data creation rate is constant (as expected since the number

of neurons to be modelled by a single core does not change) synaptic data genera-

tion under-performs as the mapping gets more complex and the number of synapses

increases.

The bottleneck of the actual system has been identiVed - the generation of com-

plex synaptic structures that must be indexed by every core in every chip. In order

to meet the challenges imposed by hardware scaling up such components have been

rewritten using the Python numerical library NumPy.

The PACMAN mapping approach makes generation of synapses a parallel pro-

cess, where each chip can independently compute its own SDRAM entries. This is

due to the fact that the model is explicitly mapped and allocated at the end of the

mapping process; sub-portions of the model (partPopulations) have been distributed

on the system and have their own set of contiguous IDs (routing entries). Data

structure creation is an “embarrassingly parallel” problem (each core needs only to

conVgure its local portion of memory independently) and eventually this stage of

PACMAN will be executed directly on the SpiNNaker system itself, where it is possi-

ble to parallelize the process by distributing jobs to diUerent chips.

As a demonstration of the fact that data generation can be parallelised, the execu-

tion of the synapse writer on a host system, generating the SDRAM data structures,

has been parallelised using Python threading Queue objects: the process assigns dif-

ferent chips to each job queue that then interrogates the database to retrieve the

information to compute the data structures. Table 4.2 shows the result of building

some models with the original version of PACMAN and the newly introduced one

with or without parallelization, showing performance improvements from 14×more

than 300×.. The networks (whose parameters and build results can be observed in
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the table) used for testing are:

1. a network used to spatially sub-sample an input receptive Veld of 128×128×2

neurons to a 16 × 16 population, as done by the FPGA in the retinal model

presented in Section 6.2. This network uses a list connector, where every con-

nection needs to be speciVed (which is the common case for all the models

presented in Chapter 6).

2. a network similar the one used to proVle the system in Section 5.2.6, where

single-core populations are randomly interconnected by all-to-all connections.

3. the example network used in Section 4.3, using a Vxed-probability connector.

Table 4.2: Revisiting PACMAN for 48-chip boards. The process of writing synapses
has been optimised and parallelised, showing performance improvements from 14×
more than 300×.

Network 1 Network 2 Network 3
Neurons 33,024 6,000 6,400
Synapses 32,768 720,000 3,200,000
Cores 17 60 64
Chips 2 4 4
PACMAN (original) (sec) 1,015 314 157
Synapse writer (original)
(sec)

993 303 148

PACMAN (new) (sec) 9 31 26
Synapse writer (new) (sec) 3.2 22 21
PACMAN (parallel) (sec) N/A 21 14
Synapse writer (parallel)
(sec)

N/A 13 10

The models have been tested with the original version of PACMAN and compared

to the newly introduced one, with and without parallelization of synapse generation

on 4 diUerent threads.

Finally, the PACMAN process has been tightly integrated in Python, by letting

external users or developers insert plug-ins at each stage of the process; as a con-

sequence control Wow can be altered by conditionally executing such plug-ins. An

example of the PACMAN process used to produce the results presented in the next

chapters is presented in Figure 4.11:
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Figure 4.11: PACMAN execution Wow example. Green boxes represent the front-end
modules, responsible of representing the model; yellow boxes represent the PAC-
MAN modules, responsible of mapping the model onto the system; red boxes repre-
sent the machine-speciVc binaries generation and loading stages; blue boxes repre-
sent plugins that can be conditionally inserted at diUerent stages of the process.

• Neural models are written in PyNN or Nengo (green).

• Partitioning, mapping and routing are performed in the PACMAN stage (yel-

low).

• Data structures are compiled and loaded on the system (red).

• SpeciVc plugins for allocating monitoring instrumentation, mapping robots

and aer sensors etc. can be inserted at diUerent stages of the process (blue).

4.6 An open system

The software infrastructure presented above can be used to conVgure a parallel dig-

ital hardware system for simulation of spiking neural networks by exploiting its
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arbitrary remapping capability, both on a single computational node and at a con-

nectivity level. The approach takes advantage of hierarchical information embedded

in the model at a neural Population level to drive the conVguration of the system in

an eXcient way; this defers the data Vle compilation stage until after resource map-

ping on the system, thus simplifying its parallelization (and hence the generation of

the conVguration data structures on the machine itself). This is a key result of the

methodology chosen: by using a hierarchical approach and considering Populations

and Projections rather than Wattening single neurons and synapses, all the mapping

and placing algorithms have lower complexity, while still maintaining a full low-

level representation at the device level. The complexity of the proposed approach is

proportional to the number of partPopulations (as limited by the number of cores) in

the model. For larger systems, as processors are freely available, grouping should be

applied only if the number of neurons in a population npop is smaller than the num-

ber of neurons ncore that can be modelled by a single core; the introduction of this

stage makes the process more complex, and in the mentioned case resource savings

will not be signiVcant, as only few more cores will be used by bypassing grouping

altogether. The results presented in the previous section show interesting aspects

of the problem and of the approach proposed to solve it. It is evident that, for the

scale of systems considered in this section, the most complex task is compiling the

data structures, especially for synaptic data. Indeed, the allocation and mapping on

a system of this size is trivial, as is routing, since it is done on a core/partPopulation

basis rather than on a single neuron/synapse level.

A key result of this approach is that, at the end of the Mapping stage, information

is already represented in a local, core-based way and can therefore be parallelised and

distribute on the machine itself, greatly speeding up the most critical processes and

exploiting the system architecture in the conVguration phase. At this point each neu-

ron has been allocated to a core, and it is possible to route the network, associating

neurons to routing keys, even though the data structures do not as yet exist. There-

fore, this part of the process can be done on the host machine, and the hierarchical

representation permits the use of interval routing [Van Leeuwen, 1987], simplifying

the problem greatly. Allocating neurons to system resources can be done by sending

the Population parameters to the corresponding core. Each core can then receive

information about the incoming partProjections (parameters, range of routing keys

considered, connectivity pattern) from PACMAN, and initialise, compile, organize
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and index its own synaptic data structures in SDRAM, having all the necessary in-

formation represented locally. Hence the host system needs only to send abstract

information to the machine which self-conVgures by populating its local portion of

memory.

The proposed approach has been integrated in a software infrastructure, called

the SpiNNaker package, a self-contained package comprising all the software tools

needed to run spiking neural simulations on SpiNNaker. The SpiNNaker package

has been the developing platform for many models, including ones which explore

new plasticity methods [Davies et al., 2012a] or cortex micro-circuitry [Sharp et al.,

2012]. Creating new neural applications, which can then be used seamlessly as com-

putational resource nodes, is an approach that greatly exploits the reconVgurabil-

ity of a digital architecture [Sharp et al., 2011] and can be used to introduce new

computational frameworks rapidly for the architecture [Galluppi et al., 2012c]. For

general purpose use, a user will, in future, be able to create his own neural model

specifying dynamical equations as is done with Brian [Goodman, 2008]. As the sys-

tem is completely event-driven, this neural model creation tool will map dynamics

to events [Rast et al., 2010a], making use of code generation techniques [Goodman,

2010] either from the modelling language or from a standard XML format [Goddard

et al., 2001]. Tutorials on how using SpiNNaker for neural network simulations with

the SpiNNaker package have been oUered in Telluride and Capocaccia workshops234,

and the documentation is available on the SpiNNaker website5 and attached in Ap-

pendix C.4.

4.7 Summary

This chapter presented a large parallel system and the hierarchical approach pro-

posed to host neural models on it. The proposed layer eUectively decouples the

model, written in a user-selected front-end language, and the device level, abstract-

ing the hardware from the end user and letting non-hardware experts exploit the re-

conVgurability of the architecture in a seamless way. The proposed method has been

tested by conVguring the current generation of SpiNNaker systems in a variety of

networks with thousands of neurons and millions of synapses. The limitations have

2See Section 1.3.3
3https://capocaccia.ethz.ch/capo/wiki/2013/spinnaker13
4http://neuromorphs.net/nm/wiki/2013/uns13/resources
5http://spinnaker.cs.man.ac.uk/docs/spinnaker_package/

https://capocaccia.ethz.ch/capo/wiki/2013/spinnaker13
http://neuromorphs.net/nm/wiki/2013/uns13/resources
http://spinnaker.cs.man.ac.uk/docs/spinnaker_package/
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been explored and some solutions have been proposed and implemented, discussing

the capabilities of an approach which promises to be able to scale up to conVgure

systems of millions of neurons and thousands of processors.

A system which combines oU-hardware hierarchical decomposition of the ap-

plication with on-board generation of the data binaries is a compelling and eX-

cient model for very large-scale parallel applications that maximises the utilisation

of available hardware resources. This approach is a natural one whenever the ap-

plication, like networks of neurons, has its own internal structure which naturally

suggests the on-hardware mapping. This kind of representation is also commonly

used by standard neural languages, making it the natural choice for guiding resource

allocation on the system. The system has been designed to be open to alternative

control Wows, incorporate model-speciVc changes and new models by the conceptu-

alization of three levels of abstractions, from the model to the machine; the system is

therefore able to incorporate changes and diUerent research frameworks rapidly. The

next chapter will show how the approach can be used to build models using standard

languages and running them on SpiNNaker.



Chapter 5

Mapping DiUerent Front-ends

5.1 Introduction

Having introduced an approach to conVgure a general-purpose neural multi-chip

system, this chapter describes in more detail how emerging standard neural network

modelling languages can be interfaced to the platform. The process of writing and

loading neural network models on the SpiNNaker hardware is described, using ex-

amples from two neural languages and showing results obtained with them.

The Vrst section focuses on the integration of PyNN (see Section 3.2.7), a simulator-

independent language for neural network modelling, with PACMAN, by using the

mapping approach presented in the previous chapter. Integration with PyNN makes

cross-platform veriVcation of the platform possible, and opens up network modelling

on SpiNNaker to non-hardware experts. The rest of the section shows some standard

tests and models simulated with the architecture, including multi-model networks,

and ways to evaluate the performance of the platform by building controlled PyNN

models.

The rest of the chapter describes how the Neural Engineering Framework (see

Section 2.3.3) can be ported onto SpiNNaker, by interfacing it with Nengo, the sim-

ulator used to implement the NEF principles; this lets a user rapidly build complex

neural models without detailed knowledge of the Framework principles or the hard-

ware architecture. Basic models exemplifying NEF principles are simulated on SpiN-

Naker, and results are presented at the end of the section.

117
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5.2 PyNN and PACMAN

Simulations on dedicated hardware are more eXcient than those on general-purpose

computers but, due to the proprietary nature of dedicated hardware, writing a net-

work model and running it becomes a task accessible only to the system creators. A

user can be discouraged by the amount of time required to learn the architecture and

conVguration modalities of a dedicated hardware system [Steinkraus et al., 2005]. To

simplify this process we develop a PyNN [Davison et al., 2008] interface with PAC-

MAN. It abstracts the hardware from the end-user point of view by implementing

a module for writing models in PyNN, a simulator-independent language for build-

ing neural networks described in Section 3.2.7. The system represents an attempt

towards a universal neural network simulation system. The rest of the section de-

scribes the role of the PyNN module in the platform architecture and the implemen-

tation of the interface. Results in PyNN are presented and compared against other

simulators, reproducing single neuron and network dynamics, successfully testing

the hardware and validating the implementation.

5.2.1 The PyNN.SpiNNaker module

For PACMAN to be used to guide the placement of a PyNN model through diUerent

components and diUerent chips of the SpiNNaker system, this needs to be translated

to a Model level PACMAN view. PACMAN is then responsible for translating the

Model view into SpiNNaker data structures that will then be used to conVgure dif-

ferent parts of the system, such as the Tightly-coupled memory (TCM) of the ARM

cores, the SDRAM and the Multicast Router of each chip. The PyNN high-level API

exposes the Populations and Projections natively, making mapping straightforward.

Neural, connector and plasticity models are described in PACMAN’s model library

and can be mapped directly in PyNN by specifying automatic translation methods to

drive the data structure generation process.

The PyNN.SpiNNaker module for PACMAN is also responsible for scripting the

execution of low-level tools, in order to automate and abstract those conVguration

steps from the Vnal user. Those steps include generating extra Vles describing the

system architecture and SpiNNaker speciVc parameters, dynamically calling low

level compilers, interacting with the ethernet interface to load Vles on the chip, start-

ing the simulation, and retrieving simulation results.
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Populations

SpiNNaker is a universal platform for spiking neurons in the sense that no neural

model is embedded in the hardware, but applications that take advantage of the par-

allel distributed architecture and communication infrastructure can be developed, in-

tegrated and switched rapidly. Some neural models are currently available for SpiN-

Naker and can be used through the PyNN interface: Izhikevich [Jin et al., 2008] and

Leaky Integrate-and-Fire (LIF) [Rast et al., 2010a] modules, both current and conduc-

tance based synapses, and various spike source population types.

PACMAN takes a description of the network compiled with PyNN and allocates

Populations to chips, splitting them into partPopulations if needed. Hence, neurons

in populations share a contiguous portion of the routing space and sequential neu-

ral IDs, greatly simplifying allocation and generation of binary structures from the

model description. The neural application along with state variables and parameters

are placed in the TCM of each core, since the neural application continuously needs

them in order to update neuron equations, process new inputs, plasticity etc. PyNN

is used to model neurons as parameter place-holders, since the simulation will run

on-chip. In this way, customization of PyNN with non-standard models can be very

rapid, and PyNN can be used as a conVguration interface for dedicated hardware.

Translation methods can be described in the Model Library, making translation au-

tomatic. An example of the translation of an Izhikevich neuron in SpiNNaker data

structures by this automatic process is given in the portion of the Model Library rel-

ative to the Izhikevich neuron, and reported in Table 5.1, along with the size (type of

variable) and position in the Vnal compiled structure. params is a matrix containing

the parameters for all the neurons in the population; p1 and p2 are the scaling factors,
required to represent Woating point numbers on SpiNNaker. For the details about the

neural model and the transformations needed to represent it on SpiNNaker refer to

Jin et al. [2008].

Projections

Neural connections are conVgured in two diUerent places in the SpiNNaker system.

Routing tables route spikes from pre- to post-synaptic neurons, while synaptic infor-

mation (weight, delay, etc.) is stored in the SDRAM of the post-synaptic neuron(s).

Routing tables and memory maps for each chip are generated by PACMAN, start-

ing from the Model view of Populations and Projections and their parameters as
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Table 5.1: Translation methods for the Izhikevich neuron.

Parameter Name (C) Type Translation method Position

v_init int int(value*p1) 1

u_init int int(params[i][’u_init’]*p1) 2

a short int(params[i][’a’]*params[i][’b’]*p2) 3

b short int(-params[i][’a’]*p2) 4

c short int(params[i][’c’]*p1) 5

d short int(params[i][’d’]*p1) 6

tau_syn_E ushort int(p2/params[i][’tau_syn_E’]) 7

tau_syn_I ushort int(p2/params[i][’tau_syn_I’]) 8

i_oUset int int(params[i][’i_oUset’]*p1) 9

Figure 5.1: (a) Results of a single LIF neuron compared with PyNN.nest and
PyNN.brian (b) Comparison between Vring rates

extracted from the PyNN network. Projections support both standard and custom

plasticity models, through the introduction of a set of dedicated interfaces in PAC-

MAN [Davies et al., 2012a].

5.2.2 LIF Neuron

The implementation of the LIF SpiNNaker module described in Rast et al. [2010a] is

tested by modelling a single LIF neuron. Figure 5.1 displays the results from injecting

it with a DC current source strong enough to make it exceed the threshold potential

(-55 mV) and Vre 3 times in the interval considered

The same script is simulated with two other simulators supported by PyNN (Brian
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Figure 5.2: Conductance-based LIF neuron simulation on SpiNNaker, compared to
Brian (and to Figure 3.6)

and NEST) in order to compare results. As shown in the Vgure, the membrane poten-

tial dynamics are very close in all three simulations; the diUerence in timing after a

spike can be considered to be due to refractory periods not being explicitly modelled

on the SpiNNaker LIF module at the time of the test. This can also be observed in

Figure 5.1 (b), where the activity rate is plotted against the amplitude of the input cur-

rent (normalised to the membrane time constant). The number of spikes generated

per second is comparable between NEST and SpiNNaker, with SpiNNaker producing

spikes more frequently because of the absence of a refractory period in this speciVc

test (see Appendix C.1.3).

A conductance-based LIF module has also been implemented to test the platform

with the standard script provided on the PyNN website; the results, if compared

against Brian, are illustrated in Figure 5.2; this can be compared with Figure 3.6

presented in the PyNN section (3.2.7).

5.2.3 Izhikevich Neuron

Simulation of the Izhikevich neural kernel required an extension of PyNN to support

a new neuron model - Izhikevich’s. A neuron is stimulated with a DC current source,

and spikes are recorded (see Appendix C.1.3 for the full script).
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Figure 5.3: Results of a single neuron compared with Brian

c e l l _ p a r ams _ i z h = { ’ v _ i n i t ’ : −80 .0 , # I n i t i a l V
’ u_ in ’ : 0 , # I n i t i a l U
’ a ’ : 0 . 0 2 ,

’ b ’ : 0 . 2 ,

’ c ’ : −65 ,
’ d ’ : 8 ,

’ i _ o f f s e t ’ : 0 # B i a s c u r r e n t
}

Layer1 = Popu l a t i on ( 1 , # s i z e
I z h i k e v i c h , # Neuron Type
c e l l _ p a r ams_ i zh , # Neuron Pa r ame t e r s
l a b e l = ’ Layer1 ’

) # Lab e l

Layer1 . r e c o r d ( )

Layer1 . r e co rd_v ( )

c s = DCSource ( amp l i t ude =10 , s t a r t =100 , s t op = runt ime )

c s . i n j e c t _ i n t o ( Layer1 ) # DC Cu r r e n t E l e c t r o d e i n p u t s t o a l l n eu r on s i n i 1

Since the simulation runs on hardware, no further speciVcation/modelling is re-

quired at this stage in PyNN, which is used purely as a conVguration tool for lower

level hardware; this approach could easily be extended to any other neural model

running on hardware that relies on parameter conVguration. Since the Izhikevich

neuron is not a standard cell type in PyNN, a Brian script has been used to test the

implementation. Figure 5.3 shows that the SpiNNaker Vxed-point implementation of

the Izhikevich neuron follows the dynamics obtained with Brian. Results of the sim-

ulation show that the membrane potential dynamics of a single Izhikevich regular

spiking neuron [Izhikevich, 2003] injected with a DC source current are similar for

Brian and SpiNNaker, despite the Vxed point implementation used in the SpiNNaker

model, and Vring rates are qualitatively the same.
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(a) Membrane dynamics (b) Raster plot

(c) Second test network

Figure 5.4: (a and b) The Vrst layer serves as an input layer using Izhikevich Intrinsic
Bursting neurons. The second layer is an LIF layer, conVgured so that neurons will
emit spikes only if stimulated over a certain frequency. Each Izhikevich neuron emits
a burst of 3 spikes, then spikes regularly; in turn each LIF neuron thus spikes only
when it receives the initial burst from the lower level population (c) The Izhikevich
neurons are Chattering types that generate a burst “clock" to gate input from the
Layer 1 LIF neurons, so that the Layer 3 LIF neurons will only Vre when an input
from Layer 1 is coincident with the burst window.
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5.2.4 Multimodel simulations

This section demonstrates how SpiNNaker can run simulation concurrently involv-

ing diUerent neural models [Rast et al., 2011b], something which is very hard to do

on other dedicated platforms such as neuromorphic chips, FPGAs and GPUs, which

are typically optimised to run a single neural model. Networks of a few neurons

which implement a mixed-model neural network exhibiting complex dynamics are

demonstrated.

The Vrst simulated network uses two populations, containing respectively LIF

neurons and Izhikevich neurons. The network comprises two layers of 15 neu-

rons each, linked in a one-to-one mapping with the corresponding neuron in the

other layer. The Vrst layer serves as an input layer using Izhikevich Intrinsic Burst-

ing neurons. The second layer is an LIF layer, conVgured so that neurons will

emit spikes only if stimulated over a certain frequency. A modulated stimulus of

20 mV is injected into each input neuron. Each Izhikevich neuron emits a burst

of 3 spikes, then spikes regularly (Figure 5.4(a)). In turn each LIF neuron thus

spikes only when it receives the initial burst from the lower level population (Fig-

ure 5.4(b)). Parameters for the simulated test network are as follows: LIF neurons

τm = 32ms, Vr = −65mV, Vs = −75mV,a = 0.02, b = 0.2, c = -65 mV, neu-

rons τm = 16ms, Vr = −49mV, Vs = −70mV, Vt = −50mV ; Izhikevich neurons,

a = 0.01, b = 0.2, c = −50mV, d = 5; LIF output neurons τm = 16ms, Vr =

−65mV, Vs = −75mV, Vt = −55mV .

Populations of N neurons can be instantiated and connected with OneToOneCon-
nectors in PyNN as follows (see Appendix C.1.3 for the full script):

# c e l l _ p a r am s w i l l be p a s s e d t o t h e c o n s t r u c t o r o f t h e P o p u l a t i o n O b j e c t
c e l l _ p a r am s _ i z k = { ’ v _ i n i t ’ : −65 .0 , # I n i t i a l V

’ u_ in ’ : 0 , # I n i t i a l U
’ a ’ : 0 . 0 2 ,

’ b ’ : 0 . 2 ,

’ c ’ : −65 ,
’ d ’ : 1 ,

’ i _ o f f s e t ’ : 0 # B i a s c u r r e n t
}

c e l l _ p a r am s _ l i f = { ’ tau_m ’ : 32 , # Membrane t ime c o n s t a n t
’ v _ r e s t ’ : −65 .00 , # R e s t P o t e n t i a l
’ v _ r e s e t ’ : −75 .00 , # R e s e t P o t e n t i a l
’ v _ th r e sh ’ : −55 .00 , # Th r e s h o l d
’ v _ i n i t ’ : −70 .00 , # I n i t i a l p o t e n t i a l
’ i _ o f f s e t ’ : 0 # B i a s c u r r e n t
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LIF – Input

Izhikevich – Clock

LIF – Integrator

(a) Network structure
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(b) Rate plot of the multimodel network, No top-down in-
Wuence
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(c) With top-down inWuence

Figure 5.5: Multimodel network of neural assemblies: large-scale structure and rate
plots: (a) The network comprises 3 layers: the LIF layer is the 2D structure of neural
assemblies. The Izhikevich layer and the LIF integrator layer have the same mi-
croscale structure as the networks presented above, but they are also organised into
a 2D structure, where each neuron maps a corresponding assembly coordinate. With
no top-down connection; (b) the activity of four stimulated assemblies is comparable,
while with top-down connections (c) the primed assembly is the most active one.
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} # t h ey can be d i f f e r e n t w i t h i n / b e tween p o p u l a t i o n s

Layer1 = Popu l a t i on (N , # s i z e
I z h i k e v i c h , # Neuron Type
c e l l _ p a r ams_ i z k , # Neuron Pa r ame t e r s
l a b e l = " Layer1 " ) # Lab e l

Layer2 = Popu l a t i on (N , # s i z e
I F _ cu r r_exp , # Neuron Type
c e l l _ p a r am s _ l i f , # Neuron Pa r ame t e r s
l a b e l = " Layer2 " ) # Lab e l

# Randomize I n i t i a l membrane p o t e n t i a l
un i f o rmD i s t r = RandomDis t r i bu t i on ( ’ uni form ’ , [−80 ,−60] , rng )

Layer1 . r andomIn i t ( un i f o rmD i s t r )

Layer2 . r andomIn i t ( un i f o rmD i s t r )

print " c onnec t i ng "

# C r e a t e s f e e d f o rw a r d p r o j e c t i o nm s wi th random de l a y
d e l a yD i s t r = RandomDis t r i bu t i on ( ’ uni form ’ , [ 1 , 1 0 ] , rng )

c1_2 = P r o j e c t i o n ( Layer1 , Layer2 , OneToOneConnector ( ) , t a r g e t = ’ e x c i t a t o r y ’ , rng=rng )

c1_2 . s e tD e l a y s ( 1 )

c1_2 . s e tWe igh t s (w/ 2 ) # We igh t s

c2_3 = P r o j e c t i o n ( Layer2 , Layer1 , OneToOneConnector ( ) , t a r g e t = ’ i n h i b i t o r y ’ , rng=rng )

c2_3 . s e tD e l a y s ( 1 )

c2_3 . s e tWe igh t s (−w/ 2 ) # We igh t s

In the second network, we conVgured 3 layers of 15 LIF, Izhikevich and LIF neu-

rons respectively, similarly connected in a 1-1-1 mapping. Thus a single triplet of

neurons can be considered as a modular element or “unit", much like the pairs of

neurons in the previous network. The Izhikevich neurons are Chattering types that

generate a burst “clock" to gate input from the Layer 1 LIF neurons, so that the Layer

3 LIF neurons will only Vre when an input from Layer 1 is coincident with the burst

window (Figure 5.4(c)). This network demonstrates the important ability to gener-

ate control signal-like inputs to integrating layers, and is easily scalable by using a

unit as a modular “drop-in" component which can be instantiated in building-block

fashion.

In the Vnal example, we combine results obtained in the previous experiments

into a scalable mixed LIF/Izhikevich-neuron model. The network comprises 3 layers:

the LIF layer is the 2D structure of neural assemblies. The Izhikevich layer and the

LIF integrator layer have the same microscale structure as the networks presented

above, but they are also organised into a 2D structure, where each neuron maps a

corresponding assembly coordinate (Figure 5.5(a)).
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Every assembly is a Python class composed of a layer of excitatory neurons and

a layer of inhibitory neurons. The neural type and their parameters, number of

neurons and connections between each assembly layer (intra-assembly connections)

are dynamically passed to the assembly’s constructor as follows:

Layer creation:

s e l f . p_exc = Popu l a t i on ( n_exc , neuron_model , exc_params , l a b e l = ’%s_exc ’ %

a s s emb l y _ l a b e l )

s e l f . p_ inh = Popu l a t i on ( n_inh , neuron_model , inh_params , l a b e l = ’%s_ inh ’ %

a s s emb l y _ l a b e l )

Connection initialiser:

s e l f . exc_exc_conn = P r o j e c t i o n ( s e l f . p_exc , s e l f . p_exc ,

exc_exc_connec to r ,

t a r g e t = ’ e x c i t a t o r y ’ ,

l a b e l = ’%s_exc_exc_conn ’ % ( a s s emb l y _ l a b e l )

)

s e l f . exc_ inh_conn = P r o j e c t i o n ( s e l f . p_exc , s e l f . p_inh ,

exc_ inh_connec to r ,

t a r g e t = ’ e x c i t a t o r y ’ ,

l a b e l = ’%s_exc_ inh_conn ’ % ( a s s emb l y _ l a b e l )

)

s e l f . exc_ inh_conn = P r o j e c t i o n ( s e l f . p_inh , s e l f . p_exc ,

i nh_exc_connec to r ,

t a r g e t = ’ i n h i b i t o r y ’ ,

l a b e l = ’%s_ inh_exc_conn ’ % ( a s s emb l y _ l a b e l )

)

Each assembly consists of an excitatory layer of 2 LIF neurons and an inhibitory

layer of 2 LIF neurons, using the above parameters and constructed as follows.

assembly ( 2 , 2 , c e l l _pa r ams , c e l l _pa r ams ,

ex c_exc_connec t o r =A l lToA l lConnec to r ( we igh t s =w/ n_exc , d e l a y s = d e l a yD i s t r ,

a l l ow _ s e l f _ c o n n e c t i o n s = F a l s e ) ,

e x c_ inh_connec t o r =A l lToA l lConnec to r ( we igh t s =20 , d e l a y s =2 ) ,

i nh_exc_ connec t o r =A l lToA l lConnec to r ( we igh t s =−20 , d e l a y s =2 ) ,

a s s emb l y _ l a b e l = ’A_%d_%d ’ % ( x , y ) )

)

where x/y speciVes the coordinates of the assembly in the 2D mesh.

Assemblies are organised in a 10x10 2Dmesh (for a total of 10x10x4=400 neurons)

and are interconnected using a distance base algorithm. An assembly connects to all

surrounding assemblies within a distance radius of 3. Excitatory cells of the selected
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assembly receive a step_current_source input, using a construct such as the one be-

low, which speciVes an injected current of 2mA into the assembly at coordinates (4,7)

starting at millisecond 1 of the simulation.

c u r r e n t _ s o u r c e = S t epCur r en t Sou r c e ( [ 0 , 1 ] , # Time
[ 0 , 2 ] ) # Ampl i tude

c e l l s = [ ]

for i in p [ 4 ] [ 7 ] . p_exc :

c e l l s . append ( i )

c u r r e n t _ s o u r c e . i n j e c t _ i n t o ( c e l l s )

Results from the experiments with no top-down inWuence are Vrst reproduced.

The integrator neuron Vres only if there is coincident activity in the input LIF layer

and in the Izhikevich “clock" layer. Then a top-down connection is added from the

Izhikevich layer back to the LIF input layer which boosts (primes) and synchronizes

the activity of the assembly with the corresponding neuron in the clock layer (Fig-

ure 5.6). The rate plots clearly show the priming eUect: with no top-down connec-

tion (Figure 5.5(b)) the activity of four stimulated assemblies is comparable, while

with top-down connections (Figure 5.5(c)) the primed assembly is the most active

one. This network demonstrates the scalability of a SpiNNaker model at assembly,

map dimension and hierarchical levels, along with the advantages of having mixed

model networks, such as SpiNNaker is able to support in hardware.

The script describing the network can be found in Appendix C.1.3.

5.2.5 Oscillatory Network Dynamics

To test network dynamics a network, inspired by the fourth benchmark proposed in

Brette et al. [2007], was implemented using a PyNN script from ModelDB [Migliore

et al., 2003] to verify consistency of results and compare them between diUerent sim-

ulators. The network is modelled as 500 randomly interconnected excitatory and

inhibitory (ratio 4:1) LIF neurons which interact through voltage deWections [Vogels

and Abbott, 2005]. To compare results against other simulators synaptic time con-

stants were set to be very short, so as to mimic the voltage-jump synapses used by

the SpiNNaker LIF module at the time of the test. We compared the results of the

simulation on SpiNNaker with the one produced by the pyNN.nest module.

n_exc = 400 # number o f e x c i t a t o r y c e l l s
n_inh = 100 # number o f i n h i b i t o r y c e l l s
c e l l _ p a r ams = {
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(a) No top-down signal

(b) With top-down signal

Figure 5.6: Activation of a selected triplet of neurons in the mixed-model neural as-
sembly network, with and without top-down priming. With no top-down priming,
the integrator layer Vres (as seen by the membrane potential recovery downstroke)
only intermittently due to random correlations of the Izhikevich and LIF neuron ac-
tivity. With top-down priming, the integrator layer Vres with strong synchrony to
the Izhikevich clock layer.
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’ tau_m ’ : 32 , ’cm ’ : 1 , ’ v _ i n i t ’ : −60 ,
’ v _ r e s t ’ : −49 , ’ v _ r e s e t ’ : −60 , ’ v _ th r e sh ’ : −50 ,
’ tau_syn_E ’ : 1 , ’ t a u_ syn_ I ’ : 1 , ’ t a u _ r e f r a c ’ : 1

Neurons are modelled as above, interconnected with a 2% probability. Other net-

work parameters are inspired by Brette et al. [2007] to compare results: weights 0.25

mV and -2.25 for excitatory and inhibitory synapses, connection delay randomly dis-

tributed in the interval [1,14] ms.

The results of the simulation are presented in Figure 5.7. As neurons cross the

threshold potential they start spiking, building a background activity through ran-

dom connections. A current is injected into a subset of the population to increase its

activity at 1/3 of the simulation time and double it at 2/3 (observed as the patch of

neurons with high activity in Vgure). Despite choosing a standard cell in PyNN (ex-

ponential current-based LIF neuron with Vrst-order synapse kinetics) whose synapse

dynamics SpiNNaker did not model at the time of the test, a comparison of raster

plots and mean population frequency rates using the PyNN.nest module shows that

the qualitative behaviour of the network is maintained; the same number of spikes

are produced (the diUerence is in the order of 2%) and the inter-spike interval dis-

tributions have their peaks close (48-50 ms) with their distance comparable to the 1

ms sampling rate, although the SpiNNaker distribution has a wider spread that than

obtained with NEST.

5.2.6 ProVling the platform

The tools presented in this and in the previous chapters have been used to proVle

all the generations of SpiNNaker boards and SpiNNaker chips produced to date. The

SpiNNaker system design is carefully balanced to oUer a mixture of computation,

memory access and communication performance. The architecture’s target is the

simulation of a billion neurons and a trillion synapses with a Vring rate of 10 Hz,

over a million cores. At an individual core level, this corresponds to 1000 neurons,

each receiving 1000 synapses Vring at 10 Hz per core. Under the assumption that

the platform is synaptically bound and the rest of the processes (including neural

updates) are second order, the maximum number of synaptic events (connections

activated) cmax per second per core is:

cmax = 1000× 1000× 10Hz = 10M/s
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Figure 5.7: Simulation with 500 neurons: comparison between NEST and SpiNNaker.
(a) Raster Plot for the entire simulation (b) Inter-Spike-Interval (ISI) Distribution (c)
Mean activity rate

or, more generally,

cmax = n× s× fr = 10M/s (5.1)

where n is the number of neurons, s is the number of synapses each neuron receives

and fr is the mean Vring rate.

Considering that each synapse is represented by 4 bytes in SDRAM, the band-

width requirement can be translated in terms of SDRAM bandwidth (640 MByte/s

shared by 16 cores per chip):

4× 16× cmax < 640MByte/s

The bandwidth eUectively measured on SpiNNaker chips is reported in Patterson

et al. [2012b], and memory requests can run concurrently to computing cores. On

the computational side this corresponds to a core running at 200 MHz, processing 10

M connections/sec if each connection takes less than 20 instructions to be evaluated;

this disregards the time needed to update the neural equations and the infrastructural

costs to schedule events.
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Figure 5.8: How many neurons can be modelled on a single core of a SpiNNaker
chip? Theoretical model.

If these are assumed to be the limiting factors for the platform, it is possible to

calculate the number of neurons each core can model by introducing 2 variables: the

number of synapses per neuron and the (incoming) Vring rate. These quantities must

obey the following relation:

n× s× fr = cmax

or

n =
cmax

(s× fr)
where cmax is the maximum number of connections, calculated from the SDRAM

bandwidth above. The relation between these two variables can be plotted, hence

determining the maximum number of neurons (see Figure 5.8).

In its original implementation PACMAN was only aware of neural types when

splitting populations into partPopulations. Since the number of synapses per neuron

is known, and the Vring rate is roughly estimable beforehand when a model is de-

signed, this information can be used by the splitter in PACMAN to determine how to

split populations and balance load across cores. The relative attributes for the Popu-

lation object have then been introduced, letting PACMAN split diUerent Populations

with diUerent criteria, taking into consideration the estimated number of synapses
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that will be activated in a second.

Test Chip Results

The following two models have been tested on a PCB equipped with 4 SpiNNaker

test chips interconnected as shown in Figure 5.9 [Rast et al., 2011c]. Each chip is

connected with the others through one of the 6 available physical links (black lines

in the Vgure). Each test chip is equipped with two cores, one for “monitor” function-

alities and another for simulating up to 1000 spiking neurons. The tests investigate

the behaviour of a real multi-chip SpiNNaker system modelling networks of spiking

neurons; for these tests LIF neurons were used Rast et al. [2010a]. To test a scalable

network and verify network dynamic with bursts of activity, a synchronous synVre

chain model [Abeles, 1982] was implemented. A synVre chain is a feed forward neu-

ral network comprising groups of neurons or ”pools", where every pool is connected

to the next one in the hierarchy. This mechanism is used to propagate bursts of activ-

ity through the network. Four pools comprising 250 neurons each for each chip were

simulated in a 4 chip testing environment, for a total of 16 pools and 4000 neurons,

as shown in Figure 5.9.

Neuron pools are enumerated from 1 to 16, and every neuron in a pool is con-

nected to the corresponding neuron of the subsequent pool.

The PyNN code instantiating and connecting the populations can be written in a

complete parametric way (and hence be scaled to a diUerent number of pools trans-

parently) as follows:

for i in range ( p oo l s _p e r _ c o r e ∗xChips∗yChips ) :
p o pu l a t i o n s . append ( Popu l a t i on ( p oo l _ s i z e ,

I F_cu r r_exp ,

c e l l _pa r ams ,

l a b e l = ’ pop_%d ’ % i )

)

p o pu l a t i o n s [ i ] . r andomIn i t ( un i f o rmD i s t r )

for i in range ( p oo l s _p e r _ c o r e ∗xChips∗yChips−1) :
c onne c t i on s . append ( P r o j e c t i o n ( p opu l a t i o n s [ i ] ,

p o pu l a t i o n s [ i +1 ] ,

OneToOneConnector ( we igh t s = fwd_weights ,

d e l a y s = d e l a yD i s t r ) ,

t a r g e t = ’ e x c i t a t o r y ’ ,

l a b e l = ’ pop_%d−>pop_%d ’ % ( i , i +1 )

)

)
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Figure 5.9: SynVre chain test on a test chip board: (a) Interconnection on a 4 chip
board with no wrap-around. Black segments identify bidirectional physical links
(only 5 links are available on a board with 4 chips and no wrap-around), red arrows
identify routes. Neuron pools are enumerated from 1 to 16, and every neuron in
a pool is connected to the corresponding neuron of the subsequent pool. Neural
connections are depicted by the blue curved arrows; the last pool is connected back
to the Vrst providing inhibitory feedback. (b) Simulation metrics.
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Figure 5.10: Raster Plot from the simulation of the synVre chain on 4 chips. Activity
is propagated in a feed forward way in the neural pools simulated on the 4 test chips
and it is shown in the raster plot on the right part of the Vgure, with diUerent colours
identifying diUerent chips. The Vring rate, averaged per chip, is reported on the left
side.

Neural connections are depicted by the blue curved arrows; the last pool is con-

nected back to the Vrst providing inhibitory feedback. Weights are set so that a sin-

gle spike received will make the neuron Vre, hence propagating the activity through

the network. These connections are virtual: they exist only at a model level; at

the physical level they are transformed into routes through the black physical links.

The pre-synaptic and post-synaptic neurons may reside on diUerent chips (e.g. con-

nections from pool #4 and pool #5) or locally if they reside on the same chip (e.g.

connections from pool #1 to pool #2). Red straight arrows indicate physical routes.

35 random neurons were simulated in the Vrst population by injecting them with a

current strong enough to make them Vre at 20 Hz. The activity was then propagated,

with random delays in the range 1-8 ms, through the other pools.

Results of the simulation are showed in Figure 5.10, where the raster plots and

the mean activity Vring rate are divided by chip. The Vring rate is averaged across

all neurons in the chip (1000), and is hence a population Vring rate. Due to the

nature of the network structure the activity is bursting, oscillating with peaks of 7

Hz (activity averaged on the whole population with a sliding window of 10 ms). The
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spike activity and MC packet count for each chip are shown in Figure 5.9(b). During

the simulation every pool emits 756 spikes, for a total of 3024 spikes per chip. Since

3/4 of the connections are local, 3/4 of the MC packets produced will be consumed

locally (local to local packets), while 1/4 will be routed to the next chip. Every chip

will then send (local to external) and receive (external to local) 756 MC packets. Chip

0, 0 will also route packets from pool #8 (chip 0, 1) to pool #9 (chip 1,0), explaining

the value of external to external (transit) packets in the table for chip 0, 0.

Full chip results, 4-chip board

In order to show the Wexibility in programming SpiNNaker and how diUerent models

perform on it, a controlled neuron model based on Sharp et al. [2011] has been im-

plemented, where events (rather than neural quantities) are experimental variables.

This approach allows control of the dynamics of the experiment and evaluation of

the results in a precise way: in particular, the number of packets emitted by every

core and the time to process a neural (timer) event can be varied, and the number

of spikes and synaptic events can be measured. The neural model is integrated in

the mapping approach which conVgures the number of neurons, synapses and the

topology of the network.

Results from 3 experiments, one with many simple neurons Vring at low Vring

rates and a two with more complex neurons and topology and with higher popula-

tion Vring rates are shown in Table 5.2.6. In the simple model each neuron takes 5

instructions per ms to update, while in the complex model it takes 15 instructions.

All experiments run in real time.

Experiment 1 (Figure 5.11): 16 populations of 100 neurons are interconnected
randomly so that all neurons from a population receive input from all neurons of 5

diUerent populations for a total of 800K synapses (16 x 100 x 100 x 5). Each population

emits 10 spikes per ms, corresponding to a 100Hz mean population Vring rate over

a population of 100 neurons, producing 160K spikes/s (MC packets/s) (10 spikes x 16

populations x 1000 ms) and 16M synaptic events/s. Each population is mapped to a

core for a total of 16 cores in a single SpiNNaker chip.

Experiment 2: the model is scaled up to a 4 chip simulation by increasing the

number of populations modelled to 64. This model produces a total of 640K spikes/s

and 320M synaptic events/s (10 spikes x 64 populations x 1000 ms) running on a

prototype SpiNNaker 4-chip board.

Experiment 3 (Figure 5.12): 16 populations of 1000 neurons are interconnected
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Figure 5.11: Experiment 1: 16 populations of a 100 complex neurons each Vring at
100 Hz are fully interconnected to 5 other random populations.

Figure 5.12: Experiment 2: 16 populations of a 1000 simple neurons each Vring at 1
Hz are fully interconnected to 1 other random population.

randomly so that all neurons in one population receive input from all neurons of

another population, a total of 16M synapses. Each population emits 4 spikes per

ms, corresponding to a 4Hz mean population Vring rate over a population of 1000

neurons, producing 64K spikes/s (MC packets/s) (4 spikes x 16 populations x 1000 ms)

and 64M synaptic events/s ( 256 MB/s transferred from SDRAM). Each population is

mapped to a core, for a total of 16 cores in a single SpiNNaker chip.

The experiment proposed analyses the performance of the initial implementa-

tion of the system, while exposing its programmability by modelling networks with

diUerent characteristics, regimes, dynamics and topologies.

If the results for experiment 1 are compared with the theoretical design limit

of 10 M connections/s, than it is evident that overall the simulation exploits 40%
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Table 5.2: ProVling results for 4-chip boards

Exp. 1 Exp. 2 Exp. 3
Neurons per population 1,000 100 100
Populations 16 16 64
Incoming projections/pop. 1 5 5
Synapses/population 106 50,000 50,000
Total number of neurons 16,000 1,600 6,400
Total number of synapses 16× 106 800,000 3.2× 106

Spikes/population/s 4,000 10,000 10,000
Total spikes/s 64,000 160,000 640,000
Total connections/s 64× 106 80× 106 320× 106

Mapping
Chips used 1 1 4
Cores used 16 16 64

Processing and communications per core
Neurons 1,000 100 100
Neuron updates/s 106 100,000 100,000
Instructions/neuron update 33 93 93
(Neuron up.) instructions/s 33× 106 9.3× 106 9.3× 106

Synapses 106 50,000 50,000
Connections/s 4× 106 5× 106 5× 106

Instructions/connection 6 6 6
(Connection) instructions/s 24× 106 30× 106 30× 106

Total instructions/s 57× 106 39.3× 106 39.3× 106

Packets processed/s 4,000 50,000 50,000
Energy eXciency

Power/neuron (nJ/ms) 12 44 45
Energy/connection (nJ) 4 4 4

of the maximum performance out of the machine; it should be noted however that

this ideal limit does not take into consideration infrastructural costs (of running the

API) and neural updates, but only a budget of 20 assembly instructions for activated

connections as a Vrst order approximation.

Power consumption has also been measured during the experiments above, in

order to estimate the amount of energy consumed by each component of the system:

the infrastructure (idle power, API), the energy/neuron/ms and the energy/connec-

tion. As the neural model used to proVle does not have any membrane dynamics (or,
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Figure 5.13: Number of neurons that can be modelled by each core, measured limit.

in other words, is not eUectively simulating any neural equation) it is straightforward

to separate the energy/neuron/ms from the synaptic one, Vrst by running the simula-

tion with all callbacks and events running, and then disabling the sending of packets,

hence cutting out all spike-relate processing (communication of a spike, lookup in

SDRAM, retrieval and computation of synapses). The power used by synaptic events

is therefore the diUerential power between these two simulations. Results for neuron

power consumption reWect the complexity of the diUerent models in experiment 1

with respect to experiments 2 & 3, while the connection energy stays constant as the

number of instructions per synapse does not change.

48-node board

As new SpiNNaker machines become available, it is important to have software

which readily scales up and makes running preliminary tests possible, to catch early

problems and have the chance to improve the infrastructure for larger SpiNNaker

machines. To test the 48-node board (Figure 5.14), some models with known dy-

namics (such as the synVre-like model presented in the previous chapter) have been

executed on the board. This section presents a model where populations (sised as so

to Vt a single core) are self connected with an all-to-all connectivity pattern (with n

neurons in a population having therefore n2 synapses). Populations (cores) are there-

fore run independently, as shown by the diagram of interconnections in a single chip

presented in Figure 5.15. Weights are set to 0 so that they are processed regularly by
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Figure 5.14: 48-node SpiNNaker board (103 Machine, 864 cores).

the software on SpiNNaker, but without impacting the neural simulation dynamics.

To check that all synaptic processing is taking place in real time, at the beginning of

every timer event the number of packets sent (received) is checked against the num-

ber of DMA requests processed: as every core is sending packets only to itself, such

numbers will match if processing is done in real time. The network comprises LIF

neurons injected with a bias current; with the weights set to 0 the network activity

is purely a function of the bias current. The results from diUerent models are de-

scribed in Table 5.3 and show the number of neurons, synapses and synaptic events

(connections) for single cores and the whole system. The DMA bandwidth utilised

by a single chip is computed under the assumption that every connection requires 4

bytes; performance is then evaluated as a percentage of the SDRAM memory band-

width compared to the 640 MByte/s theoretical limit; this is equivalent to estimating

the performance by comparing the designed number of connections per chip (1000

neurons per core receiving 1000 inputs at 10 Hz = 160 M connections/chip/second)

with the ones achieved during the experiments.

The advantages of the hierarchical mapping approach proposed in the previous

Chapter become particularly evident when the network size is scaled up: for the

third network presented in Table 5.3, instead of placing 65,536 neurons only 768

partPopulations need to be placed; only 768 partProjections, instead of 50 million

synapses, need to be routed.
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Figure 5.15: Example of a single chip containing independent populations, as the
model used to test and proVle the 48-node boards.

Table 5.3: ProVling results for 48-chip boards
Neurons per core 100 150 256
Synapses per core 10,000 22,500 65,536
Input (mV) 20 7 1
Population Firing Rate (Hz) 168 100 25
Synaptic events/chip 26,880,000 36,000,000 25,677,824
Neurons (48 chips) 76,800 115,200 196,608
Synapses (48 chips) 7,680,000 17,280,000 50,331,648
Synaptic events (48 chips) 1,290,240,000 1,728,000,000 1,232,535,552
SDRAM bandwidth (MByte/s/chip) 107 144 102
Performance % 16.8 22.5 16

5.2.7 Opening SpiNNaker to PyNN models

The continuous introduction of new neuron, network, connectivity and plasticity

models, while giving a wide range of research possibilities, poses challenges on how

to share and standardize work between diUerent groups and areas. A universal hard-

ware simulator must be able to accommodate such developments. PyNN is emerging

as a standard neural network modelling language which can encourage sharing of

models with the possibility to run them on hardware.

A PyNN interface to load models on the SpiNNaker system has been developed,

and it has been shown how it can be used to handle network translation into spe-

ciVc hardware data Vles. Likewise, it can manage software and data loading and

distribution on a massively parallel machine, even for non-standard models such as
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Izhikevich’s. Finally it has been used to validate the neural implementation on SpiN-

Naker. Future work includes implementation and integration of synaptic dynamics

with PyNN. One goal is to implement standard neural models and verify them against

standard simulators. Another is to be able to create new models which can easily be

conVgured with PyNN. In contrast to previous systems [Brüderle et al., 2009], the

SpiNNaker/PyNN combination lets the user conVgure software at both ends. As new

computational units are modelled inside the system, PyNN can be used to organize

their relationships and dynamically conVgure them on board. Users will have the

ability to work in a standard environment, producing Vles that can easily be inter-

preted and exchanged within the community.

The advantages of using and extending a standard neural modelling tool such as

PyNN to conVgure a universal neural network hardware system such as SpiNNaker

have been demonstrated. SpiNNaker, with its innate parallelism and asynchronous

packet-based communication system, oUers an eXcient platform for large neural net-

work modelling. It is a universal platform in the sense that it imposes no particular

neural model or neural network topology, but is fully conVgurable by the end user.

The advantage of using general-purpose hardware, coupled with PyNN, is that as

new models emerge, both the conVguration interface and the simulation code run on

the hardware can be extended to accommodate them, increasing the longevity and re-

usability of the hardware system and exploiting the extensibility of an open-source

standard modelling language.

5.3 Neural Engineering Framework on SpiNNaker

Construction of large-scale spiking neural models is possible thanks to the emer-

gence of uniVed approaches that are able to scale up seamlessly. In this section the

method to map the principles of the Neural Engineering Framework (NEF) [Eliasmith

and Anderson, 2003] to the SpiNNaker System is described, exploiting the massively

parallelism of the platform and its programmable architecture oriented to the simula-

tion of large scale models of spiking neural networks. The NEF is a uniVed approach

for implementing complex neuro-dynamical systems and mapping control-theoretic

algorithms with the neural connections between a highly heterogeneous population

of spiking neurons.

This work describes the approach taken to encode and decode values directly
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on-chip, taking advantage of the programmability of the SpiNNaker system and ex-

ploiting the fast on-chip spike-based interconnect for communication between neural

populations.

A variety of networks that can be built using encoding/decoding methods are

shown. The approach presents the basis for testing large-scale neural models built

with the NEF integrating SpiNNaker as the computational back-end in the existing

framework and tools.

5.3.1 Encoding/Decoding approach

The NEF allows representation and computation of values and functions entirely in

the neural space, once the values are encoded/decoded using the framework. Hence

it is possible to build a system that communicates only with spikes, by inputting

and collecting them on a host machine which is responsible for the encoding and

decoding process. This approach however, while being very eXcient for spike/AER

based systems [Lazzaro et al., 1993], does not scale up seamlessly as the size or Vring

rates (and consequently the number of spikes needed to be sent from/to the system)

of the encoding and decoding populations increase. Moreover the computational cost

increases with the number of neurons: for example 3,000,0000 neurons running on

two Quad Core Intel Xeon E5540 processors with Hyper-Threading at 2.53 GHz take

3 hours to produce 1 second’s worth of data; simulating it within a GPU environment

leads to a 20x speed-up (6-9 minutes per simulated second).

To address the computational time costs, the programmability of the ARM968

cores constituting the computational heart of the SpiNNaker system is exploited by

implementing the encoding and decoding process directly on the SpiNNaker chip,

through the use of two ad-hoc populations based on the leaky integrate-and-Vre (LIF)

neuron: the NEF/LIF-encoder and the NEF-decoder populations. The former translate

values into spike trains for neurons in the population according to principle 1 (see

Section 2.3.3), while the latter collects spikes and estimates the value using the de-

coders for the source population. In other words, the NEF/LIF-encoder population is

implementing neurons that obey Equation (2.12) where the neural dynamics obey the

standard LIF equation dV/dt = I/C − V/RC , while the NEF-decoder population is

decoding values using Equation (2.13). This kind of neural population is only used

when the value needs to be explicitly represented, otherwise decoders are implicit

in the connection weights, since communication between all other populations on

the chip is done using spikes and standard LIF neurons. Those are weighted using
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Figure 5.16: Approach — Encoding and decoding processes happen directly on the
SpiNNaker chip, through the use of two ad-hoc populations: the LIF/NEF-encoder and
the NEF-decoder populations. The former translates values into spike trains for neu-
rons in the population accordingly to Equation (2.12), while the latter collects spikes
and estimates the output value using the decoders for the population connected to it,
following Equation (2.13). On the rest of the chip, spikes travel in the neural space
(consisting of standard LIF neurons) where the weights implement a function f(x)
and are calculated starting from Equation (2.15)

NEF connection weights computed as described in Equation (2.15). The approach is

summarised in Figure 5.16. Compared to a standard LIF model it adds a bias current

proportional to the encoder and stimulus values.

Precision in encoders and decoders (and therefore in interconnection weights) is

crucial to avoid information corruption. Digital systems have the advantage of being

programmable with a Vnite precision that can be evaluated. In this work we use a 32

bit Vxed point implementation for neural state variables and parameters, including

encoders and decoders, and 20 bit precision for the weights.

Spikes are therefore produced and collected only on-board, by taking advantage

of the fast custom interconnect characterizing the SpiNNaker machine. This reduces

the bandwidth and the load on a host, by sending and receiving only values to/from

SpiNNaker. This approach tends to avoid diXculties and bottlenecks in translating

and sending/receiving spikes directly from a host machine or from an FPGA by port-

ing the encoding/decoding process onto SpiNNaker. Moreover it oUers a "closed"

spike system, where the interface communication consists in sending and receiving

values for example from Nengo [Stewart et al., 2009] (the software1 that implements

the NEF principles), or from a sensor or to a robotic arm while neural based compu-

tation is carried out on board.

1available at http://nengo.ca
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A B OUT

IN

Figure 5.17: Structure of the communication channel — the input value is encoded
by population A (green, encoding population), which translates it into a population
spike train. A is connected to B (standard LIF population) with an all to all connec-
tion. Weights between A and B are set to compute y = x in the communication
channel experiment and y = x2 in the transformation experiment.

5.3.2 Results

Representation: Communication Channel

In order to test the representation of values in spike trains, we have implemented a

communication channel with the structure illustrated in Figure 5.17. The commu-

nication channel experiment shows how information can be represented using the

NEF, as so to be able to encode/decode information directly within the SpiNNaker

System. This is done by a population which encodes a scalar value into neural ac-

tivity and then decodes it with another population, equipped with representational
decoders able to extract the original value. Such encoders/decoders are used to com-

pute the function f(x)=x in the connection weights between the two populations (see

Figure 5.16).

A portion of the Nengo script describing the communication channel is shown

below while the full script can be found in Appendix C.2.2:

i npu t =ne t . make_input ( ’ i npu t ’ , [ 0 ] )

A=ne t . make ( ’A ’ , neurons =128 , d imens ions =1 , max_rate = ( 1 0 0 , 1 5 0 ) ,

r a d i u s =1 , i n t e r c e p t = ( − . 9 , . 9 ) )

B=ne t . make ( ’B ’ , neurons =128 , d imens ions =1 , max_rate = ( 1 0 0 , 1 5 0 ) ,

r a d i u s =1 , i n t e r c e p t = ( − . 9 , . 9 ) )

ne t . connec t ( input ,A)

ne t . connec t (A , B )

Population A comprises 150 LIF-encoder neurons. Population B is a standard LIF

population of 150 neurons. IN and OUT are populations of 150 NEF-Decoder neu-

rons each. Therefore the whole communication channel is composed of 450 neurons
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Figure 5.18: Representation Principle — Communication channel: weights between
A and B are set so that B represents the same value as A. The value is then decoded
by population OUT (decoding population) and compared against IN to verify correct
encoding.

Vring in the 40-100 Hz range. Each Population occupies a dedicated core within the

same chip. A value X is encoded by population A, the NEF-LIF encoder population.

This population encodes values in spike trains according to the tuning curves of its

neurons.

Spikes travel to population B through an all to all connection with weights im-

plementing the communication channel function y=x. Spike trains are then passed

to the OUT population that converts them back into a value Y and outputs it to the

external world. In particular it is possible to integrate SpiNNaker as a back-end sim-

ulator in Nengo by communicating with ethernet attached chips. Results are shown

in Figure 5.18 where the precision of the encoding is evaluated and integration with

Nengo is shown. All the experiments presented run in real time.

Transformation: Computing the Square

In order to show computation we implemented the function y = x2 in the NEF, us-

ing the same network structure as that for the communication channel. Only the
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decoders of (and subsequently the connection weights to) population B are changed,

implementing the function to be computed. Such decoders are called transforma-
tional decoders in the sense that they compute a (feed-forward) transformation, as

opposed to the representational decoders used for the communication channel experi-

ment. The Nengo script describing the square has been reported in Section 3.2.5 and

can be found in Appendix C.2.1.

Results are shown in Figure 5.19: the blue line represents the direct decoding from

the input sent to SpiNNaker. The black line is the decoded result of the operation

implemented in the weights from A to B. When the input is 0 (leftmost plot) the

output from SpiNNaker is 0 as well (black line). When the input is shifted to 1 both

input (blue) and output go to 1. When the input is shifted to -1 the result of squaring

stays at 1. The quadratic relation is particularly evident when the input is plotted

against the output, as done in Figure 5.19(b) and 5.19(c). The network consists of

450 neurons as in the Communication Channel example; it is the same network with

the weights between A and B changed so as to compute the square, by estimating

transformational decoders for B.

Dynamics: Integrator

In order to show an implementation of neural dynamics within the NEF we imple-

mented a neural integrator. Such a mechanism has been proposed as the neuronal

basis of oculomotor control [Fukushima et al., 1992] where it is used as a velocity to

position integrator: the input of the system represents the eye movement velocity

which is integrated to represent the Vnal eye position. More generally the integrator

can be considered to be a line attractor in the higher dimensional neural state space,

letting the network maintain a value (representing for instance the eye position)

through self-sustained activity in an abstract space over a period of time. The inte-

grator has also been proposed to be the basis of working memory in neurons [Singh

and Eliasmith, 2006].

The third principle can be used, as described in Section 2.3.3, to translate the

dynamics of an integrator deVned by standard control theory input and dynamics

matrices [Eliasmith and Anderson, 2003]. Using Equations 2.14, by setting A = 0

and B = 1 (as in standard control theory A = 0 and B = 1 correspond to a linear

attractor) we obtain A’ = 1 and B’ = τ , where τ is the synaptic time constant.

We can then compute the neural connection weights using eq. 2.15. The integrator

structure is shown in Figure 5.20: an input is fed into population A, and it travels
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Figure 5.19: Transformation Principle — Computing the Square: (a) The blue line
represents the direct decoding from the input sent to SpiNNaker and represents the
ability of SpiNNaker to encode and decode input. The black line is the decoded result
of the square operation implemented in the weights from A to B. (b) The quadratic
relation can also be observed when the input is plotted against the output within
Nengo. (c) Precision evaluation of the square computation in the range of interest.
Each value is sampled for 1 second and activity is averaged and standard deviation is
shown.
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through a communication channel to population B. Population B then computes the

integral of the input received by A by means of recurrent connections. The Input

population comprises 150 NEF-encoder neurons Vring at 80-100 Hz. The integrator

is composed of 200 neurons fully recurrently connected (40000 connections) Vring

at 80-150 Hz. Weights for these connections are computed using the encoders and

decoders as described above. For simplicity, the weights are imported directly from

Nengo and loaded on board. Population A is an encoding population as described in

the section above.

A portion of the Nengo script describing the communication channel is shown

below while the full script can be found in Appendix C.2.2:

i npu t =ne t . make_input ( ’ i npu t ’ , [ 0 ] )

t au_syn = . 0 5

A=ne t . make ( ’A ’ , neurons =100 , d imens ions =1 ,

max_rate = ( 1 2 0 , 1 5 0 ) , i n t e r c e p t = ( − . 9 0 , . 9 0 ) )

B=ne t . make ( ’B ’ , neurons =100 , d imens ions =1 ,

max_rate = ( 1 2 0 , 1 5 0 ) , i n t e r c e p t = ( − . 9 0 , . 9 0 ) )

C=ne t . make ( ’C ’ , neurons =100 , d imens ions =1 ,

max_rate = ( 1 2 0 , 1 5 0 ) , i n t e r c e p t = ( − . 9 0 , . 9 0 ) )

ne t . connec t ( input , A , p s t c = . 0 0 1 )

ne t . connec t (A , B , p s t c = tau_syn , weight= tau_syn )

ne t . connec t ( B , B , p s t c = tau_syn )

ne t . connec t ( B , C )

Results from a simulation run, sending non-encoded input values to SpiNNaker

and getting decoded output back, is displayed in Figure 5.20: population B integrates

the positive pulse represented by input population A and holds the integrated value.

Then a negative pulse input is received and integrated. Between the two pulses the

integrator is able to hold the value with little drifting. The diUerence in the response

of the neural integrator to the ideal one is due to the fact that the neural integrator

has a PSC Vlter applied, and therefore the response passes through a Vrst-order Vlter

whose time constant is equivalent to the synaptic time constant.

Cyclic attractors: Oscillator

All models presented so far use a scalar representation for encoders, decoders and

transformation. It is possible to extend the representational methods to vectors in

an n-dimensional space by choosing neurons with preferred direction vectors in the

space, and hence employ n-dimensional encoders and decoders and transformational
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Figure 5.20: Dynamics — Neural Integrator: (a) Structure of the integrator network:
An input is fed into population A, which travels through a communication channel
to population B. Population B then computes the integral of the input received by A
by means of recurring connection. The Input population is composed by 150 NEF-
encoder neurons Vring at 80-100 Hz. The integrator is composed by 200 neurons
fully recurrently connected (40000 connections) Vring at 80-150 Hz. (b) Integration
in Nengo. (c) Integration of the input value compared to an ideal integrator.
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Figure 5.21: Cyclic Attractor — Oscillator: response of a neural oscillator to a pertur-
bation; after the system is perturbed it starts oscillating at its characteristic frequency
in Nengo and SpiNNaker. Only one dimension of the oscillating population is repre-
sented.

matrices for dynamical systems. It is then possible to evaluate neurobiological evi-

dence to choose the appropriate kind of representation. By doing this it is possible

to build another class of attractor: cyclic attractors. Rather than stabilising on a

Vxed point, line or plane, cyclic attractors settle on a periodic pattern of activity that

is dynamically stable. Such attractors can be used to explain repetitive behaviours

like walking, Wying, chewing or swimming; in particular a (more complex) cyclic at-

tractor built accordingly to the NEF principles has been used as the basis to model

swimming behaviour in the lamprey eel [Eliasmith and Anderson, 2003]. A cyclic at-

tractor can be deVned using the input and dynamics matrices introduced in Section

2.3.3 with the control equation ẋ = Ax+Bu where

A =

 0 ω

−ω 0


implementing a cyclic attractor with a harmonic oscillator. The results are shown

in Figure 5.21: after the system is ’shocked’ it starts oscillating at its characteristic

frequency ω.

Using the framework it is possible to manipulate the parameters that control at-

tractor properties by modifying the transformational matrixMαβ (see Section 2.3.3)

using a control signal represented by another population: if the signal is a function

of time the system described is a linear time-varying system; if A is an input then
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Figure 5.22: Non-linear system: Frequency Controlled Oscillator. The oscillator has
its orbit period (frequency of the oscillation) controlled by another input neural pop-
ulation. Only one dimension of the oscillating population is represented.

the system becomes non linear. In this example we use a population to control the

frequency of the oscillator, therefore controlling the speed of the cyclic attractor (e.g.

controlling the swimming speed in the zebra Vsh [Kuo and Eliasmith, 2005]) by in-

creasing the dimensionality of the space encoded by the population to accommodate

a frequency control input. Results are shown in Figure 5.22. In both experiments

inputs and oscillating populations comprise 150 neurons each Vring in the 80-120 Hz

range.

5.3.3 The Neural Engineering Framework on SpiNNaker

The work presented here constitutes the basis for building real-time, large scale

neural systems using the Neural Engineering Framework on SpiNNaker. The pro-

grammability of the ARM cores makes the integration of SpiNNaker with the ex-

isting tools and software possible in a seamless way. It should be noted that the

advantages of running large-scale models in real-time are strongly reduced if such

models take a long time to compile and load on a computational back-end. In fact ex-

periments have shown that the most computationally expensive task is to compute

the weight connection matrices (described by eq. 2.15) and map them on a paral-

lel system such as SpiNNaker. However, it is possible to exploit the possibility to

program SpiNNaker cores to parallelize this job and run it on board. Once the neu-

ral populations are mapped to speciVc cores, connections can be generated by just

sending them encoders, decoders and transformational matrices, having each core

do the matrix multiplications, self-conVguring and indexing its own local connec-

tions. It has been possible to map multidimensional encoders and decoders in the
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weight space to represent transformations in the neural space; it is however possi-

ble to implement n-dimensional NEF/LIF-encoder and NEF-decoder populations. Such
high dimensional inputs can be used to manipulate complex, symbol-like structures

such as language [Stewart et al., 2010b, 2011]. Such high dimensional spaces can

be mapped to large scale populations of neurons so as to represent a large variety

of symbols, each neuron mapping a fraction of the high dimensional space. Running

such models in real time makes it possible to test them and embed them in real world,

interactive scenarios, such as decision making [Stewart and Eliasmith, 2010] or other

cognitive functions such as working memory, recognition and Wuid reasoning [Elia-

smith, 2007].

This section has presented how to construct neural circuits using the Neural En-

gineering Framework on the SpiNNaker hardware. Encoding and decoding values

using the NEF is implemented directly on board to perform feed forward and recur-

rent dynamic computations. This approach takes advantages of the programmability

of the ARM968 cores inside a SpiNNaker chip, letting it encode and decode spikes

on-board. This reduces the bandwidth and the computational load imposed on a

host machine, by sending and receiving only values to/from SpiNNaker and using it

as a fast, scalable, conVgurable and power eXcient computational back-end. This ap-

proach oUers advantages when the Vring rates and the dimensions of the input and

output neurons increase, letting the system scale up seamlessly and be integrated in

interactive real-time systems. It also presents the basis for building and testing large-

scale neural models built with the Neural Engineering Framework on the SpiNNaker

architecture.

5.4 Summary

This chapter shows how the mapping approach, presented in the previous chapter,

can be interfaced with neural languages already present in the computational neuro-

science community, making the platform accessible to non-hardware experts.

Integration with PyNN enables users to write their models with a cross-simulator,

standard language, shareable in the community. A variety of neural models have

been integrated in the approach, exposing the Wexibility of both SpiNNaker and the

mapping process. Larger and increasingly complex PyNN models have been simu-

lated on diUerent generations of SpiNNaker platform; some results, validating the
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implementation and testing the performances of the architecture, have been pre-

sented in this chapter.

Integration with Nengo enables the Neural Engineering Framework methods to

be used on SpiNNaker to determine the topology and parameters for a network

model. The implementation on SpiNNaker of the NEF principles enables a high-level,

functional speciVcation of a spiking neural network to be deployed on the platform.

The method exploits SpiNNaker’s reconVgurability to encode and decode the infor-

mation from values into spike trains directly on board, making the system a neural
black box which interacts with the external world (e.g. with Nengo or with a robot)

through values rather than spike trains: all the neural computation is performed by

SpiNNaker which also decodes output spike trains into values.

This chapter described the Wexibility of the approach, which is able rapidly to

incorporate new hardware resources, neural models and computational frameworks.

The next chapter shows how it is possible to enable SpiNNaker to be embedded in

the real world, through interfaces with AER sensors, already present in the commu-

nity, and with a robotic platform. These resources are integrated in the mapping

approach and can be conVgured seamlessly at a high level, through the PyNN or

Nengo interface.



Chapter 6

Mapping AER sensors and robotic
actuators

6.1 Introduction

The previous chapter described how PACMAN, a Wexible translation method pre-

sented in Chapter 4, is used to interface existing neural-oriented languages with

SpiNNaker, automating model placement and abstracting the platform to a Vnal user.

This chapter describes the expansion of PACMAN to integrate other elements present

in the neuromorphic community: AER sensors and robots. Computation, all done in

spiking neurons, takes advantage of the abstraction of action potentials into streams

of stereotypical events which encode information in their timing. This feature has

been used by neuromorphic engineers to reduce both power consumption and com-

munication bottlenecks. As a consequence, a number of spiking custommixed-signal

address event representation (AER) chips have been developed in recent years, such

as the ones described in Section 3.3.

In this work AER sensors and robots become resources available at model level,

while the system is conVgured automatically using PACMAN. The approach is used

to build complex networks in PyNN and Nengo; those presented in this chapter in-

tegrate SpiNNaker, a silicon retina and a holonomic robot. The integration of such

systems provides non-hardware experts a standard interface to bring their models to

the platform, ready for exploration of networked computation principles and appli-

cations at diUerent levels of abstraction.

The Vrst part of the chapter illustrates a visual attentional model and the integra-

tion with a DVS silicon retina. The retina is accessible through PyNN, which is also

155
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used to describe the rest of the network model, performing diUerent steps of visual

processing and orienting its response to the location where a preferred stimulus is

detected.

The rest of the chapter describes a model comprising diUerent Neural Engineer-

ing models for self-localization and mapping (SLAM) and navigation integrated with

a robotic platform. Increasingly complex models are proposed, and they culminate

in a cortical, basal ganglia and hippocampal place cell model, based on the work of

Blair et al. [2008], achieving autonomous navigation and mapping of diUerent places.

6.2 Visual attentional model using a silicon retina

The neural processes which subserve attentional selection, and subsequently drive

intelligent behaviour in animals, remain the subject of intense investigation within

the Veld of computational neuroscience [Knudsen, 2007]. Precise spike timing is un-

derstood to play an important role in biological neural computation, for example,

spike timing precision has been hypothesised to maximise the information trans-

fer rate [Van Rullen and Thorpe, 2001]. Event-driven platforms provide a natural

architecture on which to simulate spiking neural networks. Traditionally, the con-

trol Wow of a program is time-driven, while the Wow in event-driven systems is de-

pendent on the occurrence of events and time is represented implicitly. Recently,

sensors [Lichtsteiner et al., 2008, Lenero-Bardallo et al., 2011], mixed signal VLSI

chips [Sonnleithner and Indiveri, 2011, Indiveri et al., 2011, Wijekoon and Dudek,

2012] and parallel architectures [Furber and Brown, 2009] that are natively based on

events have been developed. Such systems use Address-Event-Representation (AER),

a lightweight protocol for asynchronous communication of spike events [Serrano-

Gotarredona et al., 2009].

In this context a conVgurable event-driven platform, comprising an AER visual

sensor [Lenero-Bardallo et al., 2011] and the SpiNNaker system is presented. A sig-

niVcant feature of this system is that a direct connection (via an FPGA) between the

AER sensor and the event-driven SpiNNaker system allows timing information in

the spike-train to be preserved: spikes (events) are processed as they arrive, elimi-

nating delays caused by both buUering and by the use of a host machine as a protocol

translator [Davies et al., 2010]. While the SpiNNaker system oUers a Wexible event-

driven platform for the real-time exploration of neural networks, which natively con-

form with AER, SpiNNaker also allows neural network dynamics and topologies to
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be rapidly reconVgured using PyNN as a high level language [Davison et al., 2008,

Galluppi et al., 2012d].

An attentional selection system was implemented upon this neuromorphic plat-

form. Visual cues consisted of oriented Gaussians, which were represented as lo-

cations on a retinotopic visual saliency map [Itti et al., 1998]; such features are the

most basic representation in the hierarchical structure which subserves object recog-

nition in the visual cortex [Riesenhuber and Poggio, 1999]. The mechanisms of selec-

tion were inspired by the biased competition hypothesis of Duncan and Humphries

[Duncan and Humphreys, 1989], in which competition takes place between diUer-

ent representations of potential targets and goal-directed information from a par-

ticular working memory can be used to bias selection towards a particular target.

Goal-directed signals were feature-based, whereby the activity of a working memory

neuron represented the behavioural importance of attending to a particular visual

feature. This work [Galluppi et al., 2012a] represents the Vrst neuromorphic im-

plementation of a feature-based selection system. Spatial bias has previously been

implemented by injecting activity into a particular location on the visual saliency

map [Sonnleithner and Indiveri, 2011].

The hardware setup is described in the next section, and experimental results are

presented in the results section; discussion and conclusions are presented in the Vnal

section.

6.2.1 Hardware setup

An image of the event-driven platform hardware is shown in Figure 6.1.

Silicon Retina: the visual front-end is a Dynamic Video Sensor (DVS) silicon

retina, an asynchronous sensor which provides spike events encoding the addresses

of pixels undergoing a contrast change [Lenero-Bardallo et al., 2011]. This approach

contrasts to the more traditional method of sending entire frames and can provide

fast (3 µs latency) data-driven contrast detection at a wide range of illuminations.

The sensor is capable of transmitting from 1 Keps to 20 Meps (events per second).

SpiNNaker System: neural processing is carried by 4 SpiNNaker chips, oUering

an event-driven digital platform that can interpret incoming events as neural spikes

and inject them into the neural system. Each SpiNNaker chip natively responds to

events occurring in the network, and is therefore able to process information arriv-

ing from event-based sensors attached to its asynchronous links, provided the AER

protocol is translated correctly.
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Figure 6.1: Overview of the hardware setup: 4 SpiNNaker chips board (left), an FPGA
translating the AER protocol between the two asynchronous systems (middle) and a
DVS Silicon Retina (right).

Interconnection: retinal events are translated into asychronous spike trains in

the neural network: as soon as an event is emitted from the silicon retina, it is trans-

lated into a SpiNNaker spike by a Xilinx SPARTAN-6 FPGA and injected into the

system directly via the fast on-board interconnect, using one of the six asynchronous

links available on each SpiNNaker chip.

ConVguration: two levels of virtualisation allow a transparent mapping be-

tween the silicon retina and the SpiNNaker system. From a hardware point of view

the DVS is mapped as a virtual SpiNNaker chip, injecting spike events into the

network-on-chip. To the neural network, the silicon retina is represented as a Spike-
Source Population by the mapping approach introduced in Section 4.2.1. As with the

rest of the neural network, the SpiNNaker system allows conVgurable Projections to
this neural population using a high-level language such as PyNN (see sec. 3.2.7).

6.2.2 Network Description

Figure 6.2 illustrates the implemented network, developed conjunctively with Kevin

Brohan [Brohan et al., 2010], which was inspired by the primate visual system:

shapes indicate preferred orientation (black neurons do not encode orientation in-

formation). Complete projections from only the palest neurons are shown for clar-

ity. Neurons are represented by triangles, arrows represent excitatory synapses and
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Figure 6.2: Overview of the neural network for the visual attention model. In the Vrst
layer, neuron responses are selective to stimulus orientation, in a similar manner to
neuronal responses in cortical area V1. The pooling & competition layer subsampled
the activity of neurons with the same preferred orientation (implementing a localmax
function, in a manner similar to V2 complex cells. Four neuronal populations in the
working memory layer encoded the goal of selecting a stimulus with a particular
orientation.

circles represent inhibitory synapses. In the Vrst layer, neuron responses were se-

lective to stimulus orientation, in a similar manner to neuronal responses in cortical

area V1 [Hubel, 1988]. The pooling & competition layer subsampled the activity of

neurons with the same preferred orientation (implementing a localmax function, in

a manner similar to V2 complex cells [Riesenhuber and Poggio, 1999]), while local

competition between neurons with diUerent preferred orientations sustained the ac-

tivity of neurons whose preferred orientation matched the stimulus, and suppressed

activity relating to non-matching neuronal responses. Four neuronal populations in

the working memory layer encoded the goal of selecting a stimulus with a particu-

lar orientation. Activity in this layer was determined by a set of external biasing

currents. In primates, visual search goals are believed to be encoded in the activ-

ity of the dorso-lateral prefrontal cortex neurons [Knudsen, 2007]. The biasing layer
received combined activity from the pooling & competition layer and the working
memory layer, such that activity was maximised for stimuli of the desired orienta-

tion, provided they are also present in the visual Veld. These neurons are analogous

to the neurons of cortical area V4, which receives a large input from working mem-

ory via the frontal eye Velds [Noudoost et al., 2010]. Activity was pooled across

all orientation maps in the selection layer to form a retinotopic visual saliency map

(corresponding to the lateral intraparietal cortex, LIP area [Bisley et al., 2011]), and



160 CHAPTER 6. MAPPING AER SENSORS AND ROBOTIC ACTUATORS

0 45 90 135
0

18

Stimulus / 
°

M
F

R
 /
 H

z

Bias: 0 
°

0 45 90 135
0

18

Bias: 45 
°

0 45 90 135
0

18

Bias: 90 
°

0 45 90 135
0

18

Bias: 135 
°

(a)

−90 −45 0 45 90

0

18

Orientation Difference / 
°

M
F

R
 /
 H

z

 

 

Unbaised

Other V4

Target V4

(b)

Figure 6.3: Experiment I: tuning curves.

competition between diUerent retinotopic locations in this layer resulted in the se-

lection of a single target. Activity at this location (i.e. the target of attention) was

maintained, while activity at other locations was suppressed. Attentional eUects

themselves were not included in this model.

The network was implemented with 1221 leaky integrate-and-Vre neurons and

20530 current-based exponential synapses on a single SpiNNaker chip, and 128x128x2

DVS neurons that were binned to 16x16x2 spatial locations on the FPGA, while pre-

serving the number of events received by SpiNNaker. Neurons were arranged in a

square topology (14x14 in visual input, 10x10x4 in orientation selectivity, 10x10x4 in
pooling & competition, 5x5x4 in working memory, 5x5x4 in biasing, 5x5 in selection).
Both excitatory and inhibitory projections were allowed from individual neurons,

though this is not observed in biology.

An excerpt of the PyNN script conVguring the network can be found below, while

the rest is contained in Appendix C.1.4.

Two maps, describing the two diUerent polarities modelled by the retina, are

instantiated:

print "%g − Crea t i ng i npu t popu l a t i on "

i npu t _po l _ 1 = Popu l a t i on ( i n p u t _ s i z e ∗ i n p u t _ s i z e , # s i z e
Sp ikeSource , # Neuron Type
{ } , # Neuron Pa r ame t e r s
l a b e l = " i npu t _po l _ 1 " ) # Lab e l

i n pu t _po l _ 1 . s e t _mapp i n g_ c on s t r a i n t ( { ’ x ’ : 2 , ’ y ’ : 0 , ’ p ’ : 0 } )

# i n p u t _ p o l _ 1 . r e c o r d ( )

i n pu t _po l _ 2 = Popu l a t i on ( i n p u t _ s i z e ∗ i n p u t _ s i z e , # s i z e
Sp ikeSource , # Neuron Type
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{ } , # Neuron Pa r ame t e r s
l a b e l = " i npu t _po l _ 1 " ) # Lab e l

i n pu t _po l _ 2 . s e t _mapp i n g_ c on s t r a i n t ( { ’ x ’ : 2 , ’ y ’ : 0 , ’ p ’ : 8 } )

# i n p u t _ p o l _ 2 . r e c o r d ( )

Then separate populations mapping diUerent orientations for the Orientation Se-
lectivity layer (V1), the Pooling & Competition layer (V2), and the Biasing layer (V4)
are created with diUerent sizes:

for i in range ( o r i e n t a t i o n s ) : # Cy c l e s o r i e n t a t i o n s
# c r e a t e s a p o p u l a t i o n f o r each c o n n e c t i o n
v1_pop . append ( Popu l a t i on ( v1_pop_s i z e ∗ v1_pop_s i ze , # s i z e

I F _ cu r r_exp , # Neuron Type
c e l l _pa r ams , # Neuron Pa r ame t e r s
l a b e l = " v1_%d " % i ) ) # Lab e l )

The Working memory (PFC) and Selection (LIP) populations are created analo-

gously. Then the two input retinal populations are connected to V1 through means

of a convolutional network, using the kernels obtained with the gaussianConnec-
torList function and creating an explicit list of weights representing the convolution

with the Filter2DConnector function.

p r o j e c t i o n s = [ ] # Conn e c t i o n Hand l e r
g a u s s i a n _ f i l t e r s = g au s s i a nConn e c t o r L i s t ( s c a l e s , o r i e n t a t i o n s , s i z e g 1 )

for i in range ( o r i e n t a t i o n s ) :

# c r e a t e s c o n n e c t i o n s l i s t s f o r d i f f e r e n t o r i e n t a t i o n s , imp l emen t i ng a
# c o n v o l u t i o n a l ne twork wi th d i f f e r e n t g a u s s i a n o r i e n t a t i o n f i l t e r s ( s i n g l e s c a l e

)
c o n n _ l i s t = F i l t e r 2DConne c t o r ( i n pu t _ s i z e , i n p u t _ s i z e ,

v1_pop_s i ze , v1_pop_s i ze ,

g a u s s i a n _ f i l t e r s [ i ] ,

s i z e _k1 , s i z e_k2 ,

jump , de l ay s ,

ga in = g au s s i a n _g a i n )

p r o j e c t i o n s . append ( P r o j e c t i o n ( i npu t_po l _1 , v1_pop [ i ] ,

F romLi s tConnec to r ( c o n n _ l i s t ) , l a b e l = ’ i npu t [ p0]−>v1_pop_%d ’ % ( i ) ) )

p r o j e c t i o n s . append ( P r o j e c t i o n ( i npu t_po l _2 , v1_pop [ i ] ,

F romLi s tConnec to r ( c o n n _ l i s t ) , l a b e l = ’ i npu t [ p1]−>v1_pop_%d ’ % ( i ) ) )

Populations in the Pooling and Competition layer (V2) receive lateral inhibition

which enhances the contrast of the response; this is done implementing a Proximity-
Connector function to generate a list of weights implementing a local winner-take-all

within and between orientations. V2 populations are then connected to the V4 layer,

which represents the result of this operation at higher level in the visual hierarchy:
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i f ( wta_v2 == True ) :

print "%g − Crea t i ng L a t e r a l i n h i b i t i o n f o r the v2 popu l a t i o n s " % t ime r .

e l apsedT ime ( )

for i in range ( o r i e n t a t i o n s ) : # Cy c l e s o r i e n t a t i o n s
for j in range ( o r i e n t a t i o n s ) : # Cy c l e s o r i e n t a t i o n s

i f ( i != j ) : # Avoid s e l f c o n n e c t i o n s
# C r e a t e s l a t e r a l i n h i b i t i o n be tween t h e v2 p o p u l a t i o n s
print "%g − v2 [%d]−>v2 [%d ] l a t e r a l i n h i b i t i o n " % ( t ime r . e l apsedT ime ( )

, i , j )

w t a _b e tween_ l i s t = Prox imi tyConnec to r ( v1_pop_s i ze , v1_pop_s i ze ,

p o o l i n g _ s i z e ,

wta_between_v2_weight , 1 ,

a l l ow _ s e l f _ c o n n e c t i o n s =

True )

p r o j e c t i o n s . append ( P r o j e c t i o n ( v2_pop [ i ] ,

v2_pop [ j ] ,

F romLi s tConnec to r ( w t a _b e tween_ l i s t ) ,

t a r g e t = ’ i n h i b i t o r y ’ ) )

print "%g − Crea t i ng wi th in i n h i b i t i o n poo l s " % t ime r . e l apsedT ime ( )

for i in range ( o r i e n t a t i o n s ) : # Cy c l e s o r i e n t a t i o n s
w t a _w i t h i n _ l i s t = Prox imi tyConnec to r ( v1_pop_s i ze , v1_pop_s i ze , p o o l i n g _ s i z e ,

wta_wi th in_v2_weight , 1 ,

a l l ow _ s e l f _ c o n n e c t i o n s = F a l s e )

print "%g − v2 [%d ] w i th in i n h i b i t i o n " % ( t ime r . e l apsedT ime ( ) , i )

p r o j e c t i o n s . append ( P r o j e c t i o n ( v2_pop [ i ] ,

v2_pop [ i ] ,

F romLi s tConnec to r ( w t a _w i t h i n _ l i s t ) ,

t a r g e t = ’ i n h i b i t o r y ’ ) )

for i in range ( o r i e n t a t i o n s ) : # Cy c l e s o r i e n t a t i o n s
v 2 _ v 4 _ c onn_ l i s t = subSamplerConnector2D ( v1_pop_s i ze , v4_pop_s i ze , weights_v2_v4 ,

1 )

print "%g − v2−v4 [%d ] subsampl ing p r o j e c t i o n " % ( t ime r . e l apsedT ime ( ) , i )

p r o j e c t i o n s . append ( P r o j e c t i o n ( v2_pop [ i ] ,

v4_pop [ i ] ,

F romLi s tConnec to r ( v 2 _ v 4 _ c onn_ l i s t ) ,

t a r g e t = ’ e x c i t a t o r y ’ ) )

Finally the projections between the PFC layer and V4, and the V4 layer and the

LIP layer (representing the result of the selection biased by the PFC layer) are instan-

tiated:

print "%g − Crea t i ng v4−> l i p p r o j e c t i o n s " % t ime r . e l apsedT ime ( )

for i in range ( o r i e n t a t i o n s ) : # Cy c l e s o r i e n t a t i o n s
p r o j e c t i o n s . append ( P r o j e c t i o n ( v4_pop [ i ] ,

l i p ,

OneToOneConnector ( we igh t s =we i gh t s _v4_ l i p , d e l a y s

=1 ) ,

t a r g e t = ’ e x c i t a t o r y ’ ) )

print "%g − Crea t i ng LIP WTA" % t ime r . e l apsedT ime ( )
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p r o j e c t i o n s . append ( P r o j e c t i o n ( l i p ,

l i p ,

OneToOneConnector ( we igh t s =wta_ l i p_we igh t , d e l a y s =1 ) ,

t a r g e t = ’ i n h i b i t o r y ’ ) )

print "%g − Crea t i ng pfc−>v4 p r o j e c t i o n s " % t ime r . e l apsedT ime ( )

for i in range ( o r i e n t a t i o n s ) : # Cy c l e s o r i e n t a t i o n s
p r o j e c t i o n s . append ( P r o j e c t i o n ( p f c [ i ] ,

v4_pop [ i ] ,

A l lToA l lConnec to r ( we igh t s = p f c_v4_we igh t s , d e l a y s

=1 ) ,

t a r g e t = ’ e x c i t a t o r y ’ ) )

6.2.3 Results

Experiment I tested interaction between working memory activity and the biasing

layer for stimuli in isolation; Experiment II tested the ability of the working mem-
ory activity to bias selection towards a particular target in the selection layer. The

stimulus consisted of a video of blinking oriented Gaussians, which were presented

on a neutral background, Figure 6.3(b) (insert) and Figure 6.4. The experiments are

illustrated in the video Demonstration of an event driven neural based visual system
Silicon Retina on SpiNNaker.mp4 in Appendix C.3.1

Experiment I: Tuning Curves for Stimuli in Isolation

The retinawas sequentially stimulated with 8 diUerently oriented Gaussian functions

(σ = 4.0 pixels, γ = 0.2 pixels). Each stimulus was presented for 5.0 s, stimuli blinked

with a frequency of 0.5 Hz and working memory neurons Vred with a mean frequency

of 9.9 Hz. Figure 6.3(a) contains four panels, each of which shows the mean Vring

rates (MFR) of the biasing layer neurons when a particular working memory neuron

was active and Figure 6.3(b) shows the average tuning curve for all bias conditions.

The MFR of the biasing layer neurons for the preferred orientation (palest) was com-

pared with the MFR of the other biasing layer neurons (mid) and the MFR in the

unbiased condition (dark). The MFR for the unbiased and non-preferred neurons

was very similar, while the target neurons experienced an increased Vring rate for

all stimuli, indicating that the working memory successfully increased the gain for

only the target neurons. Similar stimuli which were not explicitly represented by

any orientation map also show increased activity.
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(a) (b) (c) (d)

Figure 6.4: Experiment II - visual attention task.

Experiment II: Visual Selection Task

Stimuli consisted of two oriented Gaussian functions (σ = 0.89 pixels, γ = 0.07

pixels), one in the top left corner of the stimulus image, and one in the bottom right

corner of Figure 6.4(a). Two sets of orientations were tested at both positions: {0◦,

90◦} and {45◦, 135◦}. Stimuli blinked with a frequency of 0.5 Hz and activity was

recorded for 40 s. Figure 6.4(b) shows the probability for a location becoming the

attentional target in the unbiased condition (calculated as the ratio of the number of

spikes at a location in selection to the total number of spikes in the selection layer).

No selection bias was observed in this condition. Figs. 6.4(c) and 6.4(d) show the

change in the selection probability when working memory was used to bias selection

towards the feature in the top left corner and the bottom-right corner respectively.

In both cases, selection was biased almost entirely towards the target feature. Figure

6.5 shows that the Vring of the two active groups of selection neurons follows the

activity of the working memory over time.

6.2.4 An event-driven conVgurable platform

The system presented in this work forms a generic event-driven platform which

comprises the SpiNNaker system with an existing AER sensor, exposing the advan-

tage of a digital, programmable architecture for neural computation, as a generic

event-driven systemwhere neural networks may be rapidly conVgured and deployed.

This processing platform beneVts from the Wexibility of SpiNNaker, in which neu-

ral network models can be described in a high-level programming language such

as PyNN, making the hardware accessible to non-hardware experts. Large-scale,

real-time models can be rapidly developed and conVgured before casting them into

their more eXcient, but also less accessible and more expensive, task-speciVc analog
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Figure 6.5: Activity in LIP follows the movements of the biased stimulus.

counterparts [Sonnleithner and Indiveri, 2011, Wijekoon and Dudek, 2012, Serrano-

Gotarredona et al., 2009].

A neural network model of feature-based attentional selection was implemented

upon this processing platform. In this network, a feature-based working memory

was used to drive attentional selection towards a target visual feature. This work

represents the Vrst neuromorphic implementation of a feature-based attentional se-

lection system. In future, this work will be extended to include a more faithful model

of the neural circuit which subserves attentional selection through the inclusion of

modulatory top-down bias, as opposed to the additive eUect presented, and on at-

tending complex stimuli learned from the composition of basic features discussed in

this work.

6.3 Integrating SpiNNaker, NEF and the robot

While integration with AER sensors, as described in the previous section, makes use

of the event-driven nature of the platform, interfacing the system with robots per-

forming in a real environment makes use of its real-time capabilities. It is no surprise

this has been attempted since the Vrst SpiNNaker test chips have been produced; for

example in the work presented in Davies et al. [2010] the neural network couples the

sensors with actuators; it uses a Leaky Integrate-and-Fire (LIF) feed-forward network

organised into 3 layers. The input layer comprises two 16x16 matrices combining the

input for both polarities, and is connected to a 4x4 sub-sampler layer where units are

in competition through lateral inhibition. Each neuron in the sub-sampler maps a 4x4
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receptive Veld in both input matrices. The more frequently cells in the sub-sampling

neuron’s receptive Veld Vre, the more likely that the sub-sampling neuron Vres, in-

hibiting other sub-sampling neurons - a Winner Take All (WTA) mechanism. Finally,

the output layer stimulates the actuators (Figure6.6), and is designed to maintain the

most salient stimuli in the central portion of the visual Veld. Outputs are also in com-

petition, to achieve better stability. The model was Vrst used to guide a robot during

the Telluride 2010 workshop1 on a test chip board, and then has consequently been

re-implemented for the full SpiNNaker chip, with the addition of wireless communi-

cation and a new retina interface 2.

Figure 6.6: The Neural Network used. 512 input neurons from the retina feed into
a hidden sub-sampler layer, and then to a competitive output layer to give the robot
direction.

The neural network was generated with a PyNN script, and uploaded to the SpiN-

Naker chip through the software process described in the previous chapter.

However this approach uses a PC in the loop which buUers AER events, defeating

the objectives of having an event based computing platform as the one described

in the previous section. In the next section the integration of SpiNNaker 102 and

103 machines with the robot, done in collaboration with the Technische Universität

München, will be presented.

The mobile robot used in this project is a custom developed omni-directional

1http://neuromorphs.net/nm/wiki/2010/rob10/SpiNNaker
2http://www.youtube.com/watch?v=WcwEr5cMSoM

http://neuromorphs.net/nm/wiki/2010/rob10/SpiNNaker
http://www.youtube.com/watch?v=WcwEr5cMSoM
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Figure 6.7: 4-chip board/OmniBot conVguration for the system used in Telluride 2012.

mobile platform of 26cm diameter, with embedded low-level motor control and ele-

mentary sensory systems, provided by the Cognition for Technical System (CoTeSys)

group of the Technische Universität München. An on-board ARM7 microcontroller

for robot control receives desired motion commands in the x and y directions and

rotation through a UART communication interface, and continuously adapts three

motor control signals (PD-control) to achieve the desired velocities. The robot’s inte-

grated sensors include wheel encoders for position estimates, a 9 degrees of freedom

inertial measurement unit (3 accelerometers, 3 gyroscopes, and 3 compasses) and a

simple bump-sensor ring which triggers binary contact switches, located at 60◦ in-

tervals on the robot circumference, upon contact with objects in the environment.

The robot can be used with both PyNN and Nengo, with PACMAN automating

the mapping process and enabling messages to and from the robot. SpiNNaker com-

municates with the robot through a small customised interface board with an ARM

Cortex micro-controller that translates SpiNNaker packets into robot commands and

sensory commands. A conVguration protocol, using MC packets, has been developed

to conVgure the AER packets associated with sensor events or robot commands. The

interface board is currently under improvement to allow higher data rates, so that

event based sensory systems (such as silicon retinas or cochleae) can get interfaced

directly to SpiNNaker. The overall system is a stand-alone, autonomous conVgurable

platform with no PC in the loop (except for loading the model on board). An example
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of the system used during the Telluride Neuromorphic Workshop 20123 is shown in

Figure 6.7.

6.3.1 Simple model of path integration

The Vrst network proposed uses a working memory to track the position of the agent

in space by integrating its own velocity commands (a process known as path integra-

tion) and to switch between two competing behaviours: free exploration and return-

ing home. As the agent moves freely in the environment its position with respect to

the initial position (home) is tracked in the working memory, modelled with Nengo

as a 2D integrator; when the return behaviour is activated, the position information

is used to return to the starting point.

To accommodate for the OmniBot movement on surfaces the Vrst step needed is

to extend the NEF integration for SpiNNaker to cope with bi-dimensional represen-

tations for inputs and outputs, so to be able to elaborate driving commands in the

XY plane.

This has been done by adding new 2D cell types for the NEF encoder and decoder

neural types, presented in the previous chapter, and interfacing them with Nengo,

both during the network creation phase (hence integrating it in PACMAN) and dur-

ing the simulation phase by linking it to Nengo’s simulation benchmark. This pro-

vides user control over the robot and visualisation of motor commands and internal

states of the model for bi-dimensional inputs and outputs. The network represented

in Figure 6.8 has been used to control the robot. The current state (behaviour) of

the robot is represented in the state population, which acts as an integrator (work-

ing memory); this area is therefore able to maintain the current state over time with

no additional input. The position 2D integrator population maintains the position of

the agent by integrating the neural driving commands sent to the motors by the drive
population. If the robot is in the explore state it can be driven using the commands in

Nengo, which are then sent as 2D values to the explore population on the SpiNNaker

board, which outputs the driving commands to the motors.

If the robot is in the return home state the driving commands are controlled by the

return population, which tries to compensate for the value in the position population

by sending opposite driving commands, hence returning to the origin point (home).
The script describing the network can be found in Appendix C.2.3. At Vrst the

explore and state populations are created and connected with their inputs. The state
3http://neuromorphs.net/nm/wiki/act12/results/OmniSpiNN

http://neuromorphs.net/nm/wiki/act12/results/OmniSpiNN
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Figure 6.8: Nengo network for the return home robot. The current state (behaviour)
of the robot is represented in the state population, which acts as an integrator (work-
ing memory) which is able to maintain the current state over time with no additional
input. The position integrator population maintains the position of the agent by 2D
integrating the neural driving commands sent to the motors. If the robot is in the
explore state it can be driven using the commands in Nengo, which are then sent as
2D values to the explore population on the SpiNNaker board, which outputs the driv-
ing commands to the motors by passing through the laptop’s wiV. If the robot is in
the return home state the driving commands are controlled by the return population,
which tries to compensate the value in the position population by sending negative
drive commands.
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population is self connected as well, as it serves as an integrator encoding input

commands in a working memory module:

# E x p l o r a t i o n b e ha v i o u r
ne t . make_input ( ’ i n pu t _ e x p l o r e ’ , [ 0 , 0 ] )

ne t . make ( ’ e x p l o r e ’ , 2 0 0 , 2 , i n t e r c e p t = ( − . 9 , . 9 ) , max_rate = ( 4 0 , 1 0 0 ) )

ne t . connec t ( ’ i n pu t _ e x p l o r e ’ , ’ e x p l o r e ’ )

# s t a t e i n t e g r a t o r
ne t . make_input ( ’ i n p u t _ s t a t e ’ , [ 0 , 0 ] )

ne t . make ( ’ i n p u t _ s t a t e _ e n c o d e r ’ , 2 0 0 , 2 , i n t e r c e p t = ( − . 9 , . 9 ) )

ne t . connec t ( ’ i n p u t _ s t a t e ’ , ’ i n p u t _ s t a t e _ e n c o d e r ’ )

ne t . make ( ’ s t a t e ’ , 4 0 0 , 2 , i n t e r c e p t = ( − . 9 , . 9 ) , max_rate = ( 4 0 , 1 0 0 ) , t a u _ r e f = . 0 0 2 )

ne t . connec t ( ’ i n p u t _ s t a t e _ e n c o d e r ’ , ’ s t a t e ’ , p s t c = tau )

# n e t . c o n n e c t ( ’ s t a t e ’ , ’ s t a t e ’ , t r a n s f o rm = [ [ 1 , − 0 . 1 ] , [ − 0 . 1 , 1 ] ] , w e i gh t = tau , p s t c = tau )
ne t . connec t ( ’ s t a t e ’ , ’ s t a t e ’ , t r an s f o rm = [ [ 1 . 1 , − 0 . 1 ] , [ − 0 . 1 , 1 . 1 ] ] , weight= tau , p s t c = tau )

The position population, integrating the motor commands of the drive population
in a 2D integrator is then created and connections are built.

# p o s i t i o n i n t e g r a t o r
ne t . make ( ’ p o s i t i o n ’ , 1 000 , 2 , r a d i u s =1 , i n t e r c e p t = ( − . 5 , . 5 ) , max_rate = ( 4 0 , 1 5 0 ) )

ne t . make ( ’ d r i v e ’ , 4 0 0 , 2 , i n t e r c e p t = ( − . 9 , . 9 ) )

ne t . connec t ( ’ d r i v e ’ , ’ p o s i t i o n ’ , weight= tau , p s t c = tau )

ne t . connec t ( ’ p o s i t i o n ’ , ’ p o s i t i o n ’ , p s t c = tau )

Two gain populations and then created and connected, and are used to control the

behaviour of the robot in the exploring and returning home state, and their eUects

on the drive population, which in turn controls the motors.

# ga in e x p l o r e
ne t . make ( ’ g a i n _ e xp l o r e ’ , 4 0 0 , 3 , r a d i u s = 1 . 4 , i n t e r c e p t = ( − . 9 , . 9 ) , t a u _ r e f = . 0 0 2 , max_rate

= ( 4 0 , 1 0 0 ) )

ne t . connec t ( ’ e x p l o r e ’ , ’ g a i n _ e xp l o r e ’ , i n d ex_po s t = [ 0 , 1 ] )

ne t . connec t ( ’ s t a t e ’ , ’ g a i n _ e xp l o r e ’ , func=lambda x : [ 0 , 0 , max ( x [ 0 ] , 0 ) ] )

ne t . connec t ( ’ g a i n _ e xp l o r e ’ , ’ d r i v e ’ , func=lambda x : ( x [ 2 ]∗ x [ 0 ] , x [ 2 ]∗ x [ 1 ] ) )

# r e t u r n b e ha v i o u r
ne t . make ( ’ r e t u r n ’ , 2 0 0 , 2 , i n t e r c e p t = ( − . 9 , . 9 ) )

ne t . connec t ( ’ p o s i t i o n ’ , ’ r e t u r n ’ , weight =−1)

ne t . make ( ’ g a i n _ r e t u r n ’ , 2 0 0 , 3 , r a d i u s = 1 . 4 , i n t e r c e p t = ( − . 9 , . 9 ) )

ne t . connec t ( ’ r e t u r n ’ , ’ g a i n _ r e t u r n ’ , i n d ex_po s t = [ 0 , 1 ] )

def g a i n _ r e t u r n ( x ) :

return [ 0 , 0 , max ( x [ 1 ] , 0 ) ]

ne t . connec t ( ’ s t a t e ’ , ’ g a i n _ r e t u r n ’ , func= g a i n _ r e t u r n )

ne t . connec t ( ’ g a i n _ r e t u r n ’ , ’ d r i v e ’ , func=lambda x : ( x [ 2 ]∗ x [ 0 ] , x [ 2 ]∗ x [ 1 ] ) )
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Figure 6.9: Basal ganglia model from Stewart et al. [2010b], based on Gurney et al.
[2001].

The systemwas demonstrated live at the Telluride Neuromorphic workshop 20124.

The video shows the robot performing the task: at Vrst the robot is controlled man-

ually by inputting x and y coordinates to the explore population, responsible for

encoding moving directions into neural activity; as the state population (also con-

trolled externally by a bi-dimensional population controlling the gain of each of the

two behaviours) is switched from controlled exploration to autonomous return home

behaviours, the gain of the former behaviour decreases as the (autonomous) return

behaviour, mediated by the return population which tries to compensate for the value

represented in the position population, controls the drive population back to the free

exploration starting point. A demonstration of the system can be found the video

NEF Return Home Nengo Model running on SpiNNaker.mp4 in Appendix C.3.2.

Adding Basal Ganglia for state selection

The model above is coupled with a biologically plausible NEF model of basal ganglia

presented in Stewart et al. [2010a] for selecting the state, where the basal ganglia

selects the plan accordingly to the state represented in the working memory. Intro-

duction of basal ganglia provides the possibility of manipulating inferences through

IF-THEN clauses, hence implementing a neural based production system [Stewart

et al., 2010b], as the basal ganglia is is generally considered the structure responsible

for action selection of diUerent actions with diUerent utility values [Redgrave et al.,

1999].

4http://www.youtube.com/watch?feature=player_embedded&v=GVRRVRB_deA

http://www.youtube.com/watch?feature=player_embedded&v=GVRRVRB_deA
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Figure 6.10: Nengo network for the return home robot with basal ganglia replacing
the state integrator for action selection in the model described in Section 6.3.1.

The model of basal ganglia, originally based on Gurney et al. [2001], is presented

in Figure 6.9, where light lines represent excitatory connections while dark lines

represent inhibitory ones. Input from the cortex (as from a working memory, coding

for the utility of a speciVc action such as explore) produces excitation in the striatum

and in the sub-thalamic nuceli (STN): such excitatory inputs from the cortex are

mediated by the striatum D1 cells, which inhibit corresponding areas in the globus
palllidus internal (GPi) and in the substantia nigra pars reticulata (SNr), while cells

from the striatum D2 and globus pallidus external (GPe) areas form a modulatory

control structure. GPi and SNr areas can be considered the output of the structure;

as output from the basal ganglia is inhibitory, the selected output’s activity is turned

oU to prevent inhibition. The model parameters are biologically constrained, and

latencies and response timings comparable to humans, emerge by the selection of

realistic neural time constants.

In this context the state input can be thought of as representing the behavioural

value of selecting a particular action (explore or return home); the basal ganglia

selects the appropriate actions by controlling the gains into the drive population,

associating diUerent behaviours to diUerent states.

The model comprises 5000 neurons and 2.95M synapses on 49 cores of a SpiN-

Naker 102 board. Figure 6.10 shows the position integrator already discussed, in

conjunction with the basal ganglia module. In this model the SpiNNaker board is for
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the Vrst time mounted directly on top of the robot and controls its motor directly5.

Communication from Nengo to SpiNNaker (driving command values to input

populations, visualizing neural responses) is done through wiV, while SpiNNaker

sends and receives inputs/commands directly from/to the robot.

6.3.2 Spiking ratSLAM

Previous sections have proposed naive models of path integration, which share lit-

tle or no resemblance to their biological counterparts. The hippocampus is notori-

ously able to hold invariant memory representations, in particular of high level con-

cepts such as objects (as described earlier by the experiments of Quian Quiroga et al.

[2005]) or places; some hippocampal cells in rats are able to selectively encode loca-

tion in space in their activity, and have therefore been called place cells: whenever
the animal returns to a familiar place the corresponding place cells show a dramatic

increase in activity [O’Keefe and Dostrovsky, 1971]. Analogously to receptive Velds,

the area (location) where a place cell responds can be called a place Veld. As the

animal moves in space, Vrings from place cells can be used to build a cognitive map
of the environment, a concept that has been researched since the early days of cog-

nitive psychology [Tolman, 1948]. Such a cognitive map makes navigation through

complex mazes and remembering the location of interesting stimuli possible.

In this section it is shown how place Velds can be constructed utilizing the model

presented by Blair et al. [2008], representing it with Nengo on SpiNNaker and run-

ning it on a robot, introducing a model for self localisation and mapping (SLAM)

on a robotic rat (ratSLAM). The model is Vrst shown in the mono-dimensional case,

and then is extended to the bi-dimensional case, while also adding a basal ganglia

structure to navigate autonomously between diUerent places conditionally to pre-

viously visited places. The integration with the robot constitutes a step towards a

neuro-physiologically plausible ratSLAM model.

Model of theta, grid and place cells

To navigate complex mazes and remember the location of important places as home

and food, rats take advantage of cells in the hippocampus that respond when it is at

speciVc locations, and when it has covered speciVc distances. This system, known as

path integration, enables the animal to integrate the velocity of its own movements

5http://www.youtube.com/watch?feature=player_embedded&v=MrumEW2oxbc

http://www.youtube.com/watch?feature=player_embedded&v=MrumEW2oxbc
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Figure 6.11: The theta oscillator model for place cells from Blair et al. [2008]. As a
rat moves at a constant speed, a theta oscillator (red), with a preferred velocity and
orientation modulating its oscillating frequency, interferes with a reference oscillator,
representing the underlying theta rhythm (green); such interference produces an
"envelope" waveform, a new beat, low-frequency, oscillation (magenta) riding on a
high-frequency carrier (blue). Complex bursts of spikes are produced at the peaks of
the carrier frequency which is in the constructive interference phase with the beat
oscillation, and have a speciVc phase relationship (phase procession) with the Vrst
(red) oscillator, as shown at the bottom of the picture.
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over time to update its position in a cognitive map of the environment. The position

of the rat is encoded with a phase code, associating a pattern of phase angles between

velocity-modulated theta oscillators, oscillating at 8-12Hz, to a speciVc place. Place

cells receive their inputs from grid cells, which conversely show periodic activity

when the animal is at the vertices which form a geometrically-arranged, hexagonal

lattice pattern, or grid Veld, which extends over the environment perceived by the

animal.

Blair et al. [2008] propose that path integration is performed through the gen-

eration of sub-cortical theta rhythms, which serve as a central pattern generator

producing velocity-modulated theta rhythms. Such rhythms can be modelled by ring

attraThe current state (behaviour) of the robot is represented in the state population,

which acts as an integrator (working memory) which is able to maintain the current

state over time with no additional input. The position integrator population main-

tains the position of the agent by 2D integrating the neural driving commands sent

to the motors.

If the robot is in the explore state it can be driven using the commands in Nengo,

which are then sent as 2D values to the explore population on the SpiNNaker board,

which outputs the driving commands to the motors by passing through the laptop’s

wiV.

If the robot is in the return home state the driving commands are controlled by

the return population, which tries to compensate the value in the position popula-

tion by sending negative drive commands.ctor networks, where velocity controls the

frequency of the oscillation. As a rat enters a place Veld, the corresponding place cell

starts emitting bursts of spikes within a single theta cycle, with a stereotypical phase

relationship with theta oscillations recorded locally with EEG. This observation can

be explained by the model illustrated in Figure 6.11: as a rat moves at a constant

speed, a theta oscillator (red), with a preferred velocity and orientation modulating

its oscillating frequency, interferes with a reference oscillator, representing the un-

derlying theta rhythm (green); such interference produces an "envelope" waveform,

a new beat, low-frequency, oscillation (magenta) riding on a high-frequency carrier

(blue). Complex bursts of spikes are produced at the peaks of the carrier frequency

which is in the constructive interference phase with the beat oscillation, and have

a speciVc phase relationship (phase procession, O’Keefe and Recce [1993]) with the

Vrst (red) oscillator, as shown at the bottom of the picture. In this model the place
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and grid cells are constructed by many theta cells with diUerent velocity tunings in-

terfering. The frequency of oscillation of the theta cells increases (decreases) when

the rat’s velocity is matched (unmatched) to the preferred velocity of the individual

theta oscillator. Hence, the frequency of oscillation tracks the velocity of the rat,

while the phase of the oscillation, relative to the unperturbed oscillator, tracks the

distance covered by the animal.

In the Vnal part of this chapter it is demonstrated how this approach can be

used to endow a mobile robot with real-time place and grid cells, and how they

can be used in navigation to perform the role of a Simultaneous Localization and

Mapping (SLAM) system for the robot, and has been developed in conjunction with

Terry Stewart and Ralph Etienne-Cummings (model description in Nengo) and Jorg

Conradt (robot interface).

Mono-dimensional case

In the mono-dimensional case, when the animal is running in a linear track, grid

cells can be constructed using the interference model, presented in the previous sec-

tion, to create cells responding to vertex bumps located periodically at evenly spaced

intervals along the track, by having their oscillation frequency as a function of the

movement velocity. Two theta oscillators will then interfere, creating a waveform

whose beat oscillation is proportional to the spatial period λ. A grid cell will then

respond in every location x+ kλ, where k is an arbitrary integer. Grid cells can then

convert a phase signal, such as the diUerence in phase of multiple theta oscillators,

into a bump of activity, or a periodic (Vring) rate signal.

From these considerations Blair et al. propose that the neural substrate for po-

sition to phase coding is the same as the one used to generate velocity-tuned theta

oscillations, with grid cells receiving inputs from sub-cortical ring attractor networks

located in the midbrain and mammillary cortex, tuned to the velocity of the move-

ment of the rat. These structures serve as a central pattern generator for velocity-

tuned theta rhythms, encoding velocity in the frequency of oscillation. Grid Velds

can interfere to create moiré grids [Blair et al., 2007] that replicate a scale-invariant

hexagonal lattice over the rat’s environment. Such grid Velds are then connected to

place cells, performing a weighted sum of this input, constructing a Gaussian place

Veld as a linear sum of grid Velds of diUerent periods, where the diUerent spatial

frequencies represented by the grid Velds are the basis used to reconstruct a position

in a Gaussian place Veld.
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Figure 6.12: Nengo network model for path integration, mono-dimensional case.

The network used for this work6 is illustrated in Figure 6.12: 8 oscillators have

been modelled as velocity-controlled ring attractors, like the one described in Section

5.3.2, which receive, as input, the translational velocity of the robot from the same

population used to control it (externally from Nengo). The oscillators (grid Velds)

are then connected to the populations representing the two place Velds (cheese and
home), where weights are determined by Nengo to perform phase-based extraction of

the location, as the place is encoded in the phase diUerences of the velocity controlled

and reference oscillators.

The model, written in Nengo and simulated on a SpiNNaker 4-chip board directly

interconnected on the robot, comprises 2,700 neurons and 840,400 synapses, running

on 36 ARM cores (3 SpiNNaker chips out of 4 in the board); results7 show the ability

of the model to perform path integration, by showing preferred activity of two place

cells (home and cheese) for two distinct locations on a linear track. Figure 6.13 shows

the robotic platform (top left), controlled with Nengo, navigating to the cheese land-

mark, and the cheese place cell (rightmost red box on the bottom) responding with

a bump of activity while the home place cell (leftmost red box on the bottom) does

not show activity. A demonstration of the system can be found in Appendix C.3.2

(Embedded SpiNNaker robotic platform running a Nengo model of hippocampal place
cells 1D.mp4), while the full script modelling the network can be found in Appendix

C.2.3.

6http://neuromorphs.net/nm/wiki/act12/results/Combined
7http://www.youtube.com/watch?feature=player_embedded&v=5bFc9csp3-s

http://neuromorphs.net/nm/wiki/act12/results/Combined
http://www.youtube.com/watch?feature=player_embedded&v=5bFc9csp3-s
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Figure 6.13: The robot/SpiNNaker platform navigating to the cheese place Veld in a
video from the Telluride 2012 neuromorphic workshop. While the robot is navigating
to the cheese landmark, the cheese place cell (rightmost red box on the bottom) is
responding with a bump of activity while the home place cell (leftmost red box on
the bottom) does not show any activity.

Bi-dimensional case

The mechanism used to construct models of grid and place cells from theta oscilla-

tors can be extended to the bi-dimensional case as demonstrated in Blair et al. [2007],

where scale-invariant grid Velds are organised in a hexagonal mesh tessellating the

animal environment. The extension in two dimensions is achieved by postulating

the existence of theta oscillators modulated by both a velocity and a direction sig-

nal; Position of the animal is therefore encoded in oriented velocity signals. This is

equivalent to modelling independent oscillators that encode for the same spatial fre-

quency λ, each responding to a preferred speed and direction encoded in a velocity

vector. Grid Velds, constructed in such a way, constitute a basis for constructing a

radial Gaussian Veld analogous to the mono-dimensional case.

To obtain autonomous navigation the model has been extended with a working

memory module as integrator, representing the state of the system, and a basal gan-

glia module which acts as a production system: based on the cortical representation

of the last place visited, the applicability of 6 rules is computed, and this information

is passed into the striatum and STN areas of basal ganglia, which then connect onto

the GPe and GPi areas, producing a thalamic output that indicates which of the six

actions to perform.
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Figure 6.14: SimpliVed Nengo network for the bi-dimensional ratSLAM model.

The Nengo network used for this experiment is presented in Figure 6.14 in a sim-

pliVed form: inputs (grey) are not used, as the basal ganglia eUectively controls the

navigation, while a synchronization input is given at the beginning of the simulation

to synchronize the phase of the diUerent oscillators; grid Velds are modelled with 24

oscillators representing 8 speeds × 3 directions; grid Velds are connected to 4 place

cells (green); place cells update the state module, a cortical representation (work-

ing memory) representing the last place visited (blue) and the direction (cyan); this

information is used by the basal ganglia (orange) to plan the next action by control-

ling the drive population (red), which feeds back its signal to the velocity/direction

modulated oscillators. Grid and place cells are connected by means of proxy popu-

lations used to decrease the fan-in of place cells, and are not shown in the Vgure for

simplicity.

Overall the model comprises 13,910 neurons in 230 populations Vring in the 40-

100 Hz range, and 4,806,500 synapses in 1601 projections; a total of 670 ARM cores

are used, corresponding to 42 SpiNNaker chips. A 48-node SpiNNaker board which

is mounted directly on the robot and which communicates with it through a micro-

controller based interface, is responsible for translating MC packets into commands

for the robot. The overall power consumption of the board running the model is 23W.

Results of the robot detecting 3 diUerent place cells while being manually controlled
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Figure 6.15: The robot/SpiNNaker platform detecting 3 places: (a) the robot is in place
0, the corresponding top right place cell is active (b) the robot moves to place 1 (top
left place cell) (c) the robot moves to the place 2 cell.

are shown in Figure 6.15 (see Appendix C.3.2 - Hippocampal place cells model using
an holonomic robot and SpiNNaker.mp4).

The system is able to navigate autonomously between four diUerent places, de-

tecting its position and changing trajectory accordingly to the last place visited. An

example of a running experiment is shown in Figure 6.16 and 6.17: the robotic plat-

form (top left) leaves the Vrst place cell and its activity goes to zero (output2), and

therefore the action plan in the basal ganglia (output1) changes as well. The video

demonstrating the behaviour of the system can be found in Appendix C.3.2 (Au-
tonomous navigation in a cortical-hippcampal-place cells-basal ganglia neuromorphic
model), while the Nengo script modelling the network can be found in Appendix

C.2.3.

6.4 Summary

This chapter has proposed a Wexible, reconVgurable, event-based platform that can

be used for building complex network models. The experiments presented run in
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(a) The RatSLAM 2D model as the robot leaves the Vrst place cell.

(b) The RatSLAM 2D model as the robot leaves the second place cell.

Figure 6.16: The RatSLAM 2D model autonomously navigating through 4 place cells.
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(a) The RatSLAM 2D model as the robot leaves the third place cell.

(b) The RatSLAM 2D model as the robot leaves the fourth place cell.

Figure 6.17: The RatSLAM 2D model autonomously navigating through place cells 3
and 4.
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Figure 6.18: The SpiNNaker/robot platform.
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real time on SpiNNaker. Interaction with the environment via AER-based-sensors

and robotic platforms is possible through custom AER interfaces; the Vrst example

proposed is the FPGA used to connect the retina in the visual attention model; the

second is the micro-controller board used to control the robot in the ratSLAM ex-

periment. A realization of the platform, done in collaboration with the Technische

Universität München, is presented in Figure 6.18: a 48-node SpiNNaker board is con-

nected to the robot and to its sensors (including two silicon retinas) by means of the

microcontroller board, handling translation of multicast AER packets from and to

SpiNNaker using the bottom left asynchronous link of chip 0,0.

Sensors and robots become resources accessible at the model level: for example by

creating a population representing the retina in PyNN, or a motor output population

that encodes Vring rates into motor commands for the robot. The mapping process

manages them as custom entities, and provides the infrastructure seamlessly to place

them on the system, for example by modifying routing table entries to route the

appropriate motor-command MC packets to the link connected to the robot.



Chapter 7

Conclusions

Understanding how the brain works is a very ambitious project, which is shared by

scientists from diverse disciplines studying at many diUerent levels of abstraction,

from molecules to behaviour as mentioned by Churchland and Sejnowski [1992] (Fig-

ure 7.1). Researchers are producing increasingly accurate data on morphology and

dynamics, how they interconnect forming local and long-range circuits, and how

activity in diUerent brain areas correlates with behaviour.

Data from multiple laboratories is being consolidated into mathematical models,

which are continuously reVned within the computational neuroscience community.

Computer simulations of such models are therefore essential tools to formalize, test,

and verify hypotheses. Simulation of large models is extremely challenging, due to

the computational and communication requests in the simulation of many elements

and propagating activity between them; this limits simulation on standard comput-

ers, and simulation on supercomputers very expensive in terms of power.

The need for more powerful machines is a shared interest of engineers and com-

puter scientists who seek inspiration from biology for new computational methods to

Vll the gap between human and machine intelligence. This interest is not surprising,

as the brain is a very power-eXcient and fast information elaboration system, and

reverse-engineering the brain is a grand challenge of the National Academy of Engi-

neering1. Networks of biologically inspired neurons are massively parallel systems,

making them prime candidates for exploring novel distributed algorithms.

ConVguring and distributing algorithms, such as networks of neurons on parallel

architectures, imposes hardware- and model-speciVc challenges: placing the model

on diUerent nodes for cluster computing needs to balance the computational load

1www.engineeringchallenges.org/?ID=9605
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Figure 7.1: Levels of investigation in computational neuroscience, from Churchland
and Sejnowski [1992].

equally to eUectively exploiting parallelism [Morrison et al., 2005]; bias generations

for VLSI systems need to be conVgured at runtime to compensate mismatch [Indiveri

and Chicca, 2011]; FPGAs use synthesis tools to implement neurons and synapses in

terms of circuitry eXciently; tools for conVguring GPUs need to be used to gener-

ate code solving neural equations [Goodman, 2010], and to maximize performance

in memory access by organizing synaptic data in coalesced structures [Brette and

Goodman, 2012].

SpiNNaker enters the computational neuroscience community with its own spe-

ciVc set of performance and hardware features. A reconVgurable, eXcient communi-

cation system, connecting many power-frugal, programmable digital cores has Wex-

ibility as one of its key features. Such Wexibility is exposed with an approach that

maps the model to the system, by abstracting the hardware from the language used

to describe the model. Using the methods described in this thesis it has been possible

to show real-time performance in simulating thousands of neurons and millions of

synapses with diUerent models.

Whilst Wexibility is a strongly motivated feature, separation of concerns is the prin-
ciple adopted when designing the mapping system. In particular, diUerent concerns
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are:

• The user interface, which makes the system accessible through a standard

language such as PyNN or Nengo, without prior hardware knowledge.

• The algorithms performing the mapping process (PACMAN).

• The data accessed and transformed by such algorithms, stored in a database,

along with all the data describing the hardware and modelling resources.

Separation of concerns is also used to organize data in three diUerent representations:

one concerning the neural model; a second intermediate PACMAN representation;

and a Vnal description of the model mapped onto the machine, and compiled to run.

Being modular, the mapping process can easily be extended without a radical rewrite

of the whole software stack, avoiding the monolithic application pitfall [Cornelis

et al., 2012]. This enables, for example, the possibility to provide user-level control

over the mapping of network elements to hardware resources, making the approach

very Wexible. Modularization contributes also in isolating and optimizing the under-

performing modules in the system, as required to scale up the implementation of the

mapping approach to bigger SpiNNaker systems. In particular the binary data struc-

ture compilation has been parallelised, with diUerent processes generating structures

for each chip. This starts from an abstracted representation of the model, which rep-

resents how Population and Projections are mapped onto a physical instantiation of a

SpiNNaker system. Parallelization of this last, and very compute-intensive, step hints

to the possibility of exploiting the parallel nature of SpiNNaker to self-conVgure and

compile such data structures directly on the system, a step necessary to rapidly con-

Vgure SpiNNaker systems much larger than the ones considered in this thesis.

The mapping approach can be rapidly expanded to accommodate new modelling

or hardware resources in a consumer-producer model, where modelling resources

are consumers of hardware resources such as computing cores, memory and com-

munication bandwidth and routing entries. Rather than being specialised for a single

neural or network model, or a to a single sensor or modality, the platform is a Wexible

and eXcient exploration tool, whose aim is to let students and researchers experi-

ment with an event-driven, biologically inspired system. Integration with diUerent

languages makes modelling possible at three levels of abstraction:

• Unit Level: by using C with the SpiNNaker API proposed in Sharp et al. [2011]

to design custom neural and learning algorithms, or more generally to program
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single units of a parallel, event-driven, real-time system, and map them using

the approach proposed in this thesis.

• Network Level: by using PyNN to conVgure network topologies and neural

parameters.

• Functional level: encoding functions in neurons by using the Neural Engi-

neering Framework, a formal method for mapping control-theoretic algorithms

onto the neural connections between populations of spiking neurons.

The mapping approach presented in this thesis was demonstrated by simulating

heterogeneous models (even concurrently) on the system, opening new possibilities

for mixed event-driven approaches, real-time systems interacting with the environ-

ment via AER sensors and robots.

Novel event-based computation paradigms inspired by the asynchronous, par-

allel and real-time nature of AER sensors, are being introduced, using time as the

main information coding mechanism. Driven by visual sensors, event-based ASICs

and novel models are proposing alternatives to frame-based visual processing. These

assumptions have, for example, been used by Serrano-Gotarredona et al. [2006] to

propose an asynchronous, event-based neuromorphic chip capable of performing

convolutions with a programmable kernel on the silicon retina optical Wow, or by

Benosman et al. [2011] proposing an event-based derivation of epipolar geometry.

Event-driven computation Vnds in SpiNNaker a natural hardware substrate, as

demonstrated by the work done in this thesis. Network models, integrating AER

sensors and robots, can use SpiNNaker as an event-based, neural computational plat-

form, conVgurable with standard languages, and capable of rapidly integrating a va-

riety of diUerent models through PACMAN.

Rather than being mutually exclusive these approaches can run concurrently on

a conVgurable, parallel event-driven SpiNNaker system, mimicking the functional

segregation and specialization of brain areas [Tononi et al., 1998], integrating them

in a process running on the same platform. The approach described in this thesis is

able to map such functionally-specialised structures (programs running on a cores)

exchanging AER signals, encoding information in the type, source and timing the

of an event (MC packet). While some portions of a model might need high bio-

logical Vdelity, others might be modelled with simpler neurons, or more generally

by transponders responding to events [Izhikevich and Hoppensteadt, 2009], or with

units performing functions as in the convolutional network case.
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Such Wexibility has a key role in presenting SpiNNaker as a new eUective tech-

nology in the neuromorphic Veld, enabling researchers and students from interna-

tional institutions to use SpiNNaker hardware: there are active collaborators using

the methods described in this thesis at the Ecole Polytechnique Federal de Lausanne,

the Technische Universität München, the Highly-parallel VLSI Systems and Brain

Microelectronics group of Dresden, the Institute for Neuroscience and Medicine in

the Technische Universität Jüllich and the Department of Informatics in the Univer-

sity of Sussex.

Some collaborations were fundamental in the research reported in this thesis:

the collaboration with the University of Waterloo on porting the Neural Engineering

Framework to SpiNNaker (described in Section 5.3, Galluppi et al. [2012c]); the col-

laboration with the University of Seville in interfacing the silicon retina (described in

Chapter 6, Galluppi et al. [2012a]); the collaboration with the University of Munich

(TUM) in the robotic platform presented in Chapter 6 [Galluppi et al., 2012b].

Interfacing AER sensors with SpiNNaker has already proven to be a fruitful re-

search area, and diUerent groups are working on prototype interfaces: the Institut

de la Vision in Paris is working on interconnecting SpiNNaker with the ATIS (Asyn-

chronous Time-based Image Sensor, [Posch et al., 2010]); the Biology group at the

University of Osaka have successfully interconnected a neuromorphic visual sensor,

inspired by the sustained and transient responses of the retina [Kameda and Yagi,

2003], to SpiNNaker; the Institute of Neuroinformatics in Zurich is working on in-

terfaces with a neuromorphic silicon cochlea [van Schaik and Liu, 2005].

All the contributions described in the thesis converge in the SpiNNaker-robot

platform, a Wexible systemwhich exploits the synergy of diUerent elements present in

the research Veld: fast, power-eXcient neuromorphic AER sensors and SpiNNaker as

an event-driven, eXcient computational system that can be conVgured with standard

tools already present in the computational neuroscience milieu.



Appendix A

Rank order codes and
polychronization combined

This appendix describes in details the work presented in Using Polychronization to
decode rank order codes in a network of spiking neurons [Galluppi and Furber, 2011].

Rank order coding can be used to encode information in the spike timings of an input

population and polychronization can be used by a post-synaptic neuron to decode a

temporal pattern emitted by a source population by compensating the latencies with

the axonal delays.

Polychronization then seems the natural candidate to decode rank order coded

inputs. If we look again at Figure 2.15 we can think of the Vring patterns in neurons

1, 2 and 3 as two distinct rank order codes, and the two output neurons A and B as

responders to a particular rank order code.

In theory a network exploiting connections delays value can be devised so to

compute the number of neurons requested and their combination. Instead in this

work a polychronous layer is connected to the input source with random delays. This

layer acts as a spiking neural implementation of a sparse distributed memory[Furber

et al., 2007] in spiking neural networks which is able to store and recall rank order

codes.

Proposed Model Architecture

In order to test the hypothesis that rank order coding and polychronization can be

coupled to eUectively represent information in a neural network a 3 layers model is

proposed. All neurons are modeled as Leaky Integrate-and-Fire (LIF).
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Figure A.1: Model architecture.

The input code is proposed at the input layer after a training phase with STDP

and 200 random input codes. Neurons in the polychronous layer respond to diUer-

ent time locked properties of the output (parts of the input code with convergent

delays will make a polychronous neuron Vre). The combination of the polychronous

neurons active are then learned by the output neuron through a supervised learning

process.

The Vrst layer is a population composed by 10 neurons. The coding strategies

will determine the Vrings in the input layer. We have tested the system with a 7-
of-10 rank order (like the one shown in 2.12(c)with N=7 and M=10) code and then

with a rank order code coding for intensity. In this case all the input neurons in the

population layer Vred accordingly to the intensity of the stimulation (example b in

Figure 2.12).

The Vrst layer connects through a Spike-Timing dependent plasticity (STDP)[Song

et al., 2000][Bi and Poo, 1998] projection to the polychronous layer, which is formed

by 1000 LIF neurons, intrinsically connected by inhibitory connections in a Winner-

Take-All[Maass, 1999] pattern in order to avoid that two neurons learned the same

pattern. The connection is made with 30% probability, and the delays are uniformly

distributed in the range of the length of the code, letting the post-synaptic neuron

potentiate subportions of the codes with convergent delays. In this way diUerent

neurons in the polychronous layer will detect diUerent parts of the input code, ac-

cordingly on how delays converge on them.

Each code will then be represented by a diUerent set of neurons in the poly-

chronous layer responding to a precise time sequence of the inputs. In this sense the

polychronous layer acts as a sparse distributed memory[Kanerva, 1988]: the input is
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Figure A.2: STDP training phase in the polychronous layer: the combination of neu-
ron activated in the polychronous layer is diUerent for every code. 200 codes used in
the simulation, every code lasts 250 ms.

represented in a higher dimensional space where the elements respond to parts of

the input code, accordingly to how much their delays match part of the input pat-

tern. This connections are trained with STDP in a preliminary tuning phase where

200 randomly picked symbols are submitted to the network, in order to make the

neurons adaptively respond to diUerent convergent delays. After this phase STDP

is turned oU, and the polychronous layer is capable of represent and discriminate

diUerent input codes.

To prove our hypothesis we implemented a supervised learning strategy which

only purpose is to verify that an output neuron can be associated to an arbitrary code

and discriminated against other codes and noise. This supervised learning phase is

used to map the output neuron to a combination of the activity in the polychronous

layer so to make the output (detector) neuron respond only to a particular combina-

tion of aUerents. The learning is based on the change of the weight accordingly to

an external supervised signal. Therefore it does not exploit the timing code of the

system (is indipendent from time) and it doesn’t aUect the timing behaviour of the

model (all delays are set to 1 ms). This shows that all the information is actually

stored in the polychronous sparse distributed memory layer.
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Simulations and Results

Tuning the polychronous layer with STDP: Simulations were carried as follows:

at the beginning the network is trained with 200 random symbols coded as described

in the previous section in order to let STDP shape the connections; although some

input codes share some neurons, the combination of neuron activated in the poly-

chronous layer is diUerent for every code. As a net eUect STDP potentiated 30% of

the connections. After this phase STDP is turned oU, and the only learning that

occurs is the one in the next supervised learning association phase.

Associating a code to a detector neuron with supervised learning: In this

phase a code is selected to be learned and is presented at the input layer repeatedly,

while a supervised learning algorithm is used to map the desired combination of

input to the output neuron[Ponulak]. The weights is changed upon the receipt of

an external control signal so to train it to respond to the combination of neurons

Vring in the polychronous layer (the weights in the polychronous layer don’t change

since STDP is turned oU). All the neurons from the polychronous layer project to the

output neuron with an initial weight set to 0 in order to let the training potentiate

only the ones that contribute to the right code. The supervised learning algorithm

used is structured as follows:

• the code is presented at the input layer and activates a subset of neurons in the

polychronous layer

• if the output neuron Vres learning is completed

• else the weight is increased and the process is repeated

Such process ensures that the output neuron will Vre only when the combination of

neurons in the polychronous layer is detected, hence mapping the combination of

input to the output. It also does not alter the timing properties of the system since all

the delays are set to 1 ms. An example of the supervised learning phase is presented

in Figure A.3.

Testing N-of-M rank order codes

In this test we trained the output neuron to respond to a rank order code of 7 out of 10

neurons Vring each with a diUerent position encoded in the Vring time (see Vg 2.12(c)

and Vg A.6). Accordingly to our prevision, after the output neuron is trained it only
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Figure A.3: The output neuron is trained to respond only when the combination of
Vrings in the polychronous layer appears. This is done by increase the weight until
a spike is produced (in this case at sec 10 of the simulation).
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Figure A.4: Membrane potential of the output neuron during the presentation of two
codes.

responds to the combination of Vring neurons in the polychronous layer associated

with the input code, otherwise it exhibits sub-threshold oscillations but stays silent.

An example of the output neuron membrane potential in case of the presentation of

the matching code and of a code with two positions inverted is presented in Figure

A.4(a) and A.4(b) respectively.

Since the process can be repeated with as many output neuron and input codes

as desired, is possible to train an arbitrary number of output neurons to respond to

diUerent input codes. To test the robustness of the learning we tested the network

with 1000 diUerent inputs, inserting the learned input code amongst them. Results
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Figure A.5: Contribution in terms of population mean Vre rate of noise to the normal
activity of the input population

of the test are reported in Figure A.6. It can be seen that only when the learned code

(on the right) is presented the output neurons Vre; all the other codes are not capable

of let the output neuron cross its Vring threshold, set at -40 mV.

Testing intensity rank order codes in a noisy regime

We repeated the procedure for a network coding intensity of the stimulus at the input

layer by using rank order coding[Van Rullen et al., 1998] as shown Vg2.12(b) and Vg

A.5. The learned pattern can be observed in Figure A.7. After the learning phase we

observed that the output neuron was responding only to the selected code, as in the

previous experiments, so we added a Poissonian noise source at the input layer with

mean Vring rate of 2Hz (equal to 25% of the input mean Vre rate, as shown in Vg A.5).

Despite of that the output neuron is still able to respond only to the learned code, as

shown in Figure A.7. Increasing the noise above the 30% of the original signal leaded

to false detection (results not shown - 2 false detections on 100 symbols tested).
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Figure A.6: The output neuron spikes only when the learned code is presented

Figure A.7: The output neuron Vres only when the learned code is presented.
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Discussion

The results of the tests show that rank order coding and polychronization con be

used together as an eXcient code representation strategy. The supervised learning

algorithm proposed in the model is a shows that the information is encoded only

in the polychronous layer. It is diUerent from previous proposed models[Thorpe

et al., 2001][Delorme and Thorpe, 2001] because it uses a polychronous layer as a

spiking neural implementation of a sparse distributed memory[Furber et al., 2007] to

represent the code and a supervised learning strategy to learn it, rather than using

shunt inhibition[Chance and Abbott, 2000]. Even in this basic form the learning has

conVrmed that the polychronous layer is capable of representing rank order codes in

a way that can be disambiguated by a detector neuron.

More realistic methods of association can be implemented, for instance by using

an STDP regulated by a signal as dopamine[Izhikevich, 2007]. Such control signal

can be externally generated in supervised learning algorithm or can be generated

by another portion of the network such as a value system[Sporns et al., 2000] in an

unsupervised adaptive learning. The polychronous layer exploits the capabilities of

polychronization by a minimum extent, in the sense that there’s no plastic internal

connection that can lead to the formation of polychronous groups inside the layer

itself [Izhikevich et al., 2004]. Further tests in this direction are needed to verify

the possibility of associating diUerent code sequences together represented by poly-

chronous groups within the polychronous layer.

If the spikes are considered to be produced by the same source the polychronous

layer can code for diUerent patterns where Vne recognition is given by the inte-

gration where time codes signiVcance. But the same input can be considered to

be generated by diUerent source areas each coding a diUerent feature in parallel in

functionally specialised maps[Tononi et al., 1994]. The polychronous layer could be a

converging neural association area as the prefrontal cortex[Miller and Cohen, 2001].

Integration from diUerent areas can then be done by coding the origin of the contri-

bution into the delay to the associative area. The time order code could be embedded

in oscillatory brain rhythms in order to have a common time reference (eg. gamma

rhythms, which have been proposed to underlie the binding of diUerent features into

a single perceptual entity [Tononi et al., 1992, Singer and Gray, 1995]). Such oscil-

latory behaviour could be obtained with re-entrant connections [Sporns et al., 1989]

and the rank order code could synchronised with it and be coded on the crest of each

oscillation.
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The probability connection has proven to be a very important parameter. Lower-

ing the connection number between the input and the polychronous layer has proven

to lead to less discrimination power in the system. All the time parameters of the sys-

tem (time constants, delays) as proven to lead to diUerent behaviour. A more formal

deVnition of the system can be researched, in order to optimize the parameters of the

model.



Appendix B

Results from simulations with the
LIF neuron

B.1 Simulation results with a LIF neuron

Results from Rast, Galluppi, Jin, and Furber [2010a].

B.1.1 Single Neuron Dynamics

We tested single neuron dynamics by injecting short pulses of currents into a neuron

deVned by the following parameters: V0 = V s = −75mV , Vr = −66mV , fn =

1/4ms−1, R = 8, Vt = −56mV . In order to test the accuracy of our implementation

we confronted it with the same neuron implemented with Brian Goodman [2008] and

drove it with the same input current. Results are shown in Figure B.1: the membrane

potential of the simulation run on SpiNNaker (continuous line) is confronted with

the same neuron implemented in Brian (dashed line). The diUerence in the spiking

region is due to the fact we artiVcially set V = 30mV when a neuron crosses the

threshold in order to have a self-evident spike.

B.1.2 Spikes Propagation

In order to test the time precision of spike generation and propagation processes

we implemented a network capable of detecting inter-pulse interval between spikes

generated by two neurons, in order to reproduce the results presented in Izhikevich

and Hoppensteadt [2009] (Section 2). Two input neurons (transponders) connect to

199
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Figure B.1: Single neuron dynamics. The neuron is injected with 4 pulses of current.

Figure B.2: Detection of interpulse interval between spikes generated from neurons
a and b. Synaptic delay between transponders and detectors is marked as d.

7 output neurons (detectors) with a delay proportional to the distance, as shown in

Figure B.2.

Weights are set so that a detector will Vre only if hit by two coincident spikes

with millisecond precision: detector neuron τi only Vres when inter-pulse interval

ta−tb = i, where ta and tb are the absolute Vring times of neuron a and b respectively
(eg. neuron τ−3 Vres when neuron b Vres 3 ms after neuron a, neuron τ+2 Vres when

neuron b Vres 2 ms before neuron a etc.) The network structure is represented in

Figure B.3, where delays are speciVed. Simu;ation results are presented in Figure

B.4, which presents (a) the raster plot, where only the neuron detecting the correct

interpulse interval Vres (b) the membrane potential of neurons a (blue) and b (red) (c)

the membrane potential of detector neuron τ+2. The neuron only Vres when spikes

from neurons a and b converge on it accordingly to synaptic delays. Detector neuron

τi Vres when interpulse interval ta − tb = i. The network is able to discriminate the

inter-pulse interval between the Vrings of neuron a and neuron b with millisecond
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Figure B.3: Network Structure. Arrows represent connections between neurons. Val-
ues at the end of each arrow represent synaptic delays, which are set accordingly to
detectors placement (cfr. Figure B.2)

precision by producing a spike from the correspondent detector neuron. This result

conVrms the millisecond precision of the LIF module implementation, and places

the basis for frequency analysis using polychronous wavefronts computation on the

SpiNNaker machine.

B.1.3 Oscillatory Network Activity

We tested network dynamics by simulating the network described in Figure B.5: the

network is formed by 100 neurons (V0 = V s = −75mV , Vr = −65mV , fn =

1/16ms−1, R = 8, Vt = −56mV ) divided in 80 excitatory neurons and 20 inhibitory

neurons. Excitatory and inhibitory groups are connected so that when the activ-

ity of the excitatory group gets high the inhibitory group shuts the activity of the

whole network. Every neuron in the excitatory group connects to 56 (70%) excita-

tory neurons and 2 (10%) inhibitory neurons with a random delay set between 1 and

8 milliseconds. Every inhibitory neuron is connected to every excitatory neuron (full

connection - 100%) with a delay of 1 or 2 milliseconds. 8 neurons from the excitatory

group are selected to be input neurons and are injected with a constant current of 3

mV, which makes them Vre approximately every 10 milliseconds. Excitatory weights

are set in order to slowly build up the background activity of the network; once the

activity propagated is suXcient, the whole excitatory group starts Vring, thus making

the inhibitory neurons Vre some millisecond later (due to less sparse connectivity).

Inhibitory weights are set to quickly shut down the activity of the network.

Results of the simulation are presented in Figure B.6: input neurons (ID 1, 11, 22,

33, 44, 55, 66, 77) feed excitatory neurons (ID 0-79), slowly building up the activity

until excitatory neurons start to Vre with high frequencies. Inhibitory neurons (ID

80-99) are then activated, shutting down the activity of the network
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Figure B.4: Spikes Propagation.

Figure B.5: Oscillatory Network Structure.

Figure B.6: Oscillatory Network Raster Plot.



Appendix C

Supplementary Material

This appendix contains a list of the supplementary material attached with the thesis.

C.1 PyNN Files

C.1.1 Chapter 3

• pynn/IF_cond_exp.py

C.1.2 Chapter 4

• pynn/va_benchmark.py

• pynn/random_connection.py

C.1.3 Chapter 5

• pynn/single-LIF.py

• pynn/single-IZK.py

• pynn/multimodel_1d.py

• pynn/multimodel_model2D_lat_inh_topdown.py

203
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C.1.4 Chapter 6

• retina_experiment_chapter_6.py

C.2 Nengo Files

C.2.1 Chapter 3

• nengo/square.py

• nengo/basalganglia.py

C.2.2 Chapter 5

• nengo/communication_channel.py

• nengo/integrator.py

C.2.3 Chapter 6

• nengo/return_home_robot_chapter6.py

• nengo/ratSLAM_1D.py

• nengo/ratSLAM_2D.py

C.3 Videos

C.3.1 AER Sensors

• Demonstration of an event driven neural based visual system Silicon Retina on

SpiNNaker.mp4

C.3.2 Robot

• NEF Return Home Nengo Model running on SpiNNaker.mp4

• Embedded SpiNNaker robotic platform running a Nengomodel of hippocampal

place cells 1D.mp4
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• Hippocampal place cells model using an holonomic robot and SpiNNaker.mp4

• Autonomous navigation in a cortical-hippcampal-place cells-basal ganglia neu-

romorphic model.mp4

C.4 SpiNNaker Package Documentation

• docs/spinnaker_package.pdf
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