
Model-based understanding of facial
expressions

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy

in the Faculty of Medical and Human Sciences

2013

Patrick Sauer

School of Medicine



Contents

Contents 2

Abstract 6

Declaration 7

Copyright 8

List of Tables 10

List of Figures 11

Glossary 12

1 Introduction 14
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Active Appearance Models 17
2.1 Procrustes Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Texture Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Piecewise Affine Warps . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Barycentric Coordinates . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . 23

2.4 Linear Shape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Linear Texture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Linear Appearance Model . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Fitting Generative AAMs . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2



CONTENTS

2.8 Combined AAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Simultaneous Inverse Compositional AAM . . . . . . . . . . . . . . . . . 30
2.10 Project-Out Inverse Compositional AAM . . . . . . . . . . . . . . . . . . 32
2.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Discriminative AAM 34
3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Haar Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Steerable Pyramid Features . . . . . . . . . . . . . . . . . . . . . 37

3.2 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 Sparse Gaussian Process Regression . . . . . . . . . . . . . . . . 46

3.3 Sequential Discriminative Models . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Coupled Sequential AAM . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Independent Sequential AAM . . . . . . . . . . . . . . . . . . . . 50

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Error Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Train/Test Dataset Generation . . . . . . . . . . . . . . . . . . . 52
3.4.3 Generative AAMs . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.4 Discriminative AAMs . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Non-Linear Probabilistic Models for Face Modelling 64
4.1 Probabilistic Unsupervised Dimensionality Reduction . . . . . . . . . . . 64
4.2 Gaussian Process Latent Variable Model . . . . . . . . . . . . . . . . . . 66
4.3 Generative AAM with GPLVM . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 GPLVM Texture Model . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Texture generation . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 Latent space projection . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 Non-Linear AAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3



CONTENTS

5 Supervised dimensionality reduction using Gaussian processes 82
5.1 Supervised Variational GPLVM . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Emotion Recognition with Supervised Variational GPLVMs . . . . . . . 91

5.5.1 Cohn-Kanade Dataset . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusions and Future Work 99
6.1 Discriminative AAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Non-Linear AAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Supervised GPLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Similarity Transforms 102
A.1 Calculating transform parameters . . . . . . . . . . . . . . . . . . . . . . 103

A.1.1 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.1.2 Scale and Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.3 Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B Matrix Identities and Linear Algebra 106
B.1 Matrix product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.2 Hadamard product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.4 Cholesky Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.5 Spectral Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.6 Partitioned Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.7 Matrix Inversion Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.8 Matrix Determinant Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.9 Matrix Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4



CONTENTS

C Gaussian Identities 112
C.1 Multivariate Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . 112
C.2 Marginal and conditional distributions . . . . . . . . . . . . . . . . . . . 113
C.3 Linear Gaussian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.4 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.5 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.6 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . 115

D Implementation 116
D.1 Variational Sparse GP Regression . . . . . . . . . . . . . . . . . . . . . . 116

D.1.1 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
D.2 Supervised Variational GPLVM . . . . . . . . . . . . . . . . . . . . . . . 118

D.2.1 Ensuring Numerical Stability . . . . . . . . . . . . . . . . . . . . 119
D.2.2 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.2.3 Psi-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

References 128

Word count: 31048

5



Abstract

Model-based understanding of facial expressions
Patrick Sauer

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2013

In this thesis we present novel methods for constructing and fitting 2d models
of shape and appearance which are used for analysing human faces. The first con-
tribution builds on previous work on discriminative fitting strategies for active
appearance models (AAMs) in which regression models are trained to predict
the location of shapes based on texture samples. In particular, we investigate
non-parametric regression methods including random forests and Gaussian pro-
cesses which are used together with gradient-like features for shape model fitting.
We then develop two training algorithms which combine such models into se-
quences, and systematically compare their performance to existing linear genera-
tive AAM algorithms. Inspired by the performance of the Gaussian process-based
regression methods, we investigate a group of non-linear latent variable models
known as Gaussian process latent variable models (GPLVM). We discuss how such
models may be used to develop a generative active appearance model algorithm
whose texture model component is non-linear, and show how this leads to lower-
dimensional models which are capable of generating more natural-looking images
of faces when compared to equivalent linear models. We conclude by describing
a novel supervised non-linear latent variable model based on Gaussian processes
which we apply to the problem of recognising emotions from facial expressions.

6



Declaration

No portion of the work referred to in this thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other
institute of learning.

7



Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given
The University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate, in
accordance with licensing agreements which the University has from time to time.
This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-
lectual property (the “Intellectual Property”) and any reproductions of copyright
works in the thesis, for example graphs and tables (“Reproductions”), which may
be described in this thesis, may not be owned by the author and may be owned
by third parties. Such Intellectual Property and Reproductions cannot and must
not be made available for use without the prior written permission of the owner(s)
of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the University
IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/policies/
intellectual-property.pdf), in any relevant Thesis restriction declarations de-
posited in the University Library, The University Library’s regulations (see http:
//www.manchester.ac.uk/library/aboutus/regulations) and in The Univer-
sity’s policy on presentation of Theses.

8

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations


Acknowledgements

I would like to thank my supervisor Chris Taylor for his encouragement, patience and
generous support throughout the last four years. He has been a consistent source of
advice and enthusiasm. During this time I have been co-supervised by Tim Cootes,
who has given me much insight into the technicalities of active appearance models. I
am deeply grateful to him for granting me access to his vast collection of C++ software
which includes contributions by Phil Tresadern, Martin Roberts, Angela Caunce and
many others. My thanks also go to my advisor, Neil Thacker, for sharing his views in
many interesting conversations.

Furthermore, I am very grateful for the support I have received from Michalis Titsias,
Andreas Damianou and Neil Lawrence, who kindly allowed me to use their Matlab and
C++ software, and who introduced me to the concept of Gaussian process latent variable
models. I am particularly indebted to Michalis Titsias, without whose patience, expert
advice and support I could not have written the latter chapters of this thesis.

I would like to thank my parents for their unstinting emotional and financial support
throughout my education. Their care and understanding have helped me face the many
ups and downs I have encountered along the way.

Finally, I would like to thank “Es Ratolinet” for all her kindness and patience during
the preparation of this thesis. I promise, it’s finished now!

9



List of Tables

3.1 Settings for training AAM sequences. . . . . . . . . . . . . . . . . . . . . 53
3.2 Model-fitting experiments using the small displacement CogSys test dataset. 56
3.3 Model-fitting experiments using the large displacement CogSys test dataset. 57
3.4 Cross-dataset fitting experiments using the BioID and XM2VTS datasets

and independent sequential AAMs with equal number of pixels. . . . . . 58
3.5 Timings for the training and testing of generative and discriminative AAMs. 59
3.6 Cumulative results for independent sequential AAMs on CogSys dataset. 59

4.1 Fitting results for L-SIC, G-SIC and G-OptSIC AAMs on CogSys dataset. 76
4.2 Timings per iteration for L-SIC, G-SIC and G-OptSIC algorithms. . . . 77

5.1 Emotion recognition results on Cohn-Kanade dataset using variational
GPLVM algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Emotion recognition results on Cohn-Kanade dataset using related meth-
ods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10



List of Figures

2.1 Thin-plate splines and piecewise affine warps. . . . . . . . . . . . . . . . 20
2.2 Area coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Generative AAM, residual image generation. . . . . . . . . . . . . . . . . 28

3.1 Shape model fitting using a discriminative AAM algorithm. . . . . . . . 35
3.2 Haar features and the integral image. . . . . . . . . . . . . . . . . . . . . 36
3.3 Haar feature vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Image pyramids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Steerable pyramid features. . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Piecewise constant weak learner. . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Gaussian process regression. . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Sequential AAM training. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.9 CogSys dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.10 XM2VTS and BioID datasets. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Latent space visualisation of fitting experiment on an image from the
CogSys dataset using G-SIC, G-OptSIC and L-SIC AAM with 2D texture
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Textures after fitting 10D texture models to an image from the CogSys
dataset using L-SIC, G-SIC and G-OptSIC algorithms. . . . . . . . . . . 79

5.1 Graphical models of Bayesian GPLVMs. . . . . . . . . . . . . . . . . . . 83
5.2 Cohn-Kanade dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Inverse lengthscales of RBF-ARD kernel and latent space obtained from

emotion recognition experiment using Cohn-Kanade dataset and a su-
pervised GPLVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Prior covariance matrices KY obtained from emotion recognition exper-
iments using Cohn-Kanade dataset. . . . . . . . . . . . . . . . . . . . . . 96

11



Glossary

Acronyms

Symbol Description

AAM Active Appearance Model
ARD Automatic Relevance Determination
GP Gaussian Process
GPLVM Gaussian Process Latent Variable Model
IOD Inter-Ocular Distance
LDA Linear Discriminant Analysis
ML Maximum Likelihood
MAP Maximum a-posteriori
PCA Principal Component Analysis
POIC Project-Out Inverse-Compositional
PPCA Probabilistic Principal Component Analysis
RF Random Forest
RBF Radial Basis Function
SIC Simultaneous Inverse-Compositional
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
TPS Thin-Plate Spline

12



Notation

Symbol Description

a A scalar.
a A vector.
A A matrix.
AT The transpose of matrix A.
A−1 The inverse of matrix A.
I The identity matrix.
LA The lower triangular Cholesky factor of the symmetric, pos-

itive definite matrix A.
X RN×Q matrix whose rows contain latent vectors {xn}Nn=1.
Y RN×D matrix whose rows contain data vectors {yn}Nn=1.
Z RN×K matrix whose rows contain label vectors {zn}Nn=1 in

1-of-K encoding.
|a| Absolute value of a scalar a.
|A| Determinant of a square matrix A.
|| · || A norm of a vector or matrix expression.
ā The sample mean 1

N

∑N
i=1 ai of a set of vectors a1, . . . ,aN .

E[x] Expectation of a random variable x,
∫
x p(x)dx.

〈·〉p(x) Expectation of expression · with respect to probability den-
sity p(x),

∫
· p(x)dx.

δij Kronecker’s delta: δij = 1, iff i = j, 0 otherwise.
G(r) Pixel value at position r in image G.

∇G(r) Gradient
(
∂G(r)
∂x , ∂G(r)

∂y

)
at pixel location r in image G.

ΣN
i=1 Sum from i = 1 to i = N .

ΠN
i=1 Product from i = 1 to i = N .

1.9(∆) The error ∆ is to be read as a multiple of the last digit
location in the number, e.g. in this case 1.9± 0.1∆.

ns Number of shape eigenvectors retained in linear shape
model.

nt Number of texture eigenvectors retained in linear texture
model.

13



Chapter 1

Introduction

In order to facilitate communication between individuals, humans are equipped with
a multiplicity of channels through which they interact with the outside world. Exam-
ples are the auditory channels of speech and intonation and the visual channel that
carries facial expressions [Pantic and Rothkrantz, 2000]. When analysing the channels
used in interpersonal communication, the appearance of the face has been found re-
peatedly to be the most important channel for conveying emotional state and intent
during conversation [Stephenson et al., 1978]. In fact, on an emotional level, facial ex-
pressions appear to have considerably more effect on the listener than the words spoken
[Mehrabian, 1968; Pantic and Rothkrantz, 2000]. The established importance of facial
expressions in human interaction has stimulated research in many fields, including psy-
chology, where Ekman and Friesen [1978] set out to create a taxonomy of the facial
expressions relating to the basic emotions of fear, anger, happiness, sadness, surprise
and disgust by investigating their origin in the action of different facial muscles. Al-
though it is uncertain whether the full space of facial representations of human emotions
is spanned by these six prototypical expressions, there is an increasing body of evidence
that shows the facial expressions associated with these emotions to be universal among
humans [Wagner and Manstead, 1989]. The fact that humans rely so strongly on fa-
cial expressions to convey information in social interactions partly explains why many
people find the day to day use of computers difficult. Despite extraordinary advances
in computational power, the human-computer interface has barely evolved in decades
and even today makes no use of non-verbal cues provided by the user. Thus, a central
aim of computer vision research is the development of systems that understand human
visual cues and which are capable of responding by generating images of faces that con-

14



vey emotional intent. The successful development of such systems requires three major
problems to be solved [Pantic and Rothkrantz, 2000]:

1. detecting the face in images

2. extracting and representing the face

3. classifying the facial expression.

While the work of Viola and Jones [2001] is the canonical solution for the first problem,
and a plethora of Machine Learning solutions exist for approaching the last problem,
the most challenging task lies in finding a mathematical representation which may be
accurately and efficiently extracted from images, is expressive enough to capture the
subtleties of facial expressions, and from which images of facial expressions may be syn-
thesised. The most successful attempt at providing such a representation is given by a
group of algorithms referred to as “active appearance models” (AAMs) [Cootes et al.,
2001] which represent the face in terms of parametric statistical models of shape and
texture and provide algorithms for efficiently determining the best-fit model parameters
from the image data. Nevertheless, the original formulation of AAMs has drawbacks
which include lacking robustness under change of identity, lighting variation and oc-
clusion. Furthermore, linear models are used to capture the non-linear processes that
underlie the generation of the face image. Therefore, subsequent research has focused
on rectifying these issues and has mainly followed two routes. In the first, the scope
of the representation is reduced by dropping the ability to generate images and the
focus is placed on developing more robust, highly efficient fitting algorithms for the
linear shape models. In recent years several research contributions have taken this ap-
proach [Saragih and Goecke, 2007; Sauer et al., 2011; Tresadern et al., 2010; Zhou and
Comaniciu, 2007], which we refer to as the “discriminative” AAM1. A related discrim-
inative approach which has seen recent development is referred to as the “constrained
local model” and was introduced by Cristinacce and Cootes [2006] and further explored
by Cootes et al. [2012]; Saragih et al. [2011]. The second approach maintains the gener-
ative nature of the representation, but aims at increasing its expressiveness by replacing
the statistical models employed. This “generative” AAM has seen less development over
recent years, with the most notable contribution the work on multilinear models by Lee
and Kim [2009].

The work presented in this thesis contains novel contributions to both the “dis-
criminative” and “generative” AAM approaches outlined above. The first contribution

1The term “shape” AAM has also been used, but we prefer the inclusion of the term “discriminative”,
since it describes the class of fitting algorithms used in this context.

15



1.1 Outline

discusses the application of previously unused non-linear regression strategies in the
discriminative AAM setting and discusses the use of sequences of models to improve
performance. Following this, we focus our attention on adding non-linearity into the
generative AAM framework by investigating the use of Gaussian process latent variable
models (GPLVMs) [Lawrence, 2005]. Within this context, we present a non-linear AAM
algorithm which results in lower-dimensional, more natural-looking representations of
face images when compared to the original linear AAM. We conclude the thesis by pre-
senting a novel supervised Gaussian process latent variable model algorithm which we
apply to the problem of facial expression recognition.

1.1 Outline

Chapter 2 gives a review of the concepts used for building statistical models of shape
and texture and presents the most commonly cited generative AAM algorithms before
discussing their benefits and drawbacks.

Chapter 3 presents discriminative AAMs and discusses different regression algo-
rithms and features which are used for fitting such models. Two sequential training
algorithms are introduced and their performance in combination with the different dis-
criminative AAMs is evaluated and discussed based on a set of model-fitting experi-
ments.

Chapter 4 gives a formal introduction to Gaussian process latent variable models
(GPLVMs) which may be viewed as a non-linear type of principal component analysis
(PCA). Following this, a novel generative AAM algorithm is developed in which a non-
linear GPLVM replaces the more typically used linear texture model. The results of
several qualitative and quantitative experiments are presented and discussed.

Chapter 5 extends previous work by incorporating a novel prior distribution and
developing a method that allows the use of GPLVMs in supervised learning problems.
The resulting models are evaluated and discussed based on a set of experiments in which
we attempt to classify the seven basic human emotions surprise, anger, fear, contempt,
disgust, sadness and happiness using images from the Cohn-Kanade facial expression
database.

Chapter 6 contains a summary of the work presented in the thesis and concludes
with some ideas for further work.

16



Chapter 2

Active Appearance Models

The term “active appearance model” (AAM) was coined by Cootes et al. [2001] and
refers to the combination of a statistical model which captures the appearance of a
category of objects and a fitting algorithm which allows the determination of the best-
fit model parameters given a digital image from the category. In the original work
of Cootes et al. [2001], the statistical models are linear and the term “appearance” is
understood to refer to the combination of an object’s shape and texture. The starting
point for the statistical analysis of the shape and texture of a group of 2D objects is
the provision of a dataset

T = {(I1, P1), . . . , (IN , PN )} , (2.1)

which contains images Ii and landmark annotations

Pi = {(xi1, yi1), . . . , (xin, yin)} , (2.2)

which consist of n points which are placed at locations that correspond across objects
of the category [Dryden and Mardia, 1998]. Given the dataset T, the term “texture”
is understood to refer to a set of pixels sampled from a uniform grid which covers
the convex hull of the landmark annotations in the image. The canonical definition
of “shape” is that of Kendall [1984], where it is defined as the geometric information
of an object that is invariant with respect to the group of similarity transforms. In
other words, the shape is the geometric information that remains after accounting for
translation, rotation and scaling of the landmark points. Thus, in order to be able to
compare the shapes of a set of objects, the landmark annotations must be aligned into a
common reference frame using similarity transforms whose parameters define the pose of

17



2.1 Procrustes Analysis

the objects. The determination of the normalised landmark point set Pref which defines
this reference frame is a key step in the construction of the “model” components of linear
active appearance models. Although analytic methods exist for two-dimensional shapes
[Horn, 1987], in the context of active appearance models it is more common to use
generalised Procrustes analysis [Dryden and Mardia, 1998], which we discuss in the
following section. After discussing texture warping, we then introduce the concept of
a “model” before moving on to describing the models and fitting algorithms introduced
by Cootes et al. [2001] and subsequent developments.

2.1 Procrustes Analysis

In generalised Procrustes analysis, the point set Pref which defines the shape reference
frame is determined using a method that iteratively removes scaling, rotation and trans-
lation from the collection of landmark annotations by following the procedure shown
in Algorithm 1. The algorithm is initialised by assigning the first landmark point set

Algorithm 1 Generalised Procrustes analysis
Input: P = {P1, . . . , Pn}, ε
Result: Pref . Procrustes mean
1: Pref ← P1 . Initialise
2: repeat
3: P ′ref ← Mean(P)
4: P← Align(Pref ,P) . Rigidly align all Pi ∈ P to Pref
5: Pref ← Mean(P)
6: until Error(Pref , P

′
ref ) < ε

to Pref . The Procrustes mean Pref is then iteratively refined by repeating the steps of
aligning all landmark point sets in P to Pref before assigning the mean of the aligned
landmark point set collection P to Pref . The procedure terminates when the Euclidean
distance between the new and the old reference point sets (Error) falls below a mini-
mum threshold ε. The rigid transform used for aligning the 2D point sets is a similarity
transform, for which we will use the same parameterisation as in [Matthews and Baker,
2004]. The mathematical details relating to the application of similarity transforms to
landmark point sets are described in Appendix A.

18



2.2 Texture Warping

2.2 Texture Warping

In order to be able to deal with textures independently from their associated shapes, it
is necessary to define a separate texture reference frame. Typically, this is created by
rescaling the shape reference frame until it covers a pre-specified number of pixels1. The
correspondence between the landmark points in the image and in the texture model ref-
erence frame implies a warp field that contains both rigid and non-rigid components. In
practice, the most commonly used methods for implementing such warps are thin-plate
splines [Bookstein, 1997] and piecewise affine warps [Wolberg, 1994], with the help of
which textures are sampled from the images into the texture reference frame. Thin-
plate splines use the location of the source and target points to set up a warp field that
minimises an energy measure analogous to the bending energy of a clamped, thin steel
plate. Solving the resulting minimisation problem yields a warp function that splits into
an affine and a non-affine component. The non-affine component is generally infinitely
differentiable and produces smooth warps. The smoothness of thin-plate splines al-
lows non-linear deformations to be easily performed and thin-plate splines are therefore
widely used in computer graphics. However, the advantages of thin-plate splines come
at the cost of solving the energy minimisation problem each time the source or target
points of the warp change, which is the case when fitting active appearance models.
Furthermore, numerical issues may appear in extreme cases which can lead to unpre-
dictable results, as shown in Figure 2.1. Here, the texture model reference frame on the
left is defined by a closed-mouth shape whereas the image contains a wide-open mouth.
The textures are sampled to the texture reference frame using both piecewise affine
and thin-plate spline warps. As is obvious from the resulting textures, in this extreme
case the piecewise affine warp leads to a more predictable result. Although more robust
spline warping methods have been developed [Rohr et al., 2001], the computationally
more efficient, continuous but less smooth piecewise affine warps are more commonly
used for active appearance models [Cootes et al., 2001; Matthews and Baker, 2004], a
convention which we follow in this thesis.

2.2.1 Piecewise Affine Warps

The starting point for setting up a piecewise affine warp is the Delaunay triangulation
of the landmark annotations [Delaunay, 1934; Fortune, 1987; Guibas and Stolfi, 1985].

1For reasons of efficiency, in the context of active appearance models the number of pixels is often
chosen to be much lower than the total number of pixels contained in the convex hull of the landmark
points.

19



Figure 2.1: Extreme case comparison of thin-plate splines (TPS) and piecewise affine
warps. The image on the left shows the triangulated texture reference points superim-
posed over a regular grid. The two images in the middle show the deformations in the
grid caused by computing the piecewise affine and thin-plate spline warps between the
corresponding landmark points in the texture and image reference frames. Backwards-
sampling the image pixels into the texture reference frame using the computed warps
yields the images on the right. It is obvious from the result how unpredictable thin-plate
spline warps can be in extreme cases.



2.2 Texture Warping

Figure 2.2: The barycentric coordinates (λ1, λ2, λ3) of point r are defined by the ratios
of the areas of the triangles inscribed around r with respect to the full triangle area.
Affine invariance follows immediately from the invariance of the area ratios under affine
transformations.

Given the triangulation, the dense correspondence between coordinates in the model
reference frame and the image is achieved by moving to barycentric coordinates which
are invariant with respect to affine transformations.

2.2.2 Barycentric Coordinates

Following Bradley [2007], given a triangle T , the coordinates of any point r in the plane
defined by T may be expressed as a convex linear combination of the triangle vertices
r1, r2, r3, i.e.

r = λ1r1 + λ2r2 + λ3r3

s.t. λ1 + λ2 + λ3 = 1
(2.3)

Noting that λ3 = 1− λ1 − λ2, this may be rewritten in matrix form as

Mλ = r − r3, (2.4)

where

M =

(
x1 − x3 x2 − x3

y1 − y3 y2 − y3

)
, (2.5)

21



2.2 Texture Warping

and {(xi, yi)}3i=1 are the Cartesian coordinates of the triangle vertices. The inverse
of M is easily computed using Cramer’s rule [Strang, 1988], so that the barycentric
coordinates λ of r are given by

λ = M−1(r − r3), (2.6)

where

M−1 =
1

|M |

(
y2 − y3 x3 − x2

y3 − y1 x1 − x3

)
(2.7)

so that

λ1 =
(y2 − y3)(x− x3) + (x3 − x2)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)
(2.8)

λ2 =
(y3 − y1)(x− x3) + (x1 − x3)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)
(2.9)

λ3 = 1− λ1 − λ2. (2.10)

Given the values of the barycentric coordinates, it is easy to determine whether r lies
inside, on an edge, on a vertex or outside T . In fact, we have

r lies



inside T, iff λi ∈ (0, 1), i ∈ {1, 2, 3}

on an edge of T, if ∃! i : λi = 0, i ∈ {1, 2, 3}

on a vertex of T, if ∃ i, j, i 6= j : λi = 0, λj = 0, i, j ∈ {1, 2, 3}

outside T, otherwise.

(2.11)

This is easily verified using the area interpretation of barycentric coordinates shown
in Figure 2.2. Given the machinery provided by barycentric coordinates, the piecewise
affine warp and the sampling shown in Figure 2.1 are easily implemented. For every
point in the texture reference frame, we determine the identity of the triangle within
which it lies, as well as its barycentric coordinates. Since the barycentric coordinates are
invariant to affine transformations, sampling is performed by finding the corresponding
triangle in the image and recovering the Cartesian point coordinates from the barycen-
tric coordinates. The associated pixel value is then obtained by bilinear interpolation
and written back to the texture reference frame. Since the texture reference frame is
static, the sampling procedure may be made more efficient by creating a lookup table

22



2.3 Dimensionality Reduction

that associates each pixel in the texture reference frame with its enclosing triangle and
barycentric coordinates.

2.3 Dimensionality Reduction

In the context of statistical shape analysis, the observed data is given by a set of
Procrustes-aligned landmark annotations. Assuming a category of 2D shapes is anno-
tated using n landmark points, an instance of the category is mathematically described
by a 2n-dimensional vector of real values. However, while the real space R2n contains all
possible configurations of the n landmark points, the physical constraints inherent to the
category, as well as the constraints added by Procrustes analysis, define a submanifold
of R2n within which valid shapes of the category reside. In most practical applications,
this submanifold may be described in terms of a Riemannian manifold which is known
as the shape space [Dryden and Mardia, 1998]. Typically, no closed-form equations for
the constraints exist and therefore the structure of the shape space is hidden, although
it is known that it is low-dimensional and curved1. Since the shape space contains all
the morphological information about a category of shapes, the aim is thus to construct
a model of this space which defines mappings that allow the projection of an observed
data vector into the low-dimensional space as well as the reconstruction of the observed
data, given a point from the model space.

Although the shape space is known to be curved, the most well-known and widely
used model is principal component analysis (PCA), which constructs low-dimensional
linear approximations to the shape manifold and which we present in the following.

2.3.1 Principal Component Analysis

Principal component analysis (PCA) is a linear, unsupervised dimensionality reduction
method which approximates the manifold of the data by a hyperplane. PCA may
be derived in several different ways, although the most common involves determining
the linear projection that maximises the variance of the data in the low-dimensional
space [Tipping and Bishop, 1999]. In this sense, PCA reduces to finding a coordinate

1The curvature is a direct consequence of Procrustes analysis (cf. [Stegmann and Gomez, 2002]),
and is potentially increased by hidden non-linear constraints.

23



2.3 Dimensionality Reduction

representation of the N observed vectors y1, . . . ,yN in RD, with respect to which the
D ×D sample covariance matrix

S =
1

N

∑
n

(yn − ȳ)(yn − ȳ)T (2.12)

becomes diagonal and the data is decorrelated. This representation is obtained by
solving the eigenvalue problem [Jolliffe, 2002]

SW = WΛ, (2.13)

where Λ is the diagonal matrix containing the eigenvalues λj , j = 1, . . . , D andW is an
orthogonal matrix which contains the corresponding eigenvectors wj in its columns.1

Without loss of generality, the eigenvalues along the diagonal of Λ may be taken to
be sorted by magnitude. Dimensionality reduction is then performed by retaining the
Q < D eigenvectors whose corresponding eigenvalues sum to a pre-specified proportion
of the sum of all eigenvalues. Using the projection matrix W ′ ∈ RD×Q which con-
tains the first Q eigenvectors in its columns, the observed data vectors y1, . . . ,yN are
represented by the low-dimensional vectors

xi = W ′T (yi − ȳ), i = 1, . . . , N. (2.15)

The original data is approximately reconstructed by inverting Eqn. (2.15), yielding

ŷi = W ′xi + ȳ. (2.16)

An equivalent derivation of PCA views the problem as that of finding the linear embed-
ding of the data which is optimal under linear reconstruction in terms of the quadratic
loss function [Jolliffe, 2002; Lawrence and Quiñonero Candela, 2006],

L =
N∑
n=1

‖yn − ŷn‖ . (2.17)

1Here we have assumed N ≥ D, i.e. that there are more data vectors than data dimensions, and
that the D ×D covariance matrix S has full rank. In the case that N < D, there will be zero-valued
eigenvalues and it is more efficient to compute the eigenvectors of the N ×N matrix

S̃ =
1

N

∑
n

(yn − ȳ)T (yn − ȳ). (2.14)

In appendix B.5, we show how the eigenvectors corresponding to the non-zero eigenvalues of S may be
recovered from those of S̃.

24



2.4 Linear Shape Model

Depending on the curvature of the manifold, PCA may only provide a poor approxima-
tion. However, its mathematical simplicity makes PCA particularly appealing and it is
used for building the linear shape and texture models employed in the original work on
active appearance models [Cootes et al., 2001; Matthews and Baker, 2004] as well as for
constructing “eigenfaces” in earlier work by Turk and Pentland [1991] and Belhumeur
et al. [1997].

2.4 Linear Shape Model

Given a training dataset T and using the concepts discussed in the previous sections,
applying PCA to the collection of Procrustes-aligned 2D landmark annotations yields
the linear shape model

s = s0 +

ns∑
i=1

pisi. (2.18)

Here s is a 2n-dimensional vector of landmark points representing a normalised shape
which is synthesised by linearly combining the shape eigenmodes si using the shape
parameters pi and adding the mean shape s0. Note that the shape eigenmodes si are
equivalent to the eigenvectors contained in the columns of the projection matrix W ′

introduced in Section 2.3.1.

2.5 Linear Texture Model

Following the methods outlined in Section 2.2, a set of textures is generated by sampling
from the images contained in a training dataset T into the texture model reference
frame. Since the sampled textures consist of a set of pixels on which the one-dimensional
operations of scaling and translation are defined, the textures may be interpreted as one-
dimensional shapes and their analysis follows the same procedure used for 2D shapes.
In particular, scaling and translation are removed by applying Procrustes analysis and
aligning the texture samples to the Procrustes mean. Applying PCA (cf. Section 2.3.1)
to the set of normalised texture samples, we obtain a linear texture model

G(r;λ) = G0(r) +

nt∑
j=1

λjGj(r), (2.19)

25



2.6 Linear Appearance Model

where G(r;λ) is the normalised texture at pixel r obtained by linearly combining the
texture eigenmodes Gj(r) using the texture parameters λj and adding the mean texture
G0(r).

2.6 Linear Appearance Model

Rather than treating shape and texture independently, the original AAM of Cootes
et al. [2001] models shape and texture jointly in a linear appearance model. Thus,
the original AAM is referred to as the combined AAM by Matthews and Baker [2004].
After building independent shape and texture models, the shape and texture parameters
(p,λ) associated with each instance in the training dataset T are collected to form a
dataset T̂, which consists of zero-mean training vectors of the type

b =

(
Ap

λ

)
, (2.20)

where A is a weighting that makes the units of p and λ commensurate. Following this,
a PCA model is constructed using T̂ so that

b = Qc, (2.21)

where

Q =

(
Qs

Qt

)
(2.22)

is composed of two blocks which refer to the shape and texture components and where
c are the appearance parameters. The diagonal weighting matrix A is learned from the
training data by displacing the shape from the ground truth and recording the changes
in magnitude of the sampled texture. Writing Eqns. (2.18) and (2.19) in terms of the
appearance parameters c yields the shape and texture model equations

s = s0 + PsA
−1Qsc (2.23)

G(r; c) = G0(r) + PtQtc, (2.24)

where Ps and Pt are the matrices that contain the shape and texture eigenmodes si
and Gj(r) in their columns.

26



2.7 Fitting Generative AAMs

2.7 Fitting Generative AAMs

Active appearance models that contain both shape- and texture models are referred to as
generative models, where the term “generative” refers to the fact that novel appearances
may be synthesised from the model. Both the original active appearance model [Cootes
et al., 2001] as well as the group of algorithms developed by Matthews and Baker
[2004] are generative models. In a generative model, the problem of model fitting
reduces to finding the pose, shape and texture model parameters with respect to which
the appearance generated by the model optimally reproduces the data sampled from
the image. The procedure for fitting generative AAMs is best described within the
framework of an optimisation problem, which we present in the following.

2.7.1 Objective Function

Generative models allow the computation of the residual error, which is given by the
difference of the sampled image data and the texture generated by the model. The
problem of fitting generative models is thus reduced to an optimisation problem with
the objective of minimising the residual error with respect to the model parameters.
The construction of the residual image is illustrated in Figure 2.3 and the objective
function is formalised in the following definition:

Definition 1 Generative AAM Objective Function
Given a texture model G parameterised by λ, a warp field W induced by a shape model
S with parameters p and a global pose transform N with parameters q, the problem of
fitting a generative active appearance model may be posed as the minimisation of the sum
of squared errors between the pixels sampled from the image I using the warp N ◦W
and the pixels synthesised using the texture model G:

min
λ,p,q

∑
r∈Rt

‖E(r;λ,p, q)‖2, (2.25)

where Rt is the texture model reference frame and

E(r;λ,p, q) = G(r;λ)− I(N(W (r;p); q)) (2.26)

is referred to as the residual image.

Early work on generative active appearance models such as [Sclaroff and Isidoro, 1998],
where they were dubbed “active blobs” or [Jones and Poggio, 1998], where they were
called “multidimensional morphable models”, investigated standard as well as stochas-
tic gradient descent algorithms for jointly optimising objective functions of this type

27



2.7 Fitting Generative AAMs

Figure 2.3: Computing the objective function of Eqn. (2.25) for generative AAM fitting
requires backwards sampling from the image into the texture reference frame Rt using
the warpN(W (r,p); q), generating the model texture G(r;λ) and taking the difference
to obtain the residual image E(r;λ,p, q). The texture reference frame Rt is usually
defined by scaling the mean shape s0 so that it covers O(1000) pixels.

with respect to the parameters. At each iteration of a gradient descent algorithm, the
objective function F is approximated by a quadratic function and the unique minimum
of this approximation is found, resulting in additive updates to the model parameters

pi+1 = pi + ∆pi (2.27)

λi+1 = λi + ∆λi (2.28)

where ∆pi = f
(
∂F (r)
∂p

)
and ∆λi = g

(
∂F (r)
∂λ

)
and f, g are linear functions of the shape

and texture gradients.1 Unfortunately, this procedure is computationally inefficient, as
the gradients depend on the current parameter values and therefore must be recomputed
at each iteration. Much research has therefore been devoted to developing efficient and
practical generative AAM algorithms. Sclaroff and Isidoro [1998] investigated the use
of the difference decomposition approach introduced by Gleicher [1997], while Cootes
et al. [1998] developed an ad-hoc fitting algorithm based on multilinear regression before
moving to an efficient gradient descent algorithm in [Cootes et al., 2001]. More recently,
starting from the Lucas-Kanade image alignment algorithm [Lucas and Kanade, 1981],
Matthews and Baker [2004] introduced a group of efficient fitting algorithms which

1The pose parameters q are updated compositionally and are omitted here for the sake of simplicity.

28



2.8 Combined AAM

apply compositional, as opposed to additive updates to the shape model parameters.
Out of the large body of work on active appearance models, the most commonly cited
publications are [Cootes et al., 2001] and [Matthews and Baker, 2004]. Noting that
subsequent work by Batur and Hayes [2005], Papandreou and Maragos [2008] or Amberg
et al. [2009] are closely related extensions, we therefore limit the discussion on generative
AAMs to the three most commonly cited algorithms, the combined AAM of [Cootes
et al., 2001], the simultaneous inverse-compositional AAM of [Baker et al., 2003] and
the project-out inverse-compositional AAM of [Matthews and Baker, 2004].

2.8 Combined AAM

An efficient algorithm for optimising the objective function in Eqn. (2.25) in the context
of combined AAMs was introduced by Cootes et al. [2001, 1998]. In order to fit the
appearance model efficiently, Cootes et al. [2001] make the simplifying assumption that
since the residual image (cf. Eqn. (2.26)) is calculated in the reference frame of the
texture model G, the linear function associated with the parameter updates may be
taken to be constant for small displacements from the ground truth and may thus
be pre-computed. Therefore, rather than performing the expensive update step used
in gradient descent, the parameter updates at iteration i, ∆ci are obtained from the
residual image ei using a constant update matrix Uc

∆ci = Ucei. (2.29)

While the matrixUc is obtained using linear regression in [Cootes et al., 1998], in [Cootes
et al., 2001] the objective function is linearised around a small parameter displacement
and the update matrix is obtained after approximating the gradients of the residual
error using a finite differencing scheme and solving the resulting linear equation in the
least-squares sense. Thus, the algorithm by Cootes et al. [2001] is a gradient descent
algorithm in which the gradients are assumed to be constant w.r.t. the parameter values.
For completeness, it is noted that the updates ∆qi to the pose parameters qi of the pose
transform N are obtained equivalently using a constant update matrix Uq. However,
letting Nqi denote the pose transform at iteration i with parameters qi, the parameters
qi+1 at the next iteration are obtained compositionally (cf. Section A.2)

Nqi+1 = Nqi ◦N∆qi (2.30)

29



2.9 Simultaneous Inverse Compositional AAM

In practice, the combined AAM fitting algorithm has been shown to work well as long
as the shape is sufficiently close to the ground truth, where the constant approxima-
tion holds. However, Matthews and Baker [2004] use a counterexample to disprove
the constant approximation hypothesis and introduce a group of principled gradient-
descent fitting algorithms for appearance models that contain the shape and texture
models separately. In the following we outline the concepts behind two algorithms, the
simultaneous- and project-out inverse-compositional AAM, a full discussion of which
is given in [Baker et al., 2003] and [Matthews and Baker, 2004], respectively. For the
sake of simplicity, we omit the rigid shape transform N in the following. As shown in
[Matthews and Baker, 2004], this does not represent a restriction of generality, as the
shape model may be generalised to include rigid transformations.

2.9 Simultaneous Inverse Compositional AAM

Inverse compositional AAM fitting optimises a slightly modified objective function. At
a given step of the iterative procedure, we have the shape parameters p and texture
model parameters λ and the incremental updates ∆p∗ and ∆λ∗ are found by linearising
the objective

min
∆p,∆λ

∑
r∈Rt

[
G(W (r,∆p);λ+ ∆λ)− I(W (r;p))

]2
. (2.31)

Here, the shape parameter updates ∆p are applied to the texture model reference frame
rather than to the landmark points in the image as in Eqn. (2.25). In practice, this
means that ∆p is applied in the “inverse” direction. In [Baker and Matthews, 2001], it is
shown that to first order in ∆p, this objective function is equivalent to Eqn. (2.25). In
fact, expanding in a Taylor series and retaining first order terms, the objective becomes

min
∆p,∆λ

∑
r∈Rt

[
G(r;λ) +

∂G(r;λ)

∂λ
∆λ+

∂G(r;λ)

∂r

∂W

∂p

∣∣∣∣
p=0

∆p− I(W (r;p))

]2

. (2.32)

By combining the shape and texture parameter updates into a vector

∆c = (∆p,∆λ) , (2.33)

this simplifies to

min
∆c

∑
r∈Rt

[
E(r)−D(r)∆cT

]2

. (2.34)

30



2.9 Simultaneous Inverse Compositional AAM

Here,
E(r) = G(r;λ)− I(W (r;p)) (2.35)

is the error image given the current parameters p and λ and

D(r) =

(
∂G(r;λ)

∂r

∂W

∂p

∣∣∣∣
p=0

,
∂G(r;λ)

∂λ

)
(2.36)

are the steepest descent images which encode the direction with respect to which local
changes in the parameters p and λ cause the greatest reduction in fitting error. The
derivative of the warp is computed at p = 0 and may therefore be precomputed. Taking
the derivative of Eqn. (2.34) w.r.t. ∆c, setting to zero and solving for ∆c, we have∑

r

D(r)TD(r)∆c =
∑
r

D(r)TE(r). (2.37)

Defining the Hessian matrix

H =
∑
r

D(r)TD(r), (2.38)

we recover the parameter update vector

∆c∗ = H−1
∑
r

D(r)TE(r). (2.39)

Following this, the texture parameters λ are updated additively

λ← λ+ ∆λ∗ (2.40)

and the shape parameters p are updated inverse-compositionally using

W (r;p)←W (r;p) ◦W (r; ∆p∗)
−1, (2.41)

where to first order in ∆p [Matthews and Baker, 2004],

W (r,∆p)−1 ≡W (r,−∆p). (2.42)

Although the inverse-compositional framework allows the warp derivative ∂W
∂p to be pre-

computed, the simultaneous optimisation of p and λ remains inefficient, as the steepest
descent images and the Hessian must be computed at each iteration. In the follow-
ing, we discuss a more efficient inverse-compositional fitting algorithm first derived in

31



2.10 Project-Out Inverse Compositional AAM

[Matthews and Baker, 2004], which allows us to move the computation of the steepest
descent images and the Hessian to a pre-computation step.

2.10 Project-Out Inverse Compositional AAM

Starting from the objective function in Eqn. (2.25), the idea in [Matthews and Baker,
2004] is to “project-out” the effect of texture variation on the value of the objective
function. This is done by performing an orthogonal decomposition of the objective
function with respect to the space spanned by the texture model eigenmodes:

λ∗,p∗ = arg min
λ,p

‖G0(r) +
∑
i

λiGi(r)− I(W (r,p))‖ (2.43)

= arg min
λ,p

[
‖G0(r)− I(W (r,p))‖span(Gi)⊥ (2.44)

+ ‖G0(r) +
∑
i

λiGi(r)− I(W (r,p))‖span(Gi)‖

]
(2.45)

The first term (Eqn. (2.44)) is projected onto the orthogonal complement of the linear
texture space and therefore only the constant mean texture is retained in this term. The
key insight is that because the second term (Eqn. (2.45)) is projected onto the subspace
collinear with the linear texture space, the texture parameters λi may always be chosen
such that this term becomes zero. This facilitates a sequential optimisation strategy
where only the first term is optimised to determine the shape parameters p using the
strategy presented in Section 2.9, after which the optimal texture parameters may be
determined by setting the second term to zero. The objective function in Eqn. (2.44) is
implemented indirectly by projecting out the texture components of the steepest descent
images for the shape parameters pj :

D̃j(r) =
∂G0(r)

∂r

∂W

∂pj

∣∣∣∣
pj=0

−
∑
i

[∑
r

Gi(r) · ∂G0(r)

∂r

∂W

∂pj

∣∣∣∣
pj=0

]
Gi(r). (2.46)

These modified steepest descent images D̃j(r) are then used in Eqns. (2.38) and (2.39) to
compute the parameter update, and since the inner product is computed with the error
image, this is tantamount to projecting the residual error directly. Because the optimi-
sation does not include the texture parameters, and the warp gradients are calculated at
the position p = 0, the modified steepest descent images D̃j(r) and the HessianH may
be precomputed so that a highly efficient algorithm results. Unfortunately, however,

32



2.11 Conclusions

it has been shown that the added efficiency associated with the project-out algorithm
comes at the price of reduced generic fitting accuracy [Gross et al., 2005]. The problem
is that by removing texture variation from the optimisation problem, the residual error
is only measured with respect to the mean texture, regardless of the actual sampled
texture. While fitting the shape model remains successful if the sampled texture only
deviates slightly from the mean, this approach breaks down for larger deviations, which
may be caused by colour variation or varying lighting conditions in the images.

2.11 Conclusions

In this chapter we presented basic concepts of statistical shape analysis and discussed
how principal component analysis is used for building generative linear models of shape
and texture which may be combined to form models of appearance. We introduced
the term “active appearance models” and discussed how it refers to a combination of
shape and texture models and a model-fitting algorithm which allows instances of these
models to be fitted to images. We discussed the three most commonly cited AAMs,
the combined AAM, the simultaneous- and the project-out inverse-compositional AAM,
and showed how the different model-fitting algorithms may be described in terms of the
optimisation of objective functions which compare the texture generated by the appear-
ance models to the texture sampled from the image. We showed how gradient descent is
used to optimise such objective functions and discussed how a canonical approach using
exact gradients leads to accurate but inefficient algorithms such as the simultaneous
inverse-compositional AAM. Finally, we presented the approximation schemes used by
the combined AAM and project-out inverse-compositional AAM to make model fitting
efficient and discussed how they represent a trade-off between accuracy and efficiency.

33



Chapter 3

Discriminative AAM

The active appearance models described in the previous chapter are composed of gen-
erative models of shape and texture which allow model fitting to be cast into the op-
timisation problem formalised in Definition 1, where the residual between the texture
sample and the generated texture is used to drive the update of the shape model. As
discussed in the previous chapter, the gradient descent algorithms employed to opti-
mise generative models either lack efficiency or make simplifying assumptions which
have the potential to reduce fitting performance. In an alternative approach termed
the “discriminative” AAM, the texture model is therefore removed and fitting is done
by directly using the information conveyed by the texture sample to update the shape
model parameters. More specifically, a regression model is used to predict updates to
the pose and shape model parameters based on a set of features obtained from the tex-
ture sample taken at the current shape model location. This is illustrated in Figure 3.1
which shows the typical workflow in a discriminative AAM. A number of methods ex-
ist for constructing and fitting such regression models, of which we describe boosting
[Friedman, 2001], which was used for fitting shape models in [Zhou and Comaniciu,
2007], [Saragih and Goecke, 2007], [Cristinacce and Cootes, 2007] and [Tresadern et al.,
2010], random forests [Breiman, 2001], which were used in [Sauer et al., 2011], and
Gaussian processes [Rasmussen and Williams, 2006], which, to our knowledge, have not
been used previously in the context of discriminative model fitting. Furthermore, rather
than applying discriminative models individually, we propose two training procedures
for the construction of sequences of discriminative models, building on previous work
in [Saragih and Goecke, 2007; Tresadern et al., 2010; Zimmermann et al., 2009] and
[Dollár et al., 2010]. The lack of a texture model makes discriminative AAMs more
efficient and thus a common application is tracking faces in video, where problems such

34



3.1 Features

as lighting variation, occlusion and the need to deal with multiple identities is common.
In generative AAMs these situations are especially problematic, since they must be ac-
counted for by the texture model in order to make fitting robust under such changes.
Since the regression models used in discriminative AAMs work with the texture di-
rectly, a common approach to increasing fitting robustness is to move from image pixels
to using higher-level features which are efficient to compute and which are invariant
under changes such as lighting variation and changing identity. In the following, we
introduce the features and regression models we have used with discriminative AAMs,
before discussing the construction of sequences of discriminative AAMs and presenting
results.

Figure 3.1: Shape model fitting using a discriminative AAM algorithm.

3.1 Features

Following their successful use in many applications, we employ features based on two
gradient-type multiresolution approaches, Haar features [Viola and Jones, 2001] and
steerable pyramids [Freeman and Adelson, 1991].

3.1.1 Haar Features

Haar features came to prominence in the face detection algorithm of Viola and Jones
[2001]. The different Haar templates in Figure 3.2a indicate how Haar features encapsu-
late intensity gradients across the vertical, horizontal and diagonal orientations and at
different scales, depending on the chosen shape of the template. Figure 3.2c shows how
Haar features at any scale may be computed very efficiently using the integral image

35



(a) Haar templates (b) Integral Image (c) Efficient Computation

Figure 3.2: Haar features are gradient-like features and are computed by summing the
pixels under the templates shown in (a). By precomputing the integral image, which
is illustrated in (b), the computation of the Haar features reduces to a constant-time
operation regardless of the template shape and size. An example is shown in (c).

Figure 3.3: When using Haar features for fitting discriminative AAMs, the prediction of
the shape model location is based on Haar feature vectors which are determined by first
computing the integral image of the sampled texture, placing the set of n pre-selected
Haar templates onto the texture and concatenating the calculated Haar feature values
hi into a vector.



3.1 Features

described in Figure 3.2b. Furthermore, due to their similarity to multi-scale gradients,
they incorporate invariance to global lighting variation, whilst the use of different Haar
template shapes promotes scale invariance. These properties have resulted in Haar fea-
tures being widely adopted as low-level descriptors. However, the number of possible
Haar features in an image of size N×N scales as O(N4), and in order to identify salient
features in the image, an effective means of feature selection is required. To this end,
Haar features have been used successfully in combination with boosting classifiers as in
Viola and Jones [2001], or with boosting regression within the context of discriminative
face model fitting in [Zheng et al., 2006; Zhou and Comaniciu, 2007] and [Cristinacce
and Cootes, 2007]. Figure 3.3 shows the computation of a feature vector from a set of
Haar features selected during training of a boosting regression model.

3.1.2 Steerable Pyramid Features

Multiresolution analysis forms an effective means of capturing image features at dif-
ferent scales. Typically, the starting point for multiresolution analysis is the recursive
application of a Gaussian low-pass filter G followed by downsampling of the image,
leading to the construction of a multiresolution image “pyramid”. However, in many ap-
plications, multi scale edge features are of interest, which are more suitably highlighted
by computing the Laplacian of the image. In practice, this is done by subtracting ad-
jacent levels of the Gaussian pyramid as shown in Figure 3.4a. The reason why this

(a) Laplacian Pyramid (b) Steerable Pyramid

Figure 3.4: Image pyramids

difference of Gaussian pyramid is equivalent to the Laplacian pyramid lies in the fact

37



3.1 Features

that a Gaussian kernel, the covariance of which is linearly parameterised by the time t,
represents a fundamental solution to the Heat equation

∂T (r, t)

∂t
− α∇2T (r, t) = 0. (3.1)

Thus, by construction, the difference of Gaussian pyramid represents a finite differ-
ence approximation to the temporal derivative in Eqn. (3.1) and is thus approximately
equal to the Laplacian at multiple scales. In applications such as face model fitting,
however, further knowledge about the orientation of image features is useful and this
is not provided by the isotropic Gaussian filters used to compute the Laplacian pyra-
mid. A general method for performing multi-resolution analysis of images at arbitrary
orientations and scales using only a set of “steerable” basis filters was introduced by
Freeman and Adelson [1991] and further developed by Simoncelli and Freeman [1995].
The definition of steerability is reproduced in the following:

Definition 2 Steerability [Freeman and Adelson, 1991]
A function f : R2 → R2 is steerable if it satisfies the steerability constraint

fθ(x, y) =
M∑
j=1

kj(θ)f
θj (x, y), (3.2)

where fθ is an arbitrary rotation of f , {fθj}Mj=1 is a steerable basis set consisting of M
rotated versions of f, and {kj(θ)}Mj=1 is a set of interpolation functions.

This result carries over to sampled 2D functions, and the simplest example of a “steer-
able” basis is given by a set of n + 1 nth order derivatives of a radially symmetric
function. For instance, given the first order derivatives of a Gaussian filter g(x, y)

∇g(x, y) =

(
∂g(x,y)
∂x

∂g(x,y)
∂y

)
, (3.3)

the derivative at orientation θ, gθ may be obtained by projecting onto the unit vector
eθ = (cos θ, sin θ) so that

gθ(x, y) = ∇g(x, y) · eθ (3.4)

= cos θ
∂g(x, y)

∂x
+ sin θ

∂g(x, y)

∂y
. (3.5)

38



3.2 Regression Models

Given the steerable basis filters, the oriented gradient of an image may then be com-
puted simply by convolving with the filter defined in Eqn. (3.4). Figure 3.4b gives an
illustration of a 2-level steerable pyramid decomposition using a set of four steerable
filters Bi.

In the context of face model fitting we are interested in extracting features that
encapsulate information about the pose and expression of faces. To this end, we employ

Figure 3.5: The steerable pyramid features are computed by applying a set of nf steer-
able filters to the texture image on the left, before splitting the resulting images into
nt tiles using a 50% overlap. The seven sample statistics specified in the text are then
computed on each tile and the values are concatenated to form a 7nfnt-dimensional
feature vector.

a steerable pyramid with four orientations and compute summary statistics on the
pixel values taken from overlapping regions in response images as shown in Figure 3.5.
The sample statistics used are a set of linear and non-linear statistics composed of the
max, min, median, mean, variance, skewness and kurtosis. A similar set of features is
discussed in the context of pattern classification problems in [Sauer, 2008].

3.2 Regression Models

In a discriminative AAM, a shape model is fitted using a set of regression models fi
which predict updates to the shape model parameters pi directly based on features h
calculated from texture samples x:

dpi = fi(h(x)), i = 1, . . . , ns. (3.6)

The regression models fi are built from a separate training dataset

T̃ =
{(
x1, δp

(1)
)
, . . . ,

(
xj , δp

(j)
)
, . . . ,

(
xn, δp

(n)
)}

, (3.7)

39



3.2 Regression Models

the jth sample of which is created by randomly displacing the landmark point sets by
fitting an instance of the shape model to the ground truth and perturbing the pose
and shape parameters. Following this, the texture xj is sampled from the displaced
position, and the shape parameter increment vector δp(j) =

(
dp

(j)
1 , . . . , dp

(j)
ns

)
required

to move the landmark points back to their ground truth position is recorded.

3.2.1 Boosting

The boosting algorithm used in this thesis follows the gradient boosting method of
Friedman [2001], which additively combines a set of M weak learners ϕ into a “strong”
regression function f , such that the update to the ith shape model parameter is given
by

dpi =

M∑
m=1

αϕim (hm(x)) . (3.8)

In this equation, hm(x) represents a feature computed on the current texture sample x,
and α is a “shrinkage” parameter, which is included to reduce overfitting [Hastie et al.,
2003]. Typically, the weak learners ϕim are chosen to be simple linear or piecewise con-

Figure 3.6: Piecewise constant function ϕim used as weak learner in a boosting regression
model. The weak learner predicts an update value to the ith shape model parameter
pi given the value of the feature hm computed from the texture sample x. The black
dots represent the training data

{(
dp̃

(1)
i , hm(x1)

)
, . . . ,

(
dp̃

(n)
i , hm(xn)

)}
from which

the function ϕim is efficiently determined by computing the histogram and calculating
the mean in each bin.

stant functions, as illustrated in Figure 3.6. The training stage of the boosting regression
for the ith shape parameter is described in detail in Algorithm 2. The weak learners

40



3.2 Regression Models

are selected in a greedy fashion so that at the first iteration the feature which results
in the best prediction of the n displacements of the ith shape parameter

{
dp

(k)
i

}n
k=1

is chosen. The predictions made by the weak learner are weighted by the shrinkage
parameter and subtracted from the parameter displacements before the strong learner
is updated and the procedure iterates. Boosting has been used previously in the context
of shape model fitting, such as in [Cristinacce and Cootes, 2007; Tresadern et al., 2010;
Zhou and Comaniciu, 2007], or in Sauer et al. [2011] where it was compared to random
forest regression.

Algorithm 2 Gradient boost training [Friedman, 2001] for shape model regression
[Tresadern et al., 2010]

Input: T̃ =
{(
xn, dp

(n)
i

)}N
n=1

, fi(x) = 0, α� 1

Result: fi(x), {hm}Mm=1 . “strong learner”, features
1: for m← 1,M do

2: (hm, ϕim) = arg minϕ,h
∑N

k=1

[
dp

(k)
i − ϕ(h(xk))

]2

3: for k ← 1, N do
4: dp

(k)
i ← dp

(k)
i − αϕim(hm(xk)) . update dp(k)

i

5: end for
6: fi(x)← fi(x) + αϕim(hm(x))
7: end for

3.2.2 Random Forest

In recent years random forests [Breiman, 2001] have become increasingly popular and
have been used successfully in many classification and regression problems. The popu-
larity of random forests stems from the fact that they represent a simple and efficient
algorithm with few free parameters and have been shown to resist overfitting in many
applications. Furthermore, both the training and testing stages of random forests fol-
low “embarrassingly parallel” procedures, a fact which may be exploited to obtain high
performance on parallel computer architectures. Random forests are constructed by
building a set of N binary trees (a forest) on bootstrap samples of the training dataset.
The trees are constructed recursively, such that starting from the root node, a random
subset of features is selected after which the training data is split by setting a thresh-

41



3.2 Regression Models

old on one of the feature variables. This creates two new leaf nodes and allows the
computation of the sum of squared errors

Esc =
∑
l∈L

∑
n∈l

(dpin −mil)
2 =

∑
l∈L

Nl var(l), (3.9)

where L is the total number of leaf nodes and mil = 1
Nl

∑Nl
n=1 dpin and var(l) are the

mean and variance of the Nl displacements of the ith shape parameter contained in leaf
l. Among all features available in the subset, the feature that minimises Esc is chosen.
Various stopping criteria for the recursion have been proposed in the literature [Breiman
et al., 1984]. In our case, the trees are built until each leaf node contains a single sample
and as recommended by Breiman [2001], the size of the random feature subset is chosen
to be roughly equal to the square root of the total number of features. The trees are
similar to the piecewise constant functions used as weak learners in Section 3.2.1, as
each leaf outputs the mean of the data it contains. When presented with test data, the
mean over the outputs of each tree in the forest is returned as the forest prediction. This
ensemble prediction allows for the gathering of statistics on the outputs by inspecting
the level of “agreement” among the individual tree regression functions.

The tree building procedure described above represents the standard procedure for
scalar outputs. If, however, we wish to predict all ns updates at once, this method must
be extended to allow for vectorial outputs. As discussed in [Sauer et al., 2011], this is
done either by extending the sum of squared errors to all output dimensions, i.e.

Evec =

ns∑
i=1

∑
l∈L

∑
n∈l

(dpin −mil)
2 =

ns∑
i=1

∑
l∈L

Nl vari(l), (3.10)

such that at each binary split the feature that gives the best joint prediction of the out-
puts is chosen, or by simply training a scalar random forest for each output dimension.
Using the first method, we arrive at a regression forest capable of directly predicting
vectorial outputs. This makes for a more efficient algorithm when compared to the set
of scalar forests and the joint feature selection may also allow for correlations in the
outputs to be learned. However, in the case of high-dimensional outputs where the
individual dimensions are uncorrelated, this also represents a significant shortcoming as
a single feature is required to discriminate between the uncorrelated phenomena.

42



3.2 Regression Models

3.2.3 Gaussian Processes

In the terminology of statistics, a stochastic process is defined as a set of random vari-
ables which are indexed by elements from an index set, usually time or space. Common
examples of stochastic processes include Markov chains, where the index set is made up
of discrete time points and Markov random fields, where the index set contains points
from space. Following Rasmussen and Williams [2006], a Gaussian process may be
defined as follows:

Definition 3 Gaussian Process
A Gaussian process is a set of random variables such that the joint distribution over
any finite subset is a multivariate Gaussian distribution.

Due to the marginalisation property of multivariate Gaussians (cf. C.2), it follows di-
rectly from the definition that a Gaussian process is completely defined by a mean
function m(x) and a covariance function k(x,x′) which is also referred to as a kernel :

f(x) ∝ GP(m(x), k(x,x′)) (3.11)

where

m(x) = E[f(x)] (3.12)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] . (3.13)

In practice, the mean function is often taken to be zero, as this simplifies the mathe-
matics and does not represent a restriction of generality.

Function Priors In the context of Bayesian statistics, a Gaussian process is often
interpreted as a prior distribution over functions [Rasmussen and Williams, 2006]. Al-
though functions are infinite dimensional objects, the marginalisation property of mul-
tivariate Gaussians allows us to model a function by considering the joint distribution
over a finite set of function values. The type of kernel determines the space of func-
tions modelled by the prior. One of the most commonly used kernels is the radial basis
function (RBF)

k(xi,xj) = σf exp

(
− 1

2l

D∑
m=1

(xim − xjm)2

)
(3.14)

which models the space of smooth functions. The two hyperparameters θf = (σf , l)

correspond to the variance and the characteristic length scale of the functions modelled

43



3.2 Regression Models

by the prior. The length scale determines the amount of correlation between the in-
puts (x1, . . . ,xN ) and may be thought of intuitively as the degree of flexibility of the
functions. Functions may be sampled from the prior by using the following recipe:

1. specify a set of N input locations x ∈ RD

2. evaluate the elements of the covariance matrix

Kij = k(xi,xj), i, j = 1, . . . , N (3.15)

3. sample function values from the Gaussian with covariance K:

f ∝ N(0,K) (3.16)

Figure 3.7a shows six independent samples drawn from a Gaussian process prior using
an RBF kernel. It is clear from the sampling recipe that the variance σf of the kernel
is a gain parameter that influences the magnitude of the sampled function values. If
the function is referred to as a signal, the variance may thus be thought of as a signal
strength.

(a) GP prior (b) GP posterior

Figure 3.7: (a) shows six samples drawn from a GP prior using an RBF kernel with
σf = 2, l = 2. (b) contains the mean (red line) and variance (shaded region) of the
posterior process obtained after conditioning the joint prior on the training data points,
marginalising and optimising the kernel hyperparameters. A similar illustration is given
in [Rasmussen and Williams, 2006, chap. 2].

44



3.2 Regression Models

Regression In a regression problem, the task is to uncover the function f(x) given a
set of noisy observations y = (y1, . . . , yN ) at inputs X = (x1, . . . ,xN ). In other words,
we are trying to learn the model

y = f(x) + ε, (3.17)

where usually ε ∝ N(0, σ2
ε ). Once fitted, the regression model allows one to predict

outputs f∗ given test inputs x∗. However, given only the training data (y,X), and
without making any prior assumptions about the form of f , both the variables f , which
correspond to the values of the regression function at the inputs X, as well as the
predictions f∗ at X∗ are unknown. In a Bayesian treatment of the regression problem
this uncertainty must be captured in the form of a prior distribution p(f ,f∗) over the
latent variables f and f∗. Combined with the data likelihood p(y|f), this allows the
predictive posterior distribution p(f∗|y) to be inferred using Bayes’ theorem. In the
case of Gaussian process regression, the prior distribution is a Gaussian process, and
the observed data y is modelled by the likelihood

p(y|f) ∝ N(f , σ2
ε I). (3.18)

Invoking Bayes’ rule, the joint posterior becomes

p(f ,f∗|y) =
p(f ,f∗)p(y|f)

p(y)
, (3.19)

where p(y) is the marginal likelihood which is obtained by integrating out the latent
variables f :

p(y) =

∫
p(y,f)df

= N(y|0,KNN + σ2
ε I).

(3.20)

Here we have used the notationKNN = K(X,X) to denote the kernel matrix evaluated
at all points xn ∈X. As is often the case in Gaussian computations, this integral is most
easily solved by inspection starting from the joint distribution and using the identities
given in appendix C. Noting that p(y,f) is a Gaussian process, the result immediately
follows by applying the marginalisation property. The joint posterior of Eqn. (3.19) still
contains the latent variables f associated with the training input dataX. Following the
sum rule of probability theory, the predictive posterior distribution p(f∗|y) is obtained

45



3.2 Regression Models

by marginalising the set of variables f in the joint posterior, the result of which is also
Gaussian:

p(f∗|y) ∝ N(m∗,C∗), (3.21)

where

m∗ = K∗N
(
KNN + σ2

ε I
)−1

y (3.22)

C∗ = K∗∗ −K∗N (KNN + σ2
ε I)−1KN∗ (3.23)

are the predictive meanm∗ and covariance C∗. A full derivation of Eqns. 3.20 and 3.22
is given in appendix C.6. These equations depend on the training and testing inputs X
andX∗ via the kernels, where we have used the shorthand notationKN∗ = K(X,X∗),
as well as on the kernel hyperparameters θf and the noise hyperparameter σε. The
hyperparameters are not treated in a Bayesian manner, since placing prior distributions
over the hyperparameters, computing the hyperposteriors and marginalising is often not
analytically tractable or leads to a drastic increase in complexity. Therefore, the values
of the hyperparameters must be determined using a procedure known as “empirical
Bayes” or “type-II maximum likelihood”, where the marginal likelihood of Eqn. (3.20)
is optimised with respect to the hyperparameters. A discussion and motivation of the
empirical Bayes method for model selection is given by Rasmussen and Williams [2006,
chap. 5]. Figure 3.7b shows the predictive mean function of Eqn. (3.22) together with
two standard deviations of variance (the shaded area) for 10 noisy observations of a
sinusoid. The marginal likelihood was optimised with respect to the hyperparameters
using the conjugate gradient optimiser of Møller [1993]. As expected, the variance of
the posterior process is small around the observed data points, but quickly increases to
the prior variance in regions where no data is available. The noise parameter was fixed
to zero for this illustration and therefore the regression function perfectly interpolates
the data points. In the case of non-zero noise variance, part of the signal is explained
by noise and consequently the regression function no longer exactly fits the data. The
ratio of the variance of the regression function and the variance of the noise is referred
to as the signal-to-noise ratio (SNR) and provides a measure for the goodness-of-fit of
the regression function.

3.2.4 Sparse Gaussian Process Regression

In non-parametric kernel-based models such as Gaussian processes, the number of pa-
rameters increases linearly with the size of the training data. In the case of Gaussian

46



3.2 Regression Models

process regression, the presence of the inverse of the kernel matrix KNN in the predic-
tive mean Equation 3.22 results in a computational complexity of O(N3), where N is
the number of training data. Unfortunately, this complexity renders Gaussian process
regression unusable for datasets containing more than a few thousand samples. Many
methods have been proposed to reduce the computational burden and a unifying review
is given by Quiñonero Candela and Rasmussen [2005]. The general idea is based on the
observation that often the training data (y,X) contains redundant information about
the function f(x). Therefore, a carefully chosen subset of the training data should
suffice to correctly infer f(x). To this end, an additional set of M � N inducing vari-
ables u = [u1, . . . , uM ] is introduced. These are drawn from the same Gaussian process
prior as f (and f∗) but the covariance function is restricted to a set of M inducing
input locations Xu, which, ideally, are chosen so that the prior over u captures all the
information about f . The crucial step is the assumption that the inducing variables u
represent a sufficient statistic for f , i.e. that f and f∗ are conditionally independent
given u. With this assumption, the joint prior p(f ,f∗) may be approximated as1

q(f ,f∗) =

∫
q(f∗|u)q(f |u)p(u|Xu)du. (3.25)

The choice of the term “inducing variable” becomes clearer from this equation, where
both f and f∗ are conditioned on (the same) u. Therefore, f and f∗ can only com-
municate via u and thus u induces the dependencies between training and test data.
The various sparsification algorithms discussed in Quiñonero Candela and Rasmussen
[2005] make further assumptions about the inducing conditionals q(f |u) and q(f∗|u)

and typically result in a much more manageable complexity of O(NM2). However, find-
ing a set of inducing variables that are sufficient statistics for f is hard, and in sparse
approximations such as by Snelson and Ghahramani [2006], the inducing variables are
selected by optimising approximations to the exact GP prior with respect to the induc-
ing inputs Xu. As noted by Titsias [2009], this may lead to unexpected behaviour of
the resulting model, since no bounds are provided to guarantee closeness of the result to
the theoretical ground truth given by the full GP model. In our work, we therefore use
the variational sparse GP approach derived by Titsias [2009], which uses a variational

1Note that the exact expression would be

p(f ,f∗) =

∫
p(f∗,f |u)p(u|Xu)du (3.24)

and that the inducing inputs Xu are variational hyperparameters rather than random variables,
i.e. Eqn. (3.24) holds regardless of their values. However, their values do influence the likelihood
of the data given the model.

47



3.2 Regression Models

lower bound FV (cf. [Bishop, 2006, chap. 10]) to the marginal likelihood for selecting
the inducing inputs Xu, the kernel hyperparameters θf and the inverse noise variance
β = 1

σ2
ε
:

FV (Xu,θf , β) = logN(y|0, K̃NN + σ2
ε I)− 1

2σ2
ε

Tr(KNN − K̃NN ). (3.26)

The first term, which is seen to be formally equivalent to Eqn. 3.20, contains the Nys-
tröm approximation (cf. [Rasmussen and Williams, 2006, chap. 8])

K̃NN = KNMK
−1
MMKMN (3.27)

of the full covariance matrix KNN . The trace term becomes zero if M inducing inputs
Xu are found such that the inducing variables represent a sufficient statistic for f and
the Nyström approximation becomes exact. Therefore, the trace term ensures that
maximising FV leads to a good sparse approximation of the full Gaussian process. The
details of the derivation are given in [Titsias, 2009], but for completeness the predictive
mean and covariance become

mvs
∗ = K∗MK

−1
MMµ (3.28)

Cvs
∗ = K∗∗ −K∗MK−1

MMKM∗ +K∗MK
−1
MMAK

−1
MMKM∗, (3.29)

where

µ =
1

σ2
ε

KMM

(
KMM +

1

σ2
ε

KMNKNM

)−1

KMNy (3.30)

A = KMM

(
KMM +

1

σ2
ε

KMNKNM

)−1

KMM . (3.31)

48



3.3 Sequential Discriminative Models

3.3 Sequential Discriminative Models

As discussed in the previous section, discriminative AAMs update the shape model pa-
rameters directly by applying the learned regression model to features extracted from
the image at the current shape model location. This is more efficient than the gen-
erative fitting procedure outlined in Section 2.7, in which the shape model parameter
updates are obtained by iteratively minimising an error measure such as Eqn. (2.25)
which relates the generated texture to the texture sampled from the image. However, an
important advantage of the generative fitting algorithm is that a well-defined objective
function is optimised. At each iteration of the optimisation procedure, the update of the
texture model parameters leads to a change in the value of the objective function and
thus information is fed back into the next iteration of the search. Such reinforcement is
lacking in discriminative AAM fitting where a simple, “one-shot” update to the shape
model parameters is made, based on the features computed from the current texture
sample. This drawback becomes especially apparent when applying a single discrimi-
native model iteratively, such that the same regression model is used at each iteration
regardless of whether the location of the model has changed. It is obvious that the
accuracy of the regression procedure is limited by the training data used to train the
regression models. If mainly large displacements from the ground truth are used to train
the model, it can be expected to perform well when tested on examples showing similar
displacements. However, when applied in an iterative fashion, the model is expected to
move closer to the ground truth, and thus further from the type of examples provided
in the training data, making the ensuing predictions approximate at best. One way of
addressing this issue, termed the “sequential” AAM in the following, builds on similar
ideas published in [Dollár et al., 2010], which were developed in [Tresadern et al., 2010]
and [Sauer et al., 2011]. In order to mimic the reinforcement provided by the texture
model in the generative fitting algorithm, we investigate sequential discriminative AAMs
in which sequences of discriminative AAMs are constructed by adapting the training
data as well as the model complexity according to the position of the model in the se-
quence. The exact training procedure is chosen using suitable heuristics but, typically,
the earlier stages of the sequence only model pose variation whilst increasing amounts
of shape variation are introduced in the later stages. Furthermore, the magnitude of the
displacements used for training the shape models is gradually reduced as the sequence
progresses. In the following, we present two training algorithms for sequential AAMs,
which were first published in [Sauer et al., 2011].

49



3.3 Sequential Discriminative Models

(a) Coupled Sequential AAM (b) Independent Sequential AAM

Figure 3.8: Training procedures for the sequential AAM models [Sauer et al., 2011]. (a)
At step n of the coupled training procedure, the partial sequence SEQ(n-1) is tested on
a dataset T(n) which contains random displacements of the same range as T(1). The
predicted landmark points are then used to train a discriminative AAM consisting of a
regression model (REG) and a shape model (SM). The model is then appended to the
sequence and the procedure iterates. (b) The independent sequential AAM consists of
a set of discriminative AAM models which are trained on independent datasets T(n)
whose displacement range is reduced from step to step.

3.3.1 Coupled Sequential AAM

In the coupled sequential AAM, the first model in the sequence is trained using a
dataset generated by perturbing the landmark points from the ground truth locations as
described in Section 3.2. The model is then used to predict the ground truth locations in
a separate test dataset and the resulting point locations are recorded to form the training
dataset for the next model in the sequence. This procedure is illustrated in Figure 3.8a,
and is repeated until the end of the sequence is reached. Since the magnitude of the
displacements in the training data decreases from stage to stage, and the complexity of
the shape models increases, each stage may be seen to represent a discriminative AAM
specialised to a certain range of displacements from the ground truth. As was shown
in [Sauer et al., 2011], a downside to this procedure is the use of the outputs of the
previous stages as training data for the following stage, which may cause overfitting to
occur.

3.3.2 Independent Sequential AAM

In order to assess the degree of overfitting caused by the training procedure for the cou-
pled sequential AAM, we propose an alternative training procedure we refer to as the
independent sequential AAM, in which the models in the sequence are trained indepen-
dently using training data whose range of displacements is reduced by an empirically
chosen factor from stage to stage. This procedure is illustrated in Figure 3.8b.

50



3.4 Experiments

3.4 Experiments

In order to compare the discriminative AAM algorithms presented in the previous sec-
tions to existing generative algorithms, as well as to measure the performance of the
sequential discriminative models, we performed a set of experiments using landmark
annotated images from three different face image databases. The CogSys1 database
(cf. Figure 3.9) contains video sequences of individuals performing cognitive tasks; in
our experiments we used images taken from sequences of four individuals reciting the al-
phabet from memory. The XM2VTS database ([XM2], cf. Figure 3.10a) contains static
images of many individuals with neutral facial expressions, and the BioID database
([Bio], cf. Figure 3.10b) is made up of web cam images taken in an office environment.
For each image database, we created separate training and testing datasets contain-
ing 50 images each. Since the landmark annotations provided with the datasets do
not coincide, we chose a common subset containing 17 points shown in red in Fig-
ures 3.9, 3.10a and 3.10b. This subset is commonly used for face analysis and corre-
sponds to the annotation scheme of the BioID database.

Figure 3.9: Four images from the CogSys database including the 68-point landmark
annotations. The 17-point subset used for our experiments is shown in red.

3.4.1 Error Measure

The performance of the algorithms is measured in terms of the fitting accuracy which is
quantified by computing the mean point-to-point error between the ground truth points
and the shape model points after fitting. More specifically, if

sm = (x1, y1, . . . , xn, yn) (3.32)

sgt = (x̃1, ỹ1, . . . , x̃n, ỹn) (3.33)

1This dataset was the result of a joint effort between the University of Manchester and Manchester
Metropolitan University. At the time of writing, this dataset is not publicly available.

51



3.4 Experiments

(a) (b)

Figure 3.10: (a) Four images from the XM2VTS database including the 68-point land-
mark annotations. (b) Four images from the BioID database including the 22-point
landmark annotations. In all images, the 17-point subset used for our experiments is
shown in red.

are the landmark point vectors associated with the model and the ground truth, the
error

E =
100

n δgt

√√√√ 2n∑
i=1

(smi − sgti)2 (3.34)

is computed as a percentage of the inter-ocular distance (IOD) δgt in the ground truth
shape.

3.4.2 Train/Test Dataset Generation

The training data for the discriminative AAMs were generated by rigidly aligning the
shape model reference points with the ground truth points before randomly perturbing
the pose and shape model parameters within predefined bounds [dpmini , dpmaxi ]. For
each dataset, a total of 4000 instances were generated and, in practice, the random
displacements dpi were computed by sampling from a truncated standard normal dis-
tribution before multiplying by the maximum displacement range. The same procedure
was followed for generating the test data for both the discriminative and generative
AAMs. Two test datasets were generated for each image dataset, one initialised using
small perturbations of up to 6% IOD and the other using large perturbations of up to
15% IOD.

52



3.4 Experiments

3.4.3 Generative AAMs

A common method of increasing the robustness of generative AAM models is to use a
multiresolution approach in which the search is started at the lowest resolution before
moving to the higher resolution levels. Thus in our experiments, the combined AAM,
simultaneous inverse-compositional AAM (SIC) and project-out inverse-compositional
AAM (POIC) algorithms were trained as 2-level multiresolution models, using texture
samples containing 10000 pixels at the highest resolution. This resolution is of the same
order of magnitude as the models used in Baker and Matthews [2004]. During testing,
a maximum of 20 iterations per model were used which is usually sufficient to achieve
convergence. A further increase in robustness in generative AAMs may be obtained
by generalising the texture model to work with higher-level image features such as
gradient responses. However, in such models the reconstruction of the image data is
no longer possible and we therefore chose to use the standard pixel-based approach in
these experiments. Results obtained from testing these models on the CogSys dataset
are shown at the bottom of tables 3.2 and 3.3.

Models

1 2 3 4 5

npix 1000 1000 3000 4000 5000
dq (%) 15 10 7 3 1.5
nshape - - 4 8 12
nlim - - - 4 8

dp (σ) - - 1 1 1
dplim (σ) - - - 0.5 0.5

Table 3.1: Training procedure for independent AAM sequences containing 5 models
with increasing pixel numbers npix. The training data for each discriminative AAM
model is generated by randomly perturbing the pose parameters q by a maximum of dq
percent and the shape model parameters p by a maximum of dp standard deviations.
The first two models only model pose variation, whereas the following models include
shape models containing 4, 8 and 12 shape parameters. Assuming convergence, and
to increase robustness, from the 4th model onwards, the perturbation of the first nlim
shape model parameters is constrained to bounds specified in dplim.

3.4.4 Discriminative AAMs

In order to investigate the contributions to fitting accuracy made by the different fea-
tures and regression models as well as the sequence training algorithms, we performed a
series of model-fitting experiments using sequences of 5 discriminative AAMs using the

53



3.4 Experiments

boosting, random forest and variational GP regression algorithms in combination with
both Haar features and steerable pyramid features. Furthermore, a separate experiment
was carried out to assess the performance of the variational GP compared to the full
GP algorithm. Experimental details were as follows:

Sequences The independent AAM sequences (cf. 3.3.2) were trained according to
the heuristic detailed in table 3.1. The first two models in the sequence accounted
for rigid pose variation and non-rigid shape variation was added in models 3, 4 and
5. The number of parameters of the shape models increased throughout the sequence
and because convergence in the shape parameters was expected to occur, the later
stages applied bounds to the shape model parameters in order to encourage robustness.
The same model settings were used for the coupled AAM sequences (cf. 3.3.1) and the
training data for the first model in the sequence was generated as specified in table 3.1.
In order to measure the effect of increasing pixel resolution, the sequence experiments
were repeated but the number of pixels used for the texture samples was set to 1000 for
all the models in the sequences.

Features The Haar features and steerable pyramid features were generated as de-
scribed in Section 3.1.1 and 3.1.2. We used the Haar templates shown in Figure 3.2a
and the steerable pyramid features were generated as shown in Figure 3.5.

Boosting For the boosting regression models (cf. 3.2.1), we used 200 piecewise-constant
functions as weak learners and the shrinkage factor was set to 0.05.

Random Forests Following results published in [Sauer et al., 2011], we used scalar
random forests containing 100 trees for each output dimension rather than the vectorial
forests discussed in Section 3.2.2. Each tree was built to completion during training.

Gaussian Processes Since the GP regression procedures discussed in Section 3.2.3
do not provide a means for feature selection, we used the features selected by the boost-
ing algorithm to train the GP models. The variational GP models (cf. 3.2.4) were
trained using an RBF kernel and 100 inducing inputs. The noise and kernel variance
were set to 0.1 and 1, respectively, leading to an initial signal-to-noise ratio of 10. The
number of iterations of the non-linear optimiser was limited to 1000.

The results of the experiments on the CogSys dataset are reported in tables 3.2 and 3.3.
Although these experiments were carried out on independent training and test datasets,
the images were nevertheless sampled from video sequences of the same individuals with

54



3.4 Experiments

a constant background. The experiments therefore allowed only limited conclusions re-
garding overfitting and the generalisation capability of the algorithms used. We there-
fore added a set of cross-dataset experiments using the XM2VTS and BioID datasets,
the results of which are shown in table 3.4.

3.4.5 Implementation

The software for all the experiments contained in this chapter was implemented in
C++. Parts of Tim Cootes’s non-public software were used to implement the shape and
appearance models, as well as for the boosting and random forest regression algorithms.
The Gaussian process algorithms were implemented from scratch in C++ and tested
against a non-public Matlab implementation by Michalis Titsias. All the experiments
could have been run on a standard desktop machine, but in order to speed up the
collection of data, the CSF (Computational Shared Facility) servers at the University
of Manchester were used.

55



Error Quantile 25% 50% 75% 95%

Initial Displacement 2.11 2.99 3.92 6.19

Discriminative AAM

In
de
pe

nd
en
t
Se
qu

en
ce

In
cr
ea
si
ng

re
so
lu
ti
on

RF
Haar 1.39(1) 1.62(1) 1.93(2) 2.45(6)

StPy 0.84(1) 0.99(1) 1.16(1) 1.48(2)

Boost
Haar 0.68(1) 0.83(0) 0.97(1) 1.19(2)

StPy 0.80(1) 1.02(1) 1.27(1) 1.75(2)

VarGP
Haar 0.19(0) 0.24(1) 0.31(0) 0.47(1)

StPy 0.33(0) 0.41(0) 0.53(1) 0.75(1)

FullGP Haar 0.13(0) 0.18(0) 0.25(0) 0.38(1)

Mean 0.71(1) 0.85(1) 1.02(1) 1.34(2)

E
qu

al
re
so
lu
ti
on

RF
Haar 0.70(1) 0.87(1) 1.15(1) 1.78(2)

StPy 0.70(0) 0.81(0) 0.95(1) 1.33(3)

Boost
Haar 0.57(1) 0.71(1) 1.15(1) 1.78(2)

StPy 0.61(1) 0.74(1) 0.92(1) 1.17(3)

VarGP
Haar 0.18(0) 0.24(0) 0.31(0) 0.48(2)

StPy 0.29(0) 0.33(0) 0.41(0) 0.57(2)

Mean 0.50(1) 0.62(1) 0.82(1) 1.19(2)

C
ou

pl
ed

se
qu

en
ce

In
cr
ea
si
ng

re
so
lu
ti
on RF

Haar 0.75(1) 0.93(1) 1.27(2) 3.04(27)

StPy 0.89(1) 1.11(1) 1.46(2) 3.29(19)

Boost
Haar 0.69(1) 0.87(1) 1.05(1) 1.94(18)

StPy 0.78(1) 0.97(1) 1.15(1) 1.67(13)

VarGP
Haar 0.80(0) 0.94(0) 1.11(1) 1.32(2)

StPy 0.68(1) 0.87(1) 1.20(2) 1.62(5)

Mean 0.77(1) 0.95(1) 1.21(2) 2.15(14)

E
qu

al
re
so
lu
ti
on

RF
Haar 0.74(1) 0.92(1) 1.27(2) 3.06(28)

StPy 0.82(1) 1.00(1) 1.29(2) 2.94(20)

Boost
Haar 0.68(1) 0.89(1) 1.06(1) 1.98(19)

StPy 0.78(1) 0.97(1) 1.15(1) 1.67(13)

VarGP
Haar 0.84(0) 0.97(0) 1.15(1) 1.35(2)

StPy 0.75(1) 0.95(1) 1.13(1) 1.31(2)

Mean 0.77(1) 0.95(1) 1.18(1) 2.05(14)

Generative AAM

Combined AAM 0.09(0) 0.13(1) 7.37(25) 16.32(9)

POIC AAM 0.19(2) 1.71(14) 4.62(12) 10.19(31)

SIC AAM 0.32(3) 1.64(8) 3.18(10) 6.45(16)

Mean 0.20(2) 1.16(8) 5.06(16) 10.98(19)

Table 3.2: Model-fitting experiments using the small displacement CogSys test
dataset. The numbers refer to the quantiles of the error distribution after fitting with
the specified model/feature combinations. The error quantiles before fitting are listed
under “Initial Displacement”. The 95% confidence interval of the Maritz-Jarrett stan-
dard error [Maritz and Jarrett, 1978] is included in parentheses and is given as a multiple
of the last digit location, e.g. 2.45(6) ≡ 2.45± 0.06.



Error Quantile 25% 50% 75% 95%

Initial Displacement 4.62 6.54 8.66 11.58

Discriminative AAM

In
de
pe

nd
en
t
Se
qu

en
ce

In
cr
ea
si
ng

re
so
lu
ti
on

RF
Haar 1.68(2) 2.66(16) 8.39(12) 13.11(25)

StPy 0.95(1) 1.38(4) 4.64(18) 9.76(32)

Boost
Haar 0.80(1) 1.18(5) 7.52(31) 12.64(24)

StPy 0.95(1) 1.32(3) 3.13(15) 8.68(29)

VarGP
Haar 0.21(0) 0.30(1) 5.59(63) 12.07(23)

StPy 0.36(0) 0.50(1) 1.26(16) 9.42(57)

FullGP Haar 0.15(0) 0.22(1) 3.49(98) 12.19(34)

Mean 0.83(1) 1.22(5) 5.08(26) 10.95(32)

E
qu

al
re
so
lu
ti
on

RF
Haar 0.87(2) 1.64(8) 8.81(12) 12.74(10)

StPy 0.79(1) 1.26(5) 4.36(14) 9.61(31)

Boost
Haar 0.68(1) 1.11(4) 7.33(29) 12.38(26)

StPy 0.72(1) 1.03(2) 3.39(22) 10.40(31)

VarGP
Haar 0.21(0) 0.30(1) 4.96(67) 12.32(21)

StPy 0.31(0) 0.42(1) 5.13(40) 12.63(38)

Mean 0.60(1) 0.96(4) 5.67(31) 11.68(26)

C
ou

pl
ed

se
qu

en
ce

In
cr
ea
si
ng

re
so
lu
ti
on RF

Haar 1.36(4) 3.83(32) 8.02(14) 11.65(21)

StPy 1.77(5) 3.62(11) 6.87(14) 11.70(22)

Boost
Haar 1.05(3) 3.16(17) 7.57(17) 11.82(30)

StPy 1.34(3) 3.10(11) 5.99(13) 9.59(21)

VarGP
Haar 0.95(1) 1.73(17) 6.95(20) 11.09(26)

StPy 0.86(1) 1.40(4) 5.32(24) 10.95(40)

Mean 1.22(3) 2.81(15) 6.78(17) 11.13(27)

E
qu

al
re
so
lu
ti
on

RF
Haar 1.34(4) 3.78(15) 7.87(13) 11.61(26)

StPy 1.53(5) 3.45(11) 6.24(12) 10.41(25)

Boost
Haar 1.06(3) 3.21(16) 7.57(16) 11.80(30)

StPy 1.06(1) 2.37(16) 5.67(14) 10.21(26)

VarGP
Haar 0.99(1) 1.72(18) 6.93(20) 11.11(26)

StPy 0.97(1) 1.69(14) 6.50(14) 10.21(26)

Mean 1.16(3) 2.70(15) 6.80(15) 10.89(27)

Generative AAM

Combined AAM 0.21(17) 8.28(13) 13.39(14) 17.62(16)

POIC AAM 5.07(27) 8.89(11) 11.41(11) 14.34(25)

SIC AAM 4.21(10) 6.79(13) 9.19(12) 12.42(11)

Mean 3.16(18) 7.99(12) 11.33(12) 14.79(17)

Table 3.3: Model-fitting experiments using the large displacement CogSys test
dataset. The numbers refer to the quantiles of the error distribution after fitting with
the specified model/feature combinations. The error quantiles before fitting are listed
under “Initial Displacement”. The 95% confidence interval of the Maritz-Jarrett stan-
dard error [Maritz and Jarrett, 1978] is included in parentheses and is given as a multiple
of the last digit location, e.g. 0.86(1) ≡ 0.86± 0.01.



Error Quantile 25% 50% 75% 95%

Initial Displacement 6.1 8.75 11.93 16.26

Discriminative AAM

T
es
t:

B
io
ID

T
ra
in
:
B
io
ID

RF
Haar 1.32(3) 1.79(5) 9.62(45) 19.48(107)

StPy 1.64(3) 2.09(4) 7.38(128) 18.53(79)

Boost
Haar 1.48(3) 1.92(4) 3.85(80) 20.14(127)

StPy 1.58(3) 1.90(3) 3.27(45) 17.85(101)

VarGP
Haar 0.92(2) 1.28(5) 1.75(19) 20.60(120)

StPy 1.13(2) 1.35(2) 2.03(28) 20.64(74)

FullGP Haar 0.15(0) 0.22(1) 3.49(98) 12.19(34)

Mean 1.35(3) 1.72(4) 4.65(58) 19.54(101)

T
ra
in
:
X
M
2V

T
S RF

Haar 2.29(10) 4.93(42) 10.76(40) 21.03(99)

StPy 2.26(9) 3.66(22) 8.12(54) 16.68(68)

Boost
Haar 2.06(3) 2.55(10) 5.80(89) 18.97(106)

StPy 2.09(4) 2.79(10) 7.11(105) 18.73(38)

VarGP
Haar 1.88(3) 2.39(6) 6.29(108) 19.65(42)

StPy 1.81(11) 2.94(13) 7.83(88) 19.40(36)

Mean 2.07(7) 3.21(17) 7.65(66) 19.08(65)

(a) Test on BioID

Error Quantile 25% 50% 75% 95%

Initial Displacement 6.9 9.1 11.29 13.66

Discriminative AAM

T
es
t:

X
M
2V

T
S

T
ra
in
:
X
M
2V

T
S RF

Haar 2.55(7) 3.32(14) 10.54(94) 20.04(46)

StPy 2.36(4) 3.22(12) 6.06(51) 13.62(67)

Boost
Haar 1.40(2) 1.84(6) 2.78(22) 13.56(77)

StPy 1.54(3) 1.98(5) 2.80(28) 10.46(113)

VarGP
Haar 1.20(2) 1.51(1) 2.14(13) 12.64(143)

StPy 1.34(2) 1.70(3) 2.23(7) 12.04(95)

Mean 1.73(3) 2.26(7) 4.53(36) 13.73(90)

T
ra
in
:
B
io
ID

RF
Haar 2.01(4) 2.66(8) 6.64(97) 16.41(66)

StPy 2.29(6) 2.97(6) 7.04(56) 14.67(70)

Boost
Haar 2.10(6) 2.72(10) 4.87(33) 14.88(125)

StPy 2.28(5) 2.93(7) 4.02(25) 11.39(95)

VarGP
Haar 1.86(4) 2.46(10) 4.37(41) 16.31(245)

StPy 2.12(7) 2.68(5) 4.68(56) 15.35(126)

Mean 2.11(5) 2.74(8) 5.27(51) 14.84(121)

(b) Test on XM2VTS

Table 3.4: Cross-dataset fitting experiments using the large displacement BioID and
XM2VTS datasets. All experiments use a 5-stage independent discriminative AAM
sequence, built using the procedure specified in table 3.1 except that 1000 pixels are
used throughout the sequences. The error quantiles before fitting are listed under
“Initial Displacement”. The 95% confidence interval of the Maritz-Jarrett standard
error [Maritz and Jarrett, 1978] is included in parentheses and is given as a multiple of
the last digit location, e.g. 7.11(105) ≡ 7.11± 1.05.



3.4 Experiments

Timings Combined SIC POIC

Training (min) 5.9 1.3 1.3
Test (ms) 225.2 1.1E4 157.9

(a)

RF Boost VarGP FullGP

Timings Haar StPy Haar StPy Haar StPy Haar StPy

Training (h) 392.5 0.6 60.1 1.5 120.6 8.8 87.8 176.0
Test (ms) 18.9 141.4 9.2 139.5 381.6 509.1 1.87E4 1.88E4

(b)

Table 3.5: (a) Timings for training and testing 2-level generative AAM models, where
20 iterations per level were used for testing. (b) Timings for 5-stage independent dis-
criminative AAM sequences using Haar features. The test timings represent the mean
over all instances in the test dataset.

RF Boost VarGP

Models Haar StPy Haar StPy Haar StPy

1 94.82 95.33 96.05 95.18 97.23 97.03
2 96.92 97.90 98.00 98.15 98.56 98.87
3 96.56 98.05 98.41 98.67 98.67 99.13
4 96.51 98.05 98.36 98.67 98.77 99.23
5 96.51 98.05 98.36 98.67 98.82 99.23

(a)

RF Boost VarGP

Models Haar StPy Haar StPy Haar StPy

1 44.64 44.97 45.69 45.03 53.90 53.23
2 53.95 60.05 58.21 66.00 66.10 72.82
3 52.51 65.90 62.87 74.31 70.62 78.82
4 52.00 65.95 62.21 74.00 71.33 80.00
5 51.85 65.95 62.10 74.05 71.54 80.82

(b)

Table 3.6: Cumulative results for independent sequential AAMs. The values correspond
to the percentage of errors that are below 3% IOD after applying between one and all
five models to the small (a) and large (b) CogSys test dataset.

3.4.6 Discussion

Generative AAMs

Comparison The results using the generative AAMs on the CogSys datasets are
shown at the bottom of tables 3.2 and 3.3. On the large displacement dataset, the
POIC algorithm shows the worst overall performance. However, as was noted in Sec-
tion 2.10, this is unsurprising given that the CogSys dataset contains four individuals
of varying skin texture. As expected, the SIC algorithm performs somewhat better due
to the joint shape and texture model optimisation. However, this comes at the cost of

59



3.4 Experiments

greatly increased fitting times (cf. table 3.5a). While the combined AAM shows the best
fitting accuracy, it is also notable for the fact that, more so than in the case of the other
algorithms, there appears to be a cutoff point after which fitting performance deterio-
rates rapidly. This reflects the breakdown of the constant linear update approximation
(cf. 2.8) in cases where the initial position is too far from the ground truth.

Accuracy Overall, the generative algorithms perform poorly on the larger displace-
ment dataset, demonstrating the susceptibility of the gradient descent algorithms to
becoming trapped in local optima, especially when the initialisation is further from the
ground truth. Although the same may be said for the higher quantiles of the results on
the smaller displacement dataset shown in table 3.2, the lower quantiles are associated
with very low error values. This may be attributed to the fact that fitting generative
models involves optimising a well-defined non-linear objective function, and the closer
the initial points are to the ground truth, the more likely the optimisation is to succeed.

Efficiency Table 3.5a shows the mean training and test timings for the three gener-
ative AAM models. Although the POIC algorithm is the most efficient, the combined
AAM appears to represent the best trade-off between accuracy and speed. After tak-
ing into account the number of iterations, the timings coincide with those reported in
[Matthews and Baker, 2004]. As expected, training time is not an issue, and in test-
ing, the SIC algorithm is two orders of magnitude slower than the combined and POIC
algorithms.

Discriminative AAMs

Sequences Comparing the mean of the fitting errors for the different sequence training
experiments in tables 3.2 and 3.3, it is clear that independent training outperforms
coupled training by a large margin. This coincides with the experiments carried out
in [Sauer et al., 2011]. It also appears that training sequences using a greater number
of pixels for the models at each stage as shown in table 3.1 does not appear to lead
to a significant increase in fitting accuracy. Although this seems surprising, it is an
encouraging result as training sequences with increasing pixel numbers is often very
time-consuming, especially when Haar features are used (cf. table 3.5b).

Regression Models Focusing on the independent sequences and comparing the per-
formance of the regression models across all features, it is clear that the boosting ap-
proach outperforms the random forest in most instances but that the best results are

60



3.4 Experiments

obtained using the variational GP model. Since the VarGP models are trained using
the features selected by the boosting algorithm, this implies that the piecewise-constant
regression functions used to build the strong learners are unable to capture the full in-
formation provided by the selected features. Comparing the results of the single full GP
experiment to those of the variational GP experiments, a small but significant increase
in performance is evident in both table 3.2 and table 3.3. The fact that the results of
the variational GP are so close to those of the full GP is a testament to the quality
of the variational sparse GP algorithm of Titsias [2009], especially when considering
that only 100 inducing inputs were used for the sparse algorithm but the full GP model
was trained using 4000 samples. Evidently, the optimisation results in inducing inputs
which represent a concise summary of the training data.

Cumulative sequence results Table 3.6 shows the results after cumulative appli-
cation of the models in the sequences. The fitting accuracy of the sequences using
the random forest and boosting regression algorithms appears to converge at the third
model, and in some cases deteriorates slightly after this. However, this is not the
case when using the Gaussian process regression models where the value of the success
statistic increases monotonously throughout the sequences.

Cross-dataset tests The results of the cross-dataset experiments reported in ta-
ble 3.4 show that although there is a significant deterioration in performance between
the within- and cross-dataset experiments, the VarGP algorithm results in the lowest
errors and also has the best generalisation performance. Interestingly, we observe a
large difference in performance for the random forest algorithm depending on whether
it is trained on the BioID or on the XM2VTS dataset.

Features When comparing the performance of the Haar features to the steerable
pyramid features in table 3.2 and table 3.3, the general trend shows the Haar features to
be superior, especially in the experiments involving the variational GP algorithm. Given
the ad hoc nature of the steerable pyramid features, this is unsurprising, especially as
the shape and location of the Haar features are optimised whereas the steerable pyramid
features are computed at fixed locations. However, in most experiments the values lie
within ∼5% of each other and there are several instances where the results are close.

Efficiency Table 3.5b shows the time required for training and testing the different
discriminative AAM algorithms. The timings refer to the sequence experiments with

61



3.5 Conclusions

increasing pixels shown in tables 3.2 and 3.3. The long training times reported in the
case of Haar features are a consequence of the greatly increased amount of possible
feature template shapes and locations in the higher resolution texture samples. The
training data contained 4000 instances and in the case of the random forest algorithm,
training required almost 17 days. Not shown is the training time for the experiments
which use 1000 pixels throughout the sequences. Here, the training of the random forest
algorithm only took ∼30h. Since the number of steerable pyramid features is small and
fixed, training times are shorter, although testing is slower due to the required filtering
operations. The extremely long fitting times for the FullGP algorithm are explained by
the large number of training instances and highlight the necessity for sparse GP models
such as the VarGP algorithm, which yields a substantial increase in performance at only
a modest loss in accuracy.

Comparison

Comparing the results for the generative AAM algorithms presented in tables 3.2 and 3.3
to the results obtained for the independent discriminative AAM sequences, it is clear
that, overall, the discriminative AAM algorithms outperformed the generative AAMs.
This is especially true in the case of large displacements. As expected, however, com-
paring the lower quantiles of the small displacement experiments, the generative AAM
models performed as well or better than the discriminative models. Comparing ta-
ble 3.5a and 3.5b, the random forest and boosting-based models that use Haar features
were between one and two orders of magnitude faster when compared to the fastest
generative algorithms. However, the comparatively large number of 20 iterations per
multiresolution level was used for the generative AAMs where, in practice, often 5
iterations per level are sufficient. The variational sparse GP algorithm was substan-
tially slower, and although it is not suitable for performance-critical applications such
as tracking faces in video sequences, its added accuracy makes it attractive for static
model-fitting tasks.

3.5 Conclusions

In this chapter we discussed a group of regression-based discriminative fitting methods
in which the texture information is used directly to update the shape model parameters.
To this end, we presented three different regression models based on boosting, random
forests and Gaussian processes. Furthermore, we investigated two types of features:
Haar features, whose use is commonplace in the field of Computer Vision, as well as
a group of features derived from steerable pyramid filters. Inspired by the principled
fitting algorithms for generative AAMs discussed in the previous chapter, we developed

62



3.5 Conclusions

two training procedures to build sequences of discriminative AAMs in a bid to increase
fitting accuracy and robustness. We evaluated the different combinations of regression
models, features and sequence training algorithms in a set of experiments which em-
ployed data from three different image databases, and contrasted the results with those
obtained using the three most commonly cited generative AAMs, the combined AAM,
the simultaneous- and the project-out inverse compositional AAM. Overall, the sequen-
tial discriminative AAM algorithms outperformed the generative AAM algorithms, es-
pecially in the case of large displacements from the ground truth where the generative
AAMs consistently failed. The differences were less extreme for small displacements and
the experiments showed that when initialised close to the ground truth, the principled
generative AAM algorithms performed as well or better than the discriminative algo-
rithms. The independent sequence training algorithm provided the best results for all
discriminative AAMs, outperforming the proposed coupled algorithm by a large margin.
The boosting algorithm outperformed the random forest algorithm in most experiments
while also taking significantly less time to train and resulting in more compact models.
Overall, the variational Gaussian process algorithm resulted in the best fitting accuracy,
although fitting took substantially longer when compared to the other algorithms. The
use of the proposed steerable pyramid features greatly reduces training time when com-
pared to Haar features. However, fitting accuracy is slightly reduced and the required
filtering operations result in slower runtime performance. Haar features are therefore
favoured due to their added accuracy and faster runtime performance but at times their
advantage over steerable pyramid features is only a slight one, showing there is scope
for further improvement. The conclusions drawn from the experiments regarding ro-
bustness and accuracy of the models suggest that a hybrid approach to model-fitting
could be beneficial. Thus, future work could investigate the use of discriminative AAM
sequences prior to applying generative AAMs for added accuracy.

63



Chapter 4

Non-Linear Probabilistic Models for
Face Modelling

The discriminative AAM models discussed in the previous chapter employ non-linear
regression to drive the fitting of a linear shape model. Although this approach shows
promising results and is the subject of active research, it is not entirely satisfactory
from a mathematical standpoint, as it is unclear what is being optimised during fitting.
Conversely, the fitting of generative AAM models is grounded in the optimisation of a
non-linear objective function which relates the parameters of linear shape and texture
models. As a complement to the discriminative AAM, an interesting and comparatively
unstudied problem is the use of non-linear dimensionality reduction methods to replace
the linear PCA models in generative AAMs. Building on the successful use of Gaussian
processes in the previous chapter, we investigate the use of non-linear latent variable
models which are based on Gaussian process regression and which were first described by
Lawrence [2005]. In the following we present the theory and apply variants of the original
Gaussian process latent variable model (GPLVM) to the problem of face modelling with
generative AAMs, as well as to understanding facial expressions.

4.1 Probabilistic Unsupervised Dimensionality Reduction

Latent variable models are used for probabilistic linear and non-linear dimensionality
reduction. Popular models such as probabilistic PCA [Tipping and Bishop, 1999], factor
analysis [Ghahramani and Beal, 2000], generative topographic mapping [Bishop et al.,
1998] and Gaussian process latent variable models (GPLVM) [Damianou et al., 2011;
Lawrence, 2005; Titsias and Lawrence, 2010] belong to this class of models. In the fol-

64



4.1 Probabilistic Unsupervised Dimensionality Reduction

lowing, we describe the principles unifying such models providing background material
that we will build on in Section 5.1.

Assume a multivariate dataset Y = {yni}N,Dn,i=1, where yn ∈ RD is a data vector.1

We assume that the high dimensional vector yn is produced through a low dimensional
space that governs the data generation process. More precisely, there exists a latent
vector xn ∈ RQ, with Q � D, that gives rise to the observed vector yn according to
[Bishop et al., 1998; Lawrence and Moore, 2007; Tipping and Bishop, 1999]

yni = fi(xn;wi) + εni, i = 1, . . . , D. (4.1)

Here, yni is the ith dimension of the nth observed data vector, fi is a mapping param-
eterised by wi and εni is independent noise. There are three unknowns: i) the latent
vectors {xn}Nn=1 contained in the rows of X, ii) the parameters {wi}Di=1 contained in
the rows of W and iii) the noise term E = {εni}N,Dn,i=1. In a fully probabilistic Bayesian
framework all these unknowns are assigned prior distributions and inference over them
proceeds by applying Bayes’ rule. In partially Bayesian probabilistic approaches either
the parameters W or the latent vectors X are estimated using maximum likelihood.
This is the approach of most probabilistic unsupervised dimensionality reduction meth-
ods, which can be further divided into linear and non-linear methods.

Linear methods such as probabilistic PCA (PPCA) and factor analysis assume a
linear mapping such that fi(xn;wi) = wT

i xn, where the parameters wi are often re-
ferred to as factor loadings. They assign a standard normal prior to each latent vector
xn, i.e. p(xn) = N(xn|0, I), and assume white Gaussian noise ε ∼ N(ε|0,Σ) with
isotropic covariance (i.e. Σ = σ2I) in the case of PPCA, and diagonal covariance (i.e.
Σ = diag(ψ)) in factor analysis. Standard training approaches estimate the parameters
W by maximum likelihood. More precisely, the latent variables are integrated out so
as to obtain the likelihood

p(Y |W ) =
N∏
n=1

∫ D∏
i=1

p(yni|xn,wi)p(xn)dxn, (4.2)

where p(yni|xn,wi) = N(yni|wT
i xn,Σ). Typically this likelihood is maximised with

respect to the parameters using the EM algorithm [Dempster et al., 1977; Bishop, 2006,
chap.9]. In the case of PPCA the likelihood is maximised by an eigenvalue problem
which is equivalent to principal component analysis (PCA) [Tipping and Bishop, 1999].

1In our notation, the matrix Y contains the vectors yn in its rows.

65



4.2 Gaussian Process Latent Variable Model

Fully Bayesian inference in linear probabilistic dimensionality reduction models is
not feasible since assigning a prior p(W ) on the parametersW and marginalising is an-
alytically intractable. However, approximate Bayesian solutions based on variational in-
ference [Bishop, 1999; Ghahramani and Beal, 2000] are feasible and unlike the maximum
likelihood techniques, they allow for automatic selection of the latent dimensionality.

In many practical problems we are interested in investigating non-linear latent vari-
able models, where the mapping fi is taken to be a non-linear function. In most cases
however, this causes the integral over xn in Eqn. (4.2) to become analytically intractable,
and it is therefore infeasible to obtain the standard maximum likelihood solution for the
parameters W . In the following section, we discuss a more flexible non-linear and un-
supervised dimensionality reduction model which is based on Bayesian non-parametrics
and particularly Gaussian processes [Rasmussen and Williams, 2006].

4.2 Gaussian Process Latent Variable Model

We introduced Gaussian processes and discussed their application to regression prob-
lems in Section 3.2.3. Within the context of Gaussian process latent variable models,
non-linear Gaussian process regression models are used to model the set of functions
{fi(x)}Di=1. More precisely, each mapping function fi(x) is assumed to be an indepen-
dent random draw from a Gaussian process, so that

fi(x) ∼ GP(0, k(x,x′)), (4.3)

where k(x,x′) is a covariance function that quantifies the smoothness of the random
draws. During training, these functions are evaluated on a finite set of latent input
vectors {xn}Nn=1 contained in the rows ofX, and the Gaussian process prior assumption
on the mapping functions induces the following Gaussian prior distributions on the
vectors of function values {fi}Di=1, with F = {fni}N,Dn,i=1 and fni = fi(xn):

p(F |X) =

D∏
i=1

N(fi|0,KX), (4.4)

where KX is a covariance matrix such that (KX)ij = k(xi,xj). This approach, intro-
duced by Lawrence [2005], is referred to as the Gaussian process latent variable model
(GPLVM) and has been used extensively in applications [Huang et al., 2007; Urtasun
and Darrell, 2007; Urtasun et al., 2008; Wang et al., 2008].

66



4.3 Generative AAM with GPLVM

Most current training methodologies for GPLVMs are based on carrying out maxi-
mum likelihood or MAP estimation over the latent variables X. Specifically, both the
mapping variables F and the latent vectors X are unknown quantities which in a fully
Bayesian training procedure should be treated as random variables and should be inte-
grated out. However, given the prior over F in Eqn. (4.4), and using a standard normal
distribution for the prior over X as in PPCA and factor analysis, the simultaneous
marginalisation of both (F ,X) is analytically intractable. Moreover, marginalisation
of the latent variables X which would allow subsequent maximum likelihood training
as in PPCA and factor analysis is also intractable, as the latent variables X can appear
non-linearly inside the covariance matrix KX in Eqn. (4.4). Fortunately, however, the
marginalisation of F is feasible. This motivated the training procedure proposed by
Lawrence [2005], where the mapping F is marginalised out to obtain the likelihood

p(Y |X) =
D∏
i=1

∫ N∏
n=1

p(yni|fni)p(fi|X)dfi

=

D∏
i=1

N(Y:,i|0,KX + Σ). (4.5)

Point estimates for the latent inputs X are then found by maximising the likelihood
using a gradient-based optimisation algorithm. When a prior p(X) is added as a regu-
larisation penalty in this optimisation, the whole approach reduces to a MAP estimation
over X. Also, by considering more structured priors over X, interesting latent space
regularisation mechanisms may be added [Lawrence and Moore, 2007; Urtasun et al.,
2008; Wang et al., 2008]. If linear covariance functions are used for the Gaussian process
mappings, the resulting GPLVMmodel implements linear dimensionality reduction, and
is shown to be equivalent to PCA in [Lawrence, 2005]. This leads us to investigate the
use of GPLVMs as a replacement for PCA in generative AAMs.

4.3 Generative AAM with GPLVM

Revisiting the generative AAM algorithms discussed in Section 2.7, it is clear that in
order for an alternative dimensionality reduction algorithm to be successful, it must
provide an explicit mapping into and out of the latent space preserving data prox-
imity in both directions. In other words, the mapping should be bijective. Spectral
dimensionality reduction techniques such as Isomap [Tenenbaum et al., 2000] or locally
linear embeddings [Roweis and Saul, 2000] preserve data proximity, however they do not

67



4.3 Generative AAM with GPLVM

provide a mapping into the latent space. On the other hand, the probabilistic nature
of the GPLVM allows the determination of latent space points given a data point via
optimisation of the posterior. However, no explicit mapping exists, and the optimisa-
tion is susceptible to local optima. Furthermore, as shown by Lawrence and Quiñonero
Candela [2006], the GPLVM algorithm encourages the learning of a mapping that pre-
serves data proximity when moving from the latent space to the data space, but that
unfortunately the converse is not true. Thus, data points that are close in data space
may not be associated with close latent projections. An ad hoc solution to these is-
sues termed the “back-constrained” GPLVM was proposed by [Lawrence and Quiñonero
Candela, 2006], where instead of optimising the latent variables X directly, they are
parameterised using a radial basis function network (cf. [Bishop, 2006, chap. 6])

xij =
N∑
n=1

Ajng(yi,yn), (4.6)

whose parameters A are then optimised. Here, xij is the i, jth entry of X, which
contains the N latent vectors xi associated with the data vectors yi in its rows. The
values of the RBF kernel g encode the proximity structure around data point yi and
thus the linear combination of the kernel values in Eqn. (4.6) encourages the latent
space projections xij to reflect the structure of the data space. After training, the RBF
network mapping may then be used to project data points into the latent space.

The back-constrained GPLVM fulfills the requirements needed for a replacement of
the PCA models in a generative AAM algorithm. However, as opposed to linear PCA
models, where fitting the model to an instance of a shape or a texture is a convex op-
timisation problem with a closed-form solution (cf. Eqn. (2.15)), fitting the non-linear
GPLVM model to a shape or texture instance represents a non-convex optimisation
problem which must be solved using an iterative optimisation algorithm. Since shape
and texture are coupled in the combined AAM, using GPLVMs would lead to very com-
plicated training and testing algorithms requiring several stages of optimisation. On
the other hand, shape and texture are modelled separately by the inverse-compositional
model discussed in Section 2.9, making this group of algorithms more suitable for ex-
ploring the use of non-linear GPLVM models. Previous work such as [Batur and Hayes,
2005] and [van der Maaten and Hendriks, 2010] has linked the poor fitting performance
of generative AAM algorithms in the generic scenario to the use of linear PCA models
for modelling the fundamentally non-linear texture manifold. Therefore, in the following
we explore the effects of replacing the linear texture model in an inverse-compositional

68



4.3 Generative AAM with GPLVM

AAM with a GPLVM, retaining a linear shape model since the addition of a non-linear
shape model is problematic, as it is unclear how the compositional update of the shape
parameters could be performed in that case.

4.3.1 GPLVM Texture Model

The linear texture model used in the generative AAM algorithms of Section 2.7 allows
textures G(r;λ) to be generated as a linear superposition of the texture eigenmodes
Gj(r), as shown in Eqn. (2.19). From a latent variable model perspective, the texture
parameters λ are the latent variables associated with the output texture and are em-
bedded in the linear latent space spanned by the eigenmodes Gj(r). When replacing
the linear texture model with a trained GPLVM, the texture image Gnl is a non-linear
function ζ of the latent variable x̃:

Gnl(x̃) = ζ(x̃) (4.7)

Thus, the latent variable x̃ may be seen to be the analogue of the linear texture pa-
rameters λ. In the following, we describe the training of a non-linear GPLVM texture
model and derive a closed-form expression for the function ζ and explain how to recover
the latent variables associated with a given texture. We adhere to the notation used for
latent variable models, and consider the matrix Y to contain flattened texture images
in its rows.

Training

For the GPLVM texture model, we use an RBF kernel

k(xi,xj) = γ exp

(
−α

2

Q∑
k=1

(xik − xjk)2

)
, (4.8)

where xi,xj refer to the i, jth latent vectors, and assume isotropic Gaussian noise with
covariance Σ = β−1I, where the parameter β = 1

σ2 is the inverse variance. As noted
in Lawrence [2005], there is a scale redundancy between the free variables X and the
inverse lengthscale parameter α of the RBF kernel which may be removed by placing
an independent unit Gaussian prior

p(X) =

N∏
n=1

N(xn|0, I) (4.9)

69



4.3 Generative AAM with GPLVM

over the variables xn. Multiplying with the likelihood of Eqn. (4.5), we obtain the joint
distribution

p(Y |X, β,θ)p(X) ∼
D∏
i=1

N(Y:,i|0,K + β−1I)
N∏
n=1

N(xn|0, I), (4.10)

where we have made the dependency on the kernel hyperparameters θ = (γ, α) and the
noise parameter β explicit. Taking the negative logarithm, and setting K̃ = K+β−1I,
we obtain the negative log-posterior (without the normalisation)

F (X,θ, β) =
DN

2
log 2π +

D

2
log |K̃|+ 1

2
Tr(K̃−1Y Y T ) +

1

2

N∑
n=1

xTnxn (4.11)

which is used for training the parameters {X,θ, β} of the back-constrained GPLVM. For
simplicity, we continue to refer to the latent variablesX directly, although in actual fact
the parameters that are optimised are the coefficients of the back-constraint mapping
α shown in Eqn. (4.6). In our implementation, the model parameters are determined
using the scaled conjugate gradient algorithm developed by Møller [1993]. In order for
the optimisation to be efficient, analytic formulas for the gradients with respect to the
parameters must be available and are discussed in the following.

Gradients

The model parameters appear in the objective function via the kernel matrix K̃ and
therefore the gradients split into terms according to the chain rule. The inner-most
term of the chain rule

∂F

∂K̃
=

1

2

(
K̃−1Y Y T K̃−1 −DK̃−1

)
(4.12)

only depends on the kernel matrix K̃ and may be computed independently of the exact
type of kernel used [cf. Lawrence, 2005]. The gradients with respect to the model
parameters are given in the following.

70



4.3 Generative AAM with GPLVM

Gradient w.r.t. γ

∂F

∂γ
=
∑
ij

∂F

∂K̃ij

∂K̃ij

∂γ
(4.13)

=
1

γ

∑
ij

∂F

∂K̃ij

Kij (4.14)

Gradient w.r.t. α

∂F

∂α
=
∑
ij

∂F

∂K̃ij

∂K̃ij

∂α
(4.15)

=
1

2

∑
ij

∂F

∂K̃ij

∑
k

(xik − xjk)2Kij (4.16)

Gradient w.r.t. xlm

∂F

∂xlm
=
∑
ij

∂F

∂K̃ij

∂K̃ij

∂xlm
(4.17)

= α
∑
ij

∂F

∂K̃ij

((xim − xjm)δil − (xim − xjm)δjl)Kij (4.18)

= 2α
∑
n

∂F

∂K̃ln

(xnm − xlm)Kln (4.19)

Here we have used the Kronecker delta δij , defined as

δij =

1, i = j

0, otherwise
(4.20)

Gradient w.r.t. β

∂F

∂β
=
∑
ij

∂F

∂K̃ij

∂K̃ij

∂β
(4.21)

= − 1

β2

∑
ij

∂F

∂K̃ij

δij (4.22)

71



4.3 Generative AAM with GPLVM

4.3.2 Texture generation

Given a latent variable x∗, the associated output texture y∗ is determined by extending
the likelihood of the GPLVM of Eqn. (4.5). Including the test data pair (y∗,x∗), we
have

p(Y ,y∗|X,x∗, β,θ) ∼
D∏
i=1

N(YN∗:,i |0,KN∗ + β−1I), (4.23)

where

YN∗ =


y1,1 y1,2 · · · y1,D

y2,1 y2,2 · · · y2,D

...
...

. . .
...

y∗,1 y∗,2 · · · y∗,D

 (4.24)

is the extended data matrix and

KN∗ =


k(x1,x1) k(x1,x2) · · · k(x1,x∗)

k(x2,x1) k(x2,x2) · · · k(x2,x∗)
...

...
. . .

...
k(x∗,x1) k(x∗,x2) · · · k(x∗,x∗)

 (4.25)

is the extended kernel matrix. Conditioning on the training data Y using Eqn. C.7
yields

p(y∗|Y ,X,x∗, β,θ) ∼ N
(
y∗|Y TK−1

NNkN∗, (k∗∗ − kTN∗K−1
NNkN∗)ID

)
(4.26)

from which we obtain the predictive mean

µ∗ = Y TK−1
NNkN∗ (4.27)

which represents the best estimate of the output texture y∗ given the latent space point
x∗. Due to the presence of the non-linear RBF kernel, the predictive mean is a non-
linear function of the latent variables {X,x∗} and is equivalent to the function ζ of
Eqn. (4.7). Furthermore, since the kernel K is shared across the D output dimensions
and due to the factorised likelihood, the covariance matrix is spherical with variance
k∗∗ − kTN∗K

−1
NNkN∗. Here, k∗∗ refers to the bottom right entry, and kN∗ to the right

column of the kernel matrix KN∗

72



4.3 Generative AAM with GPLVM

4.3.3 Latent space projection

As a precursor to fitting a generative AAM using gradient descent, the initial values of
the shape and texture model parameters must be chosen. While the shape is commonly
initialised to the mean, using the “back-constrained” GPLVM for the texture model
allows the latent space point x∗ to be determined using the learned back-constraint
mapping of Eqn. (4.6). Furthermore, this initialisation may be improved upon by
optimising the negative log-posterior

F̂ (x∗) =
DN

2
log 2π +

D

2
log |K̃N∗|+

1

2
Tr(K̃−1

N∗YN∗Y
T
N∗)

+
1

2

N∑
n=1

xTnxn +
1

2
xT∗ x∗

(4.28)

with respect to x∗, while keeping the trained parameters {X,θ, β} fixed.

4.3.4 Non-Linear AAM

Replacing the linear texture model with the non-linear GPLVM texture model, the
generative AAM objective function of Eqn. (2.25) becomes

min
x,p,q

∑
r∈s0

‖E(r;x,p, q)‖2, (4.29)

where
E(r;x,p, q) = Gnl(r;x)− I(N(W (r;p); q)) (4.30)

and the remaining variables are as defined in Section 2.7.1.
In order to optimise the objective function in Eqn. (4.29), we adapt the SIC algo-

rithm of Section 2.9 to work with the GPLVM texture model. To this end, we require
the steepest descent images

Dnl(r) =

(
∂Gnl(r; x̂)

∂r

∂W

∂p

∣∣∣∣
p=0

,
∂Gnl(r;x)

∂x̂

)
(4.31)

with respect to the non-linear texture model Gnl and the latent space point x̂. The
first term in Eqn. (4.31) requires no modification, since it is composed of the gradient
of the texture image Gnl and the Jacobian of the warp W , which is induced by the
linear shape model. The second term contains the gradients with respect to the latent
space point x̂ which are obtained from the definition of the non-linear texture model

73



4.3 Generative AAM with GPLVM

in Eqn. (4.7) and Eqn. (4.27). Given the latent space vector x̂, the associated texture
vector ŷ is

ŷ = Y TK−1
NNkN x̂. (4.32)

Noting that we are using an RBF kernel, the derivative of the mth component of the
texture vector with respect to the ith component of x̂ becomes

∂ym
∂x̂i

=
∑
p,l

Y T
lmK

−1
lp

∂

∂x̂i
γ exp

(
−α

2

∑
k

(xpk − x̂k)2

)
(4.33)

= α
∑
p,l

Y T
lmK

−1
lp (xpi − x̂i)kp (4.34)

Reassembling the derivative vectors ∂y
∂x̂i

into the texture reference frame, we obtain the
steepest descent images ∂Gnl(r;x)

∂x̂ . Given the steepest descent images Dnl, the fitting
of a non-linear AAM may be performed according to the SIC algorithm of Section 2.9.
As an extension to this algorithm, the log posterior of Eqn. (4.28) may be optimised
in a separate step at each iteration to improve convergence. In order to ease notation,
in the following the linear SIC AAM algorithm is referred to as “L-SIC”, the GPLVM
SIC algorithm is called “G-SIC” and the extension using optimisation of the posterior
is named “G-OptSIC”.

4.3.5 Experiments

In order to investigate the performance of the non-linear GPLVM algorithms, we per-
formed a set of quantitative experiments on the CogSys dataset used in Section 3.4.

Training In all the experiments, the dimensionality of the linear shape models was set
to 20 dimensions. The GPLVM models associated with the texture models were trained
on a total of 200 images of four individuals from the CogSys dataset and separate
models were constructed using latent spaces of 2, 5 and 10 dimensions. The latent
spaces were initialised using linear PCA and the signal-to-noise ratio (SNR) of the
model was initialised to 10 by setting the kernel and noise hyperparameters relative
to the variance of the data. Furthermore, we placed bounds on the SNR in order to
avoid over- and underfitting of the data, so that the hyperparameters were constrained
to remain within a factor of 10 of their initial values. Following initialisation, the non-
linear optimiser was run for 1000 iterations. For the sake of comparison, L-SIC models
were built using the same dimensionality settings.

74



4.3 Generative AAM with GPLVM

Testing The test data was generated from an independent, randomly selected set of
200 frames taken from the video sequences used to generate the training data. The
behaviour of the GPLVM-based algorithms was evaluated and compared to the L-SIC
AAM in two experiments. In the first experiment, the test data was generated by rigidly
aligning the mean shape to the ground-truth points. This resulted in an initial error
distribution which was very close to the ground-truth and which was used to measure
the stability of the non-linear AAM algorithms. Small perturbations of the ground-
truth pose parameters were used to generate the test data for the second experiment,
resulting in an initial error distribution similar to the experiments of Section 3.4. All
algorithms used 100 fitting iterations, and the shape and texture errors for the first
fitting experiments are shown in tables 4.1a and 4.1c. The shape error was calculated as
in Eqn. (3.34), whereas the texture error was given as the percentage of mean deviation
per pixel from the ground truth texture. While all the L-SIC models improved on
the initial error distribution, the shape and texture error after fitting was increased
for a significant proportion of the test data in the case of the 2D and 5D G-SIC and
G-OptSIC models. Although this remained true for the 10D G-SIC algorithm, the
best fitting results in this experiment were obtained for the 10D G-OptSIC algorithm.
This suggests that when near the ground truth position, the fitting performance of the
non-linear AAM models improves with the number of dimensions used for the non-
linear texture model. However, increasing the dimensionality beyond 10 dimensions
did not result in any further significant improvement in these experiments. Comparing
tables 4.1b and 4.1d, we find a similar pattern, although it is clear that a significant
proportion of fitting experiments diverged. In particular, this happened when using the
non-linear G-SIC and G-OptSIC algorithms, where divergence was drastic and resulted
in undefined behaviour in the texture models when the shape shrunk to zero or expanded
to infinity. Timings of the algorithms used in the experiments are shown in table 4.2.

The 2D latent spaces associated with the texture models used in the experiments
are visualised in Figure 4.1, where 4.1a shows the latent space associated with the
GPLVM models and where the latent space associated with a 2D linear texture model
is illustrated in 4.1b. The continuous latent space visualisation in Figure 4.1a is obtained
by evaluating the GPLVM mapping at the points of a regular grid and recording the
negative logarithm of the variance. Thus, red areas correspond to locations near the
training data, where the variance of the GPLVM mapping is low. Both latent spaces
clearly separate the textures of the four individuals. The similarity of the latent spaces is
apparent and is a direct result of using the linear latent space to initialise the training of
the GPLVM.While optimising the latent space, the back-constraint mapping encourages

75



Error Quantiles

25% 50% 75% 95%

Init 0.30 0.38 0.46 0.56

L-SIC
2 0.14(1) 0.19(2) 0.23(1) 0.31(4)
5 0.08(0) 0.11(1) 0.14(2) 0.23(3)
10 0.08(1) 0.10(1) 0.13(1) 0.22(4)

G-SIC
2 0.17(83) 0.26(83) 0.38(83) 0.96
5 0.10(1) 0.16(1) 0.22(2) 0.41(8)
10 0.08(1) 0.12(1) 0.19(3) 0.52(23)

G-OptSIC
2 0.37(6) 0.73(15) 1.66(63) 201
5 0.07(1) 0.09(1) 0.15(2) 15.50(33)
10 0.06(0) 0.09(1) 0.12(1) 0.20(2)

(a)

Error Quantiles

25% 50% 75% 95%

Init 1.29 2.47 3.22 5.12

L-SIC
2 0.25(2) 0.47(4) 2.51(69) 4.95(27)
5 0.11(1) 0.22(6) 3.76(57) 5.33(36)
10 0.10(1) 0.19(50) 4.01(89) 6.53(29)

G-SIC
2 0.37 1.39 5.12 561
5 0.38(7) 1.02(4) 5.9(23) 691
10 0.42(3) 0.8(4) 6.3(43) 109

G-OptSIC
2 0.22(10) 1.8(16) 50.9(43) 4206
5 0.09(1) 0.24(53) 5.7(44) 208
10 0.07(1) 0.14(6) 4.5(16) 128

(b)

Error Quantiles

25% 50% 75% 95%

L-SIC
2 14.79 17.58 24.86 37.01
5 12.27 18.58 22.94 70.11
10 11.19 16.75 25.04 57.30

G-SIC
2 20.05 30.78 43.44 70.45
5 13.87 22.52 32.59 49.82
10 9.87 15.05 24.52 46.35

G-OptSIC
2 12.55 20.35 36.28 NaN
5 7.21 13.13 22.65 222
10 7.00 10.74 16.19 28.65

(c)

Error Quantiles

25% 50% 75% 95%

L-SIC
2 16.31 21.43 37.69 48.05
5 18.69 25.23 60.63 91.99
10 18.99 31.35 56.11 81.25

G-SIC
2 20.05 30.78 43.44 70.45
5 23.59 32.41 47.05 284
10 9.87 15.05 24.52 46.35

G-OptSIC
2 23.00 37.34 246 NaN
5 9.73 22.38 42.92 NaN
10 9.02 16.07 39.39 NaN

(d)

Table 4.1: Fitting results for the Linear SIC AAM and the non-linear GPLVM algo-
rithms where the AAMs contained texture models of 2, 5 and 10 dimensions. (a) and
(b) show the shape error after fitting, where the values are generated using the error
measure of Eqn. (3.34). Due to the presence of outliers, the 95% confidence interval
of the Maritz-Jarrett standard error was large in some cases so that not all standard
errors are included in the tables. The corresponding texture errors are shown in (c)
and (d), where the entries represent the mean percentage of deviation from the ground
truth pixel values. As is obvious from the quantiles of the initial error distribution,
the experiments in (a) and (c) start very close to the ground truth, whereas small pose
displacements are used in (b) and (d).



4.3 Generative AAM with GPLVM

L-SIC G-SIC G-OptSIC

2 5 10 2 5 10 2 5 10

Time (ms/iteration) 3.8 4.7 6.5 157 231 231 959 982 1114

Table 4.2: Timings in milliseconds per iteration for the L-SIC, G-SIC and G-OptSIC
algorithms used in the experiments detailed in the tables in Figure 4.1.

the latent space points to be placed according to the similarity of the training data.
However, contrary to linear PCA, the objective function is non-linear, and therefore the
construction of the latent space is subject to the effect of local optima.

The latent points obtained from an individual fitting experiment of the type used
to generate tables 4.1a and 4.1c are shown as sequences of points and crosses in Fig-
ures 4.1a and 4.1b, where white corresponds to the first iteration and black to the last.
The ground-truth texture of the experiment is shown on the right in Figure 4.1c, and is
similar to frame 89 of the training dataset, which is the top-right image in Figure 4.1a.
The sequence of round greyscale points in Figure 4.1a corresponds to the G-SIC algo-
rithm, and it is clear that although the search is started very near the ground truth, the
algorithm converges to a local optimum which results in the rather poor reconstruction
shown on the left in 4.1c. Fitting using the L-SIC algorithm converges quickly, how-
ever the latent space points shown in Figure 4.1b remain far from the ground truth.
Although the L-SIC reconstruction in Figure 4.1c is an improvement on the G-SIC re-
construction, the facial traits appear slightly distorted and the loss of high-frequency
information caused by the low dimensionality of the PCA latent space makes the tex-
ture look wooden and somewhat artificial. The most successful fit is obtained using the
G-OptSIC algorithm, of which the corresponding latent points are displayed as crosses
in Figure 4.1a and the associated reconstruction is given in the second image from the
right in Figure 4.1c.

Discussion Although this experiment proves that a 2D GPLVM texture model is
able to produce more realistic images when compared to a linear model of the same
dimensionality, it must be noted that this comes at the price of much reduced fitting
robustness, even when the search starts close to the ground truth (cf. table 4.1a). The
experiments in table 4.1 show that increasing the dimensionality of the non-linear models
also increases their robustness. This behaviour is echoed in Figure 4.2, which shows the
reconstructed image for the different AAM algorithms after increasing the number of
dimensions in the texture model to 10. Now, the G-SIC algorithm also converges to

77



(a) (b)

(c)

Figure 4.1: (a) Latent texture space visualisation of a 2D GPLVM model and (b) the
corresponding linear texture space after training on 100 texture samples from video
sequences of four individuals from the CogSys dataset. An image corresponding to a
particular frame in the video is shown for each of the four individuals. The colouring
in figure (a) represents the negative logarithm of the predictive variance of the GPLVM
when evaluated at the latent points shown (cf. Eqn. 4.26). The plots include a fitting
test, where the AAMs were fitted starting from the mean shape. The greyscale points
and crosses in (a) correspond to the latent points associated with each iteration of the
G-SIC and G-OptSIC fitting algorithms, where white represents the first and black
the last iteration. Equivalently, the greyscale points in (b) represent the latent points
observed during fitting of a linear AAM with the L-SIC algorithm. The reconstructed
images corresponding to the final (i.e. the black) latent points are shown in (c) and the
original image is included on the right for comparison.



4.3 Generative AAM with GPLVM

Figure 4.2: Employing 10 dimensional texture models in the fitting experiments of
Figure 4.1 results in the reconstructions shown above. Comparing to Figure 4.1c, the
performance of the G-SIC and L-SIC algorithms is much improved.

a good approximation of the ground truth as does the linear reconstruction, although
on closer inspection the linear reconstruction still appears smoothed and less natural
when compared to the non-linear GPLVM-based reconstruction. The poor robustness
of the GPLVM-based algorithms for low-dimensional latent spaces may be explained
by noting that the optimisation of the GPLVM models attempts to provide the best
possible reconstruction of the output data given the latent space. If the latent space
dimensionality is low, depending on the complexity of the output data this can only be
achieved by creating complex non-linear mappings which increase the difficulty of fitting
to unseen test data. Furthermore, it must be noted that the values and bounds chosen
for the kernel and noise hyperparameters of the GPLVM are critical to successful model
fitting. While the variance of the training data provides a strong heuristic for setting the
values of these parameters, the bounds are determined empirically for the experiments
in this chapter. Setting the bounds too loosely, e.g. by only requiring positivity of the
parameters, results in the exact interpolation of the data by the GPLVM and leads
to very poor generalisation performance. On the other hand, setting the bounds too
strictly results in a rigid model incapable of expressing significant non-linearities. In
practice, we found that allowing one order of magnitude of deviation from the parameter
initialisation provided the best results. As was noted in the case of GP regression models
in Chapter 3.2, the non-parametric nature of GP-based models leads to poor scaling
of the computational complexity with the number of training data. Inspection of the
predictive mean equation reveals the presence of the inverse of the kernel matrix,K−1

NN .
Luckily, however, this only depends on the training data and may be precomputed for
performing predictions. Unfortunately, this is not the case when training the model,
and computation of the gradients of the objective function requires several potentially

79



4.3 Generative AAM with GPLVM

large kernel matrices to be inverted, so that training quickly becomes infeasible on larger
datasets. In Chapter 5.1 we extend the idea of “back-constrained” GPLVMs and make
use of recently proposed sparse formulations of the GPLVM which help to overcome
this problem.

Implementation All the models used in this chapter were implemented in C++. For
the linear inverse-compositional AAM, the same implementation as described in Sec-
tion 3.4.5 was used. The GPLVM models were implemented from scratch in C++ as
part of the framework which was developed for Gaussian process regression described
in Section 3.4.5. Parts of Tim Cootes’s non-public shape and appearance modelling
libraries were used in the implementation of the GPLVM AAM. In order to implement
bound constraints using the gradient descent optimiser by Møller [1993] which only
solves unconstrained optimisation problems, we expressed every constrained variable as
a function of an unconstrained variable. Therefore, if a variable θ was constrained to lie
within the bounded interval [a, b], it was parameterised by an unconstrained variable φ
via the invertible transformation

θ = a+ (b− a) logit−1(φ) (4.35)

which uses the logistic function logit−1(x) = 1
1+exp(−x) . Before each iteration of the

optimisation, the constrained parameter θ which was used to evaluate the objective
function was then transformed to φ using the inverse transformation

φ = logit
(
θ − a
b− a

)
, (4.36)

where logit(x) = log
(

x
1−x

)
. Although φ was passed to the optimiser, the analytic

gradient equations were calculated with respect to θ and thus the transform had to
be accounted for in the gradients. This was easily accomplished by using the chain
rule to include the extra term ∂θ

∂φ . This procedure, a description of which is given
in Lawrence [2005], is commonly used within the field of Machine Learning to solve
constrained optimisation problems. In our experience with Gaussian processes and
Gaussian process latent variable models, it worked at least as well as more advanced
interior point optimisers with which we performed some early experiments.

Conclusions The GPLVM framework provides a flexible vehicle for investigating non-
linear appearance models and in this chapter we showed how GPLVMs can be adapted

80



4.3 Generative AAM with GPLVM

to facilitate the development of non-linear simultaneous inverse-compositional AAM
models, analogous to the linear models described by Matthews and Baker [2004]. The
natural appearance of the GPLVM-based models is a significant advantage when com-
pared to linear models and could benefit applications where human-computer interaction
takes place via avatars, since it is often the subtle inaccuracies in facial appearance that
disconcert the user. On the other hand, the experiments in this chapter also highlight
the innate difficulties of working with non-linear models, and show that in their current
form these algorithms are unlikely to replace linear AAMs. However, the probabilistic
nature of the GPLVM opens avenues for further work and an interesting direction of
further research could be the integration of non-trivial prior distributions over the latent
space as has been proposed in the GPLVM literature [cf. Urtasun and Darrell, 2007;
Wang et al., 2008]. More specifically, both improved temporal coherence [Wang et al.,
2008] and semantic clustering [Urtasun and Darrell, 2007] could be employed to increase
robustness of fitting provided a good latent space initialisation is given.

81



Chapter 5

Supervised dimensionality
reduction using Gaussian processes

The original GPLVM framework that was employed in the previous chapter suffers from
several shortcomings. Firstly, the latent variables X are free parameters of the model
which must be optimised during training. This results in the computational cost of
training becoming prohibitive as the number of training data increases. Furthermore,
the dimensionality of X is a tunable free parameter of the model, the value of which
must be found empirically. This is a limitation of the maximum likelihood (ML) or
maximum a posteriori (MAP) methods used to train the model. Secondly, although
label information is often available in experiments such as those described in the previous
chapter, the GPLVM in its original form is an unsupervised dimensionality reduction
algorithm and therefore does not integrate label information into the construction of the
latent space. Some extensions such as [Urtasun and Darrell, 2007] and [Gao et al., 2011]
have been proposed for supervised or discriminative training. However, these methods
employ the MAP or ML framework for training the model and are prone to the problems
mentioned above. Lastly, although the use of “back-constraints” adds the required
regularity properties to the GPLVM mapping, it represents a purely ad hoc solution
which is not grounded in the probabilistic framework of the GPLVM. Recently, Titsias
[2009] developed a variational Bayesian approach for Gaussian process latent variable
models which allows automatic determination of the dimensionality of the latent space
by leveraging the variational sparse Gaussian process regression framework discussed
in Section 3.2.4 to approximately integrate out the latent variables X. This work was
extended by Damianou et al. [2011] where the addition of temporal latent space priors
was investigated. In the following, we propose a probabilistic extension of the GPLVM

82



5.1 Supervised Variational GPLVM

(a) (b) (c)

Figure 5.1: Graphical models of Bayesian GPLVMs: (a) GPLVM for unsupervised
learning, (b) GPLVM for supervised or discriminative learning and (c) autoencoder
GPLVM.

which enables supervised learning and which formalises the notion of “back-constraints”
by developing a training algorithm inspired by the variational inference procedure of
Damianou et al. [2011]. We evaluate the algorithm by applying it to the problem of
recognising emotions from facial expressions.

5.1 Supervised Variational GPLVM

Let us assume that together with the input data Y , we are given some output data
Z = {znk}N,Kn,k , where each row zn is aK-dimensional vector that represents the outputs
associated with the data input point yn. Z can quantify classification labels, regres-
sion real values or any other desired labelling information attached to the input data
Y . The general structures of the Bayesian GPLVM models discussed in this thesis are
represented as graphical models in Figure 5.1, where shaded nodes represent observed
variables and unshaded nodes refer to latent variables. The unsupervised GPLVM of
Titsias and Lawrence [2010] is shown in Figure 5.1a. Figure 5.1b shows the supervised
GPLVM, where Z represents label information associated with the data Y . This graph-
ical model implies that we seek a latent representationX that depends on the input data
Y and which subsequently generates or reconstructs the output data Z. If Z is chosen
to be equal to the input data Y , we obtain the “autoencoder” GPLVM shown in Fig-
ure 5.1c where the inputs are reconstructed via a low-dimensional set of hidden variables
X. This model represents a principled implementation of the ad hoc “back-constraint”
idea used in the previous chapter. As is obvious from Figure 5.1, the supervised GPLVM
and autoencoder GPLVM are formally equivalent, the only difference being the inter-
pretation of the output data. Thus, no extra treatment is required for the autoencoder
GPLVM and in the following we concentrate on the supervised GPLVM. In order to
implement the model described by the graphical model in Figure 5.1b, we need to define

83



5.1 Supervised Variational GPLVM

the conditional probability distributions p(X|Y ) and p(Z|X). In the following, this is
achieved by adapting the variational Bayesian framework proposed by Damianou et al.
[2011].

To define p(X|Y ), we assume that the latent inputsX are finite realisations of non-
linear latent functions indexed by the input data. More precisely, we define Q latent
functions {xq(y)}Qq=1 which consist of random draws from Gaussian processes indexed
by the input data variable y so that

xq(y) ∼ GP(0, k(yi,yj)). (5.1)

Thus, for the random variables X we have (X)nq = xq(yn), and the prior distribution
over X becomes

p(X|Y ) =

Q∏
q=1

N(X:,q|0,KY ), (5.2)

whereX:,q is the qth column ofX and the covariance matrixKY is such that (KY )ij =

k(yi,yj). Intuitively, the above assumptions say that for two training input data points
yi and yj , which are close to one another1, the corresponding low-dimensional latent
vectors xi and xj must also be close to one another. Furthermore, each xi can be
viewed as a feature vector extracted from the input data point yi. Importantly, such
features are extracted in a linear or non-linear manner depending on the properties of
the kernel function used. The use of a linear kernel,

k(yi,yj) = σ2yTi yj , (5.3)

may be interpreted as restricting the latent space to a linear manifold [Rasmussen and
Williams, 2006]. A very common choice of kernel which allows smooth functions to
be sampled from the prior is the radial basis function (RBF), which we discussed in
Eqn. (3.14), and which we include here for completeness:

k(yi,yj) = σ2 exp
(
−α

2
r2
ij

)
. (5.4)

Here, rij = ||yi−yj ||2, and α is an inverse lengthscale parameter which determines the
degree of smoothness of the functions drawn from the prior.

Finally, the set of Matérn covariance functions is a kernel family parameterised by
two positive parameters l and ν [Rasmussen and Williams, 2006]. Variation of the

1Here, the proximity measure is given by the choice of kernel function.

84



5.1 Supervised Variational GPLVM

parameter ν results in kernel functions of different degrees of smoothness where the
RBF kernel is recovered in the case ν → ∞. A commonly used kernel is the kernel
obtained by setting ν = 3

2 :

k3/2(yi,yj) =

(
1 +

√
3r2
ij

l

)
exp

(
−
√

3r2
ij

l

)
. (5.5)

The functions drawn from a Gaussian process using this kernel are significantly rougher
when compared to the RBF kernel.

The remaining part of the model is quantified by the conditional probability p(Z|X)

and is defined exactly as p(Y |X) in the unsupervised GPLVM in Eqn. (4.5). However,
in this case, the mapping functions {fk(x)}Kk=1 generate the output data Z. Given that
these output data are real-valued, we have

p(Z|X) =
K∏
k=1

N(Z:,k|0,KX + Σ), (5.6)

where Z:,k is an N -dimensional vector storing the kth outputs. Since the model is
intended to perform non-linear dimensionality reduction, and, we wish to automatically
determine the dimensionality of the data, we employ an RBF kernel for KX which
implements the concept of automatic relevance determination (ARD):

k(xi,xj) = σ2 exp

−1

2

Q∑
q=1

αq(xiq − xjq)2

 (5.7)

= σ2
Q∏
q=1

exp

(
−1

2
αq(xiq − xjq)2

)
(5.8)

Comparing this kernel to the standard RBF kernel shown in Eqn. (3.14), it is clear
that the ARD kernel contains an inverse lengthscale hyperparameter αq for each la-
tent dimension q and therefore the exponential factorises across the latent dimensions.
These hyperparameters may be interpreted as a measure of “relevance” of the corre-
sponding dimension. If, for instance, the value of the parameter αq′ converges to zero
during optimisation of the objective function, the argument of the corresponding expo-
nential function in Eqn. (5.8) becomes zero irrespective of the inputs {xiq′ , xjq′}Ni,j=1.
Thus, the exponential evaluates to one and no longer contributes to the covariance func-
tion. In other words, the dimension q′ has become irrelevant. Unfortunately, however,
automatic relevance determination is not possible within the ML or MAP framework

85



5.2 Variational inference

where changing the latent dimensionality increases the number of free parameters of
the model in proportion to the number of training data. Since adding free parameters
always improves the likelihood, optimisation cannot lead to automatic selection of the
dimensionality [Damianou et al., 2011]. The approach proposed by Titsias [2009] and
Damianou et al. [2011] addresses this problem by approximately marginalising the latent
variablesX so that the remaining parameters and hyper-parameters of the model can be
determined by type-II maximum likelihood. Marginalising the latent variables greatly
increases the amount of data relative to the number of remaining parameters, and it is
therefore assumed that type-II maximum likelihood estimation results in accurate point
estimates and that a fully Bayesian treatment is unnecessary. In the following, we dis-
cuss a similar variational Bayesian training procedure where the use of an RBF-ARD
kernel allows the removal of redundant latent dimensions and thus to determine the
latent dimensionality automatically.

5.2 Variational inference

In order to be able to determine the parameters and hyperparameters of the model
shown in Figure 5.1b via type-II maximum likelihood, we require the marginal likelihood
which is obtained by integrating out the latent variables X and the latent function
variables F :

p(Z|Y ) =

∫ K∏
k=1

N∏
n=1

p(znk|fnk)p(F |X)p(X|Y ) dF dX . (5.9)

Here, fnk = fk(xn) is the latent function fk instantiated at the latent point xn, p(F |X)

is the GP prior over the latent functions of Eqn. (4.4), and p(X|Y ) is the prior over the
latent variablesX defined in Eqn. (5.2). However, the integration overX is intractable,
since X appears non-linearly in the inverse of the covariance matrix of the GP prior
p(F |X). Titsias and Lawrence [2010] address this issue by employing the variational
sparse Gaussian process framework developed by Titsias [2009] which we discussed in
Chapter 3.2.4. Thus, the same “data augmentation” trick is employed according to which
the GP prior p(F |X) is consistently augmented with inducing variables U = {uk}Kk=1,
where uk ∈ RM are auxiliary values drawn from the random function fk(x) so that

p(F ,U |X) = p(F |U ,X)p(U). (5.10)

86



5.2 Variational inference

Here, p(U) is a marginal GP prior that does not depend on the latent variables X but
on a set of M ≤ N free-to-optimise inputs XU . Following this, variational inference is
applied in the space of random variables (F ,X,U) as opposed to in the initial space
(F ,X). The variational distribution q(F ,X,U) is chosen to be

q(F ,X,U) = p(F |U ,X)q(U)q(X), (5.11)

where crucially, p(F |U ,X) is the same distribution that appears in the augmented GP
prior of Eqn. (5.10),

q(X) =

Q∏
i=1

N(X:,i|µi,Si), (5.12)

and q(U) is a free-form distribution which is determined analytically within the varia-
tional inference framework. Notice that (as in [Damianou et al., 2011]) the variational
distribution q(X) factorises over the dimensions of the latent variables X and not over
the latent variables themselves. Thus, the prior over X allows correlations between
the latent space points X to be modelled. After adding the inducing variables U to
Eqn. (5.9), we insert a trivial unity term expressed using the variational distribution of
Eqn. (5.11):

p(Z|Y ) =

∫
q(F ,U ,X)

p(Z,F ,U ,X|Y )

q(F ,U ,X)
dF dUdX. (5.13)

By taking the log and applying Jensen’s inequality1, we then obtain a lower bound
F (q,θ) for the log of the marginal likelihood of Eqn. (5.9):

log p(Z|Y ) ≥
∫
q(F ,U ,X) log

p(Z,F ,U ,X|Y )

q(F ,U ,X)
dF dUdX. (5.17)

1For a convex function
f : R→ R, (5.14)

the following holds for all xn ∈ R, λn ∈ [0, 1]

f

(∑
n

λnxn

)
≤
∑
n

λnf(xn) . (5.15)

In probability theory, this implies
f (E[x]) ≤ E [f(x)] . (5.16)

87



5.2 Variational inference

Solving this integral is challenging. However, the steps required are analogous to those
detailed in the appendix of [Damianou et al., 2011]. After inserting the variational
distribution of Eqn. (5.12), the lower bound splits into a likelihood and a prior term

F (q,θ) =

∫
p(F |U ,X) log p(Z|F )q(U)q(X) dF dUdX +

∫
q(U) log

p(U)

q(U)
dU︸ ︷︷ ︸

F̃ (q,θ)

(5.18)

+

∫
q(X) log

p(X|Y )

q(X)
dX︸ ︷︷ ︸

−KL(q||p)

(5.19)

which have an analytic solution

F (q,θ) =

D∑
d=1

log

(
β

N
2 |KMM |

1
2

(2π)
N
2 |βΨ2 +KMM |

1
2

exp−1

2
yTdWyd

)
− βψ0

2
+
β

2
Tr(K−1

MMΨ2)

− Q

2
log |KY | −

1

2

Q∑
q=1

[
Tr(K−1

Y Sq) + Tr(K−1
Y µqµ

T
q )
]

+
1

2

Q∑
q=1

log |Sq|.

(5.20)

Here, we have
W = βIN − β2Ψ1(βΨ2 +KMM )−1ΨT

1 , (5.21)

and

ψ0 = Tr
(
〈KNN 〉q(X)

)
(5.22)

Ψ1 = 〈KNM 〉q(X) (5.23)

Ψ2 = 〈KMNKNM 〉q(X). (5.24)

Furthermore, KMM and KNM represent the kernel of the GP prior of Eqn. (4.4) eval-
uated using the set of the M inducing inputs XU and the N means of the variational
distribution q(X) of Eqn. (5.12), whereasKY is the kernel of the GP prior of Eqn. (5.2)
evaluated at the data points Y . In Eqn. (5.20) we have made the dependency on the
parameters θ = {θf ,θp,θvar} explicit. Assuming we are using an RBF-ARD kernel for
the GPLVM and an RBF kernel for the latent space prior, the hyperparameters, with
respect to which the lower bound is optimised, are

θf =
{
σf , {αi}Qi=1, β,XU

}
(5.25)

θp = {σp, αp} (5.26)

θvar = {µi,Si}Qi=1 . (5.27)

88



5.2 Variational inference

Here, β is the inverse variance of the Gaussian noise, {µi,Si} are the means and co-
variances of the variational distribution q(X), and the remaining hyperparameters are
the variances and inverse lengthscales of the kernel functions. Although the inducing
inputs XU are not strictly kernel parameters, we have included them in θf since they
always appear within the context of the kernel. It is important to note that, in practice,
a small constant amount of white noise is added to the kernelKY in order to guarantee
positive definiteness in the presence of numerical errors. This is a common procedure
in numerical linear algebra and is referred to as “jitter”. The variational means and
covariances are determined by setting the corresponding derivatives of the lower bound
to zero, which yields the fixed-point equations

Si =

(
K−1
Y − 2

∂F̃ (q,θ)

∂Si

)−1

µi = KY
∂F̃ (q,θ)

∂µi
.

(5.28)

This reveals that the O(N2) mean and covariance parameters are highly correlated via
the prior kernel KY . As discussed by Damianou et al. [2011], this situation may be ex-
ploited to reparameterise the means and covariances according to the method described
by Opper and Archambeau [2009] where the N × N diagonal matrix Λi = −2∂F̃ (q,θ)

∂Si

and the N -dimensional vector µ̄ = ∂F̃ (q,θ)
∂µi

are used in place of Si and µi. Thus, only
the 2(Q × N) variational parameters (λi,µi) need to be optimised, as the values of
Si and µi are easily reconstructed using the fixed-point equations of Eqn. (5.28). In
our work, optimisation of the lower bound is carried out using the iterative conjugate
gradient optimiser developed by Møller [1993]. Due to the concavity of the log function,
this is guaranteed to increase the likelihood of the model at each iteration. The gradient
equations and further implementation details are discussed in appendix D. Following
optimisation, the lower bound represents an approximation to the true marginal likeli-
hood. Furthermore, it is easily shown that the integral in Eqn. (5.17) becomes strictly
equal to the log of the marginal likelihood if and only if the variational distribution
q(F ,U ,X) is equal to the true posterior distribution p(F ,U ,X|Z,Y ). Therefore, af-
ter optimisation the variational distribution is an approximation to the true posterior
distribution.

89



5.3 Classification

5.3 Classification

A rigorous approach to classification using Gaussian processes is described in [Ras-
mussen and Williams, 2006] and involves the use of non-Gaussian likelihoods to ensure
the outputs may be interpreted as probabilities1. Rather than following this approach
which requires the use of computationally complex approximation procedures, we apply
a heuristic which shows similar performance but allows us to retain the Gaussian like-
lihood of the GPLVM models discussed in the previous sections. More specifically, the
class labels are encoded using a 1-of-K coding scheme and Z is treated as a matrix of
real values where each row contains elements from the set {−1, 1}. Thus, the model of
Section 5.1 is used as a regression model for the data labels and allows the classification
of a test data sample y∗ to be carried out using two distinct methods. In the first
method the output of the model is used directly:

z∗ = arg max
k

p(f∗k|y∗,Y ,Z), k = 1, . . . ,K (5.29)

where p(f∗k|y∗,Y ,Z) is approximated by
∫
〈p(f∗k|uk,x∗)〉q(uk)q(x∗)dx∗, the expecta-

tion over q(uk) is analytic and the remaining expectation is approximated by drawing
samples from the Gaussian q(x∗). The latter quantity is given by

q(x∗) = 〈p(x∗|y∗,X)〉q(X) (5.30)

and is an approximation of the true posterior over the test point x∗:

p(x∗|y∗,Y ,Z) =

∫
p(x∗|y∗,X)p(X|Y ,Z)dX. (5.31)

Here, p(x∗|y∗,X) is obtained by conditioning the latent prior of Eqn. (5.2) after in-
cluding the test pair (x∗,y∗). The distribution p(X|Y ,Z) represents the true posterior
over the latent input vectors for which we have obtained a variational approximation
q(X) by optimising the lower bound of Eqn. (5.17). Therefore, the true posterior over
the test latent variable p(x∗|y∗,Y ,Z) is approximated by a variational distribution
q(x∗) over the test latent point and is given by the expectation of the conditional prior
p(x∗|y∗,X) w.r.t q(X) as shown in Eqn. (5.30).

1E.g. by employing sigmoid functions.

90



5.4 Complexity

Figure 5.2: The Cohn-Kanade dataset contains video sequences and landmark point
annotations for the seven basic emotions anger (45), contempt (18), disgust (59), fear
(25), happiness (69), sadness (28) and surprise (83) where the numbers indicate the
number of sequences present. Here, the final frames of the video sequences are shown,
corresponding to the ‘peak’ of the facial expression. Note the appearance of occluding
video timings in the image on the far right.

The second method for prediction is simpler and is based only on the posterior over
the test latent point x∗. More precisely, we use the mean of q(x∗)

mi = k∗YK
−1
Y µi, i = 1, . . . , Q (5.32)

as an estimate of the latent point x∗ associated with the input data y∗ before performing
k-nearest neighbour classification in the latent space.

5.4 Complexity

The time complexity of the variational training procedure is dominated by the compu-
tation of the inverse of each covariance matrix Sq that parameterises the variational dis-
tribution. Since we need to compute Q such inverses, the complexity scales as O(QN3).
Testing and, in particular, computation of the mean vector m above requires O(QN)

time after a precomputation and storage of each term K−1
Y µi.

5.5 Emotion Recognition with
Supervised Variational GPLVMs

To evaluate the models introduced in the previous sections, we performed several clas-
sification experiments using data obtained from the extended Cohn-Kanade emotions
dataset [Kanade et al., 2000; Lucey et al., 2010].

5.5.1 Cohn-Kanade Dataset

The extended Cohn-Kanade dataset (CK+) [Kanade et al., 2000; Lucey et al., 2010]
contains videos of actors performing the emotions anger, contempt, disgust, fear, happi-

91



5.5 Emotion Recognition with Supervised Variational GPLVMs

ness, sadness and surprise. The first frame of the videos represents a neutral expression,
while the final frame is the ‘peak’ of the emotion. All videos contain annotations ob-
tained from active appearance model tracking of 68 landmark points. Figure 5.2 shows
examples of the final frames of each type of emotion sequence contained in the dataset,
where the number of sequences is given in brackets. As is clear from the figure, far
fewer examples of the emotions ‘contempt’, ‘fear’ and ‘sadness’ are provided than for
the stronger expressions of ‘anger’, ‘disgust’, ‘happiness’ and ‘surprise’. Incidentally,
this provides a good test for our method, as we expect a generative Bayesian framework
to outperform purely discriminative classifiers in the small dataset scenario. 10-fold
cross-validation was used throughout in our experiments, resulting in a minimum class
sample size of 16 in the case of ‘contempt’.

5.5.2 Features

To factor-out pose variation, we rigidly aligned the landmark points into a reference
frame defined by the mean of the landmark annotations. The features that were used
as input data to train the models were then given by the pose-normalised landmark
points, i.e. the ‘shape’, as well as the pixels sampled using the triangulated point mesh,
i.e. the ‘texture’. Also, in order to minimise the influence of lighting variation which
we did not wish to model here, adaptive histogram equalisation was applied to each
texture image [Zuiderveld, 1994]. All experiments used only the final frame of each
video sequence. Since there were 68 landmark points, the shape feature was 136D and
in our experiments the reference frame was scaled to allow the sampling of 3000 pixels,
which resulted in a 3000D texture feature. In all experiments, the shape and texture
features were normalised to zero mean, unit variance.

The features used in our work are similar to those used by Lucey et al. [2010].
However, we do not normalise for identity by subtracting the (neutral) first frame of each
video from the final frame. Normalising for identity results in an optimistic estimate of
the generalisation error, as neither the identity nor the individual’s neutral expression
are known in a real-world testing scenario.

5.5.3 Models

Using the feature extraction procedure detailed above, the appearance of the face is
decoupled into independent shape and texture components. Emotions resulting in ob-
vious deformations of the shape such as happiness or surprise, which involve opening
of the mouth, should be easily distinguished using the shape component alone. On

92



5.5 Emotion Recognition with Supervised Variational GPLVMs

the other hand, emotions such as contempt or anger, which result in the appearance of
wrinkles, are more likely to be classified correctly based on the texture feature. In our
experiments, we trained independent models of the type shown in Figure 5.1b on the
shape and texture features, resulting in a set of latent variables Xs and Xt correspond-
ing to the training data samples Ys and Yt. In general, however, it is the combination
of shape and texture, i.e. the appearance which forms a large part of the information
that humans use to judge the emotional state of individuals. Therefore we also trained
a joint model based on the concatenated latent spaces Yc = [Xs,Xt] and the autoen-
coder model shown in Figure 5.1c. After training, the test data was classified using the
methods described in Section 5.3.

Initialisation The critical parameters in the Bayesian GPLVM models are the vari-
ance σ of the RBF-ARD kernel 5.7, used in Eqn. (4.4) and the model noise variance
ε = 1

β , which together specify the signal-to-noise ratio of the model. A high signal-
to-noise ratio indicates that the model ‘fits’ the data and since we wish to capture the
structure of the input data, it is imperative that a high signal-to-noise ratio results after
training. Since the latent variablesX are integrated out in this model and type-II max-
imum likelihood is used to estimate the remaining parameters, the risk of overfitting
the data is much lower than in the ML or MAP GPLVM framework. Bearing in mind
that the classification heuristic described in Section 5.3 depends on the model fitting
the label data, the SNR ratio is fixed to a high value and the parameters σ and β are
not optimised in the supervised model. The means of the variational distribution q(X)

are initialised using PCA, where 20 dimensions are retained in our experiments. Fur-
thermore, care must be taken that the RBF-ARD parameters αq as well as the length
scale of the kernel used in Eqn. (5.2) are initialised based on the ‘radius’ of the input
data to ensure that the kernel matrices encode the structure of the data and are not
diagonal, since a diagonal kernel matrix corresponds to an uninformative “white noise”
process.

93



Shape Texture

1-NN Posterior 1-NN Posterior

Emotion LIN RBF M32 LIN RBF M32 LIN RBF M32 LIN RBF M32

An 77.8 80.0 82.2 80.0 77.8 82.2 82.2 84.4 80.0 75.6 82.2 77.8
Co 66.7 55.6 55.6 72.2 72.2 66.7 72.2 83.3 83.3 66.7 88.9 88.9
Di 91.5 93.2 93.2 93.2 94.9 96.6 86.4 91.5 88.1 83.1 91.5 88.1
Fe 84.0 76.0 80.0 72.0 80.0 80.0 60.0 80.0 72.0 56.0 68.0 68.0
Ha 97.1 97.1 97.1 98.6 97.1 97.1 97.1 98.6 95.7 94.2 95.7 97.1
Sa 75.0 78.6 82.1 78.6 75.0 85.7 57.1 82.1 75.0 57.1 85.7 78.6
Su 95.2 97.6 96.4 96.4 97.6 97.6 95.2 96.4 97.6 94.0 97.6 96.4

Overall 83.9 82.6 83.8 84.4 84.9 86.6 78.6 88.1 84.5 75.2 87.1 85.0

(a)

Combined (AutoEnc)

Emotion LIN RBF M32

An 93.3 91.1 93.3
Co 77.8 94.4 72.2
Di 91.5 98.3 94.9
Fe 84.0 84.0 84.0
Ha 98.6 100.0 100.0
Sa 75.0 92.9 85.7
Su 97.6 97.6 97.6

Overall 88.3 94.4 89.7

(b)

Table 5.1: Classification using the shape and texture models described in Section 5.5.3 in
a 10-fold cross-validation experiment. The numbers represent the percentage of success
for each class. (a) Results using the independent shape and texture models. (b) Results
using the combination of shape and texture latent spaces. ‘AutoEnc’ refers to the 1-
NN classification in the latent space obtained after training an autoencoder model (cf.
Figure 5.1c).

Shape Texture Combined

Emotion DGPLVM SVM RF LDA DGPLVM SVM RF LDA LDA SVM

An 33.3 35.0 86.0 77.7 42.2 70.0 80.9 80.0 93.3 75.0
Co 50.0 25.0 55.6 66.7 61.1 21.9 46.7 72.2 83.3 84.4
Di 69.5 68.4 90.7 98.3 55.9 94.7 91.5 86.4 94.9 94.7
Fe 48.0 21.7 67.2 80.0 16.0 21.7 15.6 60.0 84.0 65.2
Ha 81.2 98.4 100.0 98.6 73.9 100.0 99.1 91.3 98.6 100.0
Sa 21.49 4.0 66.4 78.6 28.6 60.0 21.1 67.9 82.1 68.0
Su 91.68 100.0 97.6 98.8 84.3 98.7 98.7 96.4 98.8 96.0

Overall 56.5 50.35 80.5 85.5 51.7 66.7 64.8 79.2 90.7 83.3

Table 5.2: Comparison of related methods for emotion recognition with the shape and
texture features described in Section 5.5.2. As noted in the text, the SVM results
published in Lucey et al. [2010] use identity normalised data, and are therefore an
optimistic estimate of the generalisation performance.



5.5 Emotion Recognition with Supervised Variational GPLVMs

5.5.4 Results

Table 5.1a shows the classification results obtained using the supervised Bayesian GPLVM
model of Section 5.1 with the shape and texture features of Section 5.5.2. LIN, RBF
and M32 (Matérn32) refer to the different kernels used for the latent space prior of
Eqn. (5.2). An immediate observation is that while the linear kernel provides similar
performance to the non-linear kernels in the case of the shape, in general this is not
the case for the texture where the linear kernel performs significantly worse. The tex-
ture data may thus be seen to contain more significant non-linearities. Furthermore,
as may be expected, the differences between the “Posterior” and “1-NN” methods are
small. Figure 5.3b shows the latent space and the inverse lengthscale hyperparame-
ters of the RBF-ARD kernel of an experiment using the supervised Bayesian GPLVM
together with the texture data. The latent space shows good separation between the
different classes and Figure 5.3a shows that two dominant dimensions remain after op-
timisation. The results obtained for the combined models are given in table 5.1b. It
is clear that combining shape and texture information leads to a significant improve-
ment in performance. The quality of the models is evident in Figure 5.4 which shows
the covariance matrices of the GP prior distribution of a shape, texture, and combined
model. The covariance matrices of the shape- and texture-based models are computed
on the raw input data, and although the correlation within classes is visible, between-
class correlations are high. However, in the case of the combined model, whose inputs
are the concatenated latent spaces of the trained shape- and texture-based models, the
strikingly block-diagonal structure of the prior covariance matrix reflects the separation
of the seven emotions and is a clear indication of the effectiveness of the supervised
dimensionality reduction model presented in Section 5.1.

5.5.5 Comparison

In order to validate our models, we compared our method to other commonly used su-
pervised Machine Learning techniques such as linear discriminant analysis (LDA), ran-
dom forests [Breiman, 2001] and discriminative GPLVMs [Urtasun and Darrell, 2007].
Furthermore, we compared to the SVM results published in [Lucey et al., 2010]. No
further feature extraction was performed, and all algorithms were trained on the shape
and texture features described in Section 5.5.2. The results are given in table 5.2.
Since the random forest is a stochastic algorithm, we performed 10 independent 10-fold
cross-validation experiments of which we report the mean. In order to apply LDA to
the training data, the dimensionality of the input data must first be reduced to ensure

95



0 5 10 15 20 25
0

5

10

15

20

25

(a)
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

An
Co
Di
Fe
Ha
Sa
Su

(b)

Figure 5.3: (a) Out of the 20 dimensions used to initialise the model, three relevant
dimensions remain after training of a supervised Bayesian GPLVM texture model (cf.
5.1), as is evidenced by the values of the inverse length scales of the RBF-ARD kernel
which is used in the latent function mapping p(F |X). (b) Optimal 2D projection of
the latent variables X corresponding to the training samples contained in the 3D latent
space.

50 100 150 200 250

50

100

150

200

250

(a) KY (Shape)
50 100 150 200 250

50

100

150

200

250

(b) KY (Texture)
50 100 150 200 250

50

100

150

200

250

(c) KY (Combined)

Figure 5.4: RBF covariance matrices KY of the GP priors p(X|Y ) over the latent
space of the shape, texture and combined models after training. (a) and (b) take the
raw shape and texture features as inputs, whereas (c) shows the covariance matrix of
the latent space prior of the combined autoencoder model (cf. 5.5.3), which takes the
concatenated latent spaces of the supervised shape and texture models as input.



5.6 Implementation

non-singularity of the covariance matrices used by the LDA algorithm [Martinez and
Kak, 2001]. This was done by employing PCA and retaining 20 dimensions, as in our
experiments using the supervised Bayesian GPLVM. Following training of the 6D LDA
space, 1-NN classification was used to classify the test samples. Furthermore, to com-
pare to the combined model experiments described in Section 5.5.3, the results of which
are shown in table 5.1b, a combined shape and texture classifier based on LDA was
built in an analogous fashion by training a 6D combined LDA latent space using the
6D LDA shape and texture model latent spaces as inputs. Overall, the LDA classifier
outperforms all the other methods in table 5.2 by a considerable margin. Comparing
to the supervised GPLVM models in table 5.1b, the LDA model produces comparable
results on the shape data, while the non-linear models perform significantly better on
the texture and in the combined case. Overall, the best results are obtained using the
autoencoder model trained on the combined shape and texture latent spaces using an
RBF prior and represent a more than 10 percent improvement over the SVM results
published in Lucey et al. [2010].

5.6 Implementation

The various GPLVM models used in this chapter were implemented from scratch in C++
after having worked with Matlab as well as C++ code which is freely available on Neil
Lawrence’s website and which was co-written by Andreas Damianou and Michalis Tit-
sias. The LDA algorithm used in the experiments was also implemented from scratch in
C++, while the freely available R implementation was used for the random forest classifi-
cation experiments. Furthermore, the discriminative GPLVM experiments were carried
out using the implementation contained in Neil Lawrence’s freely available Matlab code.

5.7 Conclusions

In this chapter we introduced a variational Bayesian GPLVM framework which allows
supervised training of GPLVMs. As a fundamental part of this model, we showed how
the idea of “back-constraints” may be cast in the probabilistic framework of the GPLVM.
Furthermore, we showed how an autoencoder GPLVM model may be trained which
reproduces the input data via the “bottleneck” of a low-dimensional latent space. We
evaluated these models on the extended Cohn-Kanade emotions dataset and presented
competitive results using the supervised GPLVM, which were improved upon by building
hierarchical models using the autoencoder GPLVM. However, the supervised GPLVM

97



5.7 Conclusions

we developed in this chapter is no longer a generative model of the input data, and it
is therefore not possible to generate texture samples given a position in latent space.
This is unfortunate, since supervised training results in semantically clustered latent
spaces which could be exploited for generating faces under sparse user constraints. For
instance, if trained on video sequences of faces, meaningful sequences could be generated
by constraining the trajectory to pass through certain states in the latent space. Further
work should therefore focus on including supervision into generative GPLVMs without
removing the generative nature of the model, a starting point for which could be recently
published work by Damianou et al. [2012]. As part of this work, the idea of autoencoder
models could be investigated further, building on the concept of “deep belief networks”,
popularised by Hinton and Salakhutdinov [2006]. Furthermore, autoencoder GPLVMs
could be used to build a non-linear active appearance model as was done using the
MAP-GPLVM framework in the previous chapter. However, it seems unlikely that the
use of such models together with the optimisation method employed in the last chapter
would lead to a significant improvement, and, unfortunately, the computation of the
gradients is significantly more complex as is easily seen by comparing the objective
functions in Eqn. (5.20) and Eqn. (4.11).

98



Chapter 6

Conclusions and Future Work

In this thesis we presented two groups of statistical methods for representing and
analysing faces in digital images, and our work may be divided into three main con-
tributions. First, we discussed discriminative fitting algorithms for parametric shape
models which directly connect evidence gathered from features extracted at the current
model location to parameter updates. This type of model, referred to as a “discrimina-
tive” AAM, has been shown previously to be efficient and robust, and contrasts with
the generative approach to shape model fitting in which parameter updates are calcu-
lated indirectly via the optimisation of an objective function which includes a statistical
texture model of the pixel data. In an attempt to improve the accuracy of discrimina-
tive AAMs, we investigated two types of features and three different regression models
based on boosting, random forests and Gaussian processes. Furthermore, we devised
two sequential training algorithms for discriminative AAMs in an attempt to combine
the efficiency and robustness of the discriminative approach with the accuracy provided
by the minimisation of an objective function. The results of the experiments carried out
showed that Gaussian process regression was the least efficient but most accurate fit-
ting method and that the proposed sequence training improved accuracy and robustness
when compared to simple application of discriminative AAMs.

In the second contribution of this thesis we investigated replacing the linear texture
models in inverse-compositional generative AAMs with non-linear Gaussian process
latent variable models. As expected, our experiments showed that the non-linearity
of the texture model allows more detailed textures to be encoded using fewer latent
dimensions, and that, when properly fitted, the resulting textures appear more natural
when compared to linear models of the same dimensionality.

99



6.1 Discriminative AAMs

The final contribution focused on developing a supervised training algorithm for
GPLVMs which we applied to the problem of classifying facial expressions. This work
employed a more recent Bayesian formulation of the GPLVM which also allowed us to
formalise the notion of “back-constraints”, an ad hoc implementation of which was used
for the non-linear AAM. The resulting supervised GPLVM and autoencoder GPLVM
models were put to the test in a series of facial expression recognition experiments in
which they outperformed several commonly used and related methods.

6.1 Discriminative AAMs

Although the sequences of discriminative AAM algorithms had a much larger conver-
gence radius, they were still less accurate compared to generative AAM algorithms when
the model location was close to the ground truth. This suggests a hybrid approach to
model fitting and thus future work could investigate using an efficient discriminative
AAM sequence to obtain a first estimate of the ground truth, after which the estimate
could be refined using a generative AAM. Furthermore, the fact that the highly tuned
Haar features did not perform much better when compared to the more ad hoc steerable
pyramid features raises the question whether they provide a sufficiently rich represen-
tation of the data. Future work could therefore also focus on improving the steerable
pyramid features by introducing optimisation of the shape and location of the patches
used for calculating the sample statistics, as well as on investigating the use of successful
keypoint detection methods such as SIFT [Lowe, 1999] and SURF [Bay et al., 2008].

6.2 Non-Linear AAM

With non-linear models one faces the difficulty of optimising a non-linear objective
function both when training and when testing the model. As was demonstrated by
some of the experiments using low-dimensional latent spaces, this has the potential
to eliminate any representational advantage over linear models, especially in the case
that the initial model location is not close to the ground truth. This is a fundamental
problem when dealing with non-linear models and cannot be easily overcome. However,
future work could exploit the probabilistic nature of the GPLVM by investigating the
use of more informative prior distributions that model temporal coherence and provide
a more semantic clustering of the latent space. This could improve robustness when
dealing with frames from video sequences or when the identity and appearance of an
individual is known in advance, provided that a good latent space initialisation is given.

100



6.3 Supervised GPLVM

6.3 Supervised GPLVM

Although it performed well in the experiments, a downside of the supervised GPLVM
model devised in this thesis is that it may no longer be considered a generative model
of the input data, since it models the labels associated with the data and does not
provide a means to generate face textures. Future work should therefore focus on adding
supervision to the training of the GPLVM without compromising its generative nature,
and could build on a similar effort by Damianou et al. [2012]. In this context, the use of
autoencoder models could be investigated more closely by building on recent advances
in the field of neural networks, where Hinton and Salakhutdinov [2006] showed that the
use of autoencoder models to determine initial estimates of the model parameters in a
hierarchical pre-training step before employing supervised training leads to improved
accuracy. This was further discussed by Erhan et al. [2010], and an application of this
idea to the GPLVM models presented in this chapter seems an interesting topic for
further work.

101



Appendix A

Similarity Transforms

In general, a set of reference points

Pref = (x̃1, ỹ1, . . . , x̃n, ỹn), (A.1)

and a point set

P = (x1, y1, . . . , xn, yn) (A.2)

may be brought into alignment by applying a transformation to the reference points
which contains rigid as well as non-rigid components. The rigid component

Tq : Pref → P̂ , (A.3)

where the point set P̂ lies within a non-rigid transformation of P , is a similarity trans-
form whose parameters

q = (a, b, tx, ty) (A.4)

are determined by solving the least-squares optimisation problem

q∗ = arg min
q

∑
i

‖ri − (Mr̃i + t)‖2

= arg min
q

∑
i

∥∥∥∥∥
(
xi

yi

)
−

[(
1 + a −b
b 1 + a

)(
x̃i

ỹi

)
+

(
tx

ty

)]∥∥∥∥∥ ,
(A.5)

where M is a scale-rotation matrix and t is a vector of translation parameters.

102



A.1 Calculating transform parameters

The pose of the landmark point set P is defined by the parameters q of the trans-
formation Tq. In this parameterisation, the parameters (tx, ty) describe translation and
the rotation angle θ and scale α are combined in the parameters

a = α cos θ − 1

b = α sin θ.
(A.6)

This is the parameterisation used by Matthews and Baker [2004], one of the main
reasons being that q = 0 represents the identity transform. Furthermore, the use of
the parameters a and b defined in Eqn. (A.6) hides the non-linear dependence on the
rotation angle and facilitates the linear least-squares fitting method for determining the
transform parameters which is described in the following.

A.1 Calculating transform parameters

The parameters q of the similarity transform Tq are found by calculating the param-
eters q∗ with respect to which the error after alignment becomes minimal. A general
solution to the problem of rigid alignment of two m-dimensional point sets is derived by
Umeyama [1991]. However, in the simple case of a 2d similarity transform, the solution
may be obtained directly from the linear least-squares objective function F defined in
Eqn. (A.5).

A.1.1 Translation

Without loss of generality the centroid of the reference point set Pref may be chosen to
lie at the origin so that it is not affected by rotation and scaling of Pref . Thus, omitting
M and setting the derivative w.r.t. the translation parameters t = (tx, ty)

∂F

∂t
= −

∑
i

[ri − (r̃i + t)] (A.7)

= −Nt+
∑
i

(ri − r̃i) (A.8)

to zero, we have

t =
1

N

∑
i

ri, (A.9)

which is just the centroid of P .

103



A.2 Composition

A.1.2 Scale and Rotation

Once the translational degree of freedom has been removed from both point sets by
moving the centroids to the origin, the scale and rotation parameters may be determined
from the optimisation problem(

ã∗

b∗

)
= arg min

(ã,b)

∑
i

∥∥∥∥∥
(
xi

yi

)
−

(
ã −b
b ã

)(
x̃i

ỹi

)∥∥∥∥∥
2

, (A.10)

where we have set ã = 1 + a. Setting the derivatives w.r.t. ã and b to zero and solving
the resulting linear systems of equations, we find

a =

∑
i x̃ixi +

∑
i ỹiyi∑

i x̃ix̃i +
∑

i ỹiỹi
− 1 (A.11)

and

b =

∑
i x̃iyi −

∑
i xiỹi∑

i x̃ix̃i +
∑

i ỹiỹi
. (A.12)

Using the definitions given in Eqn. (A.6), the scale

α = (1 + a)2 + b2 (A.13)

and orientation

θ = arctan
b

1 + a
(A.14)

are easily recovered.

A.2 Composition

Given two similarity transforms Tq and Tq′ , the parameters

q′′ = (a′′, b′′, t′′x, t
′′
y) (A.15)

of the composition

Tq′′ = Tq ◦ Tq′ (A.16)

104



A.3 Inverse

are easily computed using the definition of the scale-rotation matrixM and translation
vector t in Eqn. (A.5), yielding

a′′ = (a+ 1)(a′ + 1)− bb′ − 1 (A.17)

b′′ = (a+ 1)b′ + b(a′ + 1) (A.18)

t′′x = (a+ 1)t′x − bt′y + tx (A.19)

t′′y = bt′x + (a+ 1)t′y + ty. (A.20)

A.3 Inverse

Given the similarity transform Tq with parameters

q = (a, b, tx, ty) (A.21)

that describes the rigid alignment of the reference point set Pref to the point set P , we
require the parameters q′ of the inverse transform T−1

q′ which rigidly aligns P to Pref .
The identity transform id may be expressed as

Tq ◦ T−1
q′ = id, (A.22)

and therefore the parameters q′ = (a′, b′, t′x, t
′
y) of the inverse transform T−1

q′ are deter-
mined by setting eqs. A.17 - A.20 to zero:

a′ =
a+ 1

(a+ 1)2 + b2
− 1 (A.23)

b′ = − b

(a+ 1)2 + b2
(A.24)

t′x = −a′tx + b′ty (A.25)

t′y = −b′tx − a′ty. (A.26)

105



Appendix B

Matrix Identities and Linear
Algebra

In the following, we give a brief summary of some of the matrix identities and methods
used in this thesis. A complete treatment including the definition of all the mathematical
terms used is beyond the scope of this appendix. However, a good starting point for
further reading is [Strang, 1988].

B.1 Matrix product

For A ∈ Rn×m and B ∈ Rm×p, the matrix product is defined as follows:

(AB)ij =
m∑
k=1

aikbkj (B.1)

B.2 Hadamard product

Given two equally sized matrices A,B ∈ Rn×m, the Hadamard product, denoted by
the symbol ◦, is defined as the element-wise product:

(A ◦B)ik = aikbik (B.2)

106



B.3 Trace

B.3 Trace

Given a square matrix A ∈ Rn×n, the trace is defined as the sum of the diagonal
elements:

Tr(A) = Tr(AT ) =

n∑
i=1

aii. (B.3)

Cyclic invariance

The trace is invariant to cyclic permutations of its arguments. If A ∈ Rn×m,B ∈ Rm×p

and C ∈ Rp×n,
Tr(ABC) = Tr(BCA) = Tr(CAB). (B.4)

Factorised square matrix

Let A,B ∈ Rn×d. The trace of the matrix product C = ABT is given by the sum of
the elements of the Hadamard product:

Tr(ABT ) =
n∑
i=1

d∑
k=1

aikb
T
kjδij (B.5)

=
n∑
i=1

d∑
k=1

aikb
T
ki (B.6)

=
n∑
i=1

d∑
k=1

aikbik (B.7)

=
n∑
i=1

d∑
k=1

(A ◦B)ik (B.8)

B.4 Cholesky Factorisation

A symmetric, positive definite matrix A ∈ Rn×n may be factorised into a product of a
positive definite lower triangular matrix L and its upper triangular transpose LT :

A = LLT (B.9)

Cholesky factorisation is the preferred way of solving a linear system of equations with
symmetric positive definite matrix A:

Ax = b. (B.10)

107



B.5 Spectral Decomposition

Since the matrix L is lower triangular, the system

LLTx = b (B.11)

is easily solved in two steps by first solving

Ly = b (B.12)

using forward substitution to determine y, and then solving the system

LTx = y (B.13)

using back-substitution to determine x. This approach to solving Eqn. B.10 does not
require the direct computation of a matrix inverse, and is therefore much more numeri-
cally stable. The only source of numerical instability is the presence of round-off errors,
which can cause elements in the original matrix to become negative in the case that A
is badly conditioned. This may be avoided by adding a small correction referred to as
“jitter” to the diagonal of A.

In this thesis it is often necessary to determine the logarithm of the determinant
of a symmetric positive definite matrix A. This is easily computed using the Cholesky
factorisation and the properties of the determinant:

log |A| = log |LALTA| (B.14)

= log |LA|+ log |LTA| (B.15)

= 2
∑
i

(LA)ii (B.16)

B.5 Spectral Decomposition

Given a matrix A ∈ Rn×n of full rank n (i.e. whose determinant is non-zero), then its
n eigenvectors vj and corresponding eigenvalues λj satisfy

Avj = λjvj , j = 1, . . . , n. (B.17)

Concatenating the eigenvectors into the columns of a matrix P , the matrix A may be
written as the product of three factors

A = PDP−1, (B.18)

where D is a diagonal matrix containing the n eigenvalues λi on its diagonal.

108



B.5 Spectral Decomposition

Symmetric Matrices

If A is symmetric, the eigenvectors are orthogonal, and the factorisation becomes

A = PDP T (B.19)

=

n∑
i=1

λiviv
T
i . (B.20)

Covariance Matrices

Assuming the matrix Y ∈ RN×D contains N D-dimensional data vectors in its rows,
then the symmetric D ×D sample covariance matrix is given by

S =
1

N
Y TY . (B.21)

If N < D, this matrix is singular, and the eigenvectors corresponding to non-zero
eigenvalues may be more efficiently calculated using the N ×N matrix

S̃ =
1

N
Y Y T . (B.22)

In fact, let v be an eigenvector of S̃ with eigenvalue λ̃, so that

S̃v = λ̃v. (B.23)

Multiplying from the left with Y T , we find

SY Tv = λ̃Y Tv, (B.24)

from which we see that w = Y Tv is an eigenvector of S with eigenvalue λ̃.

Numerical Stability and Condition Numbers

The finite precision of floating point arithmetic on a computer means that in general
floating point numbers are only determined up to a fixed error εm of their true value.
Thus, when solving a problem such as a linear system of equations (cf. Eqn. B.10), we
are actually analysing a perturbed problem

Ax = b+ ε, (B.25)

109



B.6 Partitioned Inverse

the solution of which,
x+ δ = A−1b, (B.26)

deviates from the true solution x by an amount δ. The magnitude of this deviation
is determined by a numerical property of A known as the condition number κ, which
for any non-singular square matrix is given by the ratio of the largest to the smallest
eigenvalue:

κ(A) =

∣∣∣∣λmaxλmin

∣∣∣∣ (B.27)

Using a suitable norm, it may be shown that the magnitude of the relative errors are
related by the following inequality:

||δ||
||x||

≤ κ(A)
||ε||
||b||

. (B.28)

From this it follows that a condition number that is close to unity is desirable, since
it specifies by how much the initial error is amplified when passed through the linear
system of Eqn. B.10.

B.6 Partitioned Inverse

The inverse of a partitioned matrix

Σ =

(
A B

C D

)
(B.29)

is given by the identity [Bernstein, 2009; Bishop, 2006](
A B

C D

)−1

=

(
M−1 −M−1BD−1

−D−1CM−1 D−1 +D−1CM−1BD−1

)
, (B.30)

where
M = (A−BD−1C) (B.31)

is the Schur complement with respect toD. Apart from when working with multivariate
Gaussian distributions where partitioned inverses often appear, the fact that onlyD and
M require inversion for computing the partitioned inverse makes this identity especially
useful when D and M are small or diagonal matrices whose inversion is simple.

110



B.7 Matrix Inversion Lemma

B.7 Matrix Inversion Lemma

The derivation of the partitioned inverse equation leads to another result known as the
matrix inversion lemma, which relates the inverse of a rank-k correction to a matrix A
to a rank-k correction of the inverse of A:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (B.32)

This identity is useful when the inverse of A is known and C is small, in which case
the computation of the inverse of the matrix on the left-hand side only requires the
inversion of the smaller matrix C−1 +DA−1B.

B.8 Matrix Determinant Lemma

The matrix determinant lemma allows the efficient computation of the determinant of
a rank-k correction to a matrix A in the case that the inverse and determinant of A
are known: ∣∣A+BCDT

∣∣ =
∣∣C−1 +DTA−1B

∣∣ |C| |A| . (B.33)

B.9 Matrix Derivatives

The computation of matrix derivatives is often required, especially when determining
analytic gradient expressions for objective functions which contain matrices that depend
on parameters. In the following, we give some of the most common results, assuming
K is a matrix which depends on a parameter θ. Many more results may be found in
[Petersen and Pedersen, 2012].

Inverse
∂K−1

∂θ
= −K−1∂K

∂θ
K−1 (B.34)

Determinant
∂|K|
∂θ

= |K|Tr
(
K−1∂K

∂θ

)
(B.35)

∂ log |K|
∂θ

= Tr

(
K−1∂K

∂θ

)
(B.36)

111



Appendix C

Gaussian Identities

This appendix contains results for multivariate Gaussian distributions which may be
found in standard Statistics and Machine Learning textbooks such as [Mardia et al.,
1979, chap. 3] and [Bishop, 2006, chap. 2].

C.1 Multivariate Gaussian Distribution

A multivariate random variable x is said to be Gaussian if its associated probability
distribution p(x) is a member of the family of multivariate Gaussian distributions

N(x|µ,Σ) =
1√

2π|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (C.1)

which is parameterised by a mean vector

µ = E[x] =

∫
xN(x|µ,Σ)dx (C.2)

and a symmetric covariance matrix

Σ = Cov[x] = E[(x− µ)(x− µ)T ]. (C.3)

The family of Gaussian distributions is closed under the sum and product rules
of probability as well as under linear transformations of the variable. The closure
properties and the fact that the Gaussian family is completely determined by the mean
and covariance parameters may be used to simplify Gaussian computations. Given an
expression involving Gaussian distributions, the closure properties may be invoked to

112



C.2 Marginal and conditional distributions

determine if the result is also Gaussian. If this is the case, noting that the exponent of
a Gaussian distribution is a quadratic form,

−1

2
(x− µ)TΣ−1(x− µ) = −1

2
xTΣ−1x+ xTΣ−1µ+ const, (C.4)

the mean and covariance of the result are found by collecting quadratic and linear terms
in x and using the method of “completing the square” [Bishop, 2006, chap. 2].

C.2 Marginal and conditional distributions

Given a joint Gaussian distribution with partitioned mean and covariance

p(x,y) = N

([
x

y

]∣∣∣∣∣
[
µx

µy

]
,

[
A C

CT B

])
, (C.5)

then the marginal distribution over x is

p(x) =

∫
p(x,y)dy = N(x|µx,A). (C.6)

This is commonly referred to as the marginalisation property of multivariate Gaussian
distributions. If x is observed, the conditional distribution of the random variable y is
given by

p(y|x) = N
(
y
∣∣µy +CB−1(x− µx),A−CB−1CT

)
. (C.7)

C.3 Linear Gaussian Models

Linear Gaussian models are common in Machine Learning and refer to models where
both the likelihood as well as the prior distribution are Gaussian [Roweis and Ghahra-
mani, 1999]:

p(y|x) = N(y|Ax+ b,Σy) (C.8)

p(x) = N(x|µx,Σx). (C.9)

Invoking the closure properties of the Gaussian family, the joint distribution

p(y,x) = p(y|x)p(x) (C.10)

113



C.4 Linear Transformations

is easily seen to be Gaussian, and the posterior and marginal distributions are obtained
in closed form (c.f. [Bishop, 2006, chap. 2]):

p(y) = N
(
y|Aµ+ b,Σy +AΣxA

T
)

(C.11)

p(x|y) = N
(
x
∣∣Σ (ATΣ−1

y (y − b) + Σ−1
x µx

)
,Σ
)
, (C.12)

where
Σ =

(
Σ−1
x +ATΣ−1

y A
)−1

. (C.13)

C.4 Linear Transformations

As noted in the introduction, the family of Gaussian distributions is closed under linear
transformations of the variables. More specifically, if

y = Ax+ b (C.14)

and
p(x) = N(x|µ,Σ), (C.15)

then
p(y) = N(y|Aµ+ b,AΣAT ). (C.16)

This follows directly from the linearity of the transformation and the definition of the
mean and covariance in eqs. C.2 and C.3.

C.5 Random Sampling

In practice, it is often necessary to generate random samples from a multivariate Gaus-
sian distribution given a particular mean and covariance. A uniform random number
generator may be used to draw independent univariate normal samples [Box and Muller,
1958], which may be combined to form a sample x̃ from the multivariate normal distri-
bution

p(x) = N(x|0, I). (C.17)

Setting µ = 0 and Σ = I in Section C.4, it is easily shown that a sample ỹ from the
multivariate Gaussian distribution

p(y) = N(y|m,S) (C.18)

114



C.6 Gaussian Process Regression

is obtained by applying the linear transformation

ỹ = Lx̃+m, (C.19)

where S = LLT is the Cholesky factorisation of S.

C.6 Gaussian Process Regression

The simplest derivation of the marginal and predictive distributions given in Eqns. 3.20
to 3.22 starts from the joint distribution

p(f∗,f ,y) = p(y|f)p(f ,f∗)

= N


f∗f
y


∣∣∣∣∣∣∣
0

0

0

 ,
 K∗∗ K∗N KNN

KN∗ KNN KN∗

KNN K∗N KNN + σεI


 .

(C.20)

Applying the marginalisation property of Eqn. C.2, the marginal likelihood of Eqn. 3.20
immediately follows. Conditioning on y using Eqn. C.7, we recover the joint posterior

p(f∗,f |y) = N

([
f∗

f

]∣∣∣∣∣
[
m∗

mN

]
,

[
C∗ C∗N

CN∗ CN

])
, (C.21)

where

m∗ = K∗N (KNN + σεI)−1y (C.22)

mN = KNN (KNN + σεI)−1y (C.23)

and

C∗ = K∗∗ −K∗N (KNN + σεI)−1KN∗ (C.24)

C∗N = K∗N −K∗N (K∗N + σεI)−1KNN (C.25)

CN∗ = CT
∗N (C.26)

CN = KNN −KNN (KNN + σεI)−1KNN . (C.27)

Marginalising f using Eqn. C.7, the predictive distribution of Eqn. 3.21 is recovered:

p(f∗|y) = N(f∗|m∗,C∗). (C.28)

115



Appendix D

Implementation

In this appendix, we give details for the implementation of some of the models presented
in this thesis. The expressions obtained for the variational Bayesian models are complex,
and giving all steps of the derivations is beyond the scope of this thesis. I would like
to thank Michalis Titsias and Andreas Damianou for sharing (unpublished) results and
derivations relating to the work in [Titsias, 2009] and [Damianou et al., 2011].

D.1 Variational Sparse GP Regression

The variational GP model by Titsias [2009] which is discussed in chapter 3.2.4 is fitted
to the data by optimising the following objective function with respect to the inducing
inputs Xu, the kernel hyperparameters θf and the inverse noise variance β = 1

σ2
ε
:

FV (Xu,θf , β) = −N
2

log 2π +
N −M

2
log β +

1

2
log |KMM |

− 1

2
log

∣∣∣∣ 1βKMM +KMNKNM

∣∣∣∣− β

2
yTy

+
β

2
yTKNM

(
1

β
KMM +KMNKNM

)−1

KMNy

− β

2
Tr(KNN ) +

β

2
Tr(K−1

MM (KMNKNM )) .

(D.1)

Here, N refers to the number of data points and M is the number of inducing inputs.
Noting that the matrix

P =
1

β
KMM +KMNKNM (D.2)

116



D.1 Variational Sparse GP Regression

is the sum of two symmetric matrices and is therefore itself symmetric, we perform
Cholesky factorisations to obtain

P = LTML
T
ALALM , (D.3)

where
A =

1

β
I +C (D.4)

and
C = (KNML

−1
M )T (KNML

−1
M ). (D.5)

Following this, several terms simplify, and the objective function may be implemented
more robustly and more efficiently as

FV = −N
2

log(2π) +
N −M

2
log β − β

2
yTy

−
∑
i

log[LA]ii +
β

2
Tr
(
DTD

)
− β

2
(Tr(KNN )− Tr(C)) ,

(D.6)

where we have used

D = L−TA L−TM KMNy. (D.7)

D.1.1 Gradients

In this section, we present the gradient equations with respect to the kernel hyperpa-
rameters θf as well as the inducing inputs Xu without giving any proofs. In order to
ease the notation, we refer to the inducing inputs using wij = (Xu)ij .

Gradients w.r.t. θ ∈ {σf , β, {wij}M,D
i,j=1}

∂FV
∂θ

= −β
2
Tr

(
∂KNN

∂θ

)
+

1

2
Tr

(
∂KMM

∂θ
TMM

)
+ βTr

(
∂KNM

∂θ
TMN

)
, (D.8)

where

TMM = Ts − βK−1
MMKMNKNMK

−1
MM (D.9)

TMN = TsKMN + P−1KMNyy
T (D.10)

117



D.2 Supervised Variational GPLVM

and

Ts = K−1
MM −

1

β
P−1 − P−1KMNyy

TKNMP
−1 (D.11)

= L−TM L−1 − 1

β
P−1 −L−1

M L
−1
A DD

TL−TA L−TM . (D.12)

Gradients w.r.t. β

∂FV
∂β

=
N −M

2β
− 1

2
yTy +

1

2β2

∑
ik

(L−1
A )ik(L

−1
A )ik (D.13)

+
1

2
DTD − 1

2β
ETE − 1

2
(Tr(KNN )− Tr(C)), (D.14)

where

E = L−1
A L

−T
A L−TM KMNy (D.15)

= L−1
A D. (D.16)

Note that except for E, the terms in the second row are already computed when eval-
uating the objective function in Eqn. D.6.

D.2 Supervised Variational GPLVM

The objective function for the supervised variational GPLVM was given in Eqn. 5.20:

F (q,θ) = F̃ (q,θ)−KL(q||p)

=

D∑
d=1

log

(
β

N
2 |KMM |

1
2

(2π)
N
2 |βΨ2 +KMM |

1
2

exp−1

2
yTdWyd

)
− βψ0

2
+
β

2
Tr(K−1

MMΨ2)

− Q

2
log |KY | −

1

2

Q∑
q=1

[
Tr(K−1

Y Sq) + Tr(K−1
Y µqµ

T
q )
]

+
1

2

Q∑
q=1

log |Sq|

(D.17)

with the Ψ-statistics

ψ0 = Tr
(
〈KNN 〉q(X)

)
(D.18)

Ψ1 = 〈KNM 〉q(X) (D.19)

Ψ2 = 〈KMNKNM 〉q(X) (D.20)

and
W = βIN − β2Ψ1(βΨ2 +KMM )−1ΨT

1 . (D.21)

118



D.2 Supervised Variational GPLVM

D.2.1 Ensuring Numerical Stability

Implementing this objective function is challenging, and attention must be paid to en-
force maximum numerical stability. The techniques discussed in appendix B, including
Cholesky factorisations and the inversion and determinant lemmas should be employed
wherever suitable, since this often allows terms to be reorganised into simpler and more
numerically stable expressions. For instance, as discussed in [Rasmussen and Williams,
2006, chap. 2.4.3], matrix inverses such as in the expression

(βΨ2 +KMM )−1 (D.22)

are numerically unstable due to the fact that eigenvalues of the matrix are not bounded
below and may be close to zero, resulting in very large condition numbers. However,
performing the Cholesky decomposition KMM = LML

T
M , the expression may be reor-

ganised so that

(βΨ2 +KMM )−1 = L−TM (I + βL−1
M Ψ2L

−T
M )−1L−1

M . (D.23)

Now, the eigenvalues of the matrix A = I + βL−1
M Ψ2L

−T
M are bounded within the

interval [1, 1 + M
4 maxij(KMM )ij ] (cf. [Rasmussen and Williams, 2006, chap. 3.4.3]),

resulting in better numerical stability. Since Ψ2 is symmetric positive definite, A is
also symmetric positive definite, so after computing the Cholesky decomposition of A,
we have

(βΨ2 +KMM )−1 = L−TM L−TA L−1
A L

−1
M . (D.24)

A further example for where the identities of appendix B are useful is the com-
putation of the reparameterised covariance matrices Si of the variational distribution
(Eqn. 5.28):

Si =
(
K−1
Y + Λi

)−1
. (D.25)

Again, this expression is not numerically stable, since the condition number is not
bounded. Since Λ is a diagonal matrix whose inverse is trivial to compute, the matrix
inversion lemma (Eqn. B.32) may be applied:

(
K−1
Y + Λi

)−1
= Λ−1

i −Λ−1
i (KY + Λ−1

i )−1Λ−1
i . (D.26)

119



D.2 Supervised Variational GPLVM

Performing the Cholesky decomposition Λi = Λ
1
2
i Λ

1
2
i , we have

Λ−1
i +KY = Λ

1
2
i (I + Λ

1
2
i KY Λ

1
2
i )Λ

1
2
i . (D.27)

Setting B̃i = I + Λ
1
2
i KY Λ

1
2
i , a further Cholesky factorisation results in

B̂i = (Λ−1
i +KY )−1 (D.28)

= Λ
1
2
i L
−T
B̃i
L−1
B̃i

Λ
1
2
i , (D.29)

which is implemented by first solving the equation LB̃iX = Λ
1
2
i using forward substi-

tution so that X = L−1
B̃i

Λ
1
2
i after which B̂i = XTX.

Furthermore, with the help of the matrix determinant lemma (Eqn. B.33), we have

|S−1
i | =

∣∣(K−1
Y + Λi)

−1
∣∣ (D.30)

=
∣∣Λ−1

i +KY

∣∣ |Λi|
∣∣K−1

Y

∣∣ , (D.31)

so that

|Si| =
∣∣S−1

i

∣∣−1 (D.32)

=
1∣∣Λ−1

i +KY

∣∣ |Λi|
∣∣K−1

Y

∣∣ (D.33)

=
|KY |∣∣Λ−1

i +KY

∣∣ |Λi|
. (D.34)

Applying these concepts to Eqn. D.17 and including the reparameterisation of the
parameters µi and Si of the variational distribution (Eqn. 5.28), the implementation of
the objective function in Eqn. D.17 becomes

F (q,θ) = F̃ (q,θ)−KL(q||p)

= −ND
2

log 2π +
D(N −M)

2
log β −D

M∑
k=1

log [LÃ]kk −
β

2

N∑
m=1

D∑
k=1

(Y ◦ Y )mk

+
β

2

M∑
i=1

D∑
k=1

(P ◦ P )ik −
βDψ0

2
+
βD

2
Tr(C)

− QN

2
− 1

2

[
N∑
n=1

N∑
k=1

((
Q∑
i=1

B̂i

)
◦KY

)
nk

+

N∑
n=1

N∑
k=1

(
KY ◦

(
Q∑
i=1

µ̄iµ̄
T
i

))
nk

]

−
Q∑
i=1

N∑
k=1

log [LB̃i
]kk,

(D.35)

120



D.2 Supervised Variational GPLVM

where

C = L−1
M Ψ2L

−T
M (D.36)

Ã = C +
1

β
I (D.37)

P = L−1
Ã
L−1
M (ΨT

1 Y ). (D.38)

D.2.2 Gradients

In order to apply a gradient descent optimiser to this objective function, the gradients
with respect to the parameters

θf =
{
σf , {αi}Qi=1, β,XU

}
(D.39)

θp = {σp, αp} (D.40)

θvar = {µi,Si}Qi=1 (D.41)

must be computed analytically, since the computational complexity of the evaluation
of the objective function (Eqn. D.35) rules out the use of a finite difference procedure.
However, it is vital that the correctness of the gradients computed using the analytic
gradient equations is checked by comparing against the values obtained using finite
difference approximations. The derivation of the gradient equations fills several pages
so that only the results are given in the following.

Gradient w.r.t. β

∂F̃

∂β
=
D(N −M)

2β
− 1

2
Tr
(
Y Y T

)
+

1

2
Tr
(
PP T

)
− D

2
Ψ0

+
D

2
Tr(C) +

1

β2
Tr
(
L−T
Â
L−1

Â

)
+

1

2β
Tr
(
P̃ P̃ T

)
,

(D.42)

where we have used

Â = Ψ2 +
1

β
KMM (D.43)

P̃ = L−T
Â
P . (D.44)

121



D.2 Supervised Variational GPLVM

If the noise is parameterised more directly using the variance η = 1
β , the gradient with

respect to β is easily transformed using the chain rule:

∂F̃

∂η
=
∂F̃

∂β

∂β

∂η
(D.45)

= −∂F̃
∂β

1

η2
(D.46)

Gradient w.r.t. θf ∈
{
σf , {α}Qi=1, {(XU )ij}M,Q

i,j=1

}
∂F̃

∂θf
= −βD

2

∂ψ0

∂θf

+ βTr

(
∂ΨT

1

∂θf
YBT

)
+

1

2
Tr

[
∂KMM

∂θf

(
T − βDL−TM CL−1

M

)]
+
β

2
Tr

(
∂Ψ2

∂θf
T

)
,

(D.47)

where
P1 = L−TM L−T

Ã

B = (Y TΨ1Â
−1)T = P1P

T = DL−TM L−1
M −

D

β
P1P

T
1 −BBT .

(D.48)

Note that here the variational hyperparameters XU are treated as kernel parameters,
since they only ever appear inside the kernel.

Gradient w.r.t. µ̄ik

∂F

∂µ̄ik
=

[
KY

∂F̃

∂µi

]
k

− µik (D.49)

where
∂F̃

∂µi
= −βD

2

∂ψ0

∂µi
+ βTr

(
∂ΨT

1

∂µi
Y BT

)
+
β

2
Tr

(
∂Ψ2

∂µi
T

)
. (D.50)

122



D.2 Supervised Variational GPLVM

Gradient w.r.t. λik

Since the likelihood term only models variances, only the diagonal elements of the
derivative w.r.t. Si are non-zero. Setting sik = (Si)kk, we have

∂F̃

∂sik
= −βD

2

∂ψ0

∂sik
+ βTr

(
∂ΨT

1

∂sik
Y BT

)
+
β

2
Tr

(
∂Ψ2

∂sik
T

)
. (D.51)

Using this together with the reparameterisation equation (Eqn. 5.28) and applying the
chain rule, we find

∂F

∂λik
= −

[
(Si ◦ Si)

∂F̃

∂si

]
k

− 1

2
[(Si ◦ Si)λi]k . (D.52)

Gradient w.r.t. θp

∂F

∂θp
=
∑
k

{
Tr

[
∂KY

∂θp

(
−1

2

(
B̂kKY B̂k + µ̄kµ̄

T
k

)
+
∂KY

∂θp
(I − B̂kKY )diag

(
∂F̃

∂sk

)
(I − B̂kKY )T

)]

+
∂F̃

∂µk

T (
∂KY

∂θp
µ̄k

)}
,

(D.53)

where B̂k is defined as in Eqn. D.28.

D.2.3 Ψ-Statistics

The Ψ-statistics are the expectations of the kernel over the variational distribution
[Titsias and Lawrence, 2010]. In this section, xn, n ∈ (1, . . . , N) are the latent space
projections of the N data points and in order to simplify notation, we use wm, m ∈
(1, . . . ,M) to denote theM inducing inputsXU . Following Titsias and Lawrence [2010],
we give the statistics for the RBF automatic relevance determination (ARD) kernel

k(xi,xj) = γ exp

(
−1

2

Q∑
k=1

αk(xik − xjk)2

)
(D.54)

where we have set γ = σ2
f . Because the Ψ-statistics only appear in the likelihood part F̃

of the objective function which does not model correlation between the data points, only

123



D.2 Supervised Variational GPLVM

the diagonals si of the covariance matrices Si appear in the following equations. For
convenience of notation, we take si to be a diagonal covariance matrix where necessary.

ψ0-Statistic

ψ0 = Tr(〈KNN 〉q(X))

=
N∑
n=1

∫
k(xn,xn)N(xn|µn, sn)dxn

= Nγ

(D.55)

Gradient w.r.t. γ

∂ψ0

∂γ
=

∂

∂γ
Nγ (D.56)

= N (D.57)

=
ψ0

γ
(D.58)

Ψ1-Statistic

(Ψ1)nm = 〈KNM 〉q(X) (D.59)

=

∫
k(xn,wm)N(xn|µn, sn)dxn (D.60)

Using Eqn. D.54, we have

(Ψ1)nm = γ

Q∏
i=1

exp

(
−1

2
αi(µni−wmi)2

(αisni+1)
1
2

)
(αisni + 1)

1
2

. (D.61)

Gradient w.r.t. γ

∂(Ψ1)nm
∂γ

=
∂

∂γ
γ

Q∏
i=1

exp

(
−1

2
αi(µni−wmi)2

(αisni+1)
1
2

)
(αisni + 1)

1
2

(D.62)

=
(Ψ1)nm

γ
(D.63)

124



D.2 Supervised Variational GPLVM

Gradients w.r.t. {αk}Qk=1

∂(Ψ1)nm
∂αk

=
∂

∂αk
γ

Q∏
i=1

exp
(
−1

2
αi(µni−wmi)2

(αisni+1)

)
(αisni + 1)

1
2

(D.64)

= −1

2

snk + (µnk−wmk)2

αksnk+1

(αksnk + 1)

 (Ψ1)nm (D.65)

Gradients w.r.t. {µnk}N,Qn,k=1

∂(Ψ1)nm
∂µn′k

=
∂

∂µn′k
γ

Q∏
i=1

exp
(
−1

2
αi(µni−wmi)2

(αisni+1)

)
(αisni + 1)

1
2

(D.66)

= −αk
µn′k − wmk
(αksn′k + 1)

δn′n(Ψ1)nm (D.67)

Gradients w.r.t. {snk}N,Qn,k=1

∂(Ψ1)nm
∂sn′k

=
∂

∂sn′k
γ

Q∏
i=1

exp
(
−1

2
αi(µni−wmi)2

(αisni+1)

)
(αisni + 1)

1
2

(D.68)

=
1

2

(
α2
k(µn′k − wmk)2

(αksn′k + 1)2
− αk
αksn′k + 1

)
δn′n(Ψ1)nm (D.69)

Gradients w.r.t. {wmk}M,Q
m,k=1

∂(Ψ1)nm
∂wm′k

=
∂

∂wm′k
γ

Q∏
i=1

exp
(
−1

2
αi(µni−wmi)2

(αisni+1)

)
(αisni + 1)

1
2

(D.70)

= αk
µnk − wm′k
αksnk + 1

δm′m(Ψ1)nm (D.71)

Ψ2-Statistic

Ψ2 =
N∑
n=1

Ψn
2 , (D.72)

125



D.2 Supervised Variational GPLVM

where Ψn
2 ∈ RM×M is defined as

Ψn
2 = 〈KNMKM ′N 〉q(X), (D.73)

so that

(Ψn
2 )mm′ =

∫
k(xn,wm)k(wm′ ,xn)N(xn|µn, sn)dxn. (D.74)

Inserting Eqn. D.54, we have

(Ψn
2 )mm′ = γ2

Q∏
i=1

exp
(
−αi(wmi−wm′i)2

4 − αi(µni−w̄i)2
2αisni+1

)
(2αisni + 1)

1
2

, (D.75)

where

w̄i =
(wmi + wm′i)

2
. (D.76)

Gradient w.r.t. γ

∂(Ψn
2 )mm′

∂γ
=

∂

∂γ
γ2

Q∏
i=1

exp
(
−αi(wmi−wm′i)2

4 − αi(µni−w̄i)2
2αisni+1

)
(2αisni + 1)

1
2

(D.77)

=
2

γ
(Ψn

2 )mm′ (D.78)

Gradients w.r.t. {αk}Qk=1

∂(Ψn
2 )mm′

∂αk
= −

snk + (µnk−w̄k)2

2αksnk+1

2αksnk + 1
+

(wmk − wm′k)2

4

 (Ψn
2 )mm′ (D.79)

From this, it follows for the derivative of the full Ψ2 statistic:

∂(Ψ2)mm′

∂αk
=

N∑
n=1

∂(Ψn
2 )mm′

∂αk
(D.80)

= −(wmk − wm′k)2

4
(Ψ2)mm′ −

N∑
n=1

snk + (µnk−w̄k)2

2αksnk+1

2αksnk + 1
(Ψn

2 )mm′ (D.81)

126



D.2 Supervised Variational GPLVM

Gradients w.r.t. {µnk}N,Qn,k=1

∂(Ψn
2 )mm′

∂µn′k
=

∂

∂µn′k
γ2

Q∏
i=1

exp
(
−αi(wmi−wm′i)2

4 − αi(µni−w̄i)2
2αisni+1

)
(2αisni + 1)

1
2

(D.82)

= −2αk
(µn′k − w̄k)
2αksn′k + 1

δn′n(Ψn
2 )mm′ (D.83)

Gradients w.r.t. {snk}N,Qn,k=1

∂(Ψn
2 )mm′

∂sn′k
=

∂

∂sn′k
γ2

Q∏
i=1

exp
(
−αi(wmi−wm′i)2

4 − αi(µni−w̄i)2
2αisni+1

)
(2αisni + 1)

1
2

(D.84)

=

[
2α2

k

(µn′k − w̄k)2

(2αksn′k + 1)2
− αk

2αksn′k + 1

]
δn′n(Ψn

2 )mm′ (D.85)

Gradients w.r.t. {wmk}M,Q
m,k=1

∂(Ψn
2 )mm′

∂wlk
=

∂

∂wlk
γ2

Q∏
i=1

exp
(
−αi(wmi−wm′i)2

4 − αi(µni−w̄i)2
2αisni+1

)
(2αisni + 1)

1
2

(D.86)

=

(
−1

2
αk(wmk − wm′k) +

αk
2αksnk + 1

(µnk − w̄k)
)
δlm(Ψn

2 )mm′ (D.87)

−
(
−1

2
αk(wmk − wm′k) +

αk
2αksnk + 1

(µnk − w̄k)
)
δlm′(Ψ

n
2 )mm′ (D.88)

127



References

BioID database. http://www.bioid.com/downloads/software/

bioid-face-database.html. 51

XM2VTS database. http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/. 51

B. Amberg, A. Blake, and T. Vetter. On compositional image alignment, with an
application to active appearance models. In IEEE Conference on Computer Vision
and Pattern Recognition, 2009. CVPR 2009., pages 1714–1721, 2009. 29

Simon Baker and Iain Matthews. Equivalence and efficiency of image alignment algo-
rithms. In Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1090–1097, 2001. 30

Simon Baker and Iain Matthews. Lucas-Kanade 20 years on: A unifying framework.
International Journal of Computer Vision, 56(3):221–255, 2004. 53

Simon Baker, Ralph Gross, and Iain Matthews. Lucas-Kanade 20 years on: A unifying
framework: Part 3. Technical Report CMU-RI-TR-03-35, Robotics Institute, CMU,
November 2003. 29, 30

Aziz Umit Batur and Monson H Hayes. Adaptive active appearance models. IEEE
Transactions on Image Processing, 14(11):1707–21, 2005. 29, 68

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (SURF). Comput. Vis. Image Underst., 110(3):346–359, 2008. 100

Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman. Eigenfaces vs. Fisher-
faces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal.
Mach. Intell., 19(7):711–720, 1997. 25

D.S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas. Princeton Univer-
sity Press, 2009. ISBN 978-0691140391. 110

128

http://www.bioid.com/downloads/software/bioid-face-database.html
http://www.bioid.com/downloads/software/bioid-face-database.html
http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/


REFERENCES

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
ISBN 978-0387310732. 48, 65, 68, 110, 112, 113, 114

Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. GTM: The
generative topographic mapping. Neural Computation, 10:215–234, 1998. 64, 65

C.M. Bishop. Variational principal components. In Ninth International Conference on
Artificial Neural Networks, 1999. ICANN 99., volume 1, pages 509–514, 1999. 66

F.L. Bookstein. Morphometric Tools for Landmark Data: Geometry and Biology. Cam-
bridge University Press, 1997. 19

G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates.
The Annals of Mathematical Statistics, 29(2):610–611, 1958. 114

C.J. Bradley. The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates.
Highperception Limited, 2007. 21

L Breiman, J Friedman, C.J. Stone, and R.A. Olshen. Classification and regression
trees. Chapman and Hall/CRC, 1984. 42

Leo Breiman. Random forests. Machine Learning, 45(1):5–32–32, 2001. 34, 41, 42, 95

T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001. 15, 17,
18, 19, 25, 26, 27, 28, 29

Tim F. Cootes, Mircea C. Ionita, Claudia Lindner, and Patrick Sauer. Robust and
accurate shape model fitting using random forest regression voting. In ECCV 2012,
volume 7578 of Lecture Notes in Computer Science, pages 278–291. Springer Berlin
Heidelberg, 2012. 15

Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active appearance
models. In ECCV 1998, volume 1407 of Lecture Notes in Computer Science, pages
484–498, 1998. 28, 29

David Cristinacce and Tim Cootes. Feature detection and tracking with constrained
local models. In Proc. British Machine Vision Conference, pages 929–938, 2006. 15

David Cristinacce and Tim Cootes. Boosted regression active shape models. In Proc.
British Machine Vision Conference, volume 2, pages 880–889, 2007. 34, 37, 41

129



REFERENCES

Andreas Damianou, Carl Ek, Michalis Titsias, and Neil Lawrence. Manifold rele-
vance determination. In Proceedings of the 29th International Conference on Machine
Learning (ICML-12), pages 145–152. 2012. 98, 101

Andreas C. Damianou, Michalis Titsias, and Neil D. Lawrence. Variational Gaussian
process dynamical systems. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N.
Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24, pages 2510–2518. 2011. 64, 82, 83, 84, 86, 87, 88, 89, 116

Boris Delaunay. Sur la sphère vide. Otdelenie Matematicheskikh i Estestvennykh Nauk,
7:793–800, 1934. 19

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):
1–38, 1977. 65

P. Dollár, P. Welinder, and P. Perona. Cascaded pose regression. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2010, pages 1078 –1085, June
2010. 34, 49

Ian L. Dryden and K.V. Mardia. Statistical shape analysis. Wiley series in probability
and statistics: Probability and statistics. J. Wiley, 1998. ISBN 978-0471958161. 17,
18, 23

P. Ekman and W. Friesen. Facial Action Coding System: A Technique for the Measure-
ment of Facial Movement. Consulting Psychologists Press, 1978. 14

Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does un-
supervised pre-training help deep learning? Journal of Machine Learning Research,
11:625–660, 2010. 101

Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174,
1987. 19

William T. Freeman and Edward H. Adelson. The design and use of steerable filters.
IEEE Trans. Pattern Anal. Mach. Intell., 13(9):891–906, 1991. 35, 38

J.H. Friedman. Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 29(5):1189–1232, 2001. 34, 40, 41

130



REFERENCES

Xinbo Gao, Xiumei Wang, Dacheng Tao, and Xuelong Li. Supervised Gaussian process
latent variable model for dimensionality reduction. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 41(2), 2011. 82

Zoubin Ghahramani and Matthew J. Beal. Variational inference for bayesian mixtures
of factor analysers. In In Advances in Neural Information Processing Systems 12,
pages 449–455. MIT Press, 2000. 64, 66

Michael Gleicher. Projective registration with difference decomposition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 331–337,
1997. 28

Ralph Gross, Iain Matthews, and Simon Baker. Generic vs. person specific active
appearance models. Image and Vision Computing, 23(11):1080–1093, 2005. 33

Leonidas Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivi-
sions and the computation of Voronoi diagrams. ACM Trans. Graph., 4(2):74–123,
1985. 19

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer, 2003. ISBN 978-0387848570. 40

G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science (New York, N.Y.), 313:504–7, 2006. 98, 101

Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quater-
nions. Journal of the Optical Society of America A, 4(4):629–642, 1987. 18

Yuchi Huang, Qingshan Liu, and Dimitris Metaxas. A component based deformable
model for generalized face alignment. IEEE 11th International Conference on Com-
puter Vision, 2007, (1):1–8, 2007. 66

I. T. Jolliffe. Principal Component Analysis. Springer, 2002. ISBN 978-0387954424. 24

M.J. Jones and T. Poggio. Multidimensional morphable models: A framework for
representing and matching object classes. Int. J. Comp. Vision, 29(2):107–131, 1998.
27

T. Kanade, J.F. Cohn, and Yingli Tian. Comprehensive database for facial expression
analysis. In Fourth IEEE International Conference on Automatic Face and Gesture
Recognition, 2000. Proceedings., pages 46 –53, 2000. 91

131



REFERENCES

David G. Kendall. Shape manifolds, Procrustean metrics, and complex projective
spaces. Bulletin of the London Mathematical Society, 16(2):81–121, 1984. 17

Neil Lawrence. Probabilistic non-linear principal component analysis with Gaussian
process latent variable models. Journal of Machine Learning Research, 6:1783–1816,
2005. 16, 64, 66, 67, 69, 70, 80

Neil D. Lawrence and Andrew J. Moore. Hierarchical Gaussian process latent variable
models. Proceedings of the 24th international conference on Machine learning - ICML
’07, pages 481–488, 2007. 65, 67

Neil D. Lawrence and Joaquin Quiñonero Candela. Local distance preservation in the
GP-LVM through back constraints. Proceedings of the 23rd international conference
on Machine learning - ICML ’06, pages 513–520, 2006. 24, 68

Hyung-Soo Lee and Daijin Kim. Tensor-based AAM with continuous variation estima-
tion: Application to variation-robust face recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(6):1102–16, 2009. 15

D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the
Seventh IEEE International Conference on Computer Vision, 1999, volume 2, pages
1150–1157 vol.2, 1999. 100

Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th International Joint Conference
on Artificial Intelligence (IJCAI ’81), pages 674–679, April 1981. 28

Patrick Lucey, J.F. Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar, and Iain
Matthews. The extended Cohn-Kanade dataset (CK+): A complete dataset for ac-
tion unit and emotion-specified expression. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2010, pages 94–101,
2010. 91, 92, 94, 95, 97

K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Probability and math-
ematical statistics. Academic Press, 1979. ISBN 978-0124712508. 112

J. S. Maritz and R. G. Jarrett. A note on estimating the variance of the sample median.
Journal of the American Statistical Association, 73(361):pp. 194–196, 1978. 56, 57,
58

132



REFERENCES

A.M. Martinez and A.C. Kak. PCA versus LDA. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 23(2):228–233, 2001. 97

Iain Matthews and Simon Baker. Active appearance models revisited. International
Journal of Computer Vision, 60(2):135–164, 2004. 18, 19, 25, 26, 27, 28, 29, 30, 31,
32, 60, 81, 103

A. Mehrabian. Communication without words. Psychology Today, 2(4):53–56, 1968. 14

Martin F. Møller. A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6(4):525–533, 1993. 46, 70, 80, 89

Manfred Opper and Cédric Archambeau. The variational Gaussian approximation re-
visited. Neural Computation, 21(3):786–792, 2009. 89

M. Pantic and L. J. M. Rothkrantz. Automatic analysis of facial expressions: The state
of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12):
1424–1445, 2000. 14, 15

G. Papandreou and P. Maragos. Adaptive and constrained algorithms for inverse com-
positional active appearance model fitting. In Proc. IEEE Int. Conf. on Comp. Vision
and Pat. Rec. (CVPR), Anchorage, AK, 2008. 29

K. B. Petersen and M. S. Pedersen. The matrix cookbook, 2012. 111

J. Quiñonero Candela and C.E. Rasmussen. A unifying view of sparse approximate
Gaussian process regression. The Journal of Machine Learning Research, 6:1939–
1959, 2005. 47

C.E. Rasmussen and C.K.I Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006. 34, 43, 44, 46, 48, 66, 84, 90, 119

K. Rohr, H.S. Stiehl, R. Sprengel, T.M. Buzug, J. Weese, and M.H. Kuhn. Landmark-
based elastic registration using approximating thin-plate splines. IEEE Transactions
on Medical Imaging, 20(6):526–534, 2001. 19

Sam Roweis and Zoubin Ghahramani. A unifying review of linear Gaussian models.
Neural Computation, 11(2):305–345, 1999. 113

Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, (290):2323–2326, 2000. 67

133



REFERENCES

J. Saragih and R. Goecke. A nonlinear discriminative approach to AAM fitting. In
Proceedings of the 11th IEEE International Conference on Computer Vision ICCV
2007, 2007. 15, 34

Jason M. Saragih, Simon Lucey, and Jeffrey F. Cohn. Deformable model fitting by
regularized landmark mean-shift. International Journal of Computer Vision, 91(2):
200–215, 2011. 15

P. Sauer, T. F. Cootes, and C. J. Taylor. Accurate regression procedures for active
appearance models. In British Machine Vision Conference, pages 30.1–30.11, 2011.
15, 34, 41, 42, 49, 50, 54, 60

Patrick Sauer. Pattern recognition on statistically textured surfaces. Master’s thesis,
University of Heidelberg, 2008. 39

S. Sclaroff and J. Isidoro. Active blobs. In Sixth International Conference on Computer
Vision, 1998., pages 1146–1153. IEEE, 1998. 27, 28

E.P. Simoncelli and W.T. Freeman. The steerable pyramid: A flexible architecture for
multi-scale derivative computation. In International Conference on Image Processing,
1995. Proceedings., volume 3, pages 444–447 vol.3, 1995. 38

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-
inputs. In Advances in Neural Information Processing Systems (NIPS) 18, pages
1257–1264. MIT Press, 2006. 47

M. B. Stegmann and D. D. Gomez. A brief introduction to statistical shape analysis.
http://www2.imm.dtu.dk/pubdb/p.php?403, Informatics and Mathematical Mod-
elling, Technical University of Denmark, DTU, 2002. 23

G. M. Stephenson, K. Ayling, and D. R. Rutter. The role of visual communication in
social exchange. Journal of Social Clinical Psychology, 15:113–120, 1978. 14

Gilbert Strang. Linear Algebra and Its Applications. Brooks Cole, 1988. ISBN
0155510053. 22, 106

J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, (290):2319–2323, 2000. 67

Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
61(3):pp. 611–622, 1999. 23, 64, 65

134

http://www2.imm.dtu.dk/pubdb/p.php?403


REFERENCES

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian pro-
cesses. In the 12th International Conference on Artificial Intelligence and Statistics
(AISTATS), volume 5, 2009. 47, 48, 61, 82, 86, 116

Michalis K. Titsias and Neil D. Lawrence. Bayesian Gaussian process latent variable
model. In Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010. 64, 83, 86, 123

P. A. Tresadern, P. Sauer, and T. F. Cootes. Additive update predictors in active
appearance models. In British Machine Vision Conference, 2010. 15, 34, 41, 49

Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3:71–86, 1991. 25

Shinji Umeyama. Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell., 13(4):376–380, 1991. 103

R. Urtasun and T. Darrell. Discriminative Gaussian process latent variable models for
classification. Proceedings of the 24th Annual International Conference on Machine
Learning (ICML 2007), pages 927–934, 2007. 66, 81, 82, 95

Raquel Urtasun, David J Fleet, Andreas Geiger, Trevor J Darrell, and Neil D Lawrence.
Topologically-constrained latent variable models. pages 1080–1087, 2008. 66, 67

L. van der Maaten and E. Hendriks. Capturing appearance variation in active appear-
ance models. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010, pages 34–41, 2010. 68

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, pages I–511–I–518, 2001. 15, 35, 37

H.L. Wagner and A.S.R. Manstead. Handbook of social psychophysiology. Wiley, 1989.
ISBN 978-0471911562. 14

Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical
models for human motion. IEEE transactions on Pattern Analysis and Machine
Intelligence, 30:283–98, 2008. 66, 67, 81

George Wolberg. Digital Image Warping. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1st edition, 1994. ISBN 978-0818689444. 19

135



REFERENCES

Yefeng Zheng, Xiang Sean Zhou, Bogdan Georgescu, Shaohua Kevin Zhou, and Dorin
Comaniciu. Example based non-rigid shape detection. In ECCV (4), pages 423–436,
2006. 37

Shaohua Kevin Zhou and Dorin Comaniciu. Shape regression machine. In Proceedings
of the 20th international conference on Information Processing in Medical Imaging,
IPMI’07, pages 13–25, Berlin, Heidelberg, 2007. Springer-Verlag. 15, 34, 37, 41

K. Zimmermann, J. Matas, and T. Svoboda. Tracking by an optimal sequence of linear
predictors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4):
677–692, 2009. 34

Karel Zuiderveld. Graphics gems IV, chapter Contrast limited adaptive histogram equal-
ization, pages 474–485. Academic Press Professional, Inc., San Diego, CA, USA, 1994.
ISBN 0123361559. 92

136


	Contents
	Abstract
	Declaration
	Copyright
	List of Tables
	List of Figures
	Glossary
	1 Introduction
	1.1 Outline

	2 Active Appearance Models
	2.1 Procrustes Analysis
	2.2 Texture Warping
	2.2.1 Piecewise Affine Warps
	2.2.2 Barycentric Coordinates

	2.3 Dimensionality Reduction
	2.3.1 Principal Component Analysis

	2.4 Linear Shape Model
	2.5 Linear Texture Model
	2.6 Linear Appearance Model
	2.7 Fitting Generative AAMs
	2.7.1 Objective Function

	2.8 Combined AAM
	2.9 Simultaneous Inverse Compositional AAM
	2.10 Project-Out Inverse Compositional AAM
	2.11 Conclusions

	3 Discriminative AAM
	3.1 Features
	3.1.1 Haar Features
	3.1.2 Steerable Pyramid Features

	3.2 Regression Models
	3.2.1 Boosting
	3.2.2 Random Forest
	3.2.3 Gaussian Processes
	3.2.4 Sparse Gaussian Process Regression

	3.3 Sequential Discriminative Models
	3.3.1 Coupled Sequential AAM
	3.3.2 Independent Sequential AAM

	3.4 Experiments
	3.4.1 Error Measure
	3.4.2 Train/Test Dataset Generation
	3.4.3 Generative AAMs
	3.4.4 Discriminative AAMs
	3.4.5 Implementation
	3.4.6 Discussion

	3.5 Conclusions

	4 Non-Linear Probabilistic Models for Face Modelling
	4.1 Probabilistic Unsupervised Dimensionality Reduction
	4.2 Gaussian Process Latent Variable Model
	4.3 Generative AAM with GPLVM
	4.3.1 GPLVM Texture Model
	4.3.2 Texture generation
	4.3.3 Latent space projection
	4.3.4 Non-Linear AAM
	4.3.5 Experiments


	5 Supervised dimensionality reduction using Gaussian processes
	5.1 Supervised Variational GPLVM
	5.2 Variational inference
	5.3 Classification
	5.4 Complexity
	5.5 Emotion Recognition with Supervised Variational GPLVMs
	5.5.1 Cohn-Kanade Dataset
	5.5.2 Features
	5.5.3 Models
	5.5.4 Results
	5.5.5 Comparison

	5.6 Implementation
	5.7 Conclusions

	6 Conclusions and Future Work
	6.1 Discriminative AAMs
	6.2 Non-Linear AAM
	6.3 Supervised GPLVM

	A Similarity Transforms
	A.1 Calculating transform parameters
	A.1.1 Translation
	A.1.2 Scale and Rotation

	A.2 Composition
	A.3 Inverse

	B Matrix Identities and Linear Algebra
	B.1 Matrix product
	B.2 Hadamard product
	B.3 Trace
	B.4 Cholesky Factorisation
	B.5 Spectral Decomposition
	B.6 Partitioned Inverse
	B.7 Matrix Inversion Lemma
	B.8 Matrix Determinant Lemma
	B.9 Matrix Derivatives

	C Gaussian Identities
	C.1 Multivariate Gaussian Distribution
	C.2 Marginal and conditional distributions
	C.3 Linear Gaussian Models
	C.4 Linear Transformations
	C.5 Random Sampling
	C.6 Gaussian Process Regression

	D Implementation
	D.1 Variational Sparse GP Regression
	D.1.1 Gradients

	D.2 Supervised Variational GPLVM
	D.2.1 Ensuring Numerical Stability
	D.2.2 Gradients
	D.2.3 Psi-Statistics


	References

