
CONSTRUCTING

COMPONENT-BASED SYSTEMS

DIRECTLY FROM REQUIREMENTS

USING INCREMENTAL

COMPOSITION

A dissertation submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2013

By

Azlin Nordin

School of Computer Science

Contents

Abstract 21

Declaration 22

Copyright 23

Supplementary Material 24

Acknowledgements 25

1 Introduction 27

1.1 Background . 30

1.2 Problem Description and Motivation 32

1.3 Research Objectives . 38

1.4 The Incremental Approach . 40

1.5 Research Contribution . 41

1.6 Scope and Limitations . 43

1.7 Thesis Structure . 43

1.8 Summary . 46

2 Existing Approaches to Const. System 47

2.1 Introduction . 47

2.2 Analysis of the Existing Approaches 49

2.2.1 Category 1: Deal with all requirements and build the sys-

tem architecture in a single step 52

2.2.2 Category 2: Deal with all requirements and build the sys-

tems architecture incrementally or through re�nement . . . 58

2.2.3 Category 3: Deal with a single requirement at each step

and build the system architecture in a single step 69

2

2.2.4 Category 4: Deal with a single requirement and build the

system architecture in each incremental step 72

2.2.5 The Proposed Approach 73

2.3 Summary . 74

3 The X-MAN Component Model 75

3.1 Component Models . 75

3.2 What is a Component Model? . 77

3.2.1 Semantics . 77

3.2.2 Syntax . 77

3.2.3 Composition . 78

3.3 Component Life Cycle . 78

3.3.1 Design Phase . 78

3.3.2 Deployment Phase . 80

3.3.3 Run-Time Phase . 80

3.4 The X-MAN Component Model 81

3.5 Key Elements of X-MAN . 84

3.5.1 Computations . 84

3.5.2 Control . 84

3.5.3 Composition . 90

3.6 Intrinsic Properties of the Component Model 91

3.6.1 Component Encapsulation 92

3.6.2 Compositionality . 92

3.6.3 Component Reusability . 93

3.7 A Simple Bank System Example 94

3.8 Summary . 95

4 Incremental Composition 96

4.1 Introduction . 96

4.2 A Component Model with Incremental Composition 99

4.3 Incremental Composition in Existing Component Models 102

4.3.1 Architecture Description Languages 102

4.3.2 Aspect-Oriented Composition 103

4.3.3 Invasive Software Composition 104

4.3.4 Behaviour Engineering . 105

4.4 Design Decisions for Incremental Composition 107

3

4.4.1 Ordering-based Composition 109

4.4.2 Selection-based Composition 113

4.4.3 Condition-based Adaptation 116

4.4.4 Repetition-based Adaptation 119

4.5 Issues and Discussion . 120

4.5.1 Combining redundant behaviours 121

4.5.2 Amendment of constraints involved during IC 121

4.5.3 Consideration of piped data 121

4.6 Summary . 122

5 Extracting Elements of CB Systems 123

5.1 Introduction . 124

5.2 Related Work on Information Extraction 124

5.3 Identifying Component-based Elements From NLR 125

5.3.1 Elements Extraction from Natural Language Requirements 126

5.3.2 Identifying Component-based Constructs of the X-MAN

Component Model . 130

5.4 Example . 148

5.4.1 A simpli�ed Automated Teller Machine (ATM) system . . 149

5.5 Implementation of the Extractor Tool 155

5.5.1 Application of a Part-Of-Speech Tagger 156

5.5.2 Element Extraction Using the Extractor Tool 159

5.6 Issues and Discussion . 160

5.6.1 Requirements Problems 161

5.6.2 Dealing with Implicit Requirements 161

5.6.3 Issues on Computation Identi�cation 161

5.6.4 Handling More Than One Control Extraction 162

5.6.5 Limitations of the Elements Extraction 162

5.7 Summary . 163

6 Mapping from Reqs. to Arch. Elements 164

6.1 The Mapping Process . 164

6.1.1 Overview . 165

6.1.2 The Mapping De�nition 167

6.2 Mapping Function RQ to EE . 171

4

6.2.1 Mapping RQ Elements to Keywords that Denote Compu-

tations . 171

6.2.2 Mapping RQ Elements to Keywords that Denote Control . 174

6.2.3 Mapping RQ Elements to Keywords that Denote Data . . 176

6.3 Mapping Function EE to XE . 176

6.3.1 Mapping Keywords that Denote Computations to Compo-

nents . 177

6.3.2 Mapping Keywords that Denote Control to Connectors . . 179

6.3.3 Mapping Control Keywords 186

6.3.4 Mapping Keywords that Denote Data to XMAN Data . . 189

6.3.5 Discussion . 190

6.4 Issues and Discussion . 190

6.4.1 Mapping of More Than One Control Extraction 190

6.4.2 Handling Redundancies . 191

6.4.3 Limitations of the Mapping Step 191

6.5 Summary . 192

7 Architecture Refactoring 193

7.1 Introduction . 193

7.2 Refactoring Tasks . 195

7.3 Architecture Refactoring Rules 196

7.3.1 Vertical Refactoring . 197

7.3.2 Horizontal Refactoring . 209

7.4 Issues and Discussion . 214

7.4.1 Correctness criterion . 215

7.4.2 Measuring design complexity 215

7.4.3 Handling components' interfaces 215

7.5 Summary . 216

8 De�ning the Approach 217

8.1 Introduction and Motivation . 218

8.2 De�ning the Approach . 219

8.2.1 De�ning Algorithms for the Incremental Approach 221

8.2.2 Extracting Elements of Component-based Systems from

Requirements . 227

8.2.3 Mapping of Extracted Elements to X-MAN Elements . . . 229

5

8.2.4 Creating partial architectures 231

8.2.5 Composing partial architectures with the existing system

architecture . 232

8.2.6 Finalising the system architecture 236

8.3 A Complete Example: The ATM System 238

8.3.1 Increment-1 - Requirement 1 238

8.3.2 Increment-2 - Requirement 2 241

8.3.3 Increment-3 - Requirement 3 245

8.3.4 Increment-4 - Requirement 4 247

8.3.5 Increment-5 - Requirement 5 249

8.3.6 Increment-6 - Requirement 6 251

8.3.7 Increment-7 - Requirement 7 253

8.3.8 Step-5: Finalising the system architecture 255

8.4 Validation of the Incremental Approach 256

8.4.1 The Trading System . 257

8.4.2 Other Case Studies . 266

8.5 Issues and Discussion . 268

8.5.1 Requirements Problem . 269

8.5.2 Element Extraction Exceptions 269

8.5.3 Component Selection . 269

8.5.4 Validation of the Derived Architecture 269

8.6 Summary . 270

9 Evaluation and Discussion 271

9.1 Introduction . 271

9.2 Preliminary Empirical Validation 272

9.2.1 Objectives . 272

9.2.2 Research Questions . 273

9.2.3 Instrumentation and Materials 274

9.2.4 Pilot Study . 281

9.2.5 The Main Experiment . 293

9.2.6 Threats to Validity . 305

9.3 Summary . 306

9.4 Analysis of the Case Studies . 306

9.5 Re�ections on the Approach . 307

9.5.1 Properties of the X-MAN Component Model 307

6

9.5.2 Requirement Issues . 311

9.5.3 The E�ects of the Selected Properties of the Incremental

Approach . 313

9.5.4 The E�ects of the Tools Support 314

9.6 Comparison with Related Work 316

9.7 Issues and Discussion . 317

9.7.1 Support for Software Development Project 317

9.7.2 Requirements authoring styles 320

9.7.3 Potential E�ects of Requirements Ordering, Dependencies

and Prioritisation . 321

9.7.4 Achieving requirements satisfaction 324

9.7.5 The Resulting Architecture 325

9.8 Summary . 325

10 Conclusions and Future Work 326

10.1 Research Contribution . 326

10.2 Limitations and Discussion . 328

10.3 Future Work . 329

10.3.1 The Use of NLP . 330

10.3.2 Execution of a Large-scale Set of Requirements 330

10.3.3 An Experimentation of the Cost and Bene�t of the Approach330

10.3.4 Architecture Refactoring 331

10.3.5 Automation of the Architecture Refactoring 331

10.3.6 An Integrated Tool Support 332

10.4 Summary . 332

Bibliography 333

A Textual Analysis 362

A.1 Introduction . 362

A.2 Part-of-Speech Tagger . 363

A.2.1 What is a POS Tagger? 363

B Questionnaire 366

C Case Studies 378

C.1 The Trading System (COCOME) 379

7

C.1.1 COCOME Requirements 379

C.1.2 UC 1 � Process Sale . 379

C.1.3 UC 2 � Manage Express Checkout 381

C.1.4 UC 3 � Order Products . 382

C.1.5 UC 4 � Receive Ordered Products 382

C.1.6 UC 5 � Show Stock Reports 383

C.1.7 UC 6 � Show Delivery Reports 383

C.1.8 UC 7 � Change Price . 384

C.1.9 UC 8 � Product Exchange (on low stock) Among Stores . 384

C.1.10 Extension on UC 8 � Remove Incoming Status 386

C.1.11 Incremental Execution of the COCOME Requirements . . 386

C.1.12 Use Case 1 � Process Sale 387

C.1.13 Use Case 2 � Manage Express Checkout 399

C.1.14 Use Case 3 � Order Products 407

C.1.15 Use Case 4 � Receive Ordered Products 411

C.1.16 Use Case 5 � Show Stock Reports 414

C.1.17 Use Case 6 � Show Delivery Reports 416

C.1.18 Use Case 7 � Change Price 418

C.1.19 Use Case 8 � Product Exchange (on low stock) Among Stores420

C.1.20 Extension on UC 8 - Remove Incoming Status 427

C.1.21 Architecture Refactoring of the COCOME 431

C.1.22 AR-1 . 431

C.1.23 AR-2 . 431

C.1.24 AR-3 . 431

C.1.25 AR-4 . 432

C.1.26 AR-5 . 432

C.1.27 AR-6 . 433

C.1.28 Summary . 435

C.2 The Video Store System (VSS) 436

C.2.1 Introduction . 436

C.2.2 Incremental Execution of the VSS 436

C.2.3 Architecture Refactoring of the VSS 450

C.3 The Word Count (WC) . 454

C.3.1 Introduction . 454

C.3.2 Requirements for Word Count 454

8

C.3.3 Incremental Execution of the Word Count 454

C.3.4 Architecture Refactoring of the WC 458

C.3.5 Finalisation step . 458

C.4 Summary . 459

9

List of Tables

5.1 Summary of the Extracted Keywords from R1. 151

5.2 Summary of the Extracted Keywords from R2. 151

5.3 Summary of the Extracted Keywords from R3. 152

5.4 Summary of the Extracted Keywords from R4. 153

5.5 Summary of Extracted Keywords from R5. 154

5.6 Summary of the Extracted Keywords from R6. 154

5.7 Summary of Extracted Keywords from R7. 155

8.1 Summary of Steps 1 and 2 for R1 240

8.2 Summary of Steps 1 and 2 for R2. 243

8.3 Summary of Steps 1 and 2 for R3. 246

8.4 Summary of Steps 1 and 2 for R4. 248

8.5 Summary of Steps 1 and 2 for R5. 250

8.6 Summary of Steps 1 and 2 for R6. 252

8.7 Summary of Steps 1 and 2 for R7. 254

8.8 Summary of the Executed Case Studies and Examples 266

9.1 Summary of Extraction Scoring Criteria 277

9.2 Summary of Mapping Scoring Criteria for Correctness 278

9.3 Summary of Mapping Scoring Criteria for Syntax 279

9.4 Extraction Scoring for Pilot Study 284

9.5 Summary of Correctness Scoring Value 285

9.6 Summary of Scoring Value for Syntax 287

9.7 Adoption of the Extraction and Mapping Heuristics 288

9.8 Extraction Scoring . 296

9.9 Summary of Scoring Value for Correctness 297

9.10 Scoring Value for Syntax . 299

9.11 Adoption of the Extraction and Mapping Heuristics 301

9.12 Perceived Di�culty Level for Training 303

10

9.13 Post-Experiment Analysis . 304

A.1 Levels of NLP [BMA08] . 363

C.1 Summary of Steps 1 & 2 for UC1-2 387

C.2 Summary of Steps 1 & 2 for UC1-3 388

C.3 Summary of Steps 1 & 2 for UC1-4 389

C.4 Summary of Steps 1 & 2 for UC1-5 390

C.5 Summary of Steps 1 & 2 for UC1-5b 392

C.6 Summary of Steps 1 & 2 for UC1-6 393

C.7 Summary of Steps 1 & 2 for UC1-7 394

C.8 Summary of Steps 1 & 2 for UC1-9 396

C.9 Summary of Steps 1 & 2 for UC1-10 397

C.10 Summary of Steps 1 & 2 for UC1-11 398

C.11 Summary of Steps 1 & 2 for UC2-1 399

C.12 Summary of Steps 1 & 2 for UC2-1b 400

C.13 Summary of Steps 1 & 2 for UC2-1c 401

C.14 Summary of Steps 1 & 2 for UC2-1d 402

C.15 Summary of Steps 1 & 2 for UC2-2a 404

C.16 Summary of Steps 1 & 2 for UC2-2b 405

C.17 Summary of Steps 1 & 2 for UC2-2c 406

C.18 Summary of Steps 1 & 2 for UC3-1 407

C.19 Summary of Steps 1 & 2 for UC3-2 408

C.20 Summary of Steps 1 & 2 for UC3-3 409

C.21 Summary of Steps 1 & 2 for UC3-4 410

C.22 Summary of Steps 1 & 2 for UC4-3 412

C.23 Summary of Steps 1 & 2 for UC4-4 413

C.24 Summary of Steps 1 & 2 for UC5-1 414

C.25 Summary of Steps 1 & 2 for UC5-2 415

C.26 Summary of Steps 1 & 2 for UC6-1 416

C.27 Summary of Steps 1 & 2 for UC6-2 417

C.28 Summary of Steps 1 & 2 for UC7-1 418

C.29 Summary of Steps 1 & 2 for UC7-2 419

C.30 Summary of Steps 1 & 2 for UC7-3 420

C.31 Summary of Steps 1 & 2 for UC8-1 421

C.32 Summary of Steps 1 & 2 for UC8-2 421

11

C.33 Summary of Steps 1 & 2 for UC8-3 422

C.34 Summary of Steps 1 & 2 for UC8-4 423

C.35 Summary of Steps 1 & 2 for UC8-5 424

C.36 Summary of Steps 1 & 2 for UC8-6 424

C.37 Summary of Steps 1 & 2 for UC8-7 425

C.38 Summary of Steps 1 & 2 for UC8-8 426

C.39 Summary of Steps 1 & 2 for UC8-E1 427

C.40 Summary of Steps 1 & 2 for UC8-Ext3 428

C.41 Summary of Steps 1 & 2 for UC8-Ext4 429

12

List of Figures

1.1 Conceptual model. 41

1.2 Relationships Between Chapters. 46

2.1 Current scenario . 48

2.2 Summary of Existing Mapping Approaches 51

2.3 Category 1 . 52

2.4 ADEF [LE03] . 53

2.5 Relationships between scenarios, requirements and architectures

[ZMP03] . 54

2.6 Simpli�ed EDS Process Model [BBGM00] 55

2.7 Scenario Meta Model [PBG01] . 57

2.8 Category 2 . 59

2.9 Feature Model . 60

2.10 Feature Mapping [LM03] . 61

2.11 The Twin Peaks Model [Bas01] 63

2.12 CBSP Conceptual Framework [GEM04] 64

2.13 CBSP Process [GEM04] . 65

2.14 GORE Process . 68

2.15 SAORE [Mei00] . 69

2.16 Category 3 . 70

2.17 Behaviour Trees . 71

2.18 Category 4 . 72

3.1 Component Life Cycle . 78

3.2 X-MAN component model. 82

3.3 Composition connectors. 82

3.4 Hierarchical composition by a SEQ. 83

3.5 Component and Composition . 85

3.6 Invocation Connector (IC) . 86

13

3.7 Generic Composition Connectors 87

3.8 Adaptation Operators . 89

3.9 Simple Bank System Example . 94

4.1 Composition in C2. 97

4.2 Incremental composition. 98

4.3 The Basic Component Model Elements. 99

4.4 Incremental Composition in X-MAN. 101

4.5 Generic ADLs . 103

4.6 Aspect-Oriented Composition . 103

4.7 Invasive Software Composition . 104

4.8 The Result of a Sequencing Composition. 105

4.9 The Result of a Branching Composition. 106

4.10 Composition points. 108

4.11 Adding a component to an existing composition. 110

4.12 ATM example-1. 111

4.13 Word Count-2 . 112

4.14 ATM Example-3. 112

4.15 ATM Example-4. 113

4.16 ATM Example-5. 114

4.17 Composing to a new component to a composition point. 114

4.18 ALCS. 115

4.19 Incremental Composition for Selection-based Composition. 116

4.20 Add a Guard to a Composition Point. 117

4.21 Add a Guard to a Composition Point. 118

4.22 Adding a Guard. 118

4.23 Adding a loop adapter. 119

4.24 Looping example. 120

4.25 Repetition-based composition. 120

5.1 Related work on Information Extraction 124

5.2 Elements that can be extracted from verbs. 127

5.3 Elements that can be extracted from nouns. 128

5.4 Elements that can be extracted from phrases. 129

5.5 Extracting computations. 131

5.6 Extracting control. 140

14

5.7 List of Control Terms. 143

5.8 Summary of the Element Extraction Heuristics. 150

5.9 Flow of the Extractor Tool . 156

5.10 POS Tagset for Verb Extraction. 157

5.11 POS Tagset for Noun Extraction. 158

5.12 POS Tagset for Control Extraction. 158

5.13 The Extractor Tool. 159

6.1 Mapping Process . 166

6.2 UML Class Diagram Representation 167

6.3 Mapping Relationship . 169

6.4 Category of RQ Elements that Denote Computations 172

6.5 Category of RQ Elements that Denote Control 174

6.6 Result of mapping. 183

6.7 Design Alternatives . 185

6.8 An Example of a Guard Adapter. 186

6.9 A Guard in VSS. 188

6.10 An example of a loop adapter. 188

7.1 Refactoring Tasks. 196

7.2 Refactor homogeneous connectors. 198

7.3 Representing execution �ow for PIPE. 199

7.4 Handling interfaces . 200

7.5 Refactor homogeneous connectors - WordCount. 201

7.6 Adding a lower-level hierarchy . 203

7.7 Representing execution �ow for Sequential and Selection Cases:

Case 1 . 204

7.8 Representing execution �ow for Sequential and Selection Cases:

Case 2 . 205

7.9 Representing execution �ow for Sequential and Selection Cases:

Case 3 . 206

7.10 Representing execution �ow for Sequential and Selection Cases:

Case 4 . 207

7.11 Adding a lower level connector � VSS 207

7.12 Adding an upper-level hierarchy 208

7.13 Refactor PIPE with Guards . 210

15

7.14 Pipe with Guards Pattern. 211

7.15 Exceptional cases � VSS . 212

7.16 Before and after refactoring . 213

7.17 Refactor guards � WordCount . 214

8.1 Research Context � A Conceptual model. 220

8.2 The Incremental Approach. 220

8.3 The Flow of the Extractor Tool. 228

8.4 The Extractor Tool. 229

8.5 The Exogenous Composition Framework Tool. 235

8.6 Finalising Composition Points. 236

8.7 Adding a Loop Adapter. 237

8.8 Extraction of R1 using the Extractor Tool 239

8.9 Partial Architecture for R1. 241

8.10 Extraction of R2 using the Extractor Tool 242

8.11 Increment-2. 244

8.12 Increment-3. 247

8.13 Increment-4. 249

8.14 Increment-5. 251

8.15 Increment-6. 253

8.16 Increment-7. 255

8.17 Final System Architecture. 256

8.18 COCOME architecture. 258

8.19 X-MAN composition for COCOME. 259

8.20 Test cases execution � TC-UC1A. 261

8.21 Test cases execution � TC-UC1B. 261

8.22 Test case execution - TC-UC1C. 262

8.23 Test cases execution � TC-UC [1D, 1E]. 263

8.24 Test cases execution � TC-UC [3A, 4A]. 264

8.25 Test cases execution � TC-UC5A. 264

8.26 Test cases execution � TC-UC [6A, 6B]. 265

8.27 Test cases execution � TC-UC [7A, 7B]. 266

8.28 Final System Architecture for the Steam Boiler System. 268

9.1 An example of a Questionaire Item for Extraction Heuristics . . . 280

9.2 An example of a Questionaire Item for Mapping Heuristics 280

16

9.3 Summary of Correctness Scoring Value 286

9.4 Summary of Syntax Scoring Value 287

9.5 Application of Extraction Heuristics 289

9.6 Application of Mapping Heuristics 289

9.7 Comparison between Extraction and Mapping Scoring 290

9.8 Extraction Scoring . 297

9.9 Result of Correctness Scoring Value 298

9.10 Scoring Value for Syntax . 299

9.11 Application of the Extraction Heuristics 301

9.12 Application of Mapping Heuristics 301

9.13 Comparison between Extraction and Mapping Scoring 302

9.14 E�ect of Encapsulation. 308

9.15 Keywords Extraction for Sale Transaction. 309

10.1 Summary of Research Contribution. 327

C.1 UC1-R3 . 388

C.2 UC1-R4a . 389

C.3 UC1-R5a . 391

C.4 UC1-R5b . 393

C.5 UC1-R6 . 394

C.6 UC1-R7 . 394

C.7 UC1-R9 . 396

C.8 Incremental composition of UC1-R9 396

C.9 UC1-R10 . 397

C.10 UC1-R11 . 398

C.11 UC2-R1a . 400

C.12 UC2-R1b . 401

C.13 UC2-R1c . 402

C.14 UC2-R1d . 403

C.15 UC2-R2a . 404

C.16 UC2-R2b . 405

C.17 UC2-R2c . 406

C.18 UC3-R1 . 408

C.19 UC3-R2 . 408

C.20 UC3-R3 . 409

17

C.21 Part of the incremented architecture for UC3-R4 410

C.22 UC4-R3 . 412

C.23 UC4-R4 . 413

C.24 UC5-R1 . 415

C.25 Part of the incremented architecture for UC5-R2 416

C.26 UC6-R1 . 417

C.27 Part of the incremented architecture for UC6-R2 418

C.28 UC7-R1 . 419

C.29 Part of the incremented architecture for UC7-R3 420

C.30 UC8-R3 . 422

C.31 UC8-R4 . 423

C.32 Incremented architecture for UC8-R5 423

C.33 Incremented architecture for UC8-R7 425

C.34 Incremented architecture for UC8-R8 426

C.35 Incremented architecture for UC8-E1 427

C.36 Incremented architecture for UC8-Ext3 429

C.37 COCOME Architecture Before Refactoring 430

C.38 Architecture Refactoring . 430

C.39 AR-1 . 431

C.40 AR-2 . 432

C.41 AR-3 . 432

C.42 AR-4 . 432

C.43 AR-5 . 433

C.44 AR-6 . 433

C.45 COCOME Architecture After Refactoring 434

C.46 Finalised Architecture . 434

C.47 Result of mapping for R1 . 437

C.48 R4 . 438

C.49 R5 . 439

C.50 R6 . 440

C.51 R8 . 441

C.52 Part of the Incremented Architecture for R9 442

C.53 Part of the Incremented Architecture for R10 442

C.54 Part of the Incremented Architecture for R11 443

C.55 R12 . 444

18

C.56 R13 . 445

C.57 R14 . 446

C.58 R15 . 446

C.59 R16 . 447

C.60 R17 . 448

C.61 R18 . 449

C.62 R19 . 450

C.63 Incremented Architecture for R19. 450

C.64 VSS Architecture Before Refactoring 452

C.65 Label for VSS Architecture Refactoring 452

C.66 Refactored VSS Architecture . 453

C.67 Finalised VSS Architecture . 453

C.68 Result of Mapping for R2 . 455

C.69 Partial and Incremental Architecture for R3 456

C.70 Partial, Incremented and Updated Architecture for R4 457

C.71 Partial, Incremented and Updated Architecture for R5 458

C.72 Refactoring for WC. 458

C.73 Finalisation Step. 459

19

List of Heuristics and Design
Decisions

5.1 Identifying Computations from Text 132

5.2 Identifying Computations from User Interaction 133

5.3 Identifying Conceptual Components 139

5.4 Identifying Control . 145

5.5 Identifying Data . 147

6.1 Mapping Computation Keywords to Component's Computations . . . 179

6.2 Mapping Control Keywords to Composition Connectors 182

6.3 Mapping Control Keywords to Adapters 189

6.4 Mapping Data Keywords to Data Elements 189

7.1 Combining Homogeneous Composition Connectors 202

7.2 Adding a Lower-level Hierarchy . 208

7.3 Adding an Upper-level Hierarchy . 209

7.4 PIPE with Guards Pattern . 214

20

Abstract

In software engineering, system construction typically starts from a requirements
speci�cation that has been engineered from raw requirements in a natural lan-
guage. The speci�cation is used to derive intermediate requirements models such
as structured or object-oriented models. Throughout the stages of system con-
struction, these artefacts will be used as reference models. In general, in order
to derive a design speci�cation out of the requirements, the entire set of require-
ments speci�cations has to be analysed. Such models at best only approximate
the raw requirements since these design models are derived as a result of the ab-
straction process according to the chosen software development methodology, and
subjected to the expertise, intuition, judgment and experiences of the analysts or
designers of the system. These abstraction models require the analysts to elicit
all useful information from the requirements, and there is a potential risk that
some information may be lost in the process of model construction.

As the use of natural language requirements in system construction is in-
evitable, the central focus of this study was to use requirements stated in natural
language in contrast to any other requirements representation (e.g. modelling
artefact). In this thesis, an approach that avoids intermediate requirements
models, and maps natural language requirements directly into architectural con-
structs, and thus minimises information loss during the model construction pro-
cess, has been de�ned. This approach has been grounded on the adoption of
a component model that supports incremental composition. Incremental com-
position allows a system to be constructed piece by piece. By mapping a raw
requirement to elements of the component model, a partial architecture that sat-
is�es that requirement is constructed. Consequently, by iterating this process
for all the requirements, one at a time, the incremental composition to build the
system piece by piece directly from the requirements can be achieved.

21

Declaration

No portion of the work referred to in this dissertation has
been submitted in support of an application for another
degree or quali�cation of this or any other university or
other institute of learning.

22

Copyright

i. The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the �Copyright�)
and s/he has given The University of Manchester certain rights to use such
Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright, De-
signs and Patents Act 1988 (as amended) and regulations issued under it
or, where appropriate, in accordance with licensing agreements which the
University has from time to time. This page must form part of any such
copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the �Intellectual Property�) and any reproductions of
copyright works in the thesis, for example graphs and tables (�Reproduc-
tions�), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is avail-
able in the University IP Policy (see http://www.campus.manchester.ac.
uk/medialibrary/policies/intellectual-property.pdf), in any rele-
vant Thesis restriction declarations deposited in the University Library,
The University Library's regulations (see http://www.manchester.ac.uk/
library/aboutus/regulations) and in The University's policy on presen-
tation of Theses

23

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Supplementary Material

This thesis contains accompanying material in the form of electronic resources

included in an attached compact disc. The followings are the contents of the

electronics resources :

1. Publications :

(a) Analysis of Existing Approaches to Constructing Component-based Systems Di-

rectly from Requirements. A. Nordin. In Proceedings of 6th Malaysian Software

Engineering Conference, pages 20�32, 2012 [Nor12].

(b) Constructing Component-based Systems Directly from Requirements using Incre-

mental Composition. K.-K. Lau, A. Nordin, T. Rana and F. Taweel. In Pro-

ceedings of 36th Euromicro Conference on Software Engineering and Advanced

Applications, pages 85�93, IEEE, 2010 [LNRT10].

(c) Extracting Elements of Component-based Systems from Natural Language Re-

quirements. K.-K. Lau, A. Nordin, Keng-Yap Ng. In Proceedings of 37th Euromi-

cro Conference on Software Engineering and Advanced Applications, pages 39�46,

IEEE, 2011 [LNN11].

2. Case Studies : Electronic copies of all the case studies used in this thesis in

Portable Document Format (PDF) format.

(a) The Trading System (COCOME)

(b) The Video Store System (VSS)

(c) The Word Count Example

24

Acknowledgements

This thesis re�ects what has been achieved during this four-year PhD period as

a result of the learning process and the research skill experiences. I would like

to gratefully acknowledge my family, parents, colleagues and friends who have

directly or indirectly contributed towards my PhD journey, without which this

journey might not have come to the end.

First and foremost, I would like to thank my supervisor, Dr. Kung-Kiu Lau,

for all his e�orts in supervising me throughout this PhD period. His advice, crit-

icisms and insights into research have enlightened me with the required research

skills and experiences. Also thank you for all feedback during the series of group

workshops throughout these years. As a life-time investment and a stepping stone

for my future career, this is such a valuable personal experience, which cannot

easily be achieved without much e�ort and pain. I would also like to thank the

examiners for agreeing to review this thesis.

I am particularly grateful to my understanding husband, Ahmad Fadilah Ah-

mad and my son, Ahmad Irfan, for supporting me during these di�cult yet chal-

lenging years. Living thousands of miles away from home in new surroundings,

the adaptation process has been easier with the ones you need with you. Thank

you for all the di�cult sacri�ces and the substantial times that have been spent

in joining with me during this PhD battle. I am also indebted to both my loving

parents, Nordin Ahmad and Zabedah Hj. Mansor for the support and prayers

25

during all these years.

I also wish to extend my gratitude to my colleagues in the group at (1)

the School of Computer Science, University of Manchester: Lily, Ng Keng Yap,

Tauseef, Yannis, Faris, Cuong and Petr; (2) the Kulliyyah of Information and

Communication Technology (KICT), International Islamic University of Malaysia

(IIUM): Lili Marziana, So�aniza, Norsaremah and Amelia. Special thanks go to

Lily and Nurul Akmar, for being supportive and understanding with my ups and

downs all these years. In addition, thanks to Tauseef and Ng Keng Yap for the

collaboration opportunities that have resulted in publications. I will always cher-

ish the times we spent all these years in the o�ce and thank you for being such

nice colleagues and friends.

Finally, I would like to acknowledge the Malaysian Ministry of Higher Educa-

tion and IIUM for �nancial assistance and sponsorship during this PhD period.

Thank you, from the bottom of my heart.

26

Chapter 1

Introduction

In Software Engineering (SE), one of the ultimate aims of software development

is to build systems that satisfy user requirements. Nevertheless, achieving such

an aim is obviously a challenging task. The software development process starts

with the elicitation of requirements, and follows with the analysis and design

stages. The design is then implemented and tested. In the literature, there are

various software development methodologies and Requirements Engineering (RE)

methods, as well as techniques that address various ways of improving the soft-

ware development process. The traditional example of the software development

methodology is the Waterfall Model [Roy87], where the process is sequential, and

a system design consists of modules that interact with one another. A modern

example is the Uni�ed Development Process [JBR99], where the process is it-

erative, and a system design consists of classes that interact with one another

(represented by UML class and interaction diagrams).

Component-based Software Engineering (CBSE), on the other hand, is an-

other specialised area of SE that deals with achieving software component reusabil-

ity. To be more speci�c, CBSE as de�ned in [Som07, p. 440], is �the process of

27

28 CHAPTER 1. INTRODUCTION

de�ning, implementing and integrating or composing loosely coupled indepen-

dent components into systems�. A software component is de�ned as �a software

element that conforms to a component model and can be independently deployed

and composed without modi�cation according to a composition standard� [HC01].

For component-based systems, it may be questioned whether CBSE should adopt

di�erent software development methodologies going from requirements to the

analysis to the �nal system, in contrast to conventional software development.

The conventional software development process is viewed as restricting the po-

tential of the CBSE [Som07, p. 441]. The main reason is that, a component-based

system should be constructed using a component model [LW07] that de�nes what

are components, its syntaxes and semantics, and how the components should be

composed.

In addition to the general challenges in conventional software development,

CBSE has its own distinct challenges, in contrast to conventional software de-

velopment approaches. Among these challenges are component trustworthiness,

certi�cation, emergent property prediction [Som07, p. 441] and reuse of available

components or acquisition of the Component-O�-The-Shelf (COTS) components

from the market [KH07]. In considering these challenges in the CBSE domain,

it is not surprising that CBSE is viewed as relatively less desirable in software

development as compared to the other conventional or emergent paradigms (e.g.

structured, object-oriented, aspect-oriented). Beyond this, however, the bene�ts

that CBSE o�ers (i.e. reusability, encapsulation, and compositionality) should

extend thoughtful consideration over these limitations. This indicates a need to

better understand these situations and look into better solutions, in an attempt

to realise and improve the CBSE processes.

In order to build component-based systems, generally, a requirements engi-

neer or an analyst starts with the analysis of the requirement documents. The

29

fact that most of these requirements documents are written in natural language

is irrefutable [BK00]1 as this artefact is used as the main communication tool be-

tween users and the developer's team. The use of natural language requirements

(NLR) will never be totally replaced by formal speci�cation and hence, the need

to accommodate them is undeniable [Rut77].

RE deals with requirements in the upfront activities in software development.

This area is considered as one of the key activities in software development. It

is, in fact, motivated by the view that requirements problems are much more

expensive to �x later in the development cycle [Boe84, Gla03]. Requirements

problems with regard to satisfying the real needs of the user have been reported

in many articles [DvE06, KS03, Ram98, EEM95, RJ01]. For decades, this has

been an open issue in SE research. Although it is clear that in conventional SE,

namely structured and object-oriented approaches, the aim of the development

is to satisfy the user requirements, this intention is, in fact, led by many fac-

tors. Glass [Gla03] indicated that the most typical cause of delinquent projects

is unstable requirements. Having said this, as most software developments are

dependent on the requirements, beyond doubt developing software to satisfy the

user requirements is a huge challenge.

This chapter sets the scene with a brief introduction to RE and continues with

some insights into the problem description. The following sections present the re-

search objectives, an overview of the incremental approach, scope and limitations,

and the research contributions. Finally, the thesis structure is presented.

1RE is where the informal meets the formal [Jac95].

30 CHAPTER 1. INTRODUCTION

1.1 Background

Before going into further details, it is worthwhile providing some fundamental

background on RE. The RE process is �a structured set of activities, which are

used to derive, validate and maintain a systems requirements document� [KS03].

This RE process is a multi-disciplinary activity, deploying a variety of techniques

and tools at di�erent stages of software development and for di�erent kinds of

application domains [NE00]. In other words, Zave [Zav97] de�nes RE as �the

branch of SE concerned with the real-world goals for functions of and constraints

on software systems�. Recently, contributions from the RE �eld have become

signi�cantly accepted among the SE community, and as a result of this, the

importance of RE has been greatly emphasised in the literature (e.g. [EEM95,

KS03, Ram98, RJ01, KDR+07, HL01, ABE+06]).

The RE process is �a structured set of activities, which are used to derive, val-

idate and maintain a systems requirements document� [KS03, p. 9]. The core RE

activities include elicitation, analysis and modelling, communication, validation

and veri�cation, documentation and evolving requirements [NE00, PA06, Som07].

The RE activities primarily de�ne the choice of RE method to be adopted. RE

for information systems, for instance, is performed di�erently from RE for em-

bedded control systems [NE00]. These activities are mostly performed iteratively

and incrementally until all the RE tasks can be plausibly applied to further SE

processes. As supported by SWEBOK [IEE04], requirements are expected to be

iterative to a level of quality and detail which is su�cient to allow design decisions

to be made.

In general, the literature, explicitly or implicitly, describes requirements as

either user or system requirements. Few de�nitions and types of requirement

are presented. SWEBOK presents the general de�nition of a requirement as �a

1.1. BACKGROUND 31

property, which must be exhibited in order to solve some problem in the real

world� [IEE04]. Another general de�nition of a requirement is �something that

the product must do or a quality that the product must have� [RR99]. In another

study, a requirement is de�ned as �an expression of desired behavior, which deals

with objects or entities, the states they can be in, and the functions that are

performed to change states or object characteristics� [PA06].

In the literature, the requirements can generally be classi�ed into functional

and non-functional (NFR) or quality requirements [RR99, Sch07, IEE04, Som07].

Although there are various de�nitions of `requirements' in the literature and soft-

ware industry (e.g. [RR99, PA06, IEE04, Sch07, Som07, KS03]), the raw require-

ments, which are of interest in this work, are con�ned to requirements that state

observable behaviours or functional requirements only. A functional requirement

is �a statement of services the system should provide, how the system should react

to particular inputs and how the system should behave in particular situations,

and sometimes explicitly state what the system should not do� [Som07].

Once the analysis stage is completed, the following stage is that of design.

During the design stage, one of the activities is to produce software architecture

(SA). A generic de�nition of SA is �the program structure or structures of the

system, which comprise software elements, the externally visible properties of

those elements, and the relationships among them� [BCK03]. The authors also

agree that the behaviours of each element are part of the architecture. In relating

to this point, behaviours of an element can be observed from the perspective

of another element. Hence, behaviours should be represented as a part of the

architecture. In this research, the term SA can generally be used as an abstraction

of element information, and the communication between these elements. In this

report, the elements here are regarded as components.

32 CHAPTER 1. INTRODUCTION

1.2 Problem Description and Motivation

The application of RE processes in software development have been seen to have a

signi�cant e�ect on the success of software development projects. This re�ects the

importance of the RE processes in any software development, in order to achieve

user satisfaction with the system. Recent studies in software development have

heightened the need to enhance the quality of software delivered to the client by

ensuring that user requirements are satis�ed, risks of errors are reduced as the

requirements and the domains of the applications become increasingly complex.

The past decade has seen rapid development among RE and CBSE researchers

in de�ning alternative ways of developing software, thus gaining bene�ts from

both the areas. To date, most studies in RE have tended to focus on the RE

processes themselves rather than their relationships to other related software

development processes. However, little attention has been paid to bridging these

gaps, in relation to architecture as indicated in the literature [DC06, GEM06,

FM08, GEM04, GEM01, Bas05, vL03].

Several challenges [GEM04] with regard to these gaps are identi�ed in this

thesis including :

(a) Representation of requirements that is generally in natural language. This

implies that the requirements are documented in an informal manner, whilst

SA documents are speci�ed in a semi-formal or more formal way.

(b) The nature and evolution of requirements, re�ecting the fact that architec-

ture development should withstand the requirements risks being incomplete

and in a state of evolution. Furthermore, some of the requirements can only

be fully understood after the system architecture has been developed.

1.2. PROBLEM DESCRIPTION AND MOTIVATION 33

(c) Traceability issues when maintaining both the requirements and architec-

ture are non-trivial.

(d) The size of real world, large-scale software requirements makes it di�cult to

identify and update the required information into the related architectural

design.

The above-listed challenges indicate the complexity involved in dealing with the

tasks of reducing the gaps between these two stages. In addition, an interesting

insight in the literature states that the existence of these gaps is due to the

fact that di�erent concepts and terms are used to represent the required models,

which are relevant in both the stages [GEM04]. Hence, it remains an intriguing

challenge to attempt to address these gaps.

While a considerable amount of RE literature discusses the application of

RE in the early phases of the software development life cycle, nonetheless the

relevance of RE to other software processes is broadly acknowledged in the SE

community. A current trend in RE literature seeks to investigate the relationships

between these stages, and few approaches have been proposed to reduce these

gaps. However, a study [Bas05] states that the connection between RE and

architecture is not very well understood and therefore a restricted direction is

applicable. It is also mentioned that although there are gaps between these two

stages, a systematic way of dealing with these gaps is needed [Bas05].

In spite of the fact that investigating the gaps between RE and architectures

is acknowledged in the literature, to date, SE researchers do not have a consensus

on the connection of these two areas [LM03]. In previous research, impact stud-

ies of RE on software development have been undertaken independently, thereby

separating the concerns of RE processes and their impact on software develop-

ment. In order to address this issue, an empirical study [DC06] explores the

34 CHAPTER 1. INTRODUCTION

relationships between RE and other software development processes. The out-

come of the research demonstrates the positive impact of RE in the perspectives

of productivity, quality and risk management in software development.

It is becoming increasingly di�cult to ignore the importance of reducing the

gaps from requirements to architectures. Having said this, understanding and

investigating these gaps has been one of the emerging research areas in RE.

This has also been re�ected in a study [FE00] where the prospects for future

Requirements Management (RM) tools for the short, medium and long term are

presented, highlighting the fact that no attention has been paid to the relationship

between requirements and architectures. As a result of the study, the relationship

between requirements and architectures becomes one of the desired features of

RM tools in the long-term category.

The advantages of reducing the gaps between the phases have been discussed

in the literature (e.g. [Bas05, BBGM00, HNS05, GEM04]). The prominent issue

in transforming requirements into an architecture and further into software mod-

els or artefacts is the issue of traceability. Traceability as de�ned by IEEE [IEE90]

is �the degree to which a relationship can be established between two or more

products of the development process, especially products having a predecessor-

successor or master-subordinate relationship to one another�. One of the early

works on requirements traceability (RT) refers to RT as �the ability to describe

and follow the life of a requirement, in both a forwards and backwards direction

(i.e., from its origins, through its development and speci�cation, to its subsequent

deployment and use, and through all periods of on-going re�nement and iteration

in any of these phases� [GF94].

Moreover, standards, (i.e. MIL-STD-498 [Dep94, ROC95] and IEEE/EIA J-

STD-016 [Sor96]), and assessment (i.e. Capability Maturity Model Integration

1.2. PROBLEM DESCRIPTION AND MOTIVATION 35

(CMMI) [Tea06]) have also a�rmed that RT activities should be properly docu-

mented. For these reasons, traceability of the software artefacts is important in

any software development, as it demonstrates whether the product satis�es all

the elicited requirements, and thus represents what the stakeholders really want,

and eventually becomes a benchmark for the quality of the product. Although

its central importance as a key success factor in software development has been

highlighted in many items of literature (e.g. [HL01, You06, Fir07, Ram98, RJ01,

EEM95, BB01, BH07, HDSH04, KDR+07, SGK+04]), RT remains in the state

where its primary aim to capture the relationships between important software

artefacts is not fully attained due to many contributing factors. By having trans-

parent transitions from requirements to architectures, it can inherently contribute

to handling this traceability issue.

Recent trends have shown an increased interest in exploring and investigating

the relationships between requirements and architectures. This is also re�ected

and cited as one of the challenges in SE literature (i.e. [Bas05, NE00, NE00,

GEM04]). One of the most signi�cant current discussions in highlighting this issue

is discussed in a survey [GEM06]. This survey describes, categorises and examines

existing approaches (i.e. Architecture Description Language (ADL), Goal-based

Approach, Problem Frames, Use Case Maps (UCMs), Model Bridging, Rule-

based Decision Making, Architecting Requirements, and Weaving Requirements

and Architecture Processes), which relate requirements and architectures in 16

dimensions.

As has clearly been reported in the survey, the researchers claimed that there

is no approach which provides a comprehensive elucidation for straightforward

mapping between these stages. The �ndings added that although the approaches

attempted to reduce the gaps, most of them involve direct human inputs. To

further support this argument, it is also mentioned that the tasks involved in

36 CHAPTER 1. INTRODUCTION

reducing these gaps are mainly based on intuitions and experiences [GEM04].

Interestingly, the survey concluded that if such an association is expected to

exist, an attempt to adopt component-based development should be made in

early RE phases. Although some of the approaches included such an attempt

[GEM06], nevertheless none provided a mechanism to map the requirements to

architectures directly.

Among the investigated work in the literature, which will be presented and

discussed in Chapter 2, the only work that deals with each requirement is Be-

haviour Engineering (BE) [MDF11, MD09, Dro03b, Dro03a, GPHSD05, Dro07].

BE de�nes a tree-like structure called behaviour tree (BT) to represent the re-

quirements. These trees are then integrated to build another design tree, which

is then used to derive an architecture and �nally, build the system. Although the

BE approach deals with requirements incrementally, nonetheless, the construc-

tion of the system architecture is performed in a single step. We di�erentiate our

approach from BE in the view of this architecture construction. In this research,

both contexts, namely handling the NLR and constructing the system architec-

ture are done incrementally, whilst adhering to the semantics of the X-MAN

component model.

The motivation of this research, then, is to reduce these gaps between the re-

quirements and architectures by determining and de�ning a plausible mechanism

for the construction process. By adopting the semantics of a speci�c component

model, inherently all the required features from the model (i.e. encapsulation,

reusability and compositionality) will result in side-e�ects. Hence, transparent

transformation will not only promote traceability from the requirements to the

architecture, but can also further support the central SE goal, which aims to sat-

isfy user requirements. Moreover, such an approach can also promote reusability

as a prominent bene�t o�er by the CBSE domain.

1.2. PROBLEM DESCRIPTION AND MOTIVATION 37

In realising the problems in handling the transition between the RE and archi-

tecture stages, there is a need to investigate and formulate a new and enhanced

solution in order to address the limitations and problems highlighted in the litera-

ture. This study seeks to address ways to reduce these gaps through mapping the

NLR incrementally using a speci�c component model, the X-MAN, as speci�ed

in [LW06, LW07]. The justi�cation for adopting this model is that the model

achieves reusability via compositional semantics. This feature allows composi-

tion to be performed incrementally to build a larger composition. In addition,

the encapsulation feature is also a signi�cant concept that promotes and supports

the extraction of component-based elements from natural language requirements.

In e�ect, no dependencies have to be thoroughly checked prior to a composi-

tion, which makes this option advantageous among all the rest of the component

models available in the literature.

The underlying ideas from the X-MAN component model [LW06, LW07] are

based on the following:

(a) Components are pre-existing reusable software units, which can be com-

posed without having to re-write the code from scratch.

(b) Components ideally should be independently produced and used. This will

ensure that the components are easily reused.

(c) Components should be able to be copied and instantiated to be fully reusable

in di�erent stages of the component life cycle i.e. design, deployment and

run-time phases. The component model highlights di�erent aspects of the

component design and construction in each phase. These phases will be

introduced in Chapter 3.

(d) Components should be able to be composed into composite components,

38 CHAPTER 1. INTRODUCTION

which in turn can further be composed with another atomic or composite

component in a systematic manner.

By adopting the X-MAN component model, inherently the features embedded

in the model can be utilised towards achieving the aim to deal with the gap

between requirements and architectures.

1.3 Research Objectives

The central aim of this study is to establish the means of incremental mapping of

NLR into architectural constructs while gradually constructing the component-

based system. The idea proposed in this thesis is to analyse the NLR using

textual analysis, extract the relevant keywords and map the extracted elements

into an architecture, which conforms to the component model's semantics. The

challenges in this work will mainly be to address the following research objectives:

(1) To formulate and de�ne a systematic approach to incrementally construct

component-based systems from raw requirements. By having the underlying

component model, inherently, the bene�ts of the model can be embraced. In

addition, any pre-existing components can also be considered during this

early stage, thus reducing the workload and e�ort for the system under

construction.

(2) To investigate and de�ne mechanisms to support the transition from require-

ments to architectures. It is also crucial to investigate ways in which the

requirements can be adequately mapped into an architecture in most cases.

These mechanisms should therefore be de�ned to capture all the necessary

elements in both RE and CBSE domains.

1.3. RESEARCH OBJECTIVES 39

(3) To map the requirements to architecture incrementally, without breaking

the notion of encapsulation and composition of the component model. It is

important that the formulated approach should be performed incrementally

as the requirements are normally stated in lengthy documents. Hence, by

proving that the proposed approach can work incrementally, it will at the

same time reduce complexity when dealing in a small-scale requirement at

a single point of time.

(4) To evaluate the proposed approach. In order to validate the proof-of-concept

applied in the proposed approach, the test cases are executed based on the

�nal system, a preliminary empirical validation is reported, re�ections based

on the execution of case studies and a comparison with related work are

provided.

In essence, the particular focus of this study is to apply the de�ned approach

to a set of requirements stated in natural language, in contrast to any other

requirements representation (e.g. modelling artefact). The main justi�cations

for this purpose are that this re�ects the nature of real-world scenarios, and

such requirements are easier to understand by humans, although the nature of

the natural language representation might lead to classical problems in RE. It is

worth mentioning here that the aim of this study is not to overcome the classical

problems in RE. Nonetheless, it is an irrefutably challenging research opportunity

with regard to the intention of reducing the gaps between these two stages.

In regards to traceability, as mentioned in the previous section, having a way

to map the requirements to the architecture directly will accordingly contribute

towards handling the traceability issue. This is because, if the requirements

are mapped one-by-one incrementally, the relationships could de�nitely be main-

tained and hence the traceability issue can be appropriately handled.

40 CHAPTER 1. INTRODUCTION

1.4 The Incremental Approach

This research attempts to derive a means of constructing component-based sys-

tems directly from requirements using a mechanism, that is the incremental com-

position. This means is supported by the adoption of the X-MAN component

model. The key elements of the X-MAN model are computations, control and

data. The computations and control are encapsulated in separate entities in the

model, namely computations are encapsulated as data transformations (or pro-

vided services) of components, whilst controls are encapsulated as composition

connectors.

A component model should help us to design a component-based system with

minimal or no coupling between the components, whilst maintaining maximal

cohesion within components. This obviously results in less coupling and higher

cohesion design, compared to procedural or object-oriented systems. It also means

that it should be easier to identify elements of a component-based system indi-

vidually and separately from the requirements, so much so that we can directly

map requirements to elements of a component-based system; that is we can go

from requirements directly to system design.

As an overview, this approach formulates a �ve-step process, starting from

(1) extracting elements of component-based systems from NLR, namely compu-

tations, control and data; (2) mapping of the extracted elements into the chosen

component model constructs; (3) creating a partial architecture; (4) composing

the resulting partial architecture into a system architecture and �nally, (5) �-

nalising the architecture. Once the �nal architecture is derived, the system can

be executed and tested against a set of test cases. This process is adopted from

general testing technique in conventional software development, as it is relevant

to be applied. Nonetheless, the main reason to validate the produced system is

1.5. RESEARCH CONTRIBUTION 41

to test that it satis�es the original requirements.

Based on these processes, a conceptual model of the overall approach can be

abstracted, as shown in Fig. 1.1. This model depicts the entire approach, which

highlights the relevant aspects of the processes involved. From NLR, component-

based elements are discovered using a textual analysis technique. The outcomes

of this process are the extracted elements which can be mapped to the component

model's constructs. These constructs help to construct component-based systems

using incremental composition.

Fig. 1.1: Conceptual model.

By adopting a component model that provides an incremental composition

mechanism, it allows us to (1) map the extracted keywords directly to their cor-

responding executable architectural constructs as systems architecture; (2) deal

with any number of requirements; and therefore it should scale up to arbitrarily

large requirement documents.

1.5 Research Contribution

In this thesis, the research contributes to knowledge as listed below:

42 CHAPTER 1. INTRODUCTION

1. The research advocates a category of mapping approaches based on:

(a) how the requirements are handled either dealing with the requirements

one-by-one or dealing with them as a whole.

(b) how the system is constructed either incrementally or in a single step.

2. The resulting approach de�nes a new way to incrementally construct component-

based systems from raw requirements. The approach has the following fea-

tures:

(a) It builds upon the formulation of a �ve-step process starting from

extracting elements of component-based systems from NLR, mapping

of the extracted elements into the chosen component model constructs,

creating a partial architecture, composing the partial architecture into

a system architecture and, �nally, �nalising the architecture.

(b) It de�nes and justi�es the heuristic rules for the elements extraction

process.

(c) It de�nes and justi�es the design decisions for the mapping process.

(d) It de�nes and justi�es the design decisions for the incremental compo-

sition.

(e) It de�nes and justi�es the design decisions for the architecture refac-

toring.

(f) It provides a toolset to support the elements extraction process (the

Extractor tool).

3. Validation of the approach based on:

(a) feasibility of the incremental approach by means of the provided case

studies.

1.6. SCOPE AND LIMITATIONS 43

(b) preliminary empirical validation of the incremental approach.

(c) analysis based on the execution of the provided case studies.

(d) analysis and comparison of related work.

1.6 Scope and Limitations

The X-MAN component model is a behavioural model. As this research adopts

the model as the underlying framework, the extraction process depends on the

elements de�ned in the model. Hence this research is con�ned to accommodating

functional requirements only.

The fundamental idea that supports the extraction of component-based con-

structs only relies on its syntactic analysis, and thus excludes this work from

claiming beyond this limit. However, some explicit words that can be used se-

mantically for control identi�cation have been discovered. Apart from this, an

analyst has to manually select the relevant concepts from the suggested extracted

elements.

It has also been demonstrated that the identi�ed computations, control and

data serve to construct the complete component-based systems. Although this

approach is basically heuristic, and requires human guidance and decision making,

we believe this is possible because the underlying component model provides a

way to realise such an approach. In addition, the steps and rules that are followed

have been adequately de�ned for the sake of consistency.

1.7 Thesis Structure

This thesis is conceptually organised into ten chapters in total, beginning with

this Introduction and Background chapter. The remaining parts of the thesis

44 CHAPTER 1. INTRODUCTION

have been structured as follows:

� Chapter 2: Existing Approaches to Constructing Systems from NLR begins

by laying out the past research e�orts in bridging the gaps between require-

ments and architectures (systems). The chapter examines and analyses the

signi�cant results in reducing the gaps between the two stages and looks at

the methods used in each approach. In the end, a category of approaches is

provided in order to highlight the intended research problem to be solved.

� Chapter 3: The X-MAN Component Model presents the foundation of the

X-MAN component model. Since the model will be adopted as the under-

lying notion of the approach used to motivate the extraction and mapping

process, this chapter provides su�cient knowledge of the component model.

� Chapter 4: Incremental Composition discusses, proposes and justi�es a set

of heuristic rules for the incremental composition (IC) mechanism to be

applied in the approach. Without this IC mechanism, the incremental ap-

proach cannot be fully achieved.

� Chapter 5: Extracting Elements of Component-based Systems from NLR

provides in-depth discussion on the de�nition of the element extraction pro-

cess and the proposed element extraction heuristics using a textual analysis

technique. For each heuristic, examples are provided and analysed.

� Chapter 6: Mapping from Requirements to the Architectural Elements de-

�nes and elaborates the mapping of the extracted elements into elements in

component-based systems based on the X-MAN semantics. The outcome

of this process is a set of mapping elements which are then modelled into

partial architectures.

1.7. THESIS STRUCTURE 45

� Chapter 7: Architecture Refactoring presents, proposes and justi�es a set

of architecture refactoring rules to be used in the mapping process. By

adhering to these rules, behaviour preservation property can be guaranteed

rather than arbitrarily making changes to the structure of the architecture.

� Chapter 8: De�ning the Approach de�nes the holistic mapping approach

from requirements to architecture using the incremental composition. This

chapter sets out all algorithms and the required processes in each step during

each increment. A simple yet complete example is used to demonstrate the

entire approach.

� Chapter 9: Validation and Discussion demonstrates the evaluation of the

de�ned approach using an empirical validation, case studies and also com-

parison with related work. An analysis of insights extracted based on the

execution of case studies is also included.

� Chapter 10: Conclusion and Future Work concludes the thesis by discussing

the overall contribution of the research to the SE research area. In addition,

this chapter also relates the contribution to the research objectives. Ideas

for future work directions are also included.

In addition, the appendices contain (1) background to the textual analysis tech-

nique and (2) case studies adopted in discussing this thesis.

Fig. 1.2 depicts the relationships between all the chapters in this thesis. Start-

ing with the �rst chapter, and continues with Chapters 2 and 3. The following

Chapters 4, 5, 6 and 7 are needed to understand the overall approach de�ned

in Chapter 8. The subsequent chapter, Chapter 9, provides the evaluation and

discussion of the overall approach, whilst the �nal chapter concludes the thesis.

46 CHAPTER 1. INTRODUCTION

Fig. 1.2: Relationships Between Chapters.

1.8 Summary

This chapter has set out the introduction and background of the research. In

addition, the research objectives, contributions, scope and limitations have been

presented. In order to gain a further understanding of the existing work in build-

ing architecture (systems) from requirements, the subsequent chapter will exam-

ine them and provide a synthesis based on the analysis. Each of the approaches

and their adopted mechanisms will be analysed and discussed.

Chapter 2

Existing Approaches to

Constructing Systems from Natural

Language Requirements

This chapter presents the analyses and reviews of the existing approaches that

claim to be able to map requirements to system architecture. Based on this

analysis, a category of mapping approaches is de�ned. Each of these approaches

will be elaborated based on the de�ned category. Towards the end of this chapter,

the research problem being investigated in this work and its signi�cance will be

addressed.

2.1 Introduction

System development generally starts with RE process. The outcomes of this

process are typically regarded as input to the succeeding processes. In these pro-

cesses, intermediate requirements models (e.g. object-oriented systems analysis

and design (e.g. use case, class, state chart diagrams), structured systems analysis

47

48 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

and design (e.g. context, data �ow diagrams)), are derived. These intermediate

requirements models are manually1 constructed as a result of some degree of the

abstraction process. Such abstraction models, at best, only approximate the raw

requirements. Therefore, the same is true of the requirements speci�cation that

results from the RE process.

Such a scenario can generally be visualised in Fig. 2.1. Based on an input

containing a set of raw requirements, a systems analyst abstracts the required

information and models it according to any appropriate models in the light of the

chosen software development methodology.

Fig. 2.1: Current scenario

For instance, in object-oriented

software development, an analyst de-

ciphers a set of requirements and rep-

resents the abstracted information in a

series of diagrams (e.g. use case, class,

sequence diagram etc.) according to the Uni�ed Modelling Language (UML) no-

tation.2 This whole process is entirely dependent on the expertise of the systems

analysts and the domain experts involved. Eventually, the software programmer

implements the system based on these abstracted diagrams.

During the modelling process, crucial information that in�uences the design

decisions might have been overlooked or disregarded. In practice, the modelling

process may involve more than one systems analyst, not to mention a number of

domain experts. The complexity of this process is further increased by the number

of diagrams involved. While producing and maintaining the evolution of this

set of diagrams, traceabilities between each modelling element and the original

requirements have to be fully addressed. These scenarios are part of the common

1Manual here means derived from scratch or semi-automated.
2UML is the de-facto standard of object-oriented modelling notation.

2.2. ANALYSIS OF THE EXISTING APPROACHES 49

issues in RE processes and they are considered su�cient to demonstrate the

complexity of the processes. Regardless of these issues, however, it is important

to ensure that crucial information is not lost during the early stages as it is the

basis of information for design decisions in the later stages.

This raises the questions of (1) how and to what degree of accuracy can these

abstraction processes fully elicit, capture and satisfy the entire set of require-

ments; (2) how the risk of information lost during such an abstraction process

can be tackled especially when the models are being transformed from one an-

other in each phase of the development life cycle, and further being handled

by di�erent stakeholders in the development team; and (3) how these processes

can address scalability when dealing with many stages of transformations while

having to keep abreast of the relationships among the software artefacts.

2.2 Analysis of the Existing Approaches

A considerable number of existing approaches that deal with handling require-

ments with regards to architecture have been investigated. Through an analysis

of these approaches, a category of mapping approaches is de�ned. Fig. 2.2 depicts

the idea of the de�ned category. The category is established based on (1) how

these approaches deal with requirements; and (2) how these approaches model

information from the requirements into systems architecture.

For the �rst criterion, we look for approaches that deal with each single re-

quirement or deal with an entire set of requirements. As presented in Section

2.1, an approach that can systematically deal with each single requirement can

at least reduce the possibility of disregarding any useful information stated in

the requirement. The main reason is that each requirement will de�nitely be

handled at some point. The current state of requirements elicitation and analysis

50 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

processes are solely subjected to the abstraction made based on the judgment

and expertise of the systems analyst. This abstraction process may also run the

risk of losing useful details from the requirements. In order to overcome such

an issue, various types of traceability techniques are introduced in the literature

[Got95, RJ01, ACDL99, EEM95, HDS06, VCW+05]. Accordingly, more cost and

e�ort are required to produce traceability links and to maintain them.

For the second criterion, we di�erentiate between approaches that build sys-

tems architecture in a single step and approaches that build systems in incre-

mental steps. Building systems architecture in a single step is an approach that

analyses the relevant information (derived from the mapping process, see Fig. 2.2)

and can directly produce a system architecture. On the contrary, the other ap-

proaches build the system architecture incrementally or by re�nement processes.

Through the re�nement process, abstracted analysis and design models will be

re�ned into detailed design. An essential strategy in the object-oriented analy-

sis and structured analysis is the decomposition of a problem into smaller and

manageable units. This strategy is also known as the divide-and-conquer tech-

nique. This technique supports such re�nement process towards achieving the

detailed design. On the other hand, an incremental approach allows us to deal

with any number of requirements, and therefore it should scale up to arbitrarily

large requirements documents.

These mapping approaches will be discussed as based on the de�ned category

shown in Fig. 2.2. The category column represents the following: (1) approaches

that deal with all requirements and build the system architecture in a single step;

(2) approaches that deal with all requirements and build the system architecture

incrementally (or by re�nement); and (3) approaches that deal with a single

requirement at each incremental step and build the system architecture in a

single step.

2.2. ANALYSIS OF THE EXISTING APPROACHES 51

Fig. 2.2: Summary of Existing Mapping Approaches

It is worth noting that the details of these approaches are not included in this

section; however, they will be adequately discussed in the context of how we de-

�ned the categories i.e. how these approaches deal with functional requirements,

and how these approaches handle and derive the systems architectures.

It is useful to distinguish between the terms `re�nement' and `incremental'

used in this category. By re�nement, we mean the process of detailing the design

speci�cation. In literature, such a re�nement process is also known as forward

engineering [EM99]. This process is normally applicable in a top-down approach

where an abstraction concept is identi�ed, and details are added to the corre-

sponding models. For instance, in a feature-orientation approach, each feature is

an abstraction of the generic properties of a system being modelled. This feature

needs to be re�ned to achieve the designated design artefact. On the other hand,

by `incremental', we mean the process of adding increments to the architecture

or system but at the same time preserving the formerly incremented behaviour

without compromising its correctness. A re�nement can be, but is not necessar-

ily, incremental. Typically, a re�nement process is a top-down activity, while an

incremental process supports bottom-up activities.

52 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

2.2.1 Category 1: Deal with all requirements and build the

system architecture in a single step

In this category, the entire set of requirements are analysed and relevant infor-

mation based on the corresponding selected domain models is extracted. In these

tasks, the expertise of the systems analysts and the domain experts is obviously

required. The produced set of domain models will be used as a basis for later

software development stages. When all the required information is elicited, anal-

ysed and modelled (in addition to the existing domain models from the earlier

stages), systems architecture will also be derived in the same manner.

Fig. 2.3: Category 1

Most of the studied mapping approaches fall into this category. Among the ex-

amples are the Architectural Decision Elicitation Framework (ADEF) [LE03], the

Analysing Requirements Trade-o�s - Scenario Evaluations (ART-SCENE) [ZMP03],

the Extended Design Spaces (EDS) [BBGM00] and the Scenario and Meta-Model-

Based Approach (SMM) [PBG01].

The following sections include an introduction to each of the approaches in

this category, and continuing with an analysis of each of the approaches based on

the theme of the de�ned category.

2.2. ANALYSIS OF THE EXISTING APPROACHES 53

1. Architectural Decision Elicitation Framework

The Architectural Decision Elicitation Framework (ADEF) [LE03] approach pro-

vides not only design guidance in capturing architectural decisions from the re-

quirements using a rule-based implementation, but also contains automatic rea-

soning capability for making architectural decisions and resolving con�icting de-

cisions.

The ADEF approach comprises two main modules, namely (1) reasoning and

(2) presentation modules, as depicted in Fig. 2.4.

Fig. 2.4: ADEF [LE03]

The Reasoning module en-

capsulates the decision making

knowledge and justi�cations

on the requirements elicita-

tion to be mapped to any rel-

evant architectural decisions.

This module contains three

sub modules which are: (1)

Mapping This sub-module uses built-in decision trees represented in directed

acyclic graphs to provide guidance to the user in manually mapping each re-

quirements speci�cation to one or more architecturally signi�cant properties; (2)

Conversion During the conversion process, the decision units will be converted

to a form which can be interpreted by the analysis of the sub module. These

decisions are stored as facts ; (3) Analysis In analysis, an automated reasoning is

provided in order to make the architectural decisions and to resolve con�icting

decisions. Finally, the Presentation module acts as the presentation layer to the

user and also updates any changes made to the preceding results.

54 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

Analysis. The ADEF approach adopts straightforward transitions by analysing

the entire set of requirements, and relates the mapped architectural signi�cant

properties into architectural units (e.g. component, connector or bus, system).

Clearly, the construction of an architecture of a system is performed in a single

step. For this reason, this approach is classi�ed into the �rst category.

2. Analysing Requirements Trade-o�s - Scenario Evaluations

The Analysing Requirements Trade-o�s - Scenarios Evaluation (ART-SCENE)

approach is designed with the intention of utilising an integration of the existing

tools and techniques to relate requirements and architecture [ZMP03]. By inte-

grating the chosen RE techniques and tools, the ART-SCENE approach claims

to provide a comprehensive plug-and-play approach in exploring the requirements

and architecture trade-o�s with di�erent scenarios.

This approach advocates scenario generation, architectural model and agent-

based simulation to explore architectural models for various scenarios [ZMP03].

The researchers claimed that scenarios are essential in integrating requirements

and architectures.

Fig. 2.5: Relationships between
scenarios, requirements and archi-
tectures [ZMP03]

Scenarios, in this approach, are used to re-

alise requirements and to simulate the choice

of architectural design, which are then vali-

dated for compliance with the requirements

as shown in Fig. 2.5.

Analysis. In the ART-SCENE approach,

the whole set of requirements is analysed and

modelled into a group of scenarios. While abstracting the requirements into sce-

narios and modelling them into use cases, important requirements or information

2.2. ANALYSIS OF THE EXISTING APPROACHES 55

might be lost. This design decision is based on the expert judgment and intuition

of the involved systems engineer or the systems analyst. Based on this abstracted

information, the engineer or analyst models the system requirements using the

i*notation[MPG+02]. Architecture, is then designed (without re�nement) and

simulated using the AgentSheets [FH01, RIZ00] tool.

3. Extended Design Spaces

The Extended Design Spaces (EDS) is a semi-formal technique, which aims to

achieve reusability in CBSE by providing a set of processes from requirements cap-

turing to con�guration [BBGM00]. The authors argue that to foster component

reuse, software development processes should be geared to consider reusability

aspects during the processes.

Fig. 2.6: Simpli�ed EDS Pro-
cess Model [BBGM00]

The EDS process model starts by mapping

requirements to components. See Fig. 2.6. In

many of the existing RE approaches, require-

ments are stated without any consideration of

the architectural designs. To some extent, this

is the desirable RE feature, because RE is ex-

pected to cover the what part of the problem,

and not the how part of the solution. However,

the drawback of this is that from the reusabil-

ity aspect, the developers need to manually decide how to bridge these gaps

[BBGM00]. In order to take advantage of this situation, the EDS provides guid-

ance in the form of a checklist, which contains suggested types of requirement

according to the chosen type of architecture.

Firstly, a DS (Design Spaces) pro�le is created. The outcome of this is the

Requirements DS (RDS) which comprises a list of functional and non-functional

56 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

aspects of the system. The Application DS (ADS) captures the properties of the

application, while the RDS describes the requirements in the perspective of the

run-time platform. The subsequent step is to map the ADS to the RDS. Some of

the ADSs are not directly mapped to the RDS. Thus, some transformation rules

are required. These rules are derived through the correlation between the two

spaces.

Secondly, the DS pro�le will be used to select the architecture. An architec-

ture, in this context, speci�es the design decisions and component compatibility.

Components that are built for a speci�c type of architecture share the same as-

sumptions about the design decisions. There is no doubt that the decision about

the most appropriate architecture largely depends on the expertise of the software

architect. Nonetheless, by using the correlation results from ADS and RDS, the

choice of architecture can be justi�ed.

Thirdly, components are selected, con�gured and composed. Component se-

lection for reuse purposes is done based on the component pro�les. The compo-

nent selection process will then compare the desired DS pro�le with the provided

DS pro�le from the repository. If there is no match, then a new component will

need to be developed from scratch. The component con�guration provides the

means to determine the parameter settings of the components which are retrieved

from the repository. Complex parameters that cannot be handled using the DS

technique will need to be manually resolved (e.g. informal hints).

Finally, when all the desired components have been retrieved and con�gured, a

generator uses the components together with their parameter settings and trans-

lates them into implementations [BBGM00].

Analysis. The EDS approach deals with the whole set of requirements in an

attempt to map functional and non-functional requirements into an architecture.

2.2. ANALYSIS OF THE EXISTING APPROACHES 57

On the other hand, the construction of the architecture is done in a single step

once the desired components have been discovered. With this justi�cation, we

assign the EDS approach to the �rst category.

4. Scenario and Meta-Model-Based Approach

The Scenario and Meta-Model-Based (SMM) approach de�nes the gap between

requirements and architecture as a structural gap [PBG01]. The existence of this

gap is claimed because of the large conceptual distance between the terms used

in both of the stages. A requirement may be modelled into one or more compo-

nents, whereas one component may relate to one or more requirements. Based on

the claim that scenarios can be used as a means to elicit the inter-relationships

between requirements and architecture, in relating both of the stages, the SMM

approach adopts scenario integration in these stages. Nonetheless, the main aims

of this approach are to establish traceability from requirements to implementation

and to support change integration.

Fig. 2.7: Scenario Meta
Model [PBG01]

Meta-models contain a set of descriptions

to capture the modelling elements used in a

model-driven environment. In this approach,

the meta-models are represented using a UML

class diagram. These meta-models can be

speci�ed into domain-speci�c meta-models by

adding specialised domain concepts.

Altogether, six meta-models have been de�ned to capture the modelling el-

ements with regard to relating the requirements and architecture. These meta-

models are illustrated in Fig. 2.7. During the requirements stage a requirements

meta-model identi�es FRs and NFRs; a use case meta-model de�nes goals, exter-

nal actors, triggers, pre-conditions, post-conditions, results and use case scenarios;

58 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

a use case scenario meta-model includes the satisfy use case scenario (i.e. pri-

mary and alternative) and exception use case scenario, and scenario steps (i.e.

action and communication).

During the architecture stage, architectural meta-model speci�es internal com-

ponents and connectors. An architecture consists of a collection of components

and connectors. An architectural con�guration meta-model identi�es the con�gu-

rations of the components and connectors. An architectural scenario meta-model

represents the dynamic behaviour of the architecture. It is a realisation of some

use cases, in which the architecture scenario steps (i.e. action and communica-

tion) are de�ned.

Analysis. The SMM approach deals with the whole set of requirements in or-

der to specify scenarios. These scenarios are used to identify the elements of the

de�ned meta models in order to look for architectural elements. The architecture

of the system is derived once all the architectural elements are discovered. Hence,

we classify this work in the �rst category. In addition, we believe that the ab-

straction process of going from requirements to the scenarios, and the process of

identifying the elements of the meta-models are based on the intuition and expert

judgment of the analyst (or the designer), instead of relying on the methods that

this approach has to o�er.

2.2.2 Category 2: Deal with all requirements and build the

systems architecture incrementally or through re�ne-

ment

The approaches in the second category deal with the entire set of requirements,

which has the same characteristics as the �rst category. Nonetheless, in contrast

2.2. ANALYSIS OF THE EXISTING APPROACHES 59

to the �rst category, the construction of the architecture is performed by means of

re�nement or incremental process. In this section, we will elaborate and highlight

how these approaches handle requirements, and how the architecture is derived

from the requirements.

The ability to derive the architecture incrementally while at the same time

ensuring the incremented behaviours are maintained without compromising its

correctness has a signi�cant and promising impact. The essence of incremental is

the fact that it can address the issue of scalability. When progressing with small

increments, the architecture can be built up and eventually the �nal architecture

can be derived. Each increment has already been validated and hence, less or

ideally no rework e�ort has to be invested whenever additions are made.

On the other hand, construction of an architecture by means of re�nement can

also build the architecture hand-in-hand with the requirements. As stated earlier,

re�nement does not necessarily support incremental. This in turn re�ects that

preservation of behaviours in the former re�nement steps may not be guaranteed.

The examples of approaches that are considered in this category are the Feature

Fig. 2.8: Category 2

Orientation (FO) [LM03], the Twin Peaks (TP) [HJL+02], the Component-Bus-

System-Property (CBSP) [GEM04, GEM01], the Goal-Oriented Requirements

Engineering (GORE) [vL04, vL01, DDMvd97], and the Software Architecture-

Oriented Requirement Engineering (SAORE) [Mei00].

60 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

1. Feature Orientation

The FO-based approaches intended to develop a family of applications for a

speci�c domain instead of for a single application [LM03, SPR04, KLD02, DK,

SRP06, LKCC00, LKL02]. A feature is de�ned as �a logical unit of behavior that

is speci�ed by a set of functional and quality requirements� [Bos00]. The core

technique in FO is the analysis of variability and commonality of an application

domain (i.e. the feature analysis) [LKCC00, LKL02]. These features are then

transformed into feature models (see Fig. 2.9), de�ned in the Feature Oriented

Domain Analysis (FODA) technique and used as an input to a series of re�nement

processes in order to derive an architecture.

Alternative
Optional
Mandatory

F-3.1.1.1F-3.1.1.1

F-1.2F-1.1 F-4.2F-4.1

F-3.1.2F-3.1.1

F-3.1

F-4F-3F-2F-1

System

Fig. 2.9: Feature Model

However, the FODA technique does not provide explicit interaction between

features and its corresponding architectural elements [SPR04]. Both the FODA

and its modelling technique, namely the Feature-Oriented Requirements Mod-

elling (FORM), remain vague on the matter of mapping feature models to archi-

tectural elements [SPR04]. In order to overcome this issue, the feature-oriented

mapping process is proposed [LM03]. The process comprises two main stages as

shown in Fig. 2.10.

The stages are (1) Feature-Oriented Requirements Modelling (FORM) and (2)

2.2. ANALYSIS OF THE EXISTING APPROACHES 61

Fig. 2.10: Feature Mapping [LM03]

Feature-Oriented Architectural Modelling (FOAM). The aims of the FORM stage

are (1) to capture the problem domain requirements and transform them in the

context of features and their relationships (i.e. during the elicitation process); (2)

to analyse and transform the features into a tree form (i.e. during the organisation

and analysis process), (see Fig. 2.9); and (3) to re�ne the features into a detailed

set of functional requirements (i.e. during feature re�nement).

Moreover, in the second stage, namely the FOAM stage, the outcome of the

FORM stage serves as an input to this stage in order to derive an architecture.

A functional feature can be mapped to a subsystem or a component. In FOAM,

mapping is addressed in three layers, which are conceptual, logical and deploy-

ment architecture as illustrated in Fig. 2.10. In the conceptual architecture, only

functional features are considered. By taking implementation and non-functional

features into consideration, these features are detailed for the logical architecture.

Finally, the deployment architecture represents how the features are distributed

and communicated among computational nodes in the deployment environment.

62 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

Analysis. These FO approaches deal with an entire set of requirements and

abstract them as features. This abstraction of features together with their re-

lationships is represented as a feature model. Moreover, the construction of an

architecture is re�ned into a series of conceptual, logical and deployment archi-

tectures. Clearly the FO-based approaches work on the basis of dealing with the

entire set of requirements and transforming the abstracted information into an

architecture through the re�nement process. For this reason, we assign the FO

approach into the second category.

2. Twin Peaks

The Twin Peaks (TP) model adopted the Problem Frames (PF) [Jac95] approach.

Thus, some foundations of the PF approach will be brie�y introduced. The

PF approach attempts to decompose problems into a collection of interacting

sub-problems and to manage the separation of the real-world problems into the

problem and solution spaces [Jac95]. By having such a separation, a developer can

focus on the problem structure while attempting to solve the real-world problem

rather than trying to �nd a solution to the problem. Nevertheless, coming up with

the problem domain without considering the solution domain is, if not impossible,

rather a di�cult task.

In order to reduce the gaps between problem and solution spaces, and to allow

requirements and design opportunities to be explored, current software develop-

ment should exploit the relationships that exist between these spaces [Bas01].

This approach de�nes frames to a particular problem in which each frame has

an associated frame concern, and does not address the concerns of the software

architects [HJL+02]. This frame concern identi�es the correctness argument of

the frame. By excluding these concerns, the development process is less likely

to be shortened [HJL+02]. Hence, the PF approach is extended to consider the

2.2. ANALYSIS OF THE EXISTING APPROACHES 63

solution spaces as a part of the problem domain [HJL+02].

Fig. 2.11: The Twin Peaks Model [Bas01]

In relating both of the spaces,

the iterative nature in software de-

velopment is also taken into con-

sideration, from the general to

a more detailed design solution.

During this process, some architec-

tural support decisions are used in

the problem space. In order to ad-

dress the issue, the TP model high-

lights the equal importance of re-

quirements and architectures by separating the problem space and the speci�ca-

tion from the solution space [Bas01, HJL+02].

The speci�cation comprises detailed requirements and design speci�cations

which are produced by means of re�nement. Here, the re�nement is con�ned

to the process of detailing the speci�cation, hand-in-hand with the requirements.

This concept is illustrated in Fig. 2.11. The model mainly addresses the problems

dealing with evolving user requirements, applying and managing COTS software,

and handling rapid changes [Bas01]. This approach adopts a causal logic event

model [MHCM96] to express the event notation, and also applies an informal

imperative pseudo code to describe behaviours.

The �rst TP mapping step is to decompose the problem into independent

sub-problems i.e. not having any relationship with any other problem or sub-

problems. Each sub-problem will be represented according to the chosen notation.

Once all of the sub-problems have been modelled into the commanded behaviour

frame notation, the requirements will be represented in the form of causal logic

event model expressions.

64 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

Analysis. The TP approach deals with the entire set of requirements, and re-

�nes the speci�cation by attempting to reduce gaps between the problem and

solution spaces. Approaches in the second category handle requirements by pro-

cessing the whole set of requirements. The fact that the requirements speci�cation

is re�ned in TP indicates that the mapping process itself addresses such a re�ne-

ment process. Nonetheless, the requirement must be analysed as a whole, rather

than dealing with each requirement at a single point in time. The second con-

sideration is regarding the construction of the architecture. In TP, architectures

are derived through the re�nement process, hand-in-hand with the re�nement of

requirements.

3. Component-Bus-System-Property

The Component-Bus-System-Property (CBSP) is de�ned as �a lightweight ap-

proach which provides a systematic way of reconciling requirements and architec-

ture using intermediate models� [GEM04, GEM01]. This generic approach adopts

the Twin Peaks Model [Bas01, HJL+02] to exhibit the iterative process between

requirements and architecture. In addition to this, an intermediate model is

introduced between these stages, as shown in Fig. 2.12.

Intermediate
CBSP
Model

Solution
Structure

Problem
Structure

refinement

low highTechnology Dependence

Le
ve

l o
f d

et
ai

l

high

low

Fig. 2.12: CBSP Concep-
tual Framework [GEM04]

This model helps to decide on a suitable ar-

chitectural style to be adopted as a basis of trans-

forming the draft architecture to an actual software

architecture implementation [GEM04].

The quintessential concept in CBSP is that each

requirement will implicitly or explicitly relate to

the software architecture elements. The CBSP

de�nes dimensions which consist of a set of ar-

chitectural elements (i.e. components, connectors

2.2. ANALYSIS OF THE EXISTING APPROACHES 65

(buses), topology and their properties). These di-

mensions are used to classify and re�ne the requirements in order to capture

architectural-related issues.

ces of architec-
Trade-off choi-

tural elements
& styles

5

3

4

21

reqs

tion mismatches
of classifica-

Identification
and resolutionclassification

Architectural

of
requirements

requirements 1

iteration
for next

Selection of

requirements
of

Architectural
refinement

ambiguities
resolve

dependencies
CBSP elements

relevance
arch

profilesreqs
selected

ambiguities
issuesprofiles

relevance
architectural

requirements
selected

candidate styles, architectural elements

Fig. 2.13: CBSP Process [GEM04]

As depicted in Fig. 2.13, the mapping process begins with requirements se-

lection. The selection is a voting-based process where requirements with low

priorities will be eliminated. This voting process is conducted by stakeholders

of the software project team. Accordingly, the main criteria for voting are the

importance and feasibility of the requirements. The second step is to classify the

requirements into architectural constructs. This step is performed by experts.

In order to classify the constructs, the CBSP dimensions are introduced. The

CBSP approach speci�es six dimensions to be applied to the basic architectural

constructs. These dimensions represent elements that imply (1) processing or

data components; (2) a connector or bus; (3) features of a subset of the compo-

nents and connectors; (4) NFR aspects of a component; (5) NFR aspects of a

66 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

connector; and (6) system (sub-system) properties. These dimensions are used

to re�ne the requirements in natural language into CBSP model elements. The

experts will then examine each of the requirements and vote on the relevance

based on the CBSP dimensions.

The third step is to identify and resolve mismatch classi�cation issues. This

is where any con�icting perception during the classi�cation in the previous steps

will be handled. Again, a voting process is adopted. If there is still no consensus

among the experts, a discussion is needed so as to avoid the con�icts and to

achieve the �nal decision.

In the fourth step, each of the requirements will be re�ned based on overlap-

ping CBSP properties and concerns. Finally, at this step it is assumed that all

the con�icts have been resolved. Based on the CBSP model elements a proto-

architecture will be derived. This is also the point where architectural styles

(e.g. client-server, event-based, layered and pipe-and-�lter architecture) [Fie04]

will be used to achieve the desired system qualities. This process is heuristically

performed, with the justi�cation that there are also possibilities that more than

one architectural style is needed or preferable. By using the elements in the se-

lected architectural style(s), the CBSP model elements will be transformed into

components, connectors, con�gurations and data.

Analysis. The CBSP mapping process is an iterative process that is used to

re�ne the draft architecture model derived from a given set of requirements. In

the solution structure, the architecture is matched with the existing architectural

styles. This architecture is re�ned iteratively until the completion of the model.

The CBSP is considered under this category because although each requirement

is voted, and the CBSP elements are identi�ed, the architecture is not created

based on the behaviours that directly originated from requirements. Instead, the

chosen architectural style is re�ned, together with the original requirements as

2.2. ANALYSIS OF THE EXISTING APPROACHES 67

illustrated by the spiral dotted line in Fig. 2.12.

4. Goal-Oriented Requirements Engineering

A goal is �a prescriptive statement of intent about some system whose satisfac-

tion in general requires the cooperation of some of the agents that form the sys-

tem� [vL03]. These goals cover both functional and non-functional goals (NFG).

In brief, this approach starts by providing a process to produce software spec-

i�cation based on a set of requirements. From the functional speci�cation, an

initial abstract architecture is drafted. Following this, the architecture is re�ned

to meet the domain-speci�c architectural constraints.

The Goal Oriented Requirements Engineering (GORE) approach adopts Knowl-

edge Acquisition in Automated Speci�cation (KAOS) methodology [vL04, vL01,

DDMvd97] in addressing the architectural design based on the requirements. The

KAOS methodology speci�es an ontology for capturing requirements [DDMvd97].

The relevant part of this approach is the architecture derivation process, which

happens after the requirements are modelled, speci�ed and analysed. Such a

derivation process (1) provides a systematic guidance to software architects; (2)

is incremental; (3) leads to an architecture that satis�es the functional and NFR;

and (4) allows di�erent architectural views (e.g. performance view, security view,

etc.) [vL03].

The GORE process can be abstractly viewed according to the functional and

NFG derivation processes. As shown in Fig. 2.14, for the functional goals, all

the relevant documents are referred to in order to identify system goals. Based

on these system goals, software requirements are identi�ed. During the following

step, the whole set of requirements is analysed and software speci�cations are

further derived. Finally, the abstract data �ow architectures are derived, based

on the software speci�cation.

68 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

Fig. 2.14: GORE Process

Analysis. In the GORE approach, the ar-

chitecture re�nement process is speci�cally re-

quired to include the NFG. In the context

of functional properties or behavioural prop-

erties, the re�nement process is not required.

However, without the NFG, the derivation pro-

cess might not be complete. For this reason,

this approach is classi�ed in the second cate-

gory.

5. Software Architecture-Oriented Requirement Engineering

The Software Architecture-Oriented Requirement Engineering (SAORE) approach

attempts to relate the requirements and architecture stages[Mei00]. In essence,

the approach views the architecture model as the reference model in the software

development process. The main idea of this approach is to introduce elements

of software architecture (SA) in requirements analysis and speci�cation. The

SAORE approach identi�es two main constituents: components and connectors.

A component is de�ned as an element which encapsulates a set of coherent func-

tionalities, which is expected to perform the desired computational units. A

connector, on the other hand, de�nes the interaction between components. The

connector is treated as a �rst-class entity not only in the problem space, but

also in the solution space. Examples of the connectors are procedure calls, �le

Input/Output (I/O), remote procedure calls (RMC) and client-server.

The SAORE process [Mei00] comprises a series of iterative activities, as il-

lustrated in Fig. 2.15. The starting point of the process is to determine the

boundary of problem spaces i.e. the scope of the system to be built. Following

this, stakeholders of the system and their roles are identi�ed. The information is

2.2. ANALYSIS OF THE EXISTING APPROACHES 69

Fig. 2.15: SAORE [Mei00]

useful to determine the external relationships of the system and also to partition

the system into sub-systems or components. In the next step, a top level system

model will be produced using a Use Case model. The challenging step here is

how to identify the components and connectors from the elicited information.

Analysis. The SAORE approach deals with the entire set of requirements and

analyses them. The components are extracted from use cases or any element that

contributes system behaviours, whilst the connectors encapsulate relationships

between components. Consequently, the requirement models are derived through

a series of re�nement steps and this is why the approach is addressed as in the

second category.

2.2.3 Category 3: Deal with a single requirement at each

step and build the system architecture in a single step

In contrast to dealing with the entire set of requirements, the approach in this cat-

egory deals with each requirement and processes the requirements incrementally.

As a result, the architecture is constructed once the complete design speci�cation

70 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

is derived. This process is therefore done in a single step.

Fig. 2.16: Category 3

To the best of our knowledge, as shown in Fig. 2.16, the only work that �ts

into this category is the Behaviour Engineering (BE) approach.

1. Behaviour Engineering

Behaviour Engineering (BE) establishes an approach for building large-scale sys-

tems from natural language requirements. The principle of the BE approach

lies in its concept of building design out of requirements instead of satisfying

the requirement [Dro03a]. It de�nes the Behaviour Modelling Process (BMP)

which comprises a set of processes to support Behaviour Modelling Language

(BML). The BML consists of a series of behavioural diagrams including Be-

haviour Trees (BT), Integrated (IBT), Model (MBT) and Design (DBT) [Mye10,

MDF11, MD09, Dro03b, Dro03a, GPHSD05, Dro07]. A BT translates individual

(raw) requirements into behaviour trees.

A BT is �a tree-like graph that represents the behaviour of a set of entities

which realise or change states, make decisions, respond to or cause events, and

interact by exchanging information and/or passing control� [Dro03a].

Behaviour trees for all the individual requirements (called requirements be-

haviour trees (RBTs)) are merged into an IBT that describes the required be-

haviours of the whole system. Fig. 2.17 shows examples of the RBTs for two

requirements R1 and R2 of an ATM Example and their merged IBT. The IBT is

2.2. ANALYSIS OF THE EXISTING APPROACHES 71

Fig. 2.17: Behaviour Trees

used to integrate all the RBTs. The following diagram, that is the MBT, is used

to discover and �x defects on issues such as inconsistencies, ambiguities, etc. As

a result of the defect correction, a design behaviour tree (DBT) is produced.

The DBT is again re�ned using the provided design decisions. This re�nement

process clari�es the system's boundaries. From the DBT of the whole system, a

component diagram [MDF11, Mye10] is derived, together with the behaviours of

individual components.

Analysis. According to the approaches category, BE clearly deals with each

single requirement by producing these RBTs. Nevertheless, when the complete

DBT is produced through re�nement, only then is the component diagram con-

structed. This process is performed in a single step. In such a case, iteration or

re�nement from design to the system architecture diagram is not required. For

these justi�cations, the BE is considered as in the third category.

72 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

As the BE work is closely related to this research, a comparison will be pro-

vided in Chapter 9.

2.2.4 Category 4: Deal with a single requirement and build

the system architecture in each incremental step

Based on the analysis so far, there is a gap in the way that we can handle require-

ments and at the same time utilise the bene�t of incremental approach towards

building system architecture. In this new category, each requirement is analysed

one-by-one and the result of the analysis is used to aid in creating an architecture

incrementally (in contrast to in a single step or through a series of re�nement

processes). To the best of our knowledge, none of the existing approaches in the

literature o�er such a strategy. As a consequence of dealing with each require-

Fig. 2.18: Category 4

ment and incrementally building the architecture, this kind of approach can utilise

the bene�ts from both strategies. Firstly, the use of intuition and abstraction can

be reduced by dealing with each requirement. In addition, the issue of scalability

can be addressed as the approach is designed to accommodate any number of

requirements. Secondly, the incremental construction of architecture/system also

supports scalability with the ability to support the preservation of behaviour of

the incremented architecture.

2.2. ANALYSIS OF THE EXISTING APPROACHES 73

2.2.5 The Proposed Approach

The proposed approach is to extract elements of component-based systems from

raw requirements, map them directly into the elements of the desired system,

and thereby construct the system. The aim of this approach is to maximise

the chances of achieving a better match between the �nal system and the raw

requirements. We believe that by having support from a suitable component

model, we can achieve such an aim.

It is necessary to consider if we deal directly with each requirement, analyse

and model them without having to deal with the whole set of requirements as

conceptualised in Fig. 2.18. Such a strategy assists in relatively reducing the com-

plexity that the systems analysts or the domain experts need to handle. Nonethe-

less, we are not arguing that dealing with each requirement can directly lead to

simplicity. The challenge with this kind of approach is how we can e�ectively

compose the mapped architecture for each requirement in each increment.

Re�ecting on the category of approaches to construct architecture from re-

quirements, the signi�cant bene�t of having these two strategies in an approach

is mainly to address scalability. In principle, we may handle a larger set of re-

quirements when we deal with a single requirement at a time and incrementally

build up the system architecture.

The problem with the existing approaches in the literature in order to solve

the gap between problem and solution, be it using structured or object-oriented

approach, is that they provide insu�cient emphasis on software architecture ele-

ments [LM03]. As a result of this, transformation from requirements to design is

arbitrarily performed based on the intuition or judgment of the involved software

engineers.

These gaps between requirements and architecture exists because of the large

74 CHAPTER 2. EXISTING APPROACHES TO CONST. SYSTEM

conceptual distance between the terms used in both stages [PBG01]. In many

of the existing RE approaches, requirements are stated short of consideration

of the architectural designs. To some extent, this is the desirable RE feature

because RE is expected to treat the what part of the problem, and not the how

part of the solution. However, the drawback of this feature is that from the

reusability aspect, the developers need to manually decide how to bridge these

gaps [BBGM00].

In addition to scalability, by adopting a component-based approach, we could

reuse pre-existing components from component repositories; in contrast to build-

ing new parts of the system for each software development project. This factor

leads to reducing e�ort, time and cost as compared to building new parts of the

system from scratch. We argue that by having an underlying component model

that supports incremental composition, such an objective can be accomplished.

In order to realise the objective, an approach founded on a speci�c component

model should provide a plausible transition from requirements to system archi-

tecture for a component-based system.

2.3 Summary

In this chapter, the relevant approaches in the literature have been investigated

and analysed. These approaches have been discussed in the light of a de�ned

category of approaches in order to highlight the intended research problem. In

order to gain a greater understanding of the application of a speci�c component

model to this work, the following chapter provides the substance of the chosen

model.

Chapter 3

The X-MAN Component Model

In order to adopt the component model, it is crucial to gain a �rm understanding

of the fundamental concepts and terms used in the X-MAN component model.

Hence, the main aim of this chapter is to provide these important elements to

support the understanding of the component model. The following subsections in-

troduce the basic concepts with respect to the component model. These concepts

are widely adopted in the component model, and also relevant to include here,

as the notion of the component model will be applied in the following chapters.

3.1 Component Models

A component model [LW07] de�nes components and their composition. A good

component model should enable us to de�ne component-based systems with min-

imal coupling between components and maximal cohesion within individual com-

ponents. Coupling results from external dependencies, direct or indirect, between

components, and is induced by the composition mechanisms of a component

model. For example, in architecture description languages [MT00], components

are architectural units with ports, and are composed through a port connection.

75

76 CHAPTER 3. THE X-MAN COMPONENT MODEL

Such connections induce external dependencies between components.

High cohesion in a component means that altogether, the sub-components of

the component do not have many external dependencies. It is therefore also a

consequence of the composition mechanisms of a component model. A compo-

sition mechanism that allows the de�nition of a composition of components will

increase cohesion if it allows the composite to have fewer external dependencies

than its sub-components. For example, some architecture description languages

(ADL), e.g. UML2.0 [Boc04] allow composite architectural units to have arbi-

trary numbers of ports, and could therefore increase cohesion. A component

model that speci�es systems with no coupling at all, has been de�ned. This way,

the complete absence of coupling also means the components have maximum

cohesion.

In order to adopt a speci�c component model, namely the X-MAN component

model [LLV07, LLW06] as the implicit essential of the proposed approach, it is

crucial to get a �rm understanding of the fundamental concepts and terms used.

This chapter's main aim is to provide those fundamental concepts of the compo-

nent model. These concepts are relevant to be included here as the notion of the

component model will be applied to the subsequent chapters. The chapter starts

by introducing what is a component model and follows by the component life

cycle. The subsequent subsections introduce the fundamental concepts de�ned in

the component model and then elaborate the strengths of the component model.

At the end, a simple example is included to illustrate the generic usage of the

component model.

3.2. WHAT IS A COMPONENT MODEL? 77

3.2 What is a Component Model?

A component model advocates the �set of component types, their interfaces, and

additionally, a speci�cation of the allowable patterns of interaction among compo-

nent type� [BBB+00]. In general, a component model de�nes how the components

are composed or assembled, their interfaces and the communication among them.

A component model should de�ne the semantics, syntax and software component

composition [LW06].

3.2.1 Semantics

A component is an independent piece of software that provides functionalities.

The term independent here indicates that a component does not rely on any other

component to perform any of its functionalities. The semantics of a component

merely comprise the questions of how the components represent basic units of the

software and how they support composition to build the whole system. These

semantics should also de�ne the aspects of (1) identi�cation of the components;

(2) de�nition and construction of an interface; (3) realisation of a component.

3.2.2 Syntax

Syntax describes the way components are represented and built in a speci�c

programming language. It can be represented in the form of a programming

language, a component de�nition language or speci�cation language, e.g. ADL.

By using ADL, which is generic, the representation can be implemented in many

programming languages.

78 CHAPTER 3. THE X-MAN COMPONENT MODEL

3.2.3 Composition

Composition refers to the mechanism used to assemble the software components

into a larger block or the whole system. In other words, two or more compo-

nents can be composed together and the outcome of it is also expected to be

compositional. The mechanisms for component composition can be either con-

tainment, extension, connection or coordination [LR10]. The X-MAN composes

components using coordination via exogenous connectors.

3.3 Component Life Cycle

This model de�nes a component life cycle in three phases, these being design,

deployment and run-time. The life cycle can be illustrated in Fig. 3.1 and each

of the cycles will be explained based on this �gure.

component(source)
connector
deployment phase

component instancesconnector
design phase

RTEAssemblerRepositoryBuilder

RUN-TIMEDESIGN DEPLOYMENT

A

B

C

BC

D

C

InsBC

InsD

InsB

InsA

BC

D

B

A

B

A

component(binary)

Fig. 3.1: Component Life Cycle

3.3.1 Design Phase

Components can be composed in either the design or deployment phases. Com-

position in the design phase ideally conforms to the following [Lin07]:

3.3. COMPONENT LIFE CYCLE 79

1. Components are existing reusable software units;

2. Components are independent software units which can be built by indepen-

dent component developers;

3. Components can be copied in the design phase and can be instantiated

during the run-time phase;

4. Components should be able to be composed into a larger composite using

composition operators.

During the design phase, the objective to be achieved is to maximise reuse. In

this component model, components are built in the design phase to be further

reused in both design and deployment phases. Components are designed, built

and then stored in a repository. During these tasks, components are created in

source code, which are not executable before compilation and deployment stage.

Subsequently, the designed components are catalogued and stored for further

purposes. As exempli�ed in Fig. 3.1, component A is created and stored in the

repository, which comprises existing B, C and D components. Assuming that we

want to create a composite component (i.e. component BC), the corresponding

B and C components will be retrieved from the repository. Consequently, these

components can be composed as the BC component using the design phase com-

position connectors. As the intention of this phase is to maximise reuse, the

resulting composite component can also be stored in the repository. Composition

during the design phase is generic, and not meant for the design of any speci�c

application.

80 CHAPTER 3. THE X-MAN COMPONENT MODEL

3.3.2 Deployment Phase

In the deployment phase, components are retrieved from the component reposi-

tory and compiled into binary codes. During this phase, composition operators

compose these binary units into an executable system which can be instantiated

in the run-time phase [Eli08]. During deployment, components are retrieved from

the repositories and are composed into a targeted environment. At this stage,

components are retrieved from the repositories and compiled into binary codes.

Binaries of components are now in the form of an executable system. In Fig. 3.1,

A, B, D, and BC components are retrieved from the repository, then compiled to

assemble them into binary codes. The outcome of this phase is an executable

system in binary codes. In contrast to the composition during the design phase,

composition during the deployment phase is performed for a speci�c application.

Thus, the result of composition during the deployment stage is not stored in the

repository. It is unlikely that a composition that is built for a speci�c application

is useful for reuse.

3.3.3 Run-Time Phase

During this phase, there is no new composition involved. The whole executable

system will be instantiated with a set of speci�c data and executed in a speci�c

Run-Time Environment (RTE). As shown in Fig. 3.1, instances of A, B, D, and BC

components are created. As a result, the outcome can be executed in a targeted

environment.

3.4. THE X-MAN COMPONENT MODEL 81

3.4 The X-MAN Component Model

As this work adopts the X-MAN component model [LLV07, LLW06], the back-

ground of the component model is presented. The fundamental elements of X-

MAN are computations, control (and data). Each of the computation and con-

trol elements can be explicitly identi�ed and separated in the model. In brief,

computations are encapsulated in components, while controls are encapsulated

in connectors or adapters. For data, only those that are relevant for checking

constraints and storing values are considered.

Based on the �ndings of a survey [LW07], the component model de�nes the

use of exogenous connectors to support communication between components. The

exogenous connectors initiate method calls in the components and encapsulate

the control between the components. By de�ning these connectors, components

respond to their connectors only, instead of interacting with other components.

A speci�c subsection discussing the strengths of the X-MAN component model

is provided in Section 3.6.

In the component model [LVW05, LOW06, LLW06], computation and con-

trol are de�ned separately.1 A computation is de�ned and encapsulated in com-

ponents whilst control is de�ned and encapsulated in composition connectors.

Components do not call one another; instead, composition connectors de�ne and

coordinate all the control among components.

Fig. 3.2 shows the basic elements of the component model. An atomic compo-

nent (see Fig. 3.2(a)) contains a computation unit (U), and an invocation connec-

tor (IU). A computation unit provides methods or functions that can be invoked

via the invocation connector. When invoked, the computation unit performs the

computation entirely within itself, and is thus encapsulated (i.e. `enclosed in a

1For simplicity, it is assumed that data �ows with control.

82 CHAPTER 3. THE X-MAN COMPONENT MODEL

capsule'). As a result, an atomic component encapsulates computation and has

only a provided interface (denoted by a lollipop) and no required interface. Pa-

rameters for invocation are passed from composition connectors via the invocation

connector.

A composition(a) Atomic
component

(c)(b) Composition
connector

IU

CU
PR

IBIA

CR

Fig. 3.2: X-MAN component model.

Components are composed by composition connectors (Fig. 3.2(b)). A com-

position connector receives control and returns control; it also de�nes a con-

trol structure that determines the control �ow between receiving and returning

control. A composition connector thus encapsulates control. The composition

connectors de�ne the generic control structures: sequencing and branching. For

sequencing, the model de�nes the Sequencer (SEQ) and Pipe (PIPE) connec-

tors.2 In addition, the model de�nes the Selector (SEL) connector (see Fig. 3.3)

for branching execution.

SEQ SEL PIPE

Bank systemSequencer Selector Pipe

ATM BC

PIPE

Fig. 3.3: Composition connectors.

In a composition (see Fig. 3.2(c)), the composition connector coordinates the

control �ow between the sub-components. This is illustrated in Fig. 3.4 for the

SEQ composition connector.

2A PIPE passes results (data) on, whereas a SEQ does not.

3.4. THE X-MAN COMPONENT MODEL 83

Fig. 3.4: Hierarchical composition by a SEQ.

A simple example of a composition is the bank system (see Fig. 3.3) that

composes an ATM with a bank consortium (BC) by using a PIPE connector. The

customer details and requests are passed to the ATM, which validates them and

then passes them on to the BC.

Looping is not a composition connector, because the control for a loop only

applies to a single component. It is therefore an adaptor. A loop at the top-most

level of a system can be in�nite, but elsewhere it must be �nite, in order that

compositionality is preserved throughout.

The result of a composition is another component with a provided interface

(see Fig. 3.2(c) and the bank system in Fig. 3.3). This means that composition

in the model is hierarchical as illustrated in Fig. 3.4 for the SEQ. In each com-

position, encapsulation of computation is preserved since components do not call

one another.

To summarise, the key elements of the X-MAN component model are (1)

computation; (2) control; and (3) data. Computation units encapsulate compu-

tation; composition connectors encapsulate control; and components encapsulate

their own relevant data. Encapsulation of control and computation (and data)

allows these elements to be entirely separated. The following sections present the

key elements of the X-MAN component model, namely computations and control.

84 CHAPTER 3. THE X-MAN COMPONENT MODEL

3.5 Key Elements of X-MAN

The following sections describe the key elements of the X-MAN model, namely

computations, control and data. For each of the elements, the corresponding

relevant architectural constructs will be assigned and discussed. This delibera-

tion is signi�cant during the mapping of the extracted elements to the X-MAN

constructs as further discussed in Chapter 6.

3.5.1 Computations

Computations, from the perspective of the X-MAN, are data transformations or

services provided by a component. Eventually, these computations will be imple-

mented as methods in programming language. A representation of the component

can be illustrated in Fig. 3.5(a). A component here is considered as an indepen-

dent piece of software that provides computations. It is de�ned as �a software

element that conforms to a component model and can be independently deployed

and composed without modi�cation according to a composition standard�[HC01].

In X-MAN, the basic set of rules for computation units are (1) Components per-

form computations by providing functionalities; and (2) Components do not in-

voke any computation outside themselves. It has been de�ned in the component

model that semantically, each component is an independent software unit that

encapsulates computation units. According to this rule, there should be no direct

communication between the components.

3.5.2 Control

In addition to computations, the following key element of the model is control.

Control determines the execution �ow for a particular composition. Accordingly,

X-MAN de�nes explicit entities that are exogenous connectors and adapters to

3.5. KEY ELEMENTS OF X-MAN 85

Fig. 3.5: Component and Composition

handle control. In general, these Exogenous connectors (EC) can be categorised

into three: (1) Invocation Connectors (IC), (2) Composition Connectors (CC)

and (3) Adaptation Operators (AO).

EC are architectural constructs which separate the control �ows from com-

ponents. As mentioned in the Section 3.5.1, each component encapsulates com-

putation units. In contrast, the logics of the controls are encapsulated in these

connectors. The EC roles are to initiate invocations to software components and

encapsulate the control �ows between components. By designing a component

to separate the computational units and the control parts, components can be

viewed as loosely coupled, and thus, can be reusable in other parts of the system

or even other systems.

IC are unary connectors, which are used to connect to a single component.

Since components do not invoke any computation outside themselves, their main

purpose of IC is to provide access to the corresponding components' computation

units. Hence, each component must provide an IC to expose its services to other

components. During modelling, the IC should be designed to be at the lowest

hierarchy-level of the system architecture as depicted in Fig. 3.6.

All of the CC are n-ary connectors that are used to compose a number of

86 CHAPTER 3. THE X-MAN COMPONENT MODEL

Connector
Invocation

A

SEL

A

SEQSEQ

FEDCB

Fig. 3.6: Invocation Connector (IC)

components. These connectors comprise logic of controls needed to compose com-

ponents i.e. selection, piping or sequencing. In the previous example, in order to

compose the AB composite component, the logic of the control for the composition

needs to be de�ned. The semantics of these connectors will be explained in the

subsequent sections.

3.5.2.1 Types of Generic Composition Connector

X-MAN provides three generic composition connectors, namely the Sequencer

(SEQ), PIPE and Selector (SEL).

A SEQ de�nes a sequence control execution between components. This type

of connector accesses the components sequentially, according to a �xed order

de�ned in the SEQ. For instance, in Fig. 3.7(a) the SEQ provides sequencing order-

ing from component A, followed by B and �nally, C. During the sequencing, the

required methods from the corresponding components will be invoked and exe-

cuted. Imagine that component A comprises method1 and method2, component B

has method3 and method4, and component C contains method5. For example, in

order to perform a particular task that needs a sequencing execution to perform

a set of methods (e.g.: method1, method4 and method5), this is where the SEQ

plays its role. The logic inside the SEQ de�nes the sequential execution of these

methods according to the desired order. Eventually, the control �ow returns back

to the caller.

3.5. KEY ELEMENTS OF X-MAN 87

(c) Selector(b) Pipe(a) Sequencer

A BA BA B

PIPE

data

SEQ SEL

Fig. 3.7: Generic Composition Connectors

A PIPE connector speci�es a sequence of control between the components by

invoking the methods of connecting components, by obtaining the result from

the �rst component and pipes it to the next connecting component respectively.

The connector invokes the �rst component, obtains the result and then passes the

result to the subsequent component. As shown in Fig. 3.7(b), when a method in

the composite component AB is invoked, the PIPE connector invokes methods in

A, performs the computations, gets the result and passes the result as an input

to component B. The same procedure will be repeated until all the respective

components are invoked and at the end, the control �ow returns back to the

caller.

A SEL de�nes a branching control that is based on a speci�ed condition and

then chooses one of the connecting components to be invoked. For example, in

Fig. 3.7(c) the SEL checks the pre-de�ned condition and if the result returns as

expected, then the desired component (where the computation unit is encapsu-

lated), will be executed. For example, in the same �gure, a speci�c method, i.e.

method1 in the component A, is aimed to be selected if the condition is satis�ed.

In this case, the SEL encapsulates the condition, and when the composite com-

ponent ABC is invoked, the SEL checks the condition and invokes the component

A through its IC if the condition is satis�ed. Lastly, the control returns to the

caller.

88 CHAPTER 3. THE X-MAN COMPONENT MODEL

The AO are unary connectors and do not compose components. This type

of connector is a unary connector, hence it only connects to a single compo-

nent [Eli08]. The AO is used to adapt a component in order to make sure that

the component can behave according to the desired system requirements. The

main purpose of these operators is to allow the execution of the control de�ned

in the adapters to be performed prior to the invocation of the connecting com-

ponents. For example, when a component is retrieved from the repository to be

composed with another component and adaptation is required to the retrieved

component, an AO can be used to achieve this purpose. Further details on AO

are provided in the respective subsection.

3.5.2.2 Types of Adaptation Operators

The Adaptation Operators (AO) are not composition operators, as they are not

used to compose components. The main role of the AO is signi�cant during the

deployment phase. In the early phase, which is during design, components are

built and stored in a repository. During deployment, these components can be

retrieved for further composition. Moreover, during deployment, the components

are designed to be application speci�c and they are in binary code, without any

source code. Hence, if any modi�cation of the retrieved components is needed,

this is where the AO can play its role. As mentioned earlier, the purpose of

these AO is to allow the execution of the control de�ned in the adapters to be

performed prior to the invocation of the connecting components.

The ideal general practice of Component-based Software Development (CBSD)

is that components are restricted from being modi�ed directly. Nonetheless, this

is not an ideal achievement. In some CBSD approaches, direct manipulation

of the components is allowed, and some refer to it as a glue or wrapper code

[MC02, gSN99]. However, these concepts allow a component developer to add

3.5. KEY ELEMENTS OF X-MAN 89

codes or modify the component directly which is, in principle, against the ideal

belief of what the CBSD community is trying to achieve.

Accordingly, the AO is de�ned as a means of allowing additional constraints

to be added prior to the invocation of a component. The AO can be organised

into two main categories, namely conditional and iterative.

(a) Guard (b) Loop

LOOP

SEQ

BA

cond

A B

SEQ

Fig. 3.8: Adaptation Operators

For the conditional category, the component model speci�es a guard adapter

that is used to evaluate Boolean expressions. If the expression returns the ex-

pected result, then the connecting component will be invoked. Otherwise, the

control returns to the caller. As an example in Fig. 3.8(a), for the sequencing

composition, if the speci�ed condition in the guard obtains the expected result,

the desired method attached to a component i.e. component A, will be invoked.

Subsequently, the control �ow returns to the sequencer and invokes the methods

in the other connecting component, B.

Meanwhile, the latter category provides two kinds of iterative loop: (1) conditioned-

controlled and (2) counter-controlled loop. A conditioned-controlled loop speci�es

the repetition of the components' invocations which are de�ned in the generic EC.

If a condition expression speci�ed in this loop returns the expected result, then a

generic EC will be performed repetitively until the condition changes. This loop

must only be de�ned on top of the EC level. This rule states that if iteration is

90 CHAPTER 3. THE X-MAN COMPONENT MODEL

allowed for this particular component, this will produce a more restricted com-

ponent. In other words, it is more di�cult to reuse this adapted component with

such restriction. Fig. 3.8(b) illustrates that if the speci�ed condition in the loop

adapter returns the expected result, then the SEQ will be executed repetitively

until the result of the evaluation changes.

On the other hand, a counter-controlled loop de�nes a speci�c number of

repetitions of the components' invocations. If a condition expression de�ned

in the loop returns the expected result, then a generic EC will be performed

repetitively, according to the counter's value. In order to allow for the possibility

of reuse, this adapter must also be de�ned on top of the EC level. Although

this type of loop can also be de�ned using the conditioned-controlled loop, this

counter-controlled loop is de�ned for simplicity purposes. By having a specialised

type of iteration, designing a straightforward system architecture will be much

more e�cient. The same Fig. 3.8(b) can, in general, illustrate that if the condition

speci�ed in the loop adapter returns the expected result, then the SEQ will be

executed repetitively according to the value of the counter.

3.5.3 Composition

A composition describes the mechanisms for building a larger composite from

atomic components. (See Fig. 3.5(b)). A composition scheme should preserve

the component encapsulation. For example, given two components, A and B, if

both of these components are composed together, a composition will be created,

i.e. AB component. As the proposed approach is de�ned for the deployment phase,

that is the construction of the system is for a speci�c application only (based on

a set of requirements), designing for reuse is irrelevant. This composition of AB

should be able to preserve the encapsulation of A and B components. If component

3.6. INTRINSIC PROPERTIES OF THE COMPONENT MODEL 91

A comprises two computations and component B comprises three computations,

the resulting composition of AB should preserve all the �ve computations of the

composition.

3.6 Intrinsic Properties of the Component Model

This model o�ers three properties, namely component encapsulation, composi-

tionality and reusability. In order to discuss the strengths of this model, some

background to the existing component models in the literature will be brie�y

introduced. In the current component models [LW07, LW06], there are two

categories: (i) models which treat components as objects as in object-oriented

programming (OOP), and (ii) models which treat components as architectural

constructs as de�ned in software architecture (SA). Each of these categories uses

di�erent component composition techniques.

Models in the �rst category (that are included in the survey, i.e. EJB, COM,

CCM, .NET, Web Services and KobrA) use direct message passing to connect

the components. The direct message passing mechanism allows a component (or

actually an object) to directly invoke any method in other components. In con-

trast to this, models in the second category (that are included in the survey, i.e.

ADLs, Koala, SOFA, PECOS, Fractal and UML2.0) adopt an indirect message

passing mechanism, where message passing is done using a mediator element and

the mediator will in turn invoke the required methods, whilst for the indirect mes-

sage passing, the connectors only pass controls from one component to another.

As de�ned in the X-MAN component model, ECs not only compose components,

but also encapsulate the logic of the control �ows.

92 CHAPTER 3. THE X-MAN COMPONENT MODEL

3.6.1 Component Encapsulation

By means of separating the computations and controls, the component encap-

sulation can be preserved. The model de�nes the component as containing only

computations and data, while the controls are handled by the ECs, which are

outside of the component. The ECs originate the control and manipulate the

control �ows among the connecting components. With this view, it is worth

noting that the X-MAN model provides a clear separation of computation and

control that makes components truly independent. This is not the case in other

component models. Models in the �rst category [LW07], which adopt the direct

message passing mechanism, permit components to invoke methods in other com-

ponents in order to perform a task. Thus, it is unquestionably evident that the

components do not encapsulate either computation or control in this regard.

3.6.2 Compositionality

A composition mechanism de�nes the way in which two or more components

can be assembled as a composite component. Because the component has a

self-similiarity feature, each component is able to be composed to form a larger

composite. The X-MAN component model de�nes composition to be handled

in both design and deployment phases. By having these options, a component

developer has �exibility in determining whether a component has any potential

for reuse or the component is built for a speci�c application, in which reuse is

not the main concern. During design, the main concern is to maximise reuse. If

the component developer decides to reuse the component, he or she should store

the component in a repository. Meanwhile, during deployment, the required com-

ponents will be retrieved from the repository, the components will be assembled

with other components and compiled them into binaries.

3.6. INTRINSIC PROPERTIES OF THE COMPONENT MODEL 93

3.6.3 Component Reusability

The signi�cant strength of this component model is the support for reusability

in the design phase. The reusability can be achieved with the existence of a

repository, where the created components are stored for future reuse purposes.

During design or deployment, these components in the repository can be retrieved

for further composition. The current component models (e.g. JavaBeans, ADL,

EJB, Koala, etc.) do not support composite components in the design phase. This

means that composite components cannot be created and reused in the design

phase. In the �rst category of the existing component models (e.g. JavaBeans,

ADL, EJB, Koala, etc.) [LW07], the implementations of message passing are done

by direct message passing.

The drawback of this mechanism is that it makes the components highly cou-

pled to other components. These components are di�cult to reuse, considering

the dependencies that are linked among the components. If a developer is con-

sidering re-using the components, all the dependencies of the components must

also be considered. In addition, there is no explicit code for connectors that can

be reused in the semantics of the existing component models. In these models,

components are coupled, which makes the components particularly arduous to

be reused without considering all the relevant dependencies. While in the in-

direct message passing technique, composite components are supported during

design where each architectural unit is composed by connectors. In this case, it is

still di�cult to achieve component reuse because the connectors are just passing

control from one component to others.

94 CHAPTER 3. THE X-MAN COMPONENT MODEL

3.7 A Simple Bank System Example

The Bank System example comprises a number of banks associated with a bank

consortium (BC). Each bank provides banking services to its clients i.e. deposit,

withdraw and check balance. Fig. 3.9 illustrates the bank example using the

X-MAN component model.

BC-C

IU

BC

IU

BA

IU

PIPE

SEL

Fig. 3.9: Simple Bank System
Example

Since the banks provide services that are

the computation units, each bank can be mod-

elled as an atomic component (i.e. BANKA and

BANKB). Each component encapsulates CUs

and ICs. In Fig. 3.9, the small black circle

represents the IC.

For brevity purposes, the internal CUs and

the IC details are not shown in the �gure. The

invocation of the system starts from the top level connector, which is the PIPE.

The control �ow proceeds to invoke the required computation (operation) in the

BC component, performs the computation, and returns the output to the PIPE.

The computation to be invoked by the EC has already been de�ned prior to the

execution. The output will then be used as an input to the other branch of the

connector. This time, another connector of type SEL is required to decide the

correct bank component to be invoked. If the condition de�ned in the SEL is

satis�ed, the control �ow will proceed to the corresponding component. In this

case, imagine that the condition is satis�ed, then the �ow proceeds to invoke the

BANKA component. After the execution of the respective CUs in BANKA, the �ow

returns to the SEL.

The SEL contains the required constraint to decide an operation to be selected,

according to the bank account information. In this particular example, the SEL

3.8. SUMMARY 95

connector, which is an exogenous CC, composes both the BANKA and BANKB com-

ponents. As a result, the BC�C component is created using the CC. And �nally,

the �ow returns to the top level connector. If this is the whole �nal system, the

point of execution is from the top level connector. Meanwhile, if the resulting

composition is to be further composed, the top level connector is the point of

invocation from the external.

Although there are a few other examples that are used to illustrate the com-

ponent model (e.g. Automatic Train Protection System [LLW06], and Drink

Vending Machine System [LLV07]), the simple Bank System example has su�-

ciently covered all the generic elements de�ned in the component model.

3.8 Summary

This chapter has provided su�cient background to the X-MAN component model.

The fundamental constructs of the model, namely computations, control (and

data) have been presented, so as to provide a further in-depth understanding of

the subsequent chapters. The main feature supported by the model towards realis-

ing the aim of the proposed approach is the incremental composition mechanism.

The following chapter explores, presents and justi�es the rules for incremental

composition to be applied in this study.

Chapter 4

Incremental Composition

The intrinsic feature of the X-MAN component model that enables construc-

tion of component-based systems piece-by-piece is the incremental composition

mechanism. The proposed approach to constructing component-based is incre-

mental, which deals with a single requirement and derives a partial architecture

for each requirement in each increment. This is in contrast to work that takes

into account all the requirements at once (e.g. [vL03]), including incremental

architecture design, which incrementally adds behaviour or properties to an ar-

chitectural skeleton (e.g. [BDLM05]) as discussed in Chapter 2. This work is also

di�erent from the work that incrementally develops requirements hand-in-hand

with architectures (e.g. [RHJN04]). This chapter presents, discusses and justi�es

the incremental composition rules to be applied in the approach.

4.1 Introduction

To use a component-based approach for building systems directly from require-

ments, a suitable component model should be adopted, in particular one that

96

4.1. INTRODUCTION 97

supports incremental composition. In a component model, a composition corre-

sponds to an architecture, and by incremental composition which de�nes compo-

sition that (i) allows the addition of more components, as well as the addition of

further compositions, to an existing architecture; and (ii) preserves the behaviour

(and hence properties) of the existing architecture within the incremented archi-

tecture.

A simple example of incremental composition is provided by the C2 compo-

nent model [TMA+95]. This is illustrated in Fig. 4.1(a). In C2, components

are composed using a bus connector. These components are attached to a bus

which communicates indirectly with each other via the bus. The bus receives

messages from the connected components and broadcasts them to all the compo-

nents. These components identify messages that they can handle and respond to

accordingly. Components in C2 are active and connectors are passive. Compared

with exogenous composition connectors in X-MAN, C2 connector does not have

any control logic other than broadcasting and control starts from an arbitrary

component. Since components do not communicate directly with each other, any

number of components can be attached to the bus. Accordingly, more buses can

be added to create additional layers in the architecture, as shown in Fig. 4.1(b).

C4

C2 C3

C1

conn2

conn1

(a)

C6

C5C2

C4

C3

C1

conn1

conn2

conn3(b)

(a) Before (b) After

Fig. 4.1: Composition in C2.

By preserving the behaviours of the existing architecture, the incremental

98 CHAPTER 4. INCREMENTAL COMPOSITION

composition supports an incremental approach to mapping requirements directly

to systems. Requirements can be successively mapped one at a time into a par-

tial architecture by adding further components and/or compositions. Initially,

this proposed approach starts with an empty architecture, and increments the

architecture with a partial architecture such that it satis�es one requirement.

Following that, for each of the other requirements, the current partial architec-

ture is successively incremented (by adding more components and compositions)

such that, each time, the new architecture satis�es the new requirement, together

with all the previous ones, by virtue of behaviour preservation. The complete ar-

chitecture is the �nal architecture when all requirements1 have been mapped in

this way.

Incremental composition allows the addition of components and composition

at any permissible point. Nevertheless, in order to preserve all the requirements

that the current partial architecture has already met, it is crucial that the incre-

mental composition is done in a manner that is incremental with respect to the

incremented behaviours that have already been satis�ed.

S1

S2

{R1}

{R1,R2}

...

...

Sn{R1,R2,...,Rn}

...

Fig. 4.2:
Incremental compo-
sition.

The semantics of the incremental composition with re-

spect to requirements mapping can be expressed as the

relations in Fig. 4.2, where Rs are requirements, Ss are

partial architectures, and v denotes the `subset of' or `is

contained by' relation. Here, the `v' notation is loosely

de�ned: {R1, . . . , Rn} v S means partial architecture S

satis�es the set of requirements R1, . . . , Rn; and S1 v S2

means partial architecture S2; contains partial architecture S1.

1We focus only on functional requirements.

4.2. A COMPONENT MODEL WITH INCREMENTAL COMPOSITION 99

4.2 A Component Model with Incremental Com-

position

The X-MAN component model supports incremental composition. In addition

to the fundamental concepts of the X-MAN component model, as presented in

Chapter 3, this section further discusses how the model supports incremental

composition. In the X-MAN component model [LVW05, LOW06, LLW06], com-

putation and control are encapsulated separately. This separation and encapsula-

tion enables the requirements to be mapped to partial architectures, according to

the X-MAN model, by identifying computation and control speci�ed in require-

ments and mapping them to corresponding elements in the model. Because of

this feature, the mapping process can be undertaken without having to analyse

and check for all the components' dependencies as in other component models

such as ADL-like or object-oriented models.

connector
Composition(b) (c)

component
Atomic(a) A composition

IA IB

PR
CU

IC

SEQ

CR

Fig. 4.3: The Basic Component Model Ele-
ments.

In X-MAN, components en-

capsulate computations and data,

whilst composition connectors en-

capsulate control. These compo-

nents have no external dependen-

cies, and can therefore be depicted

in Fig. 4.3(a) and (c), with just a lollipop (provided service), and no socket (re-

quired service).

Fig. 4.3(a) shows an atomic component that consists of a computation unit

(CU) and an invocation connector (IC). A CU contains a set of methods which

has no direct access to methods in the computation units of other components; it

therefore encapsulates computation. An IC passes control (and input parameters)

received from outside the component to the CU to invoke a chosen method, and

100 CHAPTER 4. INCREMENTAL COMPOSITION

after the execution of the method passes control (and results) back to where it

came from, outside the component. It therefore encapsulates control.

Fig. 4.3(b) shows a composition connector, which encapsulates control struc-

tures, namely sequencing, branching or looping execution. The components as

de�ned in the X-MAN component model therefore encapsulate control (and com-

putation) at every level of composition2. Clearly, composition in the X-MAN

model is hierarchical and it preserves encapsulation at every level.

Fig. 4.3(c) shows a composition of two components CardReader (CR) and

PINReader (PR), composed by a SEQ composition connector. The control starts

when the customer enters his card and follows with a request to enter his PIN.

The connector SEQ passes control from CR, which reads the customer's card; then

it passes control to PR, which reads the customer's PIN. Control then passes back

to the top SEQ and the control is ready to be passed to the following execution.

As a brief summary from Chapter 3, other composition connectors in the X-

MAN model include PIPE for sequencing (it is the same as SEQ except a PIPE

passes the results from one component as input to the next), and SEL for branch-

ing (it selects one of the connecting components). The X-MAN model also de�nes

unary connectors which act as adaptors for composition connectors: loop for loop-

ing,3 and guard for passing or inhibiting control �ow to a composition connector.

In order to support incremental composition, (i) composition connectors are

allowed to be open in arity4, thus allowing any number of components to be

added to an existing composition connector; (ii) composition are allowed to be

open, i.e. to have open or incomplete interfaces, as shown in Fig. 4.4.

A composition connector is open by default; the `. . . ' adjacent to an open

composition connector in Fig. 4.4 denotes available composition points, i.e. points

2They also encapsulate data at every level of computation [LT06].
3All loops must be �nite, except for a loop at the top level of a system.
4The number of arguments i.e. the components, that the connector takes.

4.2. A COMPONENT MODEL WITH INCREMENTAL COMPOSITION 101

where more components or compositions can be added. A closed composition con-

nector (e.g. the ones in Fig. 4.3(a) and (c) that are denoted by solid lolly-pops

interface) in contrast does not have any available composition points. An open

composition connector can be closed (i.e. can become a closed connector) by

simply removing its available composition points; this is a change in property,

and can be introduced manually. In contrast, a closed connector cannot become

open. An open composition connector creates an open composition with an open

A B C

... ...

BA C

(b)

... ...

A B

C D

... ...

......A B

C D

(c)

Open interface

... ...

A BA

(a)

Open composition

......

...

connector

(ii)

(i)

A B

Closed interface

Fig. 4.4: Incremental Composition in X-MAN.

interface, which is denoted by a hollow lollipop circle ((a)(i), (b)(i), (c)(i) and

(c)(ii) in Fig. 4.4), whereas a closed composition connector yields a closed com-

position with a closed interface, which is denoted by a solid lollipop circle ((a)(ii),

(b)(ii) and the composition of C and D in (c)(ii) in Fig. 4.4). In addition, all the

open composition points denoted by `...' are removed from the compositions.

An open composite can be closed by closing its composition connector, but

only if all its sub-components are closed. In Fig. 4.4, (a)(ii) and (b)(ii) are closed

when the composition connectors in (a)(i) and (b)(i), respectively, are closed (all

their sub-components are already closed). Thus closing a composition is done

hierarchically, from the bottom up.

102 CHAPTER 4. INCREMENTAL COMPOSITION

In Fig. 4.4(c)(i), the top open interface can only be closed after the open

interface for the composite containing C and D has been closed (as in (c)(ii)).

Due to encapsulation in components, and hierarchical composition that preserves

encapsulation, the composition in Fig. 4.4 satis�es the relations in Fig. 4.2 (con-

sidering open compositions as partial architectures), i.e. it is indeed incremental

composition. Encapsulation ensures that newly added components do not al-

ter the behaviour of existing components, and hierarchical composition preserves

requirements that have already been satis�ed by the current partial architecture.

4.3 Incremental Composition in Existing Compo-

nent Models

A number of works in the literature, with regards to what is de�ned as incremen-

tal composition have been proposed for handling better �exibility during com-

position. In this section, these works are considered and discussed. In addition

to the C2 model, the discussion in the context of incremental composition in-

cludes generic Architecture Description Languages (ADLs), Invasive Composi-

tion, Aspect-Oriented Composition and Behaviour Engineering (BE).

4.3.1 Architecture Description Languages

In any generic ADL, the model de�nes components as architectural units with

exposed provided and required ports as depicted in Fig. 4.5. Components can

be composed with other components to build a composite component, by con-

necting the required ports with the compatible provided ports. This means that

composition happens when connections between these ports are established.

4.3. INCREMENTAL COMPOSITION IN EXISTING COMPONENTMODELS103

Fig. 4.5: Generic ADLs

Imagine that there are four ADL compo-

nents, i.e. A, B, C and D, with its correspond-

ing provided and required ports. The compo-

sition of these components happens if there is

at least one connection between each compo-

nent. As such, the arity of the composition

is either one or many, but the possibilities are

�xed based on the matching required and provided ports. Hence, for each com-

position (using connection), all the dependencies via the required ports have to

be checked.

4.3.2 Aspect-Oriented Composition

The aspect-orientation approach is also claimed to provide a means of �exible

composition [CHS08]. The approach uses aspects and point cuts to de�ne be-

haviours that share cross-cutting concerns among the rest of the code. Join

points are the events during execution at which aspects may execute, whereas a

point cut is a set of join points [WKD04]. These aspects are woven into speci�c

locations addressed by the point cuts as brie�y visualised in Fig. 4.6.

Aspect Weaver

Application

AspectAspectAspect

advice

pointcutpointcut

adviceadvice

pointcut

Fig. 4.6: Aspect-Oriented Composition

104 CHAPTER 4. INCREMENTAL COMPOSITION

An aspect weaver generates the required glue codes in order to compose the

aspects into an application system. Nonetheless, in the balancing act of providing

�exible composition and achieving reusability, the use of point cuts in aspect-

orientation does not guarantee behaviour preservation. Hence, this mechanism is

not an ideal property for supporting incremental composition that we seek for.

4.3.3 Invasive Software Composition

Invasive software composition [Ass03] adapts and extends components using hooks

by transformation. Hooks are variation points of a component; fragments or

positions which are subject to change. Invasive software composition de�nes two

types of hook: (1) implicit hooks and (2) declared hooks that are represented as

small boxes on the interface of a component, as shown in Fig. 4.7.

b) declared a) implicit

(a) Hooks in invasive soft-
ware composition

Composer

 transformed code
Invasively

(b) Composition technique

Fig. 4.7: Invasive Software Composition

In invasive software composition, a composition occurs when a component or

fragment is weaved into another component with declared hooks and thus the

composition operator generates the required code. In this case, the composition

operator has a �xed arity which means a speci�c number of component(s) or

fragment(s) can be composed and the composition operator (i.e. the operator in

Fig. 4.7(b)) will generate the code as a result of the composition. The composer

4.3. INCREMENTAL COMPOSITION IN EXISTING COMPONENTMODELS105

can be used for coordination, inheritance and distribution of aspects over core ap-

plication. Invasive software composition does not preserve the existing behaviour

in each component, but generates the codes to glue the composition instead.

When these glue codes are added, the components are modi�ed accordingly. For

this reason, by referring to the de�nition of the incremental composition, invasive

composition does not adhere to the de�ned concept.

4.3.4 Behaviour Engineering

One of the sources of work that is considered to be relevant is the behaviour En-

gineering (BE) approach that de�nes tree-like structure to represent behaviours

of entities, which is called Behaviour Tree (BT) [Dro05, Dro03b, MD09]. BT pro-

vides a mechanism to support �exible composition with some constraints during

one of the stages which the authors refer to as the integration process. During this

process, each connected node, i.e. the requirements behaviour tree (RBT) will

be incrementally integrated with a single design behaviour tree (DBT) by using

some guidelines. The results of the integration process are either as depicted in

Fig. 4.8(c) or Fig. 4.9(d).

R1

R1

C1

C1

C1

[state]

??event??

(c) DBT

R2

R2

C1
[state]

[state]

C1R1
[state]

R1

[state]
C1

(a) RBT for R1

C1

R2

R2
??event??

[state]
C1

(b) RBT for R2

Fig. 4.8: The Result of a Sequencing Composition.

106 CHAPTER 4. INCREMENTAL COMPOSITION

In BE, the software composition units according to the de�nition of the incre-

mental composition are the RBTs and the executional semantics which are either

a sequential, branching or looping operator. Fig. 4.8(c) depicts the result of a

sequential composition, whilst Fig. 4.9(d) shows the result of a branching com-

position. Composition occurs when two RBTs are integrated into a single DBT.

In their work, only two RBTs are integrated at a time except for cases where it

is not clear where to integrate those RBTs [Dro05, Dro03b, MD09].

(d) DBT

C1

C2

[state]

[state]

R1

R1
@

R2

R2 R3

R3

[state]

C3C1

C1 C2
[state]

[state]??event??

[state]

R3

R3

C3

C2

[state]

[state]

R1
[state]
C1

C1

C1

R1

R2

R2

C2

(a) RBT for R1

(b) RBT for R2

[state]

??event??

[state]

(c) RBT for R3

Fig. 4.9: The Result of a Branching Composition.

Analysis In current component models as discussed in [LW07], only Koala

[OvdLKM02] supports a form of incremental composition by preserving properties

de�ned in the interfaces of the sub-components. Koala provides a specialised

interface, called the �diversity interface�. This interface, by de�nition, enables

the properties of sub-components to be propagated to parent-components until

the system interface has been reached.

In other component models, the entire system is designed and/or constructed

in one step, either at the design phase (as in Enterprise JavaBeans [DK06] and

UML2.0 [OMG]) or in the deployment phase (as in JavaBeans [Ham97]).

Using JavaBeans, in the design phase, new (atomic5) components can be de-

posited in a repository, but cannot be retrieved from it. Composition is impossible
5Components that are not constructed from other components.

4.4. DESIGN DECISIONS FOR INCREMENTAL COMPOSITION 107

in the design phase: that is, no software architectures can be speci�ed. Accord-

ingly, an architecture is created and instantiated from atomic components, which

are retrieved from the repository, only in the deployment phase. In this regards,

JavaBeans does not support incremental composition. A system architecture

that supports given requirements is speci�ed and instantiated from components

retrieved from BeanBox6 (JavaBeans repository). Properties supported by an

architecture are all decided in one step and can never be enriched in a subsequent

composition operation.

In PECOS and UML2.0, in the design phase, there is no repository. Hence,

architectures are devised and speci�ed from scratch, meaning that composition

is possible. In the deployment phase, no new composition is permitted. The

composition of the component instances (in the runtime phase) is the same as that

of the components in the design phase. The Design without Repository category

as de�ned in [LW07] does not allow for the building of a system architecture from

partial architectures; the entire architecture is speci�ed in a single step. Thus,

this category does not support incremental composition.

4.4 Design Decisions for Incremental Composition

This section elaborates and discusses the design decisions to apply incremental

composition cases. Based on examples, the incremental composition cases are

motivated and justi�ed. Following this set of design decisions, the designer could

justify his or her design alternatives and selection. The �nal outcome of this

approach is a system architecture. In the end, only a single architecture will be

produced. A system analyst's or a system designer's task is to somehow link

all the requirements to achieve the �nal architecture. When the architecture is

6http://wiki.netbeans.org/NetBeansJavaBeansTutorial

108 CHAPTER 4. INCREMENTAL COMPOSITION

incrementally built, decisions must be made as to which composition point can be

used to compose the current architecture with the partial architecture. The �rst

derived partial architecture will automatically be considered as the initial system

architecture. This section explains the basis on which a composition point is

determined.

To decide on the incremental composition, a system analyst or a system de-

signer needs to consider two factors: (1) type of composition or adaptation and

(2) type of connector or adapter. First, he/she needs to analyse whether the

composition or adaptation is selection-based, ordering-based, condition-based or

repetition-based. Such an analysis is important in deciding on the application of

the composition points in order to sustain the aims of incremental composition.

The second consideration is the type of connector or adapter to be applied

at the chosen composition point. A composition point is a valid location (syntax

and semantics) where the new composition can occur. If the composition point

has the same type of required connector (i.e. homogeneous), composition can

be either at the �rst, middle (only for SEL) or at the end. In contrast, if the

composition point has di�erent types of connector (i.e. heterogeneous), he/she

has to compose using a new composition connector, and if the behaviour cannot

be represented, the alternative is using refactoring technique. This technique will

be presented in Chapter 7.

DCBA

CCCC

CC

G

Fig. 4.10: Composition points.

A valid composition point is the position where a new composition is allowed

4.4. DESIGN DECISIONS FOR INCREMENTAL COMPOSITION 109

to happen in order to devise a meaningful composition. As such, even if syn-

tactically, an architecture comprises more than one available composition points

(denoted by adjacent of `...'), a valid composition point corresponds to the correct

representation of the intended behaviours from the requirement.

In Fig. 4.10, although there are many available composition points in each

hierarchy level, only the valid composition points are considered. In the follow-

ing subsections, the fundamentals of design decisions that are applicable while

applying incremental composition are addressed. These design decisions are cat-

egorised into (1) ordering-based composition, (2) selection-based composition, (3)

condition-based adaptation and (4) repetition-based adaptation.

4.4.1 Ordering-based Composition

This section provides the design decisions on the application of the incremental

composition for ordering-based composition. The design decisions will be sup-

ported and justi�ed by examples.

Composing a new component or composition to a composition point.

When a logic corresponds or relates to an existing ordering execution that has

been modelled, e.g. in the example AB (Fig. 4.11(a)), it is logically correct to be

piped or sequenced with C, so that C can be composed to the end of the compo-

sition point. Fig. 4.11(b) illustrates the composition. Alternatively, if the logic

denotes composition that happens at the front of the composition point, compo-

sition can be designed as in Fig. 4.11(c). By restricting composition (either at

the front or at the end) for ordering-based composition, we adhere to the incre-

mental composition by preserving the incremented behaviours. In the example,

the ordering execution of AB is preserved by restricting new composition to be

110 CHAPTER 4. INCREMENTAL COMPOSITION

only at the front or at the end of the composition point. There is no anticipated

issue when dealing with such a composition using a SEQ.

CC

(c)(b)(a)

A

CC

B A BC

CC

B CA

Fig. 4.11: Adding a component to an existing composition.

However, a potential risk with such a case is when dealing with PIPE connec-

tors. This is mainly due to the fact that PIPE connectors comprise data depen-

dencies. When composing new components to an existing PIPE connector, design

decisions for handling and providing data must be resolved. Otherwise, some

of the connected components might not receive the expected or required data,

due to the missing passing data or outputting data. A foreseen issue is when a

new component is composed at the front of an existing composition point. Such

a case may lead to unavailability of data from the �rst connecting component

because originally the component does not anticipate any input data from any

component.

For example, component A in Fig. 4.11(a) is originally the �rst component,

which does not require any input from other components. When a new compo-

nent, C as in Fig. 4.11(c) is composed to front of the composition, an output from

C will be piped to A, whereas in the original execution of A, no input is antici-

pated. The possible solution to address this issue is provided in the discussion

part of this chapter. See Section 4.5.3.

Example 1

Consider an example from the ATM system. Imagine that the following com-

position comprises Card Reader (CR) and Pin Reader(PR) components with a

4.4. DESIGN DECISIONS FOR INCREMENTAL COMPOSITION 111

PIPE. The result of this composition is piped to another composition of Authen-

tication (AUT) and Withdrawal(WD) components (see Fig. 4.12(a)).

Analysis. The question here is why do we use a new PIPE instead of directly

extending these new components to the existing PIPE? This decision is based on

whether the need to iterate a speci�c component is being considered or not. If

the answer is yes, breaking components into a smaller logical structure will be

useful. Without this consideration, an iteration for that speci�c composition unit

cannot be modelled except for the whole composition.

PIPE

WD = withdraw
AUT = authenticate

PR = PIN Reader

PR

CR = card reader

CR AUT WD

PIPE

PIPE PIPE

CR PR AUT CDWD

PIPE PIPE

DP AC

PIPE

CD= cash dispenser DP = deposit AC = accept cash
(a) (b)

1st level

2nd level

G

G G

Fig. 4.12: ATM example-1.

Consider if a new bank transaction, Deposit (DP) is to be composed with the

existing composition (see Fig. 4.12(a)). Based on the semantics of the X-MAN

component model, two composition points where DP can be composed are either

the second level PIPE or the right side PIPE at the �rst level, but de�nitely not the

left side PIPE at the �rst level, as in order to perform the deposit transaction, the

user needs to be authenticated beforehand. In this context, ordering is deliberated

as a criterion during composition.

Example 2

Consider an example from Word Count. In the Word Count example, once the

�le is validated, the words in the �le will be formatted according to the type of

input �le. Otherwise an error shall be displayed.

Analysis. Fig. 4.13(a) illustrates the behaviours of �le validation and error

112 CHAPTER 4. INCREMENTAL COMPOSITION

(c)(b)(a)
DE = disp errorFF = format fileVF = validate file

PIPE

FFVF

valid

DE

invalid
PIPE

VF

valid

FF

GGGinvalid

DEVF

PIPE
G

Fig. 4.13: Word Count-2

display, whilst Fig. 4.13(b) illustrates the behaviours of �le validation and �le

formatting. Consider if both of these compositions are derived in a di�erent

incremental step. If these two compositions are to be composed together, while

maintaining the same behaviours, the VF component does not need to be repeated.

The alternative design is to maintain the composition of VF-DE and later on

compose FF component to the end of the composition together with its guards.

The derived architecture after IC is shown in Fig. 4.13(c).

Example 3

Consider another example from ATM in which a Transfer Fund (TF) component

is composed to the existing composition.

AC = accept cashDP = depositCD= cash dispenser

PIPE

ACDP

PIPEPIPE

WD CDAUTPRCR

PIPE

TF

TF = transfer fund

GG G

Fig. 4.14: ATM Example-3.

Analysis. Now, suppose a new re-

quirement stating that the account

from which the funds are transferred

must not be overdrawn. This par-

ticular computation must be checked

prior to the transfer fund transaction.

Hence, ordering is a consideration here.

4.4. DESIGN DECISIONS FOR INCREMENTAL COMPOSITION 113

Example 4

Let us say the ATM requirement states that for each transaction the ATM sys-

tem will print the corresponding receipts containing all the relevant transaction

information.

Analysis. Fig. 4.16 contains a two-level hierarchy of connectors. The decision to

allocate the new composition unit is based on (1) type of composition or adap-

tation and (2) type of connector. The type of composition is determined by the

execution order. For instance, in the composition illustrated in Fig. 4.15, it is

wrong to place the Reject Card (RC) component next to the PIN Reader (PR)

component because the �ow of logic clashes (authentication must be performed

prior to the rejection).

RC = reject card

valid valid valid invalid

RC

TF = transfer fund

TF

PIPE

CR PR AUT CDWD

PIPE PIPE

DP AC

PIPE

CD= cash dispenser DP = deposit AC = accept cash

G GGG G

Fig. 4.15: ATM Example-4.

As the same type of connector, i.e. PIPE, is used, the new composition unit

can be composed either at the end of the �rst-level hierarchy or the top level

hierarchy.

If a di�erent type of connector is being applied, any new component certainly

cannot simply be composed at any of the available composition points.

4.4.2 Selection-based Composition

This section provides the design decisions for selection-based composition. Be-

cause ordering is not signi�cant for this type of composition, a new component

114 CHAPTER 4. INCREMENTAL COMPOSITION

PRT

PRT = print

valid valid valid

TF = transfer fund

TF

PIPE

CR PR AUT CDWD

PIPE PIPE

DP AC

PIPE

CD= cash dispenser DP = deposit AC = accept cash

1st level

2nd level
GGG G

Fig. 4.16: ATM Example-5.

or composition may be added at any valid composition point.

Composing a new component or composition to a composition point.

For selection execution, although the location where the component is added

does not make any di�erence, for consistency, a new component or composition

could be added at the end of the valid composition point. In other words, a new

component or a composition can be composed either at the front, in the middle or

at the end of an existing composition. This condition is applicable to any generic

Selector (SEL) cases. Fig. 4.17(a) depicts the original composition of A and B

components with a SEL connector. In order to compose a new component to the

existing A and B composition, a new composition (i.e. component C) is allowed to

be composed either at the front (see Fig. 4.17(b)), in the middle (see Fig. 4.17(c))

or at the end (see Fig. 4.17(d)) of an existing composition.

B CA

SELSEL

BC A

SEL

B

SEL

A BCA

(a) (b) (d)(c)

Fig. 4.17: Composing to a new component to a composition point.

The only condition for such a case is to re-consider the selection constraints

which are encapsulated by the SEL connector. Without this amendment, the

4.4. DESIGN DECISIONS FOR INCREMENTAL COMPOSITION 115

newly added component will never be reached.

Example 5

Consider an example from Automated Library Circulation System (ALCS)7

Analysis. If a selection of ALCS tasks i.e. adding books (AB) and removing

books (RB) is to be composed. As ordering is not a signi�cant consideration for

composition of the AB-RB, there are two possibilities : either to compose them as

(1) AB-RB (Fig. 4.18(a)) or as(2) RB-AB (Fig. 4.18(b)).

(b)(a)

AB = add book
RB = remove book

RB AB

SEL

RBAB

SEL

Fig. 4.18: ALCS.

Both of these options are able to capture and represent the intended behaviour

from the requirement.

Consider if the succeeding requirement states that a user can select to check

out books or remove books. Fig. 4.19(a) illustrates this feature. The follow-

ing discussion explains how this architecture can be further composed using the

incremental composition.

The preceding architecture (Fig. 4.19(a)) contains the selection-based com-

position of checkout (CO) and return book (RTB) transactions. The subse-

quent requirement adds another composition of add(AB) and remove book(RB)

transactions. When dealing with this type of composition, composing AB-RB (by

extending the open composition of the top level SEL) can either be at the front,

in the middle or at the end of the existing composition point. Nonetheless, in
7Taken from [Sch06, p. 246].

116 CHAPTER 4. INCREMENTAL COMPOSITION

SC = scan CO = check out RTB = return book

RTB

PIPE PIPE

SEL

SC CO SC

checkout return

GG

(a) Before IC

RTB

removeadd

add or removeSEL

RBAB

SEL

return

checkout

SCCOSC

PIPEPIPE

RB = remove book AB = add book

G G

(b) After IC

Fig. 4.19: Incremental Composition for Selection-based Composition.

this case, for consistency, the composition is added at the end of the composition

point. This is shown in Fig. 4.19(b). It is important to note that the selection cri-

teria for the SEL must be amended by adding new constraints for the newly added

component or composition. The derived architecture can be further simpli�ed;

however, a discussion on architecture refactoring will be provided in Chapter 7.

4.4.3 Condition-based Adaptation

So far, the incremental composition cases that have been discussed are composi-

tions that apply to ordering-based and selection-based executions. The following

subsections now discuss the roles of incremental composition when it comes to

adaptation. In Chapter 3, the two main types of adapters have been elaborated,

namely the guard and loop adapters. Both of these adapters are unary connec-

tors, which means they are used to adapt a single component, and not used for

compositional purposes.

4.4. DESIGN DECISIONS FOR INCREMENTAL COMPOSITION 117

4.4.3.1 Adding a guard adapter to a component.

Guards8 are used to check certain conditions before performing any execution pro-

vided by the connecting component. In Fig. 4.20(b), guard is denoted by a trian-

gle. If the conditions are satis�ed, only then will the intended computation be in-

voked, otherwise the control returns.

B

CC

A A

CC

B

(a) (b)

G

Fig. 4.20: Add a Guard to a Composi-
tion Point.

A foreseen issue with adding a guard

to a component is that once the guard

is added, the condition to the subse-

quent branches should be propagated

(brought forward), which makes it dif-

�cult to handle. That is why the aims

of architecture refactoring (see Chap-

ter 7), are to reduce the number of

guards and at the same time simplify the design. Nonetheless, this case is only

applicable to handling PIPE connectors with guards because a guard contains

constraint data. This constraint data must be provided during execution. With-

out the data, the condition encapsulated in the guard cannot be evaluated. As a

result, the intended computations may not be invoked.

Example 6

Consider another example from the ATM System. For the sake of argument,

consider if the Authentication (AUT) and Withdraw (WD) components are com-

posed. The result of the authentication computation will be passed to the con-

necting component i.e. the WD component to allow an amount of money to be

withdrawn.

8Guards are unary connectors.

118 CHAPTER 4. INCREMENTAL COMPOSITION

Analysis.

PIPE
valid?

WDAUTAUT WD

PIPE

(a) (b)

Fig. 4.21: Add a Guard to a Composi-
tion Point.

However, if there is no validation be-

fore the execution of withdraw com-

putation, the invocation can still hap-

pen even if the authentication fails. In

order to restrict the control to pro-

ceed with such invocation, a guard is

needed to adapt the WD component (see

Fig. 4.21(b)). By adding a guard here,

the result that is piped from the preceding component, i.e. AUT, will be checked

prior to the invocation of the connecting component's computation.

4.4.3.2 Adding a Guard to a Component (in between two compo-

nents)

(b)(a)

CBCB

CC

AA

CC
G

Fig. 4.22: Adding a Guard.

By adding a new guard in between

an existing composition, data to

be used to check for the condi-

tion must be available during ex-

ecution. Normally, the preceding

connected component shall pro-

vide the data to be evaluated by

the guard. Thus, the only possible

connector for CC here is a PIPE as only PIPE is able to pass data to be evalu-

ated as a constraint in this case. If a SEQ is used, then adding a guard to the

composition will not be useful.

4.4. DESIGN DECISIONS FOR INCREMENTAL COMPOSITION 119

4.4.4 Repetition-based Adaptation

CC

LOOP

(b)(a)

BAA

CC

B

Fig. 4.23: Adding a loop
adapter.

For a loop adapter, it is crucial to ensure

that the loop will eventually terminate, in or-

der to be appropriately applied to a compo-

sition. Imagine if the condition never termi-

nates; the whole composition will be problem-

atic. As such, cautious decisions are required

when dealing with loop adapters. Based on

Fig. 4.23(a), a loop adapter is adapted to the existing AB composition, and the

result is shown in Fig. 4.23(b). Note that the loop adapter is added on top of the

AB composition.

Example 7

Consider an example from the Trading System(TS).9 In the card payment trans-

action, the Cashier receives the credit card from the Customer and pulls it through

the Card Reader. The Customer enters his PIN using the keyboard of the card

reader, and waits for validation.

Analysis. Here, the Card Reader (CR) component is composed with the AUT

component, as depicted in Fig. 4.24(a). Let us say the succeeding requirement

states that the steps are repeated until successful validation or the Cashier presses

the button for cash payment. The next increment is to add a loop adapter to

the composition, as illustrated in Fig. 4.24(b). The condition in the loop must

satisfy the stated constraints from the requirement.

9Taken from [RRMP08].

120 CHAPTER 4. INCREMENTAL COMPOSITION

PIPE
PIPE

AUTCRAUTCR

LOOP

(b)(a)

Fig. 4.24: Looping example.

Example 8

Consider an example from the ATM system. Suppose that the following com-

position comprises Card Reader (CR) and Pin Reader (PR) components with a

PIPE. The result of this composition is piped to another composition of Authen-

tication (AUT) and Withdrawal (WD) components (see Fig. 4.25(a)).

Analysis. The decision to choose a correct composition point for this example is

based on whether the need to iterate a speci�c component is being considered or

not. If the answer is yes, breaking components into a smaller logical structure will

be useful. Without this consideration, an iteration for that speci�c composition

unit cannot be modelled, unless for the whole composition.

PIPE

WD = withdraw
AUT = authenticate

PR = PIN Reader

PR

CR = card reader

CR AUT WD

PIPE

PIPE PIPE

CR PR AUT CDWD

PIPE PIPE

DP AC

PIPE

CD= cash dispenser DP = deposit AC = accept cash
(a) (b)

1st level

2nd level

G

G G

Fig. 4.25: Repetition-based composition.

4.5 Issues and Discussion

This section presents the potential issues during incremental composition.

4.5. ISSUES AND DISCUSSION 121

4.5.1 Combining redundant behaviours

When some parts of the architecture have already been represented in the current

architecture, any later parts of architecture can reuse any useful parts of this

architecture. By ignoring this rule, it might be di�cult or there may even be no

other way to represent the desired behaviours.

For example, the existing design comprises an AUT component that provides

authentication computation. In the later increment stage, another hint leads to

the same authentication process, which has the same behaviour as the one that

had been represented in the former increment. By combining the redundant be-

haviours, the former AUT component can be reused for other branches of execution

while attempting to maintain the behaviour that is required.

4.5.2 Amendment of constraints involved during IC

For selection-based composition, amendment to the respective constraints needs

to be handled. An implication of this is the possibility that the newly added

component will never be accessible. Each time a new component or a composition

is composed using a SEL accordingly. The constraints and their selection criteria

must be supplemented.

4.5.3 Consideration of piped data

As mentioned in Section 4.4.1, when dealing with PIPE connectors that have

data dependencies, design decisions for handling and providing data must be

resolved. As a consequence of the missing passing data or outputting data, some

of the connected components might not receive the expected or required data

that is crucial for its computations. A foreseen issue is when a new component

is composed at the front of an existing composition point. Such a case may lead

122 CHAPTER 4. INCREMENTAL COMPOSITION

to unavailability of data from the �rst connecting component, because originally,

the component does not anticipate any input data from any component.

These issues must be handled properly in order to overcome design problems.

In some situations, empty (or pre-de�ned) values are passed to satisfy this con-

dition. In addition, PIPE connectors can be devised so that the outputting data

will be piped to the rest of the connecting components and only the required data

will be conceived by the connecting components throughout the execution.

4.6 Summary

This chapter has elaborated and discussed the incremental composition and how

this mechanism may be applied during composition of the extracted component-

based elements into an architecture. The incremental composition preserves the

incremented behaviours and at the same time propagates the services to be fur-

ther composed. The factors that in�uence the design decision on the incremen-

tal composition are (1) based on the execution order that is either selection-

based composition, ordering-based composition, repetition-based adaptation or

condition-based adaptation; and (2) based on the type of connector or adapter.

For each of the incremental composition cases, design guidance and examples are

provided.

Chapter 5

Extracting Elements of

Component-based Systems from

Natural Language Requirements

In dealing with raw requirements written in natural language, an analysis of the

literature has been undertaken to investigate how analysts and designers decipher

and extract information from requirements. The result of the analysis in Chapter

2 has addressed two means of handling requirements, either by analysing the

entire set of requirements or dealing with each requirement. In the mission to

incrementally build an architecture, accordingly it is also necessary yo deal with

requirements incrementally, which means analysing them one at a time. This work

provides the means to deal with requirements by extracting component-based

elements directly from NLR using a textual analysis technique. This section starts

by presenting the related work on textual analysis techniques in the literature.

Following this, a set of rules for the element extraction process grounded by the

fundamental concepts of the X-MAN component model is justi�ed and proposed.

123

124 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

5.1 Introduction

A key step in this process of constructing component-based systems incrementally

is the extraction of keywords (from NLR) that correspond to elements of the

chosen component model. Once such elements have been identi�ed, creating a

component-based system only requires them to be pieced together according to

the selected component model semantics.

5.2 Related Work on Information Extraction

Extracting keywords from natural language requirements is not a new idea. In-

deed, it has been practised for a long time. However, none of the existing tech-

niques has been designed or used for extracting keywords that correspond to el-

ements of component-based systems, i.e. systems de�ned using component mod-

els. Existing techniques have been used to extract keywords that map to abstract

concepts, intermediate requirements models, object-oriented analysis models and

even to skeleton programming language constructs.

Fig. 5.1: Related work on Information Extraction

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 125

[SHE89, Boo86, JML00, Mic96, Bro01, DBB99, HG03, OBO01] extract ele-

ments based on intermediary requirements models such as object-oriented mod-

els (e.g. Uni�ed Modelling Language (UML) class diagram, object diagram),

structured models[AG97] (e.g. Data Flow Diagram (DFD)), database mod-

els (e.g. Entity Relationship Diagram (ERD), Extended Entity Relationship

(EER)([Che80, HL07, TB94, DM06, AG97]). As such, the elements to be ex-

tracted are identi�ed based on the concepts de�ned in the respective models.

This category classi�es forward engineering approaches that adopt interme-

diary requirements models, because these models are used to be further re�ned

or detailed into more design models and eventually devise an architecture di-

agram for a particular system. Apart from this category, work such as Lar-

man [Lar04] and AbstFinder [GB97] extract elements to identify terms as candi-

dates for object-oriented concepts. This process aims to assist in the requirements

elicitation process, rather than building a working system. In contrast to the

category of approaches that derive intermediary requirements models, [Abb83]

extracts elements (e.g. data types, operators and control structures) that are

used to specify pseudo codes. Based on our knowledge, there is no work that (1)

directly maps NLR into component-based constructs and (2) is motivated by a

speci�c component model as the basis of extraction elements.

5.3 Identifying Component-based Elements From

NLR

Rules represent de�nite assumptions which are pieces of syntactic information ex-

tracted from natural language statements, whereas heuristics represent inde�nite

assumptions that allow us to reason during the mapping of the extracted elements

126 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

into the corresponding desired modelling elements [TB94]. Heuristics can also be

used as a learning device that can help to gain insights into a complex problem

and further, may be modelled and solved more pragmatically [TB94]. Research on

the use of heuristics to aid the identi�cation of elements extraction process from

natural language has been investigated [Abb83, SHE89, Boo86, JML00, Mic96,

Bro01, DBB99, HG03, OBO01, TB94, AG97, Che80, HL07, TB94, DM06, GB97,

Lar04, Boo86]. In general, the elements extraction process and its classi�cation of

elements to be extracted depend on the underlying applied theoretical concepts.

In the literature, this classi�cation is mostly based on object-oriented software

development. For example, Booch [Boo86] uses the heuristic that nouns corre-

spond to objects or classes, whereas verbs correspond to messages or methods in

object-oriented software development.

5.3.1 Elements Extraction from Natural Language Require-

ments

Given that the intention of this research is to map requirements to architectures

in the X-MAN component model, elements in requirements that correspond to

the key semantic concepts in the model need to be identi�ed, and hence, words

(in requirements) that represent these concepts also have to be extracted. Most

object-based mapping approaches rely to a large extent on identifying nouns and

verbs because the object-oriented computational model supports only operands

and operators [Boy99]; object-oriented software development [Boo86] uses the

rule that nouns correspond to objects or classes, whereas verbs correspond to

messages between objects.

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 127

As presented in Chapter 3, the key semantic concepts in the X-MAN com-

ponent model are computation and control. Computation means data transfor-

mation or function evaluation, in which values or functions are computed and

variables may be updated. Control means the �ow of execution of pieces of com-

putation. Thus, the result of a piece of control invoking a computation is a piece

of behaviour1.

The following tables summarise what can be extracted from natural language

requirements. The main elements that can be identi�ed are verbs. Verbs gen-

erally refer to actions, events and processes [Jac82]. These verb categories are

adopted and adapted from Saeki's [SHE89] and Rolland's [RP92] rules for iden-

tifying verbs and mapping them into the X-MAN component model elements.

Fig. 5.2 shows what can be extracted from verbs. In Fig. 5.2, Computation and

State categories are adopted from Action and State [SHE89, RP92] whilst Event

category is adopted from Emergence [RP92].

withdraw,deposit,cookingComputation(data transformation)
Transformation
Data

keep,remain(attribute values of components)
Internal state of componentsState

press,cancel,pushEvents that can trigger computationEvent

(of verbs)
Category Denotes Examples

Fig. 5.2: Elements that can be extracted from verbs.

A computation verb, e.g. withdraw, denotes a data transformation, which

takes data as input, performs some function evaluation and outputs data, in or-

der to achieve a speci�c objective. In general, data transformations can involve

simple data access operations i.e. input/output operations; however, these kind

of computation verbs are not used to denote such data transformations. Only

database operations as computations, e.g. search, updates are considered. Verbs

1For simplicity it is assumed that data follows control.

128 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

that are physically performed by humans are also excluded as data transforma-

tion.

A state verb, e.g. keep, maintain, cooking denotes computations that realise

states, i.e. change the attribute values of components. However, not all state

verbs can be mapped to a computation. Normally, states which are of interest

are ones that can be associated with computations. In order to achieve this kind

of state, computations need to be performed. This means that the system should

provide corresponding computations. States such as idle which may not be doing

anything, do not imply any computations.

An event verb, e.g. press, denotes an event that can trigger computations.

This Event verb can indirectly imply computations that should be provided by

the system. Because the requirements are unstructured, such hints can be a

guidance in determining candidate computations.

movement

closed,open
1,c,integer

authentication
power tube,

registration,tranmission,
Attribute name of state

(data transformation)
Computation

Value or set of values
components

Conceptual hooks for

Computation

State
Data

component
Conceptual

Category
(of nouns) Denotes Examples

Fig. 5.3: Elements that can be extracted from nouns.

Fig. 5.3 shows what can be extracted from nouns. In Fig. 5.3, Conceptual

component is adopted from Class, Data is adopted from Value, State is adopted

from Attribute and Action is adopted from Action respectively [SHE89].

A conceptual component noun, e.g. power tube, denotes an abstraction of

a candidate component that can be identi�ed from nouns such as devices (e.g.

power tube, auto-teller machine, etc.). In an explicit scenario, computations can

usually be directly identi�ed from verbs. This is the general case. Nonetheless,

when such conceptual component nouns are extracted, they are already associated

with its corresponding computations which may not be explicitly speci�ed. Based

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 129

on the knowledge of an analyst, he or she may identify speci�c computations

relevant to the conceptual component.

A data noun, e.g. the number `1', denotes a value that may need to be stored

and retrieved. These values may represent status, grade, result of computation,

etc. Thus, the data noun category is identi�ed to store meaningful values to be

used by computations.

An action noun2, e.g. registration, denotes data transformation provided

by a component such as authentication and initialisation processes. In the extrac-

tion process, which is supported by the Extractor tool (see Section 5.5), elements

of the component-based system are suggested based on verbs, nouns or phrases

using a textual analysis technique. By excluding the computation noun category,

the extraction process might not be comprehensive in covering the extraction of

all candidate computations.

Descriptive
expression

Predicate

Control
structure

May denote components
or computations

Computations - operations
that can be true/false

Control structure

is enabled,is invalid

if,then,else,while,

date or compareDate()

iterate,loop,after

'the earlier date' may denote

Category
(of phrases) Denotes Examples

Fig. 5.4: Elements that can be extracted from phrases.

Fig. 5.4 shows what can be extracted from phrases. In Fig. 5.4, the Descriptive

expression, Predicate and Control structure categories are adopted from Descrip-

tive expression, Predicate and English control structure respectively [Abb83].

In addition to the verb and noun categories, a descriptive expression phrase,

e.g. the earlier date, may denote computations. Abbott [Abb83] speci�es that

a descriptive expression describes a possible object whose identity (and possibly

even whose existence) must be determined by some computation. In this research,

concerns are associated with identifying and extracting computations, rather than

2An action noun is based on a verb.

130 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

identifying objects, for example, in the requirement �If the PIN is incorrect,

the card is rejected.� The expression �..the PIN is incorrect..� must

by some means be determined by a computation to verify the PIN. Hence, the

expression is associated with a verification computation.

A predicate phrase denotes operations that return true or false values, such

as checking status or state (e.g. isEnabled, isValid). A control structure phrase,

on the other hand, denotes execution �ow such as if..then..else, while, it-

erate, loop, after, selection. Some constraints identi�ed from requirements

can also determine control structures. See Section 5.3.2.3.

5.3.2 Identifying Component-based Constructs of the X-

MAN Component Model

As discussed in Section 3, the key semantic concepts in the X-MAN component

model are computation [LLW06], control [LLW06] and data [LT06, LT07]. In

brief, computation means data transformation or function evaluation, whereby

values or functions are computed and variables may be updated. Control means

the �ow of execution between components that encapsulate pieces of computa-

tions. Thus, the result of a piece of control invoking a computation is a piece of

behaviour. Data, on the other hand, may be used as a constraint to control or to

store useful values. In the current semantics of the X-MAN component model, it

is assumed that data always follows control.

5.3.2.1 Identifying Keywords that Denote Computations

A computation can be de�ned as any data transformation process which may take

any data as input, and perform some functions and outputs information in order

to achieve a speci�c objective. Although data transformations can involve data

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 131

access operations i.e., input/output operations, the element that is of interest

excludes the data access or manual operations. The smallest unit of computation

is a single data transformation. A computation may consist of a single data

transformation or a set of related data transformations (processes or methods).

A computation unit is speci�ed by its name.

P
H

R
A

S
E

N
O

U
N

isNormal, isGreen

May denote implicit computations

identifier, validationComputations (data transformation)

press,enter,select

keep,remain

Event

State

V
E

R
B

Action

Events that can trigger computation
(attribute values of components)
Internal state of components

Computation(data transformation)

Predicate

Descriptive
Expression

search, update
changePrice,

"..change amount

Category Denotes Examples

 is displayed.."
Computations-evaluation opera-
ions that can be true/false

Data Trans-
formation

Fig. 5.5: Extracting computations.

A verb may express computation. However, not all verbs can be considered

as computations. By referring to the de�nition of computations, candidates of

computations are selectively identi�ed based on (1) verbs that belong to one

of these categories: Data Transformation, State or Event ; (2) nouns that are

Action nouns; or (3) phrases that are Descriptive Expressions or Predicates. The

computation extraction category can be summarised in Fig. 5.5. Each element of

the computation category is further analysed. In addition, examples are provided

to motivate and demonstrate the identi�cation process.

From the literature, existing categories of keyword extraction that are rele-

vant to computations are adopted and adapted, according to what needs to be

extracted. The �rst category is Data Transformation verbs. A Data Transforma-

tion verb denotes function evaluation, which takes data as input, and performs

some processes and outputs data, in order to achieve a speci�c objective. Any

database transaction can also be considered as data transformation, e.g. search,

132 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

update. This category is adopted from Action [SHE89, RP92]. A data transfor-

mation in general excludes manual operations, i.e. physical human activities, for

example arrive, hand over, press, leave.

A few examples are provided in order to demonstrate how computations can be

identi�ed using the extracted keywords from the text based on a set of heuristics.

In the element extraction process, the main aim of an analyst's task is to use this

set of heuristics to guide him in identifying computations as de�ned in the X-MAN

component model (see Chapter 3). Note that not all verbs are computations.

Thus, some of the verbs that cannot be categorised as computations have to be

manually �ltered.

Summary → 1 Identifying Computations from Text

HR-1A Computations can be identi�ed using textual analysis based on (1) category
of verbs: (explicit) data transformation; (implicit) state and event; (2) action
nouns and (3) phrases: descriptive descriptions and predicates.

The following examples demonstrate how computations can be extracted based

on the heuristic HR-1A.

Example 1

R: There is a single control button available for the use of the oven. If

the oven is idle with the door closed and you push the button, the oven will

start cooking (that is, energise the power-tube for one minute).

Analysis. Based on HR-1A, a number of verbs can be identi�ed. However,

the verbs that are of interest are verbs that fall into either one of the three

categories that have been laid out i.e. Data Transformation, State and Event.

From this text, energise or cooking computations are identi�ed.

An essential task here is to decide which category the identi�ed verb belongs

to; if the verb belongs to the �rst category, that is the Data Transformation,

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 133

a computation can be explicitly identi�ed. On the other hand, if the identi�ed

verb belongs to either one of the other two verb categories, the corresponding

computations are implied from implicit computations.

Example 2

R: If the PIN is incorrect, the card is ejected.

Analysis. For this statement, the relevant verb is eject, which can be cat-

egorised as a Data Transformation verb. Any interaction between system and

hardware devices is considered as data transformation because processes are re-

quired in order to perform such interactions. In addition to this, the descriptive

expression �is incorrect� may also imply computation. Thus, a computation

to evaluate the PIN, i.e. authenticate computation, is needed.

Example 3

R: A user can withdraw up to ¿200 in units of ¿20 (the account may not be

overdrawn).

Analysis. Here, a withdraw Data Transformation verb is extracted (assum-

ing that the denomination of cash units is handled by the withdraw computation).

In addition, the descriptive expression �may not be overdrawn� implies a data

transformation to check if the amount is overdrawn.

Whenever there are interactions between the user and the system, the system

shall provide the corresponding computations to handle these interactions. The

aforementioned interactions will be mapped to the corresponding computations

from the system's point of view.

Summary → 2 Identifying Computations from User Interaction

HR-1B Computations can be implied from any interaction between users and systems
or hardware devices.

134 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

The following examples demonstrate how computations can be identi�ed based

on interactions between users and systems.

Example 1

R: When the user presses the ON button, the power tube will be activated.

Analysis. In general, most of the relevant words to be extracted will be iden-

ti�ed using the POS tag set. In addition to the technique, interactions between

users and systems should also be analysed. In this example, the user interacts

with the system by pressing the ON button. In particular, here, the press verb

is identi�ed as an interaction and not based on the category of verbs. Hence,

a computation must be provided to respond to this interaction. In this exam-

ple, another activate verb is set as the computation. The decision is based on

heuristic HR-1 from Data Transformation verb category.

Example 2

R: From the main menu, the clerk can choose one of the following options:

Rent a tape, Return tapes.

Analysis. Based on HR-1B, the verb choose is identi�ed as an interaction

between the user and the system. The corresponding options for the choice are

rent tape and return tape computations. Hence, here, two computations i.e.

rent tape and return tape, are extracted.

Example 3

R: The Store Manager selects a product item and changes its sale price.

Analysis. For this requirement, although two verbs, i.e. select and change,

are extracted, for each verb, the respective function evaluation that it corresponds

to need to be considered. If there is no processing involved, then the candidate

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 135

computation is excluded. In this case, the change computation, which belongs

to the Data Transformation verb category, is selected. This computation is an-

ticipated to involve some processing of the item's price.

Example 4

R: The Printer writes the receipt and the Cashier hands it out to the Cus-

tomer.

Analysis. In the second example, although the writes and hands out verbs

are identi�ed, verbs that are physically performed by humans and which do not

involve any data transformation are excluded. Thus, only the write computation,

which belongs to the Data Transformation verb category, is selected.

Example 5

R: If the button is punched while the oven is cooking, it will cause the oven

to cook for an extra minute.

Analysis. The following verbs are identi�ed (1) punch as an Event verb; (2)

cooking/cook as a Data transformation; (3) cause as an Event verb. Obviously,

cooking can be mapped as a computation based on the category of verbs. The

punch is actually an event that triggers cooking, hence no additional computation

is needed here.

The second category in Fig. 5.5 is the State verb, which is adopted from State

[SHE89, RP92]. A State verb denotes computations that realise states, i.e. change

the data that belongs to components. Candidates of states can be identi�ed from

verbs (that can be extracted by the POS tagger, i.e. past simple, past participles,

present participle) and adjectives [SHE89] that may imply system states.

136 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

Example 6

[UC2-1] The considered Cash Desk is in normal mode and has just finished a

sale which matches the condition of an express checkout sale.

Analysis. Here, normal is an adjective of Cash Desk that means normal is

a data item that belongs to the Cash Desk. It is implied that there must be a

computation that handles the relevant data transformation.

The third category in Fig. 5.5 is the Event verb, which is adopted from Emer-

gence [RP92]; it denotes an event that triggers computations. Any triggering

events must be associated with its corresponding noti�cations, i.e. the respective

computations. These computations are identi�ed based on any interaction be-

tween users and systems, or hardware devices. Hence, whenever an Event verb

consisting of interactions between the users and the systems is identi�ed, the sys-

tem shall provide the corresponding computations to handle those interactions.

Example 7

[UC2-2A] The Cashier presses the button Disable Express Mode. The colour of

the Light Display is changed from green into black colour.

Analysis. The term presses is an event that triggers the change of Light

Display from green into black. Here, this Event verb is addressed as denoting the

computation to be dealt with i.e. change the light colour.

The fourth category in Fig. 5.5 is the Action noun, which is adopted from

Action [SHE89]. An Action noun implies data transformation provided by a

component, e.g. authentication, registration, initialisation.

Example 8

[UC1-R5b] In order to initiate card payment the Cashier presses the button

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 137

Card Payment at the Cash Box.

i. The Cashier receives the credit card from the Customer and pulls it

through the Card Reader.

ii. The Customer enters his PIN using the keyboard of the card reader and

waits for validation.

Analysis. In this case, clearly pressing a button (i.e. an Event verb) in-

dicates interaction between the user and the system interface. Hence, in this

requirement, when the system receives noti�cation that the card payment but-

ton is pressed, the corresponding computation that deals with such interaction

needs to be assigned. For this requirement, the relevant verbs are (1) payment

and (2) validation, which both come from the Action noun category; (3) en-

ters,which is a Data transformation verb (can be renamed into readPIN so that

the computation is modelled from the system's perspective).

So far, the �rst four categories in the table in Fig. 5.5 have been used to identify

explicit computations, i.e. computations that are explicitly identi�able from the

requirements. These computations correspond to keywords extracted by the POS

tagger. However, POS tagging alone cannot uncover all the computations that

are required. The main reason is that the requirements may not specify explicitly

some of the intended computations. Furthermore, the functional requirements are

written from the user's point-of-view and not from the developer's point-of-view.

Thus, apart from identifying explicit computations, the Descriptive Expression

and Predicate [Abb83] categories are used to guide the identi�cation of implicit

computations. These form the last two categories in Fig. 5.5.

A Descriptive Expression phrase, e.g. �. . . the change amount. . . �, may

denote a computation to calculate the change amount. Abbott[Abb83] speci�es

that a Descriptive Expression describes a possible object whose identity (and

possibly even whose existence) must be determined by some computation. Thus,

138 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

in this study, a Descriptive Expression is used to identify implicit computations

from phrases.

Example 9

[UC6-R2] A report which informs about the delivery mean times is generated.

Analysis. The expression �. . . informs about the delivery mean times. . . �

must somehow be determined by a computation to calculate the mean times of a

delivery, hence it is concluded that the expression is associated with a calculate

mean time computation.

A Predicate phrase denotes operations that can return true or false, such as

checking status or state (e.g., isInNormalMode, isBlack).

Example 10

[UC1-11] If the Inventory is not available, the system caches sale.

Analysis. In this requirement, the �. . . is not available. . . � phrase that

may denote computation to check the availability of the Inventory is identi�ed.

Hence, the checkAvailability computation is provided.

To conclude, based on this guidance from the computation category, can-

didates for computation units are identi�ed. In order to assist an analyst to

extract and identify component-based constructs, the Extractor tool highlights

the extracted verbs, and identi�es the verb categories to extract computations

(see Section 5.5). Following this, he or she can also highlight nouns, and identify

any relevant action nouns for candidates of computations.

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 139

5.3.2.2 Identifying Conceptual Components

Normally, computations are identi�ed and assigned to the respective components

that provide the services. Nonetheless, in a few exceptional cases, some words

(e.g. action nouns, hardware devices, other sub-systems) in the requirements

statement can directly imply a component. A conceptual component here signi-

�es the identi�cation of computation units that are derived from a component

instead of identi�cation of computations from the part-of-speech (POS) tech-

nique. By looking at the words, the analyst deciphers the information that re�ect

components; hence, computations are implied for such components.

When a requirement does not explicitly indicate a speci�c computation, but

the analyst comprehends that there is a need to provide its corresponding com-

putation to get the required result, this conceptual component can be applied.

This is relevant whenever a component stated in the text without any explicit

computation. If a candidate component is found without any explicit computa-

tion, this is classi�ed as a conceptual component. For this purpose, the following

heuristic depends solely on the noun extraction or action noun. Based on this

justi�cation, computations from the relevant extracted nouns can be implied. For

the same reason, the decision is not formed on any type of syntactic structure of

the statement.

Summary → 3 Identifying Conceptual Components

HR-2 Conceptual components can be identi�ed directly from action nouns (based on
textual analysis), or implied from hardware devices or any sub-systems.

The following example demonstrate how a candidate for conceptual compo-

nent can be identi�ed from the text.

140 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

Example 1

R: After each transaction, the ATM will display and print a receipt contain-

ing the transaction information.

Analysis. The transaction is an action noun, which can be analysed as

a conceptual component because at this point the exact computations are not

explicitly stated. Nonetheless, the analyst anticipates that computations are re-

quired to process such transactions.

5.3.2.3 Identifying Keywords that Denote Control

After computations in each requirement are identi�ed, the following step is to look

for control. A control such as if. . . then. . . else, while, iterate, loop,

selection denotes execution �ow, i.e. sequential, branching, looping [Abb83]. In

identifying control, the same strategy as in identifying computation is followed,

in which control is identi�ed from: (1) explicit control from the extraction of the

POS tagging process, (2) pre-de�ned control terms (Fig. 5.6), and (3) implicit

control that may imply execution �ow. The following examples introduce and

motivate each of the mentioned categories.

from

loop, repeat, repetition

LoopingPreposition until

Denotes/
Implies

condition
Selection/

Ordering

Ordering

Preposition

Conjunction

Control Terms

Conjunction

Control Terms

Conjunction

Control Terms Looping

Looping

Selection

Ordering

S
E

LE
C

T
IO

N
O

R
D

E
R

LO
O

P

Category

before, after, then,

and, once

using, based

if, or

while

Examples

branching, options,
otherwise, choices, either
alternatives, else, choose

Fig. 5.6: Extracting control.

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 141

The �rst category is Preposition. The prepositions of interest are prepositions

of time that imply ordering (e.g. after, then, before), and prepositions that may

imply origin of movement or direction3 (i.e. from, of). Prepositions that are not

based on time, for instance prepositions of place (position and direction) (e.g. in,

at, under, on, below) are of no interest in this research.

Example 1

R: The Enterprise Server is not available: The request is queued until the

Enterprise Server is available and then is sent again.

Analysis. The preposition `then' here denotes an execution order while the

preposition `until' implies repetition.

Example 2

R: The formatted file will then be counted.

Analysis. Here, the preposition `then' denotes an execution order.

Example 3

R: Furthermore the corresponding Light Display (LD) is switched from black

into green to indicate the Cash Desk's express mode.

Analysis. The preposition `from' here also denotes an ordering execution.

The Conjunction category can be broken down into three sub-categories, i.e.

conjunctions that may imply ordering, selection (branching), and repetition (loop-

ing). According to Berry and Kamsties [BK00], `and' denotes (1) concurrency of

events or actions (2) conditions to be met (3) temporal order of events or actions

or (4) enumerations which may not imply any ordering. Although concurrency

3http://www.eslcafe.com/grammar/prepositions09.html.

http://www.eslcafe.com/grammar/prepositions09.html

142 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

is also an important aspect, as the current X-MAN component model supports

single-threaded execution, `and' that denotes concurrency is not handled.

Example 1

R: After each transaction, the ATM will display and print a receipt contain-

ing the transaction information.

Analysis. The `after' preposition from Fig. 5.6 is a preposition that implies

ordering execution.

Example 2

R: The System caches each sale and writes them into the inventory.

Analysis. Here, an `and' conjunction that explicitly shows an ordering ex-

ecution from caching sale transaction to update the inventory, is identi�ed.

As discussed earlier, the conjunction `and' does not always imply sequential

ordering; it may suggest concurrency processes instead. Normally, whenever in

con�ict, a domain expert or an analyst decides whether the `and' conjunction

denotes ordering or not.

Example 3

R: Cash and also card payment is allowed and the Customer is allowed to buy

as many goods as he likes.

Analysis. The `and' conjunction here does not indicate sequential ordering,

but indicates both payment methods, i.e. cash and card payment are available.

In such a case, the analyst decides whether both payment methods are relevant

or a choice has to be made between these methods. If the method payment is an

option, thus, this `and' conjunction denotes a selection case instead.

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 143

Example 4

R: The library system has two types of main users which are student and

staff.

Analysis. The conjunction `and' here means both student and sta� instead of

showing any kind of ordering. This type of statement is not considered as a

functional requirement because it does not contain any behaviour.

Control terms denote or imply prede�ned execution �ow which is not derived

from conjunctions and prepositions, e.g. using, based, branching, selection,

loop, repeat, otherwise, alternatives etc. These terms are selectively iden-

ti�ed and are set as control terms. See Fig. 5.7. Nonetheless, we do not claim

that these are the only control terms which can be set. Based on the experiences

of executing case studies and examples, the list contains su�cient terms that can

assist in identifying additional control keywords, in addition to the ones discussed

in the other categories of the control extraction.

Fig. 5.7: List of Control Terms.

Examples 1 & 2

R: A student can be an undergraduate or a graduate. R: A course is taught by

one or more lecturers.

Analysis. Even though the conjunction `or' can be extracted from both of

144 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

these statements, neither of the conjunctions mean selection, but rather repre-

sent relationships information e.g. inheritance, is-a instead. In other modelling

elements, such as Entity Relationship Diagram (database modelling) and Class

Diagram (object-oriented modelling), such relationships are relevant. In contrast,

in this work, only conjunctions that denote control are of interest to us.

Example 3

R: The Cashier enters the item identifier. The system displays the descrip-

tion and price. Otherwise, the product item is rejected.

Analysis. The keyword otherwise is identi�ed. This term explicitly shows

a branching execution from the identify item computation. In this example,

there is no explicit control identi�ed between identify item computation and

display the information. However, implicitly, such an ordering is required from

identify item to display the information computations. In this case, the ana-

lyst decides on the implicit control between more than one computation. This is

sensible, and can be justi�ed from the way the requirements are written.

Example 4

R: Using the item identifier the System presents the corresponding product

description, price, and running total. The steps are repeated until all

items are registered.

Analysis. The keyword repeated explicitly shows a looping execution for

the identify item computation.

From an English language structure, control based on explicit prepositions

from the text can be identi�ed and inferred. So far, the identi�cation of control

is performed based on explicit control either from the POS tagging extraction (of

conjunctions or prepositions) or from the prede�ned control terms. However, an

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 145

implicit control may be recognised from the requirements ordering, i.e. the way

the requirements are written.

Apart from this, implicit control may also be identi�ed from descriptive ex-

pression.

Example 1

R: The maximum of items per sale is reduced to 8 and only paying by cash is

allowed.

Analysis. Besides the `and' conjunction that denotes ordering execution,

this statement provides constraints that are useful for a looping structure, i.e. to

repeat eight times while identifying item transactions. Here, there are no explicit

keywords that lead us to extract a looping control structure. Nonetheless, such

a loop can be speci�ed.

Summary → 4 Identifying Control

HR-3 Control can be (1) explicitly identi�ed using control structure in textual analysis
i.e. from conjunctions or prepositions; (2) identi�ed using speci�c terms that
semantically represent control �ow; or (3) implied from preposition in text.

Issues With Control Keywords Extraction

There may also be cases where data transformations might have been identi�ed

without any extracted control from a single requirement. To resolve this issue, the

analyst can either (1) assume that the ordering of execution follows the way the

requirements are written i.e. sequentially; or (2) clarify the execution order with

the domain expert or the clients. The default assumption is that each statement

is written in order, even without any explicit indicator.

One of the possibilities that may contribute to such a scenario is when a

statement describes solely a single computation or a few computations that can

146 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

be provided by the same component. In e�ect, only a single component will

be identi�ed (without any connector). However, control execution is modelled

between components and not in between computations. If more than one com-

putation is identi�ed and provided by the same component, only the selected

computations to be exposed at the interface level will be speci�ed. Accordingly,

the invocation between these computations are treated as an internal execution.

Thus, no explicit control is needed.

Example 1

R: A user enters card. A user enters PIN.

Analysis. Here, there is no clear indication of any ordering. However, based

on the domain, it is assumed that the aforementioned statement is executed �rst.

In short, when there is no control identi�ed, the alternatives are (1) if only a

single component (or computation) is identi�ed, the default assumption is that

it is sequentially executed (with the previous requirement); or (2) need to clarify

the execution order with a domain expert(s) or clients.

5.3.2.4 Identifying Keywords that Denote Data

As not all nouns are relevant or meaningful to be applied in the attempt to

map keywords from requirements to component elements based on the X-MAN

component model, the purposes of data in this work are laid out. The main

purpose of data is to store any values that will be used by components. This

includes storing constant and initialisation values [LT07]. Data that are used

as constraints to be checked during condition or looping evaluation also need to

be addressed. Ideally, we sought to extract keywords that denote relevant data

based on the X-MAN component model. However, the only means that the POS

tagger can be applied here is by extracting all the nouns from requirements.

5.3. IDENTIFYING COMPONENT-BASED ELEMENTS FROM NLR 147

Based on the result of the noun extraction, the following step is to �lter only

the applicable data based on values that are useful for computations, constraints

for branching mechanism, or handling data dependencies between computations.

This includes storing constant and initialisation values [LT07]. The following

examples show the data extraction process.

Summary → 5 Identifying Data

HR-4 Data can be identi�ed and implied from the extracted nouns. The data are
used for storing constant, initialisation values, constraints and selection values
for branching purposes.

The succeeding examples exhibit how computations can be extracted based

on the heuristic HR-4.

Example 1

Consider the following requirement that shows useful data for the identi�ed com-

putation:

R: The system displays the description and price.

Analysis. Here, description and price are extracted as relevant data to

be used for the display computation.

Example 2

Consider the following requirement that shows data useful for a branching mech-

anism:

R: The Store Manager selects a product item and changes its sale price.

Analysis. In this requirement, apart from the product item and price as

relevant data to be used for the change price computation, the Store Manager

must also be veri�ed prior to the invocation of the computation. Hence, data for

148 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

the Store Manager account should also be provided. This data will be used as

validation data in order to verify its authorisation level.

Example 3

Consider the following requirement that demonstrates identi�cation of data as a

constraint:

R: If the entered amount of an incoming product is larger than the amount

accounted in the Inventory, the input is rejected.

Analysis. In this statement, the amount is identi�ed as a constraint on the

amount accounted (useful for computation rather than for constraint) in the

Inventory.

Examples 4 & 5

Consider the following requirement that shows useful data without implicit com-

putation:

R: Each flight contains information of a flight code, departure airport, a

destination aiport, a date, departure time and arrival time.

R: A booking is for a particular flight and holds information about the

ticket type, the passenger, the class and the payment details.

Analysis. Both of the above examples describe data elements or entities

to store the corresponding values i.e. �ight and booking, but contain no data

transformation.

5.4 Example

The element extraction heuristics will be demonstrated using a simple yet com-

plete example. Larger sets of requirements with the complete application of the

5.4. EXAMPLE 149

entire approach will be presented in Appendices C.

5.4.1 A simpli�ed Automated Teller Machine (ATM) sys-

tem

The complete requirements for ATM4 are as follows:

R1 The ATM will service one customer at a time. A customer will be required

to insert an ATM card and enter a personal identification number (PIN).

R2 A customer must be able to make a cash withdrawal from the linked account.

Approval must be obtained from the bank before cash is dispensed.

R3 A customer must be able to deposit cash to the linked account that can be

inserted into the cash slot. Approval must be obtained from the bank

before physically accepting the cash.

R4 A customer must be able to make a transfer of money between any two

accounts originated from the linked account.

R5 A customer must be able to make a balance enquiry of the linked account.

R6 If the customer fails to be authenticated, the card will be rejected.

R7 After each transaction, the ATM will display and print a receipt con-

taining the transaction information.

In this example, keywords to be extracted for each requirement are analysed.

First, computation identi�cation based on HR-1A, HR-1B or HR-2 are performed.

This is followed by control identi�cation based on HR-3. Finally, data identi�-

cation is done based on HR-4. The following Fig. 5.8 summarises the extraction

heuristics as a guidance in analysing each requirement.
4 http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.html

150 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

[HR-4] Identifying data

[HR-3] Identifying control

[HR-2] Identifying conceptual component

[H-1A] Identifying computations from textual analysis

[H-1B] Identifying computations from user interaction

Summary of Element Extraction Heuristics

Data can be identified and implied from the extracted nouns.

and (3) phrases: descriptive descriptions and predicate.
verbs: (explicit) data transformation; (implicit) state and event; (2) action nouns
Computations can be identified using textual analysis based on (1) category of

Computations can be implied from any interaction between users and systems
or hardware devices.

textual analysis), or implied from hardware devices or a system.
Conceptual components can identified directly from action nouns (based on

semantically represent control flow (3) implied from preposition in text.
i.e. from conjunctions or prepositions (2) identified using specific terms that
Control can be (1) explicitly identified using control structure in textual analysis

Fig. 5.8: Summary of the Element Extraction Heuristics.

Requirement-1

R: The ATM will service one customer at a time. A customer will be required

to insert an ATM card and enter a personal identification number (PIN).

Analysis. For R1, based on user interactions with the system (see HR-1B),

which are by inserting card and entering PIN, are identi�ed. The system to be

built must provide computations to read the inserted card information and the

entered PIN. Hence, these two interactions imply computations. The next step

is to identify any keywords for control. Using textual analysis, based on HR-3,

the `and' conjunction denotes an ordering execution. Finally, the requirement is

scanned through for data identi�cation using HR-4. In this particular statement,

based on the extracted nouns, placeholders for customer, card and PIN data are

extracted.

Requirement-2

R: A customer must be able to make a cash withdrawal from the linked ac-

count. Approval must be obtained from the bank before cash is dispensed.

Analysis. Consider R2. Based on HR-1A, the computation verbs i.e. ap-

prove, dispense cash, and the action noun cash withdrawal as computations

5.4. EXAMPLE 151

Table 5.1: Summary of the Extracted Keywords from R1.

Extracted
keywords

Category of verbs/ nouns/
phrases

Explanation

insert Data Transformation (DT)
(Fig. 5.5)

specify based on system's
point of view (HR-1A)

enter DT (Fig. 5.5) specify based on system's
point of view (HR-1A)

and Conjunction (ordering)
(Fig. 5.6)

textual analysis (HR-3)

customer,
card, PIN

Data based on textual analysis
(HR-4)

(see Fig. 5.5) are identi�ed. The subsequent step is to �nd keywords for control.

The main task is to identify any guidance that may lead to either one of the three

options of control i.e. ordering, selection or branching basis. In this statement,

the preposition `before' can be used as a hint to denote ordering (see Fig. 5.6).

The result of the approve computation has to be checked before the withdraw

and dispense cash computations are to be performed. Hence, the approval

status has to be stored as data.

Table 5.2: Summary of the Extracted Keywords from R2.

Extracted
keywords

Category of verbs/ nouns/
phrases

Explanation

approve DT (Fig. 5.5) based on HR-1A

withdrawal Action-noun (Fig. 5.5) based on HR-1A

dispense DT (Fig. 5.5) based on HR-1A

before Preposition (ordering)
(Fig. 5.6)

based on HR-3

account,
bank

Data Store values (HR-4)

approval Data (constraint) data to be passed as con-
straint (HR-4)

152 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

Requirement-3

R: A customer must be able to deposit cash to the linked account that can be

inserted into the cash slot. Approval must be obtained from the bank before

physically accepting the cash.

Analysis. For R3, �rst, look for computations or candidate components, then

�nd hints for control, and �nally search for data (if any). Here, the computa-

tion verbs deposit, accept cash and approve as computations are identi�ed.

However, since the same approve computation has already been identi�ed in the

former requirement, for this step, this particular computation can be skipped.

The preposition `before' implies some kind of ordering. This is based on HR-3.

Next, look for any relevant data. Clearly, an approval status needs to be checked

before a user is allowed to perform the deposit transaction.

Table 5.3: Summary of the Extracted Keywords from R3.

Extracted
keywords

Category of verbs/ nouns/
phrases

Explanation

deposit DT (See Fig. 5.5) based on verb HR-1A

accept DT (See Fig. 5.5) specify based system interac-
tion (HR-1B)

before Preposition (See Fig. 5.6) based on HR-3

approval Data (constraint) data to be passed (HR-4)

Requirement-4

R: A customer must be able to make a transfer of money between any two ac-

counts originated from the linked account.

Analysis. From the fourth requirement, another ATM transaction that can

transfer money from the linked account, is identi�ed. In addition, the linked

account from the descriptive phrase implies that an authentication process is also

required in order to perform the money transfer process. The `from' preposition

5.4. EXAMPLE 153

that implies ordering execution and the account as data are also extracted. As

a result of having implicit authentication computation, an additional approval

status is required as a constraint data. The summary of extraction is listed in

Table 5.4.

Table 5.4: Summary of the Extracted Keywords from R4.

Extracted
keywords

Category of verbs/ nouns/
phrases

Explanation

transfer
money

DT (Fig. 5.5) based on verb HR-1A

linked
account

Descriptive expression
(Fig. 5.5)

implicit that an authentica-
tion is needed

from Preposition (ordering)
(Fig. 5.6)

based on textual analysis
(HR-3)

transfer ac-
count

Data based on HR-4

approval
status

Data (constraint) data to be passed (HR-4)

Requirement-5

R: A customer must be able to make a balance enquiry of the linked account.

Analysis. From the �fth requirement, a balance enquiry computation is

extracted. With the same justi�cation, authentication computation is required

for verifying the linked account. Subsequently, the preposition `of' denotes

origin, which indicates ordering execution. Eventually, customer data is also

identi�ed.

Requirement-6

R: If the customer fails to be authenticated, the card will be rejected.

Analysis. For the sixth requirement, based on the analysis (see Table 5.6),

the approve and reject card computations are identi�ed here. However, as

approve computation has already been identi�ed in the earlier increment, the

154 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

Table 5.5: Summary of Extracted Keywords from R5.

Extracted
keywords

Category of verbs/ nouns/
phrases

Explanation

enquiry Action noun(Fig. 5.5) based on noun (HR-1A)

linked
account

DT (Fig. 5.5) implies that authentication is
needed (HR-1A)

of Preposition (Fig. 5.6) based on textual analysis
(HR-3)

customer Data has already been documented
(HR-4)

only computation that needs to be included is the reject card computation.

For control, the `if' conjunction that implies a selection case is extracted. Here,

if the customer fails to be authenticated, only then will the card be rejected.

Both card and customer information data have also been documented in the

earlier increments.

Table 5.6: Summary of the Extracted Keywords from R6.

Extracted
keywords

Category of verbs/ nouns/
phrases

Explanation

authenticate DT (Fig. 5.5) based on HR-1A

reject DT (Fig. 5.5) based on HR-1A

if Conjunction (Selection)
(Fig. 5.6)

based on HR-3

customer Data has already been documented
(HR-4)

Requirement-7

R: After each transaction, the ATM will display and print a receipt contain-

ing the transaction information.

Analysis. Consider the seventh requirement. As depicted in Table 5.7, the

approve and reject card computations are identi�ed. Nevertheless, since ap-

prove computation has already been identi�ed in the earlier increment, the only

5.5. IMPLEMENTATION OF THE EXTRACTOR TOOL 155

computation that is required is the reject card computation. For control, the

`if' conjunction that implies a selection case is extracted. Here, if the customer

fails to be authenticated, only then will the card be rejected. Both card and

customer information data have also been documented earlier.

Table 5.7: Summary of Extracted Keywords from R7.

Extracted
keywords

Category of verbs/ nouns/
phrases

Explanation

transaction Action noun (See Fig. 5.5) Conceptual component HR-2

display DT (See Fig. 5.5) display information HR-1B

print DT (See Fig. 5.5) print transaction HR-1B

after Preposition (see Fig. 5.6) implies ordering (HR-3)

and Conjunction (ordering)
(Fig. 5.6)

based on textual analysis
(HR-3)

receipt,
transaction

Data Store values for transaction,
receipt (HR-4)

5.5 Implementation of the Extractor Tool

A tool to assist an analyst during the element extraction process is developed.

Fig. 5.9 depicts how the Extractor tool works. Initially, a requirement will be

used as an input to the tool. Each word will be syntactically tagged using a

pre-de�ned selected POS tagger set.

In addition, the tool includes built-in heuristics which allow �ltering of ir-

relevant architectural related elements. Thus, a user (analyst) shall be able to

highlight words according to verb or noun features. The main task of the user is

to identify computations or candidate components, control and data. The follow-

ing step is to map those extracted keywords to architectural elements as de�ned

in the X-MAN component model. This part will be discussed in Chapter 6.

156 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

Fig. 5.9: Flow of the Extractor Tool

5.5.1 Application of a Part-Of-Speech Tagger

The X-MAN component model de�nes components, connectors and their compo-

sition mechanism. Based on this notion, the elements to be identi�ed from text

are derived. The main elements are computations, control and data. In order

to syntactically extract these elements, the Brown Corpus Part-Of-Speech (POS)

tagger, which can be used to tag the three main categories, is adopted. The

categories are (1) verb, (2) noun and (3) control.

The Brown Corpus tagset contains 176 types of tags. In this work, irrelevant

tags are removed and the most relevant tags that can be used to extract elements

based on the X-MAN component model, are selected. Each of the categories is

derived based on the following tag set5.

Note that this work does not provide a detailed discussion on each of the

selected tag set. A summary of POS tagger and its usage in textual analysis

is provided in Appendix A. The main intention is to apply this tag set to each

statement. For verb extraction, �ve types of tagsets are selected: (1) verb, present

(2) verb, past tense, (3) verb, present participle or gerund, (4) verb, past participle

5http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html

http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html

5.5. IMPLEMENTATION OF THE EXTRACTOR TOOL 157

and (5) verb, present tense, 3rd person singular. These tag sets are selected from

the Brown Corpus tagset.

Fig. 5.10: POS Tagset for Verb Extraction.

On the other hand, the adopted �ve types of tag set for noun extraction are

(1) noun, singular, common, (2) noun, singular, common, genitive, (3) noun,

plural, common, (4) noun, plural, common, genitive, (5) noun, singular, proper,

(6) noun, singular, proper, genitive, (7) noun, plural, proper, (8) noun, plural,

proper, genitive, (9) noun, singular, adverbial, (10) noun, plural, adverbial, and

(11) noun, singular, adverbial, genitive.

For the control keyword extraction, three main groups of POS tagsets are ap-

plied, these being (1) conjunctions i.e. conjunction, coordinating (CC) and con-

junction, subordinating (CS), (2) determiners or quanti�ers i.e. determiner/pro-

noun (DT), singular Determiner/pronoun (DTI), singular or plural determiner,

pronoun or double conjunction (DTX), determiner/pronoun or pre-quanti�er

(ABN), determiner/pronoun, double conjunction or pre-quanti�er (ABX), deter-

miner/pronoun or post-determiner (AP), determiner/pronoun, post-determiner,

genitive (AP$) and (3) prepositions (IN).

158 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

Fig. 5.11: POS Tagset for Noun Extraction.

Fig. 5.12: POS Tagset for Control Extraction.

These control elements extracted from the POS tagger may be used to iden-

tify explicit control. Among them, some may be used to denote an ordering or

non-ordering �ow of execution. For instance, the prepositions `before' or `af-

ter' may imply an ordering execution, as discussed in HR-3. In addition to the

POS tagset for control extraction, speci�c pre-de�ned terms (not from the POS

tagset) that can be used to identify control, as discussed in HR-3, are de�ned

(see Fig. 5.6).

5.5. IMPLEMENTATION OF THE EXTRACTOR TOOL 159

5.5.2 Element Extraction Using the Extractor Tool

A simple tool for editing and analysing the keywords extracted from requirements

has been implemented based on the �ow as depicted in Fig. 5.9.

Fig. 5.13 shows a screen shot of the tool. Initially, a requirement will be an

input to the tool. Each word will be syntactically tagged using a pre-de�ned

selected POS tagset. In addition, the tool includes built-in heuristics which allow

�ltering of irrelevant words. For instance, articles (e.g. `the', `a', `an') will not

be extracted. Moreover, a user can highlight words according to verb, noun or

control features (Fig. 5.13). The tool thus helps by suggesting keywords that

may denote control, computation or data based on the POS tagset and some

prede�ned rules (see Fig. 5.13).

Fig. 5.13: The Extractor Tool.

Using the same ATM example, the keywords extraction process is demon-

strated using the Extractor tool.

Requirement-1

R: The ATM will service one customer at a time. A customer will be required

to insert an ATM card and enter a personal identification number (PIN).

The extraction. For R1, the tool extracts [1] verb, [2] noun, and [3] con-

trol structure. For verb, service, required, insert, enter are extracted.

In addition to this, for noun, ATM, customer, time, customer, ATM, card,

160 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

identification, number, PIN are extracted. Finally, for control, at, and are

extracted.

These elements are extracted based on the selected POS tagsets and the

pre-de�ned terms for control identi�cation. The POS extraction is restricted

to syntactic tagging only. Later, the analyst or designer may manually select

the relevant extracted elements based on the component model's semantics of

computation, control and data. At this stage, they need to acquire knowledge

concerning what are computation, control and data as de�ned in the adopted

component model. Instead of analysing the whole requirement statement, they

only need to be concerned with these three categories of elements i.e. based

on verb, noun and control. Eventually, the verb, noun and data categories will

be mapped to computations, data (or conceptual component) and control. The

mapping of the extracted keywords to the elements of X-MAN component model

will be presented in Chapter 6.

5.6 Issues and Discussion

In approaches that represent information in the requirements into abstraction

modelling concepts, the entire set of requirements has to be analysed. In contrast,

this element extraction process is con�ned to be applied to a single requirement

at a time. Hence, such a strategy reduces the degree of the relevant abstraction

process, which are typically subjected to the expertise of the systems analyst

or designer. This section elaborates issues pertaining to the element extraction

process.

5.6. ISSUES AND DISCUSSION 161

5.6.1 Requirements Problems

This element extraction process does not claim to solve problems in requirements

such as ambiguities, incompleteness or inconsistencies. These issues should be

resolved and clari�ed with the customer prior to the use of the proposed approach

or during the extraction process. It is worth noting that the problems with the

requirements are beyond the scope of this work, and it is still an open issue that is

being researched in the Requirements Engineering (RE) community. Nonetheless,

the problems with the requirements may contribute to the issues in the later stages

of this approach.

5.6.2 Dealing with Implicit Requirements

It is acknowledged in the literature that some requirements may need to be derived

or invented, as discussed by Goguen & Linde [GL93]; Goldin & Berry [GB97].

Nonetheless, the focus of this work is concerned with the extraction process from

NLR, mapping of the extracted keywords, how the mapped elements are used

to construct component-based system and not how the requirements should have

been written or constructed. In this work, the original requirements are not pre-

processed or changed into a pre-de�ned syntax. From the extraction process,

the descriptive expression category is used to suggest implicit computations or

control. At present, this is the only solution to address implicit requirements,

whilst attempting to reduce the analyst's assumptions during the extraction.

5.6.3 Issues on Computation Identi�cation

There are cases where no computation can be identi�ed from the requirements.

The implication of not having any computation during the element extraction

process is that no architecture (based on the X-MAN component model) can

162 CHAPTER 5. EXTRACTING ELEMENTS OF CB SYSTEMS

be derived from the requirement. The possible causes of this issue are require-

ment statements, which only contain data elements or statements that contain

verbs, which describe relationship information, e.g. contains, consists, inheri-

tance. Although RE area suggests guidelines to produce concise and unambigu-

ous requirements statements, in reality, there is no restriction as to how the NLR

can be expressed. This research deals mainly with functional requirements. If

requirements are stated or written without specifying their functionalities, com-

putations could not be directly extracted from them. However, these data might

be useful for other computations. If the data are potentially applicable, they are

documented for future purposes.

5.6.4 Handling More Than One Control Extraction

Natural language has no precedence and associativity as in mathematics or pro-

gramming concepts [BK00]. In programming, precedence rules are applied when

dealing with more than one operator e.g. and, or, if, etc. To make this prece-

dence rule straightforward, the use of brackets is essential. Nonetheless, in this

research, concerns are focused on identifying control, which encapsulates compu-

tation execution and how this can be used to meaningfully and accurately repre-

sent the behaviour that satis�es a speci�c requirement. No rule for such a com-

position is provided. Nevertheless, the motivation of identifying more than one

control is to accurately identify the relevant computations and to apply heuristics

to identify composition connectors in later stages.

5.6.5 Limitations of the Elements Extraction

In the analysis of NLR, many other elements could also be identi�ed than the

de�ned keywords at present. The X-MAN component model is a control-driven

5.7. SUMMARY 163

and single-threaded execution model. As the premise of the extraction process is

motivated by this model, hence the focus of extraction at present is constrained

to computations, control and data.

The model can be re�ned to incorporate these additional elements, e.g. active

components, data �ow, etc., and indeed, di�erent versions of the model are being

constructed at the time this thesis is written in order to accommodate them.

As the generic elements of the model are applied, hence only these elements are

motivated as the basis of the extraction. With this constraint, the types of system

that are mostly suitable for this approach to work are control-based and single-

threaded execution systems. Apart from this, an equivalent work around or a

temporary solution has to be considered.

5.7 Summary

This chapter has discussed the element extraction process and proposed the el-

ement extraction heuristics in the mission to identify and decipher information

from the requirements. The extraction process is formed based on the X-MAN

component model elements. We believe that as the X-MAN component model

supports high cohesion and no coupling between computations, such an extrac-

tion process should be easy as compared to other component-based architecture

such as ADL-like and object-oriented. These heuristics will assist the designer

in extracting relevant keywords from the requirements and map these keywords

to the elements of the X-MAN component model, which will be presented in

Chapter 6.

Chapter 6

Mapping from Requirements to

Architectural Elements

This research attempts at constructing component-based systems directly from

NLRs. In order to achieve this, relationships (1) between candidates of architec-

tural elements in the NLRs and the extracted keywords that denote architectural

elements and (2) between the extracted keywords to the architectural constructs

using the X-MAN component model, must be de�ned. Hence, the main aims

of this chapter are to de�ne the mapping process, to propose and justify design

decisions with regards to the mappings of the possible candidates of architec-

tural elements from requirements to the extracted keywords and from there to

component-based systems elements.

6.1 The Mapping Process

In this section, we start by presenting an overview of the mapping process; and

continue discussing the correspondences between (1) the elements from require-

ments and the extracted elements and (2) between the extracted elements and

164

6.1. THE MAPPING PROCESS 165

the XMAN architectural constructs.

6.1.1 Overview

Mapping and transformation have long been investigated in the domain of database

[VMP03, JSPC02]. Model Driven Architecture (MDA) su�ers from lack of con-

sensus on terminologies, especially pertaining to mapping and transformation

[LHBJ05]. In addition, mapping is de�ned as the application or execution of

a mapping function in order to transform one model to another [MSUW04,

JSPC02], and mapping function is de�ned as a collection of mapping rules that

de�nes how particular mapping works [MSUW04].

On the other hand, transformation generates a target model from a source

model [GGKH03]. In de�ning transformation, [MVG06] di�erentiate between

endogeneous and exogeneous transformation, which relates to expression used

whether in the same language or not. Work such as [JSPC02] uses the mapping

and transformation terms interchangeably.

According to [LHBJ05], the mapping and transformation terms should be

explicitly distinguished. They added that mapping speci�cation comprises the

mapping de�nition of the correspondences between metamodels, whilst trans-

formation contains the description to transform a model into another using a

transformation language. The transformation can either be manual or automatic

generation from a source model to a target model according to a transformation

de�nition [LHBJ05]. Model transformation can be automated or manual (may

need certain level of human intervention) [MVG06]. A mapping speci�cation

could be used with many di�erent transformation de�nitions [LHBJ05]. Apart

from that, some propositions enabling the mapping speci�cation have been used

based on heuristics [RB01].

166 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

In this thesis, we use the term mapping as synonyms for correspondences be-

tween (1) the NLR and the extracted elements; and (2) the extracted elements

from NLR and the XMAN elements. The overall mappping process can be ex-

empli�ed in Fig. 6.1 and the mapping is denoted by the solid arrows in the

�gure.

Fig. 6.1: Mapping Process

As shown in Fig. 6.1, the mapping process focuses on the candidates of

architectural elements in the NLR. These elements will be mapped to (1) keywords

that denote computation; (2) keywords that denote control; and (3) keywords that

denote data. These keywords will then be mapped to architectural elements. A

system design architecture using XMAN semantics comprises three main elements

i.e. components, connectors (composition connectors and adapters) and data.

Discussion on the mapping de�nition is provided in Section 6.1.2.

A simpli�ed version of a UML class diagram representing the relevant XMAN

constructs that are of interest in this research is presented in Fig. 6.2. It is

important to note that not all XMAN constructs depicted in Fig. 6.2, are mapped

from NLR. That is, not including the derived classes. A derived class such as

the Interface class can be derived from computations of the component and no

attempt has been made to discover the Interface from NLR. The main elements

that are of interest are computations, control and data. For computations and

6.1. THE MAPPING PROCESS 167

control, the representing classes are direct, which belong to Computations of

Component and Connector classes. On the other hand, data can be mapped

as constraint for Guard, condition for Loop adapters, and condition for SEL

connector.

Fig. 6.2: UML Class Diagram Representation

6.1.2 The Mapping De�nition

The de�nitions of these architectural elements for the purpose of mapping from

NLR to the XMAN model are presented below.

De�nition 1. Requirement (RQ) elements are all possible XMAN architectural

elements stated in the NLR.

These RQ elements are candidate of architectural elements which will be

mapped to keywords that denote computations, control or data. Nonetheless,

not necessary all the identi�ed RQ elements will be mapped to those keywords.

There might be cases where there exists more than one similar terms that can

168 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

represent the same keywords. For instance, we might identify more than one

control terms. In the end, we might need to decide which control term can be

applied for the mapping to keywords that denote control.

De�nition 2. Extracted elements (EE) contain (1) keywords that denote com-

putation; (2) keywords that denote control; and (3) keywords that denote data.

In each requirement, these three categories of elements should be identi�ed to be

mapped to the XMAN elements.

The extracted elements will be associated with XMAN architectural elements.

De�nition 3. The XMAN elements (XE) consist of (1) component that encap-

sulates computations; (2) connector; and (3) data. A component can have more

than one computations; hence, the interface exposes the component's provided

services (computations).

Computations are services provided by components. Hence, the extracted

keywords that denote computations will be mapped to computations of compo-

nents. There might also be cases where some of the intended behaviours of the

extracted elements can be achieved by the same component.

A connector can be de�ned based on its name, type, arity and scheme. A

connector can be of type composition or adaptation connector. For explanation

of these connectors, see Section 3.5.2. An arity attribute relates to the number

of component and connector instances, which will be connected to the connector.

Meanwhile, the adaptation connector is a unary connector, hence only a single

component can be connected to it. The scheme attribute de�nes the execution

order. If the connector type is a SEQ, the scheme will de�ne the ordering execution

sequence.

In XMAN, data is relevant for checking constraints, to store values for checking

6.1. THE MAPPING PROCESS 169

condition or default value. At the current state of work, the focus is more on

components and connectors. At the point of this research, we restrict the use of

data for handling these cases.

To complete the mapping process de�nition, it is essential to de�ne mapping

function to relate (1) the candidates of XMAN architectural elements from NLR

and (2) the extracted elements from NLR to the XMAN architectural elements.

In this work, those correspondences are represented using the semantic net, which

is used to signify occurrences of entities in the database domain [CB05, p. 346]

and [SKS10, p. 269].

Fig. 6.3: Mapping Relationship

Mapping cardinalities show the number of entities to which another entity can

be associated via a relationship set [SKS10, p. 269]. In Fig. 6.3, the mapping

cardinalities describe binary relationship1 sets between (1) all the possible can-

didates of XMAN architectural elements from each wording in the requirement

statements and the extracted elements and (2) the extracted elements (EE) and

the XMAN elements (XE).

The elements in RQ (denoted by rq) are possible candidates of the XMAN

architectural elements. Meanwhile, the elements in EE (denoted by ee) are the

1relationship type between entities in one entity type and entities in another entity type

170 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

keywords that denote computations, control and data. The elements in XE (de-

noted by xe) are the components, connectors and data as represented in Fig.

6.2. The relationship from RQ elements to EE elements is one-to-many, in which

an entity in RQ is associated with at most one entity in EE. Whilst, the other

relationship from EE to XE is also one-to-many, whereby an entity in EE can be

associated with many entities in XE. However, not all EE elements will eventually

be mapped to XMAN architectural constructs. In the end, the user decides and

�lters as to which computation, control or data keywords that are useful to be

applied.

Based on Fig. 6.3, we can say that an RQ element can be associated to many

elements in EE. As an example, if a term can be represented as candidate for

a computation, hence, the term can be mapped into a keyword that denotes a

computation. Because RQ represents all possible architectural elements, human

intervention is required to arbitrate the design decisions in this process. Hence,

each RQ element may be mapped to a number of computations, control or data.

In another scenario, by referring to the same �gure, an EE element can be

mapped to many elements in XE. For instance, when a computation A is extracted

from NLR, it is possible that it can be mapped to many components. This is

subjected to which component that provides the required services to be used in

the composition as to satisfy the required behaviors. This scenario will also be

addressed in Algorithm-3, in which each of the extracted keywords will be mapped

to computations, control or data, respectively. In another example, if we identify

a control term (from RQ element) that denotes ordering e.g. after, it can be

mapped to SEQ in the repository. There might be more than one composition

connectors to represent sequencers in the repository as this is in deployment

phase.

6.2. MAPPING FUNCTION RQ TO EE 171

6.2 Mapping Function of the Requirement (RQ)

Elements to the Extracted Elements (EE)

This section summarises the discussion on the mapping of the NLR elements into

the corresponding desired modelling elements. Research on the use of heuristics

to aid the identi�cation and extraction of RQ elements from NLR has been inves-

tigated. See Section 5.3 and Section 5.3.1 for the discussion. Most object-based

mapping approaches rely to a large extent on identifying nouns and verbs because

the object-oriented computational model supports only operands and operators

[Boy99]; object-oriented software development [Boo86] uses the rule that nouns

correspond to objects or classes, whereas verbs correspond to messages between

objects. In this section, a mapping function from the RQ elements to the EE

elements will be presented.

6.2.1 Mapping RQ Elements to Keywords that Denote Com-

putations

Given that the intention of this research is to map requirements to architectures

in the X-MAN component model, elements in requirements that correspond to

the key semantic concepts in the model need to be identi�ed, and hence, words

(in requirements) that represent these concepts also have to be extracted. As pre-

sented in Chapter 3, one of the key semantic concepts in the X-MAN component

model is computations. A computation means data transformation or function

evaluation, in which values or functions are computed and variables may be up-

dated.

The main elements to identify candidate for data transformation can be iden-

ti�ed from verbs. Verbs generally refer to actions, events and processes [Jac82].

172 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

A computation verb, e.g. withdraw, denotes a data transformation, which takes

data as input, performs some function evaluation and outputs data, in order to

achieve a speci�c objective. In general, data transformations can involve simple

data access operations i.e. input/output operations; however, these kind of com-

putation verbs are not used to denote such data transformations. Only database

operations as computations, e.g. search, updates are considered. Verbs that are

physically performed by humans such as walking, eating, etc., are excluded as

data transformation.

P
H

R
A

S
E

N
O

U
N

isNormal, isGreen

May denote implicit computations

identifier, validationComputations (data transformation)

press,enter,select

keep,remain

Event

State

V
E

R
B

Action

Events that can trigger computation
(attribute values of components)
Internal state of components

Computation(data transformation)

Predicate

Descriptive
Expression

search, update
changePrice,

"..change amount

Category Denotes Examples

 is displayed.."
Computations-evaluation opera-
ions that can be true/false

Data Trans-
formation

Fig. 6.4: Category of RQ Elements that Denote Computations

A state verb, e.g. keep, maintain, cooking denotes computations that realise

states, i.e. change the attribute values of components. However, not all state

verbs can be mapped to a computation. Normally, states which are of interest

are ones that can be associated with computations. In order to achieve this kind

of state, computations need to be performed. This means that the system should

provide corresponding computations. States such as idle which may not be doing

anything, do not imply any computations.

An event verb, e.g. press, denotes an event that can trigger computations.

This Event verb can indirectly imply computations that should be provided by

the system. Because the requirements are unstructured, such hints can be a

guidance in determining candidate computations.

An action noun2, e.g. registration, denotes data transformation provided

2An action noun is based on a verb.

6.2. MAPPING FUNCTION RQ TO EE 173

by a component such as authentication and initialisation processes. In the extrac-

tion process, which is supported by the Extractor tool (see Section 5.5), elements

of the component-based system are suggested based on verbs, nouns or phrases

using a textual analysis technique. By excluding the computation noun category,

the extraction process might not be comprehensive in covering the extraction of

all candidate computations.

In addition to the verb and noun categories, a descriptive expression phrase,

e.g. the earlier date, may also denote computations. In this research, con-

cerns are associated with identifying and extracting candidates for computations,

rather than identifying objects, for example, in the requirement �If the PIN is

incorrect, the card is rejected.� The expression �..the PIN is incor-

rect..� must by some means be determined by a computation to verify the PIN.

Hence, the expression is associated with a verification computation.

A predicate phrase may also denote operations that return true or false

values, such as checking status or state (e.g. isEnabled, isValid).

In addition to the above guidances, in a few exceptional cases, some words (e.g.

action nouns, hardware devices, other sub-systems) in the requirements statement

can also imply a component. When a requirement does not explicitly indicate

a speci�c computation, but the analyst comprehends that there is a need to

provide its corresponding computation to get the required result, this conceptual

component can be applied. This is relevant whenever a component stated in the

text without any explicit computation. This is when we identify a conceptual

component. By analysing the RQ element, the analyst may comprehend that

there is a need to provide its corresponding computation to get the required

result, this conceptual component can be applied. This is relevant whenever a

component stated in the text without any explicit computation.

174 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

6.2.2 Mapping RQ Elements to Keywords that Denote Con-

trol

The other main architectural element as de�ned in XMAN is control. In identify-

ing control, the same strategy as in identifying computation is followed, in which

control can be identi�ed from : (1) explicit control from the extraction of the POS

tagging process, (2) pre-de�ned control terms (Fig. 5.6), and (3) implicit control

that may imply execution �ow. Section 5.3.2.3 provides examples to motivate

the de�ned categories.

Fig. 6.5 lists possible RQ elements with examples, which may be mapped to

keywords that denote control. The possible RQ elements are grouped into three

categories i.e. (1) based on ordering; (2) based on selection; and (3) based on

looping (repetition). For instance, if we come across the term before, we can

identify that as a candidate of keywords that denote control.

from

loop, repeat, repetition

LoopingPreposition until

Denotes/
Implies

condition
Selection/

Ordering

Ordering

Preposition

Conjunction

Control Terms

Conjunction

Control Terms

Conjunction

Control Terms Looping

Looping

Selection

Ordering

S
E

LE
C

T
IO

N
O

R
D

E
R

LO
O

P

Category

before, after, then,

and, once

using, based

if, or

while

Examples

branching, options,
otherwise, choices, either
alternatives, else, choose

Fig. 6.5: Category of RQ Elements that Denote Control
The �rst category is Preposition. The prepositions of interest are prepositions

of time that imply ordering (e.g. after, then, before), and prepositions that may

imply origin of movement or direction3 (i.e. from, of). Prepositions that are not

based on time, for instance prepositions of place (position and direction) (e.g. in,

at, under, on, below) are of no interest in this research.
3http://www.eslcafe.com/grammar/prepositions09.html.

http://www.eslcafe.com/grammar/prepositions09.html

6.2. MAPPING FUNCTION RQ TO EE 175

The Conjunction category can be broken down into three sub-categories, i.e.

conjunctions that may imply ordering, selection (branching), and repetition (loop-

ing). The term `and' denotes (1) concurrency of events or actions (2) conditions

to be met (3) temporal order of events or actions or (4) enumerations which

may not imply any ordering[BK00]. Although concurrency is also an important

aspect, as the current X-MAN component model supports single-threaded execu-

tion, `and' that denotes concurrency is not handled.

Control terms denote or imply prede�ned execution �ow which is not derived

from conjunctions and prepositions, e.g. using, based, branching, selection,

loop, repeat, otherwise, alternatives etc. These terms are selectively iden-

ti�ed and are set as control terms. See Fig. 5.7. Nonetheless, we do not claim

that these are the only control terms which can be set. Based on the experiences

of executing case studies and examples, the list contains su�cient terms that can

assist in identifying additional control keywords, in addition to the ones discussed

in the other categories of the control extraction.

From an English language structure, control based on explicit prepositions

from the text can be identi�ed and inferred. So far, the identi�cation of control

is performed based on explicit control either from the POS tagging extraction (of

conjunctions or prepositions) or from the prede�ned control terms. However, an

implicit control may be recognised from the requirements ordering, i.e. the way

the requirements are written.

Apart from this, implicit control may also be identi�ed from descriptive ex-

pression. In this case, a control structure phrase is a candidate for keywords

that denote execution �ow such as if..then..else, while, iterate, loop,

after, selection. Some constraints identi�ed from requirements can also de-

termine control structures.

176 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

6.2.3 Mapping RQ Elements to Keywords that Denote Data

Not all nouns are relevant or meaningful to be mapped as keywords that denote

data. The main purpose of data is to store any values that will be used by

computations. This includes storing constant and initialisation values [LT07].

Data that are used as constraints to be checked during condition or looping

evaluation also need to be addressed. Ideally, we sought to extract keywords that

denote relevant data based on the X-MAN component model. However, the only

means that the POS tagger can be applied here is by extracting all the nouns

from requirements.

Based on the result of the noun extraction, the following step is to �lter only

the applicable RQ elements based on values that are useful for computations,

constraints for branching mechanism, or handling data dependencies between

computations. This includes storing constant and initialisation values [LT07].

See Section 5.3.2.4 for examples that motivate the design decision to identify

keywords that denote data.

6.3 Mapping Function of the Extracted Elements

to XMAN Architectural Elements

In this section, the mapping function from the extracted elements to the XMAN

architectural elements will be discussed. It is important to note that not all of

the extracted elements will be mapped to the XMAN elements. Our focus is to

represent the intended behaviors as stated in the requirement. For instance, if

the same or similar terms are extracted, the user will decide as to which element

that is going to be applied.

6.3. MAPPING FUNCTION EE TO XE 177

6.3.1 Mapping Keywords that Denote Computations to Com-

ponents

A component is not explicitly stated in NLR because a component is de�ned by its

properties. That is why, from NLR, we extract the required computations or the

behaviours from the RQ elements, and not the component directly. These com-

putations are derived from text based on (1) verb that are data transformations,

state or event; (2) action noun; and (3) phrases, that are from descriptive expres-

sion and predicate stated in the requirements. See Section 5.3.2.1 on Identifying

Keywords that Denote Computations and Fig. 5.5 for computation extraction.

As presented in Chapter 3, the X-MAN component model de�nes components

that encapsulate computations. These computations are services provided by

components. In the X-MAN model, components have only the provided interface

and have no required interface. It is important to emphasise that in the X-MAN

semantics, components do not communicate directly with each other; instead,

communication is coordinated by the composition connectors that encapsulate

control. The following discussion demonstrates how the extracted keywords are

mapped into the component's computations.

Based on the extracted computation keywords from Fig. 5.5, these keywords

are mapped to computations that are encapsulated or provided by components.

These keywords are assigned to the respective logical components. The following

Examples 1�3 demonstrate this process.

Example 1

R: After each transaction, the ATM will display and print a receipt contain-

ing the transaction information.

178 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

Analysis. For this requirement, the extracted display and print computa-

tions from the element extraction process (using the Extractor tool) are mapped

to computations in the component-based construct. In this case, both of the

computations are relevant, hence they are selected. These computations can be

assigned to be handled separately by Printer (PRT) and Display components.

Example 2

R: The customer has his ABC card with him. The account number of a customer

is read with the bar code reader from the clerk to retrieve the rental trans-

action record.

Analysis. The extracted read card and retrieve computations from the

element extraction process are mapped to computations in the component-based

construct. Now, these computations are mapped to CardReader (CR) and Rental

Transaction Record (RTR) components respectively.

Example 3

R: When the clerk presses an order-complete option key (defined by the sys-

tem) this rental is complete and the video inventory file is updated.

Analysis. The extracted update data transformation from the element ex-

traction process is mapped to an update computation in the component-based

construct. In this case, the computation is assigned so as to be provided by the

RTR component.

6.3.1.1 Design Decisions on Combining Computations or Separating

Computations in Di�erent Components

There are cases where more than one computation is extracted; a decision has

to be made as to whether the computations can be grouped together in a single

6.3. MAPPING FUNCTION EE TO XE 179

component or simply to set each computation to be dealt with by each component.

By separating computations into distinct components, accordingly (based on its

functionalities) this strategy increases the probability of �nding the respective

components from a repository.

As a guidance, if computations are based on device operations (e.g. printer,

display devices), all the related computations can be grouped as services pro-

vided by a single component. Otherwise, separate the computations based on its

functionalities. Referring to Example 1, alternatively both the extracted compu-

tations can be mapped so as to be handled by the same component i.e. Print

(PRT) component because both computations are possibly dealt with by a same

device.

Summary → 1 Mapping Computation Keywords to Component's

Computations

HM-1 The extracted computation keywords are mapped to computations. These
computations are assigned to the respective logical components that provide the
required services.

6.3.2 Mapping Keywords that Denote Control to Connec-

tors

A connector as de�ned in XMAN encapsulates control, which is used for com-

munication and coordination of components. Control can be derived from text

based on (1) explicit control from the extraction of the POS tagging process, (2)

pre-de�ned control terms (see Fig. 5.7), and (3) implicit control that may imply

execution �ow. See Section 5.3.2.3 Identifying Keywords that Denote Control

and Fig. 5.6 for control extraction.As presented in Chapter 3, the X-MAN com-

ponent model de�nes three types of generic composition connectors, namely the

180 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

PIPE, SEQ and SEL.

In the case where more than one control are identi�ed from requirements,

the user decides as to which control can be applied to represent the execution of

the intended behaviours between the mapped components. This section further

demonstrates how the extracted control keywords are mapped to these connectors.

6.3.2.1 Mapping to a PIPE or SEQ connector

In general, an explicit inference for deciding a composition connector is based

on the keywords that denote control (see Section 5.3.2.3). These control key-

words are extracted from conjunctions (e.g. and), prepositions (time preposition

e.g.: before, after, then) and control terms (e.g. using) that imply ordering.

Nonetheless, not all occurrences of these control keywords and control terms can

be directly mapped to composition connectors. This is why human judgment is

still required to justify the selection of the extracted elements.

For instance, the `and' conjunction does not always imply a sequential or-

dering, and may suggest concurrency process instead. According to Berry and

Kamsties [BK00], the `and' conjunction may denote (1) concurrency of events

or actions; (2) conditions to be met; (3) temporal order of events or actions;

or (4) enumerations which may not imply any ordering. In this work, the only

case that is of interest is the third case which denotes ordering of events or ac-

tions. Although concurrency is also important, as the current X-MAN component

model supports single-threaded execution, this work only incorporates the `and'

conjunction that denotes ordering.

In addition, there are also control terms, which are not directly extracted

from NLR using the POS tagger, can be used to identify ordering execution. The

examples of these terms are as listed in the ordering control terms in Fig. 5.6.

Once an ordering is determined as being required for the execution of the

6.3. MAPPING FUNCTION EE TO XE 181

composition, the control keywords are mapped to either a PIPE or a SEQ. The main

factor to be considered when deciding either to adopt a PIPE or a SEQ is whether

there is any data dependency or not. The decision is based on whether any

data needs to be passed between the connected components. If the composition

requires data, the control is mapped to a PIPE connector; otherwise, the control

is mapped to a SEQ connector.

6.3.2.2 Mapping to a Selector Connector

In deciding the mapping of control keywords to composition connectors, the ex-

ecution category, namely ordering, selection or repetition, needs to be identi�ed.

The ordering execution cases are mapped to either a PIPE or a SEQ, whilst the

selection control keywords are mapped to a SEL.

In principle, an `if' statement is mapped to a selection statement. However,

not all cases with an `if' statement can be treated as a branching solution.

Although an `if' statement clearly implies a branching statement, according

to the X-MAN semantics, an `if' statement cannot be simply mapped to a

SEL. A SEL as de�ned in the X-MAN component model is an n-ary composition

connector that composes two or more components and de�nes the branching

control that chooses one of the connecting components to be invoked based on a

speci�c condition [Eli08, p. 99]. According to this de�nition, the control keywords

can only be mapped to a SEL connector when a branching control between two

or more connecting components are identi�ed. Otherwise, the `if' statement is

mapped to a guard adapter that evaluates the condition (data constraint).

When an `if' statement with only a single identi�ed computation is ex-

tracted, the if control is mapped to a guard that evaluates the constraint instead

of mapping the if to a SEL. During the later stage, if a pattern for branching

can be detected, only then can the design be considered to be refactored into a

182 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

SEL. The refactoring tasks will be discussed in Chapter 7. In addition, the `or'

conjunction denotes either one or the other but not both [BK00]. This term can

also be used to map to a SEL with the constraint that more than one component

has been identi�ed.

So far, the extraction category is focused on the explicit control keywords that

can be identi�ed from NLR using the POS tagger. Apart from this, the de�ned

control terms, which are not directly extracted from the POS tagger, can also be

used to suggest the selection-based execution. The examples of these terms are

as listed in Fig. 5.6.

Summary → 2 Mapping Control Keywords to Composition Connec-

tors

HM-2 Control keywords are mapped to composition connectors based on ordering or
selection (branching) execution.

6.3.2.3 Handling More Than One Composition Connector

It is possible to have more than one control execution for each requirement. The

main challenge here is how to correctly map the extracted control keywords so as

to satisfy a particular requirement. When more than one control is identi�ed, it

is important that the execution orders between computations are maintained. In

order to handle any complex behaviours in a single requirement, it is inevitable

to distinguish the execution order.

Example 4

Consider an example from VSS requirement.4

R: Only managers can delete customers or video record. Manager enters an

account number of video or customer. The entered video or account record

4Taken from [LSB98]

6.3. MAPPING FUNCTION EE TO XE 183

will be deleted.

AUT = authenticate

VR = video record
CR = customer record

AUT
auth()

SEL

VR
delV()delC()

CR

PIPE isValid?

Fig. 6.6:
Result of map-
ping.

Analysis. Looking at the above statement, based on the POS

tagger extraction rule, the delete customer and delete video

data transformations are identi�ed. Apart from this, based on

a descriptive expression that is �only managers�, it is assumed

that a computation to authenticate the manager's status must

be provided. The `or' conjunction here can be mapped to a

SEL or a guard. However, since more than one computation

has already been identi�ed, this control can directly be mapped to a SEL. The

result of the validation status will be passed to the delete customer and delete

video computations. Hence, this control is mapped to a PIPE because data is

passed from the AUT component to the CustomerRecord (CR) and VideoRecord

(VR) components.

For documentation purposes, the execution �ow is loosely speci�ed using the

following notation: CC([G]�C1,...,Cn) where CC represents the generic com-

position connector namely PIPE, SEQ or SEL; C1..Cn represent the composition

units that are the components; and the [G] represents the optional guard adapter

that contains the constraint data.

In Example 4, the execution �ow that is mapped from the `or' conjunction

is between the CR and DR components. This �ow can be speci�ed as SEL(CR,

VR). In addition, another execution �ow is between the AUT and both of the

computations. This �ow can be speci�ed as PIPE(AUT, SEL(CR, VR)). However,

an additional guard is needed to check the constraint on the manager's status.

Hence, the guard is added into the speci�cation as:

PIPE(AUT, Guard(status)�SEL(CR, VR)).

184 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

6.3.2.4 Design Decisions on Composition Connectors

During design, it is possible to produce many design alternatives. In the R2 of

the ATM example (see Fig. 6.7), a composition is built between Withdraw (WD)

and Cash Dispenser (CD) components so that the resulting composite compo-

nent can be further composed with the Authentication (AUT) component. The

design of the composition can either be as illustrated in Case-1 (Fig. 6.7a) or

Case-2 (Fig. 6.7b). For this particular requirement, all three identi�ed compo-

nents can be composed using a single PIPE connector based on the extracted

preposition keywords as the basis for the execution order. Having a design which

contains all the three components linked with a single PIPE, as illustrated in

Case-1 (Fig. 6.7a), is not a design error.

The disadvantages of such a design are that (1) further composition is lim-

ited to composition from the top level connector5 or at the available composition

points; and (2) the design is not logically grouped together. Although the design

can correctly represent the current behaviours from the mapped elements, for fu-

ture composition, it lacks a meaningful logical structure that can lead to e�ective

design.

Alternatively, consider having two separate PIPEs as a result of the compo-

sition, as shown in Fig. 6.7b. This decision is particularly useful if a particular

composition is reusable in a di�erent part of the system architecture. Accordingly,

when part of a composition is anticipated as being reusable, it is more convenient

to have a separate branch of composition.

As a consequence of incorporating an additional PIPE, observe that a new

hierarchy level is created. By having such a design, more transactions are allowed

to be directly linked (composed) to the open composition points (at both levels)

5This type of composition can also be referred to as normal composition.

6.3. MAPPING FUNCTION EE TO XE 185

app-
rove()

with
draw()

aprvd?

1st level
PIPE

Cash()
dispense

aprvd?

AUT WD CD

(a) Case-1

CD

2nd level

1st level

app-
rove()

AUT

PIPE

PIPE

dispense
WDAUT
with

draw() Cash()

apprvd?

(b) Case-2

1st level

2nd level

rove()
app- dispense

WDAUT
with

draw() Cash()

PIPE

PIPE

apprvd?

CD

Cash()

DP
accept

PIPE

apprvd?

sit()
depo-

AC

(c) Case-3

disp
Cash()

CD
with
WD

draw()

aprvd?

aprvd?

acceptdeposit()
DP

aprvd?

2nd level

1st level

AUT

rove()
app-

AC

Cash()

PIPE

PIPE

(d) Case-4

Fig. 6.7: Design Alternatives

in the future.

Consider that in the subsequent requirement, a new bank transaction is in-

troduced, i.e. deposit, which will also need to be authenticated prior to its exe-

cution. With the design in Case-2 (Fig. 6.7b), the additional bank transaction

can be directly composed using the same connector (i.e. the second level con-

nector, PIPE), rather than having no other choice of a correct composition point

to satisfy the required behaviours. Case-3 (Fig. 6.7c) illustrates the result of

additional behaviour composition from the previous architecture as designed in

Case-2 (Fig. 6.7b). Such a composition is allowed with the features of incremental

composition, which will be separately discussed in Chapter 4.

If the initial composition is designed as shown in Fig. 6.7a, one of the possible

design alternatives can be as shown as in Case-4 (Fig. 6.7d). However, the dis-

advantage of such a composition is that every time a new composition is added,

as long as there is data dependency in the former composition, they must be

186 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

propagated, along with the new composition. This can lead to ine�ective design.

Nevertheless, this issue can be solved using refactoring. Refactoring issues and

tasks will be presented in Chapter 7.

As a summary, in deciding how to compose or deciding the number of con-

nectors, particularly when more than two components are being dealt with, the

system designer can anticipate whether any of the components might be useful to

other components. If this feature can be anticipated in advance, the components

should be composed using separate connectors.

6.3.3 Mapping Control Keywords to Adapters

So far, the extracted keywords and control terms that denote ordering from con-

junction and preposition, and the keywords and control terms that denote selec-

tion for multiple components have already been mapped to either PIPE or SEQ.

Apart from this, control keywords that denote the selection of multiple compo-

nents are mapped to SEL, whilst the control keywords that denote selection or

repetition but are only applicable to a unary component are mapped to adapters.

This section discusses how these control keywords are mapped to adapters.

6.3.3.1 Mapping Control Keywords to Guard Adapters

Cash()draw()rove()
dispensewithapp-

PIPE

PIPE

CD

apprvd?

WDAUT

WD = withdraw
AUT = authentication
CD = cash dispenser

Fig. 6.8: An Example
of a Guard Adapter.

As described in Chapter 3, there are two generic types

of adapter, namely guard and loop adapters. Guards

are used to check any constraints or conditions before

an invocation to the computation is made. The condi-

tions determine whether the execution �ow continues

with the computation invocation or returns back.

6.3. MAPPING FUNCTION EE TO XE 187

In an example shown in Fig. 6.8, the system exe-

cution �ows from approve computation, which is pro-

vided by the AUT component and the result of authentication, namely the ap-

proval status, will be passed to the connecting component. Upon receiving a

valid approval status from AUT component, only then will the withdrawal opera-

tion be executed. When a single component is identi�ed, the checking can only

be done by a guard and not a composition connector. When data (constraint)

are required, a PIPE is required to pass the data to be checked at the constituent

branches.

Example 5

R: If the customer fails to be authenticated, the card will be rejected.

Analysis. Since only a single component is identi�ed here that is the AUT, a

guard should be applied here instead of a SEL.

Example 6

Consider the following VSS requirement.

R: If past-due amounts are owed, they can be paid at this time; or the

clerk can select the �order-complete� key which updates the rental with the

return date and calculates past-due fees. The rental transaction record is

updated.

Analysis. In this statement, the update (must update Rental Transaction

Record (RTR) as well) and the calculate fee computations can be directly

identi�ed. Both of these computations can be logically grouped into a single

component i.e. Overdue (OVD) component (see Fig. 6.9).

188 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

update()

isOver-
due?

PIPE

RTN
return
Tape()

OVD
calculate

Fee()

RTN = return tape
OVD = overdue

Fig. 6.9: A Guard in
VSS.

Since the overdue process is not an independent pro-

cess and it is signi�cantly relevant to the return tape pro-

cess, for modelling purposes, the Return (RTN) compo-

nent is added in the design. Based on the descriptive

expression, a constraint is required to check whether the

past-due amounts are owed or not. This feature can be

realised by adding a guard that checks the constraint. In

order to pass data between RTN and OVD components, a PIPE connector is added

to compose them.

6.3.3.2 Mapping Control Keywords to Loop Adapters

Unlike the guard adapter, a loop adapter handles repetition cases. In repetition

execution, constraints to repetition are checked and if the conditions are satis�ed,

the invocation of the respective computation will occur repeatedly until the con-

ditions for the constraints have changed and hence the conditions are not ful�lled

anymore. This will end the repetition and the control will return to its caller.

Repetition may lead to uncertainties, and this explains why we need to ensure

that the loop will eventually terminate safely. Counter loop, for instance, has a

clear cut termination as compared to the condition loop which may lead to such

problems.

no
pleted?
com-

INV = inventory
II = item identifier

identify() display()
INVII

LOOP

PIPE

Fig. 6.10: An exam-
ple of a loop adapter.

Fig. 6.10 shows how a loop adapter can be modelled.

In the Trading System (COCOME) [RRMP08] example,

each item will be identi�ed using a scanner and the item's

information will be displayed on the terminal screen. The

identifying and displaying computations will be performed

repeatedly until an acknowledgement is received. Here,

the acknowledgement is the constraint to be checked for

6.3. MAPPING FUNCTION EE TO XE 189

the loop adapter.

Summary → 3 Mapping Control Keywords to Adapters

HM-3 Decision to map control keywords to adapters is based on selection (constraint)
or repetition execution.

6.3.4 Mapping Keywords that Denote Data to XMANData

Data can be identi�ed and implied from the extracted nouns. As stated earlier,

data in XMAN semantics are only relevant for storing constant, initialisation val-

ues, constraints and selection values for branching. See Section 5.3.2.4 Identifying

Keywords that Denote Data.

When a requirement contains only information on data elements such as

database elements, optionally, these information can be speci�ed as data of the

component-based element. At this stage, more concern is focused on handling

control and computations, instead of data. Nonetheless, data that are relevant to

the mapping include constraints for PIPE, SEL and constraint data for branching

mechanism or constraints for adapters (i.e., guards and loop).

Whenever a constraint data is identi�ed and selected, accordingly, a control

for evaluating the constraint has to be created. This strategy is to ensure that

the constraint is properly addressed. This control is later mapped to a guard

adapter.

Summary → 4 Mapping Data Keywords to Data Elements

HM-4 The extracted data keywords (constraints for PIPE, SEL and constraint data for
branching mechanism or constraints for adapters) are mapped to data elements.

190 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

6.3.5 Discussion

The provided mapping functions are not direct mapping of the extracted elements

to the architectural elements. Hence, human interventions are required to justify

any design decisions. This is when the mapping heuristics are applicable.

The followings are the mapping heuristics relevant to be applied during the

mapping process:

1. The extracted computation keywords are mapped to computations.

� These computations are manually (by a human analyst) assigned to the

corresponding logical components that provide the required services.

2. Control keywords are mapped to connectors based on ordering or selection

mechanism.

3. Control keywords are mapped to adapters based on constraints on compu-

tation or repetitive execution.

4. The extracted data keywords used for constraints for connectors are mapped

to data elements.

6.4 Issues and Discussion

This section addresses relevant issues and discussion during the mapping of the

extracted elements from NLR into component-based systems constructs.

6.4.1 Mapping of More Than One Control Extraction

During the element extraction process, we may encounter cases where more than

one control is extracted. In this case, the analyst needs to specify the computa-

tions with regard to the relevant control keywords. For example, in the seventh

6.4. ISSUES AND DISCUSSION 191

requirement of the ATM example, two control keywords were extracted. Here,

the `and' conjunction is clearly for an execution between display and print com-

putations, whilst the `after' preposition is meant for implying ordering between

transactions and both the computations. This strategy is required to identify cor-

rectly the relevant computations and their control execution; and then map these

elements to their corresponding X-MAN constructs. In the end, no matter how

many controls are being extracted, only a single partial architecture should be

derived. This partial architecture will be composed with the incremented system

architecture.

6.4.2 Handling Redundancies

The derived partial architecture should be designed based on the extracted ele-

ments. Some of these elements might be redundant. For example, in the ATM

requirements, the hints that denote authentication process appeared more than

once in separate requirements. Nonetheless, in such a case, the designer's aim

is to represent the extracted elements as to satisfy the behaviours of each of the

requirements. From another perspective, the redundancy issue is useful to detect

a valid composition point when the partial architecture is composed to the system

architecture. Without this information, the partial architecture may need to be

deferred. The redundancies can later be addressed during the refactoring and the

incremental composition tasks.

6.4.3 Limitations of the Mapping Step

When the mapping is performed, which is based on the extracted elements, we

do not claim that there is a single and de�nite design solution. In this chapter,

192 CHAPTER 6. MAPPING FROM REQS. TO ARCH. ELEMENTS

although only one solution is provided for each of the mappings of a single re-

quirement, it is not necessary that there is only one way to represent a design.

The resulting designs are merely an attempt at satisfying the stated behaviours

in the requirements. Hence, no e�ort has been put to analyse or compare the best

possible design in this stage. Nonetheless, during refactoring, the restructuring

of an architecture is motivated mainly to achieve simpli�cation of a design or to

enable further composition.

6.5 Summary

This chapter has presented a set of design decisions and heuristics grounded on

the extracted keywords elaborated in Chapter 5. In addition to the heuristics,

examples of the requirements mapping for each of the categories namely for the

computations, control and data have demonstrated the applicability of the de-

sign heuristics. Once the extracted keywords are mapped into component-based

elements, the following step is to model the elements into partial architectures

and to incrementally build a working system architecture. Nonetheless, during

incremental steps, the derived architecture may need to be re-structured in order

to allow further composition or to simplify the design. Thus, the subsequent

chapter exempli�es how such refactoring of the architecture can be realised.

Chapter 7

Architecture Refactoring

This chapter de�nes and justi�es the architecture refactoring tasks to be applied

in the approach to constructing component-based systems directly from NLR.

These refactoring tasks are motivated by examples and further veri�ed case-by-

case to proof that the original behaviours are preserved, whilst changes to the

architecture are carried out. The chapter starts by setting out a brief introduction

to architecture refactoring and continues with the justi�cations of the refactoring

rules. These refactoring rules are applicable during each of the incremental steps

and also during the �nalisation step.

7.1 Introduction

Refactoring, in general, is de�ned as �restructuring software by applying a series

of refactorings without changing its observable behavior� [FBB+99]. The term

`software' here may include its internal structure, design, code or even any rele-

vant software artifacts. In [MVG06], refactoring in model-driven development is

viewed as a transformation process, which preserves the behaviour needs while

the structure is modi�ed. However, the general concept of refactoring that is

193

194 CHAPTER 7. ARCHITECTURE REFACTORING

typically used in the literature is closely related to source code level rather than

modelling level.

Despite the common use of refactoring in the literature, the concept has also

been used in the context of architecture [Pas04]. In [MQR95], structural changes

are made with the intention of making transformations between architectural

styles (e.g. pipe-and-�lter, client server, layering etc.).1 In this chapter, the

discussion will be speci�c to architecture refactoring only, thus restricting its

general de�nition to any other types of software artifacts.

The promising bene�ts of refactoring are (1) to reduce architectural design er-

rors, and (2) to provide systematic reuse of design knowledge and proofs[MQR95,

TB01]. Refactoring facilitates reusability and design proofs. Once the design is

proven, we no longer need to re-evaluate its correctness and simply reuse the de-

sign knowledge. This way, cost of debugging and re-testing can also be reduced.

Without refactoring, there may be duplication of e�orts or unnecessary errors

during implementation.

Having said this, the challenges here are to identify and de�ne the design

knowledge and provide case-by-case evidence of correctness between the original

and resulting architecture that has been refactored. The derived architecture

guarantees compositionality, meaning that it enables the composition to be fur-

ther composed into a larger composition. In addition, the most important feature

to be maintained during performing refactoring tasks is the preservation of be-

haviours.

The objectives of the architecture refactoring in this approach are (1) to mod-

ify the architecture structure, and (2) to improve the architecture design, while

maintaining the incremented behaviour of the original architecture. For the afore-

mentioned objective, during incremental steps, the architecture may need to be

1In [MQR95], the architecture re�nement term being used is considered as refactoring.

7.2. REFACTORING TASKS 195

re-structured. A foreseen reason for this is when dealing with problems while

composing the partial architecture into system architecture. To be more precise,

this case happens when there is no possible or available composition point to be

used. However, in order to preserve the behaviours that have been mapped in

the former increments, refactorings are restricted to the rules that have already

been justi�ed and proved. Otherwise, the behaviour preservation feature is not

guaranteed. These rules will be discussed in Section 7.3.

Meanwhile, the latter objective allows modi�cations of an architecture to im-

prove the architectural design. For this objective, some of the architecture refac-

toring rules are introduced to improve the design in the context of its structure.

An important premise behind this is to reduce the complexity of the derived

architecture. For instance, identifying PIPE with guards pattern (with some con-

straints) can be mapped into a PIPE with a SEL. The resulting design helps

to devise a more descriptive architecture and also reduces the use of adapters

(guards). As a result, this task can assist in reducing the complexity of the

derived architecture.

7.2 Refactoring Tasks

The architecture refactoring tasks can be categorised into (1) vertical and (2) hor-

izontal refactorings. The vertical refactorings permit the hierarchy of connectors

to be reduced. When the level of hierarchies is minimised, the level of complex-

ity in the context of the architectural design could also be inherently reduced

(see Fig. 7.1(a)). Meanwhile, the horizontal refactorings allow the expansion

or shrinking of components or compositions. It is generally expected that the

architecture keeps on expanding as increments are performed (see Fig. 7.1(b)).

The expansion of components or composition is possible without any addition

196 CHAPTER 7. ARCHITECTURE REFACTORING

refactoring
verticalCC

CCCC

CUCUCUCUCUCU

(a) Vertical

connector
CC = composition
CU = computation unit

horizontal
refactorings

CC

CCCC

CUCUCUCUCUCU

(b) Horizontal

Fig. 7.1: Refactoring Tasks.

to hierarchy levels because of the open composition points. While composing

during each increment, these open composition points are utilised. Indirectly, the

e�ects of increasing additional hierarchy levels and design complexity can be sig-

ni�cantly reduced. For instance, homogeneous connectors2 can be combined into

a single connector. As a consequence of this particular refactoring task, unnec-

essary connector hierarchies could be abbreviated. Accordingly, the architectural

design could also be simpli�ed.

7.3 Architecture Refactoring Rules

This section provides the motivation and justi�cation for all the refactoring rules

applied in this approach. Without these justi�cations, the mission to preserve

the incremented behaviours cannot be accomplished. These rules will be pre-

sented based on the refactoring tasks category, namely the vertical and hori-

zontal refactoring. For each refactoring, the explanation covers the purposes of

the rule, its analysis, example(s) and the anticipated issues. In the incremen-

tal approach, during composition, behaviour preservation is the most important

aim to be achieved. During the formulation of the rules in de�ning architecture

refactoring, the designer has to ensure this property is being addressed. In order

to achieve this, two factors are required to be considered: (1) behaviours being

2Connectors which are the instances of the same type of composition connector.

7.3. ARCHITECTURE REFACTORING RULES 197

represented; and (2) ordering of the behaviour composition. Whilst performing

incremental construction, if both of those factors are satis�ed, we consider the

represented behaviours are preserved.

One plausible way to provide an argument for the refactorings is to use a

customised Uni�ed Modelling Diagram (UML) activity diagram [Stö04] so as

to focus on the execution �ow. The same approach has also been applied in

[VL10]. The notation is that of a dotted rectangle (box) denotes composition.

The rounded rectangle with label (e.g. A, B, C) represents the components. An

arrow shows the control �ow from one end to the other. In each of the included

rules, activity diagrams will be added to represent the impact of the refactorings.

7.3.1 Vertical Refactoring

Three refactoring rules are speci�ed under the vertical refactoring category. They

are (1) �attening the hierarchy levels, (2) adding a lower-level hierarchy and (3)

adding an upper-level hierarchy. In this study, the number of connectors is consid-

ered to be proportional to the architecture's complexity level. Hence, our aim is to

reduce the number of connectors whenever possible while maintaining behaviour

preservation. However, architecture refactoring is required in this approach not

only to reduce complexity, but also to improve the architectural design. This is

due to the need to satisfy the stated behaviour in the requirement and also to

produce a simpli�ed and descriptive architectural design.

7.3.1.1 Flattening the hierarchy levels

By �attening the hierarchy levels, these levels are technically combined. Conse-

quently, this strategy will inevitably lead to the reduction of the hierarchy levels.

As the complexity of an architecture corresponds to the number of connectors

198 CHAPTER 7. ARCHITECTURE REFACTORING

and its hierarchy levels, the complexity can be reduced in this context.

Rule-1: Combining composition connectors

The rule for combining composition connectors is only applicable to homogeneous

connectors. Homogeneous connectors are connectors instantiated from the same

connector type (e.g. PIPE, SEQ, SEL). For example, two SEQs can be combined

into a single SEQ subject to some constraints (in this case, they must be of adja-

cent hierarchy levels). To use this rule, a designer scans through the architecture

design and looks for the connectors in the architecture that can be vertically

combined.

Case-1: Homogeneous connector

architecture
(c) Target(a) Original

architecture
(b) Homogeneous

Connectors

A B

PIPE

CBA

PIPEPIPE

PIPE

A CB

Fig. 7.2: Refactor homogeneous connectors.

Consider the initial architecture in Fig. 7.2(a). If the architecture is composed

of a new homogeneous connector e.g. a PIPE, the resulting composition can be

depicted in Fig. 7.2(b). This refactoring rule generally suggests that the design

can be simpli�ed into a single connector (see Fig. 7.2(c)).

7.3. ARCHITECTURE REFACTORING RULES 199

The refactored composition can be represented as:

Archori = CC1(CA, CB)

= CC1(CC2(CA, CB), CC)

Archtarget = CC12(CA, CB, CC) (7.1)

where CC1..n = composition connector, CA..C = component or composition, Arch

= architecture; and CC1..n must be homogeneous. In 7.1, the homogeneous con-

nectors CC1 and CC2 are combined into a single connector.

The above rule can also be represented using a UML activity diagram. Fig

7.3 exempli�es the same PIPE execution as represented in Fig 7.2. In the original

architecture in Fig. 7.2(a), a PIPE is used to compose A and B components. The

execution of the PIPE can also be represented as in Fig 7.3(a). Whenever a new

homogeneous connector, in this case, a PIPE is used to further compose AB with

component C, a new PIPE is used as shown in Fig. 7.2(b). This is equivalent to

the execution represented in Fig. 7.3(b). Whenever homogeneous connectors are

used in composition, the connectors can always be combined into one connector

construct. This is supported by the same features in Fig 7.3(b) and Fig 7.3(c).

A

B

A

B

C

A

B

C

input

output

(b) PIPE Execution(a) PIPE(A, B) (c) PIPE(A, B, C)

output

input

output

input

Fig. 7.3: Representing execution �ow for PIPE.

200 CHAPTER 7. ARCHITECTURE REFACTORING

An important issue to be considered is how the exposed interfaces are being

handled. In order to preserve the composed behaviour as a result of the former

composition, more interfaces (in the form of method signatures) are added to

the corresponding connectors every time a new composition is carried out. The

newly added interfaces shall be propagated to all the consecutive upper hierarchy

levels. The following Fig. 7.4 demonstrates the solution to this issue. In the

original design (see Fig. 7.4(a)), the interface of the composition exposes the

m1m2() computation. In the subsequent increment, for instance, as shown in

Fig. 7.4(b), a new component is composed to the architecture. Now, the newly

exposed interface has to be updated to accommodate and re�ect the new addition.

Once the homogeneous connectors are refactored, they are combined into a single

connector as shown in Fig. 7.4(c).

PIPE

BA
m1():d1 m2():d2

m1m2():d1,d2

(a) Original archi-
tecture

m1m2():d1,d2

m1m2():d1,d2

m1m2m3():d1,d2,d3

A B B
m1():d1 m2():d2 m3():d3

PIPE

PIPE

(b) Homogenenous Connec-
tors

m1m2m3():d1,d2,d3

CBA

PIPE
m1m2():d1,d2

m3():d3m2():d2m1():d1

(c) Target architecture

Fig. 7.4: Handling interfaces

A signi�cant bene�t of refactoring homogeneous connectors is to simplify the

design. Consider if a large number of requirements is being dealt with and if

the composition is restricted to be performed with the top level connector only3,

the outcome of this design decision may lead to an explosion of hierarchy levels.

These unnecessary hierarchies can be reduced and thus simplify the resulting

3This composition is also referred to as normal composition.

7.3. ARCHITECTURE REFACTORING RULES 201

architecture. The aim of this work is to achieve the required behaviours, so as to

satisfy the mapped requirement, and �nally, the required system. Hence, as long

as this aim is maintained and the bene�ts of these refactoring rules are gained,

it is necessary to apply them whenever required.

Example. The following is drawn from the WordCount[Sch06, p. 434] example.

In Fig. 7.5a, an input �le is validated in ValidateFile (VF) component and

the result of the validation is piped to the Display Error (DE) (in the former

increment step) or Format File (FF) (in the later increment step) components

respectively. In this example, after an increment step, an architecture as in

Fig. 7.5b is produced. As depicted in the �gure, the two homogeneous connectors,

i.e. the PIPEs, are refactored into a single PIPE.

PIPE

VF DE

status
:false

(a) Original archi-
tecture

DEVF

PIPE

FF

PIPE
status
:true

:false
status

(b) Homogeneous connec-
tors

FF = format file

DE = display error

VF = validate file

:false
status status

:true

PIPE

VF DE FF

(c) After refactoring

Fig. 7.5: Refactor homogeneous connectors - WordCount.

This example can be represented as:

Archori = PIPE1(CV F , [status=false]→ CDE)

= PIPE1(PIPE2(CV F , [status=false]→ CDE), [status=true]→ CFF)

Archtarget = PIPE12(CV F , [status=false]→ CDE, [status=true]→ CFF) (7.2)

where PIPE1..n = heterogeneous composition connector, CA..C = component or

202 CHAPTER 7. ARCHITECTURE REFACTORING

composition, Arch = architecture.

It is worth mentioning here that the resulting architecture in Fig. 7.5c can be

further refactored using the PIPE with guards pattern, which will be discussed in

the subsequent section.

Case-2: Heterogeneous connector

In contrast to homogeneous connectors, heterogeneous connectors consist of a

di�erent combination of connector types. This rule is only applicable to homoge-

neous connectors. The main reason is that any refactorings for the heterogeneous

connectors are restricted because behaviour preservation is di�cult to achieve.

Summary → 1 Combining Homogeneous Composition Connectors

AR-1 Two or more relevant homogeneous composition connectors can be combined
into a single connector.

7.3.1.2 Adding a Lower-level Hierarchy

As requirements are not expected to be in any speci�c order, the approach has to

provide the means to be able to support bottom-up and also top-town composition

mechanisms. In the XMAN model, composition is done bottom-up, whilst exe-

cution of the composition is done top-down [VL10]. However, whenever required,

this rule shall be able to support the need to perform top-down composition, that

is, decomposing parts of an architecture. This may be caused by any relevant be-

haviours that logically belong to an existing part of a composition. For this case,

only heterogeneous connectors are considered. The main reason is that for any

case of homogeneous connectors, rule AR-1 has already covered the case, hence

can be directly applied.

7.3. ARCHITECTURE REFACTORING RULES 203

Rule-2: Decomposing part of a composition

If a new component, C, is required to be composed with an existing composition of

AB, as depicted in Fig. 7.6a, to become as in Fig. 7.6b, only a heterogeneous type

of composition connector is considered. As a consequence of composing C into AB

as in Fig. 7.6b, a new lower-level hierarchy together with its composition points

are created. In this case, the design cannot be further refactored because both

the connectors are heterogeneous connectors, hence rule AR-1 cannot be applied

here. By adding a lower-level hierarchy, this strategy justi�es and motivates the

incremental composition tasks discussed in Chapter 4.

CC1

A B

(a) Original architec-
ture

CC1

CC2

C A B

(b) Target architecture-1

CC2

BA

CC1

C

(c) Target architecture-2

Fig. 7.6: Adding a lower-level hierarchy

This rule can be represented as:

Archori = CC1(CA, CB)

Archtarget1 = CC1(CC2(CC , CA), CB) (7.3)

Archtarget2 = CC1(CA, (CC2(CB, CC))) (7.4)

where CC1..n = heterogeneous composition connector, CA..C = component or com-

position and Arch = architecture. In this case, CC1 and CC2 must be instantiated

from a di�erent type of connector.

The above case can also be represented as depicted in Fig. 7.7. The original

204 CHAPTER 7. ARCHITECTURE REFACTORING

architecture of Fig. 7.6b can be of any ordering of combination of these two cases

(1) sequential i.e. SEQ or PIPE or (2) selection that is using SEL connector. Let

us observe the possibilities of adding a lower hierarchy for both the cases. In the

�rst case, let CC1 be a SEQ, and CC2 be a SEL. The original architecture can be

represented as in Fig. 7.7a, where the execution �ows from component A, then

B. This is the same representation in Fig. 7.6a. Whenever a new C component

is composed using a new connector, CC2 (see Fig. 7.6b), the control execution

can also be modelled as shown in Fig. 7.7b. Observe that the behaviour of the

original execution in Fig. 7.7a is indeed preserved.

B

A

A

B

C

(a) Sequential execution (b) Selection and Sequential

condition

input

output

output

input

Fig. 7.7: Representing execution �ow for Sequential and Selection Cases: Case
1

The second case is to let CC1 be a SEL instead, and CC2 be a SEQ. We are

still referring to the original architecture in Fig. 7.6a, where the execution �ows

from component A, or B. The same representation can be modelled as in Fig.

7.8a. Whenever, a new component, C is composed using a new connector, CC2

(see Fig. 7.6b), the control execution can also be modelled as shown in Fig.

7.8b. This time, note that the behaviour of the original execution in Fig. 7.8a

is not preserved. There is no other means of preserving the original execution if

component C is to be added and sequenced before A. The only valid composition

7.3. ARCHITECTURE REFACTORING RULES 205

point will be sequencing after A. Hence, the refactoring of this structure is not

permitted.

AA B B

Csequenced after A
C can only be

input

output

output

input

condition

(b) Selection and Sequential

condition

output

(a) Selection

output

Fig. 7.8: Representing execution �ow for Sequential and Selection Cases: Case
2

Now, let us consider another case which refactors from original architecure

Fig. 7.6a to Fig. 7.6c. The same cases applicable here, which can be of any

ordering of combination of cases (1) sequential i.e. SEQ or PIPE or (2) selection

that is using SEL connector. The following discussion provides the possibility of

adding a lower hierarchy for both cases. In the �rst case, let CC1 be a SEQ, and

CC2 be a SEL. The original architecture can also be represented using a UML

activity diagram as in Fig. 7.9a, where the execution �ows from component A,

then B. This is the same representation in Fig. 7.6a.

If a new component, C is composed using a new connector, CC2 , in this case a

SEL (see Fig. 7.6c), the control execution is exempli�ed in Fig. 7.9b. Observe that

the behaviour of the original execution in Fig. 7.9a is not completely preserved.

Sequential execution from A can only be proceeded if the selection criteria is

satis�ed. In order to allow such a preservation of behaviour, the condition must

always be satis�ed, which means that component C may never be executed. This

violates the aim of the intended design.

The other case for refactoring of the original architecure Fig. 7.6a to Fig. 7.6c

206 CHAPTER 7. ARCHITECTURE REFACTORING

B

A

C

B

A

input

output

input

output

condition

(b) Selection and Sequential(a) Sequential execution

Fig. 7.9: Representing execution �ow for Sequential and Selection Cases: Case
3

would be the case where CC1 is a SEL, and CC2 is a SEQ. An activity A or B

components based on the selection criterion. The same representation is presented

in Fig. 7.6a. It is worth noting that the connectors in XMAN exclusively deal

with communication and coordination amongst components, instead of within

computations in a single component [VL10].

If a new component, C is composed using a new connector, CC2 , in this case

a SEQ (see Fig. 7.6c), the control execution is exempli�ed in Fig. 7.10b. Observe

that the behaviour of the original execution in Fig. 7.10a is accurately captured

and preserved.

The above cases show that whilst making design decisions to refactor, a de-

signer should be concerned on the central aim in refactoring that is to maintain

behaviour preservation. The following discussion provides example for adding a

lower level hierarchy.

Example. Let us look at a design from the VSS [LSB98] example. In this

design, the original architecture consists of a composition of Return Tape (RT)

and Return Tape (RTN) components using a SEL. See Fig. 7.11a. Consider if a

7.3. ARCHITECTURE REFACTORING RULES 207

C

BBA A

output

(a) Selection

output

condition

(b) Selection and Sequential

condition

input

output output

input

Fig. 7.10: Representing execution �ow for Sequential and Selection Cases: Case
4

new behaviour is relevant to one of the connected components. What is a possible

way to handle this?

SEL

return
Tape()

RTN

RTN = return tape
RT = rent tape

RT
rent
Tape()
rent

(a) Original arhitec-
ture

RTR = rental trans record
CR = card reader

PIPE

SEL

return
Tape()

RTNRT
rent
Tape()Card()

CR
read

display()
search()

RTR

(b) Target architecture

Fig. 7.11: Adding a lower level connector � VSS

By allowing the addition of a lower-level hierarchy, the target composition

could be more descriptive and meaningful. In this case, the designer must ensure

that the original behaviours are still preserved. As such, the selection criterion

must still be made available externally. For instance, originally, the selection of

the composition is between RT and RTN. Even after the refactoring task of adding a

lower-level hierarchy (see Fig. 7.11b), the designer must ensure that the selection

208 CHAPTER 7. ARCHITECTURE REFACTORING

criterion is still available. In this example, even after the refactoring, the selection

is still made between the two options.

The issue here is whether a new component (with additional behaviours) needs

to be replaced for the composition. Once a composition is made, the composition

is accordingly �xed. In order to replace part of a composition, another rule is

required. By adhering to this particular rule, any replacement made to an existing

composition can guarantee the behaviour preservation feature, instead of making

an arbitrary replacement.

Summary → 2 Adding a Lower-level Hierarchy

AR-2 Decomposing an existing composition will result in adding a new lower-level
hierarchy.

7.3.1.3 Adding an upper-level hierarchy

Assume that later in the incremental step, a new component, C, is required to be

composed with A using another heterogeneous connector (that is from a di�erent

connector type), and this will result in creating a new upper-level hierarchy. In

this case, there are two possibilities, either composition happens at the front (see

Fig. 7.12b) or at the end (see Fig. 7.12c) of the existing architecture.

CC1

A B

(a) Original architec-
ture

C

CC2

CC1

BA

(b) Alternative-1

A B

CC1

CC2

C

(c) Alternative-2

Fig. 7.12: Adding an upper-level hierarchy

This rule can be represented as:

7.3. ARCHITECTURE REFACTORING RULES 209

Archori = CC1(CA, CB)

Archtarget1 = CC2(CC , (CC1(CA, CB))) (7.5)

Archtarget2 = CC2((CC1(CA, CB)), CC) (7.6)

where CC1..n = heterogeneous composition connector, CA..C = component or

composition, Arch = architecture.

This rule is used to motivate refactoring tasks that result in creating an ad-

ditional hierarchy level. It is relevant whenever heterogeneous connectors are

involved, otherwise, the available open composition points can be applied if we

are dealing with existing homogeneous connectors. This rule is in line with the

normal composition de�ned in the X-MAN model.

Summary → 3 Adding an Upper-level Hierarchy
AR-3 Adding an upper-level hierarchy can be achieved by adding a heterogeneous

connector to an existing composition.

7.3.2 Horizontal Refactoring

The aim of horizontal refactoring is to improve architectural design. This includes

removing unnecessary architectural elements due to redundancies such as multiple

guards or any duplicate behaviour. The only refactoring rule speci�ed under the

horizontal refactoring category is to replace the parts of an architecture based on

a pre-de�ned set of behavioural patterns.

7.3.2.1 Replacing parts of an architecture

In order to simplify an architectural design, a designer identi�es any relevant

behavioural pattern that can be used to replace parts of an architecture. This

pattern can be replaced with a better design in the context of making the design

more descriptive and reducing guards. Currently, a pattern consisting of PIPEs

210 CHAPTER 7. ARCHITECTURE REFACTORING

and guards has been identi�ed. As a result of replacing this pattern with a

target architecture, the resulting architecture may also increase the hierarchy

levels. With the existence of guards, each time a composition is made, the former

guards must also be considered to be propagated.

Rule-3: PIPE with Guards Pattern

If a design contains a PIPE with guards that are checking the same constraints

with di�erent expected results i.e. mutual exclusive4 (see Fig. 7.13a and Fig. 7.13b,

the architecture can be refactored into a SEL connector.

= F= T
conditioncondition

CB

PIPE

A

(a) PIPE with Guards

CB

A

output

FT

output

condition

output

input

(b) Alternative representation

Fig. 7.13: Refactor PIPE with Guards

In this generic case, a SEL can be adopted whenever the same constraints

need to be evaluated; the resulting value is mutual exclusive and will branch to

a di�erent component when a di�erent value is received. It is worth noting that

these refactorings are relevant whilst accommodating the proposed incremental

approach. When dealing with each requirement, in each increment, the designer

models the extracted keywords from NLR intro architectural constructs.

During these increments, the resulting design of the system architecture is a

result of the composition of these partial architectures. Without the incremental

approach, a designer might not encounter the same scenarios. In an approach
4Only one of the constraints will be true, hence, only a single component will be selected

and executed at one particular time.

7.3. ARCHITECTURE REFACTORING RULES 211

where a set of requirements are analysed as a whole, the intuition and judgment

of the designer will be applied during the abstraction process. The derived design

from such a process is typically based on a series of re�nement process.

The following examples demonstrate the refactoring for replacing parts of an

architecture. These examples have manifested the use of this refactoring during

the execution of the case studies provided in Appendices C.

Example 1. In Fig. 7.14a, all the guards are checking the same approval status

from the authentication process. If the approval status returns true, the selected

transaction based on the corresponding user choice will be executed.5

bitfdep
aprvd?

wd
aprvd?

WD
with

draw() Cash()

PIPE

CD
dispense

vd?
apr-aprvd?

Cash()

DP
accept

PIPE

sit()
depo-

AC BI

Bal()
enqtrans-

fer()

TF

PIPE

(a) Guards with the same constraints

bitfdepwd

TF

fer()
trans-enq

Bal()

BICD

PIPE

Cash()draw()
with
WD

disp
AC

depo-
sit()

PIPE

accept
DP

Cash()

aprvd?

SEL:

PIPE

(b) Refactored design

Fig. 7.14: Pipe with Guards Pattern.

The earlier design can be refactored by treating all the guards that check

the same constraints and have the same result (approve status is true) as a SEL.

When these guards are changed, in order to preserve the behaviour of the previous

composition, a single guard (instead of many guards in the previous architecture)

that checks the constraint on top of the SEL is added. Hence, the resulting

composition can be shown in Fig. 7.14b. By performing this step, an evaluation

of the constraint (which is encapsulated by the guards) can be performed once.

In contrast, in the original architecture, the evaluation is done for each branch.

5For simplicity, the choices are not labelled here.

212 CHAPTER 7. ARCHITECTURE REFACTORING

Thus, the redundant guards can be combined and the number of evaluations can

be reduced.

Tape()
rent

complete complete

Video()
update

RT VIR RTR

RTR()
update

RT = rent tape

VIR = video rental record
RTR = rental trans. rec

PIPE

Fig. 7.15: Exceptional
cases � VSS

However, the rule is only applicable to con-

straints that allow options to be selected between

the guarded branches. If both of the branches need

to be executed, then this rule is irrelevant. An ex-

ample of such a case can be shown in Fig. 7.15

(drawn from the Video Store System (VSS) exam-

ple). In this case, both of the branches must be

executed if the constraints are satis�ed.

Looking back at the Example 1 (see Fig. 7.14b), as a solution, the guards that

evaluate the same constraints can be aggregated and encapsulated into a single

guard. This guard needs to be put at a valid composition position. In this case,

the guard is brought up front so that the constraint can be checked before the

execution of the SEL.

Example 2. Let us assume that the guards are checking the same constraint

and some of the branches may handle di�erent results. See Fig. 7.16a. In this

case, if the returned approval status is false (which means the authorisation has

failed) then the reject card computation will be invoked. This computation is

provided by the Reject Card (RC) component. The rest of the guard branches

have the same value, i.e. true. In such a case, the design can be transformed into

two di�erent SELs that encapsulate two di�erent constraints.

In this example, a SEL is added to replace all the guards that are checking the

same constraints and having the same result, that is the valid approval status.

See Fig. 7.16b. However, the branching for the RC component must be designed

in a separate SEL. As a result, another SEL is added at a higher hierarchy level

7.3. ARCHITECTURE REFACTORING RULES 213

Card()
rej
RC

noyesyes

rove()
app
AUT

dispense
CD

PIPE

Cash()draw()
with
WD

aprvd? aprvd?aprvd?

BI
enquire()

PIPE

(a) Original architecture

BI

uire()
enq-enq-
BI

biwd

yes

RC
rej
Card()

WD
with

draw() Cash()

PIPE

CD
dispenseapp

rove()

AUT

no

aprvd?PIPE

SEL

SEL

(b) Target architecture

Fig. 7.16: Before and after refactoring

so that the same behaviour can be represented.

It is important to note that as this approach is incremental, hence it is highly

possible that the architecture design will contain many guards as an e�ect of

the incremental process. By applying this rule, these unnecessary guards can

be reduced. As a result, the refactored architecture will be more structured

and meaningful, and hence, can help to reduce the complexity of the structure.

Although the resulting architecture (by the means of refactoring the guards into

a SEL connector) has an additional hierarchy level instead of reducing hierarchy

levels, the evaluation of the guards is now reduced. In this case, the evaluation

of the approval status can be performed once and then proceeds to the execution

of the selected transaction. Such a design is closer to the realistic behaviour

stated in the requirement when they are analysed as a whole. In contrast, if one

particular requirement is being dealt with individually, this issue might not be a

concern.

Note that the horizontal refactoring may have an impact on vertical refactor-

ing tasks. When this rule is applied, additional hierarchy levels are created. This

step is necessary to build descriptive architectural design, remove redundancies

214 CHAPTER 7. ARCHITECTURE REFACTORING

and reduce unnecessary e�ort.

Example 3. Fig. 7.17a shows that the architecture comprises a PIPE and two

guards that are checking the same constraints. In this example, if the �le valida-

tion returns false, which means that the validation fails, the Display Error (DE)

component's computation will be invoked. Otherwise, if the validation returns

true, which means the validation is approved, only then the Format File (FF)

component's computation will be invoked. If the AR-4 rule is applied here, both

of these guards can be simpli�ed and replaced by a SEL connector as shown in

Fig. 7.17b.

FFDEVF

PIPE

:true
statusstatus

:false

VF = validateFile
DE = displayError
FF = format file

(a) Original architecture

FFDEVF

status
:true:false

status

SEL

PIPE

(b) Target architecture

Fig. 7.17: Refactor guards � WordCount

Summary → 4 PIPE with Guards Pattern

AR-4 PIPE with mutual exclusive guards can be simpli�ed into a PIPE with SELs.

7.4 Issues and Discussion

The following are a few anticipated challenges and issues pertaining to the archi-

tecture refactoring process.

7.4. ISSUES AND DISCUSSION 215

7.4.1 Correctness criterion

In order to guarantee behaviour preservation, a correctness criterion has to be

decided. The correctness criterion evaluates both the original and the refac-

tored architecture to ensure that the same behaviours are maintained. So far,

the adopted criterion is based on analysis and justi�cation. In order to ensure

behaviour preservation, work such as [MQR95] adapted faithful interpretation,

[TB01] adopted database schema evolutions, whilst [Opd92] provided invariants

and enabling conditions. However, all of these works applied the refactorings to

object-oriented design and implementation.

7.4.2 Measuring design complexity

Currently, no formal software metrics are used to measure the complexity of the

design. In general, the number of connectors are relative to the complexity level

of the architecture. Thus, our aim is to reduce the number of connectors and

guard adapters whenever possible, while maintaining the behaviour preservation.

7.4.3 Handling components' interfaces

A component's interface is represented as an abstract element that exposes the

services provided by the component. Typically, the interface is speci�ed by its

method signature, consisting of the name of the service and its required input and

output (including type and quantity). By exposing these services, any composi-

tion connector will be able to coordinate control between components. However,

when refactoring happens, careful consideration has to be put into action, as the

main aim is to maintain behaviour preservation in each increment. Each time an

architecture is refactored, the necessary updates to its corresponding interfaces

must be taken care of. Without this consideration, the refactored part of the

216 CHAPTER 7. ARCHITECTURE REFACTORING

architecture might not be accessible.

7.5 Summary

Architecture refactoring supports the changes to system architecture structure

while maintaining the preserved behaviours. In order to achieve behaviour preser-

vation whilst satisfying the required behaviours, the set of architecture refactoring

rules could assist the system designer in making design decisions. In this chapter,

the architecture refactoring rules together with their justi�cations and examples

are discussed and presented. In Chapter 8, the formulation of the entire approach

to constructing component-based systems from NLR will be presented.

Chapter 8

De�ning the Approach to

Constructing Component-based

Systems Directly from

Requirements

The primary aim of this chapter is to set the scene for the entire approach

in regards to the construction of component-based systems from requirements.

This approach consists of a �ve-step process involving extracting elements of

component-based systems, the mapping of the extracted elements into the X-

MAN constructs, creating a partial architecture, creating an incremented system

architecture and �nalising the architecture. The secondary aim of this chap-

ter is to demonstrate the feasibility of the approach. In an attempt to perform

such a demonstration, a simple yet complete ATM example will be adopted. In

addition, a larger set of requirements (Trading System (COCOME) [RRMP08])

will be applied in the subsequent chapter so as to evaluate the validity of this

approach.

217

218 CHAPTER 8. DEFINING THE APPROACH

8.1 Introduction and Motivation

In this approach, only a single requirement1 is being dealt with at a single point

of time. The keyword extraction process is carried out for a single requirement

at a time. This process is possible because of the encapsulation property in

the X-MAN component model. Moreover, it is an advantageous feature be-

cause analysing one requirement is more manageable than the usual practice of

analysing all requirements together. In addition, dealing with each requirement

can also lead to scalability (in terms of dealing with any number of requirements),

and always a �nitely terminating process.

With such an incremental approach, each requirement is handled in a sys-

tematic way, hence reducing the abstraction e�ort made during the analysis and

design stages. These abstractions are mostly subjected to the expertise, intuition

and judgment of the designer's e�orts. During these processes, it is possible for

arbitrary decisions to be made.

In order to achieve the above-mentioned aim, and also to demonstrate the

complete cycle of the approach, it is therefore plausible to apply a simple, yet

complete example that is the ATM System. This strategy allows us to focus

on the processes involved in each step of the approach and at the same time

understanding the entire approach.

As the basis of an approach to constructing component-based systems directly

from requirements, a component model is adopted. Based on the analysis of

the existing mapping approaches as laid out in Chapter 2, to the best of our

knowledge, there is no work that deals with one requirement at a time apart

from the Behavior Engineering (BE) approach, and at the same time allows the

construction of a system incrementally. In this work, a component model is

1It is worth noting here that a single requirement is not necessarily one statement.

8.2. DEFINING THE APPROACH 219

employed as the basis of the approach to constructing systems directly from

requirements. This approach di�ers from the BE approach. The BE approach

builds the behaviour tree of the desired system, extracts a system structure from

the behaviour tree and a series of re�nement diagrams. The DBT diagram aids

in the derivation of a component diagram. The construction of the component

diagram is therefore in a single step and not performed incrementally. It then

generates codes for the system.

In addition, the BE approach does not have the notion of pre-existing com-

ponents, but instead generates all the codes for every system from scratch. In

principle, a component-based approach is better not only because it enables the

re-use of pre-existing components, but also because it facilitates the construction

of the system architecture incrementally. The BE approach builds the behaviour

tree for the system incrementally, but not the system itself.

In this incremental approach, by applying the pre-de�ned sets of heuristics

and the design decision rules, this strategy aids the system analysts or designers

in making design decisions throughout the construction process. In contrast to

merely relying on their expertise or experiences that may lead to constructing

systems arbitrarily, these heuristics and rules can contribute to a systematic semi-

formal process.

8.2 De�ning the Approach

As introduced in Chapter 1, this work attempts to map requirements into component-

based systems using incremental composition. The conceptual model (see Fig. 8.1)

depicts the overall context of the approach. With requirements as the input, being

extracted and mapped to component-based systems and incrementally be built

to form a system architecture.

220 CHAPTER 8. DEFINING THE APPROACH

Fig. 8.1: Research Context � A Conceptual model.

Based on the semantics of the X-MAN component model, the design decisions

and heuristics for extracting elements of component-based systems, the incremen-

tal composition and the architecture refactoring features, a system designer (or an

analyst) adopts this approach with the intention of constructing component-based

systems directly from NLR. Fig. 8.2(a) illustrates the process model involved. As

requirements may contain problems such as incompleteness, ambiguities and in-

consistencies, the designer shall consult with the system users to clarify these

issues. It is beyond the context of this work to provide any solution to such

issues.

X-MAN
Mapping to

Extraction
Keywords

Composition
Incremental

Refactoring
Architecture

No

Yes

Finalise the architecture

with a system architecture
Compose the partial architecture

Create a partial architecture

Map the extracted keywords
to the X-MAN elements

Extract elements of component-
based from requirements

complete?

(a) Conceptual process model. (b) Steps in the approach.

Fig. 8.2: The Incremental Approach.

8.2. DEFINING THE APPROACH 221

At every incremental step, each requirement is executed based on the steps as

illustrated in Fig.8.2(b). Accordingly, the subsequent discussion will be presented

and organised according to these steps. The following subsections discuss each of

the processes involved.

8.2.1 De�ning Algorithms for the Incremental Approach

In the incremental approach, requirements are dealt with one at a time. Based

on Algorithm-1, for each requirement, �rstly, element extraction process is per-

formed and then the result of the extraction process will be mapped into mod-

elling elements as de�ned in the XMAN semantics. The detailed algorithm for

the extraction process and the mapping process are shown in Algorithm-2 and

Algorithm-3 respectively.

Algorithm 1: The Incremental Approach to Constructing Component-
based Systems Algorithm
Require: A set of requirement statements. Requirements are dealt with one at a time.
Understanding of the XMAN semantics, the extraction and mapping heuristics are required.

Ensure: A system diagram using XMAN semantics.
while requirement n is in sequential order do
if requirement n is not the last requirement then

Perform element extraction process. See Algorithm-2.
Map the extracted elements to the component-based elements. See Algorithm-3.
Increment requirement n + 1

end if

end while

It is worth noting that the extraction process i.e. Algorithm-2, is grounded by

the de�ned set of terms i.e. computation, control and data based on the XMAN

component model semantics. The pre-conditions for performing the element ex-

traction process are (1) availability of the requirement (RQ) to be extracted and

(2) knowledge of the XMAN component model and understanding of the element

extraction heuristics. These heuristics are provided as a guideline to be applied

during the extraction process.

222 CHAPTER 8. DEFINING THE APPROACH

Algorithm 2: The Element Extraction Algorithm
Require: A requirement (RQ) to extract the candidates of architectural elements.
Understanding of the XMAN semantics and the extraction heuristics are required.

Ensure: Extracted computations, control and (or) data based on the XMAN semantics.
Read each RQ element
if (RQ element is a verb) then
if the verb is (data transformation || state || event) then

Extract computations using Heuristic HR-1A.
end if

else if (RQ element is a noun) then
if (if the noun is an action noun) then

Extract computations using Heuristic HR-1A.
end if

else if (RQ element is (descriptive phrases || predicate)) then
Extract computations using Heuristic HR-1A.

end if

if (RQ element is (user interaction || implied from hardware services)) then
Extract computations using Heuristic HR-1B.

end if

if (RQ element is implied from conceptual components) then
Extract computations using Heuristic HR-2.

end if

if (RQ element is (preposition || conjunction || pre-de�ned control terms || implied from
preposition)) then

Extract control using Heuristic HR-3.
end if

if (RQ element is (noun AND relevant) then

Extract data using Heuristic HR-4.
end if

Get the extracted computations, control and data.

8.2. DEFINING THE APPROACH 223

For each of the requirement, the main aim is to extract relevant keywords that

may denote (1) computations, (2) control and (3) data. These three elements are

fundamental elements in XMAN semantics. Functional requirements generally

state the desired behaviours of the system to be developed. The behaviours

which we are interested in are data transformations. Nonetheless, these may be

explicitly stated, hence, we need to identify keywords that denote computations

from the requirements. These computation keywords can be identi�ed from many

sources such as data transformation, state, event, action noun, in descriptive

description or predicate expressions. For such purpose, users may use Heuristic

HR-1A.

Even if a computation is found in the former case, users are still required to

look for any potential computation candidate in the remaining parts of the re-

quirement statement. The same case also applies for control and data extraction.

In the cases where keywords that denote computations may not be explicitly

stated, computations can be extracted based on (1) user interaction with the

intended system or (2) implied from hardware services. These cases have been

addressed in Heuristic HR-1B. Lastly, for identifying keywords that denote com-

putations, users may also encounter conceptual components, in which components

are explicitly being stated without explicit data transformation. To handle such

a case, users can refer to Heuristic HR-2.

In order to identify a control, which may be originated from a pre-de�ned set

of selected prepositions, conjunctions, control terms or implied from prepositions

in the natural language requirements, users may adopt Heuristic HR-3. The �nal

part of the extraction process is the identi�cation of keywords that denote data.

Heuristic HR-4 is created to handle the data issue. Once the extraction process is

completed for a particular requirement, the next step is to perform the mapping

process.

224 CHAPTER 8. DEFINING THE APPROACH

The following process involves the mapping of the extracted elements to

component-based system elements. The detailed algorithm for the mapping pro-

cess is shown in Algorithm-3. The pre-conditions of the mapping process are (1)

result of the extraction process, (2) the understanding of the XMAN semantics

and (3) knowledge of the mapping heuristics to be applied during the mapping

process. The �rst design decision to consider is whether the extracted computa-

tion elements should be encapsulated in a single or separate components. Highly

encapsulated components could increase the probability of matching components

in repository.

As this approach is applied in the deployment phase of the component-based

system life cycle, all the mapped components are assumed to already be existed

in a component repository. If in any case that there is no matching component,

it is assumed that the component must be priorly designed and created. The

process of creating a new atomic component in component-based development is

considered as design phase, which signi�cantly di�ers from the deployment phase.

The next process is to map the extracted control keywords to its correspond-

ing composition connectors i.e. SEQ, PIPE or SEL or adapters i.e. Guard or LOOP.

These design decisions are guidelines for the users to adopt whilst making deci-

sions on which component-based element to be mapped for the extracted control.

An extracted control keyword from a particular requirement can only be mapped

to one of the de�ned control element i.e. SEQ, PIPE or SEL or adapters i.e. Guard

or LOOP.

The third main step is to map the extracted data keywords to data semantics

de�ned in XMAN. In XMAN, relevant and useful data are data that are used

in computations. Hence, the user should identify the relevant data based on the

selected computations to be performed.

8.2. DEFINING THE APPROACH 225

As exceptions, cases where (1) no computation is extracted from the extrac-

tion process; or (2) no indication of control, are also being considered. The former

case covers situations in which no explicit computation could be extracted from

the corresponding requirement statement. As a solution, an inference should be

made so as to derive computations from each requirement. In this approach,

only functional requirements are applicable. Hence, although there is no explicit

computation from the requirement, it is anticipated that each functional require-

ment should contain the relevant computation(s). The latter case occurs when

there is no explicit control terms to be extracted from the requirement. Here,

it is assumed that the order the requirement is written represents the ordering

execution of the extracted computations.

The subsequent task during mapping the extracted componnet-based elements

is to model them using XMAN model. The �rst design decision to be made is

where should the composition be. Whenever we anticipate that the existing com-

position connector is highly reusable, we adopt a new composition connector. A

connector can be considered as potentially reusable whenever based on the de-

signer's judgment, there is a possibility that in the later steps, the same control

structure can be reused. For instance, if we design a PIPE with a speci�c type of

input data and is expected to have a speci�c number of ordering execution, we

can store this composition connector's con�guration for later purposes. Using this

strategy, we allow the existing composition to be used in further compositions.

On the contrary, if we do not anticipate that the existing connector might be

reused, we can directly use the existing composition connector as long as the ex-

pected behaviour is satis�ed. The �nal outcome from the mapping process is the

�nal system diagram consisting of all the mapped components and composition

connectors.

226 CHAPTER 8. DEFINING THE APPROACH

Algorithm 3: The Mapping of the Component-based Elements to the
XMAN Elements Algorithm
Require: The extracted computations, control and (or) data from Algorithm-2.

Understanding of the XMAN semantics and the mapping heuristics are required.
Ensure: A �nal system diagram based on the XMAN semantics.
if (computation keywords are extracted) then

Assign computations to its relevant component.
Use Heuristic HMR-4B.
if (more than one computations are related) then

Encapsulate them in a single component.
else if (computations are independent) then

Assign each computation in separate components.
end if

end if

if (control keywords are extracted) then
if (the control keywords are based on ordering execution) then

Apply Heuristic HMR-1.
if (data is required) then

Apply Heuristic HMR-2.
Apply a PIPE.

else if (data is not required) then
Apply a SEQUENCER (SEQ).

end if

end if

else if (control is based on branching execution) then
Apply a SELECTOR (SEL).

else if (control is constrained on a single component) then
Apply Heuristic HMR-3.
Apply a GUARD.

end if

if (data keywords are extracted) then
Map relevant data to be used.

end if

if (no explicit computation keyword is provided) then

Use computation inferences.
Apply Heuristic HMR-5.

end if

if (no explicit indication of control keyword is provided) then
Assume the order the requirement is written.
Apply Heuristic HMR-7.

end if

Compose the mapped elements using XMAN modelling semantics.
if (composition connector is potentially reusable) then

Apply Heuristic HMR-4A.
Use a new composition connector.

else if (composition connector is independent)&& (the behaviour permits) then
Use an existing composition connector.

end if

8.2. DEFINING THE APPROACH 227

8.2.2 Extracting Elements of Component-based Systems

from Requirements

In the light of the entire approach, �rst, keywords of the component-based sys-

tems from each requirement statement are analysed, identi�ed and extracted,

as detailed in Chapter 5. In the extraction process, an analyst (or a designer)

examines each of the words in a requirement statement and identi�es the com-

putations, control and data. From a requirement, by using the Extractor tool,

the analyst highlights the extracted verbs, nouns and control terms. The control

terms here are de�ned based on a selected list of prepositions, conjunctions, and

terms that may denote control. The extraction process is done with the help of

the POS tagger and the pre-de�ned set of heuristics.

First, the analyst selects the computations based on the semantics of data

transformation (not just any operations or verbs). The analyst then picks key-

words that denote control, and �nally, he decides on any relevant data pertaining

to constraint data, selection data, initialisation values or values to be passed to

any external computation. These values are not handled by the identi�ed com-

putations but rather by providing the values to be used in other computations.

The output of this step is extracted computations, control and data.

As a summary, for each requirement, the keyword extraction process comprises

the following steps:

1. Execute the Extractor tool to perform parts-of-speech (POS) tagging on

the requirement and also to extract selective types of verbs, nouns, prepo-

sitions and conjunctions. A POS tagger is able to parse a piece of text and

extract words corresponding to the POS speci�ed by rules de�ned by the

user.

228 CHAPTER 8. DEFINING THE APPROACH

2. Analyse the results of the POS tagger category by category; for each cat-

egory, keywords are further analysed and �ltered according to pre-de�ned

heuristics.

3. Identify computations, control and data.

8.2.2.1 The Extractor Tool

The Extractor tool has been developed in order to assist the analyst in iden-

tifying and extracting the elements of component-based systems. The main ad-

vantage of the tool is that it abates the amount of text to be digested by an analyst

while dealing with a single requirement.

Fig. 8.3: The Flow of the Ex-

tractor Tool.

It is not claimed that this tool can be used

for automatic extraction, but it is merely a

promising tool to assist analysts in identifying

component-based elements from NLR based on

a speci�c component model, i.e. the X-MAN

model.

Fig. 8.3 depicts the �ow of the Extrac-

tor tool. Initially, a requirement will be used

as an input to the tool. Each word will be

syntactically tagged using a pre-de�ned se-

lected POS tagger set. The X-MAN com-

ponent model de�nes what are components,

connectors and the composition mechanism. Based on these notions, the

elements to be identi�ed from text are derived. The main keyword ele-

ments are computations, control and data. In order to syntactically extract

these elements, the Brown Corpus POS tagger2 is adapted and adopted.

2http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html. A brief introduction on

http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html

8.2. DEFINING THE APPROACH 229

Fig. 8.4 shows one of the screen shots of the Extractor tool. Initially, a require-

ment will be an input to the tool. Each word will be syntactically tagged, using

a pre-de�ned selected POS tagger set. The tool includes the built-in heuristics

which allow the �ltering of irrelevant words. For instance, articles (e.g. `the',

`a', `an') will not be extracted. Moreover, a user can highlight words according

to verb, noun or control features (see Fig. 8.4). The tool thus helps by suggesting

keywords that may denote control, computation or data based on the POS tagger

and some pre-de�ned rules. Nonetheless, the analyst needs to manually �lter and

�nalise all the selected keywords.

Fig. 8.4: The Extractor Tool.

A dictionary to document all the

extracted elements is highly recom-

mended, in order to reduce risks of

redundancies or inconsistencies in the

extracted elements. To support this,

the Extractor tool provides a simple

means of speci�cation for the extracted elements, and this speci�cation can be

used as a reference for the succeeding processes.

8.2.3 Mapping of Extracted Elements to X-MAN Elements

Having all the extracted elements that are the computations, control and data,

the subsequent task is to map these elements into the X-MAN elements. The

entire mapping process has been discussed in Chapter 6. Based on the guidance

provided in that chapter, each of the extracted keywords that denote computa-

tions, control and data are assigned to their respective X-MAN elements. If a

the tagger has been included in the Appendix A.

230 CHAPTER 8. DEFINING THE APPROACH

keyword that denotes control is extracted, for instance, it is mapped into a cor-

responding X-MAN element, i.e. a composition connector or an adapter. This

process is manually performed by the analyst (or the designer). In this step, �rst,

the identi�ed computations are assigned to their corresponding components. A

component provides services which are the computations that it contains. During

this task, the use of descriptive names to specify these elements will be useful. In

order to avoid redundancies, each component together with its provided services

and identi�ed data must be speci�ed and stored in a dictionary.

Whenever more than a single computation is extracted, these computations

are assigned to their logical providing component. The following step is to identify

the control or �ow of execution between these components. These controls are

mapped to either composition connectors or adapters, and �nally the relevant

data are mapped to data elements of component-based systems.

Once all the components are identi�ed in each increment, they are selected

from an existing repository. This repository contains pre-existing components,

generic composition connectors and adapters. The selected components, con-

nectors and adapters will be instantiated and customised accordingly. In this

approach, it is assumed that these components will be selected from these pre-

existing components in the repository. However, when a suitable component

cannot be found, this component needs to be built �rst and deposited into the

repository. The development of such a component is supported using a completely

separate component-life cycle development process.

An exceptional case is when there is no indication of any computation from a

particular requirement. The implication of not having any computation as a re-

sult of the elements extraction is that the architecture cannot be derived from the

requirement. This may be due to a few possible reasons. Firstly, statements that

contain data elements and their relationships only. For instance, �A course is

8.2. DEFINING THE APPROACH 231

taught by one or more lecturers.� Such a statement is rather useful in database

modelling, but since this approach is a behavioural approach, only functional

requirements are considered. Secondly, statements that contain relationships in-

formation. For example, �A student can be an undergraduate or a graduate.�

In object-oriented modelling, such information may be regarded as inheritance

properties, however such information is not a concern in this approach.

Another exceptional case is when there is no indication of any control from

the requirement statement. The impact of not having any connector as a result

of the elements extraction is that the components could not be composed, even

if computations have been identi�ed from the requirements. A possible reason

that may contribute to this issue is when a statement only describes a single

computation. Hence, only a single component will be identi�ed without any

control. A foreseen issue here is �nding the valid composition point when the

mapped element is to be composed with the incremented system architecture.

This is when an assumption is applied that each statement is written in an order

even without any explicit indicator. For instance, �A user enters card. A user

enters PIN.� Here, although there is no clear indication of any kind of ordering,

it is assumed that the prior statement is executed �rst.

Whenever a constraint data is extracted and even without an explicit hint

for an adapter, in most cases, a guard adapter is required. Otherwise, there will

be no component-based element that will handle the evaluation of the constraint

data. This issue has been address during the mapping of the extracted elements

of component-based process in Chapter 6.

8.2.4 Creating partial architectures

Subsequently, in the third step, the mapped elements are used to model a partial

architecture based on the X-MAN compositional semantics. This process requires

232 CHAPTER 8. DEFINING THE APPROACH

in-depth understanding of the X-MAN model. A partial architecture represents

the behaviours stated in a requirement. The results of element extraction and

mapping to the X-MAN constructs steps should be su�cient to enable a partial

architecture for the requirement to be constructed.

Ideally, in each increment, only a single requirement is being dealt with. The

created partial architecture will be incrementally composed with the previous

incremented architecture in the following step. In this step, modelling of the

component-based elements is devised based on the X-MAN component model's

notation and its semantics as presented in Chapter 3.

In brief, components and composition connectors are modelled. These con-

nectors are used to compose components in order to build an architecture. In

this thesis, this architecture is referred to as a partial architecture. This partial

architecture is built for a particular requirement based on the mapped X-MAN

elements.

8.2.5 Composing partial architectures with the existing sys-

tem architecture

In the following step, the constructed partial architecture which is derived from

the previous step is composed to the existing system architecture.3 This system

architecture will be built-up gradually by composing partial architectures with

the incremented system architecture. During this stage, the rules for composing

the partial architecture with the system architecture are based on incremental

composition and architecture refactoring rules. By adhering to these rules, the

desired characteristics (i.e. encapsulation and compositonality) of the derived

architecture may be achieved. As such, the resulting architecture can be further

3For the initial increment, the partial architecture is treated as the initial system architec-
ture.

8.2. DEFINING THE APPROACH 233

composed with other composition units, which adhere to the X-MAN seman-

tics. The signi�cance of the refactoring rules during this step is to resolve any

composition issues, in addition to the incremental composition mechanism.

In order to perform this step, the incremental composition concept comes

into action. This concept has been discussed in Chapter 4. This chapter demon-

strates how the incremental composition supports and facilitates the composition

of components and compositions into an existing architecture.

Nonetheless, this step may not be possible if the partial architecture of the

current requirement cannot be related to the current system architecture. This

can easily happen, as the requirements document is unstructured. When this

happens, the incremental composition for this requirement needs to be deferred

until it becomes clear where to compose such an architecture. If it never becomes

possible, then as with all requirements, there may be problems with the require-

ments themselves, and the system user needs to be consulted in order to resolve

any ambiguities, inconsistencies or incompleteness of the requirements.

In each increment, there may be many possible composition points (denoted

by `. . . ' in an open composition connector) associated with many open compo-

sition connectors. A valid composition point must be chosen in order for the

composition to achieve the behaviours that are stated in the requirement. In

particular, once the composition connector is chosen, a decision has to be made

as to whether a new component can be added at any composition point in the

connector, or whether it must be added at the front or at the end of the other ex-

isting components composed by the existing connector. This decision, of course,

depends on the expected behaviours as stated in the requirement.

These steps (�rst to fourth) are performed in each increment, that is, for each

requirement until the �nal requirement is dealt with. Once the partial archi-

tecture which derived from the �nal requirement is composed with the system

234 CHAPTER 8. DEFINING THE APPROACH

architecture, the �nal system architecture is considered as accomplished. In ad-

dition, this is when the architecture refactoring tasks can be applied. The main

aim of the refactoring rules during the �nal step is to simplify the derived ar-

chitecture, whilst maintaining the original behaviours. These rules have been

discussed in Chapter 7.

8.2.5.1 The Exogenous Composition Framework Tool

The Exogenous Composition Framework (ECF) tool has been developed to assist

the systems designer in modelling and composing the partial architectures using

incremental composition. Rules that can automatically be checked by the tool

have already been embedded; hence, using this tool can help to reduce other

unnecessary constraints during composition, and the designer's e�ort could be

strictly focused on issues of incremental composition.

Fig. 8.5(a) and (b) show the screen captures of the ECF tool. The value

of such a tool is clearly that it enables the designer to model the architecture,

construct systems and then execute them. This is only possible when all the

required components and generic composition connectors already existed in the

repository. This way the composition of the architecture is considered executable.

This tool also enables the designer to validate a �nal system architecture with

respect to the system's requirements. By validating the system against a set

of test cases, this strategy contributes as one of the means to provide evidence

that the system satis�es its requirements. The usage of the tool, in general also

experimentally validates the approach of the system construction directly from

requirements.

The ECF tool supports component composition (both in design and deploy-

ment phase) according to the X-MAN component model's semantic. However, as

this approach only works in the deployment phase, the discussion is constrained

8.2. DEFINING THE APPROACH 235

(a) R1 (b) {R1,R2}

Fig. 8.5: The Exogenous Composition Framework Tool.

to this phase only. The result of this composition can be used to generate Java

codes accordingly.

The tool provides two views: (1) the design view, which is to support mod-

elling of an architecture; (2) the code view, which is to translate the model pro-

duced in the design view into Java codes in order to be executed using the X-

MAN model's Application Programming Interface (API). As shown in Fig. 8.5(a),

CardReader (CR) and PinReader (PR) components are selected from a reposi-

tory of pre-existing components, and the instances of each component are created.

Then, a SEQ connector is selected from a repository of pre-existing composition

connectors and an instance of the connector is created. The following step is to

create the connections between all of the modelling elements in order to create

a composition. A hollow circle that denotes an interface on top of the connec-

tor represents the open composition where more components are allowed to be

composed with the existing composition. A solid interface, on the other hand,

denotes the fact that the composition is �xed and thus no more components can

be added to the composition.

236 CHAPTER 8. DEFINING THE APPROACH

8.2.6 Finalising the system architecture

When all the requirements have been mapped, an architecture for the entire

system is produced. However, this architecture still has available composition

points, and can therefore be re�ned, adapted or optimised. Components could

be combined into larger composites; a set of connectors could be optimised to

a single connector; connectors could be adapted by adaptors to add behaviour

that is implicit in the requirements. The last step of the �nalisation process is to

remove any remaining available composition points, thus closing the whole (�nal)

architecture. These architecture refactoring tasks have already been discussed in

Chapter 7.

By �nalising the composition points, all the dotted lines are removed and the

lolly-pop interfaces are changed into solid ones. See Fig. 8.6(b). This indicates

that any further incremental composition are restricted to be performed to the

architecture.

hollow lolly-
pop interfaces

m1
C1 C3

m1 m1
m1
m2

m2

 CC

C2 C4

 CC

(a) Original architecture

pop interfaces
solid lolly-

m1
C1 C3

m1 m1m2
C2 C4

 CC

 CC

m2m1

(b) Target architecture

Fig. 8.6: Finalising Composition Points.

In this step, the ECF tool supports the �nalisation process by allowing a com-

position connector to be closed. As a result of this, the hollow lollipop interface

will be changed into a solid lollipop interface. If an upper-level hierarchy is �-

nalised, all the lower-level hierarchies will also be automatically �nalised. This

8.2. DEFINING THE APPROACH 237

re�ects the fact that no more composition is allowed, using the �nalised compo-

sition connector.

In normal cases, the �nalisation of composition connectors is only applica-

ble during the �nal step because we could never be certain that the succeeding

requirements may not change or alter any parts of the existing architecture. How-

ever, in an exceptional case where the designer is also a domain expert, he might

be able to decide which composition point that can be �nalised during each in-

crement rather than waiting until the �nal step.

In addition, during this �nalisation step, a loop adapter is added at the top

level connector to suggest that the system is ready to be used by any system user.

This can be shown in Fig. 8.7(b). Otherwise, the execution terminates once a

cycle is completed or terminated. Note that a loop adapter is not a composition

connector.

LOOP

C4C2

 CC

m2
m2
m1

m1m1
C3C1

m1

 CC

(c) Adding a loop - ATM Example(b) Target architecture(a) Original architecture

 CC

C4C2

 CC

m2
m2
m1

m1m1
C3C1

m1

ATM

amount, acctNo)
transfer(card, pwd, choice

choice

valid, choice

transaction

deposit(card, pwd, choice, amount)
withdraw(card, pwd, choice, amount)

balanceInq(card, pwd, choice)

invalid

LOOP

PIPE

SEL

SEL

AUT

choice

WD BI PR RC TLTRDP

AUT = authentication WD = withdraw DP = deposit TR = transfer

PIPE

BI = balance inq. PR = print receipt RC = reject card TL= trans. log

Fig. 8.7: Adding a Loop Adapter.

Example. In the ATM example (see Fig. 8.7(c)), once the architectural design

is completed, a loop adapter is added at the top level connector. This addition is

to simulate a situation where once the system is executed, it is ready to be used

by any system user.

238 CHAPTER 8. DEFINING THE APPROACH

8.3 A Complete Example: The ATM System

In order to demonstrate the entire approach, a complete ATM example will be

used. The aim here is to lay out all the processes involved, hence leaving the

details of each process to be referred to their respective chapters. For each re-

quirement, all the presented steps will be applied and in the end the �nal system

will be derived. This �nal system is executable, and can be regarded as a running

system, provided all the required data are supplied.

8.3.1 Increment-1 - Requirement 1

R1: The ATM will service one customer at a time. A customer will be required

to insert an ATM card and enter a personal identification number (PIN).

Step-1: Extracting Elements of Component-based Systems from Re-

quirements

After executing the Extractor tool (see Fig. 8.8), for R1, user interactions with

the system by inserting card and entering PIN are identi�ed. These two interac-

tions which imply computations, are performed sequentially. The system to be

built must provide computations to read the inserted card information and the

entered PIN. Note that the sequence must be preserved as performing the former

prior to the latter interaction. For control, the `and' conjunction is extracted,

whilst for data, customer, card and PIN are required for the composed compo-

nents (see Table 8.1 on the extraction result column). Nonetheless, there are also

cases in which sequencing does not enforce any ordering execution.4 The detailed

discussion on the extraction for R1 may be seen in Section 5.4.1.

4See Chapter 5.

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 239

Fig. 8.8: Extraction of R1 using the Extractor Tool

Step-2: Mapping of the Extracted Elements to X-MAN Elements

For each computation, a candidate component, which is an existing component in

a repository, will be assigned and selected. Based on the extraction information,

components with read card and read PIN computations need to be provided.

Obviously, many computations can be grouped into a single component. Con-

versely, a single computation can also be separated into several components. For

R1, it is decided that the computations are separated into two candidate compo-

nents, namely the CardReader (CR) and the PinReader (PR) respectively. The

main reason is that both the computations are device dependent, hence they can

both be modelled as separate entities. These components are being looked up in

a repository based on the signature matching of the components' interfaces. In

this case, the interface of CR component shows the component's provided services.

Based on the identi�ed control, the type of composition connector or adapter

that is appropriate will be mapped: use a SEQ to sequence between computa-

tions; use a PIPE if data from one component is needed to be piped to the other

components; use a SEL for branching. In addition, a guard or a loop can also be

used for adapting a component or a composition.

By considering all the mapped elements for computations, control and data,

240 CHAPTER 8. DEFINING THE APPROACH

�rst, the computations are assigned with its corresponding components that pro-

vide the required services. Based on the preceding step, the system must pro-

vide computations to read the inserted card information and the entered PIN.

Hence, these keywords are mapped to readCard() and readPIN() computations

respectively. Here, the readCard computation is assigned to a CardReader (CR)

component, whilst the readPIN computation is assigned to a PinReader (PR)

component.

In addition, the `and' conjunction is mapped to a sequential control �ow

between the two computations. Thus, the sequential execution is mapped to a

SEQ composition connector. Finally, the extracted data keywords are mapped

to the data elements in the X-MAN model. A summary of elements extraction

together with their mapping to component-based elements for requirement R1 is

shown in Table 8.1 in the mapping result column. These mapping design decisions

are based on the heuristics presented in Chapter 6.

Table 8.1: Summary of Steps 1 and 2 for R1

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.
insert DT [HR-1B] readCard() computation

� CardReader (CR)
component

[HM�1]

enter DT [HR-1B] readPIN() computation
� PINReader (PR) com-
ponent

[HM�1]

Control and Conjunction
(ordering)
[HR-3]

SEQ [HM�2] SEQ(CR, PR)

Data customer,
card, PIN

Data [HR-4] store customer, card,
PIN data

[HM�4]

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 241

Step-3: Creating partial architectures

The next step is to model the extracted elements according to the X-MAN com-

ponent model's notation. The result of this step is illustrated in Fig. 8.9. The

composition shows that the control �ow initiates from the top, invokes the read-

Card computation �rst, and then executes the readPIN computation.

Fig. 8.9: Partial Architecture for R1.

Step-4: Composing partial architecture with the existing system ar-

chitecture

As this is the �rst partial architecture, the diagram is also treated as the initial

system architecture diagram. This system architecture diagram will be incre-

mentally constructed by composing more extracted elements identi�ed from the

subsequent requirements.

8.3.2 Increment-2 - Requirement 2

R2: A customer must be able to make a cash withdrawal from the linked account.

Approval must be obtained from the bank before cash is dispensed.

242 CHAPTER 8. DEFINING THE APPROACH

Step-1: Extracting Elements of Component-based Systems from Re-

quirements

Consider R2. From the result of the Extractor tool, the computation verbs

(Table 5.2) approve, and dispense cash, and the computation noun (Table 5.3)

cash withdrawal are identi�ed as computations. Based on the HR-1A, the

required elements are identi�ed �rst, and then modelled accordingly. In R2, the

approval, cash withdrawal and dispense cash computations are extracted.

The subsequent step is to �nd hints for control. The main task here is to identify

any hints for execution �ow, either ordering, selection or repetition execution.

First, the result of the authentication computation has to be passed to the

other branch of composition before the cash withdrawal computation is allowed

to be performed. In this statement, the `before' preposition can be used as a

hint to denote ordering (see Fig. 8.10).

Fig. 8.10: Extraction of R2 using the Extractor Tool

Step-2: Mapping of the Extracted Elements to X-MAN Elements

Then, these extracted computations are assigned to its corresponding meaningful

component speci�cations i.e. Authentication (AUT) (for approve), Withdraw

(WD) and DispenseCash (DC) components. The result of the approve compu-

tation has to be checked before the withdraw and dispense cash computations

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 243

are allowed to be performed. As a result, based on HM-3, a guard adaptor is

required to evaluate the result of the authentication and invoke the computation

only if the result is satis�ed.

From the extracted elements in the previous step, the computations are as-

signed to their respective components that provide the required services, which

are AUT(for approve), WD and DC components. The result of the approve compu-

tation has to be checked before the cash withdrawal and dispense cash com-

putations are allowed to be performed. So a PIPE connector is used to compose

AUT with a composite of WD and DC. The latter composite is the result of another

pipe connector. A summary of the extracted elements and their corresponding

mapped X-MAN elements is provided in Table 8.2.

Table 8.2: Summary of Steps 1 and 2 for R2.

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.

approval Action noun approve() computation
�Authentication (AUT)
component

HM�1

withdrawal Action noun withdraw() computation
� Withdraw (WD) com-
ponent

HM�1

dispense DT dispenseCash() compu-
tation �DispenseCash
(DC) component

HM�1

Control before Preposition (or-
dering)

PIPE (data depen-
dency)

PIPE(AUT,[approved]�PIPE(WD,

DC))

approval constraint [approved] guard based on the con-
straint data

Data approval Data (con-
straint)

store approval status constraint (HM�4)

For data extraction, when a constraint data is identi�ed, accordingly a con-

trol for checking the constraint has to be added. In this case, as we extracted

approval as constraint data, hence a new control for evaluating the constraint

244 CHAPTER 8. DEFINING THE APPROACH

is created. This constraint for handling the evaluation of the constraint is later

mapped to a guard adapter.

Step-3: Creating partial architectures

The current system diagram for R2 can be shown in Fig. 8.11(a). Based on the

analysis in the previous step, a guard adaptor for the composition of the WD and

DC components is needed, because the control can only be allowed to reach the

composition if the result of invoking the AUT component is positive.

Step-4: Composing the partial architecture with the existing system

architecture

In normal composition, during each incremental step, a new connector must be

used. As a consequence, the number of connectors and hierarchies will expand

accordingly. This might lead to a complex design, with many connectors and

hierarchies, and as a result, the architecture might be di�cult to evolve and

maintain.

(a) Partial architecture for R2 (b) {R1R2}

Fig. 8.11: Increment-2.

The mapped elements for R2 can be composed to the existing partial sys-

tem diagram with the feature supported by the incremental composition. In this

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 245

solution, a di�erent type of connector, i.e. a PIPE, is identi�ed, the extracted

elements cannot in principle simply be composed with the existing composition

connector i.e. a SEQ5. Hence, the only way that the extracted elements in R2 can

be composed is from the open interface of the partial system diagram. Fig. 8.11(b)

exempli�es the new system architecture after the composition of the partial ar-

chitecture for R1 and R2.

In this step, incremental composition is applied in order to compose the partial

architecture for R2 with the current system architecture (in this case it is the

partial architecture for R1). The results of the computations in R1 are needed for

those in R2. Therefore, a PIPE is used to compose the two partial architectures,

instead of a SEQ. The top-level PIPE in the partial architecture for R2 provides

a suitable composition point for the partial architecture for R1. The partial

architecture that results from this incremental composition is shown in Fig. 8.11.

8.3.3 Increment-3 - Requirement 3

R3: A customer must be able to deposit cash to the linked account that can be

inserted into the cash slot. Approval must be obtained from the bank before

physically accepting the cash.

Step-1: Extracting Elements of Component-based Systems from Re-

quirements

For R3, �rst, the deposit and the accept cash computations verbs are identi�ed;

and an ordering execution is required to pass data between both of these compu-

tations. Next, the `before' preposition that denotes ordering is extracted. As

for data, the cash amount to be deposited and the approval status are identi�ed.
5A PIPE is a speci�c case of a SEQ.

246 CHAPTER 8. DEFINING THE APPROACH

Step-2: Mapping of the Extracted Elements to X-MAN Elements

The extracted elements from R3 are mapped to X-MAN elements as listed in

Table 8.3 (see the mapping result column). For R3, three components are assigned

based on the extracted computations, namely AUT, AC and DP. For control, a PIPE

and a guard adapter to evaluate the constraint data, i.e. the approval status, are

mapped.

Table 8.3: Summary of Steps 1 and 2 for R3.

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.

approval Action noun approve() computation
�AUT component

HM-1

deposit DT deposit() computation
� DP component

HM-1

accept DT acceptCash() computa-
tion � AC component

HM-1

Control before Preposition (or-
dering)

PIPE (data dependency) PIPE(AUT,[approved]�PIPE(DP,

AC))

implicit constraint [approved] guard based on the con-
straint data

Data approval Data(constraint) store approval status constraint (HM-4)

Step-3: Creating partial architectures

As the AUT component has already been mapped in the former increment, in this

increment, in order to compose the partial architecture for R3 with the current

system architecture (partial architecture for {R1,R2}), only the DP and the AC

are modelled and composed. The result of this incremental composition is the

partial architecture in Fig. 8.12(b). These elements are modelled as shown in

Fig. 8.12(a).

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 247

Step-4: Composing the partial architecture with the existing system

architecture

The prior authentication has already been provided by the same AUT component

in the partial architecture for {R1,R2}. Thus, the partial architecture for R3 is

as shown in Fig. 8.12(a). The partial architecture can be incrementally composed

to the existing system architecture, as depicted in Fig. 8.12(b).

(a) Partial architecture for R3 (b) {R1-R3}

Fig. 8.12: Increment-3.

8.3.4 Increment-4 - Requirement 4

R4: A customer must be able to make a transfer of money between any two

accounts originated from the linked account.

Step-1: Extracting Elements of Component-based Systems from Re-

quirements

From the fourth requirement, another ATM transaction that is able to trans-

fer money from the linked account is extracted. In addition, the `linked ac-

count' descriptive expression implies that an authentication is required in order

248 CHAPTER 8. DEFINING THE APPROACH

to perform the transfer transaction. For control, the `from' preposition denotes

ordering, whilst, for data, account information is extracted.

Step-2: Mapping of the Extracted Elements to X-MAN Elements

For each computation that is identi�ed, a decision has to be made as to which

component to assign the extracted computation. Later, the assigned component

will be selected from the repository. For this requirement, the computation is as-

signed to a new component, which provides a transfer fund operation. A summary

of both steps 1 and 2 is listed in Table 8.4.

Table 8.4: Summary of Steps 1 and 2 for R4.

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.

transfer DT transferFund() com-
putation � TF compo-
nent

HM-1

linked ac-
count

descriptive
expression

approve() computation
�AUT component

HM-1

Control from Preposition (or-
dering)

PIPE (data dependency) PIPE(AUT,[approved]�TF)

implicit constraint [approved] guard based on the con-
straint data

Data approval implicit data
(constraint)

store approval status constraint (HM-4)

account store account
info

store account info data (HM-4)

Step-3: Creating partial architectures

Based on the mapping result for R4, these elements are modelled (see Fig. 8.13(a)).

We may observe that on top of the guard adapter, the solid lollipop interface is

applied. The reason for this is that a guard adapter is not a composition connector

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 249

and hence no open composition is allowed.

Step-4: Composing the partial architecture with the existing system

architecture

The result of this composition can be illustrated in Fig. 8.13(b).In the existing

system architecture, the AUT component has already been modelled. Hence, the

only addition to the composition is the TF component together with the guard

adapter that evaluates the approval status.

(a) Partial architecture for R4 (b) {R1-R4}

Fig. 8.13: Increment-4.

8.3.5 Increment-5 - Requirement 5

R5: A customer must be able to make a balance enquiry of the linked account.

Step-1: Extracting Elements of Component-based Systems from Re-

quirements

From the �fth requirement, a balance enquiry computation is extracted. In

addition, the `linked account' descriptive expression denotes an authentica-

tion process, whilst the `of' preposition indicates origin or source. Hence, the

250 CHAPTER 8. DEFINING THE APPROACH

preposition is used here as to denote ordering (see Table 8.5).

Step-2: Mapping of the Extracted Elements to X-MAN Elements

The balance enquiry and authentication computations are assigned to a Bal-

ance Enquiry (BI) and AUT components respectively. Meanwhile, the extracted

control is mapped to a PIPE, whilst the approval status is assigned as constrained

data. Since there is a constraint data, a guard adapter is required to evaluate the

constraint, i.e. approval status.

Table 8.5: Summary of Steps 1 and 2 for R5.

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.

enquiry DT enquireBalance()

computation � BI

component

HM-1

linked ac-
count

descriptive
expression

approve() computation
�AUT component

HM-1

Control of Preposition (or-
dering)

PIPE (data dependency) PIPE(AUT,[approved]�BI))

implicit constraint [approved] guard based on the con-
straint data

Data approval Data (con-
straint)

store approval status constraint (HM-4)

Step-3: Creating partial architectures

The mapping results of the extracted elements are modelled as in Fig. 8.14(a).

Here, the control starts from the top and executes the AUT component, and con-

tinues with the connecting branch. The guard checks the approval status and

if satis�ed, invokes the computation in the BI component.

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 251

Step-4: Composing the partial architecture with the existing system

architecture

The result of this composition is illustrated in Fig. 8.14(b). In the existing system

architecture, the AUT component has already been modelled. Hence, the only

addition to the composition is the BI component together with the guard adapter

that evaluates the approval status.

(a) Partial architecture for R5 (b) {R1-R5}

Fig. 8.14: Increment-5.

8.3.6 Increment-6 - Requirement 6

R6: If the customer fails to be authenticated, the card will be rejected.

Step-1: Extracting Elements of Component-based Systems from Re-

quirements

For the sixth requirement, the approve and reject card computations are identi-

�ed. For control, the `if' conjunction is extracted, whilst, for data, the customer

and the approval status are speci�ed.

252 CHAPTER 8. DEFINING THE APPROACH

Step-2: Mapping of the Extracted Elements to X-MAN Elements

These extracted computations are assigned to AUT and RC components respec-

tively. The `if' conjunction normally suggest branching execution. Nonetheless,

there is no branching in such a case because only one component (based on its

provided computation) will be selected. Hence, the conjunction is mapped to a

guard adapter instead.

Table 8.6: Summary of Steps 1 and 2 for R6.

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.

authenticate DT approve() computation
�AUT component

HM-1

reject DT rejectCard() computa-
tion � RC component

HM-1

Control implicit Default ordering PIPE(data dependency)

if Conjunction implies selection execu-
tion (SEL or Guard)
HM-3

PIPE(AUT,[approved(no)]�RC)

approval constraint [approved] guard based on the con-
straint data

Data customer Data store customer, card in-
formation

HM-4

approval Data (con-
straint)

store approval status constraint (HM-4)

Step-3: Creating partial architectures

As the authentication computation which is provided by the AUT component

has already been modelled into the system architecture, the only component that

is required to be composed is the reject card computation. A guard is also added

to check the authentication status. These extracted elements can be modelled as

in Fig. 8.15(a).

We may observe that, in contrast to the partial architectures in the previous

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 253

increments, this particular constraint for the guard is to evaluate for rejection

approval status. This information is relevant for the refactoring task to be un-

dertaken later.

Step-4: Composing the partial architecture with the existing system

architecture

Fig. 8.15(b) demonstrates the outcome of this incremental step. Here, the addi-

tional constructs are the RC component together with a guard that evaluates the

approval status. However, this time, the evaluation results into an invalid status.

(a) Partial architecture for R6 (b) {R1-R6}

Fig. 8.15: Increment-6.

8.3.7 Increment-7 - Requirement 7

R7: After each transaction, the ATM will display and print a receipt con-

taining the transaction information.

254 CHAPTER 8. DEFINING THE APPROACH

Step-1: Extracting Elements of Component-based Systems from Re-

quirements

In the following requirement, the display and print receipt computations are

spotted.

Step-2: Mapping of the Extracted Elements to X-MAN Elements

These two computations are simpli�ed, so as to be encapsulated in a single com-

ponent. The reason for this is that these computations are performed by the same

device. The extraction result column in Table 8.7 lists all the extracted elements

of computations, control and data for R7. An abstract computation keyword that

is the transaction data transformation is identi�ed to represent all the relevant

bank transactions.

Table 8.7: Summary of Steps 1 and 2 for R7.

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.

transaction* DT conceptual computation
�TR* component

HM-1

display DT display() computation
� PRT component

HM-1

print DT print() computation �
PRT component

HM-1

Control after Preposition (or-
dering)

PIPE HM-2 PIPE(TR, PRT)

Data receipt,
transaction

Data store receipt, transac-
tion information

HM-4

Step-3: Creating partial architectures

For the purposes of modelling, an abstract TR* component that represents all

the bank transactions is modelled. In order to accommodate the print receipt

8.3. A COMPLETE EXAMPLE: THE ATM SYSTEM 255

computation for each transaction, the existing composition needs to be extended

by adding a new PIPE connector, so that once the transaction is completed, the

information in the transaction can be piped and prepared to be displayed and

printed. Otherwise, each bank transaction has to be modelled individually and

later they have to be composed together to represent the similar e�ect. These

extracted elements can be depicted as in Fig. 8.16(a).

Step-4: Composing the partial architecture with the existing system

architecture

Fig. 8.16(b) depicts the result of this incremental step. Here, we compose the

PRT component at the end of the composition point. This simulates that every

time a transaction is executed, its detail can be displayed and printed.

(a) Partial architecture for R7 (b) {R1-R7}

Fig. 8.16: Increment-7.

8.3.8 Step-5: Finalising the system architecture

As the mapping process is performed incrementally, the options to be handled

cannot be con�rmed until the last requirement is dealt with, speci�cally relevant

for a selection case. Hence, the SEL connector is not directly speci�ed for this

step in this example.

256 CHAPTER 8. DEFINING THE APPROACH

During this step, refactorings can be made to any parts of the architectural

design, so as to improve the system diagram. In Fig. 8.16(b), we may observe that

the guards are checking the same constraint values i.e., the approval status.

In addition to this, another constraint for the chosen transaction type is also

required. Both of these constraints can be encapsulated in a SEL connector, where

the constraints can be checked �rst and the execution of the control will be based

on the corresponding result. The �nal system diagram can be shown in Fig. 8.17.

(a) Refactor Connector (b) Added a Loop

Fig. 8.17: Final System Architecture.

As depicted in Fig. 8.17(b), a loop is added on top of the system diagram

in order to simulate that the system is ready to be executed and will continue

functioning when needed by the user. Otherwise, the system will only execute

once, and has to be re-activated.

8.4 Validation of the Incremental Approach

The most common research strategy in SE solves some aspects of software de-

velopment problems by producing a new procedure or technique and validating

it by analysis or by discussing an example of its use [Sha02]. Hence, in order to

validate the resulting system produced using this approach, a set of test cases

8.4. VALIDATION OF THE INCREMENTAL APPROACH 257

are created and assessed against the original set of requirement, and is consid-

ered as satisfying the requirement if it achieves the intended behaviours stated

in the requirement. It is beyond the expectation of the intended purpose of this

approach to achieve behaviours that are not explicitly stated in the requirements.

To achieve this, however, an additional stage of analysis by the domain experts

and the real users is required to discover the implicit requirements.

As the ATM example is a trivial example intended to demonstrate the for-

mulation of the complete construction approach, we intend to apply a case study

with a larger number of requirements for the validation purpose. This set of

requirements has also been used as a reference example for component-based

development [RRMP08].

8.4.1 The Trading System

The Trading System (COCOME) example is used for handling sales transactions

in a supermarket. The system comprises 9 main functions covering (1) Process

Sale, which handles Cash Desk operations; (2) Manage Express Checkout, which

deals with transaction modes, i.e. normal and express; (3) Order Products, which

allows the Store Manager to order products from suppliers; (4) Receive Ordered

Products, which allows the Store Manager to update received orders; (5) Show

Stock Reports, which permits the Store Manager to view all available stock; (6)

Show Delivery Reports, which allows the Enterprise Manager to generate reports;

(7) Change Price, which permits the Store Manager to update a product's price;

(8) Product Exchange (on low stock) Among Stores, which handles product orders

between stores and (9) Remove Incoming Status, which allows the Store Manager

to update the received product. Altogether, there are 47 requirements. These

requirements are provided in Appendix C.1.1. The complete execution of the

258 CHAPTER 8. DEFINING THE APPROACH

COCOME using the incremental approach, is provided in Appendix C.

8.4.1.1 The COCOME System Architecture

Now we brie�y discuss the complete COCOME system derived from the keywords

we extracted from all the requirements for COCOME. We wish to demonstrate

two important things: �rstly that the encapsulation in our component model does

indeed enable us to identify elements of component-based systems individually

and separately from the requirements; and secondly that the system does indeed

satisfy the requirements.

Fig. 8.18 shows the overall architecture of COCOME. It is a client-server archi-

tecture. Fig. C.46 shows the system in X-MAN derived from keywords extracted

from the requirements.

Communication Between Servers
Communication Between Clients and Server

Ent
Client

INV

PIPE

ACC

Server

Server
Store

Entrp
Server

Client
Store

Cash
Desk

Client

Fig. 8.18: COCOME architecture.

It models only the client side in Fig. 8.18. The system comprises two sub-

architectures: Cash Desk and Store Client. Computations provided by the servers

in Fig. 8.18 can be deemed as `remote' computation units of components in the

X-MAN system. For example, in Fig. C.46, computations of the INV component

reside in the server. Interactions between servers in Fig. 8.18 are not modelled

because they are not deterministic, e.g. interaction between Store Servers and

Enterprise Server. Nonetheless, we have covered this in our implementation as a

8.4. VALIDATION OF THE INCREMENTAL APPROACH 259

separate system with its own execution thread and scheduler.

8.4.1.2 Implementation

Fig. 8.19 shows the composition in X-MAN for the COCOME system in Fig. C.46.

Fig. 8.19: X-MAN composition for COCOME.

The �gure illustrates the implementation of the complete COCOME system

using our component model X-MAN. The top part of the �gure demonstrates

composition of the identi�ed components, whilst the bottom part of the �gure

shows the Cash Desk execution console, which simulates the Cash Desk GUI. In

our implementation, connectors are implemented as Java control structures e.g.

a SEL as an �if. . . else� statement.

8.4.1.3 Validating the COCOME System

To validate the COCOME system we created, we executed a prescribed set of test

cases presented in [RRMP08]. Using the �nal system, which is constructed based

on the derived architecture (see Fig. C.46), we managed to successfully execute

all of the following test cases.

260 CHAPTER 8. DEFINING THE APPROACH

TC-UC1A Purchase of goods with cash payment.

TC-UC1B Concurrent purchase of goods at more than one cash desk.

TC-UC1C Purchase of goods with card payment.

TC-UC1D Invalid item id read, manual entry of item id.

TC-UC1E Wrong PIN entry for credit card, card validation fails.

TC-UC3A Generate report of low stock product.

TC-UC4A Order low stock products, correct delivery is recorded.

TC-UC5A Generate report of available stock in a store (Store Manager).

TC-UC6A Generate report of cumulated available product in the enterprise

(Enterprise Manager).

TC-UC6B Provide report containing mean time to delivery for each supplier

(Enterprise Manager).

TC-UC7A Change price of a product (Store Manager).

TC-UC7B Search and display an item (Store Manager).

TC-UC8A Product exchange among stores.

Test Case for Use Case 1A

Fig. 8.20(a) and (b) show the execution of Test Cases for UC1A, which test for

the purchase of goods with cash payment. The test case is considered passed once

the item has been entered and the payment has been made. The system shall

display the paid amount and the change amount to the Store Client.

8.4. VALIDATION OF THE INCREMENTAL APPROACH 261

(a) Test Case-1 A1 (b) Test Case-1 A2

Fig. 8.20: Test cases execution � TC-UC1A.

Test Case for Use Case 1B

This test case is dedicated to test the concurrent purchases of goods at more than

one cash desk. In order to simulate this, we created two instances of the Store

Server(SS) and performed the sale transactions. See Fig. 8.21a and Fig. 8.21b.

Both of these executions are executed concurrently. These two cash desks pro-

cessed sale transactions from di�erent clients.

(a) Test Case-Use Case 1B Cash
Desk1

(b) Test Case-Use Case 1B Cash
Desk2

Fig. 8.21: Test cases execution � TC-UC1B.

262 CHAPTER 8. DEFINING THE APPROACH

Test Case for Use Case 1C

This test case tests for the purchase of goods with card payment without any

exceptions. Given a valid password, the user shall be able to pay for the purchased

items. See Fig. 8.22a.

(a) Test Case-Use Case 1C

Fig. 8.22: Test case execution - TC-UC1C.

Test Case for Use Case 1D

If an item id cannot be read, the system shall allow manual entry of the item id.

See Fig. 8.23a.

Test Case for Use Case 1E

Fig. 8.23b shows the execution of a wrong PIN entry for credit card validation.

The user shall be allowed to try as many times as required until he opt for cash

payment.

8.4. VALIDATION OF THE INCREMENTAL APPROACH 263

(a) Test Case-Use
Case 1D

(b) Test Case-Use
Case 1E

Fig. 8.23: Test cases execution � TC-UC [1D, 1E].

Test Case for Use Case 3A

Fig. 8.24a shows the execution of Test Case-UC3A, which tests for generation of

low stock products by the Store Manager. For this test case, the Store Manager

also needs to be authenticated prior to the report generation. The test case passes

if the report is generated.

Test Case for Use Case 4A

Low stock products shall be ordered and correct delivery shall be recorded. See

Fig. 8.24b. Once the order is updated, the amount of the ordered product in the

inventory will also be updated and the order details are removed from the order

database.

Test Case for Use Case 5A

Fig. 8.25 illustrates the report generation for available stock in a store. This

function is only available for Store Manager. The test case is considered passed

when the report is able to be generated.

264 CHAPTER 8. DEFINING THE APPROACH

(a) Test Case-Use Case 3A (b) Test Case-Use Case 4A

Fig. 8.24: Test cases execution � TC-UC [3A, 4A].

Fig. 8.25: Test cases execution � TC-UC5A.

Test Case for Use Case 6A

The Enterprise Manager (EM) shall be able to generate report of cumulated

available product in the enterprise (see Fig. 8.26a). The successful criterion for

this test case is when the report is generated by the EM.

Test Case for Use Case 6B

In addition, the EM shall also be able to create report containing mean time to

delivery for each supplier. The passing criterion for this test case is when the

8.4. VALIDATION OF THE INCREMENTAL APPROACH 265

report is generated by the EM (see Fig. 8.26b(b) and Fig. 8.26c(c)).

(a) Test Case-Use Case 6A (b) Test Case-Use Case 6B1 (c) Test Case-Use Case 6B2

Fig. 8.26: Test cases execution � TC-UC [6A, 6B].

Test Case for Use Case 7A

The Store Manager (SM) shall be able to change the price of a product (see

Fig. 8.27a). The product must be identi�ed �rst by searching for the product,

and once the change is made, the product information is displayed to verify the

changes.

Test Case for Use Case 7B

The Store Manager shall be able to search and display product information (see

Fig. 8.27b).

Test Case for Use Case 8A

As we have mentioned in Section 8.4.1.1, we included the servers in the com-

ponent's implementation. Therefore, the inter-server communication between

266 CHAPTER 8. DEFINING THE APPROACH

Store Server and Enterprise Server is not modelled in the architecture shown in

Fig. 8.18. That is why the execution of Test Case UC-8A, the product exchange

among stores, is not tested based on this architecture.

(a) Test Case-Use Case 7A (b) Test Case-Use Case 7B

Fig. 8.27: Test cases execution � TC-UC [7A, 7B].

The �nal COCOME system architecture after refactoring is illustrated in

Fig. C.46.

8.4.2 Other Case Studies

Table 8.8 lists a summary of the applied, executed and documented case studies

and examples in this thesis.

Table 8.8: Summary of the Executed Case Studies and Examples

Case studies/Examples No. of require-
ments

Scale

Trading System (COCOME) 47 Medium

Steam Boiler System 30 Medium

Video Store System (VSS) 19 Medium

ATM System 7 Small

Word Count 5 Small

The second case study is that of the Video Store System (VSS), which is taken

8.4. VALIDATION OF THE INCREMENTAL APPROACH 267

from [LSB98]. The VSS provides and manages video rental transaction and cus-

tomer record management. Altogether, there are 19 requirements, hence having

the same number of increments. For the VSS, only one refactoring task was en-

countered, which was carried out after the �nal increment. Here, the purposes

of refactoring were to restructure and combine parts of the duplicated architec-

ture. This task is labelled in Fig. C.65, whilst the analysis of the refactoring is

included in Section C.2.3. The complete execution of the VSS is demonstrated

in Appendix C.2.

The third example is the Word Count, in which, given a �le, the number of

word will be counted and displayed. This simple example is drawn from [Sch06,

p. 434]. In this example, we identi�ed the pattern to refactor mutual exclusive

guards and simpli�ed them into a SEL. As mentioned in Chapter 7, most of the

encountered refactoring cases whilst executing the case studies and examples are

to simplify the architectural design. The discussion on this refactoring task for

Word Count is included in Section C.3.4, while the complete execution of the

Word Count example is provided in Appendix C.3.

In addition to the documented case studies and the examples, a number of case

studies from the literature have also been experimented with. One of the non-

trivial examples is the Steam Boiler case study [ABL96]. This example contains

30 requirements specifying the control of the water level in a steam-boiler. The

system comprises the steam-boiler, a water level measurement device (WLMD),

four water pumps, four pump controller devices (PCD), a steam measurement

device (SMD) and a message transmission system (MTS). The program operates

in several modes of operation: initialisation, normal, degraded, rescue and emer-

gency stop. By using the ECF tool, the resulting �nal architecture is shown in

Fig. 8.28, with 24 components and 11 composition connectors (with 6 guards).

268 CHAPTER 8. DEFINING THE APPROACH

Fig. 8.28: Final System Architecture for the Steam Boiler System.

8.4.2.1 Summary

In these case studies and examples, all the de�ned steps in the approach to con-

structing component-based systems have been demonstrated, applied and pre-

sented. The primary concern is to identify elements of component-based systems

as de�ned in the X-MAN component model, namely computations, control and

data. Following this premise, a complete COCOME example has been demon-

strated as to apply all the heuristics and design decisions de�ned in this thesis

(see Appendix C.1). It has also been elucidated that the identi�ed computations,

control and data can be used to guide us in constructing the complete component-

based system. Although this approach is basically heuristic, and requires human

guidance and decision making, we believe this is possible because the underlying

component model provides a way to realise such an approach.

8.5 Issues and Discussion

The following list addresses a few anticipated issues and challenges during the

adoption of the entire approach.

8.5. ISSUES AND DISCUSSION 269

8.5.1 Requirements Problem

This approach does not claim to solve any requirement problems such as ambi-

guities, incompleteness or inconsistencies. These issues should be resolved and

clari�ed with the customer. It is important to note that requirement problems are

beyond the scope of this work. However, these issues may contribute to problems

during the mapping or composition stages.

8.5.2 Element Extraction Exceptions

As mentioned in Section 8.2.3, when there is any missing keyword extraction

during the element extraction step, this can a�ect the later steps. The possible

causes of this scenario have been discussed. Whenever these issues occur, the

designer may choose to skip the increment and deal with the requirement later.

8.5.3 Component Selection

The current component selection mechanism for this approach works on the basis

of signature matching. The extracted computation keywords are assigned to a

conceptual component (logical) and this component will be matched with an

existing component in a repository. In this approach, the repository comprises

pre-existing components (which have been developed), the generic composition

connectors and adapters. Each time the construct is selected from the repository,

an instance of the construct will be created and initialised during the run-time

phase.

8.5.4 Validation of the Derived Architecture

A design that results in the satisfaction of the speci�cation requires the relevant

validation process. With the constraint of addressing the explicit requirements,

270 CHAPTER 8. DEFINING THE APPROACH

the applied testing technique can only be made based on the set of original re-

quirements. The set of test cases will be executed against the derived architecture

using this approach. An example of such testing is provided in Appendix 8.4.1.3.

8.6 Summary

This chapter has presented the entire approach to achieving the construction

of component-based systems directly from raw requirements. This approach is

based on the X-MAN component model, which supports the separation of control

and computation. This separation feature, in turn, distinguishes the underlying

fundamentals of what is to be extracted with other existing work in the literature.

This approach is basically heuristic, and requires human guidance and decision

making. Nonetheless, the steps and rules that are followed have been adequately

de�ned for the sake of consistency. The following chapter presents evaluation and

further discussion on the entire approach.

Chapter 9

Evaluation and Discussion

This chapter aims to demonstrate the validity of the approach to constructing

component-based systems directly from NLR using the incremental composition

mechanism. In order to perform such a demonstration, the succeeding section

presents (1) a preliminary empirical validation of the incremental approach; (2)

an analysis based on re�ections and lesson learned of the case studies execution,

as included in Appendix C; and (3) comparison with related work.

9.1 Introduction

In this thesis, an incremental approach to constructing component-based systems

directly from NLR is presented. In essence, such an approach allows us to (1)

systematically map the extracted keywords directly to their corresponding exe-

cutable architectural constructs; (2) deal with any number of requirements; and

therefore, it should scale up to arbitrarily large requirement documents. Once

the approach is formulated, the next stage is to validate the derived architecture

(system).

Three strategies are adopted in pursuing the validation of the incremental

271

272 CHAPTER 9. EVALUATION AND DISCUSSION

approach. Firstly, a preliminary empirical validation of the incremental approach

is executed and reported. Secondly, based on the analysis of the executed case

studies, the experiences and lesson learned are discussed. These analysis in the

form of re�ections, is deliberated to highlight the properties of the approach.

Finally, a comparison with BE is included to demonstrate the di�erences with

this approach. The following section starts with the �rst strategy.

9.2 Preliminary Empirical Validation of the Incre-

mental Approach

This section describes a preliminary experiment to validate the incremental ap-

proach. It starts by laying out the objectives and setting of the experiment. The

remainder of this section is mainly divided into two parts; the �rst part covers the

pilot study, whilst the second part includes the main experiment. In each of these

parts, the analysis, results and discussion are presented. Finally, a summary of

the experiment is included at the end of the section.

9.2.1 Objectives

The experiment aimed to investigate the proposed incremental approach to con-

structing component-based systems directly from natural language requirements

(NLR). This experiment is a preliminary empirical validation of the proposed

incremental approach. Nonetheless, due to the limitation of employing indus-

trial professionals as subjects, we employed computer science and information

system undergraduate and postgraduate students, and academic sta� as subjects

in this research. It has been a common practice in research to use students as

subjects [Ber04]. They were trained su�ciently well to perform the given tasks

9.2. PRELIMINARY EMPIRICAL VALIDATION 273

as recommended in [Tic00].

The goal de�nition for the experiment is listed below:

Object of the study: The incremental approach

Purpose: To undertake a preliminary experiment to validate the proposed in-

cremental approach to constructing component-based systems directly from

NLR.

Focus: The focus of the experiment are:

1. To evaluate the e�ectiveness of the incremental approach in terms of

correctness.

2. To investigate the application of the heuristics in analysis and making

design decisions during each incremental step.

Perspective: From the point of view of the users of the incremental approach.

Context: In the context of users with software engineering background.

9.2.2 Research Questions

Research questions are the focus of the study, and are established from research

objectives [VST+09, Jar00]. According to Collis and Russey [CH03], research

questions can be viewed from positivist and phenomenological studies. Research

questions in the positivist study generally express relationships between variables.

On the other hand, research questions in the phenomenological study often evolve

during the process of research and may need to be re�ned as the study progresses

[CH03]. In addition to research questions, propositions are used to identify and

focus on the issues to be investigated in a research. The collected experiment data

274 CHAPTER 9. EVALUATION AND DISCUSSION

is then compared to the propositions in order to support or reject the propositions

[RH09].

The following research questions (RQ) and propositions (P) have been ad-

dressed in this experiment:

RQ-1: What is the level of correctness when using the incremental approach in

constructing component-based systems directly from NLR?

Based on RQ-1, the propositions are :

P1-1: The element extraction process of the incremental approach will pro-

duce the architectural elements to construct component-based system.

P1-2: The extracted architectural elements based on the extraction process

can be incrementally mapped and modelled to construct component-

based system.

RQ-2: Are the expected heuristics being applied when making design decisions

during element extraction and mapping of the extracted elements to the

XMAN model?

Based on RQ-2, the propositions are :

P2-1: The extraction heuristics will be applied when making decisions in

identifying the relevant architectural elements.

P2-2: The mapping heuristics will be applied when making decisions in

mapping the extracted elements into XMAN modelling elements.

9.2.3 Instrumentation and Materials

In the initial stage of the experiment, a consent letter and an invitation letter

were distributed to the candidate participants. The invitation letter described

9.2. PRELIMINARY EMPIRICAL VALIDATION 275

information pertaining to the experiment and highlighted the experiment's main

purpose.

In addition, the training materials for the (1) Fundamentals of the XMAN

semantics, (2) the element extraction and (3) the mapping processes; (4) the

Extractor tool; and (4) the Exogeneous Component Framework (ECF) tool, which

had been prepared by the researcher, were also distributed for reference to the

participants.

Nonetheless, the participants were reminded that the main intention of the ex-

periment was to validate the incremental approach, and not to focus or be biased

towards the provided tools. Without these tools, it would be di�cult to con-

cretely experiment the approach. However, we had no intention of claiming that

these tools are e�cient or easy to use, with regard to the incremental approach.

9.2.3.1 Analysis of the E�ectiveness of the Incremental Approach in

terms of Correctness

The interpretation criteria for measuring correctness of the propositions (1) P1-1

that is based on the correctness of the extracted elements compared to the extrac-

tion benchmark in each increment; and (2) P1-2 is based on the accumulation of

the correctness and syntax scoring values compared to the set of benchmarks for

each increment. Based on the interpretation criteria for the correctness of propo-

sition P1-1, scoring values were calculated based on the scoring of extraction

outcomes. The ideal outcomes for each requirement from the extraction process

were set as the benchmark. The benchmark was derived from the outcomes of

each incremental step in Sec 8.3. In that section, all the expected architectural

elements were set as benchmark for the experiment task.

An evaluation characteristic was incorporated into the process of evaluating

276 CHAPTER 9. EVALUATION AND DISCUSSION

the quality of the extraction outcomes. Another aspect to be considered for as-

sessing the correctness of the implemented solution in the experiment was based

on the analysis of the result of the incremental design. These results were bench-

marked against (1) a set of expected element extraction results; and (2) a set

of expected designs for each increment. Although it is acknowledged that a de-

sign should be a creative process based on the elements that are needed to be

modelled, we were concerned with how the composition was decided.

For each of those items (1) and (2), a scoring range of 0-2 was used. Each result

was evaluated and given a score of 2 marks, if the derived incremental outcome

was (1) accurate as the benchmark; or (2) the extraction outcome was not exactly

as the benchmark, but was highly relevant. Meanwhile, 1 mark would be given if

the extraction result was not as accurate as the expected benchmark. This case

includes (1) only one of the extracted element categories was correct, which means

either one of the computation or control was correct; (2) the extracted elements

were correct, but not arranged in the right ordering; or (3) the extracted elements

were not completely correct, and not arranged in the right ordering.

Finally, a 0 mark was assigned if the extraction result completely deviates

from the benchmark. The relevant scenarios were when (1) both the extracted

element categories were wrong; or (2) no useful elements were extracted; or (3)

extraction was not solely based on the corresponding requirement; or (4) extrac-

tion was decided not based on the provided heuristics, which led to incorrect and

unjusti�able design decision. In addition to the above cases, a 0 mark would also

be given if the participant extracted a single computation only, or the outcome

was incomplete to derive a valid composition. Table 9.1 lists the summary of

scoring criteria for the extraction process.

Meanwhile, for the mapping and modelling process, the outcomes of partial

architecture design in each increment would be studied and analysed. The design

9.2. PRELIMINARY EMPIRICAL VALIDATION 277

Table 9.1: Summary of Extraction Scoring Criteria

Score Description

2
the extracted elements were accurate as the benchmark.

the extracted elements were not accurate as the benchmark, but are highly relevant.

1

only one of the extracted element categories (computation or control) was correct.

the extracted elements were correct, but not arranged in the right ordering.

the extracted elements were not completely correct, and not arranged in the right ordering.

0

both the extracted element categories were wrong or not useful.

extraction was not solely based on the requirement.

extraction was decided not based on the provided heuristics.

produced an incomplete extraction to derive composition.

elements would be assessed based on two criteria: (1) the correctness of the

modeled elements and (2) the syntax of the notation used to model the extracted

elements. For the correctness criteria, each design was given a score of 2 marks for

an accurate representation. This includes (1) the composition of the components

and connectors were logically correct and accurate as the benchmark; or (2) the

composition was not exactly as the benchmark (but could still be considered as

logically correct) based on the extracted elements.

On the other hand, a 1 mark was given for cases (1) an inaccurate repre-

sentation, but not completely wrong, based on the extracted elements; (2) the

composition could be considered logically correct based on the extracted elements;

or (3) the composition could be considered logically correct, but not completely

based on the extracted elements. In the latter case, participants might add addi-

tional architectural elements which were not derived from the extraction process.

Finally, a 0 mark was speci�ed for any incorrect representation including cases

where (1) violated the previously incremented composition, for example changed

or removed previous incremental design; (2) the composition was wrongly mod-

eled; or (3) the ordering or selection execution was incorrectly represented. As

may be seen from Table 9.2, summary of correctness scoring criteria for the map-

ping process is provided.

278 CHAPTER 9. EVALUATION AND DISCUSSION

Table 9.2: Summary of Mapping Scoring Criteria for Correctness

Score Description

2
the composition of the components and connectors were logically cor-
rect.

the composition was logically correct based on the extracted elements.

1

an inaccurate representation, but not completely wrong based on the
extracted elements.

the composition could be considered logically correct based on the
extracted elements, but was not accurate.

the composition could be considered logically correct, but not com-
pletely based on the extracted elements.

0

violated the previously incremented composition.

the composition was wrongly modeled.

the ordering or selection execution was incorrectly represented.

In addition, for the second criteria i.e. in view of syntax, each design outcome

was given a score of 2 marks for cases where (1) valid representation using the

XMAN syntax by using valid composition points and valid composition connec-

tors or adapters; or (2) use of sequential execution connector i.e. PIPE instead

of SEQ or vice versa, but could still represent the incorporated behaviours from

the NLR.

A 1 mark was assigned for an incomplete syntax representation including

(1) correctly model only one of the extracted computations or control; or (2)

the partial architecture is logical but inappropriate use of vertical or horizontal

composition, which may change the previously incremented design; or (3) used

valid composition points but missing some features. Finally, a 0 mark would

be given for violating the XMAN syntax representation, including cases where

(1) composition was done at invalid composition points; or (2) model was not

designed based on the extracted elements for either one or both the computations

and control. The summary of the mapping scoring criteria in terms of syntax is

listed in Table 9.3.

9.2. PRELIMINARY EMPIRICAL VALIDATION 279

Table 9.3: Summary of Mapping Scoring Criteria for Syntax

Score Description

2
valid representation using the expected XMAN syntax by using valid
composition points and valid composition connectors or adapters.

used sequential execution connector i.e. PIPE instead of SEQ or vice
versa, but could still represent the incorporated behaviours.

1

correctly model only one of the extracted computations or control.

logical partial architecture, but use of vertical or horizontal composi-
tion which might change the previously incremented design.

used valid composition points but missing some features.

0

composition was done at invalid composition points.

model was not designed based on the extracted elements for both the
computations and control.

9.2.3.2 Analysis of the Application of the Extraction and Mapping

Heuristics

Based on RQ-2, the propositions are (1) P2-1: The extraction heuristics will be

applied when making decisions in identifying the relevant architectural elements;

and (2) P2-2: The mapping heuristics will be applied when making decisions

in mapping the extracted elements into XMAN modelling elements. For both

the propositions, survey items were used and the responses were compared with

the benchmarks provided by the researcher. The benchmark comprises a set

of expected extraction and mapping heuristics for each of the incremental steps

(that is for each requirement).

Analysis of the application of the extraction and mapping heuristics were

based on a set of questionnaire items. This questionnaire consisted of 14 items

to represent each of the extraction and mapping processes for each requirement.1

For each of the requirements in each increment, participants were asked to iden-

tify the relevant heuristics that they adopted. An example for an increment of a

requirement can be shown in Fig. 9.1. This �gure is an excerpt of a questionnaire

item for application of element extraction heuristics. In addition, Fig. 9.2 depicts

1http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.html

 http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.html

280 CHAPTER 9. EVALUATION AND DISCUSSION

Fig. 9.1: An example of a Questionaire Item for Extraction Heuristics

an example of an excerpt of questionnaire item for applying the mapping heuris-

tics. The same set of questionnaire items were repeated for each increment, that

is for each requirement. See Appendix B for the complete set of the questionnaire

items.

Fig. 9.2: An example of a Questionaire Item for Mapping Heuristics

The results of the experiment for the extraction and mapping processes were

analysed and evaluated. For the extraction process, all applied heuristics answers

were benchmarked against the expected set of answers. Based on the accumulated

number of responses from the data for each answer i.e. for each requirement, the

average number of responses was calculated. This value determined whether the

participants had applied the expected heuristics when making design decisions

9.2. PRELIMINARY EMPIRICAL VALIDATION 281

during each increment or whether they were using other sources of knowledge or

their own experiences in identifying those elements.

9.2.4 Pilot Study

The purpose of the pilot study was to validate the instruments to be used in the

experiment. The pilot experiment was conducted at the Faculty (Kulliyyah) of

Information and Communication Technology (KICT), International Islamic Uni-

versity Malaysia (IIUM) during Semester 1, 2012/2013. Participants for the pilot

study were three Master students at the faculty. In order to use the approach, the

participants were required to acquire the essential knowledge. Hence, prior to the

experiment, the participants were trained on (1) the fundamentals of the XMAN

semantics, the element extraction and the mapping processes; (2) the element

extraction heuristics; (3) the mapping heuristics; (4) the Extractor tool; and (5)

the Exogeneous Component Framework (ECF) tool. Duration of the training was

approximately 1 hour and 30 minutes.

9.2.4.1 Demographic Pro�le

Participants of the pilot study were recruited on a voluntary basis. The pilot

study involved three participants, who were pursuing their master study at the

faculty. All of them had background in general systems analysis and design, how-

ever, only one participant declared to have experience in modelling or developing

component-based systems. Compensation was given to the participants for their

participation in the experiment.

282 CHAPTER 9. EVALUATION AND DISCUSSION

9.2.4.2 Experimental Setup

The pilot study took place according to the availability of participants in a com-

puter lab in the faculty. The training session lasted for approximately 1 hour

and 30 minutes for the pilot session. Any confusion was clari�ed during the Q&A

session before the experiment started. The participants were then briefed on their

tasks for the experiment. Participants were allocated another additional maxi-

mum period of 3-hour to complete the given tasks, including a brief demographic

survey at the beginning of the session.

At the beginning, the participants were asked to �ll in the demographic survey

questionnaire. See Appendix B, Set A. Then, the training was conducted by the

researcher. After the training, the participants were briefed on the experiment

tasks. In the pilot study, the participants were given a set of NLR statements

taken from the ATM example2. This ATM example was chosen on the basis of the

e�ort and time required in executing and solving the requirements. In addition,

the approach had to be constrained to be executed incrementally, which means

only one requirement should be dealt with at a single time and added to the

existing design until they reach the �nal solution. The intended aim was to

derive a system design using the XMAN component model; hence the e�ort to

enhance the design was not considered.

Subsequently, while executing the tasks, they were required to identify the

adopted extraction or mapping heuristics by using a set of questionnaires. See

Appendix B, Set B. In the end, the participants were asked to �ll in the post-

experiment questionnaire. For this task, they were asked to rate the di�culty

level of the training session and the experiment tasks using a �ve point Likert

scale {`Very Easy', `Easy', `Average', `Di�cult', `Too Di�cult'}. See Appendix

2http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.html

 http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.html

9.2. PRELIMINARY EMPIRICAL VALIDATION 283

B, Set C.

For each of the participants, an assistant was assigned to assist them in as-

sessing the heuristics used throughout the experiment. The reason behind this

was that it would be cumbersome to execute the tasks and at the same time

provide the required feedback for each incremental step. The assistants were

also trained prior to the experiment. Hence, during each incremental step, the

assistants clari�ed and recorded the heuristics adopted by the participants.

The participants were reminded to (1) represent the extracted elements into

the XMAN component-based elements according to the given training materials

and not to be concerned with design issues; (2) incrementally compose the ex-

isting design with additional behaviours. Whilst performing the extraction and

mapping processes, they were expected to clarify their design decisions with re-

gard to the adoption of any relevant extraction or mapping heuristics. The reason

was mainly to investigate the heuristics' usage level in assisting them in the in-

cremental approach. Without these heuristics, design decisions might be based

on personal knowledge or experiences, hence design decisions might be the result

of unjusti�able design decisions.

9.2.4.3 Result of the Pilot Study

This subsection provides the �ndings of the pilot study, which starts with the

result of the e�ectiveness of the incremental approach, and continues with the

result of the application heuristics whilst using the incremental approach.

a. Result of the Analysis of the E�ectiveness of the Incremental Ap-

proach

This subsection describes the results of the analysis of the e�ectiveness of the

incremental approach. The analysis of the correctness of the extraction process

284 CHAPTER 9. EVALUATION AND DISCUSSION

is described. The results from participants were assessed against the benchmark

and score values were assigned accordingly. In understanding the scoring criteria,

refer Table 9.1. Table 9.4 lists the scoring values for the extraction process for

the pilot study.

Table 9.4: Extraction Scoring for Pilot Study

User/Increment R1 R2 R3 R4 R5 R6 R7 Total

User-01 2 2 2 1 0 2 2 11

User-02 2 2 2 2 0 1 2 11

User-03 2 2 2 2 1 2 2 11

Total 6 6 6 5 1 5 6 33

Average 78.57%

In general, most of the participants extracted either the same outcomes as the

benchmark or a set of highly useful architectural elements from the NLR. This

statement is supported by the high scoring values for R1, R2, R3 and R7, which

contributed to more than 50% of the requirements with high extraction scores.

In contrast, the common mistakes in the extraction process were cases where (1)

only one of the extraction category was correct (i.e. computation or control);

(2) the extraction was not completely correct, and not arranged in the correct

ordering; (3) extraction was not solely dependent on the current requirement; and

(4) extraction was incomplete to compose valid composition. In fact, during the

trainings, the participants were reminded to derive extraction elements, which

should be useful in the later stage. In addition to detailed extraction scoring,

an average value was calculated to represent the overall correctness score for all

the participants. The average correctness score for extraction was 78.57%. This

value showed that in average, 78.57% of the extraction scoring were correct as

compared to the benchmark.

In interpreting the correctness criteria for mapping process, the outcomes were

assessed based on (1) correctness of the logical representation; and (2) syntax of

9.2. PRELIMINARY EMPIRICAL VALIDATION 285

the modelling elements. The �rst correctness characteristic related to the level of

correctness of the design outcomes compared to the benchmark prepared by the

researcher. This case included assessment in terms of logical representation of the

extracted elements according to XMAN fundamentals. The detailed cases for the

correctness characteristics are provided in Table 9.2. The second correctness char-

acteristic involved the level of correctness in terms of syntax of the representation

that used the XMAN fundamentals. This case assessed the design outcomes from

the perspective of valid notation used to represent the corresponding behaviours.

The detailed cases for this characteristic are listed in Table 9.3.

The scoring values for the mapping of the extracted elements to XMAN model

was elaborated based on two interpretation criteria. Firstly, the scoring was based

on the correctness of its logical representation. Mapping outcomes from each

increment that were derived using the ECF tool were printed and analysed. Each

of the design from each increment were assessed using the benchmark and score

values were assigned. Table 9.5 provides the scoring values for each participant.

The total score value was calculated and the total average score was derived from

the total score, which was 64.29%. The average value represents the correctness of

logical representation of all the participants as compared to the benchmark. The

average value was high considering not all the participants had any background

on XMAN fundamental except for the given training.

Table 9.5: Summary of Correctness Scoring Value

User/Increment R1 R2 R3 R4 R5 R6 R7 Total

User-01 2 2 1 0 0 0 2 7

User-02 2 2 1 2 0 0 2 9

User-03 2 2 1 2 0 2 2 11

Total 6 6 3 4 0 2 6 27

Average 64.29%

Based on Fig. 9.3, a high percentage of correctness scores were derived from

R1, R2 and R7. These values corresponded to the logical representation of the

286 CHAPTER 9. EVALUATION AND DISCUSSION

extracted computations and control from the requirements, which achieved the

same level as the benchmark. Nonetheless, the most signi�cant negative outcome

was R5 for which none of the participants got the correct score. The justi�-

cations for this particular increment were based on illogical representation, or

breaking the previous composition. In the latter case, this inherently violates the

encapsulated behavior represented in the previous increments.

Fig. 9.3: Summary of Correctness Scoring Value

The second interpretation criterion for correctness of the mapping outcomes

was in terms of the syntax of the representation. The same set of procedures as

in the logical assessment was adopted in an attempt to assess the syntax of the

derived design. Nonetheless, the scoring characteristics were relevant to assess

the syntax of the design outcomes. See Table 9.3. Each of the derived design

outcomes was evaluated and given a score value. This means that the design

should adhere to the modelling syntax de�ned in XMAN model. The following

Table 9.6 provides a summary of scoring value for the syntax.

Based on Fig. 9.4, we may observe that the syntax used for R1 and R2 were

considered accurate according to XMAN notation and used valid composition

points for incremental composition. The issues with R4, R5 and R6 might be

9.2. PRELIMINARY EMPIRICAL VALIDATION 287

Table 9.6: Summary of Scoring Value for Syntax

User/Increment R1 R2 R3 R4 R5 R6 R7 Total

User-01 2 2 2 1 1 0 1 9

User-02 2 2 2 0 0 0 2 8

User-03 2 2 1 2 1 2 2 12

Total 6 6 5 3 2 2 5 29

Average 69.05%

related to (1) use of invalid composition points; (2) not being modelled based on

the extracted elements for any of the extraction categories i.e. computation or

control; or (3) valid composition syntax, but used an invalid composition point.

Fig. 9.4: Summary of Syntax Scoring Value

On average, the correctness value for the mapping process, considering the

logical representation (64.29%) and syntax (69.05%) was 66.67%. These �ndings

were included to support the P1-1 and P1-2 propositions that the incremental

approach helped in assisting participants to (1) extract relevant architectural ele-

ments and (2) map the extracted elements to XMAN elements i.e. computations

and control.

288 CHAPTER 9. EVALUATION AND DISCUSSION

b. Result of the Analysis of the Application of the Extraction and

Mapping Heuristics

Each survey item was analysed against a set of expected answers, which acted as a

benchmark. From the pilot study, the items could be grouped into two categories

i.e. for extraction and mapping processes. Based on the survey items, participants

were asked to assess which heuristics they adopted whilst performing each of the

processes. For example, during the �rst increment, participants were asked to

identify which heuristics were applied during the extraction of the component-

based elements from the given requirement statement. These sets of answers

were checked against the expected answer scheme sets and were summarised as

presented in Table 9.7.

Table 9.7: Adoption of the Extraction and Mapping Heuristics

EXTRACTION MAPPING

SEC B RESULT-A (%) SEC B RESULT -B(%)

Question 1 75.00% Question 2 55.56%

Question 3 66.67% Question 4 58.33%

Question 5 66.67% Question 6 77.78%

Question 7 77.78% Question 8 33.33%

Question 9 66.67% Question 10 50.00%

Question 11 88.89% Question 12 22.22%

Question 13 77.78% Question 14 66.67%

TOTAL 74.21% TOTAL 51.98%

The reason why we had odd numbered questions for extraction and even num-

bered questions for mapping was that for each increment, participants were asked

to identify heuristics for extraction of the particular requirement. Subsequently,

from the extracted elements, they were required to identify the mapping heuristics

for the same requirement.

Fig. 9.5 presents the average percentage values of Result-A, which were achieved

from the use of extraction heuristics during the extraction process, while Fig. 9.6

shows the average in percentage values for Result-B, which was contributed to the

9.2. PRELIMINARY EMPIRICAL VALIDATION 289

Fig. 9.5: Application of Extraction Heuristics

Fig. 9.6: Application of Mapping Heuristics

use of the mapping heuristics during the mapping process. These values indicated

whether the use of the provided heuristics was signi�cant or not. Without these

heuristics, participants might have to rely on their experiences and background

knowledge in order to perform the extraction and mapping processes.

It is apparent from Table 9.7 that there was a signi�cant di�erence of usage for

both of these set of heuristics. The �rst value was derived from the average of the

total scores of survey items relevant to the extraction heuristics. The participants

were asked to identify which heuristics that they adopted when making decisions

290 CHAPTER 9. EVALUATION AND DISCUSSION

about the extracted architectural elements. The application of extraction heuris-

tics contributed 74.21% compared to the expected benchmark. In addition, par-

ticipants were also asked to identify which mapping heuristics were applied when

they mapped the extracted element to XMAN syntax. However, the application

of mapping heuristics only contributed 51.98% of the expected benchmark. This

di�erence might occur because of lack of knowledge of the XMAN semantics and

the incremental composition concept.

A side by side comparison of the application of extraction and mapping heuris-

tics is shown in Fig. 9.7. It is interesting to observe that there were cases of high

application of extraction heuristics, but low application of the expected mapping

heuristics. Further research might need to be done to investigate the correlation

between those properties.

Fig. 9.7: Comparison between Extraction and Mapping Scoring

These �ndings nonetheless support the proposition P2-1 that the participants

applied the relevant elements extraction heuristics to extract the relevant archi-

tectural elements from NLR. Although the �ndings for mapping heuristics were

low compared to the scoring of the extraction heuristics, there is nonetheless ev-

idence to support proposition P2-2 that the participants applied the mapping

9.2. PRELIMINARY EMPIRICAL VALIDATION 291

heuristics to map the extracted elements to XMAN elements i.e. computations

and control.

9.2.4.4 Result of the Post-Pilot Study

After executing the experiment, participants were asked to rate the provided

training in terms of its di�culty level, ranging from too easy to too di�cult. The

trainings were divided into �ve parts that were (1) the XMAN fundamentals; (2)

the element extraction process; (3) the Extractor tool; (4) the mapping of the

extracted elements to XMAN elements; and (5) the ECF tool. All the participants

of the pilot study had mixed feelings when they were asked to rate the di�culty

levels of the provided training. Nonetheless, all of the perceived feedback was

rated as average and below. This showed that they perceived so as to they

understood the training sessions of the experiment.

In addition, they were required to rate the tasks during the experiment. The

tasks involved were (1) extraction of the candidates of the relevant architectural

elements; (2) identi�cation of extraction heuristics; (3) analysis of the interaction;

(4) modelling composition using XMAN; (5) identi�cation of mapping heuristics;

and (6) handling incremental composition. For the pilot study, in general, most

of the participants rated the modelling task using XMAN notation as the most

di�cult task. This perception can be deemed as predictable because it was their

�rst-hand experience of learning and using the XMAN fundamentals and nota-

tion.

9.2.4.5 Discussion

The pilot study was successful in proving the propositions P1-1 and P1-2 in an

attempt to address RQ-1. The level of correctness of the incremental approach

was addressed by using correctness interpretation criteria for both the extraction

292 CHAPTER 9. EVALUATION AND DISCUSSION

and mapping processes.

In addition, RQ-2, which investigates the application of extraction and map-

ping heuristics, was achieved through support from propositions P2-1 and P2-2.

In summary, we could conclude that the participants applied the relevant heuris-

tics whilst making judgment in the extraction and mapping processes. It is also

worth noting that without these heuristics as guidance, it is di�cult to formulate

an objective interpretation as we are dealing with subjective nature of the NLR.

It is also worthwhile being concerned about the constraints during the exper-

iment such as limited training duration prior to the execution of the experiment;

no complete example provided; too many tasks to be performed including the use

of two tools i.e. The Extractor and the ECF tools. The participants were asked

to use the Extractor tool for the extraction process and then use the ECF tool to

map and model the extracted elements. While using the tools, they were asked

to capture the screen shots and save the screen shots into a Word processing

�le. In addition, they were also required to identify the relevant heuristics that

they applied when they extracted elements and mapped the extracted elements

to XMAN notation. Considering these required e�orts, it was di�cult to focus

throughout the speci�ed duration.

From the pilot study, a questionnaire item was updated in terms of wording

and organisation. In the demographic survey during the pilot study, the partic-

ipants were asked to indicate the number of years of experience related to IT

industry. In order to organise the data, instead of directly stating the number of

years, a set of range to indicate the property is added. This way, it is easier to

code the data for the main experiment. See Appendix B, Set A.

9.2. PRELIMINARY EMPIRICAL VALIDATION 293

9.2.5 The Main Experiment

The main experiment was conducted using the same setting and procedure as the

pilot study, which was performed at a computer laboratory in the faculty. It was

organised into two sessions to suit the availability of the recruited participants.

Following the same procedures as in the pilot study, prior to the experiment,

the participants were given the same training as the pilot study. Duration of

the training was approximately 50 minutes. The training duration was slightly

shorter than the training session for the pilot study because the training content

had been simpli�ed to cover relevant knowledge for the participants.

9.2.5.1 Demographic Pro�le

A total of 11 participants were recruited on a voluntary basis. Among them, four

were male and seven were female participants. In addition, 3 participants hold

PhD degree, 6 participants hold MSc and 2 participants hold Bachelor degree in

relevant IT or computer science �elds. All of them had the required background in

general systems analysis and design. Most of them also had working experiences

in IT industry, but only two participants stated that they had speci�c experience

in component-based software engineering. The experiment was held over two

sessions to suit the availability of the participants. The start and end time were

recorded; and in average, each participant spent approximately 3 hours and 7

minutes for the experiment excluding the training. Compensation was paid to all

the participants for their e�ort and time during the experiment.

9.2.5.2 Instrumentation and Materials

The experiment replicated the instrumentation and materials from the pilot study,

which had been updated after the execution of the pilot study.

294 CHAPTER 9. EVALUATION AND DISCUSSION

9.2.5.3 Experimental Setup

The experiment took place according to the availability of participants in a com-

puter lab in the faculty. In order to suit the availability of the participants, two

sessions were arranged. Both the training sessions lasted for approximately 50

minutes. Any confusion was clari�ed during the Q&A session before the exper-

iment started. The participants were then been briefed on their tasks for the

experiment. The remaining procedures for the main experiment follow the same

procedures in the pilot study.

In the pilot study, for each of the participant, an assistant was assigned to

aid the participants in identifying the heuristics used throughout the experi-

ment, while the participants were solving the extraction and mapping processes.

Nonetheless, due to the constraint of assistants' availability, we were not able to

assign assistants to each of the participants. However, three assistants including

the researcher were present during the whole execution of those two sessions of the

experiment. All of these assistants took turns to assist the participants. We be-

lieve that this situation would not signi�cantly a�ect the result of the experiment.

Nonetheless, having assistants could help to reduce the required e�ort.

In this main experiment, the participants were also given the same a set

of NLR statements3. The participants were also reminded to (1) represent the

extracted elements into the XMAN component-based elements according to the

given training materials; and (2) incrementally compose the existing design with

additional behaviours. Whilst performing the extraction and mapping processes,

they were expected to clarify their design decisions with regard to the adoption

of any relevant extraction or mapping heuristics. Additionally, the participants

were also reminded that the main intention of the experiment was to validate

3http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.html

 http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.html

9.2. PRELIMINARY EMPIRICAL VALIDATION 295

the incremental approach, and not to be biased on the Extractor and ECF tools.

This is in line with the intention of the experiment. Apart from this, it is also

important to state that none of the participants in the pilot study was involved

in the main experiment.

Given the basic structure of the experiment, and having considered the setting

and participants background, the experiment is now presented in detail.

9.2.5.4 Analysis

The analysis for the main experiment replicated the analysis in the pilot study.

See Section 9.2.3.1 and Section 9.2.3.2.

9.2.5.5 Result of the Main Experiment

This subsection lays out the results of the main experiment for (1) the e�ectiveness

of the incremental approach in terms of correctness; and (2) the application of

heuristics in extraction and mapping processes.

a. Result of the Analysis of the E�ectiveness of the Incremental Ap-

proach

Scoring values were used as the interpretation criteria for measuring the correct-

ness of the propositions (1) P1-1 that is based on the correctness of the extracted

elements compared to the extraction benchmark in each increment; and (2) P1-2

that is based on the accumulation of the correctness and syntax values compared

to the set of benchmarks for each increment. First, the result of the extraction

scoring for the experiment is presented.

Table 9.8 lists the scoring values for the extraction process. Interestingly, the

total average score of the extraction as compared to the benchmark was 83.77%.

This value showed that in average, most of the participants extracted either the

296 CHAPTER 9. EVALUATION AND DISCUSSION

accurate outcomes as the benchmark or highly set of useful architectural elements

from the NLR.

Table 9.8: Extraction Scoring

Increment R1 R2 R3 R4 R5 R6 R7 Total %

User-01 2 2 2 1 1 1 2 11 78.57

User-02 2 1 2 1 1 1 2 10 71.43

User-03 2 2 2 1 2 2 2 13 92.86

User-04 2 2 2 1 2 2 2 13 92.86

User-05 2 2 2 2 2 2 2 14 100

User-06 2 2 2 2 1 1 2 12 85.71

User-07 2 1 2 2 2 1 2 12 85.71

User-08 2 2 2 2 2 2 2 14 100

User-09 2 2 2 2 2 2 2 14 100

User-10 2 2 2 2 2 2 1 13 92.86

User-11 2 2 2 2 2 2 2 14 100

Total 20 18 20 17 18 17 19 129

Average 83.77% 83.77%

The above statement is evidenced by the high scoring values for all the re-

quirements. Based on Fig. 9.8, the chart shows the average extraction scoring

values for each participant. The common mistakes with extraction process based

in the result, were related to (1) only one of the extracted elements category was

correct; (2) the extracted elements were useful, but not arranged in the correct

ordering; or (3) the extracted elements were not completely correct, and not ar-

ranged in the correct ordering. In addition, amongst other identi�ed errors were

(1) not using the suggested extracted elements; and (2) extraction were incom-

plete for further composition. In general, the low score values were the result of

the common mistakes identi�ed.

The second part is an analysis of the interpretation criteria for the correctness

of the mapping processes. The scoring values for the mapping of the extracted

elements to XMAN model would be elaborated based on two interpretation crite-

ria. Firstly, the scoring was based on the correctness of its logical representation.

Mapping outcomes from each increment that were derived using the ECF tool

9.2. PRELIMINARY EMPIRICAL VALIDATION 297

Fig. 9.8: Extraction Scoring

were printed and analysed. Each of the design from each increment was assessed

using the benchmark and score values were assigned. The detailed scoring cases

for the correctness criterion is provided in Table 9.5. Table 9.9 provides the scor-

ing values for each participant. The total score value was calculated and the total

average score was derived from the total score that is 70.13%. The average value

was high considering all the participants did not have any background on XMAN

fundamental except for the given training.

Table 9.9: Summary of Scoring Value for Correctness

User/Increment R1 R2 R3 R4 R5 R6 R7 Total %

User-01 2 2 2 0 0 0 0 6 42.86

User-02 2 1 2 0 0 0 2 7 50.00

User-03 2 0 0 0 1 0 1 4 28.57

User-04 2 2 1 0 2 2 1 10 71.43

User-05 2 0 2 2 2 2 2 12 85.71

User-06 2 2 2 2 0 0 2 10 71.43

User-07 2 1 1 1 1 0 2 8 57.14

User-08 2 2 2 2 2 2 2 14 100.00

User-09 2 2 2 2 2 2 2 14 100.00

User-10 2 2 2 2 0 1 0 9 64.29

User-11 2 2 2 2 2 2 2 14 100.00

Total 22 16 18 13 12 11 16 108.00

Average 70.13 70.13

Based on Fig. 9.9, a high percentage of correctness scores were derived from

298 CHAPTER 9. EVALUATION AND DISCUSSION

R1, R2, R3 and R7. These values corresponded to the logical representation of the

extracted computations and control from the requirements, which achieved high

scoring value compared to the benchmark. In contrast, lower score values were

caused by either one or combination of these cases (1) illogical representation; (2)

breaking the encapsulation of the previous composition; (3) the ordering of the

composition was wrong.

Fig. 9.9: Result of Correctness Scoring Value

The second interpretation criterion for the correctness of the mapping out-

comes is in terms of syntax. The same set of procedures as in the pilot study

was adopted to validate the syntax of the derived design. Each of the derived

design outcomes were evaluated and given a score value. Refer to Table 9.6. In

general, the produced design should adhere to the modelling syntax de�ned in

XMAN model. The following Table 9.10 provides the detailed scoring value for

syntax based on each increment for each participant.

Based on Fig. 9.10, we can observe that syntax used for R1, R2, R3 and

R4 were considered high because of the scoring value, which contributed to more

than 70%. Overall, in average 76.62% of the representations were accurate ac-

cording to the XMAN notation and used valid composition points for incremental

9.2. PRELIMINARY EMPIRICAL VALIDATION 299

Table 9.10: Scoring Value for Syntax

User/Increment R1 R2 R3 R4 R5 R6 R7 Total %

User-01 2 2 2 1 1 0 1 9 64.29

User-02 2 1 2 0 0 0 0 5 35.71

User-03 2 0 1 1 1 0 2 7 50

User-04 2 2 2 2 2 2 0 12 85.71

User-05 2 2 2 2 2 2 2 14 100

User-06 2 2 2 2 1 1 2 12 85.71

User-07 2 1 1 1 0 0 2 7 50

User-08 2 2 2 2 2 2 2 14 100

User-09 2 2 2 2 2 2 2 14 100

User-10 2 2 2 2 1 1 0 10 71.43

User-11 2 2 2 2 2 2 2 14 100

Total 22 18 20 17 14 12 15 118

% 100.00% 81.82% 90.91% 77.27% 63.64% 54.55% 68.18%

Average 76.62 76.62

composition. The issues with the rest of the increments may relate to (1) not

modelled based on the extracted elements for any one of the extraction categories

i.e. computation or control; (2) valid composition syntax, but used invalid com-

position point; (3) used invalid composition points; or (4) not modelled using

the extracted elements. These observations were gathered based on the scoring

assessment. Each of the design outcomes was analysed and given a scoring value

with its justi�cation.

Fig. 9.10: Scoring Value for Syntax

300 CHAPTER 9. EVALUATION AND DISCUSSION

On average, the correctness value for the mapping process considering the

logical representation (70.13%) and syntax (76.62%) was 73.38%. These �nd-

ings are included to support the P1-1 and P1-2 propositions that the incremental

approach helps in assisting participants to (1) extract relevant architectural ele-

ments and (2) map the extracted elements to XMAN elements i.e. computations

and control.

b. Result of the Analysis of the Application of the Extraction and

Mapping Heuristics

Based on RQ-2, the propositions are (1) P2-1: The extraction heuristics will be

applied when making decisions in identifying the relevant architectural elements;

and (2) P2-2: The mapping heuristics will be applied when making decisions in

mapping the extracted elements into XMAN modelling elements. For both the

propositions, survey items were used and the responses were compared with the

benchmarks provided by the researcher.

Each survey item was analysed against a set of expected answers, which acted

as a benchmark. From the pilot study, the items were grouped into two categories

i.e. for extraction and mapping processes. Based on the survey items, partici-

pants were asked to identify which heuristics that they adopted whilst performing

each of the processes. These sets of answers were compared with the expected

benchmark sets and are summarised in Table 9.11.

Fig. 9.11 presents the average percentage values of the Result-A, which were

achieved for the use of extraction heuristics during the extraction process, while

Fig. 9.12 shows average in percentage values of the Result-B, which were con-

tributed to the use of the mapping heuristics during the mapping process. These

values indicated whether the use of the provided heuristics was signi�cant or not.

Without these heuristics, participants might have to rely on their experiences and

9.2. PRELIMINARY EMPIRICAL VALIDATION 301

Table 9.11: Adoption of the Extraction and Mapping Heuristics

EXTRACTION MAPPING

SEC B RESULT-A SEC B RESULT-B

Q1 77.27% Q2 57.58%

Q3 90.91% Q4 60.61%

Q5 75.76% Q6 48.48%

Q7 90.91% Q8 51.52%

Q9 100.00% Q10 38.64%

Q11 93.94% Q12 45.45%

Q13 90.91% Q14 45.45%

TOTAL AVG 88.53% TOTAL AVG 49.67%

Fig. 9.11: Application of the Extraction Heuristics

Fig. 9.12: Application of Mapping Heuristics

background knowledge in order to perform the extraction and mapping processes.

It is apparent from Table 9.11 that there is a signi�cant di�erence in use of

302 CHAPTER 9. EVALUATION AND DISCUSSION

both of these set of heuristics. The value for average Result-A was derived from

the average of the total scores of survey items relevant to extraction heuristics.

The participants were asked to identify which heuristics that they adopted when

making decisions about the extracted architectural elements. The application of

extraction heuristics contributed 88.53% compared to the expected benchmark.

In addition, participants were asked to identify which mapping heuristics were

applied when they map the extracted element to XMAN syntax. However, the

application of mapping heuristics (Result-B) only contributed 49.67% of the ex-

pected benchmark. The di�erence may occur because of lack of knowledge of the

XMAN semantics and the incremental composition concept.

A comparison of the application of extraction and mapping heuristics can be

shown in Fig. 9.13. It is interesting to observe that there were cases where high

application of extraction heuristics, but low in application of the expected map-

ping heuristics. Further research may need to be done to investigate correlation

between those properties.

Fig. 9.13: Comparison between Extraction and Mapping Scoring

These �ndings, even so, support the proposition P2-1 that the participants

9.2. PRELIMINARY EMPIRICAL VALIDATION 303

applied the relevant elements extraction heuristics to extract the relevant archi-

tectural elements from NLR. Although the �ndings for mapping heuristics were

quite low, nonetheless, there is an evidence to support proposition P2-2 that the

participants applied the mapping heuristics to map the extracted elements to

XMAN elements i.e. computations and control.

9.2.5.6 Result of the Post-Experiment

After executing the experiment, participants were asked to rate the provided

training in terms of its level of di�culty, ranging from too easy to too di�cult.

The trainings were divided into �ve parts that were (1) the XMAN fundamentals;

(2) the element extraction process; (3) the Extractor tool; (4) the mapping of the

extracted elements to XMAN elements; and (5) the ECF tool. In general, most of

the participants perceived the trainings as average in terms of level of di�culty.

See Table 9.12.

Table 9.12: Perceived Di�culty Level for Training

Training material Too Easy Easy Average Di�cult Too Di�cult

XMAN Fundamentals 0 2 8 1 0

Element Extraction 0 2 8 1 0

The Extractor Tool 0 2 8 1 0

Mapping to Component based elements 0 2 8 1 0

The ECF Tool 0 2 8 1 0

In addition, the participants were required to rate the tasks during the exper-

iment. The purpose of this item was to get feedback on their perception of the

di�culty levels of each of the given task. Based on Table 9.13, most of the par-

ticipants, collectively, rated the extraction of architectural elements, identifying

extraction heuristics, modelling task using XMAN notation, identifying mapping

heuristics and handling incremental composition as quite di�cult tasks. This

perception could be deemed to be common because it was their �rst-hand expe-

rience in learning the XMAN fundamentals and notation. Amongst all the tasks,

304 CHAPTER 9. EVALUATION AND DISCUSSION

only analysing the interaction of the extracted element task (labelled as Task C

in Table 9.13) was perceived as average, in terms of the level of di�culty.

Table 9.13: Post-Experiment Analysis

TASK TOO EASY EASY AVERAGE QUITE DIFFICULT DIFFICULT TOO DIFFICULT

A 0 1 4 5 1 0

B 0 2 3 4 2 0

C 1 0 6 2 2 0

D 0 2 2 4 1 2

E 0 2 2 6 1 0

F 0 0 3 5 2 1

A: Extracting candidates of component-based system.

B: Identifying which extraction heuristics is relevant for a speci�c requirement.

C: Analysing the interaction (behaviour).

D: Modelling the composition using XMAN.

E: Identifying Which mapping heuristic(s) is to be applied for a particular extraction.

F: Handling incremental composition.

9.2.5.7 Discussion

In line with the results from the pilot study, the main experiment was successful

in proving the following propositions P1-1 and P1-2 in the attempt to address

RQ-1. The level of correctness of the incremental approach was addressed by

using correctness interpretation criteria for both the extraction and mapping

processes. In addition, RQ-2, which investigated the application of extraction and

mapping heuristics among the participants, was achieved through support from

propositions P2-1 and P2-2. The evidence from both the propositions concluded

that the participants applied the relevant heuristics whilst making judgment in

the extraction and mapping processes. It is also worth highlighting that without

these heuristics as guidance, it is di�cult to formulate an objective interpretation

as we are dealing with subjective nature of the NLR.

In addition, future research might also be relevant to investigate the correla-

tion between extraction and mapping outcomes. From the initial �nding, it was

9.2. PRELIMINARY EMPIRICAL VALIDATION 305

found that there was slight di�erences in the correctness of the mapping out-

comes as compared to the correctness of the extraction outcomes. Nonetheless,

it is interesting to note the reasons that might lead to this �nding.

9.2.6 Threats to Validity

One of the potential threats to the internal validity of the experiment relates to

the adoption of benchmarking. The use of benchmarking in Software Engineering

(SE) empirical research is also recommended as stated in [WKP10]. Although

benchmarking has its own risks in terms of di�culties, the authors believe that

benchmarking should be a valid baseline for SE research[WKP10]. In this ex-

periment, a set of benchmarking items was used for the assessment correctness

criteria as the scoring value of the extracted elements and the derived design.

Nonetheless, the scoring value is hugely assessed by the researcher and hence,

may lead to bias. However, a set of detailed scoring assessments was provided in

order to support an objective assessment in an attempt to reduce biasness.

Another potential threat to the experiment arises from the background of the

participants. Most of them were not familiar with component-based systems.

Nonetheless, the training was supposed to be su�cient for them to derive the

expected architectural design incrementally.

In addition, the small number of participants is a further potential threat

to the validity of the experiment. A small sample was chosen because of the

expected di�culty of obtaining participants. According to [CH03], the aim of

qualitative research in a phenomenological paradigm is to gain deeper insights,

and it is possible to conduct research using small number of sample. On average,

participants in this experiment spent 3 hours and 7 minutes on the experiment,

excluding the training sessions prior to the experiment. It is worth noting that

306 CHAPTER 9. EVALUATION AND DISCUSSION

all the participants were selected on a voluntarily basis.

9.3 Summary

The experiment presented herein showed the preliminary validation of the incre-

mental approach to constructing component-based systems directly from NLR.

The �ndings supported the propositions with regard to the correctness of the

extraction and mapping processes and also the application of both the extraction

and mapping heuristics. We believe that further investigation which relates to

correlation of the extraction and mapping processes could be relevant to a better

understanding of design decisions made by human analysts.

9.4 Analysis of the Case Studies

The resulting incremental approach, detailed in Chapter 8, is validated and doc-

umented using two case studies and examples4 intended to show the applicabil-

ity of the approach. The documented case studies, which are provided in the

Appendix C, are the Trading System (COCOME) [RRMP08], the Video Store

System (VSS) [LSB98] and the Word Count [Sch06, p. 434] examples. The com-

plete executions of each of the case studies are provided in the same appendix.

These case studies capture the application of all the heuristics and design prin-

ciples presented in the corresponding chapters, the Incremental Composition in

Chapter 4, the Element Extraction in Chapter 5, the Mapping of the Extracted

Elements in Chapter 6, and the Architecture Refactoring in Chapter 7.

The following section furnishes the strategy towards validity of the approach,

4Including the ATM example[Sch06] provided in Chapter 8.

9.5. REFLECTIONS ON THE APPROACH 307

which is obtained from experiences of the execution of the case studies and ex-

amples using the approach.

9.5 Re�ections on the Approach

This section presents the re�ections, as a result of the execution of the case studies

and examples, in four main viewpoints: (1) the e�ects of the intrinsic properties

of the X-MAN component model; (2) the constraints of the requirements; (3)

the e�ects of the adopted features in this approach; and (4) the e�ects of the

supporting tools. Each of these viewpoints will be broken down into speci�c

issues to justify the impacts.

9.5.1 Properties of the X-MAN Component Model

The X-MAN component model, as presented in Chapter 3, o�ers three bene-

�ts, mainly from the aspects of component encapsulation, compositionality and

reusability. Here, each of these aspects will be re�ected on.

The E�ects of Encapsulation

The keyword extraction process is carried out for a single requirement at a time.

This is possible because of encapsulation in the X-MAN model. It is desirable be-

cause analysing a single requirement is more manageable than the usual practice

of analysing all requirements together. It is also bene�cial because it scales to any

number of requirements, and because it is always a �nitely terminating process.

Although this approach is basically heuristic, and requires human guidance and

decision making, the steps and rules have been adequately de�ned for the sake of

consistency.

308 CHAPTER 9. EVALUATION AND DISCUSSION

In addition, the extracted keywords are mapped only once, and the map-

ping is con�ned to a single component or connector. This gives evidence that

the keywords can be extracted and mapped individually and separately, without

having to be constrained with the dependencies with the rest of the architecture

elements. This is important because it makes the whole extraction and map-

ping process much easier to manage, and it enables the system architecture to be

scalable according to any number of requirements.

As a consequence of this e�ect, it allows us to realise the mapping process and

visualise the architectural constructs in the architecture diagram. Fig. 9.14 illus-

trate this concept, in which keywords of control and computations are extracted

from a piece of requirement based on the heuristics and design decisions, with the

help of the Extractor tool. These keywords are then mapped to the X-MAN el-

ements and these elements are used in constructing the component-based system

architecture.

Fig. 9.14: E�ect of Encapsulation.

A more speci�c example shown in Fig. 9.15, which contains a sample of the

keywords extracted from the requirements. They are keywords extracted from

the requirements for the Sale Transaction process. The table shows clearly each

extracted keyword, the requirement from which it was extracted, the component

9.5. REFLECTIONS ON THE APPROACH 309

or connector in the X-MAN system (see Fig.C.46) it was mapped to, and the

label of this component or connector. For example, the keyword `enterItemID'

was extracted from requirement [UC1-R3], mapped to the component BarCodeS-

canner (BCS); the keyword `or' was extracted from requirement [UC1-R3], and

mapped to the connector SEL in the architecture. The detailed extraction process

is included in Section C.1.11.

Fig. 9.15: Keywords Extraction for Sale Transaction.

This table shows clearly that each keyword is extracted from just one require-

ment. Moreover, it is mapped only once, and mapped to either a component or

connector (adapter). This gives evidence that keywords can be extracted and

mapped individually and separately. This is the essential feature that makes the

extraction and mapping process manageable and scalable to accommodate any

number of requirements.

Despite the claim that the lack of external dependencies in the X-MAN com-

ponent model is presented as an advantage, some may argue this claim with

respect to data dependencies. The X-MAN model mainly deals with control, and

it is assumed that data always follow control.5 Hence, we do not consider data

dependencies by virtue of parameters as an external dependency. Components

as de�ned in the model do not know each other, nor can they directly invoke

any computations from other components. In this respect, the components are

5For single-threaded execution only.

310 CHAPTER 9. EVALUATION AND DISCUSSION

viewed as black-box components which are truly independent.

The E�ects of Compositionality

The X-MAN model de�nes how components can be systematically composed

in order to build a larger composition. By adhering to the composition rules

motivated by the semantics of the model, components are properly de�ned in

an anticipated well-formatted piece of software. As a result, the structure of the

architecture will be inherently explicit and systematic. Based on the results of the

case studies and examples, the derived architectures have clear structures with

an explicit separation of concerns, namely control and computation. Since the

model o�ers the separation of control and computation encapsulated in separated

architectural elements, this makes the extraction from natural language more

credible and plausible in most of the cases.

The E�ects of Reusability

The reusability feature can be achieved in both the design and deployment phases.

During design, components and connectors are built and deposited into a repos-

itory. In design, the main aim is to maximise reusability, whilst in deployment,

the main concerns are to retrieve the existing components and connectors from

the repository, and compose them for a speci�c application. In view of this ap-

proach to constructing component-based systems, we apply the model only in the

deployment phase because the systems being built are for speci�c applications,

not for generic systems in contrast to the design phase.

When composing partial architectures, extracted computations, which are as-

signed to components, are then selected from a repository. We assume these

components already exist in the repository. Issues pertaining to component se-

lection are assumed to be dealt with by using the signature matching mechanism.

9.5. REFLECTIONS ON THE APPROACH 311

When the required component is not found, it must be created in a separate

life-cycle component development and stored in the repository.

With regard to approaches that attempt to map requirements to architecture

(see Chapter 2), the resulting architectures in most of the approaches are design

speci�cations. These speci�cations are either created via an abstraction process or

a series of re�nement processes. Once the �nal architecture is derived, the design

will be passed to the developer team for construction. In contrast, as an e�ect of

the reusability property, the resulting architecture is an executable speci�cation

which directly relates to an executable system. In fact, it is worth mentioning that

at any single point of increment, the derived architecture is already an executable

system. Furthermore, in general, the reusability factor leads to reducing e�ort,

time and cost in contrast to constructing a new system from scratch.

9.5.2 Requirement Issues

In the mission to address the gap between requirements and architecture, it is

worthwhile to highlight some of the concerns pertaining to these requirement

issues. The following sections discuss and present the issues with regard to the

requirements.

Types of Requirement

As speci�ed in Chapter 1, this approach is con�ned to accommodate functional

requirements only, leaving the quality or non-functional requirements (NFR) un-

handled. This decision does not intentionally mean to stress the importance of

functional requirements over NFR; representing behaviours in the architectural

elements itself is an open research issue on its own. Furthermore, the chosen com-

ponent model covers behavioural properties, and does not handle non-functional

312 CHAPTER 9. EVALUATION AND DISCUSSION

properties at the point of this writing.

The element extraction process presented in Chapter 5 has su�ciently ad-

dressed what can and cannot be extracted from functional requirements. In brief,

statements that only contain data, relationships, facts, rules, or constraint infor-

mation obviously do not add on to the behavioural property of the architecture

being built. Nonetheless, relevant information needs to be properly documented.

Problems in Natural Language Requirements

Despite the fact that NLR may contain problems such as ambiguity, inconsistency

and incompleteness, it is mostly still inevitable to use NLR in the early stage of

the requirements engineering process [BK00]. Some believe that NLR shall never

be completely replaced by formal speci�cation [Rut77], and recommended accom-

modating them instead. This approach to constructing component-based systems

directly from NLR in a way seconded and addressed this recommendation.

Change of Requirements

From the context of requirement changes, we believe this approach can be useful.

Although the execution of the case studies and examples do not explicitly val-

idate this claim, with the features of incremental composition and architecture

refactoring, we believe that requirements changes can be attained. Another piece

of supporting evidence is that the ordering of requirements is not an issue, as

long as the designer is able to identify valid composition points to be applied.

Hence, the incremental composition and architecture refactoring mechanisms can

be used to support changes in requirements.

9.5. REFLECTIONS ON THE APPROACH 313

9.5.3 The E�ects of the Selected Properties of the Incre-

mental Approach

This thesis has provided the foundations of the approach to constructing component-

based systems directly from NLR. In conjunction with this, there are two signi�-

cant properties that embrace this approach: (1) incremental composition and (2)

architecture refactoring. This section provides insights into the e�ects of these

features.

The E�ects of Incremental Composition

The ability to derive an architecture incrementally while guaranteeing the in-

cremented behaviours are maintained has a signi�cant e�ect. The substance of

incremental is the fact that it can address scalability. When progressing with

small increments, the architecture can be built up and, eventually, the �nal ar-

chitecture can be derived. Moreover, the scalability issue can be addressed as the

approach is designed to accommodate any number of requirements. Secondly, the

incremental construction of architecture/system also supports scalability with the

ability to support behaviour preservation of the incremented architecture.

In the semantics of the X-MAN, without the incremental composition, we

need to deal with increasing hierarchies as the number of connectors are added.

Such a strategy hinders the smooth transition during the design and also adding

considerable e�orts to the approach. By allowing open composition points during

each increment, this enables more components to be composed with the existing

composition connectors, instead of adding new connectors for each increment.

314 CHAPTER 9. EVALUATION AND DISCUSSION

The E�ects of Architecture Refactoring

The promising advantages of refactoring are: (1) to reduce architectural design er-

rors, and (2) to provide systematic reuse of design knowledge and proofs [MQR95,

TB01]. The same advantages are sought in this approach. The architecture de-

rived in each increment has already been validated and, hence, no rework e�ort

has to be spent whenever the changes to the architectural structure are made.

Both the incremental composition and refactoring raise concerns in regards to

behaviour preservation, but each of these mechanisms has their own signi�cant

context. In architecture refactoring, behaviour preservation mainly addresses the

preservation of the incremented behaviours while dealing with structural changes.

These changes are due to the need to restructure the design in order to (1) simplify

them or (2) allow further composition. These needs are not directed towards

incremental composition.

9.5.4 The E�ects of the Tools Support

This approach provides two supporting tools, namely the Extractor (see Sections

5.5 and 8.2.2.1) and the Exogeneous Composition Framework(ECF)(see Section

8.2.5.1) tool. Each of these tools o�ers support from di�erent contexts. The

following sections re�ect on each of these tools.

The Extractor Tool

The Extractor tool supports the approach by (1) highlighting the extracted tex-

tual analysis tags according to the categories of keywords extraction (e.g. verb,

noun, control); (2) automatically removing part-of-speech taggers that are irrel-

evant (e.g. articles) and (3) providing a simple documentation for the extracted

elements, and this can be used as a reference for the succeeding steps.

9.5. REFLECTIONS ON THE APPROACH 315

Without this tool, the systems analyst or designer has to elicit the information

from each requirement manually. Despite the use of the tool, some may argue

about its e�ectiveness, when even by using the tool, the user still needs to read

the statement. Nonetheless, the tool helps by highlighting the selected categories

of the extraction, thus reducing mental e�ort in identifying the component-based

elements, even with a relatively trivial help. We do not in any way claim that by

having this tool, the extraction process can automatically be undertaken.

The Exogeneous Composition Framework Tool

The Exogenous Composition Framework (ECF) tool aids in the modelling and

composition of the partial architectures using the incremental composition mech-

anism. This tool helps by automatically checking the composition rules accord-

ing to the semantics of X-MAN. Thus, this can support the reduction of other

non-essential constraints during composition, and the user's e�ort could be par-

ticularly centered on the composition of the partial and system architecture.

The signi�cance of the ECF tool is, without doubt, the fact that it enables

the designer to construct systems and then execute them. It also allows us to

validate a �nal system architecture with respect to the system's requirements.

The execution of the test cases can show that the system satis�es its requirements.

The success of the tool in general also experimentally validates the approach of

the system construction directly from the requirements.

The next section presents the second strategy towards validation of the ap-

proach. Here, a comparison study with related work, namely the BE approach,

is provided.

316 CHAPTER 9. EVALUATION AND DISCUSSION

9.6 Comparison with Related Work

Majority of the investigated approaches (as discussed in Chapter 2) adopt ab-

stract representation of requirements modelling, either by using procedural or

object-oriented paradigm. The focus of these extractions or mapping processes,

thus, are grounded on the foundations of the underlying abstraction of these

paradigms.

As laid out in Chapter 2, among the investigated approaches that claimed to

have addressed the gaps between requirements and architecture, the only work

that is closely related to this approach is the BE6 approach. The main reason is

that BE deals directly with each requirement by building behaviour trees (BT).

These BT are then integrated to build a design behaviour tree (DBT) during the

integration process. Recently, BE has been extended by incorporating a design

stage claiming to provide a scalable methodology that allows end-to-end process

covering from requirement to design [Mye10]. In the BE component model, com-

ponents are de�ned based on hardware components (see [Mye10, p.100-103]). The

model's characteristics include the followings:

1. components encapsulate computations;

2. a component can have multiple con�guration settings;

3. computations are separated from con�gurations;

4. �ow of control determines con�gurations;

5. a component can easily be redesigned to make a new component;

6. a component can interface between two incompatible components.

6Information on BE can be accessed at url: http://www.behaviorengineering.org/

9.7. ISSUES AND DISCUSSION 317

As a result of BT integration, a design behaviour tree (DBT) is produced.

The component model introduces a behaviour run-time environment (BRE) that

minimises communications between system and components [Mye10, p.116-117].

This BRE takes the DBT and processes it into a deployment composition tree

(DpyCT) as deployable component-based designs.

We consider the architecture in BE as being built once, without any incre-

ment or re�nement step. Despite having a clear-cut strategy in dealing with

design models, the BE methodology has not intended to incrementally produce

the architecture. To date, BE has not put focus on behaviour preservation, as it is

not required when constructing the architecture in such a strategy. The concern

in BE is more into reducing complexity when dealing with requirements. That

is why, the methodology used in BE highlights the use of BT in order to achieve

the aim. In contrast to our approach, the architecture is obviously constructed in

each increment. Furthermore, this architecture is an executable architecture, as

it is linked directly to executable components being retrieved from the repository.

9.7 Issues and Discussion

This section provides the relevant issues and discussion from the view of support

for software development project, requirements authoring styles, potential e�ects

of requirements ordering, dependencies and prioritisation, satisfying requirements

and the derived architecture using the incremental approach.

9.7.1 Support for Software Development Project

In product line system development, domain requirements are identi�ed and clas-

si�ed into commonnality and variability features to achieve reusability [LYZZ06].

318 CHAPTER 9. EVALUATION AND DISCUSSION

These features are selected and composed to build systems in product line sys-

tem development. Products comprise common and variable features, all of which

can be set accordingly. Based on our knowledge, there is no work in product

line system development that is geared towards building systems incrementally.

The existing incremental concern might be relevant to the production of di�erent

combination of these features for each product in the same product line.

Nonetheless, it is potentially useful to adopt the incremental approach in or-

der to support the development of product line systems. The main justi�cation

is supported by the fact that product line systems are constructed using pre-

existing software parts. This is in line with the principle proposed in the incre-

mental approach so as to be able to produce product line systems systematically

and hierarchically. An important consideration with regard to the incremental

approach which makes the approach plausible is the underlying notion of the

XMAN semantics that computations and control are totally separated. Hence,

the incremental nature is grounded in the existence of exogeneous control, which

eventually build the hierachies of control structures. Without this concern, it

is almost impossible to apply the incremental approach in product line system

development.

On the other hand, the proposed incremental approach could also potentially

work with Agile methodology. The main di�erence between Agile software de-

velopment methodology with non-Agile (some refer to as plan-driven project) is

its focus on being adaptable to change [NNG+07]. Agile's main philosophy is to

produce small intervals in each increment and further build that increment to a

larger scale. The particular point worth considering is the notion that Agile's

principle is to produce working software over documentation [TKW03, KS04]. In

light of achieving Agile's aim, software developers are more focused on producing

actual software artifacts i.e. coding than producing unnecessary documentation.

9.7. ISSUES AND DISCUSSION 319

Agile methodology is also intended to be generic to suit various software devel-

opment methods and techniques. It does not specify or �x what kind of techniques

or tools should be adopted in any software project. Nonetheless, the essence of

Agile is mainly to achieve small working increments, rather than putting e�ort

into producing an exhaustive list of documentations. Agile-based projects mostly

gained their agility from the expertise and experiences of the involved team mem-

bers [Coc02, Boe02]. In addition, there is also a risk of dealing with irrecoverable

architectural mistakes during the execution of the short cycles in Agile. This

may be due to the shortcomings of the knowledge and experiences of the team

members, whilst maintaining rapid changes in the implementation in each cycle

[Boe02].

Merely by virtue of the general Agile philosophy, we can recommend the in-

cremental approach to be adopted in an Agile setting. The main justi�cation

is that it recommends the software developers to produce small increments and

inherently build systems incrementally. This is in line with our aim in the incre-

mental approach of being able to produce partial architecture in each increment

and compose it to the system design, which eventually leads to the �nal system

architecture. Although we are aware that this is not the only concern in Agile, it

is of interest to investigate the adoption of Agile in developing component-based

systems. Regardless of whether or not Agile can best be suited to being adopted

for the incremental approach, further investigation is indeed required. It would

be interesting to know the implications of adopting Agile for the incremental

approach.

320 CHAPTER 9. EVALUATION AND DISCUSSION

9.7.2 Requirements authoring styles

According to Lauesen [Lau02], styles of functional requirements can be cate-

gorised into human/computer interaction style, context diagram style, event and

function list style, feature-style, screen and prototype style, task description style

(user view) and scenario (use-case) style (system view). Lausen also states that

the way requirements are stated di�er for a number of factors, mainly (1) the

notation used, (2) the level of ease of veri�cation and validation purposes, (3)

whether the requirements specify the product functions and its surroundings, or

(4) whether the requirements simply identify what they do and its details. In

reality, functional requirements speci�cation may be created with a combination

of these styles.

With regard to the functional requirements style classi�cation, the input to

the incremental approach de�ned in this thesis restricts only to textual-based

functional requirements. That is, it may comprise human/computer interaction

style, event and function list style, feature style, task description style and sce-

nario (use case) style. Such a restriction implies that in order to maximise the

use of the approach in the elements extraction process, requirements, which are

stated using these styles, have higher probability of being discovered. In addi-

tion, inferences have to be made whenever no explicit component-based elements

(computations, control and data) are available.

Nonetheless, we acknowledge the existence of di�erent and also combinatorial

requirements styles, with respect to the way in which the requirements are writ-

ten. For instance, the use of use case speci�cation might improve the e�ectiveness

of the approach because use case speci�cation provides the �ow of event(s) ac-

cording to the required ordering. To an extent, if the NLR is organised in such

a way that ordering is already being considered, this will promisingly give an

9.7. ISSUES AND DISCUSSION 321

impact to the proposed incremental approach. Nonetheless, further investigation

is required to validate and provide evidence of such a case.

9.7.3 Potential E�ects of Requirements Ordering, Depen-

dencies and Prioritisation

In addressing the potential e�ects of requirements ordering in the incremental ap-

proach, one of the relevant issues is the concerns of its e�ects on the composition.

The main aim to achieve whilst having increments is to preserve the previously

incremented architecture. According to [MVG06], each transformation (i.e. refac-

torings) in model-driven development preserves behaviours of the source model

while the structure is modi�ed in the target model. Nonetheless, the incremental

composition supports composition as well as decomposition at any increment, as

described in Section 7.3.1. This feature facilitates both top-down and bottom up

approaches and hence, the ordering of requirements can be addressed.

It is worth noting that most of the time, compositions of components are done

using a bottom-up approach. This means that by default, the normal approach

will be to extract the architectural elements from NLR, to select the relevant

pre-existing components from the repository and to design the composition using

XMAN semantics using a bottom-up approach. However, whenever requirements

are not in the correct ordering, the designer shall still be able to construct the

composition using the horizontal and vertical refactoring concepts, which are

introduced in Section 7.2.

The only exception that may occur with regard to the requirements ordering

is when there are requirements errors originating in the source of requirements.

For instance, the stated requirements are incorrectly or inconsistently speci�ed.

These kinds of requirement errors are beyond the scope of this work and should

322 CHAPTER 9. EVALUATION AND DISCUSSION

be handled accordingly before the requirements are used as an input to the in-

cremental approach.

Requirements dependencies

Many researchers have acknowledged that requirements are typically not inde-

pendent on each other [GV02, ZMZ05, ZMZ06], and various types of dependen-

cies exist among them and between relevant software artefacts [RJ01, Egy03,

Ram98, KBV12]. One of the critical success factors for software projects is to

understand the dependencies and correlations between the underlying attributes

[GV02]. Because of these dependencies, there is a considerable interest in inves-

tigating traceability techniques, which are relevant in capturing and identifying

the relationships between these artefacts [RJ01, Egy03, Ram98, GF94, Got92,

ACDL99, IIMD05, MXP05, PS05, Boh95, HJD11]. The traceability concern is

another challenging and non-trivial task to consider in understanding, capturing,

managing and maintaining the dependencies among software artefacts.

The context of the incremental approach is in the deployment phase, which

means that the designer will be using the approach to build a component-based

system, and not to create components for reuse purpose. See Section 3.2 for the

component life cycle. In the incremental approach, requirements might have de-

pendencies, but in the current state of the work, the dependencies and their issues

are not thoroughly addressed. When extracting a particular computations or con-

trol from NLR, the extracted elements will be mapped to architectural elements

in the component (and connector) repository. Consequently, a computation is

mapped to a candidate component, based on its speci�cation (because we cannot

see what is inside a black-box component). If the same or similar computation

occurs in part of another requirement later on, the same procedure will take place.

9.7. ISSUES AND DISCUSSION 323

This is justi�able because the incremental approach itself is relevant only in the

deployment phase. During deployment, the aim is to develop a system by using

pre-existing components and not being concerned to maximise reuse such as in

the design stage.

Requirement prioritisation

The need for requirement prioritisation has long been recognised in the literature

[Wie03, Sid96, Fir04, TCBB09]. Most of the needs of requirement prioritisation

in the literature are rooted in issues such as constraints on resources, con�icting

preferences amongst stakeholders, market opportunities, risks, product strategies,

and costs [KTR+07, Fir04]. In order to select the correct set of requirements, de-

cision makers should make an e�ort to understand the relative priorities of the

requested requirements [Wie03]. After selecting the prioritised requirements, soft-

ware developers may address those requirements within the allocated constraints

before handling non-prioritised requirements.

Amongst the techniques for prioritising requirements in the literature are (1)

absolute according to importance e.g. essential, conditional or optional [IEE98],

mandatory, desired or best value ([HJD11], [Som07]) ; (2) relative, which is more

subjective according to the human analyst. Both techniques aim to release the

planning of incremental software development. For a thorough review of these and

other prioritisation techniques, see Karlsson [KTR+07], Lehtola and Kauppinen

[LK04], Berander [BS09] and Moisiadis [Moi02].

In [TCBB09, Fir04], requirement prioritisation techniques are classi�ed into:

1. clustering approaches: categorise requirements into di�erent groups;

2. consensus-based approaches: geared towards getting consensus among stake-

holders;

324 CHAPTER 9. EVALUATION AND DISCUSSION

3. multi-criteria ranking: combine multiple relevant criteria into a single value

[GV02];

4. pair-wise comparison: compare all requirements and identify their values

[KTR+07];

5. voting systems: express preferences by the stakeholders [BS09];

6. �nancial approaches: based on �nancial measures or cost-value [KWR98].

As mentioned earlier, prioritisation is concerned with producing product re-

leases by concentrating on requirements based on certain aspects of preference.

Nonetheless, be it of any of those requirement prioritisation technique, the in-

cremental approach should be useful in incorporing the selected set of functional

requirements. The crucial feature of the incremental approach is the ordering of

the behaviours stated in each of the requirement statements. The representation

of the execution in XMAN is very much dependent on the ordering of behaviours

that need to be captured.

9.7.4 Achieving requirements satisfaction

The central aim in software development, in general, is to satisfy user require-

ments. In this approach, we simply adopted and applied an existing black-box

testing technique. This decision is based on the justi�cation that components,

as de�ned in the X-MAN are black-box components, thus, the testing technique

that is applicable is the black-box testing. The test cases are derived from the

external interactions via the top-level connector. Accordingly, the test cases cover

the system execution paths only, and not the computations themselves because

the components are black-box and cannot be accessed directly. We assume the

9.8. SUMMARY 325

components are already �tted for composition, which means they are heretofore

tested and ready to be deployed.

9.7.5 The Resulting Architecture

The resulting architecture produced by individual designers may be ranging from

totally to slightly di�erent designs. Regardless of the di�erences, the bottom line

is that this approach provides a systematic process for reducing the abstraction

process made during the analysis and design stages. Without such a process,

the designers need to apply the abstraction process based on their own expertise

and judgment. This may even lead to a profound di�erence with regard to the

resulting architecture.

9.8 Summary

This chapter has provided the evidence of the validation of the approach to con-

structing component-based systems from NLR. The preliminary empirical valida-

tion has been executed and �ndings have been reported. Moreover, the re�ections

of lessons learned during the execution of case studies have been synthesised for

the discussion. All of these outcomes from the analysis of the re�ections and the

comparison study have been imparted in the process of validating the approach.

Finally, a comparison study with BE and some issues and discussion have also

been provided.

Chapter 10

Conclusions and Future Work

In this thesis, the foundations for constructing component-based systems directly

from NLR using incremental composition and supported by heuristics and design

decisions have been de�ned. Central to this approach is a novel method, compris-

ing these foundations based on the semantics of the X-MAN component model.

This �nal chapter outlines the contributions and limitations of the research, pro-

vides further discussion and present recommendation for future work.

10.1 Research Contribution

This section relates all the research objectives as listed in Chapter 1 with their

corresponding contributions in the respective chapters. Fig. 10.1 summarises the

research contribution made in this thesis.

The analysis and review of the existing approaches with regard to handling

the transition from requirements to system architecture has been presented in

Chapter 2. Based on the analysis, the knowledge gap has been addressed. To

the best of our knowledge, there is no existing approach that deals with each

requirement, and at the same time incrementally builds an executable architecture

326

10.1. RESEARCH CONTRIBUTION 327

Fig. 10.1: Summary of Research Contribution.

(or system).

The second objective, namely the formulation of the proposed approach, has

been achieved in Chapter 8. This chapter consolidates and illustrates the entire

idea of the approach, from extracting elements of the component-based systems

to the creation of the system architecture. The heuristics for identifying and

extracting elements of component-based system have been covered in Chapter

5. This chapter provides the required guidance in the extraction process. In

addition, Chapter 6 provides the links between the extracted elements and the

corresponding X-MAN constructs.

The incremental composition and architecture refactoring features have been

set out in Chapters 4 and 7. In these chapters, the required design decisions have

been addressed in order to allow smooth transitions between the requirements

and architecture stages. By adopting a textual analysis technique, the Extractor

tool, which aids in the discovery of the elements of the component-based systems,

has been developed. The tool has been presented in Chapter 5, Section 5.5.

328 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

The third objective, that is to validate the proposed approach, is achieved

through (1) feasibility analysis, (2) re�ections from the executed case studies and

examples and (3) a comparison with related work. An evidence that this approach

works is provided by the execution of a complete ATM example (see Section 8.3).

In addition, the execution of the provided case studies have also contributed to

this objective (see Appendix C). Finally, a comparison with related work, namely

the BE approach, has also been included.

10.2 Limitations and Discussion

An approach for constructing component-based systems directly from raw require-

ments has been presented. The primary concern here is to derive an architecture

that satis�es all the requirements. Clearly the architecture that this method

produces may not be the best possible design according to various criteria. For

example, the corresponding system may not be e�cient in terms of execution

speed.

This approach is based on a speci�c component model that supports incre-

mental composition, which again distinguishes this work from existing related

approaches. It has been demonstrated how the approach works for incremental

system construction using individual requirements. Such an incremental approach

allows us to deal with any number of requirements, and therefore it should scale

up to arbitrarily large requirements documents. To demonstrate that this is the

case, a tool for assisting in the element extraction process, namely the Extrac-

tor tool and another tool for modelling, that is the Exogeneous Composition

Framework(ECF) tool, have been used in this approach.

Although this approach is basically heuristic, it requires human judgment

and decision making; nonetheless, for consistency, the steps and rules have been

10.3. FUTURE WORK 329

adequately de�ned. The biggest challenge, especially when dealing with a large

number of requirements, arises when we fail to �nd a suitable composition point in

the current system architecture for composing it with the partial architecture for

the current requirement. The current strategy is to defer the composition of the

current partial architecture and compose it with the (current) system architecture

when it becomes possible. In the examples, this strategy has been experimented

with and proven to work.

On the other hand, we may also need to deal with non-determinism when

there is more than one possible composition point. This is bound to arise when

dealing with a large number of requirements. There cannot be any hard and fast

rule here and human guidance is the only practical solution.

In the analysis of NLR, many other elements could be identi�ed than at

present. To date, we have only focused on computation and control. The X-MAN

component model can be re�ned to incorporate elements, e.g. active components,

data �ow, etc., and indeed di�erent versions of the model are being constructed

to accommodate them.

10.3 Future Work

It is recommended that further research be undertaken in the following areas: (1)

use of NLP; (2) execution of large-scale set of requirements; (3) execution of a

large-scale set of requirements; (4) experimentation with regards to the potential

cost and bene�t of the approach; (5) architecture refactoring; (6) automation of

refactoring; and (7) an integrated tool support.

330 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.3.1 The Use of Natural Language Processing in the El-

ements Extraction

This work has adopted a basic textual analysis technique as a means of assisting

designers in suggesting candidates for elements of component-based systems. To

achieve a higher degree of e�ectiveness, the use of advanced feature of Natural

Language Processing (NLP) technique can further be investigated and exploited

in the future. The application of any suitable and advanced technique in NLP

can be embedded in the Extractor tool. Nevertheless, we do not suggest that

automatic extraction should be applied to completely replace human tasks. It

is believed that human justi�cation is still demanded during the selection of the

relevant component-based elements.

10.3.2 Execution of a Large-scale Set of Requirements

The current state of the approach is de�ned based on the execution of many

examples and case studies. Considerably more work will need to be done to de-

termine the applicability of the approach in various types of systems. It would

be interesting if a large-scale set of requirements can be acquired and experi-

mented with. Due to resource constraints (time and availability), large-scale set

of requirements cannot be obtained and executed.

10.3.3 An Experimentation of the Cost and Bene�t of the

Approach

Further research might investigate and experiment the potential cost and bene�ts

of the approach. This kind of experimentation requires empirical investigation

10.3. FUTURE WORK 331

involving real user of the approach, these being the analysts and designers. More-

over, it would also be interesting to compare experiences of individuals using the

approach, and what can be learned from their real-user experiences. Such empir-

ical evidence would assist us in establishing a greater degree of accuracy on the

applicability and e�ectiveness of this approach.

10.3.4 Architecture Refactoring

More work will need to be done to establish architecture refactoring tasks. The

present strategy may not work for generic software systems, since it is predicated

on the premise that all the key concepts derived from the requirements can be

encapsulated. The latter will only be true for systems with restricted behaviour,

or for highly compositional domains. In order to overcome this shortcoming, we

need to be able to refactor an architecture, speci�cally the connector hierarchy,

such that the behaviour demanded by a new requirement can be correctly added

to the architecture. The current design decisions for architecture refactoring are

more concerned with achieving simpli�cation of the design, rather than restuc-

turing the design for compositional purposes. An investigation of this latter aim

is bene�cial in order to allow further composition.

10.3.5 Automation of the Architecture Refactoring

At the current stage of the approach, refactoring tasks are manually identi�ed

and performed. It would be interesting to automatically detect the desired pat-

terns of structure that can be refactored. As this refactoring is not the main

contribution to this work, this is potential future work to be addressed. Hav-

ing such an automated process would de�nitely reduce the designer's e�ort and

hence, enhance the full potential of the intended refactoring tasks.

332 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.3.6 An Integrated Tool Support

For the time being, the two tools, namely the Extractor and Exogeneous Com-

position Framework (ECF) tools used in this approach are independently de-

veloped and deployed. An integrated tool support could lead to at least three

bene�ts. Firstly, an increment for each requirement could be easier to manage. At

the current state of this research, the extraction process is performed separately

and the result of the extraction will be used to model using the ECF tool.

Secondly, the feature to manage component selection in the repository could

assist the designer. At the present stage of the work, we assume that the re-

quired components are already available in the repository, hence no solution is

provided to solve the problems of matching the required components with the

existing components in the repository. For brevity, we assume the need to apply

the signature matching mechanism for component selection. Thirdly, it should

also provide support for recording and managing partial architectures that are

deferred, as well as matching them with possible composition points in the cur-

rent system architecture. Currently, these tasks are managed manually, using the

ECF tool.

10.4 Summary

This chapter has presented the contributions to the knowledge made in this re-

search. All the respective parts of the thesis link to each of the contributions

have also been provided. In addition, limitations are discussed and �nally, the

future research directions have been addressed.

Bibliography

[Abb83] Russell J. Abbott. Program design by informal English descrip-

tions. Commun. ACM, 26(11):882�894, 1983.

[ABE+06] G. Antoniol, B. Berenbach, A. Eyged, S. Ferguson, J. Maletic,

and A. Zisman. Center of Excellence of Traceability Technical

Report (draft version). Technical report, Center of Excellence for

Traceability, DePaul University, September 2006.

[ABL96] J.-R. Abrial, E. Börger, and H. Langmaack. The steam boiler

case study: Competition of formal program speci�cation and devel-

opment methods. In Formal Methods for Industrial Applications,

Specifying and Programming the Steam Boiler Control, pages 1�12,

London, UK, 1996. Springer-Verlag.

[ACDL99] G. Antoniol, G. Canfora, and A. De Lucia. Maintaining trace-

ability during object-oriented software evolution: A case study. In

ICSM '99: Proc. of the IEEE International Conference on Software

Maintenance, pages 211�219, 1999.

[Ach97] C. B Achour. Linguistic instruments for the integration of scenarios

333

334 BIBLIOGRAPHY

in requirement engineering. In REFSQ'97: Proc. of the 3rd Inter-

national Workshop on Requirements Engineering: Foundation for

Software Quality, Barcelona, Catalonia, 1997.

[AG97] V. Ambriola and V. Gervasi. Processing natural language require-

ments. In ASE '97: Proc. of the 12th International Conference on

Automated Software Engineering (formerly: KBSE), pages 36�45,

Washington, DC, USA, 1997. IEEE Computer Society.

[Ass03] Uwe Assman. Invasive Software Composition. Springer Verlag, 1st

edition, April 2003.

[Bas01] Nuseibeh Bashar. Weaving together requirements and architec-

tures. IEEE Computer, 34(3):115�119, 2001.

[Bas05] L. R. D. Bastos. Integration of System requirements and Multi-

Agent Software Architectures. PhD thesis, Universidade Federal de

Pernambuco, Centro de Informática, Brazil, 2005.

[BB01] Barry Boehm and Victor R. Basili. Software defect reduction top

10 list. IEEE Computer, 34(1):135�137, 2001.

[BBB+00] Felix Bachmann, Len Bass, Charles Buhman, Santiago Comella-

Dorda, Fred Long, John Robert, Robert Seacord, and Kurt Wall-

nau. Volume II: Technical concepts of component-based software

engineering (2nd ed.). Technical report, Software Engineering In-

stitute, Carnegie Mellon University, 2000.

[BBGM00] L. Baum, M. Becker, L. Geyer, and G. Molter. Mapping require-

ments to reusable components using Design Spaces. In ICRE '00

BIBLIOGRAPHY 335

: The 4th IEEE International Conference on Requirements Engi-

neering, pages 159�167, Schaumburg, Illinois, 19-23 June 2000.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software architecture

in practice. SEI series in Software Engineering. Addison-Wesley,

Harlow, 2nd edition, 2003.

[BDLM05] Olivier Barais, Laurence Duchien, and Anne-Francoise Le Meur.

A framework to specify incremental software architecture transfor-

mations. In EUROMICRO '05: Proc. of the 31st EUROMICRO

Conference on Software Engineering and Advanced Applications,

pages 62�69, Washington, DC, USA, 2005. IEEE Computer Soci-

ety.

[Ber04] Patrik Berander. Using students as subjects in requirements prior-

itization. In International Symposium on Empirical Software En-

gineering (ISESE), pages 167�176, 2004.

[BH07] Andreas Birk and Gerald Heller. Challenges for requirements engi-

neering and management in Software Product Line Development.

In Lecture Notes in Computer Science, Requirements Engineer-

ing: Foundation for Software Quality, pages 300�305. Springer

Berlin/Heidelberg, 2007.

[BK00] Daniel M. Berry and Michael M. Kriegers. From contract draft-

ing to software speci�cation: Linguistic sources of ambiguity � a

handbook version 1.0, 2000.

336 BIBLIOGRAPHY

[BMA08] V. Berzins, C. Martell, and P. Adams. Innovations in natural lan-

guage document processing for Requirements Engineering. Innova-

tions for Requirement Analysis. From Stakeholders' Needs to For-

mal Designs, pages 125�146, 2008.

[Boc04] Conrad Bock. UML2 Composition Model. Journal of Object Tech-

nology, 3(10):47�73, 2004.

[Boe84] Barry W. Boehm. Software engineering economics. IEEE Trans-

actions on Software Engineering, 10(1):4�21, 1984.

[Boe02] B. Boehm. Get ready for Agile methods, with care. Computer,

35(1):64�69, Jan 2002.

[Boh95] Shawn Anthony Bohner. A graph traceability approach for software

change impact analysis. PhD thesis, George Mason University,

USA, 1995.

[Boo86] Grady Booch. Object-oriented development. IEEE Transactions

on Software Engineering, 12(2):211�221, 1986.

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopting

and Evolving a Product-Line Approach. Addison-Wesley Profes-

sional, May 2000.

[Boy99] Nik Boyd. Using natural language in software development. JOOP,

11(9):45�55, 1999.

[Bra00] Thorsten Brants. TnT: A statistical part-of-speech tagger. In

ANLC '00: Proc. of the 6th Conference on Applied Natural Lan-

guage Processing, pages 224�231, Stroudsburg, PA, USA, 2000. As-

sociation for Computational Linguistics.

BIBLIOGRAPHY 337

[Bria] Eric Brill. A simple rule-based part-of-speech tagger. In ANLC

'92: Proc. of the 3rd Conference on Applied Natural Language P.

[Brib] Eric Brill. Transformation-based error-driven learning and natural

Language P.

[Bro01] David William Brown. An Introduction to Object-Oriented Analy-

sis: Objects and UML in Plain English. Wiley, 2nd edition, July

2001.

[BS09] Patrik Berander and Mikael Svahnberg. Evaluating two ways of

calculating priorities in requirements hierarchies - an experiment

on hierarchical cumulative voting. J. Syst. Softw., 82(5):836�850,

May 2009.

[CB05] Thomas M. Connolly and Carolyn E. Begg. Database Systems: A

Practical Approach to Design, Implementation, and Management.

Addison-Wesley, 2005.

[CH03] Jill Collis and Roger Hussey. Business Research: A Practical Guide

for Undergraduate and Postgraduate Students. Palgrave Macmillan,

2nd edition edition, 2003.

[Che80] Peter P. Chen. Entity-Relationship diagrams and English sen-

tence structure. In Proc. of the 1st International Conference on

the Entity-Relationship Approach to Systems Analysis and Design,

pages 13�14, Amsterdam, The Netherlands, 1980. North-Holland

Publishing Co.

338 BIBLIOGRAPHY

[CHS08] Pedro J. Clemente, Juan Hernández, and Fernando Sánchez. Ex-

tending component composition using model driven and aspect-

oriented techniques. JSW, 3(1):74�86, 2008.

[Coc02] A. Cockburn. "Agile software development joins the "Would-Be

Crowd" ". Cutter IT J., 15(1):6�12, 2002.

[DBB99] Sylvain Delisle, Ken Barker, and Ismal Biskri. Object-oriented

analysis: Getting help from robust computational linguistic tools.

In G. Friedl, H.C. Mayr (eds.) Application of Natural Language

to Information Systems, Oesterreichische Computer Gesellschaft,

pages 167�172, 1999.

[DC06] Daniela Damian and James Chisan. An empirical study of the com-

plex relationships between requirements engineering processes and

other processes that lead to payo�s in productivity, quality, and

risk management. IEEE Transactions on Software Engineering,

32(7):433�453, 2006.

[DDMvd97] R. Darimont, E. Delor, P. Massonet, and A. van de.

GRAIL/KAOS: An environment for goal-driven requirements en-

gineering. In ICSE '97: Proc. of the 19th International Conference

on Software Engineering, pages 612�613, New York, NY, USA,

1997. ACM.

[Dep94] Department of Defense. MIL-STD-498 Military Standard Software

Development and Documentation, 1994.

[DK] Tung Dao and Kyo Kang. Mapping features to reusable compo-

nents: A problem frames-based approach. In Jan Bosch and Jae-

joon Lee, editors, Software Product Lines: Going Beyond, Lecture

BIBLIOGRAPHY 339

Notes in Computer Science, pages 377�392. Springer Berlin / Hei-

delberg.

[DK06] L. DeMichiel and M. Keith. Enterprise JavaBeans, version 3.0. Sun

Microsystems, 2006.

[DM06] Siqing Du and Douglas Metzler. An automated multi-component

approach to extracting entity relationships from database require-

ment speci�cation documents. In Christian Kop, Güunther Fliedl,

Heinrich Mayr, and Elisabeth Mètais, editors, Natural Language

Processing and Information Systems, volume 3999 of Lecture Notes

in Computer Science, pages 1�11. Springer Berlin/Heidelberg,

2006.

[Dro03a] R. Geo� Dromey. Architecture as an emergent property of re-

quirements integration. In STRAW '03: Proc. of the 2nd Inter-

national Software Requirements to Architectures Workshop, pages

77�84, 2003.

[Dro03b] R. Geo�. Dromey. From requirements to design: Formalizing the

key steps. In SEFM '03: Proc. of the 1st International Conference

on Software Engineering and Formal Methods, pages 2�11, 2003.

[Dro05] R. Geo� Dromey. Genetic design: Amplifying our ability to deal

with requirements complexity. In Scenarios: Models, Transforma-

tions and Tools, pages 95�108. Springer Berlin/Heidelberg, 2005.

[Dro07] R. Geo�. Dromey. Engineering large-scale software-intensive sys-

tems. In ASWEC '07: Proc. of the 18th Australian Software En-

gineering Conference, pages 4�6, 2007.

340 BIBLIOGRAPHY

[DvE06] Subhajit Datta and Robert van Engelen. E�ects of changing re-

quirements: A tracking mechanism for the analysis work�ow. In

SAC '06: Proc. of the 2006 ACM Symposium on Applied Comput-

ing, pages 1739�1744, Dijon, France, 2006. ACM Press.

[EEM95] K. El Emam and N. H. Madhavji. A �eld study of requirements

engineering practices in information systems development. In RE

'95: Proc. of the 2nd IEEE International Symposium on Require-

ments Engineering, pages 68�80, York, UK, 1995. IEEE Computer

Society Press.

[Egy03] Alexander Egyed. A scenario-driven approach to trace dependency

analysis. IEEE Transactions on Software Engineering, 29(2):16,

2003.

[Eli08] Perla Ines Velasco Elizondo. Component Composition In The De-

ployment Phase With Exogenous Connectors. PhD thesis, School

of Computer Science, University of Manchester, 2008.

[EM99] Alexander Egyed and Nenad Medvidovic. Round-trip software en-

gineering using uml: From architecture to design and back. In Proc.

of the 2nd Workshop on Object-Oriented Reengineering WOOR,

pages 1�8, 1999.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don

Roberts. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional, 1st edition, July 1999.

[FE00] Anthony Finkelstein and Wolfgang Emmerich. The future of re-

quirements management tools. Information Systems in Public

BIBLIOGRAPHY 341

Administration and Law. Oesterreichische Computer Gesellschaft

(Austrian Computer Society), pages 9�16, 2000.

[FH01] B. Schãtz F. Huber. Agentsheets reference manual. Technical re-

port, AgentSheets, Inc., 2001.

[Fie04] Roy Thomas Fielding. Architectural Styles and the Design of

Network-based Software Architectures. PhD thesis, University of

California, 2004.

[Fir04] Donald Firesmith. Prioritizing requirements. Journal of Object

Technology, 3(8):35�48, 2004.

[Fir07] Donald Firesmith. Common requirements problems, their nega-

tive consequences, and industry best practices to help solve them.

Journal of Object Technology, 6(1):17�33, 2007.

[FM08] Remo N. Ferrari and Nazim H. Madhavji. Architecting-problems

rooted in requirements. Information and Software Technology,

50(1-2):53�66, 2008.

[GB97] Leah Goldin and Daniel M. Berry. AbstFinder, a prototype natural

language text abstraction �nder for use in requirements elicitation.

Automated Software Engineering, 4(4):375�412, 1997.

[GEM01] Paul Grünbacher, Alexander Egyed, and Nenad Medvidovic. Rec-

onciling software requirements and architectures: The CBSP ap-

proach. In RE '01: Proc. of the 5th IEEE International Symposium

on Requirements Engineering, pages 202�211, Toronto, Canada,

2001. IEEE Computer Society.

342 BIBLIOGRAPHY

[GEM04] Paul Grünbacher, Alexander Egyed, and Nenad Medvidovic. Rec-

onciling software requirements and architectures with intermediate

models. Software and System Modelling, 3(3):235�253, 2004.

[GEM06] M. Galster, A. Eberlein, and M. Moussavi. Transition from re-

quirements to architecture: A review and future perspective. In

SNPD 2006 : The 7th ACIS International Conference on Software

Engineering, Arti�cial Intelligence, Networking, and Parallel/Dis-

tributed Computing, pages 9�16, Las Vegas, Nevada, USA, 19-20

June 2006.

[GF94] O. Gotel and A. Finkelstein. An analysis of the requirements trace-

ability problem. In ICRE '94 : The 1st International Conference on

Requirements Engineering, pages 94�101, Colorado Springs, Col-

orado, USA, 1994.

[GGKH03] T Gardner, C Gri�n, J Koehler, and R Hauser. Review of omg

mof 2.0 query/views/transformations submissions and recommen-

dations towards �nal standard. Misc, 2003.

[GL93] J.A. Goguen and C. Linde. Techniques for requirements elicita-

tion. In Proc. of IEEE International Symposium on Requirements

Engineering, pages 152�164, 1993.

[Gla03] R. L. Glass. Facts and fallacies of software engineering. Addison

Wesley, Boston, 2003.

[Got92] Orlena Cara Zena Gotel. Requirements traceability. Technical

report, Centre for Requirements and Foundations, Oxford, 1992.

BIBLIOGRAPHY 343

[Got95] Orlena Cara Zena Gotel. Contribution Structures for Requirements

Traceability. PhD thesis, University of London, 1995.

[GPHSD05] C. Gonzalez-Perez, B. Henderson-Sellers, and G. Dromey. A meta-

model for the behavior trees modelling technique. In B. Henderson-

Sellers, editor, ICITA '05: Proc. of the 3rd International Confer-

ence on Information Technology and Applications, volume 1, pages

35�39, 2005.

[gSN99] Jean guy Schneider and Oscar Nierstrasz. Components, scripts and

glue. In Software Architectures: Advances and Applications, pages

13�25. Springer, 1999.

[GV02] J. Giesen and A. Volker. Requirements interdependencies and

stakeholders preferences. In Requirements Engineering, 2002. Pro-

ceedings. IEEE Joint International Conference on, pages 206 � 209,

2002.

[Ham97] G. Hamilton. The Javabeans speci�cation. Sun Microsystems,

1997.

[HC01] George T. Heineman and Bill Councill. De�nition of a software

component and its elements. In G. T. Heineman and W. T. Coun-

cill, editors, Component-based software engineering: Putting the

pieces together, chapter 1, pages 5�20. Addison-Wesley Longman

Publishing Co., Inc., Addison-Wesley, Boston, MA, 2001.

[HDS06] Jane Hu�man Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sun-

daram. Advancing candidate link generation for requirements trac-

ing: The study of methods. IEEE Transactions on Software Engi-

neering, 32(1):4�19, 2006.

344 BIBLIOGRAPHY

[HDSH04] Jane Hu�man Hayes, Alex Dekhtar, Senthil Karthikeyan Sun-

daram, and Sarah Howard. Helping analysts trace requirements:

An objective look. In RE '04: Proc. of the 12th International Re-

quirements Engineering Conference, pages 249�259, Kyoto, Japan,

6 - 10 September 2004. IEEE Computer Society.

[HG03] H.M. Harmain and R. Gaizauskas. CM-Builder: A natural

language-based case tool for object-oriented analysis. Automated

Software Engineering, 10:157�181, 2003.

[HJD11] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements En-

gineering. Springer, 2011.

[HJL+02] Jon G. Hall, Micheal Jackson, Robin C. Laney, Bashar Nuseibeh,

and Lucia Rapanotti. Relating software requirements and archi-

tectures using problem frames. In RE '02: Proc. of the 10th

IEEE Joint International Conference on Requirements Engineer-

ing, pages 137�144, Essen, Germany, 2002.

[HL01] Hubert F. Hofmann and Franz Lehner. Requirements engineering

as a success factor in software projects. IEEE Software, 18(4):58�

66, 2001.

[HL07] S. Hartmann and S. Link. English sentence structures and EER

modeling. In Proc. of the 4th Asia-Paci�c Conference on Con-

ceptual Modelling � Volume 67, pages 27�35, Ballarat, Australia,

2007. Australian Computer Society, Inc.

[HNS05] C. Hofmeister, R.L. Nord, and D. Soni. Global analysis: Moving

from software requirements speci�cation to structural views of the

software architecture. IEEE Software, 152(4):187�197, 5 Aug. 2005.

BIBLIOGRAPHY 345

[IEE90] IEEE. IEEE standard glossary of software engineering terminology.

IEEE Std 610.12-1990, 1990.

[IEE98] IEEE. IEEE recommended practice for software requirements spec-

i�cations. IEEE Std 830-1998, 1998.

[IEE04] IEEE Computer Society. Software Engineering Body of Knowledge

(SWEBOK), 2004.

[IIMD05] Suhaimi Ibrahim, Norbik Bashah Idris, Malcolm Munro, and Aziz

Deraman. Implementing a document-based requirements traceabil-

ity: A case study. In IASTED on Software Engineering, pages

124�131, Austria, 2005.

[Jac82] H. Jackson. Analysing English. 2nd Ed. Pergaman Press, 1982.

[Jac95] Micheal Jackson. Software Requirements and Speci�cations: A Lex-

icon of Practice, Principles, and Prejudices. Addison-Wesley, 1995.

[Jar00] P. H. Jarvinen. Research questions guiding selection of an ap-

propriate research method. In Proceedings of the 8th European

Conference on Information Systems (ECIS 2000, page 124â��131,

2000.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni�ed

Software Development Process. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1999.

[JML00] Natalia Juristo, Ana Maria Moreno, and Marta Lopez. How to use

linguistic instruments for object-oriented analysis. IEEE Software,

17:80�89, 2000.

346 BIBLIOGRAPHY

[JSPC02] Guy Caplat Jean, Jean Louis Sourrouille, Bat Blaise Pascal, and

F Villeurbanne Cedex. Model mapping in mda. In In Workshop

in Software Model Engineering, Fifth International Conference on

the Uni�ed Modeling Language, 2002.

[KBV12] Vishwajeet Kulshreshtha, John Boardman, and Dinesh Verma. The

emergence of requirements networks: The case for requirements

inter-dependencies. Int. J. Comput. Appl. Technol., 45(1):28�41,

October 2012.

[KDR+07] Lena Karlsson, Asa G. Dahlstedt, Bjorn Regnell, Johan Natt och

Dag, and Anne Persson. Requirements engineering challenges in

market-driven software development � an interview study with

practitioners. Information and Software Technology, 49(6):588�

604, 2007.

[KH07] Gerald Kotonya and John Hutchinson. A service-oriented approach

for specifying component-based systems. In ICCBSS '07: Proceed-

ings of the 6th International IEEE Conference on Commercial-o�-

the-Shelf (COTS)-Based Software Systems, pages 150�162, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[KLD02] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-Oriented

Project Line Engineering. IEEE Softw., 19(4):58�65, 2002.

[KS03] G. Kotonya and I. Sommerville. Requirements engineering: Pro-

cesses and techniques. John Wiley, West Sussex, England, 2003.

[KS04] P. Kutschera and S. Schäfer. Applying agile methods in rapidly

changing environments. DTIC Document, 2004.

BIBLIOGRAPHY 347

[KTR+07] Lena Karlsson, Thomas Thelin, Björn Regnell, Patrik Beran-

der, and Claes Wohlin. Pair-wise comparisons versus planning

game partitioning�experiments on requirements prioritisation tech-

niques. Empirical Softw. Eng., 12(1):3�33, February 2007.

[KWR98] Joachim Karlsson, Claes Wohlin, and Björn Regnell. An evaluation

of methods for prioritizing software requirements. Information &

Software Technology, 39(14�15):939�947, 1998.

[Lar04] Craig Larman. Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and Iterative Development

(3rd Ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA,

2004.

[Lau02] Soren Lauesen. Software Requirements: Styles & Techniques.

Addison-Wesley Professional, 1 edition, January 2002.

[LE03] WenQian Liu and Steve Easterbrook. Eliciting architectural deci-

sions from requirements using a rule-based framework. In STRAW

'03: Proc. of the 2nd International Workshop From Software Re-

quirements to Architectures, Portland, Oregon, 9 May 2003.

[LHBJ05] Denivaldo Lopes, Slimane Hammoudi, Jean Bézivin, and Frédéric

Jouault. Generating transformation de�nition from mapping spec-

i�cation: Application to web service platform. In Oscar Pastor

and João Falcão e Cunha, editors, Advanced Information Systems

Engineering, volume 3520 of Lecture Notes in Computer Science,

pages 309�325. Springer Berlin Heidelberg, 2005.

[Lin07] Ling Ling. Composing Software Components in Design Phase Using

348 BIBLIOGRAPHY

Exogenous Connectors. PhD thesis, School of Computer Science,

University of Manchester, 2007.

[LK04] Laura Lehtola and Marjo Kauppinen. Empirical evaluation of

two requirements prioritization methods in product development

projects. In Torgeir Dingsoyr, editor, Software Process Improve-

ment, number 3281 in Lecture Notes in Computer Science, pages

161�170. Springer Berlin Heidelberg, January 2004.

[LKCC00] Kwanwoo Lee, Kyo Chul Kang, Wonsuk Chae, and Byoung Wook

Choi. Feature-based approach to object-oriented engineering of ap-

plications for reuse. Softw., Pract. Exper., pages 1025�1046, 2000.

[LKL02] Kwanwoo Lee, Kyo Chul Kang, and Jaejoon Lee. Concepts and

guidelines of feature modeling for Product Line Software Engineer-

ing. In ICSR-7: Proc. of the 7th International Conference on Soft-

ware Reuse: Methods, Techniques, and Tools, pages 62�77, 2002.

[LLV07] K.-K. Lau, L. Ling, and P. Velasco Elizondo. Towards compos-

ing software components in both design and deployment phases.

In H.W. Schmidt et al., editor, Proc. of the 10th Int. Symp. on

Component-based Software Engineering, LNCS 4608, pages 274�

282. Springer, 2007.

[LLW06] Kung-Kiu Lau, Ling Ling, and Zheng Wang. Composing compo-

nents in design phase using exogenous connectors. In EUROMI-

CRO '06: Proc. of the 32nd EUROMICRO Conference on Soft-

ware Engineering and Advanced Applications, pages 12�19, Cavtat,

Croatia, 2006. IEEE Computer Society.

BIBLIOGRAPHY 349

[LM03] Dongyun Liu and Hong Mei. Mapping requirements to software

architecture by feature-orientation. In STRAW' 03 : Proc. of the

2nd International Software Requirements to Architectures Work-

shop, pages 69�76, Portland, Oregon, 2003.

[LNN11] Kung-Kiu Lau, Azlin Nordin, and Keng-Yap Ng. Extracting ele-

ments of component-based systems from natural language require-

ments. In EUROMICRO '11: Proc. of the 37th EUROMICRO

Conference on Software Engineering and Advanced Applications,

Oulu, Finland, 2011.

[LNRT10] Kung-Kiu Lau, Azlin Nordin, Tauseef Rana, and Faris Taweel.

Constructing component-based systems directly from requirements

using incremental composition. In EUROMICRO '10: Proc. of the

36th EUROMICRO Conference on Software Engineering and Ad-

vanced Applications, pages 85�93, Lille, France, 2010.

[LOW06] K.-K. Lau, M. Ornaghi, and Z. Wang. A software component model

and its preliminary formalisation. In F.S. de Boer et al., editor,

Proc. of the 4th International Symposium on Formal Methods for

Components and Objects, LNCS 4111, pages 1�21. Springer-Verlag,

2006.

[LR10] Kung-Kiu Lau and Tauseef Rana. A taxonomy of software com-

position mechanisms. In EUROMICRO '10: Proc. of the 36th

EUROMICRO Conference on Software Engineering and Advanced

Applications, pages 102�110, Lille, France, 2010.

[LSB98] Filippo Lanubile, Forrest Shull, and Victor R. Basili. Experiment-

ing with error abstraction in requirements documents. In Proc. of

350 BIBLIOGRAPHY

the 5th International Symposium on Software Metrics, page 114.

IEEE Computer Society, 1998.

[LT06] K.-K. Lau and F. Taweel. Towards encapsulating data in

component-based software systems. In I. Gorton et al., editor, Proc.

of the 9th International Symposium on Component-based Software

Engineering, LNCS 4063, pages 376�384. Springer-Verlag, 2006.

[LT07] K.-K. Lau and F. Taweel. Data encapsulation in software com-

ponents. In H.W. Schmidt et al., editor, Proc. of the 10th In-

ternational Symposium on Component-based Software Engineering,

LNCS 4608, pages 1�16. Springer-Verlag, 2007.

[LVW05] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connec-

tors for software components. In G.T. Heineman et al., editor, Proc.

of the 8th International Symposium on Component-based Software

Engineering, LNCS 3489, pages 90�106. Springer-Verlag, 2005.

[LW06] K-K. Lau and Z. Wang. A survey of software component mod-

els (2nd ed). Technical report, School of Computer Science, The

University of Manchester, UK, 2006.

[LW07] K.-K. Lau and Z. Wang. Software component models. IEEE Trans-

actions on Software Engineering, 33(10):709�724, October 2007.

[LYZZ06] Yuqin Lee, Chuanyao Yang, Chongxiang Zhu, and Wenyun Zhao.

An approach to managing feature dependencies for product releas-

ing in software product lines. In Proceedings of the 9th international

conference on Reuse of O�-the-Shelf Components, ICSR'06, pages

127�141, Berlin, Heidelberg, 2006. Springer-Verlag.

BIBLIOGRAPHY 351

[MC02] Christine A. Mingins and Chee Y. Chan. Building trust in third-

party components using component wrappers. In Proc. of the 40th

International Confernece on Tools Paci�c, Australian Computer

Society, Inc., pages 153�157, 2002.

[MD09] T. Myers and R.Geo� Dromey. From requirements to embedded

software � formalising the key steps. In Software Engineering

Conference, 2009. ASWEC '09. Australian, pages 23�33, 2009.

[MDF11] Toby Myers, R. Geo� Dromey, and Peter Fritzson. Comodel-

ing: From requirements to an integrated software/hardware model.

IEEE Computer, 44(4):62�70, 2011.

[Mei00] Hong Mei. A complementary approach to requirements

engineering software architecture orientation. SIGSOFT Software

Engineering Notes, 25(2):40�45, 2000.

[MHCM96] Jonathan D. Mo�ett, Jon G. Hall, Andrew Coombes, and John A.

McDermid. A model for a causal logic for requirements engineering.

Requirements Engineering, 1(1):27�46, 1996.

[Mic96] L. Mich. NL-OOPS: From natural language to object-oriented re-

quirements using the natural language processing system-LOLITA.

Natural Language Engineering, 2(2):161�187, 1996.

[Mit04] Ruslan Mitkov. The Oxford handbook of computational linguistics.

Oxford University Press, 2004.

[Moi02] F. Moisiadis. The fundamentals of prioritising requirements. In

Proc Systems Engineering, Test & Evaluation Conf, Sydney, Aus-

tralia, pages 108�119. Citeseer, 2002.

352 BIBLIOGRAPHY

[MPG+02] N. Maiden, P. Pavan, A. Gizikis, O. Clause, H. Kim, , and X. Zhu.

Making decisions with requirements: Integrating I* Goal modelling

and AHP. In REFSQ'02: Proc. of the 7th International Workshop

on Requirements Engineering: Foundation for Software Quality,

pages 24�35, University of Essen, Essen, Germany, 9-10 September

2002.

[MQR95] Mark Moriconi, Xiaolei Qian, and Robert A. Riemenschneider.

Correct architecture re�nement. IEEE Transactions on Software

Engineering, 21(4):356�372, 1995.

[MSUW04] Stephen J. MELLOR, Kendall Scott, Axel Uhl, and Dirk Weise.

MDA Distilled. Addison-Wesley Professional, March 2004.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classi�cation and

comparison framework for software architecture description lan-

guages. IEEE Transactions on Software Engineering, 26(1):70�93,

2000.

[MVG06] Tom Mens and Pieter Van Gorp. A taxonomy of model transfor-

mation. Electron. Notes Theor. Comput. Sci., 152:125�142, March

2006.

[MXP05] Andrian Marcus, Xinrong Xie, and Denys Poshyvanyk. When and

how to visualize traceability links?, 2005. 1107669 56-61.

[Mye10] T. Myers. The Foundations for a Scaleable Methodology for Sys-

tems Design. PhD thesis, School of Computer and Information

Technology, Gri�th University, Australia, 2010.

BIBLIOGRAPHY 353

[NE00] Bashar Nuseibeh and Steve Easterbrook. Requirements engineer-

ing: A roadmap. In International Conference on Software Engi-

neering, Limerick, Ireland, 2000. ACM Press.

[NNG+07] Mandy Northover, Alan Northover, Stefan Gruner, Derrick G.

Kourie, and Andrew Boake. Agile software development: A con-

temporary philosophical perspective. In Proceedings of the 2007

annual research conference of the South African institute of com-

puter scientists and information technologists on IT research in

developing countries, SAICSIT '07, pages 106�115, New York, NY,

USA, 2007. ACM.

[Nor12] Azlin Nordin. Analysis of existing approaches to construct-

ing component-based systems from requirements. In MYSEC

'12: Proc. of the 6th Malaysian Software Engineering Conference,

Bangi, Malaysia, 2012.

[OBO01] S.P. Overmyer, L. Benoit, and R. Owen. Conceptual modeling

through linguistic analysis using LIDA. In ICSE '01: Proc. of

the 23rd International Conference on Software Engineering, pages

401�410, May 2001.

[OMG] OMG. Uni�ed Modeling Language (OMG UML), Infrastructure, v.

2.1. 2, 2007.

[Opd92] W. F Opdyke. Refactoring object-oriented frameworks. PhD thesis,

University of Illinois, 1992.

[OvdLKM02] R. Van Ommering, F. van der Linden, J. Kramer, and J. Magee.

The Koala component model for consumer electronics software.

Computer, 33(3):78�85, 2002.

354 BIBLIOGRAPHY

[PA06] Shari Lawrence P�eeger and Joanne M. Atlee. Software engineer-

ing: Theory and practice. Prentice Hall International, Inc., Upper

Saddle River, 3rd edition, 2006.

[Pas04] I. Pashov. Feature-based methodology for supporting architecture

refactoring and maintenance of long-life software systems. PhD

thesis, Technical University Ilmenau, 2004.

[PBG01] Klaus Pohl, Mathias Brandenburg, and Alexander Gülich. Inte-

grating requirement and architecture information: A scenario and

meta-model based approach. In REFSQ '01: Proc. of the 7th In-

ternational Workshop on Requirements Engineering: Foundation

for Software Quality, Interlaken, Switzerland, 4-5 June 2001.

[PS05] Arkley Paul and Riddle Steve. Overcoming the traceability bene�t

problem. In Proceedings of 13th IEEE International Conference on

Requirements Engineering, pages 385� 389, France, Paris, 2005.

[Ram98] B. Ramesh. Factors in�uencing requirements traceability practice.

Communications of ACM, 41(12):7, 1998.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to

automatic schema matching. The VLDB Journal, 10(4):334�350,

December 2001.

[RH09] Per Runeson and Martin Höst. Guidelines for conducting and

reporting case study research in software engineering. Empirical

Softw. Engg., 14(2):131�164, April 2009.

BIBLIOGRAPHY 355

[RHJN04] Lucia Rapanotti, Jon G. Hall, Michael Jackson, and Bashar Nu-

seibeh. Architecture-driven problem decomposition. IEEE Inter-

national Conference on Requirements Engineering, 0:80�89, 2004.

[RIZ00] Alexander Repenning, Andri Ioannidou, and John Zola.

Agentsheets: End-user programmable simulations. J. Arti�cial So-

cieties and Social Simulation, 3(3), 2000.

[RJ01] B. Ramesh and M. Jarke. Towards reference models for require-

ments traceability. IEEE Transactions on Software Engineering,

27(1):5, 2001.

[ROC95] Jane Radatz, Myrna Olson, and Stuart Campbell. MIL-STD-498.

Crosstalk : The Journal of Defense Software Engineering, 8(2):2�5,

Feb 1995.

[Roy87] Winston Royce. Managing the Development of Large Software Sys-

tems. In Proc. of the 9th International Conference on Software En-

gineering, pages 328�338, Monterey, California, 1987. IEEE Com-

puter Society Press.

[RP92] C. Rolland and C. Proix. A natural language approach for Re-

quirements Engineering. In Pericles Loucopoulos, editor, Advanced

Information Systems Engineering, volume 593 of Lecture Notes

in Computer Science, pages 257�277. Springer Berlin/Heidelberg,

1992.

[RR99] Suzanne Robertson and James Robertson. Mastering the Require-

ments Process. Pearson Education Limited, Norfolk, UK, 1999.

356 BIBLIOGRAPHY

[RRMP08] Andreas Rausch, Ralf Reussner, Ra�aela Mirandola, and Frantisek

Plasil. The Common Component Modeling Example: Comparing

Software Component Models. Springer Publishing Company, Incor-

porated, 1st edition, 2008.

[Rut77] Gregory R. Ruth. Automatic programming. In Proc. of the 1977

annual conference on - ACM 77, pages 174�180, Not Known, 1977.

[Sch06] Stephen R Schach. Object-Oriented and Classical Software Engi-

neering. McGraw-Hill Higher Education, 7 edition, December 2006.

[Sch07] Stephen R. Schach. Object-Oriented and Classical Software Engi-

neering. McGraw-Hill International, Singapore, 7th edition, 2007.

[SGK+04] Buhne Stan, Halmans Gunter, Pohl Klaus, Weber Matthias, Klein-

wechter Henning, and Wierczoch Thomas. De�ning requirements

at di�erent levels of abstraction. In RE '04: Proceedings of the 12th

IEEE International Requirements Engineering Conference, pages

346�347, Kyoto, Japan, 6-10 September 2004. IEEE Computer So-

ciety.

[Sha02] Mary Shaw. What makes good research in software engineering?

STTT, 4(1):1�7, 2002.

[SHE89] Motoshi Saeki, Hisayuki Horai, and Hajime Enomoto. Software

development process from natural language speci�cation. In ICSE

'89: Proc. of the 11th International Conference on Software Engi-

neering, pages 64�73, Pittsburgh, Pennsylvania, USA, 1989. ACM.

[Sid96] J. Siddiqi. Requirement engineering: The emerging wisdom. Soft-

ware, IEEE, 13(2):15, march 1996.

BIBLIOGRAPHY 357

[SKS10] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database

System Concepts. McGraw-Hill Education, January 2010.

[Som07] I. Sommerville. Software Engineering. Pearson Education Limited,

Essex, England, 8th edition, 2007.

[Sor96] Reed Sorenson. MIL-STD-498, J-STD-016, and the U.S. Com-

mercial Standard. Crosstalk : The Journal of Defense Software

Engineering, 26:13�14, June 1996.

[SPR04] Periklis Sochos, Ilka Philippow, and Matthias Riebisch. Feature-

oriented development of software product lines: Mapping feature

models to the architecture. In Mathias Weske and Peter Ligges-

meyer, editors, Object-Oriented and Internet-Based Technologies,

volume 3263 of Lecture Notes in Computer Science, pages 23�42.

Springer Berlin/Heidelberg, 2004.

[SRP06] P. Sochos, M. Riebisch, and I. Philippow. The feature-architecture

mapping (FArM) method for feature-oriented development of soft-

ware product lines. In ECBS '06: Proc. of the 13th Annual IEEE

International Symposium and Workshop on Engineering of Com-

puter Based Systems, pages 308�318, 2006.

[Stö04] H. Störrle. Semantics of uml2. 0 activities with data-�ow. In

Proc. of the Visual Languages and Formal Methods Workshop

(VLFM'04), Rome, Italy, Septembre 2004, 2004.

[TB94] A. Min Tjoa and Linda Berger. Transformation of requirement

speci�cations expressed in natural language into an EER model.

358 BIBLIOGRAPHY

In Proc. of the 12th International Conference on the Entity-

Relationship Approach: Entity-Relationship Approach, pages 206�

217. Springer-Verlag, 1994.

[TB01] Lance Tokuda and Don Batory. Evolving object-oriented de-

signs with refactorings. Automated Software Engineering, 8:89�120,

2001.

[TCBB09] Tom Tourwé, Wim Codenie, Nick Boucart, and Vladimir Blagoje-

vi¢. Demystifying release de�nition: From requirements prioriti-

zation to collaborative value quanti�cation. In Martin Glinz and

Patrick Heymans, editors, Requirements Engineering: Foundation

for Software Quality, volume 5512 of Lecture Notes in Computer

Science, pages 37�44. Springer Berlin Heidelberg, 2009.

[Tea06] CMMI Product Team. CMMI for development: Improving pro-

cesses for better products. Technical Report CMU/SEI-2006-TR-

008, Software Engineering Institute (SEI), Carnegie Mellon Uni-

versity, US, 2006.

[Tic00] Walter F. Tichy. Hints for reviewing empirical work in software

engineering. Empirical Software Engineering, 5(4):309�312, De-

cember 2000.

[TKW03] W. H. Theunissen, D. G. Kourie, and B. W. Watson. Standards

and agile software development. In Proceedings of the 2003 annual

research conference of the South African institute of computer sci-

entists and information technologists on Enablement through tech-

nology, pages 178�188, 2003.

BIBLIOGRAPHY 359

[TMA+95] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson,

Jr E. James Whitehead, and Jason E. Robbins. A component- and

message-based architectural style for GUI software. In Proc. of

the 17th International Conference on Software Engineering, pages

295�304, Seattle, Washington, USA, 1995. ACM.

[VCW+05] O. Vasilecas, A. Caplinskas, G. Wojtkowski, W. Wojtkowski, J. Zu-

pancic, and S. Wrycza, editors. Customizing Traceability in a

Software Development Process. Information Systems Development:

Advances in Theory, Practice, and Education. Springer, USA, 2005.

[vL01] Axel van Lamsweerde. Goal-oriented requirements engineering: A

guided tour. In RE '01: Proc. of the 5th IEEE International Sym-

posium on Requirements Engineering, page 249, Toronto, Canada,

27-31 August 2001. IEEE Computer Society.

[vL03] Axel van Lamsweerde. Formal methods for software architec-

tures. In From System Goals to Software Architecture, pages 25�43.

Springer-Verlag, 2003.

[vL04] A. van Lamsweerde. Goal-oriented requirements enginering: A

roundtrip from research to practice [enginering read engineering].

In RE '04: Proc. of the 12th IEEE International Requirements

Engineering Conference, pages 4�7, Kyoto, Japan, 6-10 September

2004.

[VL10] P. Velasco Elizondo and K.-K. Lau. A catalogue of component

connectors to support development with reuse. The Journal of

Systems and Software, 83:1165�1178, 2010.

360 BIBLIOGRAPHY

[VMP03] Yannis Velegrakis, Renée J. Miller, and Lucian Popa. Mapping

adaptation under evolving schemas. In Proceedings of the 29th in-

ternational conference on Very large data bases - Volume 29, VLDB

'03, pages 584�595. VLDB Endowment, 2003.

[Vou95] Atro Voutilainen. A syntax-based part-of-speech analyser. In Proc.

of the 7th Conference on European Chapter of the Association for

Computational Linguistics, EACL '95, pages 157�164, San Fran-

cisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[VST+09] June M. Verner, Jennifer Sampson, Vladimir Tosic, Nur Azzah Abu

Bakar, and Barbara Kitchenham. Guidelines for industrially-based

multiple case studies in software engineering. In RCIS, pages 313�

324, 2009.

[Wie03] Karl Wiegers. Software Requirements 2. Microsoft Press, 2nd ed.

edition, March 2003.

[WKD04] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A

semantics for advice and dynamic join points in aspect-oriented

programming. ACM Trans. Program. Lang. Syst., 26(5):890�910,

2004.

[WKP10] Hyrum K. Wright, Miryung Kim, and Dewayne E. Perry. Validity

concerns in software engineering research. In Proceedings of the

FSE/SDP workshop on Future of software engineering research,

FoSER '10, pages 411�414, New York, NY, USA, 2010. ACM.

[You06] Ralph R. Young. Twelve requirements basics for project success.

Crosstalk: The Journal of Defense Software Engineering, pages 4�

8, 2006.

BIBLIOGRAPHY 361

[Zav97] Pamela Zave. Classi�cation of research e�orts in requirements en-

gineering. ACM Computing Survey, 29(4):315�321, 1997.

[ZMP03] X. Zhu, N. Maiden, and P. Pavan. Scenarios: Bringing require-

ments and architectures together. In SCESM '03 : The 2nd In-

ternational Workshop on Scenarios and State Machines: Models,

Algorithms, and Tools, Portland, Oregon, USA, 3 May 2003.

[ZMZ05] Wei Zhang, Hong Mei, and Haiyan Zhao. A feature-oriented ap-

proach to modeling requirements dependencies. In Proceedings

of the 13th IEEE International Conference on Requirements En-

gineering, RE '05, pages 273�284, Washington, DC, USA, 2005.

IEEE Computer Society.

[ZMZ06] Wei Zhang, Hong Mei, and Haiyan Zhao. Feature-driven require-

ment dependency analysis and high-level software design. Require-

ments Engineering, 11:205�220, 2006.

Appendix A

Textual Analysis

This appendix sets a brief introduction of the textual analysis technique and the
part-of-speech (POS) tagging. The knowledge from both areas is applied and
adopted in the element extraction process. With the help of the textual analysis
technique, an analyst can concentrate on the selection of the extracted keywords,
instead of direct and manual screening from each requirement.

A.1 Introduction

Some background on textual analysis is presented. Linguistic techniques in nat-
ural language processing can be categorised into (1) lexical (2) syntactic (3) se-
mantic [Ach97], or (4) pragmatic levels [BMA08].

Lexical approaches, such as implemented in AbstFinder [GB97] identify rep-
etition of words or clauses using statistical analysis techniques in order to �nd
abstractions in requirements. A few other examples that fall into the lexical
approaches are Abbott's textual analysis [Abb83], Saeki et al. [SHE89], Chen
[Che80], and Hartman and Link [HL07]. Based on the analysis, these approaches
extract the relevant information that can be mapped into domain models, speci-
�cation or program codes. The Abbott's approach [Abb83] uses natural language
to identify data types, objects and operators. In his approach, he uses common
nouns to indicate data types that are classes; proper nouns and direct references
to indicate objects such as verbs, attributes, predicates; and descriptive expres-
sions to suggest operators that perform computations; and conditional clauses
such as if, then, else, for, do, while etc. to suggest control structures.

The syntactic approaches, on the other hand, analyse a larger chunks of a
sentence than individual words [BMA08]. A syntactic parsing method produces
labels and the hierarchical structure of a sentence.

Semantic approaches deal with how to represent the meaning of a statement,

362

A.2. PART-OF-SPEECH TAGGER 363

linguistic inferences, and word-sense disambiguation (WSD). In the requirements
context, we believe it is almost impossible to automatically derive semantic ex-
traction from requirements statements. Although work (e.g. Automatic Pro-
gramming) has attempted to provide such a link, a signi�cant amount of human
e�ort and intervention is still required.

NLP in the RE context di�ers from the general purpose NLP in the sense that
they require di�erent sets of input and output [BMA08]. Refer to Figure 2 and
3 [BMA08].

Table A.1: Levels of NLP [BMA08]

Level of

approaches
Description Method

Lexical Assign each word using POS tagger
POS tagger (e.g. noun, verb,
conjunction, etc.) Corpora:
WSJ, Brown Corpus)

Syntactic
Analyse larger chunks of a sentence and rep-
resent the structure of a sentence

Probabilistic parsers
(e.g. noun phrases,verb phrases,
prepositional phrases, etc.) Cor-
pora: WSJ, Brown Corpus

Semantic
Represent the meaning of a sentence, linguis-
tic inferences and word-sense disambiguation
(WSD)

Semantic parsers, WSD classi-
�ers
Corpora: FrameNet, Senseval

Pragmatic

Understand relationships between language
and context. (e.g. anaphora resolution to dis-
tinguish what pronouns or noun phrases refer
to in statements)

Discourse Analysers
Corpora: Penn Discourse Tree-
bank

A.2 Part-of-Speech Tagger

This section introduces the POS tagging and provide an example of the POS
tagging process.

A.2.1 What is a POS Tagger?

In general, tagging is the process of assigning parts of speech to each word in a
sentence. Tagging is an automatic descriptor or tag for a speci�ed input [Mit04].
It is one basic kind of linguistic structure: syntactic word classes which is also
referred to as grammatical tagging. Given a requirement statement:

The ATM will service one customer at a time. A customer will be

required to insert an ATM card and enter a personal identification

number (PIN).

364 APPENDIX A

The outcome of the POS tagging for this particular requirement is:

<?xml version="1.0" encoding="UTF-8"?>

<output>

<s i="0">

<token pos="at">The</token>

<token pos="nps">ATM</token>

<token pos="md">will</token>

<token pos="vb">service</token>

<token pos="cd">one</token>

<token pos="nn">customer</token>

<token pos="in">at</token>

<token pos="at">a</token>

<token pos="nn">time</token>

<token pos=".">.</token>

</s>

<s i="1">

<token pos="at">A</token>

<token pos="nn">customer</token>

<token pos="md">will</token>

<token pos="be">be</token>

<token pos="vbn">required</token>

<token pos="to">to</token>

<token pos="vb">insert</token>

<token pos="at">an</token>

<token pos="nn">ATM</token>

<token pos="nn">card</token>

<token pos="cc">and</token>

<token pos="vb">enter</token>

<token pos="at">a</token>

<token pos="jj">personal</token>

<token pos="nn">identication</token>

<token pos="nn">number</token>

<token pos="(">(</token>

<token pos="np">PIN</token>

<token pos=")">)</token>

<token pos=".">.</token>

</s>

</output>

Each word is tagged (originally labelled by an underscore `_' with a tag) with
a pair of XML tags. For example `The' is tagged as 'at' that is an article; `ATM'
as `nps' that is a proper singular or plural noun; `will' as `md' that means modal
auxiliary; `service' as `md' that means verb; etc.

POS tagging can be used as pre-processing of raw texts, information retrieval,
linguistic studies, speech processing, and in IT applications [Mit04].

The general basic POS tagging processes [Mit04] are tokenisation, ambiguity

A.2. PART-OF-SPEECH TAGGER 365

look-up and ambiguity resolution. During tokenisation, each word in the state-
ment is tokenised for analysis purposes. In ambiguity look-up, a compiler or in-
terpreter assigns all the possible tags for each word accordingly. A guesser might
also be used when any of the words are not tagged according to the pre-de�ned
tag set. Finally, to resolve ambiguity, based on (1) information about the word
itself, e.g. some words are typically nouns rather than verbs such as love, angle
(2) information about the tag sequences, e.g. if a preceding word is a preposition,
the POS tagging model might prioritise the noun analyser rather than the verb
analyser.

POS tagging can be either supervised (that is a pre-de�ned corpora is re-
quired in order to train the tag set) or unsupervised (does not need a pre-de�ned
corpora, but uses an algorithm instead). There are two POS tagging methods:
(1) Rule-based Tagging or Transformation-based Tagging, for example ENGT-
WOL [Vou95], Brill's tagger [Bria, Brib], (and (2) Statistical (Stochastic) Tag-
ging, for example Trigrams `N' Tags(TNT) [Bra00].

In general, rule-based tagging de�nes a dictionary and each word will be
tagged based on the de�ned dictionary. In order to remove certain tags, rules are
manually created. Whilst in statistical tagging, probability theories are adopted,
for instance the �most-frequent-tag� algorithm. One of the best known corpuses
that is a collection of linguistically annotated text, is the Brown University Stan-
dard Corpus of Present-Day American English (known as the Brown Corpus).1

The corpus contains approximately 1,014,312 words.
The general POS categories are noun, verb, article, preposition, pronoun,

adverb, conjunction and interjection. However, the issue with POS tagger is
ambiguity. In reality, a single word may have multiple parts of speech which need
to be resolved.

1The Brown Corpus Manual can be accessed at http://icame.uib.no/brown/bcm.html

http://icame.uib.no/brown/bcm.html

Appendix B

Questionnaire

366

-1-

ID : _________________________ Session/Date: _______

Start time: ___________________ End time: ___________

Dear participants,

Thank you for your effort to participate in this experiment. In brief, this experiment is

designed to validate the proposed incremental approach to constructing component-based

systems from natural language requirements (NLR) using a specific component model i.e.

Exogeneous Component Model (XMAN).

Prior to the experiment, you will be trained on :

1. Fundamentals of the XMAN semantics, element extraction and mapping processes;

2. Using the Extractor tool;

3. Using the Exogeneous Component Framework (ECF) tool.

Kindly take note that during the experiment, your analysis and design decisions should not

be biased on the provided tools. The expected outcome from your tasks is the system design

for the given set of requirements using XMAN model. This design should be derived

incrementally from the NLR.

This set of questionnaire consists of:

1. Set A: Demographic survey

2. Set B: During experiment questionnaire items

3. Set C: Post experiment questionnaire items

You are required to fill in all of the above items. All responses will be treated in the
strictest confidence.

Thank you.

-2-

SET A: DEMOGRAPHIC SURVEY ID :________________

1. Gender (please tick):

2. Ethnicity/Race (please tick):

3. Indicate the number of years of your working experience related to IT industry (please

tick)*:

0 1-3 4-6 More than 7 Additional Note

*If you are a student, please tick here □ and indicate the current year in the above table.

4. Your highest degree level (please tick):

5. On a scale from 1 – 5, how do you rate your software modelling competency level? (Please

tick ONE)

 1. Very Poor 2.Poor 3.Fair 4.Good 5.Outstanding

6. Have you been involved in software development? (Please tick) If YES, state the number of

years:
 Yes , _________________ No

7. Are you familiar with any of the following software development methodology?

8. Have you had any experience in developing component OR software system for reuse (i.e.
Component-based software development)? (Please tick):

 Yes No

9. Have you had any experience in using OR modelling component-based software engineering?
(Please tick):

 Yes No

 Male Female

 Malay Bumiputera-non Malay

 Chinese Others (please specify):_________________

 Indian

 PhD Diploma

 Masters Others (please specify):_________________

 Bachelor Degree

 Waterfall Rapid Prototyping/JAD

 Agile Others (Please specify):_________________

 Unified Process None

-3-

ID : _________________________

SET B: DURING EXPERIMENT QUESTIONNAIRE ITEMS

EXPERIMENT ON EXTRACTION & MAPPING OF ELEMENTS FROM NATURAL
LANGUAGE REQUIREMENTS (NLR)

Brief Description
You are required to execute the Extractor tool and extract candidates of component-
based elements. i.e. computation, conceptual component, control and data (whenever
required) from NLR statements. During the extraction process, the main aim is to
identify which of the heuristics is relevant to be adopted. In the second task, you are
required to represent the extracted element by modelling those elements according
to the XMAN semantics. Both of these tasks MUST be performed iteratively and
incrementally until all the given requirements are completed.

Preparation BEFORE the experiment
The requirements are provided in EIGHT (8) separated files. You will be able to find
these files in the ATM folder on the desktop.

TASK 1: EXTRACTION OF NATURAL LANGUAGE REQUIREMENTS

1. First, execute the Extractor tool.

2. Perform the extraction process i.e. TASK 1. Start with browsing the input file for

Requirement-1 from the ATM folder. (You may refer to the Extractor tool tutorial).

a. Answer Q1 of the Questionnaire Item.

3. Proceed with TASK 2.

4. Repeat Steps 2 -3 for a new requirement statement.

5. Press <Save> button once you completed the syntax. The newly created composition

will appear at the bottom list. (Tips: You may use this in the other composition

steps.)

6. Click <Complete> button. You will be prompted with the previous interface. Click

<View Result> button to display the result.

TASK 2: MODELLING OF THE EXTRACTION ELEMENTS

1. For each iteration of a particular requirement, use the result from extraction

process to model the extracted elements. (Refer to The Exogeneous Composition

Framework (ECF) Tool Tutorial).

2. Once completed, if you are dealing with the final requirement, proceed with Steps

5-6. Otherwise, if this is not the final requirement, continue the iteration by

repeating Steps 2-4.

-4-

QUESTIONNAIRE ITEMS

Q1. Requirement-1: The ATM will service one customer at a time. A customer will be
required to insert an ATM card and enter a personal identification number (PIN).

TASK 1: ELEMENT EXTRACTION (Refer Appendix 1)

1. Which heuristic(s) that you applied when you made your decision on extracting

the relevant element for the above requirement?

a. Identifying computations

b. Identifying computations from user interaction

c. Identifying conceptual component

d. Identifying control

e. Identifying data

f. NONE, explain (____________________________)

TASK 2: MAPPING OF THE EXTRACTED ELEMENT TO COMPONENT-BASED ELEMENTS
(Refer Appendix 2)

2. Which mapping heuristic(s) that you applied when you made your decision on

mapping the extracted element for the above requirement?

a. Map control flows to
composition connectors

b. Choose between PIPE or
SEQ

c. Map control to a GUARD
d. Combine or separate

connectors

e. Combine or separate
components

f. Computation inferences

g. Handling data elements
h. No indication of any

computation or control
i. NONE, explain

(_______________________)

Q2. Requirement-2: A customer must be able to make cash withdrawal from the linked
account. Approval must be obtained from the bank before cash is dispensed.

TASK 1: ELEMENT EXTRACTION (Refer Appendix 1)

3. Which heuristic(s) that you applied when you made your decision on extracting

the relevant element for the above requirement?

a. Identifying computations

b. Identifying computations from user interaction

c. Identifying conceptual component

d. Identifying control

e. Identifying data

f. NONE, explain (____________________________)

-5-

TASK 2: MAPPING OF THE EXTRACTED ELEMENT TO COMPONENT-BASED ELEMENTS
(Refer Appendix 2)

4. Which mapping heuristic(s) that you applied when you made your decision on

mapping the extracted element for the above requirement?

a. Map control flows to
composition connectors

b. Choose between PIPE or
SEQ

c. Map control to a GUARD
d. Combine or separate

connectors

e. Combine or separate
components

f. Computation inferences

g. Handling data elements
h. No indication of any

computation or control
i. NONE, explain

(_______________________)

Q3. Requirement-3: A customer must be able to deposit cash to the linked account that
can be inserted to the cash slot. Approval must be obtained from the bank before
physically accepting the cash.

TASK 1: ELEMENT EXTRACTION (Refer Appendix 1)

5. Which heuristic(s) that you applied when you made your decision on extracting

the relevant element for the above requirement?

a. Identifying computations

b. Identifying computations from user interaction

c. Identifying conceptual component

d. Identifying control

e. Identifying data

f. NONE, explain (____________________________)

TASK 2: MAPPING OF THE EXTRACTED ELEMENT TO COMPONENT-BASED ELEMENTS
(Refer Appendix 2)

6. Which mapping heuristic(s) that you applied when you made your decision on

mapping the extracted element for the above requirement?

a. Map control flows to
composition connectors

b. Choose between PIPE or
SEQ

c. Map control to a GUARD
d. Combine or separate

connectors

e. Combine or separate
components

f. Computation inferences

g. Handling data elements
h. No indication of any

computation or control
i. NONE, explain

(_______________________)

-6-

Q4. Requirement-4: A customer must be able to make a transfer of money between any
two accounts originated from the linked account.

TASK 1: ELEMENT EXTRACTION (Refer Appendix 1)

7. Which heuristic(s) that you applied when you made your decision on extracting

the relevant element for the above requirement?

a. Identifying computations

b. Identifying computations from user interaction

c. Identifying conceptual component

d. Identifying control

e. Identifying data

f. NONE, explain (____________________________)

TASK 2: MAPPING OF THE EXTRACTED ELEMENT TO COMPONENT-BASED ELEMENTS
(Refer Appendix 2)

8. Which mapping heuristic(s) that you applied when you made your decision on

mapping the extracted element for the above requirement?

a. Map control flows to
composition connectors

b. Choose between PIPE or
SEQ

c. Map control to a GUARD
d. Combine or separate

connectors

e. Combine or separate
components

f. Computation inferences

g. Handling data elements
h. No indication of any

computation or control
i. NONE, explain

(_______________________)

Q5. Requirement-5: A customer must be able to make a balance inquiry of the linked
account.

TASK 1: ELEMENT EXTRACTION (Refer Appendix 1)

9. Which heuristic(s) that you applied when you made your decision on extracting

the relevant element for the above requirement?

a. Identifying computations

b. Identifying computations from user interaction

c. Identifying conceptual component

d. Identifying control

e. Identifying data

f. NONE, explain (____________________________)

-7-

TASK 2: MAPPING OF THE EXTRACTED ELEMENT TO COMPONENT-BASED ELEMENTS
(Refer Appendix 2)

10. Which mapping heuristic(s) that you applied when you made your decision on

mapping the extracted element for the above requirement?

a. Map control flows to
composition connectors

b. Choose between PIPE or
SEQ

c. Map control to a GUARD
d. Combine or separate

connectors

e. Combine or separate
components

f. Computation inferences

g. Handling data elements
h. No indication of any

computation or control
i. NONE, explain

(_______________________)

Q6. Requirement-6: If the customer fails to be authenticated, the card will be rejected.

TASK 1: ELEMENT EXTRACTION (Refer Appendix 1)

11. Which heuristic(s) that you applied when you made your decision on extracting

the relevant element for the above requirement?

a. Identifying computations

b. Identifying computations from user interaction

c. Identifying conceptual component

d. Identifying control

e. Identifying data

f. NONE, explain (____________________________)

TASK 2: MAPPING OF THE EXTRACTED ELEMENT TO COMPONENT-BASED ELEMENTS
(Refer Appendix 2)

12. Which mapping heuristic(s) that you applied when you made your decision on

mapping the extracted element for the above requirement?

a. Map control flows to
composition connectors

b. Choose between PIPE or
SEQ

c. Map control to a GUARD
d. Combine or separate

connectors

e. Combine or separate
components

f. Computation inferences

g. Handling data elements
h. No indication of any

computation or control
i. NONE, explain

(_______________________)

-8-

Q7. Requirement-7: After each transaction, the ATM will display and print a receipt
containing the transaction information.

TASK 1: ELEMENT EXTRACTION (Refer Appendix 1)

13. Which heuristic(s) that you applied when you made your decision on extracting

the relevant element for the above requirement?

a. Identifying computations

b. Identifying computations from user interaction

c. Identifying conceptual component

d. Identifying control

e. Identifying data

f. NONE, explain (____________________________)

TASK 2: MAPPING OF THE EXTRACTED ELEMENT TO COMPONENT-BASED ELEMENTS
(Refer Appendix 2)

14. Which mapping heuristic(s) that you applied when you made your decision on

mapping the extracted element for the above requirement?

a. Map control flows to
composition connectors

b. Choose between PIPE or
SEQ

c. Map control to a GUARD
d. Combine or separate

connectors

e. Combine or separate
components

f. Computation inferences

g. Handling data elements
h. No indication of any

computation or control
i. NONE, explain

(_______________________)

-9-

APPENDIX 1: Summary of Element Extraction Heuristics

-10-

APPENDIX 2: Summary of Mapping Heuristics

-11-

ID : _________________________

SET C: POST EXPERIMENT QUESTIONNAIRE ITEMS

1. During the training, evaluate the difficulty levels for each of these items in order to

understand the provided materials. (Tick ONE for each item)

Training material

Very
Easy

Easy Average Difficult Very
Difficult

a. XMAN fundamentals

b. Element Extraction

c. The Extractor Tool

d. Mapping to
component-based
elements

e. The ECF Tool

2. When using the approach, rate 1-6 (1-very easy, 6-very difficult) on the tasks that

require the most mental effort (Assume that this exclude the learning time acquired

during the training session.)

Task Rate

a. Extracting candidates of component-based system.

b. Identifying which extraction heuristics is relevant for
a specific requirement.

c. Analysing the interaction (behaviour).

d. Modelling the composition using XMAN.

e. Identifying which mapping heuristic(s)s is to be
applied for a particular extraction.

f. Handling incremental composition.

3. How do you think the incremental approach can be improved?

__
__
__
__

-THE END-

Appendix C

Case Studies

378

C.1. THE TRADING SYSTEM (COCOME) 379

This appendix contains the complete documentation of the execution of the
case studies and example. The �rst case study is the Trading System (CO-
COME), which is used for handling sales transactions in a supermarket. This set
of requirements has also been used as a reference example for component-based
development [RRMP08]. The second case study is that of the Video Store System
(VSS), which is taken from [LSB98]. The third example is the Word Count,which
is drawn from [Sch06, p. 434].

C.1 The Trading System (COCOME)

C.1.1 COCOME Requirements

The Trading System is used for handling sales transactions in a supermarket. This
set of requirements has also been used as a reference example for component-based
development [RRMP08]. The system comprises nine main functions including (1)
Process Sale, which handles Cash Desk operations; (2) Manage Express Checkout,
which deals with transaction modes, i.e. normal and express; (3) Order Products,
which allows the Store Manager to order products from suppliers; (4) Receive
Ordered Products, which allows the Store Manager to update received orders; (5)
Show Stock Reports, which permits the Store Manager to view all available stock;
(6) Show Delivery Reports, which allows the Enterprise Manager to generate
reports; (7) Change Price, which permits the Store Manager to update a product's
price; (8) Product Exchange (on low stock) Among Stores, which handles product
orders between stores and (9) Remove Incoming Status, which allows the Store
Manager to update the received product. Altogether, there are 47 requirements.

C.1.2 UC 1 � Process Sale

Brief Description: At the Cash Desk the products a Customer wants to buy are
detected and the payment � either by credit card or cash � is performed.
Involved Actors : Customer, Cashier, Bank, Printer, Card Reader, Cash Box, Bar
Code Scanner, Light, Display.
Precondition: The Cash Desk and the Cashier are ready to start a new sale.
Trigger : Coming to the Cash Desk a Customer wants to pay for his chosen
product items.
Postcondition: The Customer has paid, has received the bill and the sale is
registered in the Inventory.

Standard Process

1. The Customer arrives at the Cash Desk with goods to purchase.

380 APPENDIX C

2. The Cashier starts a new sale by pressing the button Start New Sale at the
Cash Box.

3. The Cashier enters the item identi�er. This can be done manually by using
the keyboard of the Cash Box or by using the Bar Code Scanner.

4. Using the item identi�er the System presents the corresponding product
description, price, and running total. Steps 3-4 are repeated until all items
are registered.

5. Denoting the end of entering items the Cashier presses the button Sale
Finished at the Cash Box.

(a) To initiate cash payment the Cashier presses the button Cash Payment
at the Cash Box.

i. The Customer hands over the money for payment.
ii. The Cashier enters the received cash using the Cash Box and con-

�rms this by pressing Enter.
iii. The Cash Box opens.
iv. The received money and the change amount are displayed, and

the Cashier hands over the change.
v. The Cashier closes the Cash Box.

(b) In order to initiate card payment the Cashier presses the button Card
Payment at the Cash Box.

i. The Cashier receives the credit card from the Customer and pulls
it through the Card Reader.

ii. The Customer enters his PIN using the keyboard of the card reader
and waits for validation.

iii. Step 5.b.ii is repeated until a successful validation or the Cashier
presses the button for cash payment.

6. Completed sales are logged by the Trading System and sale information is
sent to the Inventory in order to update the stock.

7. The Printer writes the receipt and the Cashier hands it out to the Customer.

8. The Customer leaves the Cash Desk with receipt and goods.

Alternative or Exceptional Processes

1. In step 3: Invalid item identi�er if the system cannot �nd it in the Inventory.

(a) The System signals an error and rejects this entry.

(b) The Cashier can respond to the error as follows:

C.1. THE TRADING SYSTEM (COCOME) 381

i. A human-readable item identi�er exists:
A. The Cashier manually enters the item identi�er.
B. The System displays the description and price.

ii. Otherwise, the product item is rejected.

2. In step 5.b: Card validation fails.

(a) The Cashier and the Customer try again and again.

(b) Otherwise, the Cashier requires the Customer to pay cash.

3. In step 6: Inventory not available.

(a) The System caches each sale and writes them into the Inventory as
soon as it is available again.

C.1.3 UC 2 � Manage Express Checkout

Brief Description: If some conditions are ful�lled a Cash Desk automatically
switches into express mode. The Cashier is able to switch back into normal mode
by pressing a button at his Cash Desk. To indicate the mode the Light Display
shows di�erent colours.
Involved Actors : Cashier, Cash Box, Light Display, Card Reader.
Precondition: The Cash Desk is either in normal mode and the latest sale was
�nished (case 1) or the Cash Desk is in express mode (case 2).
Trigger : This use case is triggered by the system itself.
Postcondition: The Cash Desk has been switched into express mode or normal
mode. The Light Display has changed its colour accordingly.

Standard Process

1. The considered Cash Desk is in normal mode and has just �nished a sale
which matches the condition of an express checkout sale. Now 50% of all
sales during the last 60 minutes ful�l the condition for an express checkout.

(a) This Cash Desk, which has caused the achievement of the condition,
is switched into express mode.

(b) Furthermore the corresponding Light Display is switched from black
into green to indicate the Cash Desk's express mode.

(c) Paying by credit card is not possible any more.

(d) The maximum of items per sale is reduced to 8 and only paying by
cash is allowed.

2. The Cash Desk is in express mode and the Cashier decides to change back
into normal mode.

382 APPENDIX C

(a) The Cashier presses the button Disable Express Mode.

(b) The colour of the Light Display is changed from green to black colour.

3. Cash and also card payment is allowed and the Customer is allowed to buy
as many goods as he likes.

C.1.4 UC 3 � Order Products

Brief Description: The Trading System provide the opportunity to order product
items.
Involved Actors : Store Manager.
Precondition: An Overview over the Inventory is available and the Store Client
was started.
Trigger: The Store Manager decided to buy new product items for his store.
Postcondition: The order was placed and a generated order identi�er was pre-
sented to the Store Manager.

Standard Process

1. A list with all products and a list with products running out of stock are
shown.

2. The Store Manager chooses the product items to order and enters the cor-
responding amount.

3. The Store Manager presses the button Order at the Store Client's GUI.

4. The appropriate suppliers are chosen and orders for each supplier are placed.
An order identi�er is generated for each order and is shown to the Store
Manager.

C.1.5 UC 4 � Receive Ordered Products

Brief Description: Ordered products which arrive at the Store have to be checked
for correctness and inventoried.
Involved Actors : Stock Manager.
Precondition: The Store Client was started and the part Inventory of the Trading
System is available.
Trigger : The ordered products arrive at the Store.
Postcondition: The Inventory is updated with the ordered products.

Standard Process

1. Ordered products arrive at the stock attached by an order identi�er which
has been assigned during the ordering process.

C.1. THE TRADING SYSTEM (COCOME) 383

2. The Stock Manager checks the delivery for completeness and correctness.

3. In the case of correctness, the Stock Manager enters the order identi�er and
presses the button Roll in received order.

4. The Trading System updates the Inventory.

Alternative or Exceptional Processes

1. In step 2: Delivery not complete or not correct.
The products are sent back to the supplier and the Stock Manager has to
wait until a correct and complete delivery has arrived. This action is not
recognised by the System.

C.1.6 UC 5 � Show Stock Reports

Brief Description: The opportunity to generate stock-related reports is provided
by the Trading System.
Involved Actors : Store Manager.
Precondition: The reporting GUI at the Store Client has been started.
Trigger : The Store Manager wants to see statistics about his store.
Postcondition: The report for the Store has been generated and is displayed on
the reporting GUI.

Standard Process

1. The Store Manager enters the store identi�er and presses the button Create
Report.

2. A report including all available stock items in the store is displayed.

C.1.7 UC 6 � Show Delivery Reports

Brief Description: The Trading System provides the opportunity to calculate the
mean times a delivery from each supplier to an considered enterprise takes.
Involved Actors : Enterprise Manager.
Precondition: The reporting GUI at the Store Client has been started.
Trigger : The Enterprise Manager wants to see statistics about the enterprise.
Postcondition: The report for the Enterprise has been generated and is displayed
to the Enterprise Manager.

Standard Process

1. The Enterprise Manager enters the enterprise identi�er and presses the
button Create Report.

384 APPENDIX C

2. A report which informs about the mean times is generated.

C.1.8 UC 7 � Change Price

Brief Description: The System provides the opportunity to change the sales price
for a product.
Involved Actors : Store Manager.
Precondition: The store GUI at the Store Client has been started.
Trigger : The Store Manager wants to change the sales price of a product for his
store.
Postcondition: The price for the considered product has been changed and it will
now be sold with the new price.

Standard Process

1. The System presents an overview over all available products in the store.

2. The Store Manager selects a product item and changes its sales price.

3. The Store Manager commits the change by pressing ENTER.

C.1.9 UC 8 � Product Exchange (on low stock) Among
Stores

Brief Description: If a store runs out of a certain product (or a set of products;
�required good�), it is possible to start a query to check whether those products
are available at other Stores of the Enterprise (�providing Stores�). Therefore the
Enterprise Server and the Store Servers need to synchronize their data on demand
(one scheduled update per day or per hour is not su�cient). After a successful
query the critical product can be shipped from one to other Stores. But it has
to be decided (using heuristics to compute the future selling frequency), whether
the transportation is meaningful. For example, if the product is probably sold
out at all Stores within the same day, a transportation does not make sense.

Expressed in a more technical way, a Store Server is able to start a query at
the Enterprise Server. The Enterprise Server in turn starts a query for products
available at other Stores. As the Enterprise Server does not have the current
global data for Stores at any time (due to a write caching latency at the Store
Servers) the Enterprise Server has to trigger all Store Servers to push their local
data to the Enterprise Server.
Involved Actors : This use case is not an end-user use case. Only servers are
involved.
Precondition: The Store Server with the shortage product is able to connect to
the Enterprise Server.
Trigger : This use case is triggered by the system itself.

C.1. THE TRADING SYSTEM (COCOME) 385

Postcondition: The products to deliver are marked as incoming or unavailable,
respectively, in the according Stores.

Standard Process

1. A certain product of the Store runs out.

2. The Store Server recognises low stock of the product.

3. The Store Server sends a request to the Enterprise Server (including an
identi�cation of the shortage products, and a Store id).

4. The Enterprise Server triggers all Stores that are �nearby� (e.g. 300 km) the
requiring store, to �ush their local write caches. So the Enterprise Server
database gets updated by the Store Server.

5. The Enterprise Server does a database look-up for the required products to
get a list of products (including amounts) that are available at providing
Stores.

6. The Enterprise Server applies the �optimization criterion� (speci�ed above)
to decide whether it is meaningful to transport the shortage product from
one store to another (heuristics might be applied to minimize the total costs
of transportation). This results in a list of products (including amounts)
per providing store that have to be delivered to the requiring Store.

7. The Store Server, initially sending the recognition of the shortage product,
is provided with the decision of the Enterprise Server.

(a) The required product is marked as incoming.

8. The Store Server of a near by Store is provided with information that it has
to deliver the product.

(a) The required product is marked as unavailable in the Store.

Alternative or Exceptional Processes

1. The Enterprise Server is not available: The request is queued until the
Enterprise Server is available and then is sent again.

2. One or more Store Servers are not available: The Enterprise Server queues
the requests for the Store Servers until they are available and then resends
them.

3. If a Store Server is not available for more than 15 minutes the request for
this Server is cancelled. It is assumed that �nally unavailable Store Servers
do not have the required product.

386 APPENDIX C

C.1.10 Extension on UC 8 � Remove Incoming Status

Brief Description: If the �rst part of use case 8 (as described above) has passed,
for moved products an amount marked as incoming remains at the Inventory of
the Store receiving the products. An extension allows to change that incoming
mark via a user interface at the Store Client if the moved products arrive at a
Store.
Precondition: The Inventory is available and the Store Client has been started.
Trigger : The moved products (according to UC8) arrive at the Store.
Postcondition: For the amount of incoming products the status �incoming� is
removed in the Inventory.

Standard Process

1. The products arrive at the stock of the Store.

2. For all arriving products the Stock Manager counts the incoming amount.

3. For every arriving product the Stock Manager enters the identi�er and its
amount into the Store Client.

4. The system updates the Inventory.

Alternative or Exceptional Processes

1. If the entered amount of an incoming product is larger than the amount
accounted in the Inventory, the input is rejected. The incoming amount has
to be re-entered.

C.1.11 Incremental Execution of the COCOME Require-
ments

This section explains how each requirement in natural language is handled in
each of the steps de�ned in the approach. To simplify the documentation, each
step will be labelled as Step-1 to Step-5 accordingly. To recall:

Step-1 Extracting elements of component-based systems from requirements.

Step-2 Mapping of the extracted elements to X-MAN elements.

Step-3 Creating a partial architecture.

Step-4 Composing the partial architecture with the existing system architecture.

Step-5 Finalising the system architecture.

Note that Step-5 is only applicable after the �nal requirement has been executed.
For each increment, whenever applicable, any issue and discussion is also added.

C.1. THE TRADING SYSTEM (COCOME) 387

C.1.12 Use Case 1 � Process Sale

Requirement-UC1-1

1. The Customer arrives at the Cash Desk with goods to purchase.

Step-1 This is not a functional requirement. Hence, all the following steps for
this increment are skipped.

Step-2 Not applicable.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC1-2

2. The Cashier starts a new sale by pressing the button Start New Sale at the
Cash Box.

Table C.1: Summary of Steps 1 & 2 for UC1-2

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.
starts new
sale

DT sale computation � CB

component
HM-1B based on user
interaction

Control - - - newSale → CB

Data - - - -

Step-1 & Step-2 See Table C.1.

Step-3 Since only a single component is identi�ed, no partial architecture is
modelled.

Step-4 Not applicable.

Issue and discussion Not applicable.

388 APPENDIX C

Table C.2: Summary of Steps 1 & 2 for UC1-3

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.
enters item
id

DT readItemId → CashBox

(CB)

HM-1B

enters item
id

DT readItemId → Bar Code

System (BCS)

HM-1B

Control `or' conjunction SEL HM-2
SEL(readItemId

→ CB, readItemId

→ BCS)

Data choice Implicit data Store the selection
choice

HM-4

Requirement-UC1-3

3. The Cashier enters the item identi�er. This can be done manually by using
the keyboard of the Cash Box or by using the Bar Code Scanner .

Step-1 & Step-2 See Table C.2.

Step-3 Here, a SEL can directly be applied to both the components that provide
the computations to be selected. The partial architecture for this require-
ment is illustrated in Fig. C.1.

Fig. C.1: UC1-R3

Step-4 As this composition is the �rst incremental architecture, it is considered
as the initial system architecture.

Issue and discussion The assumption here is that this composition works as
an Item Identi�er(II).

C.1. THE TRADING SYSTEM (COCOME) 389

Requirement-UC1-4

4. Using the item identi�er the System presents the corresponding product de-
scription, price, and running total. The steps 3-4 are repeated until all items are
registered.

Table C.3: Summary of Steps 1 & 2 for UC1-4

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.
presents DT display

�INV(Inventory)
HM-1A

search DT(implicit) search �INV

item identi-
�er

Action noun identifyItem
�II(ItemIdenti�er)

HM-1A

Control `using' implies ordering PIPE HM-2

`repeat' pre-de�ned rep-
etition keyword

LOOP adapter (HM-
3)

LOOP((complete 6= no)

PIPE(identifyItem �II,

display �INV))

Data productDesc,
price, run-
ningTotal

Data Store values for
productDesc, price,
runningTotal

HM-4

Step-1 & Step-2 See Table C.3. In order to display the item information, a
search computation is required. We imply such a data transformation for
searching. The loop continues until the constraint turns true (the item
identi�cation process is completed.)

Step-3 The partial architecture for this requirement is illustrated in Fig. C.2(a).

(a)UC1-R4 (b)Incremented architecture

Fig. C.2: UC1-R4a

390 APPENDIX C

Step-4 The composition for UC1-R4 is composed with the current system archi-
tecture as shown in Fig. C.2(b)

Issue and discussion The composition of CB and BCS components has the same
behaviour as II component. Therefore, it can be used to replace the II
component because the composition has already been created in the former
increment.

Requirement-UC1-5

5. Denoting the end of entering items the Cashier presses the button Sale Fin-
ished at the Cash Box.

(a) To initiate cash payment the Cashier presses the button Cash Payment
at the Cash Box.

i. The Customer hands over the money for payment.
ii. The Cashier enters the received cash using the Cash Box and con-

�rms this by pressing Enter.
iii. The Cash Box opens.
iv. The received money and the change amount are displayed, and the

Cashier hands over the change.
v. The Cashier closes the Cash Box.

Table C.4: Summary of Steps 1 & 2 for UC1-5

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-based
Constructs

Explanation

Comp.
opens DT open �CB HM-1B

�change
amount�

Descriptive ex-
pression

calcChge
�CalculateChange(CC)

HM-1A

displayed DT display
�DisplayChange
(DC)

HM-1B

closes DT close �CB HM-1B

Control default
assumption

implies ordering PIPE (HM-2) PIPE(open → CB, calc-

Chge → CC, display →
DC, close → CB)

Data payment Data amount paid HM-4

Step-1 & Step-2 See Table C.4.

C.1. THE TRADING SYSTEM (COCOME) 391

Step-3 The partial architecture for this requirement is illustrated in Fig. C.3(a).

(a)UC1-R5 (b)Incremented architecture (c)Refactored architecture

Fig. C.3: UC1-R5a

Step-4 The composition for UC1-R5 is composed to the current system archi-
tecture as shown in Fig. C.3(b).

Issue and discussion The main task of an analyst in identifying elements to
be extracted is to di�erentiate between computations i.e. services provided
by components and interactions between users via the interface e.g GUI
or devices. In this case, clearly pressing a button indicates an interaction
between user and the system interface. Hence, in this requirement, when the
system receives a noti�cation that the entering item process is completed,
we need to assign a component that deals with the corresponding data.
However, we do not have enough information to assign a speci�c component
other than CB component. The CB component here is not the physical CB
component, but can be rather considered as the driver part (or software) of
the CB physical component.

Although syntactically, we can directly compose the partial architecture at
the front of R5a current architecture, this architecture will not correctly
represent the intended behaviour. Another option is to compose using a
new PIPE connector via the existing top level connector.

During incremental composition, we may need to add some constraints in
order to allow the execution �ow to correctly represents the required be-
haviour. In this case, we add a guard to check that the entering item task
is �nished and the cash payments selected. The updated architecture is as
shown in Fig. C.3(c).

Requirement-UC1-5b

(b) In order to initiate card payment the Cashier presses the button Card Pay-
ment at the Cash Box.

392 APPENDIX C

i. The Cashier receives the credit card from the Customer and pulls it
through the Card Reader.

ii. The Customer enters his PIN using the keyboard of the card reader and
waits for validation.

iii. The step 5.b.ii is repeated until a successful validation or the Cashier
presses the button for cash payment.

Table C.5: Summary of Steps 1 & 2 for UC1-5b

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to Component-
based Constructs

Explanation

Comp.
read card DT readCard �CR HM-1A

enters PIN DT readPIN
�CardReader (CR)

HM-1B

validation Action noun validate
�Authentication
(AUT)

HM-1A

Control `repeat' implies repeti-
tion

loop (HM-3)

`or' implies branch-
ing

SEL or guard (HM-2
or HM-3)

`and' ordering PIPE (HM-2) LOOP ((valid || cash),

PIPE(readCard → CR,

validate → AUT))

Data card Data store card informa-
tion

HM-4

Step-1 & Step-2 See Table C.5.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.4(a).

Step-4 The composition for UC1-R5b is composed to the end of the top-level
PIPE connector of the current system architecture as shown in Fig. C.4(b).

Issue and discussion Since readPIN is also provided by CR component, we as-
sume it is an internal execution, thus only readCard is exposed as the
interface of CR. The architecture after being refactored is shown in Fig.
C.4(c).

We need a guard to check the constraint that the user selects this option
only when the entering item has completed and the payment is made by
card.

C.1. THE TRADING SYSTEM (COCOME) 393

(a)UC1-R5b (b)Incremented architecture (c)Refactored architecture

Fig. C.4: UC1-R5b

Requirement-UC1-6

6. Completed sales are logged by the Trading System and sale information are
sent to the Inventory in order to update the stock.

Table C.6: Summary of Steps 1 & 2 for UC1-6

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
update DT update �INV HM-1A

log DT log �LOG HM-1A

Control `and' implies ordering PIPE (HM-2) PIPE(log → LOG, up-

date → INV)

Data saleInfo Data store sale info HM-4

Step-1 & Step-2 See Table C.6.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.5(a).

Step-4 For this requirement, the resulting partial architecture is composed to
the end of the top-level PIPE as illustrated in Fig. C.5(b).

Issue and discussion Not applicable.

Requirement-UC1-7

7. The Printer writes the receipt and the Cashier hands it out to the Costumer.

Step-1 & Step-2 See Table C.7. Only a single component is identi�ed.

Step-3 Hence, there is no partial architecture for this requirement.

394 APPENDIX C

(a)UC1-R6 (b)Incremented architecture

Fig. C.5: UC1-R6

Table C.7: Summary of Steps 1 & 2 for UC1-7

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. writes DT print �PRT HM-1A

Control - conjunction
`and' here is
irrelevant

- default assumption

Data receipt Data transaction info HM-4

Fig. C.6: UC1-R7

Step-4 The current system architecture is illustrated in Fig. C.6.

Issue and discussion Although there is no control identi�ed here, we assume
naturally the receipt contains the list of items bought by the customer.
Hence, the �ow must be providing some sort of ordering, i.e. after the
payment is made, then only the receipt will be printed.

C.1. THE TRADING SYSTEM (COCOME) 395

Requirement-UC1-8

8. The Customer leaves the Cash Desk with receipt and goods.

Step-1 This is not a functional requirement. Hence, all the following steps for
this increment are skipped.

Step-2 Not applicable.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC1-9

9. In step 3: Invalid item identi�er if the system cannot �nd it in the Inventory.

1. The System signals error and rejects this entry.

2. The Cashier can respond to the error as follows:

(a) A human-readable item identi�er exists:

i. The Cashier manually enters the item identi�er.

ii. The System displays the description and price.

(b) Otherwise the product item is rejected.

Step-1 & Step-2 See Table C.8.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.7(a).
Initially, the item information is displayed without any intention of checking
for any exception. In this requirement, if the item cannot be found, an error
will be displayed. Hence, we add a guard to check that the item is found
before the display computation is performed as shown in Fig. C.7(b). Now,
looking at the resulting pattern, we can simplify the mutual exclusive guards
and replace with a SEL. In addition, the same guards that handle the fault
value can be combined as a SEQ (see Fig. C.7(c)).

Step-4 The composition of UC1-R9 is added to the current system architecture
as illustrated in Fig. C.8.

Issue and discussion In this requirement, we performed a series of refactorings
as discussed in Chapter 7.

396 APPENDIX C

Table C.8: Summary of Steps 1 & 2 for UC1-9

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
identify DT identify �II HM-1A

search DT search �INV HM-1A

display DT disError �ERR HM-1A

reject DT reject �REJ HM-1A

Control `otherwise' implies ordering SEL or guard (HM-
3)

`and' implies ordering PIPE (HM-2) PIPE(identify →
II, search → INV,

GUARD(found=N) →
display → ERR,

GUARD(found=N) >reject

→ REJ)

Data found Data boolean(N=no) HM-4

(a)UC1-R9 (b)Refactored architecture (c) Refactored architecture

Fig. C.7: UC1-R9

Fig. C.8: Incremental composition of UC1-R9

Requirement-UC1-10

10. In step 5.b: Card validation fails.

C.1. THE TRADING SYSTEM (COCOME) 397

Table C.9: Summary of Steps 1 & 2 for UC1-10

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
validation Action noun validate �AUT HM-1A

pay DT pay �CP HM-1B

Control otherwise denotes branch-
ing

SEL or guard (HM-
2 or HM-3)

constraint denotes branch-
ing

guard (HM-3) for validation status

�again and
again�

implies repeti-
tion

LOOP adapter (HM-
3)

Data payment Data amount paid HM-4

PIN Data PIN value HM-4

status Data constraint HM-4

1. The Cashier and the Customer try again and again.

2. Otherwise the Cashier requires the Customer to pay cash.
Step-1 & Step-2 See Table C.9.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.9.

Fig. C.9: UC1-R10

Step-4 This partial architecture has already been modelled in the existing sys-
tem architecture. The only missing part is the constraint when the payment
type is changed to cash payment. We assume that this part is handled by
the AUT component, hence, is not modelled.

Issue and discussion In the current semantics of the X-MAN, breaking a loop
is not de�ned. In order to ensure that the system terminates, the use of
break and its consequences must be carefully considered.

398 APPENDIX C

Requirement-UC1-11

11. In step 6: Inventory not available.

1. The System caches each sale and writes them into the Inventory as
soon as it is available again.

Table C.10: Summary of Steps 1 & 2 for UC1-11

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
check avail-
able

Descriptive ex-
pression

isAvailable �INV HM-1A

cache DT cacheST �ST HM-1A

update DT update �INV HM-1A

Control `and' conjunction PIPE (HM-2) PIPE(isAvailable →
INV, GUARD(avail=N)→
cacheST → ST,

GUARD(avail=Y)→ up-

date → INV)

Data available Data boolean(Y/N) HM-4

Step-1 & Step-2 See Table C.10.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.10(a).

(a)UC1-R11 (b)Incremented architecture

Fig. C.10: UC1-R11

Step-4 The composition for UC1-R11 is added to the current system architecture
as illustrated in Fig. C.10(b).

C.1. THE TRADING SYSTEM (COCOME) 399

Issue and discussion Observe that the partial composition is composed in be-
tween the existing components as a result of refactoring task. Without
refactoring, we cannot guarantee that the formerly modelled behaviours
are preserved.

C.1.13 Use Case 2 � Manage Express Checkout

Requirement-UC2-1a

2. The considered Cash Desk is in normal mode and has just �nished a sale
which matches the condition of an express checkout sale. Now 50% of all
sales during the last 60 minutes ful�l the condition for an express checkout.

(a) This Cash Desk, which has caused the achievement of the condition,
is switched into express mode.

Table C.11: Summary of Steps 1 & 2 for UC2-1

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
�is in normal
mode�

Descriptive ex-
pression

getMode �CD HM-1A

�ful�l the
condition..�

Descriptive ex-
pression

checkMode
�STAT

HM-1A

switched DT setEM �MODE HM-1A

Control `and' conjunction
that implies
ordering

PIPE (HM-2)

PIPE(getMode �CD,

GUARD(mode=NM)�checkMode

�STAT, GUARD(mode=NM)

�setEM �MODE)

constraint to switch mode Guard(HM-3)

Data mode Constraint data NM/EM HM-4

Step-1 & Step-2 See Table C.11.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.11.

Step-4 As there is not enough information to compose the current architecture
into the incremented architecture, the architecture is deferred.

400 APPENDIX C

Fig. C.11: UC2-R1a

Issue and discussion Each time a constraint data is identi�ed, a corresponding
implicit control to check the constraint must be allocated. This control can
later be mapped into a guard adapter or a SEL whenever the condition is
met.

Requirement-UC2-1b

2(b) Furthermore the corresponding Light Display (LD) is switched from black
to green to indicate the Cash Desk's express mode.

Table C.12: Summary of Steps 1 & 2 for UC2-1b

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
�is switched
from black
to green�

Descriptive ex-
pression

setGreen �LD HM-1A

�indicate
.. express
mode�

Descriptive ex-
pression

setEM �MODE HM-1A

Control `from' preposition that
implies ordering

PIPE (HM-2)

PIPE(GUARD(mode=NM)�setEM

�EM,

GUARD(mode=NM)�setGreen

�LD)

constraint to switch mode Guard(HM-3)

Data switch Constraint data EN/NM HM-4

Step-1 & Step-2 See Table C.12.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.12.

C.1. THE TRADING SYSTEM (COCOME) 401

(a)UC2-R1b (b)Incremented architecture

Fig. C.12: UC2-R1b

Step-4 We continue this increment from the previous requirement.

Issue and discussion Not applicable.

Requirement-UC2-1c

2(c) Paying by credit card is not possible any more.

Table C.13: Summary of Steps 1 & 2 for UC2-1c

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. �paying by
card...�

implies cash
payment only

setPaymentType
�PT

HM-1B

Control constraint check mode Guard for checking
mode

GUARD(mode=EM)

�setPaymentType(PT)

Data paymentTypedata cash HM-4

mode Constraint data EM only HM-4

Step-1 & Step-2 See Table C.13. This statement contains constraints a single
computation and data only.

Step-3 The partial architecture for this requirement is demonstrated in Fig.
C.13(a).

Step-4 The composition for UC2-R1c is added to the current system architecture
as illustrated in Fig. C.13(b).

402 APPENDIX C

(a)UC2-R1c (b)Part of the incremented architecture

Fig. C.13: UC2-R1c

Issue and discussion Based on the extracted information, the next step is to
compose the architecture with the previous increments. This decision is
based on the requirement that card payment is not available for express
mode. Hence, only cash is allowed.

Requirement-UC2-1d

2(d) The maximum of items per sale is reduced to 8 and only paying by cash is
allowed.

Table C.14: Summary of Steps 1 & 2 for UC2-1d

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
�item per
sale�

Descriptive ex-
pression

identifyItem �II HM-1A

Control maximum of
items

implies repeti-
tion

Loop(HM-3) LOOP(counter ≤ 8,cash)

�II

payment
type

constraint Guard(HM-3)

Data counter Constraint data repeat maximum 8
times

HM-4

paymentTypeConstraint data cash only HM-4

Step-1 & Step-2 See Table C.14. The identify Item transaction has already
been modelled in UC1. As we identify constraint data that are the payment

C.1. THE TRADING SYSTEM (COCOME) 403

type and the counter, they need to be checked by adapters (either or both,
a guard or a loop). In this case, both the counter and the payment type
can be used to set the number of repetitions and the constraint of a loop.

Step-3 The partial architecture for this requirement is demonstrated in Fig.
C.14(a).

(a)UC2-R1d (b)Part of Incremented Architecture

Fig. C.14: UC2-R1d

Step-4 The composition for UC2-R1d is added to the current system architecture
as illustrated in Fig. C.14(b).

Issue and discussion Another guard for checking the II process if the trans-
action is in express mode must also be added. This is important because
when the transaction is in express mode, the item identi�er process can be
repeated not more than 8 times, whereas there is no constraint in normal
mode.

When a composition is adapted, we assume the former part of the incre-
mented architecture is de-composed and is being replaced by a new adapted
composition. Then only the newly replaced composition will be composed
to the former composition point.

Requirement-UC2-2a

2 The Cash Desk is in express mode and the Cashier decides to change back
into normal mode.

(a) The Cashier presses the button Disable Express Mode.

Step-1 & Step-2 See Table C.15.

Step-3 The partial architecture for this requirement is demonstrated in Fig.
C.15(a).

404 APPENDIX C

Table C.15: Summary of Steps 1 & 2 for UC2-2a

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
�is in express
mode�

DE getMode �CD HM-1A

�change back
to..�

DE setNM �MODE HM-1B

Control `and' implies ordering PIPE(HM-2) PIPE(getMode �CD,
GUARD(mode=EM)
�setNM �NM)

Data mode Constraint data NM HM-4

(a)UC2-R2a (b)Part of Incremented Architecture

Fig. C.15: UC2-R2a

Step-4 Since the CD component has already been modelled in the previous in-
crement, the only composition that is required is the MODE component.
Hence, the composition for UC2-R2a is added to the end of the relevant
branches of the current system architecture as illustrated in Fig. C.15(b).

Issue and discussion Not applicable.

Requirement-UC2-2b

2(b) The colour of the Light Display is changed from green to black colour.

Step-1 & Step-2 See Table C.16.

C.1. THE TRADING SYSTEM (COCOME) 405

Table C.16: Summary of Steps 1 & 2 for UC2-2b

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. changed to DT setBlk �LD HM-1A

Control `from' implies ordering PIPE HM-2

Data color Store data black,green HM-4

Step-3 As only a single computation is identi�ed, no partial architecture is pro-
duced. However, for illustration purpose, see Fig. C.16(a).

(a)UC2-R2b (b)Part of Incremented Architecture for UC2-R2b

Fig. C.16: UC2-R2b

Step-4 The composition for UC2-R2b is added to the current system architecture
as illustrated in Fig. C.16(b).

Issue and discussion To ensure that the assigned component is added to the
correct composition point, a guard is also required to check that the mode
is normal.

Requirement-UC2-2c

2(c) Cash and also card payment is allowed and the Customer is allowed to buy
as many goods as he likes.

Step-1 & Step-2 See Table C.17.

Step-3 The partial architecture for this requirement is demonstrated in Fig.
C.17(a).

406 APPENDIX C

Table C.17: Summary of Steps 1 & 2 for UC2-2c

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
cash pay-
ment

Action noun payCash �CP HM-1B

card pay-
ment

Action noun payCard �CDP HM-1B

Control `and' does not imply
ordering, but a
selection instead

SEL or Guard HM-2, HM-3

loop derive from
the implicit
constraint
(complete)

LOOP HM-3

Data goods counter noOfItem HM-4

complete implicit con-
straint to end
the scanning
process

Y/N HM-4

(a)UC2-R2c (c)Part of Incremented Architecture

Fig. C.17: UC2-R2c

Step-4 The composition for UC2-R2c has already been modelled in the current
system architecture as illustrated in Fig. C.17(b). The loop has been
modelled for identifying items in another branch.

Issue and discussion The conjunction `and' here does not mean ordering, it
implies that both the payment types are available for customers. Hence,

C.1. THE TRADING SYSTEM (COCOME) 407

we map that to a SEL instead. In Fig. C.17(b), the SEL is renamed into
paymentType.

C.1.14 Use Case 3 � Order Products

Requirement-UC3-1

1. A list with all products and a list with products running out of stock are
shown.

Table C.18: Summary of Steps 1 & 2 for UC3-1

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
�list with all
products�

Descriptive ex-
pression

viewStock �INV HM-1A

�list ..out of
stock�

Descriptive ex-
pression

outOfStock �INV HM-1A

implicit au-
thentication

DT aut �AUT only the Store Mgr can ac-
cess this function.

Control constraint aut status guard HM-3

`and' denotes both
but the order is
not signi�cant

PIPE (HM-2) PIPE(aut �AUT,

GUARD(Y)�viewStock

�INV)

constraint to switch mode Guard(HM-3)

Data status Constraint data Y/N(valid/invalid) HM-4

Step-1 & Step-2 See Table C.18. How do we extract authorisation computa-
tion for the store manager? Although there is no explicit computation to
be extracted for such an authorisation, clearly there is a need for that. This
additional information is included in the introduction part of the use case.
Hence, an authentication component to authenticate the Store Manager is
added.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.18.
Step-4 At this point, there is not enough information to compose the current

architecture into the incremented architecture. Hence, the composition to
the incremented architecture is deferred.

Issue and discussion Not applicable.

408 APPENDIX C

Fig. C.18: UC3-R1

Requirement-UC3-2

2. The Store Manager chooses the product items to order and enters the corre-
sponding amount.

Table C.19: Summary of Steps 1 & 2 for UC3-2

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. order DT viewStock �INV HM-1B

Control - - -

Data amount Data order amount HM-4

Step-1 & Step-2 See Table C.19. Note that the `and' conjunction here is not
identi�ed as a control. Here, it can be handled as internal execution of
the order computation. Once the order is invoked, it will prompt for the
corresponding input.

Step-3 No partial architecture for this requirement as only a single computation
being extracted.

Fig. C.19: UC3-R2

Step-4 We continue this increment from the previous requirement. The compo-
sition for the assigned component which is extracted from UC3-R2 is added
to the current system architecture as illustrated in Fig. C.19.

C.1. THE TRADING SYSTEM (COCOME) 409

Issue and discussion Only view stock is exposed and out of stock is considered
as an internal computation. The incremented architecture has already been
refactored. Otherwise we need two guards checking the same constraint
that is the authentication status for INV and ODR branches. In order to
represent the correct behaviour, we bring forward the guard so that the
checking is done once, instead of twice.

Requirement-UC3-3

3. The Store Manager presses the button Order at the Store Client's GUI.

Table C.20: Summary of Steps 1 & 2 for UC3-3

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. order user interaction order �INV HM-1B

Control - - -

Data - - - -

Step-1 & Step-2 See Table C.20.

Step-3 No partial architecture for this requirement as only a single computation
is extracted.

Fig. C.20: UC3-R3

Step-4 We continue this increment from the previous requirement.

Issue and discussion Not applicable.

410 APPENDIX C

Table C.21: Summary of Steps 1 & 2 for UC3-4

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
place order DT order �ODR HM-1A

generate DT generateOrderId
�ODR: orderId

HM-1A

shown DT display �ODR

Control `and' conjunction -

Data supplier, or-
der, orderId

Store values Data HM-4

Requirement-UC3-4

4. The appropriate suppliers are chosen and orders for each supplier are placed.
An order identi�er is generated for each order and is shown to the Store
Manager.

Step-1 See Table C.21. We assume when placing an order, the supplier will also
be decided.

Step-2 As all the extracted computations are assigned to the same component,
there is no need of any composition connectors. Indirectly, we assume that
all these computations are internally dealt with by the ODR component.

Step-3 No partial architecture for this requirement as only a single component
is extracted.

Fig. C.21: Part of the incremented architecture for UC3-R4

C.1. THE TRADING SYSTEM (COCOME) 411

Step-4 The only exposed computation is the order computation. During selec-
tion of ODR component, we have to ensure the generate order id and display
computations are also provided.

In order to compose the current partial architecture with the incremented
system architecture, the only possible way is using a top-level SEL. See Fig.
C.21.

Issue and discussion Not applicable.

C.1.15 Use Case 4 � Receive Ordered Products

Requirement-UC4-1

1. Ordered products arrive at the stock attached with an order identi�er which
has been assigned during the ordering process.

Step-1 This is not a functional requirement. Hence, all the following steps for
this increment are skipped.

Step-2 Not applicable.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC4-2

2. The Stock Manager checks the delivery for completeness and correctness.

Step-1 This is manually done by the Stock Manager and is not a functional
requirement. Hence, all the following steps for this increment are skipped.

Step-2 Not applicable.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

412 APPENDIX C

Table C.22: Summary of Steps 1 & 2 for UC4-3

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
roll user interaction receive �ODR HM-1B

Stock Man-
ager

implicit DT aut �AUT HM-1A

Control implicit pass the aut sta-
tus

PIPE HM-2 PIPE(aut �AUT,

GUARD(stkMgr)�roll

�ODR)

constraint check authenti-
cation status

Guard (HM-3)

Data status Constraint data Y/N (valid/invalid) HM-4

Requirement-UC4-3

3. In the case of correctness, the Stock Manager enters the order identi�er and
presses the button Roll in received order.

Step-1 & Step-2 See Table C.22. Although there is no explicit computation to
be extracted for such an authorisation, clearly there is a need for that. This
additional information is included in the introduction part of the use case.
Hence, an authentication component to authenticate the Stock Manager is
added.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.22.

Fig. C.22: UC4-R3

Step-4 At this point, there is no composition point to be used. Hence, the
composition to the incremented architecture is deferred.

Issue and discussion Not applicable.

C.1. THE TRADING SYSTEM (COCOME) 413

Requirement-UC4-4

4. The Trading System updates the Inventory.

Table C.23: Summary of Steps 1 & 2 for UC4-4

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. update DT update �INV HM-1A

Control - - -

Data updatedOrderData received order HM-4

Step-1 & Step-2 See Table C.23.

Step-3 As only a single computation is extracted, there is no partial architecture
for this requirement.

(a)UC4-R4 (b)Part of the incremented architecture

Fig. C.23: UC4-R4

Step-4 The composition for UC4-R4 is added to the current system architecture
using an existing SEL as depicted in Fig. C.23(b). This is considered as the
current incremented system architecture produced so far.

Issue and discussion The partial architecture has already refactored the same
guards and bring upfront the guards so that the derived architecture will
reduce the number of guards.

414 APPENDIX C

Requirement-UC4-5

5. In step 2: Delivery not complete or not correct. The products are sent back
to the supplier and the Stock Manager has to wait until a correct and complete
delivery has arrived. This action is not recognised by the System.

Step-1 This is not a functional requirement. Hence, all the following steps for
this increment are skipped.

Step-2 Not applicable.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

C.1.16 Use Case 5 � Show Stock Reports

Requirement-UC5-1

1. The Store Manager enters the store identi�er and presses the button Create
Report.

Table C.24: Summary of Steps 1 & 2 for UC5-1

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
create DT create �RG HM-1B

�Store
Manager
enters..�

DE aut �AUT HM-1A

Control `and' conjunction, im-
plies ordering

PIPE HM-2 PIPE(authenticate

�AUT, GUARD(valid)

�create �RG)

constraint aut status Guard HM-3

Data username,
pwd

Constraint data authentication pur-
pose

HM-4

C.1. THE TRADING SYSTEM (COCOME) 415

Step-1 & Step-2 See Table C.24. Only a single component identi�ed explicitly
from the requirement. However, we assume the authentication process must
be performed prior to the report creation. The authentication process is
implied from the COCOME's introduction.

Step-3 Fig. C.24 depicts the partial architecture for this requirement.

Fig. C.24: UC5-R1

Step-4 At this point, no composition point in the system architecture can be
used. Hence, the composition to the incremented architecture is deferred.

Issue and discussion Not applicable.

Requirement-UC5-2

2. A report including all available stock items in the store is displayed.

Table C.25: Summary of Steps 1 & 2 for UC5-2

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. display DT display �RG HM-1A

Control - - internal invocation

Data - - - -

Step-1 & Step-2 See Table C.25. Only a single computation is extracted. This
computation is treated as an internal computation, which can be invoked
by the exposed interface.

Step-3 There is no partial architecture for this requirement.
Step-4 The component is added to the incremented system architecture (see Fig.

C.25).

Issue and discussion Not applicable.

416 APPENDIX C

Fig. C.25: Part of the incremented architecture for UC5-R2

C.1.17 Use Case 6 � Show Delivery Reports

Requirement-UC6-1

1. The Enterprise Manager enters the enterprise identi�er and presses the button
Create Report.

Table C.26: Summary of Steps 1 & 2 for UC6-1

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
create DT create �EM HM-1B

�Enterprise
Manager
enters..�

DE aut �AUT HM-1A

Control `and' ordering PIPE PIPE(authenticate

�AUT, GUARD(valid)

�create �EM)

constraint aut status Guard HM-3

Data username,
pwd

Constraint data authentication pur-
pose

HM-4

Step-1 & Step-2 See Table C.26.

Step-3 The partial architecture for this requirement is shown in Fig. C.26.

C.1. THE TRADING SYSTEM (COCOME) 417

Fig. C.26: UC6-R1

Step-4 As there is not enough information to compose the current architecture
into the incremented architecture, the architecture is deferred until a valid
composition point is available.

Issue and discussion Not applicable.

Requirement-UC6-2

2. A report which informs about the mean times is generated.

Table C.27: Summary of Steps 1 & 2 for UC6-2

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. calculate DT calcMT �EM HM-1A

Control - - -

Data - - - -

Step-1 & Step-2 See Table C.27. Only a single computation is extracted. This
computation is treated as an internal computation, which can be invoked
by the exposed interface.

Step-3 There is no partial architecture for this requirement.

Step-4 The assigned component is composed to the incremented system archi-
tecture. This design is considered as the current system diagram. See Fig.
C.27.

Issue and discussion Not applicable.

418 APPENDIX C

Fig. C.27: Part of the incremented architecture for UC6-R2

C.1.18 Use Case 7 � Change Price

Requirement-UC7-1

1. The System presents an overview of all available products in the store.

Table C.28: Summary of Steps 1 & 2 for UC7-1

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
presents DT view �INV HM-1A

authenticate DE (intro) aut �AUT HM-1A

Control constraint aut status Guard

implicit ordering PIPE PIPE(authenticate

�AUT, GUARD(valid)

�view �INV)

Data username,
pwd

constraint data authentication HM-4

Step-1 & Step-2 See Table C.28. An authentication computation by the Store
Manager, is added.

Step-3 The partial architecture for this requirement is shown in Fig. C.28.

Step-4 See Fig. C.28.

Issue and discussion Not applicable.

C.1. THE TRADING SYSTEM (COCOME) 419

Fig. C.28: UC7-R1

Requirement-UC7-2

2. The Store Manager selects a product item and changes its sales price.

Table C.29: Summary of Steps 1 & 2 for UC7-2

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
select user interaction viewItem �INV HM-1B

search implicit DT search �INV HM-1A

Control - - -

Data item, price store data Data HM-4

Step-1 & Step-2 See Table C.29.

Step-3 As the extracted computations belong to the same component, no partial
architecture for this requirement is derived.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC7-3

3. The Store Manager commits the change by pressing ENTER.

Step-1 & Step-2 See Table C.30.

Step-3 As only a single component is identi�ed, in e�ect, no partial architecture
for this requirement is derived.

Step-4 The incremented architecture for UC7-3 is shown in Fig. C.29.

420 APPENDIX C

Table C.30: Summary of Steps 1 & 2 for UC7-3

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. change user interaction update �INV HM-1B

Control - - -

Data item, price store data Data HM-4

Fig. C.29: Part of the incremented architecture for UC7-R3

Issue and discussion In this case, only view computation is exposed once in-
voked, the user will be allowed to do the changes and the changes will be
updated to the system. All these computations are handled by INV compo-
nent.

C.1.19 Use Case 8 � Product Exchange (on low stock)
Among Stores

Requirement-UC8-1

1. A certain product of the Store runs out.

Step-1 & Step-2 See Table C.31.

Step-3 There is no partial architecture for this requirement.

Step-4 Not applicable.

Issue and discussion This checking stock computation is invoked automati-
cally. Once a store client is running, the Store Server checks the stock.

C.1. THE TRADING SYSTEM (COCOME) 421

Table C.31: Summary of Steps 1 & 2 for UC8-1

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. runs DT checkStock �STK HM-1A

Control - - -

Data product Data productId HM-4

Requirement-UC8-2

2. The Store Server recognizes low stock of the product.

Table C.32: Summary of Steps 1 & 2 for UC8-2

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. recognizes DT checkLowStock
�STK

HM-1A

Control - - -

Data product Data productId HM-4

Step-1 & Step-2 See Table C.32.

Step-3 There is no partial architecture for this requirement.

Step-4 Not applicable.

Issue and discussion The low stock of each product is formerly set in the
database and the checking for low stock will be based on the setting.

Requirement-UC8-3

3. The Store Server sends a request to the Enterprise Server (including an iden-
ti�cation of the shortage products, and a Store id).

422 APPENDIX C

Table C.33: Summary of Steps 1 & 2 for UC8-3

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
identi�cation Action noun checkLowStock

�STK
HM-1A

send request DT sendRequest �SS HM-1A

Control implicit ordering PIPE PIPE(checkLowStock

�STK, sendRequest �SS)

Data product Data productId HM-4

store ID Data storeId HM-4

Step-1 & Step-2 See Table C.33.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.30.

Fig. C.30: UC8-R3

Step-4 Not applicable.

Issue and discussion Note that the piping execution here is to represent com-
munication between servers.

Requirement-UC8-4

4. The Enterprise Server triggers all Stores that are �nearby� (e.g. 300 km) the
requiring store, to �ush their local write caches. So the Enterprise Server
database gets updated by the Store Server.

Step-1 & Step-2 See Table C.34.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.31.
Step-4 Not applicable.

Issue and discussion Not applicable.

C.1. THE TRADING SYSTEM (COCOME) 423

Table C.34: Summary of Steps 1 & 2 for UC8-4

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
trigger DT trigger �ES HM-1A

update DT update �SS HM-1A

Control implicit ordering PIPE PIPE(trigger �ES, up-

date �SS)

Data product Data productId HM-4

storeId Data StoreId HM-4

reqStoreId Data ReqStoreId HM-4

(a)UC8-R4 (b)Incremented architecture

Fig. C.31: UC8-R4

Requirement-UC8-5

5. The Enterprise Server does a database look-up for the required products to
get a list of products (including amounts) that are available at providing
Stores.

Step-1 & Step-2 See Table C.35.

Step-3 There is no partial architecture for this requirement.

Fig. C.32: Incremented architecture for UC8-R5

424 APPENDIX C

Table C.35: Summary of Steps 1 & 2 for UC8-5

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. look-up DT search(prodId,
amount, storeId)
�ES

HM-1A

Control implicit ordering PIPE previous increments

Data product Data productId HM-4

storeId Data StoreId HM-4

amount Data amount HM-4

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC8-6

6. The Enterprise Server applies the �optimisation criterion� (speci�ed above) to
decide as to whether it is meaningful to transport the shortage product from
one store to another (heuristics might be applied to minimize the total costs
of transportation). This results in a list of products (including amounts)
per providing store that have to be delivered to the requiring Store.

Table C.36: Summary of Steps 1 & 2 for UC8-6

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. optimisation Action noun optimise �ES HM-1A

Control implicit ordering - -

Data product store product
information

product HM-4

Step-1 & Step-2 See Table C.36. We assume that this is an internal invocation
performed by the ES.

C.1. THE TRADING SYSTEM (COCOME) 425

Step-3 There is no partial architecture for this requirement.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC8-7

7. The Store Server, initially sending the recognition of the shortage product, is
provided with the decision of the Enterprise Server.

(a) The required product is marked as incoming.

Table C.37: Summary of Steps 1 & 2 for UC8-7

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction
category

Map to
Component-based
Constructs

Explanation

Comp.
optimise DT sendRecognition(storeId,

status) �ES
HM-1A

marked DT mark(status) �SS HM-1A

Control implicit in-
vocation

ordering - -
PIPE(sendRecognition

�ES, mark �SS)

Data incoming Data incoming(status) HM-4

Step-1 & Step-2 See Table C.37.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.33.

Fig. C.33: Incremented architecture for UC8-R7

Step-4 Not applicable.

Issue and discussion Not applicable.

426 APPENDIX C

Requirement-UC8-8

8. The Store Server of a nearby Store is provided with information that it has to
deliver the product.

(a) The required product is marked as unavailable in the Store.

Table C.38: Summary of Steps 1 & 2 for UC8-8

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
delivery DT notifyDelivery(storeId,

prodId, amount) �ES
HM-1A

marked DT mark(status) �SS HM-1A

Control implicit in-
vocation

ordering - -

Data unavailable Data availability status
(Y/N)

-

Step-1 & Step-2 See Table C.38.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.34(a).

Fig. C.34: Incremented architecture for UC8-R8

Step-4 The current system architecture is illustrated in Fig. C.34(b).

Issue and discussion Not applicable.

Requirement-UC8-E1

E1. The Enterprise Server is not available: The request is queued until the En-
terprise Server is available and then is sent again.

Step-1 & Step-2 See Table C.39.

C.1. THE TRADING SYSTEM (COCOME) 427

Table C.39: Summary of Steps 1 & 2 for UC8-E1

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
�is available� DE chkAvailable �ES HM-1A

queue DT queue �SS HM-1A

send DT sendReq �SS HM-1A

Control `and' ordering PIPE PIPE(chkAvailable �ES,

queue �SS)

constraint availability sta-
tus

Guard(HM-3)

Data available Data available(Y/N) HM-4

Fig. C.35: Incremented architecture for UC8-E1

Step-3 The partial architecture for this requirement is illustrated in Fig. C.35(a).

The current system architecture is illustrated in Fig. C.35(b).

Issue and discussion The X-MAN component model accommodates for single-
threaded execution; a loop to queue for waiting for the ES to be available
cannot be explicitly modelled. In this case, we assume the SS has an implicit
server computation to perform such a task.

C.1.20 Extension on UC 8 - Remove Incoming Status

Requirement-UC8-Ext1

1. The products arrive at the stock of the Store.

Step-1 This is not a functional requirement. Hence, all the following steps for
this increment are skipped.

Step-2 Not applicable.

428 APPENDIX C

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC8-Ext2

2. For all arriving products the Stock Manager counts the incoming amount.

Step-1 This is not a functional requirement. Hence, all the following steps for
this increment are skipped.

Step-2 Not applicable.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC8-Ext3

3. For every arriving product the Stock Manager enters the identi�er and its
amount into the Store Client.

Table C.40: Summary of Steps 1 & 2 for UC8-Ext3

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp.
enter DT enterItemId �INV HM-1B

Store Man-
ager

implicit aut �AUT HM-1A

Control implicit ordering PIPE PIPE(aut �AUT, en-

terItemId �INV)

constraint authentication
status

Guard(HM-3)

Data status Constraint data aut status(Y/N) HM-4

Step-1 & Step-2 See Table C.40.

Step-3 The partial architecture for this requirement is illustrated in Fig. C.36(a).

C.1. THE TRADING SYSTEM (COCOME) 429

Fig. C.36: Incremented architecture for UC8-Ext3

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-UC8-Ext4

4. The system updates the Inventory.

Table C.41: Summary of Steps 1 & 2 for UC8-Ext4

Extraction result Mapping result

Descrip-
tion

Extracted
elements

Extraction cate-
gory

Map to
Component-based
Constructs

Explanation

Comp. update DT update �INV HM-1A

Control implicit ordering previous increment

constraint valid status Guard(HM-3)

Data product data(implicit) product to be up-
dated

HM-4

Step-1 & Step-2 See Table C.41.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion We assume the update is internally invoked by the ex-
posed interface's computation.

430 APPENDIX C

F
ig
.
C
.3
7:

C
O
C
O
M
E
A
rc
hi
te
ct
ur
e
B
ef
or
e
R
ef
ac
to
ri
ng

F
ig
.
C
.3
8:

A
rc
hi
te
ct
ur
e
R
ef
ac
to
ri
ng

C.1. THE TRADING SYSTEM (COCOME) 431

C.1.21 Architecture Refactoring of the COCOME

After all the incremental steps, the following step is the refactoring step. The
main purpose of refactoring is to simplify the structure. The refactoring tasks
have been discussed in Chapter 7. To illustrate the refactorings of the COCOME
example, the discussion will be provided according to the label AR-1 to AR-6 in
Fig. C.38.

C.1.22 AR-1

From label AR-1, both the same guards that are checking the same constraint i.e.
normal or express modes, are combined. In e�ect, the guards are brought forward
so that they can check the constraints once before the execution of setMode and
change the light display. See Fig.C.39(a). However, we can still see that the
guards that are mutually exclusive, can also be refactored. Hence, Fig.C.39(b)
depicts the following refactoring task to replace them with a SEL. As a result, the
structure becomes more transparent and understandable.

(a)Step-1 (b)Step-2

Fig. C.39: AR-1

C.1.23 AR-2

In this case, both the branches can be combined using a loop adapter. See
Fig. C.40(a). The loop can be designed in such a way that all the constraints
are encapsulated in it. This loop checks the looping constraint i.e. complete, and
also the modes i.e. express or normal.

C.1.24 AR-3

Fig. C.41(a) demonstrates the original structure before refactoring. For this
case, we simply combine both of the guards because they are checking the same
constraint. To ensure the same behaviour is modelled, one guard (instead of
two) is brought upfront. Hence, the checking will only be performed once. See
Fig. C.41(b).

432 APPENDIX C

(a)Step-1 (b)Step-2

Fig. C.40: AR-2

(a) Before (b)After refactoring

Fig. C.41: AR-3

C.1.25 AR-4

In Fig.C.42(a), we can combine the same guards i.e. checking the item's avail-
ability. As a result of this, we need to bring the combine guard upfront so that
the checking is done once, instead of twice (see Fig.C.42(b)).

(a) Before (b)After refactoring

Fig. C.42: AR-4

C.1.26 AR-5

Fig.C.43(a) demonstrates the original structure before refactoring. Here, the
guards are mutually exclusive. Thus, we map them into a SEL. See Fig.C.43(b).

C.1. THE TRADING SYSTEM (COCOME) 433

Accordingly, in Fig.C.43(b) the SEL will be connected to the existing PIPE in the
upper hierarchy level.

(a) Before (b)After refactoring

Fig. C.43: AR-5

C.1.27 AR-6

Fig.C.44(a) demonstrates the original structure before refactoring. In this �gure,
all the guards that are checking the authentication status of the managers can
be combined. We mapped them to a SEL. The selection criterion is based on
the valid status and the transaction type. See Fig.C.44(b). The advantage of
restructuring is to reduce complexity. In such an attempt, in this particular case,
we have shown that the unnecessary guards and composition connectors can be
reduced. As a result, the structure becomes more readable.

(a) Before (b)After Refactoring

Fig. C.44: AR-6

The complete architecture after refactoring is depicted in Fig. C.45. Observe
that this refactored architecture has a simpli�ed and clearer structure compared
to the original architecture (see Fig. C.37).

The �nal step during �nalisation is to �x all the open composition points.
Now, all the open composition connectors are changed to solid interface, which de-
notes no composition points are available for further composition (see Fig. C.46).

434 APPENDIX C

F
ig
.
C
.4
5:

C
O
C
O
M
E
A
rc
hi
te
ct
ur
e
A
ft
er

R
ef
ac
to
ri
ng

F
ig
.
C
.4
6:

F
in
al
is
ed

A
rc
hi
te
ct
ur
e

C.1. THE TRADING SYSTEM (COCOME) 435

C.1.28 Summary

In this case study, the all the de�ned steps in the approach to constructing
component-based systems have been demonstrated, applied and presented. The
primary concern is to identify elements of component-based systems as de�ned
in the X-MAN component model, namely computations, control and data. Fol-
lowing this premise, a complete COCOME example has been demonstrated as
to apply all the heuristics and design decisions de�ned in this thesis. It has also
been elucidated that the identi�ed computations, control and data can be used
to guide us in constructing the complete component-based system. Although this
approach is basically heuristic, and requires human guidance and decision mak-
ing, we believe this is possible because the underlying component model provides
a way to realise such an approach.

436 APPENDIX C

C.2 The Video Store System (VSS)

C.2.1 Introduction

This Video Store example is taken from [LSB98]. To simplify the documentation,
each step will be labelled as Step-1 to Step-5 accordingly. The documentation
of the execution of the VSS case study using the incremental approach will be
grounded on the following steps:

Step-1 Extracting elements of component-based systems from requirements;

Step-2 Mapping of the extracted elements to X-MAN elements;

Step-3 Creating a partial architecture;

Step-4 Composing the partial architecture with the existing system architecture;

Step-5 Finalising the system architecture.

Note that Step-5 is only applicable after the �nal requirement has been executed.
An item for any issue and discussion is also added.

C.2.2 Incremental Execution of the VSS

Requirement-1

1. In the initial state of the video system the main menu is displayed. From the
main menu the clerk can choose one of the following options:

1. Rent a tape;

2. Return tapes;

3. Insert new customer;

4. Insert new video;

5. Change customer data;

6. Change video data;

7. Delete video;

8. Delete customer.

C.2. THE VIDEO STORE SYSTEM (VSS) 437

Step-1 & Step 2 Identify computations i.e. rent tape, return tape, insert new
customer, insert new video, change customer data, change video data, delete
video, delete customer and exit. For each computation, we decide whether
we want to group them into meaningful components or set individual com-
putations as independent components. For control, we identify a selection
of the above computations based on the control term option. Hence, we
map this execution to a selector here.

Step-3 The partial architecture for R1 is as shown in Fig. C.47.

Fig. C.47: Result of mapping for R1

Step-4 Since this is the �rst partial architecure, this is considered as the initial
system diagram.

Issue and discussion Not applicable.

Requirement-2

2. The system keeps a video inventory record for each tape given attributes and
the current status of it.

Step-1 & Step 2 Video Inventory Record (VIR) is a database element. This is
also a conceptual component because there is no computation that we can
extract yet at this point.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-3

3. The system keeps a rental transaction record for each customer giving out
information and currently rented tapes for each customer.

438 APPENDIX C

Step-1 & Step 2 Rental Transaction Record (RTR) is a database element. This
can be considered as a conceptual component because there is no compu-
tation that we can extract with regard to RTR at this point.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-4

R4. The customer has his ABC card with him. The account number of a cus-
tomer is read with the bar code reader from the clerk to retrieve rental transaction
record.

Step-1 & Step 2 Identify computations i.e. read card, search RTR and display.
Use a pipe to pass the account number read from the card reader in order
to retrieve the rental transaction record by the RTR component.

Step-3 The partial architecture for R4 is as shown in Fig. C.48(a).

(a)R4 (b)Incremented architecture

Fig. C.48: R4

Step-4 When we decompose a component, we can either decompose only or de-
compose and extend the component by maintaining the previous identi�ed
computations. In this case, we decompose and extend the RT component by
adding CR and RTR components and maintaining the rent tape computa-
tion. The result of incremental composition can be depicted in Fig. C.48(b).

Issue and discussion Not applicable.

Requirement-5

Description The customer doesn't have his ABC card with him. The account
number of a customer is entered with the keyboard from the clerk to retrieve
the rental transaction record.

Input The account number is entered with the keyboard.

C.2. THE VIDEO STORE SYSTEM (VSS) 439

Processing Searching rental transaction record.

Output Display rental transaction record.

Step-1 & Step 2 Identify computations i.e. search RTR and display. However,
these two computations have already been identi�ed previously. We can
put a constraint on the card reader component so that only customers with
cards can be allowed to invoke this computation. Otherwise, the control
�ow will be passed to the RTR component.

Step-3 As both the extracted computations are assigned to be dealt with by the
same component, there is no partial architecture for R5.

Fig. C.49: R5

Step-4 The display computation is encapsulated in component RTR. The result
of the incremental composition is depicted in Fig. C.49.

Issue and discussion The invocation to the RTR is done from the exposed
interface of the component. In this case, via the search interface.

Requirement-6

Description Bar code id for each tape to be rented are entered.

Input Bar code id for each tape are entered with the bar code reader.

Processing Retrieving video inventory record about the tape.

Output Display video name and rental price.

Step-1 & Step 2 Identify computations i.e. read bar code ID, retrieve, display.
We allocate read bar code ID computation into the Bar Code Reader com-
ponent, and the rest into the Video Information Record (VIR) component.
We need a pipe connector in order to pass the bar code data into the VIR
component.

Step-3 The partial architecture for R6 is shown in Fig. C.50(a).
Step-4 Result of the incremental composition can be depicted in Fig. C.50(b).

Issue and discussion Not applicable.

440 APPENDIX C

(a)R6 (b)Part of the Incremented Architecture

Fig. C.50: R6

Requirement-7

Description The maximal number of tapes that can be rented in one transaction
is 20.

Input Bar code ids of tape is entered with the bar code reader.

Processing If 21 or more tapes are taken, rental is rejected.

Output Error message is displayed.

Step-1 & Step 2 The description contains only constraints which can be checked
in the corresponding computation. Hence, the only computation that we
identify here is to display the error message. However, this computation
can be allocated in the same RTR component.

Step-3 Not applicable.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-8

Description When all tapes are entered the system computes the total.

Input Enter key is pressed on keyboard after the last tape was entered.

Processing Computation of the total due. The total is the sum of the past due
fees, other fees and current video rental fees.

Output Total due.

Step-1 & Step 2 The description contains a computation to compute the total
rental fee. This fee is calculated when all tapes have been entered. We
extract compute and display change as DTs.

C.2. THE VIDEO STORE SYSTEM (VSS) 441

(a)R8 (b)Part of the Incremented Architecture for R8

Fig. C.51: R8

Step-3 The partial architecture can be modelled as in Fig. C.51(a).
Step-4 Result of the incremental composition can be depicted in Fig. C.51(b).

Issue and discussion Not applicable.

Requirement-9

Description The clerk collects the money from the customer and enters the
amount into the system.

Input Amount of money that is given to clerk entered via keyboard.

Processing Compute change.

Output Display amount of change.

Step-1 & Step 2 The description contains a computation to compute the change
and to display the result. In the same component, hence no �ow is required.

Step-3 No partial architecture.
Step-4 The incremental system architecture can be designed as in Fig. C.52.

Issue and discussion Not applicable.

Requirement-10

Description When the clerk presses an order-complete option key (de�ned by
the system) this rental is complete and the video inventory �le is updated.

Input Clerk presses the order-complete option key.

Processing Update the video inventory �le. Close rental transaction.

442 APPENDIX C

Fig. C.52: Part of the Incremented Architecture for R9

Output Video inventory �le is updated. Rental transaction �le is updated.

Step-1 & Step 2 The description contains computations to update the VIR
once the rental process is completed. We need a guard to check if the rental
process is complete. We assume when the clerk presses the order-complete
key then the VIR will be updated.

Step-3 There is no partial architecture for this increment because only a single
component and a guard are identi�ed.

Fig. C.53: Part of the Incremented Architecture for R10

Step-4 The incremental system architecture can be designed as in Fig. C.53.

Issue and discussion Not applicable.

Requirement-11

Description After the rental is closed, the transaction is stored and printed.

Input Close the current rental.

C.2. THE VIDEO STORE SYSTEM (VSS) 443

Processing Store rental and print form that the customer has to sign. Return
to initial state. Forms will be kept on �le in the store for one month after
the tapes are returned.

Output Printed form. Initial menu is displayed.

Step-1 & Step 2 The description contains additional rental computations i.e.
save, print, close. We add these computations to the RT component. Al-
though we can extract the preposition `after', but since these computations
are provided by the same component, no control is therefore required.

Step-3 These are internal computations provided by the RT component. Hence,
there is no partial architecture for this increment.

Fig. C.54: Part of the Incremented Architecture for R11

Step-4 In this case, we model the RT component again as to capture the be-
haviour of the requirement. The incremental system architecture can be
designed as in Fig. C.54.

Issue and discussion The invocations of these computations are managed by
the RT component. From the context of the design, only the exposed in-
terface is visible. Note that the RT components are labelled twice. This
re�ects the same instance being used in the architecture design. In order
to maintain the tree structure, the model allows duplication of components
to refer to the same component instance.

Requirement-12

Description Requirements for returning a tape. The video bar code is entered
into the system.

Input Bar code of the video.

Processing Retrieve rental transaction record.

444 APPENDIX C

Output Display rental transaction record.

Step-1 & Step 2 The description contains computations i.e. read bar code,
search RTR and display. Clearly, we can reuse the same BCR and RTR
components. We retrieve the same BCR and RTR components. For sim-
plicity purposes, we hide the other irrelevant components.

Step-3 See Fig. C.55(a) for the partial architecture.

(a)R12 (b)Part of the Incremented Architecture

Fig. C.55: R12

Step-4 The incremental system architecture can be designed as in Fig. C.55(b).

Requirement-13

Description When the rental transaction record is retrieved the record of the
video is marked with the date of return.

Input Bar code of the video rental.

Processing Rental transaction and video inventory record are retrieved. Mark
date of return in the record.

Output Updated video inventory and rental transaction record.

Step-1 & Step 2 This statement describes the return tape computation. For
this, we can refer to the same computation which we have identi�ed previ-
ously in R1. The additional behaviour for marking the video with the date
of return can optionally be added as a new computation or to document
the additional information to its speci�cation. In this case, we retrieve the
same RTN component.

Step-3 See Fig. C.56(a) for the partial architecture.
Step-4 The incremental system architecture can be designed as in Fig. C.56(b).

Issue and discussion Not applicable.

C.2. THE VIDEO STORE SYSTEM (VSS) 445

(a)R13 (b)Part of the Incremented Architecture

Fig. C.56: R13

Requirement-14

Description If past-due amounts are owed, they can be paid at this time; or
the clerk can select the �order-complete� key which updates the rental with
the return date and calculates past-due fees.

Input Payment or calculation of past-due fees.

Processing Updating rental transaction record. Go to initial state.

Output Updated rental transaction �le.

Step-1 & Step 2 In this statement, wecan directly identify update (must up-
date RTR as well) and calculate fee computations. Both of these compu-
tations can be grouped into a single component i.e. the OVD component.
Since the overdue process is not an independent process and it is signi�-
cantly relevant to the return tape process, for the modelling purpose, we
add the RTN component in the design. Based on the descriptive expression,
we need a constraint to check whether the past-due amounts are owed or
not. This can be realised by adding a guard that checks the constraint. In
order to pass data between RTN and OVD components, we add a PIPE
connector to compose them.

Step-3 The partial architecture for R14 can be modelled as in Fig. C.57(a).
Step-4 The incremental system architecture can be designed as in Fig. C.57(b).

Issue and discussion Not applicable.

Requirement-15

Description A new customer wants to rent tapes. The clerk enters all the
necessary information, prints the bar code for the ABC card and glues it
on a blank ABC card. Then this card is given to the customer.

Input Clerk enters the following information: Name, address and credit card
information of the customer.

446 APPENDIX C

(a)R14 (b)Incremented architecture

Fig. C.57: R14

Processing Create a new rental transaction record for customer. The system
assigns an account number to the customer and prints the bar code. Go to
initial state.

Output Printing of the bar code. Customer can rent tapes.

Step-1 & Step 2 In this statement, we identify rent tape, insert customer in-
formation (based on Rule-1B) and print bar code computations. The other
two computations are extracted based on the POS tagger. However, we can
actually exclude the rent tape computation here as the main task is adding
a new customer record and not the rent tape process. Both insert customer
information and print bar code can be extracted as DT. We identify an
ordering of computations, thus it is mapped to a PIPE.

Step-3 The partial architecture for R15 can be modelled as in Fig. C.58(a).

(a)R15 (b)Incremented architecture

Fig. C.58: R15

Step-4 The incremental system architecture can be designed as in Fig. C.58(b).

Issue and discussion Not applicable.

C.2. THE VIDEO STORE SYSTEM (VSS) 447

Requirement-16

Description Before a new tape can be rented all necessary information must
be entered. Then a bar code is printed and the clerk has to glue it on the
video.

Input A video tape is characterised by the following attributes: video name,
rental price and tape ID.

Processing Create a video inventory record for tape.

Output Video inventory record produced. Tape can be rented. Print a bar code
for the tape.

Step-1 & Step 2 We can directly extract insert (or enter) video information
and print bar code computations. Both computations can be grouped in
a single component i.e. the IV component. We identify a sequence of
computations, however, since they are internal within the same component,
we do not consider any composition connector.

Step-3 The partial architecture for R16 can be modelled as shown in Fig. C.59(a).

(a)R16 (b)Incremented architecture

Fig. C.59: R16

Step-4 The incremental system architecture can be designed as in Fig. C.59(b).

Issue and discussion Not applicable.

Requirement-17

Description The clerk can change the data either of a customer or a video.

Input Clerk enters new data of either a video or a customer.

Processing Updating the data in the video inventory �le.

448 APPENDIX C

Output Display if the data was changed.

Step-1 & Step 2 We can extract change customer data or change video data.
However, both of these computations have already been identi�ed and mod-
elled in R1. We identify a selection of computations based on the control
term `either'.

Step-3 The partial architecture for R17 can be modelled as in Fig. C.60(a).

(a)R17 (b)Incremented architecture

Fig. C.60: R17

Step-4 The part of the incremented architecture for R17 is shown in Fig. C.60(b).

Issue and discussion Not applicable.

Requirement-18

Description Only managers can delete customers or video.

Input Manager enters account number of video or customer.

Processing Deleting video or customer.

Output Display if the data was deleted.

Step-1 & Step 2 Looking at the statement, based on the POS tagger extraction
rule, we identify delete customer, delete video and display computa-
tions. Apart from that, based on a descriptive expression that is �only
managers�, we conclude that a computation to authenticate the manager's
status must be provided. The result of the validation status will be passed
to the delete customer and delete video computations. Hence, we map this
�ow as a PIPE because data is passed from AUT component to the DC and
DV components.

C.2. THE VIDEO STORE SYSTEM (VSS) 449

(a)R18 (b)Incremented architecture

Fig. C.61: R18

Step-3 The partial architecture for R18 can be modelled as in Fig. C.61(a).
Step-4 The incremental system architecture is shown in Fig. C.61(b).

Issue and discussion Not applicable.

Requirement-19

Description The manager can print daily reports or some statistics.

Input Manager selects what kind of information he wants to have. He can choose
from the following list:

1. daily report;

2. lists of customers registered during some time period;

3. lists of customers marked bad credit;

4. lists of customers with overdue items;

5. lists of tapes by status;

6. lists of tapes not rented for a certain number of days;

7. number of rentals (by copy, title, type) over a certain time period;

8. number of days rented (by month, year, copy, and title);

9. customer rental histories.

Processing Collecting all data for the requested information and printing of it.

Output Printed data.

450 APPENDIX C

Step-1 & Step 2 We can directly extract computations to provide the required
lists. For instance, for the �rst list, in order to generate a daily report, we
need to provide a computation that provides such a list. For this example,
we identify the computation dailyReport. This computation has to link
with the VIR and RTR database elements to extract the record for daily
report. The same case is treated to all the rest of the lists.

Step-3 The partial architecture for R19 is modelled in Fig. C.62(a).

Fig. C.62: R19

Step-4 This architecture is considered as the �nal architecture before the �nal-
isation step (see Fig. C.63).

Fig. C.63: Incremented Architecture for R19.

Issue and discussion Not applicable.

C.2.3 Architecture Refactoring of the VSS

Fig. C.64 shows the �nal VSS architecture as a result of the incremental com-
position. However, we identi�ed patterns, which are labelled as AR-1 and AR-2
in Fig. C.65 that can be further simpli�ed. These two occurring patterns can be
combined into a single design instead of two. In order to preserve the incremented
behaviours, when combining both the patterns (consisting of pipes and guards)

C.2. THE VIDEO STORE SYSTEM (VSS) 451

the display computation for deleting option needs to be re-arranged. Nonetheless,
this change does not alter the behaviour that is expected to be preserved. This
change of structure can be shown in Fig. C.66. The following step is to �x all the
composition points and �nalise them. See Fig. C.67.

452 APPENDIX C

F
ig
.
C
.6
4:

V
SS

A
rc
hi
te
ct
ur
e
B
ef
or
e
R
ef
ac
to
ri
ng

F
ig
.
C
.6
5:

L
ab
el
fo
r
V
SS

A
rc
hi
te
ct
ur
e
R
ef
ac
to
ri
ng

C.2. THE VIDEO STORE SYSTEM (VSS) 453

F
ig
.
C
.6
6:

R
ef
ac
to
re
d
V
SS

A
rc
hi
te
ct
ur
e

F
ig
.
C
.6
7:

F
in
al
is
ed

V
SS

A
rc
hi
te
ct
ur
e

454 APPENDIX C

C.3 The Word Count (WC)

C.3.1 Introduction

This Word Count example is drawn from [Sch06, p. 434]. To simplify and
ensuring consistency of the documentation, each step will be labelled as Step-
1 to Step-5 accordingly. To recall:

Step-1 Extracting elements of component-based systems from requirements. This
step is performed with the help of the Extractor tool. For brevity, the
screen captures are not documented.

Step-2 Mapping of the extracted elements to X-MAN elements;

Step-3 Creating a partial architecture;

Step-4 Composing the partial architecture with the existing system architecture;

Step-5 Finalising the system architecture.

Note that Step-5 is only applicable after the �nal requirement has been executed.
An item for any issue and discussion is also added.

C.3.2 Requirements for Word Count

1. The system shall take a �le name as an input.

2. Each time a �le is given it must be validated. If the �le name is invalid, an
error message will be displayed.

3. Once validated, the words in the �le will be formatted according to the type
of input �le.

4. The formatted �le will then be counted.

5. The result of the calculation that contains the number of words in the �le
will be displayed to the user.

C.3.3 Incremental Execution of the Word Count

Requirement-1

1. The system shall take a �le name as an input.

Step-1 & Step 2 No computation or control identi�ed here. Although we can
extract take as to imply computation based on the user interaction (see
HR-1B), nonetheless, such a task can be handled by a GUI process. Hence,
we do not specify this verb as a computation. For data, the �le name is
required.

C.3. THE WORD COUNT (WC) 455

Step-3 Hence, no partial architecture for this requirement.

Step-4 Not applicable.

Issue and discussion Not applicable.

Requirement-2

2. Each time a �le is given it must be validated. If the �le name is invalid, an
error message will be displayed.

Step-1 & Step 2 For this requirement, we identify validate and display as
data transformations. From the conjunction `if', we extract control and as
for data, we identify `�le name' and `invalid' as the �le status. These two
DTs are mapped to their corresponding computations that are validate-

File and displayError. These computations are assigned to components
that provide the corresponding services. For control, the conjunction `if'
can either be mapped to a SEL or a guard.

Although we map the conjunction `if' from the requirement statement to a
guard, as the extracted computations are provided by di�erent components,
hence, we need a composition connector to compose them. We assume the
execution order follows the way the requirement is written i.e. the �le must
be validated prior to the display computation.

Step-3 The partial architecture for R2 is as shown in Fig. C.68.

Fig. C.68: Result of Mapping for R2

Step-4 Since this is the �rst partial architecture, it is considered as the system
diagram.

Issue and discussion Consider other generic exogeneous connector (EC) to be
used in this scenario.

1. A SEL can be used whenever a selection between two or more com-
ponents has to be made. In such a case, it might be applicable to

456 APPENDIX C

select between these two components. However, in this particular re-
quirement, we do not want to execute only one of the components. By
adopting a SEL, we are restricted to choosing the execution between
only one of the components at a time.

2. A PIPE is a generic case of a SEQ where data can be piped into the
connecting components. In this case, data representing the validation
status will be passed to the latter component to be evaluated by a
guard. The guard here comprises a boolean condition as the validation
status. Hence, it is appropriate to apply the PIPE with a guard here.

Requirement-3

3. Once validated, the words in the �le will be formatted according to the type
of input �le.

Step-1 & Step 2 Here, we identify validate �le and format �le from the data
transformation (DT) category. These two DTs are mapped to their corre-
sponding computations that are validateFile and format. These com-
putations are assigned to components that provide the respective services.
There is no control that can be explicitly identi�ed from the requirement.
However, since we identify two computations provided by di�erent compo-
nents, a composition connector is required to compose them.

Step-3 The partial architecture for R3 is as shown in Fig. C.69(a).

(a)R3 (b)Incremented architecture

Fig. C.69: Partial and Incremental Architecture for R3

Step-4 The incremented system architecture is shown in Fig. C.69(b).

Issue and discussion Not applicable.

Requirement-4

4. The formatted �le will then be counted.

Step-1 & Step 2 We extract count and format from DT category. These two
DTs are mapped to their corresponding computations that are countWord

C.3. THE WORD COUNT (WC) 457

and formatFile. These computations are assigned to their components
that provide the services. The preposition `then' implies ordering. Hence,
we can map the control to a PIPE or a SEL. As the result of the formatted
�le needs to be passed to the CW component to be counted, we choose a
PIPE to map the preposition instead of a SEL. For data, we identify the �le
and imply the result of the counted word.

Step-3 The partial architecture for R4 is as shown in Fig. C.70(a).

(a)R4 (b)Incremented architecture (b)Updated architecture

Fig. C.70: Partial, Incremented and Updated Architecture for R4

Step-4 The incremented system architecture is shown in Fig. C.70(b).

Issue and discussion However, once the CW component is composed with the
architecture, we need to add a guard to check that the counted �le is val-
idated. Otherwise, if the �le status is invalid, the �le will still be passed
to the CW component, in which is misleading. Fig. C.70(c) models this
addition.

Requirement-5

5. The result of the calculation that contains the number of words in the �le will
be displayed to the user.

Step-1 & Step 2 We extract count and display from DT category. These two
DTs are mapped to their corresponding computations that are countWord

and display. These computations are assigned to their components that
provide the services, namely the CW and DIS components. There is no
explicit control that can be extracted. We assume the default ordering. For
data, we identify the calculation result.

Step-3 The partial architecture for R5 is shown in Fig. C.71(a).

Step-4 The incremented system architecture is shown in Fig. C.71(b). So far,
this is considered the �nal architecture before the refactoring task takes
place.

458 APPENDIX C

(a)R5 (b)Incremented architecture (c)Updated architecture

Fig. C.71: Partial, Incremented and Updated Architecture for R5

Issue and discussion As the CW component is already being modelled to the
current system architecture, we just need to compose the DIS component.
Again, a guard to check that the counted �le is validated is required.
Fig. C.71(c) models this addition.

C.3.4 Architecture Refactoring of the WC

Based on the initial system architecture before refactoring, we look for any pattern
that can be simpli�ed. Here, we identify the use of mutually exclusive guards for
checking the �le status, either valid or invalid. These guards can be simpli�ed
with a SEL. However, to derive a meaningful composition, the execution when
the �le status is valid, is composed using a PIPE. If we simply adopt a SEL,
the composition will not be accurately modelled as there are only two options
to be branched (i.e. valid and invalid). Hence, the resulting architecture is re-
structured using a new PIPE as shown in Fig. C.72.

Fig. C.72: Refactoring for WC.

C.3.5 Finalisation step

The following step is to �nalise all the open composition points. This is depicted
in Fig. C.73.

C.4. SUMMARY 459

Fig. C.73: Finalisation Step.

C.4 Summary

This example has demonstrated the application of the heuristics and design prin-
ciples de�ned in the incremental approach. Starting by extracting elements of
component-based systems from NLR, these elements are mapped to their corre-
sponding architectural constructs de�ned in the X-MAN model; whilst construct-
ing the architecture incrementally. After refactoring, the �nal system architecture
is eventually devised.

	Abstract
	Declaration
	Copyright
	Supplementary Material
	Acknowledgements
	Introduction
	Background
	Problem Description and Motivation
	Research Objectives
	The Incremental Approach
	Research Contribution
	Scope and Limitations
	Thesis Structure
	Summary

	Existing Approaches to Const. System
	Introduction
	Analysis of the Existing Approaches
	Category 1: Deal with all requirements and build the system architecture in a single step
	Category 2: Deal with all requirements and build the systems architecture incrementally or through refinement
	Category 3: Deal with a single requirement at each step and build the system architecture in a single step
	Category 4: Deal with a single requirement and build the system architecture in each incremental step
	The Proposed Approach

	Summary

	The X-MAN Component Model
	Component Models
	What is a Component Model?
	Semantics
	Syntax
	Composition

	Component Life Cycle
	Design Phase
	Deployment Phase
	Run-Time Phase

	The X-MAN Component Model
	Key Elements of X-MAN
	Computations
	Control
	Composition

	Intrinsic Properties of the Component Model
	Component Encapsulation
	Compositionality
	Component Reusability

	A Simple Bank System Example
	Summary

	Incremental Composition
	Introduction
	A Component Model with Incremental Composition
	Incremental Composition in Existing Component Models
	Architecture Description Languages
	Aspect-Oriented Composition
	Invasive Software Composition
	Behaviour Engineering

	Design Decisions for Incremental Composition
	Ordering-based Composition
	Selection-based Composition
	Condition-based Adaptation
	Repetition-based Adaptation

	Issues and Discussion
	Combining redundant behaviours
	Amendment of constraints involved during IC
	Consideration of piped data

	Summary

	Extracting Elements of CB Systems
	Introduction
	Related Work on Information Extraction
	Identifying Component-based Elements From NLR
	Elements Extraction from Natural Language Requirements
	Identifying Component-based Constructs of the X-MAN Component Model

	Example
	A simplified Automated Teller Machine (ATM) system

	Implementation of the Extractor Tool
	Application of a Part-Of-Speech Tagger
	Element Extraction Using the Extractor Tool

	Issues and Discussion
	Requirements Problems
	Dealing with Implicit Requirements
	Issues on Computation Identification
	Handling More Than One Control Extraction
	Limitations of the Elements Extraction

	Summary

	Mapping from Reqs. to Arch. Elements
	The Mapping Process
	Overview
	The Mapping Definition

	Mapping Function RQ to EE
	Mapping RQ Elements to Keywords that Denote Computations
	Mapping RQ Elements to Keywords that Denote Control
	Mapping RQ Elements to Keywords that Denote Data

	Mapping Function EE to XE
	Mapping Keywords that Denote Computations to Components
	Mapping Keywords that Denote Control to Connectors
	Mapping Control Keywords
	Mapping Keywords that Denote Data to XMAN Data
	Discussion

	Issues and Discussion
	Mapping of More Than One Control Extraction
	Handling Redundancies
	Limitations of the Mapping Step

	Summary

	Architecture Refactoring
	Introduction
	Refactoring Tasks
	Architecture Refactoring Rules
	Vertical Refactoring
	Horizontal Refactoring

	Issues and Discussion
	Correctness criterion
	Measuring design complexity
	Handling components' interfaces

	Summary

	Defining the Approach
	Introduction and Motivation
	Defining the Approach
	Defining Algorithms for the Incremental Approach
	Extracting Elements of Component-based Systems from Requirements
	Mapping of Extracted Elements to X-MAN Elements
	Creating partial architectures
	Composing partial architectures with the existing system architecture
	Finalising the system architecture

	A Complete Example: The ATM System
	Increment-1 - Requirement 1
	Increment-2 - Requirement 2
	Increment-3 - Requirement 3
	Increment-4 - Requirement 4
	Increment-5 - Requirement 5
	Increment-6 - Requirement 6
	Increment-7 - Requirement 7
	Step-5: Finalising the system architecture

	Validation of the Incremental Approach
	The Trading System
	Other Case Studies

	Issues and Discussion
	Requirements Problem
	Element Extraction Exceptions
	Component Selection
	Validation of the Derived Architecture

	Summary

	Evaluation and Discussion
	Introduction
	Preliminary Empirical Validation
	Objectives
	Research Questions
	Instrumentation and Materials
	Pilot Study
	The Main Experiment
	Threats to Validity

	Summary
	Analysis of the Case Studies
	Reflections on the Approach
	Properties of the X-MAN Component Model
	Requirement Issues
	The Effects of the Selected Properties of the Incremental Approach
	The Effects of the Tools Support

	Comparison with Related Work
	Issues and Discussion
	Support for Software Development Project
	Requirements authoring styles
	Potential Effects of Requirements Ordering, Dependencies and Prioritisation
	Achieving requirements satisfaction
	The Resulting Architecture

	Summary

	Conclusions and Future Work
	Research Contribution
	Limitations and Discussion
	Future Work
	The Use of NLP
	Execution of a Large-scale Set of Requirements
	An Experimentation of the Cost and Benefit of the Approach
	Architecture Refactoring
	Automation of the Architecture Refactoring
	An Integrated Tool Support

	Summary

	Bibliography
	Textual Analysis
	Introduction
	Part-of-Speech Tagger
	What is a POS Tagger?

	Questionnaire
	Case Studies
	The Trading System (COCOME)
	COCOME Requirements
	UC 1 – Process Sale
	UC 2 – Manage Express Checkout
	UC 3 – Order Products
	UC 4 – Receive Ordered Products
	UC 5 – Show Stock Reports
	UC 6 – Show Delivery Reports
	UC 7 – Change Price
	UC 8 – Product Exchange (on low stock) Among Stores
	Extension on UC 8 – Remove Incoming Status
	Incremental Execution of the COCOME Requirements
	Use Case 1 – Process Sale
	Use Case 2 – Manage Express Checkout
	Use Case 3 – Order Products
	Use Case 4 – Receive Ordered Products
	Use Case 5 – Show Stock Reports
	Use Case 6 – Show Delivery Reports
	Use Case 7 – Change Price
	Use Case 8 – Product Exchange (on low stock) Among Stores
	Extension on UC 8 - Remove Incoming Status
	Architecture Refactoring of the COCOME
	AR-1
	AR-2
	AR-3
	AR-4
	AR-5
	AR-6
	Summary

	The Video Store System (VSS)
	Introduction
	Incremental Execution of the VSS
	Architecture Refactoring of the VSS

	The Word Count (WC)
	Introduction
	Requirements for Word Count
	Incremental Execution of the Word Count
	Architecture Refactoring of the WC
	Finalisation step

	Summary

