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In this thesis we shall discuss some properties of centralisers in classical Lie algebas
and related structures. Let K be an algebraically closed field of characteristic p ≥ 0.
Let G be a simple algebraic group over K. We shall denote by g = Lie(G) the Lie
algebra of G, and for x ∈ g denote by gx the centraliser. Our results follow three
distinct but related themes: the modular representation theory of centralisers, the
sheets of simple Lie algebras and the representation theory of finite W -algebras and
enveloping algebras.

WhenG is of type A or C and p > 0 is a good prime forG, we show that the invariant
algebras S(gx)

Gx and U(gx)
Gx are polynomial algebras on rank g generators, that the

algebra S(gx)
gx is generated by S(gx)

p and S(gx)
Gx , whilst U(gx)

gx is generated by
U(gx)

Gx and the p-centre, generalising a classical theorem of Veldkamp. We apply the
latter result to confirm the first Kac-Weisfeiler conjecture for gx, giving a precise upper
bound for the dimensions of simple U(gx)-modules. This allows us to characterise the
smooth locus of the Zassenhaus variety in algebraic terms. These results correspond
to an article [80], soon to appear in the Journal of Algebra.

The results of the next chapter are particular to the case x nilpotent with G
connected of type B,C or D in any characteristic good for G. Our discussion is moti-
vated by the theory of finite W -algebras which shall occupy our discussion in the final
chapter, although we make several deductions of independent interest. We begin by
describing a vector space decomposition for [gxgx] which in turn allows us to give a
formula for dim gab

x where gab
x := gx/[gxgx]. We then concoct a combinatorial param-

eterisation of the sheets of g containing x and use it to classify the nilpotent orbits
lying in a unique sheet. We call these orbits non-singular. Subsequently we give a
formula for the maximal rank of sheets containing x and show that it coincides with
dim gab

x if and only if x is non-singular. The latter result is applied to show for any (not
necessarily nilpotent) x ∈ g lying in a unique sheet, that the orthogonal complement
to [gxgx] is the tangent space to the sheet, confirming a recent conjecture.

In the final chapter we set p = 0 and consider the finite W -algebra U(g, x), again
with G of type B,C or D. The one dimensional representations are parameterised
by the maximal spectrum of the maximal abelian quotient E = SpecmU(g, x)ab and
we classify the nilpotent elements in classical types for which E is isomorphic to an
affine space Ad

K: they are precisely the non-singular elements of the previous chapter.
The component group Γ acts naturally on E and the fixed point space lies in bijective
correspondence with the set of primitive ideals of U(g) for which the multiplicity of the
correspoding primitive quotient is one. We call them multiplicity free. We show that
this fixed point space is always an affine space, and calculate its dimension. Finally we
exploit Skryabin’s equivalence to study parabolic induction of multiplicity free ideals.
In particular we show that every multiplicity free ideals whose associated variety is the
closure of an induced orbit is itself induced from a completely prime primitive ideals
with nice properties, generalising a theorem of Mœglin. The results of the final two
chapters make up a part of a joint work with Alexander Premet [66].
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Chapter 1

Introduction

This introduction shall serve to present the notation and the mathematical objects

which we shall discus in this thesis. It is by no means a comprehensive summary of

the theory needed to understand the work. Less common notions will be covered in

more detail. We assume that the reader has a good understanding of the theories of

algebraic groups, Lie algebras and nilpotent orbits, as exposited in [2], [79], [19], [29],

[13], [30].

1.1 Notations

1.1.1. Before we begin we shall introduce some standard notations which shall be

used without exception. Natural numbers are denoted N, we adopt the convention

0 /∈ N and N0 = N ∪ {0}. The integers, rationals and complex numbers are denoted

by the usual “blackboard” letters Z,Q,C. For n ∈ N the integers modulo n shall

be denoted Zn. Furthermore K shall always denote an algebraically closed field of

characteristic p ≥ 0.

1.1.2. Once a choice of field is made explicit, all algebraic varieties and vector spaces

shall be constructed over that field until further notice. Unless otherwise stated the

word group shall mean algebraic group and these shall be denoted by the upper case

latin font G,K,Q, and their respective Lie algebras by the corresponding lower case

gothic letters g, k, q. Toplogical notions, like open and continuous, shall always pertain

to the Zariski toplogy.

1.1.3. Our point of departure will be a reductive group Q or a stabiliser Qx in a

9



10 CHAPTER 1. INTRODUCTION

reductive group, where x ∈ q. We assume throughout that char(K) is good for the

underlying group. We remind the reader that:

• p = 2 is bad for Q when Q has a factor not of type A;

• p = 3 is bad for Q when Q has a factor of exceptional type;

• p = 5 is bad for Q when Q has a factor of type E8.

Then char(K) is said to be good for Q if it is not a bad prime.

1.1.4. If our choice of groupQ is clear then we shall denote the adjoint representations

of Q and q in q by the standard letters Ad and ad, and the coadjoint representations

by Ad∗ and ad∗. Furthermore, for x ∈ q we may write Ox = Ad(Q)x for the adjoint

orbit of x. Once the notion of the partition of an orbit in a classical algebra has been

introduced in Section 1.3 we might also use the notation Oλ to denote an orbit with

partition λ.

1.1.5. As mentioned above, almost all of our work shall pertain to classical groups

and the centralisers therein. As such, it will be convenient for us to adhere to specific

notations for each of the classical groups: for the remainder of this thesis we let N ∈ N,

let V be an N -dimensional vector space over K, and let G denote the general linear

group GL(V ). When we refer to a group of type A we shall actually mean G and the

reader will notice that all of our results regarding GL(V ) may easily be translated over

to SL(V ).

1.1.6. Whenever we discuss groups of type B, C or D we make the assumption that

char(K) 6= 2. Introduce a symmetric or anti-symmetric non-degenerate bilinear form

(·, ·) : V × V → K. Let K denote the connected group of matrices preserving that

form: g ∈ K if and only if (gu, gv) = (u, v) for all u, v ∈ V and det(g) = 1. We shall

write (u, v) = ε(v, u) where ε = ±1. If (·, ·) is symmetric K is a special orthogonal

group, whilst if (·, ·) is anti-symmetric then K is a symplectic group and N = dimV is

even. The associated Lie algebra is k, the set of skew self-adjoint matrices with respect

to (·, ·). In symbols an element x ∈ g lies in k if and only if (xu, v) = −(u, xv) for all

u, v ∈ V .

1.1.7. For x ∈ k we let x∗ denote the adjoint of x with respect to (·, ·). The map

σ : x 7→ −x∗ is an involution on g and the fixed point set is k. The −1 eigenspace is

a K-module which we denote by p. If we choose a basis for V then the bilinear form
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is represented by a matrix (u, v) = u>Xv. In this case σ may be written explicitly as

σ(x) = −X−1x>X.

1.1.8. Occasionally we shall need to call upon the classical theory of root systems.

If Q is a reductive algebraic group over K with maximal torus H then the associated

root system shall be denoted Φ with choice of simple roots Π, and Φ+ (Φ−) the set of

positive (negative) roots determined by Π. The “usual” ordering of the roots shall refer

to the labelling convention adopted by Bourbaki and may be seen in [8, Chapter 6].

The root space associated to α ∈ Φ shall be denoted qα. The Killing form shall always

be denoted κ.

1.2 Jordan decomposition and Levi subgroups

1.2.1. For each endomorphism x of V the Jordan-Chevalley decomposition theorem

states that there exists a unique pair of commuting endomorphisms xn and xs such

that xn is nilpotent, xs is semi-simple and x = xn + xs. We call xn (xs) the nilpotent

(semi-simple) part of x. Now if q ⊆ g is a linear Lie algebra we may apply this

decomposition to obtain elements xn, xs ∈ g. In general the nilpotent and semi-simple

parts do not lie in q, however when q is simple they do. All of our Lie algebras shall

be linear and we shall call an element nilpotent if it is so as an endomorphism of V .

1.2.2. As the title of this thesis suggests we shall be discussing centralisers qx where

x ∈ q and q is classical. We may simplify the discussion by reducing to the nilpotent

case as follows. The proof of the Jordan-Chevalley decomposition theorem shows that

the endomorphisms xn and xs are polynomials in x. Therefore an element y ∈ q

commutes with x if and only if it commutes with both xn and xs. We infer that

qx = (qxs)xn . It is well-known that when q is classical the centraliser qxs is a direct

sum of classical Lie algebras. We shall make this remark precise in 1.2.5. For now

it suffices to observe that many questions about the centraliser qx may be reduced to

questions about the centraliser qxn .

1.2.3. Before discussing nilpotent orbits we should take a moment to consider

semisimple elements and their centralisers. We shall first approach these algebras

from a more general perspective. Let Q be an algebraic group with unipotent radical
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U . There is an exact sequence

1→ U → Q→ Q/U → 1

and it is pertinent to ask when this sequence splits, ie. whether there exists a reductive

group L ⊆ Q isomorphic to Q/U such that Q = L n U . Over fields of characteristic

zero such a Levi factor always exists, however over fields of positive characteristic it is a

very subtle problem. There is one situation in which we can give an affirmative answer

in all cases. Suppose that Q is a reductive group over a field of good characteristic

and that P is a parabolic subgroup with unipotent radical U . Then there exists a Levi

decomposition P = Ln U . We call L a Levi factor of P , and the groups obtained in

this way are called the Levi subgroups of Q. The Levi subgroups of the simple groups

are well understood. Let Q, H, Φ, Φ+ and Π be as per 1.1.8, with characteristic good

for Q. Every parabolic is Q-conjugate to a standard parabolic and every standard

parabolic is obtained in the following way. For Π̂ ⊆ Π the standard parabolic P (Π̂)

of type Π̂ is the closed subgroup of Q with Lie algebra generated by the subspaces h

and qα with α ∈ Π∪ (−Π̂). The Levi factor associated to P (Π̂) is the closed subgroup

L(Π̂) ⊆ Q with Lie algebra generated by h and qα with α ∈ ±Π̂. This Lie algebra

shall be denoted l(Π̂) and is called the standard Levi subalgebra of q of type Π̂.

1.2.4. As mentioned in 1.2.3, the Levi subgroups bear a relation to centralisers

of semi-simple elements. That relation is now easy to explain. Suppose h ∈ q is

semi-simple. Then we may assume that h lies in our chosen maximal torus h. If we

define

Π̂ = {α ∈ Π : α(h) = 0}

then by the previous paragraph we may construct the standard Levi subalgebra of type

Π̂ and it is easy to see that every element of l(Π̂) centralises h. If fact the converse is

true (see [13, 2.1.2] for instance) and we have

l(Π̂) = qh.

1.2.5. The single theme which unifies these two perspectives on Levi subalgebras

is that we may use inductive principles to reduce either to the case of nilpotent cen-

tralisers or to smaller classical subalgebras. In any case, we shall need to understand

the structure of the standard Levi subalgebra l = l(Π̂) when k is classical (notations
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of 1.1.6). The algebra l is a direct sum c⊕ [ll] where the centre c is spanned by vectors

in h dual to the elements of Π\Π̂. The Dynkin diagram of the semi-simple algebra [ll]

includes into the Dynkin digram of k just as Π̂ includes into Π. The dimension of c is

greater than or equal to the number of connected components of type A in the diagram

of l and so we may supplement each special linear factor of [ll] with a one dimensional

centre to make general linear factors. The remaining centre may be expressed as a

product of gl1’s. This suggests a nice standard form for the isomorphism types of the

Levi subalgebras of k.

Lemma. Every Levi subalgebra of k is isomorphic to something of the form

gli ×m := gli1 × · · · × glil ×m

where i = (i1, ..., il) is a sequence of integers fulfilling
∑

j ij ≤ rank k and m is a simple

algebra of the same type as k with natural representation of dimension Ri := N−
∑

j 2ij

(under the additional restriction that Ri 6= 2 when k has type D).

In Section 3.7 we shall refine this lemma to offer a classification of Q-conjugacy classes

of Levi subalgebras in classical types in terms of certain sequences of integers.

1.3 Nilpotent orbits

1.3.1. Recall that V = KN . Let us consider a linear algebraic group Q ⊆ G = GL(V )

acting on its Lie algebra q ⊆ g by conjugation. A nilpotent orbit is an abbreviation

for a Q-orbit consisting of nilpotent elements of q. If there is more than one group

under discussion we might also call these nilpotent Q-orbits. When Q is semisimple,

the set of nilpotent elements is called the nilpotent cone of q and is denoted N (q). It

is well known to coincide with the zero locus of the ideal of K[q]Q+ E K[q] generated

by non-constant Q-invariant functions; see [30, §7] for example. First we review the

classification of nilpotent orbits for classical groups.

1.3.2. An ordered partition of N is a finite non-increasing sequence summing to N ;

in symbols, λ = (λ1, ..., λn) with λ1 ≥ · · · ≥ λn and
∑
λi = N . We denote the set

of partitions of N by P(N). Recall that partitions can be visually realised as Young

tableau. A nilpotent N ×N matrix is called regular if it is G-conjugate to one of the
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form

JN =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


.

We say that a nilpotent element of g is in Jordan normal form when it is in block

diagonal form diag(Jλ1 , ..., Jλn) for some n with λ1 ≥ · · · ≥ λn. It is clear that any such

matrix is nilpotent and gives rise to an ordered partition of N via λ := (λ1, ..., λn).

Furthermore, it is a theorem that any nilpotent N × N matrix is G-conjugate to a

matrix in Jordan normal form. In this way we obtain a bijection

N (g)/G←→ P(N). (1.1)

If Oe has partition λ then V may be decomposed into minimal e-stable subspaces

V = ⊕ni=1V [i], and shall call these V [i] the Jordan block spaces of e. The decomposition

is non-unique in general, however when we talk about V [i] it will be implicit that a

choice of decomposition has been made. By definition we have dimV [i] = λi.

1.3.3. Now let us turn our attention to other classical cases. It is not hard to see that

two endomorphisms of V are SL(V )-conjugate if and only if they are GL(V )-conjugate

(here we use the fact that K is algebraically closed). It follows immediately that the

classification of nilpotent GL(V )-orbits in (1.1) extends to SL(V ).

1.3.4. It remains to classify the nilpotent orbits for types B, C and D. We assume

that char(K) 6= 2. The classification of nilpotent K-orbits is again given in terms of

partitions.

Theorem. Let K be a classical group not of type A.

1. If K is symplectic then a partition λ corresponds to a nilpotent K-orbit if and

only if every odd part occurs with even multiplicity.

2. If K is orthogonal then a partition λ corresponds to a nilpotent K-orbit if and

only if every even part occurs with even multiplicity.
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We denote the set of partitions associated to nilpotent K-orbits by Pε(N). The above

theorem tells us that there is a surjection

N (k)/K � Pε(N). (1.2)

The fibres of this surjection are singletons unless K is of type D and λ is very even,

in which case the fibre contains two orbits which are permuted by the unique outer

automorphism of k coming from the graph automorphism of the associated Dynkin

diagram. The very even partitions are those for which all parts are even. They shall

play a role in our results on the sheets of Lie algebra. For a survey on the classification

of nilpotent K-orbits when char(K) = 2 see [12, 5.11].

1.3.5. The above theorem is easy to read but it does not quite give the whole story.

The proof of the “if” part takes e ∈ g satisfying the parity conditions on its parts

and shows that there exists a symmetric or skew bilinear form with respect to which

e is skew-self adjoint; see [30, 1.11] for example. Such a choice of form necessarily

makes an explicit pairing between certain Jordan block spaces. Since the bilinear

form determines the algebra k, this pairing is far from arbitrary and plays a role in

describing a basis for ke. The following may be seen as a more technical version of the

previous theorem. Recall that V decomposes as ⊕ni=1V [i] into Jordan block spaces for

e.

Lemma. Suppose e ∈ N (g) has partition λ = (λ1, ..., λn). Then Ad(G)e intersects

N (k) if and only if there exists an involution i 7→ i′ on the set {1, ..., n} such that:

1. λi = λi′ for all i = 1, ..., n;

2. (V [i], V [j]) = 0 if i 6= j′;

3. i = i′ if and only if ε(−1)λi = −1.

Without disturbing the ordering λ1 ≥ · · · ≥ λn we may renumber the Jordan block

spaces in such a way that

i′ ∈ {i− 1, i, i+ 1} for all 1 ≤ i ≤ n.

As an immediate consequence of this convention we have that j′ > i′ whenever 1 ≤

i < j ≤ n and j 6= i′. The involution is uniquely determined by (·, ·) and e ∈ k.
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1.3.6. Before we continue we shall describe another approach to the classification

of nilpotent orbits. The maps given in (1.1) and (1.2) are very explicit and may be

described in an elementary way using linear algebra. Those methods do not extend well

to the same problem for exceptional Lie algebras, where something more sophisticated

is required. Bala-Carter theory provides an almost characteristic free parameterisation

of nilpotent Q-orbits when Q is an arbitrary reductive group. Let Q be such a group.

A distinguished nilpotent element x ∈ q is one such that every torus in Qx is contained

in the centre of Q. This property is obviously preserved under conjugation, and so

we may define a distinguished nilpotent orbit to be a nilpotent Q-orbit consisting

of distinguished elements. A weak form of the Bala-Carter theorem states that the

nilpotent orbits are in bijective correspondence with Q-orbits of pairs (l,O) where l is

a Levi subgroup and O is a distinguished nilpotent orbit [30, Proposition 4.7]. They

go on to classify the distinguished nilpotent orbits in terms of so called distinguished

parabolic subgroups. Their original method works for p = 0 and p � 0, whilst the

argument was extended to good characteristic by Pommering [53, 54]. The latter

approach still relied on some case by case deductions, which were finally removed by

the use of the Kempf-Rosseau theory of optimal tori in [58].

1.4 Induced nilpotent orbits

1.4.1. There is a powerful construction which allows us to obtain nilpotent Q-orbits

from nilpotent L-orbits, where Q is reductive and L ⊆ Q is a Levi subgroup. It is

called induction of nilpotent orbits and was introduced by Lusztig and Spaltenstein

in [44]. It will be vital to the study of the sheets of a Lie algebra in Chapter 3 and

finite W -algebras in Chapter 4. Let Q be arbitrary reductive group and let p ⊆ q be a

parabolic subalgebra of q with nilpotent radical n and Levi factor l. Also let O ⊆ l be

a nilpotent L-orbit. The definition of an induced orbit is contained in the following.

Theorem. There is a unique nilpotent tG-orbit, independent of our choice of parabolic

p containing l as a Levi factor, meeting O+ n in a dense open subset. We denote this

orbit by Indq
l (O). It has dimension dimO + 2dim n.

The theorem and its proof may be seen as a generalisation of the construction of the

regular nilpotent orbit or, more generally, of Richardson orbits (those induced from
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the zero orbit in some Levi subalgebra) given in [68].

1.4.2. Induction of nilpotent orbits enjoys many distinguished properties, the most

basic of which can be encapsulated concisely in the following way: let p̃(Q) denote the

set of all pairs (l,O) where l ⊆ q is a Levi subalgebra and O ⊆ l a nilpotent orbit.

We let ≤Ind be defined by (l1,O1) ≤Ind (l2,O2) if l1 ⊆ l2 and O2 = Indl2
l1

(O1). Then

(p̃(Q),≤Ind) is a poset. When we discuss induction in detail in Chapter 3 it will be

useful for the reader to consider the associated Hasse diagram. Other useful properties

shall be introduced as they are required.

1.4.3. In the third and fourth chapters we shall use induction in order to reduce

certain statements about nilpotent orbits to the case where an orbit O cannot be

induced. Such an orbit is called rigid. The rigid orbits are classified and in classical

types they have a nice combinatorial description due to Kempken and Spaltenstein,

which we shall recall in Theorem 3.4.2.

1.5 The centraliser of a nilpotent element

1.5.1. Assume the notations of 1.1.5 and 1.1.6. We wish to discuss the centralisers

in the classical Lie algebra g or k. As was explained in Section 1.2.2, we reduce our

discussion to the nilpotent case using Levi subalgebras. Let e ∈ N (k). In order to carry

out explicit computations in ke we shall introduce a basis involving parameters which

depend on the partition associated to e. The purpose of this section is to introduce

that basis and recall some basic facts about the stabiliser groups Ge and Ke. Thanks

to [30, Theorems 2.5 & 2.6] we may identify ge with Lie(Ge) and ke with Lie(Ke).

1.5.2. First of all let us take a nilpotent G-orbit O with partition λ = (λ1, ..., λn).

Pick an element e ∈ O. There exist vectors {wi : i = 1, ..., n} such that {eswi : 1 ≤

i ≤ n, 0 ≤ s < λi} forms a basis for V . Let ξ ∈ ge. Then ξ(eswi) = es(ξwi) showing

that ξ is determined by its action on the wi. Define

ξj,si wk =

 eswj if i = k

0 otherwise

Provided λj > s ≥ λj −min(λi, λj) we may extend the action to V = span{eswi} by

the requirement that ξj,si is linear and centralises e. The following observation was

made in [83], for example.
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Lemma. The maps ξ
j,λj−1−s
i with 1 ≤ i, j ≤ n and 0 ≤ s < min(λi, λj) form a basis

for ge.

We shall adopt the convention that when the indexes i, j and s lie outside the pre-

scribed ranges, the map ξ
j,λj−1−s
i is zero.

1.5.3. We define a basis for the dual space g∗e in the usual manner. Let

(ξj,si )∗(ξl,rk ) =

 1 if i = k, j = l, s = r

0 otherwise

1.5.4. Our next aim is to describe a basis for ke. The following approach is implicit

in [85], however we shall recover the details for the reader’s convenience. Before we

write down a spanning set for ke we must normalise the basis for V . Let {wi} be

chosen so that {eswi : 1 ≤ i ≤ n, 0 ≤ s < λi} is a basis for V and fix 1 ≤ i ≤ n,

0 < s. Recall the involution i 7→ i′ defined on {1, ..., n} in Lemma 1.3.5. We have

(eλi−1wi, e
swi′) = (−1)s(eλi−1+swi, wi′) and eλi−1+swi = 0 so eλi−1wi is orthogonal to

all eswi′ with s > 0. There is a (unique upto scalar) vector v ∈ V [i] which is orthogonal

to all eswi′ for s < λi − 1. This v does not lie in the image of e for otherwise it would

be othogonal to all of V [i] + V [i′]. This is not possible since the restriction of (·, ·) to

V [i] + V [i′] is non-degenerate thanks to part 2 of Lemma 1.3.5. It does no harm to

replace wi by v and normalise according to the rule

(wi, e
λi−1wi′) = 1 whenever i ≤ i′

With respect to this basis the matrix of the restriction of (·, ·) to V [i] +V [i′] is antidi-

agonal with entries ±1. Although this normalisation is equivalent to choosing a new

bilinear form on V it is easy to see that the involution i 7→ i′ on {1, ..., n} remains

unchanged.

1.5.5. Since σ : ge → ge is an involution the maps ξ + σ(ξ), with ξ ∈ ge, span ke.

Thanks to 1.5.2 we may conclude that

{ξj,λj−1−s
i + σ(ξ

j,λj−1−s
i ) : 1 ≤ i, j ≤ n, 0 ≤ s < min(λi, λj)}

is a spanning set for ke. Similar reasoning shows that a spanning set for pe may be

found amongst the ξ
j,λj−1−s
i − σ(ξ

j,λj−1−s
i ). This leaves us with two immediate tasks:

evaluate σ(ξ
j,λj−1−s
i ) and determine the linear relations between the spanning vectors.
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Using the fact that ξ
j,λj−1−s
i + σ(ξ

j,λj−1−s
i ) is skew self-adjoint with respect to (·, ·) we

deduce that

σ(ξ
j,λj−1−s
i ) = εi,j,sξ

i′,λi−1−s
j′ (1.3)

where εi,j,s is defined by the relationship (eλj−1−swj, e
swj′) = −εi,j,s(wi, eλi−1wi′). This

requires a little calculation.

1.5.6. We now make the notation

ζj,si = ξ
j,λj−1−s
i + εi,j,sξ

i′,λi−1−s
j′

ηj,si = ξ
j,λj−1−s
i − εi,j,sξi

′,λi−1−s
j′

The maps ζj,si span ke and the maps ηj,si span pe. We define a dual spanning set

(ζj,si )∗ := (ξ
j,λj−1−s
i )∗ + εi,j,s(ξ

i′,λi−1−s
j′ )∗

(ηj,si )∗ := (ξ
j,λj−1−s
i )∗ − εi,j,s(ξi

′,λi−1−s
j′ )∗.

Note that we do not have (ζj,si )∗(ζ l,rk ) ∈ {0, 1}, contrary to the common convention

for dual basis vectors. For instance, ζ i,λi−2
i = 2ξi,1i when i = i′ and λi ≥ 2, and

so (ζ i,λi−2
i )∗(ζ i,λi−2

i ) = 4. Our discussion shall be more concise due to this choice of

definition (see Remark 1.5.7 below). We make further notation

$i≤j =

 1 if i ≤ j

−1 if i > j

and comparing with Lemma 1.3.5 we see that $i≤i′$i′≤i = ε(−1)λi−1, which shall

prove useful in some later calculations.

1.5.7. The next lemma was first written in [80] and settles the question of which

linear relations exist between the maps ζj,si .

Lemma. The following are true:

1. εi,j,s = (−1)λj−s$i≤i′$j≤j′;

2. εi,j,s = εj′,i′,s;

3. The relations amongst the ζj,si are those of the form ζj,si = εi,j,sζ
i′,s
j′ ;

4. The relations amongst the ηj,si are those of the form ηj,si = −εi,j,sηi
′,s
j′ ;
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5. Analogous relations hold amongst the (ζj,si )∗ and the (ηj,si )∗. These are the only

such relations;

6. The (ζj,si )∗ span k∗e and the (ηj,si )∗ span p∗e.

Proof. We have

εi,j,s =
−(eλj−1−swj, e

swj′)

(wi, eλi−1wi′)
=

(−1)λj−s(wj, e
λj−1wj′)

(wi, eλi−1wi′)
.

We claim that (wi, e
λi−1wi′) = $i≤i′ . The bilinear form (·, ·) is normalised so that

(wi, e
λi−1wi′) = 1 whenever i ≤ i′, therefore we need only show that (wi, e

λi−1wi′) = −1

whenever i > i′. If i > i′ then

(wi, e
λi−1wi′) = (−1)λi−1(eλi−1wi, wi′) = ε(−1)λi−1(wi′ , e

λi−1wi) = ε(−1)λi−1.

However ε(−1)λi−1 = −1 whenever i 6= i′ by lemma 1.3.5, concluding part 1. Next

observe that $i≤i′$i′≤i = 1 if and only if i = i′ hence $i≤i′$i′≤i = ε(−1)λi−1. Part 2

now follows from part 1.

The equality ζj,si = εi,j,sζ
i′,s
j′ follows from part 2. To see that these are the only

relations we note that pe is spanned by vectors ξ
j,λj−1−s
i − εi,j,sξ

i′,λi−1−s
j′ and that

ge/pe ∼= ke. Then the map ξ
j,λj−1−s
i + pe → ζj,si is well defined and extends to a linear

map ge/pe → ke. It is surjective and so by dimension considerations it is a vector

space isomorphism. The only linear relations amongst the vectors ξ
j,λj−1−s
i + pe in

ge/pe are those of the form ξ
j,λj−1−s
i − εi,j,sξ

i′,λi−1−s
j′ + pe = 0. Part 3 follows. An

identical argument works for part 4.

Part 5 is a straightforward consequence of duality, whilst for 6 we observe that

(ζj,si )∗ vanishes on each ηl,rk and (ηj,si )∗ vanishes on each ζ l,rk . Since the set of all (ζj,si )∗

and all (ζj,si )∗ together span g∗e it is quite evident that the zetas must span k∗e and the

etas must span p∗e. �

Remark. Using part 3 of the above lemma we shall describe a basis for ke by refining

the spanning set of elements ζj,si . From this basis it is possible to define a dual basis

in the usual manner, and it is easy to prove that this coincides upto scalars with the

set of functionals (ζj,si )∗ which is obtained by carrying out the analogous refinement.

The point of this remark is that our definition of (ζj,si )∗ coincides upto scalars with

the more canonical one, although ours is easier to work with. Analogous statements

hold for pe.
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1.5.8. Let us proceed to refine a basis for ke from {ζj,si }. Define

H := {ζ i,si : i < i′, 0 ≤ s < λi} ∪ {ζ i,si : i = i′, 0 ≤ s < λi, λi − s even};

N0 := {ζ i
′,s
i : i 6= i′, 0 ≤ s < λi, λi − s odd};

N1 := {ζj,si : i < j 6= i′, 0 ≤ s < λj},

and

H := span(H);

N0 := span(N0);

N1 := span(N1).

If U0, U1 ⊆ V are vector subspaces then End(U0, U1) shall denote the space of K-linear

maps U0 → U1. We consider End(U0, U1) to be a subspace of End(V ) under the

natural embedding induced by the inclusions of U0 and U1 into V . An analogue of the

following lemma holds for pe but we shall not need it.

Lemma. The set HtN0tN1 forms a basis for ke. Furthermore we have the following

characterisation of the first two spaces:

1. H is precisely the subspace of ke which preserves each Jordan block space V [i]:

H = ke ∩ (
⊕
i

End(V [i]));

2. N0 is precisely the subspace of ke which interchanges V [i] and V [i′] for i 6= i′ and

kills V [i] for i = i′:

N0 = ke ∩ (
⊕
i 6=i′

End(V [i], V [i′]));

Proof. First we show that all elements of H tN0tN1 are non-zero. Clearly ζj,si = 0 if

and only if ξ
j,λj−1−s
i = −εi,j,sξi

′,λi−1−s
j′ . For this we require that i = j′ and εi,j,s = −1.

For i = j′ we must have i = i′ = j or i 6= i′ = j. In the first case, εi,j,s = (−1)λj−s

which equals −1 only if λi− s is odd. But the maps ζ i,si do not occur in H when i = i′

and λi− s is odd. In the second case εi,j,s = (−1)λi−1−s which equals −1 only if λi− s

is even. However, the maps ζ i
′,s
i do not occur in N0 when i 6= i′ and λi − s is even.
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Next observe that when ζj,si 6= 0 exactly one of the two maps ζj,si and ζ i
′,s
j′ occur

in H t N0 t N1, thus showing this set to be a basis by part 3 of Lemma 1.5.7. The

three characterisations are clear upon inspection of the definitions of the sets H,N0

and N1. �

1.5.9. Finally we shall need to describe some basic facts about the centraliser group.

Our remarks here will require char(K) to be 0 (the conclusions in positive characteristic

are very slightly weaker). We continue to fix a nilpotent element e in the Lie algebra

k of a classical group K. By the Jacobson-Morozov theorem we may include e into an

sl2-triple φ = (e, h, f). By sl2 theory ad(h) induces a Z-grading k = ⊕i∈Zk(i) and it is

well known that ke ⊆ ⊕i≥0k(i). Set ke(i) = k(i) ∩ ke and r = ⊕i>0ke(i). Then ke(0) is a

Levi factor of ke and r the nilradical.

If we let R be the closed, connected subgroup of K with r = Lie(R) then we have

Ke = Ke,hnR (see [30, 3.12]. Since R is connected it follows that K◦e = K◦e,hnR and

Γ(e) := Ke/K
◦
e
∼= Ke,h/K

◦
e,h.

This group is finite and is called the component group of e. By the theory of Dynkin

and Kostant the centraliser of the pair (e, h) is actually the centraliser of the sl2-triple

φ (see [13, Lemma 3.4.4] for instance). In this case we get Γ(e) ∼= Kφ/K
◦
φ. Very similar

conclusions hold for an arbitrary reductive group.

1.6 Symmetrisation in positive characteristic

1.6.1. Throughout this section we take K to be an algebraically closed field of char-

acteristic p > 0, with Q a group over K. Since q is a Lie algebra of an algebraic group

it is restricted, with p-operation x 7→ x[p] corresponding to pth powers of derivations

of the ring of regular functions K[Q].

1.6.2. The symmetric and enveloping algebras on q shall here and always be denoted

S(q) and U(q). The adjoint representations of Q and q extend to representations in

both S(q) and U(q), and we shall denote these extensions by the same labels. The

representation Ad is extended by K-algebra automorphisms, whilst ad is extended by

K-algebra derivations. As such, the invariant subspaces U(q)Q ⊆ U(q)q, S(q)Q ⊆ S(q)q
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are all algebras. Since ad(x)u = xu− ux for x ∈ q and u ∈ U(q) it follows that U(q)q

is equal to the centre of U(q) which we denote by Z(q).

1.6.3. Since q shall be finite dimensional in all of our cases of interest S(q) may

be identified with the algebra of polynomial functions on the dual space q∗, which

we denote K[q∗]. There is a grading S(q) =
⊕

k≥0 S
k(q) where Sk(q) consists of all

homogeneous polynomials of degree k and S0(q) = K. Since q and Q preserve this

grading the invariant subalgebras are homogeneously generated and contain the homo-

geneous parts of their elements. Also note that S(q) inherits a filtered structure from

its grading. The Poincaré-Birkhoff-Witt (PBW) theorem implies that there exists a

canonical filtration {Uk(q)}k≥0 where U0(q) = K and Uk(q) is generated by expressions

xi1xi2 · · ·xik with each xij in q when k > 0. The graded algebra associated to U(q)

shall be denoted grU(q) and is isomorphic to S(q) (we shall identify them). In general,

if A and B are filtered Q-modules and β : A→ B is a filtered Q-map then there is an

associated graded Q-map grA→ grB which we denote by grβ.

1.6.4. We define the pth-power subalgebra S(q)p = {fp : f ∈ S(q)}. This algebra

is q-invariant, and S(q) is a free module of rank pdim q over S(q)p. The analogue in

the enveloping algebra is the p-centre Zp(q). This is the central subalgebra of U(q)

generated by all terms xp − x[p] with x ∈ q. If we endow Zp(q) with the filtration

induced from that on U(q) then the associated graded algebra is S(q)p.

1.6.5. If E is a simple q-module then Quillen’s lemma [67] asserts that Z(q) acts

by scalars on E. In particular Zp(q) acts by scalars. In fact something stronger

is true: there is an associated functional χ ∈ q∗ such that each xp − x[p] acts by

χ(x)p on E (this was first observed by Kac and Weisfeiller [36]) . We call χ the p-

character of E. Let Iχ be the (left and right) ideal of U(q) generated by expressions

xp − x[p] − χ(x)p and define the reduced enveloping algebra Uχ(q) := U(q)/Iχ. Each

simple U(q)-module is a Uχ(q)-module for some χ, and conversely each Uχ(q)-module

is canonically a U(q)-module. This stratifies the set of simple objects of U(q)-mod

into subsets parameterised by q∗.

1.6.6. One of our first results regards the structure of the invariant subalgebras when

q is a centraliser in a Lie algebra of type A or C. The properties of U(q)Q and U(q)q are

deduced from those of the corresponding symmetric invariant algebras by the use of

a filtration preserving isomorphism of Q-modules. Such a map is known to exist over
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any field of characteristic zero, and is named the symmetrisation map [19, 2.4.6]. The

construction there follows more or less from the PBW theorem. Over fields of positive

characteristic the construction fails and we use an approach involving representation

theory. The map is defined as a composition

U(q)→ S(U(q))→ S(q).

1.6.7. We introduce an auxiliary group. Recall that V is a finite dimensional

K-vector space and suppose Q ⊆ R ⊆ G = GL(V ). The inclusion q ⊆ r induces

inclusions S(q) ⊆ S(r) and U(q) ⊆ U(r). Let x1, ..., xn be an ordered basis for r

and xj1xj2 · · ·xjm (j1 ≤ j2 ≤ · · · ≤ jm) a basis element for U(r). If I ⊆ {1, ...,m}

then xI :=
∏

k∈I xjk is the monomial in U(r), with terms ordered as above. Our map

µ : U(r)→ S(U(r)) acts on this basis element by the rule

µ(xj1xj2 · · ·xjm) =
∑

I1t···tIk={1,...,m}

xI1 ◦ xI2 ◦ · · · ◦ xIk

Here ◦ denotes symmetric multiplication in S(U(r)), and we do not distinguish between

two partitions I1 t · · · t Ik and I ′1 t · · · t I ′k of {1, ...,m} if there exists τ in Sk, the

symmetric group on k letters, such that Ij = I ′σ(j) for 1 ≤ j ≤ k. It is already clear that

µ depends upon our choice of basis and our choice of ordering. The map is extended

by linearity to all of U(r) and enjoys several properties, most notably: µ is an injective

map of R-modules fulfilling

µ(xj1xj2 · · ·xjm) = µ(xj1)µ(xjm)...µ(xjm) mod S(U(r))(m−1).

This map was constructed by Mil’ner in [46]. In that paper he attempted to settle the

first Kac-Weisfeiler conjecture in the affirmative, although the argument was eventually

found to contain a gap which could not be closed. Nonetheless, much good theory has

come out of that attempt and the results of [21] were accrued in the process of trying

to make sense of that article. The main point of reference for our purposes is [56, §3]

where the map is considered especially in the case of centralisers.

1.6.8. The next ingredient is a map S(U(r)) → S(r). This shall be induced from

a map U(r) → r as follows. We say that r possesses Richardson’s property if there

exists an Ad(R)-invariant decomposition g = r ⊕ c. The inclusion r ⊆ g = gl(V )

gives an embedding U(r) ↪→ U(g). Since V is a U(g)-module there is a surjection
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U(g) → g = End(V ). The composition U(r) → U(g) → g acts as the identity on

r ⊆ U(r), and so the image of this map contains r. Composing with the projection

onto the first factor in the decomposition g = r ⊕ c we obtain an Ad(R)-equivariant

map

π : U(r)→ r.

The symmetric algebra construction is a covariant functor from K-vector spaces to

commutative K-algebras, and so we obtain a map

S(π) : S(U(r))→ S(r).

1.6.9. Continuing, we assume that r possesses Richardson’s property and define

β = S(π) ◦ µ : U(r)→ S(r).

We say that the subalgebra q is saturated provided the image of π|U+(q) is contained in

q, where U+(q) denotes the augmentation ideal (note that the reverse inclusion holds

automatically). Now the following theorem is contained in Property (B1), Proposi-

tion 3.4 and Lemma 3.5 of [56].

Theorem. If Q ⊆ R ⊆ GL(W ), r possesses Richardson’s property and q is a sat-

urated subalgebra, then β : U(q) → S(q) is an isomorphism of Q-modules such that

the associated graded map gr(β) : grU(q) ∼= S(q) → grS(q) = S(q) is the identity.

Furthermore, if q is a centraliser in r then it is a saturated subalgebra.

Remark. By insisting in Richardson’s property that the decomposition is Ad(R)-

invariant we obtain a Q-module isomorphism in the above theorem. In Premet’s proof

the decomposition is only assumed to be ad(r)-invariant, implying that β is a map of

q-modules. Inspecting the details of [56, §3] we can see that this slight alteration will

place no extra burden upon the proof.

1.7 The index of a Lie algebra

1.7.1. Now let char(K) be arbitrary. The notion of index of a Lie algebra was

first defined by Dixmier [19, 1.11.6] and plays a central role in the representation and

invariant theory of Lie algebras in all characteristics. It is defined

ind q = min
α∈q∗

dim qα (1.4)



26 CHAPTER 1. INTRODUCTION

This definition can be extended to the context of an arbitrary q-module W by writing

ind(q,W ) = minα∈W ∗ dimqα so that ind q = ind(q, q). There is an open dense subset

of points in W ∗ having q-stabiliser of dimension ind(q,W ) (a straighforward assertion

generalising [19, 1.11.5]). That open set is denoted Wreg and the elements are called

regular. More generally, if U ⊆ W then Ureg ⊆ U denotes the open subset of elements

having a stabiliser of minimal dimension.

1.7.2. One example of the importance of the index is given by Rosenlicht’s theorem

which states that for a linear algebraic group Q acting on an irreducible variety X, the

generic orbits are separated by rational invariants; in particular the algebra K(q∗)Q

has transcendence degree ind q over the base field [70].

1.7.3. The well known Elashvili conjecture on index, now a theorem, is closely related

to our first results and so we recall its statement and history. The conjecture says that

for every reductive Lie algebra q and each α ∈ q∗ we have equality ind qα = ind q.

This attracted the attention of several Lie theorists, and the first major positive result

was a proof in the classical cases by Yakimova [83]. We shall make use of her methods

later. Willem de Graaf confirmed the conjecture in exceptional types with the aid of

a computer. Since there are so many nilpotent orbits in Lie algebras of exceptional

type, the computations of the latter paper are impossible to present in a concise way.

Fortunately Charbonnel and Moreau have presented an almost case free argument in

characteristic zero [15]. We shall record this theorem now for later use.

Theorem. If Q is a reductive group and α ∈ q∗ then ind qα = ind q.

1.7.4. Closely related to the notion of index of q is the notion of a generic stabiliser.

If W is a Q-module then it is also a q-module via the differential of the group rep-

resentation. We say that there exists a generic stabiliser for q in W provided there

exists an open subset P of W such that for all v, w ∈ P the stabilisers qv and qw are

Ad(Q)-conjugate. In this case, the stabilisers of points in P are called generic stabilis-

ers. Some of our early results involve proving the existence of a generic stabiliser in

certain modules, and our purpose in doing so is to calculate an index ind(q,W ). This

is made possible by the following lemma. We cannot find this result stated as such in

the literature however the proof is implicit in [78, Lemme 1.4].
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Lemma. Fix γ ∈ q and let Wγ = {δ ∈ W : qγ ⊆ qδ}. If

ϕ : Q×Wγ → W ;

ϕ(g, w) = g · w

is a dominant morphism then γ is a regular point of W , and qγ is a generic stabiliser.

Proof. Suppose P is an open subset of W contained in ϕ(Q ×Wγ). It is well known

that there exists an open subset O of W such that the stabilisers of all points in O have

dimension ind(q,W ) (argue in the style of [19, 1.11.5]). Then there exists δ ∈ O ∩ P ,

ie. there is (g, δ′) ∈ Q × Wγ such that ϕ(g, δ′) = δ and dim qδ = ind(q,W ). We

conclude that

dim qγ ≤ dim qδ′ = dim qδ = ind(q,W )

so that γ is regular. For all γ′ ∈ O ∩ P we know that qγ′ contains some Q-conjugate

of qγ, say Ad(g)qγ ⊆ qγ′ . However by dimension considerations we see that qγ′ =

Ad(g)qγ. Therefore O ∩ P is an open set within which the q-stabilisers of all points

are Q-conjugate. �

1.8 The sheets of a Lie algebra

1.8.1. In this section we shall introduce the geometric objects which shall occupy

our interest in the middle of this thesis. For the moment we let Q be simple and

connected. Define the variety

q(k) = {x ∈ q : dim qx = k}

The irreducible components of these varieties are referred to as the sheets of q. Since

Q is connected, the sets q(k) and the sheets are Q-stable. Therefore they are unions of

Q-orbits, hence locally closed. In order to get a better idea of how q decomposes into

sets q(k) it is instructive to look at the extremal cases. We have q(dim q) = z(q) = 0,

whilst q(rank q) is the open, irreducible subset qreg ⊆ q which was discussed in 1.7.1, also

known as the regular sheet. The regular sheet was studied extensively before sheets

were investigated in full generality. It is well known that the adjoint and coadjoint

orbits are even dimensional, hence q(k) = ∅ whenever dim q− k is odd.
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1.8.2. The sheets were classified by Borho [3] using the notion of Q-Jordan classes

(also known as decomposition classes), which we now recall. Using the Jordan de-

composition of 1.2.1 we may define an equivalence relation on q by declaring that

x ∼ y whenever there exists g ∈ Q such that Ad(g)qxs = qys and Ad(g)xn = yn.

Here x = xs + xn is the Jordan decomposition of x. The equivalence classes under

this relation are called the Q-Jordan classes, and the set of Q-Jordan classes will be

denoted J (Q). According to [79, 39.1.5] the class of x ∈ q coincides with

Ad(Q)(xn + z(qxs)reg) (1.5)

from whence it follows that the Jordan classes are irreducible, Q-stable and locally

closed.

1.8.3. Let P (Q) denote the Q-conjugacy classes of pairs (l,O) where l is a Levi

subalgebra of q and O ⊆ N (l) is a nilpotent orbit. Here Q acts diagonally on the two

factors. The elements of this set shall be called Q-pairs for short and the conjugacy

class of (l,O) will be denoted (l,O)/Q. To each x ∈ q we may associate a Q-pair as

follows. The centraliser l = qxs is a Levi subalgebra of q thanks to 1.2.4. We let L

denote the Levi subgroup of Q with Lie algebra l. We then set O = Ad(L)xn and send

x to the Q-pair (l,O)/Q. The map x 7→ (l,O)/Q descends to a well-defined bijection

J (Q)←→ P (Q).

From the finitude of nilpotent orbits and conjugacy classes of Levi subalgebras we

deduce that J (Q) is finite.

1.8.4. Clearly dim qx does not change as x varies over J ∈ J (Q). It follows

that each sheet is a union of Q-Jordan classes. Since J (q) is finite and each class is

irreducible, each sheet contains a dense open class. Hence the sheets of q are classified

by identifying those Q-Jordan classes which are dense in a sheet. It turns out that

those classes are precisely the ones corresponding to Q-pairs (l,O)/Q where l is a

Levi and O ⊆ l is a rigid nilpotent orbit. We remind the reader that rigid orbits are

those which cannot be obtained via Lusztig-Spaltenstein induction. We record this

classification here for later use.

Theorem. The sheets of q are in one-to-one correspondence with the Q-pairs (l,O)/Q

where O ⊆ l is a rigid nilpotent orbit in l.
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If S corresponds to (l,O)/Q under the above bijection we say that S has data (l,O)/Q.

It is a theorem that every sheet contains a unique nilpotent orbit, and if S has data

(l,O)/Q then that orbit is Indq
l (O). Later we shall use this to classify the sheets

containing a given orbit.

1.8.5. If S has data (l,O)/Q then we define the rank of S by

rankS := dim z(l).

Suppose that S ⊆ q(k) and let e0 ∈ O. Then by (1.5) the map Q× (e0 + z(l)reg)→ S

is dominant. Thus by the theorem on dimensions of the fibres of a morphism we have

Lemma. dimS = dim q− k + rankS.

1.8.6. The sheets of the classical Lie algebras are smooth thanks to [27]. By contrast

there are sheets in exceptional algebras which are not smooth; an example is given in

type G2 in [72].

1.9 Ideals of the enveloping algebra

1.9.1. For this section let char(K) = 0 and q be a finite dimensional simple Lie

algebra. The finite dimensional simple modules for q may all be obtained as the simple

heads of modules induced from a character on a torus, the so called Verma modules.

Thus the finite dimensional simple modules are fairly well understood, however the

entire class of simple modules is much harder to discuss in any detail. A more tractable

problem is to consider the annihilators in the enveloping algebra of simple modules.

These are the primitive ideals of U(q). We denote by Prim U(q) the set of all primitive

ideals of U(q). We shall now describe two important invariants attached to a primitive

ideal by the theory of commutative algebra.

1.9.2. Let I ∈ PrimU(q). The filtration on U(q) induces one on I = ∪k≥0I(k). The

associated graded grI is an ideal in grU(q) = S(q) = K[q∗]. We may consider the set

of common zeroes of grI in q∗. Identifying q∗ with q via the Killing isomorphism we

obtain a closed subvariety VA(I) ⊆ q, which we call the associated variety of I. If

I ∈ Prim U(q) is the annihilator of W then Z(q) acts by a character on W , whose

kernel is a maximal ideal mEZ(q). But then grI contains the ideal of S(q) generated

by grm, which equals S(q)q+ E S(q), the ideal generated by non-constant invariant
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polynomials (see [30, 9.2] for more details). But since V (K[q]q+) = N (q) we see that

VA(I) ⊆ N (q). The Irreducibility Theorem states that VA(I) is irreducible, hence

coincides with the closure of a nilpotent orbit. This was first proven in full generality

by Joseph [32]. More recently Ginzburg has proven a deep result generalising this

theorem: he states that if A is a positively filtered associative algebra such that grA is

a commutative Poisson algebra with finitely many symplectic leaves then the associated

variety of any primitive ideal of A is the closure of a connected symplectic leaf [23].

1.9.3. We now define the associated cycle AC(I) of a primitive ideal in U(q). Let

M be a finitely generated U(q)-module with I = AnnU(q)(M). Choose generators

m1, ...,ml for M and define a filtration on M by letting M(0) = spanK{m1, ...,ml} and

M(k) = U(q)(k)M0. Then gr(M) is a finitely generated S(q)-module. It follows from

Chapter IV, §1, Theorem 1 of [7] that there exist prime ideals q1, ..., qm in S(q) and a

chain of module inclusions

0 = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mk = gr(M)

such that Mi/Mi−1
∼= S(q)/qi. After reordering the indexes, there exists k′ ≤ k such

that q1, ..., qk′ is the list of primes without repetition. For i = 1, ..., k′ let ni denote the

number of qj (1 ≤ j ≤ k) with qj = qi. The associated cycle of M is defined to be

the formal linear combination
∑k′

i=1 ni[pi]. Thanks to [30, Lemma 9.5] this definition

depends neither upon the filtration of M nor upon our choice of generators for M . It

can be shown that this definition only depends upon the ideal I and so the notation

AC(I) is justified.

1.9.4. Since the variety VA(I) is irreducible by Joseph’s theorem and hence coin-

cides with the Zariski closure of a nilpotent orbit O ⊂ q, we have that AC(I) = mI [J ]

where mI ∈ N and J =
√

gr(I), a prime ideal of S(q∗). The positive integer mI will be

referred to as the multiplicity of O in the primitive quotient U(q)/I and abbreviated as

multO(U(q)/I). It is well known that if O = {0} then I coincides with the annihilator

in U(q) of a finite dimensional irreducible q-module V , the radical J =
√

gr(I) iden-

tifies with the ideal
⊕

i>0 S
i(q) and mI = (dimV )2. Much later in the text we shall,

in some sense, classify the multiplicity free primitive ideals in enveloping algebras of

classical Lie algebras: those with VA(I) = O and multO(U(q)/I) = 1. We denote the

set of multiplicity free primitive ideals with associated variety O by MFO.
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1.9.5. The following paragraph makes use of Goldie’s theory of semisimple rings

of fractions, which is surveyed in [26, Chapter 5]. For any I ∈ PrimU(q) the prime

Noetherian ring U(g)/I embeds into a full ring of fractions. The latter ring is prime

Artinian and hence isomorphic to the matrix algebra Matn(DI) over a skew-field DI
called the Goldie field of U(g)/I. The positive integer is called the Goldie rank of

U(g)/I which is often abbreviated as rankU(g)/I. Recall that a primitive ideal I is

called completely prime if U(g)/I is a domain. It is well known that this happens

if and only if rankU(g)/I = 1. Classifying the completely prime primitive ideals of

U(g) is an long-standing classical problem of Lie Theory. In general, it remains open

outside type A although many important partial results have been obtained. See [47],

[48], [49] and references therein.

1.9.6. Finally let us recall the theory of induced modules and ideals for U(q). Let p

be a parabolic subalgebra of q with Levi decomposition lnn. Any simple left l-module

E is canonically a p-module, with n acting by zero. Then Indq
p(E) is the parabolically

induced left q-module U(q)⊗U(p)E. These induced modules are sometimes referred to

as generalised Verma modules. If E is a highest weight module then so too is Indq
p(E),

with the weight being inherited from E.

1.9.7. If I0 is a primitive ideal of U(l) then it is the annihilator of some simple

module E. If we choose a parabolic subalgebra containing l as a Levi factor then we

can define the induced ideal Indq
l (I0) to be the annihilator in U(q) of Indq

p(E). It is

well known that Indq
l (E) coincides with the largest two-sided ideal of U(g) contained

in the left ideal U(g)(I0 + n) and hence depends only on p and I0; see [4, 10.4]. Even

more is true: if p1 and p2 are two parabolics possessing l as a Levi factor then they

are conjugate by an element g ∈ Q stabilising l, say p2 = Ad(g)p1. But then the

induced module with twisted action, gIndq
p1

(E), is itself induced from p2, and since the

annihilator of the induced module is a two-sided ideal it is fixed by Ad(g). This shows

that the induced ideal does not depend upon our choice of parabolic containing l as a

Levi factor, and our notation is justified. Even though the induced module is usually

not simple, the following theorem tells us that ideals induced from completely prime

primitive ideals are very well behaved.

Theorem. If I0 E U(l) is a completely prime primitive ideal then Indq
l (I0) is also

completely prime and primitive.
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The statement for completely prime ideals is known as Conze’s theorem [14]. The fact

that it is primitive follows from [19, 8.5.7].

1.10 Finite W -algebras

1.10.1. In this section we have char(K) = 0. Let Q be a connected reductive

group over K and let e ∈ q be nilpotent. A finite W -algebra is an associative, filtered

algebra constructed from the data (q, e). We now recall the construction. First include

e ↪→ (e, h, f) = φ into an sl2-triple in q. By sl2 theory there is Z-grading q =⊕
i∈Z q(i) induced by ad(h). Let χ be the element of q∗ associated to e under the

Killing isomorphism. Then there is a non-degenerate symplectic form on q(−1) given

by 〈x, y〉 = χ[xy]. Choose a Lagrangian (a maximal totally isotropic space with respect

to 〈·, ·〉) ` ⊆ q(−1) and define a nilpotent subalgebra m = `⊕
∑

i<−1 q(i). It is easy to

check that χ is a character for m. We let U(q)mχ be the left ideal of U(q) generated

by terms x − χ(x) with x ∈ m. The generalised Gelfand-Graev module associated to

χ is Gχ = U(g)/U(q)mχ. The finite W -algebra U(q, e) is defined to be the quantum

Hamiltonian reduction Gmχ . It is clear that the isomorphism type of U(q, e) does not

change as e varies in a Q-orbit.

1.10.2. The W -algebra U(q, e) was studied by Kostant in the case e is regular,

although in a rather different language. He observed that U(q, e) ∼= Z(q) in that

situation [37]. Later, Kostant’s approach was expanded upon in the thesis of his

student, Lynch [45]. The definition did not appear in its current generality until

Premet brought them into mathematical literature in [57]. By this time, these objects

were being studied by physicists using a construction via BRST cohomology. These

definitions were shown to coincide in [16]. Gan and Ginzburg provided a useful variant

on Premet’s construction [22] showing that the W -algebra does not depend upon the

choice of Lagrangian space. Yet another definition was provided by Losev via Fedesov

quantization, and all of these definitions have been used to great advantage. The W -

algebra is closely related to the enveloping algebra U(q) (a rather coarse impression of

this relationship is imparted by the isomorphism U(q, 0) ∼= U(q)), whilst in [57] it was

shown that the algebra can be seen as a filtered deformation of the coordinate algebra

C[e + qf ]. For these reasons, U(q, e) is often referred to as the enveloping algebra of
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the Slodowy slice e+ qf .

1.10.3. Before we continue we would like to briefly sketch Gan and Ginzburg’s

construction. In the notation of 1.10.1, fix any isotropic subspace ` ⊆ q(−1) with

respect to 〈·, ·〉, and let `
⊥

be the annihilator, again with respect to 〈·, ·〉. Define m =

`⊕
∑

i<−1 q(i) and n = `
⊥⊕

∑
i<−1 q(i). Now χ is a character on [mm] and so we may

define mχ, similar to the above, and set H` := (U(q)/U(q)mχ)ad(n). The Lagrangian `

from 1.10.1 may be chosen to include `, so that m ⊆ m. But then U(q)/U(q)mχ surjects

naturally onto U(q)/U(q)mχ, and ad(n)-invariants are mapped to ad(m)-invariants.

Then Gan and Ginzburg show that the induced map H` → U(q, e) is an isomorphism.

This shows that the construction of U(q, e) is independent of our choice of Lagrangian.

More importantly, the stabiliser of the sl2-triple, Qφ, preserves m when ` is taken to

be zero. The action on the quotient U(q)/U(q)mχ also preserves ad(n)-invariants and

we obtain a Qφ-action on U(q, e), which will be of great importance to our later work.

1.10.4. Let us now give examples of how the representation theory of W -algebras

interplays with more classical theories. These examples shall also serve as the moti-

vation for our results on W -algebras. For χ ∈ q∗ we shall denote by qχ the stabiliser

of χ in q under the coadjoint representation. The second Kac-Weisfeiler conjecture

states for each simple Lie algebra q of a reductive group Q over a field of characteristic

p > 0 and for each χ ∈ q∗ that p
1
2

(dim q−dim qχ) divides the dimension of every simple

Uχ(q)-module W . This was settled in the affirmative by Premet in [55] using a modu-

lar analogue of the algebra m defined above. Humpreys’ conjecture on small modular

representations states that this lower bound on dimensions is best possible, ie. that

every such reduced enveloping algebra actually possesses a module of that dimension.

In [61] Premet showed that if each finite W -algebra has a non-trivial one dimensional

representation then Humphrey’s conjecture holds under some mild restrictions on Q,

provided p is greater than some unknown bound. Examples show that some of the

assumptions on Q are actually necessary. The existence of non-trivial one dimensional

representations is now settled (see 4.1.3) in the affirmative and Humphreys’ conjecture

is now a theorem, given the aforementioned assumptions. One of the main theorems

of this thesis describes the geometry of a certain algebraic variety which parameterises

the one dimensional U(k, e)-modules (for k classical) and this will ultimately allow us

to learn more about the modular representations in these types.
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1.10.5. Finite W -algebras are best motivated by the powerful results which link

their representation theory with that of the enveloping algebra. The most fundamental

relationship of this nature is the Skryabin equivalence, proven in the appendix to [57].

We denote by U(q)-modχ the category of U(q)-modules upon which mχ := {x−χ(x) :

x ∈ m} acts locally nilpotently. Let U(q, e)-mod denote the category of all U(q, e)-

modules. If W ∈ U(q, e)-mod then one may check that Gχ ⊗U(q,e) W ∈ U(q)-modχ.

Conversely, if V ∈ U(q)-modχ then V mχ = {v ∈ V : mv = χ(m)v for all m ∈ m} ∈

U(q, e)-mod. Define maps

F : U(q, e)-mod→ U(q)-modχ

V → Gχ ⊗U(q,e) V

F̃ : U(q)-modχ→ U(q, e)-mod

W → Wm

The Skryabin equivalence may be stated:

Theorem. The maps F and F̃ are quasi-inverse equivalences of categories.

1.10.6. Let Ic be the ideal of U(q, e) generated by all commutators xy − yx with

x, y ∈ U(q, e). Then the maximal abelian quotient is defined U(q, e)ab := U(q, e)/Ic. It

is not hard to see that the one dimensional representations of U(q, e) are parameterised

by the maximal spectrum E := SpecmU(q, e)ab. By our discussion in 1.10.3 the group

Qφ acts on U(q, e)ab by algebra automorphisms and so permutes the ideals of U(q, e)ab

of codimension 1. It follows from [59, Lemma 2.4] that the connected component Q◦φ

stabilises every such ideal. Recall from 1.5.9 that we have a natural isomorphism

Γ := Γ(e) = Qe/Q
◦
e
∼= Qφ/Q

◦
φ

and it follows that Γ acts on E . We shall be interested in the space EΓ.

1.10.7. We shall now explain how this fixed point space is related to multiplicity

free ideals of U(q). The following theorem is an amalgam of several deep results [60,

Theorem 1.1], [39], [24], [40, Theorem 1.2.2], [62], [43, Remark 7.7]. If R is a ring and

W is a left R-module then set IW := AnnRW .

Theorem. Let e ∈ N (q).
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1. If I ∈ Prim U(q) then VA(I) = Oe if and only if I = IF(W ) for some finite

dimensional simple U(q, e)-module W ;

Now fix two finite dimensional simple U(q, e)-modules W1 and W2.

2. If IF(W1) = IF(W2) then IW1 and IW2 are Γ-conjugate;

3. rankU(q)/IF(W1) divides dim(W1);

4. The multiplicity multOeU(q)/IF(W1) is equal to [Γ : ΓV ](dimW1)2.

Part 1 tells us, among other things, that every primitive ideal can be obtained from

a simple module for some finite W -algebra. Part 4 of the theorem implies that the

multiplicity free ideals of U(q) with associated variety Oe are obtained from elements

of EΓ. Thus we obtain a surjective map

EΓ −→ MFOe

W 7−→ IF(W )

Part 2 of the theorem tells us that this map is also injective, and part 3 of the theorem

implies that the elements of MFOe are completely prime.

1.11 Some useful theorems

1.11.1. We take a moment to list four theorems which will be of central importance

to our methods. The first two theorems both apply to the modular representation

theory, whilst the second two discuss finite W -algebras.

1.11.2. We recall all of the notations and conventions of Section 1.6. In his seminal

paper [87] Zassenhaus observed that there is an upper bound on the dimensions of

simple modules for any Lie algebra q defined over a field of positive characteristic. We

denote that upper bound by M(q). A very coarse estimate is given by M(q) ≤ pdim q.

For q reductive it is well known that M(q) = p
1
2

(dim g−rank g) (see [64] for a proof which

works in great generality). Let F (q) denote the full field of fractions of Z(q) and let

Fp(q) denote that of Zp(q). Clearly F (q) is a finite field extension of Fp(q) and by the

remarks preceding [87, Lemma 5] the dimension of F (q) as a vector space over Fp(q)

is power of p. Let us denote the degree by

[F (q) : Fp(q)] = pl.
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One of the many interesting consequences of Zassenhaus’ aforementioned paper is the

following, which is explained simply in [31, A.5].

Theorem. M(q) = p
1
2

(dim q−l).

We shall discuss the number M(q) further in the next section. In particular we shall

describe a conjecture which predicts its value.

1.11.3. Our very first results describe certain rings of invariants and our method is to

satisfy the assumptions of a theorem of Skryabin [73, Theorem 5.4(i)]. The theorem is

proved in a more general setting than we require, and we shall state a version sufficient

for our purposes. Suppose that X is vector space over K, acted on linearly by Q, with

ring of regular functions K[X] and rational functions K(X). We denote by K[X]p the

subalgebra of pth powers and K(X)p similar. For f1, ..., fm ∈ K[X] and α ∈ X we

have the differential dαfi : TαX → K. We denote by J(f1, ..., fm) the Jacobian locus

of f1, ..., fm; that is the closed subset of X such that the differentials dαfi are linearly

dependent.

Theorem. Suppose that f1, ..., fm ∈ K[X]q where

m = dimX − dim q + ind(q, X).

If codimX J(f1, ..., fm) ≥ 2 then

K[X]q = K[X]p[f1, ..., fm].

We shall commonly refer to the bound on the codimension of the Jacobian locus as

the codimension 2 condition.

1.11.4. The remaining two theorems regard W -algebras and are specific to fields

of zero characteristic. Fix a connected reductive group Q and a nilpotent element

e ↪→ φ = (e, h, f) included into an sl2-triple. Let S1, ...,Sl be pairwise distinct sheets

of q containing e. This next theorem is an extremely powerful tool which relates the

irreducible components of E(q, e) to the sheets S1, ...,Sl. We let Xi := Si ∩ (e + qf )

and write Comp(Xi) for the set of irreducible components of Xi. The following was

proven by Premet in [61, Theorem 1.2]
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Theorem. Suppose that the orbit Oe is induced from a nilpotent orbit in some Levi

subalgebra of g. There exists a surjective map

σ : Comp E(q, e)�
l⊔

i=1

CompXi.

For every irreducible component Y ⊆ E(q, e) with σ(Y) ∈ Comp(Xi) we have dim(Y) ≤

dim(Xi). Furthermore, for each 1 ≤ i ≤ l there exists Y ∈ σ−1(Comp(Xi)) such that

dim(Y) = dim(Xi).

The proof uses the methods of modular reduction and there is no known construction

over fields of characteristic zero.

1.11.5. Notations as per the previous paragraph. The final theorem which we list

here is due to Losev and provides a means by which we can compare the varieties

E(q, e) and E(l, e0) when l is a Levi subalgebra of q and e0 a nilpotent element with

Oe = Indq
l (Oe0). Losev studies finite W -algebras from the perspective of symplectic

geometry and Fedosov quantisation, which we have not touched upon in this thesis

as the subject is too broad and too far-removed from our methods. The following

theorem is contained in [41].

Theorem. Let (l, e0) be defined as above. There exists a completion U(l, e0)′ of the fi-

nite W -algebra U(l, e0) and an injective algebra homomorphism Ξl : U(q, e)→ U(l, e0)′.

The abelian quotients U(l, e0)ab and U(l, e0)′ab are naturally isomorphic giving an injec-

tive algebra homomorphism ξl : U(q, e)ab → U(l, e0)ab such that the resulting morphism

of varieties ξ∗l : E(l, e0)→ E(q, e) is finite.

1.12 Overview of results

1.12.0.1. We are now ready to describe the results contained herein, and talk a little

about their proofs. Our discussion falls roughly into three topics: our primary results

are of an invariant theoretic nature, and build on the concepts of [52]; in the next

chapter we discuss the relationship between the derived subalgebra of the centraliser

and sheets in a classical Lie algebra - among other things, we settle a recent conjecture

of Izosimov; and finally we apply our deductions from the second section to the theory

of finite W -algebras in types B, C and D. The first of these three topics corresponds to
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a paper written by the author [80], soon to appear in the Journal of algebra, whilst the

second two correspond to a joint work with Alexander Premet [66] which is currently

under review.

1.12.1 Invariants and representations of centralisers

1.12.1.1. Broadly speaking, the purpose of the first section is to bring the invariant

theoretic discussion of [52], [1], [85, §8] into the characteristic p realm, and exploit

some combinatorial techniques to study the representation theory of the centralisers

qx in type A and C.

1.12.1.2. When an algebraic group may be reduced modulo p, in an appropriate

sense, we have groups Q, Qp and their respective Lie algebras q, qp. If Q is reductive

and the characteristic of the field is very good for Q then it is known that S(qp)
qp

is generated by S(qp)
p and the mod p reduction of S(q)Q, and that similar theorem

holds for the invariants in the enveloping algebra. This is the most concise description

of the algebra of invariants which we could hope for, and Kac asked whether it holds

in general [33]. Unfortunately a counterexample is given by the three dimensional

solvable algebraic Lie algebra spanned by {h, a, b} with non-zero brackets [h, a] = a

and [h, b] = b. In this example S(g)G = C and so after reducing modulo p the element

ap−1b is a example of an invariant which is not generated in this way.

1.12.1.3. Despite failing in general, we shall show that this good behaviour is

exhibited by centralisers in type A and C, thus giving us a complete description of the

symmetric invariant algebras in these cases. In the following we insist p > 2 if Q is of

type C.

Theorem. If Q is simple of rank `, of type A or C and x ∈ q then

1. K[q∗x]
qx is free of rank p` over K[q∗x]

p;

2. K[q∗x]
Qx is a polynomial algebra on ` generators;

3. K[q∗x]
qx ∼= K[q∗x]

p ⊗(K[q∗x]p)Qx K[q∗x]
Qx.

1.12.1.4. In [52] Premet formulated the following conjecture: if Q is reductive

of rank ` over an algebraically closed field of characteristic 0 then for x ∈ q the

invariant algebra K[q∗x]
Qx is graded polynomial on ` generators. The authors went
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on to settle this conjecture in type A. There is a straightforward reduction to the

case q simple and so part 2 of Theorem 1.12.1.3 is a perfect analogue of the above

conjecture in characteristic p > 0 for type A and C. The proof in [52] is quite different

to ours, although we use the invariants which they constructed as a starting point.

The conjecture has since been shown to fail; a long root vector in type E8 provides a

counterexample [84]. Despite this, it is hopeful that it will hold when Q is simple of

type B or D, but the currently existing methods do not extend well to these cases.

1.12.1.5. Part 1 of Theorem 1.12.1.3 has its roots in a theorem of Veldkamp [82,

Theorem 3.1], where a decomposition of the centre of the enveloping algebra was first

proven in the reductive case with strong restrictions on p (see also Theorem 1.12.1.9

below). In [77, Theorem 1.6] those restrictions are weakened and the case of symmetric

invariants is treated. Our proof is similar to that of [77], where the method is to

satisfy the assumptions of a theorem of S. Skryabin, described in the previous section

(Theorem 1.11.3). In order to exhibit such polynomials we use an explicit presentation

of type A invariants x1, ..., xN ∈ K[g∗x]
Gx , which was first conjectured in characteristic

zero in [52, Conjecture 4.1], and then confirmed in [85, §6]. We should mention that

the same invariants were derived using very different methods in [1] and we adopt their

notation to reflect the combinatorial nature of our methods. Our first step is to reduce

these invariants modulo p and show that they are still invariant under the action of

the modular analogue of the centraliser (Corollary 2.1.5).

1.12.1.6. Having presented these invariants we go on to show that their Jacobian

locus satisfies the required codimension 2 condition in Section 2.2. To do this we

use a line of reasoning not too dissimilar to [52, §3]. To complete the proof in type

A it remains only to observe that these invariants are of the correct number. This

follows from Elashvili’s conjecture; see Theorem 1.7.3 and §1.7.1. The proof in type

C is similar. In the notation of 1.1.6 we have ε = −1, K ⊆ G and e ∈ k a nilpotent

element. Using the Ke-stable decomposition ge = ke ⊕ pe we may identify k∗e as a

Ke-module, with the annihilator in g∗e of pe. Therefore it is possible to consider the

restrictions to k∗e of the type A invariants. Generalising a well-known fact in the case

e = 0 we show that the invariants of odd subscript restrict to zero (Corollary 2.1.7)

and accordingly we study the invariants x2|k∗e , x4|k∗e , ..., xN |k∗e . In Section 2.2 we show

that the codimension 2 property is inherited quite conveniently from the type A case.
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Once again, that these invariants are of the correct number follows from Elashvili’s

conjecture.

1.12.1.7. Our next result uses the same methods as the above, however it is not a

characteristic p analogue of a known result in characteristic zero. In that respect it

seems highly likely that the obvious non-modular versions of this theorem will hold.

We mentioned previously that when ε = 1 and e ∈ k is nilpotent, the known methods

do not lend themselves well to the study of K[k∗e]
Ke . Despite this we may discuss the

invariant algebra K[p∗e]
Ke in some depth.

Theorem. Let ε = 1 so that K is of type B or D. If e ∈ k is nilpotent, with associated

partition λ and m := (N + |{i : λi odd}|)/2. Then

1. K[p∗e]
ke is free of rank pm over K[p∗e]

p;

2. K[p∗e]
Ke is a polynomial algebra on m generators;

3. K[p∗e]
ke ∼= K[p∗e]

p ⊗(K[p∗e ]p)Ke K[p∗e]
Ke.

1.12.1.8. We shall briefly discuss the method. Denote by dr the degree of xr. The

degrees dr have a very combinatorial description given in Section 2.1. The invariants we

consider are {xr|p∗e : r+dr even}; the other invariants restrict to zero by Corollary 2.1.7.

Once again the codimension 2 condition on the Jacobian locus is inherited from the

type A case. The argument is very similar to the type C case and our proof shall be

quite brief. For Theorem 1.12.1.3, we have the correct number of invariants to apply

Skryabin’s theorem thanks to Elashvili’s conjecture. For Theorem 1.12.1.7, however,

the index is not known and we make a detour in Section 2.3 to calculate ind(ke, pe)

by exhibiting the existence of a generic stabiliser, making use of Lemma 1.7.4. Some

other results are obtained regarding indexes and generic stabilisers.

1.12.1.9. The remaining results of the second chapter concern the centres of en-

veloping algebras. We resume the setting of 1.12.1.3. Then qx is a p-Lie algebra

with p-operation v 7→ v[p] induced by matrix multiplication. Let U(qx) denote the

enveloping algebra of qx and S(qx) the symmetric algebra. Since S(qx) and K[q∗x] are

canonically isomorphic as qx-algebras we may identify their invariant subalgebras. Our

next theorem offers a description of U(qx)
Qx and U(qx)

qx analogous to the one given

for symmetric invariant subalgebras. As mentioned earlier this theorem may be seen
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as an analogue of Veldkamp’s theorem [82, Theorem 3.1]. Our method uses the theory

of symmetrisation in characteristic p outlined in Section 1.6, and a standard filtration

argument.

Theorem. If Q is simple of rank `, of type A or C and x ∈ q then

1. Z(qx) is free of rank p` over Zp(qx);

2. U(qx)
Qx is a polynomial algebra on ` generators;

3. Z(qx) ∼= Zp(qx)⊗Zp(qx)Qx U(qx)
Qx.

1.12.1.10. We recall from section 1.11.2 that the dimensions of simple modules of a

restricted Lie algebra q are bounded, and that the upper bound is finite and is denoted

M(q). The first Kac-Weisfeiller conjecture predicts that

M(q) = p
1
2

(dim q−ind q).

We remind the reader that in this section char(K) 6= 2 whenever Q is of type C. Our

final invariant theoretic result is as follows:

Theorem. Let Q be of type A or C and x ∈ q. The first Kac-Weisfeiler conjecture

holds for qx.

We supply two proofs for this theorem. The first is quite general and conceptual,

whilst the second is geometric and applies only to the case where x is nilpotent and Q

is of type A. The second approach does have the advantage of showing that the baby

Verma modules for gx are generically simple.

1.12.1.11. In finite characteristic Z(qx) is a finitely generated, commutative inte-

gral domain. Therefore we may consider the algebraic variety Z(qx) := SpecmZ(qx),

known as the Zassenhaus variety [87], [65]. The geometry of Z(qx) is of some impor-

tance as it controls the representation theory of qx. Theorem 1.12.1.10 allows us to

make some fine deductions about the smooth locus of Z(qx). In particular, we show

that the smooth locus of coincides with the set of maximal ideals m of Z(qx) such

that U(qx)/U(qx)m is isomorphic to the ring of M(qx)×M(qx) matrices over K. This

scheme of argument is quite general and was first sketched in [64, Remark 5.2].
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1.12.2 Sheets and centralisers

1.12.2.1. The next chapter of the thesis discusses some surprising geometric prop-

erties of the derived subalgebra of a centraliser and the sheets of a Lie algebra of type

B, C and D. Our arguments will work equally well in the orthogonal or symplectic

case and at first we only need to assume that char(K) 6= 2. Throughout we shall work

with the notations (·, ·), ε, K, σ introduced in 1.1.6. We fix e ∈ N (k) with partition

λ = (λ1, ..., λn) ∈ Pε(N). As noted in Section 1.5, there is an involution i 7→ i′ on the

indexes {1, ..., n} and we adopt the convention that λi = 0 for i = 0 or i > n.

1.12.2.2. Our very first result of this chapter consists of a decomposition of the

derived subalgebra [keke]. We prove this decomposition in a direct manner, by scrutin-

ising the span of products of the basis elements which we introduced in Lemma 1.5.8.

The precise description of the decomposition cannot be understood without a lot of

notation which we postpone until Section 3.1. The decomposition theorem is then

proven in Section 3.2.

1.12.2.3. Set kab
e := ke/[keke] and write c(λ) := dim kab

e . The main motivation

for the aforementioned endeavour is to obtain a combinatorial formula for c(λ). The

formula is given in terms of indexes {1, ..., n} fulfilling certain properties. We say

that a pair (i, i + 1) with 1 ≤ i < n is a 2-step for λ if i = i′, i + 1 = (i + 1)′ and

λi−1 6= λi ≥ λi+1 6= λi+2. The set of indexes i such that (i, i + 1) is a 2-step for λ is

denoted ∆(λ). The following formula for dim kab
e is proven in Corollary 3.3.1.

Lemma. c(λ) =
∑

i>0

⌊λi − λi+1

2

⌋
+ |∆(λ)|.

1.12.2.4. Before we move on we shall define a very special class of partitions. Let

λ ∈ Pε(N). We say that a 2-step (i, i+1) is bad if either of the following two conditions

hold:

• λi−1 − λi ∈ 2N;

• λi+1 − λi+2 ∈ 2N.

Otherwise (i, i+ 1) is good. If λ has a bad 2-step then it is called singular, otherwise it

is called non-singular. Take note that when i = 1 the difference λi−1 − λi is negative

and the first condition may be omitted from the definition of a bad 2-step.
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1.12.2.5. Our next task is to classify the sheets of k containing e. Recall the

classification of sheets described in 1.8.4. Our approach is to decide which K-pairs

(l,O)/K correspond to sheets containing e under the classification given in 1.8.4. It is

known that a given sheet S contains a unique nilpotent orbit, and that if S has data

(l,O)/K then that orbit is Indk
l (O). Therefore we must decide which K-pairs with

a rigid orbit induce to Oe. We identify a subset of the K-pairs, including all pairs

in which the orbit is rigid, and design an iterative technique for deciding whether or

not the pair induces to Oe. We call this process of iteration the Kempken-Spaltenstein

algorithm. The algorithm itself is introduced in Section 3.4 in purely combinatorial

terms.

1.12.2.6. The details of the algorithm are quite technical, however the results which

follow are easy enough to present here. The algorithm takes, as its input, the partition

λ and a so-called admissible sequence. We establish a bijection between the maximal

admissible sequences for λ (upto rearrangement) and the sheets of k containing e

(Corollary 3.8.9) and go on to show that there is a unique maximal admissible sequence

if and only if λ is non-singular (Proposition 3.9.2). We also show that the sequences

of length l correspond to sheets of rank l, which provides a workable method for

calculating the maximal rank of sheets containing e. This maximal rank is denoted

z(λ) (modulo Corollary 3.10.1), and in Section 3.6 we calculate a combinatorial formula

for z(λ). After comparing z(λ) and c(λ) it is a simple task to show that z(λ) = c(λ)

if and only if λ is non-singular (Corollary 3.6.9). All of the results just stated can be

summarised in the following:

Theorem. The following are equivalent:

1. the partition λ is non-singular;

2. c(λ) = z(λ);

3. e(λ) lies in a unique sheet;

We remind the reader that this theorem holds in any characteristic 6= 2. If the char-

acteristic is zero or � 0 then these criteria are equivalent to the assertion that e is a

non-singular point on the variety k(dim ke). The theorem and the previous remark shall

be proven together in Corollary 3.8.1. When we refer to non-singular nilpotent orbits,

we shall mean those which lie in a unique sheet.
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1.12.2.7. Our motivation for considering the property c(λ) = z(λ) came directly

from the theory of finite W -algebras, as we shall soon explain. There is, however, one

very nice consequence of this property which we prove in the final section of Chapter 3.

Using a simple argument, Izosimov proved in [28] that, for any x ∈ k lying in a unique

sheet S, the space [kxkx] is orthogonal to TxS with respect to the Killing form. He

went on to show that in type A these two spaces are mutual orthogonal complements

with respect to κ, and conjectured that the same should hold in other classical types.

Using the previous theorem we are able to confirm his conjecture:

Theorem. For each x ∈ k lying in a unique sheet S we have TxS = [gx, gx]
⊥.

As one would expect, we reduce to the case of a nilpotent element e and conclude that

c(λ) = z(λ). It is then a small matter to show that this last equality implies that the

dimensions of TeS and [keke] sum to dim k.

1.12.3 Commutative quotients of W -algebras

1.12.3.1. In the final chapter of this thesis we work over a field of zero charac-

teristic. Continue to fix a nilpotent element e ∈ N (k) with partition λ ∈ Pε(N),

and choose an sl2-triple φ = (e, h, f) containing e. Our aim is to study the one di-

mensional representations of the finite W -algebra U(k, e). The importance of these

representations was alluded to in 1.10.4 and 1.10.6, whilst in 1.10.6 we observed that

they are parameterised by the maximal spectrum of the maximal abelian quotient

E := E(k, e) = SpecmU(k, e)ab.

1.12.3.2. In [61] Premet showed that the algebra U(slN , e)
ab is a polynomial algebra

for any nilpotent element e. This implies that the one dimensional representations are

parameterised by an affine space Ad
C. His approach made use of the explicit presenta-

tion for U(slN , e) given by Brundan and Kleschev, which is unavailable outside type

A (the presentation is derived by realising these W -algebras as shifted Yangians [11,

Theorem 10.1]). Another ingredient to his method was Theorem 1.11.4 which relates

the spectrum E to the Katsylo sections of the sheets containing e. It follows imme-

diately from that theorem that if e lies in more than one sheet then E is reducible,

hence cannot be isomorphic to an affine space. Our main result of the chapter states

that the converse holds for classical Lie algebras:
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Theorem. e is non-singular if and only if E is isomorphic to an affine space Ad
C for

some d. If this is the case then d = c(λ).

1.12.3.3. The proof of the theorem is completed in Theorem 4.3.2. Our method is

to prove a general criterion to ensure the polynomiality of U(k, e)ab. For the proof of

that criterion we do not need to assume that our Lie algebra is classical and so we

work with the Lie algebra q of an arbitrary reductive group throughout Section 4.2.

The criterion states that if the orbit of e is not rigid, and the maximal rank of sheets

containing e coincides with c(e) = codimqe [qeqe] then U(q, e)ab is a polynomial algebra

in c(e) variables. Given Theorem 1.12.2.6 our method of proof for the previous theorem

should now be clear.

1.12.3.4. In 1.10.6 we noted that the stabiliser group Kφ acts upon U(k, e)ab by

algebra automorphisms, and that K◦φ fixes every two-sided ideal. It follows that Γ acts

upon E , and in 1.10.7 we established a bijection between the multiplicity free primitive

ideals of U(k) and the fixed point space EΓ. Another motivation for studying this space

comes from [38] where it is explained that quantisations of the K-equivariant covers

of Oe are in bijective correspondence with EΓ. Once again we are interested in the

geometry of EΓ. The answer is surprisingly uniform:

Theorem. The variety EΓ is always isomorphic to an affine space Ad
C.

The proof is given in Theorem 4.3.10 and the exact value of d is given in all cases. We

postpone our description of d since it depends upon some combinatorial properties of

λ which are not so important right now. The majority of Section 4.3 is spent preparing

to prove the theorem, where several technical lemmas are required.

1.12.3.5. In the final section we apply our new understanding of EΓ to the multiplicity

free primitive ideals of U(k). This work has very classical consequences and our final

result follows in the tradition of the classification of completely prime primitive (CPP)

ideals mentioned in 1.9.5. The traditional approach to such a classification comes in

two parts: firstly one would try to show that whenever the associated variety of a CPP

ideal is the closure of an induced orbitOe, there is a CPP ideal in the enveloping algebra

of a Levi subalgebra whose associated variety is the closure of a rigid orbit which itself

induces to Oe and such that the latter ideal induces to the former. Secondly one

would try to describe the CPP ideals whose associated variety is the closure of a rigid
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orbit. Together these two steps would give a fairly satisfactory inductive classification

of the CPP ideals of U(k). Unfortunately, outside type A there are CPP ideals whose

associated variety is the closure of an induced orbit, which cannot themselves be

induced from any CPP ideal (see [5] for more detail).

1.12.3.6. As we noted in 1.10.7 the multiplicity free ideals are all CPP. We shall

show that for these ideals, the first part of the classification described above works as

desired.

Theorem. Let I ∈ MFOe be a multiplicity-free primitive ideal such that Oe is not

rigid. Then there exists a proper parabolic subalgebra p of g with a Levi decomposition

p = l n n, a rigid nilpotent orbit Oe0 in l and a completely prime primitive ideal

I0 ∈ PrimOe0 such that the following hold:

1. VA(I0) = Oe0;

2. Oe = Indk
l (Oe0);

3. I = Indk
p(I0).

The theorem is restated in 4.4.4 and proven over the course of Section 4.4.



Chapter 2

The Invariant Theory of

Centralisers

2.1 The elementary invariants

2.1.1. Throughout this chapter the characteristic of K is assumed to be positive

unless otherwise stated. We assume the notation of 1.1.5 so that G = GL(V ). For

the entirety of this section fix e ∈ N (g) with associated partition λ. Our first task is

to introduce certain distinguished elements of K[g∗e]
Ge . These invariants are defined

combinatorially and their history shall be discussed in Remark 2.1.4 below. The first

step is to introduce the sequence of invariant degrees :

(d1, ..., dN) := (

λ1 1’s︷ ︸︸ ︷
1, 1, ..., 1,

λ2 2’s︷ ︸︸ ︷
2, ..., 2, ...,

λn n’s︷ ︸︸ ︷
n, ..., n)

2.1.2. Suppose λ has length n and write λ = (λ1, ..., λn). A composition of λ is a

finite sequence µ = (µ1, ..., µn) with 0 ≤ µk ≤ λk for k = 1, ..., n. We write |µ| =
∑
µk

and let l(µ) denote the number of k for which µk is nonzero. If 1 ≤ k ≤ l(µ) then i
(µ)
k

denotes the kth index such that µ
(µ)
ik
6= 0 (ordered so that i

(µ)
1 ≤ i

(µ)
2 ≤ · · · ). If our

choice of composition µ is clear from the context then we write ik = i
(µ)
k .

2.1.3. Fix r ∈ {1, ..., N} and set d = dr. Denote by Cr the set of compositions of λ

fulfilling |µ| = r, l(µ) = d and let Sd denote the symmetric group on d objects. If a

choice of w ∈ Sd and a composition µ ∈ Cr is implicit then we write

sk = λ
i
(µ)
wk
− λ

i
(µ)
k

+ µ
i
(µ)
k
− 1

47
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Since ge ∼= (g∗e)
∗, the ring of regular functions K[g∗e] is spanned by monomials in the

linear unary forms ξj,si : g∗e 7→ K. For r = 1, ..., N define functions Θr : Sdr × Cr 7→

K[g∗e] by the rule

Θr(w, µ) = sgn(w)ξiw1,s1
i1

· · · ξiwd,sdid
.

2.1.4. Now the elementary invariants may be defined

xr =
∑

(w,µ)∈Sd×Cr

Θr(w, µ) ∈ K[g∗e]. (2.1)

Each xr is homogeneous of degree dr.

Remark. 1. Let’s review a brief history of these polynomials. The definition of xr

first appeared in [52, Conjecture 4.1] over C, where it was proposed that this

would be the explicit formula for the invariants being studied there, which were

denoted eF1, ...,
eFN . The same invariants were derived using different methods

in [1], defined over a different basis, but presented in our notation x1, ..., xN . In

[85, §6] these bases were shown to coincide so [52, Conjecture 4.1] is equivalent

to eFi = xi, and in [85, Theorem 15] the conjecture was confirmed.

2. It is instructive to examine what happens in the extremal examples of nilpotent

orbits: when e = 0 or when e is regular. Fix 1 ≤ r ≤ N . In the former case

λ = (

N 1’s︷ ︸︸ ︷
1, 1, ..., 1)

and sk = µik − 1 = 0 for 1 ≤ k ≤ dr. Furthermore ξj,0i is just the i, j elementary

matrix with a 1 in the ith row and jth column, and zeros elsewhere. It follows

that the polynomial xr is just the dual to the rth standard matrix invariant

obtained as a coefficient in the characteristic equation (see [74, Theorem 1.4.1]

for example).

Now consider the case e regular. By a general result of Dixmier we know that ge

is abelian. More precisely [85, Theorem 2] tells us that ge is spanned by matrix

powers of e. Then Cr contains a single element (r), and d = dr = 1 so that Sd

is trivial. Hence xr = ξ1,r−1
1 = er−1 and the invariants are just a basis for ge.

2.1.5. Note that all groups, spaces and maps discussed in the current section may

equally well be defined over C. The following result is contained in [52, Proposition 0.1].

See also the appendix of [52] for a proof using elementary methods, due to Charbonnel.
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Theorem. The polynomials x1, ..., xN are Ge-invariant when defined over C.

We use reduction modulo p to obtain the following.

Corollary. The polynomials x1, ..., xN are Ge-invariant when defined over K.

Proof. We proceed with all maps and spaces defined over C. The matrix ξj,si is nilpo-

tent when i 6= j or s > 0. The elements ξi,0i are semisimple. We shall denote by

MN(C) the ring of N × N matrices over C with the usual associative multiplication

and denote by MN the Z-lattice in MN(C) arising from the inclusion Z ⊆ C. Let t be

an indeterminate and denote by MN(C)[t] the ring of polynomials in t with coefficients

in MN(C). Let i 6= j, let λj − min(λi, λj) ≤ s < λj and 0 < r < λi. Consider the

matrices

gt = 1 + tξj,si and ht = 1 + tξi,ri .

They both lie in MN(C)[t] and the reader may verify that their inverses are

g−1
t = 1− tξj,si and h−1

t = 1 +
∞∑
k=1

(−1)ktkξi,kri .

Since all coefficients are integral we may consider the above maps to be elements MN [t].

The elements xr are also elements of S(MN), so we get Ad(gt)xr ∈ S(MN [t]). Hence

the expression Ad(gt)xr can be written A0,r + tA1,r + t2A2,r + · · · where Ak,r ∈ S(MN).

By Theorem 2.1.5 we see that xr is gt-stable over C so A0,r = xr and Ak,r = 0

for all k > 0. Let Ãk,r = A ⊗ 1 ∈ S(glN [t]) ⊗Z K. Then for each r we still have

Ã0,r = xr⊗ 1 ∈ S(MN)⊗ZK and Ãk,r = 0 for k > 0. But xr⊗ 1 is just xr defined over

K. If we now allow t to vary over K then we conclude that gt fixes each xr over K.

Similarly each ht fixes each xr over K. We proceed over K. Let U denote the subgroup

of Ge generated by the affine lines {1 + tξj,si : t ∈ K} and {1 + tξi,ri : t ∈ K} where

i, j, s and r vary in the range i 6= j, λj − min(λi, λj) ≤ s < λj and 0 < r < λi. The

above shows that the generators of U fix each xr over K; so must the closure Ū .

Consider the group T ⊂ G in which the elements act on each V [i] (i = 1, ..., n) by

an arbitrary nozero scalar. The group is toral, closed, contained in Ge and Lie(T ) =

span{ξi,0i : 1 ≤ i ≤ n}. We shall show that T fixes each xr. Recall that ξiwk,skik
∈

Hom(V [ik], V [iwk]) so if h ∈ T is defined by hwi = tiwi for ti ∈ K then

Ad(h)ξiwk,skik
= (t−1

ik
tiwk)ξ

iwk,sk
ik
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and

Ad(h)xr =
∑

(w,µ)∈Sd×Cr

sgn(w)

=1︷ ︸︸ ︷
(
d∏

k=1

t−1
ik
tiwk) ξ

iw1,s1
i1

· · · ξiwd,sdid
= xr

Now the group 〈Ū , T 〉 generated by Ū and T is closed, connected and its Lie algebra

contains a basis for ge. Hence 〈Ū , T 〉 = Ge. Both Ū and T fix xr; so must Ge. �

2.1.6. Since K[g∗e] is spanned by monomials in the ξj,si , the involution σ : ge 7→ ge

introduced in 1.1.7 extends uniquely to a K-algebra automorphism of K[g∗e] 7→ K[g∗e]

which we shall also denote by σ. This extension is clearly involutory. In 1.5.5 we noted

that

σ(ξ
j,λj−1−s
i ) = εi,j,sξ

i′,λi−1−s
j′

The following proposition shall be pivotal to our understanding of the symmetric

invariants for centralisers in classical cases.

Proposition. σ(xr) = (−1)rxr

Proof. Fix (w, µ) ∈ Sd × Cr. We shall show that if Θr(w, µ) 6= 0 then there exists a

pair (w′, µ′) ∈ Sd×Cr such that σ(Θr(w, µ)) = (−1)rΘr(w
′, µ′) and Θr(w

′, µ′) 6= 0. In

view of the definition of xr the proposition shall follow. By the above formula we have

σ(Θr(w, µ)) = sgn(w)σ(ξiw1,s1
i1

· · · ξiwd,sdid
)

= (
d∏

k=1

εik,iwk,λik−µik )sgn(w)ξ
(i1)′,µi1−1

(iw1)′ · · · ξ(id)′,µid−1

(iwd)′

We must examine the coefficient

d∏
k=1

εik,iwk,λik−µik =
d∏

k=1

(−1)λiwk−λik+µik∂ik≤i′k∂iwk≤(iwk)′

= (
d∏

k=1

(−1)λik∂ik≤i′k)(
d∏

k=1

(−1)λiwk∂iwk≤(iwk)′)(
d∏

k=1

(−1)µik )

By definition |µ| = r implies
∏d

k=1(−1)µik = (−1)
∑d
k=1 µik = (−1)r. Since w is a permu-

tation
∏d

k=1(−1)λik∂ik≤i′k =
∏d

k=1(−1)λiwk∂iwk≤i′wk and the product
∏d

k=1 εik,iwk,λik−µik

reduces to (−1)r.

It remains to prove that Θr(w
′, µ′) = sgn(w)ξ

(i1)′,s1+λi1−λiw1

(iw1)′ · · · ξ(id)′,sd+λid−λiwd
(iwd)′ for

some choice of (w′, µ′) ∈ Sd × Cr. For k = 1, ..., d let jk = (iwk)
′. Let µ′ be the
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composition of λ with nonzero entries in positions indexed by the jk such that µ′jk =

µik + λiwk − λik . We have l(µ′) = d by definition. Furthermore

|µ′| =
k∑
i=1

µ′jk =
k∑
i=1

(µik + λiwk − λik) =
k∑
i=1

µik = |µ| = r.

To see that 0 ≤ µ′k ≤ λk we use the fact that Θr(w, µ) 6= 0. We have 0 ≤ λiwk−1−sk ≤

min(λik , λiwk) and by definition of sk we have 0 ≤ λik − µik ≤ λiwk . The left hand

inequality gives us µ′jk ≤ λiwk = λjk , whilst the right hand inequality tells us that

0 ≤ λiwk − (λik − µik) = µ′jk . It follows that 0 ≤ µ′k ≤ λk for k = 1, ..., n so that µ′ is a

composition of λ. We have shown that µ′ ∈ Cr.

We now aim to define w′ ∈ Sd. If we define an element ω ∈ Sn by ω(ik) = iwk for

k = 1, ..., d and ω(i) = i for all µi = 0, then sgn(ω) = sgn(w). The element ν of Sn

which sends (iwk)
′ to (ik)

′ is ′ ◦ω−1◦′, where ◦ denotes composition of permutations in

Sn. But ′ is an involution so ν and ω−1 are conjugate in Sn implying sgn(ν) = sgn(ω).

Now ν preserves the set {j1, ..., jd} and acts trivially on its complement in {1, ..., n},

therefore we may take w′ to be the unique element of Sd such that ν(jk) = jw′k for all

k. This element will have sgn(w′) = sgn(ν) = sgn(ω) = sgn(w).

From the above we get

jw′k = ν((iwk)
′) = (ik)

′

µ′jk = µ′(iwk)′ = µik + λiwk − λik

λjw′k = λik

λjk = λiwk

so that

ξ
jw′k,λjw′k

−λjk+µ′jk
−1

jk
= ξ

(ik)′,µik−1

(iwk)′ .

It follows that (w′, µ′) is the required pair. Since σ is non-degenerate on ge and

Θr(w
′, µ′) is a product of terms σ(ξiwk,skik

), each with ξiwk,skik
6= 0, we conclude that

Θr(w
′, µ′) 6= 0. �

2.1.7. The following corollary is not strictly needed in what follows, however it

gives a nice picture of how the elementary invariants behave when restricted. It also

provides a generalisation of well known behaviour in the case e = 0.

Corollary. The following are true:
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1. xr|k∗e = 0 for r odd;

2. xr|(pe)∗ = 0 for r + dr odd.

Proof. Let B0 be a basis for ke and B1 a basis for pe, so that B0 ∪ B1 is a basis for ge.

Then the monomials in B0 ∪ B1 form an eigenbasis for the action of σ on K[g∗e]. The

eigenvalues are ±1 depending on the parity of the number of factors coming from B1

in a given monomial.

Now fix r = 1, ..., N and write xr in the above eigenbasis. If r is odd then by

Proposition 2.1.6 we have σxr = −xr. It follows that there are an odd number of

factors from B1 in each monomial summand of xr. In particular that number of

factors is non-zero. Each of these factors vanishes on k∗e; so must xr, whence 1.

If r + dr is odd then there are two possibilities: either r is odd and dr even or

vice versa. Assume the former so that xr is a sum of monomials of even degree and

σxr = −xr. There must be an odd number of factors from B1 in each monomial and

since each monomial has even degree there is also an odd number of factors from B0

in each monomial. In particular the number of factors coming from B0 is non-zero.

Each of these factors restrict to zero on p∗e and so must xr. If, on the other hand, r

is even and dr is odd then σxr = xr so each monomial summand of xr contains an

even number of factors from B1. Since each such monomial has odd degree, there is

a non-zero number of factors from B0 in each monomial. Again each of these factors

restrict to zero on p∗e, and so does xr. This completes the proof. �

2.2 Jacobian loci of the invariants

2.2.1 The general linear case

2.2.1.1. If f1, ..., fl ∈ K[g∗e] and U ⊆ g∗e is a subspace then we denote by

JU(fi : i = 1, ..., l)

the Jacobian locus of the fi in U , ie. those γ ∈ g∗e for which the restricted differentials

dγf1|U , ..., dγfl|U are linearly dependent. Make the notation J = Jg∗e(xr : r = 1, ..., N).

We aim to show that the condition on the codimension of the Jacobian locus in

Skryabin’s theorem is satisfied for these invariants. We shall prove the following.
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Proposition. codimg∗eJ ≥ 2.

2.2.1.2. In the style of [52, § 3] we proceed by identifying a 2-dimensional plane in

g∗e intersecting J only at 0. The proposition will then quickly follow. Calculating the

differentials of the invariants polynomials explicitly is an unappealing task, and so we

infer the necessary properties implicitly. Fix γ ∈ g∗e and consider the polynomial

xγr : g∗e 7→ K;

v 7→ xr(γ + v).

By expanding the definition of the differential and the definition of xγr it is easy to see

by direct comparison that

xγr = constant + dγxr + higher degree polynomials in K[g∗e] (2.2)

Hence in order to show that dγx1, ..., dγxN are linearly independent it will suffice

to show that the linear components of xγ1 |U , ..., x
γ
N |U are linearly independent for some

appropriate choice of vector space U ⊆ g∗e.

2.2.1.3. Let us define

α =
∑

1≤i≤n

ai(ξ
i,λi−1
i )∗ and β =

n∑
i=2

(ξi,λi−1
i−1 )∗ (2.3)

where the coefficients ai ∈ K are subject to the constraint that ai = aj implies i = j.

These elements were first presented by Yakimova in [83] as examples of regular elements

of g∗e. The following lemma is based upon [1, Lemma 4.2].

Lemma. For all y ∈ K× we have yβ ∈ g∗e\J .

Proof. Let U = span{(ξ1,s
i )∗ : 1 ≤ i ≤ n, λ1 − λi ≤ s < λ1} ⊆ g∗e and let

v =
n∑
i=1

λ1−1∑
s=λ1−λi

ci,s(ξ
1,s
i )∗

be an arbitrary element of U , with ci,s ∈ K. We have

ξj,si (yβ + v) =


y if i = j − 1 and s = λj − 1

ci,s if j = 1

0 otherwise

(2.4)
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Observe that if 1 ≤ r ≤ λ1 then xr =
∑

i ξ
i,r−1
i so that xr(yβ + v) = c1,r−1 and

xyβr |U = ξ1,r−1
1 . If n = 1 then λ1 = N and we have shown that the linear terms of the

xyβ1 |U , ..., x
yβ
N |U are linearly independent and by formula (2.2) we are done. Assume

not, so that we may choose λ1 < r ≤ N and by definition we shall have d := dr > 1.

With the definition of xr in mind let us consider the possible choice of composition µ

of λ, and permutation w ∈ Sd such that the monomial ξiw1,s1
i1

· · · ξiwd,sdid
evaluates as

nonzero at v. We require that ξiwk,skik
(v) 6= 0 for k = 1, ..., d.

For any w ∈ Sd we can be sure that wk ≤ k for some k ∈ {1, ..., d}. Fix such

a k. Due to (2.4) we have iwk = 1. Clearly wl 6= 1 for l 6= k so, again by (2.4),

iwl = il+1 for all l 6= k. This gives us iwk = 1, iw2k = 2, iw3k = 3, ... and iwdk = ik = d.

Furthermore by (2.4) we must have µ1 = λ1, µ2 = λ2, ..., µd−1 = λd−1. Since |µ| = r

and l(µ) = d we have µd = r −
∑d−1

m=1 λm. The upshot is that w must be the d-cycle

(123 · · · d) and that the composition µ must be (λ1, λ2, ..., λd−1, r−
∑d−1

k=1 λk, 0, 0, ..., 0).

We make the notation tr = r −
∑d−1

m=1 λm ∈ {1, ..., λd}. Since sgn(123 · · · d) =

(−1)d−1 we have shown that xr(yβ + v) = (−y)d−1cd,tr−1. Thus

xyβr |U = (−y)d−1ξ1,tr−1
d |U

for all r = 1, ..., N . These linear functions are clearly linearly independent and the

lemma is proven. �

2.2.1.4. For the next lemma we shall need to make use of a decomposition of ge

similar to the well known triangular decomposition of g. We define

n− := span{ξj,si : i < j}

h := span{ξj,si : i = j}

n+ := span{ξj,si : i > j}

where λj −min(λi, λj) ≤ s < λj in all three of the above. If we order the basis {eswi}

so that e is in Jordan normal form then n− is strictly lower triangular and n+ is strictly

upper triangular, and ge = n− ⊕ h ⊕ n+. Of course h is not actually a torus unless

e = 0, however it is proven over C in [83, §5] that h is a generic stabiliser in ge, and

that (ge)α = h. We shall see later that this generic stabiliser also exists when we work

over K (Theorem 2.3.2).



2.2. JACOBIAN LOCI OF THE INVARIANTS 55

2.2.1.5. There is a dual decomposition

g∗e = (n−)∗ ⊕ h∗ ⊕ (n+)∗

where h∗ is defined to be the annihilator of n− ⊕ n+ in g∗e, and similar for (n−)∗ and

(n+)∗. We have α ∈ h∗ and β ∈ (n−)∗.

Lemma. There exists g ∈ Ge such that Ad∗(g)α = α + β.

Proof. Since each v ∈ n+ is nilpotent (as an endomorphism of V ), the translation

morphism v → 1 + v takes v ∈ n+ to a unipotent matrix in Ge. We denote the

subgroup generated by all 1 + v with v ∈ n+ by N+. It is easily checked that 1 + n+ is

closed under matrix multiplication. Due to formula (4) in the proof of Corollary 2.1.5

the set 1 + n+ is also closed under the map g 7→ g−1. Hence N+ = 1 + n+. We aim

to prove that Ad∗(N+)α = α+ (n−)∗, from which our proposition will quickly follow.

The one dimensional subspaces {1 + tξj,si : t ∈ K} with i > j generate N+. Again the

proof of Corollary 2.1.5 informs us that (1 + tξj,si )−1 = 1 − tξj,si . A quick calculation

then shows that

Ad∗(1 + tξj,si )α = α + t(aj(ξ
i,λj−1−s
j )∗ − ai(ξi,λi−1−s

j )∗) ∈ α + (n−)∗

The conditions on the ai ensure that the linear forms {aj(ξ
i,λj−1−s
j )∗−ai(ξi,λi−1−s

j )∗ : i >

j} are linearly independent, hence span (n−)∗. We see that dim Ad∗(N+)α = dimα+

(n−)∗. Thanks to [69, Theorem 2] we know that Ad∗(N+)α is a closed subvariety of

α + (n−)∗. The dimensions coincide and so we have equality Ad∗(N+)α = α + (n−)∗.

Now β ∈ (n−)∗ so there exists some g ∈ N+ such that Ad∗(g)α = α+β as required. �

2.2.1.6. Let a : K× 7→ Ge be the cocharacter given by a(t)wi = tiwi. Define a

rational linear action ρ : K× 7→ GL(g∗e) by

ρ(t)γ = tAd∗(a(t))γ

where γ ∈ g∗e and t ∈ K×. Clearly we have ρ(t)(ξj,si )∗ = ti−j+1(ξj,si )∗.

Lemma. The Jacobian locus J is

1. Ge-stable;

2. ρ(K×)-stable.
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Proof. Since xr is Ge-invariant

xr(Ad∗(g)(γ + δ)) = xr(γ + δ)

for all g ∈ Ge and γ, δ ∈ g∗e. This equates to x
Ad∗(g)γ
r ◦ (Ad∗g) = xγr . The linear

part of the left hand side of this equation is dAd∗(g)γxr ◦ (Ad∗g) and the same of the

right hand side is dγxr. As Ad∗(g) is invertible, the dimension of the linear span of

dAd∗(g)γx1, ..., dAd∗(g)γxN equals that of the dγx1, ..., dγxN , whence 1.

Turning our attention to ρ(K×), fix t ∈ K×, r = 1, ..., N , (w, µ) ∈ Sd × Cλ and

observe that

Θr(w, µ) ◦ ρ(t) = (sgn(w)ξiw1,s1
i1

· · · ξiwd,sdid
) ◦ ρ(t)

= (
d∏

k=1

tik−iwk+1)sgn(w)ξiw1,s1
i1

· · · ξiwd,sdid

= td(sgn(w)ξiw1,s1
i1

· · · ξiwd,sdid
) = tdΘr(w, µ).

So that xr ◦ ρ(t) = tdxr. Next let γ, v ∈ g∗e and observe that

xr(ρ(t)γ + v) = xr ◦ ρ(t)(γ + ρ(t)−1v) = tdxr(γ + ρ(t)−1v)

which is written as x
ρ(t)γ
r = tdxγr ◦ ρ(t)−1 in our notations. We conclude that the linear

terms must coincide, so that

dρ(t)γxr = tddγxr ◦ ρ(t)−1.

However, ρ(t)−1 is evidently invertible so 2 follows. �

2.2.1.7. We are now ready to assemble the above ingredients. Proposition 2.2.1.1

shall immediately follow from the lemma.

Lemma. (Kα⊕Kβ) ∩ J = 0

Proof. Let t1, t2 ∈ K and γ = t1α + t2β 6= 0. We shall show that γ ∈ g∗e\J . If t2 = 0

then the element g ∈ Ge constructed in Lemma 2.2.1.5 sends γ to t1α+ t1β so by part

1 of Lemma 2.2.1.6 it suffices to prove that γ ∈ g∗e\J whenever t2 6= 0. By Lemma

2.2.1.3 we may assume that t1 6= 0.

It is clear that ρ(t)α = tα and ρ(t)β = β. Consider the variety Kα + t2β. Since J

is closed it follows that (g∗e\J) ∩ (Kα+ t2β) is a Zariski open subset of Kα+ t2β. By

Lemma 2.2.1.3 that intersection is non-empty. We deduce that

ρ(K×)γ ∩ (g∗e\J) = (K×α + t2β) ∩ (g∗e\J) 6= ∅.
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By part 2 of Lemma 2.2.1.6, g∗e\J is ρ(K×)-stable implying γ ∈ g∗e\J as required.

�

We are now ready to prove Proposition 2.2.1.1.

Proof. The Jacobian locus is conical and Zariski closed. Apply the above lemma. �

2.2.2 The symplectic and orthogonal cases

2.2.2.1. In this section we aim to prove an analogue of Proposition 2.2.1.1 for

centralisers in other classical types.

Proposition. The following are true:

1. Let ε = −1 so that K is of type C. Then codimk∗eJk∗e(xr : r even) ≥ 2;

2. Let ε = 1 so that K is of type B or D. Then codimp∗eJp∗e(xr : r + dr even) ≥ 2.

2.2.2.2. As was discussed in the introduction, the proofs of parts 1 and 2 shall

be identical. We shall supply all details of the proof of part 1, whilst our proof of

part 2 shall simply consist of a description of necessary changes to that proof. As an

immediate corollary to Proposition 2.2.2.1 we obtain.

Corollary. The following are true:

1. If ε = −1 then the restrictions xr|k∗e with r even are non-zero and distinct;

2. If ε = 1 then the restrictions xr|p∗e with r + dr even are non-zero and distinct.

Proof. If xr|k∗e = xs|k∗e for some r 6= s then we would have k∗e = Jk∗e(xr : r even),

contradicting part 1 of Proposition 2.2.2.1. Similarly the restrictions are non-zero.

The same argument applies for part 2. �

2.2.2.3. Until otherwise stated we assume ε = −1 so that K is of type C. Since

ge = ke ⊕ pe there is a natural inclusion ι : S(ke) → S(ge) which is also a K-algebra

homomorphism.

Lemma. dγxr = dγι(xr|k∗e) for r even and for all γ ∈ k∗e.
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Proof. Let γ ∈ k∗e. Let B0 and B1 be bases for ke and pe respectively, so that B := B0∪B1

is a basis for ge. We aim to show that dγ(xr − ι(xr|k∗e)) = 0. Now xr − ι(xr|k∗e) may be

written as a finite sum
∑k

i=1 cimi where ci ∈ K× are constants and the mi ∈ S(ge) are

monomials in the basis B. Since ι(xr|k∗e) is the sum of those monomial summands of xr

which contain no factors from B1 we conclude that each mi possesses a factor from B1.

We have ση = −η for each η ∈ B1 and, since r is even, σxr = xr by Proposition 2.1.6

so there must be an even number of factors from B1 in each monomial summand of

xr. This implies that each mi possesses at least two factors from B1 and that for all

x ∈ B the partial derivative ∂mi
∂x

either is zero or possesses at least one nonzero factor

from B1. The functionals B1 annihilate k∗e so

∂mi

∂x
(γ) = 0

for all x ∈ B. But now

dγ(xr − ι(xr|k∗e)) =
∑
x∈B

∂(xr − ι(xr|k∗e))
∂x

(γ)x =
∑
x∈B

k∑
i=1

ci
∂mi

∂x
(γ)x = 0.

The lemma follows. �

2.2.2.4. The following shall allow us to infer our Jacobian locus 2 condition from

the type A case.

Lemma. Jk∗e(xr : r even) = k∗e ∩ Jg∗e(xr : r even)

Proof. Fix γ ∈ k∗e. If
∑

r c2rdγx2r = 0 then(∑
r

c2rdγx2r

)
|k∗e =

∑
r

c2rdγ(x2r|k∗e) = 0

which gives one inclusion. Conversely suppose
∑

r c2rdγ(x2r|k∗e) = 0. Then

ι

(∑
r

c2rdγ(x2r|k∗e)

)
=
∑
r

c2rdγι(x2r|k∗e) =
∑
r

c2rdγx2r = 0,

which gives the other inclusion. �

2.2.2.5. Let α be as defined in the previous section, with the additional constraint

that ai = −ai′ for all i 6= i′. We define

β̄ = β + β′ where β′ =
∑
i+16=i′

εi,i+1,0(ξi
′,λi−1

(i+1)′ )∗.
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Remark. These definitions for α and β̄ are rather unclear at first glance. They first

appeared in [83], were used again in [52], and have a simple rationale behind them

which we shall briefly discuss. The obvious guess of how to construct analogues of α

and β, but lying in k∗e, is to define an automorphism σ∗ which acts by +1 on k∗e and

acts by −1 on p∗e, and extends to all of g∗e by linearity. Just as we obtained a spanning

set for ke by considering expressions x + σ(x) with x ∈ ge we may obtain analogues

for α and β by considering α + σ∗α and β + σ∗β. This is roughly what we do here,

although some of the summands (ξj,si )∗ are rescaled in order to simplify notation.

2.2.2.6. In Section 2.1 we introduced dual vectors (ζj,si )∗ := (ξ
j,λj−1−s
i )∗+εi,j,s(ξ

i′,λi−1−s
j′ )∗.

In order to carry out explicit calculations using α and β̄ it will be necessary to express

these two elements in terms of the (ζj,si )∗.

Lemma. If ai = −ai′ for i 6= i′ then

α =
1

2

∑
i=i′

ai(ζ
i,0
i )∗ +

∑
i<i′

ai(ζ
i,0
i )∗;

β̄ =
1

2

∑
i+1=i′

(ζ i+1,0
i )∗ +

∑
i+16=i′

(ζ i+1,0
i )∗;

and in particular α, β̄ ∈ k∗e.

Proof. Since ε = −1, Lemma 1.3.5 implies that i = i′ if and only if λi is even.

Using Lemma 1.5.7 it follows that (ζ i,0i )∗ = 2(ξi,λi−1
i )∗ for all i = i′ and (ζ i,0i )∗ =

(ξi,λi−1
i )∗ − (ξi

′,λi−1
i′ )∗ for all i < i′. The formula for α follows. Similarly εi,i+1,0 =

(−1)λi+1$i≤i′$i+1≤(i+1)′ . If i + 1 = i′ then Lemma 1.3.5 implies λi+1 is odd and that

εi,i+1,0 = 1. We conclude that (ζ i+1,0
i )∗ = 2(ξ

i+1,λi+1−1
i )∗ which completes the proof. �

2.2.2.7. Recall that J := Jg∗e(x1, ..., xN) and that there is a rational linear action

ρ : K× → GL(g∗e) defined preceding Lemma 2.2. If i+ 1 6= i′ then (i+ 1)′ > i′ and so

ρ(t)(ξi
′,λi−1

(i+1)′ )∗ = tki(ξi
′,λi−1

(i+1)′ )∗

where ki = (i+ 1)′ − i′ + 1 ≥ 2.

Lemma. (Kα⊕Kβ̄) ∩ J = 0

Proof. Let γ = t1α+ t2β̄ 6= 0 with t1, t2 ∈ K. We shall show that γ ∈ g∗e\J . Supposing

t1 6= 0 and t2 = 0 we may invoke Lemma 2.2.1.7 to conclude that γ ∈ g∗e\J .
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Suppose t2 6= 0, then consider the set E = {tα + (β +
∑
εi,i+1,0t

kiξi
′,λi−1

(i+1)′ ) : t ∈ K}

where ki ∈ N is defined preceding the statement of the lemma. It is a one dimenisonal

variety containing β, hence by Lemma 2.2.1.3 it must intersect the set g∗e\J in a non-

empty open subset. Since ρ(K×)γ = {tα + (β +
∑
εi,i+1,0t

kiξi
′,λi−1

(i+1)′ ) : t ∈ K×} ⊆ E

is also non-empty and open in E the intersection ρ(K×)γ ∩ (g∗e\J) is non-empty. By

part 2 of Lemma 2.2.1.6, J is ρ(K×)-stable and so γ ∈ g∗e\J . �

2.2.2.8. We can now give a proof for part 1 of Proposition 2.2.2.1.

Proof. By Lemmas 2.2.2.6 and 2.2.2.7 there is a 2 dimensional plane contained in k∗e

intersecting J only at zero. By Lemma 2.2.2.4 we have Jk∗e(xr : r even) = k∗e ∩ Jg∗e(xr :

r even) ⊆ k∗e ∩ J so that same plane intersects Jk∗e(xr : r even) only at zero. As

Jk∗e(xr : r even) is conical and Zariski closed, the proposition follows. �

2.2.2.9. In order to prove part 2 of Proposition 2.2.2.1 we follow exactly the same

scheme of argument as above. Since we treated the symplectic case so carefully, our

proof here will constantly refer back to previous arguments. For the remnant of this

subsection take ε = 1. Again we have an inclusion ι : S(pe)→ S(ge). The next lemma

is analogous to Lemma 2.2.2.4.

Lemma. Jp∗e(xr : r + dr even) = p∗e ∩ Jg∗e(xr : r + dr even)

Proof. First we prove a version of Lemma 2.2.2.3: that dγxr = dγi(xr|p∗e) for all γ ∈

p∗e. Resume notations B0, B1 and B from Lemma 2.2.2.3. This time write xr −

ι(xr|p∗e) =
∑k

i=1 cimi where ci ∈ K× are non-zero constants and mi are monomials in

B. Since ι(xr|p∗e) is just the sum of those monomials summands of xr which contain

no terms from B0, so each mi possesses a factor from B0. Using a reasoning identical

to Lemma 2.1.7 we see that the number of such factors is even. The proof now

concludes exactly as per Lemma 2.2.2.3. In order to finish the current proof we use

identical calculations to Lemma 2.2.2.4, simply replacing the set {xr : r even} with

{xr : r + dr even}, and restricting our functions to p∗e rather than k∗e. �

2.2.2.10. Next we identify a 2-dimensional plane contained in p∗e intersecting Jp∗e(xr :

r + dr even) only at zero. As was noted in Remark 2.2.2.5 our construction in type

C is essentially to take α + σ∗α and β + σ∗β. The obvious choice when constructing

elements in p∗e is to consider α−σ∗α and β−σ∗β. This is essentially what we do here.
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Define α in the same way as in Section 2.2.1, with ai = −ai′ for all i 6= i′, and

define β̄ = β − β′.

Lemma. We have

α =
1

2

∑
i=i′

ai(η
i,0
i )∗ +

∑
i<i′

ai(η
i,0
i )∗;

β̄ =
1

2

∑
i+1=i′

(ηi+1,0
i )∗ +

∑
i+16=i′

(ηi+1,0
i )∗;

and in particular α, β̄ ∈ p∗e.

Proof. Simply follow the proof of Lemma 2.2.2.6 verbatim, replacing each occurrence

of ζj,si with ηj,si , and exchanging the words odd and even. �

2.2.2.11. We can now give a version of Lemma 2.2.2.7. The statement of the lemma

is precisely the same, but we remind the reader that now we have ε = 1, and our

definition of β̄ is slightly different.

Lemma. Kα⊕Kβ̄ ∩ J = 0

Proof. The argument is identical to Lemma 2.2.2.7 except in this instance the correct

definition of E is {tα + (β −
∑
εi,i+1,0t

kiξi
′,λi−1

(i+1)′ ) : t ∈ K}, which reflects the fact that

β̄ = β − β′. �

2.2.2.12. We may now supply the proof of part 2 of Proposition 2.2.2.1.

Proof. By Lemmas 2.2.2.7 and 2.2.2.10 there is a two dimensional plane contained

in p∗e intersecting J only at zero. By lemma 2.2.2.9 we have Jp∗e(xr : r + dr even) =

p∗e ∩ Jg∗e(xr : r + dr even) ⊆ p∗e ∩ J so that same plane intersects Jp∗e(xr : r + dr even)

only at zero. As Jp∗e(xr : r + dr even) is conical and Zariski closed, the proposition

follows. �

2.3 Generic stabilisers

2.3.1. In the current section we make a quick detour to discuss the existence of

generic stabilisers in certain cases. We recorded the definition of a generic stabiliser in

Section 1.7 and proved an elementary but fundamental lemma, which we restate for

the reader’s convenience.
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Lemma. Suppose G ⊆ GL(V ). Fix α ∈ V and let Wα = {γ ∈ V : gα ⊆ gγ}. If

ϕ : G×Wα → V ;

ϕ(g, v) = g · v

is a dominant morphism then α is a regular, generic point in V .

The remaining results in this section hold in any good characteristic. Some of the

results were known previously although the proofs were different. We shall attribute

known results where necessary.

2.3.2. Retain all notations and conventions of the previous sections. Recall that we

have a linear form α ∈ g∗e such that α ∈ k∗e when ε = −1 and α ∈ p∗e for ε = 1 (see

Lemmas 2.2.2.6 and 2.2.2.10). In [83, §5] it is shown that α ∈ g∗e is a regular element

with stabiliser h = span{ξj,si : i = j}, and that α is also regular for the coadjoint

representation of ke when ε = −1. Yakimova goes on to prove that α is a generic

point over C in these two cases. Her method makes use of a powerful criterion due to

Elashvili, which is particular to characteristic 0 [20]. With a little extra work we can

use the same technique to extend this result to the characteristic p > 0 case.

Theorem. The linear form α is

1. a generic, regular point for the action of Ge on g∗e;

2. a generic, regular point for the action of Ke on k∗e when ε = −1;

3. a generic, regular point for the action of Ke on p∗e when ε = 1.

2.3.3. The method is to satisfy the assumptions of Lemma 2.3.1. Much as was

the case in Subsection 2.2.2 the proof of part 2 and part 3 is almost identical. In

order to prove 3 we give a detailed account of how to modify the argument in part

2. In [83] some of these statements from parts 1 and 2 were proven: the regularity

was demonstrated over fields of good characteristic and the the generic stabilisers were

exhibited over C.

2.3.4. Recall that ge = n− ⊕ h ⊕ n+ where n− = span{ξj,si : i < j}, h = span{ξj,si :

i = j} and n+ = span{ξj,si : i > j}. We have an induced decomposition g∗e =

(n−)∗ ⊕ h∗ ⊕ (n+)∗ where α ∈ h∗.
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Proposition. The following map is dominant

ϑ : Ge × h∗ → g∗e

ϑ : (g, γ) 7→ Ad∗(g)γ.

Proof. By [76, Theorem 3.2.20(i)] it suffices to show that the differential d(1,α)ϑ :

ge ⊕ h∗ → g∗e is surjective. In [79, Lemma 1.6] the differential is calculated

d(1,α)ϑ(x, v) = ad∗(x)α + v.

Therefore h∗ ⊆ d(1,α)ϑ(ge, h
∗). To complete the proof we shall show that (n−)∗, (n+)∗ ⊆

ad∗(ge)α = d(1,α)ϑ(ge, 0). A quick calculation shall confirm that

ad∗(ξj,si )(ξl,rk )∗ = δik(ξ
l,r−s
j )∗ − δjl(ξi,r−sk )∗ (2.5)

and that

ad∗(ξj,si )α = ai(ξ
i,λi−1−s
j )∗ − aj(ξ

i,λj−1−s
j )∗. (2.6)

Fix i > j. If λi = λj then the restriction ai 6= aj implies that (ξi,sj )∗ ∈ ad∗(n+)α

for s = 0, 1, ..., λi. If λi < λj then substituting s = λj − 1 into equation (2.6) gives

(ξi,0j )∗ ∈ ad∗(n+)α. Substituting successively smaller values of s into equation (2.6)

we obtain by induction (ξi,sj )∗ ∈ ad∗(n+)α for all s = 0, 1, ..., λi − 1. We conclude that

(n−)∗ ⊆ ad∗(n+)α. An identical argument shows that (n+)∗ ⊆ ad∗(n−)α, completing

the proof. �

2.3.5. In order to prove analogues of the above proposition for classical subalgebras

of g we must first place further restriction on the coefficients ai which appear in the

definition of α. Define

li =

 1 if i = i′;

2 if i 6= i′.

and impose the restriction liai = ljaj only if i = j.

Proposition. The following map is dominant when ε = −1

ϑ : Ke × (h∗ ∩ k∗e)→ k∗e

ϑ : (g, γ) 7→ Ad∗(g)γ.
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Proof. The proof is very similar to that of Proposition 2.3.4. Once again we may prove

that the differential d(1,α)ϑ is surjective. The differential is d(1,α)ϑ(x, v) = ad∗(x)γ+ v.

Since d(1,α)ϑ(0, h∗∩k∗e) = h∗∩k∗e = span{(ζ i,si )∗} we may complete the proof by showing

that span{(ζj,si )∗ : i 6= j} ⊆ ad∗(ke)α. Once again we shall need explicit calculations.

From formula (2.5) in the proof of the previous proposition it follows that

ad∗(ζj,si )(ζ l,rk )∗ = δik(ζ
l,λj−1+r−s
j )∗ − δjl(ζ i,λi−1+r−s

k )∗

+ δil′εklr(ζ
k′,λj−1+r−s
j )∗ − δjk′εklr(ζ i,λi−1+r−s

l′ )∗.

Recall that there is an expression for α in terms of (ζ i,0i )∗ derived in Lemma 2.2.2.6

α =
1

2

∑
i=i′

ai(ζ
i,0
i )∗ +

∑
i<i′

ai(ζ
i,0
i )∗ =

∑
i≤i′

ai(1−
1

2
δi,i′)(ζ

i,0
i )∗.

By Lemma 1.5.7 we have εi,i,0 = (−1)λi and as a consequence we have

ad∗(ζj,si )α = (1− 1

2
δi,i′)ai(ζ

i,λj−1−s
j )∗ − (1− 1

2
δj,j′)aj(ζ

i,λi−1−s
j )∗

− εi′,i′,0(1− 1

2
δi,i′)ai′(ζ

i,λj−1−s
j )∗ − εj′,j′,0(1− 1

2
δj,j′)aj(ζ

i,λi−1−s
j )∗

= (1− 1

2
δi,i′)(ai + (−1)λiai′)(ζ

i,λj−1−s
j )∗

− (1− 1

2
δj,j′)(aj + (−1)λjaj′)(ζ

i,λi−1−s
j )∗.

By Lemma 1.3.5, λi is even if and only if i = i′. Furthermore ai = ai′ whenever i = i′,

and ai = −ai′ whenever i 6= i′. In either case ai + (−1)λiai′ = 2ai. We deduce that

ad∗(ζj,si )α = liai(ζ
i,λj−1−s
j )∗ − ljaj(ζ i,λi−1−s

j )∗.

Fix i 6= j. Suppose λi = λj. Then the restrictions imposed on the coefficients ai

and li ensure that (ζ i,sj )∗ ∈ ad∗(ke)α for s = 0, 1, ..., λi − 1. Now suppose λi < λj.

Taking s = 0 we get −ljaj(ζ i,λi−1
j )∗ ∈ ad∗(ke)α. Taking successively larger values of

s we obtain ζ i,λi−1−s
j ∈ ad∗(ke)α for s = 0, 1, ..., λi − 1 by induction. Now suppose

λi > λj. It follows that j′ 6= i < j so that i′ < j′. By part 3 of Lemma 1.5.7 we

have ζj,si = εi,j,sζ
i′,s
j′ which lies in ad∗(ke)α by our previous remarks. We conclude that

span{(ζj,si )∗ : i 6= j} ⊆ ad∗(ke)α and d(1,α)ϕ(ke, h
∗ ∩ k∗e) = k∗e, which completes the

proof. �

2.3.6. We now state the analogous proposition for orthogonal algebras. The reader

will notice that we denote the representation of Ke in p∗e by Ad∗. Technically this
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representation is the restriction of the coadjoint representation of Ge, although this

will cause no confusion.

Proposition. The following map is dominant when ε = 1

ϑ : Ke × (h∗ ∩ p∗e)→ p∗e

ϑ : (g, γ) 7→ Ad∗(g)γ.

Proof. Following the previous line of reasoning, the proof hinges on showing that

span{(ηj,si )∗ : i 6= j} ⊆ ad∗(ke)α. Once again we shall need explicit calculations. From

formula (2.5) it follows that

ad∗(ζj,si )(ηl,rk )∗ = δik(η
l,λj−1+r−s
j )∗ − δjl(ηi,λi−1+r−s

k )∗

− δil′εklr(η
k′,λj−1+r−s
j )∗ − δjk′εklr(ηi,λi−1+r−s

l′ )∗

Recall that there is an expression for α in terms of (ηi,0i )∗ derived in Lemma 2.2.2.6.

Using this with the above expression for ad∗(ζj,si )(ηl,rk )∗ and going through a series of

calculations almost identical to those in Proposition 2.3.5 we arrive at the assertion

ad∗(ζj,si )α = liai(ζ
i,λj−1−s
j )∗ − ljaj(ζ i,λi−1−s

j )∗.

The proof then concludes by making precisely the same observations as those conclud-

ing the previous proposition. �

2.3.7. We may now supply a proof of theorem 2.3.2.

Proof. Thanks to Lemma 2.3.1 we need to show that ϕ : Ge ×Wα → g∗e is dominant

where Wα = {γ ∈ g∗e : (ge)α ⊆ (ge)γ}. By [83, Theorem 1] we have (ge)α = h. Since

h is abelian and stabilises n− and n+, any linear form γ ∈ h∗ is annihilated by h. As

such h∗ ⊆ Wα. By Proposition 2.3.4 the map ϑ = ϕ|Ge×h∗ is dominant, and so too is

ϕ. By Lemma 1.7.4, part 1 of the theorem follows.

The proofs of part 2 and 3 are similar. We shall reset the definition of ϕ, ϑ and

Wα. Let ε = −1, let Wα = {γ ∈ k∗e : (ke)α ⊆ (ke)γ} and let ϕ : Ke × Wα → k∗e.

Since (ke)α = h ∩ ke is abelian and preserves span{ζj,si : i 6= j} we have h∗ ∩ k∗e ⊆ Wα.

Then by Proposition 2.3.5 the map ϑ = ϕ|Ke×(h∗∩k∗e) is dominant and so is ϕ. Then by

Lemma 1.7.4, part 2 of the current theorem follows.
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For part 3 we set ε = 1, Wα = {γ ∈ p∗e : (ke)α ⊆ (ke)γ} and ϕ : Ke ×Wα → p∗e.

In this case (ke)α = h ∩ ke annihilates h ∩ pe and stabilises span{ηj,si : i 6= j} so

h∗ ∩ p∗e ⊆ Wα and so by Proposition 2.3.6 the map ϕ is dominant. The theorem

follows by Lemma 1.7.4. �

2.3.8. Finally we calculate the index of ke in p∗e when ε = 1. This comprises a small

but vital ingredient of the proof of Theorem 1.12.1.7.

Corollary. ind(ke, pe) = 1
2
(N − |{i : λi odd}|) when ε = 1.

Proof. By part 3 of Theorem 2.3.2 we know that ind(ke, pe) = dim (ke)α = dim h∩ ke =

dim span{ζ i,si : 1 ≤ i ≤ n, 0 ≤ s < λi}. Now ζ i,si = 0 only if ξi,λi−1−s
i = −εi,i,sξi

′,λi−1−s
i′ ,

which is only if i = i′ and εi,i,s = 1. In this case λi is odd, by Lemma 1.3.5, and

εi,i,s = (−1)λi−s = 1 implies s is odd. Hence for each i = i′ we obtain λi−1
2

nonzero

maps ζ i,si . In case i 6= i′ we have the relations ζ i,si = εi,i,sζ
i′,s
i′ by part 3 of Lemma 1.5.7.

Since these are the only relations we have dim span{ζ i,si , ζ
i′,s
i′ : 0 ≤ s < λi} = λi for

each pair (i, i′) with i 6= i′. Since λi is even in this case we conclude that

ind(ke, pe) =
∑
i

bλi
2
c =

1

2
(N − |{i : λi odd}|).

�

2.4 The structure of the invariant algebras

2.4.1. The deductions of sections 2.1 through 2.3 aim to satisfy the assumptions of

Theorem 1.11.3. Before we apply the theorem we must clarify one detail. We remind

the reader that the first assumption of the theorem is that we have found precisely

m = m(q, X) = dimX − dim q + ind(q, X)

invariants. We shall now confirm that we have the correct number in each case.

Lemma. The following are true:

1. m(ge, g
∗
e) = N ;

2. m(ke, k
∗
e) = |{xr : r even}| = N/2 when ε = −1;
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3. m(ke, p
∗
e) = |{xr : r + dr even}| = 1

2
(N + |{i : λi odd}|) when ε = 1.

Proof. We have m(ge, g
∗
e) = ind(ge, g

∗
e) = N by [83]. If we take ε = −1 so that N

is even then m(ke, k
∗
e) = ind(ke, k

∗
e) = N/2 = |{1 ≤ r ≤ N : r even}| by the same

reasoning.

Now let ε = 1. By [30, 3.2(3)] we have

dim ke =
1

2
(dim ge − |{i : λi odd}|).

Since dim p∗e = dim pe = dim ge − dim ke we have dim p∗e − dim ke = |{i : λi odd}|.

By Corollary 2.3.8 we get m(ke, p
∗
e) = 1

2
(N + |{i : λi odd}|). We must show that this

number equals |{1 ≤ r ≤ N : r + dr even}|. Partition the set {1, ..., N} into disjoint

subsets Di = {1 ≤ r ≤ N : dr = i} where i = 1, ..., n. Then |Di| = λi and by the

definition of the sequence d1, d2, ..., dN we have r ∈ Di if and only if

0 < r −
i−1∑
k=1

λk ≤ λi. (2.7)

If i 6= i′ then |Di| = λi is even by Lemma 1.3.5. In this case, regardless of the parity

of λi there are exactly λi/2 values r fulfilling (2.7) with r + dr even. Now suppose

i = i′ so that |Di| = λi is odd. We consider two cases: i odd or i even. In the first

case there must be an even number of indexes j with 1 ≤ j < i and j = j′, since

j′ ∈ {j − 1, j, j + 1}. Thus there an even number of indexes 1 ≤ j < i with λj odd by

Lemma 1.3.5. We deduce that
∑i−1

k=1 λk is even. If r ∈ Di so that dr = i, then r + dr

even implies r is odd. Thus there are exactly (λi + 1)/2 values of r fulfilling (2.7) with

r+dr even. Now suppose i = i′ and i is even. Similar to the case i odd, there must be

an odd number of indexes 1 ≤ j < i with λj odd. Thus
∑i−1

k=1 λk is odd. For r ∈ Di,

If r + dr is even then r is even. Thus there are exactly (λi + 1)/2 values of r fulfilling

(2.7) with r + dr even. With Lemma 1.3.5 in mind we are able to conclude that

|{1 ≤ r ≤ N : r + dr even}| =
∑
i 6=i′

λi/2 +
∑
i=i′

(λi + 1)/2 =
1

2
(N + |{i : λi odd}|).

�

2.4.2. The proofs are identical for both parts of Theorem 1.12.1.3 and also for Theo-

rem 1.12.1.7, and so we may unify notation. In the remnant of this subsection, Q shall

be our underlying group, e ∈ q = Lie(Q) shall be a choice of nilpotent element, ε = ±1
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will indicate whether K is orthogonal or symplectic (this, of course, is redundant when

Q is of type A), X shall be the Qe-module of interest, I shall be a finite subset of

K[X]Qe and m shall be the integer defined in the statement of Skryabin’s theorem.

The following table explains how our notations are unified:

Q ε X I m

Case 1 G - g∗e {x1, ..., xN} m(ge, ge)

Case 2 K −1 k∗e {xr|k∗e : r even} m(ke, ke)

Case 3 K 1 p∗e {xr|p∗e : r + dr even} m(ke, pe)

2.4.3. Theorems 1.12.1.3 and 1.12.1.7 are both convenient ways of stating our first

results without discussing the explicit constructions of the invariant algebras. Our

method tells us more than is expressed by those theorems, especially in the nilpotent

case. Using the above notations we may precisely state our result as follows.

Theorem. Suppose that we are in Case 1, 2 or 3. If e ∈ q then |I| = m. Furthermore

K[X]Qe = K[I] is a polynomial algebra generated by I, and

K[X]qe = K[X]p[I]

is a free K[X]p-module of rank pm.

Proof. That |I| = m follows immediately from Lemma 2.4.1 and Corollary 2.2.2.2.

We now prove K[X]qe = K[X]p[I] is a free K[X]p-module of rank pm by applying

Skryabin’s theorem (Theorem 1.11.3). Corollary 2.1.5 tells us that the polynomials I

are invariant. Lemma 2.4.1 ensures that I is of the correct size. Propositions 2.2.1.1

and 2.2.2.1 confirm that the condition on codimension of the Jacobian locus is satisfied,

and so the the assumptions of Skryabin’s theorem are satisfied. The claim follows.

In order to prove that K[X]Qe = K[I] we use induction on degree. Let f ∈ K[X]Qe .

If deg(f) < p then by the previous paragraph, f ∈ K[I]. Suppose deg(f) ≥ p and that

all g ∈ K[X]Qe with deg(g) < deg(f) actually lie in K[I]. We shall call a product of

elements of I a monomial in I, and this terminology shall cause no confusion. Since

f ∈ K[X]Qe ⊆ K[X]qe we may write f as a sum of monomials in I with coefficients in

K[X]p. Since f and all monomials in I are fixed by Qe we deduce that each coefficient

is also fixed by Qe. Since (K[X]p)Qe = (K[X]Qe)p we conclude by induction that each

coefficient is a pth power of an element of K[I]. It follows that f ∈ K[I]. �



2.4. THE STRUCTURE OF THE INVARIANT ALGEBRAS 69

Remark. Case 3 of Theorem 2.4.3 quickly implies Theorem 1.12.1.7. Cases 1 and 2

imply the nilpotent case of Theorem 1.12.1.3. As was noted in the discussion following

the statement of that theorem, there is a simple reduction to the nilpotent case.

Therefore Theorems 1.12.1.3 and 1.12.1.7 follow immediately from Theorem 2.4.3.

2.4.4. Next we prove Theorem 1.12.1.9, using the theory introduced in Section 1.6

and a simple filtration argument. Fortunately the proof in type A and C is identical

and may be dealt with at once. Unfortunately we will have to reset our notation again.

We let ε = −1, let Q ∈ {G,K} and choose x ∈ q. Thanks to Theorem 1.6.9 there is a

filtered Qx-module isomorphism

β : U(qx)→ S(qx).

According to Theorem 1.12.1.3, S(qx)
Qx is polynomial on rank q generators. In keeping

with the previous notations we denote a set of homogeneous generators by I. Since

gr(β) is the identity, the top graded component of β−1f is equal to f for all f ∈ I. We

shall denote by Ĩ the preimage under β of I in U(qx). Of course Ĩ ⊆ U(qx)
Qx ⊆ Z(qx).

We are now ready to present a proof of Theorem 1.12.1.9

Proof. The graded algebra of the centre grZ(qx) is contained in S(qx)
qx , which is equal

to S(qx)
p[I] by the previous theorem. Since I consists of homogeneous polynomials we

have S(qx)
p[I] = grZp(qx)[Ĩ] and furthermore Zp(qx)[Ĩ] is central in U(qx). Placing

all of these inclusions together we get

grZ(qx) ⊆ S(qx)
qx = S(qx)

p[I] ⊆ grZp(qx)[Ĩ] ⊆ grZ(qx).

Thence grZp(qx)[Ĩ] = grZ(qx) and the dimensions of the graded components of

grZp(qx)[Ĩ] and grZ(qx) coincide. It follows that the inclusion Zp(qx)[Ĩ] ⊆ Z(qx)

is actually an equality. Part 1 of the theorem follows.

Our proof of part 2 is very similar. We denote by K[Ĩ] the subalgebra of Z(qx)

generated by Ĩ, and similar for K[I]. We have

K[I] = grK[Ĩ] ⊆ grU(qx)
Qx ⊆ S(qx)

Qx = K[I]

and so we have equality throughout. In particular the dimensions of the graded com-

ponents of grU(qx)
Qx and grK[Ĩ] coincide. Since K[Ĩ] ⊆ U(qx)

Qx we must actually

have an equality and part 2 follows.
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Part 3 is an immediate consequence of parts 1 and 2, and the fact that the Zp(qx)-

basis of Z(qx) is also a Zp(qx)
Qx-basis of Z(qx). �

2.4.5. We remind the reader that the dimensions of simple modules for modular Lie

algebras are bounded. This fact essentially follows from the fact that the enveloping

algebra is a finite module over its centre, and sits in stark contrast to the characteristic

zero case, where each simple algebra has simple modules of arbitrarily high dimension.

For each Lie algebra q over K we denote by M(q) the maximal dimension of simple

modules. The first Kac-Weisfeiler conjecture asserts that

M(q) = p
1
2

(dim q−ind q).

This conjecture is extremely general and should be approached with some trepidation.

2.4.6. Using Theorem 1.11.2, and our results on invariant theory, we now prove

Theorem 1.12.1.10 which states that the first Kac-Weisfeiler conjecture holds for cen-

tralisers in types A and C. We actually give two proofs, very different in nature. The

first of these is more general and applies to all centralisers in types A and C whilst

the second proof only applies only in the case x nilpotent with q of type A. We now

supply the first proof, which is purely algebraic and makes use of Theorem 1.11.2.

Proof. Let Q ∈ {G,K} and x ∈ q. Define F := F (qx) and Fp := Fp(qx). By

Zassenhaus’ theorem we may prove that [F : Fp] = pind q. In the notation of the

previous theorem we let F ′ = Fp[Ĩ] = Z(qx) ⊗Zp(qx) Fp. Clearly F ′ ⊆ F . We claim

that this inclusion is actually an equality. It will suffice to prove that every element

of F can be written in the form f/g where f ∈ Z(qx) and g ∈ Zp(qx). This is

actually a very general result which holds whenever we have a module-finite inclusion

of K-algebras. We shall recall the proof for the reader’s convenience.

Suppose f/g ∈ F . Since Z(qx) is a finite Zp(qx)-module we have ang
n+an−1g

n−1 +

· · · + a0 = 0 for some n ∈ N and certain coefficients ai ∈ Zp(qx) with a0 6= 0. We

conclude that

f

g
=
f(ang

n−1 + an−1g
n−2 + · · ·+ a1)

g(angn−1 + an−1gn−2 + · · ·+ a1)
=
f(ang

n−1 + an−1g
n−2 + · · ·+ a1)

−a0

∈ F ′.

Therefore F = F ′ as claimed. Since Z(qx) is free of rank pind q over Zp(qx) (Theo-

rem 1.12.1.9) we conclude that F is of dimension pind q over Fp. Thanks to [83] this is

equal to pind qx and the theorem follows. �
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2.4.7. We now supply our second, more geometric proof of Theorem 1.12.1.10. We

remind the reader that the following proof applies only to the case x nilpotent and

Q = G = GL(V ). As such we shall retain the notations of 1.1.5.

Proof. Define

Ω = {χ ∈ g∗e : dimW = M(ge) for all simple Uχ(ge)-modules W}

Let χ ∈ g∗e. Every g ∈ Ge acts on g∗e and induces an isomorphism of algebras

Uχ(ge)
∼−→ UAd(g)χ(ge)

Hence Ω is Ge-stable. In [64, Proposition 4.2(1)] it was shown that Ω is a non-empty

Zariski open subset of g∗e. By Theorem 2.3.2 there exists a nonempty open subset

O ⊆ g∗e such that the ge-stabilisers of points in O are Ge-conjugate to h = {ξi,λi−1−s
i :

1 ≤ i ≤ n, 0 ≤ s < λi}. Since h is abelian and stabilises n− ⊕ n+ the stabilisers of

points in h∗ include h.

Hence we can find χ ∈ Ω∩h∗, ie. a linear function vanishing on (n−)∗ and (n+)∗ with

the additional property that every irreducible Uχ(ge)-module has dimension M(ge).

Fix such a χ and identify it with its restriction to h. The decomposition of ge induces

a decomposition of enveloping algebras

Uχ(ge) = U0(n−)⊗K Uχ(h)⊗K U0(n+)

Let W be a simple Uχ(ge)-module so that dimW = M(ge). By Engel’s theorem n+

has a common eigenvector in W of eigenvalue 0 and h acts diagonally on W n+ 6= 0. We

can find a 1-dimensional Uχ(h) ⊗K U0(n+)-module Kwµ ⊆ W n+ where hwµ = µ(h)wµ

for all h ∈ h.

The induced module Indge
h+n+(Kwµ) = Uχ(ge) ⊗Uχ(h)⊗U0(n+) Kwµ has dimension

dimU0(n−) = pdim n− . We have dim n− = dim n+ and dim h = N = ind ge by [83,

Theorem 1]. We obtain dim ge = 2dim n− + ind ge. Therefore

dim Indge
h+n+(Kwµ) = p

1
2

(dim ge−ind ge).

By standard theory of induced modules, W is a homomorphic image of Indge
h+n+(Kwµ)

so the dimension of the former is bounded above by that of the latter. According to [64,

Theorem 5.4(2)] it is possible to choose χ so that all finite dimensional Uχ(ge)-modules
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have dimension divisible by p
1
2

(dim ge−ind ge). This ensures that W = Indge
h+n+(Kwµ), and

that M(ge) = p
1
2

(dim ge−ind ge). �

Remark. Although our second proof is much less general it does have the virtue of

implying that the Verma modules for ge are generically simple. Part 3 of Lemma 1.5.7

ensures that there is, in general, no ‘triangular’ decomposition for classical types other

than type A, and it seems this proof will extend no further.

2.4.8. The proof of the KW1 conjecture allows us to make some powerful deductions

about the Zassenhaus variety Z(qx) := SpecmZ(qx) when q is of type A or C and

x ∈ q. There is a natural map from the isomorphism classes of simple qx-modules to

Z(qx) defined by taking the kernel of the central character of a given simple module.

This map has finite fibres thanks to [87].

Theorem. If q is a simple Lie algebra of type A or C over K and x ∈ q then m is a

smooth point of Z(qx) if and only if U(qx)/mU(qx) ∼= MatM(qx)(K).

Proof. Recall that the singular locus (q∗x)sing is defined to be the set of all χ ∈ q∗x such

that dim (qx)χ > ind qx. By [52, Theorems 3.4 & 3.11], codimq∗x (q∗x)sing ≥ 2 provided

x is nilpotent. Strictly speaking they worked over C there but the assumption was

not necessary; indeed [83] works in good characteristic and that article is the basis for

the aforementioned two theorems. Now the fact that codimq∗x (q∗x)sing ≥ 2 when x is

not nilpotent may be proven using a reduction to the nilpotent case very similar to

the one used for Theorem 1.12.1.3. For a non-negative integer m we let Xm denote

the set of all χ ∈ q∗x such that Uχ(qx) has a module of finite dimension not divisible

by pm. According to [64, Proposition 5.2] dim XM(qx) ≤ dim q∗sing, from whence we

deduce that codimq∗x XM(qx) ≥ 2.

By [87, Theorems 5 & 6], we may infer that there is a closed subset C ⊆ Z such

that

Z\C = {m ∈ Z : U(qx)/mU(qx) ∼= MatM(qx)(K)}.

We claim that codimZ C ≥ 2. The inclusion Zp(qx)→ Z(qx) induces as finite morphism

of maximal spectra Z → SpecmZp(qx) and by identifying SpecmZp(qx) and q∗x we

obtain a map τ : SpecmZ(qx)→ q∗x. Explicitly, m 7→ χ where χ is the linear functional

such that m ∩ Zp(qx) = mχ and Uχ(qx) = U(qx)/mχU(qx). This map is closed and
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has finite fibres so codimZ C = codimq∗x τ(C). If χ ∈ τ(C) then Uχ(qx) has a module of

dimension less than M(qx) so that χ ∈XM(qx). We conclude that

codimZ C = codimq∗x τ(C) ≥ codimq∗x XM(qx) ≥ 2.

Pick m ∈ Z \ C. Denote by Zm the localisation of Z(qx) at m ∈ Z and set

Um = U(qx) ⊗Z(qx) Zm. Certainly Um is a finite module over Zm. Furthermore the

unique maximal ideal of Zm is mZm and Um/mUm
∼= U(qx)/mU(qx) is a matrix algebra

over its centre Z/mZ ∼= K. Now we may apply [17, Theorem 7.1] to see that Um is an

Azumaya algebra over Zm. Since m ∈ Z \ C was arbitrary we conclude that the non-

Azumaya locus of Z lies inside C and therefore has codimension ≥ 2. Combining these

deductions with [9, 2.2, 2.3], we have satisfied the assumptions of [9, Theorem 3.8] and

the result follows. �



Chapter 3

The Derived Subalgebra and Sheets

3.0.1. A full overview of the current chapter is given in Section 1.12.2. Let’s

recap the important points. Our discussion shall be restricted to centralisers in simple

algebras of type B, C or D. Fix ε = ±1 and choose e ∈ N (k). Our first task is

to decompose [keke] into a finite direct sum of subspaces. As a corollary we obtain

a formula for the dimension of the maximal abelian quotient dim kab
e where kab

e :=

ke/[keke]. We go on to define an algorithm which is used for parameterising the sheets

of k which contain a given nilpotent orbit Oe, and calculate their ranks. We provide a

combinatorial formula for the maximal rank of sheets containing Oe and classify the

nilpotent elements lying in a unique sheet in terms of partitions. These elements shall

be called non-singular. Our efforts culminate in a proof of a conjecture of Izosimov

[28, Conjecture 4.1] which states that for e non-singular the derived subalgebra [keke] is

the orthogonal complement to the tangent space of the sheet containing e (we actually

prove this without the assumption that e is nilpotent).

3.1 Decomposing ke

3.1.1. Our notations in this chapter shall be those laid out in Section 1.5. In

particular K is an algebraically closed field, V is an N -dimensional vector space over

K, G = GL(V ), σ : g→ g is the involution associated to our choice of non-degenerate

bilinear form (·, ·) : V × V → K and g = k ⊕ p is the associated Z2-grading. Our

group of study is the orthogonal or symplectic group K with Lie(K) = k, and so we

request that char(K) 6= 2. We fix a nilpotent element e ∈ k with ordered partition

74
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λ = (λ1, ..., λn). Thanks to Lemma 1.5.8 we have a very explicit basis for ke which

decomposes as H tN0 tN1. We shall principally make use of the spans of these sets:

H = span(H),N0 = span(N0),N1 = span(N1). We suggest that the reader keep the

definitions of H, N0 and N1 close at hand in what follows.

3.1.2. It is our intention to decompose [keke] into subspaces. In order to do so we

must first decompose H and N1. Let

H0 := span{ζ i,si ∈ H : λi − s even}

H1 := span{ζ i,si ∈ H : λi − s odd}

so that H = H0

⊕
H1. The space H0 can be further decomposed as

⊕bλ1/2c
m=1 Hm

0 where

Hm
0 := span{ζ i,λi−2m

i ∈ H : 1 ≤ i ≤ n}.

3.1.3. Next we must decompose each Hm
0 into subspaces Hm

0,j for j ≥ 1. Fix

0 < m ≤ bλ1/2c, put a1,m := 1 and let 1 = a1,m < a2,m < · · · < at(m),m ≤ n+ 1 be the

set of all integers such that

λaj,m−1 − λaj,m ≥ 2m, 2 ≤ j ≤ t(m).

For 1 ≤ j < t(m) we define

Hm
0,j := span{ζ i,λi−2m

i ∈ H : aj,m ≤ i < aj+1,m}

and set

Hm
0,t(m) := span{ζ i,λi−2m

i ∈ H : at(m),m ≤ i < n+ 1}.

Lemma. The following are true:

1. If λat(m),m
< 2m then Hm

0,t(m) = {0};

2. Hm
0 =

⊕t(m)
j=1 Hm

0,j.

Proof. If at(m),m = n + 1 then certainly Hm
0,t(m) = 0, so assume not. If λat(m),m

< 2m

then the ordering λ1 ≥ · · · ≥ λn implies that λi − 2m < 0 for all i ≥ at(m),m. Then

ζ i,λi−2m
i = 0 for all ζ i,λi−2m

i ∈ Hm
0,t(m) proving (1). The choice of m (and the fact that

a1,m = 1) ensures that
⊕t(m)

l=1 Hm
0,j = span{ζ i,λi−2m

i ∈ H : 1 ≤ i ≤ n} = Hm
0 . Hence

(2). �
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3.1.4. It should be noted that if i 6= i′ then εi,i,λi−2m = 1 by Lemma 1.5.7. In this

case ζ i,λi−2m
i = ζ

i′,λi′−2m
i′ by that same lemma. In order to overcome this notational

problem and concisely refer to a basis for Hm
0,j it shall be convenient to use an indexing

set slightly different from {1, ..., n}. Extend the involution i 7→ i′ to all of Z by the rule

i = i′ for i > n or i < 1. We adopt the convention λi = 0 for all i > n or i < 1 which

immediately implies ζ i,si = 0 for any such i. We shall index our maps and partitions

by the set Z/ ∼ where i ∼ j if i = j′. We denote by [i] the class of i in Z/ ∼. We have

λi = λi′ for all i so we may introduce the notation λ[i]. As was observed a moment

ago, ζ i,λi−2m
i = ζ

i′,λi′−2m
i′ . Hence we may also use the notation ζ

[i],λ[i]−2m

[i] . Furthermore,

since i′ ∈ {i − 1, i, i + 1} we have a well defined order on Z/ ∼ inherited from Z: let

[i] ≤ [j] if i ≤ j. As a result there exists a unique isomorphism of totally ordered

sets ψ : (Z/ ∼) → Z with ψ([1]) = 1. Using this isomorphism we define analogues of

addition and subtraction +,− : (Z/ ∼)× Z 7→ (Z/ ∼) by the rules

[i] + j := ψ−1(ψ(i) + j)

[i]− j := ψ−1(ψ(i)− j)

To clarify, [i] + 1 is the class in (Z/ ∼) succeeding [i] and [i]− 1 is that class preceding

[i] in the ordering.

3.1.5. For 1 ≤ j < t(m), Lemma 1.5.7(3) yields that the set

{
ζ

[i],λ[i]−2m

[i] ∈ H : [aj,m] ≤ [i] < [aj+1,m]
}

is a basis for Hm
0,j. Using this basis we may describe an important hyperplane Hm,+

0,j of

Hm
0,j. First we define the augmentation map Hm

0,j � K by sending ζ
[i],λ[i]−2m

[i] to 1 for all

[aj,m] ≤ [i] < [aj+1,m] and extending to Hm
0,j by K-linearity. Let Hm,+

0,j denote the kernel

of this map. It was noted in lemma 3.1.3 that Hm
0,t(m) might be zero. If this is not

the case then a basis for Hm
0,t(m) is the span of those ζ

[i],λ[i]−2m

[i] which are non-zero with

[at(m),m] ≤ [i] ≤ [n]. Using this basis we can define the augmentation map Hm
0,t(m) � K

and hyperplane Hm,+
0,t(m) of Hm

0,t(m) in a similar fashion. Make the notation

H+
0 :=

bλ1/2c∑
m=1

(⊕t(m)−1
j=1 Hm,+

0,j + Hm
0,t(m)

)
⊆ H0.

3.1.6. Before we continue we must decompose N1 into a direct sum of two subspaces
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as follows. For 1 ≤ k ≤ n we define lower and upper column bounds by

L(k) = min{1 ≤ j ≤ n : λj = λk}

U(k) = max{1 ≤ j ≤ n : λj = λk}.

Clearly λj = λk for L(k) ≤ j ≤ U(k). We say that a triple (i, j, s) with 1 ≤ i, j ≤ n

and 0 ≤ s < min(λi, λj) is tightly nested when the following conditions hold:

• j = i+ 1

• s = λi+1 − 1

• i = i′

• i+ 1 = (i+ 1)′

• L(i) = i

• U(i+ 1) = i+ 1

Finally we make the notation

N−1 = span{ζj,si ∈ N1 : (i, j, s) is a tightly nested triple};

N+
1 = span{ζj,si ∈ N1 : (i, j, s) is not a tightly nested triple}.

so that

N1 = N−1 ⊕N+
1 .

3.2 Decomposing [keke]

3.2.1. It is the intention of this section to decompose [keke] into a finite collection of

those subspaces of ke defined in the previous section. Our calculations shall be quite

explicit and depend principally upon the following.

Lemma. For all indexes i, j, s and k, l, r,

[ζj,si , ζ l,rk ] = δilζ
j,r+s−(λi−1)
k − δjkζ

l,r+s−(λj−1)
i + εklr

(
δk,i′ζ

j,r+s−(λi−1)
l′ − δj,l′ζ

k′,r+s−(λj−1)
i

)
.
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The proof is a short calculation which we leave to the reader.

3.2.2. The following proposition shall be central in the process of decomposing [keke].

Proposition. The following inclusions hold

[H,H] = {0}, [H,N0] ⊆ N0, [H,N1] ⊆ N1,

[N0,N0] ⊆ H, [N0,N1] ⊆ N1

Furthermore, for any two elements ζj,si , ζ l,rk ∈ N1 the commutator [ζj,si , ζ l,rk ] lies in

either H, N0 or N+
1 . More precisely

[ζj,si , ζ l,rk ] ∈



N+
1 if i = l or j = k;

N0 or N+
1 if k = i′ or j = l′ but not both;

H if k = i′ and j = l′;

0 otherwise.

Proof. We shall call on the characterisations of H,N0 and N1 given in lemma 1.5.8.

Thanks to [83, Theorem 1] we have H = k ∩ (ge)α where α is a regular element of g∗e.

By [19, 1.11.7] the stabiliser (ge)α is abelian, hence [HH] = 0. The elements of N0

are characterised by the fact that they exchange the spaces V [i] and V [i′] with i 6= i′.

Therefore the elements of [HN0] must exchange them also, implying [HN0] ⊆ N0. Each

ζj,si ∈ N1 transports V [i] to V [j] and V [j′] to V [i′]. Therefore [Hζj,si ] does likewise and

[HN1] ⊆ N1. Since each element of N0 exchanges the spaces V [i] and V [i′] with i 6= i′

and anihilates all V [i] with i = i′ the poduct [N0N0] must stabilise all V [i], hence be

contained in H. The inclusion [N0N1] ⊆ N1 is best checked using lemma 3.2.1. Let

i 6= i′ and l > k 6= l′. Then [ζ i
′,s
i ζ l,rk ] is nonzero only if i = l or i′ = k. Our restrictions

on i, l and k ensure that these two possibilities are mutually exclusive. In the first case

[ζ i
′,s
i ζ l,rk ] = ζ

l′,r+s−(λi−1)
k − εklrζk

′,r+s−(λi−1)
l which lies in N1. The second case is very

similar.

We consider the final claim. Suppose j > i 6= j′ and l > k 6= l′. By lemma 3.2.1

the bracket [ζj,si ζ l,rk ] is only nonzero when one or more of the following equalities hold:

i = l, j = k, i′ = k, j′ = l. We shall consider these four possibilities one by one.

Since the bracket is anticommutative the reasoning in the case i = l is identical to the

case j = k and so we need consider only the first of these two possibilities. If i = l

then the relations i′ 6= j > i and l > k 6= l′ ensure that j 6= k, i′ 6= k and j′ 6= l.
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Therefore [ζj,si ζ l,rk ] = ζ
j,r+s−(λi−1)
k ∈ N1. In order for this map to lie in N−1 we would

require j = k + 1, however we have j > i = l > k which makes this impossible. Thus

[ζj,si ζ l,rk ] ∈ N+
1 .

By lemma 1.5.7 we have ζj,si = ±ζ i
′,s
j′ and ζ l,rk = ±ζk

′,r
l′ so the reasoning in case

i = k′ is identical to the case j′ = l. Therefore we need only to consider the first of

these two possibilities. Suppose i = k′. Then certainly i 6= l and j 6= k. If j′ = l then

[ζj,si ζ l,rk ] = εklr(ζ
j,r+s−(λi−1)
j − ζ i,r+s−(λj−1)

i ) ∈ H so assume from henceforth that j′ 6= l.

Then

[ζj,si ζ l,rk ] = εklrζ
j,r+s−(λi−1)
l′ .

If j = l then the product lies in N0. Assume j 6= l. Thanks to the relation

ζ
j,r+s−(λi−1)
l′ = ±ζ l,r+s−(λi−1)

j′ from lemma 1.5.7 we may assume that j > l′, and from

here it is easily seen that the product lies in N1. In order for the product to lie in

N−1 we require L(l′) = l′ which implies λl < λi since i = k < l. From the bounds

0 ≤ r < λl and 0 ≤ s < λj we deduce that r + s − (λi − 1) < λj − 1 which confirms

that the term ζ
j,r+s−(λi−1)
l′ does not lie in N−1 . �

3.2.3. The following proposition tells us how N intersects with [keke].

Proposition. The following are true:

1. N0 ⊂ [keke];

2. N1 ∩ [keke] = N+
1 .

Proof. Throughout the proof we shall need to evaluate expressions εi,j,s. When doing

so we shall call on part 1 of lemma 1.5.7. Likewise, whenever we evaluate expressions

[ζ i,si ζ
l,r
k ] we shall call on lemma 3.2.1. Assume i 6= i′ and λi − s is odd. We have

εi,i,s = (−1)λi−s so

[ζ i
′,s
i ζ i,λi−1

i ] = ζ i
′,s
i − εi,i,λi−1ζ

i′,s
i = 2ζ i

′,s
i ∈ [keke].

Hence N0 = [HN0] ⊆ [keke]. Here we use the fact that char(K) 6= 2. This concludes

1. For the sake of clarity we shall divide the proof of part 2 of the current proposition

into subsections (i), (ii),..., (ix). In parts (i),...,(v) we demonstrate that N+
1 ⊆ [keke]

by showing that if one of the six criteria for (i, j, s) to be a tightly nested triple fails

to hold then some multiple of ζj,si may be found as a product of two basis elements
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in ke. In parts (v),...,(viii) we show that the reverse inclusion holds by noting that

N1 ∩ [keke] is the sum of those products [ζj,si ζ l,rk ] which lie in N1, and showing that all

such products actually lie in N+
1 . For the remainer of the proof we shall fix l > k 6= l′

so that min(λk, λl) = λl.

(i) If l 6= l′ or k 6= k′, then ζ l,rk ∈ [keke] for r = 0, 1, ..., λl − 1: Suppose first that

l 6= l′. We have

[ζ l,λl−1
l ζ l,rk ] = ζ l,rk ∈ [keke]

whence we obtain ζ l,rk ∈ [keke] for r = 0, 1, ..., λl − 1. Now suppose k 6= k′. Then

[ζk,λk−1
k ζ l,rk ] = −ζ l,rk ∈ [keke]

so that ζ l,rk ∈ [keke] for all r = 0, 1, ..., λl − 1.

(ii) If l′ = l and k = k′ then ζ l,rk ∈ [keke] for r = 0, 1, ..., λl − 2: With l and k as

above

[ζ l,λl−2
l ζ l,rk ] = ζ l,r−1

k − εk,l,rζk
′,r−1
l′ ∈ [keke].

By part 3 of lemma 1.5.7 this final expression is (1− εk,l,rεk,l,r−1)ζ l,r−1
k . Since εk,l,r =

(−1)λl−r this expression actually equals 2ζ l,r−1
k . Allowing r to run from 0 to λl− 1 we

obtain the desired result.

(iii) If l′ = l, k = k′ and k 6= l− 1 then ζ l,rk ∈ [keke] for r = 0, 1, ..., λl− 1: We may

assume there exists j fulfilling l > j > k. Then k 6= l and k′ 6= j 6= l′ so that

[ζ l,rj ζ
j,λj−1
k ] = ζ l,rk ∈ [keke].

(iv) If l = l′, k = k′ and either L(k) 6= k or U(l) 6= l, then ζ l,rk ∈ [keke] for

r = 0, 1, ..., λl − 1: First suppose that L(k) 6= k. Since k = k′ we have L(k) = L(k)′

and λL(k) = λk so that for r = 0, 1, ..., λl − 1

[ζ l,rL(k)ζ
k,λk−1
L(k) ] = εL(k),k,λk−1ζ

l,r
k ∈ [keke].

Next suppose that U(l) 6= l. Since l = l′ we have U(l) = U(l)′ and λU(l) = λl so that

for r = 0, 1, ..., λl − 1

[ζ
U(l),λU(l)−1

k ζ
U(l),r
l ] = −εl,U(l),rζ

l,r
k ∈ [keke].

(v) N+
1 ⊆ [keke]: Combine the deductions of parts (i) - (iv).
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(vi) [HN1] ⊆ N+
1 : We continue to fix l > k 6= l′. The product [ζ i,si ζ

l,r
k ] is nonzero

only if i = k or i = l. Assume i = l (the case i = k is similar). Then [ζ i,si ζ
l,r
k ] =

ζ
l,r+s−(λi−1)
k which lies either in N−1 or N+

1 . In order for ζ
l,r+s−(λi−1)
k ∈ N− we require

that l = l′. But in that case i = i′ so by definition of H we have λi − s even. In

particular, s ≤ λi − 2 and r + s− (λi − 1) ≤ r − 1 < λl − 1 so [ζ i,si ζ
l,r
k ] ∈ N+

1 .

(vii) [N0N1] ⊆ N+
1 : The product [ζ i

′,s
i ζ l,rk ] with i 6= i′ is nonzero only if i = l or

i′ = k. Our restrictions on i, l and k ensure that these two possibilities are mutually

exclusive. In the first case

[ζ i
′,s
i ζ l,rk ] = ζ

l′,r+s−(λi−1)
k − εklrζk

′,r+s−(λi−1)
l = (1− εklrεk,l′,r+s−(λi−1))ζ

l′,r+s−(λi−1)
k

however ζ
l′,r+s−(λi−1)
k lies in N−1 only if l = l′. The assumption i = l implies i = i′

contrary to our assumptions.

Now consider the case i′ = k. A calculation similar to the above gives

[ζ i
′,s
i ζ l,rk ] = (εklrεk,l,r+s−(λi−1) − 1)ζ

l,r+s−(λi−1)
i .

Note that this term lies in N−1 only if i = i′ contrary to our assumptions, so (vii)

follows.

(viii) N1 ∩ [N1N1] ⊆ N+
1 : This follows immediately from the final statement of

proposition 3.2.2.

(ix) N1 ∩ [keke] = N+
1 : By (v) we know that N+

1 ⊆ N1 ∩ [keke]. By proposition

3.2.2, N1 ∩ [keke] is equal to the span of those products [ζj,si ζ l,rk ] which lie in N1. By

that same proposition and parts (vi) - (viii) we see that every product [ζj,si ζ l,rk ] which

lies in N1 actually lies in N+
1 . The claim follows.

�

3.2.4. This is an analogue of the previous proposition for H. In particular it allows

us to describe H ∩ [keke] entirely.

Proposition. The following are true:

1. H1 ⊂ [keke];

2. H0 ∩ [keke] = H+
0 .
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Proof. H1 has a basis consisting of vectors ζ i,si with i < i′ and λi − s odd. Fix such

a choice of i and s, and choose r such that λi − r is odd. Following lemma 3.2.1, we

have

[ζ i,si′ ζ
i′,r
i ] = (1 + εi,i′,r)(ζ

i,s+r−(λi−1)
i − ζ i

′,s+r−(λi−1)
i′ ).

Since εi,i,r+s−(λi−1) = (−1)λi−(s+r−(λi−1)) = (−1)(λi−s)+(λi−r)+1 = −1 it follows that

ζ
i′,s+r−(λi−1)
i′ = −ζ i,s+r−(λi−1)

i by part 3 of lemma 1.5.7. Furthermore εi,i′,r = (−1)λi−r+1 =

1. Therefore

[ζ i,si′ ζ
i′,r
i ] = 4ζ

i,s+r−(λi−1)
i

which is nonzero since char(K) 6= 2. We make the observation that the above expres-

sion lies in H1 for any choice of r and s with λi − r and λi − s both odd (∗). Taking

r = λi − 1 we obtain ζ i,si ∈ H ∩ [keke]. Since H1 is spanned by those ζ i,si such that

i < i′ and λi − s is odd we have H1 ⊆ [keke]. This completes (1). For the sake of

clarity we shall divide the proof of part 2 of the current proposition into subsection

(i), (ii), ..., (vii). The approach is much the same as part 2 of proposition 3.2.3. In

parts (i),...,(iv) we show that a spanning set for H+
0 may be found in [keke] and in the

subsequent parts (v), (vi), (vii) we demonstrate that any product [ζj,si ζ l,rk ] which lies

in H0 actually lies in H+
0 .

(i) H0 ∩ [keke] = H0 ∩ [N1N1]: By proposition 3.2.2 we see that H ∩ [keke] =

[N0N0] + (H∩ [N1N1]). The argument for part 1 of the current proposition shows that

[N0N0] ⊆ H1. Since H = H0 ⊕ H1 we get H0 ∩ [keke] = H0 ∩ [N1N1].

(ii) H0∩[N1N1] = span{ζ [j],λ[j]−2m

[j] −ζ [i],λ[i]−2m

[i] : [1] ≤ [i] < [j] ≤ [n], λi−λj < 2m <

λj+λi}: Again by proposition 3.2.2 see that H∩[N1N1] is spanned by products [ζj,si ζj
′,r
i′ ]

with [j] > [i]. In turn [ζj,si ζj
′,r
i′ ] = εi′,j′,r[ζ

j,s
i ζ i,rj ] = εi′,j′,r(ζ

j,r+s−(λi−1)
j − ζ i,r+s−(λj−1)

i ).

The reader will notice that

[ζj,si ζ i,rj ] ∈

 H1 λi + λj − (r + s)− 1 odd;

H0 λi + λj − (r + s)− 1 even.

so that H0 ∩ [N1N1] = span{[ζj,si ζ i,rj ] : [1] ≤ [i] < [j] ≤ [n], 0 ≤ s, r < λi, λi +

λj − (r + s) − 1 even}. If we pick [1] ≤ [i] < [j] ≤ [n] and 0 ≤ s, r < λi such that

λi + λj − (r+ s)− 1 = 2m then we have [ζj,si ζ i,rj ] = εi′,j′,r(ζ
[j],λ[j]−2m

[j] − ζ [i],λ[i]−2m

[i] ). The

constraints placed on s and r are equivalent to λi−λj < 2m < λi+λj, and (ii) follows.
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(iii) Each spanning vector from (ii) lies in a unique Hm
0,l, in particular H0∩[N1N1] =

⊕l,m(Hm
0,l ∩ [N1N1]): Fix m in the appropriate range and suppose 1 ≤ i < at(m),m We

claim that if [j] > [i] then each ζ
[j],λ[j]−2m

[j] − ζ
[i],λ[i]−2m

[i] ∈ H0 ∩ [N1N1] lies in Hm
0,l

where l is the unique integer fulfilling [al,m] ≤ [i] < [al+1,m]. It will suffice to show

that given i, j, l and m as above we have [j] < [al+1,m]. To see this, suppose that

[j] ≥ [al+1,m]. Then by our choice of al+1,m we have λal+1,m−1 − λal+1,m
≥ 2m which

implies λi − λj ≥ 2m contrary to the restriction λi − λj < 2m noted in the statement

of (ii). We conculde that [al,m] ≤ [i] < [j] < [al+1,m] and that the corresponding

spanning vector lies in Hm
0,l. In case at(m),m ≤ i we have ζ

[j],λ[j]−2m

[j] −ζ [i],λ[i]−2m

[i] ∈ Hm
0,t(m)

by definition. Thus we have shown that the spanning vectors of H0 ∩ [N1N1] each lie

in some Hm
0,l, as claimed.

(iv) Hm,+
0,l ⊆ Hm

0,l ∩ [N1N1] for all l,m: Suppose 1 ≤ i < at(m),m. Since λat(m),m−1 −

λat(m),m
≥ 2m we know that λat(m),m−1 ≥ 2m and so λi ≥ 2m. It follows that

ζ
[i],λ[i]−2m

[i] 6= 0 for all such i. Fix [al,m] < [i] < [al+1,m]. By our choice of integers

{a1,m, ..., at(m),m} we know that λ[i]−1 − λ[i] < 2m and since λ[i]−1, λ[i] ≥ λat(m),m
≥ 2m

we have λ[i]−1 +λ[i] > 2m. By these remarks, using (ii), it follows that ζ
[i]−1,λ[i]−1−2m

[i]−1 −

ζ
[i],λ[i]−2m

[i] is a nonzero element of Hm
0,l ∩ [N1N1]. These vectors span all of Hm,+

0,l so (iv)

follows for l < t(m). The argument for l = t(m) is similar. Let k = max{i : λi ≥ 2m}.

Then ζ i,λi−2m
i 6= 0 if and only if i ≤ k so Hm

0,t(m) = span{ζ [i],λ[i]−2m

[i] : [at(m),m] ≤ [i] ≤

[k]}. Fix [at(m),m] < [i] ≤ [k]. By our choice of integers {a1,m, ..., at(m),m} we know that

λ[i]−1 − λ[i] < 2m and by our choice of k we have λ[i]−1 + λ[i] > 2m. The argument

now concludes exactly as above.

(v) Hm
0,l ∩ [N1N1] = Hm,+

0,l for all 1 ≤ l < t(m): The discussion in (iii) confirms

that Hm
0,l∩ [N1N1] = span{ζ [j],λ[j]−2m

[j] −ζ [i],λ[i]−2m

[i] : [al,m] ≤ [i] < [j] < [al+1,m], λi−λj <

2m < λj + λi}. This space is clearly contained in Hm,+
0,l . By (iv) we have equality.

(vi) Hm
0,t(m) ∩ [N1N1] = Hm

0,t(m): Again by (iv) we have Hm,+
0,t(m) ⊆ Hm

0,t(m) ∩ [N1N1].

If λat(m),m
< 2m then Hm

0,t(m) = 0 by part 1 of lemma 3.1.3 and the statement holds

trivially. Assume λat(m),m
≥ 2m. Let k = max{i : λi ≥ 2m} so that Hm

0,t(m) =

span{ζ [i],λ[i]−2m

[i] : [at(m),m] ≤ [i] ≤ [k]}. We claim that [k]+1 ≤ [n]. If not then [k] = [n]

which implies that λk − λk+1 = λk ≥ 2m implying that k + 1 ∈ {a1,m, ..., at(m),m},

however k + 1 > at(m),m and a1,m ≤ · · · ≤ at(m),m, and this contradiction confirms the

claim. By the very same reasoning we know that λ[k] − λ[k]+1 = λk − λk+1 < 2m and
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the inequality [k] + 1 ≤ n gives us λ[k]+1 > 0 which in turn implies λ[k] + λ[k]+1 > 2m.

By (ii) and (iii) we have ζ
[k]+1,λ[k]+1−2m

[k]+1 − ζ [k],λ[k]−2m

[k] ∈ Hm
0,t(m). Since λk+1 < 2m we

know that ζ
[k]+1,λ[k]+1−2m

[k]+1 = 0. Since ζ
[k],λ[k]−2m

[k] /∈ Hm,+
0,t(m) and Hm,+

0,t(m) has codimension

1 in Hm
0,t(m) part (vi) follows.

(vii) H0 ∩ [keke] = H+
0 : By (i) and (iii) we have

H0 ∩ [keke] = ⊕l,m(Hm
0,l ∩ [N1N1]).

The proposition now follows from (v) and (vi). �

3.2.5. We may finally state and prove the decomposition theorem for [keke].

Theorem. The derived subalgebra [keke] is equal to the direct sum

N0 ⊕N+
1 ⊕ H+

0 ⊕ H1.

Proof. The sum of the above spaces is direct by construction. By Proposition 3.2.2

we know that [keke] is the sum of the three spaces

[keke] = N0 ∩ [keke] + N1 ∩ [keke] + H ∩ [keke].

By proposition 3.2.3 we have N0 ∩ [keke] + N1 ∩ [keke] = N0 + N+
1 . By proposition

3.2.4 using the fact that H = H0 ⊕ H1 we have H ∩ [keke] = H1 + H+
0 . The theorem

follows. �

3.3 An expression for dim kabe

3.3.1. As a corollary to the previous theorem we obtain an expression for the

dimension of the maximal abelian quotient kab
e = ke/[keke]. Suppose λ = (λ1, ..., λn)

and recall from the introduction that ∆(λ) is the set of indexes between 1 and n− 1

such that i = i′, i+ 1 = (i+ 1)′ and λi−1 6= λi ≥ λi+1 6= λi+2. We then set

s(λ) :=
n∑
i=1

bλi − λi+1

2
c.

Here we have adopted the convention λ0 = λn+1 = 0. The pairs (i, i+1) with i ∈ ∆(λ)

are the 2-steps for λ. These notations shall be used repeatedly in all that follows.

Corollary. If Oe has partition λ then c(λ) := dim kab
e = s(λ) + |∆(λ)|.
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Proof. Recall that ke = H⊕N0⊕N1, that N1 = N−1 ⊕N+
1 , and that H = H0⊕H1 with

H+
0 ⊆ H0. By theorem 3.2.5 we have kab

e
∼= N1/N

+
1 ⊕H0/H

+
0 as vector spaces. We claim

that dimN1/N
+
1 = |∆(λ)| and that dimH0/H

+
0 = s(λ), from whence the theorem shall

follow. First of all observe that dimN1/N
+
1 = dimN−1 . By part 3 of lemma 1.5.7 the

maps ζ i,λi−1
i−1 spanning N−1 are all linearly independent. Define an injection from the set

of N−1 spanning vectors {ζ i+1,λi+1−1
i : i = i′, i+ 1 = (i+ 1)′, L(i) = i, U(i+ 1) = i+ 1}

to {1, ..., n− 1} via

ζ
i+1,λi+1−1
i 7→ i.

We claim that this map is actually a bijection onto ∆(λ). The condition i = i′

and i + 1 = (i + 1)′ hold by definition. The condition L(i) = i is equivalent to

λi−1 6= λi and U(i + 1) = i + 1 is equivalent to λi+1 6= λi+2. The inequality λi ≥ λi+1

holds by definition, so the map defined above is indeed a bijection. We deduce that

dimN1/N
+
1 = dimN−1 = |∆(λ)|.

We must now show that dimH0/H
+
0 = s(λ). Observe that H0 = ⊕l,mHm

0,l (part 2 of

lemma 3.1.3) and that each Hm,+
0,l has codimension 1 in Hm

0,l. Furthermore if l < t(m)

then Hm
0,l 6= 0. We conclude that dimH0/H

+
0 = |H| where

H := {(l,m) : 1 ≤ l ≤ t(m)− 1, 1 ≤ m ≤ bλ1

2
c}}.

Now rewrite s(λ) = |Σ| where

Σ := {(i,m) ∈ {2, ..., n+ 1} × {1, ..., bλ1

2
c} : λi−1 − λi ≥ 2m}.

If we define a bijection from H to Σ, then the result follows. Define a map from H to

{2, ..., n+ 1} × {1, ..., bλ1
2
c} by the rule

(l,m) 7→ (al+1,m,m).

By the definition of the integers {a1,m, a2,m, ..., at(m),m} it is a well defined injection

into Σ. Fix 1 ≤ m ≤ bλ1
2
c. Since λ0 = 0 and λ1 ≥ · · · ≥ λn, we have a1,m = 1 and

{a2,m, ..., at(m),m} is the set of all integers i such that λi−1 − λi ≥ 2m. Thus the map

is surjective and dimH0/H
+
0 = s(λ). �

3.4 The Kempken-Spaltenstein algorithm

3.4.1. As we explained in the introduction, the Kempken-Spaltenstein algorithm is a

tool for combinatorially enumerating the sheets of k containing a given nilpotent orbit.
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By studying the classification of sheets and the partitions associated to induced orbits

we are able to construct a bijection between the sheets containing Oe and the so called

admissible sequences upto reordering (Corollary 3.8.9). The latter data is sufficiently

explicit to classify the nilpotent orbits lying in a unique sheet (Corollary 3.8.1). This

section shall introduce the algorithm in its abstract form.

3.4.2. First we shall need a notion of rigid partition. The rigid nilpotent orbits in k

are classified by Kempken and Spaltenstein in [35], [75] as follows:

Theorem. Let e ∈ N (k) have partition λ = (λ1, ..., λn) ∈ Pε(N). Then e is rigid if

and only if

• λi − λi+1 ∈ {0, 1} for all 1 ≤ i ≤ n;

• the set {i ∈ ∆(λ) : λi = λi+1} is empty.

3.4.3. We recover the following, which was first proven in [86, Theorem 12]

Corollary. [keke] = ke if and only if e is rigid.

Proof. Note that [keke] = ke if and only if dim kab
e = 0. Apply Corollary 3.3.1 and

Theorem 3.4.2. �

3.4.4. Given the above classification of rigid orbits we have a well defined notion of

a rigid partition. Following [13] we denote by Pε(N)∗ the subset of rigid partitions.

Throughout this section λ = (λ1, λ2, ..., λn) shall remain to denote an element of Pε(N)

ordered in the usual manner λ1 ≥ · · · ≥ λn. Moreau describes an algorithm [50] used

in the computation of dimensions of sheets for classical Lie algebras. Her algorithm

takes λ ∈ Pε(N) and returns an element of Pε(M) for some M ≤ N , then iterates.

It finally terminates when the output is a rigid partition. Our algorithm extends her

method.

3.4.5. We say that Case 1 or 2 occur for λ at index i as follows:

Case 1

λii ≥ λii + 2

Case 2

i ∈ ∆(λi) and λii = λii+1.
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In the hope of avoiding any confusion we shall use ‘Case’ when referring to Case 1 or

Case 2, and we shall use ‘case’ to refer to a particular situation. We say that an index

i ∈ {1, ..., n} is admissible for λ if Case 1 or 2 occurs for λ at i. If Case 1 occurs then

we define

λ(i) := (λ1 − 2, λ2 − 2, ..., λi − 2, λi+1, ..., λn)

whilst if Case 2 occurs at i then define

λ(i) := (λ1 − 2, λ2 − 2, ..., λi−1 − 2, λi − 1, λi+1 − 1, λi+2, ..., λn).

In each case the reader may check that we have λi ∈ Pε(N − 2i).

3.4.6. Let i = (i1, ..., il) be a sequence of integers and i′ = (i1, ..., il−1). We shall now

explain what it means for i to be an admissible sequence for λ, and construct a partition

λi ∈ Pε(N − 2
∑l

j=1 ij) for all admissible sequences i. We may state both definitions

using an inductive process. By convention the empty sequence ∅ is admissible for λ

and λ∅ = λ. If l = 1 the we say that i is an admissible sequence if i1 is an admissible

index. In this situation λi is defined in the previous paragraph. For l > 1 we say that

i is as admissible sequence for λ provided i′ is admissible and il is an admissible index

for λi
′
. If i is admissible then we define

λi := (λi
′
)(i).

3.4.7. A maximal admissible sequence for λ is one which is not a proper subsequence

of an admissible sequence for λ. The following shows that the KS algorithm always

terminates with a rigid partition as the output.

Lemma. Let i be an admissible sequence for λ. Then i is maximal admissible if, and

only if, λi is a rigid partition.

Proof. This follows from the definition of maximal admissible sequences, given Kemp-

ken’s classification of rigid nilpotent orbits in terms of partitions. �

Remark. The algorithm is transitive in the following sense: if i is an admissible

sequence for λ and j is an admissible sequence for λi then (i, j) is an admissible

sequence for λ, where (i, j) denotes the concatenation of the two sequences i and j.

Furthermore λ(i, j) = (λi)j.
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3.5 Non-singular partitions and preliminaries of the

algorithm

3.5.1. Before placing the algorithm into the geometric context for which it was

intended we shall discuss it purely combinatorially. This section will contain one

important definition and several useful lemmas.

3.5.2. Let λ = (λ1, ..., λn) ∈ Pε(N). In Section 1.12.2.4 of the introduction we

introduced the 2-steps for λ, the bad 2-steps and explained what it means for λ to

be singular. Let us recap these definitions. The 2-steps for λ are simply the pairs

(i, i + 1) with i ∈ ∆(λ). A 2-step (i, i + 1) is said to have a bad boundary if either of

the following hold:

• λi−1 − λi ∈ 2N;

• λi+1 − λi+2 ∈ 2N.

A 2-step is then called bad if it has a bad boundary. If λ has a bad 2-step it is called

singular and otherwise it is called non-singular. In the next section we shall interpret

these singular and non-singular partitions in geometric terms. In particular we shall

show that singular partitions correspond precisely to the nilpotent singular points on

the varieties k(m), hence their name.

Figure 3.1: The Young diagrams of two singular partitions in P1(15) and P−1(10).
The bad 2-steps are (3, 4) and (2, 3), respectively.

3.5.3. We now collect some elementary lemmas about the behaviour of the algorithm.

For the remnant of the subsection we assume that λ ∈ Pε(N) has the standard ordering

λ1 ≥ · · · ≥ λn. These first two lemmas tell us how ∆(λ) changes as we iterate the

algorithm.
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Lemma A. Suppose i = (i) is a sequence of length 1. If Case 2 occurs for λ at

index i then ∆(λi) = ∆(λ) \ {i}. Furthermore, if (i, i + 1) is a good 2-step of λ then

s(λi) = s(λ).

Proof. We shall suppose that there is an index

j ∈ ∆(λ) \
(
∆(λi) ∪ {i}

)
and derive a contradiction. Observe that if j < i − 2 (resp. j > i + 2) then for

k ∈ {j − 1, j, j + 1, j + 2} we have that λik = λk − 2 (resp. λik = λk). So j ∈ ∆(λ) if

and only if j ∈ ∆(λi). It remains to show that if j = i± 1 or j = i± 2 and j ∈ ∆(λ)

then j ∈ ∆(λi). If j = i± 1 and j ∈ ∆(λ) then λi 6= λi+1 contradicting the fact that

Case 2 occurs for λ at index i.

Suppose j = i−2. Then j, j+2 ∈ ∆(λ) and hence λj+1 6= λj+2 and (j+1)′ = j+1,

(j + 2)′ = j + 2. As a consequence λj+1 − λj+2 is even implying that λj+1 − λj+2 ≥ 2

and λij+1 6= λij+2. Since for k ∈ {j − 1, j, j + 1} the equality λik = λk − 2 holds, we

conclude that j ∈ ∆(λi). A similar argument shows that if j = i + 2 then j ∈ ∆(λ)

implies j ∈ ∆(λi). We conclude that ∆(λi) = ∆(λ) \ {i}.

Now suppose (i, i+ 1) is a good 2-step of λ. Since λi+1−λi+2 and λi−1−λi if i > 1

are odd we have that⌊
(λii+1 − λii+2)/2

⌋
= b((λi+1 − 1)− λi+2)/2

⌋
= b(λi+1 − λi+2)/2

⌋
and ⌊

(λii−1 − λii)/2
⌋

=
⌊
((λi−1 − 2)− (λi − 1))/2

⌋
=
⌊
(λi−1 − λi)/2

⌋
if i > 1. As λij = λj for j 6∈ {i, i+ 1} it follows that s(λi) = s(λ) as claimed. �

Lemma B. If i is an admissible sequence for λ then ∆(λi) ⊆ ∆(λ).

Proof. In view of Lemma 3.5.3(A) and Remark 3.4.7 it will suffice to prove the current

lemma when i = (i) and i is an index at which Case 1 occurs for λ. Suppose j ∈ ∆(λi).

Then since Case 1 preserves the parity of the entries of λ (that is to say λik ≡ λk mod 2

for 1 ≤ k ≤ n), we deduce that j′ = j and (j + 1)′ = j + 1. If j < i or j > i+ 1 then

λj−1 − λj = λij−1 − λij and λj+1 − λj+2 = λij+1 − λij+2 showing that j ∈ ∆(λ) in these

cases. If j = i+1 then λj−1−λj = λij−1−λij +2 and λj+1−λj+2 = λij+1−λij+2. Hence

j ∈ ∆(λ). Finally, if j = i then λj−1−λj = λij−1−λij+2 and λj+1−λj+2 = λij+1−λij+2.

Thus j ∈ ∆(λ) in all cases and our proof is complete. �
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3.5.4. Now we show that good 2-steps are preserved by the algorithm.

Lemma. If (i, i+ 1) is a good 2-step for λ, i is an admissible sequence and i ∈ ∆(λi)

then (i, i+ 1) is a good 2-step for λi.

Proof. It suffices to prove the lemma when i = (i1) is an admissible of length 1.

Suppose first that Case 1 occurs at index i1. Then λij−λij+1 ≡ λj−λj+1 mod 2 for all

j. Since (i, i+1) is good for λ it follows that λii−1−λii is odd (or i = 1) and λii+1−λii+2

is odd, so that (i, i + 1) is a good 2-step for λi. Now suppose Case 2 occurs for λ at

index i1. We may assume that i1 6= i. If i1 = i − 1 or i1 = i − 2 then i1 ∈ ∆(λ)

implies ε(−1)λi−1 = −1 and λi−1 − λi is even, contrary to the assumption that the

2-step (i, i + 1) is good for λ. Similarly, if i1 = i + 1 or i1 = i + 2 then λi+1 − λi+2 is

even, contradicting the assumption that (i, i + 1) is good. It follows that i1 < i − 2

or i1 > i + 2, from whence it immediately follows that (i, i + 1) is a good 2-step for

λi. �

Corollary. If λ is non-singular then λi is non-singular for any admissible sequence i.

Proof. If i ∈ ∆(λi) then i ∈ ∆(λ) by Lemma 3.5.3(B). Since λ is non-singular, (i, i+1)

is a good 2-step for λ. By Lemma 3.5.4, (i, i+ 1) is good for λi. �

3.6 The maximal length of admissible sequences

3.6.1. In this section we shall give a combinatorial formula for the maximal length

of admissible sequences for λ. The formula shall be of central importance to our

results on sheets. First we shall need some further terminology related to partitions

λ = (λ1, . . . , λn) ∈ Pε(N).

3.6.2. A sequence 1 ≤ i1 < i2 < · · · < ik < n with k ≥ 2 is called a 2-cluster of

λ whenever ij ∈ ∆(λ) and ij+1 = ij + 2 for all j. Analogous to the terminology for

2-steps we say that a 2-cluster i1, ..., ik has a bad boundary if either of the following

conditions holds:

• λi1−1 − λi1 ∈ 2N;

• λik+1 − λik+2 ∈ 2N
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If i1 = 1 the the first condition may be omitted, since λi1−1 − λi1 is negative in this

case. A bad 2-cluster is one which has a bad boundary, whilst a good 2-cluster is one

without a bad boundary.

Lemma. A good 2-cluster is maximal in the sense that it is not a proper subsequence

of any 2-cluster.

Proof. If i1, ..., ik is a good 2-cluster then λi1−1 − λi1 , λik+1 − λik+2 /∈ 2N. The fact

that i1, ik ∈ ∆(λ) means that ε(−1)λi1 = ε(−1)λik+1 = −1. Combining these few

observations we get ε(−1)λi1−1 = ε(−1)λik+2 = 1 and so i1 − 2 /∈ ∆(λ) and ik + 2 /∈

∆(λ). �

3.6.3. We introduce the notations:

∆bad(λ) := {the bad 2-steps of λ};

Σ(λ) := {the good 2-clusters of λ};

and write

z(λ) = s(λ) + |∆(λ)| −
(
|∆bad(λ)| − |Σ(λ)|

)
.

It is immediate from the definitions that |∆bad(λ)| ≥ |Σ(λ)| and |∆bad(λ)| = |Σ(λ)| if

and only if ∆bad(λ) = ∅.

Lemma. |Σ(λ)| ≥ |Σ(λi)| for length 1 admissible sequences i = (i), unless Case 2

occurs at i and

i− 4, i− 2, i, i+ 2, i+ 4

is a subsequence of a good 2-cluster, in which case |Σ(λ)| = |Σ(λi)| − 1.

Proof. We make the notation i = (i). In this first paragraph we deal with the possibil-

ity that Case 1 occurs for λ at index i. Let us consider some necessary conditions for

Σ(λ) 6= Σ(λi). We require that i− 1 or i+ 1 lie in ∆(λ), that the 2-steps (i− 1, i) or

(i+ 1, i+ 2) (or both) constitute a 2-step in a good 2-cluster, and that λi − λi+1 = 2.

Let us assume these conditions. If precisely one of the two i − 1, i + 1 lies in ∆(λ)

(we may assume i− 1 ∈ ∆(λ)) then it follows that the good 2-cluster in question has

the form i1 ≤ · · · ≤ ik = i − 1. But λik+1 − λik+2 = 2 then implies that the 2-cluster

has a bad boundary; a contradiction. It follows that both i− 1 and i+ 1 lie in ∆(λ).
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Then we have a good 2-cluster i1 ≤ · · · ≤ i − 1 = il ≤ il+1 = i + 1 ≤ · · · ≤ ik.

However the sequences i1, i2, ..., il−1 and il+2, ..., ik−1, ik are either of length ≤ 1, or are

bad 2-clusters for λi, so |Σ(λ)| = |Σ(λi)|+ 1.

Now suppose Case 2 occurs at index i. Similar to the previous case Σ(λ) is only

affected if (i, i + 1) is a bad 2-step in a good 2-cluster. If precisely one of i − 2 and

i+2 lie in ∆(λ) (we may assume i−2 ∈ ∆(λ)) then such a 2-cluster will take the form

i1, ..., ik = i. If k > 2 then i1, ..., ik−1 is a good 2-cluster for λi so that |Σ(λi)| = |Σ(λ)|.

If k = 2 (we know k ≥ 2) then the 2-cluster is eradicated by the iteration of the

algorithm and |Σ(λi)| = |Σ(λ)| − 1.

Suppose that both i − 2 and i + 2 lie in ∆(λ). Then Σ(λ) is unaffected unless

i1, ..., ij = i, ..., ik is a good 2-cluster, which we shall assume from henceforth. Note

that j ≥ 2 and k − j ≥ 1 by assumption. If j = 2 and k − j = 1 then the good 2-

cluster is no longer present for λi and |Σ(λ)| = |Σ(λi)|−1. If j > 2 and k− j = 1 then

i1, ..., ij−1 is a good 2-cluster for λi and |Σ(λ)| = |Σ(λi)|. The situation when j = 2 and

k− j > 1 is very similar. In the final case j > 2, k− j > 1 and i− 4, i− 2, i, i+ 2, i+ 4

is a subsequence of a good 2-cluster, as in the statement of the lemma. Here both

i−2j, ..., i−2 and i, i+2, ..., i+2k are good 2-clusters for λi so that |Σ(λ)| = |Σ(λi)|−1

as required. �

3.6.4. Before continuing we shall need some notation. We define a construction

which takes λ ∈ Pε(N) to λS ∈ Pε(N − 2k) for some k ≥ 0. It is based entirely on

application of the algorithm. The partition λS is call the shell of λ and is constructed

as follows: for all 1 ≤ i ≤ n we apply Case 1 repeatedly; if λi − λi+1 ∈ 2N and if i− 1

or i+ 1 lie in ∆(λ) then apply Case 1 until λii−λii+1 = 2; if we are not in the previous

situation then apply Case 1 until λii − λii+1 ∈ {0, 1}; finally apply Case 2 at every

index i such that (i, i+1) is a good 2-step. In order to keep the notation consistent we

may regard S as the admissible sequence of indices (chosen in ascending order) used

to construct λS.

3.6.5. Retain the convention λ = (λ1, ..., λn) with
∑
λi = N . In order to make use

of the shell λS we shall interest ourselves firstly in the set of partitions which equal

their own shell λ = λS, and secondly in the relationship between a partition and its

shell. It turns out that certain properties of a partition λ = λS are controlled by the

properties of certain special partitions constructed from λ. A profile µ of λ is a partition
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Figure 3.2: The dotted perimeter represents the Young diagram of the partition λ =
(7, 7, 6, 4, 4, 2, 1, 1) ∈ P−1(32). The solid perimeter represents the profile of λ of type
(3, 7).

constructed in the following manner: choose indices (j, k) with 0 < j ≤ k ≤ n+1 such

that i = i′ for all j ≤ i < k, and such that j − 1 6= (j − 1)′ (or j − 1 = 0) and k 6= k′

(or k = n+ 1). Define µ = (µ1, ..., µk−j) by the rule

µi = λi+(j−1) − λk.

If k < n+ 1 then in order to preserve the condition i = i′ we regard µ as an element of

P1(
∑k−1

i=j λi− (k− j)λk). If k = n+ 1 then λk = 0 and we may regard µ is an element

of Pε(
∑n

i=j λi). We say that the profile µ constructed in this manner is of type (j, k),

and we include Figure 3.2 to show what is intended by the definition.

3.6.6. Suppose µ is a profile of λ of type (j, k) and i = (i1, ..., il) is an admissible

sequence for µ. Then the j-adjust of i is the sequence

(i) = (i1 + (j − 1), i2 + (j − 1), ..., il + (j − 1)).

It is clear that (i) is an admissible sequence for λ.

Proposition. Suppose λ is equal to its shell and let µ(1), µ(2), ..., µ(l) be a complete

set of distinct profiles for λ, with µ(m) of type (jm, km). Then the following hold:

1. z(λ) =
∑l

i=1 z(µ(i)).

2. If i(m) is admissible sequence for µ(m) then

(1(i(1)), 2(i(2)), ..., l(i(l)))

is an admissible sequence for λ, where this last sequence is obtained by concate-

nating the sequences m(i(m)).
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Proof. Since λ = λS all differences λi − λi+1 are equal to 0, 1, or 2. If λi − λi+1 = 2

then necessarily i− 1 ∈ ∆(λ) or i+ 1 ∈ ∆(λ). In either case i = i′, i+ 1 = (i+ 1)′ (or

i = n) and it follows that there exists a profile of type (j, k) with j ≤ i and i+ 1 < k

(or i < k when i = n). Then each index i for which λi − λi+1 = 2 contributes 1

to s(λ) and 1 to
∑l

j=1 s(µ(j)) so that s(λ) =
∑l

j=1 s(µ(j)). The condition λ = λS

also implies that all 2-steps are bad 2-steps so that |∆(λ)| = |∆bad(λ)|. Similarly

µ(m) = µ(m)S so |∆(µ(m))| = |∆bad(µ(m))| for all m, and it remains to prove that

|Σ(λ)| =
∑l

i=1 |Σ(µ(i))|. This follows from the fact that all good 2-clusters i1 ≤ · · · ≤ il

fulfil i = i′ for all i1 ≤ i ≤ il + 1 so for each such 2-cluster there exists profile of type

(j, k) with j ≤ i1 and il + 1 < k. Part (1) follows.

The second actually holds even when λ 6= λS. For obvious reasons the indices of the

distinct profiles do not overlap, and we may assume that km < jm+1 for m = 1, ..., l−1.

Then for 1 ≤ i < l we set j(i) = (1(i(1)), ..., i(i(i))) and note that λ
j(i)
r = λr for all

r ≥ ji+1. Using that i+1(i(i + 1)) is admissible for λ we obtain by induction that

i+1(i(i + 1)) is an admissible sequence for λj(i). By the transitivity of the algorithm

we deduce then that (1(i(1)), 2(i(2)), ..., l(i(l))) is admissible for λ as required. �

3.6.7. The previous lemma allows us to obtain admissible sequences of length z(λ)

by piecing together sequences for the profiles. Now we demonstrate the existence of a

sequence of length z(λ) for each profile.

Proposition. Let λ = (λ1, .., λn) be a partition and suppose that i = i′ for all 1 ≤ i ≤

n. Then there exists an admissible sequence for λ of length z(λ).

Proof. A partition λ fulfilling i = i′ for all 1 ≤ i ≤ n contains a good 2-cluster if

and only if 1, 3, 5, ..., n− 1 is good 2-cluster. In this case it is the only good 2-cluster.

Suppose that this is the case. Of course this implies that n is even and ε = 1, so λn

is odd. Construct a sequence i by repeatedly applying Case 1 at indices 2i − 1 for

1 ≤ i ≤ n
2

so that λi2i−1 − λi2i = 0 for all such i. Then

|i| =
n
2∑
i=1

bλ2i−1 − λ2i

2
c.

We construct an admissible i′ by subsequently applying Case 1 at indices 2i for 1 ≤

i ≤ n so that λi
′

2i − λi
′

2i+1 = 2 for all such i. Our sequence i′ has length

|i′| = s(λ)− (
n

2
− 1).
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At this point we are able to say precisely what λi
′

looks like. We have λi
′

= λS =

(n−1, n−1, n−3, n−3, ..., 3, 3, 1, 1). Finally we obtain i′′ by applying Case 2 precisely

once at each index 2i − 1 for 1 ≤ i ≤ n
2
. The partition λi

′′
is rigid, so i′′ is maximal

(Lemma 3.4.7) and

|i′′| = s(λ) + 1.

In order to complete this part of the proof we must show that z(λ) = s(λ) + 1. Notice

that our assumptions on λ imply that every 2-step is bad. Therefore |∆(λ)| = |∆bad(λ)|

and by our original remarks z(λ) = s(λ) + 1 as required.

Now assume that λ has no good 2-clusters. Since i = i′ for all i we may apply

Case 1 repeatedly at all indices to obtain a maximal admissible partition. Clearly |i| =

s(λ). Once again all 2-steps are bad so that |∆(λ)| = |∆bad(λ)|, and by assumption

|Σ(λ)| = 0. Hence z(λ) = s(λ) = |i| as promised. �

3.6.8. Finally we may state and prove the main theorem of this section.

Theorem. We have that

z(λ) = max |i|

where the maximum is taken over all admissible sequences i for λ.

Proof. We begin by showing that z(λ) ≥ z(λi) + 1 where i = (i) is an admissible

sequence of length 1 for λ. First assume Case 1 occurs for λ at i. Then s(λi) =

s(λ) − 1. Furthermore, if the iteration at i removes a 2-step (ie. if λi − λi+1 = 2

and either i − 1 ∈ ∆(λ) or i + 1 ∈ ∆(λ) or both) then that 2-step is bad. Therefore

|∆(λ)|−|∆(λi)| = |∆bad(λ)|−|∆bad(λi)|. It remains to be seen that the number of good

2-clusters does not increase as we pass from λ to λi. This follows from Lemma 3.6.3.

Now suppose that Case 2 occurs for λ at index i. Certainly if (i, i + 1) is a good

2-step then z(λi) = z(λ)−1, so we may assume that (i, i+ 1) is a bad 2-step. Suppose

first that this 2-step has precisely one bad boundary. We may assume that λi−1 − λi
is even and λi+1 − λi+2 is odd. We can deduce at this point that s(λi) = s(λ)− 1 and

|∆(λi)| = |∆(λ)| − 1. If i − 2 /∈ ∆(λ) then |∆bad(λi)| = |∆bad(λ)| − 1. Similarly, if

i− 2 ∈ ∆(λ) and λi−3−λi−2 is even then |∆bad(λi)| = |∆bad(λ)|− 1. In either of these

two situations the number of good 2-clusters decreases, thanks to Lemma 3.6.3. Hence

z(λ) ≥ z(λi) + 1 once again. We must now consider the possibility that i− 2 ∈ ∆(λ)



96 CHAPTER 3. THE DERIVED SUBALGEBRA AND SHEETS

and λi−3 − λi−2 is odd. In this situation s(λi) = s(λ) − 1, |∆(λi)| = |∆(λ)| − 1 and

|∆bad(λi)| = |∆bad(λ)| − 2. Notice that i− 2, i is a good 2-cluster for λ but not for λi,

so that |Σ(λi)| = |Σ(λ)| − 1 and z(λi) = z(λ) − 1. A similar argument works when

λi−1 − λi is odd but λi+1 − λi+2 = 2.

Now we assume that (i, i + 1) is a bad 2-step and that both boundaries are bad.

If neither i− 2 nor i+ 2 lie in ∆(λ) then s(−) decreases by 2, |∆(−)| decreases by 1,

and |∆bad(−)| decreases by 1 upon passing from λ to λi. Certainly |Σ(−)| may only

decrease, by lemma 3.6.3, and so z(λ) ≥ z(λi) + 1 in this situation. Now move on and

suppose that precisely one of i − 2 and i + 2 lie in ∆(λ). We shall examine the case

i− 2 ∈ ∆(λ), the other being very similar.

When λi−3 − λi−2 is odd s(λi) = s(λ) − 2, |∆(λi)| = |∆(λ)| − 1 and |∆bad(λi)| =

|∆bad(λ)| − 2 (since (i − 2, i − 1) is no longer a bad 2-step after this iteration). Fur-

thermore (i, i+ 1) cannot make up a 2-step in a good 2-cluster since i+ 2 /∈ ∆(λ) and

λi+1 − λi+2 is even, therefore |Σ(λ)| remains unchanged. So consider the possibility

that (i− 2, i− 1) has two bad boundaries: that λi−3 − λi−2 is even. Then our conclu-

sions are exactly the same as before, except that |∆bad(λi)| = |∆bad(λ)| − 1. In either

situation z(λi) ≥ z(λ)− 1.

Finally we have the situation i− 2, i+ 2 ∈ ∆(λ). Once again we must distinguish

between the number of bad boundaries attached to the 2-steps (i − 2, i − 1) and

(i+2, i+3). Suppose that both of these 2-steps have a single bad boundary (they have

at least 1). Then i−2, i, i+ 2 is a good 2-cluster. It is immediately clear upon passing

from λ to λi that s(λi) = s(λ) − 2, |∆(λi)| = |∆(λ)| − 1, |∆bad(λi)| = |∆bad(λ)| − 3,

and |Σ(λi)| = |Σ(λ)| − 1. Once again z(λi) ≥ z(λ)− 1 follows. The last two situations

to consider are when precisely one of the two 2-steps (i − 2, i − 1) and (i + 2, i + 3)

has two bad boundaries, and when both of them have two bad boundaries.

Take the former situation. We may assume that (i−2, i−1) has two bad boundaries,

and (i + 2, i + 3) has one (the opposite configuration is similar). Upon iterating the

algorithm, s(λi) = s(λ) − 2, |∆(λi)| = |∆(λ)| − 1 and |∆bad(λi)| = |∆bad(λ)| − 2. By

lemma 3.6.3, |Σ(λi)| ≤ |Σ(λ)|. In the final case (i−2, i−1) and (i+2, i+3) both have

two bad boundaries. The outcome is that s(λi) = s(λ)− 2, |∆(λi)| = |∆(λ)| − 1 and

|∆bad(λi)| = |∆bad(λ)| − 1 both decrease by 1 and by Lemma 3.6.3 either |Σ(λi)| =

|Σ(λ)| or |Σ(λi)| = |Σ(λ)|+ 1.
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We have eventually shown that z(λ) ≥ z(λi) + 1. Recall that for any maximal

admissible sequence i the partition λi is rigid. Also notice that z(λ) = 0 for any rigid

partition λ. We deduce for any maximal admissible sequence i of length l, that

z(λ) ≥ z(λi2) + 1 ≥ z(λi3) + 2 ≥ · · · z(λil+1) + l = l.

Here ik denotes (i1, ..., ik−1). In order to complete the proof we shall exhibit a maximal

admissible sequence of length z(λ). This shall require some reductions.

Notice first that z(λ) decreases by 1 at each iteration when we apply Case 1 in con-

structing the shell λS. Therefore we may assume that λ = λS. Let µ(1), µ(2), ..., µ(l)

be a complete set of distinct profiles for λ, as in the statement of Proposition 3.6.6. By

Proposition 3.6.7 we know that for each 1 ≤ m ≤ l there is an admissible sequence of

length z(µ(m)) for µ(m). Using Part (2) of Proposition 3.6.6 we obtain an admissible

sequence for λ of length
∑l

i=1 z(µ(i)), and by Part (1) of the same proposition that

length is equal to z(λ). Hence a sequence of the correct length exists, and the theorem

follows. �

3.6.9. The following corollary shall be of some importance to our later work.

Corollary. For all λ ∈ Pε(N) the following hold:

1. c(λ) ≥ z(λ);

2. c(λ) = z(λ) if and only if λ is non-singular.

Proof. Part (1) follows from the fact that |∆bad(λ)| ≥ |Σ(λ)| for all partitions λ. For

Part (2) we observe that |∆bad(λ)| − |Σ(λ)| = 0 if and only if λ is non-singular. �

3.7 Conjugacy classes of Levi subalgebras

3.7.1. Before we describe the relationship between admissible sequences and sheets

we shall need to classify the Levi subalgebras of the classical Lie algebra k of type

B, C or D, and give a representative for each class. It is well known that every Levi

subalgebra is isomorphic to a standard Levi subalgebra, and that these in turn are

constructed from the subsets of the simple roots. It follows that the conjugacy classes

of such algebras are 1-1 with subsets of simple roots modulo the action of the Weyl
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group. For our purposes we shall need a classification in terms of the standard form

which we gave in Lemma 1.2.5.

3.7.2. Assume the notations h, Φ and Π of Section 1.1.8 and write ` = rank k.

Give the simple roots Π = {α1, ..., α`} the standard ordering. From every sequence

i = (i1, ..., il) (possibly empty) of natural numbers with
∑
ij ≤ ` we construct a subset

Πi ⊆ Π by excluding the roots labelled by the integers
∑k

j=1 ij with k = 1, ..., l. In

this way we obtain a bijection between sequences with sum bounded by `, and subsets

of Π. From each subset Πi we can define the Levi subalgebra li to be the algebra

generated by h and all roots spaces k±α with α ∈ Πi. In 1.2.3 we denoted this algebra

by l(Πi).

3.7.3. Set Ri = N − 2
∑

j ij and say that i is a restricted sequence if
∑

j ij ≤ `

and if Ri 6= 2 when the type of k is D. The advantage of this definition is that for i

restricted we have li ∼= gli × m where gli := gli1 × · · · × glil and m is either zero or a

classical simple algebra of the same type as k and natural representation of dimension

Ri. In exchange for this nice description of the isomorphism types we have lost some

descriptive power: the sequences in type D with Ri = 2 also correspond to subsets of

Π and so to standard Levi subalgebras. We would like to describe these remaining

Levi subalgebras in slightly different terms.

3.7.4. Let k be of type D and let D denote the outer automorphism of k coming from

the diagram automorphism which exchanges the last two nodes of the Dynkin diagram.

Let i = (i1, ..., il) with Ri = 0 and suppose the set Πi excludes one but not both of the

last two simple roots of Π (this supposition is equivalent to il 6= 1). Then we obtain a

new Levi algebra D(li), which corresponds to the sequence (i1, ..., il−1, il− 1). Now all

standard Levi subalgebras associated to our choice Π of simple roots may be described

uniquely as one of the following:

• li with i a restricted sequence;

• D(li) with i restricted, Ri = 0 and il 6= 1.

This parameterisation has the useful property that every algebra constructed from a

sequence i is isomorphic to gli ×m.

3.7.5. We may classify the conjugacy classes of Levi subalgebras by deciding when

two of these standard Levis are conjugate. This classification will follow immediately
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from the proposition:

Proposition. Let i and j be restricted sequences. Then the following are equivalent:

1. li and lj are K-conjugate;

2. i and j have equal length l and are Sl-conjugate.

Suppose k has type D, that Ri = 0 and il 6= 1. Then li is K-conjugate to D(li) if and

only if rank k is odd or some term of i is odd.

Proof. Suppose that li and lj are K-conjugate, and suppose Ad(g) sends li to lj. Set

li = gli × mi and lj = glj × mj where mi and mj are classical algebras described

in 3.7.3. By 1.2.4 there is a semisimple element h ∈ h such that li = kh and so

lj = Ad(g)kh = kAd(g)h. Then mi is the annihilator in k of the non-zero eigenspaces

of h in V and mj is the annihilator in k of the non-zero eigenspaces for Ad(g)h. It

follows that mi and mj are isomorphic, and that gli
∼= glj. We conclude that i and j

are Sl-conjugate, where l = |i|

We shall show that (2)⇒ (1). The cases |i| = 0 or |i| = 1 are trivial. Suppose that

|i| = 2. If i = j then there is nothing to prove, so suppose that i = (i1, i2) and that

j = (i2, i1). Set k = i1 + i2−1 and note that the roots α1, ..., αk span a root subsystem

Φk ⊆ Φ of type Ak. Observe furthermore that αk is orthogonal with respect to the

Killing form to all αi with i > k + 1 (if k has type D then this observation relies upon

the assumption that Ri 6= 2). The aforementioned roots form a base for Φk which

we will denote by Πk. The Weyl group Wk of Φk includes canonically into the Weyl

group W of Φ. The longest element w0 of Wk acts on Πk by sending αi 7→ −αk+1−i

for i = 1, ..., k and fixes all roots αi with i > k + 1. Let w0 = gH ∈ NK(H)/H = W

where h = Lie(H) and H is a closed subgroup of K. According to the above, Ad(g)

sends the simple factors of [lili] to the simple factors of [ljlj], and preserves the torus

h. It follows that Ad(g) sends li to lj.

The general case is very similar. Let i have length l. Using the same observations as

above it is possible to construct for every transposition σ ∈ Sl an element g ∈ K such

that Ad(g) maps li to lσi. Since Sl is generated by transpositions we get (2)⇒ (1).

For the remnant of the proof we assume that k has type D. Let D be the automor-

phism of k coming from the non-trivial automorphism d of the Dynkin diagram which
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exchanges the last two roots. We must show that li is conjugate to D(li) if and only

if i has an odd term or rank k is odd. When the rank is odd the longest element w0

of the Weyl group of (k, h) acts by −d. If w0 = gH ∈ NK(H)/H = W then Ad(g)

sends li to D(li). Now suppose that some term of i is odd and that rank k is even.

Since we have ascertained that li is conjugate to all lσi with σ ∈ Sl we might assume

that i1 is odd. The assumption that Ri 6= 2 also ensures that i1 6= rank k − 1. Since

rank k is even, rank k− i1 is odd. It follows that the roots αi1+1, αi1+2, ..., α` span a root

system of type Drank k−i1 and the longest element of the Weyl group of that subsystem

is represented by an element g ∈ K such that Ad(g)li = D(li) (arguing as above).

Finally, we must show that when rank k is even and all parts of i are even the alge-

bras li and D(li) are not conjugate. Consider the orbit Indk
li(O0) induced from the zero

orbit in li. We shall see later in the text that the partition of the induced orbit is very

even and that the label of the orbit is I. This shall follow from Proposition 3.8.4 and is

completely independent of our deductions here. It follows from the same proposition

that Indk
D(li)(O0) has the same partition but the label is II. Since the orbits labelled I

and II are distinct we deduce that the pair (li,O0) is not K-conjugate to (D(li),O0)

and so li is not conjugate to D(li). �

3.7.6. In type D` with ` even we shall call a restricted sequence i very even if

Ri = 0 and all parts of i are even. We shall say that two restricted sequences are

equivalent if they are conjugate under the action of a symmetric group. Let R(`)

denote the equivalence classes of restricted sequences and let L(k) denote the set of

Levi subalgebras of k. Finally we can state the classification theorem.

Theorem. Let k have rank `. There is a surjection

π : L(k)/K −−� R(`).

The fibre above (i/∼) ∈ R(`) is a singleton containing the conjugacy class of li unless `

is even and i is very even, in which case the fibre contains two elements: the conjugacy

classes of li and D(li), which are permuted by the outer automorphism of k.

Proof. The theorem follows immediately from the previous proposition. �

Remark. This classification bears a satisfying resemblance to the classification of

nilpotent orbits given in 1.3.4.
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3.7.7. Extending the conventions of [13, Lemma 7.3.2(ii)] we attach labels to the

conjugacy classes of Levi subalgebras which lie in the fibre above a very even restricted

sequence. Let rank k be even and let i be very even. The conjugacy class of li is labelled

I, whilst the conjugacy class of D(li) is labelled II. The similarity with the labels for

very even nilpotent orbits is no coincidence, as we shall see when we study induced

orbits in Proposition 3.8.4 of the next section.

3.8 A geometric interpretation of the algorithm

3.8.1. We would like to characterise the non-singular partitions in geometric terms.

This characterisation shall be given in the corollary to the next theorem. The re-

mainder of this section shall be spent preparing to prove that theorem. The sym-

metric group Sl acts on the set of sequences in {1, ..., n} of length l by the rule

σ(i1, ..., il) = (iσ(1), ..., iσ(l)). Let

Φλ := {the maximal admissible sequences for λ}/ ∼

where i ∼ j if i and j have equal length and are conjugate under an element of a

symmetric group. What follows is the main theorem of this section.

Theorem. The following are true for any λ ∈ Pε(N) and any nilpotent element e(λ)

with partition λ:

1. e(λ) lies in |Φλ| distinct sheets;

2. |Φλ| = 1 if and only if λ is non-singular.

The next corollary explains our choice of terminology.

Corollary. Suppose λ ∈ Pε(N). Then the following are equivalent:

1. the partition λ is non-singular;

2. c(λ) = z(λ);

3. e(λ) lies in a unique sheet;

If K has characteristic zero then 1, 2 and 3 hold if and only if e(λ) is a non-singular

point on the quasi-affine variety k(dim ke).
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Proof. The statements 1, 2, and 3 are equivalent by Corollary 3.6.9 and Theorem 3.8.1.

Now suppose that the characteristic of K is 0. Then it is proven in [27, Chapter 6]

that the sheets of k are smooth. In this situation it follows from [71, Chapter II, §2,

Theorem 6] that e is a non-singular point of the algebraic variety k(m) if and only if e

belongs to a unique irreducible component of k(m). This completes the proof. �

3.8.2. We shall now assemble all of the necessary information required to prove

Theorem 3.8.1. Recall that the rigid nilpotent orbits are those which are not induced.

We stated the classification of rigid orbits in k in terms of partitions in Theorem 3.4.2.

It is well known that every orbit in the special linear algebra is Richardson (induced

from the zero orbit in some Levi subalgebra) so that the zero orbit is the only rigid

orbit (see [13, 7.2.3] for example). The first part of the next lemma follows quickly

from these observations. The remaining parts are contained in [44], [6], [2].

Proposition. The following are true:

1. If l is a Levi subalgebra isomorphic to gli×m as per §3.7 then the rigid nilpotent

orbits in l take the form

O = O0 ×Oµ

with µ ∈ Pε(N − 2
∑

j ij)
∗ a rigid partition, Oµ a nilpotent orbit in m with

partition µ and O0 the zero orbit in gli.

2. If S is a sheet with data (l,Ol) then Indk
l (Ol) is the unique nilpotent orbit con-

tained in S;

3. If l1 and l2 are Levi subalgebras of k, O is a nilpotent orbit in l1 and l1 ⊆ l2, then

Indk
l2

(Indl2
l1

(O)) = Indk
l1

(O).

3.8.3. Fix an orbit Oλ with partition λ ∈ Pε(N). Recall the map π of Theorem 3.7.6.

Let Ψλ denote the set of all K-conjugacy classes of pairs (l,O) where the class of l

lies in the fibre of π above some restricted sequence i, so that l ∼= gli × m is a Levi

subalgebra of k, and where O = O0 ×Oµ a nilpotent orbit in l, such that µ is a rigid

partition and Oλ = Indk
l (O). The significance of this set is given by the following.

Lemma. Oλ lies in |Ψλ| distinct sheets.
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Proof. Let S be a sheet of k with data (l,O)/K. By Proposition 3.8.2 we see that

Oλ ⊆ S ∩ N (k) if and only if Oλ = Indk
l (O). By Theorem 1.8.4 the orbit O is rigid

and by part 1 of Lemma 3.8.2 it takes the form prescribed in the definition of Ψλ. �

3.8.4. In light of 3.8.3 our method for proving part 1 of Theorem 3.8.1 is now

easy to explain: we construct a bijection from Φλ to Ψλ. This construction is no

miracle as the algorithm was defined with this bijection in mind. This shall be done

in Corollary 3.8.9. Given the definition of Ψλ it is clear that we shall need to develop

a precise understanding of the partitions associated to induced orbits. The result

stated below may be deduced from [13, Corollary 7.3.3]. We warn the reader that

when interpreting the proposition for algebras of type B the unique nilpotent orbit in

the trivial algebra so1 is labelled by the partition λ = (1) contrary to the common

convention. Furthermore, our description of labels attached to induced orbits does not

quite agree with the description in [13]. This is due to a small misprint in that book

which we will explain in the remark below.

Proposition. Recall that the natural representation of k is of dimension N . Choose

0 < 2i ≤ N and set R = N − 2i. Let l ∼= gli × m be a maximal Levi subalgebra of

k in a conjugacy class constructed from (i) and let O = O0 × Oµ be a nilpotent orbit

in l where Oµ has partition µ ∈ Pε(R). Then Oλ = Indk
l (O) has associated partition

λ where λ is obtained from µ by the following procedure: add 2 to the first i columns

of µ (extending by zero if necessary); if the resulting partition lies in Pε(N) then we

have found λ, otherwise we obtain λ by subtracting 1 from the ith column and adding

1 to the (i+ 1)th.

Suppose we are in type D. If λ is very even then either µ is very even or R = 0

and rank k is even. If R 6= 0 then Oλ inherits its label from µ, whilst if R = 0 then the

induced orbit inherits its label from l.

Remark. The above proposition is based on [13, Corollary 7.3.3] however the reader

will notice that the way in which the labels are chosen does not coincide with that

lemma. The reason for this is that the book contains two small misprints which we

must now amend.

The first problem stems from a comparison Lemmas 5.3.5 and 7.3.3(ii). We see,

given the conventions of 5.3.5, that 7.3.3(ii) should actually state that the label of
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Indk
gli⊕m(O) is different to the label of O when (rank k+rankm)/2 is odd. We could, of

course, change 7.3.3(ii) but a better amendment is to change 5.3.5 so that the labelling

convention for very even orbits is independent of n: in their notation we take a = 2

and b = 0 regardless of n. With this convention the statement of 7.3.3(ii) is correct

however Lemma 7.3.3(iii) should now state that the label of the induced orbit coincides

with the label of Levi from which it is induced. This is the convention we have taken

in the above proposition.

The second misprint regards the number of conjugacy classes of maximal Levis in

7.3.2(ii). That lemma states that in type D` there are two conjugacy classes of Levi

subalgebras of the form gl`. Comparing with our Theorem 3.7.6 we see that their

claim holds provided ` is even, but not when ` is odd, where there is a single class

isomorphic to gl`.

3.8.5. In light of the above proposition we may explain the definition of the KS

algorithm. We fix an orbit Oλ with partition λ and want to decide when is it possible

to find a pair consisting of a maximal Levi l = gli1⊕m ∼= gli1×m and a nilpotent orbit

O = O0 × Oµ (with partition µ) such that Indk
l (O) = Oλ. It is now clear that this

occurs precisely when we have an admissible index i and a Levi subalgebra isomorphic

to gli×m. In this case µ = λ(i) and if Oµ has a label then it is completely determined

by that of Oλ. The precise statement is contained in the following corollary.

Recall that in Theorem 3.7.6 we constructed a map π from restricted sequences

upto rearrangement to conjugacy classes of Levi subalgebras.

Corollary. Choose an orbit Oλ with partition λ ∈ Pε(N). Suppose that (i) is a

restricted sequence and that l is a maximal Levi subalgebra whose conjugacy class lies

in the fibre of π above (i), so that l ∼= gli ×m. Then the following are equivalent:

1. i is an admissible index for λ. If (i) is a very even sequence then l belongs to the

conjugacy class with the same label as Oλ (Cf. 3.7.7);

2. There exists an orbit O = O0 ×Oµ with Oλ = Indk
l (O).

If these two equivalent conditions hold then Oµ has partition µ = λ(i). Furthermore,

for every other orbit Õ ⊆ N (l) with Õ = O0 × Oµ̃ such that Oλ = Indk
l (Õ), we have

(l,O)/K = (l, Õ)/K.
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Proof. Fix l as in the statement of the lemma. Let O be an abritrary nilpotent orbit

of the form O0×Oµ ⊆ l. The previous proposition implies that if λ is the partition of

Indk
l (O0 ×Oµ) then i is admissible for λ and λ(i) = µ. Suppose (1) holds and let Oλ(i)

be an orbit in m with partition λ(i). Then the partition of Indk
l (O0×Oλ(i)) is λ. If λ is

not very even then (2) follows. If we are in type D and λ is very even then according

to the previous proposition either λ(i) is very even or l ∼= gli where i = N/2 = rank k

is even. In the first case the orbit O0×Oλ(i) with the same label as Oλ induces to Oλ
whilst in the second case there is a unique orbit of the correct form (the zero orbit)

and since the labels of l and Oλ coincide ex hypothesis, this orbit induces to Oλ.

Now suppose that (2) holds. By the remarks at the beginning of the previous

paragraph, µ = λ(i) and the index i is admissible for λ. If there are two conjugacy

classes of Levis then again l ∼= gli and so Oλ = Indk
l (O) implies that the labels of l

and Oλ coincide by the last part of the previous proposition.

The statement that µ = λ(i) is immediate from the above discussion. Fix O =

O0×Oµ fulfilling Oλ = Indk
l (O). We must show that for every other orbit of the form

Õ = O0 × Oµ̃ fulfilling Oλ = Indk
l (Õ) that the pair (l, Õ) is K-conjugate to (l,O).

Since we know that µ = λ(i) = µ̃ this is now obvious unless µ is very even, λ is not

very even, and the orbits Oµ and Oµ̃ have opposite labels. So suppose that this is the

case. It is clear that in this situation (i, i + 1) is the only 2-step for λ, it is a good

2-step, and all other parts are even. It follows that rank k = N/2 is odd. Now from

the Bourbaki tables [8] we see that the longest element w0 of the Weyl group for k

is the minus the outer diagram automorphism of the root system of k. Therefore if

gT = w0 ∈ W = NK(T )/T then Ad(g) will preserve l and exchange the orbits with

partition λ(i) labelled I and II. This complete the proof. �

3.8.6. The following proposition uses a similar kind of induction as [50, Proposi-

tion 24] and is central to our proof of Theorem 3.8.1.

Proposition. Let i = (i1, ..., il) be a restricted sequence and suppose that the class of

l lies in the fibre of π above i, so that l ∼= gli ×m. Then following are equivalent:

1. i is an admissible sequence for λ. If i is very even then l belongs to the conjugacy

class with the same label as Oλ (Cf. 3.7.7);

2. There exists an orbit O = O0 ×Oµ with Oλ = Indk
l (O).
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If these two equivalent conditions hold then Oµ has partition µ = λi. Furthermore,

for every other orbit Õ ⊆ N (l) with Õ = O0 × Oµ̃ such that Oλ = Indk
l (Õ), we have

(l,O)/K = (l, Õ)/K.

Proof. The proof proceeds by induction on l. When l = 0 we have l = k and the

proposition holds by Part 2 of Proposition 3.8.2 (note that λ∅ = λ). If l is a proper

Levi subalgebra then l > 0. The case l = 1 is simply the previous corollary. The

inductive step is quite similar although to begin with we must exclude the possibility

that Ri = 0 and il = 1 in type D. We will treat this possibility at the end.

Suppose that the proposition has been proven for all l′ < l. Since we have excluded

this anomalous case in type D we may set i′ = (i1, ..., il−1) and and obtain another

restricted sequence. Since Ri′ > 0 there is a unique conjugacy class of Levi subalgebras

above i′. Choose and element l′ of this class so that l′ ∼= gli′×m′ where m′ has a natural

representation of dimension Ri′ and the same type as k. Let M ′ be the closed subgroup

of K with m′ = Lie(M ′). We may ensure that l ⊆ l′ by embedding glil ×m in m′.

Suppose that i is admissible and, if possible, that the label of l coincides with that

of Oλ. We deduce that i′ is also admissible. By the inductive hypothesis we deduce

that there exists an orbit O′ = O0×Oτ ⊆ l′ with Oλ = Indk
l′(O′). We also see that Oτ

has partition τ = λi
′ ∈ Pε(N − 2

∑l−1
j=1 ij) and that (l′,O′)/K is the unique conjugacy

class of pairs containing l′ inducing to Oλ. Clearly il is admissible for λi
′

and (il) is

a restricted sequence for m′. Studying the labelling conventions for Levi subalgebras

in 3.7.7 we see that the label of the K-conjugacy class of l equals the label of the M ′-

conjugacy class of glil × m ⊆ m′. Therefore we can apply Corollary 3.8.5 to conclude

that there exists an orbit O = O0 × Oµ ⊆ N (glil × m) with Oτ = Indm′

glil
×m(O). We

make use of Proposition 3.8.2 in the following calculation:

Oλ = Indk
l′(O′) = Indk

l′(O0 × · · · × O0 ×Oτ )

= Indk
l′(O0 × · · · × O0 × Indm′

glil
×m(O0 ×Oµ))

= Indk
l (O0 × · · · × O0 ×Oµ)

We have shown that (1)⇒ (2). Before proving (2)⇒ (1) we shall take a quick detour

to show that the final remarks in the statement of the proposition follow from (1). We

certainly have µ = τ (il) = (λi
′
)(il) = λi by the transitivity of the algorithm. Suppose

Õ = O0×· · ·×O0×Oµ̃ is another orbit in l inducing toOλ. By the inductive hypothesis
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the partition of Indm′

glil
×m(O0 × Oµ̃) is λi

′
and so we get µ̃ = λi = µ. The uniqueness

assertion is therefore obvious unless µ is very even and λ is not. In this case, reasoning

in a similar manner to the third paragraph of the proof of Corollary 3.8.5, we can be

sure that some term of the sequence i is odd. After conjugating by some element of

K we can assume that il is odd. The proof of uniqueness then concludes just as with

the previous corollary, with glil × m playing the role of our Levi and m′ playing the

role of k.

Now we must go the other way. Keep l, l′, m′, etc as above. Suppose that there

exists an orbit O = O0 × · · · × O0 × Oµ ⊆ l with Oλ = Indk
l (O). Then we set Oτ :=

Indm′

glil
×m(O0 ×Oµ), O′ := O0 × · · · × O0 ×Oτ ⊆ l′ and conclude that Oλ = Indk

l′(O′)

using a calculation very similar to the above one. Applying the inductive hypotheses

we get that i′ is admissible for λ. There is no label associated to the conjugacy class of

l′ since Ri′ > 0. Now Corollary 3.8.5 tells us that il is an admissible index for τ = λi
′

and so i is admissible for λ. The same corollary tells us that if the M ′-conjugacy class

of the Levi glil ×m ⊆ m′ has a label then it coincides with that of Oτ . The inductive

hypothesis tells us that this label coincides with that of Oλ.

Finally we must turn our attention to those sequences i in type D for which Ri = 0

and Ri′ = 2 (i′ remains to denote i with the last term removed). In this case i′ is

not restricted and so there does not exist a Levi subalgebra of the form gli′ × m and

the induction falls down. In order to resolve this we define i′′ = (i1, ..., il−2) and let

l′′ = gli′′ ⊕ m′′. Since l has the form gli we may embed glil−1
× glil ⊆ m′′ to get

l ⊆ l′′. Since il = 1 there is a unique class of Levi subalgebras conjugate to li ∼= gli.

Furthermore, since the m part is zero, there is only one orbit of the prescribed form in

l. We let O equal the zero orbit in l. The proposition in this case is therefore reduced

to the statement that i is admissible if and only if Oλ = Indk
l (O0).

Suppose i is admissible for λ. Then so is i′′ and by the inductive hypothesis there

exists and orbit O′′ = O0 × · · · × O0 × Oτ in l′′ with Oλ = Indk
l′′(O′′). Since il−1 is

an admissible index for τ and τ (il−1) is (1, 1) we conclude that τ = (3, 1) if il = 1,

that τ = (3, 3) if il = 2, that τ = (3, 3, 2il−1) if il−1 > 2 is even or finally that

τ = (3, 3, 2il−1−1, 1, 1) if il−1 > 2 is odd. None of these partitions are very even and so

there is a unique orbit with partition τ . According to [13, Theorem 7.2.3] the induced

orbit Ind
glil−1+1

glil−1
×glil

(O0 × O0) is the minimal nilpotent orbit in glil−1+1, with partition
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(2, 1, ..., 1). Furthermore, if we induce this orbit into m′′ then [13, Lemma 7.3.3(i)] tells

us that Indm′′

glil−1+1
(Omin) = Oτ . Placing these ingredients together we get

Indk
l (O0) = Indk

l′′(Indl′′

l (O0)) = Indk
l′′(O0 × · · · × O0 × Indm′′

glil−1
×glil

(O0 ×O0)

= Indk
l′′(O′′) = Oλ

as required. To go the other way we assume that such an orbit O exists and go

backwards through the above deductions. We will conclude that τ has one of the

prescribed forms so that (il−1, 1) is an admissible sequence for λi
′′

and conclude that

i is admissible for λ. �

3.8.7. The next corollary will be useful in the proof of part 2 of Theorem 3.8.3

Corollary. Let λ ∈ Pε(N). If i = (i1, . . . , il) is a restricted admissible sequence for λ

then so is σ(i) for every σ ∈ Sl. Furthermore,

λi = λσ(i)

for all such i and σ.

Proof. Since li is K-conjugate to lσi (Proposition 3.7.5), this follows from Proposition

3.8.6. �

3.8.8. We now define a map ϕ from the set of all restricted admissible sequences for

λ to the set of all K-orbits of pairs (l,O) where l ⊆ k is a Levi subalgebra of k and

O ⊂ l is a nilpotent orbit. Let i = (i1, ..., il) be a restricted admissible sequence for λ.

Let l be a Levi subalgebra in a conjugacy class lying in π−1(i). If |π−1(i)| = 2 then it

is not hard to see that λ is very even, and we request that the class of l has the same

label as Oλ. Let ϕ(i) = (l,O)/K be the unique K-pair described in Proposition 3.8.6.

The next lemma is vital to our later work.

Lemma. If S is a sheet with data ϕ(i) then rankS = |i|.

Proof. According to 3.7.4 every l ∈ C ∈ π−1(i) is isomorphic to gli×m and so rankS =

dim z(l) = |i|. �

3.8.9. The following corollary to 3.8.6 will complete the proof of part 1 of Theo-

rem 3.8.1.



3.9. COUNTING ADMISSIBLE SEQUENCES 109

Corollary. The restriction of ϕ to the set of maximal admissible sequences for λ

descends to a well defined bijection from Φλ onto Ψλ. In particular |Φλ| = |Ψλ|.

Proof. First of all, note that every maximal admissible sequence is restricted. We shall

show that ϕ maps the set of maximal admissible sequences for λ to Ψλ. Take i maximal

admissible and ϕ(i) = (l,O)/K with O = O0×· · ·×O0×Oµ. By Proposition 3.8.6 we

have µ = λi and so by Lemma 3.4.7 Oµ is a rigid orbit. By part 1 of Proposition 3.8.2

the orbit O is also rigid. Furthermore we have that Oλ = Indk
l (O). Hence ϕ(i) ∈ Ψλ.

We now claim that the map is well defined on Φλ, that is to say that ϕ(i) = ϕ(j)

whenever i ∼ j. Let ϕ(i) = (l1,O1)/K and ϕ(j) = (l2,O2)/K where l1 ∼= gli ×m1 and

l2 ∼= glj ×m2. Since i = σ(j) for some σ ∈ S|i| and the labels of l1 and l2 are the same

(if they exist), we conclude that they are K-conjugate by Proposition 3.7.5. Thus we

may assume that l1 = l2. Now the uniqueness statement at the end of Proposition 3.8.6

asserts that (l1,O1)/K = (l2,O2)/K, so ϕ is well-defined. For the rest of the proof ϕ

shall denote the induced map Φλ → Ψλ.

Let us prove that ϕ is surjective. Suppose (l,O)/K ∈ Ψλ with l and O as in the

definition of Ψλ. Then by Proposition 3.8.6 the sequence i = (i1, ..., il) is admissible for

λ and by Lemma 3.4.7 it is a maximal admissible. Therefore ϕ(i) = (l, Õ)/K for some

orbit Õ = O0 × Oλi . Since O = O0 × Oµ by construction, the uniqueness statement

in Proposition 3.8.6 tells us that (l,O)/K = (l, Õ)/K. Hence ϕ sends the equivalence

class of i in Φλ to (l,O)/K.

In order to prove the corollary we must show that ϕ is injective. Suppose that

i and j are maximal admissible for λ and ϕ(i) = ϕ(j). Again we make the notation

ϕ(i) = (l1,O1)/K and ϕ(j) = (l2,O2)/K. Since l1 and l2 areK-conjugate the sequences

i and j are Sl-conjugate by Proposition 3.7.5. This completes the proof. �

3.8.10. Part 1 of Theorem 3.8.1 follows quickly from the above and Lemma 3.8.3.

3.9 Counting admissible sequences

3.9.1. We now prepare to prove Part 2 of Theorem 3.8.1. Before we proceed we shall

need two lemmas. Define a function κ : Pε(N) −→ (Z2)N by setting

κ(λ)i := λi − λi+1 mod 2 for all i > 0.
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The reader should keep in mind here that λi = 0 for all i > n by convention.

Lemma. Let M,N ∈ N. If µ ∈ Pε(M)∗ and λ ∈ Pε(N)∗ then µ = λ if and only if

κ(µ) = κ(λ).

Proof. Evidently µ = λ if and only if µi − µi+1 = λi − λi+1 for all i > 0. Since λ is

rigid λi − λi+1 ∈ {0, 1} by Theorem 3.4.2. The lemma follows. �

3.9.2. The following proposition will render the proof of Theorem 3.8.3 complete.

We shall use the notation il = (i1, ..., il−1) for 1 ≤ l ≤ |i|+ 1.

Proposition. |Φλ| = 1 if and only if λ is non-singular.

Proof. Suppose λ is non-singular. We shall show that all maximal admissible sequences

for λ are conjugate under the action of the symmetric group. Let i and j be two such

sequences. By Corollary 3.8.7 we may put them both in ascending order, and still

retain the fact that they are admissible sequences. It is not hard to see that they are

still maximal after reordering. We shall show that they are now equal. Suppose not.

Then either there exists an index k such that ik 6= jk, or one sequence is shorter than

the other, say |i| < |j|, and ik = jk for all k = 1, ..., |i|. In this latter situation it is

clear that i is not maximal, so assume the former situation. We may assume without

loss of generality that ik < jk. We shall prove that j is not maximal and derive a

contradiction.

If Case 1 occurs for λik at index ik then it follows that λikik − λ
ik
ik+1 > 1. Since λ

is non-singular, so too is λik by Corollary 3.5.4. This implies that ik + 1 /∈ ∆(λik)

and so λ
jl
ik
− λjlik+1 > 1 for all l ≥ k. In particular, λjik − λ

j
ik+1 > 1 which contradicts

the maximality of j. Now we suppose Case 2 occurs for λik at index ik. This implies

that ik ∈ ∆(λj), once again contradicting the maximality of j. We have now proven

that if λ is non-singular then all maximal admissible sequences are conjugate, and that

|Φλ| = 1.

In order to prove the converse we assume that λ is singular. Let (i, i + 1) be a

bad 2-step with i maximal. We shall exhibit two maximal admissible sequences, i and

j, for λ such that κ(λi) 6= κ(λj). In view of Lemma 3.9.1 and Corollary 3.8.7 the

proposition shall follow. There are two possibilities: either λi+1−λi+2 is even, or i > 1

and λi−1 − λi is even. Assume the first of these possibilities, so that λi+1 − λi+2 is
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even. Let

i′ = (i+ 1, i+ 1, ..., i+ 1︸ ︷︷ ︸
(λi+1−λi+2)/2 times

).

We have λi
′

i+1 = λi
′

i+2. Let i be any maximal admissible sequence for λ extending i′.

Then κ(λi)i+1 = 0. Now let j′ = (i) so that κ(λj
′
)i+1 = 1. Let j be any maximal

admissible sequence extending j′. By Lemmas 3.5.3(A) and 3.5.3(B), Case 2 does not

occur for λjk at any index jk = i with k > 1 and since (i, i+1) is a maximal bad 2-step

Case 2 cannot occur at index jk = i+2, so κ(λj)i+1 = κ(λj
′
)i+1 = 1. We conclude that

κ(λi) 6= κ(λj), λi 6= λj and hence |Φλ| > 1.

The other case is quite similar. This time we assume that i > 1, that λi−1 − λi
is even and λi+1 − λi+2 is odd. Our deductions will depend upon whether or not

i− 2 ∈ ∆(λ). Let us first assume that i− 2 /∈ ∆(λ). We take

i′ = (i− 1, i− 1, ..., i− 1︸ ︷︷ ︸
(λi−1−λi)/2 times

).

Let i be any maximal admissible sequence extending i′. Much like before κ(λi)i−1 = 0.

Now let j′ = (i) and let j be a maximal admissible extension of j′. Since i− 2 /∈ ∆(λ)

Lemma 3.5.3(B) shows that Case 2 does not occur for λjk at index jk = i− 2 for any

k. The same can be said for jk = i at any index k > 1, so κ(λj)i−1 = κ(λ)i−1 − 1 = 1.

It follows that λi 6= λj and so |Φλ| > 1 as desired.

To conclude the proof we must consider the final possibility: i > 1, λi−1− λi even,

λi+1 − λi+2 odd and i− 2 ∈ ∆(λ). We let i′ and i be defined exactly as it was in the

previous paragraph. We have λi
′

i−1 = λi
′

i , so that Case 2 cannot occur at index ik = i

for any k. Since (i, i + 1) is a maximal bad 2-step for λ we know that i + 2 /∈ ∆(λ).

Then Lemma 3.5.3(B) implies that Case 2 cannot occur at index ik = i+ 2 for any k

yielding κ(λi)i+1 = κ(λ)i+1 = 1. Let

j′ = (i, i+ 1, i+ 1, ..., i+ 1︸ ︷︷ ︸
(λi+1−λi+2)/2 times

)

and j be any maximal admissible sequence extending j′. Since λi+1 − λi+2 is odd,

λ
j2
i+1 − λ

j2
i+2 is even, and λji+1 = λji+2. Hence κ(λj)i+1 = 0 and |Φλ| > 1 as before. �

3.9.3. We can finally complete the proof of Theorem 3.8.1.

Proof. Part 1 follows directly from Corollary 3.8.9 and Lemma 3.8.3. For Part 2 use

Part 1 along with Proposition 3.9.2. �
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3.10 The orthogonal complement to [kxkx]

3.10.1. We shall finish the chapter by furnishing a proof of Izosimov’s conjecture.

Before we do so, however, we would like to introduce some notation which will be used

in the next chapter. Let S be a sheet with data (l,O)/K. Recall that the rank of

S ⊆ k(k) is defined to be dim z(l). Alternatively, by Corollary 1.8.5, we have

rankS = dimS − dim k + k.

Corollary. If λ ∈ Pε(N) and e ∈ O which has partition λ, then

r(e) := max
e∈S

rankS = z(λ)

where the maximum is taken over all sheets of k containing e.

Proof. Use Lemma 3.8.8, Corollary 3.8.9 and and Theorem 3.6.8. �

3.10.2. Suppose from henceforth that char(K) = 0. We shall set out to prove

Izosimov’s conjecture. The following holds true for an arbitrary semisimple Lie algebra.

Lemma. Suppose x ∈ k has Jordan decomposition x = s + n and set l = ks. There

is a rank preserving bijection between the sheets of k containing x and the sheets of l

containing n.

Proof. This follows from the description of sheets and Jordan classes given in 1.8.2

and 1.8.4. �

3.10.3. We now relieve Corollary 3.8.1 of the assumption of nilpotency.

Proposition. Let x ∈ k be arbitrary. The following are equivalent:

1. x belongs to a unique sheet of k;

2. the maximal rank of the sheets of k containing x equals dim kx/[kx, kx];

3. x is a smooth point of the quasi-affine variety k(dim kx).

Proof. If x = s+ n is the Jordan decomposition of x then l := ks is a Levi subalgebra

of k (1.2.5) and dim kx/[kx, kx] = dim ln/[ln, ln] (1.2.2). Now we may appeal to the

previous lemma to see that (1) is equivalent to (2). The equivalence to (3) follows by

the same argument given in Corollary 3.8.1. �
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3.10.4. We may now give a proof of Izosimov’s conjecture.

Theorem. Let the characteristic of K be zero. Suppose x ∈ k lies in a unique sheet

S. Then

[kxkx]
⊥ = TxS

where orthogonality is taken with respect to the Killing form.

Proof. In [28] Izosimov shows that the conclusion of the theorem is equivalent to the

condition that dim [kxkx]+dimTxS = dim k. Now suppose that x lies in a unique sheet

S ⊆ k(k). Then by the previous proposition rankS = dim kx − dim [kxkx]. Combining

with 3.10.1 and using the smoothness of the sheets of k, proven in [27, Chapter 6], we

deduce the required equality. �



Chapter 4

Abelian Quotients of Finite

W -algebras

For the rest of this thesis we shall assume that K is an algebraically closed field of

characteristic 0. The results of this chapter are summarised in the introduction but

we shall recap the important details. A finite W -algebra is an associative algebra

U(q, e) constructed from the Lie algebra q of a reductive group Q, and a nilpotent

element e ∈ N (q). The one dimensional representations of U(q, e) are parameterised

by the maximal spectrum of the maximal abelian quotient E(q, e) = SpecmU(q, e)ab.

We begin by giving a criterion for E(q, e) to be isomorphic to affine space Ad
K. We

then apply this to classify the nilpotent elements e in a classical algebra k for which

E(k, e) is an affine space: they are precisely the non-singular nilpotent elements of

k, and d = r(e) in this case. The component group acts upon E(k, e) and we show

that E(k, e)Γ is always isomorphic to affine space Ad
K, and give its dimension. Finally

we apply Skryabin’s equivalence and Losev’s embedding to discuss the representation

theory of U(k). We show that every multiplicity free primitive ideal whose associated

variety is the closure of an induced nilpotent orbit is induced from an appropriate

completely prime primitive ideal with nice properties, generalising a theorem of Mœglin

and contributing towards the long-standing problem of classifying completely prime

primitive ideals of the enveloping algebra.

114
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4.1 Preliminary theory of W -algebras

4.1.1. In this section we shall give a more detailed description of the maximal abelian

quotients of finite W -algebras, and introduce the tools needed to discuss them. The

characteristic of K shall be zero from henceforth.

4.1.2. Our first criterion for polynomiality shall not require our group to be classical

and so we begin by refreshing the notation. Let Q be a connected reductive algebraic

group over K and pick a non-zero element e ∈ N (q). The finite W -algebra U(q, e) is a

non-commutative filtered algebra with associated graded algebra S(qe) (endowed with

a non-standard grading). Fix an sl2-triple φ = (e, h, f) containing e. By sl2 theory

we have q = [q, e]⊕ qf and since TeOe = [q, e] we see that the Slodowy slice e + qf is

a transverse slice to Oe the Q-orbit of e. Using the Killing form of q we may identify

K[e + qf ] with the symmetric algebra S(qe), and we view U(q, e) as a deformation of

the coordinate ring K[e+ qf ].

4.1.3. Denote by U(q, e)ab the largest commutative quotient of U(q, e). We construct

it explicitly by letting Ic be the derived ideal of U(q, e) generated by all commutators

x · y− y ·x with x, y ∈ U(q, e) and setting U(q, e)ab = U(q, e)/Ic. The one dimensional

representations of U(q, e) are in bijective correspondence with those of U(q, e)ab, and

these are parameterised by E = E(q, e) = SpecmU(q, e)ab. In [60] Premet showed

that finite dimensional representations exist and in [59, Conjecture 3.1] he went on to

conjecture that every finiteW -algebra should possess a one dimensional representation.

Since then they have been studied extensively, and considerable effort has been needed

to prove their existence. In [61, Theorem 1.1] a reduction to the case of rigid nilpotent

elements was given and in [39, Theorem 1.2.3] the conjecture was settled in classical

cases. The work of [81] was extended in [25, Theorem 1.1] to prove the existence of

one dimensional representations for W -algebras associated to all but 3 rigid orbits in

exceptional Lie algebras (all in type E8). In a forthcoming paper [63] the remaining

cases will be dealt with. Let us record these results for later use.

Theorem. If Q is reductive and e ∈ q then the set E(q, e) is non-empty.

4.1.4. Let S1, ...,Sl be the pairwise distinct sheets of q containing e. In [34], Katsylo

constructed a geometric quotient for each Si. The procedure is as follows. First of all

set Xi = Si ∩ (e + qf ) and observe that Qφ acts naturally on Xi. It can be shown
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that Q◦φ fixes Xi, and this induces an action of Qφ/Q
◦
φ. Recall that the component

group Γ = Γ(e) := Qe/Q
◦
e is isomorphic to Qφ/Q

◦
φ (1.5.9), hence Γ acts on each Xi.

Katsylo proved that each Q-orbit in Si intersects Xi in a finite set, and that this set

is permuted transitively by Γ. This gives a map Si/G→ Xi/Γ which turns out to be

a geometric quotient for Si ([34, Lemma 6.3]) and so

ri := rankSi = dimSi − dimOe = dimXi/Γ = dimXi.

4.1.5. One of or main tools shall be Theorem 1.11.4. Combining with the previous

remarks it is immediate that for e induced, the dimension of U(q, e)ab equals

r(e) := max{r1, . . . , rt}

and the number of irreducible components of E is greater than or equal to the total

number of all irreducible components of the Xi’s. If E is isomorphic to an affine space

Ad
K for some d then this theorem ensures that e lies in a unique sheet. We shall prove

the remarkable fact that when q is classical, this condition is also sufficient to ensure

that E is an affine space. In order to do so we shall identify a general criterion which

is sufficient to imply the polynomiality of U(q, e)ab when e is induced.

4.1.6. The discussion of this criterion shall rely heavily on the filtration of U(q, e)

mentioned in 4.1.2. If we take U(q, e) to be defined as per the construction of Gan

and Ginzburg (1.10.3) then it is clear that the action of Qφ on U(q) descends to an

action on U(q, e).

Lemma. [59, Remark 2.1] There exists an injective Qφ-module homomorphism Θ :

qe → U(q, e) with the property that Θ(qe) generates U(q, e) as an algebra.

4.1.7. The action of ad(h) gives q a Z-graded Lie algebra structure q =
⊕

i∈Z q(i).

We have that e ∈ q(2) and qe =
⊕

i≥0 qe(i) where qe(i) := qe ∩ q(i). Let x1, . . . , xr be

a basis for qe such that xi ∈ qi(ni) for some ni ≥ 0. The Slodowy grading on S(qe)

is defined by letting each xi have degree ni + 2. This grading arises naturally when

studying the special transverse slice e+ qf (see [72, §7.4]).

4.1.8. The current paragraph is contained in [57, Theorem 4.6]. For i = 1, ..., r make

the notation Θi := Θ(xi) ∈ U(q, e). The finite W -algebra U(q, e) has a Poincaré–

Birkhoff–Witt basis consisting of monomials Θi := Θi1
1 · · ·Θir

r with ij ∈ N0. We assign
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to Θi filtration degree

|i|e :=
r∑
j=1

ij(nj + 2)

The resulting filtration on U(q, e) is called the Kazhdan filtration. The following

relations hold in U(q, e) for 1 ≤ i ≤ j ≤ r:

[Θi,Θj] = Θ[xi, xj] + qij(Θ1, ...,Θr) + terms of lower Kazhdan deree (4.1)

where qij is a polynomial of Kazhdan degree ni+nj+2 whose constant and linear parts

are both zero. We write Kl U(q, e) for of the lth component of the Kazhdan filtration of

U(q, e). In general, the Kazhdan degree degK(x) of x ∈ U(q, e) is the smallest l ∈ N0

with x ∈ Kl U(q, e) (we take K−1U(q, e) = 0 so that degK(K) = 0).

4.1.9. Thanks to [57, Proposition 6.3] there exists an isomorphism of graded alge-

bras grKU(q, e)
∼→ S(qe) where the latter algebra is endowed with the Slodowy grading.

Identifying S(qe) with K[e+ qf ] we view U(q, e) as a filtered deformation of the coor-

dinate ring. This justifies the alternative nomenclature for U(q, e) as the enveloping

algebra of the Slodowy slice, although this perspective will not feature in the current

work.

4.1.10. The action of Qφ in 4.1.6 preserves every Kl U(q, e). It also preserves the

Slodowy grading and the usual grading on S(qe). We should not expect grKΘ(qe) to

coincide with qe ⊆ S(qe) as grKΘ(xi) will usually involve non-linear terms in Θ1, ...,Θr

of Kazhdan degree ni+2, however, [57, Lemma 4.5] tells us that the projection S(qe)→

qe restricts to an isomorphism of graded Qφ-modules grKΘ(qe)→ qe ⊆ S(qe). In what

follows, we shall denote by gr0
K the composition of grK and the projection onto linear

terms in S(qe). For any filtered vector subspace F ⊆ U(q, e) it is very common to abuse

notation and write grK(F ) for the associated graded subspace of S(qe) and to also write

grK(v) for the top graded component of v ∈ U(q, e). We shall proliferate this abuse by

using gr0
K in the same way. The reader should note that gr0

K : U(q, e)→ qe ⊆ S(qe) is

not a linear map. Our earlier remarks may now be written as gr0
K Θ(qe) = qe.

4.1.11. Since we are no longer in the classical case we shall need notation for

codimqe [qeqe] which does not rely on the partition associated to Oe. Write ce = qab
e =

qe/[qe, qe] and c(e) := dim ce. If q is classical and Oe has partition λ then c(e) coincides

with c(λ) defined in Corollary 3.3.1. Since [qe(0), qe] ⊂ [qe, qe] and qe(0) = Lie(Qφ), it

follows from Weyl’s theorem that Q◦φ acts trivially on ce. This gives rise to a natural



118 CHAPTER 4. ABELIAN QUOTIENTS OF FINITE W -ALGEBRAS

linear action of the component group Γ on the vector space ce. We denote by cΓ
e the

fixed point space of this action and set cΓ(e) := dim cΓ
e .

4.1.12. Since the group Qφ operates on U(q, e) by algebra automorphisms, it acts on

the variety E which identifies naturally with the set of all ideals of codimension 1 in

U(q, e). By [59, Lemma 2.5] the differential of the action of Qφ on U(q, e) is just ad◦Θ

and it follows that Q◦φ preserves any two-sided ideal of U(q, e), and acts trivially on E .

We thus obtain a natural action of Γ = Qφ/Q
◦
φ on the affine variety E . We denote by

EΓ the corresponding fixed point set and let IΓ be the ideal of U(q, e)ab generated by

all x−xγ with x ∈ U(q, e)ab and γ ∈ Γ. It is clear that EΓ is contained in the zero locus

of IΓ. Conversely, if m ∈ E is such that x(m) = 0 for all x ∈ IΓ, then γ(m) = m for all

γ ∈ Γ. Indeed, otherwise m and γ−1
0 (m) would be distinct maximal ideals of U(q, e)ab

for some γ0 ∈ Γ and we would be able to find an element x ∈ U(q, e)ab with x(m) = 0

and x(γ−1
0 (m)) 6= 0. But this would imply that (x − xγ0)(m) 6= 0, a contradiction.

As a result, EΓ coincides with the zero locus of IΓ in E . We denote by U(q, e)ab
Γ the

commutative K-algebra U(q, e)ab/IΓ. The above discussion shows that

EΓ = SpecmU(q, e)ab
Γ .

4.2 The polynomiality of quotients

4.2.1. Continue to assume char(K) = 0, and now take Q to be reductive and

connected. The goal of this subsection is to give a sufficient condition for the poly-

nomiality of U(q, e)ab and U(q, e)ab
Γ and use it to classify those nilpotent elements in

the Lie algebras of classical groups for which U(q, e)ab is a polynomial algebra. For

k ∈ N0, we continue to use Sk(qe) to denote the kth part of the usual grading where

xi = xi11 · · ·xirr has degree |i| :=
∑r

j=1 ij.

Lemma. Let I be a proper two-sided ideal of U(q, e) and let VI and V ′I be two Qφ-

submodules of Θ(qe), such that qe = S1(qe) = gr0
K (VI) ⊕ gr0

K (V ′I ) as graded Ad(Qφ)-

modules. Suppose further that

gr0
K (VI) ⊆ gr0

K (I)

Then the unital algebra U(q, e)/I is generated by the subspace V ′I .
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Proof. Throughout the proof we identify qe with S1(qe). Since qe = gr0
K (VI)⊕gr0

K (V ′I ),

it follows that Θ(qe) = VI ⊕ V ′I . Since VI and V ′I are graded submodules of qe we can

choose a basis x1, ..., xr of qe such that each xi has Slodowy degree ni + 2, where

x1, ..., xq−1 spans VI and xq, ..., xr spans V ′I . Let Θi = Θ(xi) and denote by A the

K-span in U(q, e) of all Θ
iq
q · · ·Θir

r with ij ∈ N0. We claim that every monomial

Θi ∈ U(q, e) with |i|e = k lies in A+ I. The proof is by induction on k.

The statement is obviously true for k = 0, since K0U(q, e) = K. Suppose that it

holds for all Θi′ with |i′| < k. Notice also that if the claim holds for |i| = 1 then it holds

for all |i| > 1 by a simple inductive argument. Hence we may assume that |i| = 1,

i.e. Θi = Θs for some s ∈ {1, ..., r} and k = ns + 2. The claim is trivially true when

q ≤ s ≤ r so assume 1 ≤ s < q. Lemma 4.5 of [57] tells us that xs = gr0
K Θs ∈ gr0

K (I).

Let u ∈ I be such that gr0
K u = xs and degK(I) = ns + 2. It follows that

Θs − u =
∑

|i|e=ns+2, |i|≥2

λs,iΘ
i + terms of lower Kazhdan degree

for some constants λs,i ∈ K. Therefore,

Θs ≡
∑

|i|e=ns+2, |i|≥2

λs, i Θi mod (A+ I)

by the inductive hypothesis. Take a term Θi in the above sum. Since |i| > 1 we can

define i′ ∈ Nr
0 to have a 1 in the jth position and 0 elsewhere, where j is the minimal

index such that ij 6= 0, and define i′′ = i − i′. We have |i′|, |i′′| > 0 and Θi can be

written as Θi′Θi′′ . But |i′|e and |i′′|e are strictly less than |i|e = k. By the inductive

hypothesis Θi′ and Θi′′ both lie in A + I, and so too does Θi. Therefore Θs ∈ A + I

as well. This completes the inductive step and the lemma follows. �

4.2.2. It should be stressed at this point that in Lemma 4.2.1 we do not require VI

to be contained in I.

Proposition. Let e be any nilpotent element of q. Then the following are true:

1. If E 6= ∅, then the unital algebra U(q, e)ab is generated by a Qφ-submodule of

Θ(qe) isomorphic to ce. In particular, it is generated by c(e) elements.

2. If EΓ 6= ∅, then the unital algebra U(q, e)ab
Γ is generated by a Qφ-submodule of

Θ(qe) isomorphic to cΓ
e . In particular it is generated by cΓ(e) elements.
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Proof. (i) Retain the notations of 4.1.8. The defining ideal Ic of U(q, e)ab contains

all commutators [Θi,Θj] with 1 ≤ i, j ≤ r. According to (4.1) the linear part of

grK[Θi,Θj] is gr0
K [Θi,Θj] = [xi, xj]. Setting VIc = Θ([qe, qe]) we have gr0

K VIc = [qeqe].

It follows that gr0
K (VIc) ⊆ gr0

K (I). Since Qφ is a reductive group, qe contains a graded

Ad(Qφ)-submodule M of dimension c(e) complementary to the derived subalgebra

[qe, qe]. If we set V ′Ic = Θ(M) then the pair (VIc , V
′
Ic

) fulfil the assumptions of the

previous lemma and we may conclude that V ′Ic generates U(q, e)ab.

(ii) Let Ĩc be the preimage of the ideal IΓ of U(q, e)ab under the canonical homomor-

phism U(q, e) � U(q, e)ab. Then Ĩc is a two-sided ideal of U(q, e) and U(q, e)/Ĩc ∼=

U(q, e)ab
Γ as algebras. Since [qe(0),M ] ⊆ [qe, qe] and M ∩ [qe, qe] = 0, it follows from

Weyl’s theorem that the connected reductive group Q◦φ acts trivially on M . There-

fore, M has a natural structure of a Γ-module. There exists a Γ-submodule M ′ of M

complementary to MΓ := {x ∈ M : γ(x) = x}. We choose VĨc = Θ(M ′ ⊕ [qeqe]) and

V ′
Ĩc

= Θ(MΓ). In order to apply Lemma 4.2.1 we need to show that gr0
K (VĨc) ⊆ gr0

K (Ĩc).

Since

gr0
K [qeqe] ⊆ gr0

K (Ic) ⊆ gr0
K (Ĩc)

we must show that M ′ ⊆ gr0
K (Ĩc). But M ′ is spanned by elements of the form x−γ(x)

with x ∈M . Now for every x ∈ qe = S1(qe) the image of

Θ(x)−Θ(γ(x)) = Θ(x)− γ(Θ(x))

in U(q, e)ab lies in IΓ. Therefore Θ(x)−Θ(γ(x)) ∈ Ĩc and x−γ(x) ∈ gr0
K (Ĩc). Finally we

have obtained gr0
K (M ′) ⊆ gr0

K (Ĩc). We apply Lemma 4.2.1 to complete the proof. �

4.2.3. We now record our criterion for polynomiality. Recall that r(e) denote the

maximal rank of the sheets of q containing e.

Corollary. Let e be an induced nilpotent element of q. Then the following hold:

1. If c(e) = r(e), then U(q, e)ab ∼= S(ce) and U(q, e)ab
Γ
∼= S(cΓ

e ) as K-algebras and

as Γ-modules.

2. If EΓ 6= ∅ and dim EΓ ≥ cΓ(e), then U(q, e)ab
Γ
∼= S(cΓ

e ) as K-algebras and Γ-

modules.
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Proof. (i) By 4.1.5 we have dimU(q, e)ab = r(e). On the other hand part 1 of Propos-

tion 4.2.2 implies that there exists a surjective Qφ-equivariant algebra homomorphism

S(ce)� U(q, e)ab. Since c(e) = dimS(ce) equals r(e) = U(q, e)ab, the map ψ must be

injective. Since Q◦φ acts trivially on ce we deduce that U(q, e)ab ∼= S(ce) as K-algebras

and Γ-modules. But then E ∼= c∗e as Γ-varieties implying that EΓ ∼= (c∗e)
Γ. Since the

defining ideal in S(ce) ∼= K[c∗e] of the linear subspace (c∗e)
Γ is generated by all f − fγ

with f ∈ S(ce) and γ ∈ Γ, its image under the surjection onto U(q, e)ab coincides

with IΓ. This implies that S(cΓ
e ) ∼= U(q, e)ab

Γ as K-algebras. They are both trivial as

Γ-modules.

(ii) As EΓ 6= ∅, it follows from Proposition 4.2.2(ii) that there is a surjective alge-

bra homomorphism S(cΓ
e ) � U(q, e)ab

Γ . As a consequence, cΓ(e) ≥ dimU(q, e)ab
Γ . If

dimU(q, e)ab
Γ = dim EΓ ≥ cΓ(e), then it must be that U(q, e)ab

Γ
∼= S(cΓ

e ) as K-algebras.

Once again they are trivially isomorphic as Γ-modules. �

4.3 Computing the varieties E and EΓ

4.3.1. In this subsection we are going to apply our results on non-singular nilpotent

elements from Chapter 3 to give a complete description of those nilpotent elements

e in classical Lie algebras for which E is an affine space. Recall that the situation in

type A was dealt with by Premet in [61]. He showed that the space E(sln, e) is always

isomorphic to affine space of dimension c(e).

4.3.2. We shall revert here to the notations designated in 1.1.6 which we have used to

describe classical algebras throughout. In particular, K shall be the connected simple

algebraic group of type B, C or D preserving a form (·, ·) : V × V → K where V = KN

with (u, v) = ε(v, u). The set of partitions associated to the nilpotent orbits N (k)/K

is denoted Pε(N) and once e is chosen, φ = (e, h, f) is an sl2-triple of k containing e.

Theorem. Let e ∈ N (k). Then the following are equivalent:

1. e belongs to a unique sheet of k;

2. U(k, e)ab is isomorphic to a polynomial algebra.

If these equivalent criteria hold then U(k, e)ab is generated by c(e) variables.
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Proof. If e belongs to a unique sheet then then c(e) = r(e) by Corollary 3.8.1 and

Theorem 3.6.8. Thanks to 4.1.5 we know that dim(U(k, e)ab) = c(e). Comparing with

Proposition 4.2.2 we see that U(k, e)ab is generated by c(e) elements. It follows that

U(k, e)ab is a polynomial algebra on c(e) generators.

If U(k, e)ab is isomorphic to a polynomial algebra, then the variety E is irreducible.

If e is induced, then after the discussion in 4.1.5 we see that e belongs to a unique

sheet. If e is rigid, this holds automatically as Ad(K)e is a sheet of k. This completes

the proof. �

4.3.3. As an immediate consequence we obtain:

Corollary. U(k, e) has a unique one dimensional representation if and only if e is

rigid.

Proof. U(k, e) has a unique one dimensional representation if and only if E(k, e) is a

point, which is if and only if U(k, e)ab = K. By the previous theorem this is equivalent

to e being non-singular and c(e) = 0. Given that every rigid partition is non-singular,

this is equivalent to e being rigid by Corollary 3.4.3. �

4.3.4. In the midst of our discussion of finite W -algebras we are able to retrieve

some information of a geometric nature on the Katsylo sections of e.

Corollary. If e lies in a unique sheet S of k then X := (e + kf ) ∩ S is a smooth,

irreducible variety.

Proof. By Theorem 4.3.2 the algebra U(k, e)ab is polynomial and so E is irreducible.

In view of Threorem 1.11.4 the variety X is irreducible. Since S contains both X and

Oe = Ad(K)e the tangent space TeS contains TeX+TeOe, however TeX ⊂ Te(e+kf ) =

kf , whilst TeOe = [e, k], so that that Te(S) contains TeX ⊕ [e, k] by sl2-theory. Thanks

to [27] the variety S is smooth and by [34] we have dimS = dimX+dimOe. Therefore

TeS = TeX ⊕ [e, k] and dimTeX = dimX. As a consequence, e is a smooth point of

X. But there exists a K×-action on X, contracting to e, induced by letting t ∈ K×

act on k(i) by ti−2 where k = ⊕i∈Zk(i) is the grading induced by ad(h) (see [72]). It

follows that X is smooth, as required. �

4.3.5. Our next result relies heavily on Losev’s Theorem which we outlined in 1.11.5.

Together with Corollary 4.2.3(ii) this will enable us to describe the variety E(k, e)Γ
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for all nilpotent elements e ∈ k, even the singular ones which cannot be treated by

Theorem 4.2.3(i). Strictly speaking the following result works in the full generality of

reductive groups, however we shall not interest ourselves in such possibilities anymore.

Proposition. Let P be a proper parabolic subgroup of K with Levi decomposition

L n U and corresponding decoposition of Lie algebras p = l n u. Suppose that a

nilpotent element e = e0 + e1 ∈ p with e0 ∈ l and e1 ∈ u is induced from e0 and that

Ke ⊂ P.

Let E0 = E([ll], e0) and suppose further that EΓ0
0 6= ∅ where Γ0 = Le0/(Le0)

◦. Then

EΓ 6= ∅ and

dim EΓ ≥ dim z(l).

Proof. (a) Let φ0 = (e0, h0, f0) be an sl2-triple of l containing e0 (if e0 = 0 then

(e0, h0, f0) is the zero triple). By sl2-theory, the reductive group Lφ0 is a Levi sub-

group of the centraliser Le0 . The sl2-triple for e is still denoted φ = (e, h, f) and let

λe be the cocharacter in X∗(K) with h ∈ Lie(λe(K×)). Note that Kφ = Ke ∩ Kh =

Ke∩ZK(λe(K×)). Since Kφ ⊂ P by our assumption on e, it follows from [41, Proposi-

tion 6.1.2(4)] that the reductive group λe(K×)Kφ is contained in P . Since any reductive

subgroup of P is conjugate under P to a subgroup of L by Mostow’s theorem [51], we

may assume without loss of generality that λe(K×)Kφ ⊆ L. Since Kφ ⊆ L fixes e and

preserves both l and u, it must be that Kφ fixes e0 too, so Kφ ⊆ Le0 . Since the group

Kφ is reductive, it follows again from [51] that it is conjugate under L to a subgroup

of Lφ0 . We shall assume for the rest of the proof that, in fact,

Kφ ⊆ Lφ0 .

(b) Recall from 1.11.5 that Losev defines a completion U(l, e0)′ of the finite W -algebra

U(l, e0) and an injective algebra homomorphism Ξ: U(k, e) → U(l, e0)′. By construc-

tion, the reductive group Lφ0 acts on U(l, e0)′ by algebra automorphisms. One can

see by inspection that all maps involved in Losev’s construction are Lφ0-equivariant (a

related discussion can also be found in [42, 2.5]). This implies, in particular, that in

our situation Losev’s embedding is Kφ-equivariant. Furthermore, it follows from [41,

Proposition 6.5.1] that the isomorphism U(l, e0)ab ∼= U(l, e0)′ab is Lφ0-equivariant. We
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thus obtain a Kφ-equivariant algebra homomorphism

ξl : U(q, e)ab → U(l, e0)ab.

(c) Let Ẽ0 = SpecmU(l, e0)ab. According to Theorem 1.11.5 the morphism of affine

varieties ξ∗l : Ẽ0 → E associated with ξl is finite. In particular, it has finite fibres.

Since ξl is Kφ-equivariant and K◦φ acts trivially on both U(k, e)ab and U(l, e)ab, the

morphism ξ∗l maps ẼΓ
0 into EΓ. It follows that

dim ẼΓ
0 = dim ξ∗(ẼΓ

0 ) ≤ dim EΓ.

(d) Write z for the centre z(l) of l. Clearly, z is a toral subalgebra of k and l =

z ⊕ [l, l]. It follows that U(l, e0) ∼= S(z) ⊗ U([l, l], e0). This, implies that U(l, e)ab ∼=

S(z) ⊗ U([l, l], e0)ab as algebras. Since the subalgebra U([l, l], e0) of U(l, e0) is stable

under the action of Kφ on U(l, e0), we have a natural action of Γ of the affine variety

E0 := SpecmU([l, l], e0)ab. Since Kφ ⊆ Lφ0 , and L◦φ0 acts trivially on E0, the variety

EΓ
0 contains EΓ0

0 and hence is non-empty by our assumption on EΓ0
0 .

(e) Note that L acts trivially on z and hence so does Kφ ⊂ L. It follows that ẼΓ
0
∼=

z∗ × EΓ
0 as affine varieties. In particular,

dim ẼΓ
0 = dim EΓ

0 + dim z ≥ dim z.

But then EΓ ⊇ ξ∗(ẼΓ) 6= ∅ and dim EΓ ≥ dim ẼΓ
0 ≥ dim z(l) as claimed. �

4.3.6. Pick a nilpotent element e ∈ k with partition λ. We shall now describe the

component group Γ by giving a canonical set of representatives in Ke. The group K

is the connected component of the stabiliser of a non-degenerate form (·, ·). We shall

denote the full stabiliser by K̃. This group coincides with K if ε = −1 but if ε = 1

then K̃ = O(V ) is the full orthogonal group. Observe that K = SL(V ) ∩ K̃ in either

case. Let I = {1 ≤ i ≤ n : i = i′, λi > λi+1} and set ν(λ) := |I|. Note that ν(λ) is the

number of distinct values λi for which i = i′. For i ∈ I we let gi denote the involution

of V lying in K̃e such that

gi(e
swj) = (−1)δi,j(eswj)

for all 1 ≤ j ≤ n and 0 ≤ s < λj. Here we use Kronecker delta notation. Then gi acts

as −1 on V [i] and by 1 on each V [j] with j 6= i. Define Γ̃ := 〈gi : i ∈ I〉, a subgroup

of K̃.
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Lemma. The natural map K̃e � K̃e/K̃
◦
e restricts to an isomorphism from Γ̃ onto

K̃e/K̃
◦
e . If K has type C then K̃e/K̃

◦
e = Γ whilst if K has type B or D then Γ is

generated by the images of products {gigj : i, j ∈ I} in K̃e/K̃
◦
e .

Proof. As the involutions gi pairwise commute, Γ̃ is an elementary abelian 2-group of

order 2ν(λ). We claim that the restriction of K̃e � K̃e/K̃
◦
e to Γ̃ is injective. We must

show that the elements {gi : i ∈ I} lie in distinct connected components of Ke. This

follows from the description of K̃φ given in [30, 3.8]. Using [30, 3.13] it is now evident

that the projection K̃e � K̃e/K̃
◦
e restricts to an isomorphism Γ̃

∼−→ K̃e/K̃
◦
e as stated.

Since K = K̃ ∩ SL(V ) we see that the restriction of the map Ke � Γ to Γ̃ ∩ SL(V )

is an isomorphism. For the rest of the proof identify K̃e/K̃
◦
e with Γ̃ .

Suppose K is of type C. Then K = K̃ and so Γ = Γ̃. In case the type is B or D

the dimension dimV [i] is odd for all i = i′ so det(gi) = −1 for all i ∈ I. Therefore

the gi do not lie in Ke, however the products gigj with i, j ∈ I do, and it is clear that

they generate all of Γ. �

4.3.7. We call a partition λ ∈ P1(N) exceptional if there exists a unique i ∈ ∆(λ)

such that all parts λj with j 6∈ {i, i+1} are even. It is clear that if λ is exceptional then

the unique 2-step is good. This shows that exceptional partitions are non-singular.

Using the KS algorithm it is straightforward to see that every orbit with an exceptional

partition is actually Richardson (i.e. is induced from the zero orbit). Define

s(λ) =

 s(λ) λ not exceptional

s(λ) + 1 λ exceptional

4.3.8. Before we describe the varieties E(k, e)Γ we shall prove two more lemmas.

Lemma. dim cΓ
e = s(λ).

Proof. Retain the notation of 4.3.6, identify K̃e/K̃
◦
e with Γ̃ and identify Γ with the

subgroup of Γ̃ described in Lemma 4.3.6.

The space H0 was defined in 3.1.2 to be the span of all ζ i,λi−2m
i with 1 ≤ i ≤ n and

0 ≤ m < bλi
2
c. By Lemma 1.5.8 these elements preserve every V [i] and so are fixed by

the gi. It follows that Γ fixes H0. Let H0 denote the image of H0 in ce = qe/[qeqe]. By

the inclusion Γ ⊆ Γ̃ we deduce that H0 ⊆ cΓ
e . In view of Corollary 3.3.1 this yields

dim cΓ
e ≥ dimH0/H

+
0 = s(λ).



126 CHAPTER 4. ABELIAN QUOTIENTS OF FINITE W -ALGEBRAS

The proof of Corollary 3.3.1 also shows that the images of ζ
i+1,λi+1−1
i with i ∈ ∆(λ)

in the quotient space ce := ce/H0 form a K-basis of ce. We recall for the reader’s

convenience that ∆(λ) is the set of 2-steps for λ: the indexes 1 ≤ i < n such that

λi−1 6= λi ≥ λi+1 6= λi+2 and i, i + 1 are both fixed by j 7→ j′. Note that gi+1 ∈ Γ̃ for

every 2-step (i, i+ 1) of λ and, moreover, gi, gi+1 both lie in Γ̃ if (i, i+ 1) is a 2-step of

λ such that λi 6= λi+1. If we choose j ∈ ∆(λ) then direct computations shows us that

gi
(
ζ
j+1,λj+1−1
j

)
=

 ζ
j+1,λj+1−1
j if j /∈ {i− 1, i},

−ζj+1,λj+1−1
j if j ∈ {i− 1, i}.

(4.2)

Now we must consider the type of K. Suppose K is of type C. By Lemma 4.3.6,

Γ̃ = Γ. By the above calculation we see that if 0 6= α ∈ ce then α cannot be fixed by

all gi, therefore cΓ
e = 0 and dim cΓ

e = s(λ) as promised.

To complete the proof we suppose that K is of orthogonal type and show that if

Γ fixes a non-zero vector in ce then λ is exceptional, and the fixed point space is one

dimensional. If the type of k is B or C then Γ = 〈gigj : i, j ∈ I〉 ⊆ Γ̃ (Lemma 4.3.6).

Suppose that Γ has a non-trivial fixed point in ce. Let ζ̄
i+1,λi+1−1
i denote the image of

ζ
i+1,λi+1−1
i in ce and set

α :=
∑

k∈∆(λ)

akζ̄
k+1,λk+1−1
k

where ak ∈ K are constants. Fix k ∈ ∆(λ) such that ak 6= 0 and assume Γ fixes α. It

follows that Γ also fixes ζk,λk−1
k . First of all we suppose that k′ ∈ ∆(λ) where k′+1 < k.

Then it follows from (4.2) that gk+1gk′+1(ζk,λk−1
k ) 6= ζk,λk−1

k , a contradiction. Similar

reasoning shows that all k′ ∈ ∆(λ) fulfil k′ ≤ k. This tells us that ∆(λ) ⊆ {k − 1, k}.

Suppose k − 1 ∈ ∆(λ). Then it follows that λk−1 > λk, and that k − 1 = (k − 1)′.

But now gk−1gk+1(ζk,λk−1
k ) 6= ζk,λk−1

k by (4.2). We conclude that ∆(λ) = {k}. It

follows that α = akζ
k+1,λk+1−1
k . It is clear that if any index i /∈ {k, k + 1} fulfils i = i′

then (choosing the greatest such index) we have gkgiζ
k,λk−1
k 6= ζk,λk−1

k . Therefore λ

is an exceptional partition. In this case we see that ζk,λk−1
k is fixed by Γ and since

ce = Kζk,λk−1
k we have the desired result. �

4.3.9. We temporarily say that an admissible sequence i = (i1, ..., il) for λ is of type

1 if Case 1 occurs at index ik for λik for every k = 1, ..., l.
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Lemma. Suppose that Oe has partition λ and that i is a restricted admissible sequence

for λ of type 1. Then there exists a parabolic subgroup P such that Ke ⊆ P with the

following properties. There is a Levi decomposition P = U o L with Γ̃ ∩ SL(V ) ⊆ L.

The Lie algebra l = Lie(L) lies in the fibre of π above i so that li ∼= gli×m (see 3.7.6).

Finally there exists an orbit O ⊆ l such that Oe = Indk
l (O) where O = O0 ×Oe0 and

e0 ∈ l has partition λi.

Proof. In this proof we shall assume that |i| = 1 and, by inspection, the parabolic de-

fined upon iterating this construction shall contain Ke, by the transitivity of induction

the orbit will induce to Oe, and by the transitivity of the algorithm the partition shall

be λi. Since Case 1 occurs for λ at i we get λi − λi+1 ≥ 2.

For each j ∈ {1, . . . , i} we denote by V ′[j] the linear span of all eswj with 0 < s <

λj − 1 and set

V ′ :=
(⊕k

j=1 V
′[j]
)⊕(⊕

j>k V [j]
)
,

a non-degenerate subspace of V with respect to the form (·, ·). Let W+ be the span of

{eλj−1wj : 1 ≤ j ≤ i} and W− be the span of {wj : 1 ≤ j ≤ i} so that W = W+⊕W−

is a complement to V ′ in V . Notice that dimV ′ = N − 2i. Since i is restricted, this

dimension is not equal to 2 in type D and the annihilator of W is a simple Lie algebra

m ⊆ k of the same type as k. Meanwhile, the annihilator of V ′ is isomorphic to gli

and the internal direct sum l = gli ⊕ m is a Levi subalgebra lying in the fibre of π

above i. Here we use that i is restricted. Set L equal to the Levi subgroup of K with

l = Lie(L).

The inclusions

W+ ⊆ V ′ ⊕W+ ⊆ V

form a partial flag and there is a parabolic group P ⊆ K stabilising it. Since L is a

maximal Levi subgroup contained in P it is a Levi factor. Let u denote the Lie algebra

of the unipotent radical of P . Then u is precisely the subspace of k which maps V into

V ′ ⊕W+ and maps V ′ ⊕W+ into W+.

Let e0 be the nilpotent element of m which sends eswj to es+1wj for 1 ≤ j ≤ i and

0 < s < λj−2, sends eλj−2wj to zero for 1 ≤ j ≤ i, and acts as e on all V [j] with j > i.

Set O = Ad(L)e0. It is not hard to see that the partition of e is λ(i). Since e− e0 lies

in u we see that e ∈ O + u so that Oe lies in the closure of Indk
l (O). However, since
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the partition of e0 is obtained from λ by an iteration of the algorithm at index i, the

partitions of Oe and Indk
l (O) coincide (Corollary 3.8.5) and it must be that these two

orbits are equal by dimension considerations.

Using the description of ke in 1.5 it is easy to see that ke ⊂ Lie(P ) which, in turn,

implies that K◦e ⊂ P . The set SL(V ) ∩ Γ̃ described in 4.3.6 is contained in L ⊆ P .

Since Ke = (SL(V ) ∩ Γ̃) · K◦e we get Ke ⊆ P as required. It is clear that we may

repeat this construction any number of times and still conclude that Ke ⊆ P and

Oe = Indk
l (O) where O = O0 ×Oλi . �

4.3.10. We call a nilpotent element e ∈ k almost rigid if the partition λ ∈ Pε(N) of

Oe fulfils λi−λi+1 ∈ {0, 1} for all i > 0. Recall that this is the first of the two criteria

given in Theorem 3.4.2 for a partition to be rigid. Since any such partition has no bad

2-steps every almost rigid nilpotent elements of k is non-singular.

Theorem. If e has partition λ then U(k, e)ab
Γ is a polynomial algebra in s(λ) variables.

Proof. We shall use notation Γ := Γ(e) and E := E(k, e). Let i = (i1, ..., il) be the

admissible sequence for λ of type 1 which is formed by applying Case 1 repeatedly

until s(λi) = 0, so that λi is almost rigid. We must distinguish the cases where λi is

exceptional or not exceptional.

If λi is exceptional then, since we only applied Case 1 of the KS algorithm to

λ we see that λ must also be exceptional. But then e is non-singular and so by

Corollary 3.8.1 and Corollary 3.10.1 we see that c(e) = r(e). Now we make invoke

part 1 of Theorem 4.2.3 to see that U(k, e)ab
Γ is polynomial in dim cΓ

e variables. By

Lemma 4.3.8 that is s(λ) variables.

Now suppose that λi is not exceptional. We claim that i is restricted. Indeed, if it

is not restricted then the type of k is D and λi = (1, 1). But now it is clear that λ is

exceptional, contrary to our assumptions. Hence we may apply the previous lemma to

deduce that there is a parabolic subgroup P containing Ke such that P = U o L and

Lie(L) = l ∼= gli ×m with a nilpotent element e0 ∈ m such that O = Ad(L)e0 induces

to Oe, and e0 has partition λi. It is immediate that dim z(l) = |i| = s(λ). Since Case

1 does not occur for λi at any index, e0 is almost rigid.
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Let M be simple subgroup of K with Lie(M) = m and denote by Γ0 the com-

ponent group Me0/M
◦
e0

, and make the notation ce0 = me0/[me0me0 ]. Then com-

bining Corollary 3.8.1 with Corollary 3.10.1 and Corollary 4.2.3(i) we deduce that

U(m, e0)ab
Γ0
∼= S

(
cΓ0
e0

)
. Since in the present case dim cΓ0

e0
= 0 by Lemma 4.3.8 we

conclude that E(m, e0)Γ0 is a single point. In particular it is non-empty. Note that

U([ll], e0) ∼= U(sli)⊗U(m, e0) as K-algebras and both tensor factors are stable under the

natural action of the reductive part of Le0 on U([ll], e0). Since U([ll], e0)ab ∼= U(m, e0)ab

we may deduce that E([ll], e0)Le0/L
◦
e0 6= ∅ and so Proposition 4.3.5 yields that EΓ 6= ∅

and dim EΓ ≥ dim z(l). On the other hand, dim z(l) = s(λ) = dim cΓ
e by Lemma 4.3.8.

It follows by part 2 of Corollary 4.2.3 that U(k, e)ab
Γ
∼= S(cΓ

e ) is polynomial in s(λ)

variables. �

4.4 Completely prime primitive ideals of U(k)

4.4.1. Let e be an induced nilpotent element of k. Let PrimU(k) be the set of all

primitive ideals of the universal enveloping algebra U(k) and let PrimO be the set of

those I ∈ PrimU(k) with VA(I) = O.

4.4.2. The traditional way to classify the completely prime primitive ideals I ∈

PrimO parallels Borho’s classification of the sheets. One aims to show that if the orbit

O is induced from a rigid orbit O0 in a Levi subalgebra l of k, then the majority of I

as above can be obtained as the annihilators in U(k) of certain induced k-modules

Indk
p(E) := U(k)⊗U(p) E,

where p = l⊕ n is a parabolic subalgebra of k with nilradical n and E is an irreducible

p-module acted on trivially by n and such that the annihilator I0 := AnnU(l) E is

a completely prime primitive ideal of U(l) with VA(I0) = O0. It should be noted

that the induced module does not necessarily have to be irreducible and Indk
l (I0) does

not have to be primitive and completely prime, in general, but this holds under the

additional assumption that I0 is completely prime thanks to Theorem 1.9.7.

4.4.3. The multiplicity multOU(k)/I of a primitive quotient with I ∈ PrimO is defined

in 1.9.3. The results of the previous section can be applied to describe how primitive

ideals I ∈ PrimO for which multO(U(q)/I) = 1 may be induced. The characterisation
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we obtain can be regarded as a generalisation of Mœglin’s theorem [48] on completely

prime primitive ideals of U(sln) to simple Lie algebras of other types (that theorem

was recently reproved by Brundan [10] by using the theory of finite W -algebras).

4.4.4. The rest of this section is devoted to proving the following:

Theorem. Let I ∈MFO be a multiplicity-free primitive ideal where O is an induced

orbit. Then there exists a proper parabolic subalgebra p of g with a Levi decomposition

p = l n n, a rigid nilpotent orbit Oe0 in l and a completely prime primitive ideal

I0 ∈ PrimOe0 such that the following hold:

1. VA(I0) = Oe0;

2. Oe = Indk
l (Oe0);

3. I = Indk
l (I0).

4.4.5. Recall from 1.11.5 that whenever Oe = Indk
l (Oe0), Losev’s embedding Ξ :

U(k, e) ↪→ U(l, e0)′ actually induces an embedding ξl : U(k, e)ab ↪→ U(l, e)ab. We study

the comorphism

ξ∗l : E(l, e0)→ E(k, e).

Our proof of the above theorem shall hinge upon the following proposition.

Proposition. For every induced nilpotent element Oe ∈ N (k)/K there exists a Levi

subalgebra l and a rigid nilpotent element e0 ∈ N ([ll]) such that:

1. Oe = Indk
l (Oe0);

2. E(k, e)Γ ⊆ ξ∗l E(l, e0).

Proof. Suppose that Oe has partition λ. First of all we consider the case where λ

is non-singular. By Theorem 3.8.1 our element e is contained in a unique sheet and

by Proposition 3.8.2 there is a unique K-pair (l,O)/K with O ⊆ l rigid and Oe =

Indk
l (O). Fix a Levi l from this K-pair, and choose any e0 ∈ O. By the theory

developed in 3.7 and 3.8 we know that the conjugacy class of l lies in the fibre of

π above some admissible sequence i for λ, and so l ∼= li ∼= gli × m, with e0 ∈ m

having partition λi. Now U(l, e0)ab ∼= U(gli, 0)ab⊗U(m, e0)ab ∼= S(z(l))⊗U(m, e0)ab as

algebras. Since e0 is rigid we deduce that U(m, e0)ab = K by Corollary 4.3.3. It follows
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that U(l, e0)ab is a polynomial algebra in dim z(l) variables. Since λ is non-singular we

may apply Corollary 3.8.1 and 3.10.1 to deduce that dim z(l) = z(λ) = c(λ) = c(e).

By Theorem 4.3.2 the algebra U(k, e)ab is also polynomial in c(e) variables. Now the

finite morphism ξ∗l : E(l, e0) → E(k, e) is forced to be surjective (bear in mind that

E(k, e) is irreducible whilst ξ∗l is closed and has finite fibres). Therefore

E(k, e)Γ ⊆ E(k, e) = ξ∗l E(l, e0).

Now turn our attention to the case where λ is singular. We shall reduce to the

non-singular case as follows. Let i be the admissible sequence of type 1 for λ which is

obtained by applying Case 1 of the KS algorithm to λ as many times as possible, so

that s(λi) = 0. By Lemma 4.3.9 there is a special parabolic P containing Ke, where

the conjugacy class of the Lie algebra of a Levi factor lies in the fibre above i. Then

l ∼= gli×m and there exists a nilpotent element e0 ∈ m such that Oe = Indk
l (Oe0). Set

Γ0 = Le0/L
◦
e0

. After the discussion in parts (b) of the proof of Proposition 4.3.5 the

maps which are used in Losev’s construction of ξ∗l areKφ-equivariant and it follows that

ξ∗l E(l, e0)Γ0 ⊆ E(k, e)Γ. Since λ is singular it is not exceptional and it follows that λi is

not exceptional either. Now U(l, e0)ab = S(z(l)) ⊗ U(m, e0)ab and so dim E(l, e0)Γ0 =

dim z(l) + s(λi) = dim z(l) by Theorem 4.3.10. But dim z(l) = s(λ) by construction,

and this coincides with dim E(k, e)Γ by the same theorem. We deduce that

ξ∗l : E(l, e0)Γ0 −→ E(k, e)Γ

is a finite morphism between irreducible varieties of the same dimension. In particular,

it is surjective.

Finally we may apply the construction from the first paragraph of the proof to m

and we will obtain a Levi subalgebra and nilpotent orbit with the correct properties.

�

4.4.6. We can now supply a proof for the Theorem 4.4.4, the last theorem of the

thesis.

Proof. Let (l, e0) be the pair constructed in the previous proposition and pick I ∈

MFOe . According to 1.10.7 there is a unique η ∈ E(k, e)Γ with I = IF(η). Thanks to

part 2 of the previous proposition we can find η0 ∈ E(l, e0) such that ξ∗l η0 = η. Let
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I0 := IF0(η0)EU(l), where F0 : U(l, e0)-mod→ U(l)-modχ0 is the Skryabin functor for

U(l, e0). According to part 3 of Theorem 1.10.7 this ideal is completely prime, whilst

part 1 tells us that the associated variety is Oe0 . Thanks to [41, Corollary 6.4.2], we

have the following commutative diagram:

E(k, e) PrimOe

E(l, e0) PrimOe0

IF(-)

ξ∗l (-)

IF0(-)

Indk
l (-)

It follows that I is obtained from I0 by parabolic induction.

�
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