
AUTOMATIC WEB WIDGETS
PREDICTION FOR WEB 2.0 ACCESS

TECHNOLOGIES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2013

By
Alex Qiang Chen

School of Computer Science

Contents

Abstract 16

Declaration 17

Copyright 18

Acknowledgements 19

1 Introduction 20
1.1 Motivation . 25

1.1.1 Supporting Older Users of Dynamic Web Content 32
1.1.2 Supporting Visually Impaired Users of Dynamic Web Content 34

1.2 Technological Freeze . 36
1.3 Research Questions . 37
1.4 Thesis Structure . 38
1.5 Publications . 41

2 Background and Related Work 43
2.1 Web Development Technologies and Recommendations 44

2.1.1 Web Accessibility . 45
2.1.2 Web Design . 50

2.2 Reverse Engineering . 56
2.2.1 Purposes for Identifying Web Widgets 56
2.2.2 Coding Format . 57
2.2.3 Code Comprehension . 60
2.2.4 Attempts to Identify Graphical Objects and Web Widgets . . . 72

2.3 Using Ontology to Classify Web Widgets 74
2.4 Summary . 76

2

3 Classifying Web Widgets 77
3.1 Developers & Users Perception . 78
3.2 Widget’s Taxonomy . 79

3.2.1 Widgets Layer . 82
3.2.2 Components Layer . 82
3.2.3 Tell-Signs Layer . 87
3.2.4 Code Constructs Layer . 90

3.3 Widget Identification Ontology (WIO) 92
3.3.1 Widget’s Granularity . 92
3.3.2 Reusable Widget’s Objects 93
3.3.3 Auto Suggest List Widget 94
3.3.4 Carousel Widget . 96
3.3.5 Collapsible Panel Widget . 99
3.3.6 Customisable Content Widget 100
3.3.7 Popup Content Widget . 101
3.3.8 Popup Window Widget . 103
3.3.9 Slide Show Widget . 103
3.3.10 Tabs Widget . 104
3.3.11 Ticker Widget . 106

3.4 Popularity of Widgets . 107
3.5 Summary . 111

4 Feasibility Investigation for Using Tell-Signs 112
4.1 Experiment Setup . 112

4.1.1 Scripting Language . 113
4.1.2 Experimental Data Set . 113

4.2 Auto Suggest List (ASL) Widget . 114
4.2.1 The Tell-Signs . 114
4.2.2 Assumptions and Rules . 120
4.2.3 Limitations . 122
4.2.4 Results and Discussions . 122

4.3 Carousel Widget . 124
4.3.1 Slide Show Widget . 125
4.3.2 Tabs Widget . 126
4.3.3 The Tell-Signs . 127
4.3.4 Assumptions and Rules . 130

3

4.3.5 Limitations . 131
4.3.6 Results and Discussions . 132

4.4 Suggested Refinements . 135
4.4.1 Linking Tell-Signs User Interface Objects 135
4.4.2 Annotating the Source Code 137

4.5 Summary . 137

5 Predicting Widgets On A Web Page 139
5.1 Issues With Analysing the Web Page Source Code 139

5.1.1 Multiple External Resources 140
5.1.2 Missing Code . 140
5.1.3 Web Browsers Monitoring Management 140
5.1.4 Weakly-Typed Scripting Languages 141
5.1.5 Non-Standardisation Interpretation 142
5.1.6 Just-In-Time (JIT) Interpreters 142

5.2 Profiling The Web Page Source Code 143
5.2.1 Handling Events . 145
5.2.2 Dynamic Code Generation 145
5.2.3 Redundant Code . 145

5.3 Approaches to Identify Web Widgets 146
5.3.1 Bottom-up Approach . 147
5.3.2 Top-down Approach . 147
5.3.3 Fusion of Top-down and Bottom-up Approach 148
5.3.4 Implementing a Tracer . 149
5.3.5 Implementing a Profiler . 150
5.3.6 Tailor Designed Profiler . 150

5.4 Analysing The Code . 150
5.4.1 Synthesising the Code . 152
5.4.2 Inside the Profiler . 152
5.4.3 Widget’s Inference . 162
5.4.4 Expanding the System . 162

5.5 Evaluating the Profiler . 165
5.5.1 Profiler’s Evaluation Setup 168
5.5.2 Profiler Evaluation’s Results and Discussions 168

5.6 Techniques to Predict Widgets . 175
5.6.1 Ticker Widget Tell-Signs . 176

4

5.6.2 Popup Content Widget Tell-Signs 177
5.6.3 Collapsible Panel Widget Tell-Signs 180
5.6.4 Auto Suggest List (ASL) Widget Tell-Signs 181
5.6.5 Tabs Widget Tell-Signs . 182
5.6.6 Carousel and Slide Show Widgets Tell-Signs 184
5.6.7 Limitations . 189

5.7 Summary . 189

6 Widget Prediction Evaluation 190
6.1 Evaluation Setup . 191

6.1.1 Data Collection . 191
6.1.2 WPS Setup . 192
6.1.3 Manual Analysis . 193

6.2 WPS Evaluation Results . 194
6.2.1 Ticker Widget Evaluation 194
6.2.2 Auto Suggest List (ASL) Widget Evaluation 196
6.2.3 Popup Content Widget Evaluation 197
6.2.4 Collapsible Panel Widget Evaluation 198
6.2.5 Tabs Widget Evaluation . 200
6.2.6 Carousel Widget Evaluation 201
6.2.7 Slide Show Widget Evaluation 202

6.3 Analysis and Discussion . 204
6.4 Summary . 213

7 Conclusions and Future Work 214
7.1 Contribution of the Thesis . 215

7.1.1 Widgets Can Be Formally Modelled and Classified 216
7.1.2 Tell-Signs Can Be Discovered From the Web Page Source Code 217
7.1.3 Widgets Prediction Can Be Done Automatically From the Web

Page Source Code . 217
7.2 Insights to WPS . 218
7.3 Outstanding Issues . 220
7.4 Future Research . 221
7.5 Summary . 224

Nomenclature 225

5

A Code Constructs Objects 238

B Results for Profiler’s 10K Character Size Evaluation 243

C Results for Profiler’s 15K Character Size Evaluation 259

D Results for Profiler’s 20K Character Size Evaluation 281

E Identification Reference of Tell-Signs 308

Word Count: 79373

6

List of Tables

3.1 Popularity of widgets for the top 50 websites 109
3.2 Ranking of the types of widget based on their probability of occurrence

in the top 50 Websites. 110

4.1 Feasibility investigation results for ASL widget detection. 123
4.2 Feasibility investigation results for the Carousel widget detection. . . 133

5.1 Code patterns for functions that will and will not be identified by M4’s
regular expression . 155

5.2 Character sizes of the default page for the top 30 most popular Web-
sites ranked by Alexa Top 500 Global Sites selected on 09 March 2011. 166

5.3 Compiled evaluation results breakdown for 10, 15 and 20 thousand
characters comparison between the Code Profiler results (Auto) and
manual detection results (Manual). The full extent of the results can
be found in Appendix B, C, D. 171

5.4 Overall evaluation results for 10, 15 and 20 thousand characters com-
parison between the Code Profiler results (Auto) and manual detection
results (Manual), as well as the similarity scoring between both sets of
results. 174

6.1 Comparison of results with and without digg.com for Popup Content
widget. 208

6.2 Comparison of results with and without digg.com for the combination
of Popup Content and Collapsible widget. 210

B.1 The Functions results extracted from the profiler for google.com when
evaluating over 10K character size. 245

B.2 The Objects results extracted from the profiler for google.com when
evaluating over 10K character size. 245

7

B.3 The Listener results extracted from the profiler for google.com when
evaluating over 10K character size. 246

B.4 The Functions results extracted from the profiler for facebook.com
when evaluating over 10K character size. 247

B.5 The Objects results extracted from the profiler for facebook.com when
evaluating over 10K character size. 247

B.6 The Functions results extracted from the profiler for youtube.com when
evaluating over 10K character size. 248

B.7 The Functions results extracted from the profiler for yahoo.com when
evaluating over 10K character size. 250

B.8 The Objects results extracted from the profiler for yahoo.com when
evaluating over 10K character size. 250

B.9 The Objects results extracted from the profiler for live.com when eval-
uating over 10K character size. 250

B.10 The Functions results extracted from the profiler for blogger.com when
evaluating over 10K character size. 251

B.11 The Functions results extracted from the profiler for baidu.com when
evaluating over 10K character size. 253

B.12 The Objects results extracted from the profiler for baidu.com when
evaluating over 10K character size. 253

B.13 The Listener results extracted from the profiler for baidu.com when
evaluating over 10K character size. 254

B.14 The Functions results extracted from the profiler for wikipedia.org
when evaluating over 10K character size. 254

B.15 The Listener results extracted from the profiler for wikipedia.org when
evaluating over 10K character size. 255

B.16 The Functions results extracted from the profiler for twitter.com when
evaluating over 10K character size. 256

B.17 The Objects results extracted from the profiler for twitter.com when
evaluating over 10K character size. 256

B.18 The Functions results extracted from the profiler for qq.com when eval-
uating over 10K character size. 257

B.19 The Objects results extracted from the profiler for qq.com when eval-
uating over 10K character size. 258

8

C.1 The Functions results extracted from the profiler for google.com when
evaluating over 15K character size. 262

C.2 The Objects results extracted from the profiler for google.com when
evaluating over 15K character size. 263

C.3 The Listener results extracted from the profiler for google.com when
evaluating over 15K character size. 263

C.4 The Functions results extracted from the profiler for facebook.com
when evaluating over 15K character size. 265

C.5 The Objects results extracted from the profiler for facebook.com when
evaluating over 15K character size. 266

C.6 The Functions results extracted from the profiler for youtube.com when
evaluating over 15K character size. 267

C.7 The Objects results extracted from the profiler for youtube.com when
evaluating over 15K character size. 267

C.8 The Functions results extracted from the profiler for yahoo.com when
evaluating over 15K character size. 270

C.9 The Objects results extracted from the profiler for yahoo.com when
evaluating over 15K character size. 270

C.10 The Objects results extracted from the profiler for live.com when eval-
uating over 15K character size. 271

C.11 The Functions results extracted from the profiler for blogger.com when
evaluating over 15K character size. 271

C.12 The Functions results extracted from the profiler for baidu.com when
evaluating over 15K character size. 274

C.13 The Objects results extracted from the profiler for baidu.com when
evaluating over 15K character size. 274

C.14 The Listener results extracted from the profiler for baidu.com when
evaluating over 15K character size. 275

C.15 The Functions results extracted from the profiler for wikipedia.org
when evaluating over 15K character size. 275

C.16 The Listener results extracted from the profiler for wikipedia.org when
evaluating over 15K character size. 275

C.17 The Functions results extracted from the profiler for twitter.com when
evaluating over 15K character size. 277

9

C.18 The Objects results extracted from the profiler for twitter.com when
evaluating over 15K character size. 278

C.19 The Listener results extracted from the profiler for twitter.com when
evaluating over 15K character size. 278

C.20 The Functions results extracted from the profiler for qq.com when eval-
uating over 15K character size. 280

C.21 The Objects results extracted from the profiler for qq.com when eval-
uating over 15K character size. 280

D.1 The Functions results extracted from the profiler for google.com when
evaluating over 20K character size. 285

D.2 The Objects results extracted from the profiler for google.com when
evaluating over 20K character size. 286

D.3 The Listener results extracted from the profiler for google.com when
evaluating over 20K character size. 286

D.4 The Functions results extracted from the profiler for facebook.com
when evaluating over 20K character size. 289

D.5 The Objects results extracted from the profiler for facebook.com when
evaluating over 20K character size. 290

D.6 The Functions results extracted from the profiler for youtube.com when
evaluating over 20K character size. 292

D.7 The Objects results extracted from the profiler for youtube.com when
evaluating over 20K character size. 292

D.8 The Functions results extracted from the profiler for yahoo.com when
evaluating over 20K character size. 295

D.9 The Objects results extracted from the profiler for yahoo.com when
evaluating over 20K character size. 296

D.10 The Objects results extracted from the profiler for live.com when eval-
uating over 20K character size. 296

D.11 The Functions results extracted from the profiler for blogger.com when
evaluating over 20K character size. 297

D.12 The Functions results extracted from the profiler for baidu.com when
evaluating over 20K character size. 299

D.13 The Objects results extracted from the profiler for baidu.com when
evaluating over 20K character size. 300

10

D.14 The Listener results extracted from the profiler for baidu.com when
evaluating over 20K character size. 300

D.15 The Functions results extracted from the profiler for wikipedia.org
when evaluating over 20K character size. 301

D.16 The Listener results extracted from the profiler for wikipedia.org when
evaluating over 20K character size. 301

D.17 The Functions results extracted from the profiler for twitter.com when
evaluating over 20K character size. 303

D.18 The Objects results extracted from the profiler for twitter.com when
evaluating over 20K character size. 304

D.19 The Listener results extracted from the profiler for twitter.com when
evaluating over 20K character size. 304

D.20 The Functions results extracted from the profiler for qq.com when eval-
uating over 20K character size. 306

D.21 The Objects results extracted from the profiler for qq.com when eval-
uating over 20K character size. 307

E.1 List of common tell-signs that can be shared among different types of
widgets. 309

E.2 List of tell-signs private to Auto Suggest List (ASL) widget. 309
E.3 List of tell-signs private to Ticker widget. 309
E.4 List of tell-signs private to Popup Content widget and Collapsible Panel

widget. 310
E.5 List of tell-signs private to Tabs widget. 310
E.6 List of tell-signs private to Carousel widget and Slide Show widget. . 310

11

List of Figures

1.1 The transition process of a Tabs widget when a panel is loaded in
http://uk.yahoo.com. 21

1.2 The components that form WIMWAT project. 23
1.3 An example of the Auto Suggest List widget by Google.com 26
1.4 Difference between SASWAT and WPS lifetime. 32
1.5 Interface for the Older User Widget Assistant. 34
1.6 Tabs on the Yahoo! home page. 35

2.1 The iterative process to develop and maintain an application. 51
2.2 Reverse and forward engineering cycle 56
2.3 The architecture used in Di Lucca et al. [2005a] for the Web Interaction

Design Pattern Recovery System . 61
2.4 The overall architecture of the approach for DP-Miner 63
2.5 The overall architecture of the automated process that transforms the

UML model of a design pattern application into its evolved form . . . 65
2.6 The identification process of UWA entities and semantic associations

types in [Bernardi et al., 2008] . 66
2.7 Architecture for the Hyperbase model abstractor module in Bernardi

et al. [2008] for the Re-UWA environment. 67

3.1 Carousel widget from Sky.com . 79
3.2 Slide Show widget from Yahoo.com 80
3.3 Widget Identification Ontology (WIO) paradigm 81
3.4 Taxonomy of the Widgets layer. 83
3.5 Taxonomy of the Components layer. 84
3.6 Taxonomy of Visible components objects in the Components layer. . . 85
3.7 Taxonomy of Visible Buttons components objects in the Components

layer. 86

12

3.8 Taxonomy of Code components objects in the Components layer. . . . 86
3.9 The subset taxonomy of manipulated DOM objects under the Code

components objects in the Components layer. 87
3.10 Taxonomy of the Tell-Signs layer. 89
3.11 Taxonomy of the Code Constructs layer. 91
3.12 Visualisation of a Carousel widget process. 97
3.13 The use of Collapsible Panel widget in kayak.co.uk. 99
3.14 The use of Popup Content widget in AOL.co.uk website. 102
3.15 Visualisation of a Slide Show widget process. 104
3.16 The use of Tabs widget in NYTimes.com. 105

4.1 An example of ASL widget (non-shade region) in action on Google.co.uk115
4.2 ASL widget selection moving up . 116
4.3 ASL widget selection moving down 117
4.4 ASL widget detection’s tell-sign process flow chart 121
4.5 An example of the Carousel widget (non-shaded region) in action on

blogger.com. The arrows are used to move to the previous or next item. 125
4.6 An example of the Slide Show widget (non-shaded region) in action

on aol.com . 126
4.7 An example of the Tabs widget (non-shaded region) in action on ya-

hoo.com . 127
4.8 Carousel widget increment tell-sign (ts1) detection flow 128
4.9 Carousel widget detection’s tell-sign process flow chart 132
4.10 Static graph examples for Carousel widget?s UI components 136

5.1 Overview of the browser interpretation process. 144
5.2 Widget Prediction System (WPS) overall architecture. 151
5.3 Widget Prediction System (WPS) Code Profiler block’s internal pro-

cess flow. 153
5.4 Data structure to store the functions found in the JavaScript code of a

Web page. 156
5.5 Data structure to store the objects found in the JavaScript code. 158
5.6 Data structure to store the event listeners found in the JavaScript code. 160
5.7 Data structure to store the event listeners factory method found in the

JavaScript code. 162

13

5.8 The architecture and connections of the Tell-sign’s Object Block that
is found in the overall WPS architecture as seen in figure 5.2. 164

5.9 Data structure to store the tell-signs found in the JavaScript code. . . . 164
5.10 Website’s default page character size distribution for the top 30 most

popular Websites ranked by Alexa Top 500 Global Sites selected on 09
March 2011. 167

5.11 The final WPS Popup Content and Collapsible Panel widget prediction
process flow for each candidate. 178

5.12 The final WPS Auto Suggest List (ASL) widget prediction process
flow for each candidate. 181

5.13 The final WPS Tabs widget prediction process flow for each candidate. 183
5.14 The final WPS Carousel and Slide Show widget overall prediction pro-

cess flow for each candidate. 185
5.15 The final WPS Carousel and SlideShow widget ‘Next’ button predic-

tion process flow for each candidate. 186
5.16 The final WPS Carousel and SlideShow widget ‘Back’ or ‘Previous’

button prediction process flow for each candidate. 188

6.1 The setup of WPS as an Add-On in Mozilla’s FireFox Web browser. . 192
6.2 Prediction results for Ticker widget 195
6.3 Prediction results for Auto Suggest List (ASL) widget. 196
6.4 Prediction results for Popup Content widget. 198
6.5 Prediction results for Collapsible Panel widget. 199
6.6 Prediction results for Tabs widget. 201
6.7 Prediction results for Carousel widget. 202
6.8 Prediction results for Slide Show widget. 203
6.9 Simplified ‘Next’ and ‘Previous’ buttons concepts. 205
6.10 Prediction results when Carousel widget and Slide Show widget are

combined. 205
6.11 Prediction results when Popup Content widget and Collapsible Panel

widget are combined. 207
6.12 Comparison of Popup Content widget results with and without digg.com208
6.13 Prediction results when Popup Content widget and Collapsible Panel

widget are combined without digg.com. 209
6.14 The usage of common tell-signs analysed from our evaluation results. 210

14

6.15 The usage of specific types of widget tell-signs analysed from our eval-
uation results. 212

7.1 WPS interface as a service. 218

15

Abstract
AUTOMATIC WEB WIDGETS PREDICTION FOR WEB 2.0 ACCESS TECHNOLOGIES

Alex Qiang Chen
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2013

The World Wide Web (Web) has evolved from a collection of static pages that
need reloading every time the content changes, into dynamic pages where parts of
the page updates independently, without reloading it. As such, users are required to
work with dynamic pages with components that react to events either from human
interaction or machine automation. Often elderly and visually impaired users are the
most disadvantaged when dealing with this form of interaction. Operating widgets
require the user to have the conceptual design knowledge of the widget to complete
the task. Users must have prior experience with the widget or have to learn to operate
it independently, because often no user documentation is available.

An automated Widget Prediction Framework (WPF) is proposed to address the
issues discussed. It is a pre-emptive approach that predicts different types of widget
and their locations in the page. Widgets with similar characteristics and functionalities
are categorised based on a definition provided by widget design pattern libraries. Some
design patterns are more loosely defined than others, and this causes confusion and
ambiguity when identifying them. A formal method to model widgets based on a
Widget Ontology was developed. The paradigm of the ontology provides a framework
for developers to communicate their ideas, while reducing ambiguity between different
types of widget. A Widget Prediction System (WPS) was developed using the concepts
of the WPF. To select the types of widget for WPS evaluation, a widget popularity
investigation was conducted. Seven of the most popular widgets from the investigation,
done across fifty Websites, were selected. To demonstrate how WPF can be applied
to predict widgets, fifty websites were used to evaluate the feasibility of the approach
using WPS. On average, WPS achieved 61.98% prediction accuracy with two of the
widgets > 84% accuracy. These results demonstrated the feasibility of the framework
as the backend for tools that support elderly or visually impaired users.

16

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

17

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

18

Acknowledgements

Most of all, I would like to thank my supervisors Simon Harper and Andrew Brown for
their guidance, advice and support. During the course of this research, they have fos-
tered an environment that has engaged me in interesting and enthusiastic discussions,
that has often been a source of great inspiration. I am also grateful to Dmitry Tsarkov
for verifying the Ontologies and providing his invaluable advice.

I would like to extend my gratitude to the members of the Web Ergonomics Lab,
especially Darren Lunn for his advice when formulating my concepts, and many inspi-
rational discussions.

Most importantly: my family – particularly my parents for their constant encour-
agement and support, which I am indebted.

19

Chapter 1

Introduction

There is a myth that providing accessible content equates with delivering content that
can be reached and interpreted by people with all types of physical, sensory or cog-
nitive capabilities. As the World Wide Web (Web) becomes overly a visual and in-
teractive medium, we will explore how this myth of accessible content has affected
the Web, the existing guidelines, and tools to improve Web Accessibility. We believe
more needs to be done to narrow the gap, so that the myth of providing accessible
content will be inline with the constantly evolving Web technologies and trends. A
novel approach is presented that uses a framework to predict the regions in the Web
page where Web components with a specific purpose react to events from humans or
machines (widgets). By providing users with the knowledge to operate widgets, we
aim to improve the user experience when interacting with the page indirectly.

The technological advancement of the Web is evolving at a fast pace due to its
popularity and necessity in our everyday lives. A collection of static content pages
was used to convey content to the users during its infant years. This form of content
delivery requires the page to be reloaded every time the content has changed, so that
the user will be up to date with the current information or task. Due to technological
advancement and demand, Web pages have become more interactive and have evolved
into dynamic pages, where parts of the page can be updated independently without
reloading the page.

Internet applications such as e-mail, social networking services and instant messag-
ing, which we interact with on a daily basis, highlight the growing importance of the
Web. Furthermore, the demand for quick real-time information has been seen across

20

CHAPTER 1. INTRODUCTION 21

Figure 1.1: The transition process of a Tabs widget when a panel is loaded in
http://uk.yahoo.com/. 1© When Web page is first loaded and by default the ‘News’
tab is selected. 2© When the user clicks on the ‘Entertainment’ tab, the content of
this tab is loaded using remote scripting. 3©When ‘Entertainment’ tab content is fully
loaded.

many news channels (such as the BBC1, Reuters2, CNN3) and social networking (such
as Facebook4, LinkedIn5, Orkut6) Websites.

Developers often use Remote Scripting techniques to control and update small sec-
tions of content within the page to deliver the latest content to the user. This technique
is normally deployed using Asynchronous JavaScript and eXtended Markup Language
(collectively known as “AJAX”), JavaScript Object Notation (JSON), and client-side

1URL: http://www.bbc.co.uk/news/. Last accessed on 17th August 2012
2URL: http://www.reuters.com/. Last accessed on 17th August 2012
3URL: http://edition.cnn.com/. Last accessed on 17th August 2012
4URL: http://www.facebook.com/. Last accessed on 17th August 2012
5URL: http://www.linkedin.com/. Last accessed on 17th August 2012
6URL: http://www.orkut.com/. Last accessed on 17th August 2012

CHAPTER 1. INTRODUCTION 22

scripting languages interchangeably. Using these approaches, developers can over-
come the heterogeneous nature of the Web and the constant flow of updates to be pre-
sented, while freeing the user from constantly reloading the entire page. On the other
hand, this form of content delivery requires the user to be able to notice the changes to
the sections of content in the page (see figure 1.1). Often it even requires the user to
be able to operate the widget to extract the relevant content or accomplish a task. This
implies that users have to be conversant with Web technological trends. Often Assis-
tive Technologies struggle to cope to be on a par with the changes. Thus, features Web
developers have created are not known to the users of these technologies and mobile
devices [Yesilada et al., 2010; Hardesty, 2011].

The evolution of the way content is delivered over the Web requires users to be
able to find their way around the page independently. This form of interaction com-
monly requires the user to learn how to operate the widgets independently, if no prior
experience with the page is established. Frequently, users approach the widgets using
a trial-and-error method to learn how to operate the widgets. This is because no user
documentation relating to the widget is normally available. Furthermore, widgets are
often developed specifically for a model of content delivery or part of a bigger process
for which the page was created. A type of widget can deviate in appearance and be-
haviour from page-to-page or task-to-task; however, the overall concepts remain the
same. It is left to the users to figure out the perceivable design concepts of the widgets.
Depending on the user’s cognition ability, the user has to be able to work out how to
operate the widget using its components. If these conceptual connections cannot be
made, then the user experience the developer wishes to deliver will be lost.

An automated widget prediction approach to assist users to identify widgets on the
page is proposed to improve the issues faced when interacting with widgets. This is
a pre-emptive approach that will inform users about the regions in a page where the
widgets are found, as well as where dynamic content may occur. By providing this
information, Assistive Technologies can inform users how to operate the widgets.

Existing Web widget design pattern libraries provide a general idea of how a type
of widget should behave and the necessary components that form it. However, the def-
initions are left ambiguous to accommodate the wide variety of approaches available.
Often this ambiguity translates into weakly defined widgets, and when interpreting the
design patterns for these widgets it becomes even more loosely coupled because it de-
pends mainly on the developer’s perspective and application. Furthermore, the loose
method of describing widgets adds another layer of confusion on top of the ambiguous

CHAPTER 1. INTRODUCTION 23

definition for users, who are normally less informed about the technical aspects.
We propose an approach to modelling widgets formally and assisting develop-

ers when developing the widget identification process. This approach provides both
documentation as well as a medium for the developers/users to develop a cognitive
paradigm of the different types of widgets’ definitions. A widget ontology is created
from the widget taxonomy introduced, so that widget designs can be modelled as a
result. The widget ontology uses a paradigm that models widget designs in four layers.
From the top layer, it describes the abstract concepts of the design, then the com-
ponents that form the widgets in the second layer. To search for the components of
the widget from the source code, traces and clues of the components called tell-signs
model the components in the third layer. Lastly, the bottom layer describes the actual
code constructs that form the metaphor of the tell-signs. We believe the widget ontol-
ogy will provide the key to a rounded solution for both users and developers, so that
concepts of the different types of widget can be shared.

A novel framework called the Widget Prediction Framework (WPF) is an umbrella
framework that provides recommendations to guide the development of an automated
widget prediction system. WPF covers everything from the development of the def-
inition of widgets all the way to materialising the shared knowledge of the different
widgets in the prediction system. Two main phases are suggested: 1) modelling the

WIMWAT Project

WPS WPF WIO
Used In

Extract
Concepts

From

Figure 1.2: The components that form the Widget Identification and Modification for
Web 2.0 Access Technologies (WIMWAT) project. Where WPS is Widget Predic-
tion System, WPF is Widget Prediction Framework, and WIO is Widget Identification
Ontology.

CHAPTER 1. INTRODUCTION 24

widgets’ definition and 2) implementation of the automated Widget Prediction System
(WPS).

In the first main phase, the widget ontology paradigm is used to assist in modelling
the different types of widget to form the Widget Identification Ontology (WIO). A
strongly typed language7 is used to define the conceptual models of the widgets. It
provides a platform to share knowledge with designers and developers. The ontology
is not directly used by the system; instead, the shared knowledge informs the develop-
er/designer about the rules to apply in WPS. These rules are then developed in WPS by
manually coding them in main phase two, and the system does not query the ontology
when trying to predict widgets. A discussion of how to implement WPS to predict
widgets is presented and evaluated to demonstrate the feasibility of the approach in the
wild Web. WPS, WIO and WPF are outcomes of the Widget Identification and Modi-
fication for the Web 2.0 Access Technologies (WIMWAT) project, to research for so-
lutions to improve Web widget accessibility for Web 2.0 content. Figure 1.2 illustrates
the different components resulting from the WIMWAT project. It shows how these
components are associated with one another to predict widgets. To select the types of
widget to be included in WPS, a study of widget popularity over fifty popular Websites
was conducted. Later, seven of the most popular widgets from the popularity study are
included in WPS, to evaluate the feasibility of the approach over fifty Websites. The
evaluation exposed that the prediction techniques are more accurate for some types of
widget than others, depending on the nature of the widget. These results demonstrate
that widgets can be identified from the source code, and that detection at the granu-
larity of the widget’s components is also feasible. This form of detection granularity
will enable tools using the WPS or the WPF, to provide users with the awareness of
the location, the components of the widget, and the type of widget in a page. With this
information, one can provide insights into the widgets in the page to help Assistive
Technologies, and assist the insertion of Accessible Rich Internet Applications Suite
(WAI-ARIA) syntax for reverse engineering processes, development, maintenance and
adaptation processes. Finally, issues raised by the evaluation are described and sug-
gestions for overcoming them are also presented for future work. Enhancement to the
work presented in this thesis and some application of the WPF are also discussed.

The WPF can reside in Assistive Technology, or as an add-on to these technologies
and user agents, as well as a RESTful Web service to analyse the set of source code

7The Web Ontology Language (OWL) is used to model WIO before the shared knowledge is imple-
mented in WPS.

CHAPTER 1. INTRODUCTION 25

provided. It can be seen as a backend engine to provide Assistive Technologies with
the region in the page where widgets are employed by the developer, as well as pre-
dict possible areas in the page where dynamic content will mutate. The success of the
proposed research has been applied in two prototype tools (SCWeb2.0 and SASWAT),
as a service to assist them in establishing whether the page contains dynamic content.
When WPF is applied to an Integrated Development Environment (IDE) for develop-
ment, it can help developers to predict regions in the code which require WAI-ARIA
syntax injection. It also assists developers in checking for a widget’s design confor-
mance, as well as assisting in reverse engineering processes for Website maintenance.
The range of applications for WPF demonstrates the importance of the research, as
well as its significant contributions to the Web community.

1.1 Motivation

Web accessibility guidelines such as the Web Content Accessibility Guidelines (WCAG)
and WAI-ARIA, and Section 508 of the Rehabilitation Act in the United States of
America, provide recommendations to Web developers and authors for building acces-
sible Web pages. However, before a Web page can be truly accessible, Web browsers,
Assistive Technologies and Web pages must align themselves with the guidelines,
along with the different corresponding versions.

Developing an accessible Web page is difficult, time consuming and often, devel-
opers do not see the benefits of it. Thus, compliance to accessibility guidelines can be
hard to achieve. Furthermore, developing widgets that are of an accessible form would
be even more difficult and time consuming. This is because the components that form
the widget are based around conceptual models employed by developers. Besides
these issues, commonly little or no user documentation is available for users. Hence,
this makes it difficult for users to interpret the intention of the task, and frequently they
are unable to fully utilise the widget.

As an example, we will have a closer look at a type of widget called Auto Suggest
List (ASL) to illustrate the importance of being able to operate a widget, and how it
will impact the page’s accessibility, usability and user experience. The ASL widget
is often used to assist users when filling up a form or a search query by suggesting a
list of related content that the user may intend to input into the text field. Figure 1.3
illustrates the example of an ASL widget in action when the user has entered a few
characters as part of his/her query. Shortly after the user has entered part of the query,

CHAPTER 1. INTRODUCTION 26

Figure 1.3: An example of the Auto Suggest List widget by Google.com

a list of suggested possible inputs beginning with the same few characters, or which
have close relations to the partly entered query, is presented to the user. At this point,
the user can either continue to type the remaining query or choose from one of the
suggestions presented in the list to complete the search process.

The ASL widget is frequently used to reduce typing/spelling errors, speeding up
the querying process, and assisting the user when filling up the search field. However,
the interface of this widget requires the user to be able to visually notice the change
of content on the page so that they will be able to utilise the widget. Often, users
of Assistive Technologies, especially screen readers, are unaware of these changes
because a lot of these technologies are unable to keep up with the evolution of the
Web [Chen and Harper, 2008]. Developing a widget to be accessible not only makes
the content accessible to users of Assistive Technologies, but it also should assist in
making all types of users aware of its features.

In order to achieve these concepts, when developing Web pages, considerations of
the content accessibility and usability should be taken into account. Since the Web can
be accessed by many different kinds of devices (i.e. personal computers and mobile
devices). To ensure the widget is usable, developers should also consider the size of the
screen and its resolution, and whether the targeted devices are capable of utilising the
widget. When these considerations are met, users will be more aware of the widget’s
content and components, and this will help them to utilise the widget more effectively,
thus reducing the initial learning time.

CHAPTER 1. INTRODUCTION 27

In the past, attempts were made by Brown and Jay [2008b] and Borodin et al.
[2008] to help users become aware of micro-content updates, especially for visually
disabled users. The Single Structured Accessibility Stream for Web 2.0 Access Tech-
nologies (SASWAT) project done by Brown and Jay [2008b] and the Dynamo project
done by Borodin et al. [2008] provide awareness to their users that the content has
changed but do not assist them in identifying or using the widget. In order to assist
users to use the dynamic Webpages, analysing the code within the page is required so
that widgets can be identified. If a common definition for different types of widgets
can be established, then after the widgets are detected, users can be informed about
them so that the widgets can be utilised effectively. These projects, together with the
Senior Citizens On The Web 2.0 (SCWeb2.0) project8 are the main motivators of the
WIMWAT project. They helped to scope the initial concepts, and lay out the impor-
tance of the proposed research.

During the course of searching for solutions for the proposed research, techniques
employed from the immediate fields, along with the surroundings fields, were ex-
plored. The matrix approach is used in Dong et al. [2007] study to reverse engineer
the design patterns applied during the development phase for desktop programmes,
and Stencel and Wegrzynowicz [2008] applied this method to automatically detect oc-
currences of design patterns in desktop applications. Concepts to reverse engineer
widgets from the source code, using instances in the source code as clues to identify
the patterns of a widget’s design, were inspired. The concepts to model patterns like
reusable objects were inspired initially after reading Fowler [1996]. However, the con-
cepts to model widgets based on reusable objects were further formalised after reading
the demonstration by Presutti and Gangemi [2008], where the composition of ontology
design patterns for Semantic Web technologies was described. Using the idea of devel-
oping ontology to encode concepts rather than logical design patterns, a combinatory
notion to apply the concepts of the ontology, to assist widgets classification during the
prediction process was further developed. These concepts led to a conceptual model to
provide a paradigm for developers and users to base their work on, so that the concepts
of a widget could converge.

Before Assistive Technologies can advise their users about objects and content in
the Web page, these technologies need to know what is contained in the page. Identify-
ing the widgets that orchestrate different sets of micro-content is crucial when assisting

8SCWeb2.0 – http://wel.cs.manchester.ac.uk/research/scweb2/. Last accessed on 3rd

September 2012

CHAPTER 1. INTRODUCTION 28

users in understanding how to use and access dynamic micro-content. This informa-
tion will allow the user or other tool to have a clue about the components in the page
and how the different components operate. Widgets are conceptual models to organise
presented information, thus reverse engineering the code to derive the concepts of the
widget will be challenging.

Reverse engineering the design concepts of different widgets is difficult. This is
because design patterns often get lost within the code when applying them during de-
velopment [Gamma et al., 1995]. More recently, Dong et al. [2008b] reiterated the
difficulties of tracing the design’s information from the source code, and compared
different existing design pattern mining techniques including their DP-Miner [Dong
et al., 2007] which uses matrices to discover design patterns. The DP-Miner approach
is suited to desktop applications. It does not cover the same degree for Web applica-
tions, let alone Web widgets.

Web applications are heterogeneous combinations of technologies to enable it to
work. They can be broken down into smaller processes, located at different locations
(Web services), and every Web service can be created using a different technology.
More recently, Web applications are appearing in smaller forms, commonly known as
widgets, which deal with small tasks, and often more than one of these widgets may
coexist in a page. Breaking down the tasks into smaller parts allows the developers to
provide real time interaction with the user. Thus, the complex nature of incorporating
widgets into a page requires a different approach to reverse engineer them.

Widgets enable better interaction but, like all applications, users need to go through
an initial training or trial-and-error phase before they are capable of utilising the widget
effectively. In the process of making the Websites more interactive and coping with the
pace of Web trends, commonly developers do not provide any form of user documen-
tation. This negligence often becomes a barrier for their users. Quite often inadequate
or outdated design documentation causes all sorts of problems for assistive technolo-
gies, and as highlighted by Di Lucca et al. [2006], the issues with documentation also
affects the maintenance and evolution of the system.

Attempts were made by Bernardi et al. [2008]; Rossi et al. [2008] to recover con-
ceptual models from Web applications. Rossi et al. [2008] suggested that, if it was
possible to identify the model of a Rich Internet Application (RIA), then this informa-
tion would be able to assist refactoring RIAs. They discussed their anecdotal concepts
to recover the model of the Carousel widget only. However, Rossi et al. [2008] did
not continue to demonstrate, in practice, how their approach could be applied in a

CHAPTER 1. INTRODUCTION 29

system to automatically detect the Carousel widget. Neither did they do an extensive
evaluation to prove the feasibility of their concepts. Bernardi et al. [2008] has shown
the possibility of reverse engineering the Web applications, to derive the conceptual
design expressed in conceptual modelling languages such as Unified Modelling Lan-
guage (UML) and Web Modelling Language (WebML) [Ceri et al., 2000]. This type
of modelling language is often very expressive, and it requires a lot of computation
power to compute and form these models. Thus, they are more suited for Ubiquitous
Web Application (UWA) [Finkelstein et al., 2002] or non-realtime processes. On the
other hand, identifying widgets does not necessarily need so much information to be
processed as demonstrated by Chen and Harper [2009]. This is because widgets are
specific purpose Web components that process a limited amount of tasks for users to
interact with the page.

Identifying widgets and components in the Web page is not the only approach to
assisting users with interpreting and accessing content on the page. Earlier, projects
like the Structural-Semantics for Accessibility and Device Independence (SADIe) also
inspired WIMWAT with the approach of transcoding the page content so that the inac-
cessibility of Web pages can be overcome without the need to annotate them [Harper
et al., 2006]. The applicability of SADIe was demonstrated in Lunn et al. [2009a]
where CSS annotations were transcoded to generate Access-Enabling AJAX (Axs-
JAX) code, and later in Lunn [2009] towards Behaviour-Driven transcoding of Web
content by analysing the coping strategies employed by users. These approaches only
‘tame’ the static content presented on the page, while WPF deals with dynamic content
and widgets that are widely used to incorporate Web 2.0 concepts. Studies like SADIe
exposed the gaps that methodically devised part of the widget prediction framework
concepts. However, to deal with the dynamic nature of the content and widgets, a
deeper analysis of the code is required. The research extends the analysis to the be-
haviour and content components of the page as well. The applications for WPF are
also partly fuelled by SADIe. This includes assisting developers and Assistive Tech-
nologies to inject WAI-ARIA syntax or AxsJAX code into the components that interact
with the user, as well as the content manipulated by the widget. Unlike SADIe, WPF
can locate the components of the widget to increase the granularity of the injection,
hence providing users with the conceptual application of the widgets and improving
their experience.

The SASWAT project provides inspirational techniques and approaches for the
WIMWAT project. SASWAT aims to provide a framework for mapping the areas on a

CHAPTER 1. INTRODUCTION 30

Web page where competing dynamic micro content is produced by Web 2.0 technolo-
gies to audio Brown and Jay [2008b]. These aims can be broken down into five major
objectives9:

• Determine the visual experiences of sighted users when attempting to assimilate
the information of interactions presented in the micro content.

• Research the nature and evolution of the Web infrastructure in its transition from
static to dynamic Websites.

• Using the results from the previous goals, develop a model of the Web interaction
with which a mapping from sighted to visually impaired can then be constructed.

• Create a framework to mediate between the competing demands of the micro
content present on the Website.

• Evaluate this system in a repeatable experiment to validate the findings.

Presently, the approach for the SASWAT project monitors and tracks the Document
Object Model (DOM) for content updates in a Web page [Brown and Jay, 2008b]. The
changes in the Web page are characterised into four categories for further analysis.
User’s focus and user’s preferences are also accounted for. This information will help
the system decide whether the user has interest in a piece of updated information. This
is a reactive approach to the dynamic content problem. Often users have to wait until
the content has mutated before they can be notified about the changes.

From a recent evaluation by Brown [2012], it can be noticed from the evalua-
tion transcripts: providing users with knowledge of the particular type of widget were
deemed to be helpful when they interacted with the page. These results highlight the
practical aspects of the proposed research and an avenue for its application. Due to the
nature of the proposed research, it suggests that collaborations between WIMWAT and
SASWAT should be done to investigate the feasibility of providing information about
the widgets to the user.

The objectives of the SCWeb2.0 project is to investigate how ageing users perceive
and interact with Web pages that use Web 2.0 technologies, then suggest conclusive in-
terventions that will improve the interactivity issues faced by these users10. As reported

9Project Aims of SASWAT — http://wel.cs.manchester.ac.uk/research/saswat/. Last ac-
cessed on 3rd September 2012

10Project objectives of SCWeb2.0 — http://wel.cs.manchester.ac.uk/research/scweb2/.
Last accessed on 3rd September 2012

CHAPTER 1. INTRODUCTION 31

in Lunn et al. [2009b], the older Web users evaluated faced orientation and scrolling
issues on static Web pages. The study went on to suggest that, due to the interface
complexity such as changes in content and context, additional problems might arise
in Web 2.0 pages. Efforts by the World Wide Web Consortium (W3C) WAI-ARIA
guidelines, and the fifth major revision of the HyperText Markup Language (HTML5)
specifications, attempted to improve the situation. However, the fruits of these efforts
will not be immediate, as discovered in a study by Harper and Chen [2012]. It was
also reported that some of these standards/recommendations, especially those relating
to making Web content accessible, never get taken up much by the Web community.
Studies such as Lunn and Harper [2011] attempted to address the issues pertaining to
older users’ interactions and perceptions of Web 2.0 technologies with the SCWeb2.0
Assistance Tool in their study. These tools can benefit from WPF to inform their users
about Web 2.0 technologies employed in the Web page.

The insights into the interactivity problems and content accessibility raised by Web
2.0 technologies were highlighted in the SASWAT project. It demonstrated the feasi-
bility of identifying changes in dynamic content by monitoring the DOM of the Web
page. It was shown in the SASWAT project how accessibility and usability for Web
pages with Web 2.0 technologies can be improved by providing users with the areas
in the page where dynamic content updates. However, it also reveals the insights of
users’ experience when interacting with dynamic content and widgets.

Unlike SASWAT, WPF is a pre-emptive approach that not only identifies the re-
gions where dynamic content may occur, but also the widgets that orchestrate the con-
tent. The WIMWAT project takes SASWAT ideas to another level. Now, User Interface
(UI) objects and areas in the page where dynamic content is found are analysed to de-
duce the expected process of the components in the widgets. WPF is dependent on
the shared knowledge provided by the Web widget ontology, to code WPS, so that the
conceptual models of widgets’ components can assist the widget prediction process.
The Web widget ontology was created based on textual information within the source
code and DOM, and concepts of processes are derived from past textual information
found during each analysis. The textual information analysed includes the hypertext
content, styling code and behaviour scripts. Finally, after the widget is determined, the
location of the widget in the page is deduced.

Indeed, WPS is not an iterative process: it is a pre-emptive approach to establish
if the page contains any dynamic content by predicting widgets in it. The prediction
process is normally done at the first instance after the Web page is visually loaded, but

CHAPTER 1. INTRODUCTION 32

W
PS

SASWAT W
PS

Content Loaded In User Agent

Rendered Timeline

Content Visually Loaded

Web Page Lifetime

Can be re-fired

Figure 1.4: Difference between SASWAT and WPS lifetime.

it can be called again at a later stage in the page’s lifetime for each load whenever it is
required. Both projects approach dynamic content accessibility issues from different
ends. Another difference is that SASWAT executes parallel to the page’s lifetime as
depicted in Figure 1.4. The rationale behind WPF is to predict the types of widget
and their location within the page. As the lifetime of the page increases and after the
user interacts with the page, more clues of the widget may become available, thus the
prediction rate can be improved if WPS is re-fired at a later stage.

The possibilities of applications for WPF put forward a strong case for the proposed
research discussed above. These ideas have led to two prototype tools [Chen et al.,
2013], to assist users as they interact with dynamic content, to incorporate WPF as
part of their processes. These tools, discussed below as use cases, provide older users
and visually impaired users with improved access to Web 2.0 content.

1.1.1 Supporting Older Users of Dynamic Web Content

When users are faced with differing types of content, they have the difficulty of di-
viding their attention between the elements to complete tasks effectively [Sàenz et al.,
2003]. This additional load is a major problem for an ageing population of knowl-
edge workers expected to work longer into old age. The general effects of ageing
include changes in attention, cognition and behaviour, all of which affect how people
use the Web [Hanson, 2009]. Studies have shown that elderly Web users experience

CHAPTER 1. INTRODUCTION 33

a heightened cautiousness and a hesitancy about making responses that may be in-
correct [Kurniawan et al., 2006; Memmert, 2006]. In addition, elderly users show
difficulty in maintaining attention, focus, and concentration on tasks where there is a
lot of distracting information [Hartley, 1992].

During Galvanic Skin Response (GSR) studies, to identify the stress levels of older
users, Lunn and Harper [2010] observed that, unlike younger participants, there was
a large variance within the results for the older user groups and that there were signs
from some users of hesitancy and uncertainty when completing the tasks. Based on
these results, a prototype tool was developed in SCWeb2.0 project to assist older users
as they interact with dynamic content. The tool is implemented as a Web Browser
extension to allow for rapid prototype development and also to allow users to feel more
comfortable. As Hanson and Richards [2005] note, “users tend to prefer a standard

browser with the accessibility transformations added rather than a specialised browser

offering only a limited set of features (which would also tend to mark them as being

disabled).”

As the page loads, the tool applies WPF to establish if the page contains any dy-
namic content. If widgets are present in the page, then an information icon is displayed
on the browser to allow users to receive help if they require assistance, 1© in Figure 1.5.
If users are comfortable with interacting with dynamic content, then they can ignore
the information icon.

The area 2© shows the panel that is displayed when the user clicks on the assistance
icon. A list of the widgets that have been detected is displayed. In this case, three
widgets were identified – Auto Suggest List, Carousel and Tab Box. The user clicks
on those buttons to receive help if they do not understand what content is present. In
the example shown, the user has clicked on the “Tab Box” button. This results in a
short paragraph appearing explaining what a tab box does along with a demonstration
video. As the video is being played, the widget on the page is highlighted in a pink
circle, 3©. This is to ensure that users are aware of what part of the page is being
discussed in the demonstration video. While widgets have similar functionality, they
may have slightly difference appearance. The video is designed to be as generic as
possible and the pink highlight draws the user’s attention to the widget on the page
that is being talked about.

CHAPTER 1. INTRODUCTION 34

1

3

2

Figure 1.5: Interface for the Older User Widget Assistant.

1.1.2 Supporting Visually Impaired Users of Dynamic Web Con-
tent

The second use-case for widget prediction as an aid to accessibility explores how iden-
tifying widgets as coherent high-level units, rather than low-level controls, could ben-
efit screen reader users. Eye-tracking studies of sighted users have given insight into
how people interact with, and benefit from, different types of dynamic content [Brown
et al., 2010, 2009], allowing development of rules for presenting updates according to
how they were initiated and their effect on the page [Jay et al., 2010]. During eval-
uation of these rules [Jay et al., 2010] the nature of each of the test pages, and their
dynamic content, was explained to the blind and visually impaired participants. This
was noted to be beneficial to the users, as it gave them a more accurate mental model
of how the interactions were likely to work, and thus enabled them to use the widgets
more effectively.

Sighted users are able to scan a page, or a section of a page, rapidly, perceiving the

CHAPTER 1. INTRODUCTION 35

Figure 1.6: Tabs on the Yahoo! home page.

content at a glance. Visual clues, such as borders and spacing, enable them to identify
units within the page, and layout conventions help them to recognise the type of wid-
gets present. For example, the Yahoo! home page contains an area with news content,
organised into 4 sections, and presented as tabs; clicking on the tab title changes the
content (Figure 1.6). This section is clearly separated from the surrounding content by
spacing and a border, and the tab titles are styled in such a way that most sighted users
will recognise the metaphor and understand how to interact with it.

The clues are, however, mostly implicit, so those people who wish to browse these
pages using a screen reader miss many or all of them, and are thus unable to recognise
the content. The visual differentiation is not available to them, so it is not clear that
they are navigating into a new region (that may be a widget). The ability to glance over
an area is also much diminished, so relating components to each other is more difficult,
particularly as the 2-dimensional visual layout is translated into a 1-dimensional audio
one. For these people, therefore, who encounter a linear sequence of content and
controls, un-grouped and undifferentiated from surrounding content, it is very difficult
to recognise the form and function of a widget. Understanding its use is thus more
difficult, as is forming an expectation of the result of any action. Coupled with the lack
of information current screen readers provide when content changes, this makes using

CHAPTER 1. INTRODUCTION 36

these widgets a demanding experience.
A prototype application is thus underway that will utilise the tell-sign approach to

widget recognition and apply it to making the presence of widgets explicit to screen-
reader users. This is being done in two ways: by inserting text into the DOM so
that the user is informed when entering or leaving a widget, and by modifying the
widget controls (for example AxsJAX [Chen and Raman, 2008]) so that their effect
will be more explicit. Although development is underway and user-testing is yet to
be performed, it is expected that these techniques will mean that screen reader users
will no longer have to interact with unrelated low-level controls, but that they will
encounter widgets at a high-level, thereby understanding better the function and effects
of the low-level controls within. This should lead to more confident and efficient use
of dynamic content.

1.2 Technological Freeze
The constant evolution of the Web, both technologically and conceptually, makes it
exciting as well as difficult to manage. Often this is driven by the desire to make Web
pages more interactive and attractive to users. An example would be the instant search
feature introduced on 08 September 2010 by Google. This feature allows the user
to retrieve related results of queries as he/she types. However, this feature not only
updates the search results returned, but also changes the landscape of the page, both
visually and structurally.

The instant search feature is an example of how widget design constantly evolves.
In order to conduct a sound investigation, and to ensure that the experiments are re-
peatable, a technological freeze is introduced. It was decided that the technological
freeze for this thesis would begin from the beginning of the third year of this PhD.
This means only Web technologies before September 2010 and after September 2008
will be considered. The technological freeze will enable us to deal with a consistent set
of widget concepts within the specified time frame for close examination. Since WPF
is expandable, the evolution of widget designs can be added, modified or removed in
future, and the technological freeze will not affect the concepts of the framework.

CHAPTER 1. INTRODUCTION 37

1.3 Research Questions

This thesis attempts to answer these research questions:

1. Can widgets be formally modelled using a set of well-defined patterns?
To help classify the widgets, widget’s interaction design patterns from YUI11

and Welie.com12 were employed to identify the widget for further investigation.
From our widget popularity study, we found that many patterns were not well
defined. Axtell et al. [2007] attempted to model Web applications and Mikkonen
[1998] attempted to formalise design patterns, were essential but too idealistic to
make useful semantics of the widget process, or else the widget definition would
be ambiguous in many scenarios for the diverse possibilities of the Web. We
introduce the concept to include the processes and the behaviour of the widget in
the widget design pattern. Using these additional parameters, we believe we will
provide a more accurate definition for classifying widgets. It will also provide
developers with a framework to communicate more effectively and reduce false
expectations.

2. Is it possible to discover tell-signs of different components from a widget in
the Web page source code?
An initial investigation was conducted to test the feasibility of identifying the
tell-signs of a widget’s component from the source code. By manually coding
the knowledge from the widget ontology in WPS, widgets can be predicted from
rules applied when discovering the components. Answering this research ques-
tion will give insights and sufficient evidence to expand and refine the approach
to take on research question 3. To achieve this, a basic demonstration to model
and classify a widget must be satisfied by providing a preliminary evaluation to
show that the concept of automatically identifying the tell-signs of a component
from the source code is feasible. The demonstration will hold the key to further
expansion of the widget classification approach and provide insights into the au-
tomatic detection methods, along with incorporation of classifying the widget
with the detection methods.

11Yahoo! User Interface Library - http://developer.yahoo.com/yui/2/. Last accessed on 18th

August 2012
12Welie.com Patterns in Interaction Design - http://www.welie.com/patterns/. Last accessed

on 18th August 2012

CHAPTER 1. INTRODUCTION 38

3. Can we build a framework to automatically identify the widget?s tell-signs
and predict the widgets in the Web page?
The evaluation section of this thesis discusses the finer aspects of the automated
detection possibility. Although some widgets can be more difficult to discover
than others, the prediction rate shows the positive aspects of the approach and
encourages further research to refine certain tell-signs detection approaches, so
that the prediction rate can be improved. To answer this question, evaluation of
different types of widget over the popular Websites will demonstrate the proof-
of-concepts reflective of the wider Web, and expose the insights of our approach.
If questions 2 and 3 are answered, we believe this will prove that widgets can be
identified from the Web page source code using our tell-signs method, and the
framework that is symmetrical for both ends of the technical abilities (abstract
and in-depth) to reach a common understanding of a type of widget, reducing
the ambiguity between concepts to the minimum.

1.4 Thesis Structure

More detailed descriptions relating to the research, experiments and key findings are
presented in the rest of the thesis. The organisation of the remainder of the thesis is as
follows:

Chapter 2 - Background and Related Work: A critical exploration of the existing
literature reveals that Web Accessibility still has much room for improvement
from the dynamic content perspective. This is mainly due to the fast pace at
which the Web evolves and its heterogeneous nature. We covered how Web
pages are developed and the steps taken to quality control the page’s accessi-
bility. Up till now, very little research has been conducted to predict widgets
from a Web page source code. Existing techniques can only partially detect the
components of the widget in an ideal case and they do not take into account
the diverse approaches one can take to developing the widget and component.
We explored different techniques to reverse engineer design patterns and design
concepts from the source code, and to search for more ideas. Many studies have
shown that recovering the design patterns from the source code is difficult be-
cause it is difficult to reconstruct the intention or perception of the developer
from the code that will lead to design patterns that can be discovered. These in-
sights are important for our research work since other techniques besides using

CHAPTER 1. INTRODUCTION 39

the source code can be applied to aid the prediction of widgets. Further explo-
ration of modern techniques will also be investigated to assist us in modelling
and classifying widgets.

Chapter 3 - Classifying Web Widgets: In this chapter, a widget taxonomy and an
ontology of different types of widget to provide a framework to formally model
and communicate widget designs are introduced. A manual investigation was
conducted to understand the popularity of the different kinds of widget, so that
the types of widget to be included in our investigation can be identified. The
study consists of a tabulation of the population of different types of widget found
in the top 50 Websites. At this stage, we used the definition described by popular
Web widget design pattern libraries and JavaScript libraries to aid the investiga-
tion. Through this study, we found that commonly definitions provided by these
libraries are ambiguous and this often makes it difficult to distinguish between
the widgets. Among the types of widget analysed in this study, we have noticed
that seven types of widget are more popular than the rest. An ontology that de-
scribes each of the seven widgets suggested is discussed in this chapter. Using
the tell-signs as predicates in the ontology, if all predicates are met, a widget can
be modelled and distinguished from another. Using this framework, both devel-
opers and users will be able to communicate more effectively and reduce false
expectations.

Chapter 4 - Feasibility Investigation for Using Tell-Signs: Two widgets of the pool
of widgets selected in Chapter 3, which we perceive to be more difficult to iden-
tify, were used to investigate the possibility of detecting their tell-signs from the
Web page source code. In this chapter, we present the methodology applied in
the feasibility investigation and the results of this pilot study. Issues with false
positives and false negatives were reported, demonstrating the positive feasibil-
ity of the approach. From the evaluation results, it is suggested that, due to the
complexity of reverse engineering the widget for prediction and the heteroge-
neous nature of the Web, no one technique is sufficient. A fusion of techniques
was suggested and described to overcome the issues raised.

Chapter 5 - Predicting Widgets On A Web Page: Here we describe the technical as-
pects of developing a predictive tool based on the WPF. The framework is a build
up from concepts introduced in Chapters 3 and 4, along with the recommenda-
tions and results from their evaluations suggested. The ontology is applied as a
concept in the code to infer different types of widget. Using the concepts from

CHAPTER 1. INTRODUCTION 40

the ontology, we can distinguish one widget from another if all required com-
ponents exist in the code or all the predicates of the widget are met. Since only
the first instance of the Document Object Model (DOM) is analysed after the
page is visually loaded, a confidence percentage is given for all candidates for a
type of widget. This is because not all the candidates will exhibit all the required
tell-signs. However, these clues may appear later during the page’s lifespan.
Therefore, a confidence percentage method is presented to predict widgets from
the available candidates. Finally, we present how the concepts of WPF are im-
plemented, the issues faced during implementation, and the techniques applied
to improve or overcome the issues suggested in Chapter 4.

Chapter 6 - Widget Prediction Evaluation: This chapter reports the predictive ca-
pabilities and accuracy of the Widget Prediction System (WPS) which is based
on the WPF. The quantitative and qualitative evaluations conducted show that
the tool is able to predict the widgets on Web pages, and of predicting the lo-
cation/element within the page where the widget lies. We noticed that some
tell-signs of widgets could be missing from the DOM in the first instance after
the page is visually loaded. These candidates often have a lower confidence level
and they will need further clues to detect them. However, due to the confidence
percentage methods, these widgets are also captured. From the results suggested,
the threshold confidence percentage for each type of widget is presented. The
issues reported suggest future research to improve our prediction methods, but
the evaluation results showed evidence that our approach is feasible and future
research should be pursued.

Chapter 7 - Conclusions and Future Work: In this chapter, we recap on the key con-
tributions of our research. We envision that the findings discussed in this con-
cluding chapter will help to address misconception issues faced by Web devel-
opers, designers, authors and users, and provide an alternative to improve the
accessibility issues pertaining to the research proposed. We acknowledge that
the WPF is not perfect and more research is required to resolve the predictive
accuracy issues which arose. This suggests possible future directions for the
work described in this thesis and we discuss them accordingly in this final chap-
ter.

CHAPTER 1. INTRODUCTION 41

1.5 Publications

The research described in this thesis led to 5 technical reports and 4 peer-reviewed
publications. The code for WPS as a Firefox add-on can be downloaded from https:

//bitbucket.org/webergonomicslab/wimwat and WPS evaluation results can be
found in http://wel-data.cs.manchester.ac.uk/data_files/8, while the full
ontology is available for download at http://wel-data.cs.manchester.ac.uk/
data_files/9.

i. Simon Harper, Alex Q. Chen. “Web Accessibility Guidelines: A Lesson From
The Evolving Web”, World Wide Web, 15(1) pp.61–88, 2012
There are many aspects to Web accessibility that can affect the accessibility of a
Web page. A broad study to understand the Web’s technological trends and prob-
lems was conducted over a ten year longitudinal study. This study provided impor-
tant insights into the current Web trends and helped us to understand the current
technological barriers and issues, especially the uptake of WAI-ARIA and valida-
tion of individual pages for accessibility. The contribution to this paper includes
the analysed information that provided the Web User Interface (UI) technological
and recommendations trends, and uncovered the extent of Web 2.0 technologies
adaptation. However, the analysed data also highlighted that Websites do not al-
ways conform to Web accessibility guidelines (See §1.1). This paper provided an
opportunity to solidify the scope and broad direction for the thesis by highlight-
ing the specific problem areas in writings, which some of these contributed to the
Background and Related Work chapter (see Chapter 2).

ii. Alex Q. Chen, “Widget identification and modification for web 2.0 access tech-
nologies (WIMWAT)”, SIGACCESS Accessible Computing, Issue 96, pp.11–18,
2010
This paper provides an overview to the WIMWAT project. It describes a pilot in-
vestigation (see Chapter 4) which was conducted to answer the research problem,
provide more insights into the issues by investigating whether our tell-sign iden-
tification concepts are feasible, and clarify the area of interest. The results for the
two types of widgets were evaluated over the top twenty Websites were reported,
and suggestions for addressing the issues when using tell-signs as the identifica-
tion method were shown. An overview of an earlier version of the paper was
presented at the ASSETS’ 09 Doctoral Consortium, Pittsburgh, USA. This event
gave the opportunity to discuss about WIMWAT with experts in the field, and in

CHAPTER 1. INTRODUCTION 42

the process provide valuable insights to refine our methodologies (see Chapter 5),
and suggestions relating to future research directions (see Chapter 7) were gained.

iii. Andy Brown, Caroline Jay, Alex Q. Chen, Simon Harper. “The Uptake of Web
2.0 Technologies, and Its Impact On Visually Disabled Users”, Universal Access
in the Information Society, 11(2) pp.185–199, 2012
Web 2.0 technologies have lots of perks, but they also introduce problems for the
Web community. This paper highlights the impact of Web 2.0 concepts on the
visually disabled user, and addresses some of the issues by suggesting important
aspects to developers to make the dynamic content updates more accessible. It
supports the purpose of this thesis and provides an updated view of the uptake
of Web 2.0 technologies and the related accessibility issues for visually disabled
users (see Chapter 2). The study contributed suggestions of possible avenues for
investigating possible applications (See §1.1.2), which was one of the applicable
approaches discussed in this thesis §7.1.3. The contribution to this study includes
an updated view of Web 2.0 UI technological trends from the data analysed over
a ten year longitudinal study.

iv. Alex Q. Chen, Simon Harper, Darren Lunn, Andrew Brown. “Widget Identifica-
tion: A High Level Approach”, World Wide Web, 16(1) pp.73–89, 2013
This paper reports a further empirical investigation using the tell-sign technique
(see Chapter 4) coded in the system, to apply the concepts from the ontology
(see Chapter 3), to identify/predict widgets. Although the possible tell-signs of
all seven widgets were discussed in this study, only detailed investigation of the
two widgets – Slideshows and Carousels – were presented to aid description of
how our widget prediction process is feasible and can improve Web accessibility.
This paper created the opportunity to formally update the status of WIMWAT, and
explore possible tools (i.e., SCWeb2.0) and applications (injecting WAI-ARIA
syntax) that can use WPS to assist their users to achieve the full experience the
developer intended them to have. This thesis further developed the concepts dis-
cussed in this paper, to implement WPS and WPF.

Chapter 2

Background and Related Work

A review of studies related to accessibility issues surrounding rich content Web pages,
design pattern discovery and reverse engineering, along with related studies to Web
widgets detection, is presented here. The literature review provides insights into the
current issues relating to the research, the necessary theoretical background for the
work described, and justification for our proposed research. This chapter is divided into
three main sections. In §2.1 (Web Development Technologies and Recommendations),
an overview of the issues faced when interacting with Web pages that use widgets is
discussed. We outline the importance of being able to interact with Websites that have
widgets and dynamic content, and how not being able to operate these widgets can
obstruct us from communicating, and prevent us from accessing information on the
page. Further exploration of the challenges faced during the design and development
phase are also discussed in §2.1.1 and §2.1.2.

Previous work undertaken to reverse engineer design patterns and conceptual de-
signs from the application source code are presented in §2.2 (Reverse Engineering).
The investigations to identify components and objects on a Web page are also dis-
cussed to provide the necessary knowledge of existing and related work, and the issues
that surround them. The final section (Using Ontology to Classify Web Widgets) re-
views how ontologies can assist the WPF to provide a rounded approach to define
widgets, so that it will be simple enough for a broad range of Web users to understand,
while sufficiently in-depth for predicting the widgets on a Web page.

43

CHAPTER 2. BACKGROUND AND RELATED WORK 44

2.1 Web Development Technologies and Recommenda-
tions

The Web is a medium that provides an environment where files are interlinked, and can
be accessed publicly via the Internet. It is a heterogeneous combination of technolo-
gies, documents, recommendations, and guidelines. Since the proposal of the Web 2.0
concepts in 2004 [O’reilly, 2007], the Web has flourished with Rich Internet Appli-
cations (RIA). More recent methods of developing RIAs do not present content using
the conventional ‘Page Model’ concept [Maurer, 2006]. Instead they source and remix
data from multiple sources, and present them in small sections within the content called
micro-content. Rather than reloading the entire page, information is updated indepen-
dently in micro-content.

Micro-content can be updated with preloaded content using a client-side scripting
language to manipulate the presented content. However, content can also be loaded
on the fly when requested after the page is loaded via remote scripting methods. One
of the leading set of technologies of Web 2.0 is AJAX [Deitel and Deitel, 2007]. This
technology uses remote scripting to allow the Web page to have ad hoc communication
with Web servers, so that the page can request for Web services or content, while
rendering the page in parallel.

Much Web data stored in databases or embedded within the Web document is in-
visible to the user. It would require the Application Programming Interface (API) or
Web widgets to extract this information [Cooper, 2007]. Think of flight schedules,
movie timings or news content for example; a lot of this information will be available
on the Website, but Web developers employ widgets to manage the desired information
requested by the user. Hence, this information is invisible to the user until the specific
data is requested. This form of data is known as the ‘Deep Web’ [Bergman, 2001]. To
retrieve content that lies in the ‘Deep Web’ greatly depends on whether users are able
to operate the RIAs or widgets. After extracting the desired content, only the accessible
content is delivered. Discussed by Borodin et al. [2008], Assistive Technologies like
screen readers often face problems when attempting to cope with the evolution of Web
technologies. The lag behind the new technologies makes it difficult, or sometimes
even impossible, for visually impaired users to access the information [Brown and Jay,
2008a; Cooper, 2007]. At least both Web content authors/developers and user agents
must comply with the guideline recommendations such as Web Content Accessibility
Guidelines (WCAG) or the Accessible Rich Internet Applications (WAI-ARIA) suite

CHAPTER 2. BACKGROUND AND RELATED WORK 45

in order for users to benefit from the advancement. However, in practice, this coordi-
nation is often not achievable.

The Web is evolving constantly and at an expeditious rate due to its popularity.
This rapid change and little economic benefits, make guidelines difficult to obey, espe-
cially those relating to accessibility [Power and Petrie, 2007; Harper, 2008; Richards
and Hanson, 2004]. Another important factor that causes this issue to arise is that
much of the Web content is created by non-professionals, and they lack the knowledge
of the importance of accessibility. With Web applications being used more and more
as real applications, and replacing some traditional desktop applications, the role of
the user agent is increasingly becoming like operating systems [Anttonen et al., 2011].
The shift in the application delivery paradigm demonstrates the increasing importance
of guidelines conformance. These richly interactive and intensive applications will re-
quire more than just merely delivering accessible content, but operationally accessible
applications that deliver accessible content.

The WIMWAT project requires a broad understanding of areas such as code com-
prehension, so that the patterns of a Web widget can be recognised, and techniques
used to distinguish the different widgets are required. In the next section, Web devel-
opment guidelines and recommendations will be explored to assist us with identifying
instances of the components of the widgets, as well as their design patterns. Conse-
quently, it will help us separate codes that are well developed and that conform to the
guidelines from those that do not. Using this knowledge, we will discuss how they
play a part during development by exploring the approaches developers take to create
the widgets in §2.1.2.

2.1.1 Web Accessibility

The practice to make Web pages accessible to all users, especially to those with dis-
ability, refers to Web accessibility [Thatcher et al., 2003]. Harper and Yesilada [2008]
described the Web accessibility field as a mechanism to provide equal opportunity to
everyone. Their review of Web accessibility and guidelines suggested that disabled
people still face difficulties when accessing the Web. All recommendations by W3C
take into account Web accessibility when designing them. Hence, covering the generic
knowledge of Web accessibility will provide a rounded perspective on the general Web
standards and recommendations.

To provide true Web accessibility, a number of guidelines have been developed
to provide recommendations for Web developers/authors, user-agents, authoring tools,

CHAPTER 2. BACKGROUND AND RELATED WORK 46

and Assistive Technologies developers. However, very few developers are willing to
rework old content so that they conform with the guidelines, mainly because the bene-
fits of Web Accessibility affect only a small population of the Web users [Richards and
Hanson, 2004] and have few economic returns. Often very little documentation about
the older Web pages is available, thus it is time consuming to rework them, and the
guidelines/recommendations constantly change due to the technological advancement
of the Web. Furthermore, much of the Web content is developed by non-professionals
or people with little awareness of Web Accessibility [Power and Petrie, 2007] or dif-
ferent development standards, while the Web accessibility domain requires more pro-
fessionalisation [Cooper, 2007].

To encourage more people to adapt their Website to be accessible, Richards and
Hanson [2004] highlighted the benefits of making Websites accessible to a wide range
of audiences with different physical capabilities. They also discussed the methods that
will cost developers less to adapt to these changes. More importantly, they highlighted
that accessibility will not only benefit people with disabilities, but also older adults,
and suggested how semi-automatic tools can help the adaptation process for Websites
to conform to the Web accessibility guidelines.

Web accessibility guidelines such as section 508 in the United States of Amer-
ica, and the commonly referred to international guidelines to follow, published by the
Web Accessibility Initiative (WAI) [Shawn, 2009] from the World Wide Web Consor-
tium (W3C), provide a framework to produce accessible Web content. WAI covers an
extensive range of guidelines to cover most aspects of Web accessibility. The more no-
table guidelines for Web page developments are Web Content Accessibility Guidelines
(WCAG) and Accessible Rich Internet Applications (WAI-ARIA), while User Agent
Accessibility Guidelines (UAAG) provide recommendations for user agent develop-
ments.

A series of guidelines is layout by WCAG for Web content developers, authors,
and developers of Web accessibility evaluation tools. The WCAG working group,
which is part of W3C’s WAI, has developed these guidelines. WCAG 2.0 [Caldwell
et al., 2008] has taken over from WCAG 1.0 [Chisholm et al., 1999] since December
2008 due to the advancement of technologies and ease of understanding, and suggests a
more precise automated testing and human evaluation. WCAG 2.0 suggests techniques
for general Web development and technology-specific development, such as the WAI-
ARIA suite [Craig et al., 2009], HTML/XHTML, CSS, and scripting.

The advancement of Web technologies introduced by the Web 2.0 concepts have

CHAPTER 2. BACKGROUND AND RELATED WORK 47

many perks but have also brought about new challenges relating to dynamic content
updating and the overwhelming of users with interactivity. WCAG 2.0 attempts to pro-
vide an answer to these issues by including WAI-ARIA. A study by Thiessen and Chen
[2007] investigates AJAX live regions using a chat example to illustrate the robustness
of WAI-ARIA. They have reported that developing accessible Rich Internet Applica-
tions (RIA) is possible through WAI-ARIA. This investigation has given an indication
of how WCAG will perform when obeyed.

The WAI-ARIA recommendation provides a mechanism for Web content and Web
applications, especially those developed with HTML, JavaScript, AJAX and related
technologies, so that they are more accessible to people with disabilities [Craig et al.,
2009]. This recommendation is developed by Protocols and Formats Working Group
(PFWG) and the Education and Outreach Working Group (EOWG), which are part
of the World Wide Web Consortium (W3C) Web Accessibility Initiative (WAI). Cur-
rently, WAI-ARIA 1.0 Candidate Recommendation has been published on 18 January
2011, but it is not without its flaws. Issues surrounding alternative text and longdesc

often surface, and WAI-ARIA 1.0 is not equipped to support accessibility for mo-
bile [Schwerdtfeger, 2012]. These issues are planned to be addressed in WAI-ARIA
1.1 and later 2.0, HTML5, and efforts by the User Interface (Indie UI) Working Group
have begun to address issues relating to browser independence for gestures and other
user interactions for a wide range of devices [Cooper, 2012].

These guidelines and specifications provide semantic information for the user to
interact with the components on the page. However, to operate widgets, users must
be able to perceive the design concepts of the widget. Only when this information
is achievable will the user be able to operate the components of the widget in the
page independently. These guidelines and specifications lack coverage of this type of
information. Instead, it is left to the developers to include descriptions of elements
in the page via longdesc or aria-describedby. However, when using this method,
there is no way of verifying the credibility of the content supplied. Furthermore, even
if the semantic relationship between elements can be established, it will only cover
the components level of the widget. The information will not be sufficient to recover
the perceived design concepts of the widget. In the WIMWAT project, WPF bridge
the gap for Assistive technologies and tools, such as SCWeb2.0, to deliver this type of
information to the user.

Web authors or non-technically related people provide content to most of the Web.
Often these people use some form of authoring tools to assist them with their Web

CHAPTER 2. BACKGROUND AND RELATED WORK 48

page development. Authoring Tool Accessibility Guidelines (ATAG) provide a set
of guidelines that describe to developers of authoring tools how to create tools that
produce accessible Web content [Henry and May, 2008]. These tools include those
that transform documents into Web formats, and content layout management like CSS
formatting tools.

A cornerstone component of the Web experience is the user agent. Often these
applications are the gateway to users of the Web, and they are increasingly playing the
role of an operating system as the importance and application of the Web documents
are progressively being used like a real application platform Anttonen et al. [2011].
The User Agent Accessibility Guidelines (UAAG)] explain how to develop user agents
that are accessible to people with disabilities [Henry and May, 2012]. Most of the Web
content is delivered through a user agent such as Web browsers, media players, and at
times Assistive Technologies. Thus, by providing a set of guidelines to develop this
medium, Web content can indirectly be made more accessible. UAAG 1.0 is currently
the recommendation. However, UAAG 2.0 is anticipated to be completed in 2013. In
UAAG 2.0, it aims to lay the path for future generations of Web browsers, by sug-
gesting alternative information about technologies and platforms the user may operate
with. Furthermore, the guidelines in UAAG 2.0 also updated UAAG 1.0 guidelines, to
align them with WCAG 2.0 and ATAG 2.0.

A regular practice by developers is to evaluate their Web pages by running them
through some industry recognised Web accessibility evaluation tools. These tools pro-
vide developers with a method to evaluate their Web pages against some industrial
standards, provide feedback to developers about their work, and recommend sugges-
tions to make their content conform to the recommended guidelines. Notably a few
of these evaluation tools are WAVE, HiSoftware Cynthia Says, RAVEn and Web Ac-
cessibility Inspector. We will explore these tools to investigate the range of guidelines
covered and the extent of compliance evaluated.

WAVE is a free online Web accessibility evaluation tool, developed and maintained
by WebAIM [WebAIM, 2009]. It checks the Web pages or content submitted to it for
the compliance issues with many of the Section 508 and WCAG guidelines. Then
it shows the areas of the original Web pages using icons and indicators, to reveal
the accessibility of it. However, it does not check all the issues in these guidelines.
HiSoftware Cynthia Says is developed and maintained by HiSoftware Inc., to identify
problems in the Web page content submitted to it based on Section 508, and WCAG

CHAPTER 2. BACKGROUND AND RELATED WORK 49

1.0 guidelines [HiSoftware Inc., 2009]. The tool comes in three versions: the en-
terprise, desktop, and free Web service. The free Web service version is meant for
educational purposes, and restricts its users to submitting only one page from a site per
minute. The IBM Rule-based Accessibility Validation Environment (RAVEN) inspects
and validates Java rich-client, and Web based Graphical User Interface (GUI) oriented
applications for accessibility [IBM, 2009]. This tool is now part of the Eclipse-based1,
validation component in the Accessibility Tools Framework (ACTF). Fujitsu2 devel-
oped a multilingual evaluator called Web Accessibility Inspector. Like most evalua-
tors or validators, this software will highlight the parts that require modifications. This
software provides the ability to evaluate Web accessibility to not only English literate
users, but Chinese and Korean literate users too. The importance of this type of tool
has a growing importance in the Web community. As investigated by O’Neill et al.
[2003], as the Web gains in popularity, the distribution of non-English content Web-
sites is also growing. However, the WI was developed to evaluate Websites against the
WAI WCAG 1.0 guidelines only. Hence, this tool will not be able to fully examine
Web pages created using the Web 2.0 concepts.

From the evaluation tools covered, none of the tools can evaluate the Web page
fully against all guidelines and specifications. Often issues pertaining to guidelines
and recommendations conformance are never noticed and dealt with at the develop-
ment phase. On some occasions, this is not the fault of either the evaluation tools or
the developers, but that of the ambiguity of the recommendations. The Web Accessi-
bility Initiative (WAI) guidelines are widely accepted as the international standards for
Web accessibility such as WCAG [Shawn, 2009]. However, WAI guidelines are con-
stantly undergoing changes, to keep up to speed with the technologies; from WCAG
1.0 [Chisholm et al., 1999] to WCAG 2.0 [Caldwell et al., 2008]. These constant up-
dates add to the difficulties that many designers and developers face when trying to
design their Web pages to comply with these guidelines.

Abascal et al. [2004] discussed a repair tool called EvalIris, developed to auto-
matically evaluate Website accessibility using sets of guidelines, and the guidelines
can be easily updated or replaced. This tool was created to check the Web page’s ac-
cessibility based on WCAG 1.0 guidelines. The EvalIris system was evaluated using
the W3C’s Techniques For Accessibility Evaluation and Repair Tools [Ridpath and
Chisholm, 2000] working draft. It was reported that this tool successfully fulfilled the

1http://www.eclipse.org
2http://www.fujitsu.com

CHAPTER 2. BACKGROUND AND RELATED WORK 50

objectives of the study, and demonstrated the importance of having an evaluating tool
that is capable of accepting new sets of guidelines. Since the EvalIris system is an
ongoing project, further enhancements were also proposed, so that a crawler could be
integrated. A user interface was also suggested to this Web service, and a XML trans-
lation helps to assist the translation for new guidelines into the XML schema used by
EvalIris [Abascal et al., 2004]. The EvalIris system is great for static content, but eval-
uating dynamic content manipulated by widgets has to deal with a different degree of
complication. Now, conceptual designs need to be assessed as well, before the content
present can be extracted for accessibility evaluation.

A framework called AxsJAX was suggested by Chen and Raman [2008] to allow
developers to bootstrap it with WAI-ARIA, so that better accessible Web applications
or widgets could be provided. However, this framework can only be put into place
either during development or maintenance, or it will require additional tools to assist
it to identify the widget in the page - such as the proposed research - before syntax of
this framework can be inserted.

Our review on Web guidelines and recommendations, in particular with regard to
Web accessibility, highlights the challenges faced by those creating Web pages. The
ill compliance of guidelines and recommendations highlighted in Harper and Chen
[2012], suggests that much Web content is not accessible to all. Moreover, Web pages
with dynamic content add another layer of conceptual complexity to accessing this
type of content [Chen et al., 2013]. This demonstrates the importance of research such
as the proposed work in this thesis, to improve the current situation and provide an
alternative for users to overcome the existing issues.

2.1.2 Web Design

Designing a good Website involves a few key components; these are the appearance,
usability, maintainability and organisation. Figure 2.1 illustrates the iterative process
visited by the management when designing and developing, or maintaining a Web
application. Understanding the sequence and components required when designing a
Website will indirectly give a clearer concept of how a specific widget is formed when
attempting to reverse engineer it. The key components that are used for designing
most Websites include the content, the styling and the behaviour aspects, along with
the platform on which the Web page will be rendered. These components will be
discussed and covered in greater depth in §2.2.2.

Designing Websites has a lot of differences from and similarities to engineering

CHAPTER 2. BACKGROUND AND RELATED WORK 51

Figure 2.1: The iterative process to develop and maintain an application. [Kruchten,
2000]

desktop software applications. As described by Overmyer [2000], three differences
between the domains were highlighted, particularly usability and shorter life cycles.
Later, O’reilly [2007] went on to describe the different types of evolving design models
in software development, and business over the internet. He highlighted that the Web
2.0 is a fuller realisation of the true potential of the Web and how it can help to achieve
richer user experiences. With the Web 2.0 concepts, software is no longer delivered
as a product, but a service, thus ending the release cycle of software. It encourages
programs to be lightweight, so that they will be good for reusability.

Designing for Usability

A usable Website allows its users to access the Web page, and find their way around
the Website quickly and efficiently. This means Web pages must be accessible to all,
including people with disability.

As discussed by Maurer [2006], designing Web pages with RIAs that are usable and
accessible is difficult, and she goes on to elaborate the key challenges that designers
will face when ensuring their applications are usable. However, accessibility problems
with RIAs seem to be an increasing issue as the Web evolves with the Web 2.0 con-
cepts [Gwardak and Påhlstorp, 2007]. Gwardak and Påhlstorp [2007] then explored the
usage of guidelines when designing Web pages with RIAs. From the investigations,
they suggested a set of guidelines that are a hybrid between the desktop user interface

CHAPTER 2. BACKGROUND AND RELATED WORK 52

and the Web Content Accessibility Guidelines (WCAG) 1.0.
In order to help Assistive Technologies to adapt to Web 2.0 technologies, studies

such as Borodin et al. [2008] and Brown and Jay [2008b] have attempted to improve
the issues through audio browsing and provide further insights into issues surrounding
Web 2.0 technologies. However, both studies monitor for changes in content and in-
form users about the updates. They do not go further to interpret the content and code
so that the type of widget can be derived and presented to the user.

Maintainability & Organisation

Understanding the overall development cycle will expose the challenges of widget de-
signs, so that decisions chosen for developing the widget can be understood on an
abstract level when developing the WPF. Then, steps can be taken to overcome the
perceivable issues. The life cycle of a Web page goes through a number of stages,
and some of these stages loop around endlessly during the life span of the Website.
Hence, good organisation and structure to the Website are required to ensure the qual-
ity, efficiency, and ease of maintaining it. Although good documentation of the design
is crucial, often this is lacking, and it affects future maintenance processes. Under-
standing the development cycles will expose the usability and accessibility issues of
the Websites that arise from the development phase. This exploration will strengthen
the knowledge relating to these issues for surrounding Website development and main-
tenance.

During the design phase of the Website, keeping unambiguous records of the Web
pages designed is an essential key to providing good documentation. Fortunately, there
are useful tools such as Unified Modeling Language (UML) [Conallen, 2003; Koch and
Kraus, 2002], Web Modeling Language (WebML) [Ceri et al., 2000], and Hypertext
Design Model (HDM) [Garzotto et al., 1993] to provide a means of communicating the
most difficult to explain Web application concepts to designers, developers, and users
[Distante et al., 2004]. This documentation will prove to be useful during maintenance
when developers, or new developers, need to revisit the problem again.

As highlighted by some studies, the maintenance task for a Website is not easy and
often requires tools described in studies such as Di Lucca et al. [2005a]; Distante et al.
[2004]; Stencel and Wegrzynowicz [2008] to help ease this work. This is because quite
often, due to the competitiveness, advancement of the Web, and pressure imposed by
their competitors, documentation is lacking, and there is little time for developers to
turn the Web applications around.

CHAPTER 2. BACKGROUND AND RELATED WORK 53

Design Patterns

When developing a Web page, different components come together to form the user
interface, and the engine that controls its behaviour. Commonly, to describe the differ-
ent parts of an application, design patterns are used. Design patterns are described by
Alexander [1979], as “Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without ever doing it
the same way twice”. He illustrated why one pattern will differ from another, and how
it is reliant on the surroundings and the people that created it. This issue relates to the
granularity issues of the design patterns, and varied interpretations by [Gamma et al.,
1995; Buschmann et al., 1996; Arvola, 2006; Vlissides et al., 1996; Larman, 1998].

Gamma et al., also known as the Gang of Four, described design patterns as reusable
elements for an object-oriented software approach in [Gamma et al., 1995]. The book
catalogued 23 design patterns that are widely referred to by many in this field [Mikko-
nen, 1998; Dong et al., 2008b; Stencel and Wegrzynowicz, 2008; Hendrix et al., 2002;
Tsantalis et al., 2006]. It gives a full description for each pattern, including the names
and intentions of the patterns. Additional design patterns for interaction are suggested
in Arvola [2006], so that users can control the visibility of information. Gamma et
al. emphasised the importance of determining the object’s granularity, which can vary
tremendously from one person to another, and the implementation of the object. This
is the key to making a flexible design and ensuring the design patterns can adapt to
changes later in their life cycle. A closer look at patterns reveals that some patterns
provide the structure of an application into subsystems, and others support the refine-
ments of the subsystems and components [Buschmann et al., 1996].

The documentation of design patterns will evolve over time, thus incorporating
flexibility into the design is vital. Commonly the design patterns are not properly
documented, and this may result in the violation of the constraints and properties of
the design patterns. Furthermore, Bosch discussed the issues with breaking down the
design patterns, and reorganising them to suit the structure of an application [Bosch,
1998]. This could lead to traceability problems in the latter part of the application life
cycle. Investigations by Dong et al. [2009], aimed to tackle the evolution problems
face when adding or removing design elements from existing design patterns during
the transformation process. They proposed an automated process for the evolution of
design patterns. Such a system can reduce errors and missing parts. However, if the
pattern overlaps other pattern instances in the design, errors and inconsistencies may

CHAPTER 2. BACKGROUND AND RELATED WORK 54

arise from it. This study highlighted the importance of designing our methodology
for identifying Web widgets, so that it will be able to handle the evolution of widget
patterns.

Benatallah et al. [2002] suggested four additional patterns in 2002 for architecture
and managing composite Web services. They proposed these patterns because they
believe “Web services are loosely coupled Internet-accessible software entities deliv-
ering functionalities provided by business applications and processes”. These patterns
provide a solution to the recurrent problems of integrating and providing Web services.
However, the Web has evolved since, and with Web 2.0 concepts, and many new busi-
ness models, the definitions of these patterns need to be revisited.

As described by Mikkonen [1998], formalising design patterns will allow rigorous
reasoning, and it also support a software engineering view for the development. He
explains how to formalise the temporal behaviours of design patterns to create the
specifications for complex systems. According to Mikkonen [1998], formalisation of
a pattern can remove ambiguity, so that the temporal behaviours of patterns can be
rigorously attended to. This technique can be useful to ensure the soundness of the
design concept when designing a system. However, it does not bridge a bidirectional
relationship between the designing and implementation stage.

Web Widgets Design Pattern Libraries

Defining different types of widgets can be a confusing process due to the different per-
spective the individual widget design pattern libraries acquire. Widgets design patterns
and JavaScript libraries such as Dojo3, jQuery4, YUI5 and Welie.com6 were examined
to aid the process of defining the types of widget. It is noticed that deriving with a
common definition for each type of widget is difficult because the definition varies
from library to library; in some cases, they can mean different concepts. Reported in
Vora [2009], currently no consensus has been reached on how widget pattern libraries
should document and maintain their designs so that these patterns can be shared with
others. Thus, there is a gap that the methods used in WPF can fill when classifying
widgets.

3The Dojo Toolkit - http://dojotoolkit.org/api/. Last accessed on 12th February 2009
4jQuery JavaScript Library - http://docs.jquery.com/Main_Page. Last accessed on 10th

November 2011
5Yahoo! User Interface Library - http://developer.yahoo.com/yui/2/. Last accessed on 18th

August 2012
6Welie.com Patterns in Interaction Design - http://www.welie.com/patterns/. Last accessed

on 18th August 2012

CHAPTER 2. BACKGROUND AND RELATED WORK 55

The principle concepts of the Web evolve around reusing available data, and these
concepts can be applied when designing Web widgets. As observed and reported by
many studies, different types of core user interface components and objects exist within
different types of widgets [Karanam et al., 2011; Brown et al., 2009; Vora, 2009; Rossi
et al., 2008]. These core components and objects are widely used to distinguish one
type of widget from another, and these concepts are also used as part of the classifying
methodology in WPF [Chen et al., 2013]. However, the main difference between the
design pattern libraries and studies are the conceptual objects. These concepts are diffi-
cult to model and are often left unexamined. The widget classifying method employed
by WPF attempts to include the conceptual objects of the different types of widgets
in the classifying process. Through this approach we aim to reduce widget definition
ambiguity as well as attempting to predict the type of widget from the Web page source
code.

Often Web widget design pattern libraries have the tendency to borrow patterns
from each other. Libraries that have a high rate of borrowing patterns from other
libraries are not included here. It was found that the YUI and Welie.com libraries
have more widgets that have similar perspectives with defining widgets, and they also
provide more documentation for their widget design patterns.

Ubiquitous Web Application

Web pages are no longer just accessed by desktop applications but also non-conventional
methods, for example, applications from mobile devices. The demand for accessing
the Web using these devices draws developers to create Web pages and applications
that are ubiquitous. Finkelstein et al. [2002] proposed a framework for developing
ubiquitous Web applications because this form of Web application suffers from the
“anytime/anywhere/anymedia syndrome”. This syndrome means that you can access
Web application via any medium at any time and in any place. Although this frame-
work provides the mechanism for the flexibility of context-aware computing and per-
sonalisation, it does not address the accessibility issues raised by Yesilada et al. [2010]
and Hardesty [2011]. Unlike the framework proposed by Finkelstein et al. [2002],
WPF provides a mechanism to predict the widgets in the Web page, so that Assistive
Technologies can use this information to alert their users about the widgets for both
desktop and mobile users.

CHAPTER 2. BACKGROUND AND RELATED WORK 56

Figure 2.2: Reverse and forward engineering cycle [Tilley and Huang, 2001]

2.2 Reverse Engineering

The process of reverse engineering a Web widget is an analytical study of the widget’s
source code, so that the technological principles can be discovered. Through reverse
engineering, design information – such as the decisions made earlier by developers –
can help to understand the conceptual designs of the widget. An illustration of the flow
of processes for forward engineering and reverse engineering is presented in figure 2.2.
The purpose of reverse engineering a widget will allow the production of content by
the widget to be evaluated, so that any inaccessible content produced can be modified.
The proposed work requires different reverse engineering techniques for its analysis.
To understand the depth of the investigation, selecting the correct coding format to
conduct the evaluation, being aware of the types of coding formats and their different
versions when attempting to comprehend it, and understanding the different techniques
available for the task are crucial.

2.2.1 Purposes for Identifying Web Widgets

The technique employed to identify Web widgets is used for many reasons, such as
to assist the user, to evaluate a Web page, to assist a development process, to identify
or fix security flaws in a Web page, or to maintain existing Web pages. Guha et al.

CHAPTER 2. BACKGROUND AND RELATED WORK 57

[2009] detects AJAX Web applications (widgets) so that the possibility of AJAX in-
trusion detection can be investigated. However, some attempt is made to identify Web
applications to make maintenance of the Website easier [Di Lucca et al., 2005a; Dong
et al., 2009].

Web pages that want to provide interactivity to their users so that the targeted con-
tent can be delivered, or Web applications that want to assist the users to complete
part of a task, will often include some widgets in their pages. Some studies, such as
those done by Brown and Jay [2008a] and Hardesty [2011] , highlight the importance
of identifying widgets, especially those that use AJAX as part of their process because
they introduce accessibility issues to Assistive Technologies and mobile devices.

Before WCAG 2.0 became a set of accessibility guidelines, Di Lucca et al. [2005b]
attempted to identify and rectify accessibility issues in a client’s page code. They used
conceptual models to model the Web accessibility guidelines (WCAG 1.0 and WCAG
2.0), and then they proposed an accessibility model to identify Web accessibility prob-
lems on a Web page. Di Lucca et al. [2005b] conducted a case study to determine the
conformability of ten Websites to evaluate the concept. Twenty Web pages from ten
Websites were examined. It was reported that most of the Websites had Web accessi-
bility problems except for two of them. This study reconfirms the need and demand for
a rectification tool at the developer’s end. However, it only examines superficial code,
and it does not attempt to understand the semantics behind the scripting code and the
hypertext code. Furthermore, it also does not relate the different objects in the Web
application.

Without understanding these elements, the multifarious Web applications that ex-
tensively reuse objects that are created within a code and APIs, it will not be possible to
modify the Web applications, so that they are in accessible form. Furthermore, the Web
has evolved to be much more dynamic since then, and WCAG 2.0 has now become a
guideline.

2.2.2 Coding Format

The Web allows a combination of various Web document formats to form together to
make the Website work. These formats include markup hypertext, styling and client-
side scripting languages. Understanding the different scripting languages and their
different versions is vital when comprehending them.

Web documents rendered by user agents to produce the DOM mainly consist of the
content layer, the styling layer and the behaviour layer. Surgical analysis of the DOM

CHAPTER 2. BACKGROUND AND RELATED WORK 58

will only give an account for what is deemed by the user agent engine suitable for
presentation to the user at that instant in time. In order to identify and predict the type
of widget, information provided by the DOM alone is not sufficient. Only inferences
derived from all three layers combined with the DOM information will allow most
widgets to be identified.

All content intended to be presented to the user is structured in some form of
Markup Language in the content layer. The most commonly used is the Hypertext
Markup Language (HTML) and W3C covers a few versions of specifications for this
language. The newer versions can fluctuate by quite a lot from their predecessors,
as seen in HTML5 [Hickson and Hyatt, 2009]. In many ways, the different types of
HTML will affect the way developers deliver their content, where the more visually
expressive types will be loaded with more content compared with the less expressive
ones. Hence, when reverse engineering a Web page, identifying the type of HTML is
crucial to spotting the correct pattern when trying to identify tell-signs from the source
code.

The HTML Document Type Declaration (DTD) has evolved into a number of ver-
sions together with evolution of the Web. From a recent study conducted to understand
the evolution of the Web over a ten year time frame, Chen [2008] presented that the
popularity of the latest version of DTDs means that it tends to be preferred and adopted
by Web developers. As reported, Web pages currently still use the DTD of HTML
4.01, Extensible Hypertext Markup Language (XHTML) 1.0 and 1.1 mainly. This is
because XHTML 2.0 [Axelsson et al., 2006] and HTML5 are both currently still in
their working draft state.

HTML5 attempts to be backwards compatible, however, as suggested by xhtml.com
[2008]. The backward compatibility of different versions of HTML/XHTML should
be dealt with by the user-agent. Making HTML5 backward compatible may make it
more confusing for users, and adds complexity to the validators and work surrounding
Web accessibility. Another proposal to make HTML5 an object-model approach rather
than the element format, will foreseeably add complexity when machines attempt to
comprehend hypertext documents. If this form of HTML5 is rolled out, it will change
the way widgets are created and designed if HTML5 is adopted by developers.

The concept of splitting the styling component of the page from the content allows
these two components to be dealt with separately. This idea has given raise to the style
layer where Cascading Style Sheets (CSS) were introduced to take over the job of
adding styles to the Web page. CSS is a language to include style in Web documents,

CHAPTER 2. BACKGROUND AND RELATED WORK 59

and controls the appearance of the text, i.e. the size, colour, font family, etc., the Web
page’s layout. It comes in a number of levels and profiles to deal with different devices;
namely, levels 1, 2 and 3, mobile profile 1.0 etc. [Bos, 2009]. CSS allows the document
structure to be separated from the presentation, so that developers/designers can have
precise control of the Web page layout and styling without interfering with the markup
content [Jacobs and Brewer, 1999]. Through this method, Web content authors can
concentrate on the content itself, and the accessibility aspect of it. However, like all
Web technologies, CSS is also ever changing to keep up with technological advances,
so it will be interesting to follow up the advancement of CSS when HTML5 becomes
a recommendation, and the changes that will affect the development of widgets.

A key feature of manipulating content uses scripting languages to do the task via
the behaviour layer. Since only widgets that use JavaScript are covered, only the ex-
tent of this language will be analysed. JavaScript is a client-side scripting language
to enhance the functionality of Web browsers. It is an interpreted programming lan-
guage that has object-oriented capabilities embedded in most popular Web browsers.
Although JavaScript is not Java, the syntactic core of the language resembles C, C++,
and Java [Flanagan, 2002]. JavaScript as a client-side scripting language manipulates
the Web browser’s functionality from the behaviour layer. However, the language may
perform slightly differently when used in different Web browsers. Patents such as
Dencker et al. [2008] attempt to create a JavaScript client framework, so that it will
provide object-oriented features, and enable cross-window and cross-frame communi-
cations. This framework wants to standardise the scripting language, so that it will be
independent from the different types of browsers and the different versions.

Web widgets often use client-side scripting languages, such as JavaScript and Vi-
sual Basic Scripting (VBScript), to assist them in manipulating the style and the con-
tent of the page. Web pages that employ the Web 2.0 concepts may even use the
scripting language to employ remote scripting techniques, so that they can commu-
nicate and retrieve additional information from the Web server without reloading the
Web page. Due to the popularity of JavaScript, which dominates most of Web [Chen,
2008], our proposed work will focus on widgets that are developed by this type of
client-side scripting language.

CHAPTER 2. BACKGROUND AND RELATED WORK 60

2.2.3 Code Comprehension

Described by many [Liu and Wilde, 1990; Rajlich and Wilde, 2002; Di Lucca et al.,
2005a] code/program comprehension plays a vital role in software evolution and soft-
ware maintenance. These techniques are often used to identify parts of the code/pro-
gram that resemble a conceptual design for maintenance purposes and for detecting
security flaws. The proposed work comprehends the source code to identify the re-
gions that will manipulate the content layer of the Web page. Often, to manipulate the
content, the styling properties of an element can be changed to cause a visual effect
where the content is hidden or shown. Alternatively, the content within the elements
can be updated via the Behaviour layer.

The bottom-up theory for program comprehension is based on the parts of a code
that the programmer recognises [Rajlich and Wilde, 2002]. Commonly, smaller sec-
tions of the code are nested within a larger set of code. This is a similar concept of
pattern granularity to that discussed in [Alexander, 1979; Gamma et al., 1995]. How-
ever, Rajlich and Wilde [2002] described how most programmers tends to used the
“as needed” strategy as programs become larger, and usually it is not possible to com-
pletely comprehend the source code due to the time available. This method of devel-
opment provides a case for researching whether comprehending the Web page’s source
code, to search for instances of Web widgets, will be a feasible approach.

Documentation of an application has been commonly found lacking for both soft-
ware applications [Dong et al., 2008b], and Web applications [Di Lucca et al., 2005a].
Accessing the documentations for Web applications is even more difficult, because ap-
plications can reuse APIs from different sources, and sometimes documentation for
these APIs is not available [Dong et al., 2008b].

Di Lucca et al. [2005a] investigate an approach to recovering user interaction de-
sign patterns for Web application, which will make the maintenance task of the Website
easier. They proposed a three-phase process to search for patterns in Web applications:
the training phase, candidature phase, and a validation phase. The architecture used in
the study for recovering Web interaction design patterns is depicted in figure 2.3.

Six Web interaction design patterns were chosen to evaluate the approach on a
small set of training samples in Di Lucca et al. [2005a]. These patterns include Guest-
book, Login, Poll, Registration, Search and Sitemap. The experiment obtained 79%
precision. Then a wider set of 208 Web pages was conducted on another experiment for
comparison using the same approach and achieved 66% precision. This study demon-
strated the diversity of the Web. However, the application of this study is different

CHAPTER 2. BACKGROUND AND RELATED WORK 61

Figure 2.3: The architecture used in Di Lucca et al. [2005a] for the Web Interaction
Design Pattern Recovery System

from ours. It does not examine the scripting code, semantics and the relationships be-
tween these elements. The results reported in Di Lucca et al. [2005a] can provide us
with a benchmark to base our methodology upon when attempting to identify the user
interaction design pattern of the Web widgets.

In the early 1990s, studies such as Liu and Wilde [1990] were conducted to assist
reengineering and maintenance of old code, so that object-like features from a non
object oriented language could be recovered, and the code could be transformed into
the object-oriented concept. This kind of study provides a useful referential source for
general concepts when identifying objects from the source code, while applying it for
a different purpose.

Liu and Wilde [1990] suggested an approach that uses a Global Based Object
Finder and a Types Based Object Finder to answer the object oriented concept trans-
formation. The Global Based Object Finder searches for global and persistent data
within the code, and creates the relationships of these data with the routines that ma-
nipulate them. The Type Based Object Finder relies on the data types to establish the
relationships between the data types, and the routines that use them as a parameter or
to return values. However, this proposal is a semi-automatic approach, and it requires
human input.

CHAPTER 2. BACKGROUND AND RELATED WORK 62

These two studies gave an overview of the code comprehension techniques used
for investigating Web applications Di Lucca et al. [2005a], as well as to assist the
transformation of one concept into another [Liu and Wilde, 1990]. However, a review
in Dong et al. [2008b], demonstrated a number of different techniques that can be
employed to cater for different purposes. A comparison between the techniques was
also presented. Based on this review and additional literature, we grouped the different
code comprehension techniques into five general categories that are presented in the
follow sections.

Matrices

Matrices are used in processes when comprehending the source code. Dong et al.
[2007] proposed a novel approach to discover design patterns directly from the source
code. They developed a tool called DP-Miner that uses matrix and weight to discover
design patterns from the source code. A pattern matrix is used to represent the system
structure, where the columns and rows are all the classes in the system. In each cell, the
value represents the relationships between the classes. A system matrix is used for the
structure of each design pattern. Using this method, design patterns can be discovered
by matching the two matrices; if they match, an instance of the pattern is found.

Three analyses were conducted to efficiently discover the instances of a design pat-
tern. These analyses included a structural analysis of the system and design patterns to
be discovered, a behavioural analysis to understand the dynamic relationships among
the participating patterns, and a semantic analysis that searches for the design docu-
mentation of the source code, in-line comments in the source code, and clues from the
naming convention of the classes. Finally, the tool was tested on the Java.awt pack-
age7 in JDK 1.4 to search for instances of the Adapter pattern. It is reported in Dong
et al. [2007] that it took 2.44 seconds to discover 21 Adapter pattern instances.

The approach proposed by Dong et al. [2007] is a good demonstration that studies
surrounding identifying patterns from the source code exist. However, this study fo-
cuses only on desktop applications or object-oriented programs. It does not cover the
same magnitude as recovering Web applications design patterns. Furthermore, no fur-
ther work has been done to understand the conceptual designs for applying the patterns
and the rationale behind the application processes.

The DP-Miner is a novel approach that is based on matrix and weight, to discover
instances of design patterns from object-oriented software systems [Dong and Zhao,

7The AWT package consists of 346 files, a total of 485 classes, and 111 interfaces.

CHAPTER 2. BACKGROUND AND RELATED WORK 63

Figure 2.4: The overall architecture of the approach for DP-Miner [Dong and Zhao,
2007]

2007]. This tool was developed to provide an alternative approach to search for design
patterns directly from the source code. It uses XMI-based intermediate representations
for structural analysis, while the behavioural and semantic analyses are extracted from
the system’s source code directly, so that false positives can be reduced. The overall
architecture of the approach is illustrated in figure 2.4. This work seems to be at its
preliminary stages, and the authors have reported some inconsistency in their approach.
Furthermore, the study only comprehends object-oriented software systems, and not
the same level as Web widget detection. Dong and Zhao [2007] only attempted to
discover the design patterns from the source code. They did not extend the process
to reconstruct the design concepts for using the design patterns. Discovering design
patterns can be difficult, but understanding and reconstructing the design objectives of
the code is much more challenging, and it requires an even more intensive computation
process.

In a recent study by Dong et al. [2008a], there was an attempt to discover design
patterns by using template matching. The motivation behind this investigation is due
to the poor design documentation. Template matching is done by matching a pattern
matrix with a system matrix to determine whether a design pattern exists. This paper
extends this approach by calculating the normalised cross correlation (CCn) between
the pattern and system matrix, so that the degree of similarity between the design
pattern and the part of a system can be computed.

CCn = ∑
f (x) ·g(x)
| f (x)| · |g(x)|

, (2.1)

where f (x) and g(x) are two vectors, and x = 1, ...,n.

CHAPTER 2. BACKGROUND AND RELATED WORK 64

It was attempted to encode eight design features from four large open-source sys-
tems in [Dong et al., 2008a]. The results presented are convincing, and they claimed
that their approach could avoid false positive detection caused by individual matches.

Tsantalis et al. [2006] conducted a study with a similar purpose to the one done
by Dong et al. [2008a]. The method proposed uses the similarity scoring between
the graph vertices, instead of template matching. It calculates the similarity scores
between the vertices of the system and the pattern graph. This method allows patterns
that are both in this basic form and modified versions to be detected. An evaluation
of Tsantalis et al. [2006] approach was done across three popular open-source projects
that employ design patterns extensively and systemically. The evaluation demonstrated
that the approach is precise and accurate, but a few false negatives surfaced, and no
false positive was detected.

Studies by Dong et al. [2007]; Dong and Zhao [2007]; Dong et al. [2008a]; Tsan-
talis et al. [2006] provide evidence that design patterns can be discovered from the
source code, either by template matching, similarity scoring, or using matrix and
weight. However, these investigations focused around desktop systems and do not
have the same degree of complexity. Nonetheless, some of the methods suggested can
be reused, but they have to be modified or applied from a different prospective, so that
the concepts will work with the vast combinations of technologies that make the Web
work.

Conceptual Models

Conceptual models allow their users to express the meaning of terms and concepts, and
to find the correct relationships between the different concepts. This form of modelling
approach removes ambiguous terms and meanings, so that projects are more robust and
reliable [Fowler, 1996]. This is a technique mainly used to formalise and model their
concepts during the planning and development phase. Hence, investigating techniques
others have used to recover the conceptual models from the source code during reverse
engineering processes will provide further insights into different techniques for reverse
engineering the widget designs.

Modelling languages, such as Unified Modeling Language (UML), are often em-
ployed to provide a conceptual model of the system developed during the design pro-
cess. However, design patterns will evolve over time, and due to the lack of good
documentation, problems arise when trying to recover them. Dong, Zhao and Sun

CHAPTER 2. BACKGROUND AND RELATED WORK 65

Figure 2.5: The overall architecture of the automated process that transforms the UML
model of a design pattern application into its evolved form [Dong et al., 2009]

proposed an automated process that transforms the UML model of a design pattern ap-
plication into its evolved form [Dong et al., 2009]. This is a three phase approach (see
figure 2.5), where the first phase defines the evolution of the design pattern process
using XML Metadata Interchange (XMI) in the primitive level and the pattern level.
Then, the XMI format is translated using the XSLT transformation rules to convert the
interface in the second phase. In the third phase, a semantic Web checker based on the
Java Theorem Prover (JTP) was developed to ensure the consistency of the evolution
transformation process. Dong, Zhao and Sun envisioned that automating the evolution
process of design patterns could reduce errors, inconstancy and missing parts for the
evolved design patterns.

A number of studies were done to recover conceptual models for reverse engineer-
ing a Web application. Most of these studies surround Web applications that use the

CHAPTER 2. BACKGROUND AND RELATED WORK 66

Figure 2.6: The identification process of UWA entities and semantic associations types
in [Bernardi et al., 2008]

Ubiquitous Web Application (UWA) framework. This framework comprises a method-
ology and set of meta-models for user-centred designs for Web applications [Bernardi
et al., 2008]. In these studies, Web applications are defined to deal with processes of
the same scale as desktop programs. Often these applications cover more complex pro-
cesses than a widget. Although the magnitudes of the investigations are very different
and can be specific to a task, the techniques applied for this form of reverse engineering
can be scaled to make it generic for identifying Web widgets.

Bernardi et al. [2008] proposed a semi-automatic recovery of user-centred concep-
tual models from Web applications. This approach is defined according to the UWA
design framework. The UWA Hyperbase model is a user-centred conceptual model
that represents the Web application’s content, organisation (entities and components)
and semantic associations between the entities where navigation paths are derived. The
process taken by Bernardi et al. [2008] to identify the UWA entities and semantic as-
sociation types is depicted in figure 2.6. Agreed by most of the Web application design
methods proposed, including Ceri et al. [2000]; Bernardi et al. [2008], three models
can be used to define the development of Web applications: the Contents model, the
Navigation model, and the Presentation model. To support the recovery process of the
UWA conceptual models from a Web application, the architecture designed to carry
out this task is described in figure 2.7.

CHAPTER 2. BACKGROUND AND RELATED WORK 67

Figure 2.7: Architecture for the Hyperbase model abstractor module in Bernardi et al.
[2008] for the Re-UWA environment.

A case study was conducted on the semi-automatic recovery of user-centred con-
ceptual models to verify (1) the group of keywords extracted, (2) the candidate’s UWA
entities, (3) to ensure no UWA entity was undetected, (4) the semantic association of
the candidate’s UWA was identified, and (5) no UWA semantic association was unde-
tected [Bernardi et al., 2008]. The case study was based on four Web applications. The
authors’ definition of a Web application in this study seems to refer to a Website. The
reported results suggest that the group of keywords identified in HTML templates do
not represent the application domain’s concept. The evaluation results of this approach
do not tell us much. In fact, they rely heavily on keywords for their recovery process

CHAPTER 2. BACKGROUND AND RELATED WORK 68

and depend a lot on the developers to conform to the UWA framework. Conceptu-
ally, this approach seems viable, but it requires evaluation over the Web in the wild to
examine the practicability of it. Furthermore, many Websites like Google, CNN and
Facebook are made up of micro-applications within it. In fact, most Web pages consist
of more than one micro-application. The concept of a Web application in Bernardi
et al. [2008] seems to be a reuse of the conventional desktop applications, while this
is not the case for the Web medium. We believe that, by redefining this concept, a
different set of results for the investigation will be produced.

Studies were conducted to reverse engineer the conceptual user-centred models
from Web applications. Di Lucca et al. [2006] proposed a reverse engineering approach
to recover the conceptual model, so that structural information and UWA models can
be extracted from the Web application. To recover UWA models, a static analysis
process was conducted to Web applications to identify the entity types, semantic asso-
ciation types, collection types, node types and cluster types. A tool named RE-UWA
was developed, and evaluated using three experiments. The first experiment consists of
simple Web pages developed by undergraduate students, each having only one of the
UWA concepts implemented. The second experiment was conducted on a small size
Web application developed by graduate students. This application allows users to make
predictions on football matches. Finally, the third experiment consists of a large set of
client-side pages downloaded. The first two experiments achieved precise identifica-
tion of entities, collection, and associations. However, the third experiment showed
a lower precision when identifying entities and associations. Di Lucca et al. [2006]
demonstrated that this approach is feasible and has good effectiveness, but refinements
to the approach are expected to improve its effectiveness and precision.

Distante et al. [2004] demonstrated a technique for reverse modelling, so that it will
be able to comprehend Web application transaction design and implementation, in the
absence of original program documentation. The study attempts to recover information
from an existing Web application, and feed it as design input to an extended version
of UWA transaction model. It is a demonstration of the group’s concept, and it was
reported that the inspection of the main steps of the reverse modelling technique was
carried out by a human. Thus, they suggested an automated tool as their future work
for this approach.

Conceptual models such as Di Lucca et al. [2006], employ the visual represen-
tation of an application, such as UML, and their associated automated environments
to comprehend the source code claims to provide potential improvements. However,

CHAPTER 2. BACKGROUND AND RELATED WORK 69

Hendrix et al. [2002] highlighted that these studies are generally limited in scope, and
do not necessarily desig to scale up for industrial practice. The team investigated the
effectiveness of visualisation representation when performing source code comprehen-
sion. The investigation compared the Control Structure Diagram (CSD) results with
2 groups of participant results, one involving a senior-level class of software engi-
neering students, and a few graduate students, while another group was made up of
undergraduate students with little programming experience. It was reported that the
CSD responded positively to shortening the response time, and have better correctness
in the experiments. Thus, it was suggested by Hendrix et al. [2002] to include the
visualisation representation approach, as it can improve productivity and reliability.

Vectors

Vectors can represent the pattern structure or process of a source code, so that further
analysis can be conducted to comprehend the code. Studies such as Tsantalis et al.
[2006]; Dong et al. [2008a] use this method to model the relationships between classes
for the matrices, so that the matrices can be manipulated easily, and they can clearly
convey the matrix’s concept to engineers and computer scientists.

In an investigation by Canfora et al. [1996] to improve the techniques to identify
objects from the code, a statistical approach was introduced. Although the objective
of the study was to provide a solution to make software comprehension easier, the
concept from this approach can be deployed to assist code comprehension for Web
applications. It was reported that a major problem in software comprehension is to
comprehend the relationships between the system’s components. The technique sug-
gested by Canfora et al. [1996] exploits a graphical method, and applies a statistical
technique to the interconnections of a bipartite graph. Using an iterative clustering
algorithm that terminates when the graph forms a candidate object the graph was plot-
ted. An object in this study is referred to as a collection of data items and routines. An
experiment conducted to evaluate the quality of the proposed algorithm demonstrated
that it identifies the routines that are likely to introduce undesired connections, and the
case studies demonstrated that some degree of human interaction is required.

Searching for Instances

A common method to search for a pattern when comprehending the source code is
to look for its instances. Quite often, as seen in Tsantalis et al. [2006]; Dong et al.

CHAPTER 2. BACKGROUND AND RELATED WORK 70

[2008a], this method is combined with other techniques to further comprehend the
source code.

Stencel and Wegrzynowicz [2008] proposed an automatic pattern recognition method
that could detect nonstandard implementations of design patterns. The motivation for
this proposal is because the existing approaches are not perfect, and sometimes fail to
capture the source code intended. The aim of this proposal is to capture the intent of
created patterns, as well as to discover as many variants of implementation method as
possible. A tool was trained to recognise four design patterns - the Singleton, Factory
Method, Abstract Factory and Builder - and tested against two other state-of-the-art
tools. The demo source of “Applied Java Patterns” (AJP), which provides an exem-
plary Java implementation of Gang of Four patterns, was used to test the three tools.
The results proved that this method was flexible and efficient.

The techniques used in Stencel and Wegrzynowicz [2008] have proved a valuable
approach for our purposes. However, this study was based on Java source code. Hence,
the degree and complication of having a mixture of different languages in a similar
application was not tested, and it does not attempt to examine the associations of the
different patterns, and the purpose of having the pattern, like our proposed work.

Searching for instances of a pattern in a Web page when comprehending the source
code can also be extracted from the DOM tree, HTML tree and JavaScript Abstract
Syntax Tree. A study by Bellucci et al. [2012] demonstrated the applicability of us-
ing these techniques to identify the User Interface (UI) components on a Web page.
However, when using these techniques, only components at an instance in time can be
discovered. Furthermore, to detect widgets, other code comprehension techniques are
still required on top of these techniques, to relate the different components before an
inference to a widget can be determined.

Annotation & Transcoding

Developers can annotate the application either directly in the source code, or separately
as documentation. Rajlich [2000] demonstrated the usefulness of having a separate
incremental documentation for a piece of software using the Web. Software was de-
veloped as a hypertext notebook medium for programmers to record the understanding
and observations about the software. Each component is annotated in different parti-
tions of the documentation, starting from the root file. This form of annotation proves
useful for the developers of the application. However, these documentations are not
available for Websites, and documentation in the source code of the Web document

CHAPTER 2. BACKGROUND AND RELATED WORK 71

would be useful.
Annotation can also be used as a technique to insert additional information, such

as semantics and notes, into the Web page’s source code. Asakawa and Takagi [2000]
developed an Accessibility Transcoding System, so that completed inaccessible Web
pages can be converted into accessible Web pages. Two components are used for the
annotations; one for structural annotations, and the other for commentary annotations.
The structural annotations are used to reorder the visually fragmented groupings ac-
cording to their importance, while the commentary annotations provide useful descrip-
tions of the contents.

To overcome the fatigue of site-wide annotation authoring using the technique
described by Asakawa and Takagi [2000], a new algorithm, “Dynamic Annotation
Matching” was developed by Takagi et al. [2002], to automatically determine the ap-
propriate annotations, and an authoring tool, “Site Pattern Analyzer”, was also devel-
oped to support the annotator, visualising the annotation matching status. An experi-
ment was set up to test for the effectiveness of our algorithm and tools. USA Today’s
Website was chosen for the experiment. It was reported that, in total, 245 annotation
files were created in 30 hours and 20 minutes, thus they succeeded in creating annota-
tion files for every target page without skipping any pages. These results demonstrated
that annotation-based transcoding could improve Web Accessibility for visually im-
paired users; however, the time taken for annotation authoring is a bottleneck for this
technique.

The approach used by Takagi et al. [2002] demonstrated the power of annotation,
but it has to be used with great care to tackle the issues with this technique. This
study was conducted in 2002, and during that time most Web pages still used the ‘Page
Model’ concept described by [Maurer, 2006]. Hence, it does not include Web pages
with Web widgets, and dynamic micro content.

More recently, Harper et al. [2006] suggested that creating ontologies of Cascading
Style-Sheets (CSS) so that Web pages can be transformed to improve the inaccessible
Web. The paper led to the introduction of the Structual-Semantics for Accessibility
and Device Independence (SADIe) project, which uses the semantic annotations of
a Website’s CSS to transcode into a Web page format suited for screen readers that
output audio sequentially. However, the SADIe concept could be applied to other
applications, such as to transcode CSS annotations to generate AxsJAX framework
code [Lunn et al., 2009a], and it can also be coupled with a framework for identifying
strategies that visually impaired users employed to overcome with the difficulties when

CHAPTER 2. BACKGROUND AND RELATED WORK 72

interacting with Web content [Lunn, 2009].
So far, only studies applying transcoding and annotation to improve Web accessi-

bility directly have been covered. However, Chen and Shen [2006] demonstrated that
transcoding could also be applied to transform Web pages from poor compliance to
become standard-compliant. This study only covers static content without addressing
the accessibility of the conceptual designs of the widgets. If users are unable to grasp
the operational concepts of the widget, they will not be able to operate the widget to
accomplish their task, or extract the relevant content. Nonetheless, Chen and Shen
[2006] study supplemented the idea that the WIMWAT project can also assist develop-
mental tools that are intended to inject WAI-ARIA syntax into Web pages with widgets
to improve the accessibility of their widgets.

2.2.4 Attempts to Identify Graphical Objects and Web Widgets

The idea to identify objects on a Web page has been attempted a few times, but due to
the reverse engineering barriers raised in §2.2 these projects were often placed on the
back burner. In this section, related studies will be visited.

Generally, there are two common approaches to identify an object from a Web
page. One way is to sift through the source code for clues or instances of the object
(textual based), or the presented content can be treated as an image (pixel based) such
that image processing techniques can be used to identify instances of the object.

Text Based

There is a lot of lexical information extractable from the text in a Web page. How-
ever, the Web delivers content through the textual and multimedia medium. Karanam
et al. [2011] investigated extensively the roles of text and graphics information when
attempting to locate Web widgets in a Web page. This study highlights the impor-
tance of including graphical information in the analysis, both during the development
stage and the reverse engineering process. It did not investigate how often graphical
information is found alongside textual information. Thus, although this concept proves
ideal, in practice this content does not always exist. Neither did Karanam et al. [2011]
formally define the listed widgets. Objects like logo and content are classified as wid-
gets, however, in our proposed research, these objects are considered merely as part of
the layout of the page. Furthermore, the technique proposed by Karanam et al. [2011]
was only evaluated over 8 Websites chosen based on a vague selection criteria. The

CHAPTER 2. BACKGROUND AND RELATED WORK 73

evaluation methodology for the study is not thorough enough to suggest any concrete
conclusion, and the selection process can be manipulated to favour the experiment.

Little et al. [2007] identify the Web user interface to simplify user activities, so that
end users can record their interactions with all forms filled, buttons clicked and menus
selection when performing a business process. This information can be documented
along with the recorded interactions and shared on a wiki. Through this method of
sharing, others can automatically execute the process themselves, while Bolin et al.
[2005] describe a new programming system to provide a platform for automating and
customising Web applications, so that the user should never have to mess with the
HTML source of the Web page.

Both studies, Little et al. [2007] and Bolin et al. [2005], are limited to identifying
form fields and buttons. They do not go beyond the identification process of graphical
user interface objects to understand the conceptual designs behind the processes, so
that users can be informed of the purpose of conducting the task. Furthermore, their
concepts are evaluated over a very small sample of six or less Websites. The issues
exposed are not sufficient to conclude the approaches for the general Web.

Pixel Based

Reverse engineering the interface structure of an application can be done through ex-
amining the pixels in the graphical user interface. Since the concepts of presenting
Web pages in the Web application architecture are similar to analysing the software
interface structure concepts [Myers et al., 2000], we will visit some of these studies.

Dixon and Fogarty [2010]; Dixon et al. [2011] suggested the pixel-based reverse
engineering technique to identify objects in the user interface structure for generic
applications. This technique requires the user to specify the area to analyse with a
pointing device, and the system will attempt to identify the objects. Although it can
be applied across a range of applications (both desktop and Web based), it targets
users with the physical capability to control a pointing device. However, it cannot be
generalised for visually disabled or motor impaired users. Furthermore, relying on the
visual objects to identify the tasks and processes can mislead the users, and may not
provide sufficient information for the user to continue their intended task. The users
must also have an idea where and how much to highlight before the system can be
useful, thus the usefulness of the project is doubtful.

CHAPTER 2. BACKGROUND AND RELATED WORK 74

2.3 Using Ontology to Classify Web Widgets

Making use of available information in the content layer and DOM as a metaphor
of components and objects in the page can help to identify the different user interface
components, or make semantic connections of certain content in the page. This appeal-
ing approach applied with the domain’s ontology is used widely for modelling differ-
ent conceptual objects, especially to assist Web searching [Fazzinga and Lukasiewicz,
2010; d’Aquin and Motta, 2011] and bioinformatics analysis [Chen et al., 2009; Kim
et al., 2005].

In the course of automatically identifying or predicting widgets from a Web page, a
knowledge based on the different types of widget with semantic definitions will be re-
quired for the system to make these forms of deduction. Often ontologies are used
to capture the concepts of the terms the vocabulary of the domain intends [Chan-
drasekaran et al., 1999]. Ideas of using the Semantic Web to include ready-to-use
Web widgets to create an application [Mäkelä et al., 2007] have surfaced briefly with
limited discussion about how widgets can be classified or modelled. In order to model
the concepts of different types of widgets, a widget classification approach using the
concepts of Semantic Web should be explored to aid the different types of widget def-
inition. Presutti and Gangemi [2008] describes how to use ontology to describe the
concepts instead of the logics for the design patterns. However, a simple example is
presented, and it does not go deeper to explain how this concept can be applied to more
complex scenarios where the widgets are often found. These studies raised interesting
ideas, but they did not explore their ideas further. In WPF, these concepts are applied to
a real world scenario by incorporating them to assist our widget prediction approach.

From these studies, the depth, degree and difficulty of applying these concepts as
part of the classification system in WPF can be seen. Often these forms of technique
require their users and developers to be experts in the area. To provide a rounded
solution so that users of the Web, with a different range of technical abilities, can
also understand the classification system, the technique must be flexible enough to be
approached from different perspectives.

Martı́n et al. [2010] suggested that an abstract interface model made up of ontology
widgets could be used to design and develop Accessible Web applications. However,
only one type of widget was covered in the study, with only one Web page examined.
Furthermore, the ontology used in the study only includes the HTML elements of the
document. The extent of these studies is focused on a very small pool of Websites.
They only cover a few ideal cases and they are unable to capture the vast variations of

CHAPTER 2. BACKGROUND AND RELATED WORK 75

how even a single type of widget can deviate. Unlike these studies, the proposal of our
ontology covers all forms of textual content in the source code to derive the process.
Combining the textual information from the content, styling and behaviour layers of
the Web page and the DOM, both textual and conceptual information are included in
our ontology to model a type of widget. Furthermore, a wider range of widgets is
included in our prediction approach, and the location of each widget found in the Web
page is returned. Again, the approach Martı́n et al. [2010] suggested requires users to
be experts in the area. For the framework to assist broad range users of the Web, it
has to be able to be simple enough for most Web users to interpret the concepts of the
widget, while covering the depth so that our system will be able to predict the type of
widget.

There is a range of semantic Web technologies available for use in modelling and
querying the ontology. The W3C has published a number of standards, such as the Re-
source Description Framework (RDF) and the Web Ontology Language (OWL), which
is more expressive, to facilitate the semantically rich information exchanges [Hitzler
et al., 2011]. OWL is designed to represent information about categories of objects
and how objects are interrelated, and information on the objects themselves [Horrocks
et al., 2003]. It is designed to fit into the rest of the Semantic Web languages, in-
cluding XML and RDF, and maintain compatibility with existing languages such as
SHOE [Heflin et al., 1999], OIL [Fensel et al., 2001] and DAML+OIL [Connolly et al.,
2001]. These characteristics make OWL a good fit as a tool to model widgets in our
framework.

More recently, in 2008, the SPARQL Protocol and RDF Query Language were in-
troduced by W3C to provide a querying facility for RDF. Advances, such as SPARQL,
are examples of the interfacing technologies available. However, as a first step to
demonstrating the feasibility of our approach, and minimising the complexity of sur-
rounding technologies, we have hardcoded the widget definitions after modelling them
in WIO. Tools like Protégé8 will provide a stable platform to work with OWL and RDF
to model the widgets.

8Protégé – http://protege.stanford.edu. Last accessed 18th September 2012

CHAPTER 2. BACKGROUND AND RELATED WORK 76

2.4 Summary

In this chapter we presented existing studies and projects to approach the challenges in
Web accessibility, and the issues surrounding software/Web development and mainte-
nance. Beginning with the different Web standards and recommendations, issues faced
by Web developers and Assistive Technologies developers to cope with the pace of
evolution, the extent of the recommendations covered, along with the heterogeneous
nature of the Web, all contribute to the complexity this thesis investigates. Scouting
the approaches applied in other domains like software engineering, text mining and
semantic Web for alternatives, this chapter critically reviewed some of the related ap-
proaches from the perspective of our proposed research.

These reviews expose the strengths and weaknesses of the approaches covered, and
provide insights into the techniques for the type of combinations applicable to recover
the concepts of widget design. A discussion was presented to highlight the difference
between closely related studies and our approach. It illustrates the degree and novelty
of the WPF. After reviewing the existing studies, we acknowledge that there will be
flaws to every approach or set of approaches selected for our investigation. However,
we believe that the WPF approach has its cause to improve the current accessibility
challenges faced by dynamic content, and provide a solution by predicting widgets to
indirectly improve the experience of the Web page.

Chapter 3

Classifying Web Widgets

In this chapter, we present our approach to assisting Web widget detection and to meet-
ing the challenges faced when communicating widget design pattern concepts. Our ap-
proach addresses the ambiguity issues between different definitions of widget design
patterns provided by widget design pattern libraries, as well as providing a paradigm
enabling developers and end-users to communicate with a common understanding. To
demonstrate our approach, the popularity of different types of widget are analysed and
presented. The purpose of this analysis is to select the types of widget to include in
our widget classification approach, and the WPF investigations. In §2.1.1 and §2.1.2,
we discuss the importance of making Web pages accessible along with the pace of
development cycles of Web pages/applications, the issues faced when communicating
ideas about widgets, and reusing design patterns applied on desktop applications to
Web widgets.

Due to development cost, time and functionality of task, often more than one Web
widget is presented to users at the same time on a page. This way of delivering con-
tent poses additional barriers to less physically able users using Assistive technologies.
This is because when more than one widget attempts to update the content in the page
concurrently, the user will not be able to distinguish which update is for which wid-
get [Brown and Jay, 2008a]. Commonly, the Assistive Technologies are also unable to
pick up this relationship.

Often, the user is required to be able to work out the behaviour of the components,
and relate the components to distinguish one widget from another to address the issue.
However, this will require the users to have a visual cognition of the entire Web page.
To improve the situation, we investigated current widgets issues, focusing especially
on identifying and classifying them. From the results transcript recorded by Jay et al.

77

CHAPTER 3. CLASSIFYING WEB WIDGETS 78

[2010], blind and visually impaired users found it beneficial to be informed about the
dynamic content. Thus, by investigating the methods model widget, we have proposed
an approach to formally model different types of widget. This approach will provide
documentation for the definitions of different types of widget, as well as provide cog-
nitive organisation of conceptual designs for each widget when developing the Widget
Prediction System (WPS).

3.1 Developers & Users Perception

Web developers, Web page designers, and users of the Web often refer to objects in
a Web page differently, and these terms are often homographic in nature. This issue
commonly becomes an obstacle due to the ambiguous definitions, and it causes con-
fusion when communicating because the users of the Web pages and the developers
perceive the objects differently.

Often users perceive widgets from the interaction, the experiences they had with
the widget, and the way the content was delivered, while developers view it from the
interaction, processes and overall task of the widget. An example of this type of object
is the Ticker widget. Users may refer to the News Ticker and the Stocks Ticker widget
in a Web page as different widgets. This is because they classify these widgets based
on the type of information they present, the interaction components, or how the widgets
were applied. In this situation, the user assumes a Ticker widget that conveys news is
a News Ticker widget, while a Ticker widget that conveys stocks results is a Stocks
Ticker widget. However, a developer will approach both of these widgets from their
underlying processes. Thus, both of these widgets are the same from the developer’s
perspective, and they may refer to these widgets with a more generic name, such as a
Ticker widget. This will cause a definition mismatch between the Web developer and
the user.

Although the mismatch of widget definition may seem trivial initially, in some
cases it can impose false expectations on the user that will result in a poor user expe-
rience. A common understanding of the definition is even more crucial for visually
impaired users, because false expectations can result in the content not being accessi-
ble.

It is suggested that a taxonomy be constructed to bridge the differences in concepts
and definitions of different types of widget. Only when these differences are ironed out

CHAPTER 3. CLASSIFYING WEB WIDGETS 79

can the developers of Web pages and assistive technology, as well as Web users, com-
municate effectively. This is a vital communication paradigm for people working with
or using the Web, especially Web page and Assistive technologies developers. Using
this taxonomy, a standardised definition and terms can be used to assist communica-
tion between developers and users. Similarly, assistive technologies can also use the
paradigm concepts to interpret the widgets on the page, while users can be informed
about the features of the widgets. Using this information, the features of the widget
can be understood by the users to retrieve the content delivered by the widget.

3.2 Widget’s Taxonomy

To close the gap between the definition for a type of widget from a Web user perspec-
tive and the Web developers’ perspective, and to reduce the ambiguity between the
definitions, a taxonomy divided into four layers is introduced to formally define wid-
gets. To begin, let’s focus on a case study between the Carousel widget (figure 3.1)
and the Slide Show widget (figure 3.2) to see how these widgets are similar and often
misinterpreted. Then, using the four taxonomies, we will demonstrate how these tax-
onomies can help to narrow the gap between the definitions of widgets and improve
communications between developers and users.

Figure 3.1: Carousel widget from Sky.com

Close examination of both figures would highlight very similar features provided
by the two types of widget – for example, the definition between the ‘Next’ and ‘Pre-
vious’ buttons is ambiguous. Due to this some may classify figure 3.1 as a Slideshow

CHAPTER 3. CLASSIFYING WEB WIDGETS 80

Figure 3.2: Slide Show widget from Yahoo.com

widget since it has a ‘Play’ feature at the bottom left hand corner. A disagreement
between the definition of a Carousel and a Slide Show widget can be seen from this
discussion, because the definition of a widget can vary from one perspective to another.
This case study suggests a niche for a widget’s taxonomy platform so that widgets can
have a formal definition, making it easy to understand the conceptual designs and re-
ducing misinterpretation.

The widget’s taxonomy platform proposed suggests that the objects that form the
widget can be divided into four groups – Widgets, Components, Tell-Signs and Code
Constructs – to allow expansion and maintenance in the model. Each of these groups
relates with the others via the relationship between the objects/classes within the group.
As seen in figure 3.3, each group is represented as a layer in the diagram, and the layers
have the precedence as follows: At the top, it is the Widgets group that contain the most
abstract concepts of a widget, which is defined by the unique combinations of classes
in groups beneath it. Each type of widget will have a number of components object-
s/classes in the Components group that interoperate with other classes in this group.
Every component will have one or more traits that form the Tell-sign classes in the
Tell-Sign group that make one component different from another. Finally, every tell-
sign class/object will have one or more code construct objects in the Code Constructs
group.

Using the hierarchical arrangement in the paradigm, objects/classes within each
layer have to be unique. This association enables them to be modified, removed and
included without affecting the rest of the group. The unique property of the classes
enables them to be independent from each other, so that changes to a class will not
affect other classes in the same layer. Between the layers, modification or removal of
a class from a high layer does not affect the lower layers, but it is not the same for
classes in the upper layers as they are composed of classes from the lower layer(s).

Now, the four layers can be approached in two ways. The first way is for users

CHAPTER 3. CLASSIFYING WEB WIDGETS 81

!"#$%&'(

)*+,*-%-&'(

.%//01"$-'(

)*#%()*-'&234&'(

!"#$%&'()*+
,-.'$#/")*+
0$1(2.+

3$'4.(')*+
0$/)(*1+

Figure 3.3: Widget Identification Ontology (WIO) paradigm: A diagram to depict how
the objects in the different groupings/layers related with one another can be used to
define a widget.

of the Web; these users can approach the model from the top-down approach to what-
ever technical abilities. Classes in the top two layers are intended to be interpretable
for most laypersons. We believe this is possible because these layers only cover the
overview concepts of the widget in the top layer, and the superficial concepts of the
widget’s components in the second layer. The second way is for the more technically
inclined people. They can approach the model either from a top-down or a bottom-up
approach during development. Using the bottom-up model, understanding a type of
widget for the two types of actors will meet in between, and it will bridge the commu-
nication gap between the broader range of users and the developers, so that they can
effectively utilise the widgets.

In our previous study Chen and Harper [2009], some objects of a widget were
introduced when examining the Auto Suggest List and Carousel widget. These objects
were also formerly known as tell-signs in Chen and Harper [2009] and include the
Display Window and list of content to be displayed, are not to be confused with the
tell-signs described in this thesis. These objects are actually components of the widget
and they are classified as Components classes here. When examining the Carousel
widget, a Display Pointer was also used to store the current location of the list that the
widget is displaying. This additional component is also added to our Carousel widget
definition.

CHAPTER 3. CLASSIFYING WEB WIDGETS 82

3.2.1 Widgets Layer

Each layer in the widget classification hierarchy consists of a set of taxonomies, so
that the relationships between the classes can be established to define a widget. The
Widgets layer is the highest and the most abstract layer in our classification system.
Classes in this layer provide the abstract concepts of a widget.

Scouting through knowledge of widget design patterns from libraries such as Ya-
hoo! User Interface Design Patterns Library1 and Welie.com2, and JavaScript libraries
like jQuery3 and Dojo4, a consensus for the different types of widget definitions is
presented. Approaching the definitions from the conceptual perspective, it can be seen
that nine atomistic types of widget mainly surfaced in our investigation [Chen et al.,
2013]. Although many more different types of widgets are listed in these libraries,
the other types of widget are mere combinations of the nine types of widget applied
differently.

As seen in figure 3.4, nine types of widget are listed in this layer as an abstract
concept. Two subsets of widgets are included under the Ticker widget type to demon-
strate the capability of this approach to model similar concepts of widgets and the
expandability of the approach.

Based on the definition of the type of widget, every type of widget shown in fig-
ure 3.4 can be thought to have unique traits that differentiate one from another. Using
this taxonomy, both the News Ticker widget and the Stocks Ticker widget can be seen
to be sub classes of a Ticker widget as discussed in §3.1. With this capability, widgets
with similar characteristics can be grouped together under a generic categorisation of
that type of widget.

3.2.2 Components Layer

The Components Layer is a layer below the Widgets layer that contains objects that
are the possible components that make up a widget in the abstract Widget layer. It is
divided into two groups to differentiate the types of components as seen in figure 3.5.
The ‘VisibleComponents’ classes are concepts related to the physical User Interface

1Yahoo! User Interface Library - http://developer.yahoo.com/yui/2/. Last accessed on 18th

August 2012
2Welie.com Patterns in Interaction Design - http://www.welie.com/patterns/. Last accessed

on 18th August 2012
3jQuery JavaScript Library - http://docs.jquery.com/Main_Page. Last accessed on 10th

November 2011
4The Dojo Toolkit - http://dojotoolkit.org/api/. Last accessed on 12th February 2009

CHAPTER 3. CLASSIFYING WEB WIDGETS 83

Figure 3.4: Taxonomy of the Widgets layer.

(UI) components of the widget (buttons, text fields and key strokes entered), while
the ‘CodeComponents’ classes are conceptual processes in the code that are the be-
havioural aspects of the widget (an incremental process, a pointer variable and a time
triggering event).

The layers in the hierarchical structure, presented in figure 3.3 demonstrates that
every widget class defined in the Widgets layer must consist of a unique combinations
of the Components class in the Components layer. In order for this concept to be pos-
sible, the Components classes in the Components layer must be unique. This condition
is to ensure that when the Component classes are employed to define a Widget class,
no ambiguity between the Widget classes definition will arise. However, the Compo-
nents classes also have to be generalisable such that they can be interoperated with
different combinations of Component classes. These characteristics of the classes are
important because the unique combinations of widget characteristics differentiate one
type of widget from another in the Widgets layer.

There are a number of different types of components used in figure 3.5. Most of
these classes are formed by a combination of classes in the lower layers of the hierarchy
in the WIO’s paradigm. Some axiomatic definitions were assumed when creating the
terms for the taxonomy. The following is a list of the axiomatic definitions of different
Component classes assumed in this layer:

CHAPTER 3. CLASSIFYING WEB WIDGETS 84

Figure 3.5: Taxonomy of the Components layer.

Button This can be a form button or a link in the form of text/image that will be
triggered by a user event to execute the handler.

Display Pointer A variable that is used to store the address of the current displaying
item from the list.

Display Window An area in the Web page where the content is manipulated by the
widget. Often this will be an element within the DOM.

List of Content A temporary container/memory/cache to store a stack of content to
be delivered to the user.

Text Field An object in the Web page that the user interacts with, such that the user
can enter text for the widget to process.

Time Triggered A trigger that triggers after a delay at fixed intervals.

The full extent of the Components layer taxonomy cannot be captured in a single
diagram due to the size of the diagram. However, classes/objects are divided into

CHAPTER 3. CLASSIFYING WEB WIDGETS 85

Figure 3.6: Taxonomy of Visible components objects in the Components layer.

two sub classes: one for visible components and the other for conceptual components
in the code, as seen in figure 3.5. Some of the classes/objects in these classes are
further grouped into smaller classes to provide more semantics in their relationships.
Focusing on the Visible components classes/objects in the Components layer as seen in
figure 3.6, this group consists of conceptual processes that are involved with interaction
objects in the graphical user interface of the Web page. These classes/objects include
users keystrokes monitoring, Display Window styling manipulation, launching popup
windows and types of conceptual button components.

Zooming in on the visible buttons component classes illustrated in figure 3.7, the
two types of buttons used to define the widgets covered are the ‘Next’ and the ‘Previ-
ous’ button. The generic concepts for both of these buttons will propel the presented
content either forward or backward when the user clicks on the ‘Next’ or ‘Previous’
button respectively. However, this type of concept can normally be applied in two ways
for each type of button. The first method will loop back to the start of the list of content
when it reaches the end of the list, or vice versa, while the second method remains at
the end of the list of content when it arrives at the end, or vice versa.

Due to the possible types of processes, both of these buttons are further divided into
two subsets of buttons. For the ‘Next’ button classes, the Loop NextButton Visible

Component class will redirect the presented content back to the start of the list when it
arrives at the end of the list, while the Finite NextButton VisibleComponent class
will remain presenting the content at the end of the list when it reaches the end of the
list. On the contrary, for the ‘Next’ button classes, the Loop PreviousButton VisibleC

omponent class will loop the presented content to the end of the list when it arrives at
the start of the list, and the Finite PreviousButton VisibleComponent class will

CHAPTER 3. CLASSIFYING WEB WIDGETS 86

Figure 3.7: Taxonomy of Visible Buttons components objects in the Components layer.

Figure 3.8: Taxonomy of Code components objects in the Components layer.

remain presenting the content at the start of the list when it reaches the start of the list.
Unlike the Visible components subset, the Code components subset in the Compo-

nents layer are conceptual processes in the source code that are required by the devel-
opers to complete the processes the widget is programmed to conduct. As shown in
figure 3.8, these classes/objects are conceptual processes that are required to complete
the processes that are part of the developer’s design. This subset includes objects/-
classes such as Display Pointer, user triggered events, List Creation, List of Content,
Time triggered events and manipulation of the DOM elements.

The Code components subset is further subdivided for ManipulatingDOM CodeCom

ponents and TimeTriggered CodeComponent classes. Increment TimeTriggered

CodeComponent class conduct an incremental process each time the time-triggered
events are activated. This conceptual process will assist designs that propel processes
forward automatically using the system’s time or conduct computations based on the
system’s time. Notice that the manipulatingDOM CodeComponents class is further di-
vided into two classes. This is because, besides changing the content in the element –
which is a generic concept – the element can be also manipulated, either by its attribute

CHAPTER 3. CLASSIFYING WEB WIDGETS 87

Figure 3.9: The subset taxonomy of manipulated DOM objects under the Code com-
ponents objects in the Components layer.

or styling properties. We will take a closer look at these two types of manipulation in
figure 3.9.

Manipulating the styling of an element to make it appear and disappear in the Web
page is a method developers employ to present the targeted content, and hide the con-
tent that is not desired to be shown. From figure 3.9, two methods are covered. The first
method sets the order of the element to the highest value (SetOrderFront Elemen

tStyle-ManipulationDom CodeComponent), while the second method, HideConten
t CodeComponent class, changes the display or visibility property to hide the el-
ement. Some widgets may alter specific element attributes that require to be checked.
The OffAutoComplete ElementAttribute ManipulatingDOM CodeComponent class
ensures that the autocomplete attribute of the element (usually a text field) is set to
off. Often this is a technique used to inform the Web browsers not to suggest content
to the user when they are filling up a text field.

3.2.3 Tell-Signs Layer

Every Components class in the Components layer will have at least one trait; com-
monly, instances of these traits exist within the code to provide clues that a component
is present in the page. Normally, one or more traits is/are required to be identified
before the existence of a tell-sign can be conclusive. The tell-signs for a Components
class are determined by selecting the common traits of a component that are provided
by the different user interaction design patterns and JavaScript libraries.

Tell-sign classes are used to define a Component class in the Components layer as
shown in figure 3.10. For this concept to be implemented, every tell-sign class must
be unique, so that a unique combination of tell-signs classes defines a Components
class in the layer above. Similar to the Components classes, tell-sign classes have to be
unique to ensure the correctness of the Components classes’ definitions and minimise

CHAPTER 3. CLASSIFYING WEB WIDGETS 88

ambiguity among these classes.
Components are objects that have properties to carry out a task for the widget, thus

they are vital to realise the concepts that the developer designed the widget for. To
identify widgets, the concepts of the components must be identified first. However,
deriving concepts from code is difficult Gamma et al. [1995]. Often, not all the re-
quired instances of these concepts can be found within the code. Instances of these
traits provide clues that a tell-sign used to define a component exists, with a unique
combination of tell-signs; a component can be discovered from the source code of
the page. We believe that tell-signs are like the objects in the above layers – Widgets
and Components. They are reusable by different components to define their properties
when defined properly.

Every component will require one or more tell-signs to define them, although the
tell-sign classes are reusable to define other types of components, the tell-sign classes
that are related are grouped under a generic class in order to impose a semantic rela-
tionship between them. Every class in the Tell-Signs layer is unique so that a unique
combination of tell-sign classes can be formed to define a component class in the Com-
ponents layer. Due to the uniqueness of some components, some tell-signs are specific
characteristics to define a component. Thus, in this thesis tell-signs that are used by
different components to define them are known as common tell-signs, while tell-signs
that are used by only one type of component will be referred to as private or specific
tell-signs.

Similarly to the Components layer, most of these classes in figure 3.10 have seman-
tic relationships with the lower layer in WIO paradigm. However, some assumptions
were made when creating the terms for the taxonomy. The definitions of the terms
used in this layer are listed as follows:

Auto Complete This is an attribute provided by the form’s text field element. When
set to off the browser will not provide the user with a list of previous history of
what was entered in this field.

DOM Element Order High To change a DOM element to have higher order when
displayed to the user. This means that it is less likely to be blocked by other
DOM elements stacked within the same display area.

Event Handler This refers to a set of code to be executed when an event is triggered.

Event Listener This is a monitoring process to check if the specified event has oc-
curred to a DOM element.

CHAPTER 3. CLASSIFYING WEB WIDGETS 89

Figure 3.10: Taxonomy of the Tell-Signs layer.

CHAPTER 3. CLASSIFYING WEB WIDGETS 90

Key Stroke This is a monitoring process to poll if a particular key is pressed by the
user.

New Window A separate window that launches after an event is triggered.

Referential Variable A variable used to store the address location in an Array/list of
content. Developers use this variable to refer to a particular location in the Array
or item in the list of contents.

Window Timing A background timer provided JavaScript that triggers an event after
a fixed delay.

3.2.4 Code Constructs Layer

Identifying widgets from the Web page’s source code requires the system to analyse
the code and the DOM, so that clues that resemble a tell-sign can be discovered. The
Code Constructs layer contains classes that refer to a set of patterns in the code that
a developer may use when developing the widget. Combining the pattern of code
constructs found with other patterns of code constructs discovered, this combination
of classes can be used to infer a tell-sign class in the Tell-Signs layer.

Figure 3.11 shows the taxonomy for the Code Constructs layer and how the differ-
ent code construct classes are divided into subsets. All classes in this taxonomy are
unique to ensure a unique combination of classes will correctly infer a unique tell-sign
class in the Tell-Signs layer.

Commonly, when programming a conceptual process for a task, a simple concept
can be approached and applied in a number of ways. Thus, the code constructs listed
here are anecdotal methods to develop widgets suggested by design pattern libraries
and JavaScript libraries. Since the Code Constructs layer is the lowest layer in WIO
paradigm, each class defined in this layer is assumed to be the axiom patterns of an
instance of physical code construct. Like the other layers, the Code Construct layer
can be evolved, and additional methods can be included or modified when required. A
list can be found in Appendix A that illustrates the definition of each class in the code
construct form.

CHAPTER 3. CLASSIFYING WEB WIDGETS 91

Figure 3.11: Taxonomy of the Code Constructs layer.

CHAPTER 3. CLASSIFYING WEB WIDGETS 92

The definition of classes in the Code Constructs layer will affect definitions of
the classes associated with it in the Tell-Sign layer. When modifying the definition
of a class in the Code Construct layer, care has to be taken, as it will also affect the
definition of classes in the above layers that are associated with the class. A description
of the ontology for each widget will be discussed in the following sections, where a
demonstration of different classes from the different layers will be presented.

3.3 Widget Identification Ontology (WIO)

Depending on individual’s experiences, knowledge of the matter, application of the
widget, and perception, a widget can be defined differently; sometimes this may even
be due to historical reasons. Commonly, the issues faced with the naming and def-
inition of different types of widget can cause communications to break down. This
becomes a barrier that hinders development progress, communications between users
and developers, and means users cannot benefit from what the widget was intended to
do. An example of this would be the Ticker widget. To a Web page user, a News Ticker
widget and a Stocks Ticker widget may be different types of widgets. However, from
a developer’s point-of-view, both of these widgets are developed in the same manner,
thus they are the same, and the developer will classify this as a generic type of widget
such as the Ticker widget. This example demonstrates how the different point-of-view
affects the definition and the naming of the different types of widget.

Categorising the type of widget should be consistent. This is because, when com-
municating with these concepts, ambiguity can cause false expectations and it can
affect the user’s experience of the Web page. Classifying and identifying the widgets
based on their User Interface (UI) components and conceptual designs will provide
users with functional information and utilisation expectations; thus, it will improve the
user’s experience.

3.3.1 Widget’s Granularity

The granularity of the reverse engineering work conducted often plays an important
role in a successful recovery of development concepts and the identification of wid-
gets. Using the taxonomy discussed, widgets can be distinguished and related to one
another, thus reducing the ambiguity between the different types of widgets defined.

CHAPTER 3. CLASSIFYING WEB WIDGETS 93

Choosing the correct amount of granularity can ensure the right balance between ex-
tracting sufficient information for the identification task, and not requiring too much
computation power to compute the identification process.

The definition describing the Carousel and Slide Show widget in the ontology will
be presented and examined to illustrate how this framework will assist widget classi-
fication and reduce ambiguity among the widgets’ definition. Using the Manchester
Syntax, a Carousel widget is described as presented in listing 3.4 and a Slide Show
widget is described as presented in listing 3.17. It can be seen that many classes in the
Components layer between these two widgets are similar. The main two differences
are between how the widget deals with the request from the ‘Next’ and ‘Previous’
buttons when the widget is at either ends of the list; one widget allows the processes
triggered by the buttons to loop around the list of contents, while the other prevents
the content from propelling forward/backward when it comes to either ends of the list.
Using these distinct identities, it will be able to identify the Carousel and Slide Show
widgets without ambiguity.

Using this concept, the granularity issues between different types of widgets can
be observed when attempting to define them. Well-defined axiomatic objects can be
deployed and incorporated as new objects to cater for new and evolved widget designs.
These new objects can be included without affecting the rest of the widgets and ob-
jects that are already well established. A relationship between these widgets can be
observed from either the user’s or the developer’s perspectives, and by the purpose of
the application of the widget.

3.3.2 Reusable Widget’s Objects

Using our concepts, the examples of widgets presented exhibits the reuse of some
of the objects that exist in other widgets, thus suggesting that there are relationships
between some of widgets. In some cases, a type of widget can be a component of
another widget. This also suggests that, solely by comprising of different types of
widget, a widget can be formed.

Commonly, similar usage of widgets can be named or understood differently de-
pending on their usage, the point of view of the user/developer, and historical reasons
as discussed in §3.1 and §3.3.1. With this platform, using our widget definition, related
widgets can be associated based on their objects. For example, to associate widgets
with the List of Content object/class, then the Ticker, Auto Suggest List, Carousel,
Slide Show, and Tabs widgets all exhibit this object/class.

CHAPTER 3. CLASSIFYING WEB WIDGETS 94

The Widgets layer in the paradigm shown in figure 3.3 is the most abstract layer
in the Widget Identification Ontology (WIO) paradigm – normally the classes in this
layer will be the name/identifier for the type of a widget. Classes in the Components
layer are the classes that represent the components of the type of widget. Every class
in the Component layer will consist of at least one tell-sign class in the Tell-Signs
layer that forms the individual component’s class. Finally, the Code Constructs layer
contains classes that refer to the instances of the patterns in the actual code, which in
return form part of the metaphor of a tell-sign class in the layer above.

The widget ontology is designed to allow reusability of classes, expandability of
widgets’ concepts and has the capability to cater for the evolution of widget design.
In order to incorporate this flexibility in the ontology design, each class within the on-
tology is independent of the others. Classes/objects that are used to define more than
one class in the layer above are known as common classes/objects, and classes/objects
that are specific for only one class in the above layer are known as private classes/ob-
jects. As see in figure 3.3, the classes in each layer are uniquely defined in the layer.
In every layer, classes can be modified, added or removed without affecting the other
classes in that layer or the layers below it. Thus, the model can be visualised as four
separate layers in the ontology. Due to the conceptual relationships between classes in
different layers that define a widget, removing or modifying classes in the lower layer
will affect those in the upper layers. Modifications done to classes in the lower layers
have to consider this aspect.

3.3.3 Auto Suggest List Widget

Commonly Auto Suggest List (ASL) widgets are employed to assist users when enter-
ing a query into a text field. Figure 1.3 shows an ASL widget used by Google.com to
assist users when entering their search queries. From the suggested list of selection,
the user can either select one of the options to complete the query, or they can continue
to type the remainder of the search query if none of the options match their intended
search query.

The ASL widget consists of five components in our widget ontology, and based
on our ASL widget definition all five components must be present before the widget
can be assumed to exist. Listing 3.1 described the different components that define the
conceptual definition of the ASL widget ontology.

CHAPTER 3. CLASSIFYING WEB WIDGETS 95

Listing 3.1: ASL widget definition
1 ASL ≡ hasComponents some DisplayWindow Component
2 and hasComponents some Down KeyStrokes Component
3 and hasComponents some M o n i t o r T e x t F i e l d C o m p o n e n t
4 and hasComponents some
5 OffAutoComple te E lemen tAt t r ibu te Man ipu la t ingDOM Componen t
6 and hasComponents some Up KeyStrokes Component

Components like DisplayWindow have been described in §3.2.2, while components
such as Down KeyStrokes Component, MonitorTextField Component, OffAutoCo
mplete ElementAttribute ManipulatingDOM Component and Up KeyStrokes Co

mponent are defined in listing 3.2. Using only the UI components to define a widget
is a loose method of defining a widget, and it can cause ambiguity in the definition be-
tween widgets. Thus, each component is further defined using the tell-sign classes. To
search for these components in the Web page source code, traits of tell-signs can relate
the tell-sign’s classes in the Tell-Signs layer to a component class in the Component
layer. Listing 3.2 illustrates the definition of the ASL widget’s components using the
tell-sign classes to define the components.

Listing 3.2: ASL Widget’s components classes definition
1 DisplayWindow Component ≡ (h a s T e l l S i g n some MakeDOMElementsVis ible Tel l−Sign
2 or h a s T e l l S i g n some UpdateDOMElements Tell−Sign)
3

4 Down KeyStrokes Component ≡ h a s T e l l S i g n some Down KeySt roke Tel l−Sign
5

6 M o n i t o r T e x t F i e l d C o m p o n e n t ≡ (h a s T e l l S i g n some C h a n g e E v e n t H a n d l e r T e l l−Sign
7 or h a s T e l l S i g n some C h a n g e E v e n t L i s t e n e r T e l l−Sign
8 or h a s T e l l S i g n some O n C h a n g e A t t r E v e n t H a n d l e r T e l l−Sign)
9 and h a s T e l l S i g n some T e x t F i e l d T e l l−Sign

10

11 OffAutoComple te E lemen tAt t r ibu te Manipu la t ingDOM Componen t ≡
12 h a s T e l l S i g n some O f fAu toComp le t e Te l l−Sign
13

14 Up KeyStrokes Component ≡ h a s T e l l S i g n some Up KeyS t roke Te l l−Sign

It can be seen from listing 3.2 that often one or more Tell-sign classes are required
to define a component in the widget. However, Tell-sign classes are formed by in-
stances of code constructs that resemble a component in the widget. Listing 3.3 relates
the Tell-sign classes to the patterns of code constructs found in the Web page source
code. The process of defining the Tell-sign classes process is found in the fourth or
bottom layer in the WIO paradigm as seen in figure 3.3.

CHAPTER 3. CLASSIFYING WEB WIDGETS 96

Listing 3.3: ASL Widget’s tell-sign classes definition
1 MakeDOMElementsVis ible Tel l−Sign ≡
2 h a s C o d e C o n s t r u c t some MakeVis ib le Manipula teDOMElements
3

4 UpdateDOMElements Tell−Sign ≡ (h a s C o d e C o n s t r u c t some JSAppendDOM ManipulateDOMElements
5 or h a s C o d e C o n s t r u c t some UpdateInnerHTMLProper ty ManipulateDOMElements)
6

7 Down KeySt roke Tel l−Sign ≡ h a s C o d e C o n s t r u c t some Check40 KeyCode
8

9 C h a n g e E v e n t H a n d l e r T e l l−Sign ≡
10 (h a s C o d e C o n s t r u c t some ChangeKeyword Even t s CodeCons t ruc t
11 or h a s C o d e C o n s t r u c t some o n C h a n g e P r o p e r t y E v e n t s C o d e C o n s t r u c t)
12

13 C h a n g e E v e n t L i s t e n e r T e l l−Sign ≡
14 h a s C o d e C o n s t r u c t some A d d L i s t e n e r E v e n t s C o d e C o n s t r u c t
15 and h a s C o d e C o n s t r u c t some ChangeKeyword Even t s CodeCons t ruc t
16

17 O n C h a n g e A t t r E v e n t H a n d l e r T e l l−Sign ≡
18 h a s C o d e C o n s t r u c t some o n C h a n g e A t t r E v e n t s C o d e C o n s t r u c t
19

20 T e x t F i e l d T e l l−Sign ≡ (h a s C o d e C o n s t r u c t some TextArea DOMElements CodeCons t ruc t
21 or h a s C o d e C o n s t r u c t some Tex tF ie ld DOMElemen t s CodeCons t ruc t)
22

23 OffAu t oComple t e Te l l−Sign ≡
24 h a s C o d e C o n s t r u c t some OffAutoComple teAt t r Manipula teDOMElements
25

26 Up KeyS t roke Te l l−Sign ≡ h a s C o d e C o n s t r u c t some Check38 KeyCode

3.3.4 Carousel Widget

A popular approach to organising multiple sets of content – so that users can interact
with each set of content without overloading them with information that is irrelevant
– is the Carousel widget. As seen in figure 3.1, this widget allows the user to interact
with a list of content at their own pace, presenting one set at a time. The name of this
widget came from the concept of a carousel where the user can browse through the
list of content one at a time and it will loop back to the beginning when the end of
the list has been reached, or looped to the end of the list when the beginning of the
list has arrived. A visual perception of how a Carousel widget operates can be seen in
figure 3.12; it should be noticed that the user can browse the widget in an endless loop
as well as in both directions.

Besides the looping feature, figure 3.12 also shows that the widget uses a compo-
nent called the Display Window to deliver the intended content to the user (The defini-
tion of a Display Window can be found in §3.2.2) and hide the irrelevant content. When

CHAPTER 3. CLASSIFYING WEB WIDGETS 97

Figure 3.12: Visualisation of a Carousel widget process.

defining the Carousel widget ontology in listing 3.4 four components are used: a loop-
ing Next button (Loop NextButton), a looping Previous button (Loop PreviousButton),
a Display Window, and a Display Pointer (The definition of a Display Pointer can be
found in §3.2.2).

Listing 3.4: Carousel widget definition
1 C a r o u s e l ≡ hasComponents some Loop NextBut ton Component
2 and hasComponents some Loop Prev iousBu t ton Componen t
3 and hasComponents some DisplayWindow Component
4 and hasComponents some D i s p l a y P o i n t e r C o m p o n e n t

All four components must exist before the widget can be assumed to be a Carousel.
To search for the tell-signs of these components, these components are defined by
relating them to a number of tell-sign classes in the Tell-Signs layer. As discussed
in §3.3.2, the taxonomy allows common objects/classes to be reused, for example the
Display Window component. Since tell-signs of the Display Window component have
been defined in listing 3.2, and the code constructs of these tell-signs has been defined
in listing 3.3, listing 3.5 illustrates the definitions of the remaining tell-signs for the
other components.

Listing 3.5: Carousel Widget’s component classes definition
1 Loop NextBut ton Component ≡ h a s T e l l S i g n some C h e c k E n d O f L i s t T e l l−Sign
2 and h a s T e l l S i g n some G o T o S t a r t O f L i s t T e l l−Sign
3

4 Loop Prev iousBu t ton Componen t ≡ h a s T e l l S i g n some C h e c k S t a r t O f L i s t T e l l−Sign
5 and h a s T e l l S i g n some GoToEndofL i s t Te l l−Sign
6

7 D i s p l a y P o i n t e r C o m p o n e n t ≡ h a s T e l l S i g n some r e f e r e n t i a l V a r i a b l e T e l l −Sign

CHAPTER 3. CLASSIFYING WEB WIDGETS 98

To bridge the definition of the Tell-sign classes with the code constructs, listing 3.6
defines the Tell-sign classes for the Carousel widget using the Code Constructs classes.
Although the term referentialVariable was discussed in §3.2.3, listing 3.6 formally
defines the code constructs of referentialVariable Tell-Sign in listing 3.5.

Listing 3.6: Carousel Widget’s tell-sign classes definition
1 C h e c k E n d O f L i s t T e l l−Sign ≡
2 (h a s C o d e C o n s t r u c t some I s A r r a y L e n g t h E x p r e s s i o n C o d e C o n s t r u c t
3 or a s s i g n e d some End Keyword CodeCons t ruc t
4 or a s s i g n e d some L a s t K e y w o r d C o d e C o n s t r u c t)
5

6 G o T o S t a r t O f L i s t T e l l−Sign ≡ (h a s C o d e C o n s t r u c t some Z e r o A s s i g n m e n t C o d e C o n s t r u c t
7 or a s s i g n e d some Beg in Keyword CodeCons t ruc t
8 or a s s i g n e d some F i r s t K e y w o r d C o d e C o n s t r u c t
9 or a s s i g n e d some S t a r t K e y w o r d C o d e C o n s t r u c t)

10

11 C h e c k S t a r t O f L i s t T e l l−Sign ≡ (h a s C o d e C o n s t r u c t some I s Z e r o E x p r e s s i o n C o d e C o n s t r u c t
12 or a s s i g n e d some Beg in Keyword CodeCons t ruc t
13 or a s s i g n e d some F i r s t K e y w o r d C o d e C o n s t r u c t
14 or a s s i g n e d some S t a r t K e y w o r d C o d e C o n s t r u c t)
15

16 GoToEndofL i s t Te l l−Sign ≡ (h a s C o d e C o n s t r u c t some A r r a y L e n g t h A s s i g n m e n t C o d e C o n s t r u c t
17 or a s s i g n e d some End Keyword CodeCons t ruc t
18 or a s s i g n e d some L a s t K e y w o r d C o d e C o n s t r u c t)
19

20 r e f e r e n t i a l V a r i a b l e T e l l −Sign ≡ h a s C o d e C o n s t r u c t some V a r i a b l e C o d e C o n s t r u c t
21 and p o i n t s T o some A r r a y O b j e c t V a r i a b l e C o d e C o n s t r u c t

Notice that the relational properties assigned and pointsTo are used to associate
how different Tell-sign classes are related to different Code Construct classes. The
assigned relationship between two classes defines how the class to the left will be
accredited with the properties of the class on the right. An example would be the
CheckEndOfList Tell-Sign class: the conditional predicate will either search for
patterns with the equality (==) or identity (===) operator followed by the length of
an array, or the equality or identity operator followed by the ‘End’ or ‘Last’ keywords.

To illustrate the pointsTo relational property, we will examine the referentialV
ariable Tell-Sign class. This relational property relates a variable that stores the
value of a location in a ArrayObject Variable CodeConstruct, and the variable is
used to refer to the location in the ArrayObject Variable CodeConstruct to load
the value stored in that location.

CHAPTER 3. CLASSIFYING WEB WIDGETS 99

Figure 3.13: The use of Collapsible Panel widget in kayak.co.uk.

3.3.5 Collapsible Panel Widget

The Collapsible Panel widget is commonly used by Web developers to provide the fa-
cilities for the user to manage content heavy Web pages, so that the user can customise
the content they are interested in viewing. Using this widget, users can unclutter the
page, making it easier for them to read or focus on an area in the page by hiding the
irrelevant content. Figure 3.13 shows how the Collapsible Panel widget is used by
kayak.co.uk to allow its user to customise the content they are viewing. In 1©, you
can see the top panel (circled in red dotted lines) is expanded, and in 2© this panel is
collapsed, thus hiding the content from the user. The user can collapse or show the
content by clicking on the arrow on the right side of the header.

Next, we will look at how the Collapsible Panel widget is defined. Three compo-
nents are used to define a Collapsible Panel widget as shown in listing 3.7. Using the
ontology, all three components have to be present before it can be assumed that the
Collapsible Panel widget exists in the Web page.

Listing 3.7: Collapsible Panel widget definition
1 C o l l a p s i b l e P a n e l ≡ hasComponents some DisplayWindow Component
2 and hasComponents some HideDisplayWindow Component
3 and hasComponents some U s e r T r i g g e r O b j e c t C o m p o n e n t

CHAPTER 3. CLASSIFYING WEB WIDGETS 100

The definition of some component classes is defined previously and reused to de-
fine the Collapsible Panel widget. Since DisplayWindow Component has been defined
already, listing 3.8 defines only the components that are newly introduced using the
Tell-sign classes.

Listing 3.8: Collapsible Panel Widget’s components classes definition
1 HideDisplayWindow Component ≡ h a s T e l l S i g n some HideDOMElements Tell−Sign
2

3 U s e r T r i g g e r O b j e c t C o m p o n e n t ≡ (h a s T e l l S i g n some C l i c k E v e n t H a n d l e r T e l l−Sign
4 or h a s T e l l S i g n some C l i c k E v e n t L i s t e n e r T e l l −Sign
5 or h a s T e l l S i g n some H o v e r E v e n t H a n d l e r T e l l−Sign
6 or h a s T e l l S i g n some H o v e r E v e n t L i s t e n e r T e l l−Sign
7 or h a s T e l l S i g n some O n C l i c k A t t r E v e n t H a n d l e r T e l l−Sign)

As seen in listing 3.8, the UserTriggerObject Component can be assumed to
exist if either of the five user event related tell-signs is found. Current only Click and
Hover events are covered. However, this can be expanded whenever required. These
tell-signs are further defined with the actual code constructs presented in listing 3.9.

Listing 3.9: Collapsible Panel Widget’s tell-sign classes definition
1 HideDOMElements Tell−Sign ≡
2 h a s C o d e C o n s t r u c t some Hide Manipu la teDOMElements CodeCons t ruc t
3

4 C l i c k E v e n t H a n d l e r T e l l−Sign ≡
5 (h a s C o d e C o n s t r u c t some C l i c k K e y w o r d E v e n t s C o d e C o n s t r u c t
6 or h a s C o d e C o n s t r u c t some o n C l i c k P r o p e r t y E v e n t s C o d e C o n s t r u c t)
7

8 C l i c k E v e n t L i s t e n e r T e l l −Sign ≡ h a s C o d e C o n s t r u c t some A d d L i s t e n e r E v e n t s C o d e C o n s t r u c t
9 and h a s C o d e C o n s t r u c t some C l i c k K e y w o r d E v e n t s C o d e C o n s t r u c t

10

11 H o v e r E v e n t H a n d l e r T e l l−Sign ≡
12 (h a s C o d e C o n s t r u c t some MouseoverKeyword Even t s CodeCons t ruc t
13 or h a s C o d e C o n s t r u c t some o n M o u s e o v e r P r o p e r t y E v e n t s C o d e C o n s t r u c t)
14

15 H o v e r E v e n t L i s t e n e r T e l l−Sign ≡
16 h a s C o d e C o n s t r u c t some A d d L i s t e n e r E v e n t s C o d e C o n s t r u c t
17 and h a s C o d e C o n s t r u c t some MouseoverKeyword Even t s CodeCons t ruc t
18

19 O n C l i c k A t t r E v e n t H a n d l e r T e l l−Sign ≡
20 h a s C o d e C o n s t r u c t some o n C l i c k A t t r E v e n t s C o d e C o n s t r u c t

3.3.6 Customisable Content Widget

Similar to the Collapsible Panel Widget (see §3.3.5), the Customisable Content widget
extends its features not only to hide or show the user’s desired information, but also

CHAPTER 3. CLASSIFYING WEB WIDGETS 101

allowing them to remove content from the page, thus making room for the adding of
other content.

Listing 3.10 shows the components that are used to define the Customisable Con-
tent Widget. Note that both components are common classes and discussed previously.
This example demonstrates the reusability of classes in our ontology. Since this widget
lacks the DisplayWindow component, it is only capable of removing content from the
page. This example demonstrates that, when identifying a widget, not only do we use
existing components to identify a widget, but we also analyse the findings of missing
components to determine the type of widget.

Listing 3.10: Customisable Content widget definition
1 C u s t o m i s a b l e C o n t e n t ≡ hasComponents some HideDisplayWindow Component
2 and hasComponents some U s e r T r i g g e r O b j e c t C o m p o n e n t

3.3.7 Popup Content Widget

The Popup content widget is often used to draw the user’s attention to a set of content,
or is used to provide further illustrations of certain parts of the Web page. As seen in
figure 3.14, AOL.co.uk uses this widget to deliver the video and related videos based
on the option the user selects. Notice that the widget arranges the order of the content
to be in front of the rest of the content to attract the attention of the user. In this
case, besides arranging the targeted content to be in front, the remainder of the page is
masked with a translucent shade of grey to draw the visual attention of the user to the
content.

Three components are used to define the Popup Content widget – DisplayWindow

Component, SetOrderFront ElementStyle-ManipulatingDom Component and Use
rTriggerObject Component – as shown in listing 3.11. Notice that two of the three
component classes are reused, only the SetOrderFront ElementStyle-Manipulati

ngDom component is unique to this widget (Private class).

Listing 3.11: Popup Content widget definition
1 Popup C o n t e n t ≡ hasComponents some DisplayWindow Component
2 and hasComponents some S e t O r d e r F r o n t E l e m e n t S t y l e−Manipulat ingDom Component
3 and hasComponents some U s e r T r i g g e r O b j e c t C o m p o n e n t

CHAPTER 3. CLASSIFYING WEB WIDGETS 102

Figure 3.14: The use of Popup Content widget in AOL.co.uk website.

Listing 3.12: Popup Content Widget’s components classes definition
1 S e t O r d e r F r o n t E l e m e n t S t y l e−Manipulat ingDom Component ≡
2 h a s T e l l S i g n some SetDOMElementOrderHigh Tel l−Sign

To arrange the content to be in front of the other content, developers often change
the styling property z-index of the element in the DOM. Thus, in listing 3.12, tell-sign
SetDOMElementOrderHigh Tell-Sign is used to define the components, and this tell-
sign is defined as the code construct instance presented in listing 3.13. The Code Con-
struct class SetDOMElementOrderHigh CodeConstruct searches for .style.zIndex
= {>9} pattern; where zIndex must be assigned to a value greater than 9.

Listing 3.13: Popup Content’s Widget’s tell-sign classes definition
1 SetDOMElementOrderHigh Tel l−Sign ≡
2 h a s C o d e C o n s t r u c t some Se tHighe rOrde r Man ipu la t eDOMElemen t s CodeCons t ruc t

CHAPTER 3. CLASSIFYING WEB WIDGETS 103

3.3.8 Popup Window Widget

Popup Window widgets are commonly used to launch content in a separate window.
Normally the purpose of employing this widget is to allow the user to retrieve another
Web page without leaving the existing page, and in some cases the Popup Window
widget provides the user with the flexibility to switch between the popup window and
the parent window. The definition of the Popup Window is presented in listing 3.14,
where two components are used to define the Popup Window widget.

Listing 3.14: Popup Window widget definition
1 PopupWindow ≡ hasComponents some PopupWindow Component
2 and hasComponents some U s e r T r i g g e r O b j e c t C o m p o n e n t

One out of the two components discussed is a newly defined class. As seen in list-
ing 3.15, it describes the relationship between the Components and Tell-signs classes
for the PopupWindow Component class.

Listing 3.15: Popup Window Widget’s components classes definition
1 PopupWindow Component ≡ h a s T e l l S i g n some NewWindow Tell−Sign

Finally, in listing 3.16, it relates the tell-sign instance to the actual code construct
in the Web page source code. The possible code constructs to load a new window will
look like window.open(...) in JavaScript, and a new window can also be launched
from a link by predefining the link element with the attribute target=" blank".

Listing 3.16: Popup Window Widget’s tell-sign classes definition
1 NewWindow Tell−Sign ≡ h a s C o d e C o n s t r u c t some OpenNewWindow CodeConstruct

3.3.9 Slide Show Widget

Similar to the Carousel widget, the Slide Show widget organises information such that
it delivers multiple content in a list one set at a time. Except this time, as seen in
figure 3.15, the user will not be able to loop around the list of content. Once he/she
reaches either end, the user can only return to the previous content in the reverse order.

The definition of the Slide Show widget is presented listing 3.17, where it can be
seen that the Slide Show widget has four components, very similar to the Carousel

CHAPTER 3. CLASSIFYING WEB WIDGETS 104

Figure 3.15: Visualisation of a Slide Show widget process.

widget. Instead of Loop NextButton and Loop PreviousButton, these components are
replaced with Finite NextButton and Finite PreviousButton respectively.

Listing 3.17: Slide Show Widget Definition
1 Sl ideShow ≡ hasComponents some F i n i t e N e x t B u t t o n C o m p o n e n t
2 and hasComponents some F i n i t e P r e v i o u s B u t t o n C o m p o n e n t
3 and hasComponents some DisplayWindow Component
4 and hasComponents some D i s p l a y P o i n t e r C o m p o n e n t

The two new Components classes are defined in listing 3.18. Notice that the differ-
ence between the definition of Loop NextButton Component and Finite NextButton

Component, and the definition of Loop PreviousButton Component and Finite Pre

viousButton Component. Comparing listing 3.18 and 3.5, the two classes defined in
listing 3.18 use the same tell-signs, except they are defined with a different combina-
tion.

Listing 3.18: Slide Show Widget’s components classes definition
1 F i n i t e N e x t B u t t o n C o m p o n e n t ≡ h a s T e l l S i g n some C h e c k E n d O f L i s t T e l l−Sign
2 and h a s T e l l S i g n some GoToEndofL i s t Te l l−Sign
3

4 F i n i t e P r e v i o u s B u t t o n C o m p o n e n t ≡ h a s T e l l S i g n some C h e c k S t a r t O f L i s t T e l l−Sign
5 and h a s T e l l S i g n some G o T o S t a r t O f L i s t T e l l−Sign

3.3.10 Tabs Widget

The Tabs widget is another method of organising a stack of content so that it can be
displayed to the user within a constrained area in the Web page. As seen in figure 3.16,
content is stacked such that only the content at the top of the stack is presented to the
user, and the user can choose which content he/she is interested in viewing. Unlike the

CHAPTER 3. CLASSIFYING WEB WIDGETS 105

Carousel and Slide Show widgets, this method allows the user to retrieve the content
of interest without browsing through the stack of content. At any point in time the user
can swap to and fro for the desired content, as seen in 1© and 2© in figure 3.16.

Figure 3.16: The use of Tabs widget in NYTimes.com.

Listing 3.19: Tabs widget definition
1 Tabs ≡ hasComponents some DisplayWindow Component
2 and hasComponents some HideConten t Component
3 and hasComponents some U s e r T r i g g e r O b j e c t C o m p o n e n t

All three components used to define the Tabs widget, as shown in listing 3.19,
must be present before this widget can be assumed to exist. Since on the HideContent

component is a newly defined component, listing 3.20 describes the tell-sign for this
component.

Listing 3.20: Tabs Widget’s components classes definition
1 HideConten t Component ≡ h a s T e l l S i g n some HideDOMElements Tell−Sign

Instances of code constructs are searched so that the tell-signs that describe the
components listed in listing 3.19 can be determined. Listing 3.21 describes the code
constructs that define the tell-sign HideDOMElements Tell-Sign. The code construct
instances include manipulating the DOM elements so that they will not be visible
to their user. The code constructs refer to patterns like element.style.display =

"none" to manipulate the styling property of the element.

CHAPTER 3. CLASSIFYING WEB WIDGETS 106

Listing 3.21: Tabs Widget’s tell-sign classes definition
1 HideDOMElements Tell−Sign ≡
2 h a s C o d e C o n s t r u c t some Hide Manipu la teDOMElements CodeCons t ruc t

3.3.11 Ticker Widget

The Ticker widget is very similar to the Carousel widget, except this time the wid-
get automatically displays sections of the list of content to the user at fixed intervals.
Another distinct visible characteristic of the Ticker widget is that it normally does not
have controls for the user to manually browse through the list of content.

Three components are used to define the Ticker widget as discussed in listing 3.22.
Since this widget is similar to the Carousel widget, two of the three components
defined (DisplayPointer Component and DisplayWindow Component) are already
discussed.

Listing 3.22: Ticker widget definition
1 T i c k e r ≡ hasComponents some D i s p l a y P o i n t e r C o m p o n e n t
2 and hasComponents some DisplayWindow Component
3 and hasComponents some I n c r e m e n t T i m e T r i g g e r e d C o m p o n e n t

The Ticker widget reuses two common component classes previously defined, and
introduces a third class. Listing 3.23 relates the Increment TimeTriggered Component

class in the Components layer with the tell-signs classes in the Tell-sign layer to define
the component in the Ticker widget.

Listing 3.23: Ticker Widget’s components classes definition
1 I n c r e m e n t T i m e T r i g g e r e d C o m p o n e n t ≡ (h a s T e l l S i g n some A d d i t i o n T e l l−Sign
2 or h a s T e l l S i g n some I n c r e m e n t T e l l−Sign)
3 and h a s T e l l S i g n some C h e c k E n d O f L i s t T e l l−Sign
4 and h a s T e l l S i g n some G o T o S t a r t O f L i s t T e l l−Sign
5 and h a s T e l l S i g n some WindowTiming Tell−Sign

Like the Components layer, some of the tell-signs classes are reused from the pre-
viously defined widgets. Listing 3.24 discusses the newly introduced tell-signs and
relates them to the actual code construct instances in the Code Construct layer.

Listing 3.24: Ticker Widget’s tell-sign definition
1 A d d i t i o n T e l l−Sign ≡ h a s C o d e C o n s t r u c t some P l u s S i g n C o d e C o n s t r u c t
2

3 I n c r e m e n t T e l l−Sign ≡ h a s D o u b l e C o d e C o n s t r u c t some P l u s S i g n C o d e C o n s t r u c t

CHAPTER 3. CLASSIFYING WEB WIDGETS 107

4 or (h a s C o d e C o n s t r u c t some P l u s S i g n C o d e C o n s t r u c t
5 and h a s C o d e C o n s t r u c t some One Numer icVa lue CodeCons t ruc t)
6

7 WindowTiming Tell−Sign ≡ h a s C o d e C o n s t r u c t some SetTimeOut Window CodeCons t ruc t

3.4 Popularity of Widgets

Over the past nine sections (§3.3.3–§3.3.11), the nine simplest form of widget have
been discussed. These widgets are in the axiom concepts of widgets derived from
the Widget design pattern and JavaScript libraries examined. Using the nine categori-
sations of widgets as a basis to determine the types of widgets to be included in our
evaluation, they will provide insights into our approach, and demonstrate the modelling
and development of the widgets prediction framework.

To understand how our widget classification will affect the popular Websites, the
first fifty Websites listed in Alexa’s top 500 sites on the web list were taken as samples
to examine the population of the nine types of widget. Using Quota Sampling, fifty
Websites were selected from the highest ranked website to the least in the list based on
the following prerequisites:

• Only the main domain of the Website was selected, i.e., google.com and google.
co.uk, only google.com will be selected.

• Websites are selected from the top of the list until fifty Websites have been se-
lected. Websites that do not satisfy the prerequisite will be omitted.

• No adult type of Websites will be included due to ethical reasons, and Websites
that are unreachable from their default domain name will be excluded.

When examining each site for the type of widget that existed in its top-level index
page, widgets must meet two conditions to be considered. The first condition is the
widget has to meet the definition of one of the nine types of widget defined, and the
second condition is that it must be developed using JavaScript. Other methods of
delivering the widget, such as Flash and VBScripts, have not been included in this test.

Table 3.1 lists the results gathered for the popularity of different types of Widget
investigation done on the top fifty websites. All types of widgets selected for the test
had appearance on five or more Websites, with the most popular widget appearing on
twenty-six Websites.

CHAPTER 3. CLASSIFYING WEB WIDGETS 108

Websites A
ut

o
Su

gg
es

tL
is

t(
A

SL
)

C
ar

ou
se

l

Sl
id

eS
ho

w

Ta
bs

C
ol

la
ps

ib
le

Pa
ne

ls

Ti
ck

er

Po
pu

p
W

in
do

w

C
us

to
m

is
ab

le
C

on
te

nt

Po
pu

p
C

on
te

nt

1 google.com 1 0 0 0 0 0 0 0 0
2 facebook.com 0 0 0 0 0 0 0 0 1
3 youtube.com 1 0 0 0 1 0 0 1 1
4 yahoo.com 1 1 0 1 1 0 0 1 1
5 live.com 0 0 0 0 0 0 1 0 1
6 baidu.com 1 0 0 0 0 0 0 0 1
7 wikipedia.org 0 0 0 0 0 0 0 0 0
8 blogger.com 0 1 0 0 0 0 0 0 0
9 msn.com 1 0 1 1 0 0 0 0 0

10 qq.com 1 0 0 1 1 0 0 0 0
11 twitter.com 0 0 1 0 0 0 0 0 1
12 taobao.com 1 1 1 1 0 0 0 0 1
13 sina.com.cn 1 0 0 1 0 0 0 0 1
14 amazon.com 1 1 0 0 0 0 0 0 0
15 wordpress.com 0 1 0 0 0 0 0 0 0
16 bing.com 1 1 0 0 0 0 0 0 1
17 microsoft.com 0 0 1 1 0 0 0 0 0
18 ebay.com 1 0 0 0 0 0 0 0 0
19 yandex.ru 1 0 0 0 0 0 0 0 0
20 myspace.com 0 0 0 1 0 0 0 0 0
21 163.com 1 0 0 1 0 1 0 0 1
22 linkedin.com 0 0 0 0 0 0 0 0 0
23 conduit.com 0 0 1 1 1 0 0 0 1
24 craigslist.org 0 0 0 0 0 0 0 0 0
25 mail.ru 1 1 0 1 0 0 0 0 0
26 flickr.com 0 0 0 0 0 0 0 0 0
27 fc2.com 0 0 0 1 0 0 0 0 0
28 go.com 0 0 0 0 0 0 0 0 0

CHAPTER 3. CLASSIFYING WEB WIDGETS 109

29 vkontakte.ru 0 0 0 0 0 1 0 0 1
30 rapidshare.com 0 0 0 0 0 0 0 1 0
31 bbc.co.uk 1 1 0 1 1 1 0 1 1
32 imdb.com 0 1 0 1 0 0 0 0 0
33 apple.com 1 0 0 0 0 1 0 0 0
34 adobe.com 1 0 0 0 1 0 0 0 1
35 doubleclick.com 0 0 0 0 0 0 0 0 0
36 soso.com 1 0 0 0 0 0 0 0 1
37 sohu.com 1 0 0 1 0 0 0 0 1
38 mozilla.com 0 0 0 0 0 0 0 0 0
39 fifa.com 0 1 1 1 1 1 0 0 1
40 aol.com 1 1 1 1 1 0 1 1 1
41 espn.go.com 1 1 0 1 0 0 0 0 1
42 youku.com 1 1 0 1 0 0 0 0 1
43 ask.com 1 1 0 1 1 0 0 0 1
44 cnn.com 0 1 0 1 1 0 1 0 1
45 paypal.com 0 0 0 0 0 0 1 0 1
46 photobucket.com 1 0 0 1 0 0 1 0 1
47 mediafire.com 0 0 0 1 0 0 1 0 1
48 tudou.com 1 0 0 1 0 1 0 0 0
49 orkut.com 0 0 0 0 0 0 0 0 0
50 sogou.com 1 0 0 0 0 0 0 0 0

Total 26 15 7 23 10 6 6 5 25
Table 3.1: Popularity of widgets for the top 50 websites;
where 1 means one or more of that type of widget exist on
the Website and 0 is none of that type of widget exist.

Although the top fifty popular Websites are selected for this investigation, a good
mix of Websites can be seen from the results. It include sites such as Wikipedia.org,
Flickr.com, Doubleclick.com, Mozilla.com and Orkut.com that do not have any
widget written in JavaScript, and sites like BBC.co.uk, AOL.com and Yahoo.com that
incorporate a lot of different types of widget in their Website. While only 2 adult
Websites were excluded, which will impact < 5% of our evaluation results.

Analysing the results in table 3.1, the different types of widgets are ranked based
on their probability of occurrence in the top fifty Websites in table 3.2. The probability

CHAPTER 3. CLASSIFYING WEB WIDGETS 110

of occurrence of each type of widget is computed by dividing the number of websites
that the type of widget appears in by fifty (the top fifty Websites). We will use the
Auto Suggest List (ASL) widget as an example; its probability of occurrence will be
26/50 = 0.52.

Websites # of Appearance in
Top 50 Websites

Probability of Oc-
currence

1 Auto Suggest List (ASL) 26 0.52
2 Popup Content 25 0.50
3 Tabs 23 0.46
4 Carousel 15 0.30
5 Collapsible Panels 10 0.20
6 Slide Show 7 0.14
7 Ticker 6 0.12
8 Popup Window 6 0.12
9 Customisable Content 5 0.10

Table 3.2: Ranking of the types of widget based on their
probability of occurrence in the top 50 Websites.

Further analysing the results in table 3.2, the probability of the number of types
of widget that will appear in the top fifty Websites is 2.46. This result shows that on
average more than one type of widget will be utilised by the top fifty popular Websites,
and it demonstrates the extent and feasibility of using this sampling method for our
widget identification evaluation in the future.

Out of the nine widgets presented here, the top 5 most popular widgets will be
selected from table 3.2. However, closer examination of the top 5 widgets’ definitions
suggests that the Slide Show and Ticker types of widgets are similar to the Carousel
widget. Therefore, these two types of widget will be evaluated along with the top 5
widgets to test for how the prediction algorithm will perform on generalised cases.
Based on the probability of occurrence values, the last 4 types of widgets in table 3.2
do not appear frequently on popular Websites. Thus, the results from the last 2 types
of widgets would only have minor impact on the evaluation results.

CHAPTER 3. CLASSIFYING WEB WIDGETS 111

3.5 Summary

The taxonomy proposed for this framework can be expanded and applied to other types
of widget. As the ontology of the different types of widget expands, the capability and
accuracy of the framework will improve concurrently. This study covers the essential
elements that distinguish the different widgets so that a taxonomy could be developed.
It demonstrated how the concepts of the ontology can be modelled to identify and relate
the different types of widgets. Nine types of widget were used as examples to illustrate
how the taxonomy can be implemented to model different types of widget. The effec-
tiveness and efficiency of the framework relies on the reuse of common classes in the
taxonomy (§3.3.2) to model widgets. When defining introducing new classes to the
taxonomy, the constraints of defining a class and the repercussions for the decisions to
determine the classes are discussed in §3.3.1.

When the taxonomy is used effectively, it will assist developers and users to com-
municate by bridging the gap between their understandings of the subject matter, and
in return facilitate a structure for developing widgets that can be used by more people.
The use of WIO provides a platform to identify uniquely the different types of widgets
and easily correlate them. Further evaluation to test the accuracy and robustness of the
concepts is suggested; this should include a system to automate the detection process
using the concepts defined in the ontology.

The feasibility evaluation will provide insights into the approach of applying the
widgets’ definition concepts modelled in WIO to the Widget Prediction System (WPS),
and expose the weaknesses of this approach. This type of study should initially be done
on a small scale as presented in the next chapter Feasibility Investigation for Using
Tell-Signs before expanding the evaluation to a larger scale as discussed in chapter 5 -
Predicting Widgets On A Web Page. By having a two-stage evaluation, it will give us
an initial idea of the feasibility of the approach at an early stage, before going deeper
to expose the issues in depth, and examine the spectrum of coverage of the approach.

Chapter 4

Feasibility Investigation for Using
Tell-Signs

Insights into the approach, the implementation of the concepts for the widgets de-
scribed in the ontology, and the techniques applied are required to be examined before
expanding them across all the selected types of widgets to be evaluated. In this chapter,
a feasibility investigation was conducted to examine whether the conceptual models for
the two types of widgets can be found in the source code, and whether these definitions
are sufficient to distinguish them. We want to understand the strengths and weaknesses
of the approach from this investigation, so that it can be improved. The results from
the investigation will be presented and compared with a manual analysis of the source
code: to provide insights into the methods of identifying the tell-signs from the source
code. A discussion of the results with the suggested improvements is also presented.

4.1 Experiment Setup

Two popular types of widget were evaluated and their results analysed. The selection
of the types of widget are based on its complexity to detect the kind of widget, from
the pool of the most popular widgets listed in §3.4. The most popular type of widget
along with a complex type of widget in the top 5 most popular widgets are chosen to
investigate how generalisable our approach will be. The two experiments were setup
to evaluate the two types of widget over the same set of data to test our approach.
This section explains the essential components, methodologies, and assumptions made
when preparing the experiments.

112

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 113

4.1.1 Scripting Language

As a first step to prove that instances of tell-signs can be found in the source code of
a Web page, the investigation is developed in PHP scripting language because of the
availability of its Application Program Interfaces (APIs), types of regular expression
syntax, and because it is freely available. Regular expressions play a crucial role when
searching for clues within the source code of a Web page, so that tell-signs can be
discovered. Due to the strength of the tools available to match complex patterns within
a string, Perl syntax was chosen for scripting the regular expressions.

4.1.2 Experimental Data Set

The data set used to evaluate our concepts consists of twenty Websites selected from
Alexa’s global top five hundred sites on the Web list1. When choosing our set of
data, a few considerations were made. One of these was to use a range of popular
Websites so that it would give a good representation of the broader Web in the wild.
As discovered in our earlier study on Web Evolution, the top twenty popular Websites
give a good representation of the broader Web [Chen and Harper, 2008]. Hence, twenty
Websites were chosen from the list of Alexa’s global top five hundred Websites using
the following rules.

1. No repetition of a Website’s domain is allowed. For instance, google.com and
google.com.br, because google.com.br is a sub-domain of google.com, thus this
will be considered as a repetition.

2. If a repetition exists, it will be ignored and the next domain down the list will be
examined from the first point of this list again.

3. All Websites chosen must be accessible, and broken links will be ignored.

The above requisites will be repeated for every Website, starting from the top, in
the list of Alexa’s global top five hundred Websites until twenty Websites are found
for the experimental data set. To ensure repeatability, the set of data collected on 19
February 2009 was used when conducting both experiments. Using this method would
enable us to freeze any changes to the Websites during the course of the experiments.
Websites can tailor their design specifically to a user-agent. Thus, Mozilla’s Firefox2

1http://www.alexa.com/topsites/global — The Alexa’s global top five hundred sites on the Web list
is compiled from the lists of Websites ordered by Alexa’s Traffic Rank.

2http://www.mozilla.com/firefox/

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 114

was chosen as the user-agent when capturing this set of data. Choosing Firefox will
enable us to capture Websites with Web pages that comply with one of the industry’s
leading user-agents.

4.2 Auto Suggest List (ASL) Widget

The ASL widget is a component to convey related suggestions to the user when he/she
is completing a text field in a Web page. Most popular Web browsers provide an auto
complete feature by default, similar to the ASL widget that provides suggestions to
the user when completing a text field. However, the auto complete feature suggests
only related entries that are previously submitted on that computer. Unlike the auto
complete feature, the ASL widget is not only a replacement for the auto complete
feature, but it also extends its capability by providing suggested texts computed by the
server, e.g. the names of airports, and the names of train stations. This widget provides
instant help and clues for users when filling in text field information. By providing
such a feature to the user when filling in a text field, it will not only give assistance
to users when completing the Web form, but it will also ensure that the text field gets
filled in more accurately.

An example of the ASL widget in action is shown in the non-shaded region in
figure 4.1. This widget will update its suggested items as the user enters or removes a
character from the text field. The user can navigate through the list of suggested items
either by using a mouse or by using the up and down keys on the keyboard. While the
user enters the content into the text field, the widget interacts with the server to extract
the relevant suggested items. This process is repeated every time the user changes the
content in the text field.

Content accessibility is particularly important for this widget. This is because a
constant stream of content changes when the user interacts with the widget. The con-
tent is fed back at real-time, and it is critical for the user to be aware of these changes
to utilise the widget effectively. These changes may even affect the accuracy of the
form completed.

4.2.1 The Tell-Signs

Five tell-signs are introduced as part of our detection methods to identify the ASL
widget from the source code. Investigations were conducted on a set of training Web

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 115

Figure 4.1: An example of ASL widget (non-shade region) in action on Google.co.uk

pages with ASL widgets, Yahoo! Developer Network’s design pattern library3, and
Welie’s pattern library4 to identify the tell-signs for ASL widget to be included. Unlike
desktop applications, some user interface objects may come in different forms on the
Web. An example of this is the form button object. It can be in the form of an image,
a string of texts, or a button. Thus, when searching for UI objects, different variants of
it should be considered.

To code the concepts of the five tell-signs manually, each of these tell-signs follows
a sequence of conditional clues when comprehending the Web page’s source code.
The algorithm uses the concept of a decision tree technique to arrive at a conclusion
whether the ASL widget exists. The details of the five tell-signs will be covered indi-
vidually in the next few sections.

‘Auto Complete Off’ Tell-Sign (ts1)

The Auto Complete Off tell-sign examines the Web page for clues that the Web browser’s
Auto Complete feature is disabled. Developers can apply this method by either setting
the element’s autocomplete attribute to ‘off’ in the HTML code, or manipulating the
styling property of the element in the Behaviour Layer. To search within the JavaScript
code for patterns that resemble the manipulation of the styling property metaphor,

3http://developer.yahoo.com/ypatterns/
4http://www.welie.com/patterns/

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 116

(a) (b)

Figure 4.2: To move the selection up as seen from subfigures (a) to (b), press the up
arrow key (key code 38)

the following regular expression is used. It searches for clues that the code was pro-
grammed to set the Auto Complete feature’s attribute to off.

/[-_\.a-z0-9]+\.setAttribute(\s)*\((\s)*(\"|\’)autocomplete(\"|\’),

(\s)*(\"|\’)off(\"|\’)(\s)*\)(;)?/i

If the above regular expression could not find any instance in the JavaScript code
for manipulation of the styling property, then an attempt will be made to search the
HTML code. The following regular expression will be used to search for the setting of
the Auto Complete feature within the HTML code. In this case, it looks for patterns
that the Auto Complete feature is assigned to off.

/autocomplete(\s)*=(\s)*(\"|\’)?off(\"|\’)?/i

‘Up Key’ and ‘Down Key’ Tell-Sign (ts2)

The Up and Down Keys tell-sign checks if the code polls for either the up or down
key is pressed. Commonly the users of the ASL widget can traverse through the list
of suggested items using the up (key code 38) and down (key code 40) keys on the
keyboard (see figure 4.2 and figure 4.3 for illustration respectively).

From our investigations into the design patterns of ASL widgets from different
widget design pattern libraries, two methods are commonly found when developing
the ASL widget. These methods include using existing APIs from JavaScript libraries
or they are custom-made ASL widgets. Hence, a few methods can be used to poll
for whether the up or down key is pressed. In the event that polling for both key
codes cannot be found in the source code, the system will search for the “keyup” and
“keydown” keywords within the JavaScript code. This is because some APIs may

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 117

(a) (b)

Figure 4.3: To move the selection down as seen from subfigures (a) to (b), press the
down arrow key (key code 40)

provide this feature as a replacement for the key code polling. To ensure that the
polling for the up and down keys is intended for the ASL widget, the event that triggers
this function must be examined to ascertain the relationship between the hypertext
elements, and the handler in the JavaScript code.

The following two regular expressions are applied to detect if the code polls for
certain keys. The first regular expression searches whether the ‘keyCode’ function
is used in the code to identify the type of key the user has pressed. If that regular
expression is true, the second regular expression will be followed to check whether
key codes 38 or 40 are monitored.

/* To check if keyCode function was called */

/[-_\.a-z0-9]+\.keyCode/i

/* To check for the correct key codes were polled */

/(38|40)/i

However, if Yahoo API5 is used, the following regular expression will be used
to detect if the up and down keys are polled instead of searching for key codes 38
or 40. This is because Yahoo API uses the Lazy Load method to avoid overloading
the browser when initially loading the Web page. To extract the code that uses the
Lazy Load method to inject code/content into the Web page, it will only be possible to
retrieve the injected code when they are rendered due to the JIT techniques JavaScript
engines apply. Thus, this set of code will not be available when our identification
system analyses the code. Instead, the following regular expression is employed to
overcome this issue by focusing on the clues in the code. This is done by searching for
listeners that monitor the keyboard events.

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 118

/YAHOO.util.Event.addListener\([-_\.a-z0-9\,]+,(\s)*\"

(keyup|keydown)\"/i

Next, the events that triggered the function or API must be detected so that we can
relate the portions of JavaScript code that form the ASL widget with the elements in
the Web page. To identify the methods that capture these events, either of the following
regular expressions can be used.

/\.focus\(\)/i

/\.event/i

In the event of all the above checks failing, the second attempt searches for key-
words such as ‘keyup’ and ‘keydown’ within the JavaScript code. Using the following
regular expression, it allows the pattern to match strings (case insensitive) that are
concatenated with the ‘keyup’ and ‘keydown’ keywords.

/\"(keyup|keydown)\"/i

This attempt is made because tailored APIs may provide an inbuilt key code de-
tection feature, and keywords may be used as identifiers to refer to or trigger these
features. However, in cases where APIs use the Lazy Load method, they may not be
available during the widget prediction process.

‘Updates’ Tell-Sign (ts3)

The ‘Updates’ tell-sign detects if the code attempts to append a table, list or anchor
element. When the list of suggested items is updated with the latest set of suggested
results, the DOM will be updated too. For some pages, this may be formatted using
anchor tags for each item in the list of suggested items. To alter the format of an exist-
ing Hypertext document, this is done by using the JavaScript’s appendChild function.
Due to the available options for listing items, this tell-sign is split into two parts. The
first part uses regular expressions to search for the three options available – table, list
or anchor elements.

/(\"|\’)table(\"|\’)/i /* table */

/(\"|\’)td(\"|\’)/i /* table */

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 119

/(\"|\’)li(\"|\’)/i /* list */

/(\"|\’)a(\"|\’)/i /* anchor */

The second part ensures that the appendChild function in JavaScript is used with
either of the detected elements found in part one. This part uses the following regular
expression to search for the clues that the appendChild function is used to append the
above elements.

/([-_\.a-z0-9])*\.appendChild(\s)*\(/i

‘Clear List’ Tell-Sign (ts4)

The ‘Clear List’ tell-sign searches for clues within the JavaScript code that will clear
the previous list of suggested items. Commonly, a developer will clear previous results
from the suggested list before new results are updated to the list.

Developers can either clear the content, or remove the nodes within the list. One
can use an empty string to clear the list, but this method is ‘crude’ and does not tell
us much about the intent of the developers. So this approach will not be searched.
Instead, the following regular expression will be used to search if the node(s) of the
previous list of suggestions is removed.

/[-_\.a-z0-9]+\.removeChild(\s)*\(/i

‘Remote Scripting’ Tell-Sign (ts5)

The ‘Remote Scripting’ tell-sign searches for clues that remote scripting is used by the
widget to complete its task. Part of the ASL widget’s service process will request the
server for a list of suggestions related to the content entered in the text field. Often re-
mote scripting methodologies are employed to extract the list of suggestions. However,
remote scripting can be requested using a few methods, such as AJAX or iFrames.

Beginning with iFrames, two clues must be present before an assumption that an
iFrame exists. 1) The iFrame tag must be used. This can be done either by hard coding
or generated dynamically by scripting languages. Hence, a generic regular expression
is used to search for these clues.

/iframe/i

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 120

2) CSS code must be used if iFrames were employed. Only by this means, when the
iFrame method is employed, will the list of suggestions be able to float over the existing
content. To do this in CSS, the position styling property must be set to ‘absolute’.
This is searched using either of the following regular expressions.

/position(\s)*=(\s)*(\"|\’)absolute(\"|\’)/i

/position(\s)*:(\s)*absolute/i

If the iFrame tag is not found, then the HttpRequest method is searched instead.
This approach is normally employed by the remote scripting technique to communicate
with the server. To determine whether the widget uses the HttpRequest method, either
of the following regular expressions must be true.

/\.XMLHTTP/i

/XMLHttpRequest\(\)/i

/HttpRequest/i

4.2.2 Assumptions and Rules

The definition described for the ASL widget in this chapter may differ from the defi-
nition discussed in WIO. This is because the definitions described here are the initial
definitions of the widget, while the definitions in the ontology are the refined version
of the definitions described here. As a first attempt to detect the ASL widget, two as-
sumptions were made when designing the tell-signs. In the first assumption, not all the
tell-signs have to be satisfied before an ASL widget can be assumed to exist in a Web
page. Two rules were created to govern the conditions when determining if an ASL
widget existed.

Rule 1: The first three tell-signs (ts1, ts2, ts3) must be true.

Rule 2: Either tell-sign 4 or 5 (or both) must be true.

Described in equation 4.1, both of the above rules must be satisfied to assume an
ASL widget exists in the Web page. The second rule is a conditional rule. This rule

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 121

Figure 4.4: ASL widget detection’s tell-sign process flow chart

is designed to cater for the variations of programming styles and practices from one
Website to another.

ts1∧ ts2∧ ts3∧
(

ts4∨ ts5
)
, (4.1)

where ts1 is the ‘Auto Complete Off’ tell-sign, ts2 is the ‘Up and Down Keys’ tell-
sign, ts3 is the ‘Updates’ tell-sign, ts4 is the ‘Clear List’ tell-sign, and ts5 is the ‘Re-
mote Scripting’ tell-sign. Using this set of rules, the Web page’s source code will be
comprehended according to the flow chart illustrated in figure 4.4. The code compre-
hension process is structured to examine ts1 to ts3 first, before it will decide whether
to proceed to ts4 then ts5. This method of coding is used to make the code leaner, and
more memory efficient.

The second assumption is that we will only investigate ASL widgets written in
JavaScript. This assumption is made based on a recent study conducted by Chen and
Harper [2008]. It showed that VBScript (a competing client-side scripting language

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 122

with JavaScript) is poorly adopted over the last 10 years, and JavaScript was the client-
side scripting language preferred by most Websites.

4.2.3 Limitations

This feasibility investigation is designed to analyse documents formatted in Hyper-
text, CSS, and JavaScript only. ASL widgets that are written in Flash, Shockwave,
VBScripts, or any other formats other than JavaScript will not be covered.

A widget can be coded in a variety of styles and practices. Our methodologies cover
a range of styles and their variants. We detect for instances of a pattern rather than the
pattern itself. This is to allow a broader range of coding styles to be incorporated in our
detection methods. However, it does not cover all variations. For example, if the set of
code that is used to control the behaviour of an ASL widget is generated “on-the-fly”,
then the newly injected code will slip through our detection methods.

4.2.4 Results and Discussions

The results of the experiment for detecting the ASL widgets are tabulated in table 4.1.
The results for each Website are reported in a Boolean format where‘1’ can be inter-
preted as the detection is true, ‘0’ as the detection could not be found, and ‘X’ symbol-
ises that the detection result was ignored for some reason during the investigation. In
the second column, ‘Manual detection’, the checking of the tell-signs is done manually
by a human being. If at least one ASL widget is present in the Website, it will be given
a ‘1’ in this column, and a ‘0’ if no ASL is found. The third column, ‘Auto detection’
employs the rules discussed in §4.2.2 to determine if an ASL widget exists on the Web
page from the tell-sign results. Following that, the results for the individual tell-signs
are presented in the next few columns.

Some technical issues were noticed during the evaluation process. One of the Web-
sites, qq.com, uses a licensed third party widget which made it impossible to retrieve
the code. As a result, we have decided to exclude this Website from our analysis. ASL
widgets were incorrectly detected on three out of nineteen Websites. Two of these
Websites (myspace.com and facebook.com) reuse the same external JavaScript files
on multiple Web pages in their Websites. These external JavaScript files have many
functions/classes that are included even if they were not used by the page, which causes
false detection to occur. After conducting a thorough investigation on both Web pages,
it was found that the features of the ASL widget do exist within the external files, but

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 123

XXXXXXXXXXXXWebsites
Checks

M
an

ua
ld

et
ec

tio
n

A
ut

o
de

te
ct

io
n

A
ut

o
C

om
pl

et
e

O
ff

Te
ll-

Si
gn

U
p

an
d

D
ow

n
K

ey
s

Te
ll-

Si
gn

U
pd

at
es

Te
ll-

Si
gn

C
le

ar
L

is
tT

el
l-

Si
gn

R
em

ot
e

Sc
ri

pt
in

g
Te

ll-
Si

gn

yahoo.com 1 1 1 1 1 1 0
google.com 1 1 1 1 1 1 1

youtube.com 1 1 1 1 1 0 1
live.com 1 1 1 1 1 0 1
msn.com 0 0 0 0 0 0 0

myspace.com 0 1 1 1 1 1 1
wikipedia.org 0 0 0 0 0 0 0
facebook.com 0 1 1 1 1 1 1

blogger.com 0 0 1 0 1 1 1
orkut.com 0 0 0 0 0 0 0

rapidshare.com 0 0 0 0 0 0 0
baidu.com 1 1 1 1 1 1 1

microsoft.com 0 0 0 1 1 1 1
qq.com 1 X 1 0 1 1 1

ebay.com 1 1 1 1 1 1 1
hi5.com 0 0 0 1 1 1 1
aol.com 0 1 1 1 1 1 1
mail.ru 1 1 1 1 1 0 1

sina.com.cn 1 1 1 1 1 1 1
fc2.com 0 0 0 0 1 1 1

Total 9 11 13 13 16 13 15

Table 4.1: Feasibility investigation results for ASL widget detection. Where ’1’ is
found, ’0’ is not found, and ’X’ is ignored.

they were never called or used by the pages. This is an issue concerning the style
of organisation on that Website that may vary from one Website to another. Another
reason for this issue is the weakly typed client-side scripting languages found in Web
pages. The third Website, aol.com had a lot of Web widgets implemented in it. Thus
small bits of code from the different widgets can confuse our approach, leading to false
detection that contributes to the false positive results for this Website.

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 124

The results presented in table 4.1 are promising and gave a positive outlook that our
approach is feasible. Our method correctly detected all ASL widgets that are present,
but it also highlights further 16% of false positive detections that suggest room for fine-
tuning our methods. We are convinced that this set of results has demonstrated that our
approach is feasible to work with as a platform, even though further investigations are
required to refine our methodologies.

4.3 Carousel Widget

The Carousel widget is a presentation model to display one or a few items in a set of
content to the user at a time. This widget provides users with the control to browse
through the list of content, focusing on the information they want to concentrate on.

Three basic features are provided on the Carousel widget. Items in the list of con-
tent can be rotated round in both directions by controlling a set of controls on the
Carousel widget. This is done by clicking on either the ‘next’ or ‘previous’ buttons,
on some occasions the ‘up’ or ‘down’ buttons. Both sets of controls provide the user
with the power to control the direction the content should rotate, depending on how the
widget is developed. Thirdly, whenever the user gives no directional instruction, the
Carousel widget will remain at the last requested item. In this thesis, the term ‘Next’
button will be used to refer to the ‘next’ or ‘down’ button, and the term ‘Previous’
button will refer to the ‘previous’ or ‘up’ button. An example of a Carousel widget is
presented in the non-shaded region in figure 4.5. This example shows a small version
of the Carousel widget with the ‘next’ and ‘previous’ buttons to the left of the widget’s
Display Window.

Figure 3.12 gives a visual illustration of the process and parts of a Carousel wid-
get. The area where content is presented by the widget will be described as the Display
Window. The content in the Display Window will be updated whenever the user re-
quests a new set of item(s) within the list of contents. This is the area on the Web page
where the Carousel widget will cause micro-content to update dynamically. Notice
that content in the list is presented in a loop if the user keeps requesting for content
in the same direction, like a Carousel at a funfair, except the user has the control over
which direction the Carousel is rotating and the pace it is moving at.

The Carousel widget is chosen for the evaluation due to the nature of its behaviour:
the content in the Display Window will update dynamically whenever the ‘next’ or
‘previous’ button is clicked by the user. The features of the Carousel widget are kept

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 125

Figure 4.5: An example of the Carousel widget (non-shaded region) in action on blog-
ger.com. The arrows are used to move to the previous or next item.

basic in our definition, so that it can accommodate the different variants developers
may design. Our current definition of the Carousel widget shares a number of common
tell-signs with other Web widgets such as the Slide Show and Tabs. If not dealt with
carefully during the development of this widget detection, this can cause ambiguity in
our detection methodology, and result in a high false positive detection rate. Taking the
Slide Show and Tabs widgets as an example, these widgets have very similar, some-
times identical, characteristics and features. Therefore, detection of the properties of
the Carousel widgets can be misleading and it causes false positive detection. In the
next two sections, we will examine these widgets in more depth.

4.3.1 Slide Show Widget

The Slide Show widget is another model for presenting a list to users. This widget can
be visualised as a superset of the Carousel widget. Unlike the Carousel widget, it does
not allow the users to loop around the list in either direction, and often it provides the
user with additional automated features. A Slide Show widget is shown in the non-
shaded region in figure 4.6. In this example, the controls are found at the bottom right
hand corner of the widget’s user interface.

Commonly, after loading the Web page, the Slide Show widget will play the content
in the list automatically. The user can pause or resume playing it at any point. Some

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 126

Figure 4.6: An example of the Slide Show widget (non-shaded region) in action on
aol.com

Slide Show widgets even have a fast forward/skip button to allow the user to progress
through the list at a faster pace. Similarly to the Carousel widget, the user can return to
the previous content or progress to the next content in the list whenever he/she wants
to. Besides the controls for controlling the display of content, the infrastructure of
the Carousel widget is similar to the Slide Show widget as discussed in this example.
These commonalities can lead to false detection for both of these widgets.

In order avoid confusion the Carousel widget is defined to have ‘next’ and ‘pre-
vious’ buttons with looping features, while the Slide Show widget has finite ‘next’
and ‘previous’ buttons. The remainder of the components are left as common objects
between the widgets.

4.3.2 Tabs Widget

The Tabs widget is another widget that has similar properties to the Carousel widget.
Unlike the Carousel widget, which allows its users to use the ‘Next’ or ‘Previous’
buttons to navigate through the list of content, the Tabs widget allows users to select
directly the information they want to read. This means that users can skip the irrelevant
content and navigate directly to the information they wish to read. Normally this wid-
get is used to convey much more information than the Carousel widget. An example of
a Tabs widget is shown in the non-shaded region of figure 4.7. In the given example,
the users can change the displayed content by clicking on the relevant tabs at the top

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 127

Figure 4.7: An example of the Tabs widget (non-shaded region) in action on ya-
hoo.com

of the widget.
The main difference between the Carousel and the Tabs widget is the way it allows

the user to navigate through the content. However, both widgets use a similar method
to present the information to the user. This is done through the means of changing the
content in the widget’s Display Window.

4.3.3 The Tell-Signs

Tell-signs are used to identify clues of the Carousel widget’s components in a Web
page. They were defined through an investigation on Web pages containing Carousel
widgets, Yahoo! Developer Network’s design pattern library5, and Welie’s pattern
library6. Additional refinements were also introduced to the tell-signs, to provide a
better distinction for the Carousel widget.

Four tell-signs are used to harvest the results for this experiment. A description of
the purpose, methods, and the flow of processes for each tell-sign is presented.

5http://developer.yahoo.com/ypatterns/
6http://www.welie.com/patterns/

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 128

Figure 4.8: Carousel widget increment tell-sign (ts1) detection flow

‘Increment’ and ‘Decrement’ Tell-Signs (ts1 and ts2)

The Increment and Decrement tell-signs search for clues that the ‘Next’ and ‘Previous’
button functions exist within the JavaScript code. The ‘Next’ button can be thought of
as a function that increments the value of a pointer that is pointing to a location within
an array where the list of contents is stored. To find this tell-sign, an attempt is made to
detect a pattern where a variable is incremented in the JavaScript code. Two methods
can be employed by the developers to code an incremental pointer: 1) pre-increment
and 2) post-increment. To search for these clues, the following two regular expressions
were used respectively.

/(\s|;)\+\+([-_0-9a-z]+)/i /* pre-increment */

/(\s|;)([-_0-9a-z]+)\+\+/i /* post-increment */

The process used to determine whether variable values are incremented is shown in
figure 4.8. The ‘Get all 1) Pre-increment counters’ block and ‘Get all 2) Post-increment
counters’ block in this figure are where the pre-increment and post-increment reg-
ular expressions were applied respectively. Each occurrence of the identified post-
increment counter and pre-increment counter variables is concatenated with the overall
list of possible increment variables array.

The same process is used to search for a decrement pointer within the Web page’s
source code. However, this time the following two regular expressions are used instead
to search for the pre-decrement and post-decrement pointers respectively. Similarly,
each occurrence of the identified post-decrement and pre-decrement counter variables
will be concatenated with the overall list of possible decrement variables array.

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 129

/(\s|;)(\-\-)([-_0-9a-z]+);/i /* pre-decrement */

/(\s|;)([-_0-9a-z]+)\-\-/i /* post-decrement */

As an initial investigation, the looping feature of the ‘Next’ and ‘Previous’ buttons
will not have been covered. However, this detection has been planned to be rolled
out in the second phase, after having a better understanding of the feasibility of the
‘Increment’ and ‘Decrement’ Tell-Signs. Furthermore, at this stage only the Carousel
and ASL widgets are investigated, thus it will not affect the feasibility detection rates
of these widgets.

‘True Pointers’ Tell-Sign (ts3)

To ensure that the variables identified in ts1 and ts2 are true variable pointers that
point to a location within a list/array, the True Pointers tell-sign is used. This tell-sign
ensures that the suspected variable refers to a location within the list/array in the code.

Two common applications employed by developers that use variables to refer to
a location in a list/array are used to search for clues that the candidate variables are
real. The first method searches for clues that conditional expressions were enforced on
the suspected variables to restrict their value. Commonly, developers use conditional
predicates to ensure that the pointer’s value is restrained to the locations within the
list/array. Thus, the following regular expression is employed to search for these clues.
In this regular expression, the concatenated array $possible[$i] stores the identifiers
of the candidate variables that were selected by the first two tell-signs. Using this
regular expression, we can differentiate the variables that have conditional predicates
enforced on them in their process.

/if\([\w\W]*\s*(==|<=|>=|>|<)?".$possible[$i].

"\s*(==|<=|>=|>|<)?[\w\W]*\)/i

The second method checks if the suspected variable pointers are used by the de-
veloper to refer to an address location within the list/array. This is done using the
following regular expression. The variable $ptr[$i] contains the filtered list of sus-
pected variables that pass the first part of this tell-sign. This pattern searches if the
variable identifiers from the list of suspected variables have been used to refer to a
location in an array.

/([-_0-9a-z]+)\[".$ptr[$i]."\]/i

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 130

‘Show and Hide’ Tell-Signs (ts4)

The Show and Hide tell-sign searches within the Web page’s source code for styling
properties manipulation that will affect the display of the content in the widget’s Dis-
play Window. This can be done using a few methods to achieve the desired content
style. One of the commonly employed methods to control the styling of content dis-
played is to manipulate the styling properties for a particular element from the Be-
haviour Layer.

/".$fdlist[$ltc]."\[".$fptr[$ptc]."\]\.style\.display\s*

=\s*(\’|\")block(\’|\")/i

/".$fdlist[$ltc]."\[".$fptr[$ptc]."\](\s)*(\))?\.style\.

display\s*=\s*(\’|\")none(\’|\")/i

The first regular expression above searches for signs that the styling property of
an element display is set to ‘block’. The styling property display in CSS specifies
how the appearance of the DOM element should be generated if at all. Anecdotal
evidence suggests that Carousel widgets commonly employ this technique to reveal
the elements content by manipulating this property of the element style. The second
above regular expression searches for clues that the developer is attempting to hide the
specified element. Either of these regular expressions must be satisfied for this tell-sign
to be true.

4.3.4 Assumptions and Rules

A number of assumptions were made when designing the tell-signs for detecting the
Carousel widget in this experiment. One of the main issues is determining the granu-
larity of the design patterns. Due to the heterogeneous nature of the Web, defining the
granularity of the patterns must be fine enough so that it will be flexible and reusable.
Therefore, the agility of our approach depends a lot on our defined axiom definition
for the different objects. Consider, for example, the button object. Unlike conventional
programming, over the Web this can be constructed as a form button, a hyperlink with
plain text, or a hyperlink with images. Furthermore, a hyperlink with images can be
a link to another Web document, or a link that interacts with the client-side scripts,
or a link that redirects the user to another part of the same Web document. This adds
complexity to the concepts and relationships between the objects. In this case, it will

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 131

be assumed that the button object is an element within a Web page that calls a portion
of the JavaScript code when activated by a user event.

Similarly to the ASL widget, the Carousel widget definitions described in this chap-
ter may differ from the definitions described in the WIO. This is because the definitions
described in this chapter are the initial definitions of the Carousel widget, while the def-
initions in WIO are the refined version of the definitions described here. Our method
covers only Carousel widgets developed in JavaScript. This can be expanded, if re-
quired, for other scripting languages using the same concepts. Equation 4.2 introduces
a rule to govern our approach for detecting the Carousel widget.

ts1∧ ts2∧ ts3∧ ts4, (4.2)

where ts1 is the Increment tell-sign, ts2 is the Decrement tell-sign, ts3 is the True
Pointer tell-sign, and ts4 is the Show and Hide tell-sign. The rule specifies that all the
four tell-signs must be true before a Carousel widget can be assumed to exist in the
Web page.

The identification process for the Carousel widget begins with searching for both
ts1 and ts2 as illustrated in figure 4.9. If at least one of the detected variables in ts1
and ts2 matches, it will proceed to ts3 for separating the true variable pointers from the
rest. If none of the detected variables in ts1 and ts2 match, then it will be assumed that
there is no Carousel widget in the Web page. Next, if at least one true pointer is found
in ts3, then ts4, otherwise no Carousel widget will be assumed to be in the Web page.
Finally, if the Web page passes all of the first three tell-signs, then ts4 will ensure that
the Carousel widgets will have characteristics that manipulate some styling features
on the Web page before it is assumed that the Carousel widget existed. It is worth
noting that the processing sequence for ts3 and ts4 will be repeated for each candidate
variable filtered by ts1 and ts2.

4.3.5 Limitations

This experiment has been scoped to analyse code formatted in Hypertext, CSS, and
JavaScript only. Thus Carousel widgets that are developed in Flash, Shockwave, VB-
Scripts, or in any other format are not covered. However, if required the concepts can
be applied for these coding format too.

The method employed to detect the Carousel widget is partly derived from ex-
tensive studies on the commonalities between the widget design pattern libraries and

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 132

Figure 4.9: Carousel widget detection’s tell-sign process flow chart

JavaScript libraries. Therefore, our approach is limited to the methods discussed by
these libraries, but they can be expanded and modified to incorporate more variations.

4.3.6 Results and Discussions

The results presented in table 4.2 detail both the automated and the manual detection
results for comparison, along with the results for the individual tell-signs.

The first column of table 4.2 lists, in order, the top twenty Websites selected for
our experimental data set. The second column presents the results from our manual
detection for the Carousel widget. The results for this detection are analysed manually
by a human, going through the individual Websites to check if the tell-signs for the
Carousel widget existed. The ‘Auto detection’ column lists the final conclusion drawn

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 133

XXXXXXXXXXXXWebsites
Checks

M
an

ua
ld

et
ec

tio
n

A
ut

o
de

te
ct

io
n

In
cr

em
en

tT
el

l-
Si

gn

D
ec

re
m

en
tT

el
l-

Si
gn

Tr
ue

po
in

te
rs

Te
ll-

Si
gn

Sh
ow

an
d

H
id

e
Te

ll-
Si

gn

yahoo.com 0 0 1 1 0 0
google.com 0 0 1 0 0 0

youtube.com 0 1 1 1 1 1
live.com 0 0 1 0 0 0
msn.com 0 X 1 1 X X

myspace.com 0 0 1 1 0 0
wikipedia.org 0 0 0 0 0 0
facebook.com 0 X 1 1 X X

blogger.com 1 1 1 1 1 1
orkut.com 0 0 0 0 0 0

rapidshare.com 0 0 1 0 0 0
baidu.com 0 0 1 0 0 0

microsoft.com 0 1 1 1 1 1
qq.com 0 0 1 1 1 0

ebay.com 0 0 1 1 1 0
hi5.com 0 X 1 1 X X
aol.com 0 X 1 1 X X
mail.ru 1 1 1 1 1 1

sina.com.cn 0 0 1 1 0 0
fc2.com 0 X 1 1 X X

Total 2 4 18 14 6 4

Table 4.2: Feasibility investigation results for the Carousel widget detection. Where
’1’ is found, ’0’ is not found, and ’X’ is ignored.

using our automated methodology as to whether the Carousel widget exists in a Web
page. The next few columns show the results for the four tell-signs of the Carousel
widget for each Website.

To interpret the results in table 4.2, a ‘1’ symbolised a true, a ‘0’ symbolised a
false, and a ‘X’ symbolised that the investigation results were ignored due to runtime
memory issues. For example, let’s look at blogger.com. Since all the columns for
this Website are ‘1’, Manual detection and all the four tell-signs are true too, so auto

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 134

detection is true as well.
The Carousel widget is a piece of code that uses a combination of different lan-

guages to work. Hence, developers can employ a vast range of styles and practices
to shape this widget. This makes it difficult to detect for all the different styles and
practices for the Carousel widget. A close examination of table 4.2 reveals that the
results for the Auto and Manual Detection do not tally, but a 100% detection rate is
achieved when the Carousel widget is present. The investigations on Websites such
as youtube.com and microsoft.com were falsely detected. Further investigating the
types of Web widgets used by both Websites, it was noticed that both Websites contain
the Tabs widget. As explained in §4.3.2, some parts of the Tabs widget are similar to
the Carousel widget concepts, thus this issue has contributed partly to the false positive
detection. On youtube.com, the combination of clues from both the ASL and the Tabs
widget led to the false detection of the Carousel widget in this Website.

It is worth noting that the Carousel widget was also used on ebay.com. However,
the developers of ebay.com chose to build them with Flash which is not included in
this study. Issues with the limited memory allocation for each Web page by the PHP
engine are also highlighted. This meant five Websites with a very large amount of
code that use a lot of variables could not be evaluated. This is because of the amount
of memory allocated by the PHP engine when interpreting a Web page. Thus for these
Web pages, only the first two tell-signs were evaluated, and then the system froze when
it ran out of memory. Since only the first two tell-signs were investigated, the results
for these five Websites will not be taken into consideration in our evaluation.

The five Websites that were ignored are Websites with at least one column in table
4.2 that is marked with ‘X’. These are msn.com, facebook.com, hi5.com, aol.com,
and fc2.com. Due to the runtime memory issues faced, no further work was followed
up for these Websites since the majority of the Websites are fine to evaluate this inves-
tigation.

Since only 25% of the Websites from our experimental data set are affected by
the memory issue, our conclusion was made with the remaining 75%. The results
displayed in table 4.2 gave a promising sign for our detection method. We managed
to successfully detect all the Carousel widgets that were present in the remaining 15
Websites, but two false positives were detected. Comparing these results with the ASL
widget in §4.2.4, the Carousel widget gave more positive results.

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 135

Issues with PHP Memory Limit

The memory allocated to each Web page by the PHP engine imposed a limitation on
our methodology. The PHP engine allocates each Web page a maximum of 8MB of
memory when interpreting them. This becomes an obstacle when the system tries to
comprehend large amounts of code that uses a lot of variables to complete its task.

The memory issue occurred because our Web mining methods use arrays to store
the candidate variable pointers and variables identifiers that are suspected to be the
list of content. The list of content on its own is an array already. Therefore, multi-
dimensional arrays will be employed for our methodology. Memory management is
another issue with PHP, because the interpreter manages this. An attempt was made
to force the PHP memory limit to the maximum, but this did not improve the perfor-
mance much, as it soon ran out of memory again. As a feasibility investigation, the
memory issues faced with PHP were not pursued because it only affects a quarter of
our experimental data set. Furthermore, the results are sufficient at this stage to prove
the feasibility of our concepts, and our suggested refinements will also change the way
the techniques will be applied in our approach.

4.4 Suggested Refinements

The results presented in tables 4.1 and 4.2 give a promising sign that our approach
is feasible, but further refinements are required at this stage to fine tune and solidify
our concepts before expanding the WPF. Thus, some of the methods and assumptions
presented in this chapter may differ from the ontology described in chapter 3. This is
because the methods and assumptions presented in this chapter are our first attempt to
detect widgets, while the definitions in chapter 3 are refined approaches learned from
this feasibility study.

A common problem is spotted with both sets of experiments: little bits of codes
or clues from different areas within the code can be picked up as our tell-signs. This
suggests an avenue to explore methods to link the clues in the source code to the User
Interface objects on the widget.

4.4.1 Linking Tell-Signs User Interface Objects

Linking the user interface objects to the tell signs found will help the system to cor-
relate the graphical user interface (GUI) objects of the Web widget with the related

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 136

source code, thus removing the non-related part of the code identified and improving
the detection rate.

(a) (b)

Figure 4.10: Static graph examples for Carousel widget?s UI components. Subfigure
(a) shows an example of how the static graph will look like when form buttons were
used for the ‘Next’ and ‘Previous’ buttons. Subfigure (b) shows an example of how
the static graph will look like when images were used for the ‘Next’ and ‘Previous’
buttons.

For example, different forms of a button object (form buttons, and hyperlinks in the
form of text or images) can be grouped together with the other Carousel widget’s user
interface components. By doing this, it will be possible for us to relate the button ob-
ject with the section of code that forms the widget’s engine, together with the element
that is meant for displaying the content (Display Window) of the widget. The exam-
ples presented in figure 4.10 demonstrate that, by plotting the static graph of the first
delivered Web page, the widget’s interface elements can easily be grouped together by
means of a hierarchical structure.

In some cases, the ‘Window’ node (Display Window) can be replaced with the
actual list of contents, where each item in the list will be a node in the graph under
the Widget Wrapper’s node. Then, using CSS, the developer can control which node
should be presented or hidden from the users. Using the hierarchical structure of the
nodes, there is an assumption that a ‘wrapper’ will be used to interconnect the controls

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 137

of the widget with the Display Window of the Carousel widget. Hence, by identifying
the wrapper, we can assume that the elements in/under the wrapper element have an
association with it.

This work can be further divided into two parts so that we can comprehend the
declarative code structure (hypertext) together with the procedure code structure (we
refer to JavaScript for this study). By using this method, it will improve the under-
standing of the process and elements coherence.

4.4.2 Annotating the Source Code

Annotating the source code adds derived documentation from chunks of code before
our method comprehends it. These concepts are borrowed from Takagi et al. [2002],
where they demonstrated the power of annotation to develop an accessibility transcod-
ing system. The process of annotating the source code is suggested as a pre-processing
stage, to arrange and add semantic information derived from small portions of the code,
so that it will provide useful machine interpretable documentation for our method to
improve code comprehension. Other studies discussed in §2.2.3, under Annotation &
Transcoding heading, also provide ideas to further develop the concepts. Applying
these methods will assist the code comprehension processes by comprehending the
code in great depth once, and not every time we need to infer something.

On the contrary, this method can be complex and it will consume a lot of additional
computational power. Furthermore, the degree of automating the widget identification
analysis will require consolidating the annotation to derive from the concepts of the
process. This analysis phase may require another round of complex computations for
each process. Thus, for the purpose of this study, this method may not be the most
favourable.

4.5 Summary

In the tell-signs feasibility investigation, we demonstrated the feasibility of detecting
areas where Web widgets are found in the Web page. Nevertheless, when designing
these experiments, issues with defining the granularity of detecting the design pattern,
and the traceability of the design patterns from the Web page’s source code, were
highlighted.

From the first experiment that detects the usage of the ASL widget, the feasibility

CHAPTER 4. FEASIBILITY INVESTIGATION FOR USING TELL-SIGNS 138

investigation results showed promising signs that our approach was applicable. The
results showed that the detection for the ASL widget has successfully detected all
ASL widgets present. However, a few false positive detections were also noticed.
Further refinements are required to relate the suspected sections of source code with
the widget’s user interface components, as this may provide the solution to improve
the 16% false positive detection.

The second experiment that attempts to detect the Carousel widget has brought up
some critical issues with the scripting language during the feasibility investigation. It
highlighted that PHP allocates only 8MB to each Web page during run time. This issue
limited our evaluation capabilities, and 25% of the Websites from our experimental
data set were unable to complete the investigation. Thus, this experiment was based
on the remaining 75% of the Websites selected. In this experiment, all the Carousel
widgets present were detected. However, two false positives were also present. These
results shone a positive light on the method we employed, and when compared with
the ASL widget detection methods, a lower false positive detection was noticed.

No false negative (Type II errors) detections were noticed in our methods, but to
deal with false positive (Type I errors) detections, refinements should be followed up.
These refinements will reduce the ambiguity in our definition of a widget, e.g. the
Carousel widget, and provide a more robust methodology. A well-defined definition
of the widget is an essential element to ensure a high detection rate. Both Web wid-
get experiments successfully detected all the ASL and Carousel widgets, and through
these evaluations issues were highlighted and the suggested improvements for better
detections of the two widgets are presented. The suggested refinements will verify the
detected widgets’ presence, and help locate the parent element of the widget in the
page. In the next chapter - Predicting Widgets On A Web Page, we discuss the ex-
tended work done to incorporate more types of widget and improve the reliability of
our prediction method.

Chapter 5

Predicting Widgets On A Web Page

The feasibility investigation provided insights as to the effectiveness of the tell-signs
in predicting widgets. Valuable suggestions arising from it were identified for refine-
ment while expanding our approach. During the course of refining and expanding our
approach, issues with false positive detection, conceptual and elements relationships,
and identifying the tell-signs of the different components that form the widget surfaced
and were presented in this chapter. These issues meant that some methods had to be
modified to adapt them before they could be applied. The new and modified techniques
are presented in this chapter, along with the tell-signs for all seven widgets.

From the feasibility investigation, it was learned that using physical coding meth-
ods to identify a widget’s components as tell-signs is not the best approach. This is
because often a concept can be achieved using a variety of methods depending on
the developer’s experience and perspective. Rather, anecdotal evidence suggests that
capturing the conceptual clues of a component, from the source code to assist tell-
sign identification, will make the detection process simpler and more effective in some
cases. We will discuss the details of these tell-signs when presenting the methods used
to capture them. Then, using the captured and derived information, the deduction of
the different types of widget will be presented.

5.1 Issues With Analysing the Web Page Source Code

The heterogeneous nature of the Web and the weak-typed languages, used across var-
ious components in the page, allow these components to be loosely developed, and
coupled together to make the page/application work. This architecture allows Web
services to be reused, as well as complex code structures to form a page that seems

139

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 140

visually simple. In this section, we present the issues faced when implementing and
expanding our approach, which mainly focused on the client-side methods due to the
nature of the research.

5.1.1 Multiple External Resources

The beauty of the Web is to be able to interconnect multiple documents and reuse
content from multiple sources in a page/application. Like desktop applications, Web
pages/applications can also extract or reuse content/code from multiple documents
to make them work in a page. Unlike desktop applications, Web pages/applications
code/content can be hosted at multiple locations and combined later. The combination
process of code/content can be nested as an iterative process that happens throughout
the page’s lifespan. Thus, before analysing the source code, code synthesis is required
to gather the separately hosted code together.

5.1.2 Missing Code

To complicate matters, despite the complex structure discussed in §5.1.1, the process
of combining code can happen as the Web page/application is interpreted by the user-
agent. This means that developers can use the Lazy Load technique to request external
code as a process in the page/application when it is required. Thus, the link to the code
can be hidden within the code, and it is difficult to determine where in the code the
Lazy Load technique is applied.

The Lazy Load technique is often employed to load a huge amount of code after the
page is loaded to reduce the initial network overheads that the client has to bear [Zakas,
2010]. Although this method allows for faster page download times, while giving the
developer the freedom to develop more complex pages/applications, it complicates the
reverse engineering process as a whole, unless the reverse engineering process and
proper documentation is available specifically for the Website or page.

5.1.3 Web Browsers Monitoring Management

JavaScript offers developers the features to monitor events occurring to a Web page/ap-
plication, but often these features are either not well managed or not released by the
Web browsers due to various reasons. In this section, we will look at the issues faced
when attempting to recover the instances of Listeners, Handlers and Timers.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 141

Listeners and Handlers

Listeners are often employed to monitor an element/node in the DOM for a particular
type of event occurrence. When triggered, normally the browser’s processes will be
interrupted and the handler of the listener will execute a piece of code. These features
allow developers to code reactive processes as Handlers when an event occurs. Often,
a Listener is assigned to monitor an event that triggers the Handler when the event
takes place on an element in the page.

However, the creations of Listeners are often not well documented by the Web
browser when rendering the page. Furthermore, at times - due to the Just-In-Time
(JIT) approach that Web browsers employed to render the code - some information may
not be available. Thus, the approaches taken by the user-agents to improve rendering
times make it difficult to detect the full extent of Listeners and Handlers initialised by
the page. This issue suggests the need to provide a customised source code profiler,
to keep track of Listeners and Handlers initialised. These records will aid the widget
prediction process to determine whether an identified widget will be used by the Web
page’s user interface.

Window Timers

Timers provide developers with the feature to delay or execute certain processes at a
fixed interval. Again, this feature is not well documented by the Web browser, or else,
due to the JIT structure employed to interpret the code, the information is not available.
For widgets that use this feature, extracting instances of this feature from the source
code is difficult, and often requires different approaches to detect them. This is another
scenario that suggests the source code profiler will aid by keeping track of initialised
timers by the code.

5.1.4 Weakly-Typed Scripting Languages

JavaScript is widely used in Websites [Harper and Chen, 2012] to provide interactive
features to the user and allow flexibility to developers to orchestrate the content in the
page. However, JavaScript is a Weakly-Typed language, hence an even wider variety of
coding styles and approaches can be taken by developers to deliver their ideas or con-
cepts compared to Strongly-Typed languages. The flexible nature of the code makes it
difficult to trace certain design concepts and techniques applied during development.
Often, traces of concepts get lost in the code while attempting to derive them.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 142

Using the declaration of Objects and Methods as examples, these declarations can
be done using two approaches for Objects and four approaches for Methods. We will
discuss this issue in more depth later in §5.4.2 when we look at how we can search for
Methods and Objects from the code.

The Weakly Typed traits can also be found when declaring variables. This can
be done in three ways too (a=1; a:1; and passed as arguments in a function), and
normally the variable’s data type is determined and managed by the interpreter. Due to
these issues, determining the variable type is fussy and misleading at different stages
of the code.

5.1.5 Non-Standardisation Interpretation

JavaScript literals supported by Web browsers are implemented in many variations
from the standard specifications by ECMA-International [2009]. The different dialects
of JavaScript vary between browsers, and often Web pages need to customise their
code and content specifically for a particular browser. However, this does not stop at
JavaScript; even the different versions of Markup Languages and style sheet languages
have variants from one Web browser to another.

Websites commonly include a few variants of the same set of code for different
Web browsers in a Web page. This technique is used to ensure their pages can accom-
modate a wider range of audiences. For our investigation, the Mozilla Firefox dialect
was chosen due to its popularity1 during the time this research was conducted. Further-
more, it provides a benchmark to base our proposed research on a leading industrial
Web browser.

5.1.6 Just-In-Time (JIT) Interpreters

To improve code interpreting and loading speeds, and to accommodate the desire of
Web developers and designers to include a large set of code in their Web page – so that
more interactivity, usability and various application specific purpose can be incorpo-
rated – many Web browsers resort to the Just-In-Time (JIT) approach used to interpret
Web documents. Although this technique has its perks, it also makes it difficult to
reverse engineer a Web page unless it is done specifically for a particular Website and
the documentation of the designs for the Website is available.

1W3Schools, Browser Statistic. Accessed on 24 Feb 2011, http://www.w3schools.com/
browsers/browsers_stats.asp

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 143

5.2 Profiling The Web Page Source Code

Applications working in the Web domain sometimes require some tools to assist them
to complete their task when faced with the variety of technological issues. Many Rich
Internet Applications (RIA) use Web 2.0 technologies to enable them to communicate
and monitor different processes and events from different conceptual layers within the
page – such as the Presentation, Behaviour and Content layers as seen in figure 5.1. The
content within the different layers can change dynamically throughout the timespan
when the page is viewed. Mainly, the content is manipulated by the Behaviour layer,
where it can be updated with new content when it is designed to do so. All these
interactions enable the Web page to be dynamic, hence providing better interactivity
with its user, and reducing the number of page reloads, thus improving the network
communication efficiency.

To accommodate the advances, Web developers often use tools that incorporate
special techniques to assist and speed up their development process. These techniques
use sophisticated concepts to include the desired technology or concepts in Web pages,
so that they are generic for most cases. Comprehending pages that use such tools often
requires in-depth analysis of the code to make inferences that these techniques are used,
so that the technologies and concepts used can be inferred. Using the technologies and
concepts derived from these techniques, together with other concepts derived from the
code, the type of widgets used on the page can be inferred.

Due to the wide choice of technologies available, most available tools only tackle
the generic issues. These tools are targeted to provide assistance for Web development,
or they only solve part of the problem. The process required for our investigation in-
volves comprehending the code and reverse engineering the Web page, so that widgets
can be logically inferred and, when possible, the location of the widgets in the Web
page interface can be identified. Thus, a specially tailored code profiler is introduced
here to assist our widget identification investigation. This profiler will only record
the necessary information required by our deduction process, providing crucial and
detailed records about the code.

The Web 2.0 concepts indirectly allowed Web pages to be more complex with tech-
nologies and recommendations that are less structured, more flexible and lightweight.
Such a nature was chosen for the Web to make it more compelling to others to use
it [Millard and Ross, 2006]. Furthermore, the advances in these technologies and rec-
ommendations do not always get adopted [Chen and Harper, 2008] or used effectively.
Due to these reasons, a wide combination of methods is commonly employed for a

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 144

Content
 Layer

Behaviour
Layer

Styling
Layer

HTML JavaScript CSS

Presentation
Layer

DOM

Figure 5.1: Overview of the browser interpretation process.

task. This makes it difficult to comprehend the code to derive from the methods taken
by developers and the task it was designed to do when conducting reverse engineering.

In order to understand how to mine useful information that correlates with what
is presented by the Web browser at an instant in time, a general concept of how the
browser renders the source code is necessary. Every time a Web page is loaded, the
Web browser renders it with a similar interpretation structure shown in figure 5.1.
When the page is first loaded, the browser compiles the Content layer and uses a
Scripting engine to interpret the scripting code in the Behaviour layer. Then, the Docu-
ment Object Model (DOM) is rendered using the information provided by the Content,
Behaviour and Styling layer in the Presentation layer. Using the DOM, the browser
renders the Web page’s interface and presents it to the user in the Presentation layer.

Within the load lifespan of a page, each time an event (user or machinery) is trig-
gered, the DOM will be reinterpreted, changing the page’s interface where required.
This process repeats itself until the page is unloaded. Most major browsers use the
generated DOM as a form of communication to relate the current interpreted interface
of the Web page with other technologies. Due to the dynamic nature of generating
presented content and the source code, both the source code of the page and the DOM
have to be analysed alongside each other.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 145

5.2.1 Handling Events

Many Rich Internet Applications (RIA) consist of three conceptual layers – such as the
presentation, behaviour and content layers – when interpreted by the Web browsers, as
seen in figure 5.1. The content within the different layers can change dynamically
throughout the lifespan when the page is viewed. This is mainly manipulated by the
behaviour layer to mutate the DOM in the Content Layer.

Commonly, event listeners are employed to monitor these events. Upon triggering
the event, the behaviour layer executes the event handling set of code to execute the
task the developer designed it to do. Each event will require a separate listener to
monitor it. Therefore, a few listeners are often required by a dynamic Web page.
Due to this need, developers use a Factory method technique to semi-autonomously
generate the event listeners. This technique sometimes makes it difficult to trace if an
instance of an event listener was created.

5.2.2 Dynamic Code Generation

Using Remote Scripting technologies allows developers to insert content into the Web
page without reloading it. Through this means, code in the Behaviour layer can also
be dynamically inserted for various purposes. One of the uses of this method is to
improve the initial loading speed. This technique sends the necessary content to the
client-side first, so that the structure and the important content the author intended
for the user can be loaded. After loading the page, the rest of the code – usually the
“behind the scenes” code that reacts to the events – will be transmitted. Using this
technique, developers aim to give their users a misperception that the page is loaded
quickly or in an acceptable time.

Since both content and code can be generated dynamically, some RIAs use this
feature to enhance their application interactivity. In the course of doing this, event
listeners may also need to be generated semi-autonomously employing the technique
discussed in §5.2.1.

5.2.3 Redundant Code

Most developers often built a number of widgets for the Website, and these are com-
monly stored in a library that is attached along with most pages in the Website (see
§5.1.1). In some cases, these libraries contain all the most commonly used widgets. In

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 146

most cases, this is done by specifying the src attribute in the <script> tag with the
location of the library to attach it to the Web page.

This technique is encouraged because the reuse of methods as objects is deemed
to be good programming practice, and it reduces development time. However, unlike
traditional programming, over the Web these libraries can be either located on the
server-side of the Website, or located on a separate server so that it will be a centralised
location for a few Websites. These practices may be more efficient and cost effective
during development, but the cost is being transferred to the client. Now, end-users have
more to download that includes redundant code that is never going to be used by the
Web page.

The Web constantly evolves due to its popularity, competition between Websites,
and the developers’ desire to meet users’ expectations. In such an environment, hav-
ing an efficient, iterative and incremental development cycle is important to promote
continuous improvements to the code and design [Maurer and Martel, 2002]. Thus,
developers often resort to attaching external libraries of widgets they have created onto
Web pages, so that the library acts as a single point of access to distribute their im-
proved code.

Using this technique often results in false positive detection when trying to detect
widgets [Chen and Harper, 2009]. Hence, additional inferences have to be made before
a widget can be affirmed to exist. The additional inferences process searches for the
elements within the DOM that trigger the suspected set of code. If such a link can be
bridged, then the identified widget can be assumed to exist. On the contrary, if a link
between the set of code and at least one element within the DOM cannot be formed,
then the widget will be assumed not to exist. In the next few sections, we will discuss
the approaches explored and the final approach taken on-board in our system.

5.3 Approaches to Identify Web Widgets

Finding the tell-tale signs of Web widgets in a Web page can be done using the tell-sign
approach, as proven in Chen and Harper [2009]. Due to the advances and nature of the
Web, issues relating to the inclusion of Web 2.0 technologies can be improved by in-
forming users about the widgets, as noticed from Brown [2012] evaluation transcripts.
One of the more critical issues was to deal with false positive widget detection. As
discussed in §5.2.3, developers often consolidate there code into libraries and embed
them in the pages they have developed. Using this development technique, developers

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 147

are able to deploy agile development life cycles for their widgets, while maintaining
the different versions of the code.

Currently, widgets are designed from concepts described by design patterns, but
these concepts are often lost within the code because programming/scripting languages
do not support them [Bosch, 1998]. The fusion of different technologies that makes
the Web work will require different types of techniques to deal with the heterogeneous
nature of the Web. The widget ontology was built to uniquely categorise the types of
widget and provide shared documentation of the widgets’ definition in the automated
identification process. Different approaches to finding the location of widgets within
a Web page were experimented with before arriving at the current approach of using a
tailored design “Profiler”.

5.3.1 Bottom-up Approach

From the beginning, a bottom-up approach was experimented with in order to reverse
engineer the Web pages. This method analyses the entire set of code and makes its
way to the abstract concepts derived from the code. With these concepts, inferences to
identify the type of widgets in the page can be made from the source code. As seen in
Chen and Harper [2009], it is feasible to use this approach to assist widget identifica-
tion. However, further research and tweaks are required to improve its accuracy.

One of the major hindrances of this approach is false positive detection due to
issues such as those described in §5.2.3. Additional steps and the fusion of techniques
are required to minimise false positive detection. Records from the analysed code
must be cached to assist later inference to determine whether a widget detected is truly
used by the page. Depending on the size of the page, this approach may require a
huge overhead to compute its deductions. Hence, additional components will also be
required to manage the overheads.

5.3.2 Top-down Approach

A top-down approach was investigated in the attempt to overcome the issues high-
lighted by our bottom-up approach experiments. This method examines the Web
page’s DOM, then it tries to make its way down to the JavaScript code in the Behaviour
Layer. Only JavaScript code that is related to the DOM element(s) is examined, and
hence lesser overhead is required to compute and store the deduction.

Since the introduction of Remote Scripting, developers commonly employ listeners

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 148

to monitor other technologies and the targeted elements within the DOM. These evo-
lutionary concepts become an issue when the system attempts to bridge the connection
between the DOM elements and the JavaScript code. Often this link is lost when
Remote Scripting methods are employed. Thus, techniques such as a fusion of both
top-down and bottom approach are suggested, or implementing a tracer component so
that the system can follow the clues that lead to the JavaScript code can be employed
to tackle these issues. The fusion of the Top-down and Bottom-up approaches was
investigated first because it was the easiest choice to adapt our script, and it requires
the least amount of time.

5.3.3 Fusion of Top-down and Bottom-up Approach

To reduce overheads and assist the system to determine the location in the Web page
where a widget is used, an experiment to combine the top-down and bottom-up ap-
proaches is conducted. To apply the concept, a reference point is required to determine
the starting point of the approach. This point must be selected carefully so that the
advantage of both approaches can be harnessed.

Selecting the Reference Point

As seen from the top-down approach, the link between the widget’s DOM elements
and the JavaScript code is often lost. This is due to the different approaches developers
take to trigger a piece of JavaScript code. Some of the more popular methods include
implementing listeners and handlers either from JavaScript frameworks or manually
coding them, or in some cases, inline JavaScript is used to trigger a set of code. On
some occasions, even inline JavaScript is used to implement the concepts directly.
From these examples, the magnitude of diversity to link the DOM elements to a piece
of JavaScript code can be seen.

The reference points chosen are where the missing connections are suspected, to
bridge the widget’s DOM elements together with the JavaScript code that manipulates
them. Although it is difficult to include all possible approaches in our system, often the
reference point is related to either event handlers or listeners of the DOM element(s).
Hence, our system uses the event handlers or listeners as the reference points. There-
fore, every Web page will have a different amount of reference points, and the code
comprehension process is repeated for every reference point detected.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 149

Mechanics of the Approaches

Once the reference points in the Web page are selected, the top-down approach is used
to trace the JavaScript code to the suspected set of code for analysis. Meanwhile,
the bottom-up approach will determine the DOM elements that are monitored by the
event handler/listener. After a widget is identified, inferences can be made from the
relationships and groupings of the DOM elements, together with other DOM elements
manipulated by the suspected set of code, to determine whether the widget exists in
the page.

Issues with the Fusion Approach

Using the fusion of approaches will give the best of both worlds, and reduces both
overheads and false positive widget detection, but it also introduces new problems.
The accuracy of determining the reference points is crucial. If the reference points
cannot be identified, then the widgets will never be discovered. Another issue with
this approach is that it does not always resolve the bridging issues faced by the solely
top-down approach. Thus, this suggests implementing a tracer component to assist
with the searching of the connection between the event handlers/listeners and the set
of code in the Behaviour layer.

5.3.4 Implementing a Tracer

Following the clues in the code to link up the event handlers/listeners to the set of code
that manipulates the DOM was suggested. A tracer was believed to be able to produce
the trace and provide the connection for searching the widget’s location.

Existing JavaScript tracers were commonly found within debuggers - such as Hop-
kins [2011]; Firebug [2011] - to assist developers when debugging, as well as Just-
In-Time (JIT) compilers to assist the code interpretation process [Gal et al., 2006].
Tracers used by JIT compilers only interpret JavaScript code that is related to the pro-
cess during that instance in time. To identify widgets, the entire set of JavaScript code
used by the Web page is required to make inference of a widget. Available tracers such
as jsTracer [Hopkins, 2011] only provide a platform for developers to insert messages
and the type of error detected into either a log file or a viewer to assist developers with
their development. These types of tracer are useful for development and dealing with
specific Web pages, but not useful when attempting to reverse engineer generic Web
pages. Debuggers such as Firebug [2011] use the browser’s JavaScript engine to trace

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 150

the JavaScript code. This type of tracer only provides another layer on top of the JIT
interpretation concept to assist developers with their development. In order to use it,
additional components are required to guide the tracer, so that the entire JavaScript
code can be traced.

5.3.5 Implementing a Profiler

Documenting relevant information about the JavaScript code is another technique to
assist code comprehension. Often compilers and interpreters, such as Rhino [2011]
and V8 [2011], profile code to benchmark their performance. This form of profiling
the code structure includes the time taken by the compilers/interpreter to execute them.
Debuggers such as Firebug [2011] use profilers to assist in tracing the code as well as
to evaluate the performance of the code.

After investigating the usage and implementation of profilers, it can be concluded
that, depending on the objectives, profilers can be created to document information
about the code that is useful for the task. The profiler used by Firebug is useful for
our work, but it relies on the DOM generated by the browser, thus JIT concepts are
used and they do not profile the entire set of code. In order to use Firebug, additional
implementation is required to direct the profiler, so that it will document the entire set
of code. This implementation will be difficult as every page is different, and additional
overheads will be incurred.

5.3.6 Tailor Designed Profiler

From our investigation of different approaches and the available tools, a tailor-designed
profiler is suggested to assist bridging the DOM elements and the inferred set of
JavaScript code. The tailor-designed profiler will document the structure of the code as
well as the locations of the structure and other essential details. Basic inferences will
also be made so that tracing and more in-depth analysis of the code can be conducted.

5.4 Analysing The Code

Collecting information about the code and recording it for further code comprehension
is a technique used to reverse engineer programs. Using the records profiled by the
code profiler, different types of extensive analysis can be conducted for a variety of

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 151

purposes. Depending on the purpose of profiling, different parameters within the pro-
filed records of the code are analysed. The structure of the code, the listeners within the
code, and the location of different methods and objects are of interest. This is because,
with this information, inferences of different suspected code for our widget prediction
process can be made.

The profiler plays an important role in the widget’s detection investigation, but a
few additional blocks are also required to prepare the code for profiling. Figure 5.2
depicts the overall architecture of the Widget Prediction System (WPS) and the flow
of the system. In the beginning of the page analysis cycle, the page is interpreted and
the DOM is parsed 1©. Using the DOM structure, the paths of external coding files
embedded in the page are extracted for downloading. Then, the downloaded sets of
code are synthesised with the original page in the ‘Code Synthesiser’ block 2©. The
profiler resides in the ‘Code Profiler’ block 3©, which taps into the results produced by
the ‘Code Synthesiser’ block. Finally, widgets are inferred in the ‘Widget Inferences’
block 4© to predict the types of widget in the page. In the ‘Widget Inferences’ block,
the concepts modelled in WIO are hard coded to make the deduction of the types of
widget.

HTML DOM
Parser

Found
Widgets

1

Web

Shared knowledge
from the

Widget Ontology

Widget Prediction System (WPS)

Code
Synthesiser

Code
Profiler

Widget
Inferences

2

34

Coded

Figure 5.2: The Widget Prediction System (WPS) overall architecture depicting where
the shared knowledge from the Widget Ontology is hard coded.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 152

The ‘Widget Inferences’ block is extensible, thus tell-signs can be included or ex-
cluded, and different types of widget inferences can be added or removed when re-
quired. The requirements and steps for the expansion process will be covered in §5.4.4,
and the next few sections will describe the different components and processes within
the ‘Widget Inferences’ block.

The entire WPS architecture is extensible as well. Additional blocks can be in-
cluded into the architecture if required. Thus, the data structures used to transmit
information between the blocks will also be discussed.

5.4.1 Synthesising the Code

Since HTML can be parsed and analysed, only the client-side scripting will need to be
comprehended. As previously discussed in Chen and Harper [2009], the investigation
will only cover widgets that are developed using JavaScript. JavaScript code can be
included within HTML or embedded from an external source, therefore the “Code
Synthesiser” block 2© will compile the code from different places into a string for
further analysis.

5.4.2 Inside the Profiler

Methods, objects, event listeners and instances of tell-signs are searched and recorded
in the “Code Profiler” block 3© in figure 5.2. The “Code Profiler” block captures and
records instances of the code specifically for our investigation. This part of the system
follows the process flow shown in figure 5.3 to mine and make important inference of
the results gathered. As most JavaScript interpreters use the JIT technique, the code’s
syntax tree will be compiled for an instant in time. Commonly, this instance will be
the first instance when the page is loaded. Instead, regular expressions are employed
to sniff through the code for the code construct patterns.

Searching for Methods

There are four ways to declare a method or function that is covered by WPS. Develop-
ers can deploy these approaches anywhere throughout the code. Thus, keeping track of
where methods are declared, what are included in each method, and how each method
communicates with one and the other has to be managed properly. It is assumed that

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 153

Get MethodsInitialise

Get Objects

Get Event
Listeners

Check if
listeners is a

factory
Get Factory

method callee

Return profiled
results

Yes

No

Figure 5.3: Widget Prediction System (WPS) Code Profiler block’s internal process
flow.

tell-signs found within the same method are related due to their parentheses associa-
tion. Using this concept, recording the method’s identifier, input arguments, its loca-
tion in the code, and where it begins and ends will be useful information for inferring
the tell-signs relationship.

The profiler covers four common types of function declaration. The first way (M1)
is as follows,

/*M1*/ function identifier (arguments) { function body }

In order to detect this form of declaration, two phases of the detection process are
employed. The following regular expression is used to search for instances of M1 code
construct patterns in the first phase.

function\s+[_a-z0-9\$]+\([\w_\s,]*\)

Once all the instances of this form of function declaration are found, the following
regular expression is used in the second phase. This phase extracts the properties of
the method, such as the method’s identifier and the input arguments for each record
found by the first phase.

\s([_a-z0-9\$]+)\s*\(([\w_\s,]*)\)

The second way (M2) is often used to declare methods within an object. Instances
with this form of method declaration are mined at this stage rather than when mining
for objects. With this approach, the profiler can provide a quick and thorough search
for all instances of methods, leaving the semantic relationship of an object’s method to
be derived later.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 154

Functions can also be assigned to a variable so that the variable can act as an iden-
tifier for the function (M3). This form of declaration is an assignation approach similar
to M2 when declaring a method within an object.

/*M2*/ identifier : function (arguments) { function body };

/*M3*/ var identifier = function (arguments) { function body };

The approach for M2 and M3 will be mined in three stages. First, instances of both
of these approaches can be searched using the following regular expression:

[_a-z0-9\.\[\]\$\)\(\’\"]+\s*[=\:]\s*function\s*\([\w_\s,]*\)

After instances of M2 and M3 are mined, the following regular expression is used
to segregate the identifier from the function declaration syntax for each record in the
second stage.

\s*[=\:]\s*

By segregating the identifier from the function declaration syntax, the input argu-
ments of the function can be extracted using the following regular expression for each
record in the third stage.

function\s*\(([\w_\s,]*)\)

Functions can also be declared without an identifier (M4) in JavaScript, such as
function () { function body }. To identify instances of this type of declaration,
the following regular expression is employed.

[\;\(\),\{\}\|\s]function\s*\([\w_\s,]*\)\s*\{

Functions declaration M2 and M3 can easily be mixed up by the system to be M4.
Thus, notice in this regular expression that additional conditions are included to reduce
the false positive detection for this type of declaration. Table 5.1 illustrates the different
coding patterns that will and will not be picked up by the regular expression designed
for M4.

Additional filters are included to exclude the false positive records picked up by
M4’s regular expression. These filters check the starting location of the current record
and compare it with previous records. If a match is found, the current record will be
discarded, leaving only the true positive records remaining.

Next the input arguments of the remaining records identified by M4’s regular ex-
pression use the following regular expression to detect it.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 155

Will Not Be Picked Up var a=function() { function body }
var a =function() { function body }
var a:function() { function body }
var a :function() { function body }

Will Be Picked Up var a = function() { function body }
var a= function() { function body }
var a : function() { function body }
var a: function() { function body }

Table 5.1: Code patterns for functions that will and will not be identified by M4’s
regular expression

function\s*\(([\w_\s,]*)\)\s*\{

Searching for the starting and ending locations for the function can be tricky and
challenging, since within the input arguments of the function and the body of the func-
tion, almost any type of character can be included. Thus, the following code in list-
ing 5.1 is used to check character by character for its type and the inset level of the
parentheses. Variables startChar and endChar will store the character location of
both the starting and ending location of the function body respectively.

1 / / D e c l a r e n e c e s s a r y v a r i a b l e s

2 v a r i n s e t = 0 ; / / d e p t h o f t h e code

3 v a r s t a r t C h a r = f a l s e ; / / method s t a r t i n g c h a r a c t e r l o c a t i o n

4 v a r endChar = 0 ; / / method en d i ng c h a r a c t e r l o c a t i o n

5

6 / / Se a r c h method en d i ng

7 f o r (v a r fmedi = m S t a r t ; fmedi < doc . l e n g t h ; fmedi ++)

8 {
9 / / l o c a t e code d e p t h

10 i f (doc [fmedi] == ‘{ ’)

11 {
12 s t a r t I n M e t h o d = t r u e ; / / f l a g t h a t method has s t a r t e d

13 s t a r t C h a r = fmedi ; / / f u n c t i o n s t a r t i n g l o c a t i o n

14 i n s e t ++; / / i n c r e m e n t i n s e t c o u n t e r

15 } / / i f

16 e l s e i f (doc [fmedi] == ‘} ’)

17 i n s e t −−; / / dec remen t i n s e t c o u n t e r

18

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 156

19 / / I f t r u e end i s found

20 i f (s t a r t I n M e t h o d && i n s e t == 0)

21 {
22 endChar = fmedi ; / / f u n c t i o n en d i ng l o c a t i o n

23 b r e a k ;

24 } / / i f

25 } / / f o r

Listing 5.1: Searching for the encapsulated body of code within curly brackets ({...}).

Finally, the data structure object as seen in figure 5.4 is used to store the discov-
ered functions. In the data structure object, every record of a function is divided
into five arrays of methods so that the features of the function can be stored. To
access a record, the location for every method in data structure object will be the
same. For an example, if a function has an identifier called ‘top’ in record number
1 (method.identifier[1]), then to access the ending character location of its body
it will be method.end[1].

identifier location start location end location

[0]
[1]
:

[0]
[1]
:

[0]
[1]
:

[0]
[1]
:

input arguments

[0]
[1]
:

Figure 5.4: Data structure to store the functions found in the JavaScript code of a Web
page.

The ‘identifier’ method in the data structure object stores the identifier for the func-
tion found. The ‘location’ and ‘input arguments’ variables store the location in the
code where the function was found, and the identifiers of the input arguments from the
respective functions. Then, the ‘start location’ and ‘end location’ variables store the
starting and ending character locations of the function’s body respectively.

For example, using the first instance of a function found in line 1 in listing 5.3, this
record will be stored as identifier = setListen, location = 0, start location

= 31, end location = 130, input arguments = ‘a, b, c’. Storing this type
of information will assist the later code comprehension process, and assist the semantic
relationship inferences between different tell-signs and sets of code.

During development, often developers use comments to describe a piece of code or

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 157

temporarily exclude a set of code. The system does not deal with instances of patterns
that are commented upon; hence, these instances may be profiled as well.

Searching for Objects

Objects are not commonly associated with JavaScript because it is known as weakly
typed and has first-class functions. However, the Objects concept can be incorporated
and they can be declared in various ways. Two approaches to declare Objects are
covered by the profiler. The first approach uses the literal notation as follows,

var object_identifier = { ...;

method_identifier : ...; }

To identify the patterns of this type of Object declaration, the following regular
expression is employed to search for the declaration and starting location of the object.

([_a-z0-9\[\]]+)\s*=\s*\{

After locating the Object, patterns to search for identifiers assigned with content
encapsulated within a pair of curly brackets will be searched. The second approach to
declare an Object is by using new Object(). The following regular expression is used
to detect patterns of this form of declaration applied to an instance.

([_a-z0-9]+)\s*=\s*new\sObject

Once an object is identified, the algorithm in listing 5.1 is used again to search
for the starting and ending location of its body. For example, in listing 5.3, the first
instance of an object on line 11 exhibits a similar pattern to the literal notation approach
to declare the object. In this case, z = { will be picked up by the first approach’s
regular expression. Then the starting and ending location of the object’s body will be
searched using the algorithm in listing 5.1.

Comments left by developers may exhibit similar patterns to those approaches to
declare an Object. These instances within the comments will be picked up and recorded
by the profiler as well.

When an object is found, the data structure used to store these records is similar to
figure 5.4, except this time only four parameters are stored instead of five. As seen in
figure 5.5, these are the identifier of the object, the starting and the ending location of
the object. The data structure object for the found objects can be accessed in the same

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 158

way as the function’s data structure object. Referring to listing 5.3 as an example, the
first instance of an object on line 11 will be stored as identifier = z, location =

327, start location = 331, end location = 332 in the data structure object.

identifier location start location end location

[0]
[1]
:

[0]
[1]
:

[0]
[1]
:

[0]
[1]
:

Figure 5.5: Data structure to store the objects found in the JavaScript code.

After the methods/functions and objects in the code are found, methods within an
object can be inferred from these two sets of extractions. Methods that are found within
an object can be rightly assumed to be the methods of that object.

Searching for Event Listeners

Event listeners can provide the widget detection process with the link between the
DOM elements that interact with the user, and the set of JavaScript code that handles
the request from the triggering event. With this knowledge, it can be affirmed whether a
widget detected is used in the Web page, thus removing false positive widget detection.

The method to include an event listener is not part of the standard ECMA-262
specification [ECMA-International, 2009]. Commonly, these methods are part of a
JavaScript dialect specific to a Web browser. The differences between the JavaScript
dialects are divided into two main categories: Internet Explorer (IE) and non-IE. Since
most popular websites provide scripts for both of them, only the non-IE scripting such
as the following will be covered.

element.addEventListener(EventType, Handler, useCapture);

Instances of this pattern can be searched within the code using a two-part process.
The first part uses a regular expression such as the following to capture the first instance
of the pattern within the code.

[\(\)\{\}\;\:\s\?\,]([_a-z0-9\.]*)addEventListener\(\s*([a-z0-9’"]+)

\s*,\s*([\w\W]+)

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 159

Since the handler can be either an identifier for a function or an unnamed function
(inline function declaration), it will be difficult to use only regular expression to capture
the handler. The above regular expression will return three sets of data, with the last
one returning the remainder of the code after the argument that specifies the type of
event that triggers the listener. Hence, a second part of the process is required to
analyse the remaining code for the remaining features of the event listener’s detection.
This process uses the following JavaScript code in listing 5.2 to scan through each
character in the string (‘doc’ variable) for the start and the end of the function if an
unnamed function approach is employed. In the case where the function identifier is
used, the search in the remaining code will be aborted and the ‘found’ variable will be
assigned with a boolean value false.

1 / / f l a g t o check i f t h e s t a r t o f t h e method i s found

2 v a r m e t h o d S t a r t = f a l s e ;

3

4 / / Se a r c h method en d i ng

5 f o r (v a r fmedi = 0 ; fmedi < doc . l e n g t h ; fmedi ++)

6 {
7 / / l o c a t e code d e p t h

8 i f (doc [fmedi] == ‘{ ’) / / i f { i s found

9 {
10 / / f l a g t h a t t h e s t a r t o f t h e method i s found

11 m e t h o d S t a r t = (! m e t h o d S t a r t) ? t r u e : m e t h o d S t a r t ;

12 i n s e t ++; / / i n c r e m e n t i n s e t c o u n t

13 } / / i f

14 e l s e i f (doc [fmedi] == ‘} ’) / / i f } i s found

15 i n s e t −−; / / dec remen t i n s e t c o u n t

16

17 / / i f a comma i s found b e f o r e method

18 i f (doc [fmedi] == ‘ , ’ && i n s e t == 0 && ! m e t h o d S t a r t)

19 {
20 found = f a l s e ; / / No method found .

21 /∗ I n d i c a t e endChar so t h a t method i d e n t i f i e r can

22 be l o c a t e d by t h e c a l l e e ∗ /

23 endChar = fmedi ;

24 fmedi = doc . l e n g t h ; / / End loop

25 } / / i f

26 e l s e

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 160

27 found = found + doc [fmedi] ; / / Cache d a t a

28

29 / / i f t h e method i s found and t h e en d i ng i s d e t e c t e d

30 i f (m e t h o d S t a r t && i n s e t == 0)

31 {
32 /∗ S t o r e c u r r e n t l o c a t i o n as e nd in g c h a r a c t e r

33 l o c a t i o n ∗ /

34 endChar = fmedi ;

35 fmedi = doc . l e n g t h ; / / End loop

36 } / / i f

37 } / / f o r

Listing 5.2: Algorithm to deal with complex cases within a function’s input argument.

Notice the variables ‘inset’ and ‘methodStart’ are to help the search process to
determine the depth of the code, and determine if the start of the methods is found
respectively. These variables are important because if ‘methodStart’ is boolean true,
then an unnamed function is found, otherwise a function’s identifier will be assumed.
When an unnamed function is found, the ‘inset’ variable will behave like an indicator
to locate the end of the function. Next, this two-part process is repeated to search for
more instances of the pattern to add event listeners in the remaining code. This is an
iterative process until the string ‘doc’ that contains the code is exhausted. Similar to
the previous detections, patterns within developer’s comments that are similar to those
discussed for the event listeners detection will be picked up by the profiler too.

Finally, the details of the found event listeners are recorded in a data structure
object containing four parameters. As seen in figure 5.6, these are the location of the
event listener, the trigger event, the element to be monitored, and the handler of the
triggered event on the element monitored.

Location Triggering Event Monitoring
Element Handler

[0]
[1]
:

[0]
[1]
:

[0]
[1]
:

[0]
[1]
:

Figure 5.6: Data structure to store the event listeners found in the JavaScript code.

Using the example in listing 5.3, an event listener will be picked up on line 2.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 161

In the data structure object that stores the profile of the event listener, it will look
something like location = 60, triggering event = b, monitoring element

= a, handler = c. Notice that in this case, the triggering event, the monitoring
element and the handler can be variables. Unless it is a Factory Method design pattern
concept, the details of these variables are not crucial for our deduction.

Event Listener’s Factory Method

Quite often event listeners are included in the Web page by calling a function that in-
stantiates the event listeners when required; similar to the concepts of a factory method
design pattern [Gamma et al., 1995]. This technique is commonly used for a variety
of reasons and recording the inferences of this technique will be useful when trying to
infer a widget.

Since the event listener’s factory methods have a transitive relationship between
event listener that is encapsulated within the function, and the function’s callees, de-
termining these instances can only be inferred from our profiled records. Profiles of
functions and event listeners will be analysed to find the qualified candidates.

Checking within the function for event listener declaration can help to decide
whether the event listeners factory method technique is applied. This is done by search-
ing within the profiled functions for a function with a starting location smaller than the
event listener’s location, and ending location larger than the event listener. The segre-
gated function’s input arguments will be compared with the event listener’s triggering
event, element and handler. If at least one of the three parameters matches then a
factory method to declare event listeners is discovered.

After the factory method of the event listeners is found, these details are recorded
in a data structure object containing three parameters as seen in figure 5.7. These
parameters are the identifier of the method in which the factory pattern is housed, the
starting and ending locations of the method.

Referring to listing 5.3 as an example, an inference of an event listener’s fac-
tory method will be made on line 1. This is because the monitoring element,
triggering event and handler of the event listener are the same as the input ar-
guments of function setListen. In this case, the event listener factory method will
record this as follows method’s identifier = setListen, starting location

= 31, ending location = 130.
Callees of the event listener’s factory method are also searched and recorded by

the profiler. This process searches within the JavaScript code for patterns similar to the

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 162

Method's
Identifier

Starting
Location Ending Location

[0]
[1]
:

[0]
[1]
:

[0]
[1]
:

Figure 5.7: Data structure to store the event listeners factory method found in the
JavaScript code.

factory function’s identifier. However, this process will pick up the function declaration
and callees locations. Thus, filters are used to exclude instances with locations similar
to any profiled function’s location.

5.4.3 Widget’s Inference

The “Widget Inferences” block 4© in WPS (see figure 5.2) makes the decision whether
or not a widget is detected at a location, or whether there are sufficient clues that
a widget will exist. To do this the “Widget Inferences” block examines the DOM,
along with the synthesised JavaScript in 2© and the “Code Profiler” block 3© results
to make such a deduction. The deduction for inferring a widget is based on the tell-
signs for each type of widget described in §5.6.1 to §5.6.6. The “Widget Inferences”
block 4© was developed based on the concepts in WIO for each type of widget. A
confidence percentage is awarded for each candidate suspected to aid the prediction if
a widget exists at a location. Therefore, it is not required for all essential tell-signs to
be present to infer a widget. Keywords and content structure can also be used to assist
the prediction process.

When the deductions of the page are done, the “Widget Inferences” block results
will be returned as WPS final decision of the types of widgets and their details (see
figure 5.2). Each results return will consist of the type of widget WPS has deducted, the
confidence percentage of the detection/prediction, and the XPath of where the widget
is located.

5.4.4 Expanding the System

The system’s architecture is designed to be extensible for adding or removing tell-
sign objects and widget’s inferences, and modifying the current processes to detect

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 163

methods, objects and event listeners in the code. Only the inclusion or removal of tell-
sign concepts will be discussed here because modifying existing approaches can be
done by extending the process flow in their respective blocks in figure 5.3. All mining
processes for tell-sign’s objects are executed in the “Tell-sign’s Objects” block as seen
in figure 5.2.

The widget detection process is split into two parts: the first part is in the “Code
Profiler” block and the other part in the “Widget’s Inference” block. Using this method,
all code mining and useful inferences are conducted in the “Code Profiler” block, fol-
lowed by the widget’s derivation in the “Widget’s Inference” block. The reason for
splitting the widget detection process is that, when the system is deducing the type of
widgets and linking them to the DOM element(s) that the user interacts with, there is
no need to return to mine the code whenever inferences are required. Another reason
for splitting the widget detection process is to allow additional tell-sign objects to be
included or excluded whenever required.

Packaging the Tell-signs

Once the JavaScript code for detecting and making inferences that a tell-sign exist is
developed, each tell-sign object must be packaged as a method/function. The packaged
function can be either on the same file as the Tell-sign’s Objects block or residing on a
separate file. In the Tell-sign’s Objects block each tell-sign function will be intercon-
nected, as illustrated in figure 5.8. Thus, a set of input arguments, and an output data
structure should be included.

Integrating the Tell-signs

Integrating the packaged tell-sign’s function with the existing system is done by in-
serting the function’s callee in the “Tell-sign’s Objects” block. As seen in figure 5.8,
each tell-sign will be mined sequentially with some standard input and outputs. Simi-
larly, to remove a tell-sign from the system, the callee of the function must be from the
Tell-sign’s Objects block.

Some necessary arguments will be supplied to every tell-sign object, and some
standard parts/methods within the returned data structure are required. Since every
tell-sign object miner will require the entire set of JavaScript code, this input argument
should be supplied to the tell-sign’s object. If the mining process requires additional
information this can also be requested optionally. The returned output of each tell-sign
object will be compiled and returned as a single data structure. Therefore, the methods

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 164

Tell-sign's Objects

Tell-sign #1

Tell-sign #2

:
:

:
:

Compiled
Results

Web page's
JavaScript

Code

:
:

:
:
:
:

:
:

:
:

Figure 5.8: The architecture and connections of the Tell-sign’s Object Block that is
found in the overall WPS architecture as seen in figure 5.2.

Tell-sign Location Optional
Outputs

[0]
[1]
:

[0]
[1]
:

[0]
[1]
:

Figure 5.9: Data structure to store the tell-signs found in the JavaScript code.

in the data structure object of the compiled results will have a similar structure as
figure 5.9.

The compiled results returned from each tell-sign search should include the type
of tell-sign with which the search was conducted, where in the JavaScript code the
tell-sign exists, and if there are additional parameters that need to be returned with
the results, these should be included as semi-structured data under optional outputs.
In some cases, if the tell-sign search is dependent on the results of another tell-sign,
then tell-signs can be interconnected. In these cases, the sequence of executing the
tell-sign’s objects must be dealt with carefully; the first to execute having the highest
precedence. A skeleton of how the tell-sign detection method should be composed
when scripting in JavaScript is illustrated as follows.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 165

function findTellSignObject (JavaScriptCode)

{

// Search for tell-sign method body

// Return data structure

return {type:Tell-sign,

location:InstanceOfTellSignLocation,

optional:AnyOptionalOutputs};

}

5.5 Evaluating the Profiler

The code profiler is an intermediate stage within WPS. However, it is a crucial phase
to determine the success of the WIMWAT project as we have discussed. A set of
tests designed to examine the accuracy of the profiler was conducted. This evaluation
examines the default page of the top ten Websites selected from Alexa Top 500 Global
Sites2 on 28 February 2011. The selection process for the top ten websites selected
uses a quota sampling method and it is governed by the three rules.

Rule 1: Exclude all sub-domains. For example, google.com, google.co.jp, and
google.de, only google.com will be selected.

Rule 2: Exclude all adult related Websites due to ethical reasons.

Rule 3: Allow only functional Websites to be included in the list.

To determine the performance of the profiler, the results will be compared against
the manual detection results using the same requisite, as well as a human with no prior
experience with the profiler. Since techniques discussed in §5.2.3 can be employed
to include external JavaScript code, Web pages may contain huge sets of JavaScript
code when the entire set of code is downloaded; sometimes this may consist of more
than ten thousand lines of code. In order to cope with the massive size of code during
the manual detection, the concept of evaluating over a subset of code from the top
ten Websites selected is suggested. This step was taken to reduce human fatigue and
ensure the quality of the manual detection. To determine an appropriate size for the
subset, the character sizes of the top thirty most popular Websites’ default pages were

2http://www.alexa.com/topsites

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 166

Websites Character Size
1 google.com 206,505
2 facebook.com 43,320
3 youtube.com 75,712
4 yahoo.com 448,042
5 live.com 39,952
6 blogger.com 30,713
7 baidu.com 12,536
8 wikipedia.org 1,732
9 twitter.com 213,012

10 qq.com 186,074
11 msn.com 97,857
12 sina.com.cn 350,285
13 taobao.com 84,438
14 amazon.com 172,438
15 linkedin.com 276,885
16 bing.com 10,870
17 wordpress.com 151,622
18 yandex.ru 49,298
19 microsoft.com 182,068
20 ebay.com 251,274
21 163.com 115,011
22 mail.ru 240,966
23 paypal.com 224,502
24 fc2.com 257,115
25 flickr.com 1,882
26 apple.com 379,702
27 craigslist.org 101,572
28 imdb.com 156,433
29 sohu.com 680,537
30 bbc.co.uk 19,983

Total 5,062,336.00
Mean 168,744.53

Variance 22,579,260,836.32
Standard Deviation 152,832.77

High 321,577.30
Low 15,911.76

Table 5.2: Character sizes of the default page for the top 30 most popular Websites
ranked by Alexa Top 500 Global Sites selected on 09 March 2011.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 167

Website's Default Page Size Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

>200000

180001-200000

160001-180000

140001-160000

120001-140000

100001-120000

80001-100000

60001-80000

40001-60000

20001-40000

15001-20000

10001-15000

5001-10000

0-5000

Figure 5.10: Website’s default page character size distribution for the top 30 most
popular Websites ranked by Alexa Top 500 Global Sites selected on 09 March 2011.

examined; see table 5.2. These Websites were selected from Alexa Top 500 Global
Sites using the same three rules to govern the selection process.

Examining table 5.2, the character size of a Website from our samples ranged be-
tween 680,537 characters to 1,732 characters. It will be noticed from the compiled
character size of the default pages of the top thirty Websites in figure 5.10 shows that
more than 60% of Websites have default pages with character size larger than a hun-
dred thousand characters. Eleven Websites, which constitute 36.67% of the top thirty
Websites, have default pages containing more than two hundred thousand characters.
Only about 20% of Websites have default pages with twenty thousand characters or
less.

This investigation highlights the magnitude of the size of the JavaScript code that
has to be examined manually. Thus, a manageable subset of JavaScript code for each
Website default page is required. When selecting the size of the subset for the man-
ual detection, it should be large enough to thoroughly evaluate the profiler, and get a

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 168

flavour of the coding style for each Website. Firstly, the computed mean of the sam-
ples is 168,744.53, and then to arrive at the lower limit of character size, the sample
standard deviation of 152,832.77 was also computed. Using these values, a high of
321,577.30 and a low of 15,911.76 character size can be computed.

The subset character size to evaluate the profiler was chosen to be 20,000 characters–
a round figure above the lower limit of 15,911.76 characters computed. Then, to give a
flavour of how the different parts of Websites’ code will affect the evaluation, a break-
down of the results for the subset into 10,000, 15,000 and 20,000 character sizes was
done. This will illustrate the accuracy of the profiler at different parts of the code.

5.5.1 Profiler’s Evaluation Setup

The interim evaluation setup enables the profiler to analyse the subset of the Web
page’s JavaScript code for instances that match the patterns described in §5.4.2. The
findings are recorded and necessary inferences made through records found earlier in
the profiling process. This cycle repeats itself as depicted in figure 5.3 until the whole
process is completed.

In order to understand how the different sizes of characters will affect the code
profiler performance, three sets of data were investigated. The first set evaluates the
profiler with up to 15,000 characters; a figure very close to the lower limit computed.
This investigation will allow us to have an insight into the performance of the profiler
when the character size is close to the suggested lower limit. The second set does it
over 10,000 characters and the third set over 20,000 characters. Both of these tests
will investigate the effects of the character size when it is under or over the suggested
amount.

Using these three sets of test results, we can examine if the character size has
any effect on the profiler’s performance. This evaluation will help to segregate the
investigation process of WPS into phases, such that the earlier phases up to the profiler
phase will be thoroughly tested. Then issues with future phases can be isolated and
addressed without having to deal with the issues faced during this phase.

5.5.2 Profiler Evaluation’s Results and Discussions

Results obtained by the profiler and manual detection are compiled and tabulated in
table 5.3. This table lists the breakdown of items detected from the three tests obtained
by the profiler and manual detection for comparison. A good result was achieved as

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 169

the manual and profiler detection results never differ.
The evaluation uses all the patterns detected and inferences discussed in §5.4.2

and the results obtained are grouped into five general groupings according to the item
detection tested.

Methods This grouping consolidates the different patterns covered to declare a method-
/function.

Objects This grouping consolidates the different patterns covered to declare an object.

Event Listeners Details of all instances of event listener declaration covered are placed
together under this grouping.

Factory Event Listeners Using the profiled results from the event listeners detection
and the function detection, the inference of a factory method is stored under this
grouping.

Factory Callee From the identifier of the inferred factory event listeners detection,
the callees of these functions detected are consolidated under this grouping.

In practice, using the set of code in listing 5.3 as an example, four methods will
be identified on lines 1, 6, 12 and 25, one object on line 11 and an event listener on
line 2. An instance of an event listener’s factory method will be inferred on line 1 with
the identifier called “setListen”, and no instances of the event listener factory method’s
callee will be identified.

1 s e t L i s t e n = f u n c t i o n (a , b , c) {
2 a . a d d E v e n t L i s t e n e r ? a . a d d E v e n t L i s t e n e r (b , c , j) :

3 a . a t t a c h E v e n t (‘ ‘ on ” + b , c)

4 } ; / / f u n c t i o n s e t L i s t e n ()

5

6 s e t U n l i s t e n = f u n c t i o n (a , b , c) {
7 a . r e m o v e E v e n t L i s t e n e r ? a . r e m o v e E v e n t L i s t e n e r (b , c , j) :

8 a . d e t a c h E v e n t (‘ ‘ on ’ ’ + b , c)

9 } ; / / f u n c t i o n s e t U n l i s t e n ()

10

11 v a r z = {} ,

12 A = f u n c t i o n (a , b , c , d) {
13 v a r e = c === u n d e f i n e d ? h : c ,

14 f = c === j ,

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 170

15 g = b && b [0] === c ;

16

17 i f (a i n z)

18 {
19 i f (d === u n d e f i n e d)

20 d = j ;

21

22 v a r l ;

23

24 l = t y p e o f d == ‘ ‘ f u n c t i o n ’ ’ ? d :

25 f u n c t i o n (y) { r e t u r n y === d } ;

26

27 f o r (v a r x = 0 , n ; n = z [a] [x + +] ;)

28 {
29 n = n . a p p l y (i , b | | []) ;

30

31 i f (f)

32 e = e | | n ;

33 e l s e

34 {
35 i f (g)

36 b [0] = n ;

37

38 e = n ;

39

40 i f (l (e))

41 r e t u r n e

42 } / / e l s e

43 } / / f o r

44 } / / i f

45 i f (t y p e o f d == ‘ ‘ f u n c t i o n ’ ’)

46 r e t u r n c ;

47

48 r e t u r n e

49 } ; / / f u n c t i o n A()

Listing 5.3: Example JavaScript code

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 171

Methods

Objects

EventListeners

FactoryEventListeners

FactoryCallee

W
eb

si
te

s

Auto10K

Manual10K

Auto15K

Manual15K

Auto20K

Manual20K

Auto10K

Manual10K

Auto15K

Manual15K

Auto20K

Manual20K

Auto10K
Manual10K
Auto15K
Manual15K
Auto20K
Manual20K
Auto10K
Manual10K
Auto15K
Manual15K
Auto20K
Manual20K
Auto10K
Manual10K

Auto15K

Manual15K

Auto20K

Manual20K

1
go

og
le

.c
om

60
60

10
8

10
8

14
1

14
1

19
19

25
25

29
29

1
1

1
1

1
1

1
1

1
1

1
1

0
0

1
1

2
2

2
fa

ce
bo

ok
.c

om
34

34
56

56
88

88
12

12
15

15
17

17
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

yo
ut

ub
e.

co
m

18
18

26
26

43
43

0
0

3
3

3
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
ya

ho
o.

co
m

38
38

71
71

93
93

12
12

19
19

21
21

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5
liv

e.
co

m
0

0
0

0
0

0
1

1
2

2
3

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
6

bl
og

ge
r.c

om
2

2
4

4
4

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
7

ba
id

u.
co

m
69

69
86

86
86

86
6

6
6

6
6

6
3

3
3

3
3

3
2

2
2

2
2

2
8

8
13

13
13

13
8

w
ik

ip
ed

ia
.o

rg
8

8
8

8
8

8
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
3

3
3

3
3

3
9

tw
itt

er
.c

om
34

34
56

56
78

78
3

3
6

6
9

9
0

0
1

1
1

1
0

0
1

1
1

1
0

0
1

1
1

1
10

qq
.c

om
32

32
48

48
68

68
8

8
8

8
8

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Ta
bl

e
5.

3:
C

om
pi

le
d

ev
al

ua
tio

n
re

su
lts

br
ea

kd
ow

n
fo

r1
0,

15
an

d
20

th
ou

sa
nd

ch
ar

ac
te

rs
co

m
pa

ri
so

n
be

tw
ee

n
th

e
C

od
e

Pr
ofi

le
rr

es
ul

ts
(A

ut
o)

an
d

m
an

ua
ld

et
ec

tio
n

re
su

lts
(M

an
ua

l)
.T

he
fu

ll
ex

te
nt

of
th

e
re

su
lts

ca
n

be
fo

un
d

in
A

pp
en

di
x

B
,C

,D
.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 172

In table 5.3, under each item detection’s evaluation column, six sub-columns are
aligned such that the profiler results (Auto) and the manual detection results (Manual)
for the different character sizes can be compared. Using google.com as an example,
the number of Methods/Functions detected when evaluating over 20 thousand (20K)
characters for the profiler and manual detection, both results yielded 141 instances.
Moreover, the profiler identified more instances of Methods/Functions in the 20 thou-
sand (Auto 20K) characters test than the 15 thousand (Auto 15K) characters test. The
full extent of the profiler’s evaluation results can be found in Appendix B, C, D for tests
conducted with 10 thousand, 15 thousand and 20 thousand character size respectively.

Examining the Methods column in table 5.3, it can be seen that the profiler has
managed to identify as many items as the manual detection. This trend continues
for all components evaluated except the Event Listeners test. As the character size
increases, more items are also identified and no signs of error detection were noticed
for the Methods, Objects and Factory Callee tests.

Since only part of the Website’s JavaScript source code is evaluated for most of
these sites, these results do not reflect the true results of the individual sites. The
purpose of the evaluation is to check the accuracy and integrity of the profiler, so that
problems with the other blocks of WPS can be isolated. However, due to the relatively
small size of wikipedia.org JavaScript code–1,732 characters as shown in table 5.2,
the entire Website default page’s JavaScript source code is evaluated. This is because
even for the 10 thousand (10K) character size evaluation, this is larger than the entire
wikipedia.org default page’s JavaScript character size. Thus, the results remain the
same throughout all the five items detection tests.

The results from the profiler and the manual detection returned very similar values
as seen in table 5.3, and the overall computed values for “Total items mined” column in
table 5.4. These figures provide a good coarse indication to highlight issues pertaining
to the profiler’s detection method. However, they are not fine-grain enough to pick up
the specific problems.

Another parameter is used to check the integrity of the results between the profiler
and manual detection results. This test is known as the similarity score where the per-
centage difference between the correct profiler results and the actual results is identified
by manual detection. The computational process for the similarity score illustrated in
equation 5.1 first sums both the correct items detected by the profiler and actual items
identified by the manual detection individually, before computing the percentage dif-
ference. Since every result’s item will have its distinct features (ItemsFeatures) that

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 173

differ them from the previous, the summation processes of the correct and actual re-
sults follow the same steps to compute the individual features for their respective re-
sults. Using the test, we will be able to capture the depth of the profiler’s accuracy by
examining the detailed features of each result.

Similarity =
∑n (CorrectItems[n]+∑iCorrectItemsFeatures[n][i])
∑n (ActualItems[n]+∑i ActualItemsFeatures[n][i])

(5.1)

The similarity test is a value between zero and one that checks for the soundness
of every item picked up by the profiler. A point is given for every item found and for
every correct feature belonging to that item. Using this scoring system, comparing
the summed score achieved by each item will give the accuracy of the detection. For
example, when verifying the Methods detection results, every item identified by the
profiler will consist of five features: the Method’s identifier, the Method’s location,
the Method body’s starting location, the Method body’s ending location, and the input
arguments to the Method. Thus, if a Method is detected correctly, it will score 6 points.
Every Object detected will consist of four features: the Object’s identifier, the location
where it is spotted, the beginning and ending location of the Object’s body. A total of
5 points will be awarded if the Object is detected correctly.

The Factory Event Listeners detection has a transitive relationship to the latter Fac-
tory Callee detection, and the former Event Listeners detection. Thus, the Event Lis-
teners detection test will include four features: its location, the element’s name that
the listener is monitoring, the handling function, and the triggering event. The Factory
Event Listeners detection test consists of two features: the factory method’s identifier
and the factory method’s location, and the Factory Callee detection test consists only
of the locations of where the factory’s callee(s) is/are found.

Using listing 5.3 to illustrate the similarity scoring computation for Methods eval-
uation, the first method item recorded on line 1 will be inspected. The features of the
items will be checked. It will score a point for identifying it, another point for the
correct location found, 2 points for correct start and end locations respectively, and 3
points for correctly identifying the three input arguments. A total of 7 points will be
awarded to this record if all features are detected correctly. This is an iterative process
that repeats itself until all the items detected by the profiler are computed.

Concurrently, another actual score similar to the correct score is also computed.
The actual score sums all the items and their features, whether they are correct or not,

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 174

then as seen in equation 5.1, it divides the correct score by the actual score to compute
the similarity score for each Website for each set of evaluations as seen in table 5.4.

Total items mined Similarity

Websites A
ut

o
10

K

M
an

ua
l1

0K

A
ut

o
15

K

M
an

ua
l1

5K

A
ut

o
20

K

M
an

ua
l2

0K

10K 15K 20K

1 google.com 81 81 136 136 174 174 1.0 1.0 1.0
2 facebook.com 46 46 71 71 105 105 1.0 1.0 1.0
3 youtube.com 18 18 29 29 46 46 1.0 1.0 1.0
4 yahoo.com 50 50 90 90 114 114 1.0 1.0 1.0
5 live.com 1 1 2 2 3 3 1.0 1.0 1.0
6 blogger.com 2 2 4 4 4 4 1.0 1.0 1.0
7 baidu.com 88 88 110 110 110 110 1.0 1.0 1.0
8 wikipedia.org 13 13 13 13 13 13 1.0 1.0 1.0
9 twitter.com 37 37 65 65 90 90 1.0 1.0 1.0
10 qq.com 40 40 56 56 76 76 1.0 1.0 1.0

Table 5.4: Overall evaluation results for 10, 15 and 20 thousand characters comparison
between the Code Profiler results (Auto) and manual detection results (Manual), as
well as the similarity scoring between both sets of results.

Table 5.4 list the computed Similarity score for the different sets of character size
evaluated for the correct results between the profiler and manual detection, and the
actual results collected by the manual detection for each Website. For this evaluation
the similarity score for all tests scored 1.0. These results demonstrated that the profiler
achieved a 100% detection accuracy of what it was set up to do.

The total items of mined results listed in table 5.4 demonstrated that more items
were discovered when the sample character size increased. This result is expected for
Websites that has JavaScript code with character size larger than the evaluated sample
character size. In the case of wikipedia.org, because even the smallest evaluated
character size is larger than the Website’s JavaScript code character size, it returned the
same results constantly. These results prove that the profiler is a reliable platform for
conducting the next investigation phase of our widget identification research, inferring
the tell-signs from the profiler’s results.

The optimal character size sufficient for evaluating Web pages depends on the type
of the Websites chosen for the evaluation. In our case, although the suggested size is

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 175

16 thousand characters, table 5.4 results demonstrated that the variance of 30% has
no impact on our evaluation results. The results demonstrated that using the standard
deviation method to arrive at the lowest amount of characters for evaluation is adequate
for this type of investigation.

5.6 Techniques to Predict Widgets

In this section, the techniques applied to predict all seven widgets in the ‘Widget In-
ferences’ block 4© figure 5.2 are presented. A confidence percentage is awarded for
each widget inferred in the page. Using this value, inferred widgets that do not have
all the components available can also be included in the inference process. Then, the
widget inference process will use the confidence percentage to predict widgets that are
partially available in the source code. The rationale behind the confidence percentages
is to provide a weighting to measure how confident the system is when predicting a
candidate for a type of widget. This parameter not only allows fine-tuning to the ap-
proach, but also lays the foundation for incorporating machine learning algorithms into
our approach in the future.

Every component and tell-sign is awarded a confidence percentage when it is in-
ferred or found. This percentage will be computed as part of the confidence percentage
for the widget. To demonstrate how these concepts can be applied, a simple approach
to distribute the percentages evenly was used. However, often the tell-sign may re-
quire more than one clue to determine its existence. In such a situation, the percentage
awarded to the tell-sign is further evenly distributed among the key clues that determine
the tell-signs. Since developers can apply numerous coding styles to deliver a concept,
the similar process of evenly distributing the percentage is repeated for sub-processes
concepts. In cases where no clues for a tell-sign are found, keywords are used to pro-
vide clues. Since keywords are language dependent and they are not a concrete method
to assume that the concepts of a clue exist, a small amount of percentage is awarded –
starting with 10%. Depending on the concepts of the clue the keyword determines, the
percentages are evenly distributed and rounded down, as the concept is sub-divided.
This approach of distributing the percentages may not be the best approach, but since
this is only a demonstration of our framework concepts, this basic approach is used.
Future work could focus on the possibility of implementing a feedback loop, as well as
Machine Learning techniques, to improve the accuracy when using the WPF approach
by modulating the Confidence Percentages.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 176

5.6.1 Ticker Widget Tell-Signs

The components and processes that dominate the classification of a Ticker widget are
the timer and the ability to automatically display the next set of content after each
interval, as described in §3.3.11. Due to the issues relating to Window Timer (see
§5.1.3), techniques to trace for Window Timers will be required before a Ticker widget
can be determined, or other techniques will be required to spot the areas in the Web
page where they change constantly.

Ideally, as described in listing 3.23, the main component and processes to deter-
mine a Ticker widget require tell-signs such as WindowTiming, GoToStartOfList,
CheckEndOfList and Increment to exist. Conversely, tracing for Window Timers in
the source code can be difficult, consume a lot of computing power, can take a very
long time to sniff through the code and issues such as those raised in §5.1 and §5.2,
can all contribute to the failure of detecting this component. Therefore, we approach
this issue by determining the areas in the Web page where it changes constantly, and
examine these areas for clues that exhibit signs of a Ticker widget.

After WPS is activated and the page is loaded, a Listener is injected to monitor
the change in DOM tree modification. At this stage two scenarios can happen. The
first scenario is when the DOM tree mutates; this event will trigger the Ticker widget
detection process to begin. The second scenario is if nothing happens. In order to free
WPS from endlessly monitoring the DOM for a change, a 15 seconds Window Timer is
also injected to clear the event monitoring process if nothing happens after 15 seconds,
and make a decision whether any Ticker widget exists in the page.

Conceptually, the Ticker widget is composed of 3 components: display window,
triggering mechanism and content manipulation mechanism. Thus, if each of these is
found, 30% confidence will be awarded while leaving 10% confidence for keywords
detected. When the Ticker widget detection process is triggered, the content in el-
ements that have changed will be considered as the candidate elements, and a 40%
confidence will be awarded to them. Checks for the type of content within the candi-
date element’s opening and closing tags will be conducted on every suspected candi-
date. The 40% awarded is composed of the detection of the Display window (30%)
and the detection of linking the Triggering mechanism to the Display window (10%).
The Trigger mechanism is usually a Window timer with a handler that points to a set
of code. However, in this case only a linkage to a Window timer can be identified.
The actual instance of the Window timer (10%) and triggering factor (10%) has not
been determined. Since a Ticker widget’s content is commonly text based, we check

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 177

the content of the element for multimedia objects. Tag names such as img, applet,
embed, object, param are considered as multimedia objects. If none of these tags are
found 30% confidence is awarded to the candidate element.

If no multimedia objects are found within the element, keywords such as ‘ticker’,
‘marquee’, ‘scroller’ or ‘flasher’ will also be searched to improve the detection con-
fidence. When any of these words are found, 5% confidence will be awarded. Since
multimedia objects are partial concepts of an increment tell-sign, the existence of these
keywords is only awarded half of the full 10% awarded to keywords detected.

In the case where the <marquee> element is found within the page, this element
will be given the highest detection confidence (100%) since this type of element was
originally created for scrolling content across the page. This detection process is in-
cluded to cover Web pages that are scripted using popular, but non-standard HTML
elements.

5.6.2 Popup Content Widget Tell-Signs

Visually, the Popup Content and Collapsible Panel widget are different widgets, as
seen in figures 3.14 and 3.13 respectively. However, developing these types of widget
is very similar in concepts, and our detection methods for them are very similar as
well.

In this section the processes used to detect the Popup Content widget are presented.
Figure 5.11 illustrates the process flow and decisions taken to detect the Popup Content
widget. Note that the process flow presented is conducted to all candidate elements
identified during the detection process.

Conceptually, the Popup Content widget consists of 4 main components with Con-
fidence Percentages distributed evenly. These components include a Display Window
(25% confidence), a button (25% confidence), a triggering mechanism (25% confi-
dence) and the visual effect to make it float (25% confidence). However, if either of
the UI components: Display Window and button, are not found, 10% confidence is
awarded for keywords that gave clues of a button, and 10% confidence is awarded for
keywords that gave clues of a floating Display window.

When an event listener is created, most major Web browsers often record the cre-
ation of the listener’s instance along with its related details. We can search in the
interfaces component management to examine all the recorded event listeners created.
In Firefox, this service is provided by including the following,

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 178

Get elements with styling
property Z-Index > 10

Is candidate element
related to an element with

Z-index > 10?

Initial Popup Content
and Collapsible Panel

widget detection

Get candidate elements
monitored by a listener

with mouse event
Get candidate elements

with tag name <a>

End

Does the candidate
elements manipulate the
style of elements with the

property 'visibility'?

Yes No

No

Yes

Does the candidate
elements manipulate the
style of elements with the

property 'display'?

No

Yes

Check for matching
generic keywords

Does the candidate
elements has any Popup
Content widget related

keywords?

Does the candidate
elements has any

Collapsible Panel widget
related keywords?

Yes
Yes

No
No

Check for matching
generic keywords

Return derived
results for Collapsible

Panel widget

Return derived
results for Popup
Content widget

Figure 5.11: The final WPS Popup Content and Collapsible Panel widget prediction
process flow for each candidate.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 179

Components.classes["@mozilla.org/eventlistenerservice;1"].

getService(Components.interfaces.nsIEventListenerService)

This service records the details about the event listeners and scripts relating to the
element. However, not all details are always recorded well. Elements with tag name
Anchor <a> or an element that is monitored by a listener for mouse events such as
‘onclick’, ‘onmouseover’ and ‘onmouseout’ are considered as candidate elements at
the start of the process. These elements are then analysed if any neighbouring ele-
ments have styling property z-index set to more than 10. The confidence percentages
awarded for these clues found are: 10% confidence for qualifying to be a candidate
element (UserTriggerObject component), and 20% confidence for styling property
z-index is more than 10, and will meet the SetDOMElementOrderHigh tell-sign re-
quirements.

The styling property z-index allows the developers to work with different visual
layers overlaid on top of each other - where the larger the number the closer the lay is
to the user, while the smaller the number the lower the layer is. To extract the z-index
values of the element, because this value is not always available immediately after the
page is loaded, the following regular expression is employed to search for patterns that
the z-index property is assigned and extract its value.

z\-index\s*:\s*[1-9][0-9]+[;\}\s]{1}

To avoid the complication when detecting whether developers employ remote script-
ing techniques to deliver the content, our technique instead analyses the envelope el-
ements for clues. This is done through analysing the candidate elements for scripting
code that manipulate the visibility styling property value to either none, block or
inline-block, so that the element will be visible to the user or not. When found, this
evidence will be awarded with 20% confidence.

Since WAI-ARIA 1.0 became a candidate recommendation in January 2011 [Craig
et al., 2009], on rare occasions, anecdotal evidence highlights WAI-ARIA attributes
are applied to Websites. For developers to be able to apply these techniques, the de-
veloper’s intention to develop a piece of code is presented in the code. Thus, for
Web pages that use WAI-ARIA, the candidate elements with WAI-ARIA attribute
aria-haspopup are given an additional 30% confidence. This is because it shows
that the developer intends this set of code to popup some content.

The remaining confidence percentage is added up via keywords for the different
components, generic keywords for Popup Content and Collapsible Panel widgets, and

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 180

more specifically for a Popup Content widget. Because this evidence is language de-
pendent and does not necessarily translate to factual evidence of a tell-sign, the per-
centages for each of these instances are much lower.

5.6.3 Collapsible Panel Widget Tell-Signs

Using the definition of WIO, listing 3.8 shows the components that form the Collapsi-
ble Panel widget. Similar to the Popup Content widget, elements Anchor <a> tag name
or an element that is monitored for mouse events such as ‘onclick’, ‘onmouseover’ and
‘onmouseout’ are included in the list of candidate elements for further examination.

As seen in figure 5.11, most of the processes are similar to the Popup Content wid-
get, except this time candidate elements that have processes in the code that manipu-
late the display styling property to affect the changes to the appearance of content are
searched. This is because the display styling property, unlike the visibility styling
property, will remove the space within the page instead of only hiding the content in
the element.

The confidence percentages for each of these pieces of evidence are awarded on the
same scale with the Popup Content widget since the detection processes are quite sim-
ilar. Thus, similar to the Popup Content widget, the remaining confidence percentage
is added up via keywords for the different components, generic keywords for Popup
Content and Collapsible Panel widgets, and more specifically for Collapsible Panel
widget. Since this evidence is language dependent and does not necessarily translate
to factual evidence of a tell-sign, the percentages for each of these instances are much
lower.

The keywords used to enhance the Display Window detection are mainly divided
into two types. The first type is generic to both the Popup Content and Collapsible
Panel widget. These keywords include ‘panel’ or ‘content’, and when found 2% con-
fidence is awarded for either of these words found. This is because these keywords
only partially provide clues that the Display Window for the Collapsible Panel wid-
get exists. The second type is specific keywords to Collapsible Panel widget. These
words, which include ‘offsetHeight’ or ‘offsetWidth’, are awarded 5% confidence, and
if words like ‘expand’ or ‘shrink’ or ‘contract’ or ‘enlarge’ or ‘collapsible’ or ‘drawer’
are also found, they will be awarded 10%.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 181

Get candidate elements
with attribute

'autocomplete' set to 'off'

Is candidate element
monitored by a listener for

keyboard events or
changes to the element?

Initial ASL widget
detection

Return Deduction
Results End

Yes

NoCheck for matching
keywords

Check if candidate
elements are related to

any Popup Content
widget

Figure 5.12: The final WPS Auto Suggest List (ASL) widget prediction process flow
for each candidate.

5.6.4 Auto Suggest List (ASL) Widget Tell-Signs

The Auto Suggest List (ASL) widget is considered to be a simpler type of widget which
was used in our feasibility study in chapter 4. However, challengers with false positive
detection were highlighted in the study. In this section, the techniques applied to our
detection methods are presented, and refinements to the previous techniques used in
our feasibility study are discussed.

Figure 5.12 provides a visual illustration for the process flow of the detection meth-
ods employed in detection of the ASL widget. The ASL widget consists of 2 main
components with equal weighting: the triggering mechanism (50%) and the Display
window (50%). The triggering mechanism is composed of 2 parts: the triggering el-
ement and a visual mechanism to make the Display Window float. To recommend
bespoke suggestions from the content entered by the user, a common practice is to
prepare the text field by turning off the autocomplete attribute. Thus, elements with
attribute autocomplete set to ‘off’ are considered as candidate elements for further
analysis. If instances of the pattern autocomplete set to ‘off’ are found, 25% confi-
dence is awarded to the candidate element.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 182

Then the candidate elements are checked if they are monitored for changes or key-
board events such as keypress, keyup, keydown. Candidate elements with this event
monitored will be awarded 30% confidence towards their overall confidence percent-
age.

Checking for a list that will contain the suggested items was found to be more
deceptive than originally thought, since WPS will be activated immediately after the
page is visually loaded, and before the user will interact with the page. Thus, the list
of suggested items will be either empty or the list elements will not be available at that
time. This challenged us to seek for other alternatives such as looking for the Popup
Content widget identified in the neighbouring elements and keywords that provide
clues that such an instance may exist. Indeed, searching for instances of manipulating
the table/list is a key process in ASL widgets, but the purpose of this task normally
updates the suggested content presented in a Popup Content widget or a Collapsible
Panel widget. Using the concepts of detecting Popup Content and Collapsible Panel
that has resulted from a change event from a text field, can also achieve the same
objectives. In this case, detecting the conceptual processes rather than the physical
code processes is employed to refine our detection.

If a candidate element is related to the records identified by the Popup Content and
Collapsible Panel widget detection, then a further 25% confidence is awarded. The
records (candidate elements) from the Popup Content and Collapsible Panel widget
detection, used for the comparison, do not need to meet the threshold confidence per-
centage assigned for these widgets. This is because the suggested list presented in the
ASL widget is often wrapped within a Popup Content and Collapsible Panel widget.
However, it will not fulfil all the requirements of either a Popup Content or Collapsible
Panel widget.

5.6.5 Tabs Widget Tell-Signs

Commonly, the technical concepts of the Tabs widgets are formed by two list sets. The
first list displays the available tabs, while the other list contains the content of each tab.
As described in listing 3.19, the concepts of three main components are used to define
the Tabs widget: Display Window (normally this is the list that contains the content of
each tab), Hide Content process, and User Trigger Object (list containing the available
tabs). These tabs are awarded 30% confidence each. When manually coding these
concepts, additional steps are required to materialise them. Figure 5.13 illustrates the
process flow and decisions to detect the Tabs widget.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 183

Check if candidate
elements is sibling to any

other candidate
elements?

Initial Tabs widget
detection

Return Deduction
Results End

Yes No

Get candidate elements
monitored by a listener

with mouse event

Check for matching
keywords

Check if candidate
elements manipulate the
styling property 'display'

Check if candidate
elements is formed in a

list structure

Figure 5.13: The final WPS Tabs widget prediction process flow for each candidate.

The process begins with identifying the elements with either Anchor <a> tag name,
or elements that are monitored by listeners for mouse events such as onclick and
onmouseover. These are traits that provide clues that the list displaying the available
tabs may be present. All candidate elements identified as the UserTriggerObject

component are initially awarded 10% confidence for associating themselves with traits
that may react to certain processes when mouse events are applied to them. However, to
determine it is the list that displays the available tabs, a list structure (10% confidence),
and a linkage to another list (10% confidence) is required.

Usually a Tab widget will consist of more than one navigation link to different sets
of content. Therefore, a check is put in place to examine other candidate elements if
they are related to the existing candidate element via a list structure, or if they are in
the neighbourhood up to 3 degrees separation. For either of the instances found, a 10%
confidence will be awarded to the candidate elements for each relative found, and up
to a maximum of 2 relatives will be awarded.

Since the Tabs widget often reuses the same space within the page to present the
content of a different tab, investigation to search for clues of these candidate elements
uses scripting code to manipulate the display styling property. This detection tech-
nique was employed because it does not matter whether the developer preloads the
content or loads the content on the fly via remote scripting methods. In this case we

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 184

are examining the container of the tab content instead. If these types of instances are
found, 10% confidence will be awarded and the HideDOMElements tell-sign.

For developers who comply to WAI-ARIA guidelines and provide the tabindex

attribute, 20% confidence will be awarded to the candidate elements. A further 30%
confidence will be awarded if the elements are arranged in a list structure. The fol-
lowing regular expression is employed to detect for patterns that exhibit this form of
structure.

\/(ul|ol|dl)(\[.*?\])?\/(li|dt|dd)(\[.*?\])?(\/a)?(\[.*?\])?$

This regular expression includes a number of list formations such as ,
and dl, where the Anchor <a> tag can be present or absent within the list during the
detection.

Once again, keywords are employed in the Tabs widget detection to enhance the
detection process. As we mentioned before, because keywords are language dependent
and do not necessarily reflect the true concept of the developers, a lower percentage
is given for each test that is found. Here words such as ‘tab’, ‘nav’, ‘folder’, ‘panel’,
‘section’, ‘selected’ will be awarded with 10% confidence when this test is true.

5.6.6 Carousel and Slide Show Widgets Tell-Signs

Both the Carousel and Slide Show widgets are conceptually and visually similar, and
they are often confused with each other. Thus, we will discuss the detection for these
two widgets together. In this section, we present the processes and decisions to detect
the two types of widget. Figure 5.14, illustrate the overall process flow and decision to
detect and distinguish between the two types of widget.

The Carousel and Slide Show widgets are very similar widgets as defined in §3.3.4
and §3.3.9. Thus, we will discuss both of these widgets together, and point out their
differences in this section. Conceptually, these widgets are composed of 4 main phys-
ical components: Display window (20% confidence), Next button (20% confidence),
Back button (20% confidence) and Display Pointer (20% confidence). The process of
looping or terminating the list of content is awarded 20%, because it is a main process
component to distinguish between the Slide Show and Carousel widgets. Notice that
the weighting of the Confidence percentage is distributed evenly among the 5 main
components again.

At the start of the detection process, elements with Anchor <a> tag names and ele-
ments that are monitored for mouse events such as ‘onclick’ and ‘onmouseover’, will

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 185

Initial Carousel and
Slide Show widget

detection

Return derived
results for

Slide Show
widgets

End
Yes

No

Yes

'Next' button?'Back' button?

Get candidate elements monitored
by a listener with mouse event and

elements with tag name <a>

NoNo

Does button
loop around

the list?

Yes

Return derived
results for
Carousel
widgets

Check for
matching
keywords

Check for
matching
keywords

Return derived
results for

Slide Show
widgets

Does button
loop around

the list?

Return derived
results for
Carousel
widgets

Check for
matching
keywords

Check for
matching
keywords

No Yes

Search for
neighbouring
finite 'Next'

button

Yes Yes Yes Yes

Search for
neighbouring
looping 'Back'

button

Search for
neighbouring
finite 'Back'

button

Search for
neighbouring
looping 'Next'

button

No No No No

Figure 5.14: The final WPS Carousel and Slide Show widget overall prediction process
flow for each candidate.

be selected as candidate elements for closer examination. Then, two tests to identify
which candidate elements are ‘Next’ or ‘Back’ (‘Previous’ button) buttons. Combin-
ing candidate elements that are related, and one detected as the ‘Next’ button, and
the other as the ‘Back’ button, we can begin filtering the buttons that are finite or
looping together. Through this evidence, Loop NextButton, Loop PreviousButton,
Finite NextButton and Finite PreviousButton components can be discovered
from the source code.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 186

Begin 'Next' button
detection

End

Yes

No

Finite 'Next'
button

Loop 'Next'
button

Find "+="
pattern

Find "+" or
"++" pattern

No Search for keywords
'more' or 'next' or 'right'
or 'down' or 'increment'

No

Does source code have
conditional statements with
patterns that check for the

end location of the list?

Yes
Yes

Yes

No

Within the body of the
conditional statements, are
there patterns that assign

the start location of the list?

No

Check for
matching
keywords

Yes

Check for
matching
keywords

Figure 5.15: The final WPS Carousel and SlideShow widget ‘Next’ button prediction
process flow for each candidate.

Next Buttons

Described in listing 3.4 and 3.17, both types of widget have controls that consist of
very similar features. However, in this section, the ‘Next’ button feature will be dis-
cussed in more depth using figure 5.15 to illustrate the process flow and decisions for
determining whether the element is a ‘Next’ button.

The related source code of the candidate elements are examined to determine if +=
or + or ++ patterns exist at the beginning of this leg of the analysis. When either of
these patterns is found, a 20% confidence is added. However, if none of the patterns are
found, keywords ‘more’, ‘next’, ‘right’, ‘down’ and ‘Increment’ are searched. If either
of the previous checks is true, then the element is considered as a candidate element.

Next, the related source code of the candidate elements is examined for patterns
that conditional statements are included by developers to check if the widget has
reached the end of the list. Since the ‘Next’ button feature allows the user to transverse
forward in the list, the system searches for clues that the Display Pointer is redirected
to the start of the list of content. The following regular expression is used to search for

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 187

a conditional statements pattern that checks if the widget has arrived at the end of the
list. This regular expression includes conditional operations ==, ===, >, >=, < and <=.

\([ˆ\{;]+?(((\={2,3}|>|>\=)\s*\.*?(length|end|last|finish|max))|

((length|end|last|finish|max)\s*(\={2,3}|<|<\=)))

If the conditional statement pattern is found, 10% confidence is added and the
CheckEndOfList tell-sign is determined. Since these clues are only evidence of half
of the looping process, the encapsulated code within the body of the conditional state-
ments is examined for patterns that the developer has programmed the assignment to
the start of the list. Commonly this pattern will be found for looping buttons. For this
examination, it will consist of two tests, the first consisting of the following regular
expression.

\=.*?(start|begin|0|1)[\s\n;\)\]]

When found, another 10% confidence will be awarded. Otherwise, if the sec-
ond test for the loop keyword is found, it will be awarded 10% confidence and the
GoToStartOfList tell-sign is derived. If none of these tests pass, the button will
be assumed to be finite and a 5% confidence will be added, and the GoToEndofList

tell-sign will be assumed to be found.
Whether either of the checks is found or not, a check to match keywords that may

resemble a finite or looping ‘Next’ button is conducted to improve the detection confi-
dence percentage. The searching for keywords also helps candidates that do not have
sufficient evidence to derive from any of the tell-signs. Through these little clues,
available from the source code, when possible assumptions can be made.

Back/Previous Buttons

The ‘Back’ or ‘Previous’ button is similar to the ‘Next’ button except it is conceptually
opposite. In this section, the ‘Back’ button feature will be discussed in more depth
using figure 5.16 to illustrate the process flow and decisions for determining whether
the element is a ‘Back’ button.

To begin, this time the following patterns -= and - and -- are used for the initial
pattern searches instead. Then, the keywords search to determine the ‘Back’ or ‘Previ-
ous’ buttons employs words like ’less’, ’prev’, ’left’, ’back’, ’up’ and ’decrement’.

Conditional statements to check if the widget has reached the start of the list are
searched for this time. This search is done using the following regular expression that
includes conditional operations such as ==, ===, >, >=, < and <=.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 188

Begin 'Back' button
detection

End

Yes

No

Finite 'Back'
button

Loop 'Back'
button

Find "-="
pattern

Find "-" or
"--" pattern

No
Search for

keywords 'less' or
'prev' or 'left' or
'back' or 'up' or

'decrement'

No

Does source code have
conditional statements with
patterns that check for the
start location of the list?

Yes
Yes

Yes

No

Within the body of the
conditional statements, are
there patterns that assign

the end location of the list?

No

Check for
matching
keywords

Yes

Check for
matching
keywords

Figure 5.16: The final WPS Carousel and SlideShow widget ‘Back’ or ‘Previous’ but-
ton prediction process flow for each candidate.

\([ˆ\{;]+?(((\={2,3}|<|<\=)\s*\.*?(start|begin|first|min|0|1))|

((start|begin|first|min|0|1)\s*(\={2,3}|>|>\=)))

When found, 10% confidence will be awarded. Since these clues are only evidence
of half of the looping process, the system searches for clues that the Display Pointer is
redirected to the start of the list of content. Next, the body of the conditional statements
is examined to find clues that assignation to the end of the list for a loop button is
found. Two tests are used for analysing this task, with the following regular expression
employed for the first test.

\=.*?(end|last|length|max)[\s\n;\)\]]

When the pattern is found, 20% confidence will be awarded, while – if the sec-
ond test for the loop keyword is true – it will be awarded 10% confidence, and the
GoToEndOfList tell-sign is derived. If none of these tests pass, the button will be
assumed to be finite and a 5% confidence will be added, and the GoToStartofList

tell-sign will be assumed to be found.

CHAPTER 5. PREDICTING WIDGETS ON A WEB PAGE 189

Finally, all candidate elements will be checked for keywords that may resemble a
finite or looping ‘Back’ or ‘Previous’ button. The searching for keywords also helps
candidates that do not have sufficient evidence to derive from any of the tell-signs.
Through these little clues available from the source code, when possible, assumptions
can be made.

5.6.7 Limitations

With every approach there are strengths and weaknesses. In this section, the limitations
of the prediction methods and approaches chosen are discussed. Often keywords are
applied to improve the different widget prediction approaches. Using keywords is
not the core method in an approach; they are included to improve prediction rates in
cases where instances of tell-signs are not available. We acknowledge that this method
is language dependent, but the terms used are generic to the widget concepts, and
anecdotal evidence suggests that these terms are used widely across most languages.
Further research can be done to analyse the impact of this method on the prediction
approach.

5.7 Summary

Expanding our approach is not direct due to the additional types of widget and the
diverse nature of them. In this chapter, we have covered the techniques and refinements
applied to solidify the detection concepts of the different types of widget. Challenges
with analysing the Web page source code, and the techniques introduced to overcome
these issues, as well as the issues raised in chapter 4 – Feasibility Investigation for
Using Tell-Signs are discussed. The final set of tell-signs private to all seven types
of widget, and common tell-signs shared between the different types of widget, can
be found in Appendix E. Furthermore, a confidence percentage for each widget was
introduced to aid the prediction. The percentage will indicate how confident WPS is
when predicting widgets.

Future research could explore other techniques to distribute the confidence per-
centages. An avenue could investigate how these values will affect the detection rates.
Finally, an evaluation of our approach is presented in the next chapter to test and expose
the spectrum of the prediction coverage and its weaknesses.

Chapter 6

Widget Prediction Evaluation

In this chapter, the approaches applied in WPS are evaluated in the broader Web, where
Websites selected from Alexa’s Global Top 500 sites on the Web1 list were used in our
evaluation. The selection methodology for our evaluating data set and the evaluation
methodology are also presented.

The approaches presented in chapter 3 provide a mode to model and classify dif-
ferent types of widgets. These concepts are then applied to our widget prediction
approach by identifying the instances or code constructs of tell-signs from the Web
page source code. Using a combination of tell-signs, the components for a type of
widget can be derived from this evidence, which will be conceptually deducible in the
“Widget Inferences” block (see figure 5.2) to predict the widget. In chapter 5, the tech-
nical details of our approach and the techniques employed were discussed, while fine
tuning of the methods that were highlighted from the issues raised in chapter 4 were
also covered.

Due to the vast variation of possible routes a developer can take to develop a wid-
get, we will not be able to cover every style and method. Only the methods used for
developing the different types of widget discussed in chapters 3 and 5 will be examined
in our evaluation. This is because the purpose of this evaluation is to demonstrate the
proof-of-concepts of our approach.

The aim of the evaluation is to examine the possibility of predicting widgets from
the Web page source code using the approaches proposed (see chapters 3 and 5). More

1Alexa’s Global top 500 sites on the web - http://www.alexa.com/topsites. Last accessed 21
September 2012.

190

CHAPTER 6. WIDGET PREDICTION EVALUATION 191

analysis of the results was also conducted and presented to expose the qualitative as-
pects of our approach. These investigations aim to answer the research questions pro-
posed in §1.3, as well as to contribute an extensive understanding of the subject matter
for future research.

6.1 Evaluation Setup

Setting up the evaluation through to the evaluation phase consists of a few stages. The
different phases of preparing the evaluation are discussed in this section. The evalua-
tion preparation consists of three parts: the data set used to evaluate our approach, the
setup of our automated prediction system – WPS – and the manual analysis setup to
provide a benchmark for our evaluation.

6.1.1 Data Collection

Selecting the data corpus is one of the most important elements to ensure the repeatabil-
ity of the experiment and the thoroughness of the evaluation. We use the list provided
by Alexa’s Global Top 500 sites on the Web to select the Websites for our data corpus.
This list was chosen because, from previous studies conducted, we found that the top
Websites listed provide us with a good reflection of the broader Web [Harper and Chen,
2012]. Fifty Websites were selected from the list of five hundred Websites. The first
Website in the list is chosen, then the tenth, and then a Website at every interval of ten
selected repeatedly until fifty Websites were chosen.

Using this method, a broad spectrum of Websites at different levels of popularity
can be included in our study. Websites like Google that have many regional sites
to customise their user experience for the country. Due to their popularity across the
world, even the regional Websites often make it into the top 500 sites globally and some
of these sites may be included in our data corpus due to our selection methodology.

Fortunately, only regional Websites from Google were selected using our method-
ology on Friday, 13 July 2012. Although similar in nature, Web pages from these
Websites do vary depending on the culture and language of the region. Occasionally,
additional features are provided by these Websites to improve the usability of the pages
for the region because of the language and culture. Thus, examining these Websites
will provide a different degree of thoroughness in our evaluation, by evaluating the
generalisability of our approach across different languages.

CHAPTER 6. WIDGET PREDICTION EVALUATION 192

1200
pixels

80
0

pi
xe

ls

Prediction Results

Figure 6.1: The setup of WPS as an Add-On in Mozilla’s FireFox Web browser.

Once the Websites are chosen, during the evaluation only the default page for each
Website is evaluated, and the content of the page is collected for future analysis. Since
the Web is ever evolving, the default pages for each Website are stored to freeze the
evaluation data corpus to the collection date, and provide the means to repeat the ex-
periments when required.

6.1.2 WPS Setup

WPS can be set up as an Add-On in a Web browser or deployed as a Restful service
depending on the application. For the evaluation, WPS is set up as an Add-On in
Mozilla’s Firefox version 14.0.1 as seen in figure 6.1. Using this medium, the presen-
tation layout of Web pages and features conforming to one of the industry’s leading
Web browsers is used to evaluate our approach.

Some Websites are developed to scale their pages, or add and remove features to the
page depending on the user’s Web browser screen size. To maintain the repeatability
of the experiment, the Web browser screen’s size is preset to 1200 x 800 pixels for

CHAPTER 6. WIDGET PREDICTION EVALUATION 193

evaluating all Websites.
Remote scripting allows developers to actively load scripts, code and content after

the Web browser loads the page. This feature allows the developer to improve initial
download speed by employing Lazy Load techniques, and provide more interactivity
on the page, as well as real-time responses. When Lazy Load methods are employed,
developers can use this method to further load less important content after the browser
loads the page. In such scenarios, the page loads in two stages. The first stage loads the
Web page, where the process is monitored by the browser, and upon successful loads,
handler onLoad and the handler of event DOMContentLoaded will be triggered. The
second stage is tailored to the page, where it loads the content using remote scripting
or Lazy Load techniques to the relevant sections in the page. This customised process
is specific to the Web page and it is difficult to monitor the entire process. To overcome
this issue, a button is included to the Add-On interface as seen in figure 6.1, so that
WPS can be fired after the first instance of the page is visually loaded. Finally, the
results of the prediction are printed in the area on the left of the button.

6.1.3 Manual Analysis

In order to provide verification of the results predicted by WPS, a manual analysis is
applied. The manual analysis provides a fine granularity of analysis over the results
provided by WPS. This analysis consists of a person going through the same Web
pages that WPS has analysed. Using the same setup and widgets definition, except this
time a human searches the Web page source code for these tell-signs and compares it
with the prediction results returned by WPS. We recognised that humans are not always
consistent when it comes to repeated tasks, and they are often error prone. Thus, the
analysis was done in stages to reduce fatigue. To reduce the deviation of concepts
between the manual analysis and WPS, the person conducting the analysis will use the
definition provided by WIO.

The results from the manual analysis are tabulated and can be found in http:

//wel-data.cs.manchester.ac.uk/data_files/8. There are four columns in the
results presented. The first column details the type of widget WPS has predicted or
the manual analysis has derived. The second column gives the Confidence percent-
age returned by WPS. In the case where the manual analysis does not tally with the
WPS prediction, a zero will be awarded in this column. The third column indicates
whether the manual analysis matches the results provided by WPS. This is symbolised
by having X as conform, × as disagree, X∗ as conform but it is a repeat, and ×∗ as

CHAPTER 6. WIDGET PREDICTION EVALUATION 194

disagree and it is a repeat. Finally, in the last column the report generated for each
widget detected is presented, along with the remarks from the manual analysis being
recorded.

6.2 WPS Evaluation Results

A discussion of the results collected by WPS and the manual analysis are presented
in this section. These results are proof-of-concept that WPF is a feasible approach for
predicting widgets. The raw population of widgets predicted (y-axis) are tabulated at
an interval of 5% confidence (x-axis) in the graphs. A point in the graphs for each
type of widget will be selected as a cut-off point, to decide whether a candidate widget
detected exists or not. This point is called the threshold confidence percentage. Using
this spectrum of granularity will allow us to spot the threshold confidence percentage
for the different types of widget at an accuracy of 5%.

The threshold confidence percentage is the point in the graph with the smallest
confidence percentage, where the True Positives have the largest population, and the
smallest population of False Negatives, and the smallest population of False Positives.
In the evaluation results presented, the threshold confidence percentages derived from
our results are merely a demonstration of how to use the WPF to predict widgets. This
should not lead to the impression that we are proving WPS as a more accurate widget
prediction approach/system.

It is worth noting that the Website uimserv.net could not be accessed during the
evaluation. Thus, the result from this site is not considered in our evaluation and only
forty-nine Websites are examined in our evaluation process.

6.2.1 Ticker Widget Evaluation

The Ticker widget, although the least popular among the seven types of widget chosen
for this investigation, has the best prediction rate, as seen in figure 6.2. Despite the in-
direct approach used to overcome the issues faced when identifying the WindowTiming
tell-sign (see §5.6.1), this technique demonstrated its reliability during our evaluation.

After scrutinising the predicted results from WPS, even though only five occur-
rences of this widget are predicted, our manual analysis confirms that all predictions
are accurate. Figure 6.2 illustrates the True Positives, False Negatives, and the False
Positives results from our evaluation for this widget, where the Actual line is the sum

CHAPTER 6. WIDGET PREDICTION EVALUATION 195

!"

#"

$"

%"

&"

'"

("
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

)*+,"-./012,"

345/,"6,7412,"

345/,"-./012,"

89:+45"

67&%/7(8,'
9:;'

Figure 6.2: Prediction results for Ticker widget. Where Actual is the sum of True
Positives and False Negatives, and the Threshold value is the anecdotal confidence
percentage, in the graph, that will give the highest ratio of True Positives to the sum of
False Negatives and False Positives.

of True Positives and False Negatives. These results are plotted at a confidence per-
centage interval of 5%, against the number of widgets predicted for each line. The
threshold confidence percentage for the Ticker widget is chosen to be 70% using the
selection process described. This is because that is the point just before the True Posi-
tives begin to fall and False Negatives begin to rise.

Using this set of results with the chosen threshold confidence percentage, an ex-
cellent prediction rate of 100% can be achieved. From this demonstration, we have
covered how to choose the threshold confidence percentage, and in this ideal case
100% accuracy was achieved. Although the prediction rate for this widget is 100% ac-
curate for the evaluation, however, this may be due to the low popularity of this widget.
From the manual analysis, we noticed that only one Ticker widget was found on each
Website. Comparing this result with our previous popularity study presented in §3.4,
both results are close, and this demonstrates the accuracy of our prediction techniques
employed for the Ticker widget.

CHAPTER 6. WIDGET PREDICTION EVALUATION 196

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&!"
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

()*+",-./01+"

234.+"5+6301+"

234.+",-./01+"

789*34"

67&%/7(8,'
9:;'

Figure 6.3: Prediction results for Auto Suggest List (ASL) widget. Where Actual is the
sum of True Positives and False Negatives, and the Threshold value is the anecdotal
confidence percentage, in the graph, that will give the highest ratio of True Positives to
the sum of False Negatives and False Positives.

6.2.2 Auto Suggest List (ASL) Widget Evaluation

Identified as one of the simpler types of widget to detect in chapter 4 - Feasibility Inves-
tigation for Using Tell-Signs, the ASL widget prediction performed fairly accurately
as presented in figure 6.3. The prediction results exhibit trends that are expected, such
as a high False Positive at the lower end of the confidence percentage scale, and then
rolled off to almost zero at the higher end. These results demonstrated that some of
the tell-signs’ instances are generic – a consequence of the initial high False Positives.
However, the steep decline of False Positives after 35% and 60% suggest that these
generic tell-signs are vital components of the overall tell-sign combination to assist the
ASL widget predictions.

Using the same selection process for the ASL widget threshold confidence percent-
age, it is selected as 65%. This is because 65% is the optimum value where the False
Positive values or Type I errors are low and the True Positive detection remains at an
accurate level. Indeed, the choice of the threshold confidence percentage misses some

CHAPTER 6. WIDGET PREDICTION EVALUATION 197

True Positives, but it is the best compromise for prediction accuracy. This will be a
typical scenario for predicting widgets using WPF. Developers applying WPF would
want to model their widget prediction to achieve results like this, if not better. Using
the selected threshold confidence percentage, 28 out of the 33 ASLs are detected, thus
achieving an accuracy of 84.85%. From the evaluation results, the techniques and the
selected tell-signs employed to detect the ASL widget have demonstrated that they are
appropriated for the task.

6.2.3 Popup Content Widget Evaluation

Described in §3.3.7, the tell-signs used to classify and identify the Popup Content
widgets can be easily deceived as a straightforward detection process. The result of this
widget presented in figure 6.4 shows a presence of a high number of False Negative or
Type II errors, and the correct prediction and False Positives or Type I errors trending in
a similar fashion. The results for the Popup Content widget suggest that the threshold
confidence percentage should be 50%. Using this value, 26 out of 165 Popup Content
widgets are detected, achieving an accuracy of only 15.76%.

Some instances of Popup Content in Websites such as 56.com, google.com.tw,
digg.com, letitbit.net, irctc.co.in were not detected due the relationship issues
between the suspected element that has the z-index styling property value greater than
9, and the element that is monitored for mouse events or has a tag name <a> to trigger
the process. The issue arises because of the way WPS was designed. Nodes that are
within the proximity of ±3 nodes apart will be considered to be related. However,
none of these pairs of elements fulfil this specification.

More recently after our technological freeze §1.2 dateline, anecdotal evidence sug-
gests that more Websites introduce the concept of float panels to improve usability
in their pages. However, this method causes confusion to our detection method as
noticed in digg.com. Since this method is an evolutionary issue, this issue will not
be pursued in this evaluation. Nevertheless, future work should examine what is
the best approach to develop tell-sign objects, so that they can model the z-index

styling property. This may mean breaking it down into finer grain. Therefore, re-
sults from widgets that use the SetDOMElementOrderHigh Tell-Sign class under
the ManipulatingStylingProperties Tell-Sign class will be affected. Hence, in
this thesis only Popup Content and Collapsible Panel widgets will be affected.

Due to the technical issues faced when evaluating digg.com, it contributed to a
massive 77 records of False Negative or Type II errors to the prediction results. Thus,

CHAPTER 6. WIDGET PREDICTION EVALUATION 198

!"

#$"

$!"

%$"

&!!"

&#$"

&$!"

&%$"
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

'()*"+,-./0*"

123-*"4*52/0*"

123-*"+,-./0*"

678)23"

67&%/7(8,'
9:;'

Figure 6.4: Prediction results for Popup Content widget. Where Actual is the sum of
True Positives and False Negatives, and the Threshold value is the anecdotal confidence
percentage, in the graph, that will give the highest ratio of True Positives to the sum of
False Negatives and False Positives.

it is recommended that the analysis for this type of widget should be done again without
including digg.com prediction results.

Issues faced when tracing for the related section of the code limit the prediction
process. Sometimes following the trails of clues can be confusing due to the Weakly
Typed scripting language JavaScript involves. This suggests that further research to
follow Weakly Typed language clues and semantics will allow for better prediction
rates.

6.2.4 Collapsible Panel Widget Evaluation

The tell-signs of the Collapsible Panel widget are at times difficult to identify due
to its generic characteristics. Hence, often the Collapsible Panel prediction is easily
confused with other widgets such as the Popup Content widget if some of the tell-
signs are not present. As illustrated in figure 6.5, a high presence of False Negatives
suggests that the prediction mechanism lacks evidence during its analysis to deduce

CHAPTER 6. WIDGET PREDICTION EVALUATION 199

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

()*+",-./01+"

234.+"5+6301+"

234.+",-./01+"

789*34"

67&%/7(8,'
9:;'

Figure 6.5: Prediction results for Collapsible Panel widget. Where Actual is the sum of
True Positives and False Negatives, and the Threshold value is the anecdotal confidence
percentage, in the graph, that will give the highest ratio of True Positives to the sum of
False Negatives and False Positives.

the identity of the Collapsible Panel widget.
A close examination of the results together with the manual analysis results sug-

gests that often the system confuses the Collapsible Panel widget prediction with the
Popup Content widget. The behaviour that causes this type of confusion often exists
when some instances of a tell-sign are not present, thus resulting in the tell-sign being
inconclusive.

The threshold confidence percentage for the Collapsible Panel widget was chosen
to be 35%. Although from the prediction results for this widget, to determine the
threshold confidence percentage is difficult, 35% gives a fair compromise between the
True Positive, False Negative and False Positive values. With the selected threshold
confidence percentage, 12 out of 40 Collapsible Panels widgets are predicted, achiev-
ing a 30% accuracy. A considerable amount of False Positives is noticed even at low
confidence percentages. This suggest that the methods applied do not stretch wide

CHAPTER 6. WIDGET PREDICTION EVALUATION 200

enough to detect the different variations of the missed widgets. However, we are only
demonstrating how WPF can be applied to predict the Collapsible Panel widgets. Thus,
these results do demonstrate broadly that Collapsible Panel widgets can be detected,
and the methods applied are feasible. On the other hand, they also suggest that some of
the techniques applied may need to be revisited. They may be too generic, or a wider
spectrum of methods could be used to develop a tell-sign.

Further investigations are required to identify the issues to improve the accuracy in
the prediction for the collapsible Panel widget, with particular emphasis on displaying
the Display Window. Instead of just searching for clues to hide and display the Display
Window, anecdotal evidence suggests that the height and width of the Display Window
can also be manipulated to give the visual effect that the Display Window expands and
collapses. Another suggestion for future investigations on the Collapsible Panel widget
prediction would be revisiting the design patterns library, to check if there have been
any updates to this widget since the detection techniques were developed. Since the
introduction of HTML 5.0 standard, new techniques may have emerged.

6.2.5 Tabs Widget Evaluation

The metaphor of a Tab widget usually consists of two lists – one for navigating through
the different tabs in the Widget, and the other list to store the content of the tabs.
Although the definition of the Tab widget can be well designed, however, in practice
when translating the concepts into code, structurally it is generic and this form of
coding structure is widely used to develop Web pages and widgets. This makes it
difficult to detect. Figure 6.6 demonstrated the complexity of determining this kind of
widget between the region of 50% and 75% confidence.

Choosing the threshold confidence percentage for this widget is tricky based on the
evaluation results. However, we advocate 65% as the best compromise between the
True Positive, False Negative and False Positive predicted values. Using 65% as the
threshold confidence percentage, 29 out of 62 Tabs widgets are predicted, resulting in
46.77% accuracy.

There are many ways this widget can deliver the content to its user. Based on the
anecdotal evidence gathered during the manual analysis, two methods were widely
used. The first method either uses remote scripting to load the respective tab content
or preload the content to the respective tab. Then the Behaviour layer is used to ma-
nipulate the styling properties of the element to make the selected content visible to
the user. The second method uses similar methods to load the tabs content. However,

CHAPTER 6. WIDGET PREDICTION EVALUATION 201

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

()*+",-./01+"

234.+"5+6301+"

234.+",-./01+"

789*34"

67&%/7(8,'
9:;'

Figure 6.6: Prediction results for Tabs widget. Where Actual is the sum of True Posi-
tives and False Negatives, and the Threshold value is the anecdotal confidence percent-
age, in the graph, that will give the highest ratio of True Positives to the sum of False
Negatives and False Positives.

this time the Behaviour layer is used to manipulate the styling properties z-index of
the elements such that all tabs are stacked on top of one another, with the selected tab
having the highest layer order. If the second method is employed, our prediction meth-
ods will confuse the Tabs widget for a Popup Content widget, which has occurred on
a few occasions.

6.2.6 Carousel Widget Evaluation

During the feasibility study for using the tell-signs defined as a technique in our de-
tection approach (chapter 4), Carousel and Slide Show widgets were considered to be
the widgets that were more complex to identify due to the processes these widgets
possess. The results presented in figure 6.7 confirm this judgement as clues of the
Carousel widget prove difficult to find within the code.

Depending on the approach the developers decide to take on, sometimes even some
essential components of the widget are not present until the developer requires the user
to interact with the widget. Scenarios like this make it difficult to predict if the widget

CHAPTER 6. WIDGET PREDICTION EVALUATION 202

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

,-./"012345/"

6782/"9/:745/"

6782/"012345/"

;<=.78"
67&%/7(8,'

9:;'

Figure 6.7: Prediction results for Carousel widget. Where Actual is the sum of True
Positives and False Negatives, and the Threshold value is the anecdotal confidence
percentage, in the graph, that will give the highest ratio of True Positives to the sum of
False Negatives and False Positives.

exists. Even for humans, a trial-and-error approach is required to determine widgets
that operate in this way. Thus, more loosely defined detection has to be incorporated
to accommodate the vast variety of methods, and a high number of False Positives
prediction or Type I errors is expected as reflected in figure 6.7.

Searching for the best compromise for the threshold confidence percentage is not
easy and 65% is believed to fit the best point. Using the selected threshold confidence
percentage, 1 out of 6 Carousel widgets are predicted (accuracy of 16.67%). The early
dip in True Positive values, contrasting with the rise in False Negative values, suggests
that either the prediction methods are too rigid, or the range of variations in which the
Carousel widget can be developed is broader than previously thought.

6.2.7 Slide Show Widget Evaluation

Defined in §3.3.9, the difference between a Slide Show and Carousel widget is the way
these widgets allow their user to browse through the list of contents. With such close

CHAPTER 6. WIDGET PREDICTION EVALUATION 203

!"

#"

$!"

$#"

%!"

%#"
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

&'()"*+,-./)"

012,)"3)41./)"

012,)"*+,-./)"

567(12"

67&%/7(8,'
9:;'

Figure 6.8: Prediction results for Slide Show widget. Where Actual is the sum of True
Positives and False Negatives, and the Threshold value is the anecdotal confidence
percentage, in the graph, that will give the highest ratio of True Positives to the sum of
False Negatives and False Positives.

definition proximity, the results presented figure 6.8 are not surprising, especially when
not all the clues of a tell-sign are readily available from the code.

Selecting the confidence threshold percentage for the results collected for this wid-
get is straightforward as there are not many choices. The threshold is chosen at 60%
for this widget, as it is the only point with the least False Positives and highest True
Positives. The selection of the threshold confidence percentage resulted in only 1 out
of 6 Slide Show widgets being detected; an accuracy of 16.67%.

With similar trends for the Carousel widget, the Slide Show widget also exhibits
high numbers of False Positives due to the vast variations of styles and methods with
which this widget can be developed. It can also be seen that the number of False
Negatives is double that of the True Positives. This suggests that either the prediction
methods are too rigid, or the range of variations with which the Slide Show widget
can be developed is broader than previously thought. This also suggests that the detec-
tion methods need redressing and generalising to capture the wide range of techniques
applied by developers.

CHAPTER 6. WIDGET PREDICTION EVALUATION 204

6.3 Analysis and Discussion

The results from all seven widgets have been presented and compared with our manual
analysis results. In this section, we analysed the prediction results and exposed the
insights of the results. The results demonstrated that the robustness of our approach
varies between different types of widget. In one aspect, this issue could be narrowed
down to the selection of tell-signs, and the approaches employed to detect them. On
the other hand, the heterogeneous nature of the Web, and the approaches developers
take to loading information/code on the fly, are not to be overlooked.

Good results were achieved in the Ticker and ASL widgets prediction as demon-
strated in §6.2.1 and §6.2.2 respectively. Nevertheless, widgets like Popup Content,
Collapsible Panel, Carousel and Slide Show will require supplementary techniques to
assist them with the prediction process.

Poor prediction results do not mean the technique is weak. The results from the
manual analysis suggest that sometimes insufficient evidence is present in the code to
detect the tell-signs, or when tracing identifiers in the code the clues can be misleading
or not derivable. Similar issues were reported by Dong et al. [2008b]; Gamma et al.
[1995], when attempting to reverse engineer design patterns from the source code for
desktop applications. Further research is suggested to investigate the possibilities of
meeting this challenge.

From the empirical observations gathered during the manual analysis, it is sug-
gested that the major challenge when identifying tell-signs is tracing the clues in the
source code and the methods developers employed to create the widgets. Depending
on the approach the developers decide to take on, sometimes even the components of
the widget are not present. This means that prediction has to be done at a level where
not all the components of the widget will be present.

Recreating the relationships of different nodes from the DOM without documenta-
tion is another area worth further investigation. Although annotating the code could be
a possibility, this means higher computational overheads and poorer response time.

The similarity between the definitions of the Carousel and Slide Show widgets as
seen in §3.3.4 and §3.3.9 respectively suggest that the prediction methods applied in
WPS can be combined for further analysis. Referring to figure 3.7 and figure 6.9 to
illustrate the alteration of the Carousel and Slide Show widgets’ definition, the ‘Next’
and ‘Previous’ buttons are now simplified by ignoring whether the buttons are finite or
looping.

After updating the code in WPS to match the simplified ‘Next’ and ‘Previous’

CHAPTER 6. WIDGET PREDICTION EVALUATION 205

Figure 6.9: Simplified ‘Next’ and ‘Previous’ buttons concepts.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

##!"

!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

,-./"012345/"

6782/"9/:745/"

6782/"012345/"

;<=.78"

67&%/7(8,'
99:'

Figure 6.10: Prediction results when Carousel widget and Slide Show widget are com-
bined. Where Actual is the sum of True Positives and False Negatives, and the Thresh-
old value is the anecdotal confidence percentage, in the graph, that will give the highest
ratio of True Positives to the sum of False Negatives and False Positives.

buttons concepts, to combine the Carousel and Slide Show widgets, the new set of
prediction results can be seen in figure 6.10. Now, the selected confidence percent-
age threshold is 55%, which is the best compromise between the True Positive, False
Negative and False Positive predicted values. Using the selected threshold confidence
percentage, 71 out of 194 widgets are predicted. There is an improvement to the accu-
racy for the Popup Content widget and Collapsible Panel widget which have risen from
15.76% and 30% respectively to 36.67%. The improvement suggests further research

CHAPTER 6. WIDGET PREDICTION EVALUATION 206

should be conducted to understand more about the characteristics of the Carousel and
Slide Show widgets. User studies are also suggested to understand the effects on user
experience when both of these widgets are misinterpreted.

As discussed in §6.2.3 and §6.2.4, both the Popup Content and Collapsible Panel
widgets are often found to be confused by WPS during the prediction process. The
main challenge lies in there being too many ways these types of widget can be de-
veloped. A few contributing factors include the heterogeneous nature of the Web, the
Weakly-Typed languages involved, and the fact that Websites are often developed by
practitioners, graphic designers and people with little knowledge of developing Web
pages.

The main difference between the Popup Content and Collapsible Panel widget is
the order of the widget wrapper elements z-index. Without this distinction, both
widgets are conceptually the same. Figure 6.11 shows the compiled results for both of
these widgets together when the SetOrderFront ElementStyle-ManipulatingDom

component in the Popup Content widget is ignored. The order of elements in the z-
axis of the user interface is merely a visual effect and may have little importance for
Assistive technologies users. This suggests venues for user experience studies in the
future, to investigate the degree of usage, to understand the extend of the differences of
these widgets have on the user, as well as analysing the impact systems such as WPS
have on the user.

By combining the detection methods for these two widgets, the extent to which
these widgets get misinterpreted by using our definitions is demonstrated. An im-
provement to the prediction results is observed in figure 6.11 when compared with
the individual prediction results of both widgets (see figure 6.4 for the Popup Content
widget’s prediction results and figure 6.5 for the Collapsible Panel widget’s prediction
results).

The new confidence threshold percentage chosen is 40% as it is the best compro-
mise between the True Positive, False Negative and False Positive predicted values.
However, in this case the confidence threshold percentage can be variable by ±5%,
whoever provides the optimal result. Using 40% as the threshold confidence percent-
age, 5 out of 12 Popup Content and Collapsible Panel widgets are detected, an accuracy
of 41.67%. A significant improvement to the prediction accuracy from 16.67% when
detecting the widgets individually, to 41.67% when combined, was achieved. These
results suggest that future user studies should examine the effects of these types of
widget when they are misinterpreted.

CHAPTER 6. WIDGET PREDICTION EVALUATION 207

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&!"

#!!"
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

()*+",-./01+"

234.+"5+6301+"

234.+",-./01+"

789*34"

67&%/7(8,'
9:;'

Figure 6.11: Prediction results when Popup Content widget and Collapsible Panel
widget are combined. Where Actual is the sum of True Positives and False Negatives,
and the Threshold value is the anecdotal confidence percentage, in the graph, that
will give the highest ratio of True Positives to the sum of False Negatives and False
Positives.

Focusing on digg.com in particular, this Website used widgets that were more
popular after our technical freeze dateline. Thus, when designing the classification of
the widgets in this thesis, conflicting methods of detecting tell-signs for some widgets
were noticed. Therefore, this Website was taken out of our evaluation as an outlier
Website, and the affected types of widget prediction were re-analysed.

Only the Popup Content widget is affected by our widget’s definition after isolating
the outlier Website. This is because only widgets that use the z-index styling property
in their definition are affected. Figure 6.12 contrasted the results of Popup Content
widget prediction. It showed how casting digg.com as an outlier affected the results
of the prediction methods chosen for the Popup Content widget.

An improvement to the prediction results can be noticed in figure 6.12(b) when
compared to figure 6.12(a) after removing the outlier Website. The new confidence
threshold percentage is now selected as 40% – a point in the graph that has the biggest
number of correctly predicted widgets, and the lowest number of False Positive and

CHAPTER 6. WIDGET PREDICTION EVALUATION 208

!"

#$"

$!"

%$"

&!!"

&#$"

&$!"

&%$"

!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

'()*"+,-./0*"

123-*"4*52/0*"

123-*"+,-./0*"

678)23"

67&%/7(8,'
9:;'

(a)

!"

#$"

$!"

%$"

&!!"

!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

'()*"+,-./0*"

123-*"4*52/0*"

123-*"+,-./0*"

678)23"

67&%/7(8,'
9:;'

(b)

Figure 6.12: Comparison of Popup Content widget results with (a) and without (b)
digg.com. Where Actual is the sum of True Positives and False Negatives, and the
Threshold value is the anecdotal confidence percentage, in the graph, that will give the
highest ratio of True Positives to the sum of False Negatives and False Positives.

Threshold Accuracy True Manual
Confidence % Positives Analysis

With digg.com 50.00% 15.76% 26 165
Without digg.com 40.00% 53.41% 47 88

Table 6.1: Comparison of results with and without digg.com for Popup Content wid-
get.

False Negative results. Table 6.1 lists the results of the Popup Content widget in detail.
By removing the outlier Website digg.com, a three fold improvement is observed.
This is because it was noticed that digg.com uses a new type of widget called “Floating
Panel” that was introduced after our technical freeze dateline. A key characteristic of
the Float Panel widget is the z-index styling property. This characteristic confuses
our system with the z-index tell-sign. As a result, a low confidence percentage is
awarded due to the insufficient evidence that can be concluded for the Popup Content
widget. These results exhibit the impact on WPF, which can be affected due to the
evolution of widget designs.

Using the same concept of removing the outlier Website results from the Popup
Content widget evaluation, this method is also done for the Collapsible Panel widget
results. However, from the manual analysis, the conflict between the methods only
affects widgets with tell-signs that have high z-index styling property. Thus, only
Tabs and Popup Content widgets use this component as part of their detection meth-
ods. Nonetheless, the detection methods employed by the Tabs widget only use this

CHAPTER 6. WIDGET PREDICTION EVALUATION 209

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&!"

#!!"
!
"#

$%
&'(

)'*
+,
-%
./
'0
&%
,+
1.
%,

'

2(34,%31%'0%&1%3.5-%/'

()*+",-./01+"

234.+"5+6301+"

234.+",-./01+"

789*34"67&%/7(8,'
9:;'

Figure 6.13: Prediction results when Popup Content widget and Collapsible Panel
widget are combined without digg.com. Where Actual is the sum of True Positives
and False Negatives, and the Threshold value is the anecdotal confidence percentage,
in the graph, that will give the highest ratio of True Positives to the sum of False
Negatives and False Positive.

component as an optional approach, but only Popup Content widget results were af-
fected.

As discussed earlier in figure 6.11, an improvement to the prediction is noticed
when combining the Popup Content widget results with the Collapsible Panel widget
results. A similar analysis is done this time by removing the outlier Website, as shown
in figure 6.13. Notably, an improvement to the prediction results is demonstrated. The
confidence threshold percentage is chosen at 35%, where it is the spot with the most
True Positive or correct prediction, and the lowest False Positives and False Negatives.

Further improvement can be observed in table 6.2 by removing the outlier Website
digg.com. A jump in accuracy strongly suggests that further investigations should
examine how to model the z-index order, and redress the current method. The Float-
ing Panel widget, found in digg.com, provides a clue that the granularity of z-index
order should be more fine grained.

The high number of False Negatives or Type II errors suggests improvements to

CHAPTER 6. WIDGET PREDICTION EVALUATION 210

Threshold Accuracy True Manual
Confidence % Positives Analysis

With digg.com 55.00% 36.60% 71 194
Without digg.com 35.00% 60.68% 71 117

Table 6.2: Comparison of results with and without digg.com for the combination of
Popup Content and Collapsible widget.

!"# $%# "#
&'#

(# &# $%# $# $#

")!#

)*%#)*%#

$*'#

"!# $'# !%# !# !# (#

%)&#
%")#

$*# $"#

$&&#

(# $$# $# %+#
)+#

$*# $$#
(#

$((#
"((#
%((#
!((#
*((#
+((#
&((#
)((#
'((#

,-
$.
/#

,-
".
0#

,-
".
/#

,-
".
1#

,-
%.
/#

,-
!.
/#

,-
!.
1#

,-
*.
/#

,-
*.
1#

,-
+#

,-
&#

,-
)#

,-
'#

,-
'.
0#

,-
$(
#

,-
$$
#

,-
$"
#

,-
$%
#

,-
$!
#

,-
$*
#

,-
$+
#

,-
$&
#

,-
$)
#

,-
$'
#

,-
"(
./
#

,-
"(
.1
#

,-
"$
./
#

,-
"$
.1
#

,-
""
#

,-
"%
#

,-
"!
#

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

0(##(+'1%223456+,'

Figure 6.14: The usage of common tell-signs analysed from our evaluation results.
The description of the identification reference for each tell-sign can be found in Ap-
pendix E.

some of the tell-signs could be made. To understand the problems pertaining to the
tell-signs, further analysis was conducted to find out how they performed during the
evaluation.

Generically, the components of a widget are formed by two kinds of tell-signs
defined in our ontology. The first type is private or specific to the type of widget, while
the second type is commonly used by all types of widget because it refers to generic
methods or objects in the code. Therefore, when investigating the performance of the
tell-signs, they will be discussed separately; each set of the private tell-signs is analysed
separately according to the type of widget, while the common tell-signs are done as a
group.

Figure 6.14 presents the usage of the common tell-signs that can be reused as func-
tional objects to define different types of widget. Some of these tell-signs are signifi-
cantly more popular than others. The more popular tell-signs include TS7, TS8, TS15
and TS16; on the other hand, tell-signs such as TS3-a, TS14, TS20-a were never used
during the evaluation. See chapter 3 for the details of the tell-sign identifiers listed.

Common tell-signs that are less often used do not mean that they are not useful
indicators of a type of widget. It was the intention to pack more variations of tell-signs

CHAPTER 6. WIDGET PREDICTION EVALUATION 211

to cover a broader spectrum of the development approach of the type of widget. In
this case, these common tell-signs are not as popular among the Websites selected for
our data corpus. However, there is no denying the fact that some of these common
tell-signs may not be the best method to develop or identify the respective type of
widget.

The analysis of the private tell-signs for a type of widget is presented in figure 6.15.
The performance of the private tell-signs employed by the Auto Suggest List (ASL)
widget is shown in figure 6.15(a), and the Ticker widget’s private tell-signs perfor-
mance is shown in figure 6.15(b). The combination of Popup Content widget and Col-
lapsible Panel widget private tell-signs performance is shown in figure 6.15(c), while
the Tabs widget’s private tell-sign performance is shown in figure 6.15(d). Finally, the
combination of Carousel widget and Slide Show widget private tell-sign performance
is presented in figure 6.15(e).

Evidence of tell-signs not used during the evaluation can be found in the ASL
widget – A-TS1, Ticker widget – TK-TS1, TK-TS2 and TK-TS3, the combination of
Popup Content and Collapsible Panel widgets – PC-TS2, PC-TS3, PC-TS5 and PC-
TS6, and the combination of Carousel and Slide Show widget – CS-TS5-a, CS-TS5-b,
CS-TS5-c, CS-TS6-b, CS-TS9-a, CS-TS9-b, CS-TS9-c and CS-TS10-b. These results
suggest that the techniques modelled by these tell-signs may not be popular among the
Websites chosen for our evaluation.

Drawing attention to the Ticker widget’s private tell-signs: interestingly, we have
witnessed that the prediction methods for this type of widget produced the best results.
However, figure 6.15(b) demonstrated that only one of its private tell-signs (TK-TS4)
is found throughout the evaluation. These findings show that developers prefer to de-
velop the Ticker widget using a combination of more generalisable methods, rather
than methods that are specific for the type of widget. Another reason for this phe-
nomenon to occur may be due to the developers’ choice of approach to develop these
Websites. Often, developers prefer to use readily available industrial libraries to code
their Websites.

Unlike the Ticker widget, figure 6.15(a) illustrates that ASL widgets are often de-
veloped using more specific methods for the widget. Analysing the results discussed
about the ASL and Ticker widgets with the rest of the other types of widget, it can be
noticed that widgets with more tightly formed methods perform better in our predic-
tion approach, compared to those that have more loosely formed methods or that have
a wider variation of development methodologies. These issues can be narrowed down

CHAPTER 6. WIDGET PREDICTION EVALUATION 212

!"

#$"

%&" %&"

'"

!"
'"

#!"
#'"
(!"
('"
&!"
&'"
%!"
%'"
'!"

)*+,#")*+,(")*+,&")*+,%")*+,'"

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

012'3%445167+,'

(a)

!" !" !"

#"

!"

!$%"

!$&"

!$'"

!$("

#"

#$%"

)*+),#")*+),%")*+),-")*+),&"

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

01/2%&'0%334516+,'

(b)

!" #" #"

$%"

#" #"

!%"

$#" $&"

'("

#"
$#"
&#"
!#"
%#"
'#"
)#"
*#"

+,
-.
/$
"

+,
-.
/&
"

+,
-.
/!
"

+,
-.
/%
"

+,
-.
/'
"

+,
-.
/)
"

+,
-.
/*
"

+,
-.
/(
"

+,
-.
/0
"

+,
-.
/$
#"

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

0(1"1'2(+-%+-32(44.1,5$4%'0.+%4'6%447859+,'

(c)

!"#$

!%$
&$

'$

('$

!''$

!('$

)''$

)('$

+,!$ *+*,)$ *+*,-$

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

0.$,'0%112345+,'

(d)

!"# $"# $$#
%&#

"# "# "#
%&#

"#
''#

("#
"# "# "#

("#
"#

))!#

"#

$""#

!""#

'""#

%""#

*""#

)""#

(""#

+,
-.
,$
#

+,
-.
,!
#

+,
-.
,'
#

+,
-.
,%
#

+,
-.
,*
-/
#

+,
-.
,*
-0
#

+,
-.
,*
-1#

+,
-.
,)
-/
#

+,
-.
,)
-0
#

+,
-.
,(
#

+,
-.
,&
#

+,
-.
,2
-/
#

+,
-.
,2
-0
#

+,
-.
,2
-1#

+,
-.
,$
"-
/#

+,
-.
,$
"-
0#

+,
-.
,$
$#

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

0.&(",%123145%36(7'8%11934:+,'

(e)

Figure 6.15: The usage of specific types of widget tell-signs analysed from our eval-
uation results. The description of the identification reference for each tell-sign can be
found in Appendix E.

to choosing the right balance of detection granularity.
Similar usage trends are exhibited among the usage of common and widget-specific

private tell-signs. Again, it can be noticed that more than necessary tell-signs are in-
cluded in the detection to allow a broader range of developing styles to be incorpo-
rated in our prediction approach. These results provide a good mix of well-designed
tell-signs that are popular and those which are less often used, along with tell-signs

CHAPTER 6. WIDGET PREDICTION EVALUATION 213

that not as well designed. It provides the proof-of-concepts that tell-signs can be au-
tomatically detected from the source code, and when different types of tell-signs are
combined to form specific sets of combinations, widgets can be predicted from the
source code.

6.4 Summary

In this chapter, we have successfully demonstrated how WPF can be applied using
WPS, to predict the widgets in a Web page. The evaluation over fifty popular websites
obtained an average accuracy of 61.98%, with two widgets achieving > 84% accuracy.
These results are proofs-of-concepts that WPF is feasible. A demonstration of how the
widget ontology concepts can be altered using the Slide Show and Carousel widgets is
presented. These changes impacted the accuracy of these widgets, and an improvement
was observed. This demonstration has shown the importance of selecting the correct
balance of detection granularity. Issues raised in the Popup Content and Collapsible
Panel widgets prediction techniques suggest an avenue for future research. On the
other hand, the weaknesses of the framework are also revealed. The case study of
digg.com exposes the fact that the techniques used to model the order (z-index) of
an element are insufficient and require redressing. Furthermore, the study stretches the
boundaries of WPF, to reveal how the framework will react to evolving widget designs.
The results analysed for the other widgets also provided interesting highlights of how
their prediction methods are employed.

Analysis on the different kinds of tell-sign performance were presented and dis-
cussed. The trends in the techniques and approaches developers use to develop widgets
were exposed. These results contribute insights for research intending to understand
widget design patterns, for reverse engineering and widget design evolution purposes.
Furthermore, they reveal the popularity of the seven types of widget employed by the
fifty popular Websites. These results will provide insights for Web designers/devel-
opers with regards to widget designs and the tools intended to understand and detect
widgets, to aid aged and visually impaired users.

Chapter 7

Conclusions and Future Work

At the beginning, we discussed the myth that providing accessible content means de-
livering content that can be interpreted by most people. This concept, as explored,
is more difficult to achieve with dynamic content and the ever evolving Web. More
recently, the model of delivering content over the World Wide Web (Web) has incor-
porated richer interactivity into Web pages, thus requiring users to interact even more
intensively with the page. The investigation of the current state of the Web is discussed
in our literature review from the perspective of Web Accessibility, along with related
techniques that can help improve Web widget Accessibility. Our literature review un-
veiled the lack of coverage of developers’ attempts to make the Web accessible due
to a range of reasons. Lack of knowledge and compliancy that developers overlooked
when designing and developing Websites, as well as the lack of understanding of how
the extra interactivity affects the users, are some of the reasons reported. Ongoing
studies conducted by Brown [2012] and Lunn et al. [2009b] provided insights into the
issues and studies surrounding this method of content delivery. Using this method of
delivery requires users to be more engaging, thus expecting their users to acquire more
knowledge of using the Web, to cope with it. Often elderly and disabled users will be
affected most by these changes. They either have to relearn the Web pages, or have the
capability of figuring out a way of achieving their intended task.

This thesis highlights the need to assist humans with all forms of abilities to oper-
ate Web widgets, so that the experience of the Web can be improved. It successfully
presented research that demonstrated methods to classify Web widgets, and described
how to apply these concepts to predict widgets from the Web page’s source code. Re-
search questions set out in §1.3 investigate the applicability of formally classifying
Web widgets, and the feasibility of predicting widgets from the Web page’s source

214

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 215

code using the Widget Prediction Framework (WPF) suggested. The novelty of this
approach defines widgets based on visual components combined with the widget’s de-
sign concepts. A widget classification paradigm is proposed to model the widgets from
a high-level perspective (see figure 3.3), as well as sufficiently fine grained to detect
instances of the widget from the source code. We believe this framework addresses
the issues laid out by this thesis from both the developer’s and end-user’s perspectives,
providing a high-level approach to detect widgets across multiple computer languages,
and that it contributes a rounded solution for the proposed research.

In chapter 5, a demonstration of how WPF can be applied to predict widgets,
together with its techniques, is presented. The evaluation of the Widget Prediction
System (WPS) exposes many interesting insights into WPF and the methods taken to
predict the widgets. Using fifty popular Websites to evaluate WPS (chapter 6), we
have shown the proof-of-concepts for the WPF. Later, analysis of the results revealed
insights into the issues identified during the evaluation and the trends of widget devel-
opment. The effects resulting from the selected granularity of the prediction methods
are shown, highlighting the importance of balancing the right amount of detection
granularity. This is demonstrated by altering the concepts of the ‘Next’ and ‘Previous’
buttons from the Carousel and Slide Show widgets. A closer examination of the Popup
Content widget results uncovered the evolutionary transformations of widget designs.

7.1 Contribution of the Thesis

This thesis reports the studies conducted to address the research questions set out in
§1.3. A novel high-level approach to code comprehension over multiple computer lan-
guages to reverse engineer widgets is demonstrated. The approach analyses the Web
page’s source code scripted in JavaScript, HTML and CSS, to deduce the conceptual
designs for a type of widget using the WPF. Since the source code of the Web page can
be sourced and remixed from multiple locations, conjointly, scripted commonly with
multiple computer languages in a Web page, the WPF uses a high-level approach to
capture the abstract concepts to determine the widgets. We have successfully shown
how to apply the framework by using the definition of different types of widget from
the widget ontology and hardcoding them in WPS to predict widgets. Through this
demonstration, design trends of widgets were exposed, along with the variants of styles
developers take to develop the seven types of widgets. Consequently, this work con-
tributes to the fields of Web Accessibility and Web engineering – affecting end-users of

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 216

all levels of technical knowledge, Web designers, authors and developers with different
technical expertise. In the next three sections, a discussion of the research questions set
out in §1.3 is presented from the perspectives of the contributions from the research.

7.1.1 Widgets Can Be Formally Modelled and Classified

In chapter 3 it was shown that using the framework suggested, Web widgets can be
modelled by creating a widget ontology for the type of widget using the proposed
taxonomy. Designing different types of widget ontologies was demonstrated using
seven types of widget. In the demonstrations, it was shown how a widget can use
components and tell-signs1 to form a new widget ontology and, when required, new
common or private components and tell-signs can be designed for the type of widget.

The proposed framework provides a stable framework for developers to model and
communicate their design concepts among developers and end-users. Unlike design
patterns, the framework in figure 3.3 provides the building blocks from the widget’s
superficial level (Widget layer), to the conceptual designs of its components (Compo-
nents layer and Tell-Signs layer), and progresses as deep as the technical detail aspects
(Code Constructs layer). Thus, designers, authors and developers can be involved with
development of the widget at different stages of the project. Using the WIO paradigm,
the documentation at this level will provide a uniform understanding of the design. Fur-
thermore, this form of documentation will allow people with different technical ability
to take on widget development, as well as being sufficiently abstract for end-users to
have knowledge of the different kinds of widget.

Compliance is the cornerstone of the framework. From the proof-of-concepts that
widgets can be formally modelled to assist development of our framework, a proposal
to standardise the definition of different types of widget is suggested. When the con-
sensuses between the different definitions of widgets are formed, the framework can
provide both developers and end-users with a common platform to understand the def-
inition of the different types of widget.

1Tell-signs are traces and clues of a component, often used to model components in the Components
layer of our widget ontology paradigm.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 217

7.1.2 Tell-Signs Can Be Discovered From the Web Page Source
Code

The key to the prediction methodology is the tell-signs employed to detect the compo-
nents of the widgets. Using the components discovered, design concepts of the widget
can be derived. Indeed, there are numerous approaches to construct the design con-
cepts in the source code. However, tell-signs allow these concepts to be listed at a finer
granularity in our ontology. By identifying the instances of the tell-signs, deriving the
widget’s components from the tell-signs, this enables WPS to reconstruct the design
concepts.

Chapter 4 has proven that instances of tell-signs can be identified from the Web
page source code. To provide a sound approach to model widgets, tell-signs are
grouped into two main types. The first type of tell-signs, known as common tell-signs,
allows them to be reused by other components. The second type of tell-signs is specific
(private tell-signs) for the pattern or concept of a component. Using the same concepts
of model tell-signs, different types of widgets possess two types of component: com-
mon and private components. The method of modelling widgets allows each layer to
be modelled independently (see figure 3.3), and encourages the objects in the layers to
be reusable.

Analysis of the tell-signs popularity provides insights into the trends developers
take when developing widgets. It demonstrates the feasibility of identifying tell-signs
from the Web source code. The results from the tell-sign popularity analysis will not
only facilitate future work on widget prediction, but also demonstrates that the ap-
proach of reverse engineering Web widgets can assist Website maintenance, by identi-
fying the set of codes related to the widget for refactoring.

7.1.3 Widgets Prediction Can Be Done Automatically From the
Web Page Source Code

The evaluation and analysed results for our prediction system (WPS), in chapter 6,
demonstrated the feasibility of predicting widgets from the Web page source code.
Predicting Web widgets not only informs the type of widgets available in the page, but
also provides the location of the widgets. Reported by Brown [2012], it can be noticed
from the evaluation transcripts that providing users with the knowledge of the type of
widget was deemed helpful when they were interacting with the page. WPF provides
a stable foundation to develop widget prediction systems as demonstrated by the seven

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 218

types of widgets covered. An average of 61.98% accuracy is achieved for WPS, while
the prediction accuracy of two widgets attaining > 84%. This result demonstrates the
framework feasibility as a concept. However, weaker prediction rates from Carousel
and Slide Show widgets suggest an avenue for future research.

16"

Interfacing With WIMWAT
•  SCWeb2:"EndXuser"training"tool"for"the"elderly"
that"provides"explana2ons"about"the"usage"of"the"
widgets"available"on"a"Web"page."

•  SASWAT:"Screen"reader"that"allows"interac2on"
with"dynamic"content"for"visually"impaired"users."

WPS" SCWeb2.0"
/SASWAT"

URL"and"rendered"DOM"

XML"string"containing:"
X"Type"of"widget"
X"DOM"loca2on"(XPath)"
X"Confidence"Percentage"

Figure 7.1: WPS interface as a service.

WPF can be applied as the backend engine for the SCWeb2.0 project to predict
the area in the Web page where the widgets are found. The interfacing format between
SCWeb2.0 and WPS is shown in figure 7.1. As a RESTful service, WPS can predict the
location and type of the widget when provided with the Web page’s Universal Resource
Locator (URL) and the rendered DOM. The results will be returned in an XML string
containing the XPath of the widget location, the type of widget predicted, and the
confidence percentage for each prediction result. Providing the rendered DOM ensures
that WPS analyses the Web page structure that is consistent with what is presented to
the user.

To provide a rounded solution, the benefits of predicting widgets do not stop here.
Developers can benefit from the prediction results to help identify areas to insert WAI-
ARIA code, or create AxsJAX code. The approach can also be applied to provide
validity checks for developers to ensure the widgets created conform to their design; an
alternative solution to the Web engineering and reverse engineering issues pertaining
to poor documentation.

7.2 Insights to WPS

The WPF successfully contributes approaches to predict widgets. Implementing WPF
in WPS highlights that, for certain aspects in the widget prediction process, things can

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 219

be dealt with differently. This section provides insights into the problems and suggests
possible approaches for future work of this nature.

Web widget design patterns are heavily dependent on the user’s needs and trends.
Often, when developing a widget, it is subjected to how the widget is applied, the
current trends and the developer’s perspective. These factors contribute mainly to the
types and styles of coding the widgets that will indirectly affect the accuracy of the
widget prediction. The Web is constantly evolving; this means that keeping ahead of
the widget design trends will be a challenge. Commonly, projects and studies of the
proposed research will always be one step behind the current trends. This means that
frameworks like WPF have to be constantly revisited to align themselves.

Although a snapshot of every Web page analysed during our evaluation is captured
for repeatability purposes, techniques such as Lazy Load and remote scripting prevent
archiving and synthesising the entire set of code. Thus, during the “widget’s infer-
ences” phase (see figure 5.2) of the prediction process, parts of the code may not be
available. Future work of this nature should research methods to identify the region in
the code when these techniques are applied, so that simulation of the code can be done,
to extract the set of code that is currently not available.

Unlike most computer languages, HTML allows inline coding in tags/elements for
JavaScript and CSS. Although this provides easy access for developers to code their
Web page/application, it is not a good programming practice that developers often use.
Again, future work should consider this issue. Using JavaScript as an example, this is
a sequential programming language, and inline coding will be dependent on when the
code is executed in the Web page’s rendered timeline. In certain cases, identifiers of
variables may be assigned to different objects or values during a phase in the timeline.
Thus, tracing the code for design concepts can be confusing and difficult.

We recommend that future work should not rely on the rendered DOM by the user
agents. Although WPS does not rely on the DOM documentation for its prediction, it
is a caution for future work, attempting to predict objects in the page, not to rely on
the user agent’s rendered DOM. Most popular Web browsers employ a Just-In-Time
(JIT) approach to render the page. Thus, properties or attributes that are not available
during the time of rendering are recorded as ‘Undefined’. The term ‘Undefined’ by
these browsers does not equate to absence of the object, but it means that the browser
is not aware of it. This will be the same for elements with properties or attributes.
‘Undefined’ value does not equate to a value false or 0. Like WPS, synthesising the
source code to derive the values is recommended.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 220

7.3 Outstanding Issues

Although the work presented came up with significant insights and made contribu-
tions to the fields of Web Accessibility and Web engineering, a number of practical
issues should be redressed. A list of four outstanding issues accompanied by a detailed
discussion of the matter is presented.

Improving Weaker Widgets’ Prediction Accuracy: The evaluation results exposed
the strengths and weaknesses of our proposed approach. Weaker tell-sign detec-
tion was noticed from the evaluation results and should be redressed. It is not
always the case that poor detection results for a tell-sign imply that the tell-sign
was designed poorly. In many cases, the poor detection results are merely due to
the trends of coding methods and choices taken due to developers’ perspectives.
Nevertheless, filtering through the weaker tell-signs to segregate the ones with
issues is one way of enhancing the detection process. Identifying the tell-signs
that need rectification for redressing the tell-signs or even removing them may
improve the robustness of the prediction process. In some cases, new tell-signs
will be required to fill the gap. However, more research is required to determine
the robustness of the chosen tell-signs. It is not always the case that tell-signs are
the only contributing factor that will affect the prediction accuracy. We cannot
rule out the method of selecting the threshold confidence percentage. Changing
the value for the threshold confidence percentage can affect the accuracy of the
approach as well. Therefore, future investigation should explore the effects of
this value.

Update Tell-Signs for HTML5 and Improved Compliancy With WAI-ARIA:
A Technological Freeze is imposed on the studies covered in this thesis, so that
the evolutionary process can be halted while investigations into the challenges
surrounding widgets can be conducted. The Web is ever changing, and from the
Technological Freeze dateline until now, it has evolved. New Web technologies
such as HTML5, CSS3 and more formalised WAI-ARIA recommendations have
been introduced since. Thus, the framework needs to be updated and refined to
align itself with existing Web technologies.

Updating the Types of Widget Covered: Besides newer Web technologies being in-
troduced, Web developers have also revolutionised their designs by including
more complex interactivity and features to their Web pages. Some less popular
widgets have evolved or disappeared, while the popular ones evolved into more

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 221

complex concepts. The technological freeze has provided a means of ceasing the
constant changes to the Web for WPS evaluation. However, updating the widget
ontology and definition is strongly recommended to include the current types of
widget. Removal of older, less popular widgets is not recommended because
some Web pages in the archives may still employ these widgets.

Including a Mapping Phase: A grey area between the Styling and Behaviour layers
can affect the way widgets are designed. Indeed, normally the Behaviour layer
handles events from a user or machine, but the Styling layer also provides some
styling features for dynamic content. Using the Anchor tag <a> as an example,
styles for pseudo-classes hover, visited, active and link can be manipu-
lated in the Styling layer, without invoking the Behaviour layer. Developers can
use this feature as a loophole to orchestrate the visibility of content. Anecdo-
tal evidence from the evaluation results suggests that some developers used this
technique to create the Collapsible Panel widget. This can be done by changing
the element’s height or width styling properties to achieve their design. To
strengthen the current prediction architecture applied in WPS so that it includes
detection of this form of coding, a “Mapping” phase is suggested. This phase
will map the styles to each element, so that our widget prediction framework can
pick up pseudo-classes in the Styling layer.

7.4 Future Research

The demonstration of predicting widgets to improve Web Accessibility, along with the
modelling of different types of widget, provide a proof-of-concepts that should be used
as an infrastructure for future research. Eight suggestions for future work are presented
from the perspective of improving the proposed WPF approach, ideas to interface with
different types of tools, and possible application venues for the approach.

Widget Prediction System (WPS) as a Service in the Cloud: Deploying WPS as a
service in the Cloud will mean systems such as Assistive Technologies can eas-
ily tap in to take advantage of this service. Through this service, developers of
Assistive Technologies can incorporate the concepts of WPF as part of their ser-
vice and provide useful information about the widgets on the page. An example
of parts of WPS services that can be hosted in the cloud include, instead of hard-
coding the widget definitions, WIO can be queried directly using SPARQL. The

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 222

popularity of using the Cloud will allow WPS to be reached by more developers,
and provide the capability of expanding the framework so that the robustness
of the framework can be improved by covering a broader range of Websites.
The agile development process will allow us to spread the test process of the
framework to the users, as well as facilitating the evaluation of a wide range of
Websites and issues. Through this process, generic issues can be highlighted
and addressed as part of the expansion of the framework. Since Web pages are
rendered depending on the type and version of the user-agent, hosting WPS as
a service in the Cloud has to ensure that the analysed DOM is the same as the
rendered DOM at the client-end.

Working with Assistive Tools: Currently, WPS returns the predicted results contain-
ing the type of widget, the confidence percentage and the XPath of where the
widget is likely to be located. Although this result format is greatly driven by
the motivation inspired by ScWeb2.0, it can be expanded for other tools and re-
quirements. Tools that assist developers to insert AxsJAX or WAI-ARIA code
may require more detailed information about the widget during their processes.
However, further research should be done to improve our tell-sign detection pro-
cess.

An Assistive Tool for Developers: Although the purpose of predicting a widget is
presented as a means of improving the accessibility of Web content delivered
by Web widgets in this thesis, developers may also find WPF useful for reverse
engineering purposes for detecting areas in the code so that WAI-ARIA code
can be inserted or AxsJAX code can be created. Although hosting it as a service
in the Cloud is a viable source, more detailed information may be required for
reverse engineering processes. Therefore, packaging it as part of the IBM Acces-
sibility Tools Framework (ACTF) could enable the WPF to work more closely
with the developers.

Better Determination of Related Elements for Conceptual Designs: A common is-
sue raised by the evaluation results was that often the relationships between el-
ements are difficult to determine without available documentation during the
widget prediction process. Empirical observations gathered from the manual
analysis suggest that the distance between the elements, or the structure of the el-
ements, do not always provide sufficient evidence that two elements are related.
Since issues pertaining to tracing code were highlighted, as well as parallel stud-
ies reported similar issues when attempting to reverse engineer design patterns

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 223

from the source code for desktop applications [Gamma et al., 1995; Dong et al.,
2008b], this suggests further research to investigate other alternatives. Resolving
this issue will assist the false negative (Typed II errors) and false positive (Typed
I errors) predictions to be eliminated.

Identify When to Apply Prediction: Due to the popularity of the remote scripting
technique, often determining the most appropriate time to execute the prediction
process is ambiguous. Investigation into this type of challenge is vital to WPS’s
prediction process because it affects the accuracy of the approach. Anecdotal
evidence from the manual analysis suggests that often researchers resort to using
a timer at the start of their analysis process to overcome this problem. This is
not ideal, and for Websites with a huge amount of content, this method is not
appropriate.

Machine Learning Algorithms: Machine learning algorithms such as the Markov
chain can be included to aid widget prediction. In future, when some key tell-
signs are not available, predictions can be done to determine whether a tell-sign
will exist based on the tell-signs discovered. Being able to predict tell-signs
will further assist more accurate widget prediction when combined with our ap-
proach.

Assistant for Mobile Devices: As discussed in Yesilada et al. [2010], mobile users
make similar errors to disabled desktop users. An interesting piece of future
research could include investigations into how users of mobile devices react to
tools that inform them about the different types of widgets in the Web page.
These types of studies could understand the effects of how tools such as WPS
can make a difference to mobile users’ experience and productivity, and possibly
open another usage venue.

Accessible Conceptual Designs: Inserting WAI-ARIA code attempts to improve ac-
cessibility to a widget through the widget’s superficial level and the code con-
struct aspect of the entire widget design building blocks (see figure 3.3). How-
ever, WPF addresses the entire design process including the conceptual aspects
of the widget. Through our investigation, it can be noticed that little has been
done to improve the accessibility of the conceptual design of a widget. Although
this thought may sound difficult, in order to understand the operational purpose
of a widget the user will have to know the cognition ability of the widget. This
cognitive knowledge can be achievable via assisting the user to access the con-
ceptual designs of the widget.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 224

7.5 Summary

The work presented in this thesis has demonstrated the feasibility of WPF, and shown
that it is applicable, adaptable and scalable. Our widget ontology paradigm allows
developers to model their widget design concepts, and provides a platform to commu-
nicate their ideas to other developers and end-users. This paradigm can be approached
from the superficial concepts or detailed code construct aspects of the widget modelled.
Applying these concepts to WPS, widgets in the page can be predicted. Translating the
concepts from the widget classification paradigm is not direct, and sometimes requires
special techniques to overcome the accessibility barriers imposed by widgets. These
techniques and methods applied were evaluated to prove the feasibility of the frame-
work, and expose the weakness of the methods chosen. Finally, the evaluation results
suggest that some of the practicalities should be redressed based on the recommenda-
tions suggested by the analysis conducted.

The contribution of the work presented has supplemented the fields of Web Ac-
cessibility and Web engineering. It demonstrated the feasibility of predicting widgets
from the Web page source using our framework. The popularity of common techniques
applied by developers, for different types of widgets, was presented with a discus-
sion of how the evolution of widget designs will affect the developers and end-users.
Discussions of the applicability of how this work can provide important information
to Assistive tools and mobile devices were suggested to improve the accessibility of
Web widgets. The beauty of the WPF allows people with different levels of technical
knowledge to understand a type of widget. When applied to an end-user’s tool, it can
facilitate the tool with the necessary information about the widgets, thus indirectly pro-
viding a better user experience. For developers, WPS as a backend tool provides them
with the knowledge of the widget in the page, allowing them to make important deci-
sions during development or maintenance. When applied to an assistive development
tool, it can help developers to identify the areas where WAI-ARIA can be inserted, or
spot the parts of the widgets that require more conformance to guidelines and design
concepts. The evaluation results exposed the weakness of our detection methods and
suggested future work. Further analysis of tell-signs revealed the conceptual design
trends, as well as coding trends taken up by developers and widget design libraries.
The results reported will also provide reverse engineering processes with development
trends for Website maintenance.

Bibliography

Abascal, J., Arrue, M., Fajardo, I., Garay, N., and Tomás, J. (2004). The use of guide-
lines to automatically verify web accessibility. Universal Access in the Information

Society, 3(1):71–79.

Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.

Anttonen, M., Salminen, A., Mikkonen, T., and Taivalsaari, A. (2011). Transforming
the web into a real application platform: new technologies, emerging trends and
missing pieces. In Proceedings of the 2011 ACM Symposium on Applied Computing,
SAC ’11, pages 800–807, New York, NY, USA. ACM.

Arvola, M. (2006). Interaction design patterns for computers in sociable use. Interna-

tional Journal of Computer Applications in Technology, 25(2/3):128–139.

Asakawa, C. and Takagi, H. (2000). Annotation-based transcoding for nonvisual web
access. In Assets ’00: Proceedings of the fourth international ACM conference on

Assistive technologies, pages 172–179, New York, NY, USA. ACM.

Axelsson, J., Birbeck, M., Dubinko, M., Epperson, B., Ishikawa, M., McCarron, S.,
Navarro, A., and Pemberton, S. (2006). XHTML 2.0. http://www.w3.org/TR/

xhtml2.

Axtell, N., Bacon, L., and Windall, G. (2007). COMPACT Web Design Approach: A
Methodology and Modelling Technique for communicating the High-level Design
of Struts Web Applications.

Bellucci, F., Ghiani, G., Paternò, F., and Porta, C. (2012). Automatic reverse engineer-
ing of interactive dynamic web applications to support adaptation across platforms.
In Proceedings of the 2012 ACM international conference on Intelligent User Inter-

faces, IUI ’12, pages 217–226, New York, NY, USA. ACM.

225

BIBLIOGRAPHY 226

Benatallah, B., Dumas, M., Fauvet, M. C., Rabhi, F. A., and Sheng, Q. Z. (2002).
Overview of some patterns for architecting and managing composite web services.
SIGecom Exchanges, 3(3):9–16.

Bergman, M. K. (2001). The deep web: Surfacing hidden value. Digital Web
Magazine, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

12.363.

Bernardi, M. L., Di Lucca, G. A., and Distante, D. (2008). Reverse engineering of Web
Applications to abstract user-centered conceptual models. In Web Site Evolution,

2008. WSE 2008. 10th International Symposium on, pages 101–110.

Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C. (2005). Automation
and customization of rendered web pages. In Proceedings of the 18th annual ACM

symposium on User interface software and technology, UIST ’05, pages 163–172,
New York, NY, USA. ACM.

Borodin, Y., Bigham, J. P., Raman, R., and Ramakrishnan, I. V. (2008). What’s new?:
making web page updates accessible. In Assets ’08: Proceedings of the 10th in-

ternational ACM SIGACCESS conference on Computers and accessibility, pages
145–152, New York, NY, USA. ACM.

Bos, B. (2009). Cascading Style Sheets. http://www.w3.org/Style/CSS/.

Bosch, J. (1998). Design Patterns as Language Constructs. Journal of Object-Oriented

Programming, 11(2).

Brown, A. (2012). Technical evaluation of the update classification system. WEL
Technical Report, School of Computer Science, The University of Manchester.
http://wel-eprints.cs.manchester.ac.uk/156/.

Brown, A. and Jay, C. (2008a). A Review of Assistive Technologies: Can users access
dynamically updating information? WEL Technical Report, School of Computer
Science, The University of Manchester. http://wel-eprints.cs.man.ac.uk/

70/.

Brown, A. and Jay, C. (2008b). SASWAT Technical Requirements. WEL Techni-
cal Report, School of Computer Science, The University of Manchester. http:

//wel-eprints.cs.man.ac.uk/79/.

BIBLIOGRAPHY 227

Brown, A., Jay, C., and Harper, S. (2009). Audio Presentation of Auto-Suggest Lists.
In Proceedings of the 2009 International Cross-Disciplinary Conference on Web

Accessibililty (W4A), W4A ’09, pages 58–61, New York, NY, USA. ACM.

Brown, A., Jay, C., and Harper, S. (2010). Audio Access to Calendars. In W4A

2010: Proceedings of the 2010 International Cross-Disciplinary Conference on Web

Accessibility (W4A). ACM.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). A

System of Patterns: Pattern - Oriented Software Architecture. John Wiley & Sons.

Caldwell, B., Cooper, M., Reid, L. G., Vanderheiden, G., Chisholm, W., Slatin, J.,
and White, J. (2008). Web Content Accessibility Guidelines (WCAG) 2.0. http:

//www.w3.org/TR/WCAG20.

Canfora, G., Cimitile, A., and Munro, M. (1996). An Improved Algorithm for Identi-
fying Objects in Code. Software: Practice and Experience, 26(1):25–48.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web Modeling Language (WebML): a
modeling language for designing web sites. In Proceedings of the 9th international

World Wide Web conference on Computer networks : the international journal of

computer and telecommunications netowrking, pages 137–157, Amsterdam, The
Netherlands, The Netherlands. North-Holland Publishing Co.

Chandrasekaran, B., Josephson, J. R., and Benjamins, V. R. (1999). What are ontolo-
gies, and why do we need them? Intelligent Systems and their Applications, IEEE,
14(1):20–26.

Chen, A. Q. (2008). Web Evolution. Master’s thesis, The University of Manchester,
School of Computer Science, Kilburn Building, Oxford Road, Manchester, M13
9PL, UK.

Chen, A. Q. and Harper, S. (2008). Web Evolution: Method and Materials. WEL
Technical Report, School of Computer Science, The University of Manchester.
http://wel-eprints.cs.man.ac.uk/74/.

Chen, A. Q. and Harper, S. (2009). Identifying Web Widgets. WEL Techni-
cal Report, School of Computer Science, The University of Manchester. http:

//wel-eprints.cs.man.ac.uk/115/.

BIBLIOGRAPHY 228

Chen, A. Q., Harper, S., Lunn, D., and Brown, A. (2013). Widget Identification: A
High Level Approach. World Wide Web, 16(1):73–89.

Chen, B. and Shen, V. Y. (2006). Transforming web pages to become standard-
compliant through reverse engineering. In Proceedings of the 2006 international

cross-disciplinary workshop on Web accessibility (W4A): Building the mobile web:

rediscovering accessibility?, W4A ’06, pages 14–22, New York, NY, USA. ACM.

Chen, C. L. and Raman, T. V. (2008). AxsJAX: a talking translation bot using google
IM: bringing web-2.0 applications to life. In Proceedings of the 2008 international

cross-disciplinary conference on Web accessibility (W4A), W4A ’08, pages 54–56,
New York, NY, USA. ACM.

Chen, H., Ding, L., Wu, Z., Yu, T., Dhanapalan, L., and Chen, J. Y. (2009). Semantic
web for integrated network analysis in biomedicine. Briefings in Bioinformatics,
10(2):177–192.

Chisholm, W., Vanderheiden, G., and Jacobs, I. (1999). Web Content Accessibility
Guidelines 1.0. http://www.w3.org/TR/WCAG10.

Conallen, J. (2003). Building Web Applications With UML. Addison-Wesley, 2nd
edition.

Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-Schneider,
P. F., and Stein, L. A. (2001). DAML+OIL (March 2001) Reference Description.
http://www.w3.org/TR/daml+oil-reference.

Cooper, M. (2007). Accessibility of emerging rich web technologies: web 2.0 and the
semantic web. In W4A ’07: Proceedings of the 2007 international cross-disciplinary

conference on Web accessibility (W4A), pages 93–98, New York, NY, USA. ACM.

Cooper, M. (2012). Indie UI Working Group Charter. http://www.w3.org/2012/

05/indie-ui-charter Last accessed on 3rd September 2012.

Craig, J., Cooper, M., Pappas, L., Schwerdtfeger, R., and Seeman, L. (2009). Accesible
Rich Internet Applications (WAI-ARIA) 1.0. http://www.w3.org/TR/wai-aria.

d’Aquin, M. and Motta, E. (2011). Watson, more than a Semantic Web search engine.
Semantic Web, 2(1):55–63.

BIBLIOGRAPHY 229

Deitel, P. and Deitel, H. (2007). JAVA: How to Program. Pearson Education, Inc., 7th
edition.

Dencker, T., Fischer, C., and Röessler, A. (2008). Javascript client framework. United
States Patent, http://www.google.co.uk/patents?id=c5WpAAAAEBAJ.

Di Lucca, G. A., Distante, D., and Bernardi, M. L. (2006). Recovering conceptual
models from web applications. In SIGDOC ’06: Proceedings of the 24th annual

ACM international conference on Design of communication, pages 113–120, New
York, NY, USA. ACM.

Di Lucca, G. A., Fasolino, A. R., and Tramontana, P. (2005a). Recovering Interaction
Design Patterns in Web Applications. In Software Maintenance and Reengineering,

2005. CSMR 2005. Ninth European Conference on, pages 366–374.

Di Lucca, G. A., Fasolino, A. R., and Tramontana, P. (2005b). Web site accessibility:
identifying and fixing accessibility problems in client page code. In Web Site Evo-

lution, 2005. (WSE 2005). Seventh IEEE International Symposium on, pages 71–78.

Distante, D., Parveen, T., and Tilley, S. (2004). Towards a technique for reverse en-
gineering Web transactions from a user’s perspective. In Program Comprehension,

2004. Proceedings. 12th IEEE International Workshop on, pages 142–150.

Dixon, M. and Fogarty, J. (2010). Prefab: implementing advanced behaviors using
pixel-based reverse engineering of interface structure. In Proceedings of the 28th

international conference on Human factors in computing systems, CHI ’10, pages
1525–1534, New York, NY, USA. ACM.

Dixon, M., Leventhal, D., and Fogarty, J. (2011). Content and hierarchy in Pixel-Based
methods for Reverse-Engineering interface structure. In CHI ’11.

Dong, J., Lad, D. S., and Zhao, Y. (2007). DP-Miner: Design Pattern Discovery Using
Matrix. In Engineering of Computer-Based Systems, 2007. ECBS ’07. 14th Annual

IEEE International Conference and Workshops on the, pages 371–380.

Dong, J., Sun, Y., and Zhao, Y. (2008a). Design pattern detection by template match-
ing. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
pages 765–769, New York, NY, USA. ACM.

BIBLIOGRAPHY 230

Dong, J. and Zhao, Y. (2007). Experiments on Design Pattern Discovery. In PROMISE

’07: Proceedings of the Third International Workshop on Predictor Models in Soft-

ware Engineering, pages 12+, Washington, DC, USA. IEEE Computer Society.

Dong, J., Zhao, Y., and Peng, T. (2008b). A Review of Design Pattern Mining Tech-
niques. International Journal of Software Engineering and Knowledge Engineering

(IJSEKE).

Dong, J., Zhao, Y., and Sun, Y. (2009). XSLT-based evolutions and analyses of design
patterns. Software: Practice and Experience, 39(8):773–805.

ECMA-International (2009). Standard ECMA-262:ECMAScript language speci-
fication, 5th edition. http://www.ecma-international.org/publications/

files/ECMA-ST/ECMA-262.pdf.

Fazzinga, B. and Lukasiewicz, T. (2010). Semantic search on the Web. Semantic Web,
1(1):89–96.

Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D., and Patel-Schneider, P.
(2001). Oil: an ontology infrastructure for the semantic web. Intelligent Systems,

IEEE, 16(2):38–45.

Finkelstein, A., Savigni, A., Kappel, G., Retschitzegger, W., Schwinger, W., and Fe-
ichtner, C. (2002). Ubiquitous Web Application Development - A Framework for
Understanding. In Proceedings of 6th World Multiconference On Systemics, Cyber-

netics And Informatics, volume 1, pages 431–438.

Firebug (2011). Firebug: Web development evolved. http://getfirebug.com/.
Accessed on 22 March 2011.

Flanagan, D. (2002). JavaScript: The Definitive Guide. O’Reilly, 4th edition.

Fowler, M. (1996). Analysis Patterns Reusable Object Models. Addison Wesley.

Gal, A., Probst, C. W., and Franz, M. (2006). HotpathVM: an effective JIT compiler
for resource-constrained devices. In Proceedings of the 2nd international conference

on Virtual execution environments, VEE ’06, pages 144–153, New York, NY, USA.
ACM.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley.

BIBLIOGRAPHY 231

Garzotto, F., Paolini, P., and Schwabe, D. (1993). HDM—a model-based approach
to hypertext application design. ACM Transactions on Information Systems (TOIS),
11(1):1–26.

Guha, A., Krishnamurthi, S., and Jim, T. (2009). Using static analysis for Ajax intru-
sion detection. In WWW ’09: Proceedings of the 18th international conference on

World wide web, pages 561–570, New York, NY, USA. ACM.

Gwardak, L. and Påhlstorp, L. (2007). Exploring Usability Guidelines for Rich Internet
Applications. Master’s thesis, Department of Informatics, Lund University.

Hanson, V. L. (2009). Age and Web Access: The Next Generation. In W4A ’09:

Proceedings of the 2009 International Cross-Disciplinary Conference on Web Ac-

cessibility (W4A), pages 7–15. ACM.

Hanson, V. L. and Richards, J. T. (2005). Achieving a More Usable World Wide Web.
Behaviour & Information Technology, 24(3):231–246.

Hardesty, J. L. (2011). Bells, whistles, and alarms: HCI lessons using AJAX for a page-
turning web application. In Proceedings of the 2011 annual conference extended

abstracts on Human factors in computing systems, CHI EA ’11, pages 827–840,
New York, NY, USA. ACM.

Harper, S. (2008). Web evolution and its importance for supporting research arguments
in web accessibility. In De Roure, D. and Hall, W., editors, Proceedings of the First

International Workshop on Understanding Web Evolution (WebEvolve2008): A pre-

requisite for Web Science, pages 51–54, Southampton, UK. Web Science Research
Initiative.

Harper, S., Bechhofer, S., and Lunn, D. (2006). Taming the inaccessible web. In
Proceedings of the 24th annual ACM international conference on Design of com-

munication, SIGDOC ’06, pages 64–69, New York, NY, USA. ACM.

Harper, S. and Chen, A. Q. (2012). Web Accessibility Guidelines: A Lesson From The
Evolving Web. World Wide Web, 15:61–88.

Harper, S. and Yesilada, Y. (2008). Web accessibility and guidelines. In Harper, S. and
Yesilada, Y., editors, Web Accessibility: A Foundation for Research, pages 61–78.
Springer.

BIBLIOGRAPHY 232

Hartley, A. A. (1992). Attention. In Craik, F. I. and Salthouse, T. A., editors, The

Handbook of Aging and Cognition, chapter 1, pages 3–53. Laurence Erlbaum Asso-
ciates. ISBN: 0–8058-0713-6.

Heflin, J., Hendler, J., and Luke, S. (1999). SHOE: A knowledge representation lan-
guage for internet applications. Technical Report CS-TR-4078, Department of Com-
puter Science, University of Maryland. http://hdl.handle.net/1903/1044.

Hendrix, D., Cross, J. H., and Maghsoodloo, S. (2002). The effectiveness of control
structure diagrams in source code comprehension activities. Software Engineering,

IEEE Transactions on, 28(5):463–477.

Henry, S. L. and May, M. (2008). Authoring Tool Accessibility Guidelines (ATAG)
Overview. http://www.w3.org/WAI/intro/atag.php.

Henry, S. L. and May, M. (2012). User Agent Accessibility Guidelines (UAAG)
Overview. http://www.w3.org/WAI/intro/uaag.php.

Hickson, I. and Hyatt, D. (2009). HTML 5. http://www.w3.org/TR/html5.

HiSoftware Inc. (2009). HiSoftware Cynthia Says. http://www.contentquality.

com.

Hitzler, P., Krotzsch, M., and Rudolph, S. (2011). Foundations of Semantic Web Tech-

nologies. Chapman and Hall/CRC.

Hopkins, N. (2011). jsTracer: Debugging Web 2.0. http://jstracer.

sourceforge.net/. Accessed on 22 March 2011.

Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F. (2003). From SHIQ and
RDF to OWL: the making of a Web Ontology Language. Web Semantics: Science,

Services and Agents on the World Wide Web, 1(1):7 – 26.

IBM (2009). RAVEn On Accessibility. http://www-03.ibm.com/able/

resources/raven.html.

Jacobs, I. and Brewer, J. (1999). Accessibility Features of CSS. http://www.w3.

org/Style/CSS/.

Jay, C., Brown, A., and Harper, S. (2010). Internal Evaluation of the SASWAT Audio
Browser. WEL Technical Report 6, School of Computer Science, The University of

BIBLIOGRAPHY 233

Manchester. SASWAT Technical Report. http://wel-eprints.cs.manchester.
ac.uk/125/.

Karanam, S., Oostendorp, H., Melguizo, M. C., and Indurkhya, B. (2011). Interaction
of textual and graphical information in locating web page widgets. Behaviour &

Information Technology, pages 1–13.

Kim, S. Y., Nam, S. W., Lee, S. H., Park, W. S., Yoo, N. J., Lee, J. Y., and Chung, Y.-J.
(2005). ArrayCyGHt: a web application for analysis and visualization of array-CGH
data. Bioinformatics, 21(10):2554–2555.

Koch, N. and Kraus, A. (2002). The Expressive Power of UML-based Web En-
gineering. http://dx.doi.org/http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.18.7588.

Kruchten, P. (2000). The Rational Unified Process: An Introduction, page 7. Addison-
Wesley, Boston, MA, 2nd edition.

Kurniawan, S., King, A., Evans, D., and Blenkhorn, P. (2006). Personalising Web Page
Presentation for Older People. Interacting with Computers, 18(3):457–477. Human
Factors in Personalised Systems and Services.

Larman, C. (1998). Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design. Prentice Hall PTR.

Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M., and Kandogan, E. (2007).
Koala: capture, share, automate, personalize business processes on the web. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
CHI ’07, pages 943–946, New York, NY, USA. ACM.

Liu, S. S. and Wilde, N. (1990). Identifying objects in a conventional procedural
language: an example of data design recovery. In Software Maintenance, 1990.,

Proceedings., Conference on, pages 266–271.

Lunn, D. (2009). Towards Behaviour-Driven Transcoding of Web Content Through

an Analysis of User Coping Strategies. PhD thesis, The University of Manchester,
School of Computer Science, Oxford Road, Manchester, M13 9PL, UK.

Lunn, D. and Harper, S. (2010). Using Galvanic Skin Response Measures To Identify
Areas of Frustration for Older Web 2.0 Users. In W4A ’10: Proceedings of the 2010

International Cross-Disciplinary Conference on Web Accessibility (W4A). ACM.

BIBLIOGRAPHY 234

Lunn, D. and Harper, S. (2011). Providing assistance to older users of dynamic web
content. Computers in Human Behavior, 27(6):2098–2107.

Lunn, D., Harper, S., and Bechhofer, S. (2009a). Combining SADIe and AxsJAX to
improve the accessibility of web content. In Proceedings of the 2009 International

Cross-Disciplinary Conference on Web Accessibililty (W4A), W4A ’09, pages 75–
78, New York, NY, USA. ACM.

Lunn, D., Yesilada, Y., and Harper, S. (2009b). Barriers Faced by Older Users On
Static Web Pages: Criteria Used In The Barrier Walkthrough Method. WEL Tech-
nical Report WP1D1, School of Computer Science, The University of Manchester.
http://wel-eprints.cs.manchester.ac.uk/108/ SCWeb2 Technical Report.

Mäkelä, E., Viljanen, K., Alm, O., Tuominen, J., Valkeapää, O., Kurki, J., Sinkkilä,
R., Lindroos, R., Suominen, O., Ruotsalo, T., and Hyvönen, E. (2007). Enabling the
Semantic Web with Ready-to-Use Web Widgets. http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.118.3018.

Martı́n, A., Rossi, G., Cechich, A., and Gordillo, S. (2010). Engineering Accessible
Web Applications. An Aspect-Oriented Approach. World Wide Web, 13:419–440.

Maurer, D. (2006). Usability for rich internet applications. Digital
Web Magazine, http://www.digital-web.com/articles/usability_for_

rich_internet_applications/.

Maurer, F. and Martel, S. (2002). Extreme programming. Rapid development for Web-
based applications. IEEE Internet Computing, 6(1):86–90.

Memmert, D. (2006). The Effects of Eye Movements, Age, and Expertise on Inatten-
tional Blindness. Consciousness and Cognition, 15(3):620–627.

Mikkonen, T. (1998). Formalizing Design Patterns. In Software Engineering, Interna-

tional Conference on, volume 0, Los Alamitos, CA, USA. IEEE Computer Society.

Millard, D. E. and Ross, M. (2006). Web 2.0: hypertext by any other name? In
Proceedings of the seventeenth conference on Hypertext and hypermedia, HYPER-
TEXT ’06, pages 27–30, New York, NY, USA. ACM.

Myers, B., Hudson, S. E., and Pausch, R. (2000). Past, present, and future of user inter-
face software tools. ACM Transactions on Computer-Human Interaction (TOCHI),
7(1):3–28.

BIBLIOGRAPHY 235

O’Neill, E. T., Lavoie, B. F., and Bennett, R. (2003). Trends in the evolution of the
public web (1998 - 2002). D-Lib Magazine, 9(4).

O’reilly, T. (2007). What is Web 2.0: Design Patterns and Business Models for the
Next Generation of Software. Social Science Research Network Working Paper

Series.

Overmyer, S. P. (2000). What’s Different about Requirements Engineering for Web
Sites? Requirements Engineering, 5(1):62–65.

Power, C. and Petrie, H. (2007). Accessibility in non-professional web authoring tools:
a missed web 2.0 opportunity? In W4A ’07: Proceedings of the 2007 interna-

tional cross-disciplinary conference on Web accessibility (W4A), pages 116–119,
New York, NY, USA. ACM.

Presutti, V. and Gangemi, A. (2008). Content Ontology Design Patterns as Practical
Building Blocks for Web Ontologies. In Li, Q., Spaccapietra, S., Yu, E., and Olivé,
A., editors, Conceptual Modeling - ER 2008, volume 5231 of Lecture Notes in Com-

puter Science, chapter 11, pages 128–141. Springer Berlin / Heidelberg, Berlin, Hei-
delberg.

Rajlich, V. (2000). Incremental redocumentation using the Web. Software, IEEE,
17(5):102–106.

Rajlich, V. and Wilde, N. (2002). The role of concepts in program comprehension.
In Program Comprehension, 2002. Proceedings. 10th International Workshop on,
volume 0, pages 271–278, Los Alamitos, CA, USA. IEEE Computer Society.

Rhino (2011). Rhino: Javascript for java. http://www.mozilla.org/rhino/. Ac-
cessed on 23 March 2011.

Richards, J. T. and Hanson, V. L. (2004). Web accessibility: a broader view. In WWW

’04: Proceedings of the 13th international conference on World Wide Web, pages
72–79, New York, NY, USA. ACM.

Ridpath, C. and Chisholm, W. (2000). Techniques For Accessibility Evaluation and
Repair Tools. http://www.w3.org/TR/AERT/.

BIBLIOGRAPHY 236

Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., and Garrido, A. (2008). Refactoring
to Rich Internet Applications. A Model-Driven Approach. In International Confer-

ence on Web Engineering, volume 0, pages 1–12, Los Alamitos, CA, USA. IEEE
Computer Society.

Sàenz, M., Buracas, G. T., and Boynton, G. M. (2003). Global Feature-Based Attention
for Motion and Color. Vision Research, 43(6):629 – 637.

Schwerdtfeger, R. (2012). HTML5 accessibility Coming soon are you ready?
http://www-03.ibm.com/able/news/html5.html Last accessed on 3rd Septem-
ber 2012.

Shawn (2009). Web Accessibility Initiative. http://www.w3.org/WAI/.

Stencel, K. and Wegrzynowicz, P. (2008). Detection of Diverse Design Pattern Vari-
ants. In Software Engineering Conference, 2008. APSEC ’08. 15th Asia-Pacific,
pages 25–32.

Takagi, H., Asakawa, C., Fukuda, K., and Maeda, J. (2002). Site-wide annotation:
reconstructing existing pages to be accessible. In Assets ’02: Proceedings of the

fifth international ACM conference on Assistive technologies, pages 81–88, New
York, NY, USA. ACM.

Thatcher, J., Waddell, C., Henry, S., Swierenga, S., Urban, M., Burks, M., and
Bohman, P. (2003). Constructing Accessible Web Sites. Apress.

Thiessen, P. and Chen, C. (2007). Ajax live regions: chat as a case example. In W4A

’07: Proceedings of the 2007 international cross-disciplinary conference on Web

accessibility (W4A), pages 7–14, New York, NY, USA. ACM.

Tilley, S. and Huang, S. (2001). Evaluating the reverse engineering capabilities of
web tools for understanding site content and structure: a case study. In ICSE ’01:

Proceedings of the 23rd International Conference on Software Engineering, pages
514–523, Washington, DC, USA. IEEE Computer Society.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., and Halkidis, S. T. (2006). Design
Pattern Detection Using Similarity Scoring. Software Engineering, IEEE Transac-

tions on, 32(11):896–909.

BIBLIOGRAPHY 237

V8 (2011). V8 javascript engine. http://code.google.com/apis/v8/. Accessed
on 23 March 2011.

Vlissides, J. M., Coplien, J. O., and Kerth, N. L. (1996). Pattern Languages of Program

Design 2. Addison-Wesley Publishing Company.

Vora, P. (2009). Web Application Design Patterns, chapter Pattern Libraries, pages
389–403. Morgan Kaufmann Publishers.

WebAIM (2009). WAVE. http://wave.webaim.org.

xhtml.com (2008). X/HTML 5 Versus XHTML 2. http://xhtml.com/en/future/
x-html-5-versus-xhtml-2/.

Yesilada, Y., Harper, S., Chen, T., and Trewin, S. (2010). Small-device users situation-
ally impaired by input. Computers in Human Behavior, 26(3):427–435.

Zakas, N. C. (2010). High Performance JavaScript. O’Reilly.

Appendix A

Code Constructs Objects

Assignment CodeConstruct The set of different kinds of assignment to a variable in
the code.

ArrayLength Assignment CodeConstruct This refers to instances within the
code that the length/size of the array is assigned to a variable. We search
for the following pattern “= array.length”.

Zero Assignment CodeConstruct This refers to instances within the code that
the numeric ‘0’ is assigned to a variable. We search for the following pat-
tern “= 0”.

ConditionalOperator CodeConstruct This Code Constructs class refers to a pattern
commonly used by developers to incorporate a condition when assigning the
variable with a value/object/instance. An example of the pattern for the code
construct is Variable = (conditions)? ... : ...;

DOMElements CodeConstruct The super set that refers to the different types of el-
ements in the DOM. This can include term given to refer to a group of different
types of elements.

AnchorElements DOMElements CodeConstruct This is the Anchor elements
in the DOM document. i.e., <a>....

ListElements DOMElements CodeConstruct This Code Construct object refers
to a group of elements in the DOM that is a subset of a parent element such
as Ordered(), Unordered(), and Definition(<dl>) List elements,
nested <div> elements, nested Anchor elements (<a>), and nested <p> el-
ements.

238

APPENDIX A. CODE CONSTRUCTS OBJECTS 239

TextArea DOMElements CodeConstruct This DOM element is usually de-
clared within the form element (<form>...</form>) that allow the user
to input a lot of text when filling up the form. Normally the textarea el-
ement (<textarea>...</textarea>) consist of more than one row with
multiple columns.

TextField DOMElements CodeConstruct This DOM element is usually de-
clared within the form element (<form>...</form>) that allow the user
to input text when filling up the form. It uses the input element with it
type property set to “text” – i.e., <input type="text">. Normally this
element allows the user to input lesser text than the textarea element, and
only has one row with multiple columns.

Expression CodeConstruct This is a set of expression to check if an object in the
code meets certain criterial.

isArrayLength Expression CodeConstruct This a control condition to check
if the value is the same as the array length.

isZero Expression CodeConstruct This is a control condition to check if the
value is zero.

Events CodeConstruct The is a set of code constructs that relates to the monitoring
of different type of events that happens within the page session.

AddListener Events CodeConstruct This is an instance where event listeners
are added to monitor a event on an element.
i.e., element.addEventListener(event, handler, boolean).

ChangeKeyword Events CodeConstruct This refers to the keyword ‘change’
to assist searching for variables assigned to monitor this event.

ClickKeyword Events CodeConstruct This refers to the keyword ‘click’ to
assist searching for variables assigned to monitor this event.

MouseoverKeyword Events CodeConstruct This refers to the keyword ‘mouseover’
to assist searching for variables assigned to monitor this event.

onChangeAttr Events CodeConstruct This refers to the attribute ‘onChange’
declared in the DOM with the element to monitor the onChange event for
that particular element.

APPENDIX A. CODE CONSTRUCTS OBJECTS 240

onChangeProperty Events CodeConstruct This refers to the ‘onChange’ prop-
erty of an element in the code; declared to monitor the changes of content
in that particular element.

onClickAttr Events CodeConstruct This refers to the attribute ‘onClick’ de-
clared in the DOM with the element to monitor the onClick event for that
particular element.

onClickProperty Events CodeConstruct This refers to the ‘onClick’ prop-
erty of an element in the code; declared to monitor if that particular element
is clicked.

onMouseoverAttr Events CodeConstruct This refers to the attribute ‘onMouseover’
declared in the DOM with the element to monitor the onMouseover event
for that particular element.

onMouseoverProperty Events CodeConstruct This refers to the ‘onMouseover’
property of an element in the code; declared to monitor mouse is hovering
over the element.

ifStatements CodeConstruct This refers to a code pattern structure where the ‘if’
statement is used in the code. i.e., if(Expression) {...}

KeyCode CodeConstruct This is a set of conditions to check the key codes referring
to a particular key on the keyboard.

Check38 KeyCode CodeConstruct This checks if the ‘Up’ key is monitored
in the code. In this case the key code is 38.

Check40 KeyCode CodeConstruct This checks if the ‘Down’ key is moni-
tored in the code. In this case the key code is 40.

Keyword CodeConstruct This is a set of keywords to be search within a specified
area in the code.

Begin Keyword CodeConstruct Within a specific area in the code look for the
‘Begin’ word.

End Keyword CodeConstruct Within a specific area in the code look for the
‘End’ word.

First Keyword CodeConstruct Within a specific area in the code look for the
‘First’ word.

APPENDIX A. CODE CONSTRUCTS OBJECTS 241

Last Keyword CodeConstruct Within a specific area in the code look for the
‘Last’ word.

Start Keyword CodeConstruct Within a specific area in the code look for the
‘Start’ word.

ManipulateDOMElements CodeConstruct The set of properties that are commonly
used to manipulate the DOM elements.

Hide ManipulateDOMElements CodeConstruct This is a set of instances that
changes a particular DOM element’s styling property so that the element
becomes not visible to the user. This concept can be done either by chang-
ing the styling visibility property to hide (element.style.visibility =

hide) or the styling display property to none (element.style.display
= none).

JSAppendDOM ManipulateDOMElements CodeConstruct This class refers
to an instance in the code where it attempts to append a DOM document
node. i.e., element.appendChild(new node to be inserted).

MakeVisible ManipulateDOMElements CodeConstruct This is the opposite
to Hide ManipulateDOMElements CodeConstruct class where here we are
checking that a particular DOM element’s styling property is changed, so
that the element becomes visible to the user.
i.e., element.style.visibility = visible and element.style.display
= block.

OffAutoCompleteAttr ManipulateDOMElements CodeConstruct This is a
series of pattern in the code that changes the text field or textarea element’s
property – autocomplete to off. By doing this it informs the browser not to
suggest words that were previous entered.

SetHigherOrder ManipulateDOMElements CodeConstruct An instance in
the code that changes the styling property of an element so that it is high
visibility order. i.e., element.style.zIndex="1";

UpdateInnerHTMLProperty ManipulateDOMElements CodeConstruct This
instance of code assigns the DOM element with a new set of content. i.e.,
element.innerHTML = ...

MinusSign CodeConstruct This code construct is an instance of a ‘−’ sign within
the code.

APPENDIX A. CODE CONSTRUCTS OBJECTS 242

PlusSign CodeConstruct This code construct is an instance of a ‘+’ sign within the
code.

Variable CodeConstruct This is an instance of a declaration or assignation of a vari-
able in the code.

ArrayObject Variable CodeConstruct This refers to a set of code patterns
that declares a variable as an array. This can be in the form of variable =

newArray() or variable[...].

Window CodeConstruct Instances of code that is used to manipulate the Window
object.

Open Window CodeConstruct This set of code launches a new browser win-
dow. i.e., window.open(...).

SetTimeOut Window CodeConstruct This set of code sets a delay for an event
to occur to the browser window. i.e., setTimeout(...).

Appendix B

Results for Profiler’s 10K Character
Size Evaluation

Input

Identifier Location Start End Arguments

1 gjuc 1437 1453 1679 NULL

2 gjp 1680 1695 1754 NULL

3 gjp 2521 2536 2585 NULL

4 wgjp 2855 2870 3022 NULL

5 n 3737 3749 3786 NULL

6 c 4762 4774 4775 NULL

7 c 5883 5898 5944 F,G

8 ml 277 290 291 NULL

9 time 316 331 358 NULL

10 log 360 380 560 c,d,b

11 a.onabort 440 461 473 NULL

12 l 278 290 291 NULL

13 e 319 331 358 NULL

14 window.onpopstate 744 772 780 NULL

15 c[a] 896 911 936 NULL

16 window.google.startTick 1061 1098 1146 a,b

17 window.google.tick 1148 1182 1245 a,b,c

18 google.x 1769 1791 1825 e,g

19 window.rwt 1827 1863 2278 a,f,g,k,l,h,c,m

20 qs 2294 2307 2308 NULL

243

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION244

21 tg 2310 2324 2398 e

22 g 3496 3513 3628 b,c,a

23 google.med 3787 3809 3981 b

24 google.register 3984 4013 4121 b,c

25 google.save 4123 4148 4316 b,c

26 google.initHistory 4318 4347 4428 NULL

27 google.exportSymbol 4474 4509 4684 a,b,c

28 google.exportProperty 4686 4723 4730 a,b,c

29 google.inherits 4732 4761 4833 a,b

30 o 4930 4943 5830 a

31 p 5867 5882 6409 a,b

32 google.browser.isEngineVersion 6500 6542 6567 a

33 google.browser.isProductVersion 6569 6612 6637 a

34 u 6683 6696 6766 a

35 v 6768 6783 7027 a,b

36 w 7029 7042 7080 a

37 create 7104 7124 7225 a,b

38 get 7227 7244 7264 a,b

39 insert 7285 7307 7361 a,b,c

40 remove 7363 7381 7433 a

41 set 7435 7450 7736 a

42 google.listen 7739 7768 7837 a,b,c

43 google.unlisten 7839 7870 7945 a,b,c

44 A 7956 7975 8251 a,b,c,d

45 d 8083 8096 8109 y

46 listen 8266 8283 8384 NULL

47 unlisten 8386 8405 8549 NULL

48 D 8604 8621 8897 a,b,c

49 E 8899 8911 9182 NULL

50 H 9184 9196 9270 NULL

51 I 9272 9287 9481 a,b

52 search 9501 9521 9840 a,b

53 getQuery 9885 9904 9918 NULL

54 J 9925 9937 9990 NULL

55 NULL 717 728 942 NULL

56 NULL 883 895 937 a

57 NULL 2374 2385 2396 NULL

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION245

58 NULL 3344 3355 3461 NULL

59 NULL 3467 3478 4430 NULL

60 NULL 4436 4447 NULL NULL

Table B.1: The Functions results extracted from the profiler for

google.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 window.google 17 31 715

2 window.chrome 966 980 981

3 window.google.timers 1037 1058 1059

4 i[a] 1099 1104 1145

5 google.y 1757 1766 1767

6 window.gbar 2281 2293 2399

7 o 2329 2331 2341

8 google.j[1] 2586 2598 2820

9 e 29 31 715

10 c[d] 4677 4682 4683

11 k 4839 4841 4861

12 m 4863 4865 4897

13 google.browser.engine 5621 5643 5703

14 google.browser.product 5705 5728 5829

15 google.dom 7083 7094 7737

16 z 7951 7953 7954

17 google.msg 8254 8265 8557

18 google.nav 9484 9495 9919

19 d 9565 9567 9568

Table B.2: The Objects results extracted from the profiler for

google.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Element Location Event Handler Factory

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION246

1 a 7788 b c google.listen at 7739 with no

callee.

Table B.3: The Listener results extracted from the profiler for

google.com when evaluating over 10K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 run if loaded 893 920 953 a,b

2 run with 954 978 1031 b,a,c

3 wait for load 1032 1061 1447 c,b,e

4 bind 1448 1466 1699 c,b

5 env get 1731 1750 1777 a

6 hasArrayNature 1902 1928 2114 a

7 $A 2115 2129 2271 b

8 eval global 2273 2296 2673 c

9 copy properties 2675 2704 2888 b,c

10 add properties 2889 2917 2970 a,b

11 is empty 2971 2991 3120 b

12 Arbiter 3195 3213 3339 NULL

13 window.async callback 3126 3183 3193 a,b

14 subscribe 3746 3771 4275 k,b,i

15 unsubscribe 4277 4300 4619 e

16 inform 4621 4643 5419 i,c,b

17 query 5421 5438 5563 b

18 getInstance 5580 5604 5717 a

19 registerCallback 5719 5749 6261 b,d

20 updateCallbacks 6263 6293 6560 d,c

21 Function.prototype.deferUntil 6565 6612 6811 a,h,b,i

22 c 6683 6695 6778 NULL

23 configurePage 6959 6984 7389 b

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION247

24 loadComponents 7391 7419 7593 d,b

25 loadResources 7595 7626 8329 h,b,g,k

26 fetchWithIframe 8331 8359 8793 d

27 addResourceToIframe 8795 8827 9198 e

28 requestResource 9200 9231 9888 j,g,e

29 runCSSPolls 9926 9949 NULL NULL

30 NULL 712 724 745 a

31 NULL 853 865 891 a

32 NULL 1280 1291 1424 NULL

33 NULL 1519 1530 1697 NULL

34 NULL 6918 6930 NULL a

Table B.4: The Functions results extracted from the profiler for

facebook.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 rm 145 152 153

2 window[a] 2953 2963 2964

3 h 4717 4719 4720

4 i 5924 5926 5927

5 a. listen[j] 6061 6074 6075

6 a. callbacks[h] 6188 6204 6250

7 h 4717 4719 4720

8 this. cssLinkMap[f] 7295 7315 7325

9 e 7674 7676 7677

10 this. earlyResources 7845 7866 7867

11 this. cssLinkMap[e] 9677 9697 9713

12 this. cssLinkMap[e] 9677 9697 9713

Table B.5: The Objects results extracted from the profiler for face-

book.com when evaluating over 10K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for facebook.com when evaluating over 10K character size.

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION248

Input

Identifier Location Start End Arguments

1 checkChromePromoAlert 2763 2796 2977 NULL

2 dismissChromePromoAlert 3038 3073 3224 NULL

3 hideFbPromoAlert 5982 6010 6049 NULL

4 isRtl 7054 7071 7114 NULL

5 setRtlYva 7119 7146 9617 suffix

6 yt.timing.tick 86 129 359 label, opt time

7 yt.timing.info 369 409 549 label, value

8 gaiaChangedCallback 3892 3934 4388 autoshare

9 fn 4230 4246 4341 NULL

10 canConnectCallback 4462 4503 4778 autoshare

11 serviceChangedCallback 4850 4895 5385 autoshare

12 window.dismissFbPromoAlert 5809 5849 5972 NULL

13 fixYvaDom 7793 7822 8142 suffix

14 richMedia.clipFlashObject 8644 8753 9096 asset, width, height,

offsetTop, off-

setRight, offsetBot-

tom, offsetLeft

15 richMedia.unclipFlashObject 9171 9232 9560 asset, width, height

16 NULL 3258 3270 6061 NULL

17 NULL 3276 3288 6052 NULL

18 NULL 6483 6495 6567 NULL

Table B.6: The Functions results extracted from the profiler for

youtube.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No Objects and event listeners were found for facebook.com when evaluating over 10K

character size.

Input

Identifier Location Start End Arguments

1 c 2756 2773 2896 r,s,q

2 o 2897 2914 3032 r,s,q

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION249

3 enable 3048 3065 3108 NULL

4 disable 3110 3128 3171 NULL

5 dispatch 3173 3192 3261 NULL

6 reset 3263 3279 3285 NULL

7 a 5457 5478 6172 A,l,u,n,h

8 e.augment 6376 6405 6841 f,w,j,u,o

9 k[i] 6537 6552 6672 NULL

10 e.aggregate 6843 6872 6902 h,g,f,i

11 e.extend 6904 6930 7182 i,h,f,k

12 e.each 7184 7208 7390 i,h,j,g

13 e.clone 7392 7421 7914 j,k,n,p,i,m

14 e.bind 7916 7936 8115 g,i

15 e.rbind 8117 8138 8317 g,i

16 before 8502 8526 8636 i,k,l,m

17 after 8638 8661 8771 i,k,l,m

18 inject 8773 8798 9035 h,j,k,m

19 k[m] 8906 8921 8961 NULL

20 detach 9037 9055 9081 h

21 unload 9083 9104 9105 i,h

22 e.Do.Method 9108 9133 9209 h,i

23 e.Do.Method.prototype.register 9211 9257 9304 i,j,h

24 e.Do.Method.prototype. delete 9306 9347 9391 h

25 e.Do.Method.prototype.exec 9393 9430 9926 NULL

26 e.Do.AlterArgs 9928 9956 9983 i,h

27 NULL 185 198 2118 NULL

28 NULL 2158 2169 2548 NULL

29 NULL 2588 2599 3288 NULL

30 NULL 5404 5416 6204 g

31 NULL 6308 6320 8319 e

32 NULL 6522 6536 6770 r,i

33 NULL 7742 7756 7846 o,f

34 NULL 7867 7881 7894 o,f

35 NULL 7999 8010 8113 NULL

36 NULL 8201 8212 8315 NULL

37 NULL 8417 8429 NULL e

38 NULL 8464 8475 NULL NULL

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION250

Table B.7: The Functions results extracted from the profiler for

yahoo.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 k 2747 2749 2750

2 j.OnloadCache 3033 3047 3286

3 r 3197 3199 3211

4 k 2747 2749 2750

5 g 6499 6501 6502

6 k 2747 2749 2750

7 q 6509 6511 6512

8 e.Env.evt 8430 8440 8462

9 e.Do 8488 8493 9106

10 this.objs[n] 8838 8851 8852

11 this.before 9180 9192 9193

12 this.after 9195 9206 9207

Table B.8: The Objects results extracted from the profiler for ya-

hoo.com when evaluating over 10K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for yahoo.com when evaluating over 10K character size.

No Functions were found for live.com when evaluating over 10K character size.

Identifier Location Start End

1 srf oTemplate 3886 none none

Table B.9: The Objects results extracted from the profiler for

live.com when evaluating over 10K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for live.com when evaluating over 10K character size.

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION251

Input

Identifier Location Start End Arguments

1 gaia onLoginSubmit 6764 6794 6903 NULL

2 window.onload 6373 6401 6662 NULL

Table B.10: The Functions results extracted from the profiler for

blogger.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No Objects and event listeners were found for blogger.com when evaluating over 10K

character size.

Input

Identifier Location Start End Arguments

1 addEV 644 665 767 C,B,A

2 G 768 781 808 A

3 F 1560 1572 1692 NULL

4 H 1693 1708 2431 W,S

5 U 1843 1855 2082 NULL

6 J 2432 2445 2541 S

7 C 2542 2555 2676 T

8 I 2955 2968 3002 C

9 K 3003 3016 3049 C

10 S 3050 3063 3163 C

11 U 3164 3177 3245 C

12 P 3246 3263 3374 G,X,C

13 N 3375 3388 3439 C

14 R 3440 3453 3665 X

15 H 3666 3679 3874 G

16 C 3777 3792 3873 Z,b

17 O 3875 3888 4054 Y

18 L 4055 4068 4278 G

19 C 4411 4424 4531 b

20 G 4532 4545 4639 Y

21 Z 4809 4821 4880 NULL

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION252

22 e 4881 4894 5304 n

23 k 5305 5317 5514 NULL

24 l 5515 5527 5547 NULL

25 g 5548 5560 5577 NULL

26 i 5578 5590 5667 NULL

27 b 5668 5681 5733 n

28 G 5734 5747 5793 n

29 n 6642 6654 6716 NULL

30 e 6717 6729 6907 NULL

31 i 6908 6920 6972 NULL

32 G 6973 6985 7009 NULL

33 b 7010 7023 7111 q

34 c 7112 7125 7221 q

35 f 7222 7235 7390 q

36 X 7391 7403 7627 NULL

37 Y 7628 7643 7778 r,q

38 p 7779 7794 7882 q,s

39 j 7883 7895 8347 NULL

40 Z 8348 8360 8454 NULL

41 k 8455 8467 8736 NULL

42 g 8737 8749 9007 NULL

43 G 9401 9413 9514 NULL

44 X 9531 9543 9558 NULL

45 Y 9559 9572 9603 Z

46 X 9803 9816 9919 C

47 Y 9920 9933 9979 C

48 a[i].onclick 246 269 426 NULL

49 w.onunload 2738 2759 2760 NULL

50 ini 4647 4662 4701 X

51 bdsug.sugkeywatcher.on 5843 5876 5969 NULL

52 bdsug.sugkeywatcher.off 5971 6005 6101 NULL

53 rm 6222 6236 6563 n

54 rm 9022 9036 9351 q

55 rm 9618 9632 9768 Z

56 NULL 428 439 516 NULL

57 NULL 874 885 2695 NULL

58 NULL 2002 2013 2044 NULL

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION253

59 NULL 2714 2725 2735 NULL

60 NULL 2840 2851 NULL NULL

61 NULL 3291 3303 3332 Y

62 NULL 3310 3321 3331 NULL

63 NULL 4399 4410 4703 NULL

64 NULL 4714 4725 6566 NULL

65 NULL 5381 5392 5422 NULL

66 NULL 6577 6588 9354 NULL

67 NULL 7140 7151 7220 NULL

68 NULL 9365 9376 9771 NULL

69 NULL 9782 9793 NULL NULL

Table B.11: The Functions results extracted from the profiler for

baidu.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 bdimeHW 813 821 822

2 window.bdsug 4341 4354 4355

3 bdsug.sug 4357 4367 4368

4 bdsug.sugkeywatcher 4370 4390 4391

5 X. MSG QS 4663 4676 4677

6 G 9798 9800 9801

Table B.12: The Objects results extracted from the profiler for

baidu.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Element Location Event Handler Factory

1 C 736 B A addEV at 644 with callees at

2098, 2677, 2700

2 G 3344 X C P at 3246 with callees at 6128,

6147, 6190, 8039, 8058, 8076,

8095, 9515

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION254

3 X 5924 keydown e None

Table B.13: The Listener results extracted from the profiler for

baidu.com when evaluating over 10K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 $ 96 109 143 a

2 addLoadEvent 145 169 280 a

3 getLang 281 299 437 NULL

4 convertChinese 713 739 880 a

5 convertZhLinks 881 906 1126 NULL

6 setLang 1157 1176 1416 a

7 null 450 461 710 NULL

8 null 1429 1440 1720 NULL

Table B.14: The Functions results extracted from the profiler for

wikipedia.org when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No Objects were found for wikipedia.org when evaluating over 10K character size.

Element Location Event Handler Factory

1 Document 197 load a addLoadEvent at 145 with

callees at 438, 1128, 1417

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION255

Table B.15: The Listener results extracted from the profiler for

wikipedia.org when evaluating over 10K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 fn 948 961 1147 NULL

2 each 3865 3897 3999 a, fn, opt scope

3 Animate 4515 4548 4745 el, prop, opts

4 onCondition 723 752 861 D,C,A,B

5 window.self.onload 1081 1115 1145 evt

6 Array.prototype.filter 3081 3128 3346 fn, thisObj

7 Array.prototype.indexOf 3396 3442 3593 el, start

8 Animate.canTransition 4857 4892 5054 NULL

9 Animate.prototype. setStyle 5158 5202 5460 val

10 Animate.prototype. animate 5530 5570 6019 NULL

11 Animate.prototype.start 6079 6116 6261 NULL

12 TWTR.Widget 6433 6462 6487 opts

13 matchUrlScheme 6757 6788 6872 url

14 getClassRegEx 7007 7035 7273 c

15 getByClass 7285 7328 7785 c, tag, root, apply

16 browser 7797 7818 7922 NULL

17 byId 7936 7956 8066 id

18 trim 8078 8099 8148 str

19 getViewportHeight 8160 8191 8518 NULL

20 getTarget 8530 8571 8660 e, resolveTextNode

21 resolveTextNode 8672 8703 8862 el

22 getRelatedTarget 8874 8905 9178 e

23 insertAfter 9190 9228 9302 el, reference

24 removeElement 9314 9343 9429 el

25 getFirst 9441 9465 9499 el

26 withinElement 9511 9539 9828 e

27 getStyle 9840 9862 NULL NULL

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION256

28 NULL 30 42 168 g

29 NULL 821 832 855 NULL

30 NULL 1035 1046 1076 NULL

31 NULL 3631 3643 NULL NULL

32 NULL 6201 6213 6251 NULL

33 NULL 6493 6505 NULL NULL

34 NULL 9953 9977 NULL el, property

Table B.16: The Functions results extracted from the profiler for

twitter.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 3 objects found

2 page 711 716 717

3 twttr 6544 6552 6553

4 reClassNameCache 6928 6947 6948

Table B.17: The Objects results extracted from the profiler for

twitter.com when evaluating over 10K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No event listeners were found for twitter.com when evaluating over 10K character size.

Input

Identifier Location Start End Arguments

1 $ 7777 7790 7851 o

2 CreatAjax 7854 7879 8092 a,b,c

3 CreatXmlRequest 8095 8122 8301 NULL

4 parseInfo 8304 8329 8375 a,b,c

5 swTabs 8380 8398 9038 e

6 swLabs 9041 9074 9665 sobject,sid,snum

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION257

7 loadNewsMap 9668 9690 9760 NULL

8 tagOver 9763 9782 NULL a

9 QosS.isAllLoaded 372 400 609 B

10 QosS.checkLoad 611 636 1519 NULL

11 (QosS.c.onerror 1277 1303 1317 NULL

12 QosS.topSpan 1521 1547 1772 A,B

13 QosS.killTimer 1774 1799 1892 NULL

14 QosS.endCheck 1894 1918 2533 NULL

15 MiniSite.$ 2925 2947 3007 s

16 load 3031 3060 3586 sUrl,fCallback

17 script.onreadystatechange 3335 3372 3466 NULL

18 script.onload 3506 3531 3553 NULL

19 set 3610 3654 3911 name, value, ex-

pires, path, domain

20 get 3915 3933 4075 name

21 clear 4079 4111 4278 name,path,domain

22 insertFlash 4639 4672 5449 elm,url,w,h

23 print 5469 5494 5524 province

24 print 5528 5544 6348 NULL

25 ok 5552 5565 5596 NULL

26 window.onerror 6482 6511 6529 NULL

27 window.setTimeout 6583 6639 6897 fCallback, nDelay,

oObject

28 obj.onreadystatechange 7986 8022 8091 NULL

29 NULL 5758 5769 6177 NULL

30 NULL 6774 6785 6819 NULL

31 NULL 9835 9846 9856 NULL

32 NULL 9967 9978 9993 NULL

Table B.18: The Functions results extracted from the profiler for

qq.com when evaluating over 10K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

Identifier Location Start End

1 QosS.C 81 88 172

APPENDIX B. RESULTS FOR PROFILER’S 10K CHARACTER SIZE EVALUATION258

2 QosS.G 174 181 370

3 MiniSite.Browser 2656 2673 2922

4 MiniSite.JsLoader 3010 3028 3588

5 MiniSite.Cookie 3591 3607 4280

6 MiniSite.Home 4283 4297 6350

7 QosS 63 none none

8 MiniSite 2633 none none

Table B.19: The Objects results extracted from the profiler for

qq.com when evaluating over 10K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for qq.com when evaluating over 10K character size.

Appendix C

Results for Profiler’s 15K Character
Size Evaluation

Input

Identifier Location Start End Arguments

1 gjuc 1437 1453 1679 NULL

2 gjp 1680 1695 1754 NULL

3 gjp 2521 2536 2585 NULL

4 wgjp 2855 2870 3022 NULL

5 n 3737 3749 3786 NULL

6 c 4762 4774 4775 NULL

7 c 5883 5898 5944 F,G

8 j 14491 14503 14540 NULL

9 k 14541 14556 14614 a,b

10 m 14624 14636 14669 NULL

11 ml 277 290 291 NULL

12 time 316 331 358 NULL

13 log 360 380 560 c,d,

14 b

15 a.onabort 440 461 473 NULL

16 l 278 290 291 NULL

17 e 319 331 358 NULL

18 window.onpopstate 744 772 780 NULL

19 c[a] 896 911 936 NULL

20 window.google.startTick 1061 1098 1146 a,b

259

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION260

21 window.google.tick 1148 1182 1245 a,b,c

22 google.x 1769 1791 1825 e,g

23 window.rwt 1827 1863 2278 a,f,g,k,l,h,c,m

24 qs 2294 2307 2308 NULL

25 tg 2310 2324 2398 e

26 g 3496 3513 3628 b,c,a

27 google.med 3787 3809 3981 b

28 google.register 3984 4013 4121 b,c

29 google.save 4123 4148 4316 b,c

30 google.initHistory 4318 4347 4428 NULL

31 google.exportSymbol 4474 4509 4684 a,b,c

32 google.exportProperty 4686 4723 4730 a,b,c

33 google.inherits 4732 4761 4833 a,b

34 o 4930 4943 5830 a

35 p 5867 5882 6409 a,b

36 google.browser.isEngine-

Version

6500 6542 6567 a

37 google.browser.isProduct-

Version

6569 6612 6637 a

38 u 6683 6696 6766 a

39 v 6768 6783 7027 a,b

40 w 7029 7042 7080 a

41 create 7104 7124 7225 a,b

42 get 7227 7244 7264 a,b

43 insert 7285 7307 7361 a,b,c

44 remove 7363 7381 7433 a

45 set 7435 7450 7736 a

46 google.listen 7739 7768 7837 a,b,c

47 google.unlisten 7839 7870 7945 a,b,c

48 A 7956 7975 8251 a,b,c,d

49 d 8083 8096 8109 y

50 listen 8266 8283 8384 NULL

51 unlisten 8386 8405 8549 NULL

52 D 8604 8621 8897 a,b,c

53 E 8899 8911 9182 NULL

54 H 9184 9196 9270 NULL

55 I 9272 9287 9481 a,b

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION261

56 search 9501 9521 9840 a,b

57 getQuery 9885 9904 9918 NULL

58 J 9925 9937 9990 NULL

59 K 9992 10009 10385 a,b,c

60 L 10387 10400 10559 a

61 M 10561 10574 10763 a

62 N 10765 10778 10834 a

63 O 10836 10849 10906 a

64 P 10908 10921 10947 a

65 Q 10949 10962 10992 a

66 R 10994 11009 11083 a,b

67 addClass 11232 11254 11356 a,b

68 removeClass 11358 11383 11498 a,b

69 U 11581 11594 11638 a

70 escape 11654 11672 11746 a

71 unescape 11748 11768 11842 a

72 stopPropagation 11858 11885 11962 a

73 getSelection 11964 11987 12139 NULL

74 xjsol 12141 12158 12240 a

75 xjsl 12242 12260 12344 a,b

76 V 12351 12368 12566 a,b,c

77 isSerpLink 12581 12603 12640 a

78 isSerpForm 12642 12664 12697 a

79 updateLinksWithParam 12699 12737 13177 a,b,c,d

80 qs 13179 13193 13463 a

81 google.xhr 13466 13487 13720 NULL

82 google.getHeight 13781 13809 13821 a

83 google.getWidth 13823 13850 13862 a

84 google.getComputedStyle 13864 13903 13919 a,b,c

85 google.getPageOffsetTop 13921 13956 13968 a

86 google.getPageOffsetLeft 13970 14006 14018 a

87 google.getPageOffsetStart 14020 14057 14069 a

88 google.hasClass 14071 14100 14114 a,b

89 google.getColor 14116 14143 14155 a

90 google.append 14157 14182 14194 a

91 google.rhs 14196 14217 14218 NULL

92 google.eventTarget 14221 14251 14263 a

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION262

93 google.bind 14265 14292 14313 a,b,c

94 google.unbind 14315 14344 14367 a,b,c

95 google.History.client 14420 14453 14481 a

96 google.History.addPostInit-

Callback

14670 14716 14726 a

97 google.History.save 14728 14761 14771 a,b

98 google.History.initialize 14774 14811 14936 a

99 NULL 717 728 942 NULL

100 NULL 883 895 937 a

101 NULL 2374 2385 2396 NULL

102 NULL 3344 3355 3461 NULL

103 NULL 3467 3478 4430 NULL

104 NULL 4436 4447 NULL NULL

105 NULL 10055 10069 10092 e,f

106 NULL 12433 12447 12456 e,f

107 NULL 12520 12536 12564 e,f,g

108 NULL 14375 14386 NULL NULL

Table C.1: The Functions results extracted from the profiler for

google.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 window.google 17 31 715

2 window.chrome 966 980 981

3 window.google.timers 1037 1058 1059

4 i[a] 1099 1104 1145

5 google.y 1757 1766 1767

6 window.gbar 2281 2293 2399

7 o 2329 2331 2341

8 google.j[1] 2586 2598 2820

9 e 29 31 715

10 c[d] 4677 4682 4683

11 k 4839 4841 4861

12 m 4863 4865 4897

13 google.browser.engine 5621 5643 5703

14 google.browser.product 5705 5728 5829

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION263

15 google.dom 7083 7094 7737

16 z 7951 7953 7954

17 google.msg 8254 8265 8557

18 google.nav 9484 9495 9919

19 d 9565 9567 9568

20 google.style 11086 11099 11499

21 google.util 11641 11653 12345

22 google.srp 12569 12580 13464

23 google.History 14387 14402 14403

24 i[g] 14568 14573 14574

25 n.json 14950 14957 14958

Table C.2: The Objects results extracted from the profiler for

google.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Element Location Event Handler Factory

1 a 7788 b c google.listen at 7739 with callee

at 14293.

Table C.3: The Listener results extracted from the profiler for

google.com when evaluating over 15K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 run if loaded 893 920 953 a,b

2 run with 954 978 1031 b,a,c

3 wait for load 1032 1061 1447 c,b,e

4 bind 1448 1466 1699 c,b

5 env get 1731 1750 1777 a

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION264

6 hasArrayNature 1902 1928 2114 a

7 $A 2115 2129 2271 b

8 eval global 2273 2296 2673 c

9 copy properties 2675 2704 2888 b,c

10 add properties 2889 2917 2970 a,b

11 is empty 2971 2991 3120 b

12 Arbiter 3195 3213 3339 NULL

13 set ue cookie 14251 14276 14405 a

14 window.async callback 3126 3183 3193 a,b

15 subscribe 3746 3771 4275 k,b,i

16 unsubscribe 4277 4300 4619 e

17 inform 4621 4643 5419 i,c,b

18 query 5421 5438 5563 b

19 getInstance 5580 5604 5717 a

20 registerCallback 5719 5749 6261 b,d

21 updateCallbacks 6263 6293 6560 d,c

22 Function.prototype.deferUntil 6565 6612 6811 a,h,b,i

23 c 6683 6695 6778 NULL

24 configurePage 6959 6984 7389 b

25 loadComponents 7391 7419 7593 d,b

26 loadResources 7595 7626 8329 h,b,g,k

27 fetchWithIframe 8331 8359 8793 d

28 addResourceToIframe 8795 8827 9198 e

29 requestResource 9200 9231 9888 j,g,e

30 runCSSPolls 9926 9949 10735 NULL

31 startCSSPoll 10737 10762 11228 d

32 done 11230 11248 11524 f,c

33 requested 11526 11547 11610 c

34 enableBootload 11612 11638 11707 b

35 unloadResource 11709 11736 12082 e

36 getHardpoint 12084 12107 12259 NULL

37 setResourceMap 12261 12287 12368 c

38 resolveResources 12370 12400 12590 e,b

39 loadEarlyResources 12592 12622 12808 d

40 b 13372 13385 13429 l

41 a 13435 13448 14047 m

42 l.onload 13827 13846 13859 NULL

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION265

43 d 13834 13846 13859 NULL

44 h 14912 14925 0 r

45 NULL 712 724 745 a

46 NULL 853 865 891 a

47 NULL 1280 1291 1424 NULL

48 NULL 1519 1530 1697 NULL

49 NULL 6918 6930 12984 a

50 NULL 10840 10851 11144 NULL

51 NULL 11082 11093 11137 NULL

52 NULL 11157 11168 11190 NULL

53 NULL 13040 13051 14245 NULL

54 NULL 14055 14071 14243 n,l,m

55 NULL 14155 14166 14240 NULL

56 NULL 14422 14433 NULL NULL

Table C.4: The Functions results extracted from the profiler for

facebook.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 rm 145 152 153

2 window[a] 2953 2963 2964

3 h 4717 4719 4720

4 i 5924 5926 5927

5 a. listen[j] 6061 6074 6075

6 a. callbacks[h] 6188 6204 6250

7 h 4717 4719 4720

8 this. cssLinkMap[f] 7295 7315 7325

9 e 7674 7676 7677

10 this. earlyResources 7845 7866 7867

11 this. cssLinkMap[e] 9677 9697 9713

12 this. cssLinkMap[e] 9677 9697 9713

13 this. activeCSSPolls 10193 10214 10215

14 e 7674 7676 7677

15 r 14534 14536 14684

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION266

Table C.5: The Objects results extracted from the profiler for face-

book.com when evaluating over 15K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for facebook.com when evaluating over 15K character size.

Input

Identifier Location Start End Arguments

1 checkChromePromoAlert 2763 2796 2977 NULL

2 dismissChromePromoAlert 3038 3073 3224 NULL

3 hideFbPromoAlert 5982 6010 6049 NULL

4 isRtl 7054 7071 7114 NULL

5 setRtlYva 7119 7146 9617 suffix

6 RichMediaCore 58 12 11230 11261 13229 NULL

7 yt.timing.tick 86 129 359 label, opt time

8 yt.timing.info 369 409 549 label, value

9 gaiaChangedCallback 3892 3934 4388 autoshare

10 fn 4230 4246 4341 NULL

11 canConnectCallback 4462 4503 4778 autoshare

12 serviceChangedCallback 4850 4895 5385 autoshare

13 window.dismissFbPromoAl-

ert

5809 5849 5972 NULL

14 fixYvaDom 7793 7822 8142 suffix

15 richMedia.clipFlashObject 8644 8753 9096 asset, width,

height, offset-

Top, offsetRight,

offsetBottom,

offsetLeft

16 richMedia.unclipFlashObject 9171 9232 9560 asset, width, height

17 RichMediaCore 58 12.proto-

type.setCsiEventsRecorded-

DuringBreakout

13339 13425 13529 creative

18 RichMediaCore 58 12.proto-

type.csiHasValidStart

13532 13600 13678 creative

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION267

19 RichMediaCore 58 12.proto-

type.shouldReportCsi

13681 13748 13838 creative

20 RichMediaCore 58 12.proto-

type.shouldCsi

13841 13913 14292 asset, creativeType

21 RichMediaCore 58 12.proto-

type.trackCsiEvent

14295 14357 14406 event

22 RichMediaCore 58 12.proto-

type.getCsiServer

14409 14465 14642 NULL

23 RichMediaCore 58 12.proto-

type.reportCsi

14645 14706 NULL creative

24 NULL 3258 3270 6061 NULL

25 NULL 3276 3288 6052 NULL

26 NULL 6483 6495 6567 NULL

Table C.6: The Functions results extracted from the profiler for

youtube.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 self.dartLoadedGlobalTemplates 58 12 11057 11096 11097

2 dartCreativeDisplayManagers undefined 10893 none

3 csiTimes undefined 13314 none

Table C.7: The Objects results extracted from the profiler for

youtube.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No event listeners were found for youtube.com when evaluating over 15K character size.

Input

Identifier Location Start End Arguments

1 c 2756 2773 2896 r,s,q

2 o 2897 2914 3032 r,s,q

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION268

3 enable 3048 3065 3108 NULL

4 disable 3110 3128 3171 NULL

5 dispatch 3173 3192 3261 NULL

6 reset 3263 3279 3285 NULL

7 a 5457 5478 6172 A,l,u,n,h

8 e.augment 6376 6405 6841 f,w,j,u,o

9 k[i] 6537 6552 6672 NULL

10 e.aggregate 6843 6872 6902 h,g,f,i

11 e.extend 6904 6930 7182 i,h,f,k

12 e.each 7184 7208 7390 i,h,j,g

13 e.clone 7392 7421 7914 j,k,n,p,i,m

14 e.bind 7916 7936 8115 g,i

15 e.rbind 8117 8138 8317 g,i

16 before 8502 8526 8636 i,k,l,m

17 after 8638 8661 8771 i,k,l,m

18 inject 8773 8798 9035 h,j,k,m

19 k[m] 8906 8921 8961 NULL

20 detach 9037 9055 9081 h

21 unload 9083 9104 9105 i,h

22 e.Do.Method 9108 9133 9209 h,i

23 e.Do.Method.prototype.reg-

ister

9211 9257 9304 i,j,h

24 e.Do.Method.prototype. de-

lete

9306 9347 9391 h

25 e.Do.Method.prototype.exec 9393 9430 9926 NULL

26 e.Do.AlterArgs 9928 9956 9983 i,h

27 e.Do.AlterReturn 9985 10015 10044 i,h

28 e.Do.Halt 10046 10069 10095 i,h

29 e.Do.Prevent 10097 10121 10133 h

30 e.EventHandle 10384 10411 10434 f,g

31 detach 10461 10478 10591 NULL

32 e.CustomEvent 10594 10621 10845 f,g

33 applyConfig 10872 10897 10923 g,f

34 on 10925 10946 11264 j,h,g,f

35 subscribe 11266 11289 11376 h,g

36 on 11378 11394 11481 h,g

37 after 11483 11502 11586 h,g

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION269

38 detach 11588 11608 11772 k,h

39 unsubscribe 11774 11796 11838 NULL

40 notify 11840 11863 12027 i,h,f

41 log 12029 12046 12065 g,f

42 fire 12067 12082 12333 NULL

43 fireSimple 12335 12357 12505 f

44 fireComplex 12507 12530 12571 f

45 procSubs 12573 12598 12759 j,g,f

46 broadcast 12761 12783 12949 g

47 unsubscribeAll 12951 12976 13021 NULL

48 detachAll 13023 13043 13065 NULL

49 delete 13067 13086 13178 f

50 e.Subscriber 13181 13209 13286 h,g,f

51 notify 13312 13335 13561 j,h,i

52 notify 13563 13583 13794 g,i

53 contains 13796 13818 13889 g,f

54 l 14261 14274 14588 m

55 on 14603 14623 NULL r,v,p,w

56 NULL 185 198 2118 NULL

57 NULL 2158 2169 2548 NULL

58 NULL 2588 2599 3288 NULL

59 NULL 5404 5416 6204 g

60 NULL 6308 6320 8319 e

61 NULL 6522 6536 6770 r,i

62 NULL 7742 7756 7846 o,f

63 NULL 7867 7881 7894 o,f

64 NULL 7999 8010 8113 NULL

65 NULL 8201 8212 8315 NULL

66 NULL 8417 8429 NULL e

67 NULL 8464 8475 10156 NULL

68 NULL 13892 13903 NULL NULL

69 NULL 13951 13965 14029 m,n

70 NULL 14042 14056 14258 o,q

71 NULL 14871 14885 NULL x,n

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION270

Table C.8: The Functions results extracted from the profiler for

yahoo.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 k 2747 2749 2750

2 j.OnloadCache 3033 3047 3286

3 r 3197 3199 3211

4 k 2747 2749 2750

5 g 6499 6501 6502

6 k 2747 2749 2750

7 q 6509 6511 6512

8 e.Env.evt 8430 8440 8462

9 e.Do 8488 8493 9106

10 this.objs[n] 8838 8851 8852

11 this.before 9180 9192 9193

12 this.after 9195 9206 9207

13 e.EventHandle.prototype 10436 10460 10592

14 this.subscribers 10728 10745 10746

15 this.afters 10748 10760 10761

16 e.CustomEvent.prototype 10847 10871 13179

17 e.Subscriber.prototype 13288 13311 13890

18 l.prototype 14590 14602 NULL

19 G 14831 14833 14834

Table C.9: The Objects results extracted from the profiler for ya-

hoo.com when evaluating over 15K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for yahoo.com when evaluating over 15K character size.

No Functions were found for live.com when evaluating over 15K character size.

Identifier Location Start End

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION271

1 srf oTemplate 3886 none none

2 g DO 10032 none none

Table C.10: The Objects results extracted from the profiler for

live.com when evaluating over 15K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for live.com when evaluating over 15K character size.

Input

Identifier Location Start End Arguments

1 gaia onLoginSubmit 6764 6794 6903 NULL

2 gaia setFocus 12081 12106 12349 NULL

3 window.onload 6373 6401 6662 NULL

4 gaia loginForm.Email.onkey-

press

11993 12038 12076 NULL

Table C.11: The Functions results extracted from the profiler for

blogger.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No Objects and event listeners were found for blogger.com when evaluating over 15K

character size.

Input

Identifier Location Start End Arguments

1 addEV 644 665 767 C,B,A

2 G 768 781 808 A

3 F 1560 1572 1692 NULL

4 H 1693 1708 2431 W,S

5 U 1843 1855 2082 NULL

6 J 2432 2445 2541 S

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION272

7 C 2542 2555 2676 T

8 I 2955 2968 3002 C

9 K 3003 3016 3049 C

10 S 3050 3063 3163 C

11 U 3164 3177 3245 C

12 P 3246 3263 3374 G,X,C

13 N 3375 3388 3439 C

14 R 3440 3453 3665 X

15 H 3666 3679 3874 G

16 C 3777 3792 3873 Z,b

17 O 3875 3888 4054 Y

18 L 4055 4068 4278 G

19 C 4411 4424 4531 b

20 G 4532 4545 4639 Y

21 Z 4809 4821 4880 NULL

22 e 4881 4894 5304 n

23 k 5305 5317 5514 NULL

24 l 5515 5527 5547 NULL

25 g 5548 5560 5577 NULL

26 i 5578 5590 5667 NULL

27 b 5668 5681 5733 n

28 G 5734 5747 5793 n

29 n 6642 6654 6716 NULL

30 e 6717 6729 6907 NULL

31 i 6908 6920 6972 NULL

32 G 6973 6985 7009 NULL

33 b 7010 7023 7111 q

34 c 7112 7125 7221 q

35 f 7222 7235 7390 q

36 X 7391 7403 7627 NULL

37 Y 7628 7643 7778 r,q

38 p 7779 7794 7882 q,s

39 j 7883 7895 8347 NULL

40 Z 8348 8360 8454 NULL

41 k 8455 8467 8736 NULL

42 g 8737 8749 9007 NULL

43 G 9401 9413 9514 NULL

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION273

44 X 9531 9543 9558 NULL

45 Y 9559 9572 9603 Z

46 X 9803 9816 9919 C

47 Y 9920 9933 9979 C

48 G 10128 10141 10387 Y

49 C 10669 10681 10755 NULL

50 G 10756 10768 10879 NULL

51 a 11050 11062 11141 NULL

52 d 11142 11154 11340 NULL

53 b 11341 11354 11489 e

54 X 11490 11502 11529 NULL

55 G 11530 11542 11998 NULL

56 a[i].onclick 246 269 426 NULL

57 w.onunload 2738 2759 2760 NULL

58 ini 4647 4662 4701 X

59 bdsug.sugkeywatcher.on 5843 5876 5969 NULL

60 bdsug.sugkeywatcher.off 5971 6005 6101 NULL

61 rm 6222 6236 6563 n

62 rm 9022 9036 9351 q

63 rm 9618 9632 9768 Z

64 rm 9994 10008 10090 C

65 rm 10402 10416 10517 Y

66 bdsug.sug 10525 10546 10586 C

67 bdsug.initSug 10588 10612 10636 NULL

68 rm 10894 10908 10974 X

69 rm 12033 12047 12106 e

70 NULL 428 439 516 NULL

71 NULL 874 885 2695 NULL

72 NULL 2002 2013 2044 NULL

73 NULL 2714 2725 2735 NULL

74 NULL 2840 2851 12618 NULL

75 NULL 3291 3303 3332 Y

76 NULL 3310 3321 3331 NULL

77 NULL 4399 4410 4703 NULL

78 NULL 4714 4725 6566 NULL

79 NULL 5381 5392 5422 NULL

80 NULL 6577 6588 9354 NULL

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION274

81 NULL 7140 7151 7220 NULL

82 NULL 9365 9376 9771 NULL

83 NULL 9782 9793 10093 NULL

84 NULL 10104 10115 10520 NULL

85 NULL 10657 10668 10977 NULL

86 NULL 10988 10999 12109 NULL

Table C.12: The Functions results extracted from the profiler for

baidu.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 bdimeHW 813 821 822

2 window.bdsug 4341 4354 4355

3 bdsug.sug 4357 4367 4368

4 bdsug.sugkeywatcher 4370 4390 4391

5 X. MSG QS 4663 4676 4677

6 G 9798 9800 9801

Table C.13: The Objects results extracted from the profiler for

baidu.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Element Location Event Handler Factory

1 C 736 B A addEV at 644 with callees at

2098, 2677, 2700.

2 G 3344 X C P at 3246 with callees at 6128,

6147, 6190, 8039, 8058, 8076,

8095, 9515, 11624, 11650.

3 X 5924 keydown e None

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION275

Table C.14: The Listener results extracted from the profiler for

baidu.com when evaluating over 15K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 $ 96 109 143 a

2 addLoadEvent 145 169 280 a

3 getLang 281 299 437 NULL

4 convertChinese 713 739 880 a

5 convertZhLinks 881 906 1126 NULL

6 setLang 1157 1176 1416 a

7 NULL 450 461 710 NULL

8 NULL 1429 1440 1720 NULL

Table C.15: The Functions results extracted from the profiler for

wikipedia.org when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No Objects were found for wikipedia.org when evaluating over 15K character size.

Element Location Event Handler Factory

1 Document 197 load a addLoadEvent at 145 with

callees at 438, 1128, 1417

Table C.16: The Listener results extracted from the profiler for

wikipedia.org when evaluating over 15K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION276

Input

Identifier Location Start End Arguments

1 fn 948 961 1147 NULL

2 each 3865 3897 3999 a, fn, opt scope

3 Animate 4515 4548 4745 el, prop, opts

4 HexToR 11725 11744 11800 h

5 HexToG 11808 11827 11883 h

6 HexToB 11891 11910 11966 h

7 getRest 13398 13417 13721 NULL

8 onCondition 723 752 861 D,C,A,B

9 window.self.onload 1081 1115 1145 evt

10 Array.prototype.filter 3081 3128 3346 fn, thisObj

11 Array.prototype.indexOf 3396 3442 3593 el, start

12 Animate.canTransition 4857 4892 5054 NULL

13 Animate.prototype. setStyle 5158 5202 5460 val

14 Animate.prototype. animate 5530 5570 6019 NULL

15 Animate.prototype.start 6079 6116 6261 NULL

16 TWTR.Widget 6433 6462 6487 opts

17 matchUrlScheme 6757 6788 6872 url

18 getClassRegEx 7007 7035 7273 c

19 getByClass 7285 7328 7785 c, tag, root, apply

20 browser 7797 7818 7922 NULL

21 byId 7936 7956 8066 id

22 trim 8078 8099 8148 str

23 getViewportHeight 8160 8191 8518 NULL

24 getTarget 8530 8571 8660 e, resolveTextNode

25 resolveTextNode 8672 8703 8862 el

26 getRelatedTarget 8874 8905 9178 e

27 insertAfter 9190 9228 9302 el, reference

28 removeElement 9314 9343 9429 el

29 getFirst 9441 9465 9499 el

30 withinElement 9511 9539 9828 e

31 getStyle 9840 9862 10515 NULL

32 has 10616 10637 10724 el, c

33 add 10734 10755 10872 el, c

34 remove 10882 10906 11062 el, c

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION277

35 add 11204 11232 11462 el, type, fn

36 remove 11471 11502 11677 el, type, fn

37 hex rgb 11695 11716 12068 NULL

38 bool 12162 12180 12227 b

39 def 12237 12254 12306 o

40 number 12316 12336 12397 n

41 string 12406 12426 12472 s

42 fn 12482 12498 12546 f

43 array 12556 12575 12689 a

44 absoluteTime 12849 12876 13781 s

45 hour 13022 13040 13315 NULL

46 timeAgo 13973 14004 NULL dateString

47 NULL 30 42 168 g

48 NULL 821 832 855 NULL

49 NULL 1035 1046 1076 NULL

50 NULL 3631 3643 NULL NULL

51 NULL 6201 6213 6251 NULL

52 NULL 6493 6505 NULL NULL

53 NULL 9953 9977 10236 el, property

54 NULL 10344 10368 10500 el, property

55 NULL 11379 11391 11442 NULL

56 NULL 11981 11996 12060 hex

Table C.17: The Functions results extracted from the profiler for

twitter.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 page 711 716 717

2 twttr 6544 6552 6553

3 reClassNameCache 6928 6947 6948

4 classes 10598 10608 11068

5 events 11187 11196 11683

6 is 12149 12154 12695

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION278

Table C.18: The Objects results extracted from the profiler for

twitter.com when evaluating over 15K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Element Location Event Handler Factory

1 el 11279 type fn add at 11204 with a callee at

11143.

Table C.19: The Listener results extracted from the profiler for

twitter.com when evaluating over 15K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 $ 7777 7790 7851 o

2 CreatAjax 7854 7879 8092 a,b,c

3 CreatXmlRequest 8095 8122 8301 NULL

4 parseInfo 8304 8329 8375 a,b,c

5 swTabs 8380 8398 9038 e

6 swLabs 9041 9074 9665 sobject,sid,snum

7 loadNewsMap 9668 9690 9760 NULL

8 tagOver 9763 9782 10001 a

9 tagOut 10004 10022 10055 a

10 getNames 10059 10090 10276 obj,name,tij

11 cplay 10280 10296 10522 NULL

12 formatPageZone 10526 10553 11114 NULL

13 send request 11118 11146 11665 url

14 loadPage 11669 11690 12352 NULL

15 tail 12355 12372 12982 NULL

16 getExpires 13067 13089 13181 a

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION279

17 setdefSkin 13184 13205 13642 NULL

18 setdef 13646 13663 13999 NULL

19 QosS.isAllLoaded 372 400 609 B

20 QosS.checkLoad 611 636 1519 NULL

21 (QosS.c.onerror 1277 1303 1317 NULL

22 QosS.topSpan 1521 1547 1772 A,B

23 QosS.killTimer 1774 1799 1892 NULL

24 QosS.endCheck 1894 1918 2533 NULL

25 MiniSite.$ 2925 2947 3007 s

26 load 3031 3060 3586 sUrl,fCallback

27 script.onreadystatechange 3335 3372 3466 NULL

28 script.onload 3506 3531 3553 NULL

29 set 3610 3654 3911 name, value, ex-

pires, path, domain

30 get 3915 3933 4075 name

31 clear 4079 4111 4278 name,path,domain

32 insertFlash 4639 4672 5449 elm,url,w,h

33 print 5469 5494 5524 province

34 print 5528 5544 6348 NULL

35 ok 5552 5565 5596 NULL

36 window.onerror 6482 6511 6529 NULL

37 window.setTimeout 6583 6639 6897 fCallback, nDelay,

oObject

38 obj.onreadystatechange 7986 8022 8091 NULL

39 f[i].onclick 10915 10938 10984 NULL

40 f[i].onmouseover 10989 11016 11050 NULL

41 f[i].onmouseout 11052 11078 11112 NULL

42 $(“tailorArrow”).onclick 11966 12003 12079 NULL

43 $(“tailorArrow”).onmouseover 12081 12122 12143 NULL

44 $(“tailorArrow”).onmouseout 12146 12186 12206 NULL

45 NULL 5758 5769 6177 NULL

46 NULL 6774 6785 6819 NULL

47 NULL 9835 9846 9856 NULL

48 NULL 9967 9978 9993 NULL

APPENDIX C. RESULTS FOR PROFILER’S 15K CHARACTER SIZE EVALUATION280

Table C.20: The Functions results extracted from the profiler for

qq.com when evaluating over 15K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

Identifier Location Start End

1 QosS.C 81 88 172

2 QosS.G 174 181 370

3 MiniSite.Browser 2656 2673 2922

4 MiniSite.JsLoader 3010 3028 3588

5 MiniSite.Cookie 3591 3607 4280

6 MiniSite.Home 4283 4297 6350

7 QosS 63 none none

8 MiniSite 2633 none none

Table C.21: The Objects results extracted from the profiler for

qq.com when evaluating over 15K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for qq.com when evaluating over 15K character size.

Appendix D

Results for Profiler’s 20K Character
Size Evaluation

Input

Identifier Location Start End Arguments

1 gjuc 1437 1453 1679 NULL

2 gjp 1680 1695 1754 NULL

3 gjp 2521 2536 2585 NULL

4 wgjp 2855 2870 3022 NULL

5 n 3737 3749 3786 NULL

6 c 4762 4774 4775 NULL

7 c 5883 5898 5944 F,G

8 j 14491 14503 14540 NULL

9 k 14541 14556 14614 a,b

10 m 14624 14636 14669 NULL

11 d 17842 17854 17934 NULL

12 k 18350 18363 18372 b

13 l 18374 18386 18854 NULL

14 m 18856 18875 18911 b,c,g,e

15 n 18912 18925 19013 b

16 h 19865 19880 19910 a,c

17 j 19911 19923 NULL NULL

18 ml 277 290 291 NULL

19 time 316 331 358 NULL

20 log 360 380 560 c,d,

281

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION282

21 b

22 a.onabort 440 461 473 NULL

23 l 278 290 291 NULL

24 e 319 331 358 NULL

25 window.onpopstate 744 772 780 NULL

26 c[a] 896 911 936 NULL

27 window.google.startTick 1061 1098 1146 a,b

28 window.google.tick 1148 1182 1245 a,b,c

29 google.x 1769 1791 1825 e,g

30 window.rwt 1827 1863 2278 a,f,g,k,l,h,c,m

31 qs 2294 2307 2308 NULL

32 tg 2310 2324 2398 e

33 g 3496 3513 3628 b,c,a

34 google.med 3787 3809 3981 b

35 google.register 3984 4013 4121 b,c

36 google.save 4123 4148 4316 b,c

37 google.initHistory 4318 4347 4428 NULL

38 google.exportSymbol 4474 4509 4684 a,b,c

39 google.exportProperty 4686 4723 4730 a,b,c

40 google.inherits 4732 4761 4833 a,b

41 o 4930 4943 5830 a

42 p 5867 5882 6409 a,b

43 google.browser.isEngineVer-

sion

6500 6542 6567 a

44 google.browser.isProductV-

ersion

6569 6612 6637 a

45 u 6683 6696 6766 a

46 v 6768 6783 7027 a,b

47 w 7029 7042 7080 a

48 create 7104 7124 7225 a,b

49 get 7227 7244 7264 a,b

50 insert 7285 7307 7361 a,b,c

51 remove 7363 7381 7433 a

52 set 7435 7450 7736 a

53 google.listen 7739 7768 7837 a,b,c

54 google.unlisten 7839 7870 7945 a,b,c

55 A 7956 7975 8251 a,b,c,d

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION283

56 d 8083 8096 8109 y

57 listen 8266 8283 8384 NULL

58 unlisten 8386 8405 8549 NULL

59 D 8604 8621 8897 a,b,c

60 E 8899 8911 9182 NULL

61 H 9184 9196 9270 NULL

62 I 9272 9287 9481 a,b

63 search 9501 9521 9840 a,b

64 getQuery 9885 9904 9918 NULL

65 J 9925 9937 9990 NULL

66 K 9992 10009 10385 a,b,c

67 L 10387 10400 10559 a

68 M 10561 10574 10763 a

69 N 10765 10778 10834 a

70 O 10836 10849 10906 a

71 P 10908 10921 10947 a

72 Q 10949 10962 10992 a

73 R 10994 11009 11083 a,b

74 addClass 11232 11254 11356 a,b

75 removeClass 11358 11383 11498 a,b

76 U 11581 11594 11638 a

77 escape 11654 11672 11746 a

78 unescape 11748 11768 11842 a

79 stopPropagation 11858 11885 11962 a

80 getSelection 11964 11987 12139 NULL

81 xjsol 12141 12158 12240 a

82 xjsl 12242 12260 12344 a,b

83 V 12351 12368 12566 a,b,c

84 isSerpLink 12581 12603 12640 a

85 isSerpForm 12642 12664 12697 a

86 updateLinksWithParam 12699 12737 13177 a,b,c,d

87 qs 13179 13193 13463 a

88 google.xhr 13466 13487 13720 NULL

89 google.getHeight 13781 13809 13821 a

90 google.getWidth 13823 13850 13862 a

91 google.getComputedStyle 13864 13903 13919 a,b,c

92 google.getPageOffsetTop 13921 13956 13968 a

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION284

93 google.getPageOffsetLeft 13970 14006 14018 a

94 google.getPageOffsetStart 14020 14057 14069 a

95 google.hasClass 14071 14100 14114 a,b

96 google.getColor 14116 14143 14155 a

97 google.append 14157 14182 14194 a

98 google.rhs 14196 14217 14218 NULL

99 google.eventTarget 14221 14251 14263 a

100 google.bind 14265 14292 14313 a,b,c

101 google.unbind 14315 14344 14367 a,b,c

102 google.History.client 14420 14453 14481 a

103 google.History.addPostInit-

Callback

14670 14716 14726 a

104 google.History.save 14728 14761 14771 a,b

105 google.History.initialize 14774 14811 14936 a

106 n.typeOf 14988 15008 15592 a

107 n.isArray 15594 15615 15643 a

108 n.json.j 15645 15665 15960 a

109 n.json.parse 15963 15987 16091 a

110 n.json.unsafeParse 16093 16123 16146 a

111 n.json.a 16148 16168 16203 a

112 n.json.Serializer 16205 16233 16234 NULL

113 n.json.Serializer.prototype.a 16236 16277 16316 a

114 n.json.Serializer.prototype.b 16319 16362 16683 a,b

115 n.json.Serializer.prototype.d 16924 16967 17223 a,b

116 n.json.Serializer.prototype.g 17225 17268 17308 a,b

117 n.json.Serializer.prototype.e 17311 17354 17450 a,b

118 n.json.Serializer.prototype.h 17452 17495 17654 a,b

119 google.rhs 18002 18022 18313 NULL

120 animate 19026 19049 19383 b,c,g

121 finish 19341 19358 19381 NULL

122 easeInAndOut 19385 19409 19427 b

123 easeOut 19429 19448 19473 b

124 getFrameCount 19475 19499 19508 NULL

125 unwrap 19520 19538 19591 b

126 wrap 19522 19538 19591 b

127 dispose 19725 19743 19776 NULL

128 NULL 717 728 942 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION285

129 NULL 883 895 937 a

130 NULL 2374 2385 2396 NULL

131 NULL 3344 3355 3461 NULL

132 NULL 3467 3478 4430 NULL

133 NULL 4436 4447 NULL NULL

134 NULL 10055 10069 10092 e,f

135 NULL 12433 12447 12456 e,f

136 NULL 12520 12536 12564 e,f,g

137 NULL 14375 14386 17816 NULL

138 NULL 17008 17020 17216 f

139 NULL 17822 17833 18315 NULL

140 NULL 18321 18332 19780 NULL

141 NULL 19786 19797 NULL NULL

Table D.1: The Functions results extracted from the profiler for

google.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 window.google 17 31 715

2 window.chrome 966 980 981

3 window.google.timers 1037 1058 1059

4 i[a] 1099 1104 1145

5 google.y 1757 1766 1767

6 window.gbar 2281 2293 2399

7 o 2329 2331 2341

8 google.j[1] 2586 2598 2820

9 e 29 31 715

10 c[d] 4677 4682 4683

11 k 4839 4841 4861

12 m 4863 4865 4897

13 google.browser.engine 5621 5643 5703

14 google.browser.product 5705 5728 5829

15 google.dom 7083 7094 7737

16 z 7951 7953 7954

17 google.msg 8254 8265 8557

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION286

18 google.nav 9484 9495 9919

19 d 9565 9567 9568

20 google.style 11086 11099 11499

21 google.util 11641 11653 12345

22 google.srp 12569 12580 13464

23 google.History 14387 14402 14403

24 i[g] 14568 14573 14574

25 n.json 14950 14957 14958

26 n.json.Serializer.c 16685 16705 16819

27 google.fx 19015 19025 19703

28 j 19262 19264 19292

29 google.event.back 19828 19846 19847

Table D.2: The Objects results extracted from the profiler for

google.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Element Location Event Handler Factory

1 a 7788 b c google.listen at 7739 with callee

at 14293, 17939.

Table D.3: The Listener results extracted from the profiler for

google.com when evaluating over 20K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 run if loaded 893 920 953 a,b

2 run with 954 978 1031 b,a,c

3 wait for load 1032 1061 1447 c,b,e

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION287

4 bind 1448 1466 1699 c,b

5 env get 1731 1750 1777 a

6 hasArrayNature 1902 1928 2114 a

7 $A 2115 2129 2271 b

8 eval global 2273 2296 2673 c

9 copy properties 2675 2704 2888 b,c

10 add properties 2889 2917 2970 a,b

11 is empty 2971 2991 3120 b

12 Arbiter 3195 3213 3339 NULL

13 set ue cookie 14251 14276 14405 a

14 Metaprototype 18249 18273 18274 NULL

15 metaprototype 19081 19110 19350 c,a

16 metaprototype construct 19351 19388 19632 a

17 metaprototype init 19633 19665 19997 d

18 window.async callback 3126 3183 3193 a,b

19 subscribe 3746 3771 4275 k,b,i

20 unsubscribe 4277 4300 4619 e

21 inform 4621 4643 5419 i,c,b

22 query 5421 5438 5563 b

23 getInstance 5580 5604 5717 a

24 registerCallback 5719 5749 6261 b,d

25 updateCallbacks 6263 6293 6560 d,c

26 Function.prototype.deferUn-

til

6565 6612 6811 a,h,b,i

27 c 6683 6695 6778 NULL

28 configurePage 6959 6984 7389 b

29 loadComponents 7391 7419 7593 d,b

30 loadResources 7595 7626 8329 h,b,g,k

31 fetchWithIframe 8331 8359 8793 d

32 addResourceToIframe 8795 8827 9198 e

33 requestResource 9200 9231 9888 j,g,e

34 runCSSPolls 9926 9949 10735 NULL

35 startCSSPoll 10737 10762 11228 d

36 done 11230 11248 11524 f,c

37 requested 11526 11547 11610 c

38 enableBootload 11612 11638 11707 b

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION288

39 unloadResource 11709 11736 12082 e

40 getHardpoint 12084 12107 12259 NULL

41 setResourceMap 12261 12287 12368 c

42 resolveResources 12370 12400 12590 e,b

43 loadEarlyResources 12592 12622 12808 d

44 b 13372 13385 13429 l

45 a 13435 13448 14047 m

46 l.onload 13827 13846 13859 NULL

47 d 13834 13846 13859 NULL

48 h 14912 14925 15083 r

49 k 15085 15097 15500 NULL

50 a 15502 15523 15864 u,q,s,t,r

51 $ 16051 16064 16120 a

52 hasClass 16140 16162 16221 b,a

53 addClass 16223 16245 16317 b,a

54 removeClass 16319 16344 16439 b,a

55 toggleClass 16441 16466 16517 b,a

56 conditionClass 16519 16549 16595 c,b,a

57 show 16597 16613 16647 a

58 hide 16649 16665 16696 a

59 conditionShow 16698 16725 16765 b,a

60 byTag 16781 16800 16866 a,b

61 byClass 16868 16889 16942 b,a

62 b.onclick 17008 17029 17778 d

63 b.onsubmit 17780 17802 18029 d

64 Function.prototype.extend 18036 18073 18247 a

65 makeFinal 18306 18327 18328 a

66 queue 18342 18362 18551 b,c

67 onbootload 18553 18578 18594 b,a

68 update 18596 18614 18824 NULL

69 apply 18826 18846 19077 a,c

70 NULL 712 724 745 a

71 NULL 853 865 891 a

72 NULL 1280 1291 1424 NULL

73 NULL 1519 1530 1697 NULL

74 NULL 6918 6930 12984 a

75 NULL 10840 10851 11144 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION289

76 NULL 11082 11093 11137 NULL

77 NULL 11157 11168 11190 NULL

78 NULL 13040 13051 14245 NULL

79 NULL 14055 14071 14243 n,l,m

80 NULL 14155 14166 14240 NULL

81 NULL 14422 14433 16042 NULL

82 NULL 15872 15892 16040 u,q,s,t,r

83 NULL 16019 16030 16035 NULL

84 NULL 17247 17258 17312 NULL

85 NULL 17385 17396 17425 NULL

86 NULL 17565 17576 17605 NULL

87 NULL 17707 17718 17740 NULL

88 NULL 17981 17992 18013 NULL

Table D.4: The Functions results extracted from the profiler for

facebook.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 rm 145 152 153

2 window[a] 2953 2963 2964

3 h 4717 4719 4720

4 i 5924 5926 5927

5 a. listen[j] 6061 6074 6075

6 a. callbacks[h] 6188 6204 6250

7 h 4717 4719 4720

8 this. cssLinkMap[f] 7295 7315 7325

9 e 7674 7676 7677

10 this. earlyResources 7845 7866 7867

11 this. cssLinkMap[e] 9677 9697 9713

12 this. cssLinkMap[e] 9677 9697 9713

13 this. activeCSSPolls 10193 10214 10215

14 e 7674 7676 7677

15 r 14534 14536 14684

16 c 15963 15965 15966

17 Parent 16773 16780 16943

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION290

Table D.5: The Objects results extracted from the profiler for face-

book.com when evaluating over 20K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for facebook.com when evaluating over 20K character size.

Input

Identifier Location Start End Arguments

1 checkChromePromoAlert 2763 2796 2977 NULL

2 dismissChromePromoAlert 3038 3073 3224 NULL

3 hideFbPromoAlert 5982 6010 6049 NULL

4 isRtl 7054 7071 7114 NULL

5 setRtlYva 7119 7146 9617 suffix

6 RichMediaCore 58 12 11229 11260 13228 NULL

7 yt.timing.tick 86 129 359 label, opt time

8 yt.timing.info 369 409 549 label, value

9 gaiaChangedCallback 3892 3934 4388 autoshare

10 fn 4230 4246 4341 NULL

11 canConnectCallback 4462 4503 4778 autoshare

12 serviceChangedCallback 4850 4895 5385 autoshare

13 window.dismissFbPromoAl-

ert

5809 5849 5972 NULL

14 fixYvaDom 7793 7822 8142 suffix

15 richMedia.clipFlashObject 8644 8753 9096 asset, width,

height, offset-

Top, offsetRight,

offsetBottom,

offsetLeft

16 richMedia.unclipFlashObject 9171 9232 9560 asset, width, height

17 RichMediaCore 58 12.proto-

type.setCsiEventsRecorded-

DuringBreakout

13338 13424 13528 creative

18 RichMediaCore 58 12.proto-

type.csiHasValidStart

13531 13599 13677 creative

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION291

19 RichMediaCore 58 12.proto-

type.shouldReportCsi

13680 13747 13837 creative

20 RichMediaCore 58 12.proto-

type.shouldCsi

13840 13912 14291 asset, creativeType

21 RichMediaCore 58 12.proto-

type.trackCsiEvent

14294 14356 14405 event

22 RichMediaCore 58 12.proto-

type.getCsiServer

14408 14464 14641 NULL

23 RichMediaCore 58 12.proto-

type.reportCsi

14644 14705 16118 creative

24 RichMediaCore 58 12.proto-

type. isValidStartTime

16121 16191 16234 startTime

25 RichMediaCore 58 12.proto-

type. convertDuration

16237 16305 16552 duration

26 RichMediaCore 58 12.proto-

type.convertUnit

16555 16613 16816 pos

27 RichMediaCore 58 12.proto-

type. isValidNumber

16819 16880 17000 num

28 RichMediaCore 58 12.proto-

type.writeSurveyURL

17003 17069 17244 creative

29 RichMediaCore 58 12.proto-

type.postPublisherData

17247 17330 17492 creative, pub-

lisherURL

30 RichMediaCore 58 12.proto-

type.isInterstitialCreative

17495 17569 17700 creative

31 RichMediaCore 58 12.proto-

type.isBrowserComplient

17703 17771 17958 plugin

32 RichMediaCore 58 12.proto-

type.shouldDisplayFloating-

Asset

17961 18039 18143 duration

33 RichMediaCore 58 12.proto-

type.isWindows

18146 18199 18259 NULL

34 RichMediaCore 58 12.proto-

type.isFirefox

18262 18315 18829 NULL

35 RichMediaCore 58 12.proto-

type.isSafari

18832 18884 19209 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION292

36 RichMediaCore 58 12.proto-

type.isChrome

19212 19264 19499 NULL

37 RichMediaCore 58 12.proto-

type.isMac

19502 19551 19607 NULL

38 RichMediaCore 58 12.proto-

type.isInternetExplorer

19610 19672 19773 NULL

39 RichMediaCore 58 12.proto-

type.isIPhone

19776 19828 19900 NULL

40 RichMediaCore 58 12.proto-

type.isIPad

19903 19953 NULL NULL

41 NULL 3258 3270 6061 NULL

42 NULL 3276 3288 6052 NULL

43 NULL 6483 6495 6567 NULL

Table D.6: The Functions results extracted from the profiler for

youtube.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 self.dartLoadedGlobalTemplates 58 12 11056 11095 11096

2 dartCreativeDisplayManagers 10892 none none

3 csiTimes 13313 none none

Table D.7: The Objects results extracted from the profiler for

youtube.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No event listeners were found for youtube.com when evaluating over 20K character size.

Input

Identifier Location Start End Arguments

1 c 2756 2773 2896 r,s,q

2 o 2897 2914 3032 r,s,q

3 enable 3048 3065 3108 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION293

4 disable 3110 3128 3171 NULL

5 dispatch 3173 3192 3261 NULL

6 reset 3263 3279 3285 NULL

7 a 5457 5478 6172 A,l,u,n,h

8 e.augment 6376 6405 6841 f,w,j,u,o

9 k[i] 6537 6552 6672 NULL

10 e.aggregate 6843 6872 6902 h,g,f,i

11 e.extend 6904 6930 7182 i,h,f,k

12 e.each 7184 7208 7390 i,h,j,g

13 e.clone 7392 7421 7914 j,k,n,p,i,m

14 e.bind 7916 7936 8115 g,i

15 e.rbind 8117 8138 8317 g,i

16 before 8502 8526 8636 i,k,l,m

17 after 8638 8661 8771 i,k,l,m

18 inject 8773 8798 9035 h,j,k,m

19 k[m] 8906 8921 8961 NULL

20 detach 9037 9055 9081 h

21 unload 9083 9104 9105 i,h

22 e.Do.Method 9108 9133 9209 h,i

23 e.Do.Method.prototype.reg-

ister

9211 9257 9304 i,j,h

24 e.Do.Method.prototype. de-

lete

9306 9347 9391 h

25 e.Do.Method.prototype.exec 9393 9430 9926 NULL

26 e.Do.AlterArgs 9928 9956 9983 i,h

27 e.Do.AlterReturn 9985 10015 10044 i,h

28 e.Do.Halt 10046 10069 10095 i,h

29 e.Do.Prevent 10097 10121 10133 h

30 e.EventHandle 10384 10411 10434 f,g

31 detach 10461 10478 10591 NULL

32 e.CustomEvent 10594 10621 10845 f,g

33 applyConfig 10872 10897 10923 g,f

34 on 10925 10946 11264 j,h,g,f

35 subscribe 11266 11289 11376 h,g

36 on 11378 11394 11481 h,g

37 after 11483 11502 11586 h,g

38 detach 11588 11608 11772 k,h

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION294

39 unsubscribe 11774 11796 11838 NULL

40 notify 11840 11863 12027 i,h,f

41 log 12029 12046 12065 g,f

42 fire 12067 12082 12333 NULL

43 fireSimple 12335 12357 12505 f

44 fireComplex 12507 12530 12571 f

45 procSubs 12573 12598 12759 j,g,f

46 broadcast 12761 12783 12949 g

47 unsubscribeAll 12951 12976 13021 NULL

48 detachAll 13023 13043 13065 NULL

49 delete 13067 13086 13178 f

50 e.Subscriber 13181 13209 13286 h,g,f

51 notify 13312 13335 13561 j,h,i

52 notify 13563 13583 13794 g,i

53 contains 13796 13818 13889 g,f

54 l 14261 14274 14588 m

55 on 14603 14623 15746 r,v,p,w

56 subscribe 11776 11796 11838 NULL

57 detach 15808 15830 16819 p,u,o

58 A 16138 16153 16210 G,F

59 unsubscribe 16822 16843 16885 NULL

60 detachAll 16887 16908 16931 m

61 unsubscribeAll 16934 16958 17003 NULL

62 publish 17005 17026 17341 o,p

63 addTarget 17343 17364 17429 m

64 removeTarget 17431 17455 17496 m

65 fire 17498 17514 17866 p

66 getEvent 17868 17890 18001 n,m

67 after 18003 18022 18211 o,n

68 before 18213 18230 18268 NULL

69 a.EventFacade 18551 18578 18916 g,f

70 this.stopPropagation 18704 18735 18756 NULL

71 this.stopImmediatePropa-

gation

18758 18798 18828 NULL

72 this.preventDefault 18830 18860 18880 NULL

73 this.halt 18882 18903 18914 e

74 b.fireComplex 18918 18943 NULL h

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION295

75 NULL 185 198 2118 NULL

76 NULL 2158 2169 2548 NULL

77 NULL 2588 2599 3288 NULL

78 NULL 5404 5416 6204 g

79 NULL 6308 6320 8319 e

80 NULL 6522 6536 6770 r,i

81 NULL 7742 7756 7846 o,f

82 NULL 7867 7881 7894 o,f

83 NULL 7999 8010 8113 NULL

84 NULL 8201 8212 8315 NULL

85 NULL 8417 8429 18432 e

86 NULL 8464 8475 10156 NULL

87 NULL 13892 13903 18427 NULL

88 NULL 13951 13965 14029 m,n

89 NULL 14042 14056 14258 o,q

90 NULL 14871 14885 15001 x,n

91 NULL 17112 17126 17153 t,s

92 NULL 18492 18504 NULL a

93 v 18505 18516 NULL NULL

Table D.8: The Functions results extracted from the profiler for

yahoo.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 k 2747 2749 2750

2 j.OnloadCache 3033 3047 3286

3 r 3197 3199 3211

4 k 2747 2749 2750

5 g 6499 6501 6502

6 k 2747 2749 2750

7 q 6509 6511 6512

8 e.Env.evt 8430 8440 8462

9 e.Do 8488 8493 9106

10 this.objs[n] 8838 8851 8852

11 this.before 9180 9192 9193

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION296

12 this.after 9195 9206 9207

13 e.EventHandle.prototype 10436 10460 10592

14 this.subscribers 10728 10745 10746

15 this.afters 10748 10760 10761

16 e.CustomEvent.prototype 10847 10871 13179

17 e.Subscriber.prototype 13288 13311 13890

18 l.prototype 14590 14602 18269

19 G 14831 14833 14834

20 m 17099 17101 17102

21 a.Env. eventstack 19099 19117 19188

Table D.9: The Objects results extracted from the profiler for ya-

hoo.com when evaluating over 20K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for yahoo.com when evaluating over 20K character size.

No Functions were found for live.com when evaluating over 20K character size.

Identifier Location Start End

1 srf oTemplate 3886 none none

2 g DO 10038 none none

3 srf oTemplate 16150 none none

Table D.10: The Objects results extracted from the profiler for

live.com when evaluating over 20K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for live.com when evaluating over 20K character size.

Input

Identifier Location Start End Arguments

1 gaia onLoginSubmit 6764 6794 6903 NULL

2 gaia setFocus 12081 12106 12349 NULL

3 window.onload 6373 6401 6662 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION297

4 gaia loginForm.Email.onke-

ypress

11993 12038 12076 NULL

Table D.11: The Functions results extracted from the profiler for

blogger.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No Objects and event listeners were found for blogger.com when evaluating over 20K

character size.

Input

Identifier Location Start End Arguments

1 addEV 644 665 767 C,B,A

2 G 768 781 808 A

3 F 1560 1572 1692 NULL

4 H 1693 1708 2431 W,S

5 U 1843 1855 2082 NULL

6 J 2432 2445 2541 S

7 C 2542 2555 2676 T

8 I 2955 2968 3002 C

9 K 3003 3016 3049 C

10 S 3050 3063 3163 C

11 U 3164 3177 3245 C

12 P 3246 3263 3374 G,X,C

13 N 3375 3388 3439 C

14 R 3440 3453 3665 X

15 H 3666 3679 3874 G

16 C 3777 3792 3873 Z,b

17 O 3875 3888 4054 Y

18 L 4055 4068 4278 G

19 C 4411 4424 4531 b

20 G 4532 4545 4639 Y

21 Z 4809 4821 4880 NULL

22 e 4881 4894 5304 n

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION298

23 k 5305 5317 5514 NULL

24 l 5515 5527 5547 NULL

25 g 5548 5560 5577 NULL

26 i 5578 5590 5667 NULL

27 b 5668 5681 5733 n

28 G 5734 5747 5793 n

29 n 6642 6654 6716 NULL

30 e 6717 6729 6907 NULL

31 i 6908 6920 6972 NULL

32 G 6973 6985 7009 NULL

33 b 7010 7023 7111 q

34 c 7112 7125 7221 q

35 f 7222 7235 7390 q

36 X 7391 7403 7627 NULL

37 Y 7628 7643 7778 r,q

38 p 7779 7794 7882 q,s

39 j 7883 7895 8347 NULL

40 Z 8348 8360 8454 NULL

41 k 8455 8467 8736 NULL

42 g 8737 8749 9007 NULL

43 G 9401 9413 9514 NULL

44 X 9531 9543 9558 NULL

45 Y 9559 9572 9603 Z

46 X 9803 9816 9919 C

47 Y 9920 9933 9979 C

48 G 10128 10141 10387 Y

49 C 10669 10681 10755 NULL

50 G 10756 10768 10879 NULL

51 a 11050 11062 11141 NULL

52 d 11142 11154 11340 NULL

53 b 11341 11354 11489 e

54 X 11490 11502 11529 NULL

55 G 11530 11542 11998 NULL

56 a[i].onclick 246 269 426 NULL

57 w.onunload 2738 2759 2760 NULL

58 ini 4647 4662 4701 X

59 bdsug.sugkeywatcher.on 5843 5876 5969 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION299

60 bdsug.sugkeywatcher.off 5971 6005 6101 NULL

61 rm 6222 6236 6563 n

62 rm 9022 9036 9351 q

63 rm 9618 9632 9768 Z

64 rm 9994 10008 10090 C

65 rm 10402 10416 10517 Y

66 bdsug.sug 10525 10546 10586 C

67 bdsug.initSug 10588 10612 10636 NULL

68 rm 10894 10908 10974 X

69 rm 12033 12047 12106 e

70 NULL 428 439 516 NULL

71 NULL 874 885 2695 NULL

72 NULL 2002 2013 2044 NULL

73 NULL 2714 2725 2735 NULL

74 NULL 2840 2851 12618 NULL

75 NULL 3291 3303 3332 Y

76 NULL 3310 3321 3331 NULL

77 NULL 4399 4410 4703 NULL

78 NULL 4714 4725 6566 NULL

79 NULL 5381 5392 5422 NULL

80 NULL 6577 6588 9354 NULL

81 NULL 7140 7151 7220 NULL

82 NULL 9365 9376 9771 NULL

83 NULL 9782 9793 10093 NULL

84 NULL 10104 10115 10520 NULL

85 NULL 10657 10668 10977 NULL

86 NULL 10988 10999 12109 NULL

Table D.12: The Functions results extracted from the profiler for

baidu.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 bdimeHW 813 821 822

2 window.bdsug 4341 4354 4355

3 bdsug.sug 4357 4367 4368

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION300

4 bdsug.sugkeywatcher 4370 4390 4391

5 X. MSG QS 4663 4676 4677

6 G 9798 9800 9801

Table D.13: The Objects results extracted from the profiler for

baidu.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Element Location Event Handler Factory

1 C 736 B A addEV at 644 with callees at

2098, 2677, 2700.

2 G 3344 X C P at 3246 with callees at 6128,

6147, 6190, 8039, 8058, 8076,

8095, 9515, 11624, 11650.

3 X 5924 keydown e None

Table D.14: The Listener results extracted from the profiler for

baidu.com when evaluating over 20K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 $ 96 109 143 a

2 addLoadEvent 145 169 280 a

3 getLang 281 299 437 NULL

4 convertChinese 713 739 880 a

5 convertZhLinks 881 906 1126 NULL

6 setLang 1157 1176 1416 a

7 NULL 450 461 710 NULL

8 NULL 1429 1440 1720 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION301

Table D.15: The Functions results extracted from the profiler for

wikipedia.org when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

No Objects were found for wikipedia.org when evaluating over 20K character size.

Element Location Event Handler Factory

1 Document 197 load a addLoadEvent at 145 with

callees at 438, 1128, 1417

Table D.16: The Listener results extracted from the profiler for

wikipedia.org when evaluating over 20K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 fn 948 961 1147 NULL

2 each 3865 3897 3999 a, fn, opt scope

3 Animate 4515 4548 4745 el, prop, opts

4 HexToR 11725 11744 11800 h

5 HexToG 11808 11827 11883 h

6 HexToB 11891 11910 11966 h

7 getRest 13398 13417 13721 NULL

8 Occasionally 17021 17067 17272 job, decayFn, inter-

val

9 IntervalJob 18983 19026 19180 time, loop, callback

10 onCondition 723 752 861 D,C,A,B

11 window.self.onload 1081 1115 1145 evt

12 Array.prototype.filter 3081 3128 3346 fn, thisObj

13 Array.prototype.indexOf 3396 3442 3593 el, start

14 Animate.canTransition 4857 4892 5054 NULL

15 Animate.prototype. setStyle 5158 5202 5460 val

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION302

16 Animate.prototype. animate 5530 5570 6019 NULL

17 Animate.prototype.start 6079 6116 6261 NULL

18 TWTR.Widget 6433 6462 6487 opts

19 matchUrlScheme 6757 6788 6872 url

20 getClassRegEx 7007 7035 7273 c

21 getByClass 7285 7328 7785 c, tag, root, apply

22 browser 7797 7818 7922 NULL

23 byId 7936 7956 8066 id

24 trim 8078 8099 8148 str

25 getViewportHeight 8160 8191 8518 NULL

26 getTarget 8530 8571 8660 e, resolveTextNode

27 resolveTextNode 8672 8703 8862 el

28 getRelatedTarget 8874 8905 9178 e

29 insertAfter 9190 9228 9302 el, reference

30 removeElement 9314 9343 9429 el

31 getFirst 9441 9465 9499 el

32 withinElement 9511 9539 9828 e

33 getStyle 9840 9862 10515 NULL

34 has 10616 10637 10724 el, c

35 add 10734 10755 10872 el, c

36 remove 10882 10906 11062 el, c

37 add 11204 11232 11462 el, type, fn

38 remove 11471 11502 11677 el, type, fn

39 hex rgb 11695 11716 12068 NULL

40 bool 12162 12180 12227 b

41 def 12237 12254 12306 o

42 number 12316 12336 12397 n

43 string 12406 12426 12472 s

44 fn 12482 12498 12546 f

45 array 12556 12575 12689 a

46 absoluteTime 12849 12876 13781 s

47 hour 13022 13040 13315 NULL

48 timeAgo 13973 14004 15256 dateString

49 link 15436 15458 15808 tweet

50 at 15818 15838 16067 tweet

51 list 16077 16099 16333 tweet

52 hash 16343 16365 16599 tweet

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION303

53 clean 16609 16632 16704 tweet

54 start 17411 17429 17485 NULL

55 stop 17592 17609 17719 NULL

56 run 17769 17785 18407 NULL

57 destroy 18528 18548 18626 NULL

58 set 19221 19245 19287 haystack

59 add 19297 19319 19366 needle

60 start 19473 19490 19750 NULL

61 stop 19852 19868 NULL NULL

62 NULL 30 42 168 g

63 NULL 821 832 855 NULL

64 NULL 1035 1046 1076 NULL

65 NULL 3631 3643 NULL NULL

66 NULL 6201 6213 6251 NULL

67 NULL 6493 6505 NULL NULL

68 NULL 9953 9977 10236 el, property

69 NULL 10344 10368 10500 el, property

70 NULL 11379 11391 11442 NULL

71 NULL 11981 11996 12060 hex

72 NULL 15548 15580 15798 link, m1, m2, m3,

m4

73 NULL 15899 15922 16057 m, username

74 NULL 16165 16188 16323 m, userlist

75 NULL 16414 16441 16589 m, before, hash

76 NULL 17828 17840 18397 NULL

77 NULL 18291 18304 18353 NULL

78 NULL 19640 19652 19698 NULL

Table D.17: The Functions results extracted from the profiler for

twitter.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Identifier Location Start End

1 page 711 716 717

2 twttr 6544 6552 6553

3 reClassNameCache 6928 6947 6948

4 classes 10598 10608 11068

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION304

5 events 11187 11196 11683

6 is 12149 12154 12695

7 ify 15422 15428 16710

8 Occasionally.prototype 17279 17304 18632

9 IntervalJob.prototype 19188 19212 NULL

Table D.18: The Objects results extracted from the profiler for

twitter.com when evaluating over 20K character size. The num-

bers under the Location, Start and End columns are the number of

characters from the start of the analysed text.

Element Location Event Handler Factory

1 el 11279 type fn add at 11204 with a callee at

11143.

Table D.19: The Listener results extracted from the profiler for

twitter.com when evaluating over 20K character size. The num-

bers under the Location column are the number of characters from

the start of the analysed text. The Element, Event and Handler

columns list the listener’s monitoring element, type of event, and

its handler respectively.

Input

Identifier Location Start End Arguments

1 $ 7777 7790 7851 o

2 CreatAjax 7854 7879 8092 a,b,c

3 CreatXmlRequest 8095 8122 8301 NULL

4 parseInfo 8304 8329 8375 a,b,c

5 swTabs 8380 8398 9038 e

6 swLabs 9041 9074 9665 sobject, sid, snum

7 loadNewsMap 9668 9690 9760 NULL

8 tagOver 9763 9782 10001 a

9 tagOut 10004 10022 10055 a

10 getNames 10059 10090 10276 obj,name,tij

11 cplay 10280 10296 10522 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION305

12 formatPageZone 10526 10553 11114 NULL

13 send request 11118 11146 11665 url

14 loadPage 11669 11690 12352 NULL

15 tail 12355 12372 12982 NULL

16 getExpires 13067 13089 13181 a

17 setdefSkin 13184 13205 13642 NULL

18 setdef 13646 13663 13999 NULL

19 setSkin 16051 16070 16251 n

20 formatSkin 16255 16278 16494 NULL

21 openSkin 16498 16541 16582 o1, o2, max, min,

speed, n

22 closeSkin 16586 16630 16672 o1, o2, max, min,

speed, n

23 openSkin 16696 16738 17315 o1, o2, max, min,

speed, n

24 closeSkin 17319 17362 17921 o1, o2, max, min,

speed, n

25 loadJS 17924 17950 18379 url, load

26 loadPng 18383 18404 19326 o

27 call 0410 19350 19383 0 et, item, page

28 QosS.isAllLoaded 372 400 609 B

29 QosS.checkLoad 611 636 1519 NULL

30 (QosS.c.onerror 1277 1303 1317 NULL

31 QosS.topSpan 1521 1547 1772 A,B

32 QosS.killTimer 1774 1799 1892 NULL

33 QosS.endCheck 1894 1918 2533 NULL

34 MiniSite.$ 2925 2947 3007 s

35 load 3031 3060 3586 sUrl, fCallback

36 script.onreadystatechange 3335 3372 3466 NULL

37 script.onload 3506 3531 3553 NULL

38 set 3610 3654 3911 name, value, ex-

pires, path, domain

39 get 3915 3933 4075 name

40 clear 4079 4111 4278 name, path, domain

41 insertFlash 4639 4672 5449 elm, url, w, h

42 print 5469 5494 5524 province

43 print 5528 5544 6348 NULL

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION306

44 ok 5552 5565 5596 NULL

45 window.onerror 6482 6511 6529 NULL

46 window.setTimeout 6583 6639 6897 fCallback, nDelay,

oObject

47 obj.onreadystatechange 7986 8022 8091 NULL

48 f[i].onclick 10915 10938 10984 NULL

49 f[i].onmouseover 10989 11016 11050 NULL

50 f[i].onmouseout 11052 11078 11112 NULL

51 $(“tailorArrow”).onclick 11966 12003 12079 NULL

52 $(“tailorArrow”).onmouse-

over

12081 12122 12143 NULL

53 $(“tailorArrow”).onmouse-

out

12146 12186 12206 NULL

54 p[i].onclick 16382 16407 16426 NULL

55 s.onclick 16428 16451 16492 NULL

56 move 16794 16809 17272 NULL

57 $(“pro arrow”).onclick 16954 16990 17024 NULL

58 a.onclick 17141 17164 17198 NULL

59 move 17417 17434 17878 NULL

60 $(“pro arrow”).onclick 17531 17566 17599 NULL

61 a.onclick 17706 17728 17762 NULL

62 script.onreadystatechange 18188 18227 18318 NULL

63 script.onload 18331 18358 18373 NULL

64 img.onerror 19943 19969 19985 NULL

65 null 5758 5769 6177 NULL

66 null 6774 6785 6819 NULL

67 null 9835 9846 9856 NULL

68 null 9967 9978 9993 NULL

Table D.20: The Functions results extracted from the profiler for

qq.com when evaluating over 20K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

Identifier Location Start End

1 QosS.C 81 88 172

2 QosS.G 174 181 370

APPENDIX D. RESULTS FOR PROFILER’S 20K CHARACTER SIZE EVALUATION307

3 MiniSite.Browser 2656 2673 2922

4 MiniSite.JsLoader 3010 3028 3588

5 MiniSite.Cookie 3591 3607 4280

6 MiniSite.Home 4283 4297 6350

7 QosS 63 none none

8 MiniSite 2633 none none

Table D.21: The Objects results extracted from the profiler for

qq.com when evaluating over 20K character size. The numbers

under the Location, Start and End columns are the number of char-

acters from the start of the analysed text.

No event listeners were found for qq.com when evaluating over 20K character size.

Appendix E

Identification Reference of Tell-Signs

Reference Tell-Signs Description

TS1-a Element is identified via Anchor tag pattern.

TS2-r Element has related Z-Index > 9 element.

TS2-a Element has Z-Index > 9.

TS2-b Element ID or style Class found with Z-index > 9 in CSS.

TS3-a Element position is set in CSS.

TS4-a Pattern of display = ‘block’ is found!

TS4-b Pattern of display = ‘none’ is found!

TS5-a Pattern of visibility = ‘hidden’ is found!

TS5-b Pattern of visibility = ‘visible’ is found!

TS6 Element is subset of another element.

TS7 Element has click event monitored.

TS8 Element has hover event monitored.

TS9 Element has keyboard events monitored.

TS9-r Element has related element that has keyboard events monitored.

TS10 Element is monitored for the type of key pressed.

TS11 Element’s Autocomplete property is set to off.

TS12 DOM Content changed automatically.

TS13 Element do not contain any media nodes.

TS14 No content changed found.

TS15 Candidate has sibling element.

TS16 Has similar related source code with sibling element

TS17 Is child of another element.

TS18 Element has tabIndex attribute.

TS19 Has elements in a list form pattern −− ul|ol|dl −−> li|dt|dd −−> a

308

APPENDIX E. IDENTIFICATION REFERENCE OF TELL-SIGNS 309

TS20-a Has increment pattern: Pattern += found!

TS20-b Has increment pattern: Pattern + or ++ found!

TS21-a Has decrement pattern: Pattern −= found!

TS21-b Has decrement pattern: Pattern − or −− found!

TS22 Related to a Popup Content/Collapsible Panel widget.

TS23 Attempt to change the styling position of the element found!

TS24 Element has aria-haspopup attribute.

Table E.1: List of common tell-signs that can be shared among

different types of widgets.

Reference Tell-Signs Description

A-TS1 Keyword: ASL found!

A-TS2 Keyword: search|query found!

A-TS3 Keyword: auto|list found!

A-TS4 Keyword: form found!

A-TS5 Keyword: suggest found!

Table E.2: List of tell-signs private to Auto Suggest List (ASL)

widget.

Reference Tell-Signs Description

TK-TS1 ticker|marquee keyword found.

TK-TS2 scroller|flasher keyword found.

TK-TS3 Sibling subset element found.

TK-TS4 Element tag name is Marquee.

Table E.3: List of tell-signs private to Ticker widget.

Reference Tell-Signs Description

PC-TS1 Keyword - dialog|float|hover|popup|selector|button|btn found!

PC-TS2 Keyword - collapsible|drawer|expand|shrink|contract|enlarge found!

PC-TS3 Keyword - offsetHeight|offsetWidth found!

PC-TS4 Keyword - expand|shrink|contract|enlarge found!

PC-TS5 Keyword - collapsible found!

PC-TS6 Keyword - drawer found!

PC-TS7 Keyword - selector|button|btn found!

PC-TS8 Keyword - popup|dialog found!

APPENDIX E. IDENTIFICATION REFERENCE OF TELL-SIGNS 310

PC-TS9 Keyword - float|hover found!

PC-TS10 Keyword - panel|content found!

Table E.4: List of tell-signs private to Popup Content widget and

Collapsible Panel widget.

Reference Tell-Signs Description

T-TS1 Have keywords – tab|nav

T-TS2 Have keywords – folder|panel|section

T-TS3 Has keyword – selected

Table E.5: List of tell-signs private to Tabs widget.

Reference Tell-Signs Description

CS-TS1 Keywords – more|next|right|down|increment found.

CS-TS2 Keywords – carousel|slide found.

CS-TS3 Keywords – scroll|arrow|btn|button found.

CS-TS4 Condition pattern to check if it is the end of the list is found.

CS-TS5-a Pattern – = start|begin|0|1 found! Determine Next Button process to be loop.

CS-TS5-b Keyword – loop found! Determine Next Button process to be loop.

CS-TS5-c Keyword – carousel found. Determine Next Button process to be loop.

CS-TS6-a No keywords or loop pattern found. Determine Next Button process to be

finite.

CS-TS6-b Keyword – SlideShow found. Determine Next Button process to be finite.

CS-TS7 Keywords – less|prev|back|left|up|decrement found!

CS-TS8 Condition pattern to check if the start of the list found.

CS-TS9-a Pattern – = end|last|length|max found. Determine Previous Button process to

be loop.

CS-TS9-b Keyword – loop found. Determine Previous Button process to be loop.

CS-TS9-c Keyword – carousel found. Determine Previous Button process to be loop.

CS-TS10-a No keyword or loop pattern found. Determine Previous Button process to be

finite.

CS-TS10-b Keyword – slideshow found. Determine Previous Button process to be finite.

CS-TS11 Element is related to another candidate.

Table E.6: List of tell-signs private to Carousel widget and Slide

Show widget.

