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Abstract
TEXTUAL ENTAILMENT FOR MODERN STANDARD ARABIC

Maytham Abualhail Shahed Alabbas
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2013

This thesis explores a range of approaches to the task of recognising textual entailment

(RTE), i.e. determining whether one text snippet entails another, for Arabic, where we are

faced with an exceptional level of lexical and structural ambiguity. To the best of our knowl-

edge, this is the first attempt to carry out this task for Arabic. Tree edit distance (TED) has

been widely used as a component of natural language processing (NLP) systems that attempt

to achieve the goal above, with the distance between pairs of dependency trees being taken as a

measure of the likelihood that one entails the other. Such a technique relies on having accurate

linguistic analyses. Obtaining such analyses for Arabic is notoriously difficult. To overcome

these problems we have investigated strategies for improving tagging and parsing depending

on system combination techniques. These strategies lead to substantially better performance

than any of the contributing tools. We describe also a semi-automatic technique for creating

a first dataset for RTE for Arabic using an extension of the ‘headline-lead paragraph’ tech-

nique because there are, again to the best of our knowledge, no such datasets available. We

sketch the difficulties inherent in volunteer annotators-based judgment, and describe a regime

to ameliorate some of these. The major contribution of this thesis is the introduction of two

ways of improving the standard TED: (i) we present a novel approach, extended TED (ETED),

for extending the standard TED algorithm for calculating the distance between two trees by

allowing operations to apply to subtrees, rather than just to single nodes. This leads to useful

improvements over the performance of the standard TED for determining entailment. The key

here is that subtrees tend to correspond to single information units. By treating operations on

subtrees as less costly than the corresponding set of individual node operations, ETED con-

centrates on entire information units, which are a more appropriate granularity than individual

words for considering entailment relations; and (ii) we use the artificial bee colony (ABC) al-

gorithm to automatically estimate the cost of edit operations for single nodes and subtrees and

to determine thresholds, since assigning an appropriate cost to each edit operation manually

can become a tricky task.

The current findings are encouraging. These extensions can substantially affect the F-

score and accuracy and achieve a better RTE model when compared with a number of string-

based algorithms and the standard TED approaches. The relative performance of the standard

techniques on our Arabic test set replicates the results reported for these techniques for English

test sets. We have also applied ETED with ABC to the English RTE2 test set, where it again

outperforms the standard TED.
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Arabic transliterations3

Letter HSB BW Unicode name Letter HSB BW Unicode name
Z' ’ ’ Hamza 	

  Ď Z Za’
�
@ Ā | Alif-Madda above ¨ ς E Ayn


@ Â >/O Alif-Hamza above

	
¨ γ g Ghayn

Zð ŵ &/W Waw-Hamza above - _ _ Tatweel

@



Ǎ </I Alif-Hamza below
	

¬ f f Fa’

Zø ŷ } Ya’-Hamza above �
� q q Qaf

@ A A Alif ¼ k k Kaf

H. b b Ba’ È l l Lam
�
è h̄ p Ta’-Marbuta Ð m m Meem
�

H t t Ta’ 	
à n n Nun

�
H θ v Tha’ è h h Ha’

h. j j Jeem ð w w Waw

h H H Ha’ ø ý Y Alif-Maqsura

p x x Kha’ ø



y y Ya’

X d d Dal Arabic diacritics
	
X ð * Dhal �� a a Fatha, i.e. /a/

P r r Ra’ �� u u Damma, i.e. /u/
	P z z Zay �� i i Kasra, i.e. /i/

� s s Sen �� ã F Fathatan, i.e. /an/
�

� š $ Shen �� ũ N Dammatan, i.e. /un/

� S S Sad �
�

ĩ K Kasratan, i.e. /in/
	

� D D Dhad �P ~ ~ Shadda

  T T Ta’ �Q� . o Sukun (zero

vowel)

3Our system, dataset and Penn Arabic treebank (PATB) (Maamouri and Bies, 2004) internally use
the Buckwalter (BW) Arabic transliteration scheme (Buckwalter, 2004). However, the transcription of
Arabic examples in this thesis follows Habash-Soudi-Buckwalter (HSB) transliteration scheme (Habash
et al., 2007) for transcribing Arabic symbols. This scheme extends Buckwalter’s scheme to increase its
readability while maintaining the one-to-one correspondence with Arabic orthography as represented
in standard encodings of Arabic, such as Unicode. System internal examples will be presented in the
Buckwalter scheme.
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List of abbreviations and acronyms

The following table describes the significance of various abbreviations and acronyms
used throughout the thesis.

Abbr. Full form
1st first person
2nd second person
3rd third person
ABC artificial bee colony
ADJP adjective phrase
ADVP adverb phrase
API application programming interface
ArbTE Arabic textual entailment
AWN Arabic WordNet
BAMA Buckwalter Arabic morphological analyzer
BEP precision-recall breakeven point
BIUTEE Bar Ilan university textual entailment engine
BLEU bilingual evaluation understudy
BoW bag-of-words
BPC base phrase chunker
CATiB Columbia Arabic treebank
CoNLL conference on natural language learning
CP complement phrase
CPOSTAG coarse-grained part-of-speech tag
DE differential evolution
DEPREL dependency relation
DIRT discovery of inference rules from text
du. dual
EA evolutionary algorithm
ERTS extended reduced tagset
ETED extended tree edit distance
EWN Euro WordNet
fem. feminine
GA genetic algorithm
GPSG generalised phrase structure grammar

Continued on next page
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H hypothesis
HPSG head-driven phrase structure grammar
IE information extraction
IR information retrieval
LA labelled attachment score
LD Levenshtein distance
LDC linguistic data consortium
LHS left-hand side
MADA morphological analysis and disambiguation for Arabic
MALTParser models and algorithms for language technology parser
masc. masculine
MC most confident (tagger)
MLN Markov logic network
MSA modern standard Arabic
MSTParser minimum spanning tree parser
MT machine translation
MXL maximum likelihood
NE named-entity
NIST national institute of standards and technology
NLI natural language inference
NLP natural language processing
NP noun phrase
NPI negative polarity item
O object
OVS object-verb-subject
P precision
PADT Prague Arabic dependency treebank
PARASITE pragmatics = reasoning about the speaker’s intentions
PASCAL pattern analysis, statistical modelling and computational learning
PATB Penn Arabic treebank
Pc probability of crossover
pl. plural
Pm probability of mutation
POS part-of-speech
PP propositional phrase
pro-drop pronoun-dropping
PSO particle swarm optimization
PWN Princeton WordNet
QA question answering

Continued on next page
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R recall
RC relative clause
RHS right-hand side
RTE recognising textual entailment
RTED robust tree edit distance
RTS reduced tagset
S subject
SAMA standard Arabic morphological analyzer
sg. singular
ssGA steady state genetic algorithm
SVM support vector machine
SVO subject-verb-object
T text
TBL transformation-based learning
TBR transformation-based retagging
TE textual entailment
TEASE textual entailment anchor set extraction
TED tree edit distance
UA unlabelled attachment score
UX uniform crossover
V verb
VOS verb-object-subject
VP verb phrase
VSM vector space model
VSO verb-subject-object
XDG extended dependency graph
ZS-TED Zhang-Shasha’s tree edit distance



Chapter 1

Introduction

1.1 Overview

One key task for natural language systems is to determine whether one text fragment
entails another. Entailment can be defined as a relationship between two sentences
where the truth of one sentence, the entailing expression, forces the truth of another
sentence, what is entailed. For instance, (1.1a) entails (1.1b) whereas (1.2a) does not
entail (1.2b).

(1.1) Entailment

a. The couple are divorced.

b. The couple were married.

(1.2) Non-entailment

a. John wrote a story.

b. John wrote a funny story.

For logicians and semanticists, the most obvious technique for doing this is via a
logical-based approach. This involves translating both text fragments into a formal
meaning representation (e.g. first-order logic) and then applying automated reasoning
tools to determine their relationship. This approach has the power and precision we
need to handle quantifiers, negation, conditionals and so on. It can succeed in restricted
domains, but it fails on open-domain natural language inference (NLI) evaluations.
The difficulty is plain, since natural language is complex and obtaining full and ac-
curate formal representations of meaning from natural language expressions presents
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countless thorny problems, such as anaphora, ambiguity, extragrammatically and oth-
ers.

The challenges of NLI are quite different from those encountered in formal de-
duction: the emphasis is on informal reasoning, lexical semantic knowledge, and vari-
ability of linguistic expression, rather than on long chains of formal reasoning (Mac-
Cartney, 2009). A more recent, and better-known, formulation of the NLI task is the
recognising textual entailment (RTE) task, which contrasts with the standard defini-
tion of entailment above, described by Dagan et al. (2006) as a task of determining, for
two text fragments text T and hypothesis H, whether “. . . typically, a human reading T

would infer that H is most likely true.” According to these authors, entailment holds
if the truth of H, as interpreted by a typical language user, can be inferred from the
meaning of T. The RTE task is in some ways easier than the classical entailment task,
and has led to a number of approaches that diverge from the tradition logical-based one
(Blackburn et al., 2001).

The system described in this thesis, Arabic textual entailment (ArbTE) system,
embodies an investigation into the effectiveness of existing textual entailment (TE)
approaches when they are applied to modern standard Arabic (MSA, or Arabic),1 and
includes extensions which deal with the specific problems posed by the language. RTE
approaches have been developed very recently and have largely been applied to English
texts. There is very little work on applying TE techniques to Arabic (we have, in
fact, so far found no such work), and little evidence that the existing approaches will
work for it. The key problem for Arabic is that it is more ambiguous than English,
for reasons described below, which makes it particularly challenging to determine the
relations between text snippets, so that many of the existing approaches to TE are likely
to be inapplicable.

1.2 Overview of the challenges of Arabic processing

The Arabic language raises many challenges for natural language processing (NLP).
Firstly, Arabic contains an exceptionally high level of lexical ambiguity. This arises
from two sources: (i) Arabic is written with the short vowels, and a number of other
phonetically distinctive items, omitted; and (ii) at the same time, it has very produc-
tive derivational morphology, which means that for any root there will be a number

1MSA is the Arabic language version which we are concerned with in the current work. When we
refer to Arabic throughout this thesis, we mean MSA.
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of derived forms which differ only in their short vowels; and it has complex non-
concatenative inflectional morphology, which means that there are forms of the same
lexeme2 which differ in a variety of ways. The second point here means that the omis-
sion of short vowels is much more problematic than is the case in, for instance, English,
where text-messages also omit short vowels. The English sentence ‘she snt me a txt

msg’ is easy to interpret, despite the lack of vowels in the open-class words, because
there are very few, if any, other words in English that would produce the same forms.
The situation in Arabic is very different, with a single written form corresponding to
10 or more different lexemes.

It should be noted that it is the combination of lack of diacritics and productive
derivational and inflectional morphology that leads to the problem. The lack of diacrit-
ics is not, by itself, an insurmountable problem.

In addition, Arabic is highly syntactically flexible (Daimi, 2001). It has a compara-
tively free word order, where sentence components can be reordered without affecting
the core meaning (non-canonical word orders are usually employed to change the fo-
cus of a sentence without changing its propositional content). In this case, a lot of
ambiguity occurs at the syntactic level, and needs a more complex analysis. This as
well results in structural ambiguity, with each morphological analysis having more
than a single meaning. So, besides the regular sentence of verb-subject-object (VSO),
Arabic allows other potential surface forms such as SVO and VOS constructions. The
potential of allowing such non-canonical orders leads to a large amount of ambiguity
(Alabbas and Ramsay, 2011a).

Arabic also contains numerous clitic items (prepositions, pronouns and conjunc-
tions), so that it is often difficult to determine just what items are present in the first
place.

Furthermore, Arabic is a pro-drop language (Attia, 2012). It is similar to some
other languages, such as Spanish, Italian and Japanese, where subject pronouns can
be omitted. Again, the potential absence of a subject is not unique to Arabic, but it
is worse here than in a number of other languages because Arabic verbs can typically
occur either intransitively or transitively (and to complicate matters even further the
active and passive forms of a verb are often indistinguishable in the written form). In
such cases, it is hard to tell whether a sequence consisting of a verb and a following
noun phrase (NP) is actually an intransitive use of the verb, with the NP as subject, or

2A lemma (or lexeme) is referred to as “the more abstract units which occur in different inflec-
tional ‘forms’ according to the syntactic rules involved in the generation of the sentences”(Jurafsky and
Martin, 2009).



CHAPTER 1. INTRODUCTION 26

a transitive use with a zero subject, or indeed a passive use.
Finally, Arabic makes use of ‘equational sentences’, consisting of an NP and a

predication (e.g. another NP or a prepositional phrase (PP)). Given that Arabic nouns
typically do not carry overt case markers, it is very hard to tell whether two adjacent
nouns form a complex NP, with one of the nouns serving as an adjective; or a ‘construct
NP’, where one of them is serving as a possessive determiner; or a verbless sentence.
Thus, there is considerable scope for ambiguity in the analysis of Arabic sentences.
They also tend to be rather long. The typical sentence length is 20 to 30 words, and
sentences whose length exceeds 100 words are not uncommon, and this also poses a
problem for traditional parsing algorithms.

1.3 A general framework of RTE

RTE has been recently introduced as a generic task by Dagan et al. (2006). The main
goal of RTE is constructing systems able to capture the semantic variability of language
expressions and performing NLIs. These systems can be incorporated in NLP appli-
cations. The RTE task takes a pair of text fragments (T and H) and checks whether
an entailment relationship holds between them or not. The task covers all language
variability phenomena, such as lexical, semantic and syntactic variations.

A standard RTE system pipeline consists of the following main stages:

Linguistic analysis. This system begins by applying different off-the-shelf linguistic
analysis tools on both T and H, in order to generate linguistic annotations which will
be useful later in processing. The respective levels of analysis range from tokenisation
through syntactic parsing to logical analysis.

T and H comparison. Different techniques are used to make comparison between T

and H, such as lexical alignment (Hickl et al., 2006) and transformations on syntactic
trees (Kouylekov and Magnini, 2005a). In addition, some techniques use n-grams or
unigrams to measure lexical overlap, or use WordNet as lexical substitution and logical
inference (Bos and Markert, 2006b). A feature vector, which supports a similarity
measure of T and H, is considered the typical result for this stage.
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Entailment decision. This stage generally uses machine learning, trained on the
training datasets of the RTE, to make the final entailment decision.

The architecture in Figure 1.1, for instance, instantiates this general notion where
linguistic analysis is represented by preprocessing; T and H comparison is represented
by comparative analysis; and the entailment decision is made by a classifier that makes
use of a feature vector.

Preprocessing
Comparative

analysis
Classifier

T

H

yes

no

Feature vector

Figure 1.1: General RTE architecture (Burchardt, 2008).

1.4 Research goals

RTE is considered a complex task that requires deep language understanding. The
techniques used for it have been developed considerably in the last few years, espe-
cially for English texts. ArbTE system is a step forward in this regard. It will inves-
tigate the effectiveness of existing TE techniques to Arabic where we are confronted
with levels of ambiguity higher than other languages, such as English. There is very
little work on applying TE techniques to Arabic, and little evidence that the existing
approaches will work for it.

The ArbTE system aims to achieve the following goals:

g1: Design TE algorithms for Arabic. The specific problems we will investigate in
this field are the following:

p1: Part of the problem here is that the standard algorithms rely on having accu-
rate syntactic analyses of the relevant texts, and there are no wide-coverage
high-precision parsers for Arabic. The lack of such parsers is not simply a
matter of lack of investment and effort: Arabic, particularly written modern
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Arabic, poses a number of problems for parsing algorithms which are not
present for most other languages. In order to overcome this problem in the
current project, we had to make a choice between two options: (i) adapting
the TE algorithms so that they can be applied to partial or highly ambiguous
syntactic analyses; or (ii) improving the accuracy of parsing itself by using
various strategies such as system combination techniques.

We have decided to work with the second option, which is the easy one be-
cause we did not want to complicate the TE algorithms without a necessity.

p2: Collect Arabic RTE datasets (i.e. development set and test set). Currently
there is no suitable dataset for Arabic.

p3: Develop extensions to existing TE algorithms to make them more robust and
more effective.

g2: Use the Arabic testing set to compare the effectiveness of different combinations
of sub-components and select the most accurate combination.

The reasons for realising TE computationally fall into two main categories:

• Internal goals: defining the entailment will provide the computer with the ability
to carry out inferences in order to achieve a better understanding of natural language
and will also make it possible to explore other linguistic tasks, such as paraphrase,
contradiction, presupposition and others.

• External goals: tackling this task will open the door to applications of these ideas
in many areas of NLP, such as question answering (QA), semantic search, informa-
tion extraction (IE), and multi-document summarisation.

1.5 ArbTE system architecture

The ArbTE system uses a fairly orthodox TE architecture that consists of three main
stages as shown in Figure 1.2 (Alabbas, 2011). At each stage we attempt to exploit
variations on the standard machinery to help us overcome the extra problems raised by
written Arabic as explained below.
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Figure 1.2: General diagram of ArbTE system.

Arabic linguistic analysis. This part of the system represents the preprocessing
stage that is responsible for converting both input T and H from natural form to depen-
dency trees. To achieve this goal, we first fix acronyms by using a manually-collected
Arabic resource and then two state-of-the-art dependency parsers, i.e. MSTParser (Mc-
Donald and Pereira, 2006) and MALTParser (Nivre et al., 2007), are used.

Both parsers are trainable. They can be used to induce a parsing model from tree-
bank data and parse new tagged data using an induced model. To provide tagged data to
these parsers, three state-of-the-art part-of-speech (POS) taggers, i.e. AMIRA (Diab,
2009), MADA (Habash et al., 2009b) and a home-grown MXL tagger (Ramsay and
Sabtan, 2009), are used.

Tree matching. This part will use a tree edit distance (TED) algorithm, as devel-
oped by Zhang and Shasha (1989), with our extended version with subtree operations,
extended TED (ETED), to make matching between both T and H dependency trees.
Using edit distance between two dependency trees will provide us with different ad-
vantages, as follows:

• The complexity is lower than for full-scale theorem proving.

• It is robust. One can do it even when one has partial syntactic analyses or is for
some other reason unable to build logical forms.



CHAPTER 1. INTRODUCTION 30

• Different knowledge sources can be expressed by edit operations for resolving the
problems of language variability. This is because the lexical and syntactic entail-
ment rules will be used to model the variability phenomena of lexical, syntactic and
semantic.

In this part of the system, we also exploit synonyms, antonyms, hypernyms and
hyponyms relations encoded by using some Arabic lexical resources (such as Arabic
WordNet (AWN) (Black et al., 2006), Openoffice Arabic thesaurus and others) when
exchanging items in a tree.

Entailment decision. This part of the system is responsible for making the final en-
tailment decision. The score resulting from the second stage is checked here to decide
a particular judgement using either one threshold (binary-decision) or two thresholds
(three-way decision). Such thresholds are estimated either empirically on the training
data (e.g. Kouylekov, 2006) or automatically by using optimisation algorithms such as
genetic algorithm (GA) or artificial bee colony (ABC), as in our project.

1.6 Contributions

The main contributions of this work are:

1. ArbTE system is the first work in TE for Arabic (we have so far found no such
work).3 The task of RTE for Arabic is interesting. We think that the RTE commu-
nity will benefit a lot from work about TE in languages other than English and in
particular about Arabic, which has a lot of characteristics described in Section 1.2
that make it challenging for NLP in general.

2. Applying our technique relies on having accurate linguistic analyses, which is a
difficult task, particularly for Arabic since the problem of ambiguity is worse in
Arabic than in English. To overcome these problems we have carried out a number
of experiments with our taggers and parsers in order to improve their performance
(i.e. deal with problem p1). These experiments show in particular the following
main results:

• Our conversion from phrase structure to dependency trees allows parsers to
perform accurately even for long sentences exceeding 100 words (Alabbas
and Ramsay, 2012a).

3Confirmed by the reviewers of our paper in (Alabbas, 2011).
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• Combining the output of three different taggers can produce more accurate
results than each tagger produces by itself (Alabbas and Ramsay, 2012d).

• Combining the output of multiple data-driven dependency parsers can pro-
duce more accurate results, even for imperfectly tagged text, than each parser
produces by itself for texts with the gold-standard tags (Alabbas and Ramsay,
2011a).

• Combining different tagger:parser pairs where each parser uses a different
tagger gives better precision than recall, as expected, which may be useful for
some tasks (Alabbas and Ramsay, 2012b).

3. We have built, using a novel semi-automatic method, a new Arabic RTE dataset. A
new dataset is required, since there are no available RTE datasets for Arabic (i.e.
solve problem p2).

4. Our work implements two novel improvements to Zhang-Shasha’s TED algorithm
(i.e. solve problem p3), as follows:

(i) Extending the set of edit operations to cover the subtrees transformation op-
erations as well as the standard single nodes edit operations, ETED (Alabbas
and Ramsay, 2012c).

(ii) Using the ABC algorithm (Karaboga et al., 2012) to estimate, automatically,
relevant costs of edit operations (for single node and subtree) and of thresh-
old(s) for the user defined application and testing data for different domains
instead of expertise-based scheme.

1.7 Thesis outline

In this chapter, Introduction, we have presented the research problem and what variety
of Arabic is the target of analysis and processing. Then, the general framework of RTE
is explained with our research goals and contributions. The remainder of the thesis is
organised as follows.

Chapter 2, Background: textual entailment, introduces the problem of entailment as
outlined under the perspectives of both linguistics and logic, and then the RTE task is
presented in some detail. Next, related work in the areas of RTE is reviewed. At the
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end of the chapter, the main applications of RTE are explained.

Chapter 3, Background: structural analysis, describes briefly the sources of ambiguity
in natural language, and the challenges of Arabic NLP are discussed in some detail.
The chapter ends with description of three state-of-the-art POS taggers (i.e. MADA,
AMIRA and MXL) and two state-of-the-art dependency parsers (i.e. MSTparser and
MALTParser).

Chapter 4, Arabic structural analysis, presents the experimental results of improving
our preprocessing stage. The chapter starts with improving the POS taggers subtask
by using the three taggers described in Chapter 3. Next, two techniques to improve
the parsing subtask, which depends on the two parsers described in Chapter 3 and the
results of improving POS taggers, are discussed. The material in this chapter is derived
in large part from our papers c2-c5 and c7.

Chapter 5, Trees matching, describes a number of popular distance-based approaches
to tree matching. Then, Zhang-Shasha’s TED algorithm is discussed with our exten-
sion to this algorithm to take into consideration subtree edit operations as well as edit
operations on single nodes (i.e. delete, insert and exchange). After that, two opti-
misation algorithms, i.e. GA and ABC, that will be used to estimate the cost of edit
operations and to determine thresholds for TED are outlined. The chapter ends with a
brief description of the Arabic lexical resources that are used in our work (e.g. AWN
and Openoffice Arabic thesaurus) to support us with some relations between words
(e.g. synonyms, antonyms and hypernyms). The material in this chapter is derived in
large part from our papers j1 and c6.

Chapter 6, Arabic textual entailment dataset preparation, starts with presenting our ef-
forts for constructing a training set and testing set for Arabic TE systems, since there is
no suitable dataset available for Arabic. Next, two diverse techniques are discussed to
check the reliability of a number of volunteer annotators. The material in this chapter
is derived in large part from our paper c9.

Chapter 7, Systems and evaluation, describes the design and implementation of RTE
systems to Arabic based on different approaches, such as bag-of-words (BoW) and
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distance-based algorithms, such as Levenshtein distance (LD) and TED. Then, differ-
ent ways for calculating cost functions for the different edit operations using GA and
ABC algorithm, are discussed. The material in this chapter is derived in large part from
our papers c1 and c8.

Chapter 8, Conclusion, concludes the final remarks of the thesis. The chapter ends
with suggesting directions for future improvements and research.



Chapter 2

Background: textual entailment

In this chapter the various notions of consequence in linguistics will be reviewed (Sec-
tion 2.1). In Section 2.2, the standard notion of entailment in logic will be briefly
introduced and its problems as a model for NLI will also be discussed. In Section 2.3,
the notion of textual entailment (TE) with its characteristics will be presented, a brief
summary of TE techniques will be presented and main applications of RTE will be
outlined.

2.1 Entailment in linguistics

The term entailment can be defined as a relationship between two sentences where the
truth of one sentence S1, the entailing expression, forces the truth of another sentence
S2, what is entailed (though the opposite may not be true). Notice that, if S1 is true,
then S2 must also be true; also if S2 is false, then S1 must be false (Bloomer et al.,
2005). By contrast, nothing is said about the truth value of S2, when S1 is false. Hence,
S1 is more informative than S2 when S1 entails S2, because the information that S2 car-
ries is included in the information that S1 carries. For instance, let consider (2.1) and
(2.2).

(2.1) Entailment

a. The president was assassinated.

b. The president is dead.

34
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(2.2) Non-entailment

a. No student came to class early.

b. No student came to class.

In (2.1), if the president was assassinated, then s/he is clearly dead, i.e. (2.1a)
entails (2.1b), but the reverse does not hold. The reason is that if the president was
‘assassinated’ is true, then there is no way to avoid the conclusion that the president
is ‘dead’, primarily because the meaning of ‘assassinated’, which means “murder (an
important person) in a surprise attack for political (or religious) reasons”, in (2.1a).
Notice that entailment arises from our background knowledge of language. It therefore
relies on the relevant sentence constituents rather than context. By contrast, (2.2a) does
not entail (2.2b), but the reverse does. The reason is that if it is true that ‘No student

came to class early’, then it is not necessary for ‘No student came to class’ to be true.
This is because there may be some student who came to class late.

Entailment also plays an essential role in defining and testing many other funda-
mental relations. For instance, when S1 entails S2 and vice versa, in this case S1 and S2

are equivalent, or are paraphrases of each other or synonymous, which means they are
true in exactly the same situations, or mutually entailing as in (2.3).

(2.3) Equivalent

a. The terrorist is dead.

b. The terrorist is not alive.

Furthermore, S1 and S2 are contradictories if S1 entails not-S2 and S2 entails not-
S1 (i.e. each sentence entails the negation of the another) so that when one sentence
is true the other must be false (Riemer, 2010), as shown in (2.4). Consequently, a
contradiction occurs when a sentence contains contradictory entailment (i.e. when a
sentence is followed by the negation of an entailed sentence), as in (2.5). Cruse (2011)
defines contrariety in terms of entailment as follows: “S1 and S2 are contraries if and

only if S1 entails not-S2, but not-S2 does not entail S1 (and vice versa).” This means
that the two sentences are considered to be contraries if and only if each of them entails
the negation of the other, while the latest one does not entail the first one, as in (2.6).
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(2.4) Contradictory

a. No student likes exams.

b. At least one student likes exams.

(2.5) Contradiction (cannot be true in any situation)

John came to university and had a good time and John did not come to university.

Here, ‘John came to university and had a good time’ entails ‘John came to university’,
hence (2.5) is a contradiction because (2.5) contains contradictory entailment.

(2.6) Contrariety

a. These cars are red.

b. These cars are blue.

Entailment also could be used to test a presupposition, which is something assumed
to be true in a sentence which asserts other information (Hudson, 2000), for two propo-
sitions P and Q as follows: P presupposes Q if both P and not-P entail Q (Bublitz and
Norrick, 2011), as in (2.7).

(2.7) Presupposition

a. John’s car is red.

b. John has a car.

Here, ‘John’s car is red’ and ‘John’s car is not red’ both entail ‘John has a car’, hence
(2.7a) presupposes (2.7b).

The entailment concept above can be generalised for a set of sentences S1, ...,Sn

and another sentence S. For simplicity, a set of entailing sentences are equated with
a single one by joining the sentences using ‘and’ as shown in (2.8). In this case, the
conjunction is true just when each individual sentence in the set is true. Also, it depicts
exactly those situations that can be described by each one of the individual sentences.

(2.8) Entailment between a set of sentences and one sentence

a. All mammals are animals and all cows are mammals.

b. All cows are animals.
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Two systematic patterns of entailment can be extracted from the above examples
between sets and subsets. Upward entailment is concerned with entailment from a
subset to a set (i.e. from more specific to less specific); but not vice versa. In other
words, it means that if a proposition P is true of a set F, it is true of supersets of
F. By contrast, downward entailment, which is the opposite of upward entailment,
is concerned with entailment from a set to a subset (i.e. from less specific to more
specific); but not vice versa (Chierchia and McConnell-Ginet, 2000). In other words,
it means that if a proposition P is true of a set F, it is true of subsets of F. Upward and
downward entailment are illustrated in (2.9) and (2.10) respectively.

(2.9) Upward entailment

a. Some horses are black.

b. Some animals are black.

(2.10) Downward entailment

a. No animals are green.

b. No horses are green.

In both (2.9) and (2.10), the sentence (a) entails the sentence (b), but not vice versa.
Accordingly, the quantifier ‘some’ triggers an upward entailment in (2.9), whereas the
quantifier ‘no’ involves a downward entailment in (2.10). In general, a downward en-
tailment environment is created by negation so that according to Fauconnier-Ladusaw
hypothesis (Zwarts, 1998): negative polarity items (NPIs) can be licensed1 in the scope
of the downward entailment environment (see Saeed, 2009), as in (2.11).

(2.11) NPIs

a. ?Every student is ever writing report.

b. No student is ever writing report.

Entailment has a number of properties, here are the main two:

• Non-cancellability: entailment cannot be cancelled by adding some explicit mate-
rial. Let us consider, for instance, the pair of sentences in (2.1): if (2.1b) is not true
(i.e. the president is not dead), then (2.1a) could not be true as well, because what-
ever it is that happened to ‘the president’ would not be considered as absolutely
1Licensed is a linguistics technical term, which means approximately ‘permitted by the grammar’.
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an assassination. In fact, there is no qualification that one could insert in to (2.1a)
while preserving its meaning to make it stop entailing (2.1b).

• Non-detachability: the entailment will not change when some identical semantic
content words (or phrases) are replaced by others. This is because the entailment
relies solely upon the sentence’s truth conditional content.

2.2 Entailment in logic

Logic has been widely used as a framework to model semantics of natural language.
NLP researchers use different types of logic in their approaches, these logic types are
listed in Table 2.1, where we note that as the expressive power of a language increases
so does the complexity of reasoning with it. This has important consequences for the
use of formal languages as a means of capturing natural language semantics. If the cho-
sen language is not expressive enough, distinctions between different natural language
sentences will be lost; but if we choose to use highly expressive formal languages, we
have to accept that inference will become very difficult.

Logic Complexity
Attribute: value pairs Linear
Propositional logic

NP-complete
Description logic
First order logic Semi-decidable
Modal logic (temporal logic) (recursively enumerable)
Default logic Undecidable
Intensional logic

Incomplete
(typed λ -calculus, set theory and property theory)

Table 2.1: Logic types for NLP.

As explained earlier, entailment can be defined as a relationship between two sen-
tences where the truth of one sentence forces the truth of another sentence. This lin-
guistic concept of entailment can be formalised logically as a relation between sets of
logical formulae (which are the basic building blocks of any logic, also called propo-

sitions). Thus, if P = {P1, . . . ,Pn} is a set of formulae and Q is a formula, P logically
entails Q if and only if every model of P is also a model of Q (Jago, 2007), i.e. the
following is true:

(P1∧P2∧ . . .∧Pn) |= Q. (2.1)
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So, logical entailment depends on the concept of truth and truth conditions. Graph-
ically, entailment between two formulae is denoted as: P |= Q, which stands for “P

entails Q”, whereas P 2 Q stands for “P does not entail Q”.

The general structure to checking entailment between natural language sentences
by using a logical approach is shown in Figure 2.1.
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Logical representation 1 

Logical representation 2 

Figure 2.1: Logical approach structure to check natural language entailment.

In short, the sentences are translated from natural language into some logical form.
Then, a theorem prover is used to check whether logical entailment holds between the
two logical forms or not. An important point for this technique is that it succeeded
in representing the meaning of natural language mathematically. For example, (2.12)
uses this technique to test the entailment for the sentences (2.12a) and (2.12b).

(2.12) Logical entailment for natural language (simple example)

a. All fruit are nourishing and all apples are fruit.

∀x f ruit(x)→ nourishing(x) ∧ ∀x apple(x)→ f ruit(x)

b. All apples are nourishing.

∀x apple(x)→ nourishing(x)

A more complex example will be explained in (2.13), which needs additional
knowledge to prove the logical entailment between two sentences. The logical forms
for these sentences given below were obtained by the PARASITE2 system (Ramsay,
1999; Seville and Ramsay, 2001).

2This acronym comes from “PrAgmatics = ReAsoning about the Speaker’s InTEnsions”.
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(2.13) Logical entailment (complex example that needs additional knowledge)

a. John and Mary got divorced.

exists(_A,

(event(_A, divorce)

& (theta(_A,

object,

(ref(lambda(_B, named(_B, ’Mary’)))

& ref(lambda(_C, named(_C, ’John’))))

& aspect(ref(lambda(_D, past(now, _D))), simplePast,_A)))))

b. They had been married.

exists(_A :: {past(ref(lambda(_B, past(now, _B))), _A)},

exists(_C,

(event(_C, marry)

&(theta(_C,

object,

ref(lambda(_D, centred(_D, lambda(_E, thing(_E))))))

&aspect(_A, simplePast, _C)))))

c. They are not still married.

not(exists(_A,

(event(_A, marry)

&(theta(_A,

object,

ref(lambda(_B, centred(_B, lambda(_C, thing(_C))))))

&(unfinished(_A) & aspect(now, simplePast, _A))))))

d. John and Mary will get divorced.

exists(_A :: {future(now, _A)},

exists(_B,

(event(_B, divorce)

&(theta(_B,

object,

(ref(lambda(_C, named(_C, ’Mary’)))!2

& ref(lambda(_D, named(_D, ’John’)))!0))

& aspect(_A, simplePast, _B)))))
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The sentences in (2.13) are fairly simple, but the reasoning required to judge that
(2.13a) should entail each of (2.13b) and (2.13c) requires considerable background
knowledge and inferential power. It is easy make logical forms for these sentences, as
shown in (2.13), but the reasoning involved in getting them right involves as follows:

i. Understanding that ‘divorce’ is a process that terminates a marriage.

ii. Doing the temporal reasoning that if something is terminated then it must have
existed before the termination took place, and that it no longer exists after the
termination.

The sentence (2.13d), on the other hand, does not entail sentence (2.13b) (actually
(2.13b) does not even make any sense as a follow-up to (2.13d), because the referential
nature of ‘had been’ requires the context to contain some past instant). Strictly speak-
ing it does not even entail ‘They are married’, though one probably would want a TE
system to say that it does; and it certainly does not entail (2.13c).

So getting these right, using any approach to entailment, requires considerable
amounts of background knowledge about temporal relations, as well as the link be-
tween divorce and marriage.

Blackburn et al. (2001) argue that it is extremely difficult to construct logical forms
for complex sentences. There is no obvious reason why one should not be able to
produce a logical form for any sentence that one can parse (though there are, clearly,
problems with ambiguous sentences: if there are many structural analyses one will
get many logical forms, and s/he has to have some way of choosing between them).
However, if the sentence is very long as in (2.14), its logical form will be very complex,
as given in Appendix A.

(2.14) Sentence with long logical form

I know she thinks that the man who you were talking to wants to marry her.

In fact, the problem here is not the size of the logical form, but it is the depth of
nesting. Theorem provers can cope with knowledge bases consisting of millions of
facts, but they cannot cope with the kind of nested propositions in this logical form.
According to the theoretical and practical argument of Blackburn et al. (2001), it is
impossible to establish a logic-based approach to the semantics of natural language
because it does not easily scale, as following:
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1. It is very difficult, and may even be impossible, to use Montague-like compositional
rules to obtain logical forms for natural language texts. The key problems here are
ambiguity (there are as yet no reliable algorithms for making the right choice when
confronted with multiple interpretations) and extragrammatically (compositional
semantics is generally carried out by annotating the rules of the grammar being
used for analysing the input text. These annotations are usually added to hand-
crafted grammar rules. Freely occurring texts often break, or at least bend, the
rules of a typical hand-crafted grammar: it is very hard to see how to construct a
logical form in this way if the text under consideration is not described by the rules
of the grammar, because it is unclear where the construction rules will come from).

2. A huge amount of knowledge is required (e.g. about word meaning), and the task of
formalising such knowledge has proved intractable (the CYC3 project (Lenat and
Guha, 1990), for instance, has failed to provide a suitable knowledge base despite
very large amounts of effort).

The situation is, in fact, made worse by the fact that many phenomena in natu-
ral language appear to be higher-order (Ramsay and Field, 2008), which makes the
prospect of efficient reasoning over logical forms even more remote, as shown in Table
2.1. This technique gives very high precision, but very low recall with most exist-
ing theorem provers and knowledge bases. Attention has therefore recently shifted to
carrying out shallow inference on freely occurring texts. This task, known as textual

entailment (TE), involves developing inference techniques that can be applied directly
to natural language text, with the aim of extracting information that is implicit in such
text without needing to use the logical-based approach.

2.3 What is TE?

There is no formal definition of TE. Therefore, new challenges are posed for both the-
oretical studies of the semantics of natural language and actual systems design. Dagan
and Glickman (2004) described TE, which is a pre-theoretical notion, as a directional
and probabilistic relationship between an entailing natural language text T and an en-
tailed natural language hypothesis H. These authors state that entailment (T entails H

or H is a consequent of T) holds if the meaning (or truth) of H, as interpreted by a
typical language user, can be inferred from the meaning of T. Table 2.2 summarises

3This acronym comes from “encyclopedia”.
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different informal definitions for TE, while Table 2.3 explains some output conditions
of TE engines.

Authors According to Definition of TE
Dagan et al. (2006) “We say that T entails H if the meaning of

H can be inferred from the meaning of T, as
would typically be interpreted by people.”

Chierchia and
McConnell-Ginet
(2000)

formal semantics “A text T entails another text H if H is true in
every circumstance (possible world) in which
T is true.”

Guidelines of RTE-
4 challenge

approach of partic-
ipants in the RTE
challenge

“T entails H if the truth of H can be inferred
from T within the context induced by T.”

Table 2.2: Some informal definitions for TE.

Authors Output conditions of TE engines
Kouylekov
and Magnini
(2005b)

“T entails H if we have a sequence of transformations applied to T such
that we can obtain H with an overall cost below a certain threshold
empirically estimated on the training data.”

Pérez and Al-
fonseca (2005)

“If the BLEU’s4 output is higher than a threshold value the entailment
is marked as TRUE, otherwise as FALSE.”

Pazienza et al.
(2005b)

“T entails H if we succeed to extract a maximal subgraph of XDGT
5

that is in a subgraph isomorphism relation with XDGH , through the
definition of two functions fC and fD”, where C is the constituents, D is
the dependencies, fC : CT →CH and fD : DT → DH .

Table 2.3: Some output conditions of TE engines, according to approach of participants
in the RTE challenge.

2.3.1 Entailment rules

Many researchers use rules to deal with TE. Entailment (or rewriting) rules, in this
context, have been introduced to provide pieces of broad-scale knowledge bases for
semantic variability patterns that may support entailment judgements (Dagan et al.,
2009) with some degree of confidence. An entailment rule is a rule in which the left-
hand side (LHS) entails its right-hand side (RHS), denoted by ‘LHS→RHS’, in certain
contexts under the same variable instantiations. More specifically, a rule is defined

4This acronym comes from “Bilingual Evaluation Understudy”.
5This acronym (i.e. XDG) comes from “Extended Dependency Graph”.
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as a directional relation between LHS and RHS, corresponding to text fragments (here
termed templates), either text patterns (or parse subtrees) with variables or lexical terms
as in (2.15). Typically, such rules should be applied solely in specific contexts, defined
as relevant contexts by Szpektor et al. (2007). For instance, the rule (2.15a) can be
used in the context of ‘buying’ events, so we should not apply it for ‘Students acquired

a new language’.

(2.15) Entailment rules

a. X acquire Y→ X buy Y (Templates with variables)

b. X was found in Y→ Y contains X (Templates with variables)

c. laptop→ computer (Lexical terms)

d. letter→ message (Lexical terms)

Recently, a lot of methods have been suggested for automatic acquisition of such
rules, ranging from distributional similarity to finding shared contexts (e.g. Lin and
Pantel, 2001; Ravichandran and Hovy, 2002; Shinyama et al., 2002; Barzilay and Lee,
2003; Szpektor et al., 2004; Sekine, 2005; Callison-Burch, 2008; Szpektor and Dagan,
2008; Zhao et al., 2009; Aharon et al., 2010; Cabrio et al., 2012). We focus here on
two representative and widely-used unsupervised acquisition methods.

• DIRT6 was proposed by Lin and Pantel (2001) as a method based on an extended
version of Harris’s distributional hypothesis, i.e. words that occur in the same con-
texts tend to have similar meanings, but it operates at the syntactic level. In this
method, if two dependency paths (i.e. binary relationships between two nouns
only), which are extracted from dependency trees of parsed corpora, tend to occur
in similar contexts, the meanings of these paths tend to be similar. Then, both first
and last words (i.e. nouns) of the extracted paths are replaced by slot fillers, which
corresponds to variables in entailment rules.

• TEASE7 is a bootstrapping-based method proposed by Szpektor et al. (2004). Un-
like the DIRT method, TEASE uses the web to collect its rules rather than parsed
corpora. It starts with a lexical-syntactic template or a parse subtree with linked
items called anchors as given input (the available knowledge collection consists of
136 different templates that were given as input). These anchors are lexical items
6This acronym comes from “Discovery of Inference Rules from Text”.
7This acronym comes from “Textual Entailment Anchor Set Extraction”.
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describing the context of the template in a sentence. Then, it extracts verb-based
expressions for the other candidate templates for entailment relations with the input
template.

Both DIRT and TEASE avoid the problem of determining the direction of the en-
tailment relation, so the resulting relation can be ‘LHS entails RHS’, ‘RHS entails
LHS’ or each entails the other (paraphrases) under the same variable instantiations.

2.3.2 Characteristics of TE

The RTE task is defined implicitly by the guidelines given to the annotators, since
these determine which T-H pairs a system should accept. These guidelines, which are
given below, contain some ambiguities and even potential inconsistencies which rather
undermine the clarity of the task.

1. Entailment is a directional relationship (i.e. H must be entailed from the given T,
while the opposite is not necessary) as shown in (2.16), in which (2.16a) entails
(2.16b), whereas the reverse does not.

(2.16) Entailment is a directional relationship

a. I saw a black cat.

b. I saw a cat.

2. T must explain H. Dagan et al. (2006) state that “In principle, the hypothesis must

be fully entailed by the text. Judgment should be false if the hypothesis includes

parts that cannot be inferred from the text.” The above quotation appears to sug-
gest that additional knowledge may not be used to demonstrate entailment. In the
following examples, we will show that entailment almost always requires the use
of different types of background knowledge.

(2.17) No background knowledge at all

a. I saw a cat.

b. I saw a cat.

(2.18) Basic logic

a. I saw a cat and it was black.

b. I saw a cat.



CHAPTER 2. BACKGROUND: TEXTUAL ENTAILMENT 46

(2.19) Basic logic and semantic structure of natural language

a. I saw a black cat.
∃x black(x)∧ cat(x)

b. I saw a cat.
∃x cat(x)

(2.20) Lexical relations

a. I saw a cat.

b. I saw an animal.

c. I saw an Albigensian.

d. I saw a heretic.

But, the question here is how many lexical relations are needed. In (2.20), for
instance, anyone will judge that (2.20a) entails (2.20b) because ‘cat’ is a hyponym
of ‘animal’, whereas even a great number of native English speakers do not know
that (2.20c) entails (2.20d).

(2.21) Encyclopedic knowledge

a. John and Mary got divorced.

b. John and Mary had been married.

c. John and Mary are (still) married.

d. John is allergic to eggs.

e. John should not eat pancakes.

In (2.21), there is a relationship between the definition of ‘divorced’ in the T and
the definition of ‘marriage’ in the H (i.e. the divorce means the end of marriage).
So, (2.21a) entails (2.21b) because ‘John and Mary got divorced’ means that John
and Mary married before that. On the other hand, (2.21a) does not entail (2.21c)
because ‘John and Mary got divorced’ means that the marriage bond between them
is dissolved, which leads to that ‘John and Mary are not (still) married’.

In contrast, in spite of the fact that there is no word in H that has a relation with
the definition of ‘allergic’ in the T, which means having an allergy, (2.21d) entails
(2.21e). This example involves a chain of reasoning–that because John is sensitive
to eggs and pancakes contain eggs, so John will be sensitive to pancakes as well.
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These examples show that entailment cannot be done without background knowl-
edge, but the question here is how much, and what sort, of background knowledge
is allowed, in apparent contradiction to guideline 2.

3. Entailment is a probabilistic relationship (i.e. the relation is not deterministic).
The annotation guidelines for the annotators of the RTE datasets by Dagan et al.
(2006) state that “[...] cases in which inference is very probable (but not completely

certain) are still judged at true”, as shown in (2.22), which represents a pair #586
from the PASCAL8 RTE Challenge dataset. In this example, it is annotated as
positive because the context looks to indicate that the person actually died in 1993.

(2.22) Entailment is probabilistic (pair #586 in RTE1 dataset)

a. The two suspects belong to the 30th Street gang, which became embroiled

in one of the most notorious recent crimes in Mexico: a shootout at the

Guadalajara airport in May, 1993, that killed Cardinal Juan Jesus Posadas

Ocampo and six others.

b. Cardinal Juan Jesus Posadas Ocampo died in 1993.

Actually, one of the challenging problems for modeling TE is inclusion of ‘very

probable’. An example can be useful, consider the example in (2.23).

(2.23) Inclusion of very probable

a. X% of the swans in the world are white.

b. John’s swan is white.

c. John’s swan is probably white.

The question here is what are the least values of X that make entailment between
(2.23a) and (2.23b) and between (2.23a) and (2.23c) respectively. We have made an
annotation test by asking 20 people to solve this question. The answers are different
values for X for both entailments. Then, we asked the same people with X=90 and
the answers are 60% with (2.23a) entails (2.23b), 20% that (2.23a) does not entail
(2.23b) and 20% said they do not know, whereas all of them answered that (2.23a)
entails (2.23c) because of the presence of ‘probably’.

8This acronym comes from “Pattern Analysis, Statistical Modelling and Computational Learning”.
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4. Background knowledge should be admissible. Dagan et al. (2006) state that “Anno-

tators were allowed to assume common background knowledge of the news domain

such as that a company has a CEO [. . . ]. However, it was considered unacceptable

to presume knowledge such as that Yahoo bought Overture for 1.63 billion dollars.”

In this quotation, the part of sentence “a company has a CEO”, which the authors
say is allowable, is not going to be common knowledge for most native English
speakers.

Furthermore, in (2.24), which represents pair #1586 from the RTE1 dataset, these
authors argue that the rules defining what represents acceptable background knowl-
edge may be hypothesis dependent. So, the annotators consider that Arabic is the
Yemen national language as background knowledge. Also, the authors explain that
deciding the entailment between ‘Grew up in Yemen’ and ‘speaks Arabic’ may be
assumed as background knowledge.

(2.24) Background knowledge (pair #1586, RTE1, QA, entailment=TRUE)

a. The Republic of Yemen is an Arab, Islamic and independent sovereign state

whose integrity is inviolable, and no part of which may be ceded.

b. The national language of Yemen is Arabic.

In fact, it is not clear what “assume common background knowledge” means. In
addition, there is no formal definition yet of TE that makes it possible in some way
to determine what knowledge is required for a given inference.

To sum up, the annotation guidelines for the annotators of the RTE corpora in Dagan
et al. (2006) seem vague in interpreting the background knowledge and some contra-
diction is also found between the points 2 and 4.

2.3.3 Previous approaches to RTE

Various approaches for modeling TE have been suggested in the literature. These ap-
proaches range from shallow approaches based on measuring lexical similarity to deep
approaches based on full semantic interpretation. Many of these approaches are robust-
but-shallow approaches based on lexical matching. Some of these approaches apply the
matching algorithm directly to the surface string (Section 2.3.3.1), while others con-
vert T-H pairs to syntactic trees before carrying out matching (Section 2.3.3.2). These
matching algorithms may make use of lexical resources such as WordNet. Lately, there
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has been an activity with respect to more structured meaning representations, abstract-
ing away from the semantically irrelevant surface (Section 2.3.3.3). Other systems
apply deep-but-brittle approaches based on full semantic interpretation, such as logical
inference (Section 2.3.3.4).

2.3.3.1 Surface string similarity approaches

Many RTE recognition approaches operate directly on simple surface representations
without computing more elaborate syntactic or deeper analyses, though possibly after
applying some preprocessing natural language actions, such as part-of-speech (POS)
tagging or named-entities (NEs) recognition. These approaches depend only on some
measures of lexical similarity between individual words. Some of these approaches,
for instance, apply a bag-of-words (BoW) model to each T-H pair (e.g. Glickman et al.,
2005; Jijkoun and de Rijke, 2005; Adams, 2006). Primarily, for every word in H, the
most similar word in T is calculated according to a lexical scoring function, which
maps ordered pairs of words to real values in the interval [0,1] (i.e. close or equal to
1 for a pair of similar words and close or equal to 0 for a pair of dissimilar words),
and compare the similarity score against a threshold. This threshold is usually learned
automatically from a development set of T-H pairs. Different lexical scoring functions
are used as measures of lexical similarity (or perhaps the somewhat weaker notion
of lexical relatedness), including number of common words, distributional similarity
measures (Lin, 1998b), taxonomy-based scoring functions (e.g. the WordNet-based
semantic distance measure (Jiang and Conrath, 1997)) or combinations of several com-
ponent scoring functions (Malakasiotis and Androutsopoulos, 2007), including mea-
sures originating from machine translation (MT) evaluation (Finch et al., 2005; Pérez
and Alfonseca, 2005; Zhang and Patrick, 2005; Wan et al., 2006). The latter have been
developed to automatically compare machine-translations against human-authored ref-
erence translations. A well-known measure in this regard is the BLEU method pro-
posed by Papineni et al. (2002), which roughly speaking is a method for automatic
evaluation of MT systems. It examines the percentage of word n-gram (sequences of
consecutive words) coincidences between an output text of a MT system and a set of
human-generated translations, and takes the geometric average of the percentages ob-
tained for different values of n. BLEU’s output is always a real number in the interval
[0,1] indicating how similar the candidate output and the reference are. On the strength
of the BLEU output, the entailment is judged as positive or negative between T-H pairs
(Pérez and Alfonseca, 2005). In fact, using n-gram word similarity is very popular
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among the systems for RTE (Ferrández et al., 2007; Pakray et al., 2011a; Buscaldi
et al., 2012; Neogi et al., 2012). Iftene (2009), for instance, states that there were 6
n-gram based systems in 2006, 11 systems in 2007 and over 14 systems in 2008.

Alternatively, a string edit distance such as Levenshtein distance (LD) (Leven-
shtein, 1966), which finds the minimum number of edit distance operations (i.e. an
insertion, deletion or exchanging of a single item) needed to transform one string to
another, or any other string distance method is computed for the T-H pairs.

More sophisticated word-based approaches use vector space models (VSMs), also
known as term vector models, of semantics. VSMs start by representing input language
expressions as vectors of identifiers, like terms or tokens. Of course the term, which
is the measure for the similarity comparison, depends on what is being compared but
terms are normally single words, keywords, phrases or sentences. Such vectors show
how strongly a term co-occurs with other terms in strings or corpora (Lin, 1998b). In
this regard, syntactic information can possibly be taken into consideration (Padó and
Lapata, 2007), e.g. the co-occurring words participate in particular syntactic depen-
dencies. Then, the vectors of a single term are combined by using a compositional
vector-based meaning representation theory. Eventually, each one of the two input ex-
pressions is mapped to a single vector that attempts to capture its meaning, e.g. each
expression vector could be the sum or product of the vectors of its words, but more
elaborate techniques have also been suggested (e.g. Mitchell and Lapata, 2008; Erk
and Padó, 2009).

These models could be used in TE recognition by checking if H’s vector is par-
ticularly close to that of a part (e.g. phrase or sentence) of T. Intuitively, this would
check if what H says is implicit in what T says (Androutsopoulos and Malakasiotis,
2010), though we must be careful with some expressions such as negations that do not
preserve truth values (Zaenen et al., 2005; MacCartney and Manning, 2009).

A number of VSMs strategies have been suggested in the literature, such as la-
tent semantic analysis (Landauer and Dumais, 1997), Cosine similarity, Manhattan
distance, Euclidean distance, Jaccard similarity coefficient, Dice similarity coefficient
and others.

The main limitations of surface string similarity based approaches come from the
fact that these approaches do not take into account any syntactical or semantic infor-
mation. For example, BoW models ignore altogether the word order and the syntax
of the input T-H pairs, and make no attempt at semantic interpretation. So, such an
approach gives positive answers for T-H pairs with highly common words, even when
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the meaning is different. BoW, for instance, cannot distinguish between ‘John loves

Mary’ and ‘Mary loves John’ since it ignores predicate-argument structure.

2.3.3.2 Syntactic similarity approaches

Another common approach is to work at the syntactic level. The idea here is to convert
both T and H from natural language expressions into syntactic trees using syntactic
parsing. Then, one of a range of transformation-based models is applied to explicitly
transform T’s parse tree into H’s parse tree, using a sequence of transformations (e.g.
Kouylekov and Magnini, 2005a; Kouylekov, 2006; Bar-Haim et al., 2007; Harmeling,
2009; Mehdad, 2009; Mehdad and Magnini, 2009; Wang and Manning, 2010; Heilman
and Smith, 2010). The best transformation sequence (i.e. the one of lowest cost or of
highest probability) indicates whether T entails H. Such a sequence may be referred
to as a ‘proof’, in the sense that it is used to ‘prove’ H from T (Stern et al., 2012).
Dependency parsers (Kübler et al., 2009) are popular in this regard, as in other NLP
areas in recent years. Instead of showing hierarchically the syntactic constituents (e.g.
noun phrases (NPs) and verb phrases (VPs)) of a sentence, the output of a dependency
parser is a graph (usually a tree) where words are vertices and syntactic relations are
dependency relations. Each vertex therefore has a single parent, except the root of the
tree. A dependency relation holds between dependent (a syntactically subordinate ver-
tex) and head (another vertex on which it is dependent). So, the dependency structure
represents head-dependent relations between vertices that are classified by dependency
types such as SBJ ‘subject’, OBJ ‘object’, ATT ‘attribute’, etc. It allows us to be sen-
sitive to the fact that the links in a dependency tree carry linguistic information about
relations between complex units, and hence to ensure that when we compare two trees
we are paying attention to these relations.

Different transformation-based models, using various types of transformations in
order to derive H from T, are suggested. Herrera et al. (2005), for instance, used the
notion of tree inclusion (Kilpeläinen, 1992), which obtains one tree from another by
deleting nodes. Other systems (e.g. Herrera et al., 2006; Marsi et al., 2006) used a tree
alignment algorithm (Meyers et al., 1996), which produces a multiple sequence align-
ment on a set of sequences over a fixed tree. Tree edit distance (TED) (Selkow, 1977;
Tai, 1979; Zhang and Shasha, 1989; Klein et al., 2000; Pawlik and Augsten, 2011) is
another example of a transformation-based model in that it computes the sequence of
predefined transformations (e.g. insertion, deletion and exchanging of nodes) with the
minimum cost that turns one tree into the other. To obtain more accurate predictions,
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it is important to define an appropriate inventory of transformations and assign appro-
priate costs (or probability estimations) to the transformations during a training stage
(Kouylekov and Magnini, 2005a; Mehdad, 2009; Mehdad and Magnini, 2009; Harmel-
ing, 2009). For instance, exchanging a noun with its synonyms should be less costly
than exchanging it with an unrelated one. Heilman and Smith (2010) extended the
above mentioned operations by defining nine additional edit operations (e.g. ‘move-
sibling’, ‘relabel-edge’, ‘move-subtree’ and others), since the available transforma-
tions are limited in capturing certain interesting and prevalent semantic phenomena.
This extended set of edit operations allows certain combinations of the basic opera-
tions to be treated as single steps, and hence provides shorter (and therefore cheaper)
derivations. The fine-grained distinctions between, for instance, different kinds of in-
sertions also make it possible to assign different weights to different variations on the
same operation. Nonetheless, these operations continue to operate on individual nodes
rather than on subtrees (despite its name, even ‘move-subtree’ appears to be defined
as an operation on nodes rather than on subtrees). Comparably, a heuristic set of 28
transformations, which include numbers of node-substitutions and restructuring of the
entire parse tree, is suggested by Harmeling (2009).

The semantic validity of transformation-based inference is usually modeled by
defining a cost for each edit operation. Selecting relevant costs for these edit opera-
tions depends on different parameters such as the nature of nodes and applications. For
instance, TED has been used for matching RNA structures. In this area, the costs that
would be appropriate when using TED for matching parse trees might be completely
inappropriate. One solution to overcome this challenge could consist of assigning costs
based on an expert valuation (e.g. Kouylekov and Magnini, 2005a), but they are usu-
ally learned automatically (e.g. Harmeling, 2009; Mehdad, 2009; Wang and Manning,
2010; Heilman and Smith, 2010; Stern and Dagan, 2011), e.g. particle swarm opti-
mization (PSO), which is a stochastic technique that mimics the social behaviour of
bird flocking and fish schooling (Parasuraman, 2012), is used for estimating and opti-
mising the cost of each edit operation for TED (Mehdad, 2009; Mehdad and Magnini,
2009). Typically, the sum of the costs of the individual transformation is a global cost
for a complete sequence of transformations.

As we have seen, the above systems limited to the standard tree edit operations
(i.e. insertion, deletion and exchanging of nodes) can use an exact algorithm that finds
the optimal solution. Nevertheless, for the extended set of tree edit operations it is
unlikely that efficient exact algorithms for finding lowest cost sequences are available
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(Heilman and Smith, 2010), since all these transformations work on single nodes. An
appropriate solution for this harder case is using transformations on subtrees as well as
on single nodes, which is one of our focuses in the current thesis (see Chapter 4).

Iftene and Balahur-Dobrescu (2007) and Zanzotto et al. (2009), on the other hand,
compare the parse tree of H against subtrees of T’s parse tree. It may be possible to
match the parse tree of H against a single subtree of T, in effect a single syntactic
window on T.

Computing similarities at the syntactic level can often be more accurate than sur-
face string approaches. Consider the pair of sentences in (2.25).

(2.25) H is substring from T (pair #2081, RTE1, QA, entailment=FALSE)

a. The main race track in Qatar is located in Shahaniya, on the Dukhan Road.

b. Qatar is located in Shahaniya.

In this example, working at the surface string level suggests, wrongly, that T en-
tails H since T includes verbatim H. In contrast, at the syntax level T does not entail
H because in the syntactic representations of the two sentences: ‘Qatar’ is the sub-
ject of ‘located in Shahaniya’ in H, but in T it is not. This example shows a typical
example of situations where operating at a higher level than surface strings leads to
more reliable detection of similarities. However, the approaches that operate at the
syntactic-semantic level do not necessarily outperform in practice approaches that op-
erate on surface level (Wan et al., 2006; Burchardt et al., 2007, 2009) due to the fact
that parsers make mistakes. Hence, the syntactic-semantic representations of the input
expressions cannot always be computed accurately, which may introduce problems to
the next step of processing.

2.3.3.3 Entailment rules-based approaches

One way to deal with TE is through entailment rule representation, which specifies the
generation of entailed sentences from a source sentence. For instance, an entailment
rule ‘LHS→RHS’ can be applied to a given text, if LHS can be inferred from this text
with appropriate variable instantiations. Then, the application deduces that RHS can
also be inferred from the text under the same variables. Given the rule (2.26a), a TE
recogniser could figure out that (2.27b) can be inferred from (2.27a) by transforming
‘Barcelona lost to Real Madrid’ into ‘Real Madrid thump Barcelona.’
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(2.26) Entailment rules

a. X lost to Y→ Y thump X

b. X acquire Y→ X learn Y

c. X won Y→ X played Y

(2.27) Entailment pair for the rule (2.26a)

a. Barcelona lost to Real Madrid in the Copa del Rey semi-final second leg.

b. Real Madrid thump Barcelona.

(2.28) Sentence samples for the rule (2.26b)

a. Students acquired a new language.

b. Students learn a new language.

c. Students learn a new shirt.

The idea of this type of recognition approach is to search for a sequence of inference-
preserving transformations, such as lexical substitutions (e.g. synonyms or hypernyms-
hyponyms) and predicate-template substitutions, that turns one expression (or its syn-
tactic or semantic representation) to the other (e.g. de Salvo Braz et al., 2005; Bar-Haim
et al., 2007; Dinu and Wang, 2009). So, T entails H if such a sequence is found. Some
approaches associate with each rule a probability (possibly extracted from a training
set), which reflects the degree of reliability of this rule to produce an entailed expres-
sion. In this case, we may search for the sequence of transformations with the lowest
cost less than a threshold, much as in edit distance-based approaches that compute
the minimum (string or tree) edit distance between T and H (see Section 2.3.3.2), or
of high probability that exceeds a confidence threshold (Harmeling, 2009). Also, one
would take into account the contexts where rules are applied, because a rule may not
be valid in all contexts (i.e. relevant contexts), e.g. the different possible senses of
the words it involves. The rule (2.26b), for instance, should be applied solely when Y

corresponds to some sort of knowledge, e.g. using this rule for the sentence (2.28a)
we can correctly infer the sentence (2.28b). However, given the sentence (2.28a), the
plausible entailment rule (2.26b) would incorrectly infer the sentence (2.28c). One
possible solution that has been suggested to make such resources more precise is at-
taching selectional preferences to entailment rules (e.g. Basili et al., 2007; Pantel et al.,
2007; Szpektor et al., 2008). These are semantic classes which correspond to the an-
chor values of an entailment rule and have the role of making precise the context in
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which the rule can be applied (e.g. in the rule (2.26c), LHS entails RHS solely when Y

refers to some sort of competition, but LHS does not entail RHS if Y refers to a musical
instrument). Then, one can use a rule solely in the contexts similar to those in which it
was acquired.

However, transforming T into H is impossible in many cases when only knowledge-
based transformations are allowed (Stern et al., 2012). This limitation is dealt with by
Stern and Dagan (2011)’s open-source integrated framework, BIUTEE,9 which incor-
porates knowledge-based transformations with a set of predefined tree edit transforma-
tions.

Furthermore, when operating at the semantic representations level, the sequence
sought is actually a proof that T entails H, and it may be obtained by exploiting theo-
rem provers. Bos and Markert (2006a), for instance, used hand-crafted rules but their
number did not get close to the level of coverage needed. Other researchers discuss
how to search for an optimal sequence of transformations over parse trees (e.g. Stern
and Dagan, 2011; Stern et al., 2012). As we mentioned in Section 2.3.3.2, such a
sequence can be seen as proofs at the syntactic level, when both T and H and their
reformulations are represented by dependency trees. Moreover, some researchers em-
ploy sequences of transformations to bring T closer to H. Then, the support vector
machine (SVM) recogniser is used to judge if the transformed T and H constitute a
positive TE pair or not.

2.3.3.4 Deep analysis and semantic inference approaches

Different approaches can be considered part of this group. For logicians and semanti-
cists, the most obvious approach to address TE between T and H relies on full seman-
tic interpretation (i.e. logical inferences, see Figure 2.1): translate both T and H into
formal meaning representations φT and φH respectively (e.g. Kamp and Reyle, 1993;
Moldovan and Rus, 2001), and then apply automated reasoning tools to determine
inferential validity (e.g. Bos and Markert, 2006a,b; Tatu and Moldovan, 2005, 2007;
Wotzlaw and Coote, 2010). To check which logical relation type for the input prob-
lem holds, two kinds of automated reasoning tools are used: finite model builders (e.g.

9This acronym comes from “Bar Ilan University Textual Entailment Engine”. Available at: http:
//u.cs.biu.ac.il/~nlp/downloads/biutee/protected-biutee.html
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Mace410 and Paradox11) and first-order provers (e.g. Vampire,12 Bliksem,13 Otter14

and Prover915). Logical inference involves generating pairs of formulae 〈φT ,φH〉 for
any possible readings of T-H pairs, and then checking if (φT ∧BK) |= φH , where BK

is background knowledge, which contains common sense knowledge that is assumed
to be known by an ordinary person and meaning postulates (Carnap, 1952). In fact,
formulating a reasonably complete BK may be, in practice, a very difficult task. One
candidate solution to solve this problem, partially, is to obtain common sense knowl-
edge from some available lexical resources, such as WordNet or extended WordNet,16

which provides also logical meaning representations extracted from WordNet’s glosses
(e.g. Moldovan and Rus, 2001; Tatu et al., 2006). For instance, an axiom like the fol-
lowing can be added to BK, since ‘assassinate’ is a hyponym of ‘kill’ in WordNet (e.g.
Moldovan and Rus, 2001; Bos and Markert, 2006b; Tatu and Moldovan, 2007).

∀x∀y assassinate(x,y)⇒ kill(x,y) (2.2)

Also, frame-based resources such as FrameNet,17 or other similar resources, were
investigated in some systems (e.g. Tatu and Moldovan, 2005; Burchardt and Frank,
2006; Delmonte et al., 2007) to acquire additional semantic axioms. A number of sys-
tems for RTE use other verb-oriented resources, such as VerbNet 18 or VerbOcean,19

which is a broad-coverage semantic network of verbs. These resources provide seman-
tic and syntactic frames for a wide range of English verbs as well as other information
(e.g. Balahur et al., 2008; Wang et al., 2009). Other systems used the web as a re-
source for extracting their rules, NEs and BK (e.g. Bar-Haim et al., 2008; Mehdad
et al., 2009). Iftene and Balahur-Dobrescu (2007), for instance, used a semi-automatic
technique to build BK depending on the NEs for extracting particular types of infor-
mation (e.g. is-a relationships ‘Netherlands [is] Holland’) from online encyclopedias
(e.g. Wikipedia). Other systems also used additional resources, such as YAGO,20 as a

10http://www.cs.unm.edu/~mccune/mace4/
11http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cs.chalmers.se/~koen/paradox/
12http://www.vprover.org/
13http://www.ii.uni.wroc.pl/~nivelle/software/bliksem/
14http://www.cs.unm.edu/~mccune/otter/
15http://www.cs.unm.edu/~mccune/prover9/
16http://xwn.hlt.utdallas.edu/
17https://framenet.icsi.berkeley.edu/fndrupal/
18http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
19http://demo.patrickpantel.com/demos/verbocean/
20http://www.mpi-inf.mpg.de/yago-naga/yago/
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source of ontological knowledge.
A further approach is to use no particular BK, and measure the difference of the

minimum model size that satisfies both φT and φH , compared to the minimum model
size that satisfies φT on its own (Bos and Markert, 2006b). The greater difference
means the more BK is required for (φT ∧BK) |= φH to hold, which makes it more
difficult for speakers to accept that T entails H.

In fact, this kind of approach has high precision to handle negation, conditionals,
quantifiers, and so on. It can succeed in restricted domains, but it fails on open-domain
NLI evaluations, such as RTE. The difficulty comes from the fact that natural language
is massively complex, and the full and accurate translation of natural language expres-
sions into formal meaning representations presents countless thorny problems, since
natural language expressions are often ambiguous, especially out of context.

In this regard, some researchers (e.g. Garrette et al., 2011; Qiu et al., 2012) use
Markov logic networks (MLNs), which are a powerful framework combining first-
order logic and probabilistic reasoning, so a BK here is a set of first-order logic with
weights (Richardson and Domingos, 2006), for representing natural language seman-
tics. Then, a MLN inference engine (e.g. Alchemy21 or Tuffy22) is used to derive
answers from BK.

The second interesting recent development has been the application of natural log-

ics (Lakoff, 1970), which provide a conceptual and formal framework for analysing
natural inferential systems in human reasoning, without full semantic interpretation.
Natural logics use meaning representations that are essentially phrase-structured nat-
ural language sentences, and compute entailments as sequences of substitutions for
constituents (words or phrases) (e.g. Van Benthem, 1988; Sánchez, 1991; Van Ben-
them, 1995; Van Eijck, 2007; Nairn et al., 2006; Chambers et al., 2007; MacCartney
and Manning, 2008, 2009; MacCartney, 2009; Cabrio and Magnini, 2011).

The third possibility is exploiting ontology-based reasoning. Siblini and Kosseim
(2008) presented a system that automatically acquires formal semantic representations
(i.e. a description logic based ontology) from T and H, and then aligns the created
ontologies. By learning from the available RTE datasets, their system can then discover
whether T entails H or not using the information collected from its ontology alignment
phase.

21http://alchemy.cs.washington.edu/
22http://hazy.cs.wisc.edu/hazy/tuffy/
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In general, translation to logic form abstracts away from irrelevant surface differ-
ences. For instance, both the active and passive forms of a sentence may be mapped to
the same representations at semantic level (i.e. logical formula). This makes checking
their similarity clearer than simply working at the surface or syntax level.

2.3.3.5 Classification-based approaches

At a certain level, the entailment problem can be simply considered as a classifica-
tion problem. Machine learning-based TE recognition approaches underpin combin-
ing the similarity measures at different levels (lexical, syntactic or semantic) and pos-
sibly other features by using machine learning (Mitchell, 1997; Alpaydin, 2010; Flach,
2012; Wu, 2013). These approaches take advantage of the availability of training
datasets (through a training stage), and formulate TE algorithms as classifiers (through
a classification stage). Such approaches follow two stages. During the training stage,
each T-H pair is represented by a feature space (or vector) ( f1,.., fn) as input to a learn-
ing algorithm (typically SVMs) to induce a trained classifier. Once trained, this classi-
fier, during the classification stage, is used to check the entailment between T-H testing
pairs after converting them to feature vectors.

Most approaches employ a supervised machine learning algorithm (e.g. SVMs,
Naïve Bayes, decision trees, AdaBoost and others) (e.g. Bos and Markert, 2006a; Bur-
chardt et al., 2007; Hickl, 2008; Nielsen et al., 2009; Zanzotto et al., 2009; Gaonac
et al., 2010; Pham et al., 2011) to train on feature spaces of an annotated dataset in
order to classify an unseen dataset. They train a classifier on vectors corresponding
to training T-H pairs, which are manually classified as entailed or not entailed pairs.
Then, the classifier examines the features of unseen pairs in order to classify them as
entailed or not entailed pairs.

Converting each T-H pair from natural language into a feature space may need
some preprocessing actions (Zhang and Patrick, 2005) such as POS tagger, parser,
stemmer, NEs, dates/times converter to a consistent format (Hobbs, 1978; Lappin and
Leass, 1994; Mitkov, 2002; Mollá et al., 2003; Delmonte et al., 2007; Yang et al.,
2008; Pakray et al., 2010, 2011b), normalising of morphosyntactic variations (e.g. may
convert passive sentences to active ones) and other actions.

The major issue in using machine learning-based approaches is the type of feature
vector which allows for an effective learning of the entailment recognition rules. The
main concern therefore is finding a suitable feature space. There are various possible
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feature spaces: similarity feature space, entailment triggers and content feature (Zan-
zotto et al., 2009). In similarity feature space, the feature space contains the scores
of a variety of features, including features about lexical, syntactic, semantic and pos-
sibly other features. Most approaches use a feature space at lexical level such as the
percentage of common (or semantically related) words between T and H (e.g. Corley
and Mihalcea, 2005), Levenshtein distance (LD) (e.g. Neogi et al., 2012), the length of
the longest common subsequence between T and H (e.g. Newman et al., 2006; Hickl
et al., 2006) or other text distance measures. Another feature could model the polari-
ty/modality differences across T and H (e.g. Iftene and Balahur-Dobrescu, 2007; Tatu
and Moldovan, 2007). At the syntactic level, a feature could represent the percentage
of common dependencies between T and H (e.g. Haghighi et al., 2005; Pazienza et al.,
2005a) or the longest common syntactic subtree between T and H (e.g. Katrenko and
Adriaans, 2006). At the semantic level, the percentage of shared semantic relations of
T and H could be a suitable feature (Zanzotto et al., 2009). In (2.29), for instance, pos-
sible (feature,value) pair could be (WordsInCommon,11) or (LongestSubsequence,8).

(2.29) TE example (Zanzotto et al., 2009)

a. At the end of the year, all solid companies pay dividends.

b. At the end of the year, all solid insurance companies pay dividends.

Entailment triggers, on the other hand, are another possible feature space which
model complex relations between T and H. These features include (de Marneffe et al.,
2006; Inkpen et al., 2006; MacCartney et al., 2006): polarity features (presence/ab-
sence of negative polarity) as in (2.30), antonym features (presence/absence of antony-
mous words in T and H) as in (2.31), adjunct features (dropping/adding of syntactic
adjunct when moving from T to H) as in (2.32) and passive features (presence/absence
of a transformation from active to passive when moving from T to H or vice versa).

(2.30) Polarity features example

a. TE is very difficult.

b. TE is not hard.

(2.31) Antonym features example (Zanzotto et al., 2009)

a. Oil price is surging.

b. Oil prices are falling down.
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(2.32) Adjunct features example

a. John goes fishing.

b. John goes fishing every day.

Another possible feature space is that of content features, which model the content
of T and H rather than modeling the distance between them. Zanzotto et al. (2009)
use feature spaces that encode directly parts of T and H, or parts of their syntactic-
semantic representations (roughly speaking, the feature space contains all the parse
tree fragments of T and H) instead of vectors that contain mostly scores measuring the
similarity between T and H.

2.3.4 Applications of TE solutions

Many NLP problems can be formulated in terms of RTE even though full RTE systems
remain a distant goal. An effective facility for RTE could enable a wide range of
immediate applications. Here, we outline the main such applications.

Question answering. In open-domain question answering (QA), current systems re-
turn one or more ranked candidate answers from a large collection of documents to
a question posed in natural language. In many cases the correct answer may not be
the top one but it is nonetheless one of the returned candidates. Many approaches
therefore employ an RTE solution to re-rank these candidate answers in order to se-
lect a good one. The underlying idea is simple: evaluate whether the target question
can be inferred from candidate answers from the source document and ignore non-
entailing ones (e.g. Punyakanok et al., 2004; Harabagiu and Hickl, 2006; Schlaefer,
2007; Sacaleanu et al., 2008; Wang and Neumann, 2008; Celikyilmaz et al., 2009;
Negri and Kouylekov, 2009; Heilman and Smith, 2010; Ou and Zhu, 2011).

Automatic summarisation. A key challenge in multi-document summarisation,
which aims to construct summaries from multiple source documents describing the
same events, is the elimination of redundancy. An RTE system can be used to ensure
that the summary does not contain any sentences that entail each other (i.e. para-
phrases). Such systems can be also useful in ensuring correctness, i.e. the summary
must accurately reflect the content of the source document(s), by checking that the
summary is implied by the source document(s) (e.g. Lacatusu et al., 2006; Lloret et al.,
2008).
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Semantic search. Semantic search aims to improve the ability to retrieve documents
from a huge source collection, whether on the web or within some searchable datas-
pace, based on the semantic content of the query and the documents rather than simply
keyword-based search. Here, the ability of an effective RTE system to identify docu-
ments in which the given search queries can be inferred from their context would make
it possible to offer a form of semantic retrieval not available in existing keyword-based
searches. The application of RTE systems to retrieve such documents has been ex-
plored by Clinchant et al. (2006) and Kotb (2006).

Evaluation of MT systems. MT evaluation uses statistical measures to evaluate the
candidate translation of MT systems and human-generated reference translations. The
dominant metric, in this regard, is n-gram (e.g. it is used by BLEU), but this measure
operates over surface forms only without taking into account syntactic and semantic
reformulations (Callison-Burch et al., 2006). This limitation can be mitigated by an
effective RTE system. Such a system can assess approximate semantic equivalence
between a candidate translation of MT system and a reference translation: if the candi-
date and the reference entail each other, then it is probably a good translation, even if
the surface forms of the two translations are quite different (e.g. Padó et al., 2009a,b).



Chapter 3

Background: structural analysis

3.1 Introduction

As pointed out in the introductory chapter, we will investigate various techniques for
the task of RTE for Arabic, which raises many challenges for NLP, where we are faced
with an exceptional level of lexical and structural ambiguity. In this chapter, it is expe-
dient to start by shedding light on the ambiguities that occur in natural languages, with
particular emphasis on those related to our current study (Section 3.2). Then, we will
explain, in some detail, the sources of these ambiguities in Arabic (Section 3.3). At the
end of the chapter, we will discuss different NLP tools that deal with our preprocessing
stage, i.e. POS taggers and syntactic parsers (Section 3.4).

3.2 Ambiguity in natural languages

Processing natural language is a difficult task. The difficulty comes from various
sources. One of these sources is ambiguity. Words, phrases or sentences that have
double or multiple meanings are said to be ambiguous. The ambiguity in a natural lan-
guage arises in different ways, which are in general subdivided into three main kinds:
lexical, structural and scope ambiguities. All these kinds will be discussed in further
detail below.

3.2.1 Lexical ambiguity

Lexical (or word-level) ambiguity is extremely common in natural language. A string
of words (an utterance) may lead to double or multiple interpretations simply because

62
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a single word has two or more meanings. Some types of lexical ambiguities are dis-
cussed below.

• Homonyms vs. Polysemes: homonyms are words which have the same written or
spoken forms but which differ in meaning and origin, whereas words with the same
written or spoken forms and several but related meanings are called polysemes. For
instance, homonymy can be illustrated through the word ‘left’. It has two unrelated
meanings, i.e. “opposite of right” and “past tense of leave” as shown in (3.1). On
the other hand, polysemy can be illustrated through the word ‘lamb’. It has two
related meanings, i.e. “the young sheep (animal)” and “the meat of domestic sheep
(that animal)” as shown in (3.2).

(3.1) Homonyms

a. My left hand.

b. He left the class early.

(3.2) Polysemes

a. He ate roast lamb yesterday.

b. He bred two lambs on his farm.

• Homographs vs. Homophones: homographs are words that are spelled the same
but differ in meaning and possibly POS class. On the other hand, homophones are
words which have the same spoken form but which differ in meaning and written
form. For instance, the word ‘close’ is a homograph, since the same written form
represents two words with different pronunciations and meanings, i.e. as a verb it
means “move so that an opening or passage is obstructed; make shut”, whereas as
an adverb it means “near in time, place or relationship” as shown in (3.3). On the
other hand, the words ‘steel’ (i.e. noun, “an alloy of iron with small amounts of
carbon”) and ‘steal’ (i.e. verb, “to take (the property of another) without right or
permission”) are homophones, since they have the same spoken form /sti:l/ but
differ in written form and meaning, as shown in (3.4).

(3.3) Homographs (but not homophones)

a. Please, close the door.

b. Do not get too close to the fire.
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(3.4) Homophones (but not homographs)

a. It is made of steel.

b. I did not steal it.

Many words are both homographs and homonyms, e.g. ‘left’ and ‘lamb’ from (3.1)
and (3.2). Other words display combinations of homography and homophony, for
instance, the word ‘row’ has one written form, two spoken forms and three different
meanings, as in (3.5).

(3.5) Lexical ambiguity

a. Row a boat.

b. A row of houses.

c. We rowed about money last night.

d. The cats were making a row this morning.

The word ‘row’ in (3.5a) (verb, “propel with oars”) and (3.5b) (noun, “an arrange-
ment of persons or things in a line”) are homonyms, homographs and homophones,
whereas in (3.5c) (verb, “dispute; quarrel”) and (3.5d) (noun, “commotion; a noisy
disturbance”) are polysemes, homographs and homophones; but (3.5a) and (3.5c) are
not homophones, and likewise (3.5b) and (3.5d).

3.2.2 Structural ambiguity

This kind of ambiguity results from various aspects of the grammar of language. These
aspects often come from the classification of words or from the arrangement of words
and structures. Typically, in this kind of ambiguity two or more syntactic analyses
lead to several possible interpretations. In this regard, we will focus on four types of
structural ambiguity, as described below.

• Attachment ambiguity: this occurs when a particular constituent of a sentence,
such as a prepositional phrase (PP) or a relative clause (RC), could be attached to
more than one part of a sentence. For instance, a common pattern of attachment
ambiguity is a PP that may modify either the preceding NP or the preceding VP as
in (3.6).
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(3.6) PP-attachment

I saw the man in the park with a telescope.

The sentence (3.6) has five different interpretations based on the way the PPs ‘in

the park’ and ‘with the telescope’ are attached: I saw [the man [in the park [with a

telescope]]] “I saw the man. The man was in the park. The park had a telescope.”
or I saw [the man [in the park][with a telescope]] “I saw the man. The man was
in the park. The man had a telescope.” or I saw [the man [in the park]] [with a

telescope] “I saw the man. The man was in the park. I used a telescope to see him.”
or I saw [the man][in the park [with a telescope]] “I saw the man. I was in the park.
The park had a telescope.” or I saw [the man] [in the park] [with a telescope] “I
saw the man. I was in the park. I used a telescope to see him.”

• Word order problems arise when the regular structure of a sentence (e.g. verb-
subject-object (VSO) in Arabic and SVO in English) can be rewritten in different
ways without affecting the core meaning, such as OVS and other acceptable struc-
tures of the sentence. This can happen in English as in (3.7) but tends not to lead to
ambiguity, whereas in Arabic it is both common and problematic as in (3.8).

(3.7) English word order variation

a. An old man was sitting at the front of the bus. (S+V+PP)

b. At the front of the bus was sitting an old man. (PP+V+S)

(3.8) Arabic word order variation

a. ÕÎªÖÏ @
	
YJ
ÒÊ

�
JË @ ÐQ�

�g@ (VSO/VOS)

AHtrm Al+tlmyð Al+mς lm

respected the+pupil the+teacher

b. �ÕÎªÖÏ @

�	
YJ
ÒÊ

�
JË @ ÐQ�

�g@ (VSO)

AHtrm Al+tlmyðu Al+mς lma

respected the+pupil (nom.) the+teacher (acc.)
“The pupil respected the teacher”

c. �ÕÎªÖÏ @

�	
YJ
ÒÊ

�
JË @ ÐQ�

�g@ (VOS)

AHtrm Al+tlmyða Al+mς lmu

respected the+pupil (acc.) the+teacher (nom.)
“The teacher respected the pupil”
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In (3.8a), there are two possible meanings for the sentence depending on which
item is the subject and which is the object since it is written without case markers
(see Section 3.3.1.1 for more details). So, the sentence could mean “The pupil
respected the teacher” where the first noun would be in nominative (nom.) case
�	
YJ
ÒÊ

�
JË @ Al+ tlmyðu and the second noun in accusative (acc.) case �ÕÎªÖÏ @ Al+mς lma,

as in (3.8b), or it could mean “The teacher respected the pupil” where the first noun
would be in accusative case

�	
YJ
ÒÊ

�
JË @ Al+tlmyða and the second noun in nominative

case �ÕÎªÖÏ @ Al+mς lmu, as in (3.8c). Both orders are possible, and because the case
markers are unwritten, it is hard to tell which interpretation is intended.

• POS tagging problems occur when a single word belongs to various POS classes,
such as noun, verb, adjective, etc. For example, (3.9) shows an English example
with many POS possibilities, which leads to global ambiguity.

(3.9) POS tagging

Time flies like an arrow

[Time]V,N [ f lies]V,N [like]V,PREP[an]DET [arrow]N

As one can see in (3.9), there are three possible verbs for this sentence (i.e. ‘time’,
‘flies’ and ‘like’). This leads to different syntactic trees as shown in Figure 3.1.

time
V

flies
N

like
PREP

arrow
N

an
DET

time
V

flies
N

like
PREP

arrow
N

an
DET

flies
V

time
N

like
PREP

arrow
N

an
DET

like
V

flies
N

time
N

arrow
N

an
DET

Figure 3.1: Possible syntactic trees for sentence in (3.9).

This situation is significantly worse for Arabic, where as noted before, a single
form is likely to have many possible tags.
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• Pronoun-dropping (pro-drop or zero pronouns) problems mean that pronouns can
be deleted when considered redundant or unnecessary in a sentence. Arabic, like
other languages (e.g. Japanese, Spanish and Italian), is considered a pro-drop lan-
guage, whereas English is usually not. However, in fact, the English language does
allow both subject and object pronouns to be dropped as shown in (3.10).

(3.10) English pro-drop

φ 1 Keep φ out of the reach of children.

“(You) keep (it) out of the reach of children.”

However, the relatively fixed order of English and the lack of variation in subcate-
gorisation frames again mean that it does not tend to lead to ambiguity. In (3.11),
however, pro-drop gives rise to two distinct structural analyses.

(3.11) Arabic pro-drop

B@



ñ� I. ËA¢Ë@ φ È


A�

sÂl Al+TAlb sŵAlA

asked the+student question
“(He) asked the student a question” or “The student asked a question”

In (3.11), there are two different meanings for the Arabic sentence: “(He) asked
the student a question” (which has a possibility for a pro-drop subject following the
verb) or “The student asked a question” (where the verb can be both transitive or
ditransitive). The difference between Arabic and English is that pro-drop in Arabic
can lead to structural ambiguity because the reader must decide whether there is a
pro-drop or not, whereas in English it mainly leads to referential ambiguity.

3.2.3 Scope ambiguity

One common type of ambiguity is scoping ambiguity that arises at a logico-semantic
level. This ambiguity concerns quantifier scope ambiguity, and it can arise when sen-
tences include more than one noun phrase that has a quantifier expression such as
‘some’, ‘every’, ‘a few’ or others in specific positions. For instance, the sentences in
(3.12) and (3.13) are semantically ambiguous (i.e. each sentence has two different
meanings), but syntactically unambiguous.

1The symbol φ will always show the position of the deleted pronoun.
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(3.12) English quantifier scope ambiguity

Three students met with every professor.
“Three particular students each met all of the professors” or “Each profes-
sor was visited by three students, but possibly different students meeting with
each”

(3.13) Arabic quantifier scope ambiguity
�
ék. Ag. X ÈAg. QË @ É¿ É¿



@

Âkl kl Al+rjAl djAjh̄

ate all the+men a-chicken
“All the men ate the same chicken” or “Each man from those men ate a chicken,
but possibly not the same chicken”

3.3 Sources of ambiguities in Arabic

As we have just seen, languages display the same kinds of ambiguity. There are, how-
ever, various properties of Arabic, and particularly of written Arabic, which mean that
Arabic contains many more instances of ambiguity. These properties will be discussed
in some detail below.

3.3.1 Writing system and structure of words

3.3.1.1 Lack of diacritical marks

Arabic is written with optional diacritics2 (short vowels and a range of other phonolog-
ical effects), which are usually absent, often leading to multiple ambiguities (Nelken
and Shieber, 2005). This is particularly problematic because the diacritics are often
the only difference between different words (especially derived forms) and between

2Diacritisation in Arabic is done by adding special symbols called �
HA¿Qk HrkAt “diacritical

marks” to help in spoken language. Some of these special symbols are put above normal Arabic char-
acters, such as the short vowels known as Damma ( �

éÖÞ
	
�, �� ,u, /u/), Fatha ( �

éj
�
J
	
¯, �� ,a, /a/) and a zero

vowel known as Sukun ( 	
àñº�, �P ,.), while others are put under them, such as the short vowel known as

Kasra ( �
èQå�», �� ,i, /i/). In addition, nunation diacritics, i.e. Dammatan (Õæ

	
� 	áK
ñ

	
J
�
K, �� ,ũ, /un/), Fathatan

(i
�
J
	
¯ 	áK
ñ

	
J
�
K, �� ,ã, /an/) and Kasratan (Qå�» 	áK
ñ

	
J
�
K, �

�
,ĩ, /in/), represent an indefinite morpheme consist-

ing of a short vowel followed by the phoneme /n/. Finally, the lengthening diacritic Shadda ( �
èY

�
�, �P,~)

represents gemination of the previous consonant (Alabbas et al., 2012).
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inflected forms of the same word. This, consequently, makes morphological analysis
of the language very challenging. This is because a certain lemma (or lexeme) in Ara-
bic can be interpreted in various ways. Hence, a single word can have various senses,
where determining the sense is based on the context in which the word is used. Further-
more, a noun in Arabic can be diacritised in three different ways for the nominative,
accusative and genitive cases, which can be even more ambiguous at the structural or
grammatical level. The following examples explain the effect of diacritisation on the
meaning of the word.

(3.14) Different pronunciations distinguish between a noun and verb

I.
�
J» ktb

verb: �
I.

��
J
�
» kataba “wrote”

noun: I.

��
J
�
» kutub “books”

(3.15) Different pronunciations distinguish between active and passive

i
�
J
	
¯ ftH

Active: �
i

��
J
�	
¯ fataHa “opened”

Passive: �
i

�
J�

�	
¯ futiHa “was opened”

(3.16) Different pronunciations distinguish between imperative and declarative

©Ò
�
J�@ Astmς

Imperative: ©Ò
�

��
J�@ Astamiς “listen!”

Declarative: �
©

�
Ò

��
J�@ Astamaςa “listened”

(3.17) Different pronunciations distinguish between a variety of gender and person
differences

�
IÖÞ�P rsmt
��

I
�
ÖÞ

�
� �P rasam.tu Drew (1st.sg.) “I drew”

��
I

�
ÖÞ

�
� �P rasam.ta Drew (2nd.masc.sg.) “You drew”

�
I
�

�
ÖÞ

�
� �P rasam.ti Drew (2nd.fem.sg.) “You drew”

��
I

�
ÖÞ

�
� �P rasamat. Drew (3rd.fem.sg.) “She drew”
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(3.18) Duplication of the middle letter in some verbs to make the verb transitive (causative)
(Attia, 2012)

É�ð wSl
�

É
�

�
�
ð waSala “arrived”

�
É

��
�

�
ð waS~ala “connect”

Figure 3.2 shows an example for an Arabic word without diacritics ÕÎ« ς lm, which
gives seven different readings after adding the diacritic marks.

Arabic diacritics word POS Gloss
�ÕÎ«

� ς ilmũ noun knowledge
�Õ
�
Î

�
« ςalamũ noun flag

�ÕÎ�

�
« ςalima verb (intransitive, active) knew

�ÕÎ�

�
« ςulima verb (intransitive, passive) is known

�Õ

��
Î

�
« ςal~ama verb (transitive, active, indicative) taught

Õ

��
Î

�
« ςal~im verb (transitive, active, imperative) teach!

�Õ

��
Î

�
« ςul~ima verb (transitive, passive) is taught

Figure 3.2: Ambiguity caused by the lack of diacritics.

In (3.19), for instance, the sentence (3.19a), �
éªÒm.

Ì'@ ÐñK
 ZAg. jA’ ywm Al+jmς h̄, has
two different meanings: “(He) came on Friday” if the word ÐñK
 ywm is in accusative
case ( �

ÐñK
 ywma) as in (3.19b), whereas it means “Friday came” if the word ÐñK
 ywm

is in nominative case ( �
ÐñK
 ywmu) as in (3.19c).

(3.19) Lack of diacritical marks

a. �
éªÒm.

Ì'@ ÐñK
 ZAg.

jA’ ywm Al+jmς h̄

b. �
éªÒm.

Ì'@
�
ÐñK
 ZAg. ( �

ÐñK
 ywma in accusative case)

jA’ ywma Al+jmς h̄

came Friday
“(He) came on Friday”
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c. �
éªÒm.

Ì'@
�
ÐñK
 ZAg. ( �

ÐñK
 ywmu in nominative case)

jA’ ywmu Al+jmς h̄

came Friday
“Friday came”

3.3.1.2 Cliticisation

Arabic is a clitic language. Clitics are morphemes that have the syntactic characteris-
tics of a word but are bound to other words (Attia, 2012). Arabic contains numerous
clitic items (prepositions, pronouns and conjunctions), so that it is often difficult to
determine just what items are present in the first place. For example, the word úÍ@ð

wAlý in (3.20) can be analysed into five different ways (Habash, 2010). Each of these
cases has a different diacritisation. So, a combination of three Arabic words can show
200+ alternatives of distinct meaning.

(3.20) Numerous clitic items

úÍ@ð wAlý

ú


Í@ð wAly “ruler”

ø



+úÍ@+ð w+Alý+y “and to me”

ú


Í


@+ð w+Âly “and I follow”

ø



+È
�
@+ð w+Āl+y “and my clan”

ú


Í
�
@+ð w+Āly “and automatic”

3.3.2 Syntactic freedom and zero items

3.3.2.1 Word order variation

Arabic is highly syntactically flexible (Daimi, 2001). It has a comparatively free word
order, where sentence components can be exchanged without affecting the core mean-
ing. This results in structural ambiguity, with each morphological analysis having more
than a single meaning. So, besides the regular sentence of VSO, Arabic allows other
potential surface forms such as VOS, SVO and OVS constructions. The potential of
allowing variations on the canonical order leads to a large amount of ambiguity. An
Arabic word order example is shown in (3.21).
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(3.21) Word order (distinguish between subject and object)

a. �Ê�Ë@ É
�
J
�
¯ ù



£Qå

�
�Ë @ (SVO/OVS)

Al+šrTy qtl Al+lS

the+policeman killed the+thief

b. �
�Ê�Ë @ É

�
J
�
¯ �ù



£Qå

�
�Ë @ (SVO)

Al+šrTyu qtl Al+lSa

the+policeman (nom.) killed the+thief (acc.)
“The policeman killed the thief”

c. �
�Ê�Ë @ É

�
J
�
¯ �ù



£Qå

�
�Ë @ (OVS)

Al+šrTya qtl Al+lSu

the+policeman (acc.) killed the+thief (nom.)
“The thief killed the policeman”

In (3.21a), there are two possible meanings for the sentence depending on the distinc-
tion between nominative subject and accusative object, since the diacritics are missing.
So, the sentence means “The policeman killed the thief” where the first noun ù



£Qå

�
�Ë @

Al+šrTy “the policeman” is in the nominative case �ù


£Qå

�
�Ë @ Al+šrTyu and the second

noun �Ê�Ë@ Al+lS “the thief” is in the accusative case �
�Ê�Ë @ Al+lSa, as in (3.21b).

While it means “The thief killed the policeman” where the first noun ù


£Qå

�
�Ë @ Al+šrTy

“the policeman” is in the accusative case �ù


£Qå

�
�Ë @ Al+šrTya and the second noun �Ê�Ë@

Al+lS “the thief” is in the nominative case �
�Ê�Ë @ Al+lSu, as in (3.21c).

3.3.2.2 Pro-dropping

Arabic is a pro-drop language (Ryding, 2005). According to the pro-drop theory, “a

null class (pro) is permitted in a finite clause subject place if the agreement features on

the verb are rich enough to enable its content to be recovered” (Baptista, 1995). The
pro-drop, which is referred to as Q�

�
�
J�ÖÏ @ Q�
Ò

	
�Ë@ Al+Dmyr Al+msttr “tacit pronoun”,

can lead to structural ambiguity by leaving any syntactic parser with the challenge to
determine if there is a dropped pronoun or not in the subject position, which is made
worse by the fact that a large number of Arabic verbs can have both transitive and
intransitive forms, or ditransitive and transitive forms, or indeed all three. To make
matters even worse, it is generally impossible to tell the difference between active and
passive forms by inspecting the surface form. In case that just one NP follows one of
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these verbs, the ambiguity appears. This contrasts with English, where the canonical
order is SVO, so that losing the subject does not cause confusion about the object. For
example, the Arabic sentence in (3.22) has two different interpretations.

(3.22) Arabic pro-drop (Attia, 2012)
�
ék. A

�
g. YË@

�
I

�
Ê
�
¿

�

@

Âakalat Al+djAjh̄

ate(fem.) the+chicken
“The chicken ate” or “(She) ate the chicken”

The ambiguity in (3.22) arises from two facts: (i) the verb
�

É
�
¿

�

@ Âakala “to

eat” can be both transitive or intransitive (in this case the meaning is �
ék. A

�
g. YË@

�
I

�
Ê
�
¿

�

@

Âakalat Al+djAjh̄ “The chicken ate”); and (ii) there is a potential pro-drop subject
ù


ë hy “she”, which is understood from the feminine mark on the verb (in this case

the meaning is �
ék. Ag. YË@ (ù



ë)

�
IÊ¿



@ Âakalat (hy) Al+djAjh̄ “(She) ate the chicken”).

3.3.2.3 Zero copula

A copula is a verb that links a sentence predicate with the subject. According to Arab
grammarians, there are two types of Arabic sentence: a nominal sentence that starts
with a noun and a verbal sentence that starts with a verb. There is a special type of a
nominal sentence called an equational sentence, where the sentence does not contain
a verb. Basically, the equational sentence consists of two main parts:



@Y

�
JJ. ÖÏ @ Al+mbtdÂ

“the subject”, which is NP, and Q�.
	
mÌ'@ Al+xbr “the predicate”, which can be an NP, an

adjective phrase (ADJP), a complement phrase (CP), an adverb phrase (ADVP) or a
PP. The equational sentence usually starts with a definite noun (the subject) followed
by the predicate. Some Arabic equational sentences are shown in (3.23).

(3.23) Arabic equational sentences

a. I. �
J.£ Ég. QË@ (NP predicate)

Al+rjl Tbyb

the+man a-doctor
“The man is a doctor”
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b. I. J
£ ÕÎªÖÏ @ (ADJ predicate)

Al+mς lm Tyb

the+teacher nice
“The teacher is nice”

c. 	
­�Ë@ ú




	
¯ I. ËA¢Ë@ (PP predicate)

Al+TAlb fy Al+Sf

the+student in the+class
“The student is in the class”

The standard subject-predicate order for equational sentences is reversed under
certain constraints, for instance if the subject is indefinite, as in (3.24).

(3.24) Indefinite subject follows a predicate phrase

I. ËA£
	

­�Ë@ ú



	
¯

fy Al+Sf TAlb

in the+class a-student
“In the class there is a student”

These appear to be examples where the copula is omitted. This only happens in
present tense affirmative sentences–if a sentence is in the past, future or present tense
negative the verbs 	

àA¿ kAn “to be” and ��
Ë lys “be not” are used, where they make
the first noun (the subject) in the nominative case and the second noun (the predicate)
in the accusative case.

3.3.2.4 Construct phrases

Nouns can be used as adjectives, or as possessive determiners (in so-called ‘construct
phrases’ or ‘genitive construct’ or ‘annexation structure’), with typically little inflec-
tional morphology to mark such uses (Alabbas and Ramsay, 2011b). According to
Ryding (2005), “in Arabic, two nouns may be linked together in a relationship where

the second noun determines the first by identifying, limiting, or defining it, and thus

the two nouns function as one phrase or syntactic unit.” Moreover, Arabic nouns can
be linked together without any overt marker, whereas two English nouns are joined
together by different markers, such as the suffix “-’s” on possessing noun or a posses-
sive phrase “of”. Note that this is largely a problem of written Arabic, since in the
spoken language the case markers are generally pronounced, thus making the role of
each noun clear. Arab grammarians refer to the construct phrase as Idafa, �

é
	
¯A

	
�@



ǍDAfh̄
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“annexation”. In the construct phrase, the first noun, i.e.
	

¬A
	

�Ó mDAf “the added” (in
so-called ‘construct state’),3 must be indefinite (which can be in any case: nominative,
genitive or accusative) and it does not take the nunation (Schulz et al., 2000). It is
further worth noting that the initial noun in such phrases will carry the definite form of
the case marker even though it does not have a definite article. The second noun, i.e.
éJ
Ë @

	
¬A

	
�Ó mDAf Alyh “annexing noun or amplifying noun”, may be either definite

or indefinite (which is always in genitive case). Some construct phrases are shown in
(3.25), whereas (3.26) shows an example of a noun as an adjective.

(3.25) Construct phrases (Idafa)

a. È
�
YªË@ �QK


	Pð

wzyru Al+ςdli

minister the+justice
“The minister of justice”

b. h

�

C
	
¯ ñK.



@

Âbw flAHĩ

father Falah
“Falah’s father”

c. �� �



KQË @

�
Èñ�ð

wSwlu Al+rŷysi

arrival the+president
“The arrival of the president”

(3.26) Noun as adjective

Y
�
K


��
éJ. J


�
®k

Hqybh̄u ydĩ

a-bag hand
“A handbag”

Also, an NP can be the second part of a different construct phrase. This can be
extended recursively creating an Idafa chain, where all the words except for the first

3In fact, there are three grammatical states of nouns in Arabic, the indefinite state (e.g. “a queen”),
the definite state (e.g. “the queen”) and construct state, which indicates that the noun is the head of a
construct phrase, (e.g. “the queen of ...”).
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word must be genitive and all the words except for the last word must be in construct
state. An example of an Idafa chain is illustrated in (3.27).

(3.27) Idafa chain

a. �
é�»Qå

�
�Ë @

�
è�P@X@



�� Êm.

× �� �



KP P

�
Ag.

��
Ñ«

�	áK. @

(Habash, 2010)

Ǎbnu ςm~i jAri rŷysi mjlsi ǍdArh̄i Al+šrkh̄i

son uncle neighbour chief committee management the+company
“the cousin of the CEO’s neighbour”

b. Y� ÊJ. Ë @
�
é�Óñºk

�
é��AJ
�

��
ém�� (Schulz et al., 2000)

SHh̄u syAsh̄i Hkwmth̄i Al+bldi

appropriateness policy government the+country
“The appropriateness of the policy of the government of the country”

3.3.2.5 Coordination

Coordination in Arabic is either syndetic (i.e. where terms are linked by an explicit
conjunction) or asyndetic (i.e. where terms are linked without an explicit conjunc-
tion). In case of syndetic conjunction, which is preferred and very common, some
linguistic units are omitted when one or more of the conjunctive particles namely, +ð

w+ “and”, +
	

¬ f+ “and” and Õç
�
' θuma “then”, are used to connect words, phrases,

clauses and simple sentences to produce compound or complex sentences. Arabic syn-
detic coordination example is illustrated in (3.28).

(3.28) Syndetic coordination

+ ð w+ “and”

�Ó


@ Õç'
QÓð YK


	P h. ð 	Q
�
K

tzwj zyd w+mrym Âms

married Zaid and+Maryam yesterday
“Zaid and Maryam married yesterday”
Who got married yesterday?
“Zaid got married to Maryam” or “Zaid got married and so did Maryam”

The second meaning, i.e. “Zaid got married and so did Maryam”, for sentence in (3.28)
exemplifies the verbal ellipsis, which refers to syntactically null realisation of a verb
of the subsequent clause, of a structurally parallel construction whose meaning can be
recovered from the previous clause.
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3.3.2.6 Referential ambiguity

As mentioned before, a pro-drop in English mainly causes referential ambiguity. In
contrast, in Arabic this type of ambiguity arises when some of the linguistic units are
omitted, and replaced by a referring expression to denote these units. Some Arabic
referential ambiguity examples are shown in (3.29).

(3.29) Referential ambiguity

a. Description
�
é

	
j�

�
�Ó Aî

	
EB



ú



�
GPAJ
� úÎ« ½

�
J�. J


�
®k ©

	
�

�
� B

lA tDς Hqybtk ς lý syArty lǍnhA mtsxh̄

do-not put your-bag on my-car because-it dirty
“Do not put your bag on my car because it is dirty”
What is dirty?
“Your bag is dirty” or “My car is dirty”

b. The annexation
éK. A

�
J» AJ
Ê« YÒm× ù¢«



@

ÂςTý mHmd ς lyA ktAbh

gave Muhammad Ali his-book
“Muhammad gave Ali his book”
Whose is the book?
“Muhammad” or “Ali”

c. Relative clause
YÒm×

�
HQîE.



@ ú




�
æË @

�
éÊJ
Òm.

Ì'@
�
èPAJ
�Ë@

�
H@

	
X

�
ékñÊË@ è

	
Yë

hðh Al+lwHh̄ ðAt Al+syArh̄ Al+jmylh̄ Alty Âbhrt mHmd
this the+painting of the+car the+beautiful which dazzled Muhammad

“This is the painting of the beautiful car, which dazzled Muhammad”
What dazzled Muhammad?
“The painting” or “The beautiful car”

In Section 3.3, we have seen several sources of ambiguity in Arabic. Each of
these in isolation is problematic, but when they are multiplied together their effect be-
comes significantly worse. Appendix B shows how even a very short Arabic sentence
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such as I.
�
J» �P@YË@ I.

�
J» ktb Al+dArs ktb can produce a large number of interpreta-

tions (i.e. 20 interpretations according to the PARASITE system (Ramsay and Man-
sour, 2004), such as

�
A
�
J.

��
J
�
»

�
�P

�
@
�
YË@

�
I.

��
J
�
» kataba Al+dArsu kutubAã “The student wrote

books”,
�
A
�
J.

��
J
�
»

�
�P

�
@
�
YË@ I.�

��
J
�
» kutub Al+dAirsu kutubAã “The books of the student (are)

books”, etc.). The situation is much worse as we come to look at longer examples. In
regular usage, the average sentence length of Arabic is 20 to 30 words and sentences
with 100+ words are not uncommon, since written Arabic rarely contains punctuation
marks even though the Arabic language has them. This makes Arabic NLP challenging
in general and specifically the task of determining the relationship between two sen-
tences, which is the aim of the current work, significantly more difficult than it already
is for English.

3.4 Arabic processing tools

As mentioned before, the Arabic language is more ambiguous than most other lan-
guages (e.g. English), which makes Arabic NLP a challenge. Therefore, many tools
are produced in the literature for processing different subtasks of Arabic language
automatically (e.g. tokenisation, stemming, morphological analysing, POS tagging,
parsing, etc.) in order to use them in solving larger tasks, such as machine translation
(MT), question answering (QA) and others. In the current work, we will focus only on
two subtasks: POS tagging, which sometimes internally uses other subtasks, such as
tokenisation and morphological analysis, and parsing. These two subtasks are consid-
ered as preprocessing stages in our main system for Arabic textual entailment (ArbTE)
system.

3.4.1 POS tagging

POS tagging is the process of assigning a correct POS tag (e.g. noun, verb or adverb)
to each word of a sentence. This is a non-trivial task. It is not just having a set of words
with their POS tags (e.g. some words are ambiguous, having more than one POS tag at
the same time). Arabic is known for its morphological richness and syntactic complex-
ity (Attia, 2012). It is an extremely inflectional language, where inflection is a process
that adds affixes to a word to produce several forms of the same word. For instance,
the active inflection of the regular sound verb4 verb �

I.

��
J
�
» kataba “he wrote” (form I:

4Sound verbs do not have a ð w and ø



y as one of the three root letters.
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�
É

�
ª

�	
¯ f aςala -

�
É

�
ª

�	
®

�
K
 ya f .ςulu) has 34 forms, which are summarised in Table 3.1, and

another 28 forms for passive. It is also a derivational language, where derivation is a
process of forming new words from the current words by changing the pattern and the
meaning of derivative words as shown in Table 3.2.

Past Present Imperative

3rd

masc.

sg.
�

I.

��
J
�
» kataba �

I.

��
J
�
º

�
K
 yak.tubu —

“he wrote” “he writes”

du. AJ.

��
J
�
» katabA 	

à
�

AJ.

��
J
�
º

�
K
 yak.tubAni —

“they wrote” “they write”

pl. @ñ
�
J.

��
J
�
» katabuwA

�	
àñJ.

��
J
�
º

�
K
 yak.tubwna —

“they wrote” “they write”

fem.

sg.
��

I
�
�.

��
J
�
» katabat. �

I.

��
J
�
º

��
K tak.tubu —

“she wrote” “she writes”

du. A
�
J
�
�.

��
J
�
» katabatA 	

à
�

AJ.

��
J
�
º

��
K tak.tubAni —

“they wrote” “they write”

pl.
�	á
�
�.

��
J
�
» katab.na

�	á
�
�.

��
J
�
º

�
K
 yak.tub.na —

“they wrote” “they write”

2nd

masc.

sg.
��

I
�
�.

��
J
�
» katab.ta �

I.

��
J
�
º

��
K tak.tubu �

I.

��
J
�
»

�
@ Auk.tub.

“you wrote” “you write” “write!”

du. AÒ
��
J
�
�.

��
J
�
» katab.tumA 	

à
�

AJ.

��
J
�
º

��
K tak.tubAni AJ.

��
J
�
»

�
@ Auk.tubA

“you wrote” “you write” “write!”

pl.
�Õ

��
æ

�
J.

��
J
�
» katab.tum.

�	
àñ

�
J.

��
J
�
º

��
K tak.tubuwna @ñ

�
J.

��
J
�
»

�
@ Auk.tubuwA

“you wrote” “you write” “write!”

fem.

sg.
�

I
�

�
�.

��
J
�
» katab.ti

�	á�
J.�

��
J
�
º

��
K tak.tubiyna ú



æ
.�

��
J
�
»

�
@ Auk.tubiy

“you wrote” “you write” “write!”

du. AÒ
��
J
�
�.

��
J
�
» katab.tumA 	

à
�

A
�
J.

��
J
�
º

��
K tak.tubaAni A

�
J.

��
J
�
»

�
@ Auk.tubaA

“you wrote” “you write” “write!”

pl.

��	á
��
�
�
J.

��
J
�
» katab.tun~a

�	á
�
�.

��
J
�
º

��
K tak.tub.na

�	á
�
�.

��
J
�
»

�
@ Auk.tub.na

“you wrote” “you write” “write!”

1st

masc. sg.
��

I
�
�.

��
J
�
» katab.tu �

I.

��
J
�
»

�

@ Âak.tubu —

& “I wrote” “I write”
fem. du.& A

�	
J
�
�.

��
J
�
» katab.naA �

I.

��
J
�
º

�	
K nak.tubu —

pl. “we wrote” “we write”

Table 3.1: The active inflection forms for the regular sound verb �
I.

��
J
�
» kataba “he

wrote” (form I:
�

É
�
ª

�	
¯ f aςala -

�
É

�
ª

�	
®

�
K
 ya f .ςulu).
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Word Morphological pattern Derivative word

I.
�
J» ktb “to write” Èñª

	
®Ó mfςwl H. ñ

�
JºÓ mktwb “written”

É«A
	
¯ fAς l I.

�
KA¿ kAtb “writer”

Table 3.2: The derivative words for word I.
�
J» ktb “to write”.

3.4.1.1 POS tagsets

The tags should be chosen, in principle, from a well-defined and comprehensive tagset
(or list of POS). Traditionally, Arab grammarians classify the words into three cate-
gories: Õæ�



@ Âsm “noun”, Éª

	
¯ fς l “verb” and

	
¬Qk Hrf “particle”. This classifica-

tion is very coarse and it is not often used computationally, because it does not provide
enough information to support further analysis. Arabic POS tagsets can be very big. A
huge number of (partially orthogonal) features (such as POS, gender, number, clitics,
voice, etc.) are determined in order to carry out morphological analysis of a specific
word in a specific context. In Arabic, for instance, this can produce around 333,000
theoretically potential combinations of morphemes. In contrast, English tagsets have
around 50 tags that cover all morphological variations (Habash, 2010). In fact, there
is no optimal POS tagset, because each application needs a different tagset (Habash,
2010). We present here, briefly, three Arabic tagsets that we deal with in the current
work.

3.4.1.1.1 Buckwalter tagset
The Buckwalter tagset is an Arabic tagset developed by Tim Buckwalter. It is

a very rich tagset that can be used for tokenised and untokenised text. The to-
kenised tags are used in the Penn Arabic treebank (PATB) (Maamouri and Bies, 2004),
whereas untokenised tags are what is produced by the Buckwalter Arabic morpho-
logical analyser (BAMA) (Buckwalter, 2004). The tokenised variants are derived
from untokenised tags. This tagset uses approximately 70 basic subtag symbols
(e.g. NOUN ‘noun’, NSUFF ‘nominal suffix’, IND ‘indefinite’ and NOM ‘nominative’)
(Habash, 2010). These subtags are combined to form over 170 morpheme tags, such
as NSUFF_FEM_SG ‘feminine singular nominal suffix’ and CASE_IND_NOM ‘nominative
indefinite’. For instance, the Buckwalter tag for the Arabic word �

éÊJ
�k HSylh̄ “out-
come” is NOUN+NSUFF_FEM_SG+CASE_IND_NOM. A full description of this tagset is pre-
sented by Buckwalter (2004).
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3.4.1.1.2 Reduced tagset
Reduced tagset (RTS), also known as the ‘Bies’ tagset, was developed by Ann

Bies and Dan Bikel. It includes 24 tags derived from the POS tagset of the
Penn English treebank. It is a coarse tagset since it ignores a lot of distinc-
tions in Arabic. For instance, it uses JJ tag for all adjectives regardless of
their inflections (e.g. the following tags ADJ, DET+ADJ, ADJ+CASE_INDEF_GEN and
DET+ADJ+NSUFF_FEM_SG+CASE_DEF_GEN are grouped into JJ). The Arabic word
�
éÊJ
�k HSylh̄ “outcome” is tagged using this tagset as NN ‘noun’. A full descrip-
tion of this tagset is presented by Habash (2010, p. 82).

3.4.1.1.3 Extended reduced tagset
The extended reduced tagset (ERTS) is a superset of RTS tagset. ERTS adds addi-

tional morphological features to those contained in RTS, such as gender, number and
definiteness. For example, it uses M for ‘masculine’, F for ‘feminine’, Du for ‘dual’
and S for ‘plural’, while the absence of any number markers is used for ‘singular’.
The Arabic word �

éÊJ
�k HSylh̄ “outcome” is tagged using this tagset as NNF. A full
description of this tagset is presented by Diab (2007).

3.4.1.2 POS taggers

In this section, we will discuss in some detail two well-known Arabic toolkits, AMIRA
(Diab, 2009) and MADA (Habash et al., 2009b), which achieve state-of-the-art accu-
racies in Arabic tagging, and a home-grown Arabic MXL tagger (Ramsay and Sabtan,
2009), which obtains results that are comparable with these two. In addition, we will
discuss transformation-based learning (TBL) tagger, or Brill’s tagger (Brill, 1995), for
retagging the results of each previous tagger to patch the mistakes. We will use the
Arabic sentence in (3.30) to show the actual results of each tagger.

(3.30) Arabic sentence

. QÖ
�
ß



ñÖÏ @ ú




	
¯

	á�

�
JkAK.

�
é�Ô

	
g ¼PA

�
�

šArk xmsh̄ bAHθyn fy Al+mŵtmr .

participated five researchers in the+conference .
“Five researchers participated in the conference.”
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3.4.1.2.1 AMIRA
The AMIRA toolkit is a set of tools built as a successor to the ASVMTools (Diab

et al., 2004). It includes three main modules that are briefly reviewed below (Diab,
2009).

• AMIRA-TOK
The first module is a clitic tokeniser (AMIRA-TOK). Throughout its processes,
AMIRA does not trust in morphological analysis or generation tools. AMIRA-TOK
therefore directly learns the generalisations of clitic tokenisation from the PATB’s
clitic segmentation without relying on rules explicitly. AMIRA-TOK segments
off the following set of clitics: separating conjunctions, affixival prepositions and
pronouns, future mark, proclitic and definite article. AMIRA-TOK has a high F-
score of 0.992.

• AMIRA-POS

AMIIRA-POS tagging module produces the following tagsets: RTS, ERTS or
ERTS_PER (i.e. ERTS with person information) POS tags. POS tagging here
is done using the SVM-based classification approach applying character n-gram as
features in the sequence models. AMIRA-POS tagger is reported to achieve over
96% accuracy, for ERTS it is 96.13% and RTS 96.15%.

• AMIRA-BPC
This module of AMIRA is a base phrase chunker (BPC), which is the first step
towards shallow syntactic parsing. In this module, a sequence of adjacent words are
grouped together to form a syntactic phrase, such as NPs and VPs. For instance, an
English example of BPC would be [I]NP [would eat]V P [red luscious apples]NP [on

Sundays]PP. The longest possible base phrases are produced by the BPC with not
much internal recursion, which is done as a deterministic post process. The BPC
internally uses ERTS POS tagset even if a user requested the RTS as POS tagset by
using an internal mapping process from RTS to ERTS POS tagset.

AMIRA v2.1 provides three options for running the system. These options are:5

tok-only (run the AMIRA-TOK only), tok+pos (run the AMIRA-TOK and then the
AMIRA-POS tagger) and all (run all modules in the following sequence: the AMIRA-
TOK, the AMIRA-POS and then the AMIRA-BPC). Figure 3.3 shows the output of
AMIRA for the Arabic sentence in (3.30) using ERTS_PER tagset.

5See AMIRA configuration file in AMIRA-2.1/configs/default.amiraconfig.
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Input sentence: $Ark xmsp bAHvyn fy Alm&tmr.
AMIRA-TOK $Ark xmsp bAHvyn fy Alm&tmr .
AMIRA-POS $Ark@@@VBD_MS3 xmsp@@@NNCD_FS bAHvyn@@@NNS_MP fy@@@IN

Alm&tmr@@@DET_NN .@@@PUNC
AMIRA-BPC [VP $Ark/VBD_MS3] [NP xmsp/NNCD_FS] [NP bAHvyn/NNS_MP]

[PP fy/IN Alm&tmr/DET_NN] ./PUNC

Figure 3.3: AMIRA output for the Arabic sentence in (3.30).

3.4.1.2.2 MADA
MADA6 toolkit is a utility that accepts raw text as input and outputs, in one op-

eration, POS tags, lexemes, diacritisations and full morphological analyses. MADA
distinguishes between morphological analysis problems (handled by morphological
analyser) and morphological disambiguation. This toolkit consists of two main parts
explained below (Habash et al., 2009b).

• MADA
MADA operates in stages. First, it uses a list of potential analyses for each word
encountered in the text (word context is not considered at this point) provided by
BAMA or the standard Arabic morphological analyser (SAMA) (Maamouri et al.,
2010). Then, it makes use of up to 19 orthogonal features to rank this list of analyses
in order to select a proper analysis for each word in the list. Fourteen morphological
features out of 19 features that MADA predicts use 14 SVMs that are trained on the
PATB. The remaining 5 features capture spelling variations and n-gram statistics.
MADA’s analysis consists of the word’s diacritised form, its lexeme, its morpho-
logical features and an English glossary entry.

MADA ranks the possible analyses by appending a numerical score to each analysis
and sorting these analyses in descending order and the highest score is flagged with
‘*’ as correct analysis for that word in the context. Because MADA picks out a full
analysis from BAMA/SAMA, all decisions concerning morphological ambiguity,
lexical ambiguity, tokenisation, diacritisation and POS tagging in any possible POS
tagset are made in a single step.

MADA internally depends on three resources, which must be installed separately.
These resources are: BAMA/SAMA, SRILM7 toolkit (specifically the disambig

utility to construct lexeme n-gram) (Stolcke, 2002) and SVMTools package to op-
erate its SVMs (Giménez and Màrquez, 2004).

6This acronym comes from “Morphological Analysis and Disambiguation for Arabic”.
7This acronym comes from “Stanford Research Institute Language Modeling”.
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• TOKEN
TOKEN is regarded as a general tokeniser for Arabic. It provides an easy-to-use
resource for tokenising an Arabic text of MADA-disambiguated items into a wide
set of possible tokenisation schemes. In fact, MADA takes the decision on whether
an Arabic word has a conjunction or preposition clitic, whereas if and how such cli-
tics are separated is determined by TOKEN (accounting for different morphotactics
and normalisation) before using them in an application.

TOKEN accepts a MADA-disambiguated file as input and a description of a tokeni-
sation scheme, which specifies how the tokenisation is done.

TOKEN uses morphological generation (through BAMA/SAMA), internally, to
recreate the word once different clitics are separated. This guarantees that the form
of the generated word is normalised and consistent with other occurrences of that
word.

MADA tagger is reported to achieve around 97.6% accuracy. Figure 3.4 shows the
output of MADA for the Arabic sentence in (3.30). In this example the tokenisation
was very straightforward, and the main content relates to the tagger.

3.4.1.2.3 Maximum-likelihood tagger
Ramsay and Sabtan (2009) produced a maximum-likelihood (MXL) tagger, trained

on Quran, which makes use of very simple clues based on the characters at the be-
ginning and end of a word along with transition probabilities between tags, and then
patches the errors in this initial assignment. We have updated MXL to work with MSA
by retraining it on the PATB. This tagger accepts as input a raw or tokenised text and
outputs the text with its POS tag only. We will simply outline the basic principles that
it is based on and note its accuracy here.

MXL operates in two stages, as follows:

• In the first stage we use two simple kinds of statistic:

(i) the conditional likelihood that a word which starts with the same two or three
letters or ends with the same two or three letters as the one we are trying to
tag has a given tag;

(ii) the transition probabilities between tags. We use a weighted combination of
these to produce a maximum-likelihood guess at the current tag. This process
produced about 95.2% accuracy when we tested it on PATB.
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;;; SENTENCE $Ark xmsp bAHvyn fy Alm&tmr .
;;WORD $Ark
;;MADA: $Ark asp:p cas:na enc0:0 gen:m mod:i num:s per:3 pos:verb prc0:0 prc1:0 prc2:0 prc3:0

stt:na vox:a
*1.005981 diac:$Araka lex:$Arak_1 bw:+$Arak/PV+a/PVSUFF_SUBJ:3MS gloss:participate_with;share_with

pos:verb prc3:0 prc2:0 prc1:0 prc0:0 per:3 asp:p vox:a mod:i gen:m num:s stt:na cas:na
enc0:0 rat:na source:lex stem:$Arak stemcat:PV

_0.943160 diac:$Ariko lex:$Arak_1 bw:+$Arik/CV+o/CVSUFF_SUBJ:2MS gloss:participate_with;share_with
pos:verb prc3:0 prc2:0 prc1:0 prc0:0 per:2 asp:c vox:a mod:i gen:m num:s stt:na cas:na
enc0:0 rat:na source:lex stem:$Arik stemcat:CV

;;WORD xmsp
;;MADA: xmsp asp:na cas:n enc0:0 gen:f mod:na num:s per:na pos:noun_num prc0:0 prc1:0 prc2:0

prc3:0 stt:c vox:na
*0.979649 diac:xamosapu lex:xamos_1 bw:+xamos/NOUN_NUM+ap/NSUFF_FEM_SG+u/CASE_DEF_NOM gloss:five

pos:noun_num prc3:0 prc2:0 prc1:0 prc0:0 per:na asp:na vox:na mod:na gen:f num:s stt:c
cas:n enc0:0 rat:y source:lex stem:xamos stemcat:Nap

_0.963989 diac:xamosapi lex:xamos_1 bw:+xamos/NOUN_NUM+ap/NSUFF_FEM_SG+i/CASE_DEF_GEN gloss:five
pos:noun_num prc3:0 prc2:0 prc1:0 prc0:0 per:na asp:na vox:na mod:na gen:f num:s stt:c
cas:g enc0:0 rat:y source:lex stem:xamos stemcat:Nap

... 12 additional options omitted ...
;;WORD bAHvyn
;;MADA: bAHvyn asp:na cas:g enc0:0 gen:m mod:na num:p per:na pos:noun prc0:0 prc1:0 prc2:0 prc3:0

stt:i vox:na
*1.000161 diac:bAHiviyna lex:bAHiv_1 bw:+bAHiv/NOUN+iyna/NSUFF_MASC_PL_GEN gloss:scholar;researcher

pos:noun prc3:0 prc2:0 prc1:0 prc0:0 per:na asp:na vox:na mod:na gen:m num:p stt:i cas:g
enc0:0 rat:y source:lex stem:bAHiv stemcat:Nall

_0.966692 diac:bAHiviyna lex:bAHiv_1 bw:+bAHiv/ADJ+iyna/NSUFF_MASC_PL_GEN gloss:searching pos:adj
prc3:0 prc2:0 prc1:0 prc0:0 per:na asp:na vox:na mod:na gen:m num:p stt:i cas:g enc0:0
rat:y source:lex stem:bAHiv stemcat:Nall

... 6 additional options omitted ...
;;WORD fy
;;MADA: fy asp:na cas:na enc0:0 gen:na mod:na num:na per:na pos:prep prc0:na prc1:0 prc2:0 prc3:0

stt:na vox:na
*1.033497 diac:fiy lex:fiy_1 bw:+fiy/PREP+ gloss:in pos:prep prc3:0 prc2:0 prc1:0 prc0:na per:na

asp:na vox:na mod:na gen:na num:na stt:na cas:na enc0:0 rat:na source:lex stem:fiy
stemcat:FW-Wa

_0.914319 diac:fiy~a lex:fiy_1 bw:+fiy/PREP+ya/PRON_1S gloss:in pos:prep prc3:0 prc2:0 prc1:0
prc0:na per:na asp:na vox:na mod:na gen:na num:na stt:na cas:na enc0:1s_pron rat:na
source:lex stem:fiy stemcat:FW-Wa-y

... 5 additional options omitted ...
;;WORD Alm&tmr
;;MADA: Alm&tmr asp:na cas:g enc0:0 gen:m mod:na num:s per:na pos:noun prc0:Al_det prc1:0 prc2:0

prc3:0 stt:d vox:na
*1.019825 diac:Almu&otamari lex:mu&otamar_1 bw:Al/DET+mu&otamar/NOUN+i/CASE_DEF_GEN

gloss:conference;convention pos:noun prc3:0 prc2:0 prc1:0 prc0:Al_det per:na asp:na vox:na
mod:na gen:m num:s stt:d cas:g enc0:0 rat:y source:lex stem:mu&otamar stemcat:NduAt

_0.948217 diac:Almu&otamara lex:mu&otamar_1 bw:Al/DET+mu&otamar/NOUN+a/CASE_DEF_ACC
gloss:conference;convention pos:noun prc3:0 prc2:0 prc1:0 prc0:Al_det per:na asp:na vox:na
mod:na gen:m num:s stt:d cas:a enc0:0 rat:y source:lex stem:mu&otamar stemcat:NduAt

... 2 additional options omitted ...
;;WORD .
;;MADA: . asp:na cas:na enc0:na gen:na mod:na num:na per:na pos:punc prc0:na prc1:na prc2:na

prc3:na stt:na vox:na
*1.045299 diac:. lex:._0 bw:./PUNC gloss:. pos:punc prc3:na prc2:na prc1:na prc0:na per:na asp:na

vox:na mod:na gen:na num:na stt:na cas:na enc0:na rat:na source:punc
SENTENCE BREAK

Figure 3.4: MADA output for the sentence in (3.30). For each word, the predications
of the SVM classifiers are indicated by ‘;;MADA’ line. Each analysis is preceded by its
score, while the selected analysis is marked with ‘*’. For each word in the sentence,
only the two top scoring analyses are shown because of the space limitation.
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• We then use transformation-based retagging (TBR) (Section 3.4.1.2.4) to refine the
original set of hypotheses. Again we are using the first and last few letters of the
word as a cue, with templates based on the first and last two letters of the word
rather than the word specific templates from Brill’s original set. This leads to a
final accuracy of 95.6%.

Figure 3.5 shows the output of MXL for the Arabic sentence in (3.30).

Input sentence: $Ark xmsp bAHvyn fy Alm&tmr .
MXL $Ark[PV+PVSUFF_SUBJ:3MS] xmsp[NUM+NSUFF_FEM_SG+CASE_DEF_NOM]

bAHvyn[NOUN+NSUFF_MASC_PL_GEN] fy[PREP] Alm&tmr[DET+NOUN+CASE_DEF_GEN]
.[PUNC]

Figure 3.5: MXL output for the Arabic sentence in (3.30).

Figure 3.6 summarises the output of the three taggers above for the sentence in
(3.30).

Arabic Gloss AMIRA MADA MXL
¼PA

�
� šArk participated VBD_MS3 PV+PVSUFF_SUBJ:3MS PV+PVSUFF_SUBJ:3MS

�
é�Ô

	
g

xmsh̄
five NNCD_FS NOUN_NUM+NSUFF_FEM_SG+

CASE_DEF_NOM

NUM+NSUFF_FEM_SG+

CASE_DEF_NOM
	á�


�
JkAK.

bAHθyn
researchers NNS_MP NOUN+NSUFF_MASC_PL_GEN NOUN+NSUFF_MASC_PL_GEN

ú



	
¯ fy in IN PREP PREP

QÖ
�
ß



ñÖÏ @

Al+mŵtmr
the confer-
ence

DET_NN DET+NOUN+CASE_DEF_GEN DET+NOUN+CASE_DEF_GEN

. . PUNC PUNC PUNC

Figure 3.6: Three taggers output for the Arabic sentence in (3.30).

The slight differences between the outputs from MADA and MXL arise because
MXL was trained on PATB part 1 v3, which uses a subset of the Buckwalter tagset,
whereas MADA uses the full Buckwalter tagset.

3.4.1.2.4 Transformation-based learning
Transformation-based learning (TBL) (Brill, 1995) is a mechanism for improving

the performance of a classifier by spotting patterns of errors in the output of the original
classifier. To put it very simply, suppose that the original classifier were a tagger for
English, and that it consistently mis-labelled the word ‘that’ as a determiner rather than
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a complementiser in situations where the preceding word was a verb and the following
word was a pronoun (e.g. in examples like “I know that she loves me”). Then a typical
implementation of TBL would introduce a rule that said “if ‘that’ has been labelled as

DT and the preceding word is a verb and the following word is a pronoun then relabel

it as COMP.”

The key to the success of this notion is the presence of a suitable set of rule tem-
plates. Brill’s original templates are represented by Lager (1999) as Prolog rules of
the kind shown below:

t1(A,B,C)

# tag:A>B

<- tag:C@[-1].

...

t5(A,B,C)

# tag:A>B

<- tag:C@[-1,-2].

...

t9(A,B,C,D)

# tag:A>B

<- tag:C@[-1] & tag:D@[1].

...

The first of these says that you can have rules that will retag an item whose tag is A
as B if the tag of the preceding word is C. Thus this template might be instantiated to

t1(det,comp,verb)

# tag:det>comp

<- tag:verb@[-1].

in order to retag an item from DET to COMP if the preceding word was a VERB (i.e. this is
a rather extreme case of a rule for patching cases like the one involving ‘that’ above).

The standard algorithm explores all instantiations of every template to find the
one that produces the greatest net improvement in the tagset (a rule that changes 100
incorrect tags to correct ones and 30 correct ones to incorrect ones produces a net gain
of 70, and hence is better than one that changes 65 incorrect tags to correct ones and
introduces no new errors (net gain 65) or one that makes 110 improvements and 50
new errors (net gain 60)). This rule is then applied to the entire training set, and the
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rule that makes the most improvements to this retagged version of the training set is
found. The collection of rules found by this process is then applied in sequence to the
test/application data.

Brill’s original templates include ones for retagging an item on the basis of the
surrounding tags and ones for retagging it on the basis of the forms of the word and its
neighbours. In keeping with the observation above that the first and last few letters of
an Arabic word tell you a lot about its tag, it makes sense to add templates that look at
prefixes and suffixes, as in the following four templates:

tX1(A, B, W) # tag:A>B

<- sf:W@[0].

tX2(A, B, C, W) # tag:A>B

<- sf:W@[0] & tag:C@[1].

tY1(A, B, W) # tag:A>B

<- pf:W@[0].

tY2(A, B, C, W) # tag:A>B

<- pf:W@[0] & tag:C@[1].

The first of these says that if the current word has been tagged as A and its last three
characters are W then you should retag it as B. The second says much the same, but also
looks at the tag of the following word. The other two do the same for prefixes.

To make this concrete, the system finds an instantiation of tX1 as:

rule(tX1(’DET+NOUN’,’ADV’,lAn)).

This says that if you see a word that ends with the letters 	
àB lAn that has been tagged

as DET+NOUN then you should retag it as ADV.

Similarly, it finds an instantation of tX2 as:

rule(tX2(’PV’,’IV’,’SUB_CONJ’,tqd)).

which says that if a word that ends with Y
�
®
�
K tqd has been tagged as a past tense verb

and it is followed by a word which is tagged as a subordinating conjunction then retag
it as a present tense verb.

Where did these rules come from? They arose because words that end with these
letters have often been mistagged, possibly in specific contexts. You should not look
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at such a rule in isolation to see if it makes any sense, or indeed to think about why
the erroneous tag was suggested in the first place. The only thing you can see about
a rule considered in isolation is whether the retagging itself seems sensible–are there
situations in which a word that ends with 	

àB lAn should be tagged as an adverb?

3.4.2 Syntactic parsing

Parsing of natural language aims to analyse sentences automatically in order to con-
struct representations of their syntactic structure. To achieve this goal, many different
types of representation have been proposed, such as phrase structure grammar and de-
pendency structure grammar. We will use the English sentences in (3.31) to show the
difference between the phrase structure and dependency structure.

(3.31) English sentences (Nivre, 2010)

a. Economic news had little effect on financial markets.

b. A hearing is scheduled on the issue today.

We will be following common practice in using dependency grammar in our entail-
ment checker, and hence this approach will be described in some detail, and the other
will be sketched more briefly.

3.4.2.1 Phrase structure parsing

Phrase structure parsing is a form of natural language syntactic parsing which depends
on the theoretical tradition of phrase structure representation. It is the task of mapping
an input sentence with one or more phrase structure representations. It models a sen-
tence as a tree where words are grouped into phrases that are classified by structural
categories such as NP, VP, etc. In phrase structure grammar, functional relations (e.g.
subject and object) can be identified in terms of structural configurations (e.g. ‘NP
under S’ and ‘NP under VP’) (Nivre, 2010).

Consider, for instance, the following grammar:
S→ NP V P PU

NP→ JJ NN | JJ NNS

V P→V BD NP PP

PP→ IN NP

This will assign the structure in Figure 3.7 to (3.31a).
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Figure 3.7: Phrase structure tree for (3.31a) (Nivre, 2010).

3.4.2.2 Dependency parsing

Dependency parsing is a syntactic parsing form that depends on the theoretical tradition
of dependency grammar. It is the task of mapping an input sentence to a dependency
tree. It models a sentence as a graph (often, but not always a tree) where words are
vertices and grammatical functions (or syntactic relations) are directed edges (or de-
pendency relations). Each vertex therefore has a single parent, except the root of the
tree. A dependency relation holds between dependent, i.e. a syntactically subordinate
vertex, and head, i.e. another vertex on which it is dependent. So, the dependency
structure represents head-dependent relations between vertices that are classified by
dependency types such as SBJ ‘subject’, OBJ ‘object’, ATT ‘attribute’, etc. Depen-
dency parsing is thus viewed computationally as a structured prediction problem with
trees as structured variables. Each sentence, in principle, has exponentially many can-
didate dependency trees. Figure 3.8 shows the dependency tree for (3.31a), where the
arrows between pairs of vertices represent the dependency relations pointing from the
head to dependent, while the labels on arrows indicate the dependency types.

Formally speaking, for an input sentence with n words S = w1, . . . ,wn, a legal de-
pendency tree is T = (V,A), consisting of a set V of vertex V ⊆ {ROOT0,w1, . . . ,wn}
and a set A of dependency relations A ⊆ V ×R×V , R is a set of dependency types
R ⊆ {r1, . . . ,rn−1}, if (wi,r,w j) ∈ A then (wi,r′,w j) 6∈ A for all r 6= r′. The depen-
dency tree has n+1 vertices, each vertex corresponds to a word in the sentence plus the
artificial root vertex (ROOT0), i.e. for any i≤ n (i,r,0) 6∈ A. Since the structure of a de-
pendency tree is acyclic, which means it does not contain cycles, i.e. for all wi,w j ∈ A,
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Figure 3.8: Projective dependency tree for (3.31a) (Nivre, 2010).

if wi → w j, then it is not the case that w j →∗ wi (Kübler et al., 2009). For example,
we can define the sets of vertices and dependency relations from the dependency tree
shown in Figure 3.8 as follows:

V= {ROOT, Economic, news, had, little, effect, on, financial, markets, .}
A= {(ROOT, PRED, had), (news, ATT, Economic), (had, SBJ, news),

(effect, ATT, little), (had, OBJ, effect), (effect, ATT, on),
(markets, ATT, financial), (on, PC, markets), (had, PU, .)}

Here, the verb ‘had’ is the head of the noun ‘news’ with the dependency type SBJ.
The same verb ‘had’ also heads another noun ‘effect’ with another dependency type
OBJ.

A dependency tree is either projective, if dependency arcs do not cross when de-
picted on one side of the sentence (i.e. every vertex has a continuous projection) as
shown in Figure 3.8, or non-projective, if the previous constraint is not satisfied, as
shown in Figure 3.9. More formally, a tree is considered projective, if and only if for
every dependency arc (i,r, j) ∈ A and node x ∈V, i < x < j or j < x < i then there is a
subset of dependency arcs {(i,r, i1),(i1,r1, i2), . . . ,(ix−1,rx−1, ix)} ∈ A such that ix = x.

Figure 3.9: Non-projective dependency tree for (3.31b) (Nivre, 2010).
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In recent years, there has been a considerable interest in dependency parsing. There
are a number of reasons for this. First, dependency-based syntactic representations
seem to be effective in many areas of NLP, such as machine translation (MT), informa-
tion extraction (IE) and textual entailment (TE), thanks to their transparent encoding
of predicate-argument structure (Alabbas and Ramsay, 2011b). Second, it is generally
perceived that dependency grammar is better suited than phrase structure grammar for
flexible or free word order languages, such as Arabic, Czech, and so on (Alabbas and
Ramsay, 2011a). Third, and most importantly, the dependency-based approach has
led to the development of fast, robust and reasonably accurate syntactic parsers for a
number of languages.

Broadly speaking, dependency parsing may be either data-driven or grammar-
based. In the current work, we focus on supervised data-driven dependency parsers,
which presuppose that input sentences to machine learning have been annotated with
their correct dependency structures. There are two different problems in supervised
dependency parsers that need to be solved computationally: learning problem and
parsing problem (or inference problem) (Kübler et al., 2009). These problems are rep-
resented as follows:

• Learning: given a training set of sentences D that are annotated with their depen-
dency structure, induce a parsing model M that can be used to parse new sentences
Si=1..n.

• Parsing: given a parsing model M and sentences Si=1..n, derive the optimal depen-
dency graph Gi for each sentence Si according to M.

We will focus here on two state-of-the-art language independent data-driven parsers,
as described below.

3.4.2.2.1 MALTParser
MALTParser8 is a language independent system for data-driven dependency pars-

ing that can be used to induce a parsing model from a dependency treebank for any
language. Then, it uses this induced parsing model to parse new data for that lan-
guage (Nivre et al., 2007). It is categorised, according to the categorisation of parsers
by Kübler et al. (2009), as a transition-based parsing system based on the theoretical

8This acronym comes from “Models and Algorithms for Language Technology Parser”. Freely
available at: http://www.maltparser.org/.
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framework of inductive dependency parsing (which depends on an algorithm of de-
terministic parsing in combination with inductive machine learning to predict the next
action of the parser) presented by Nivre (2006). Transition-based parsers model the
sequence of decisions of a shift-reduce parser to predict the next state of the system,
given the current state and features over parsing decisions’ history as well as the input
sentence. The parser, at inference time, starts with an initial state and based on the
predictions of the model, the parser greedily moves to subsequent states until reaching
a termination state. The parsing methodology depends on three main components:9

• Deterministic parsing algorithms, which are defined in terms of a transition system,
in order to construct labeled dependency graphs (Yamada and Matsumoto, 2003;
Nivre, 2003). The transition system consists of a set of configurations and a set of
transitions between configurations. Deterministic parsing is implemented during
the transition system as greedy best-first search.

• History-based models for predicting the next parser action at nondeterministic choice
points (Ratnaparkhi, 1997; Collins, 2003). The transition history is represented by
a feature vector, which can be used as input to a classifier for predicting the next
transition in order to guide the deterministic parser (Hall, 2008).

• Discriminative learning to map histories to parser actions (Yamada and Matsumoto,
2003; Hall et al., 2006). Discriminative machine learning can be used to train a clas-
sifier when it is given a set of transition sequences derived from a treebank. During
parsing, the classifier is used to distinguish between different possible transitions
given a feature vector representation of the current configuration.

MALTParser supports both projective and non-projective parsing. It implements
nine deterministic parsing algorithms. These algorithms are: Nivre arc-eager, Nivre
arc-standard, Covington non-projective, Covington projective, Stack projective, Stack
swap-eager, Stack swap-lazy, Planar and 2-Planar. It also supports two machine learn-
ing algorithms: LIBSVM10 (Chang and Lin, 2011) and LIBLINEAR11 (Fan et al.,
2008).

According to the observation of McDonald and Nivre (2007), MALTParser per-
forms better on dependencies that are further from the root of a tree (e.g. pronouns,
nouns dependencies) and those with shorter dependencies.

9The following characterisation is taken from the MALTParser documentation.
10This acronym comes from “Library for Support Vector Machines”.
11This acronym comes from “Library for Large Linear Classification”.
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Users can also turn MALTParser into a phrase structure parser, which parses con-
tinuous and discontinuous phrases with both phrase labels and grammatical functions
(Bhatt and Xia, 2012; Hall and Nivre, 2008a,b).

3.4.2.2.2 MSTParser
Maximum-spanning tree parser (MSTParser)12 is a language independent system

for data-driven dependency parsing, which can be used to induce a parsing model from
treebank data and to parse new data using an induced model (McDonald and Pereira,
2006). It is categorised, according to the categorisation of parsers in (Kübler et al.,
2009), as a graph-based parsing system. It is also a parser generator for dependency
parsing, which can be used to create a parser for any language by giving it a depen-
dency treebank of this language. A graph-based parser defines a candidate dependency
graph space for a sentence. In the learning stage, the parser assigns, for each sentence,
scores to the candidate dependency graphs in order to induce a parsing model M. In the
parsing stage, the parser finds, for each input sentence, the highest scoring dependency
graph, given the parsing model M. This method is commonly called maximum span-
ning tree parsing because the problem of finding the highest scoring dependency graph
and the problem of finding a maximum spanning tree in a dense graph are equivalent,
under certain assumptions. This allows the parser to find solutions for both projective
and non-projective trees.

Typically, MSTParser depends on global training and inference algorithms. The
aim here is to learn models in which correct trees have higher weights than the weights
of incorrect trees. A global search is run in order to find the highest weighted depen-
dency tree. This operation typically is NP-hard (McDonald and Satta, 2007). This
often requires the scope of MSTParser features to be limited to a tiny number (usually
two) and/or resort to approximate inference (McDonald and Pereira, 2006).

According to the observation of McDonald and Nivre (2007), MSTParser performs
better on dependencies that are closer to the root of a tree (e.g. verbs, conjunctions and
prepositions dependencies) and those with longer dependencies.

In Section 3.4, we have described three Arabic taggers and two machine learning
parsers, which have achieved state-of-the-art results for a number of languages such as
English and Arabic (Kübler et al., 2009). We will use them in our preprocessing stage
(Chapter 4) to convert T-H pairs from natural expressions into dependency trees.

12Freely available at: http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html.



Chapter 4

Arabic linguistic analysis

4.1 Introduction

In this chapter we present a preprocessing stage for our Arabic textual entailment
(ArbTE) system. This stage is responsible for converting both elements of an Ara-
bic T-H pair from raw texts into dependency trees. It consists of two main subtasks:
POS tagging, which internally uses other subtasks, such as tokenisation and morpho-
logical analysis, and parsing. In order to achieve this goal, three state-of-the-art Arabic
taggers (see Section 3.4.1.2) and two state-of-the-art language-independent data-driven
dependency parsers (see Section 3.4.2.2) are used. The PATB is used as training and
testing data for experiments as explained below.

We have a task, structural analysis, which involves two linked subtasks, tagging
and parsing, and we have several tools that can carry out each of the subtasks. How
these tools work is not our concern here. For us they are simply black-boxes which
require an input in order to give us an output. What does matter here is how to improve
the performance of the overall task. We are therefore going to try to improve the
performance of the standard components by varying parameters and combining them
instead of improving each component itself.

In order to improve the performance of the overall task, we will investigate two
strategies: (i) combined strategy I: in this strategy, there is one pipeline of processes
that consists of two consecutive subtasks, i.e. combined taggers and combined parsers.
In this strategy, we will receive a raw text as input to the pipeline and tag this text by
combined taggers (Section 4.2) to produce tagged text, which is the input to the next
subtask, combined parsers (Section 4.3), to produce the final parsed tree as shown in
Figure 4.1a; and (ii) combined strategy II: in this strategy, there are two pipelines of

95
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processes, where each pipeline consists of two consecutive subtasks, individual tag-
ger and individual parser. In this strategy, we will receive a raw text as input for both
pipelines and tag this text using the tagger of each pipeline. Then, each parser will
receive its own tagged text to produce its own parsed tree. The final parsed tree will
represent the combined parsed trees for both pipelines (Section 4.4) as shown in Fig-
ure 4.1b.

In Section 4.2 and Section 4.3 we will discuss the results of combined strategy I,
and in Section 4.4 we will discuss the results of combined strategy II.

Raw text

Combined taggers

Tagged text

Combined parsers

Parsed tree

Raw text

Tagger1

Tagged text1

Parser1

Parsed tree

Tagger2

Tagged text2

Parser2

Recombination

Parsed tree1 Parsed tree2

(a) Combined strategy I (b) Combined strategy II

Figure 4.1: Two combined taggers and parsers strategies.

In order to check the effectiveness of the POS taggers, the parsers and our tech-
niques, we use four common evaluation measures:

• Precision (P)
A measure of the ability of a system to present only correctly labelled items, as in
Equation 4.1.

P =
number o f correctly labelled items retrieved

total number o f items retrieved
. (4.1)
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• Recall (R)
A measure of the ability of a system to present all correctly labelled items, as in
Equation 4.2.

R =
number o f correctly labelled items retrieved

number o f items in collection
. (4.2)

• F-score
F-score is a measure of a test’s accuracy. The general formula for positive real β is
explained in Equation 4.3.

Fβ = (1+β
2)× P×R

(β 2×P)+R
. (4.3)

The traditional measure is the F-score (or F1), which is the harmonic mean of pre-
cision and recall as in Equation 4.4.

F-score = 2× P×R
P+R

. (4.4)

The F1-score can be interpreted as a weighted average of the precision and recall,
where an F1-score reaches its best value at 1 and worst value at 0.

• Accuracy
If every item is assigned a label, then precision and recall are the same. Under those
conditions, it is common practice to refer to this single value as accuracy.

4.2 POS tagging

The process of assigning a correct POS tag (i.e. noun, verb, adverb or others) to each
word of a sentence is called POS tagging. This process is considered an essential
step for most natural language applications. In general, however, POS taggers make
mistakes, and since tagging is the first step in most NLP systems these mistakes will
lead to problems in all subsequent stages of analysis. It is thus important to obtain the
highest possible accuracy at this initial stage of processing.
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4.2.1 The taggers

We are interested here in improving POS tagging accuracy. We have carried out a
number of experiments with state-of-the-art taggers (AMIRA 2.0 (Section 3.4.1.2.1),
MADA 3.1 (Section 3.4.1.2.2) and a home-grown tagger, MXL, with comparable ac-
curacy (Section 3.4.1.2.3)), using the PATB (Maamouri and Bies, 2004) as a gold-

standard corpus.

Gold-standard tags

We used PATB (Part 1 v3 using ‘without-vowel’ set of trees)1 as a resource for our
experiments. The words in the PATB are already tagged. This provides us with a
benchmark to evaluate the consequences of using taggers that do not provide 100%
accuracy: we are unlikely to achieve higher accuracy when we tag the test sets using
one of the taggers below than we obtain when we use the original tags of the PATB.
In subsequent discussion we refer to the tags we obtain this way as gold-standard tags.
Even these tags are not guaranteed to be 100% accurate–they have been obtained by
some mixture of automatic and manual tagging, and both of these are liable to error.
However, this is the most accurate available set of tags, and furthermore any systematic
errors will also appear in the training set, and hence may be compensated for when the
parsers are trained. We use this set for reference–if for some experiment we obtain
N accuracy with the gold tags and N′ using one of the taggers then we know that the
tagger has introduced an error of N−N′.

The PATB uses a very fine-grained set of tags, which carry a great deal of syntac-
tically relevant information (particularly case-marking). In particular, case-marking,
and to a lesser extent number and gender marking, in Arabic is carried by diacritics
which are unwritten in normal text. Thus the only way to extract this information is
by making guesses based on the syntactic context. Given that the task of the parser is
to determine the syntactic context, it is hard to see how reliable guesses about it can
be made prior to parsing. Marton et al. (2010, 2013), for instance, note that adding
the case-marking tags supplied by MADA actually decreases the accuracy of parsing,
because the parser gives considerable weight to them, but the tagger only manages to
assign them correctly in 86% of cases. A feature which is both significant and hard to
determine is not a reliable cue.

1Catalog number LDC2005T02 from the Linguistic Data Consortium (LDC). Available at: http:
//www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2005T02
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We therefore collapsed this very fine-grained set of 305 tags, which appear in the
version of the PATB used here, to a more coarse-grained set with 39 distinct tags, as
shown in Figure 4.2. Reducing the granularity of the PATB tagset is fairly common
practice, since some of the most fine-grained tags are very hard indeed to distinguish
simply on the basis of local clues, which are what most taggers depend on. Unfor-
tunately there is no universally accepted coarse-grained version, so we simply made
what seemed like a reasonable compromise. We will return to this in Section 4.4. The
differences between these two tagsets are illustrated in Figure 4.3, where the coarse
set has one entry for imperfective verbs and the fine one has 44, of which a few 1st
person cases are included in Figure 4.3, and the coarse set has one entry for nouns and
the fine one has 47, differing mainly in case and gender markers. It is worth noting
that many of the distinctions made in the fine-grained tagset are invisible in the written
form–feminine nouns, for instance, do not carry distinctive case markers. Tagging with
the fine-grained tagset is therefore likely to be extremely difficult. The final version of
our tagger ‘MC’ achieves around 99.5% accuracy on the coarse-grained tagset (see Ta-
ble 4.7), which is significantly better than the performance of other taggers (Al Shamsi
and Guessoum, 2006; AlGahtani et al., 2009; El Hadj et al., 2009; Diab et al., 2004)
on this kind of tagset, whereas we achieve 96% with the full 305 tags (MADA, for in-
stance, obtains 96.6% on the coarse-grained tagset but only 93.6% on the fine-grained
(351-element) one).

ABBREV
ADJ
ADV
CONJ/ICONJ
CV
CVSUFF_DO
DEM_PRON
DET
DET+ADJ
DET+NOUN

DET+NOUN_PROP
DET+NUM
EMPH_PART
EXCEPT_PART
FOCUS_PART
FUT+IV
INTERJ
INTERROG_PART
IV
IVSUFF_DO

LATIN
NEG_PART
NOUN
NOUN_PROP
NO_FUNC
NUM
PART
POSS_PRON
PREP
PRON

PUNC
PV
PVSUFF_DO
RC_PART
REL_ADV
REL_PRON
SUB
SUB_CONJ
VERB_PART

Figure 4.2: Our coarse-grained tagset.

AMIRA

The first tagger we use is AMIRA. This tagger is reported to achieve around 97%
accuracy on its target tagset.

Using AMIRA, however, highlights one of the problems that arise when we try
to compare its retagged corpus with other corpora. The PATB is tagged, but with
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Coarse-grained tag Fine-grained tag
IV IV1P+IV+IVSUFF_MOOD:I

IV1P+IV+IVSUFF_MOOD:J
IV1P+IV+IVSUFF_MOOD:S
IV1P+IV_PASS+IVSUFF_MOOD:S
IV1S+IV+IVSUFF_MOOD:I
IV1S+IV+IVSUFF_MOOD:J
IV1S+IV+IVSUFF_MOOD:S
IV1S+IV_PASS+IVSUFF_MOOD:S
...

NOUN NOUN+CASE_DEF_ACC
NOUN+CASE_DEF_GEN
NOUN+CASE_DEF_NOM
NOUN+CASE_INDEF_ACC
NOUN+CASE_INDEF_GEN
NOUN+CASE_INDEF_NOM
NOUN+NSUFF_FEM_DU_ACC
...

Figure 4.3: Coarse-grained and fine-grained tag examples.

different tags from the ones used by AMIRA.2 In order to compare AMIRA tags with
other corpora tags, we will have to translate between the two tagsets.

This is a non-trivial task. The two tagsets have different numbers of tags (e.g.
AMIRA has 130 fine-grained tags compared with 305 in PATB), and more impor-
tantly they make different kinds of distinctions. The AMIRA tagset, for instance, uses
one tag (RP) to cover a range of particles which are subdivided into eight subclasses
(EMPH_PART, EXCEPT_PART, FOCUS_PART, INTERROG_PART, RC_PART, NEG_PART, PART,
VERB_PART) in the PATB; and it uses several tags to describe different kinds of verbs
(VB, VBG, VBD, VBN, VBP) where the PATB just uses three (IV, PV, CV).

In order to overcome these problems, we use TBR (Section 3.4.1.2.4) to recover
from the mismatches between the two tagsets. TBR collects statistics about the local
context in which erroneous tags have been assigned, and attempts to find rules based
on this information to apply after the original tagger has been run. This technique
will produce a small improvement in the performance of almost any tagger. Typically,

2We used the ERTS_PER setting for AMIRA and then removed inflectional markers. This produced
a set of tags that is very similar to the 25 tags in the Bies/RTS tagset, but with distinctions between nouns,
adjectives and cardinal numbers. Although the Bies/RTS tagset is taken as a norm, there are numerous
minor variants in use: Marton et al. (2010, 2013) found that collapsing some tags and adding some
others improve the performance of their parser.
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taggers that achieve scores in the mid 90s are boosted by 2-3%–the lower the original
accuracy, the greater the typical improvement. When we used it for comparing the
original tags produced by AMIRA and the gold-standard tags the score improved from
around 90% to just over 95% for the coarse-grained tagset. Some of this improvement
arises simply from rules that spot that the two tagsets use different names for the same
things (e.g. that things that are called JJ are called ADJ in the PATB) but some of it
comes from learning how to split coarse-grained AMIRA tags into fine-grained PATB
ones.

There is a further problem with using AMIRA. The fact that Arabic allows a range
of items to be cliticised (conjunctions, prepositions and pronouns) makes it difficult
even to tokenise text reliably. This means that not only does AMIRA sometimes assign
different tags from the PATB, it sometimes even splits the text into different numbers
of tokens (AMIRA’s tokenisation of the PATB text differs from that in the PATB itself,
with around 98% agreement between the two).

In order to solve this problem, we constructed a version of the corpus which has
the same size (i.e. number of tokens) as the gold-standard one. We replaced PATB tags
by a coarse copy of the AMIRA tags, using hand-coded substitution rules, and then
replaced these by fine-grained AMIRA tags where the substituted tags were compatible
with tags actually assigned by AMIRA. Thus if the PATB assigned a word the tag ADJ

we replaced it by the AMIRA tag JJ. We then inspected the tags assigned by AMIRA
itself: if the tag assigned to this word was one of AMIRA’s fine-grained adjective tags,
e.g. JJR, then we used this instead. If, on the other hand, the hand-coded replacement
for the PATB tag was incompatible with the one assigned by AMIRA then we retained
the hand-coded one. This gave us a version of the treebank that had the same number
of tokens as the original PATB, with as many items as possible given the tags assigned
by AMIRA and the others given hand-coded AMIRA equivalents of the original PATB
tags.

MADA

MADA uses the Buckwalter tagset (Section 3.4.1.1.1), which is a slightly extended
version of the tagset used in PATB Part 1 v3 with some extra classification of nouns
(e.g. NOUN_QUANT ‘quantifier noun’ and ADJ_COMP ‘comparative adjective’). The fine-
grained MADA retagged version contains 351 tags compared to 305 tags in the PATB
corpus. Fortunately the MADA tags are a strict superset of the standard PATB set, and
hence can be reduced to either the standard fine-grained version or our coarse version
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by omitting the extra classification of nouns, so we do not have the same problems
using MADA with the PATB as we have with AMIRA.

We also applied TBR to the output of MADA, because although we were not faced
with mapping incompatible tagsets in the same way as with AMIRA, using TBR nearly
always provides a small improvement, amounting in this case to an increase from
94.1% to 96.7%. We applied the same technique that we used in AMIRA to get a
MADA version of the corpus that has the same size as the gold-standard one because
MADA’s tokeniser also has small variance from the gold-standard (around 1%).

MXL

We also use Ramsay and Sabtan (2009)’s maximum-likelihood tagger, MXL. The ad-
vantage of this tagger is that because we retrained it on the PATB, the tags it uses are
exactly the PATB tags and the tokenisation is exactly the PATB tokenisation. We there-
fore do not need to overcome problems associated with mismatches between tag sets.
As with AMIRA and MADA, we obtained a final small improvement by using TBR.

4.2.2 Improving POS tagging

One popular technique for improving tagging accuracy is tagger combination. This
approach involves combining different taggers to exploit the unique properties of each
tagger and reduce some of the random errors. This technique has been applied to
different languages such as English (Brill and Wu, 1998), Swedish (Sjöbergh, 2003),
Telugu (Rama Sree and Kusuma Kumari, 2007), Italian (Søgaard, 2009) and Polish
(Śniatowski and Piasecki, 2012) and the results were encouraging, but has not to our
knowledge been applied to Arabic. We evaluate different techniques for combining
POS taggers for Arabic for both coarse-grained and fine-grained tagsets.

For all experiments in the current thesis, we used AMIRA v2.0 with Yamcha toolkit
v0.33,3 and we used MADA 3.1 with SVMTools v1.3.14 and SRLIM v1.5.125 and
SAMA v3.1 (catalog number LDC2010L01) from the LDC.6

Table 4.1 summarises the coarse-grained and fine-grained tags for the gold-standard
corpus and the three retagged corpora by the taggers: AMIRA, MADA and MXL. Ta-
ble 4.2 summarises the accuracy of the three taggers on our gold-standard set using

3http://chasen.org/~taku/software/yamcha/.
4http://www.lsi.upc.edu/~nlp/SVMTool/
5http://www.speech.sri.com/projects/srilm/download.html
6http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2010L01
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the built-in tagsets and coarse versions of each, and shows the improvements that are
obtained in each case by applying TBR. This provides a reference point: the best of
the three taggers is MADA, which achieves 96.7% on the coarse-grained version of its
built-in tagset if we also apply TBR and 93.6% on the fine-grained version, again after
applying TBR. The goal here is to see whether we can improve on this by utilising the
other taggers, despite the fact that their individual performance is worse.

Tagset Gold-standard AMIRA MADA MXL
Coarse-grained 39 29 56 39
Fine-grained 305 130 351 305

Table 4.1: Coarse-grained and fine-grained tag numbers, gold-standard and single tag-
ger.

Tagset TBR AMIRA MADA MXL

Coarse-grained
× 89.6% 94.1% 95.2%√

95.3% 96.7% 95.6%

Fine-grained
× 84.3% 91.7% 89.7%√

88.8% 93.6% 91.2%

Table 4.2: Tagger accuracies in isolation, with and without TBR.

The first observation is that when the taggers agree on how to tag a given item they
are more likely to be right than when they disagree. This is fairly obvious–if you have
a set of taggers which assign different tags to an item then at least one of them must
be wrong. Table 4.3 substantiates this observation–each column shows the precision
(Equation 4.1), recall (Equation 4.2) and F-score (Equation 4.4) for a particular pair of
taggers simply taking cases where they agree and leaving words on which they disagree
untagged. Thus the combination of MADA and MXL achieves a precision of 99.5%
on the coarse-grained tagset and 99% on the fine-grained one. Table 4.4 shows what
happens when we combine all three taggers, either taking the majority view when at
least two of them agree or demanding that all three agree. In the latter case we obtain
a precision of 99.9% for the coarse-grained tagset and 99.2% for the fine-grained one.
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Metrics Tagset TBR AMIRA-MADA AMIRA-MXL MADA-MXL

P
Coarse-grained

× 96.3% 97.7% 99.3%√
99.5% 98.8% 99.5%

Fine-grained
× 94.7% 92.9% 98.9%√

95.8% 94.3% 99%

R
Coarse-grained

× 86.1% 84.3% 90.1%√
91.9% 94.1% 94.6%

Fine-grained
× 84.9% 79.8% 83.3%√

85.6% 81.6% 86.4%

F-score
Coarse-grained

× 0.909 0.905 0.945√
0.955 0.964 0.97

Fine-grained
× 0.895 0.858 0.904√

0.904 0.875 0.923

Table 4.3: Precision (P) and recall (R) and F-score for combinations of pairs of taggers,
with and without TBR.

Condition Tagset TBR P R F-score

At least two taggers agree
Coarse-grained

× 95.1% 93.5% 0.943√
98.4% 97.8% 0.981

Fine-grained
× 90.7% 87.8% 0.892√

92.8% 90.5% 0.916

All three taggers agree
Coarse-grained

× 99.5% 83% 0.905√
99.9% 90.9% 0.952

Fine-grained
× 99.1% 77.8% 0.871√

99.2% 79.8% 0.885

Table 4.4: Precision (P) and recall (R) and F-score for combinations of three taggers,
with and without TBR.

The cost, of course, is that the recall goes down, because there are places where
they disagree, and in these cases no tag is assigned. What should we do in such cases?

4.2.2.1 Backoff strategies

Our first proposal was to take the majority view when at least two of the taggers
agreed, and to backoff to one or other when there was no common view (Zeman and
Žabokrtskỳ, 2005). The results of this are shown in Table 4.5 where column ‘AMIRA’
shows the result of backing off to AMIRA when there is no majority view, column
‘MADA’ shows the result of backing off to MADA and column ‘MXL’ shows the re-
sult of backing off to MXL. The results for the coarse-grained tagset are markedly
better than for any of the taggers individually, though there is only a very slight im-
provement over the original MADA scores for the fine-grained set. Interestingly, the
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best results are obtained by backing off to MXL rather than to AMIRA or MADA
(98.2% vs. 97.5% or 97.9%, despite the fact that MADA’s individual performance is
better than MXL’s (96.7% vs. 95.6%) (the results in this table and in Table 4.7 are
for accuracy rather than precision or recall because under this approach every item
receives a tag).

Tagset TBR Majority voting, backoff to
AMIRA MADA MXL

Coarse-grained
× 92.3% 93.8% 94.9%√

97.5% 97.9% 98.2%

Fine-grained
× 87.5% 88.8% 89.6%√

90.6% 91.5% 91.8%

Table 4.5: Backoff to AMIRA or MADA or MXL when there is no majority agreement.

The fact that backing off to any of AMIRA or MADA or MXL improved the per-
formance suggested that it was worth investigating other backoff strategies. If majority
vote + backoff to an arbitrary tagger is better than any single tagger in isolation, then
perhaps there is something we can backoff to which will do even better.

We return to the observation that in cases where all three taggers disagree, at most
one of them can be right. Given that they each employ different information about the
material being tagged, it is likely that they are systematically prone to different kinds
of errors.

We therefore collected statistics about the kinds of things they each get right. How
likely, for instance, is AMIRA to be right when it assigns the tag DET+NNP? Table 4.6
shows an excerpt of this data, showing the likelihood that each tagger is right for a
given assigned tag, e.g. for the given instance of the word �

éJ
ÊJ
«AÖÞ�B@ AlAsmAςylyh̄

“Ismailia” the correct tag was DET+NOUN_PROP (as in gold-standard): AMIRA sug-
gested DET+NNP, MADA suggested DET+ADJ and MXL suggested DET+NOUN. Because
AMIRA is right 100% of the time when it suggests DET+NNP, whereas MADA is right
97.5% of the time when it suggests DET+ADJ and MXL is right only 92.1% of the time
when it suggests DET+NOUN, DET+NNP was chosen. For B@



ǍlA “except”, MADA’s

suggestion of EXCEPT_PART was accepted because MADA is right 100% of the time
when it suggests EXCEPT_PART, which is better than the reliability of either of the other
suggestions. For Q�


	
« γyr “other than”, MXL’s suggestion of NEG_PART was accepted

because MXL is right 98.2% of the time when it suggests NEG_PART, which is better
than the reliability of either of the other suggestions.
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Word Gold-standard Tagger Tag (confidence) Result

AlAsmAςylyh̄ DET+NOUN_PROP
AMIRA DET+NNP (100.0)

DET+NOUN_PROPMADA DET+ADJ (97.5)
MXL DET+NOUN (92.1)

ǍlA EXCEPT_PART
AMIRA RP (7.9)

EXCEPT_PARTMADA EXCEPT_PART (100.0)
MXL SUB_CONJ (96.5)

γyr NEG_PART
AMIRA RP (8.1)

NEG_PARTMADA NOUN (97.9)
MXL NEG_PART (98.2)

. . . . . . . . . . . . . . .

Table 4.6: Confidence levels for individual tags.

Using this strategy for choosing what to do when all three taggers make different
suggestions produces the results in Table 4.7.7 The ‘MC’ column reports the results
when we simply chose the most confident proposal (henceforth referred to as most

confident ‘MC’), whereas for ‘backoff unless two agree’ we took the majority verdict
if two of the taggers agreed and the most confident if all three gave different results.

Tagset TBR backoff unless two agree MC

Coarse-grained
× 95.7% 97.3%
√

99.2% 99.5%

Fine-grained
× 93.2% 95.6%
√

94.5% 96%

Table 4.7: Backoff to most confident tagger.

The results in Table 4.7 are both surprising and compelling. Simply taking the
most confident of the three taggers produces 99.5% accuracy for the coarse-grained
set, which is going to be hard to beat by much, and even for the fine-grained set it
produces 96%. This improves over taking the majority verdict when at least two of
the contributing taggers agree and backing off to the most confident one where there is
no agreement,8 and it beats each of the individual taggers by a fairly wide margin–the
original error by MADA of 3.3% for the coarse-grained set has been reduced to 0.5%,
a nearly sevenfold reduction.

7These results were obtained by tenfold cross-validation.
8Note that taking the majority verdict when all three agree and backing off to the most confident

when there is not complete unanimity is exactly the same as simply taking the most confident one from
the outset.
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In order to make the previous results clearer, let us consider the Arabic sentence in
(4.1), which is taken from the gold-standard corpus.

(4.1) Arabic sentence example from gold-standard corpus
YªK. ÉJ
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¯ @ñ
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@ð ZA�

	
� Ñî

	
DJ
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JJ. Ë

	
àðQå

�
�« ©Òm.

�
�
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�
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. 	áK
YÊJ. Ë @
	á�
K. XðYmÌ'@ úÎ«

�
èC�ÊË ÐñJ
Ë @ ú



ÎJ




K @Qå�B@ H. Aj�

	
�B@

wqd tjmς ςšrwn lbnAnyA msyHyA bynhm nsA’ wÂTfAl kAnwA frwA Alý

AsrAŷyl bςd AlAnsHAb AlAsrAy̌yly Alywm llSlAh̄ ς lý AlHdwd byn Albldyn.

“Twenty Lebanese Christians already gathered, including women and children,

who fled to Israel after the Israeli withdrawal today to pray on the border be-

tween the two countries.”

Figure 4.4 summarises the results obtained by each tagger individually compared
with the two techniques that are shown in Table 4.7 (i.e. ‘backoff unless two agree’
and ‘MC’) for the sentence (4.1). For this sentence, MXL gives better accuracy than
both AMIRA and MADA (88.5% vs. 84.6% for other two taggers). Interestingly, the
MC technique gives full accuracy 100%. This result is better than each tagger in iso-
lation and the ‘backoff unless two agree’ technique, which gives the same accuracy
as the best tagger (i.e. MXL, 88.5%). As can be seen in Figure 4.4, for instance, the
correct tag for the tokens 	á�
K. byn “between” and YªK. bςd “after” is PREP (as in gold-
standard corpus). The ‘backoff unless two agree’ technique gives an incorrect result
(i.e. NOUN) because both AMIRA and MADA identify this token as noun, whereas the
MC technique gives the correct result (i.e. PREP) because MXL identifies it as a prepo-
sition and it has a more confident score than AMIRA and MADA (98.7 vs. 72.6 and
86.2 respectively). According to our observation, we found out that most confident
tagger gives better results than the agreement in most cases when two taggers agree
and backoff to which ever tagger is more confident (which may be one of these or may
be the other one).

In Section 4.2, we have shown a rather simple mechanism for combining taggers
which can provide considerable improvements in accuracy. If you measure the likeli-
hood that a tagger is right when it suggests a particular tag, and then take the suggestion
with highest score in each case then you can decrease the error rate substantially. The
key is that the different taggers tend to make different systematic mistakes. The ac-
curacy statistics capture these systematic mistakes, so a low score is likely to reflect
a case where the tagger is making one of its characteristic errors, and in such cases
we take the output of one of the others. This simple approach outperforms strategies
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Gold-
standard
token

Gold-
standard
tag

AMIRA MADA MXL backoff
unless two
agree

MC

w CONJ CC (98.3) CONJ (98.2) CONJ (99.3) CONJ CONJ
qd VERB_PART RP (1.3) VERB_PART (100.0) VERB_PART (100.0) VERB_PART VERB_PART
tjmς PV VBD (92.3) PV (96.8) IV (91.2) PV PV
ςšrwn NUM NNCD (98.9) NOUN_NUM (94.6) NUM (98.5) NUM NUM
lbnAnyA NOUN NN (72.6) NOUN (86.2) NOUN_PROP (84.9) NOUN NOUN
msyHyA ADJ JJ (85.8) ADJ (94.2) NOUN (89.8) ADJ ADJ
byn PREP NN (72.6) NOUN (86.2) PREP (98.7) NOUN PREP
hm PRON PRP (99.9) POSS_PRON (95.7) PRON (99.8) PRON PRON
nsA’ NOUN NN (72.6) NOUN (86.2) NOUN (89.8) NOUN NOUN
w CONJ CC (98.3) CONJ (98.2) CONJ (99.3) CONJ CONJ
ÂTfAl NOUN NN (72.6) NOUN (86.2) NOUN (89.8) NOUN NOUN
kAnwA PV VBD (92.3) PV (96.8) PV (97.3) PV PV
frwA PV VBD (92.3) PV (96.8) PV (97.3) PV PV
Alý PREP IN (98.8) PREP (98.9) PREP (98.7) PREP PREP
Asrŷyl NOUN_PROP NNP (91.9) NOUN_PROP (98.8) NOUN_PROP (84.9) NOUN_PROP NOUN_PROP
bςd PREP NN (72.6) NOUN (86.2) PREP (98.7) NOUN PREP
AlAnsHAb DET+NOUN DET+NN (92.8) DET+NOUN (97.7) DET+NOUN (90.0) DET+NOUN DET+NOUN
AlAsray̌yly DET+ADJ DET+NN (92.8) DET+ADJ (96.2) DET+ADJ (94.7) DET+ADJ DET+ADJ
Alywm DET+NOUN DET+NN (92.8) DET+NOUN (97.7) DET+NOUN (90.0) DET+NOUN DET+NOUN
l PREP IN (98.8) PREP (98.9) PREP (98.7) PREP PREP
AlSlAh̄ DET+NOUN DET+NN (92.8) DET+NOUN (97.7) DET+NOUN (90.0) DET+NOUN DET+NOUN
ς lý PREP IN (98.8) PREP (98.9) PREP (98.7) PREP PREP
AlHdwd DET+NOUN DET+NN (92.8) DET+NOUN (97.7) DET+NOUN (90.0) DET+NOUN DET+NOUN
byn PREP NN (72.6) NOUN (86.2) PREP (98.7) NOUN PREP
Albldyn DET+NOUN DET+NNS (95.7) DET+NOUN (97.7) DET+NOUN (90.0) DET+NOUN DET+NOUN
. PUNC PUNC (100.0) PUNC (100.0) PUNC (100.0) PUNC PUNC

Accuracy 84.6% 84.6% 88.5% 88.5% 100%

Figure 4.4: Comparing basic taggers and combination strategies for Arabic sentence
in (4.1).

involving more subtle ways of combining the individual taggers, e.g. by taking the
majority preference in cases where one exists. This is likely to be because two of
the taggers (AMIRA and MADA) use very similar information, and hence where they
make systematic mistakes they are likely to make the same systematic mistakes. In
such cases they will tend to agree, and hence would outvote MXL as suggested by the
precision results in Table 4.4. The simple mechanism we have used provides a built-in
resilience against this tendency.

In every case, including TBR makes a useful contribution. Again, TBR is most
effective when the base tagger makes systematic errors. The version of TBR that we
are using includes extra templates looking at the first three and last three letters of
words in addition to the standard word-based templates. These extra templates pay
attention to prefixes and suffixes, which carry much more information than is the case
for English (where TBR has been most extensively applied).

The bottom line is that for the tagset in Figure 4.2 we can obtain 99.5% accuracy
when tagging freely occurring Arabic. It is going to be hard to improve substantially
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on this score. Given that Marton et al. (2010, 2013) have argued that coarse-grained
tagsets are actually more useful than fine-grained ones for parsing, which is the usual
next step in the chain, we are fairly satisfied with this result.

4.3 Dependency parsing

In recent years, dependency parsing has become widely used in machine translation
(MT), question answering (QA), relation extraction and many other NLP applications
(Kübler et al., 2009) for a number of reasons:

• It provides uniform treatments for a wide range of typologically different lan-
guages, since it hides differences that arise from different surface word orders and
emphasises the functional relations between words, which tend to be similar across
languages.

• It can be useful for semantics. It supports compositional semantics, since it can be
easier to attach compositional rules directly to lexical items than to assign them to
large numbers of phrase structure rules; and it supports less formal approaches to
semantics, e.g. via TE, since it is easier to generalise dependency trees as the basis
of approximate inference rules than to use phrase structure rules for this purpose.

• It is possible to induce robust and fairly accurate dependency parsers, e.g. MST-
Parser and MALTParser (see Section 3.4.2.2), from treebanks of suitably annotated
dependency trees.

Recall that our ultimate goal is to develop a TE system for Arabic (Alabbas, 2011).
An efficient technique to check entailment between two sentences is using TED match-
ing between dependency trees for the two sentences. We therefore need to be able to
obtain dependency trees by parsing input Arabic texts, and hence we need dependency
treebanks for training our dependency parsers (i.e. MSTParser and MALTParser with
various parsing algorithms). We used here MSTParser 0.2 (i.e. uses second-order edge
features) and MALTParser 1.7.1.

4.3.1 Arabic treebanks

The focus of the current section is on the nature of the training data. Dependency
grammar is a general framework, with a myriad major and minor variations. The
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distinctions between different versions of dependency grammar are usually debated
in terms of their linguistic adequacy, but it is likely that different sets of dependency
relations will produce different levels of accuracy when used for inducing parsers. In
particular, we want to investigate the effects of different ways of turning the phrase
structure trees in the PATB, which is the largest easily available set of training data for
Arabic, into dependency trees.

The four best-known Arabic treebanking efforts are the PATB (Maamouri and
Bies, 2004), the Prague Arabic dependency treebank (PADT) (Smrž et al., 2008),
Columbia Arabic treebank (CATiB) (Habash and Roth, 2009) and Quranic Arabic tree-
bank (Dukes et al., 2013). PATB is a phrase structure treebank, whereas the others are
dependency treebanks. PATB and PADT are annotated with rich morphological infor-
mation, very fine-grained POS tags, semantic roles, diacritisation and lemmas. This
allows these treebanks to be used for training different NLP applications (e.g. tokeni-
sation, POS tagging, diacritisation, morphological disambiguation and others) as well
as parsing (Habash and Roth, 2009). In contrast, much of the detailed morphological
and POS information is not provided in CATiB. The use of any of these treebanks as
training data raises problems:

• The trees in PATB are phrase structure trees, and hence are not directly useable for
training dependency parsers.

• PADT uses very fine-grained POS tags, and there is no readily available tagger for
assigning PADT labels.9

• CATiB uses a very coarse-grained set of just six POS tags (i.e. NOM ‘non-proper
nominals including nouns, pronouns, adjectives and adverbs’, PROP ‘proper nouns’,
VRB ‘active-voice verbs’, VRB-PASS ‘passive-voice verbs’, PRT ‘particles such as
prepositions or conjunctions’ and PNX ‘punctuation’) (Habash and Roth, 2009). In
particular, all verbs are grouped under a single heading (i.e. VRB), with no dis-
tinction between present and past; and all nominals are also grouped together (i.e.
NOM), with no distinction between nouns or numbers, or even between definite and
indefinite forms. Other researchers have noted that dependency parsers can cope
with very coarse-grained POS tags, but the loss of this information makes the trees
in CATiB unsuitable for our underlying goal of inferring TE rules from trees.

9Personal correspondence with Dr. Otakar Smrž, who is one of the PADT designers.
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• Quranic Arabic treebank provides three levels of analysis: morphological annota-
tion, a syntactic treebank and a semantic ontology. This treebank contains classical
Arabic, which is the only language of the Quran and Sunna (prophetic traditions).
It is the direct ancestor language of MSA, which is the language that is used in most
current government communications, media, news, publications, books, etc. This
treebank is unsuitable for our purposes because the vocabulary, and to a lesser ex-
tent the grammatical structure, does not correspond to the news articles from which
we have obtained our T-H pairs.

Of the four, PATB seemed most suitable for our purposes, since we have taggers
that can assign the tags used in PATB and the information it contains is what we need
for inferring TE rules. We therefore need to convert PATB trees to dependency trees,
which we do by using the standard phrase structure to dependency transformation al-
gorithm (given in Figure 4.5), using a percolation table to choose the head daughter in
the phrase structure tree.

This raises an interesting question: since PATB does not explicitly embody a notion
of the ‘head’ of a tree, we have some freedom about how to construct the percolation
table. Should the head of an NP be the main noun or the determiner? Should the head
of a verbless sentence be the subject or the predicate? Should the head of a conjoined
phrase be the conjunction itself or the head of the first conjunct?

There are theoretical grounds for choosing one way of answering these questions
rather than another, but they also have empirical consequences. It seems likely that
one set of choices will provide the parsers with a more easily recognisable set of de-
pendency relations than another. It may turn out that the parsers perform best with a
set of trees that were obtained using a theoretically unappealing percolation table (e.g.
we will see in Section 4.3.1.1.1 that choosing the first conjunct of a conjoined pair pro-
duces better results than choosing the conjunction itself, but it is much easier to obtain
a formal interpretation from trees where the conjunction is the head (Gazdar, 1980)).
It is, however, a straightforward matter to transform trees that are based on one notion
of conjunction to ones based on another, so from a practical point of view we want to
find the percolation table that allows the parsers to produce the most accurate results.

4.3.1.1 From PATB to dependency trees

We used PATB Part 1 v3.0 as a resource that provides us with annotations of Ara-
bic at different levels of structure (at the word, the phrase and the sentence levels).
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PATB is annotated for POS tag, morphological disambiguation and for syntactic struc-
ture. It also provides diacritisations, empty categories, some semantic tags and lemma
choice. Because PATB is already tagged, the effects of lexical ambiguity are substan-
tially reduced–we know which items are nouns and which are verbs, and we know
about the clitics that have been attached to them. We still have no information about
transitivity, which is itself a problem for parsing, but the gross lexical ambiguity that
is brought about by the lack of diacritics in modern standard Arabic (MSA) has been
eliminated. The PATB includes 734 stories representing 145,386 words (166,068 to-
kens after clitic segmentation; the number of Arabic tokens is 123,796). The sentences
in PATB, which contains just over 5000 phrase structure trees, are fairly long–the av-
erage sentence length is around 28 words per tree, with some trees containing 100+
words.

Converting phrase structure trees to dependency trees is a straightforward task, so
long as (i) you can identify the item in each subtree which contains the head; and (ii)
there are no constructions with zero-heads. Assuming that these two conditions hold,
the algorithm in Figure 4.5 will convert a phrase structure tree to a dependency tree.

1. If you are looking at a leaf node, turn it into a tree with no
daughters.

2. a). Otherwise, choose the subtree which contains the head: turn
it into a dependency tree: call this D.

b). Turn all the other subtrees into dependency trees, and add
them as daughters of D.

Figure 4.5: From phrase structure trees to dependency trees.

The only difficult part of this algorithm, which has been discussed by Xia and
Palmer (2001), is the selection of the subtree which contains the head. The approach
we have taken to this task is to look for all the trees headed by a given label, and find all
the labels for their subtrees. This gives us a list of labels for potential head daughters
for each non-terminal label (a ‘head percolation table’ (Collins, 1997)). We then order
these in terms of candidacy for being the head daughter, in terms of what we believe to
be the correct dependency structure, and we use this preference order for ‘choose the

subtree which contains the head: turn it into a dependency tree’ in the above algorithm.
For instance, in the head percolation table the entry (S left VP) means that the head
child of an S is the first child of the S from the left with the label VP.

Here, the head percolation table is semi-automatically generated from PATB by
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grouping the related tags in one tag and then finding the possible heads for each one.
After that, for each table’s entry we order the possible heads manually according to its
priority.10 Then, the above algorithm is used to generate the dependency tree recur-
sively. We used six dependency relations as an initial step to construct our treebank.
These relations are: SBJ ‘subject’, OBJ ‘object’, ROOT ‘root’, COORD ‘coordi-
nate’, PX ‘punctuation’ and DEP ‘dependent’.

There are, however, a number of problems that arise when applying this algorithm
to PATB:

• Very large numbers of Arabic sentences begin with the conjunction +ð w+ “and”.
The most plausible reading is that this item implicitly conjoins the first clause in
the current sentence to the previous sentence, and hence should be taken as its
head. This clashes with the treatment in the PATB, where the conjunction is taken
to be the head of the whole sentence. This makes a difference in cases where
the sentence has the general form CONJ S1 CONJ S2 CONJ ... CONJ Sn, where
we bracket it as CONJ (S1 CONJ S2 CONJ ... CONJ Sn) and the PATB brackets
it as (CONJ S1) CONJ S2 CONJ ... CONJ Sn. There are a surprising number of
such cases, and the rebracketing makes a noticeable difference to parsing accuracy.
We therefore have to restructure these trees, and we also mark sentence-initial +ð

w+ “and” with a special tag (i.e. ICONJ) to prevent the parsers confusing it with
more normal conjunctive uses of this item. By doing this, the parser’s accuracy is
improved by around 0.4% as shown in Section 4.3.1.1.1.

• The PATB deals with free word-order by using traces, where the function of an ex-
traposed item is co-indexed with an item whose label indicates whether it is a sub-
ject or object, as shown in Figure 4.6, where the relative pronoun 	

à@
	
YÊË @ All*An

“who (3rd.masc.du)” is co-indexed with a trace which is itself taken to be the sub-
ject of 	

àAÒëA��
 y+sAhm+An “contribute to (3rd.masc.du)”.

This does not really make sense within a dependency-based framework. The use
of traces is antithetical to the basic idea of dependency grammar, namely that syn-
tactic structure is determined by relations between words: a trace is not a word,
and as such has no place in dependency grammar, at least as strictly conceived (e.g.
Hudson, 1984). We therefore systematically transform the PATB so that traces are
eliminated, with the topicalised NP treated as a proper constituent of the sentence,

10The consequences of using different versions of the percolation table are discussed in Section
4.3.1.1.1



CHAPTER 4. ARABIC LINGUISTIC ANALYSIS 114

[S [S [CONJ w-]
[VP [VERB -gyr]

[NP-SBJ [NP [DET+NOUN Al+mSrf+An]]
[PUNC ,]
[SBAR [WHNP-1 [REL_PRON All*An]]

[S [VP [VERB y+sAhm+An]
[NP-SBJ-1 [-NONE- *T*]]
...]]]]]]]

Figure 4.6: Phrase structure tree with trace.

e.g. in Figure 4.6 the relative pronoun 	
à@

	
YÊË @ All*An “who” is taken to be a depen-

dent (as subject) of 	
àAÒëA��
 y+sAhm+An “contribute to” despite appearing higher

in the original phrase structure tree.

• Arabic allows ‘verbless’ or ‘equational’ sentences, consisting of an NP and some
kind of predication (another NP, a PP, an adjective) (Alabbas, 2011; Attia, 2012). It
is tempting to think of these constructions as containing a zero-copula (the fact that
their negated and past forms do include an explicit copula supports this analysis).
As noted above, we prefer to eliminate empty items, especially heads.

The standard treatment of such sentences assumes that the predication is the head,
largely on semantic grounds. This is almost certainly the right thing to do, but
given that the parsers we are using exploit clues extracted from the local context
to guide their decisions, it seemed worth investigating the effects of choosing ei-
ther the subject or the predication as the head–if it turns out the parsers can more
reliably assign labels when the subject is the head, we can easily transform the re-
sulting dependency tree to the more normal form once it has been constructed. Over
a number of experiments, it turns out that there is around a 2% overall increase in
accuracy if the subject is taken to be the head (Alabbas and Ramsay, 2012a). We
therefore make this unintuitive switch–if we can identify the constituents of a verb-
less sentence more easily by taking the subject as the head, then the extra cost of
inverting this move later seems well worth paying.

• The PATB uses a very fine-grained set of tags (305 tags), which carry a great deal
of syntactically relevant information (particularly case-marking). Because of the
difficulty of accurately assigning tags from this fine-grained tagset, we collapsed
this set to a coarse-grained set with 39 distinct tags as we explained before in Sec-
tion 4.2.1 (gold-standard tags), as suggested by Marton et al. (2010, 2013).
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The dependency trees to be used by the parsers also have to be labelled with func-
tional relations. Since dependency grammar is entirely concerned with relations be-
tween words, any information beyond simple constituency has to be encoded in the
labels on the relations. Such relations tend not be explicitly marked in phrase structure
trees, since they are often implied by the label of the local tree (to put it simply, it is not
necessary to mark the NP daughter of a sentence as its subject, because this is implicit
in the rule that says that a sentence may be made out of an NP and a VP). We there-
fore have to impose a set of functional relations. We cannot use a very fine-grained
set of labels here, because the information in PATB simply does not provide enough
information. The only labels we can assign with any degree of confidence relate to
conjunctions, and to the subject and object of the verb.

There is no consensus about the set of relations to be used in dependency grammar.
Some authors, for instance, take it that the auxiliary dominates the verb it is associated
with, while others take the opposite view. Similarly, coordinating conjunctions are
sometimes treated as heads and sometimes as modifiers. We investigated three issues:

• Is the determiner or the noun the head of an NP? Where an NP contains a
determiner, some theories (e.g. categorial grammar) treat the determiner as the head
and others (e.g. generalised phrase structure grammar (GPSG) (Gazdar, 1985),
head-driven phrase structure grammar (HPSG) (Pollard and Sag, 1994)) treat it as a
dependent of the noun. Other frameworks take it be something more like a modifier.
Arabic makes less use of determiners than some other languages, since there is no
indefinite article and the definite article is treated as a part of the noun to which it
is attached, but it does have numbers and demonstrative determiners, and choosing
whether these are heads or dependents may make a difference.

• Is the subject or the predication the head of verbless sentences? Arabic verbless
sentences are widely regarded as containing an invisible ‘zero’ copula. If the copula
was present, it would be the head, but since it is missing then either the subject or
the predication will have to be chosen. Which of these makes the parser perform
better?

• What is the head of a conjoined phrase? The choice of how to deal with con-
junctions in dependency grammar is widely disputed, with reasonable arguments
being put forward on both sides. Some authors, for instance, take it that the coor-
dinating conjunctions are treated as heads, whereas others treat them as modifiers.
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These differences show up in PADT and CATiB. PADT considers the coordinat-
ing conjunction as the head of the conjunction and others depend on it, whereas
CATiB considers the head of the first conjunct of a conjunction as the head of the
coordinating conjunction, which in turn heads the second conjunct.

We will use the sentence in (4.2), from (Habash et al., 2009a), to highlight the
differences between our conversion and the other Arabic dependency treebanks.

(4.2) Arabic sentence (Habash et al., 2009a)

ú


æ

	
�AÖÏ @ ÈñÊK
 @ ú




	
¯ AK
Pñ�ð

	
àA

	
JJ. Ë @ðP@ 	P l�



'A�

	
­Ë@

	
àñ�Ô

	
g

xmswn Alf sA’H zArwA lbnAn w+swryA fy Aylwl AlmaDy

“Fifty thousand tourists visited Lebanon and Syria last September”

As can be seen in Figure 4.7,11 our dependency tree is different from the others
in the sentential part l�



'A�

	
­Ë@

	
àñ�Ô

	
g xmswn Alf sA’H “Fifty thousand tourists”, be-

cause we considered the NOUN as the head not NOUN_NUM and the others are dependent,
whereas both PADT and CATiB considered the first NOUN_NUM as the head. Further-
more, we follow the CATiB treatment of the conjoined NP AK
Pñ�ð

	
àA

	
JJ. Ë lbnAn w+swryA

“Lebanon and Syria”, where the head is the first noun, with the conjunction as its sole
daughter and the second noun as a daughter of the conjunction.

It should be noted that this treatment of conjunction cannot be obtained from the
original PATB tree by the algorithm in Figure 4.5. The conjoined phrase AK
Pñ�ð

	
àA

	
JJ. Ë

lbnAn w swryA “Lebanon and Syria” has three constituents–the conjunction and two
NPs. Specifying that the conjunction has priority over any other constituent in the
percolation table would produce the subtree given for this phrase in PADT. Specifying
that the conjunction has lower priority than one of the NPs would produce a subtree
with either 	

àA
	
JJ. Ë lbnAn “Lebanon” (or possibly AK
Pñ� swryA “Syria”) as its head and the

conjunction and the other noun as daughters. There is no way to get the conjunction
as a daughter of 	

àA
	
JJ. Ë lbnAn “Lebanon” and then AK
Pñ� swryA “Syria” as a daughter of

the conjunction by using the algorithm in Figure 4.5. In order to obtain trees of this
kind, we transform the original phrase structure tree so that structures of the form T1

become T2 in Figure 4.8. If we then assign DUMMY the lowest possible priority in the
percolation table and CONJ the highest possible priority for the entry of DUMMY in the
table we obtain CATiB-style trees for coordinated structures.

11We deleted the POS tags and dependency relations from dependency trees to compare the tree
structures only.
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Figure 4.7: Comparing PATB phrase structure and dependency format (without POS
tags and labels) in PADT, CATiB and our preferred conversion for the sentence in (4.2).

S

A CONJ B

S

A DUMMY

CONJ B

T1 T2

Figure 4.8: Reconstruct coordinated structures.

We extend this treatment to cover cases where we have a complex coordinated
expression where several of the conjuncts are linked by commas in addition to explicit
conjunctions, converting phrase structure trees like the initial tree T1 in Figure 4.9 to
the tree D1 in this figure instead of D2. This is the treatment used in experiment (7)
below.

4.3.1.1.1 Conversion results
To check the effectiveness of our conversion version of PATB to dependency tree

format, we used it to train MSTParser and MALTParser with the default parsing algo-
rithm (i.e. Nivre arc-eager), which we will refer to as MALTParser1. The aim here was
to see how changes in the structure of the trees affect the performance of the parser:
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Figure 4.9: Complex coordinated structures.

different ways of organising trees may be better or worse at capturing the regularities
encapsulated in the original phrase structure trees, or they make the cues that the parser
depends on easier or harder to see.

Large and complex Arabic sentences are used in training and testing the parser
(some sentences in each set contain 100 or more words). Both parsers are trained on
the first 4000 sentences and tested on 1000 different sentences. We examined eight dif-
ferent ways of converting phrase structure trees to dependency trees, in addition to two
baselines. These variations were obtained by changing the priority of items in each en-
try in the percolation table, and by applying systematic transformations to PATB trees
before converting them to dependency trees. The two baselines were obtained by se-
lecting head daughters at random, and by reversing the percolation table that produced
the best result when used normally.

The main experiments were as follows:

1. CONJ always has higher priority than anything else (so coordinating conjunctions
are the head of the coordinated phrase), as in PADT; nouns have higher priority
inside NPs than determiners (opposite of PADT and CATiB); the head of a verbless
sentence is the subject (opposite of CATiB).

2. Same as (1), but sentence initial conjunctions are given a separate tag as ICONJ.

3. ICONJ,CONJ have lower priority than anything else: everything else as in (2).
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4. Same as (2) but determiners have higher priority than nouns in NPs.

5. CATiB-style treatment of conjunctions (as discussed above). Everything else as in
(2).

6. Same as (5) but determiners have higher priority than nouns in NPs.

7. Same as (5), but commas in coordinated expressions are not treated as though they
were conjunctions (i.e. tree D1 in Figure 4.9, not tree D2).

8. Same as (7), but the head of a verbless sentence is assumed to be its predication
rather than its subject.

The labelled attachment score (LA), i.e. the percentage of tokens with correct
head and dependency relation (DEPREL),12 and unlabelled attachment score (UA),
i.e. the percentage of tokens with correct head (regardless of the DEPREL label), for
the various transformations of PATB to dependency tree format are shown in Table 6.2.

# Items order for each entry in the head percolation MSTParser MALTParser1
table LA UA LA UA
Random head (baseline 1) 20.2% 20.6% 19.3% 19.7%
Inverse of best table, i.e. table (7) (baseline 2) 73.5% 74.3% 71.7% 72.7%

1 CONJ has higher priority than other items 80.1% 81.5% 79.1% 80.4%
2 Split CONJ into CONJ and ICONJ 80.5% 81.9% 79.4% 80.7%
3 ICONJ,CONJ have lowest possible priority 80.8% 82.2% 79.7% 80.9%
4 Same as (3) but determiners above nouns in NPs 80.3% 81.7% 79.3% 80.2%
5 Same as (2) but CATiB-style conjunctions 82.5% 83.9% 81.3% 82.2%
6 Same as (5) but determiners above nouns in NPs 82.3% 83.7% 81.1% 81.9%
7 Same as (5) but commas in conjunctions not treated

as conjunctions (i.e. tree D1 in Figure 4.9, not tree D2)
82.8% 84.2% 81.5% 82.6%

8 Same as (7) but head of verbless sentence is predication 82.3% 83.8% 81.2% 81.0%

Table 4.8: LA and UA accuracies for parsing, different head percolation table entry
orders and treatments of coordination.

Varying the treatments of conjunction, NPs and verbless sentences can affect
the performance of MSTParser by around 2.7% compared with around 2.4% for
MALTParser1. The individual changes are not dramatic, but then each such change
only affects one set of relations: there are, for instance, only around 800 determiners
in the test set, out of a total of just over 25000 words. So if every instance of a de-
terminer was labelled correctly in (3) and incorrectly in (4) there would only be a 3%

12See Conference on Natural Language Learning (CoNLL)-X format in Appendix C.
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difference in the total score, so the actual swing of about 0.5% between these two cases
for both parsers is quite significant.

The results of the experiments in Section 4.3.1.1.1 show that changing the rules
for converting phrase structure trees to dependency trees can affect a parser’s accuracy
even with the same parser and the same training and testing data. For MSTParser, we
obtained LA of 82.8% and UA of 84.2% for the head percolation table version (7)
with CATiB-style treatment of conjunction, compared with LA ranging from 80.1%
to 82.5% and UA from 81.5% to 83.9% for other percolation tables and treatments of
conjunction. For MALTParser1, we obtained LA of 81.5% and UA of 82.6% for the
same head percolation table, compared with LA ranging from 79.1% to 81.5% and UA
from 80.2% to 82.2% for other percolation tables and treatments of conjunction. As
noted in Table 6.2, both parsers give better results for the head percolation table version
(7), which is explained in Figure 4.10, with preference to MSTParser for all eight
versions. It may be that one form of tree captures the underlying regularities better
than another, or it may be that one form makes the contextual clues more visible to
the parser than another. Consider, for instance, the coordinated expression in (4.2): the
association between the verb @ðP@ 	P zArwA “visit” and the name 	

àA
	
JJ. Ë lbnAn “Lebanon” is

likely to be stronger than that between the verb and ð w “and”, so the link between the
verb and the name is more likely to be learnt and retrieved when the dependency trees
are structured as in CATiB than the link between the verb and the conjunction would
be if the trees followed the PADT approach to conjunction.

Where two dependency formats are intertranslatable (e.g. taking either the subject
or the predicate to be the head of an equational sentence), then it makes sense to use
the version which produces the optimal parser output, since under these circumstances
it can be translated to the alternative if that seems preferable for some task. In particu-
lar, transforming coordinated expressions so that the first conjunct becomes the head is
reversible, even in cases like ‘young men and women’ which have multiple interpreta-
tions “(young men) and women” or “young (men and women)”. Converting the first of
these so that ‘men’ becomes the head leaves ‘young’ and ‘and’ as daughters, whereas
the second will have ‘and’ as the sole daughter of ‘man’, and ‘young’ and ‘women’ as
daughters of ‘and’. If the new tree is appropriately labelled then there is no problem
with re-transforming it back to the original.
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Tag Possible head(s)
S PV, IV, IV_PASS, VP, S-NOM-SBJ, PART, SQ, SBAR, S, NP, PP, ICONJ,

CONJ
NP NP, NOUN, DET+NOUN, NOUN_PROP, NUM, PRON, REL_PRON, ABBREV,

DEM_PRON, ADJ, DET+ADJ, PART, SBAR, ICONJ, CONJ
VP IV, FUT+IV, PV, VP, S-NOM-OBJ, IV_PASS, PV_PASS, CV, PART, NOUN,

DET+NOUN, NP, NO_FUNC, ADJ, DET+ADJ, ICONJ, CONJ
PP PREP, PART, NOUN, DET+NOUN, NP, PP, ICONJ, CONJ
SBAR PV, SUB, S, SBAR, S-CLF, ICONJ, CONJ
QP NOUN, DET+NOUN, NUM, ABBREV, PART, ICONJ, CONJ
PRN S, PRN, NP, ADJ, DET+ADJ, SBAR, ADJP, ICONJ, CONJ
PRT PART, PRT, ICONJ, CONJ
UCP UCP, S, ICONJ, CONJ
NAC S, NP, SBAR, PP, ICONJ, CONJ
S-NOM VP, ICONJ, CONJ
S-TMP VP
S-NOM-OBJ VP, NP
WHPP ADV, ICONJ, CONJ
SQ VP
S-CLF VP, NP, ADJ, DET+ADJ, SBAR, NAC, PP, ICONJ, CONJ
INTJ INTERJ
NX NOUN, DET+NOUN, NOUN_PROP
S-NOM-SBJ VP
S-SBJ-SBJ VP, ICONJ, CONJ
QP-OBJ NOUN, DET+NOUN
SBARQ SQ
SBARQ-PRD S
FRAG NP, ICONJ, CONJ
X PV, IV, PREP, ICONJ, CONJ
ADJP PP, NOUN, DET+NOUN, ADJ, DET+ADJ, PREP, ICONJ, CONJ
ADVP NUM, ADJ, DET+ADJ, PREP, ICONJ, CONJ
WHNP NOUN, DET+NOUN, SUB_CONJ
CONJP NOUN, DET+NOUN, PREP, ICONJ, CONJ
WHADVP PREP, ICONJ, CONJ
S-ADV VP, PP, NP, ICONJ, CONJ
S-PRD VP, PP, ADV, NP
DUMMY first tag from the left

Figure 4.10: Head percolation table version (7).

Figure 4.11, for instance, shows the final MSTParser’s accuracy results (when the
head percolation table (7) is used) for the coarse-grained POS tags (CPOSTAGs)13

that were obtained by CoNLL-X evaluation script,14 which evaluates a parser output
with respect to a gold-standard. This figure shows UA and LA for each class of word,
where column 3 (‘right head’: UA) shows how many times words of that class have
been assigned as daughters in links with the right head, column 5 (‘right DEPREL’)

13See CoNLL-X format in Appendix C.
14Available at: http://ilk.uvt.nl/conll/software.html#eval.
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shows how many times words of the class have been assigned as daughters in links
with the right label, and column 7 (‘both right’: LA) shows how many times they
have been assigned the right head and the right label.15 The most striking thing about
this table is the score for prepositions: these are common (12% of the total number
of words) and the parser does very poorly at finding their heads (73% UA). This is
unsurprising, since getting the right head for a preposition is equivalent to solving the
PP-attachment problem, which is notoriously difficult. In general, we need very large
amounts of training data before straightforward statistical techniques can detect the
lexical patterns that underly successful strategies for PP-attachment.

4.3.2 Individual parsers

Once we had converted the PATB to dependency tree format, we used it to carry out
a range of experiments with MSTParser and MALTParser1. In the following experi-
ments, we will use the head percolation table version (7) to convert the PATB to de-
pendency trees.

Default features are used for both parsers except adding feature model -F ‘ara.par’
for training MALTParser1, which gives us a slight improvement on the parsing accu-
racy. First, we were particularly interested in how the accuracy of the parsers varied
with the size of the training set. Our dataset is reasonably large (5000 sentences), but
there is always a concern that using an even larger training set will lead to improved
performance. We therefore trained the parsers on a series of training sets of increasing
size, in order to see how the size of the training set affected the parsers’ performance,
and to estimate the asymptotic accuracy. Both parsers were trained on 16 datasets,
starting with 250 sentences and incrementing by 250 sentences up to a maximum of
4000 sentences. These training sentences represent the first 4000 sentences in our
dataset. During the training step, both parsers took (for some training datasets) a few
hours, but on average MSTParser is faster than MALTParser1. In the testing step, the
same 1000 sentences, which represent the last 1000 sentences in our dataset, are used
to test both parsers after each training step on one of the training datasets. Both parsers
took a few minutes for the testing step, with MSTParser running noticeably faster than
MALTParser1. Table 4.9 explains the average length of sentence and the maximum
length of sentence, in terms of words, for each training and testing dataset.

15This table contains just 34 entries–some of the full set of 39 tags do not appear as heads in the test
set, either because they never appear as heads at all or because they are rare and hence happen not to
occur in the test set (e.g. PUNC and LATIN).
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Accuracy words right head
(UA)

% right
DEPREL

% both right
(LA)

%

total 25643 21590 84% 24013 94% 21231 83%
NOUN 4459 3719 83% 3898 87% 3591 81%
PREP 4075 2981 73% 4005 98% 2979 73%
DET+NOUN 3567 3210 90% 3209 90% 3080 86%
NOUN_PROP 2462 2142 87% 2282 93% 2107 86%
DET+ADJ 2023 1819 90% 1929 95% 1818 90%
PV 1447 1302 90% 1424 98% 1302 90%
CONJ 967 704 73% 966 100% 704 73%
ADJ 927 757 82% 846 91% 753 81%
NUM 786 653 83% 755 96% 649 83%
ICONJ 750 721 96% 745 99% 721 96%
IV 746 596 80% 712 95% 583 78%
SUB_CONJ 700 617 88% 698 100% 617 88%
DET+NOUN_PROP 514 444 86% 457 89% 434 84%
POSS_PRON 495 446 90% 457 92% 436 88%
PRON 373 328 88% 340 91% 319 86%
REL_PRON 318 307 97% 315 99% 307 97%
DEM_PRON 194 183 94% 187 96% 181 93%
NEG_PART 175 138 79% 160 91% 138 79%
ADV 128 90 70% 122 95% 89 70%
NO_FUNC 109 66 61% 99 91% 64 59%
FUT+IV 78 63 81% 74 95% 63 81%
PVSUFF_DO 76 76 100% 72 95% 72 95%
VERB_PART 71 70 99% 71 100% 70 99%
ABBREV 56 41 73% 56 100% 41 73%
IVSUFF_DO 46 45 98% 41 89% 41 89%
REL_ADV 27 23 85% 26 96% 23 85%
PART 25 17 68% 23 92% 17 68%
DET 14 11 79% 14 100% 11 79%
EXCEPT_PART 16 10 63% 13 81% 10 63%
FOCUS_PART 10 5 50% 9 90% 5 50%
INTERJ 5 3 60% 4 80% 3 60%
INTERROG_PART 2 1 50% 2 100% 1 50%
CV 1 1 100% 1 100% 1 100%
SUB 1 1 100% 1 100% 1 100%

Figure 4.11: MSTParser’s UA and LA by POS tag.

Dataset(s) Average sentence length Maximum sentence length
250 33 109
500 33 107

750-1000 33 121
1250-4000 28 127

Test dataset (1000) 34 134

Table 4.9: The average length of sentence and the maximum length of sentence for
each training and testing dataset.
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Figures 4.13 and 4.12 illustrate LA and UA excluding punctuation for training set
of increasing size (i.e. all 16 datasets) and for MSTParser and MALTParser1 respec-
tively.
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Figure 4.12: MSTParser, LA and UA for testing 1000 sentences for different training
dataset sizes, gold-standard tagging.
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Figure 4.13: MALTParser1, LA and UA for testing 1000 sentences for different train-
ing dataset sizes, gold-standard tagging.
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The accuracy curves for the two parsers are very similar, and it is notable that in
both cases the accuracy for unlabelled trees is consistently about 2% better than for
labelled trees. Both figures show exactly what you would expect: the accuracy of
the parsers increases as the size of the training set increases. There is an initial sharp
improvement, as the training set increases to about 1000 sentences, and then in both
cases the improvement looks roughly linear in the size of the training set. This clearly
cannot continue indefinitely–the accuracy must be capped at 100%, and presumably
the actual limit is somewhere below that. However, since neither of the plots has
become non-linear at the point where we were forced to stop training, it is impossible
to estimate the asymptotic accuracy. The important thing to note is that the accuracy
of the two parsers is of the same order of magnitude, but that the errors they make are

not identical.
As noted in Figures 4.12 and 4.13, the parsers both work with labelled dependency

trees, which we are interested in. However, for a number of tasks the constituency
structure is all that is required. We have therefore compared the results when simply
looking at whether the right head-dependent relations have been found ‘UA’ and at
whether the right labels have been assigned to these relations ‘LA’.

Figure 4.11, for instance, shows the overall accuracy for MSTParser over
CPOSTAGs (when the training dataset is 4000 sentences, gold-standard tagging)
that was obtained by CoNLL-X evaluation script, while Table 4.10 explains the to-
tal accuracy of CPOSTAGs resulted by using the same script for MSTParser and
MALTParser1.

Parser Words Right head
(UA)

% Right
DEPREL

% Both right
(LA)

%

MSTParser 25643 21590 84% 24013 94% 21231 83%
MALTParser1 25643 21188 83% 23836 93% 20901 82%

Table 4.10: Accuracy results for a total of CPOSTAGs.

The worst performance, for both parsers, comes with conjunctions and punctuation
marks. The problem with conjunctions is that Arabic sentences very frequently begin
with a conjunction but also contain other conjunctions, which seems to confuse the
parsers. Punctuation marks are problematic because all punctuation marks are given
the same tag in the PATB, even though they perform very different functions. As such,
it is not surprising that they cause problems. Table 4.11 shows the five words where
most errors occur.
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Conjunctions MSTParser MALTParser1
Any Head DEPREL Both Any Head DEPREL Both

ú



	
¯ fy “in”/PREP 315 315 22 22 328 328 26 26

+ ð w+ “and”/CONJ 249 249 0 0 232 232 1 1
+ È l+ “for”/PREP 171 170 10 9 158 157 9 8
	áÓ mn “of/from”/PREP 157 156 6 5 149 148 8 7

+ H. b+ “in”/PREP 137 137 9 9 140 140 9 9

Table 4.11: Five worst behaving words.

As noted, conjunctions are difficult to handle. The other items are all prepositions
for which the head has been misidentified. This just shows that data-driven dependency
parsing is not a solution to the perennial problem of PP-attachment.

4.3.2.1 Improve parsing

The results for individual parsers in isolation in Section 4.3.2 are still lower than what
we aspire to. We therefore aim in the current section to investigate the evaluation of
different strategies to improve parsing for Arabic by combining parsers, just as we
improved tagging by combining taggers. To make our experiments more realistic, the
PATB is retagged by using our MC tagger which achieved 99.5% accuracy compared
with a gold-standard one with 39 coarse-grained tags. This gives us a version of the
corpus, we called it PATBMC corpus, which is almost perfectly tagged (i.e. we used
here combined strategy I, which is explained in Figure 4.1a).

In the current experiments we will use MSTParser and three parsing algorithms for
MALTParser: MALTParser1, MALTParser2 using Stack swap-eager, which produces
non-projective graphs, and MALTParser3 using Planar. As with the gold-standard
corpus (see Figure 4.13 and Figure 4.12) the accuracy of the parsers increases as the
size of training set increases by using the same 16 sizes of training sets that were used
for gold-standard before. Also, MSTParser still works better than the others on these
datasets. Therefore, in the remaining experiments in this section, we will concentrate
on the LA of the parsers when the training set is 4000 sentences, which provides the
highest accuracy for each parser. The highest accuracy for each parser is explained in
Table 4.12 for PATBMC corpus with equivalent accuracy for the gold-standard corpus.
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Parser LA
Gold-standard PATBMC

MSTParser 82.8% 82.7%
MALTParser1, Nivre arc-eager 81.5% 81.4%
MALTParser2, Stack swap-eager 81.2% 81.1%
MALTParser3, Planar 81.1% 81%

Table 4.12: Highest LA for MSTParser, MALTParser1 and MALTParser2, gold-
standard and PATBMC corpora.

Because of the ambiguity in Arabic, parsing is difficult and the accuracy is lower
than for dependency parsing of many languages. It is thus even more important to find
ways of making the best possible use of the available resources. As we have shown
before, combining Arabic POS taggers gives better accuracy than each one in isolation.
We therefore try here to see how best to combine the parsers. To achieve this goal, we
used two approaches as explained below.

We will start our experiment with the three parsers: MSTParser, MALTParser1 and
MALTParser2. The first observation is that when the parsers agree on how to connect
(i.e. head) and label (i.e. DEPREL) a given item they are more likely to be right than
when they disagree. This is fairly obvious–as before, if you have a set of parsers which
assign different head and DEPREL to an item then at least one of them must be wrong.
Table 4.13 substantiates this observation–each row shows the precision, recall and F-
score for a particular pair of parsers simply taking cases where they agree and leaving
words on which they disagree without head or DEPREL. Thus the combination of
MSTParser and MALTParser1 achieves a precision of 89.4% and recall 72.1%. Table
4.14 shows what happens when we combine all three parsers, either taking the majority
view when at least two of them agree or demanding that all three agree (i.e. MSTParser,
MALTParser1 and MALTParser2). In the latter case we obtain a precision of 92.3%
and recall 67.2%.

Pair of parsers P R F-score
MSTParser+MALTParser1 89.4% 72.1% 0.799
MSTParser+MALTParser2 89.8% 73.2% 0.807
MALTParser1+MALTParser2 88.7% 71.8% 0.794

Table 4.13: Precision (P), recall (R) and F-score for combinations of pairs of parsers,
PATBMC corpus.
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Parser P R F-score
At least two parsers agree 84.8% 80.3% 0.825
Three parsers agree 92.3% 67.2% 0.778

Table 4.14: Precision (P), recall (R) and F-score for combinations of three parsers,
PATBMC corpus.

It is notable that the precision on the cases where they agree is considerably higher
than the accuracy of any parser in isolation. Furthermore, when we combine only two
parsers, we find that the combination of MSTParser with other parsers gives better pre-
cision than the accuracy of either parser in isolation, while combining MALTParser1

and MALTParser2 give lower precision, recall and F-score than other combinations of
two parsers.

On the other hand, combining three parsers where they agree gives better precision
than where at least two parsers agree and also for any combination of two parsers, but
with low recall and F-score.

4.3.2.1.1 Backoff strategies
In order to improve the accuracy (not the precision only) of parsing, we applied

three different combinations of experiments depending on voting. Our first proposal
was to take the majority view when at least two of the parsers agreed, and to backoff
to two different parsers (i.e. by taking the head from one parser and the DEPREL from
the other one) when there was no common view (Zeman and Žabokrtskỳ, 2005). The
second proposal is the same as the first one, except that we back off unless they all
agree, rather than doing so if they all disagree. We back off to two different parsers by
taking the head from one parser and the DEPREL from other one. The results of these
two proposals are shown in Table 4.15.

The results of these experiments show that the first proposal gives better LA re-
sults than the second one and than the highest LA for all parsers in isolation for both
PATBMC and gold-standard corpora. The second proposal, on the other hand, failed to
achieve the highest LA for all in isolation parsers.

The third proposal was to take the majority view when two of the parsers agreed,
and to backoff to the other parser (i.e. by taking both the head and the DEPREL from
a different parser) when there was no common view. The results of this proposal are
shown in Table 4.16.
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Backoff to LA
Head DEPREL At least two agree All agree
MSTParser MALTParser1 84.2% 79.6%
MSTParser MALTParser2 84.1% 79.8%
MALTParser1 MSTParser 83.8% 78.7%
MALTParser1 MALTParser2 83.6% 78.4%
MALTParser2 MSTParser 83.8% 79.3%
MALTParser2 MALTParser1 83.7% 78.5%

Table 4.15: LA of backoff to two parsers (MSTParser, MALTParser1 and
MALTParser2) using the first and the second proposals, PATBMC corpus.

Agree Backoff to LA
MSTParser+MALTParser1 MALTParser2 83.8%
MSTParser+MALTParser2 MALTParser1 83.7%
MALTParser1+MALTParser2 MSTParser 84.8%

Table 4.16: LA of backoff to other parser (MSTParser, MALTParser1 and
MALTParser2) where there is no agreement between two parsers, PATBMC corpus.

The results of this experiment show that the third proposal gives better results than
the highest accuracy for all parsers in isolation for both PATBMC and gold-standard
corpora (see Table 4.12). Also, the best result is generally obtained by combining
MALTParser1 and MALTParser2 parsers where they agree, backoff to MSTParser.
This technique achieved 84.8%, which is the highest LA for all experimental results in
the current thesis.

In the next experiments, we re-apply the previous three proposals for the three
MALTParsers only (i.e. MALTParser1, MALTParser2 and MALTParser2) to check if
these proposals still give positive results. The results of these experiments are shown
in Tables 4.17 and 4.18 respectively.

Again the results of first and third proposals give better results than the highest
accuracy for all MALTParsers in isolation for both PATBMC and gold-standard corpora
(see Table 4.12). Also, applying the first and third proposals for combining MSTParser
with MALTParsers gives better improvement in results than applying the same two
proposals for combining MALTParsers only.

In the next experiment, we used a new proposal that depends on majority vote
+ backoff to the most confident parser as well as only most confident parser instead
of majority vote + backoff to an arbitrary parser, just as we did with the taggers.
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Backoff to LA
Head DEPREL At least two agree All agree
MALTParser1 MALTParser2 82% 78.1%
MALTParser1 MALTParser3 81.9% 77.8%
MALTParser2 MALTParser1 82.8% 78.3%
MALTParser2 MALTParser3 82.8% 78.1%
MALTParser3 MALTParser1 81.8% 77.6%
MALTParser3 MALTParser2 81.6% 77.2%

Table 4.17: LA of backoff to two parsers (MALTParser1, MALTParser2 and
MALTParser3) where there is no agreement between at least two parsers, PATBMC
corpus.

Agree Backoff to LA
MALTParser1+MALTParser2 MALTParser3 81.6%
MALTParser1+MALTParser3 MALTParser2 82.3%
MALTParser2+MALTParser3 MALTParser1 82.1%

Table 4.18: LA of backoff to other parser (MALTParser1, MALTParser2 and
MALTParser3) where there is no agreement between two parsers, PATBMC corpus.

Therefore, for MSTParser, MALTParser1 and MALTParser2 we computed the statis-
tics about the correct head and the correct DEPREL of each POS tag in the ‘MC’
coarse-grained tagset (39 tags) where each parser agrees with the gold-standard. Ac-
cording to these confidence scores, we can decide how much each parser should be
trusted for each POS tag. We trained the parsers on 3000 sentences from the first
4000 sentences in the corpus and used the other 1000 sentences to compute confidence
scores using fourfold cross-validation. The highest LA for MSTParser, MALTParser1

and MALTParser2 is given in Table 4.19.

Parser LA
MSTParser 81.6%
MALTParser1 79.7%
MALTParser2 79.6%

Table 4.19: Highest LA for MSTParser, MALTParser1 and MALTParser2 for PATBMC
corpus, fourfold cross-validation with 4000 training sentences and 1000 testing sen-
tences.

Some POS tags with their trusted parser(s) for both head and DEPREL are given
in Table 4.20.
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POS tag Trusted parser(s) for head Trusted parser(s) for DEPREL
ADJ, NEG_PART MALTParser1 MALTParser1

CONJ, NOUN_PROP MSTParser MALTParser2

PV MALTParser2 MSTParser
DET+NOUN_PROP MALTParser2 MALTParser1

NOUN, IV MSTParser MSTParser
PRON MALTParser2 MALTParser2

PSEUDO_VERB MALTParser1 MSTParser, MALTParser2

Table 4.20: Some POS tags with trusted parsers(s) for head and DEPREL, PATBMC
corpus.

As shown in Table 4.20, we find that, for instance, MALTParser1 should be trusted
when the POS tag is ADJ or NEG_PART for both the head and the DEPREL, whereas
MALTParser2 should be trusted when the POS tag is PRON. On the other hand, in the
case where the POS tag is CONJ or NOUN_PROP MSTParser should be trusted for the
head only, whereas MALTParser2 should be trusted for the DEPREL. Also, in the case
of PSEUDO_VERB POS tag, MALTParser1 should be trusted for the head, whereas MST-
Parser or MALTParser2 for the DEPREL. The results of this experiment are shown in
Table 4.21.

Parser LA
MSTParser+MALTParser1, backoff to the most confident parser 80.1%
MSTParser+MALTParser2, backoff to the most confident parser 79.9%
MALTParser1+MALTParser2, backoff to the most confident parser 81.4%
At least two parsers agree, backoff to the most confident parser 81.9%
Three parsers agree, backoff to the most confident parser 79.7%
Most confident parser only 78.9%

Table 4.21: LA for backoff to the most confident parser, PATBMC corpus, fourfold
cross-validation with 4000 training sentences and 1000 testing sentences.

The above results show that combining parsers depending on the most confident
parser for each POS tag can produce accuracy better than each parser produces by
itself, but this is not the best of our combinations. The proposal when we took the
majority verdict if at least two parsers agreed and the most confident if all three parsers
gave different results gives a better result than others and than each parser in isolation.
Also, the proposal when we simply chose the most confident fails to give good re-
sults compared with the same proposal for combining POS taggers, which gives better
results for tagging.
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In Section 4.3.2.1, we have presented a parsing combining system, which uses
the output of different dependency parsers to combine their individual advantages and
compute a joint parse, which produces results for imperfectly tagged text with accu-
racy higher than the best individual parser’s accuracy for perfectly tagged text. We
have shown empirically that combining different parsers by voting techniques for im-
perfectly tagged text may produce considerable quality improvements over using indi-
vidual parsers in isolation. The confidence based combining technique that we used for
tagging, on the other hand, can produce better accuracy than each component produces
by itself, but does not beat the voting one.

From all the experiments described above, the best strategy was to use two versions
of MALTParser, and to backoff to MSTParser if they disagreed. This strategy achieved
84.8% accuracy, compared to the 82.7% achieved by MSTParser by itself (i.e. the best
parser in isolation). The strategy of relying on the most confident of the contributing
tools, which was extremely effective for tagging, did not work so well for parsing.

4.4 Combine taggers and parsers

Sections 4.2 and 4.3 describe combined strategy I (Figure 4.1a). Following this strat-
egy, we achieve 84.8% accuracy for dependency trees. We now turn to combined
strategy II (Figure 4.1b) to see whether this can improve on combined strategy I.

4.4.1 Experiments

The key question here is: if a tagger assigns tags with accuracy AT and a parser assigns
roles to words with accuracy AP, will the combination of the tagger and parser achieve
AT ×AP or more or less?

4.4.1.1 Individual combinations of parsers and taggers

In the current experiments we will concentrate on scores for labelled trees. In every
case the scores for unlabelled ones are about 2% higher, for all tagger:parser combina-
tions and training sets.

Table 4.22 shows the effects of combining the taggers and parsers. In both cases
we have included the results for the gold-standard tags as a benchmark.
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Parser Accuracy Gold-standard AMIRA MADA MXL MC

MSTParser
LA 82.8% 80.4% 81.3% 81.7% 82.7%
UA 84.2% 82.1% 83.3% 83.3% 84.1%

MALTParser1
LA 81.5% 78.1% 79.8% 79.3% 81.4%
UA 82.6% 79.5% 81.4% 80.4% 82.4%

Table 4.22: MSTParser and MALTParser1 accuracies, multiple taggers compared with
gold-standard tagging.

Both MSTParser and MALTParser1 do better when trained and tested with the
corpus tagged by our MC tagger than other taggers. Parsing with MC tagger gives
accuracies approximately similar to these with gold-standard for both parsers. This is
because MC tagger gives high tagging accuracy 99.5% compared with gold-standard
one. Also, these parsers do better on the corpus tagged by MADA or MXL than when
we used AMIRA, despite the fact that the three taggers achieve very similar scores
when viewed simply as taggers (AMIRA 95.3%, MADA 96.7% and MXL 95.6%).

We considered two possible causes for this difference: that it arises because of the
difference between the tagsets used by the taggers, or that it arises from the differences
in tokenisation.

Different tagsets: although the sizes of the two tagsets are similar, the nature of the
tags themselves is different. The MXL tags, which are a coarse-grained variant of
the tags used in the PATB itself, seem to provide more information about syntactic
relations than the AMIRA set. In particular, the fine-grained distinctions between sin-
gular and plural nouns, and between various verb forms, that AMIRA provides are not
actually very useful when trying to see whether two items are related.

It may be that the information about particles that MXL is sensitive to but AMIRA
is not is likely to be useful for parsing: knowing, for instance, that some particle ex-
pects the next item to be a verb-initial sentence, whereas another expects a subject-
initial sentence, may well be useful.

In order to see whether this was the cause of the difference, we used the version of
the AMIRA corpus that was constructed before in Section 4.2.1 (see page 101), which
has the same size as the gold-standard one, where all the tags were compatible with
the tags in the PATB, but where some were AMIRA refinements of the originals.

Using the gold-standard tags obtained directly from the PATB scores 82.8%, using
the AMIRA tagset scores 80.4%. The only differences are that where the PATB tag
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translates to an AMIRA tag, and the tag assigned by AMIRA is compatible with the
translation but is finer-grained, we have used the one assigned by AMIRA; and that
where several PATB tags translate to the same AMIRA tag (e.g. particles) we have
simply used the commonest translation. These results strongly suggest that the choice
of tags is significant, since in this experiment the two sets are compatible at every
point, but the AMIRA tags include fine-grained distinctions that are made by AMIRA
but not ones that are made in the PATB. Thus the decrease in accuracy of the parser
must be due solely to the loss of information that arises when we merge PATB tags.

Tokenisation: the other potential problem is that AMIRA’s tokeniser segments the
text differently from the way that it is segmented in the PATB. In the PATB, for in-
stance, the string ½Ë

	
YË lðlk “therefore” is treated as a single subordinating conjunc-

tion, whereas AMIRA breaks it into a preposition È l “for” and a determiner ½Ë
	
X

ðlk “that”. Similarly, in the PATB the string ú


Í ly “mine” is split into two tokens

(a preposition È l “for”, and a pronoun ø



y “me”), whereas AMIRA treats it as a
single proper noun. This caused us problems when trying to use AMIRA to tag the
treebank, since the leaves in the trees did not always correspond to tokens in the output
of AMIRA. The difference in tokenisation affected around 2% of tokens, so since the
parser performed around 2% worse with AMIRA than with the other taggers it seemed
plausible that this was the source of the discrepancy.

In order to investigate the effect of this problem, we produced a version of the
corpus where we replaced sequences where the PATB had a single token and AMIRA
had several by the hand-coded AMIRA equivalent of the PATB tag, and likewise where
the PATB had several tokens and AMIRA had one by the sequence of hand-coded
AMIRA equivalents of the PATB tags.

This gave us a version of the treebank that had the same number of tokens as the
original PATB, with as many items as possible given the tags assigned by AMIRA
and the others given hand-coded AMIRA equivalents of the original PATB tags. The
results suggest that this is not the source of the problem, since AMIRA produces almost
identical results (no difference to three significant figures) no matter whether its own
tokeniser or the tokenisation used in the PATB is used.

4.4.2 Merging combinations

A given tagger:parser combination will make errors. If two such combinations produce
different parents for some word, then at least one of them must be wrong. So if we
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take the output of two combinations and reject all instances of words where the two
suggest different parents for a word, we must improve the precision, because we will
be throwing away items where we know that one of the combinations has made a
mistake. The other one may, of course, have got the parent for this word right, but
since we cannot tell which has got it wrong and which has got it right, we have to
distrust the output of each. We will also decrease the recall, because there will now
be items for which we have discarded the parents suggested by the parsers, and hence
we will end up with no parent assigned to them. The question is: does the increase in
precision compensate for the decrease in recall?

If the sets of mistakes that were made by the two combinations were comple-
mentary, then the precision of the merged output would be 1 and the recall would
be 1− (w1 +w2), where wi is the error rate of combination i. The F-score for the
merge if the combinations have complementary distributions would thus be (1−(w1+

w2))/(1− (w1 +w2)/2). If, on the other hand, the two combinations made exactly the
same mistakes then the F-score for the merge would be (1−w1). In other words, for
combinations with similar accuracy, the highest precision will come if the errors they
make are complementary, and the highest F-score will come if they make identical
errors.

Table 4.23 shows the precision, recall and F-score for all possible pairs of combi-
nations of tagger:parser, e.g. that if you use MSTParser having tagged using AMIRA
and MALTParser1 having tagged using MADA then the precision is 89.3%, the recall
is 66.3% and the F-score is 0.761. This table includes cases where one or both the
parsers were combined with the gold-standard tags. These cases are greyed out, be-
cause in any real situation the gold-standard tags would not be available.

Table 4.23 roughly bears out the observations above. The best precision is gener-
ally obtained by using different taggers for each part of the combination (so the best
precision for AMIRA:MSTParser comes from merging it with MADA:MALTParser1,
the best for MXL:MSTParser comes from merging it with MADA:MALTParser1, and
the best for MADA:MSTParser from merging it with MXL:MALTParser1); and the
best F-score is generally obtained by using the same tagger with the two parsers.

The impetus for Section 4.4 arose from a simple query: what happens if you com-
bine a tagger whose accuracy is AT with a parser whose accuracy is AP? It turns out
that the answer is often better than AT ×AP. When, for instance, we combine MST-
Parser, for which we get an accuracy of 82.8% when using the gold-standard tags, and
MXL, whose accuracy is 95.6%, we get 81.7%, which is noticeably greater than the
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MSTParser with
tagger

MALTParser1
with tagger

P R F-score

gold-standard

gold-standard 89.3% 72.3% 0.799
AMIRA 87.5% 61.4% 0.722
MADA 90.5% 57.8% 0.705
MXL 89.8% 60.1% 0.720
MC 89.1% 72.1% 0.797

AMIRA

gold-standard 89% 58.5% 0.706
AMIRA 87.9% 69.1% 0.774
MADA 89.3% 66.3% 0.761
MXL 89% 68.4% 0.774
MC 89% 60.3% 0.719

MADA

gold-standard 89.4% 57.8% 0.702
AMIRA 85.3% 70.8% 0.774
MADA 88.6% 69.7% 0.780
MXL 88.9% 68.1% 0.771
MC 89.4% 57.8% 0.719

MXL

gold-standard 89.1% 59.9% 0.716
AMIRA 84.7% 73.2% 0.785
MADA 89.3% 67.7% 0.770
MXL 88.1% 57.6% 0.697
MC 89.1% 62.1% 0.732

MC

gold-standard 89.2% 72.1% 0.797
AMIRA 87.7% 61.9% 0.726
MADA 90.2% 58.2% 0.707
MXL 89.5% 60.7% 0.723
MC 89.4% 72.1% 0.798

Table 4.23: Precision (P), recall (R) and F-score for different tagger1: parser1+ tagger2:
parser2 combinations.

79.2% that you would expect if the errors simply compounded one another. It seems
as though the fact that the training set contains the same pattern of errors as the test set
automatically provides a degree of compensation.

Closer inspection shows that the nature of the tagsets has a substantial effect. Be-
cause MXL uses the PATB tagset, which was presumably chosen because it carried
the kind of information that is required for parsing, it interacted better with both the
parsers than AMIRA, which uses a general purpose tagset which is not tuned to this
task. The mismatch between AMIRA’s built-in tokeniser and the tokenisation in the
treebank caused us some technical problems, but does not seem to be a critical factor
in the accuracy of the combination of AMIRA with the two parsers.



CHAPTER 4. ARABIC LINGUISTIC ANALYSIS 137

We have also investigated the effects of merging the outputs of pairs of tagger:parser
combinations. The results here are broadly as expected–the precision of the combina-
tion is always better than the accuracy of either of the contributing pairs (which is
inevitable), and using a different tagger with each parser in the combination produces
the greatest improvement in precision (which is what we expected, but it needed con-
firmation).

The results above arise from investigating combinations of specific tools–four tag-
gers × two parsers. Are these results compromised by the fact that we chose these
specific tools, or are there general lessons to be learnt? The taggers all use different
mechanisms and different information, and the parsers also use substantially different
approaches. The fact that nonetheless we get fairly consistent results in Section 4.4.2
suggests that there may be some robustness about the conclusions. It seems that no
matter which tagger and which parser we use we get results that are better than you
would expect just by looking at the individual performance of the components. The
main result of the second set of experiments–that taking the combined output of two
different tagger:parser combinations improves the precision–is almost inevitable, but
there is a tendency for combinations that involve different taggers to achieve greater
precision than ones where the two parsers are combined with a single tagger.

It seems likely that this pattern would be repeated if other parsers or taggers were
used: mistakes made by a combination of a tagger Tr and a parser Pr could be caused
either by Tr or by Pr. If Tr is combined with some other parser Pr′, then the mistakes
caused by Tr will almost certainly arise again, and will not be spotted when the output

of the two combinations is merged, whereas a combination of another tagger Tr′ with
Pr′ will not repeat the mistakes introduced by Tr. Thus although our experiments
were limited to a specific set of tools and a specific language (as any experiments
must be) we believe that the results are likely to be applicable if other tools are used.
The critical issue is that the tools should be distinct, either using different principles or
different underlying data (training sets, rule sets), so that they do indeed make mistakes
in different places. This observation is likely to transfer to other languages, not just
other tools for handling Arabic. If you have multiple taggers and parsers which make
distinct mistakes (which is likely to happen if they are based on different principles or
use different features) then combining them will inevitably improve the precision and
is likely to also improve the F-score.
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4.5 Summary

In this chapter, we have described the performance of our preprocessing stage. We have
carried out a number of experiments with state-of-the-art taggers (AMIRA, MADA,
a home-grown tagger, MXL and our combined tagger, MC, which depends on the
most confident score with comparable accuracy) and parsers (notably MSTParser and
MALTParser with various parsing algorithms), using the PATB as training data. These
experiments show in particular the following main results:

• Our conversion from phrase structure to dependency trees allows parsers to perform
accurately even for long sentences exceeding 100 words (Alabbas and Ramsay,
2012a).

• Combining three different taggers using voting or a very simple approach, which
depends on the most confident score, can lead to significant improvements over the
best individual tagger (Alabbas and Ramsay, 2012d).

• Combining the output of multiple data-driven dependency parsers can produce
more accurate results, even for imperfectly tagged text, than each parser produces
by itself for texts with the gold-standard tags (Alabbas and Ramsay, 2011a).

• If you train and test with a flawed tagger and flawed parser, the parser may learn to
compensate for the errors made by the tagger (Alabbas and Ramsay, 2012b).

• Combining different tagger:parser pairs where each parser uses a different tagger
increases precision, as expected, but at the cost of decreasing recall (Alabbas and
Ramsay, 2012b).

In short, we have shown in this chapter that the combined strategy I (Sections 4.2
and 4.3) to combine taggers and parsers gives better accuracy compared to the com-
bined strategy II (Section 4.4) that gives better precision, which may be useful for some
tasks.



Chapter 5

Tree matching

5.1 Overview

Recently, comparison of tree-structured data is a growing interest in various diverse
areas such as image analysis, XML databases, automatic theorem proving, computa-
tional biology and NLP (Mehdad and Magnini, 2009). Tree edit distance (TED) is
considered to be one of the most effective techniques in this field. However, one of the
main drawbacks of TED is that transformation operations are applied solely on single
nodes. This problem is solved in the current work by updating TED to allow subtree
transformation operations as well. This makes the extended TED more effective and
flexible than the standard one, especially for applications that pay attention to relations
among nodes (e.g. deleting a modifier subtree, in linguistic trees, should be cheaper
than the sum of deleting its components individually).

As we have already mentioned, the TED algorithm developed by Zhang and Shasha
(1989), which forms the basis of our work, will be used in the current work to find the
matching between two dependency trees for Arabic text snippets (T and H). In this
section, different approaches for TED algorithms will be presented and the reason for
using Zhang-Shasha’s algorithm will be explained.

The tree edit distance metric is a common similarity measure for rooted ordered
trees. It is a generalisation of the well-known string edit distance problem, which
is to determine the distance between two strings by measuring the minimum cost of
edit operations needed to transform one string into the other. The edit operations are
deletion, insertion or exchanging of a single character. Generally, the edit distance
between two strings refers to the Levenshtein distance or linear distance introduced by
Levenshtein (1966). The pseudo-code of the Levenshtein distance algorithm is given

139
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in Algorithm 5.1.

Algorithm 5.1 Pseudo-code of Levenshtein distance algorithm
str1,str2 the first and second string respectively.
m and n the length of str1 and str2 respectively.
D table with m+1 rows and n+1 columns.
γ(str1[i]→∧) cost of deleting the ith character from str1

γ(∧→ str2[ j]) cost of inserting the jth character of str2 into str1

γ(str1[i]→ str2[ j]) cost of exchanging the ith character of str1 with the jth character of str2

1: D[0,0]← 0
2: for i← 0 to m do
3: D[i,0]← i
4: end for
5: for j← 0 to n do
6: D[0, j]← j
7: end for
8: for i← 1 to m do
9: for j← 1 to n do

10: D[i, j]]← min(D[i−1, j]]+ γ(str1[i]→∧), // deletion
11: D[i, j−1]]+ γ(∧→ str2[ j]), // insertion
12: D[i−1, j−1]+ γ(str1[i]→ str2[ j])) // changing
13: end for
14: end for
15: return D[m,n]

The Levenshtein distance solves the string edit distance problem by using dynamic
programming (Dasgupta et al., 2006; Cormen et al., 2009). It takes the main problem
and splits it into sub-problems, solving each sub-problem only once and remembering
the results in the matrix D for later. Then, it computes its solution bottom-up by syn-
thesising it from smaller sub-solutions and by trying several possibilities and choices
before it arrives at the optimal set of choices for the whole problem. The idea here is to
use the cheapest edit operations possible to transform one string to another. Typically,
each edit operation costs 1 except that exchanging similar items costs 0. So, the Lev-
enshtein distance does not calculate the similarity between two strings but the distance
in cost measures.

Tree edit operations such as delete, insert and exchange were proposed by Selkow
(1977) as an extension to the string edit operations used in the Levenshtein distance.
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Selkow implements a recursive algorithm for computing the minimum sequence of op-
erations that transforms one tree to another. In Selkow’s algorithm, delete and insert
operations are specific operations that are enabled solely on tree leaves, whereas ex-
change can be applied at every node. There is a nonnegative real cost associated with
each edit operations.

In contrast, Tai (1979) proposed an unrestricted edit model. This author uses a
dynamic programming algorithm to solve the tree-to-tree correction problem between
two trees. Tai’s algorithm runs in O(m3n3) time and space for trees T1 and T2 with
m and n nodes respectively. All trees are considered to be rooted, ordered and la-
beled. The root is the first node that is visited and the subtrees are then traversed in
preorder. This algorithm is an extension of a string-to-string correction algorithm that
was proposed by Wagner and Fischer (1974). Tai’s algorithm uses the following basic
operations: (i) exchanging a node’s label; (ii) deleting a node other than the root, i.e.
all the children of a deleted node become the children of the parent of that node; and
(iii) inserting a node, i.e. an inserted node becomes a parent to some or all the sequence
in the left to right order of its parent.

Subsequently, Zhang and Shasha (1989) improved Tai’s algorithm and obtained
O(m2n2) time and O(mn) space. These authors presented an efficient technique that
is based on dynamic programming to calculate the approximate tree matching for two
rooted postordered trees. Approximate tree matching allows users to match a tree with
solely some parts of another tree not a whole. In this algorithm, for all the offspring
of each node, the lowest cost mapping has to be calculated before the node is met.
Hence, the least cost mapping can be chosen right away. For this purpose, the algorithm
pursues the keyroots of the tree, which are a set that includes all nodes having a left
sibling as well as the root of the tree. Accordingly, the number of keyroots must be
identical to the sum of leaves in the tree.

Klein (1998) improves Zhang-Shasha’s algorithm using heavy paths (Sleator and
Tarjan, 1983) to decompose the larger tree and obtains O(n2m log m) time and space,
which means his algorithm requires less time but more space than Zhang-Shasha’s
algorithm. A heavy path of a tree is a path that starts at the root and goes from each
vertex v to the child of v whose subtree contains the largest number of vertices. His
algorithm uses Euler strings to encode the trees. The Euler string of an ordered and
rooted tree T is a string generated as follows: replace each edge {x,y} of T by darts,
which are two oppositely directed arcs (x,y) and (y,x) (e.g. for a dart a in Figure 5.1,
the oppositely directed arc corresponding to this dart will be a′). Then, an Euler tour
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of the darts of T is defined by the depth-first search traversal of T (visiting each node’s
children according to their order).

a

b

c

d

a

a’

b

c

b’

c’
aa’cbb’c’

Figure 5.1: Constructing Euler string for a tree.

This algorithm depends on dynamic programming to calculate the edit distance be-
tween two trees T1 and T2 as shown in Figure 5.2, where dist(s, t) is the edit distance
between two substrings s and t, E(T ) is the Euler string of T , and E∗(T ) is the Euler
string of T , interpreted as a cyclic string. Note that the string edit distance here is not
an ordinary problem because the Euler string has a pair of darts (e.g. a and a′) which
affects the edit distance calculation.

• If T2 is an unrooted tree, root it arbitrarily.

• Find a heavy-path decomposition of T2, and then identify the relevant
substrings of each special subtree of T2.

• By dynamic programming, calculate dist(s, t) for every substring s of the
cyclic string E∗(T1) and every relevant substring t of T2.

• For the rooted distance, output dist(s′, t ′), where s′ = E(T1) and t ′ = E(T2).

• For the unrooted distance, output mins∈R(T1)dist(s, t ′), where t ′ = E(T2) (note
that the min is over all Euler strings of rooted versions of T1).

Figure 5.2: Klein’s tree edit distance algorithm (Klein, 1998).

The difference between Klein’s algorithm and Zhang-Shasha’s algorithm lies in
the set of subforests that are involved in the decomposition (Dulucq and Touzet, 2005).
This leads to different time complexities in worst case (i.e. O(n3 log n) in Klein’s algo-
rithm compared with O(n4) in Zhang-Shasha’s algorithm). Nevertheless, this does not
necessarily mean that Klein’s method is better than Zhang-Shasha’s method, because
each algorithm’s performance depends on the shape of the two trees to be compared.
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In Figure 5.3, to transform the tree Tx into Ty, for instance, Klein’s solution requires 84
different recursive calls, whereas the Zhang-Shasha’s solution requires just 72 (Dulucq
and Touzet, 2005).

Tx Ty

Figure 5.3: Two trees, Tx and Ty.

Demaine et al. (2009) develop the first worst-case optimal algorithm for computing
the tree edit distance between two rooted ordered trees. These authors also use heavy
paths, but differ from Klein’s method by switching the trees such that the larger subtree
is decomposed in each recursive step. Their algorithm runs in O(n2m(1+logm

n )) time
and O(mn) space. These authors show a solution for binary trees and explain how to
extend their solution to general trees.

Recently, Pawlik and Augsten (2011) show that the efficiency of the previous al-
gorithms for computing the tree edit distance heavily depends on the tree shape and
runs into their worst cases for some data instances. These authors generalise the pre-
vious methods and develop a new algorithm called robust tree edit distance (RTED)
with O(n3) time (with n > m) and O(mn) space. Their algorithm is efficient for all tree
shapes. Also, it never runs in the worst case if a best solution exists.

We have chosen to work with Zhang-Shasha’s algorithm because the intermediate
structures produced by this algorithm allow us to detect and respond to operations on
subtrees.

5.2 Zhang-Shasha’s TED algorithm

Zhang-Shasha’s TED algorithm (we will refer, henceforth, to this algorithm as ZS-
TED) is considered an efficient technique based on dynamic programming to calculate
the approximate tree matching for two rooted ordered trees. Ordered trees are trees in
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which the left-to-right order among siblings is significant. Approximate tree matching
allows us to match a tree with just some parts of another tree. There are three oper-
ations, namely deleting, inserting and exchanging a node, which can transform one
ordered tree to another. Deleting a node x means attaching its children to the parent of
x. Insertion is the inverse of deletion. This means an inserted node becomes a parent
of a consecutive subsequence in the left to right order of its parent. Exchanging a node
alters its label. Each operation is associated with a nonnegative real cost. These costs
are exchanged to match the requirements of specific applications. All these editing
operations are illustrated in Figure 5.4 (Bille, 2005).

l1 l2

(a) An exchanging of the node label (l1→ l2).

l1 l1

l2

(b) Deleting the node labeled (l2→∧).

l1 l1

l2

(c) Inserting a node labeled l2 as the child of the
node labeled l1 (∧→ l2).

Figure 5.4: Tree edit operations.

In ZS-TED, tree nodes are compared using a left-to-right postorder traversal, which
visits the nodes of a tree starting with the leftmost leaf descendant of the root and
proceeding to the leftmost descendant of the right sibling of that leaf, the right siblings,
and then the parent of the leaf and so on up the tree to the root. The last node visited
will always be the root. An example of the postorder traversal and the leftmost leaf
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descendant of a tree is shown in Figure 5.5. In this figure, there are two trees, T1 with
m=6 nodes and T2 with n=6 nodes. The subscript for each node is considered the
order of this node in the postorder of the tree. So, the postorder of T1 is a,b,c,e,d,f and
the postorder for T2 is b,c,a,e,d,f. The leftmost leaf descendant of the subtrees of T1

headed by the nodes a,b,c,e,d,f are 1,2,1,4,1,1 respectively, and similarly the leftmost
leaf descendant of b,c,a,e,d,f in T2 are 1,1,3,3,1,1.

f6

d5

c3

a1 b2

e4

f6

d5

c2

b1

e4

a3

T1 T2

Figure 5.5: Two trees T1 and T2 with their left-to-right postorder traversal (the sub-
scripts) and keyroots (bold items).

For all the descendants of each node, the least cost mapping has to be calculated
before the node is encountered, in order that the least cost mapping can be selected
right away. To achieve this, the algorithm pursues the keyroots of the tree, which are
defined as a set that contains the root of the tree plus all nodes having a left sibling.
Concentrating on the keyroots is critical to the dynamic nature of the algorithm, since
it is the subtrees rooted at keyroots that allow the problem to be split into independent
subproblems of the same general kind. The keyroots of a tree are decided in advance,
permitting the algorithm to distinguish between tree distance (the distance between
two nodes when considered in the context of their left siblings in the trees T1 and
T2) and forest distance (the distance between two nodes considered separately from
their siblings and ancestors but not from their descendants) (Kouylekov, 2006). For
illustration, the keyroots in each tree in Figure 5.5 are marked in bold.

For each node, the computation to find the least cost mapping (the tree distance)
between a node in the first tree and one in the second depends solely on mapping the
nodes and their children. To find the least cost mapping of a node, then, one needs
to recognise the least cost mapping from all the keyroots among its children, plus the
cost of its leftmost child. Because the nodes are numbered according to the postorder
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traversal, the algorithm proceeds in the following steps (Kouylekov, 2006): (i) the
mappings from all leaf keyroots are determined; (ii) the mappings for all keyroots at
the next higher level are decided recursively; and (iii) the root mapping is found. Al-
gorithm 5.2 shows the pseudo-code of ZS-TED (Zhang and Shasha, 1989).

Algorithm 5.2 Pseudo-code of ZS-TED.
T[i] the ith node of T, labeled in postorder
l(i) the leftmost leaf descendant of the subtree rooted at i
K(T) the keyroots of tree T, K(T) = {k ∈T|¬∃ k1 >k with l(k1) = l(k)}
/0 a null tree
FD[T1[i, i1],T2[ j, j1]] the forest distance from nodes i to i1 in T1 to nodes j to j1 in T2, if i< i1

then T1[i, i1] = /0.
γ(T1[i]→∧) cost of deleting the ith node from T1
γ(∧→ T2[ j]) cost of inserting the jth node of T2 into T1
γ(T1[i]→ T2[ j]) cost of exchanging the ith node of T1 with the jth node of T2
m and n the number of nodes in T1 and T2 respectively
|X | the length of X (i.e. the number of nodes in X, e.g. |T1|= m)
min function return minimum item among three items.

1: compute l1(m), l2(n),K1(T1),K2(T2)
2: for x← 1 to |K1(T1)| do
3: for y← 1 to |K2(T2)| do
4: FD[ /0, /0]← 0
5: for i← l1(x) to x do
6: FD[T1[l1(x), i], /0]← FD[T1[l1(x), i−1], /0]+ γ(T1[i]→∧)
7: end for
8: for j← l2(y) to y do
9: FD[ /0,T2[l2(y), j]]← FD[ /0,T2[l2(y),y−1]]+ γ(∧→ T2[ j])

10: end for
11: for i← l1(x) to x do
12: for j← l2(y) to y do
13: if (l1(i) == l1(x)and l2( j) == l2(y)) then
14: FD[T1[l1(x), i],T2[l1(y), j]]← min(
15: FD[T1[l1(x), i−1],T2[l2(y), j]]+ γ(T1[i]→∧),
16: FD[T1[l1(x), i],T2[l2(y), j−1]]+ γ(∧→ T2[ j]),
17: FD[T1[l1(x), i−1],T2[l2(y), j−1]]+ γ(T1[i]→ T2[ j]))
18: D[i, j]← FD[T1[l1(x), i],T2[l2(y), j]]
19: else
20: FD[T1[l1(x), i],T2[l1(y), j]]← min(
21: FD[T1[l1(x), i−1],T2[l2(y), j]]+ γ(T1[i]→∧),
22: FD[T1[l1(x), i],T2[l2(y), j−1]]+ γ(∧→ T2[ j]),
23: FD[T1[l1(x), i−1],T2[l2(y), j−1]]+D[i, j])
24: end if
25: end for
26: end for
27: end for
28: end for
29: return D[m,n]
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5.3 Extended TED with subtrees

The main weakness of ZS-TED is that it is not able to do transformations on subtrees
(i.e. delete subtree, insert subtree and exchange subtree). The output of ZS-TED is
the lowest cost sequence of operations on single nodes. We extend this to find the
lowest cost sequence of operations on nodes and subtrees. This algorithm, which we
call extended TED (ETED), is defined as follows:

1. Run ZS-TED and compute the standard alignment from the results, according to
Algorithm 5.3 (Section 5.3.1).

2. Go over the alignment and group subtree operations. Where a sequence of identical
operations applies to a set of nodes comprising a subtree, they are replaced by a
single operation, whose cost is determined by some appropriate function of the
costs of the individual nodes, according to Algorithm 5.4 (Section 5.3.2). A variety
of functions could be applied here, depending on the application.

It should be noted here that while we apply this technique to modify ZS-TED
O(n4), it could also be applied to any other algorithm for finding tree edit distance, e.g.
Klein’s O(n3logn) algorithm (Klein, 1998), Demaine et al. O(n3) algorithm (Demaine
et al., 2009) or RTED O(n3) algorithm (Pawlik and Augsten, 2011), since the extension
operates on the output of the original algorithm. The additional time cost of O(n2) is
negligible since it is less than the time cost for any available TED algorithm.

5.3.1 Find a sequence of edit operations

In order to find the sequence of edit operations that transforms one tree into another, the
computation proceeds as follows: ZS-TED contains two matrices D and FD. These
matrices D and FD are used for recording the results of individual subproblems: D

is used to store the tree distance between trees rooted at pairs of nodes in the two
trees, and FD is used to store the ‘forest distance’ between sequences of nodes. FD

is used as a temporary store while the tree edit distance between pairs of keyroots is
being calculated. We have extended the standard algorithm, which computes the cost

of the cheapest edit sequence, so that it also records the edit operations themselves
(Algorithm 5.3). This involves adding two new matrices, DPATH and FDPATH, to
hold the appropriate sequences of edit operations–DPATH to hold the edit sequences
for trees rooted at pairs of nodes and FDPATH to hold the edit sequences for forests. D
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and DPATH are permanent arrays, whereas FD and FDPATH are reinitialised for each
pair of keyroots.

Algorithm 5.3 Pseudo-code of ZS-TED with edit sequences
T [i, j] ith to jth nodes in the postorder enumeration of tree T (T [i, i] is written T [i])
l(i) the leftmost leaf descendant of the subtree rooted at i
K(T ) the keyroots of tree T,K(T ) = {k ∈ T : ¬∃k1 > k with l(k1) = l(k)}
D[i, j] the tree distance between two nodes T1[i] and T2[ j]
FD[T1[i, i1],T2[ j, j1]] the forest distance from nodes i to i1 in T1 to nodes j to j1 in T2
DPAT H[i, j] edit sequence for trees rooted at two nodes T1[i] and T2[ j]
FDAT H[T1[i, i1],T2[ j, j1]] edit sequence for forests covered by nodes i to i1 in T1 to nodes j to j1 in T2
γ(T1[i]→∧) cost of deleting the ith node from T1
γ(∧→ T2[ j]) cost of inserting the jth node of T2 into T1
γ(T1[i]→ T2[ j]) cost of exchanging the ith node of T1 with the jth node of T2
m,n the number of nodes in T1 and T2 respectively
best choose the best cost and path from a set of options

1: for x← 1 to |K1(T1)| do
2: for y← 1 to |K2(T2)| do
3: FD[ /0, /0]← 0
4: FDPAT H[ /0, /0]← “ ”
5: for i← l1(x) to x do
6: FD[T1[l1(x), i], /0]← FD[T1[l1(x), i-1], /0]+ γ(T1[i]→∧)
7: FDPAT H[T1[l1(x), i], /0]← FDPAT H[T1[l1(x), i-1], /0]+ “d”
8: end for
9: for j← l2(y) to y do
10: FD[ /0,T2[l2(y), j]]← FD[ /0,T2[l2(y),y-1]]+ γ(∧→ T2[ j])
11: FDPAT H[ /0,T2[l2(y), j]]← FDPAT H[ /0,T2[l2(y),y-1]]+ “i”
12: end for
13: for i← l1(x) to x do
14: for j← l2(y) to y do
15: if (l1(i) == l1(x)and l2( j) == l2(y)) then
16: cost, path← best({FD[T1[l1(x), i-1],T2[l2(y), j]]+ γ(T1[i]→∧),
17: FDPAT H[T1[l1(x), i-1],T2[l2(y), j]]+ “d”},
18: {FD[T1[l1(x), i],T2[l2(y), j-1]]+ γ(∧→ T2[ j]),
19: FDPAT H[T1[l1(x), i],T2[l2(y), j-1]]+ “i”},
20: {FD[T1[l1(x), i-1],T2[l2(y), j-1]]+ γ(T1[i]→ T2[ j])),
21: FDPAT H[T1[l1(x), i-1],T2[l2(y), j-1]]+ “m”/“x”})
22: FD[T1[l1(x), i],T2[l2(y), j]]← cost
23: D[i, j]← cost
24: FDPAT H[T1[l1(x), i],T2[l2(y), j]]← path
25: DPAT H[i, j]← path
26: else
27: cost, path← best({FD[T1[l1(x), i-1],T2[l2(y), j]]+ γ(T1[i]→∧),
28: FDPAT H[T1[l1(x), i-1],T2[l2(y), j]]+ “d”},
29: {FD[T1[l1(x), i],T2[l2(y), j-1]]+ γ(∧→ T2[ j]),
30: FDPAT H[T1[l1(x), i],T2[l2(y), j-1]]+ “i”},
31: {FD[T1[l1(x), i-1],T2[l2(y), j-1]]+D[i, j]),
32: FDPAT H[T1[l1(x), i-1],T2[l2(y), j-1]]+DPAT H[i][ j]})
33: FD[T1[l1(x), i],T2[l1(y), j]]← cost
34: FDPAT H[T1[l1(x), i],T2[l1(y), j]]← path
35: end if
36: end for
37: end for
38: end for
39: end for
40: return D[n,m],DPAT H[n,m]

The algorithm iterates over keyroots, and is split into two main stages for each pair
of keyroots: the initialisation phase (lines 3–12) deals with the first row and column,
where we assume that every cell in the first row is reached by appending the insert
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operation “i” to the cell to its left and every cell in the first column is reached by
appending the delete operation “d” to the cell above it, with appropriate costs. This
is exactly parallel to the initialisation of the standard dynamic time warping algorithm
for calculating string edit distance, as though we were treating the task of matching the
subsets of the subtrees rooted at T1[x] and T2[y] as a string matching problem between
the nodes in these two trees as sequences enumerated in postorder.

The second stage (lines 13–37) traces the cost and edit sequence for transforming
each sub-sequence of the sequence of nodes dominated T1[x] to each sub-sequence of
the sequence of nodes dominated T2[x], by considering whether the nodes in these were
reached from the cell to the left by an insert, or from the cell above by a delete, or by
the cell diagonally above and left by either a match “m” or an exchange “x”. There are
two cases to be considered here:

(i) If the two sequences under consideration are both trees (tested at line 15), then
we know that we have considered every possible way of exchanging one into the
other, and hence we can record the cost in both FD and D, and the edit sequence
in both FDPATH and DPATH. In this case, we calculate the cost of moving along
the diagonal by inspection of the two nodes. See Figure 5.6 for an illustration of
this notion.

(ii) If one or both of the sequences is a forest we retrieve the cost of moving along
the diagonal from DPATH, and we just store the costs in FD and FDPATH.

i-1,j-1

i,j-1 i,j

i-1,j

i

dx/m

Figure 5.6: The edit operation direction used in our algorithm. Each arc that implies
an edit operation is labeled: “i” for an insertion, “d” for deletion, “x” for exchanging
and “m” for no operation (matching).

In both cases, we gather the set of {cost,path} pairs that result from considering
insert/delete/exchange operations on the preceding sub-sequences, and choose the best
such pair to store in the various arrays. This is again very similar to the corresponding
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element of the string edit algorithm, with the added complication that calculating the
tree edit costs and sequences for a pair of keyroots involves calculating the costs and
edit sequences for all pairs of sub-sequences of the nodes below those roots. The results
for pairs of keyroots are stored permanently, and are utilised during the calculations for
sub-sequences at the next stage.

Figure 5.7 illustrates the intuition of how to compute this optimal path for T1 and
T2 trees in Figure 5.5. In this figure, the cells representing concordance of the optimal
sequence of edit operations that transform T1 into T2 are highlighted in red (the bold
character in the cells of FDPATH array (Figure 5.7b) represents the current edit oper-
ation), whereas the final optimal path is the last cell (at final row and column).

T2 b c a e d f

T1 0 ↑ 1 ↑ 2 ↑ 3 ↑ 4 ↑ 5 ↑ 6

a d
...

...
...

...
...

...

1
... 1

... 2
... 2

... 3
... 4

... 5

b → m
...

...
...

...
...

2 1
... 2

... 3
... 4

... 5
... 6

c · · · · · · 99K m
...

...
...

...

3 2 1 i 2
... 3

... 4
... 5

e · · · · · · · · · · · · · · · · · · · · · 99K m
...

...

4 3 2 2 2
... 3

... 4

d · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 99K m
...

5 4 3 3 3 2 3
f · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 99K m

6 5 4 4 4 3 2

(a). Temporary array FD
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T2 b c a e d f

T1 - i ii iii iiii iiiii iiiiii
a d x xi iim iimi iimii iimiii
b dd dm dmi dmii dmiii dmiiii dmiiiii
c ddd dmd dmm dmmi dmmii dmmiii dmmiiii
e dddd dmdd dmmd dmmx dmmim dmmimi dmmimii
d ddddd dmddd dmmdd dmmxd dmmimd dmmimm dmmimmi
f dddddd dmdddd dmmddd dmmxdd dmmimdd dmmimmd dmmimmm

(b). FDPATH array

Figure 5.7: Computing the optimal path for the two trees in Figure 5.5.

The mapping between two trees can be found from the final sequence of edit oper-
ations by mapping the nodes corresponding to match operation ‘m’ only.

In order to find the complexity for ZS-TED with the sequence of edit operations, let
us consider the space complexity first. ZS-TED (Algorithm 5.2) uses a permanent array
for D and a temporary array for FD. Each of these two arrays requires space O(mn).
So, the space complexity for ZS-TED is O(mn). In ETED, we use two permanent
arrays for D and DPATH and two temporary arrays for FD and FDPATH. Each of
these four arrays requires space O(mn). So, the space complexity for ZS-TED with
our updating is still O(mn).

Consider the time complexity for ZS-TED with our updating. ZS-TED has time
complexity equal to O(m2n2). Algorithm 5.3 shows our added rules to ZS-TED. At
each point, a constant time operation in the original has been changed to a new constant
time operation. There is thus no change in the time complexity. This means time
complexity is still O(m2n2).

In short, the space and time complexities of ZS-TED with our updating to find the
sequence of edit operations are still the same as the space and time complexities of the
standard one.

5.3.1.1 Complete example

As an example to apply ZS-TED that is shown in Algorithm 5.2, consider the two trees
in Figure 5.5. For simplicity, we assume that the cost of each single operation will be
1 except matching will cost 0, as in Zhang and Shasha (1989). The results of applying
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this algorithm step-by-step are shown below, where ‘d’, ‘i’, ‘m’ and ‘x’ correspond to
deleting a node, inserting a node, matching a node and exchanging a node respectively.

Loop 0:

1 2 3 4 5 6 1 2 3 4 5 6
l1= 1 2 1 4 1 1 l2= 1 1 3 3 1 1

1 2 3 1 2
K1= 2 4 6 K2= 4 6

↑ ↑
x y

x = 1→ i = K1[x] = 2→ l1[i] = 2
y = 1→ j = K2[y] = 4→ l2[ j] = 3

Therefore, in this loop ZS-TED computes the distance between the following forests
(T1[2−2] = b) and (T2[3−4] = a,e) which are shown in Figure 5.8.

•

•

•

• b2

•

•

•

•

•

e4

a3

T1 T2

Figure 5.8: Selected forest for loop 0.
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j= 3 4 1 2 3 4 5 6
i= 0 1 2 1
2 1 1 2 2 1 2

3
4
5
6

temporary array FD permanent array D

where items in red mean l1(i) = l1(x) and l2( j) = l2(y).

T2 a e

T1 - i ii
b d x xi

FDPATH array

Loop 1:

1 2 3 4 5 6 1 2 3 4 5 6
l1= 1 2 1 4 1 1 l2= 1 1 3 3 1 1

1 2 3 1 2
K1= 2 4 6 K2= 4 6

↑ ↑
x y

x = 1→ i = K1[x] = 2→ l1[i] = 2
y = 2→ j = K2[y] = 6→ l2[ j] = 1

Therefore, in this loop ZS-TED computes the distance between the following forests
(T1[2−2] = b) and (T2[1−6] = b,c,a,e,d, f ) which are shown in Figure 5.9.
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•

•

•

• b2

•

f6

d5

c2

b1

e4

a3

T1 T2

Figure 5.9: Selected forest for loop 1.

j= 1 2 3 4 5 6 1 2 3 4 5 6
i= 0 1 2 3 4 5 6 1
2 1 0 1 2 3 4 5 2 0 1 1 2 4 5

3
4
5
6

temporary array FD permanent array D

where items in red mean l1(i) = l1(x) and l2( j) = l2(y).

T2 b c a e d f
T1 - i ii iii iiii iiiii iiiiii
b d m mi mii miii miiii miiiii

FDPATH array
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Loop 2:

1 2 3 4 5 6 1 2 3 4 5 6
l1= 1 2 1 4 1 1 l2= 1 1 3 3 1 1

1 2 3 1 2
K1= 2 4 6 K2= 4 6

↑ ↑
x y

x = 2→ i = K1[x] = 4→ l1[i] = 4
y = 1→ j = K2[y] = 4→ l2[ j] = 3

Therefore, in this loop ZS-TED computes the distance between the following forests
(T1[4−4] = e) and (T2[3−4] = a,e) which are shown in Figure 5.10.

•

•

•

• •

e4

•

•

•

•

e4

a3

T1 T2

Figure 5.10: Selected forest for loop 2.
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j= 3 4 1 2 3 4 5 6
i= 0 1 2 1
4 1 1 1 2 0 1 1 2 4 5

3
4 1 1
5
6

temporary array FD permanent array D

where items in red mean l1(i) = l1(x) and l2( j) = l2(y).

T2 a e

T1 - i ii
e d x im

FDPATH array

Loop 3:

1 2 3 4 5 6 1 2 3 4 5 6
l1= 1 2 1 4 1 1 l2= 1 1 3 3 1 1

1 2 3 1 2
K1= 2 4 6 K2= 4 6

↑ ↑
x y

x = 2→ i = K1[x] = 4→ l1[i] = 4
y = 2→ j = K2[y] = 6→ l2[ j] = 1

Therefore, in this loop ZS-TED computes the distance between the following forests
(T1[4−4] = e) and (T2[1−6] = b,c,a,e,d, f ) which are shown in Figure 5.11.
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•

•

•

• •

e4

f6

d5

c2

b1

e4

a3

T1 T2

Figure 5.11: Selected forest for loop 3.

j= 1 2 3 4 5 6 1 2 3 4 5 6
i= 0 1 2 3 4 5 6 1
4 1 1 2 3 3 4 5 2 0 1 1 2 4 5

3
4 1 2 1 1 4 5
5
6

temporary array FD permanent array D

where items in red mean l1(i) = l1(x) and l2( j) = l2(y).

T2 b c a e d f

T1 - i ii iii iiii iiiii iiiiii
e d x xi xii iiim iiimi iiimii

FDPATH array
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Loop 4:

1 2 3 4 5 6 1 2 3 4 5 6
l1= 1 2 1 4 1 1 l2= 1 1 3 3 1 1

1 2 3 1 2
K1= 2 4 6 K2= 4 6

↑ ↑
x y

x = 3→ i = K1[x] = 6→ l1[i] = 1
y = 1→ j = K2[y] = 4→ l2[ j] = 3

Therefore, in this loop ZS-TED computes the distance between the following forests
(T1[1−6] = a,b,c,e,d, f ) and (T2[3−4] = a,e) which are shown in Figure 5.12.

f6

d5

c3

a1 b2

e4

•

•

•

•

e4

a3

T1 T2

Figure 5.12: Selected forest for loop 4.
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j= 3 4 1 2 3 4 5 6
i= 0 1 2 1 0 1
1 1 0 1 2 0 1 1 2 4 5
2 2 1 2 3 2 2
3 3 2 2 4 1 2 1 1 4 5
4 4 3 3 5 4 4
5 5 4 4 6 5 5
6 6 5 5

temporary array FD permanent array D

where items in red mean l1(i) = l1(x) and l2( j) = l2(y).

T2 a e

T1 - i ii
a d m mi
b dd md mdi
c ddd mdd mdx
e dddd mddd mdxd
d ddddd mdddd mdxdd
f dddddd mddddd mdxddd

FDPATH array

Loop 5:

1 2 3 4 5 6 1 2 3 4 5 6
l1= 1 2 1 4 1 1 l2= 1 1 3 3 1 1

1 2 3 1 2
K1= 2 4 6 K2= 4 6

↑ ↑
x y

x = 3→ i = K1[x] = 6→ l1[i] = 1
y = 2→ j = K2[y] = 6→ l2[ j] = 1
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Therefore, in this loop ZS-TED computes the distance between the following forests
(T1[1− 6] = a,b,c,e,d, f ) and (T2[1− 6] = b,c,a,e,d, f ) which are shown in Figure
5.13.

f6

d5

c3

a1 b2

e4

f6

d5

c2

b1

e4

a3

T1 T2

Figure 5.13: Selected forest for loop 5.

j= 1 2 3 4 5 6 1 2 3 4 5 6
i= 0 1 2 3 4 5 6 1 1 2 0 1 4 5
1 1 1 2 2 3 4 5 2 0 1 1 2 4 5
2 2 1 2 3 4 5 6 3 2 1 2 2 4 5
3 3 2 1 2 3 4 5 4 1 2 1 1 4 5
4 4 3 2 2 2 3 4 5 4 3 4 4 2 3
5 5 4 3 3 3 2 3 6 5 4 5 5 3 2
6 6 5 4 4 4 3 2

temporary array FD permanent array D

where items in red mean l1(i) = l1(x) and l2( j) = l2(y).
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T2 b c a e d f

T1 - i ii iii iiii iiiii iiiiii
a d x xi iim iimi iimii iimiii
b dd dm dmi dmii dmiii dmiiii dmiiiii
c ddd dmd dmm dmmi dmmii dmmiii dmmiiii
e dddd dmdd dmmd dmmx dmmim dmmimi dmmimii
d ddddd dmddd dmmdd dmmxd dmmimd dmmimm dmmimmi
f dddddd dmdddd dmmddd dmmxdd dmmimdd dmmimmd dmmimmm

FDPATH array

So, the final distance is 2 which represents the final values (at final row and column)
in the D array. The last value in the DPATH array represents the final sequence of edit
operations, which is: dmmimmm. According to this path, we can define an alignment

between two postorder trees. The alignment between two trees T1 and T2 is obtained
by inserting a gap symbol (‘_’) into either T1 or T2, according to the type of edit op-
eration, so that the resulting strings S1 and S2 are the same length as the sequence of
edit operations. The gap symbol is inserted into S2 when the edit operation is delete
(‘d’), whereas it is inserted in S1 when the edit operation is insert (‘i’). Otherwise, the
nodes of T1 and T2 are inserted into S1 and S2 respectively. The following is an optimal
alignment between T1 (a,b,c,e,d,f ) and T2 (b,c,a,e,d,f ):

S1: a b c _ e d f

d m m i m m m
S2: _ b c a e d f

This means:

d: Delete (a) from T1

m: Leave (b) without change
m: Leave (c) without change

i: Insert (a) into T1

m: Leave (e) without change
m: Leave (d) without change
m: Leave (f ) without change
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The final mapping between T1 and T2 is shown in Figure 5.14. For each mapping
figure the insertion, deletion, matching and exchanging operations are shown with sin-
gle, double, single dashed and double dashed outline respectively. The matching nodes
(or subtrees) are linked with dashed arrows.

f6 f6

d5

c3 e4

b2a1

f6

d5

e4c2

b1 a3

Figure 5.14: T1 and T2 mapping, single edit operations.

5.3.2 Find a sequence of subtree edit operations

Extending ZS-TED to cover subtree operations will give us more flexibility when com-
paring trees (especially linguistic trees). The key to this algorithm is that we have to
find maximal sequences of identical edit operations which correspond to subtrees. A
sequence of nodes (in our case, more than one) in postorder corresponds to a subtree
if the following conditions are satisfied: (i) the first node is a leaf; and (ii) the left-
most sibling of the last node in the sequence (i.e. the root of a subtree) is the same
as the first node in the sequence. These two conditions can be checked in constant
time, since the leftmost sibling of a node can be determined for each node in advance.
We can hence find maximal sequences corresponding to subtrees by scanning forwards
through the sequence of node operations to find sequences of identical operations, and
then scanning backwards through such a sequence until we find the point at which
it covers a subtree. This involves potentially O(n2) steps–n forward steps to find se-
quences of identical operations, and then possibly n-1 backward steps each time to find
sub-sequences corresponding to subtrees. As an example, the sequence of nodes a,b,c

in tree T1 in Figure 5.5 is a subtree because a is a leaf and the leftmost of the last node
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c is 1, which represents the first node a. On the other hand, the sequence of nodes
a,b,c,e in the same tree is not a subtree because a is a leaf, but the leftmost of the last
node e is 4, which represents itself, not the first node a.

Algorithm 5.4 contains the pseudo-code to find the optimal sequence of single
and subtree edit operations for transforming T1 into T2. Ep=1..L ∈ {“d”, “i”, “x”, “m”}
in this algorithm is an optimal sequence of node edits for transforming T1 into T2,
obtained by applying the technique in Section 5.3.1, and S1 and S2 are the alignments
for T1 and T2 obtained after applying this sequence of node edits.

As shown in Algorithm 5.4, to find the optimal single and subtree edit operations
sequence that transforms T1 into T2, each maximal sequence of identical operations
is checked to see whether it contains subtree(s) or not. Checking whether such a se-
quence corresponds to a subtree depends on the type of edit operation, according to
the following rules: (i) if the operation is “d”, the sequence is checked on the first
tree; (ii) if the operation is “i”, the sequence is checked on the second tree; and (iii)
otherwise, the sequence is checked on both trees. After that, if the sequence of oper-
ations corresponds to a subtree, then all the symbols of the sequence are replaced by
“+” except the last one (which represents the root of the subtree). Otherwise, check-
ing starts from a sub-sequence of the original, as explained below. For instance, let
us consider Eh, ...,Et , where 1 ≤ h < L, 1 < t ≤ L, h < t, is a sequence of the same

edit operation, i.e. Ek=h..t ∈ {“d”, “i”, “x”, “m”}. Let us consider h0 = h. We firstly
check nodes S1

h, ...,S
1
t and S2

h, ...,S
2
t to see whether or not they are the heads of sub-

trees. If Ek is “d”, the nodes S1
h, ...,S

1
t are checked, if it is “i” the nodes S2

h, ...,S
2
t are

checked, and otherwise, the nodes S1
h, ...,S

1
t and S2

h, ...,S
2
t are checked. All edit oper-

ations Eh, ...,Et−1 are replaced by “+” when this sequence corresponds to a subtree.
Then, we start checking from the beginning of another sequence from the left of the
subtree Eh, ...,Et , i.e. t = h−1. Otherwise, the checking is applied with the sequence
starting from the next position, i.e. h = h+ 1. The checking is continued until h = t.
After that, when the (t−h) sequences that start with different positions and end with t

position do not contain a subtree, the checking starts from the beginning with the new
sequence, i.e. h = h0 and t = t−1. The process is repeated until h = t.

In order to find the complexity for Algorithm 5.4, let us consider the space com-
plexity first. Algorithm 5.4 uses three permanent arrays for E, S1 and S2. Each of
these three arrays requires space O(L). So, the space complexity for Algorithm 5.4 is
O(m+n), when L≤ m+n.

Consider the time complexity for Algorithm 5.4. The preprocessing to find each
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Algorithm 5.4 Pseudo-code to find subtree edit operations
E the sequence of edit operations that transform tree T1 into tree T2, Ep=1..L ∈{“d”,“i”,“x”,“m”}
L the length of the sequence of edit operations E
S1,S2 the optimal alignment for T1 and T2 respectively, when the length of S1 = S2 = L

1: repeat
2: ERoot← EL
3: F ← L
4: repeat
5: while (F ≥ 2 and EF−1 == ERoot) do
6: F ← F−1
7: end while
8: if (F == L) then
9: L← L−1

10: ERoot← EL
11: F ← L
12: end if
13: until (F < L and F ≥ 2 and EF−1 6= ERoot)or (L = 0)
14: F0← F
15: while (F < L) do
16: while (F < L) do
17: IsSubtree← true
18: while (F < L and IsSubtree) do
19: if (ERoot =“d” and S1

F ..S
1
L is subtree)or

20: (ERoot =“i” and S2
F ..S

2
L is subtree)or

21: ((ERoot in {“x”,“m”})and (S1
F ..S

1
L and S2

F ..S
2
L are subtrees)) then

22: Replace EF ..EL−1 with “+”
23: L← F−1
24: F ← F0
25: else
26: IsSubtree← f alse
27: end if
28: end while
29: F ← F +1
30: end while
31: L← L−1
32: F ← F0
33: end while
34: L← F0−1
35: until (L≤ 0)
36: return E

largest sequence of the same edit operations takes linear time less than m+ n. ETED
does not change the main loops but inserts only new two arrays (i.e. DPATH and
FDPATH). So, the time is 2×O(m2n2), which means that time complexity is still
O(m2n2).

In brief, the space and time complexities of ETED are still the same of the space
and time complexities of the standard one.
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The costs of subtrees are changed to match the requirements of specific applica-
tions, but for illustration in the current chapter we will simply take the cost of a subtree
operation to be half the sum of the costs of the individual operations that make it up.

To explain how the subtree operations are applied, let us consider the following
two trees T3 and T4 in Figure 5.15.

a7

b3

e1 f2

c5

g4

d6

a7

c2

g1

d6

x5

y3 z4

T3 T4

Figure 5.15: Two trees, T3 and T4, with their postorder traversal.

According to ZS-TED, the distance is 6 and final sequence of single node edit op-
eration is: dddmmiiimm. This means:

d: Delete (e) from T3

d: Delete (f ) from T3

d: Delete (b) from T3

m: Leave (g) without change
m: Leave (c) without change

i: Insert (y) into T3

i: Insert (z) into T3

i: Insert (x) into T3

m: Leave (d) without change
m: Leave (a) without change

According to ETED, the cost is 3 and the sequence of operations as follows: there
is a sequence of ‘d’, ‘m’ and ‘i’ in the result. These sequences consist of three subtrees
(i.e. the three deleted nodes, the first two matched nodes and the three inserted nodes):
ddd mm iii mm. So, the final result is: ++d +m ++i mm.
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This means:

++d: Delete subtree (e,f,b) from T3

+m: Leave subtree (g,c) without change
++i: Insert subtree (y,z,x) into T3

m: Leave (d) without change
m: Leave (a) without change

The final mapping between T3 and T4 is shown in Figure 5.16 according to ZS-TED
and ETED.

a7

c5

e1

a7

d6c2

g1 x5f2

b3

g4

d6

y3 z4

T3 T4

(a) ZS-TED

a7

c5

e1

a7

d6c2

g1 x5f2

b3

g4

d6

y3 z4

T3 T4

(b) ETED

Figure 5.16: Mapping between T3 and T4 using ZS-TED and ETED.
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Using TED poses a challenge of selecting relevant costs for edit operations since
alterations in these costs or choosing a different combination of them can lead to drastic
changes in TED performance (Mehdad and Magnini, 2009). One solution to overcome
this challenge could consist of assigning costs based on an expert valuation, but they
are usually learned automatically. The following section describes in some detail two
algorithms that we will use for this task. A number of experiments that use these
algorithms is discussed in Chapter 7.

5.4 Optimisation algorithms

In this section, we describe two well-known optimisation algorithms, namely genetic
algorithms (GAs) and artificial bee colony (ABC) algorithm, which we will use to
estimate the cost of each edit operation (i.e. for single nodes and for subtrees) and
threshold(s) of TED based on application and type of system output.

5.4.1 Genetic algorithms

Genetic algorithms (GAs) were first extensively described by Holland (1975). They
were later developed by several researchers such as Goldberg (1989) and have been
widely investigated for a variety of application areas. GAs are general tools for search
and optimisation based on the mechanics of natural selection. GAs are a sub-class of
evolutionary algorithms (EAs), which generate solutions to optimisation problems us-
ing techniques inspired by natural evolution, such as selection, mutation and crossover
(Sivanandam and Deepa, 2008).

A GA starts with an initial population of solutions (chromosomes or genotype). In
each generation, solutions from the current population are taken and used to form a
new population by modifying the selected solutions’ genome (recombined and possi-
bly randomly mutated). This is motivated by a hope that the new population will be
better than the old one. Solutions which are selected to form new solutions (offspring)
are selected according to their fitness–the more suitable they are the more chances
they have to reproduce. The algorithm terminates when either a maximum number of
generations has been produced, or a satisfactory fitness level has been reached for the
population. The general algorithmic structure of GA is given in Algorithm 5.5.
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Algorithm 5.5 The basic algorithm for GA
1: Initialise population;
2: repeat
3: Evaluation;
4: Reproduction;
5: Crossover;
6: Mutation;
7: until (termination conditions are met);

The main steps of GA are summarised below.

1. Initialisation: initialisation of a candidate solution population is usually uniformly
randomly generated, although it may be more effective to incorporate problem
knowledge (if such knowledge exists about the problem solution) or any other kind
of information in this step;

2. Evaluation: once the population is initialised or when a new solution offspring is
created, it is necessary to calculate the fitness value of the candidate solutions by
using the user-defined fitness function that measures how good a solution is. The
fitness function depends on the application and selecting a suitable one is crucial to
the success of the approach;

3. Selection: through this step, a number of individuals is selected as parents for
the next generation according to their fitness values, with the fittest ones being
favoured, so a mechanism which encourages the best individuals’ survival is im-
posed. The main idea here lies in ensuring that high performance individuals tend
to contribute more of their features to successive generations. The most common
selection schemes are: (i) roulette-wheel selection: the better the individuals are,
the more chances to be selected they have; and (ii) tournament selection: a number
of individuals is randomly chosen from the population and the best one from them
is selected as a parent, with this process repeated as often as individuals must be
chosen;

4. Crossover: the crossover operator combines two or more parts from selected par-
ents for creating new offspring, which are possibly better. The offspring solution
is ideally different from any of its parents, but contains combined building blocks
from them. This operator applies with a rate called probability of crossover (Pc).
The most popular crossover operators are: (i) one-point crossover: randomly select
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a crossover point within two parents and interchange the two parent genes at this
point to produce two new offsprings; (ii) two-point crossover: randomly select two
crossover points within two parents and interchange the two parent genes between
these two points to produce two new offsprings; and (iii) uniform crossover: evalu-
ate each corresponding gene in the parents for exchanging with a fixed probability,
typically 0.5;

5. Mutation: the mutation operator randomly modifies a single solution. There are
many mutation operators, which usually affect one or more loci (genes or com-
ponents) of the solution. This operator applies with a rate called probability of

mutation (Pm), which is generally much smaller than Pc. Mutation provides a mech-
anism for restoring lost and unexplored genetic material into the population and for
searching regions of the allele space not generated by other operators. It can be
used to prevent the premature convergence of GA to sub-optimal solutions. The
most popular mutation operators are: (i) flip bit operator: take the randomly cho-
sen genome and invert its value to any value between upper and lower bounds for
that gene except the current value; (ii) uniform operator: replace the value of the
randomly chosen gene with a selected uniform random value from the user-defined
allowable range for that gene; and (iii) Gaussian operator: add a unit Gaussian
distributed random value to the chosen gene. The new gene value is clipped, if it
falls outside of the user-defined allowable range for that gene;

6. Replacement: the new offspring created through steps 3-5 replaces the individual
population according to a given criterion. There are many strategies for the re-
placement of the offspring population by the individual population such as simply
replace the entire parent population with the offspring, replace parents only if the
offsprings are fit or elitist replacement which preserves the best individual along
the evolution is a popular criterion;

7. Termination conditions: the steps 2-6 complete one cycle of GA, which is com-
monly called a generation. This cycle is repeated until a termination condition has
been reached. The most common terminating conditions are: (i) a fixed number of
generations is reached; (ii) a solution that satisfies minimum criteria is found; (iii)
all individuals in the population are identical (converge); and (iv) combinations of
the above.

After evolution stops the best solution in the current population is returned as the
candidate solution to the problem.
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The most well-known GA is steady state GA (ssGA), for which the pseudo-code is
given in Algorithm 5.6 (Alba and Dorronsoro, 2008). In each generation of ssGA (line
4-8), two parents are selected from the whole population with a given selection crite-
rion (line 4). These two parents are recombined (line 5) and then one of the obtained
offsprings is mutated (line 6). The mutated offspring is evaluated (line 7) and then it
is inserted back into the population (line 8), typically replacing the population’s worst
individual (if the offspring is fitter). This generation is repeated until the termination
condition is met (line 9).

Algorithm 5.6 The basic algorithm for ssGA
popsize size of population.
population population.
pc, pm probability of crossover and mutation, respectively.

1: Initialisation(population,popsize);
2: Evaluation(population);
3: repeat
4: parents← Selection(population,popsize);
5: offspring← Crossover(pc,parents);
6: offspring←Mutation(pm,offspring);
7: Evaluation(offspring);
8: Replacement(population,popsize,offspring);
9: until (termination conditions are met);

10: return the best individual in the population.

5.4.2 Artificial bee colony algorithm

The artificial bee colony algorithm (ABC) was proposed recently by Karaboga (2005)
as an optimisation algorithm depending on the intelligent foraging behaviour of a
honey bee swarm. In this optimisation algorithm, the colony of artificial bees consists
of three groups. First, employed bees going to the food source (a possible solution
to the problem to be optimised) that they have visited previously. Second, onlookers
waiting to choose a food source. Third, scouts carrying out random search. The first
half of the colony consists of the employed artificial bees and the second half includes
the onlookers and scouts. The number of employed bees is equal to the number of food
sources. The employed bee of an abandoned food source becomes a scout. The gen-
eral algorithmic structure of the ABC optimisation approach is shown in Algorithm 5.7
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(Karaboga and Akay, 2009; Akay and Karaboga, 2012; Karaboga et al., 2012).

Algorithm 5.7 The basic algorithm for ABC
1: Initialisation phase;
2: repeat
3: Employed bees phase;
4: Onlooker bees phase;
5: Scout bees phase;
6: Memorise the best solution achieved so far;
7: until (termination conditions are met);

As can be seen in Algorithm 5.7, this algorithm carries out three main phases dur-
ing each cycle: employed bees phase, onlooker bees phase and scout bees phase, in
addition to the initialisation phase which is applied once at the beginning of the algo-
rithm. These phases are described briefly in the following steps.

1. Initialisation phase: in this phase, the population of food sources (solutions) is
initialised by randomly distributed scout bees and control parameters are set such
as the number of food sources (SN), the number of optimisation parameters (D)
and the maximum cycle number (MCN). The following definitions might be used
in this phase (Equations 5.1 and 5.2).

xi j = l j + rand(0,1)× (u j− l j), i = 1, . . . ,SN, j = 1, . . . ,D, (5.1)

where l j and u j are the lower and upper bounds of the parameter xi j, respectively.

f it(xi),xi ∈ RD, i = 1, . . . ,SN, (5.2)

where xi is a position of food source (solution) as a D-dimensional vector and
f it(xi) is the nectar (objective function) that determines how good a solution is.

After the initialisation phase, the population of food source positions is subjected
to repeated cycles (cycle= 1, ..., MCN) of three major processes: updating feasible
solutions (step 2), selecting feasible solutions (step 3) and avoiding sub-optimal
solutions (step 4).

2. Employed bees phase: in order to update feasible solutions, artificial employed
bees explore new candidate food source positions having more nectar within the
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neighbourhood of the previously selected food source in their memory. They find a
neighbour food source (vi j) using the formula given by Equation 5.3:

vi j = xi j +φi j(xi j− xk j), (5.3)

where xk j is a randomly selected food source, k ∈ {1,2, ...,SN} (i.e. should be
different from i) and j in the range [1,D] are randomly chosen indexes, and φi j

is a uniformly distributed random number in the range [-1,1], which is used to
adjust the old solution to become a new one in the next generation. The xi j− xk j

is a difference of position in a particular dimension. In each cycle, the algorithm
changes each position in solely one dimension in order to increase the diversity of
solution in the search space.

After that, the fitness of each produced food source is calculated and a greedy se-
lection is applied between it and its parent. In other words, the produced solution
competes with its parent and the better one wins the competition for the next gen-
eration. Then, employed bees will return to their hive and share their food source
information with onlooker bees waiting over there.

3. Onlooker bees phase: in this phase, each artificial onlooker bee probabilistically
selects one of the proposed food sources depending on the fitness value obtained by
the employed bees. To achieve this goal, the roulette-wheel selection scheme can
be used. The probability value (pi) that a food source (xi) will be selected by an
onlooker bee can be calculated by Equation 5.4:

pi =
f it(xi)

∑
SN
i=1 f it(xi)

. (5.4)

After a food source is probabilistically selected, a neighbourhood source vi j is de-
termined using Equation 5.3, and its fitness value is computed using Equation 5.2.
As in the previous phase, a greedy selection is applied between two sources.

4. Scout bees phase: in this phase, employed bees whose food source positions have
not been improved through a number of trials (called ‘limit’) become scouts and
their solutions are abandoned and replaced by new positions that are randomly de-
termined by the scouts using Equation 5.5. This helps avoid sub-optimal solutions.

xi j = xmin
j + rand[0,1](xmax

j − xmin
j ), (5.5)
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where xmin
j and xmax

j are the lower and upper bounds of the food source position in
dimension j, respectively.

The steps 2-4 are repeated until a termination criterion is satisfied such as a maxi-
mum cycle number is reached or meeting an error tolerance.

The ABC algorithm has been widely used in many optimisation applications, since
it is easy to implement and has few control parameters. The detailed pseudo-code of
the ABC algorithm is given in Algorithm 5.8 (Akay and Karaboga, 2012).

To ensure that we get the best possible performance when comparing two tokens
(i.e. on surface string level) or nodes (i.e. on syntactic level), we supplement each
system used in the current thesis with a range of Arabic lexical resources to provide
it with some lexical relations such as synonyms. These resources are discussed in the
next section.

5.5 Arabic lexical resources

We derived our lexical rules from a range of Arabic lexical resources (Section 5.5.2)
in order to provide us with different lexical relations (Section 5.5.1).

5.5.1 Lexical relations

In our work, we take into account the following lexical relations when we compare
two tokens or nodes.

5.5.1.1 Synonyms

Synonyms are different words that signify similar, or sometimes identical, meanings.
Synonymous words can be used in different contexts with extremely similar mean-
ing. Synonyms can be any part-of-speech (POS) (e.g. verbs, nouns, adjectives, etc.).
Examples of Arabic synonyms are shown in (5.1).

(5.1) Synonyms

a. Verbs
ù¢«



@ ÂςTý “to give” ≡ i

	
JÓ mnH ≡ �

�
	
®

	
K


@ Ânfq ≡ I. ëð whb
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Algorithm 5.8 Detailed pseudo-code of the ABC algorithm
SN number of food sources (i.e. half of colony size).
D number of optimisation parameters.
xi j solution i,j, i = 1 ...SN, j = 1 ...D.
triali the non-improvement number of the solution xi, used for abandonment.
MCN maximum cycle number.
limit number of trials, e.g. limit = SN×D.

1: Initialise the population of solutions xi, j, i = 1...SN, j = 1...D, triali = 0;
2: Evaluate the population;
3: cycle = 1;
4: repeat

{- - - Produce a new food source population for Employed bee - - -}
5: for i = 1 to SN do
6: Produce a new food source vi for the employed bee of the food source xi by using

(5.3) and evaluate its quality;
7: Apply a greedy selection process between vi and xi and select the better one;
8: If solution xi does not improve triali = triali + 1, otherwise triali = 0;
9: end for

10: Calculate the probability values pi by (5.4) for the solutions using fitness values;
{- - - Produce a new food source population for onlookers - - -}

11: t= 0, i= 1
12: repeat
13: if random < pi then
14: Produce a new vi j food source by (5.3) for the onlooker bee;
15: Apply a greedy selection process between vi and xi and select the better one;
16: If solution xi does not improve triali = triali + 1, otherwise triali= 0;
17: t = t + 1;
18: end if
19: i = i + 1;
20: if i=SN then
21: i=0;
22: end if
23: until (t=SN)

{- - - Determine Scout - - -}
24: if max(triali)> limit then
25: Replace xi with a new randomly produced solution by (5.1);
26: end if
27: Memorise the best solution achieved so far;
28: cycle = cycle+1;
29: until (cycle = MCN)



CHAPTER 5. TREE MATCHING 175

b. Nouns
�
èX@P@



ǍrAdh̄ “determination” ≡ Õæ



Ò�

�
� tSmym ≡ �

éÖß
 	Q« ςzymh̄

c. Adjectives
Yê¢

	
�Ó mDThd “oppressed” ≡ ÐñÊ

	
¢Ó mĎlwm

So, when two words W1 and W2 are synonyms this leads to the conclusion that W1

entails W2 as well as W2 entails W1.

5.5.1.2 Antonyms

Antonyms are gradable adjectives (note that, in the narrow sense, the term is frequently
used as a synonym for opposite). The comparative forms of antonyms vary according
to whether they presuppose the positive forms or not (Aronoff and Rees-Miller, 2003).
For example, something that is ‘longer’ than something else does not need to be ‘long’.
Compared with something that is ‘hotter’ than something else, it has to be ‘hot’. There-
fore, ‘longer’ is impartial, whereas ‘hotter’ is committed. According to Cruse (2011)
and Aronoff and Rees-Miller (2003), three relatively well-defined groups of antonyms
can be distinguished as shown in (5.2).

(5.2) Antonym groups

a. Polar antonyms (i.e. both members of a pair are impartial in the comparative)
Q�
�

�
¯ qSyr “short” : ÉK
ñ£ Twyl “long”

b. Overlapping antonyms (i.e. one member of a pair is committed in the compar-
ative, the other is impartial)

YJ
k. jyd “good” : Zø



XP rdŷ “bad”

c. Equipollent antonyms (i.e. both members are committed in the comparative)

PAg HAr “hot” : XPAK. bArd “cold”

In contrast with synonyms, a word W1 entails not W2 if they are antonyms.

5.5.1.3 Hypernyms and hyponyms

Hypernyms refer to a general category (i.e. a word whose semantic meaning is more
generic than another word), whereas hyponyms refer to a subset of that category (i.e.
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a word whose semantic meaning is more specific than another word). Figure 5.17 il-
lustrates examples for hypernym and hyponym words.

ناويح

HywAn
“Animal”

دسأ

Âsd
“Lion”

Is a hypernym of

Is a hyponym of

نول
lwn

“Colour”

رضخأ
ÂxDr

“Green”

Is a hypernym of

Is a hyponym of

ةهكاف

fAkhħ

“Fruit”

ةزوم

mwzħ

“Banana”

Is a hypernym of

Is a hyponym of

Figure 5.17: The relations between hypernym and hyponym.

Similar to synonym, a word W1 entails a word W2 if W1 is a hyponym of W2, whereas
W1 does not entail W2 if W1 is a hypernym of W2.

We intend here to exploit the synonym, antonym, subset and superset sense rela-
tions when exchanging items in a tree. Roughly speaking, if comparing one tree to
another requires the exchange of two lexical items, the comparison will be more plau-
sible if the item in the source tree is a synonym or hyponym of the one in the target
tree.

In order to make use of these relations, we need to deal with lexical ambiguity. We
do this by following a similar approach to Hobbs disambiguation via ‘abduction’ (see
Hobbs, 2005)). In our TE system, we consider that T entails H if there is any reading
of H which can be inferred from any reading of T. Doing this will allow our system to
delay making decisions about potentially ambiguous lexical items as described below.

• It is reasonably safe to assume that if W1 has a sense which is a synonym or hy-
ponym of some sense of W2 then a sentence involving W1 will entail a similar sen-
tence involving W2 as shown in (5.3) and (5.4) respectively.

• It is reasonably safe to assume that if W1 has a sense which is a hypernym of some
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sense of W2 then a sentence involving W1 will not entail a similar sentence involving
W2 as shown in (5.4).

• It is reasonably safe to assume that if W1 is an antonym of W2 then a sentence
involving W1 will contradict a similar sentence involving W2 as shown in (5.5).
During the tree matching, we intend to exchange two antonyms word with cost
higher than exchanging other words, since the presence of antonyms is an indication
that the two sentences are in direct conflict.

This will definitely be quicker, and may be more reliable, than trying to disam-
biguate the two from first principles and then looking for entailment relationships.

(5.3) Synonym example

a. �Ó


@ A

�
JJ
Ë

�
IK




@P

rÂyt lyθA Âms

I-saw Laith/lion yesterday
“I saw Laith yesterday” or “I saw lion yesterday”

b. �Ó


@ @Y�



@

�
IK




@P

rÂyt ÂsdA frHA

I-saw lion yesterday
“I saw lion yesterday”

Since one of �
IJ
Ë lyθ “Laith/lion” meanings (i.e. “lion”) is a synonym of Y�



@ Âsd

“lion”, (5.3a) entails (5.3b) and vice versa.

(5.4) Hyponym/Hypernym example

a. �Ó


@ AÓA�k

�
IK




@P

rÂyt HsAmA Âms

I-saw Hussam/sword yesterday
“I saw Hussam yesterday” or “I saw sword yesterday”

b. �Ó


@ AgC�

�
IK




@P

rÂyt slAHA frHA

I-saw weapon yesterday
“I saw weapon yesterday”

Since one of ÐA�k HsAm “Hussm/sword” meanings (i.e. “sword”) is a hyponym
of hC� slAHA “weapon”, (5.4a) entails (5.4b) but the reverse does not hold. Disam-
biguation algorithms typically make use of information about the context. When doing
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TE, the text is the context–it would be very strange to ask whether ‘I bought an apple

yesterday’ entailed ‘I bought a computer yesterday’ in a context where ‘apple’ was a
kind of fruit.

(5.5) Antonyms example

a. �
HAK
Yj

�
JË @ 	áÓ Q�


�
JºË@ð �Q

	
®Ë@ 	áÓ Q�


�
JºË@ A

	
JÓAÓ



@

rÂmAmnA Alkθyr mn Al+frS w+Alkθyr mn Al+thdyAt

Before-us many of opportunities and+many of challenges
“Before us are many opportunities and many challenges”

b. �
HAK
Yj

�
JË @ 	áÓ Q�


�
JºË@ð �Q

	
®Ë@ 	áÓ ÉJ
Ê

�
®Ë @ A

	
JÓAÓ



@

rÂmAmnA Alqlyl mn Al+frS w+Alkθyr mn Al+thdyAt

Before-us few of opportunities and+many of challenges
“Before us are few opportunities and many challenges”

Since Q�

�
JºË@ Alkθyr “many” is an antonym of ÉJ
Ê

�
®Ë @ Alqlyl “few”, (5.5a) does not

entail (5.5b).

5.5.2 Lexical resources

We use the following lexical resources in order to provide us with the lexical relations
that are explained in Section 5.5.1. The first resource (i.e. acronyms) is used during
the preprocessing stage, i.e. before POS tagging, while the others are used during the
matching stage.

5.5.2.1 Acronyms

We manually collected a set of acronyms from different Arabic websites. An acronym
is a word formed from the initial letters of a name or by combining initial letters or
parts of a series of words. Figure 5.18 illustrates some examples of these acronyms.

5.5.2.2 Arabic WordNet

A WordNet is a machine-readable large lexical database. Words (such as nouns, verbs,
adjectives and adverbs) are grouped into clusters of synonyms, called ‘synsets’, that
each express a unique word sense (concept/meaning). Typically, it provides examples
and definitions for the synsets that are interlinked through conceptual-semantic and
lexical relations. The main WordNet relation among words is synonymy, while the
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Acronyms Meaning
ú


æ� ú



G
.

ú


G
.

�
éJ


	
K A¢�


Q�. Ë @
�
é«@

	
XB



@

�
é


JJ
ë

by by sy hy’h̄ Al+ǍðAς h̄ Al+bryTAnyh̄
BBC British Broadcasting Corporation

ñ
�
KA

	
K ú



æ�Ê£



B@ ÈAÖÞ

�
� 	

­Êg

nAtw Hlf ŝmAl Al+ÂTlsy
NATO North Atlantic Treaty Organization

Figure 5.18: Arabic acronyms examples.

most frequent relations among synsets are hyperonymy and hyponymy. These two
relations allow the WordNet to be interpreted hierarchically as a lexical ontology.

WordNet is freely and publicly available for different languages, such as English
(also called Princeton WordNet (PWN)), Spanish, German, Italian, Polish, Euro Word-
Net (EWN) and Arabic. The Arabic WordNet (AWN) (Black et al., 2006) follows the
design and contents of PWN and EWN. Arabic synsets are paired with synsets in PWN
and are mappable to synsets in EWN. In AWN, Arabic words are represented by their
lemmas (abstracting away from morphological inflections). The PWN is significantly
bigger than AWN. Figure 5.19 illustrates the various synsets involving the verb P@ 	P zAr

in Arabic and its translation in English “visit”. In this figure, every row represents two
synsets that have been paired up, Arabic and English (Habash, 2010).

Arabic WordNet Synset English WordNet Synset
	

¬A£ TAf,P@X dAr,H. Ag. jAb,ÈAg. jAl,Èñm.
�
�
' tjwl,P@ 	P zAr tour

YëA
�

� šAhd,ø


@P rÂý,P@ 	P zAr visit, see

úÍ@



Q
	
¯A� sAfr Ǎlý, P@ 	P zAr visit, travel to

P@ 	P zAr visit, call in, call

H. A�


@ ÂSAb, È 	Q

	
K


@ Ânzl, i. « 	P



@ Âzς j,úÎ

�
JK. @ Abtlý, visit, inflict, bring down,

I. � Sb, 	
�Q

	
¯ frD, ék. ð wjh impose

�
�XPX drdš, �

HXAm�
�
' tHAdθ , QÓA�

�
� tsAmr visit, chew the fat, shoot the

breeze, chat, confabulate

Figure 5.19: Paired synsets for AWN and PWN.

The information in AWN, while very useful, is sparse in comparison to the PWN.
We therefore used various other Arabic lexical resources, described below, to provide
us with more information about relation between words.
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5.5.2.3 Openoffice Arabic thesaurus

This thesaurus contains POS tags and synonyms for many Arabic words. Figure 5.20
represents an example of synonyms for the Arabic word 	PPAK. bArz.

Word POS synonyms
	PPAK. bArz verb

É
�
KA

�
¯ qAtl fight

È 	PA
	
K nAzl clash with

Figure 5.20: Arabic synonym examples, Openoffice Arabic thesaurus.

5.5.2.4 Arabic dictionary for synonyms and antonyms

We manually collected a set of synonyms and antonyms from different Arabic books,
websites and tutorials. A number of examples are illustrated in Figure 5.21.

Word Synonyms Antonyms
Q�
îD

�
�Ë @

Al+šhyr
“famous”

	
¬ðQªÖÏ @

Al+mςrwf
“known”

Èñêj. ÖÏ @

Al+mjhwl
“unknown”

qJ

�

�Ë@

Al+šyx
“old man”

	á�ÖÏ @

Al+msn
“aged”

H. A
�

�Ë@

Al+šAb
“young”

ÐQêË @

Al+hrm
“old”

ú
�
æ

	
®Ë @

Al+ftý
“boy”

Figure 5.21: Arabic dictionary for synonym and antonym examples.

We also collected a list of loan words and neologisms, which contains words that
are borrowed from foreign languages, such as English. Most of these words have been
replaced by MSA neologisms, but still some are used in informal and formal written
and spoken modern Arabic as explained in Figure 5.22.

5.5.2.5 Arabic stopwords

This is a list of words which are treated specially during dependency tree matching in
order to improve the performance of matching by using different edit costs for them.
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Loan word Neologism
�AK. bAS bus �

éÊ
	
¯Ag HAflh̄ bus

Pñ�
	
¯ðQK. brwfswr professor 	

XA
�
J�



@ ÂstAð professor

ñK
X@P rAdyw radio ¨AK

	
YÓ mðyAς radio

Figure 5.22: Arabic neologism examples.

There is not a common list of stop words for all applications, since each application
has its specific list of stop words. In our work, the following examples are taken into
consideration.

• The verb ÐA
�
¯ qAm “to do” with all its conjugations. An example is explained in

(5.6).

(5.6) The verb ÐA
�
¯ qAm “to do”

a. H. A
�
JºË@ PA

	
�kAK.

�
IÔ

�
¯

qmt bAHDAr Al+ktAb

I-did bring the+book
“I did bringing the book”

b. H. A
�
JºË@

�
HQå

	
�k@

AHDrt Al+ktAb

I-bring the+book
“I bring the book”

• The particles Y
�
¯ qd or Y

�
®Ë lqd, when followed by a past tense verb, denote either

complete action or emphasis. It may be translated as “indeed”, “already” or “really”
but sometimes it is not translatable. Ryding (2005) states that “The use of ‘qd’ with

past tense serves to confirm the meaning of the past tense by emphasising that the

action did indeed happen.” An example is explained in (5.7).

(5.7) The particle Y
�
¯ qd “already”

a. é
�
J�
K. úÍ@ Ég. QË@ I. ë

	
X Y

�
¯

qd ðhb Al+rjl AlY byth

already went the+man to his-house
“The man already went to his house”
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b. é
�
J�
K. úÍ@ Ég. QË@ I. ë

	
X

ðhb Al+rjl AlY byth

went the+man to his-house
“The man went to his house”

• Cognate accusative ( �
�Ê¢Ó Èñª

	
®Ó mfςwl mTlq), which is used to add emphasis by

using a verbal noun (PY�Ó mSdr) derived from the main verb or predicate that it
depends on. An example is given in (5.8).

(5.8) Cognate accusative

a. @YK
Y
�

� Ag. Aj.
�
Jk@

	
àñj.

�
Jm�'




yHtjwn AHtjAjA šdydA

protesting protest a strong
“? Protesting a strong protest”

b. @YK
Y
�

�
	
àñj.

�
Jm�'




yHtjwn šdydA

protesting a strong
“They are protesting strongly”

• Explicit pronouns, e.g. ñë hw “he/it” or ù


ë hy “she/it”, are used in a number of

different ways and sometimes as a nonessential part of a clause. One of their func-
tions is to emphasise the omitted subject of a verb. The pronoun is not necessary to
mark the subject of a verb since verbs incorporate the subject into their inflections.
The pronoun, however, may be used along with the verb in order to emphasise or
fortify the subject. In (5.11a), the pronoun could be omitted as in (5.11b), which
would still be grammatically correct; however, the emphasis on the subject would
be reduced.

(5.9) Pronouns to emphasise the subject of a verb

a. ø



Qj�Ë@ hA
�
J
	
®ÖÏ @ ñë

	
àñºJ
�

sykwn hw Al+mftAH Al+sHry

will-be it the+key magic
“It will be the magic key”
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b. ø



Qj�Ë@ hA
�
J
	
®ÖÏ @

	
àñºJ
�

sykwn Al+mftAH Al+sHry

will-be the+key magic
“(It) will be the magic key”

Such pronouns may also be used presumptively to emphasise a subject which has
been realised as a full NP. An example is illustrated in (5.10).

(5.10) Separate personal pronouns

a. YJ
kñË@ YËñË@ ñë YÒm×

mHmd hw Al+wld Al+wHyd

Muhammad he the+child only
“Muhammad (he) is the only child”

b. YJ
kñË@ YËñË@ YÒm×

mHmd Al+wld Al+wHyd

Muhammad the+child only
“Muhammad is the only child”

• The particles 	
à@



Ǎn “verily, indeed, truly” and 	

à


@ Ân “that”, which emphasise the

sentence after them. An example is explained in (5.11).

(5.11) The particles 	
à@



Ǎn “indeed”

a. �
éª

�
��.

�
éÖß
Qk. è

	
Yë

	
à@




Ǎn hðh jrymh̄ bšς h̄

indeed this a-repugnant crime
“Indeed, this is a repugnant crime”

b. �
éª

�
��.

�
éÖß
Qk. è

	
Yë

hðh jrymh̄ bšς h̄

this a-repugnant crime
“This is a repugnant crime”

• The forms of implicit emphasis (ø



ñ
	
JªÖÏ @ YJ
»ñ

�
JË @ Al+twkyd Al+mςnwy), such as

�
	
®

	
K nfs “same, himself/herself/itself”, 	á�
« ςyn “selfsame, identical”, and others

with specific conditions (Badawi et al., 2004). An example is illustrated in (5.12).
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(5.12) Implicit emphasis

a. H. A
�
JºË@ �

	
®

	
K

�
IK


Q�
�

�
�@

Aštryt nfs Al+ktAb

I-bought same the+book
“I bought the same book”

b. H. A
�
JºË@

�
IK


Q�
�

�
�@

Aštryt Al+ktAb

I-bought the+book
“I bought the book”



Chapter 6

Arabic textual entailment dataset
preparation

6.1 Overview

There are fewer resources for TE for Arabic than for other languages, and the man-
power for constructing such a resource is hard to come by. In this chapter, we describe
our efforts for creating a first dataset for training and testing a TE system for Arabic.
We describe in Section 6.2 a general description of the English RTE datasets. Next,
we start in Section 6.3 with our technique for collecting potential T-H pairs for a de-
velopment set and testing set for TE systems, using an extension of the headline-lead

paragraph technique and then we describe our online system to annotate the collected
data. The Arabic dataset for TE systems and a regime to ameliorate some of the dif-
ficulties that arise from using the above technique are discussed in Section 6.4. In
Section 6.5, we sketch how we can detect spammer annotator(s) from a number of
volunteer annotators, since it is difficult to know in advance how dependable those
annotators are.

6.2 RTE dataset creation

The RTE dataset contains two parts: development set (for training) and test set (for
testing). Each dataset consists of T-H pairs with their gold-standard annotation. The
texts in these datasets were collected from the web from a variety of sources, such as
newswire text. In some cases, they were collected from available datasets or systems.
They contain one or two sentences (a trend to increase over time) and tend to be fairly

185
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long compared with hypotheses (e.g. the average in RTE1 is 25 words, 28 words in
RTE2, 30 words in RTE3 and 39 words in RTE4). In contrast, the hypotheses are
quite short single sentences (e.g. averaging 11 words in RTE1, 8 words in RTE2 and 7
words in RTE3 and RTE4), which were manually constructed for each corresponding
text. The organisers of the RTE Challenges have released a large test set, which con-
tains several hundred problems of natural language inference (NLI) as summarised in
Table 6.1. Some examples of RTE1 development set are shown in Figure 6.1.

Name Year Sponsor Development set (#problems) Test set (#problems)
RTE1 2005 PASCAL 576 800
RTE2 2006 PASCAL 800 800
RTE3 2007 PASCAL 800 800
RTE4 2008 NIST1 – 1000
RTE5 2009 NIST 600 (main task) 600 (main task)

Table 6.1: High-level characteristics of the RTE Challenges problem sets.

The first three RTE Challenges were presented as a binary classification task ‘YES’
or ‘NO’ with fairly even numbers of ‘YES’ and ‘NO’ problems. Beginning with RTE4,
there were three-way classifications (‘YES’, ‘NO’ or ‘CONTRADICT’, to distinguish
cases in which H contradicts T from those in which H is compatible with, but not
entailed by, T).

A lot of RTE problem characteristics should be emphasised. Examples in the RTE
are collected from a wide variety of sources, such as the web, focusing on the gen-
eral news domain; therefore systems must be domain-independent. From a human
viewpoint, the inferences required are to some extent superficial and do not involve
long chains of reasoning. There are also some questions that are expressly designed
to frustrate simplistic techniques (see pair 2081 in Figure 6.1). As explained before
in Section 2.3, there is no formal definition for TE and the current characterisation
is informal and approximate: whether a competent speaker with basic knowledge of
the world would typically infer H from T. Entailment will certainly depend on both
linguistic and world knowledge, while the required world knowledge scope is left un-
specified (see Section 2.3.2).

In spite of the informality of the entailment definition, human judges exhibit agree-
ment rate 91–96% on the RTE task (Dagan et al., 2006). Then, in principle, the ma-
chine performance upper bound should be high, while practically, results show that the

1This acronym comes from “National Institute of Standards and Technology”.
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<pair id="13" value="TRUE" task="IR">
<t>iTunes software has seen strong sales in Europe.</t>
<h>Strong sales for iTunes in Europe.</h>

</pair>
<pair id="110" value="TRUE" task="IR">

<t>Wal-Mart faces huge sex discrimination suit</t>
<h>Wal-Mart faces a sex-discrimination suit</h>

</pair>
<pair id="826" value="TRUE" task="CD">

<t>A car bomb exploded outside a U.S. military base near Baji.</t>
<h>A car bomb exploded outside a U.S. military base near Beiji.</h>

</pair>
<pair id="2081" value="FALSE" task="QA">

<t>The main race track in Qatar is located in Shahaniya, on the
Dukhan Road.</t>

<h>Qatar is located in Shahaniya.</h>
</pair>
<pair id="147" value="TRUE" task="RC">

<t>The Philippine Stock Exchange Composite Index rose 0.1 percent to
1573.65.</t>

<h>The Philippine Stock Exchange Composite Index rose.</h>
</pair>
<pair id="148" value="FALSE" task="RC">

<t>The Philippine Stock Exchange Composite Index rose 0.1 percent to
1573.65.</t>

<h>The Philippine Stock Exchange Composite Index dropped.</h>
</pair>

Figure 6.1: Some examples from the RTE1 development set as XML format.

RTE task is extremely difficult for machines. For instance, in the first PASCAL RTE
competition, lower accuracies were achieved, i.e. 50–59% (Dagan et al., 2006). In later
competitions, participants reported higher accuracies, but this is partially attributable
to the test sets of RTE having become substantially easier (MacCartney, 2009).

6.3 Dataset creation

In order to train and test a TE system for Arabic, we need an appropriate dataset. To
the best of our knowledge, no such datasets are available for Arabic, so we have had
to develop one. We did not want to produce a set of T-H pairs by hand–partly because
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doing so is a lengthy and tedious process, but more importantly because hand-coded
datasets are liable to embody biases introduced by the developer. If the dataset is used
for training the system, then the rules that are extracted will be little more than an
unfolding of information explicitly supplied by the developers. If it is used for testing
then it will only test the examples that the developers have chosen, which are likely to
be biased, albeit unwittingly, towards the way they think about the problem.

We also need to cope with the fact that we do not have access to a large team
of willing (or paid!) annotators. Whilst it is possible to collect potential T-H pairs
automatically, or semi-automatically, these pairs then have to be annotated. If TE is
about trying to develop systems that will make the same decisions about whether T

entails H as a person, then we need, at least for testing, to know what a person would
say. Given that we are intending to follow standard practice and use machine learning
algorithms to extract at least some of the inference rules our system will be using,
we also need annotated data from which to extract them. We therefore need to get
as much data as possible from a rather unreliable set of annotators. In particular, our
annotators are under no obligation to do anything, and we are relying entirely on their
goodwill. This means that we do not know how many examples a given annotator will
do, nor when they will do them. Furthermore, a number of them are based in other
institutions, or even other countries, and we have no way of verifying in advance that
they will make sensible judgements. TE is about whether a typical adult language user
would say that T entailed H, rather than about whether it really does entail it. Thus
in one sense the judgements that our annotators make cannot fail to be correct–they
are typical adult Arabic speakers, so their judgements are what we want to reproduce.
Nonetheless, there will be cases where an annotator has misunderstood the task that
we have set them, and we need to be able to spot, and recover from, such cases.

We investigate here a semi-automatic technique for creating a dataset for a TE
system for Arabic. Our current technique consists of two tools. The first tool is re-
sponsible for automatically collecting T-H pairs from news websites (Section 6.3.1),
while the second tool is an online annotation system that allows annotators to annotate
our collected pairs manually (Section 6.3.2).

6.3.1 Collecting T-H pairs

We start by extracting candidate T-H pairs automatically. A number of TE datasets
have been produced for different languages, such as English,2 Greek (Marzelou et al.,

2Available at: http://www.nist.gov/tac/2011/RTE/index.html
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2008), Italian (Bos et al., 2009), German and Hindi (Faruqui and Padó, 2011). Some
of these datasets were collected by the so-called headline-lead paragraph technique
(Bayer et al., 2005; Burger and Ferro, 2005) from newspaper corpora, pairing the first
paragraph of an article, as T, with its headline, as H. This is based on the observation
that a news article’s headline is very often a partial paraphrase of the first paragraph of
this article, conveying thus a comparable meaning. The current work is a step forward
in this respect. We use the general idea of headline-lead paragraph strategy with our
extension to improve the quality of the T-H pairs.

The most promising idea here is by posing queries to a search engine and filtering
the responses for sentences that do (and do not) entail the query. We are currently
building a corpus of T-H pairs by using headlines that have been automatically ac-
quired from Arabic newspapers’ and TV channels’ websites (in our case, we used Al
Jazeera http://www.aljazeera.net/, Al Arabiya http://www.alarabiya.net/

and BBC Arabic http://www.bbc.co.uk/arabic/ websites as resources for our
headlines) as queries to be input to Google via the standard Google-API, and then
selecting the first paragraph, which usually represents the most related sentence(s) in
the article with the headline (Bayer et al., 2005; Burger and Ferro, 2005), of each of
the first 10 returned pages. This technique produces a large number of potential pairs
without any bias in either the texts or the hypotheses. To improve the quality of the
sentence pairs that resulted from the query, we use two conditions to filter the results:
(i) the length of a headline must be at least more than five words to avoid very small
headlines; and (ii) the number of common words (either in surface forms or lemma
forms)3 between both sentences must be less than 80% of the headline length to avoid
having excessively similar sentences. The problem is illustrated by (6.1).

(6.1) Positive entailment pair with highly similar common words

a. About 1500 lung cancer patients die unnecessarily each year.

b. 1500 lung cancer deaths unnecessary.

The problem here is that (6.1a) and (6.1b) are so similar that there would be very
little to learn from them if they were used in the training phase of a TE system; and
they would be almost worthless as a test pair–virtually any TE system will get this
pair right, so they will not serve as a discriminatory test pair. In the current work, we
apply both conditions above to 85% of the T-H pairs from both training and testing

3When we mention common words throughout this chapter, we mean either in surface forms or
lemma forms.
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sets. We then apply the first condition only on the remaining 15% of T-H pairs in order
to leave some similar pairs, especially non-entailments, to foil simplistic approaches
(e.g. bag-of-words).

In order to find pairs that were not unduly similar, we matched headlines from one
source with stories from another. Major stories are typically covered by a range of out-
lets, usually with variations in emphasis or wording. Stories from different sources can
be linked by looking for common words in the headlines–it is unlikely that there will
be two stories about, for instance, neanderthals in the news at the same time, so very
straightforward matching based on low frequency words and proper names is likely to
find articles about the same topic. The terminology and structure of the first sentences
of these articles, however, are likely to be quite different. Thus using a headline from
one source and the first sentence from an article about the same story but from another
source is likely to produce T-H pairs which are not excessively similar. Figure 6.2
shows, for instance, the results of headlines with their lead-paragraphs from various
sites (CNN, BBC and Reuters) that mention Berlusconi on a given day’s headline.

Source Headline (Hypothesis) Lead paragraph (Text) Result
CNN Berlusconi says he will not

seek another term.
Italian Prime Minister Silvio Berlusconi said Fri-
day he will not run again when his term expires in
2013.

YES

BBC Silvio Berlusconi vows not
to run for new term in 2013.

Italian Prime Minister Silvio Berlusconi has con-
firmed that he will not run for office again when
his current term expires in 2013.

YES

Reuters Berlusconi says he will not
seek new term.

Italian Prime Minister Silvio Berlusconi declared
on Friday he would not run again when his term
expires in 2013.

YES

Figure 6.2: Some English T-H pairs collected by headline-lead paragraph technique.

We can therefore match a headline of one newspaper with related sentences from
another one. We have tested this technique on different languages, such as English,
Spanish, German, Turkish, Bulgarian, Persian and French. We carried out a series
of informal experiment with native speakers to see whether the resulting T-H pairs
contain a mixture of cases where T does or does not entail H (the latter are needed at
least for testing: a test set with no negative examples will not penalise systems that
simply assume that every pair is a positive example). The results were encouraging, to
the point where we took this as the basic method for suggesting T-H pairs.
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Most of the Arabic articles that are returned by this process typically contain very
long sentences (upwards of 100 words), where only a small part has a direct relation-
ship to the query. With very long sentences of this kind, it commonly happens that only
the first part of T is relevant to H. This is typical of Arabic text, which is often written
with very little punctuation, with elements of the text linked by conjunctions rather
than being broken into implicit segments by punctuation marks such as full stops and
question marks. Thus what we really want as the text is actually the first conjunct of
the first sentence, rather than the whole of the first sentence.

In order to find the first conjunct, we use MSTParser to get a picture of the structure
of the sentence. As we have seen before in Chapter 4, parsing Arabic is very difficult,
and most attempts to use MSTParser as a parser for Arabic score around 83%. For
many purposes this is a rather disappointing level of accuracy, though it seems to be the
current state of the art for parsing Arabic (other well-known dependency parsers, e.g.
MALTParser, are generally reported as being slightly less accurate (around 81%), and
grammar-driven parsers usually just fail when confronted with the very long sentences
that are found in Arabic newspapers and websites). For our current purposes, however,
we simply need to find the first conjunction that links two sentences, rather than linking
two substructures (e.g. two noun phrases (NPs)). MSTParser does this quite reliably,
so that parsing and looking for the first conjunct is a more reliable way of segmenting
long Arabic sentences than simply segmenting the text at the first conjunction. For
instance, selecting the second conjunction in segment (6.2) will give us the complete
sentence ‘John and Mary go to school in the morning’, since it links two sentences. In
contrast, selecting the first conjunction in segment (6.2) will give us solely the proper
noun ‘John’, since it links two NPs (i.e. ‘John’ and ‘Mary’).

(6.2) Segmenting sentence

John and Mary go to school in the morning and their mother prepares the lunch.

6.3.2 Annotating T-H pairs

The pairs that are collected in the first stage still have to be marked-up by human
annotators, but at least the process of collecting them is as nearly bias-free as possible.
The annotation is performed by volunteers, and we have to rely on their goodwill both
in terms of how many examples they are prepared to annotate and how carefully they
do the job. We therefore have to make the task as easy possible, to encourage them



CHAPTER 6. ARABIC TEXTUAL ENTAILMENT DATASET PREPARATION192

to do large numbers of cases, and we have to manage the problems that arise from
having a mixture of people, with different backgrounds, as annotators. In one way
having non-experts is very positive: as noted before, TE is about the judgements that
a typical speaker would make. Not the judgements that a logician would make, or the
judgements that a carefully briefed annotator would make, but the judgements that a
typical speaker would make. From this point of view, having a mixture of volunteers
carrying out the task is a good thing: their judgements will indeed be those of a typical
speaker.

At the same time, there are problems associated with this strategy. Our volunteers
may just have misunderstood what we want them to do, or they may know what we
want but be careless about how they carry it out. We therefore have to be able to detect
annotators who, for whatever reason, have not done the job properly. The system
therefore has to be able to measure the reliability of each annotator to avoid unreliable
ones. We have investigated the use of different strategies to achieve this goal (see
Section 6.5). According to the results of these strategies, the system will decide to
block the annotator’s annotation account and then remove the annotations of unreliable
annotator(s) from the system database.

Because our annotators are geographically distributed, we have developed an on-
line annotation system. The system presents the annotator with sentences that they
have not yet seen and that are not fully annotated (here, annotated by three annota-
tors) and asks them to mark this pair as positive ‘YES’, negative ‘NO’ or unknown
‘UN’. The system also provides other options, such as revisiting a pair that they have
previously annotated, reporting sentences that have such gross misspellings or syntac-
tic anomalies that it is impossible to classify them, skipping the current pair when a
user chooses not to annotate this pair, and general comments (to send any suggestion
about improving the system). The final annotation of each pair is computed when it
is fully annotated by three annotators–when an annotator clicks ‘Next’, they are given
the next sentence that has not yet been fully annotated. This has the side-effect of
mixing up annotators: since annotators do their work incrementally, it is very unlikely
that three people will all click ‘Next’ in lock-step, so there will be inevitable shuffling
of annotators, with each person having a range of different co-annotators. The current
annotation tool interface is shown in Figure 6.3. All information about articles, an-
notators, annotations and other information such as comments is stored in a MySQL
database.
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Figure 6.3: Annotate new pair’s interface.

6.4 Arabic TE dataset

The current dataset, namely Arabic TE dataset (ArbTEDS), consists of 618 T-H pairs.
These pairs are randomly chosen from thousands of pairs collected by using the tool
explained in Section 6.3.1. These pairs cover a number of subjects such as politics,
business, sport and general news. We used eight expert and non-expert volunteer an-
notators4 to identify the different pairs as ‘YES’, ‘NO’ or ‘UN’ pairs in the ArbTEDS.
Those annotators follow nearly the same annotation guidelines as those for building the
RTE task dataset (Dagan et al., 2006) (see Section 2.3.2). They used the online system
explained in Section 6.3.2 to annotate our collected headline-lead paragraph pairs. Us-
ing a web-based annotation tool provides us with different advantages, especially that
it is available for many annotators in a lot of places.

Table 6.2 summarises these individual results: the rates on the cases where an an-
notator agrees with at least one co-annotator (average around 91%) are considerably
higher than those in the case where the annotator agrees with both the others (average
around 78%). This suggests that the annotators found this a difficult task. Table 6.2

4All our annotators are Arabic native speaker PhD students, who are the author’s colleagues. Some
of them are linguistics students, whereas the others are working in fields related to NLP.
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shows that comparatively few of the disagreements involve one or more of the anno-
tators saying ‘UN’–for 600 of the 618 pairs at least two annotators both chose ‘YES’
or both chose ‘NO’ (the missing 18 pairs arise entirely from cases where two or three
annotators chose ‘UN’ or where one said ‘YES’, one said ‘NO’ and one said ‘UN’.
These 18 pairs are annotated as ‘UN’ and they are eliminated from our dataset, leaving
600 binary annotated pairs).

Agreement YES NO
≥ 2 agree 478 (80%) 122 (20%)

3 agree 409 (68%) 69 (12%)

Table 6.2: ArbTEDS annotation rates, 600 pairs.

We were expecting annotators to make frequent use of the ‘Unknown’ option. The
fact that they did not means that it is inevitable that the top row in Table 6.2 will cover
virtually the entire set. Does that mean that we should trust the majority decision in
every case?

This is appealing, since it maximises the size of the dataset. The fact that the rate
of agreement drops so dramatically when we insist on unanimity suggests that it is not
a good idea. We have average agreement between three annotators in 78% of cases,
compared to 91% of average agreement between at least two. The frequency of cases
where there is not total agreement indicates that, for the text types we are working with
(the headline from a story and the first one or two clause(s) of the first sentence of a
linked story) people find it very difficult to carry out this task. It seems likely, then, that
a computer will also find it very difficult to carry it out. If we use cases where there
is majority agreement as our training set, we are likely to learn rules from examples
which do not in fact exemplify sound (or even plausible/probabilistic) inferences. If
we use them as the test set, we will be asking the system questions to which even our
subjects have not given consistent answers. We therefore plan to use only examples
where there is a unanimous verdict for both training and testing.

Is it possible to predict which cases will lead to disagreements? One obvious candi-
date is sentence length. It seems plausible that people will find long sentences harder to
understand than short ones, and that there will be more disagreement about sentences
that are hard to understand than about easy ones. Further statistical analysis results for
the version of the dataset when there is unanimity between annotators is summarised
in Table 6.3. We analyse the rates of this strategy that are shown in Table 6.2 according
to the text’s length, when the H average length is around 10 words and the average of
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common words between T and H is around 4 words. The average length of sentence
in this dataset is 25 words per sentence, with some sentences containing 40+ words.

Text length #pairs YES NO At least one disagree
<20 131 97 (74%) 11 (8%) 23 (18%)

20-29 346 233 (67%) 38 (11%) 75 (22%)
30-39 110 69 (63%) 20 (18%) 21 (19%)
>39 13 10 (77%) 0 (0%) 3 (23%)

Total 600 409 (68%) 69 (12%) 122 (20%)

Table 6.3: ArbTEDS text’s range annotation rates, three annotators agree, 600 pairs.

Contrary to the expectation above, there does not seem to be any variation in agree-
ment amongst annotators as sentence length changes. We therefore select the candidate
T-H pairs without any restrictions on the length of the text to diversify the level of the
examples’ complexity, and hence to make the best use for our dataset.

For reference, (6.3) and (6.4) show examples of entailment and non-entailment
pairs where the annotators do all agree.

(6.3) ArbTEDS’s entailment pair
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“The US Department of Defense, the Pentagon, draw up a new strategy that cate-

gorises cyber-attacks as acts of war, according to US newspapers”
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“The Pentagon considers cyber-attacks as acts of war”

(6.4) ArbTEDS’s non-entailment pair
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“The first meeting held in Cairo between representatives of the supreme council of the

armed forces and about a thousand people representing a number of youth groups that

have emerged since the outbreak of the revolution”
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b. Qå�Ó ú



	
¯ Õ» AmÌ'@ ø



Qº�ªË@ �Êj. ÖÏ @ð

�
èPñ

�
JË @ H. AJ.

�
�

	á�
K. Z A
�
®Ë Èð



@ Y

�
®«

ςqd Âwl lqA’ byn šbAb Al+θwrh̄ w+Al+mjls Al+ςskry Al+HAkm fy mSr

“A first meeting held between the youth of the revolution and Egypt’s ruling military

council”

In (6.3), the three annotators are agreed that (6.3a) entails (6.3b) because all the
information of the hypothesis is embedded in the text. In (6.4), on the other hand,
they all agree that (6.4a) does not entail (6.4b) because there is no evidence in the text
about ø



Qº�ªË@ �Êj. ÖÏ @ Al+mjls Al+ςskry “the military council” is Qå�Ó ú




	
¯ Õ» AmÌ'@

Al+HAkm fy mSr “Egypt’s ruling”, which appears in the hypothesis.
Given the lack of agreement amongst annotators, it seemed worth investigating

whether it would be possible to pre-filter the test cases. It is extremely easy to collect
more potential T-H pairs, so if we could find pairs where our annotators were more
likely to agree then we would get a larger dataset for the same amount of annotator
effort.

Inspection of individual cases where one annotator disagreed with the others indi-
cated that structural ambiguity is a major source of disagreement between annotators.
Typically, in this kind of ambiguity two or more syntactic analyses lead to several
possible interpretations. For instance, (6.5) shows a T-H pair when text has structural
ambiguity.

(6.5) Pair with text has structural ambiguity

a. I saw the man with the telescope.

b. The man has a telescope.

In the above example, there is a prepositional phrase (PP)-attachment structural
ambiguity in the text. So, the PP ‘with the telescope’ can be attached to either ‘saw’

or ‘the man’, i.e. something X with the telescope, and it is either the man or the seeing
event. Therefore, there are two meanings for the text, “The man has a telescope” or “I
used the telescope to see the man” (the seeing was done with a telescope). In this case,
there are three possibilities for annotators’ judgement, as follows:

• Consider that the first meaning is satisfied. They will tag the pair as positive entail-
ment ‘YES’.

• Consider that the second meaning is satisfied. They will tag the pair as negative
entailment ‘NO’.
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• Consider that both meanings are satisfied. They will tag the pair as ‘UN’.

Hence, the three annotators, for instance, disagree when they annotated the pair
given in (6.6) because the phrase �

HA
�
¯CªË@ 	QK


	Qª
�
JË ltςzyz Al+ς lAqAt “for fence-mending”

in the text is ambiguous. They do not know if it is attached with “Poland” or with “the
leaders of central and Eastern Europe are members of the European Union”.

(6.6) ArbTEDS’s ambiguous pair
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Al+Âwrby ltςzyz Al+ς lAqAt

“US President Barack Obama visits Poland in the last phase of his European trip and

he will join leaders of central and eastern Europe nations that are members of the

European Union for fence-mending”
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“President Obama visits Poland for fence-mending”

The problem seems to be that some people are cautious about interpreting sen-
tences involving attachment ambiguities, on the grounds that if a sentence has multiple
interpretations then you cannot be sure which one was intended, and hence you cannot
be sure about what it entails, and some are less wary or are plain unaware that the text
was ambiguous in the first place. It is hard to detect where there is an attachment ambi-
guity automatically–using MSTParser to parse the text will tell us where there is a PP
that has been attached to some preceding noun or verb, but it will not straightforwardly
tell us whether there was an alternative attachment site. In any case, TE is about what
a typical speaker will conclude about a T-H pair, and if there is no uniformity among
our annotators about what to do in the face of ambiguity then we cannot say what a
typical speaker would do: all our annotators are native speakers, so they should all be
‘typical’. If their interpretation of the relationship between an ambiguous T and the
corresponding H is systematically varied, the idea of a typical speaker is somewhere
undermined. This further strengthens the view that we should only use T-H pairs where
all the annotators agree.
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6.4.1 Testing dataset

It is worth noting in Table 6.2 that a substantial majority of pairs are marked positively–
that T does indeed entail H. This is problematic, at least when we come to use the
dataset for testing. For testing we need a balanced set: if we use a test set where 80%
of cases are positive then a system which simply marks every pair positively will score
80%. It is hard, however, to get pairs where T and H are related but T does not entail
H automatically. To solve this problem, three strategies are possible, as follows:

Strategy I: it would be easy to get cases where T does not entail H, simply by taking
the first sentence from an unrelated article, but this also will not pose a problem for a
TE system.

Strategy II: we could ask the reliable annotators, whom we find according to the
strategies explained in Section 6.5, to make minor changes to T or H to get non-
entailing T-H pairs, but this is liable to embody biases introduced by the annotator
(i.e. experimenter’s bias).

Strategy III: select the paragraph (except the lead paragraph) in the article that
shares the highest number of common words with the headline for the first 10 returned
pages. We called this technique headline keywords-rest paragraph. It produces a large
number of potential texts, which are related to the main keywords of the headlines,
without any bias.

In the current work, we need a testing set with balanced ‘YES’ and ‘NO’ pairs (i.e.
300 pairs for each group). In order to construct a testing set from the dataset described
in Table 6.3, we follow three steps: (i) we first selected randomly 300 entailed pairs
from the 409 entailed pairs (‘YES’ column in Table 6.3); (ii) we have already 69 not
entailed unanimously marked by annotators (‘NO’ column in Table 6.3), so we still
need to construct 231 not entailed pairs. We therefore collect 231 headlines from the
rest of the 109 entailed pairs in step (i) and from 122 pairs which are not annotated
as ‘YES’ or ‘NO’ because at least one annotator disagrees with others (‘at least one
disagree’ column in Table 6.3); and (iii) apply the strategy III on these 231 headlines
and ask the reliable annotators, whom we determine according to the strategies ex-
plained in Section 6.5, to select a potential text for each headline that it does not entail.
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The distribution of our testing set (a 50%-50% split of ‘YES’ and ‘NO’ pairs), namely
ArbTEDS_test, is summarised in Table 6.4.

Text’s length #pairs YES NO
<20 131 74 (56%) 57 (44%)

20-29 346 165 (48%) 181 (52%)
30-39 110 53 (48%) 57 (52%)
>39 13 8 (62%) 5 (38%)

Total 600 300 300

Table 6.4: ArbTEDS_test dataset text’s range annotation, 600 binary decision pairs.

For example, if you apply the strategy III on the entailed pair in (6.3) to construct
a not entailed pair, you could get a pair as illustrated in (6.7).

(6.7) Non-entailment pair for entailment pair in (6.3)
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“The Pentagon spokesman declared that: a response to any cyber-attack on the US

would not necessarily be a cyber-response and all options would be on the table to

respond to this attack”
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“The Pentagon considers cyber-attacks as acts of war”

As can be seen in (6.7), there are around 3 words from 6 common words between
T and H, but it is marked as not entailed.

6.5 Spammer detector

In the current work, we need to cope with the challenges that arise from relying on vol-
unteer annotators. The main challenge here is that it is hard to know in advance how
reliable those annotators are. We therefore describe in the current section a regime that
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helps us to compensate for this challenge. There are several operational definitions of
‘annotator reliability’ in use by many researchers, reflecting different viewpoints about
what is reliable agreement between annotators. We apply two different strategies to
detect annotators who, for whatever reasons, have not done the job properly and mark
them as ‘spammer’. The system will then decide to block the account of these spam-
mer annotators and then remove their annotations from the system database. These
strategies are explained below.

Strategy A: this strategy uses joint-probability of agreement, which is the most sim-
ple (and weakest) measure of reliability. This method finds the number of times the
annotators agree divided by the total number of annotations. We find here the joint-
probability of agreement of selecting ‘Unknown’ option for each annotators, if this
rate exceeds 20%, the annotator will be marked as spammer. The results obtained for
applying this strategy are presented in Table 6.5.

Annotator ID
ANT1 ANT2 ANT3 ANT4 ANT5 ANT6 ANT7 ANT8

#pairs 336 212 468 100 317 226 95 100
rate of ‘Un-
known’ option

0% 1.4% 1.5% 0% 1.2% 1.3% 2% 0%

Table 6.5: Reliability measure of our annotators, strategy A.

As can be see from the table above, all rates are very small (less than or equal 2%).
These findings indicate that there is no spammer in our annotators.

Strategy B: we used here a statistical measure for assessing the reliability of agree-
ment among our annotators when assigning categorical ratings to a number of anno-
tating T-H pair of sentences. This measure is called kappa, which takes chance agree-
ment into consideration (i.e. in contrast with strategy A). We use Fleiss’s kappa (Fleiss,
1971), which is a generalisation of Cohen’s kappa (Cohen, 1960) statistic to provide a
measurement of agreement among a constant number of raters n, where each of the k

subjects are rated by n > 2 raters. Let ki j be the number of raters who assign the ith

subject to the jth category (i = 1, . . . ,k and j = 1, . . . ,c). The kappa can be defined as
(Gwet, 2012):

kappa =
p0− pe

1− pe
, (6.1)
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where

p0 =

k

∑
i=1

c

∑
j=1

k2
i j−nk

kn(n−1)
(6.2)

and

pe =
c

∑
j=1

p2
j , (6.3)

where

p j =
1
nk

k

∑
i=1

ki j. (6.4)

The numerator of Equation 6.1 (p0− pe) gives the degree of agreement actually
achieved above chance, whereas the denominator (1− pe) gives the degree of agree-
ment that is attainable above chance. Kappa is scored as a number between 0 and 1,
while the higher kappa is the higher agreement (i.e. kappa=1 is complete agreement).

In our case, we need a global measure of agreement, which corresponds to the
annotator reliability. We carry out the following steps:5

1. The current annotator is ANTi, i=1.

2. Create table for the ANTi. This table includes all sentences annotated by ANTi, and
includes also as columns the other annotators who annotated the same sentences
as ANTi. Because each annotator has a range of different co-annotators, a more
effective way to organise our data is similar to the table shown in Figure 6.4. If an
annotator does not annotate a sentence, then the corresponding cell should be left
blank.

Sen_ID ANT1 ANT2 ANT3 ANT4 ANT5 ANT6 ANT7 ANT8
1 YES YES NO
2 YES NO NO
3 NO NO UN
4 YES YES YES
... ... ... ... ... ... ... ... ...

600 YES NO YES

Figure 6.4: Organise our data for strategy B.

5These steps are proposed by specialist in inter-rater reliability, Dr. Kilem L. Gwet, Statistical
Consultant, Advanced Analytics, LLC. http://www.agreestat.com/.
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3. Compute the multiple-annotator version of kappa, as in Equation 6.1, for all anno-
tators in that table.

4. Compute another kappa for all annotators except ANTi in that table.

5. If the kappa calculated in the step 4 exceeds that of step 3 significantly, then ANTi

is possibly a spammer.

6. i=i+1.

7. If i exceeds 8 (i.e. number of our annotators), then stop.

8. Repeat this process from step 2 for the ANTi.

To identify a ‘spammer’, you need to compare each annotator to something else (or
some other group of annotators). If you take one annotator at a time, you will not be
able to compute kappa, which takes chance agreement into consideration. You need
two annotators or more to compute kappa.

We find out the kappa for each annotator with his/her co-annotators and another
kappa for his/her co-annotators only for our eight annotators using the above steps, as
shown in Table 6.6.

Kappa Annotator ID Meanfor ANT1 ANT2 ANT3 ANT4 ANT5 ANT6 ANT7 ANT8

ANTi 0.62 0.47 0.60 0.49 0.58 0.59 0.65 0.58 0.57
ANTi’s co-
annotators

0.55 0.50 0.53 0.52 0.61 0.61 0.68 0.57 0.57

Table 6.6: Reliability measure of our annotators, strategy B.

The first thing to note about the results in Table 6.6 is that all kappa values between
0.4-0.79 represent a moderate to substantial level of agreement beyond chance alone
according to the kappa interpretation given by Landis and Koch (1977) and Altman
(1991). Also, the variation between the kappa including an annotator and the kappa
of his/her co-annotators only is comparatively slight for all annotators. The average
of both kappas for all annotators is equal (i.e. 0.57), which suggests that the strength
of agreement among our annotators is moderate (i.e. 0.4 ≤ kappa ≤ 0.59). We have
solely three annotators (ANT1, ANT3 and ANT8) where the kappas including them are
higher than kappas for their co-annotators. The other annotators have kappas less than
the kappas of their co-annotators but these differences are very slight.
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We have applied different strategies for detecting weakest annotators. The findings
of these strategies suggest that all our annotators are reliable and we can use their
annotated dataset in our work.

6.6 Summary

We have outlined an approach to the task of creating a dataset for a TE task for working
with a language where we have to rely on volunteer annotators. To achieve this goal,
we tested two main tools. The first tool, which depends on the Google-API, is respon-
sible for acquisition of T-H pairs based on the headline-lead paragraph technique of
news articles. We have updated this idea in two ways: (i) for the training dataset, we
use a headline from one source and the lead paragraph from an article with a closely
linked headline, but from a different source. This notion is applicable to the collection
of such a dataset for any language. It has two benefits. Firstly, it makes it less likely
that the headline will be extracted directly from the sentence that is being linked to,
since different sources will report the same event slightly differently. Secondly, it will
be more likely than the original technique to produce T-H pairs where T entails H with
few common words between T and H; and (ii) for the testing dataset, we use the same
technique for training to collect the entailed pairs, while we use a different technique
which selects the paragraph, other than the lead one, from the article that gives the
highest number of common words between both headline and paragraph to collect the
non-entailed pairs. This is particularly important for testing, since for testing you want
a collection which is balanced between pairs where T does entail H and ones where
it does not. This technique will be more likely than the original technique and the
updated technique for training to produce T-H pairs with a large number of common
words between T and H where T does not entail H, which will pose a problem for a TE
system. Getting T-H pairs where T is reasonably closely linked to H but does not entail
it automatically is quite tricky. If the two are clearly distinct, then they will not pose a
very difficult test. As shown in Table 6.2, by using the updated headline-lead paragraph
technique, we have a preponderance of positive examples, but there is a non-trivial set
of negative ones, so it is at least possible to extract a balanced test set. We therefore
apply the headline keywords-rest paragraph technique to construct a balanced test set
from our annotated dataset as shown in Table 6.4.

As can be seen in Table 6.2, if we take the majority verdict of the annotators we find
that 80% of the dataset are marked as entailed pairs, 20% as not entailed pairs. When
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we require unanimity between annotators, this becomes 68% entailed and 12% not
entailed pairs. This drop in coverage, together with the fact that the ratio of entailed:not
entailed moves from 100:25 to 100:17, suggests that relying on the majority verdict is
unreliable, and we therefore intend to use only cases where all three annotators agree
for both training and testing.

In order to make sure that our data is reliable, two different strategies are applied
to check unreliable annotator(s). The strategy A is the simple one that depends on
the rate of selecting ‘unknown’ option. The strategy B depends on kappa coefficient,
which takes chance into consideration. Both strategies suggest that all our annotators
are reliable.



Chapter 7

Systems and evaluation

7.1 Introduction

In Chapter 5, we described the ETED algorithm which we propose to use for in-
ferring semantic entailment between two text snippets, and we discussed the use of
optimisation algorithms for calculating the necessary edit operation costs and thresh-
olds. In this chapter, we will present the results of a series of experiments involving
these algorithms. These experiments cover two types of decisions: binary decision
(Section 7.1.2.1) and three-way decision (Section 7.1.2.2); and they make use of two
datasets–the Arabic TE test set (ArbTEDS_test, see Section 6.4.1) and the English
RTE2 test set.

7.1.1 The current systems

We explore here a range of systems for the Arabic TE task, beginning with systems
which are simple and robust but approximate, and proceeding to progressively more
sophisticated systems. These systems can be divided into two main groups: surface
string similarity systems (systems 1-3, Section 7.1.1.1) and syntactic similarity sys-
tems (systems 4-20, Sections 7.1.1.2 and 7.1.2.3). Systems 1-6 described below are
reimplementations of standard approaches that have been done for other languages,
such as English. We include these to provide baselines and to confirm that when ap-
plied to Arabic they produce results which are similar to those obtained for English.
Our contributions are covered by systems 7-20, which represent different versions of
our ArbTE system.

205
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7.1.1.1 Surface string similarity systems

We have investigated here different lexical-based systems as follow.

System 1: BoW. The recent surge in interest in the problem of TE was initiated by in-
formation retrieval (IR) community researchers, who have exploited simple represen-
tations (e.g. bag-of-words (BoW) representation) with great success. If we approach
the TE task from this direction, then a reasonable starting point is simply to represent T

and H by vectors encoding the counts of the words they contain. Then, some measures
of vector similarity are used to predict inferential validity (i.e. matching each word
in H to the word in T which best supports it). Despite the fact that the BoW repre-
sentation might seem highly impoverished, BoW models have been shown to be an
effective method in addressing a wide range of NLP tasks, such as text categorisation,
word sense disambiguation and others.

System 1 is a simple BoW which measures the similarity between T and H as the
number of common words between them (either in surface forms or lemma forms),
divided by the length of H, when the highest similarity is better.

The main drawback of BoW models is that they measure approximate lexical sim-
ilarity, without regard to syntactic–and even the word order–or semantic structure of
the input sentences. This makes them very imprecise, and they can then therefore be
easily led astray especially when every word in H also appears in T as in ‘John kissed

Mary’ and ‘Mary kissed John’ (i.e. it ignores predicate-argument structure).

System 2: LD1. This system uses the Levenshtein distance (LD) algorithm (Algo-
rithm 5.1) to measure the difference between T and H as the number of mismatched
words between them (either in surface forms or lemma forms), when the lowest dif-
ference is better. The word operation costs (deletion γ(W1→∧), insertion γ(∧→W2)

and exchange γ(W1 →W2)) are set as below, where W1 and W2 are two words, ‘⊆’
means ‘is subsumed by’ and POSW is the POS tag of W.

γ(W1→∧) = 0.5, (7.1)

γ(∧→W2) = 1, (7.2)
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γ(W1→W2) =

0 W1 ⊆W2&POSW1 = POSW2,

γ(W1→∧)+ γ(∧→W2) otherwise.
(7.3)

System 3: LD2. The same as for LD1 except that the cost of exchanging non-identical
words is the Levenshtein distance between the two words (LDword(W1,W2)), with lower
costs for vowels, as in Equation 7.4 divided by the length of the longer of the two words
(derived and inflected forms of Arabic words tend to share the same consonants, at least
in the root, so this provides a very approximate solution to the task of determining
whether two forms correspond to the same lexical item).

γ(W1→W2) =

0 W1 ⊆W2&POSW1 = POSW2,

LDword(W1,W2) otherwise,
(7.4)

where the costs of deleting a character γ(C1 → ∧), inserting a character γ(∧ → C2)

and exchanging a character γ(C1→C2) are 0.5, 1 and 1.5 respectively for consonants,
while the costs for vowels are half the costs for consonants.

7.1.1.2 Syntactic similarity systems

The systems in this group work at the syntactic level. These systems follow three steps:

(i) Each sentence is preprocessed by a tagger and a parser in order to convert them
to dependency trees. We use the strategy II (Section 4.4) that merging the three
taggers on the basis of their confidence levels (which gives us 99.5% accuracy on
the tagset illustrated in Figure 4.2) and then using three parsers (MSTParser plus
two parsing algorithms from the MALTParser collection) gives around 85% for
labelled accuracy (see Table 4.16), which is the best result we have seen for the
PATB. We use these combinations in a series of experiments which involve the
next two steps.

(ii) Pairs of dependency trees are matched using either ZS-TED or ETED to obtain a
score for each pair.

(iii) Either one threshold (for simple entails/fails-to-entail tests) or two (for entails/
unknown/fails-to-entail tests) are used to determine whether this score should
lead to a particular judgement.
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We tested the following systems, where system 7 and upward represent our ArbTE
system with different settings.

System 4: ZS-TED1. This system uses ZS-TED with a manually-determined set of
fixed costs. The costs of deleting a node γ(N1→∧), inserting a node γ(∧→ N2) and
exchanging a node γ(N1→ N2) are explained below, where N1 and N2 are two nodes.

γ(N1→∧) = 0, (7.5)

γ(∧→ N2) = 10, (7.6)

γ(N1→ N2) =

0 N1 ⊆ N2&POSN1 = POSN2,

γ(N1→∧)+ γ(∧→ N2) otherwise.
(7.7)

System 5: ZS-TED2. Using TED poses a challenge of selecting a combination of costs
for its three standard edit operations with threshold(s), which is hard when dealing with
complex problems. This is because alterations in these costs can lead to drastic changes
in TED performance (Mehdad and Magnini, 2009). Selecting relevant costs for these
basic operations depends mainly on the nature of nodes and applications. For instance,
inserting a noun node into a syntactic tree is different from inserting a node into an
XML data tree. One strategy could be by estimating these costs based on an expert
valuation. Such a strategy may not be effectively done in domains where the level of
expertise is very limited.

System 5 uses expert knowledge to assign costs and threshold(s) for ZS-TED.
These costs depend on a set of stopwords and on sets of synonyms and hypernyms,
obtained from our lexical resources (Section 5.5). These costs are an updated version
of the costs used by Punyakanok et al. (2004). They are calculated using the following
equations.

γ(N1→∧) =

5 N1 is a stopword,

7 otherwise,
(7.8)
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γ(∧→ N2) =

5 N2 is a stopword,

100 otherwise,
(7.9)

γ(N1→ N2) =



0 N1 ⊆ N2,

5 N1 is a stopword,

100 N2 ⊆ (or is an antonym) o f a node N1,

50 otherwise.

(7.10)

System 6: ZS-TED+GA. An alternative strategy for the challenge explained in the
previous system (see ZS-TED2) would be to estimate the cost of each edit operation
automatically. Bernard et al. (2008) tried to learn a generative or discriminative proba-
bilistic edit distance model from the training data. Other approaches used optimisation
algorithms such as genetic algorithm (GA) (Habrard et al., 2008) and particle swarm
optimisation (PSO) (Mehdad, 2009).

System 6 uses a GA to estimate the costs of edit operations and threshold(s) for
ZS-TED. The chromosome (Cbinary-decision) for binary decision output is shown in Fig-
ure 7.1, where θ is the threshold, and the fitness ( fbinary-decision) for binary decision
output is explained in Equation 7.11.

γ(N1→∧) γ(∧→ N2) γ(N1→ N2) θ

Figure 7.1: Chromosome structure for binary decision output, Cbinary-decision, for ZS-
TED.

fbinary-decision(Cbinary-decision) = a×F-score+b×accuracy, (7.11)

where a and b are real numbers in the interval [0,1]. Providing different values for a

and b makes it possible to optimise the system for different applications–in the current
experiments, a is 0.6 and b is 0.4, which effectively puts more emphasis on precision
than on recall, but for other tasks different values could be used.

For three-way decisions, the chromosome (Cthree-decision) is the same as for binary
decisions except that we use two thresholds as illustrated in Figure 7.2, where θl and
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θu are the lower and upper thresholds respectively, and the fitness ( fthree-decision) for
three-way decision is explained in Equation 7.12.

γ(N1→∧) γ(∧→ N2) γ(N1→ N2) θl θu

Figure 7.2: Chromosome structure for three-way decisions output, Cthree-decision, for
ZS-TED.

fthree-decision(Cthree-decision) = F-score. (7.12)

We used the steady state GA (ssGA) (Algorithm 5.6) as a version of the GA with the
following settings:

• population size is 40 chromosomes;

• the selection scheme is the tournament selection, which selects, as a parent, the
fittest individual from a subset of individuals randomly chosen from the original
population, with this process repeated as often as individuals must be chosen.

The main advantage of this operator is speed of execution, since it does not need
firstly to sort population during its work and it also works on parallel architecture,
since all selections could take place simultaneously, which is what happens in na-
ture;

• the crossover operator is uniform crossover (UX), which evaluates each correspond-
ing gene in the parents for exchanging with a fixed probability, here set to 0.5. This
operator is applied with probability Pc equal to 0.9;

• the mutation operator is Gaussian mutation, which adds a unit Gaussian distributed
random value to the randomly chosen gene. The new value of this gene is clipped if
it falls outside the user-defined lower and upper bounds for that gene. This operator
is applied with probability Pm equal to 0.1;

• the replacement operator is tournament replacement which replaces the worst indi-
vidual from a subset of individuals randomly chosen from the original population if
it is fitter than an offspring, with this process repeated as often as individuals must
be replaced.

• the generation is repeated for 100 generations.
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To prevent premature convergence (i.e. a population converging too early), we cal-
culate the difference between the mean of population fitness of the current generation
with the mean of the previous one. If the difference between them is less than 0.01 for
15 consecutive generations, we generate a new population by keeping the best individ-
ual from the last population and randomly generating the others (we will refer to this
process as repopulation).

System 7: ZS-TED+ABC. The same as ZS-TED+GA system except using ABC algo-
rithm (Algorithm 5.8) instead of GA as the optimisation algorithm. The food sources
(i.e. the food source is equivalent to the chromosome in GA) are the same as the
chromosomes of system 6 and the nectars are also the same as the fitness functions of
system 6. We used the ABC algorithm with the following settings:

• the colony size equals the population size of GA, i.e. 40 solutions;

• the percentages of onlooker bees and employed bees were 50% of the colony;

• the number of scout bees was selected as one;

• the maximum number of cycles for foraging equals the maximum number of gen-
eration for GA, i.e. 100 cycles.

System 8: ETED1. This system uses ETED with manually assigned costs. The costs
for single nodes are the same for the ZS-TED1 experiment and the costs for subtrees
are half the sum of the costs of their parts.

System 9: ETED2. This system uses ETED with the same costs for single nodes that
are applied to ZS-TED2 (see Equations 7.8, 7.9 and 7.10) and the following costs for
subtrees, where S1 and S2 are two subtrees.

γ(S1→∧) = 0, (7.13)

γ(∧→ S2) = double the sum o f costs o f its parts, (7.14)

γ(S1→ S2) =

0 S1 is identical to S2,

hal f the sum o f costs o f its parts otherwise.
(7.15)
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System 10: ETED+ABC. This system uses the ABC algorithm to estimate the costs of
edit single and subtree operations and threshold(s) for ETED. For binary decision out-
put, the food source (FSeted-binary-decision) is the extended version of the chromosome
of GA for binary decision (Cbinary-decision, Figure 7.1) which contains three additional
parameters α , β and η for subtree operations, where α is the multiplier for the sum
of the costs of the individual deletions in a deleted subtree, β is the multiplier for the
sum of the costs of the individual insertions in an inserted subtree, and η is the mul-
tiplier for the sum of the costs of the individual exchanges in an exchanged subtree,
as explained in Figure 7.3. The fitness is the same as fbinary-decision (Equation 7.11).
For three-way decisions, the food source (FSeted-three-decision) is the extended version
of the chromosome of GA for the three-way decision (Cthree-decision, Figure 7.2) which
contains the above three additional parameters α , β and η for subtree operations, as
illustrated in Figure 7.4. The fitness for three-way decision is the same as fthree-decision

(Equation 7.12). We do not include GA results for ETED, as extensive comparison of
the standard GA and the ABC algorithm on the ZS-TED experiments shows that the
ABC algorithm consistently produces better results for the same number of iterations.

γ(N1→∧) γ(∧→ N2) γ(N1→ N2) θ α β η

Figure 7.3: Food source structure for binary decision output, FSeted-binary-decision, for
ETED.

γ(N1→∧) γ(∧→ N2) γ(N1→ N2) θl θu α β η

Figure 7.4: Food source structure for three-ways decision output, FSeted-three-decision,
for ETED.

7.1.2 Results

We carried out experiments using the systems in Section 7.1.1 with two types of de-
cisions, either simple binary choice between ‘YES’ and ‘NO’ (Section 7.1.2.1) or a
three-way choice between ‘YES’, ‘UN’ and ‘NO’ (not ‘contradicts’) (Section 7.1.2.2).
These results include, for the Arabic test set, four groups of systems: (i) the bag-of
words (BoW) system (system 1); (ii) Levenshtein distance systems (systems 2-3); (iii)
ZS-TED-based systems (systems 4-7); and (iv) ETED-based systems (systems 8-10).
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Moreover, although we are primarily interested in Arabic, we have also carried out
parallel sets of experiments on the English RTE2 test set, using the Princeton English
WordNet (PWN) as a resource for deciding whether a word in T may be exchanged for
one in H, in order to demonstrate that the general approach is robust across languages.

Because the TED algorithms work with dependency tree analyses of the input texts,
we have used a copy of the RTE2 dataset that has been analysed using MINIPAR
(Lin, 1998a).1 The RTE2 test set contains around 800 T-H pairs, but a number of the
MINIPAR analyses have multiple heads and hence do not correspond to well-formed
trees, and there are also a number of cases where the segmentation algorithm that was
used produces multi-word expressions. After eliminating problematic pairs of this kind
we are left with 730 pairs, split evenly between positive and negative examples.

Since we are mainly concerned here with the difference between ZS-TED and
ETED, we have omitted the Levenshtein distance systems (second group) from our
experimented systems for the RTE2 test set and have simply kept the basic bag-of-
words system as a baseline. Previous authors (e.g. Kouylekov, 2006; Mehdad and
Magnini, 2009) have shown that ZS-TED consistently outperforms string-based sys-
tems on this dataset, and there is no need to replicate that result here. So, the results
for RTE2 include three groups of systems: (i) the bag-of words (BoW) system (system
1); (iii) ZS-TED with manually specified weights (systems 5); and (iv) ETED-based
systems (systems 9-10).

7.1.2.1 Binary decision results

In this type of decision, text T entails hypothesis H when the cost of matching is less
(more in case of bag-of-words) than a threshold. The results of these experiments,
in terms of precision (P), recall (R) and F-score (F) (see Equations 4.1, 4.2 and 4.4
respectively) for ‘YES’ class and accuracy (Acc.), are shown in Table 7.1 for Arabic
test set and in Table 7.2 for RTE2 test set.

Most experiments on TE tasks only report F-score or accuracy: in certain situations
it may be more important to have decisions that are trustworthy (high precision, as in
string-based systems) or to be sure that you have captured as many positive examples
as possible (high recall,2 as in syntactic-based systems), or to have a good balance

1The RTE2 preprocessed datasets available at: http://u.cs.biu.ac.il/~nlp/RTE2/Datasets/
RTE-2\%20Preprocessed\%20Datasets.html

2This might be useful, for instance, with ETED being used as a low cost filter in a question answer-
ing (QA) system, where the results of a query to a search engine might be filtered by ETED before being
passed to a system employing full semantic analysis and deep reasoning, which are high precision but
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between these (high F-score). It is easy to change the balance between precision and
recall, simply by changing the threshold that is used for determining whether it is safe
to say that T entails H–we could have chosen thresholds for syntactic-based systems
that increased the precision and decreased the recall, so that the results more closely
matched string-based systems. We used in the current study F1-score (or balanced F-
score, see Equation 4.4), which is the harmonic mean of precision and recall compared
with the other commonly F-scores that are the F0.5-score, which puts more emphasis
on precision than recall, and the F2-score, which weights recall higher than precision.
So, in F1-score, both precision and recall have the same effect on the final result of the
measure, when any increment in precision or recall or both will lead to an increment
in the F-score (for more details, see Appendix D). We used in the current experiments
a mixture between F-score and accuracy by specifying the fitness parameters that ef-
fectively put slightly more emphasis on F-score than on accuracy (i.e. F-score×a +
accuracy×b, where a=0.6 and b=0.4).

Group System Pyes Ryes Fyes Acc. Fyes× 0.6+Acc.× 0.4
(i) (1) BoW 63.6% 43.7% 0.518 59.3% 0.548

(ii)
(2) LD1 64.7% 44% 0.524 60% 0.554
(3) LD2 65% 47.7% 0.550 61% 0.574

(iii)

(4) ZS-TED1 57.7% 64.7% 0.61 58.7% 0.601
(5) ZS-TED2 61.6% 73.7% 0.671 63.8% 0.658
(6) ZS-TED+GA 59.2% 92% 0.721 64.3% 0.690
(7) ZS-TED+ABC 60.1% 91% 0.724 65.3% 0.696

(iv)
(8) ETED1 59% 65.7% 0.621 60% 0.613
(9) ETED2 63.2% 75% 0.686 65.7% 0.674
(10) ETED+ABC 61.5% 92.7% 0.739 67.3% 0.713

Table 7.1: Performance of ETED compared with the simple bag-of-words, Levenshtein
distance and ZS-TED, binary decision Arabic dataset.

Group System Pyes Ryes Fyes Acc. Fyes× 0.6+Acc.× 0.4
(i) (1) BoW 53.1% 49.9% 0.514 52.9% 0.520
(ii) Levenshtein distance systems are omitted from this test
(iii) (5) ZS-TED2 52.9% 62.5% 0.573 53.5% 0.558

(iv)
(9) ETED2 54.2% 66.6% 0.598 55.2% 0.580
(10) ETED+ABC 55.4% 70.1% 0.619 56.8% 0.599

Table 7.2: Performance of ETED compared with the simple bag-of-words and ZS-
TED, binary decision RTE2 dataset.

are also time-consuming.
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First of all, we want to point out that in our test set since the output split evenly
as ‘YES’ and ‘NO’, always guessing ‘YES’ every time (most-common-class classi-
fier) would get precision, recall, F-score and accuracy equal to 50, 100, 0.67 and 50,
respectively. This classifier would achieve perfect recall, but mediocre precision and
accuracy, since these are equal to the proportion of ‘YES’ answer in our test set. Most
researchers therefore look at accuracy, though a few try to optimise F-score. In our ex-
periments, we choose to optimise a mixture of accuracy and F-score, since optimising
any one of them depends on the nature of the problem and application.

The first two groups in Table 7.1 show the performance of the string-based systems:
the simple bag-of-words (BoW) (system 1) and two versions of the Levenshtein dis-
tance, LD1 (system 2) and LD2 (system 3). ZS-TED-based systems (third group) give
better results than the string-based systems (first and second groups). As we expected,
ZS-TED with optimisation algorithm systems (systems 6-7), which automatically es-
timated edit costs and threshold, produce better performance than using ZS-TED with
intuition-based edit costs and threshold (system 5), which in turn produces better per-
formance than ZS-TED with a simple set of fixed edit costs (system 4). Noting that,
using the ABC algorithm (system 7) produces better results for the same amount of
effort than a traditional GA (system 6) with the advantage of employing fewer control
parameters.

The key observation about the results in Table 7.1, however, is that the extended
version of TED with subtree operations, ETED (fourth group), improves the perfor-
mance of our systems (systems 8-10) for Arabic by roughly 2% in both F-score and
accuracy compared with ZS-TED (third group) and roughly 19% in F-score and 6% in
accuracy compared with string-based systems (first and second groups). This finding
supports the main hypothesis of this thesis that extended TED with subtree operations,
ETED, is more effective and flexible than the standard one, ZS-TED, especially for
applications that pay attention to relations among nodes (e.g. linguistic trees). This
allows the algorithm to treat semantically coherent parts of the tree as single items,
thus allowing for instance entire modifiers (such as prepositional phrases (PPs)) to be
inserted or deleted as single units.

The pattern in Table 7.2 is similar to that in Table 7.1. ZS-TED (system 5) is better
than BoW (system 1), and ETED (systems 9-10) is a further improvement over ZS-
TED (system 5). While it is not competitive with the best RTE2 systems, it achieved
an accuracy (56.8%) which is higher than that of more than a third of the RTE2 par-
ticipants (average accuracy of 41 systems (23 teams) is 58.5% and median accuracy
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of those systems is 58.3%, see Appendix E), in spite of the fact that the preprocessed
RTE2 test set that we used is not accurately parsed. Many of those teams had access
to preprocessing systems and resources for English which were not available for our
system, since English is not the focus of our attention in the present study.

The key point here is that in both sets of experiments, the F-scores improve as we
move from string-based measures to ZS-TED and then again when we use ETED; and
that they are remarkably similar for the two datasets, despite the fact that they were
collected by different means, are in different languages, and are parsed using different
parsers.

Given that the value of the measure that we are optimising in these experiments is
a mixture of accuracy and F-score, which is itself a mixture of precision and recall,
it is hard to predict how the individual components will behave. In other experiments
later in the present chapter we optimise for accuracy by itself (Table 7.7) and for F-
score by itself (Table 7.6), and in both cases the same systems produce the best results.
It is, however, interesting to note that in Tables 7.1 and 7.2 the settings that achieve
the highest score for our mixture of accuracy and F-score for the string-based systems
lead to higher precision than recall, whereas for the syntactic-based systems (where the
score for the mixture is higher) the optimal systems have higher recall than precision.
Appendix D contains an explanation of why this happens.

7.1.2.2 Three-way decision results

In this type of decision, we use two thresholds, one to trigger a positive answer if the
cost of matching is lower than the lower threshold (exceeds the upper one for the bag-
of-words algorithm) and the other to trigger a negative answer if the cost of matching
exceeds the upper one (mutatis mutandis for bag-of-words). Otherwise, the result will
be ‘UN’. The reason for making a three-way decision is to drive systems to make more
precise distinctions. Note that we are not distinguishing here between {T entails H,
T and H are compatible, T contradicts H}, but between {T entails H, I do not know
whether T entails H, T does not entail H}. This is a more subtle distinction, reflecting
the system’s confidence in its judgement, but it can be extremely useful when deciding
how to act on its decision.

The results of this experiment, in terms of precision (P), recall (R) and F-score (F),
are shown in Tables 7.3 and 7.4 for Arabic and RTE2 test sets, respectively.



CHAPTER 7. SYSTEMS AND EVALUATION 217

Group System P R F
(i) (1) BoW 59.0 % 57.3% 0.581

(ii)
(2) LD1 61.4% 58.0% 0.597
(3) LD2 62.9% 58.3 % 0.605

(iii)

(4) ZS-TED1 64.3% 58.4% 0.612
(5) ZS-TED2 64.8% 58.3% 0.614
(6) ZS-TED+GA 65.5 % 58.6 % 0.619
(7) ZS-TED+ABC 67.8 % 58.2 % 0.626

(iv)
(8) ETED1 65.3% 58.3% 0.616
(9) ETED2 66.7% 60% 0.632
(10) ETED+ABC 70.7% 62.4% 0.663

Table 7.3: Comparison between ETED, simple bag-of-words, Levenshtein distance
and ZS-TED, three-way decision Arabic dataset.

Group System P R F
(i) (1) BoW 50.8% 48.3% 0.495
(ii) Levenshtein distance systems are omitted from this test
(iii) (5) ZS-TED2 52.3% 50.2% 0.512

(iv)
(9) ETED2 54.3% 52.7% 0.535
(10) ETED+ABC 55.7% 56.1% 0.559

Table 7.4: Performance of ETED compared with the simple bag-of-word and ZS-TED,
three-way decision RTE2 dataset.

Table 7.3 shows the results of the three-way evaluation, along with same com-
parisons for binary decision. The obvious thing here is that all systems give better
precision than recall. Levenshtein distance systems (second group) achieve better F-
score than bag-of-words system (first group) and, as in binary decision, LD2 (system
3) performs slightly better than LD1 (system 2).

ZS-TED-based systems (third group) perform better than string-based systems (first
and second group). All ZS-TED-based systems achieve nearly the same recall but
different precision. The systems with optimisation algorithms outperform those with
fixed edit costs and thresholds, while the system with the ABC algorithm outperforms
the GA-based one.

Finally, the ETED+ABC system achieves overall F-score of over 0.66, which is
better than ZS-TED-based systems by around 4% and the string-based systems by
around 6%. A particularly noteworthy result is the high figures for precision, recall
and F-score compared with the all other systems.

The scores for the three-way decision on the RTE2 test set are lower than for our
Arabic test set, but again ETED outperforms ZS-TED on all three measures.
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7.1.2.3 Linguistically motivated refinements

As we have seen in the previous experiments, ETED+ABC (system 10) gives better
results than other systems for both datasets (Arabic and RTE2) and for both decisions
(binary and three-way). In the next experiments, we will focus on the importance of the
words of the T and H for calculating the costs of edit operations for ETED+ABC. We
will investigate various linguistically motivated costs along the following lines. These
costs are an updated version of the intuition-based costs presented by Kouylekov and
Magnini (2006). According to these authors, the intuition underlying insertion is that
inserting an informative word (i.e. closer to the root of the tree or with more children)
should have higher cost than inserting a less informative word. The experiments here
were conducted using the ETED+ABC (system 10) for binary decision only, and aimed
at answering the questions below.

Is depth in the tree a significant factor? Nodes high in the tree are likely to be
more directly linked to the main message of the sentence, so operations that apply to
them are likely to be significant. We test here the following systems.

System 11: Intuitioninsert-depth. This system is the same as ETED+ABC except the
cost of inserting a node is explained in Equation 7.16, where DEPT HN is the depth
of the node N (e.g. the depth of the root of a tree is 0) and 25 is the the maximum
estimated depth of Arabic dependency trees in our PATB dependency version.

γ(∧→ N2) = 25−DEPT HN2. (7.16)

System 12: Intuitionexchange-depth. This system is the same as ETED+ABC except the
cost of exchanging a node is explained in Equation 7.17.

γ(N1→ N2) =

0 N1 ⊆ N2&POSN1 = POSN2 ,

25−min(DEPT HN1,DEPT HN2) otherwise.
(7.17)

System 13: Intuitioninsert-exchange-depth. This system is the same as ETED+ABC ex-
cept the cost of inserting a node as in Equation 7.16 and the cost of exchanging a node
as in Equation 7.17.
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System 14: Intuitionall-depth. This system is the same as ETED+ABC except multi-
plying each cost of a node with (25- the depth of this node in the tree). The costs for
this system are explained in the following equations.

γ(N1→∧) = γ(N1→∧)× (25−DEPT HN1), (7.18)

γ(∧→ N2) = γ(∧→ N2)× (25−DEPT HN2), (7.19)

γ(N1→N2) =

0 N1 ⊆ N2&POSN1 = POSN2,

γ(N1→ N2)× (25−min(DEPT HN1,DEPT HN2)) otherwise.
(7.20)

Is number of daughters for a node a significant factor? Nodes with large numbers
of daughters are likely to carry a large amount of information, so operations involving
these are likely to be significant. We test here the following systems.

System 15: Intuitioninsert-daughters. This system is the same as ETED+ABC except
the cost of inserting a node is explained in Equation 7.21, where DT RSN is the number
of daughters of the node N.

γ(∧→ N2) = DT RSN2. (7.21)

System 16: Intuitionexchange-daughters. This system is the same as ETED+ABC except
the cost of exchanging a node is explained in Equation 7.22.

γ(N1→ N2) =

0 N1 ⊆ N2&POSN1 = POSN2,

max(DT RSN1,DT RSN2) otherwise.
(7.22)

System 17: Intuitioninsert-exchange-daughters. This system is the same as ETED+ABC
except the cost of inserting a node as in Equation 7.21 and the cost of exchanging a
node as in Equation 7.22.
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Is number of descendants for a node a significant factor? Although nodes with
large numbers of daughters are likely to carry a large amount of information, there is
no guarantee that ones with few daughters do not, since the daughters themselves may
have large numbers of daughters. Hence, we looked at number of descendants as an
alternative measure of information content. We test here the following systems.

System 18: Intuitioninsert-descendants. This system is the same as ETED+ABC except
the cost of inserting a node is explained in Equation 7.23, where DCT SN is the number
of descendants of the node N.

γ(∧→ N2) = DCT SN2. (7.23)

System 19: Intuitionexchange-descendants. This system is the same as ETED+ABC ex-
cept the cost of exchanging a node is explained in Equation 7.24.

γ(N1→ N2) =

0 N1 ⊆ N2&POSN1 = POSN2,

max(DCT SN1 ,DCT SN2) otherwise.
(7.24)

System 20: Intuitioninsert-exchange-descendants. This system is the same as ETED+ABC
except the cost of inserting a node as in Equation 7.23 and the cost of exchanging a
node as in Equation 7.24.

The results of the above intuition-based experiments are summarised in the Ta-
ble 7.5 for both Arabic and RTE2 datasets.

As can be seen from Table 7.5, the performance of some versions of ETED+ABC
with various linguistically motivated costs (systems 11, 12, 16 and 19) is better than
the performance of ETED+ABC (system 10, here as a baseline), which is the best
system in the previous experiments. The systems in Table 7.5 can be divided into two
main groups: systems which focus on the importance of the words in the trees (systems
11-14) and systems which focus on the information content (systems 15-20). The key
observation in this table is that the best result arises from looking at whether inserted
information is high in the tree, i.e. is closely related to the main topic. Therefore, by
taking into account the depth of an inserted node as edit cost for this node, we obtained
a promising approach (system 11), which outperforms all the other 19 systems in this
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Dataset System Pyes Ryes Fyes Acc. Fyes× 0.6+

Acc.× 0.4

ArbTEDS

(10) ETED+ABC (baseline) 61.5% 92.7% 0.739 67.3% 0.713
(11) Intuitioninsert-depth 63.9% 90.3% 0.749 69.7% 0.728
(12) Intuitionexchange-depth 64.9% 86.3% 0.741 69.8% 0.724
(13) Intuitioninsert-exchange-depth 60.1% 91.3% 0.725 65.3% 0.696
(14) Intuitionall-depth 59% 88.3% 0.708 63.5% 0.679
(15) Intuitioninsert-daughters 60.6% 82.7% 0.70 64.5% 0.678
(16) Intuitionexchange-daughters 66.3% 83.3% 0.739 70.5% 0.725
(17) Intuitioninsert-exchange-daughters 62.6% 88% 0.731 67.7% 0.709
(18) Intuitioninsert-descendants 62.8% 81.7% 0.710 66.7% 0.693
(19) Intuitionexchange-descendants 64% 88.3% 0.742 69.3% 0.722
(20) Intuitioninsert-exchange-descendants 61.2% 93% 0.738 67% 0.711

RTE2
(10) ETED+ABC (baseline) 55.4% 70.1% 0.619 56.8% 0.599
(11) Intuitioninsert-depth 56.1% 71.8% 0.63 57.8% 0.609

Table 7.5: Comparison between several versions of ETED+ABC with various linguis-
tically motivated costs, binary decision.

thesis (systems 1-10 and 12-20). This system produces better F-score by around 1%
and accuracy by around 2.5% than the baseline (system 10).

Another observation is that the systems 12, 16 and 19, which are about saying the
same thing in different words between T and H, outperform the other systems (except
system 11, which is about adding information in high position in the tree). This is not
unexpected–trees with large numbers of daughters or descendants (systems 16 and 19)
are likely to carry a large amount of information, so replacing these is likely to make
a significant change to the meaning. It is unclear whether system 12 performs well
because it is looking at nodes high in the tree, which are important (as with system
11); or because nodes high in the tree are likely to have large numbers of descendants
(as with systems 16 and 19).

By applying the best system (system 11) which we obtained for Arabic in these
experiments to the RTE2 test set, we again got the same conclusion that this system
outperforms the baseline (system 10), which is the best system in the previous exper-
iments for RTE2 test set (see Table 7.2). This system attained F-score and accuracy
gain of 2% and 1% respectively over the baseline. It achieved an accuracy (57.8%)
higher than that of nearly half of the RTE2 participants (see Appendix E). Since most
experiments on RTE2 task only report accuracy, we re-implemented system 11 to opti-
mise accuracy only (i.e. the objective function (fitness) = accuracy). The result of this
system achieved an accuracy (58.5%) which is higher than half of the RTE2 partici-
pants and higher than the median accuracy of the whole set of RTE2 systems. We can
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thus claim that our system would have put us in the top half of the RTE2 competition,
despite the fact that we were using a parser which achieves only 80% accuracy and that
the only resource we have used is WordNet.

Overall, the present findings of these experiments are encouraging and seem to be
consistent with those of other studies (e.g. Kouylekov and Magnini, 2006) and suggest
that further work in this regard would be very worthwhile.

7.1.2.4 Optimisation algorithms performance

In this section, we will answer the question as to which algorithm (GA or ABC al-
gorithm) works best for our task? To answer this question, we need to answer three
main subsidiary questions: (i) how good a value does it produce? (ii) how quickly
does it produce this value? and (iii) is there any evidence that it is not stuck at a local
maximum?

In general, to answer the above questions, we have to experiment to find out, since
they are applications-independent. All experiments here use ZS-TED+GA where the
GA replaces all but the current leading candidate once the average fitness has (nearly)
converged to the fitness of the leader (system 6), and ZS-TED+ABC (system 7). Gen-
erally, the most serious challenge in the use of optimisation algorithms is concerned
with the quality of the results, in particular whether or not an optimal solution is being
reached. One way of providing some degree of insurance is to compare results ob-
tained for n times under different seeds of initial population. We therefore performed
both algorithms five times with different random seeds for each run and the same ini-
tial seed for both algorithms. For each set of five runs, we used different values of
fitness parameters a and b, depending on what should be optimised (F-score, accuracy
or both). To assess the reliability of GA and ABC algorithm, we calculate the average
performance of GA and ABC algorithm for the whole set of runs. A more reliable
algorithm should produce (in our case) a higher value for mean, preferably near to the
global maximum one.

The performance of GA and ABC algorithm for each run under the same conditions
as well as the average performance for the five runs is given in Tables 7.6, 7.7 and 7.8.
Each table represents a different fitness function.
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Run#
Optimisation algorithm
GA ABC algorithm

F-score Acc. F-score Acc.
1 0.723 64.2% 0.726 65%
2 0.721 63.7% 0.725 65.2%
3 0.723 64% 0.726 65.2%
4 0.718 63.8% 0.722 65%
5 0.722 63.8% 0.726 65.3%

Mean 0.721 63.9% 0.725 65.1%

Table 7.6: Comparison between GA and ABC algorithm for five runs, optimise F-score
where fitness parameters are a=1 and b=0 (i.e. fitness= F-score).

Run#
Optimisation algorithm
GA ABC algorithm

F-score Acc. F-score Acc.
1 0.719 64.5% 0.715 66%
2 0.720 64.7% 0.714 65.8%
3 0.719 64.5% 0.712 65.5%
4 0.718 64.7% 0.715 66%
5 0.720 64.8% 0.717 66.2%

Mean 0.719 64.6% 0.715 65.9%

Table 7.7: Comparison between GA and ABC algorithm for five runs, optimise accu-
racy (Acc.) where fitness parameters are a=0 and b=1 (i.e. fitness= accuracy).

Run#
Optimisation algorithm

GA ABC algorithm
F-score Acc. F-score×0.6+Acc.×0.4 F-score Acc. F-score×0.6+Acc.×0.4

1 0.713 65% 0.688 0.720 65.3% 0.693
2 0.721 64.3% 0.690 0.724 65.3% 0.696
3 0.715 65% 0.689 0.725 65.2% 0.696
4 0.721 64% 0.689 0.723 65.2% 0.695
5 0.711 64.7% 0.685 0.723 65.3% 0.695

Mean 0.716 64.6% 0.688 0.723 65.3% 0.695

Table 7.8: Comparison between GA and ABC algorithm for five runs, optimise both
F-score and accuracy with a slight priority to F-score, where fitness parameters are
a=0.6 and b=0.4 (i.e. fitness= F-score×0.6 + Acc.×0.4).

As can be seen from the results presented in Tables 7.6–7.8, ABC algorithm out-
performs GA in all runs and for different types of fitness in terms of the quality of the
results (average of best fitness 0.725 (F-score), 65.9% (accuracy) and 0.695 (mixture
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of F-score and accuracy) compared to 0.721 (F-score), 64.6% (accuracy) and 0.688
(mixture of F-score and accuracy) for GA) (answer for the first question).

It is hard to answer the third question, but the results in Tables 7.6–7.8 provide us
with some evidence that both algorithms work effectively to avoid getting stuck at a
local maximum. In spite of the fact that both algorithms started from different points
(random seeds) for each run, they achieved nearly similar results in each run, with
ABC algorithm slightly superior to GA.

In order to compare the behaviour of the ABC algorithm more clearly with the
behaviour of GA, we used ‘performance graphs’ (Negnevitsky, 2011). Such a graph
is a curve showing the performance of the best individual in the population as well
as a curve showing the average performance of the entire population over the chosen
number of generations (cycles).

Figures 7.5 and 7.6 demonstrate plots of the best and average values of the fitness
across 500 generations (cycles) for GA and ABC algorithm respectively, where both
algorithms have been run with the same initial population and the same population size
(colony size) equal to 100. The other settings for GA are the same for ZS-TED+GA
(see system 6). In these graphs, the x-axis indicates how many generations (cycles)
have been created and evaluated at the particular point in the run, and the y-axis repre-
sents the fitness value at that point.
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Figure 7.5: The performance of GA.

The first thing to note in Figure 7.5 is that the best fitness is more than doubled
over the 500 generations. The best fitness curve rises fairly steeply at the beginning
of the experiment (until generation number 46), but stays nearly flat for a long time at
the end, with very small increments at generations 65, 96 and 430 respectively, while
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Figure 7.6: The performance of ABC.

the average fitness curve shows more than a triple improvement over the same period.
This curve rises rapidly at the beginning of the experiment, but then as the population
converges nearly on the best solution, it rises more slowly, and finally flattens at the
end. At this point we replace all but the best chromosome with a new random popu-
lation, in order to try to avoid premature convergence at a local maximum. The shape
of the curve following this repopulation step is almost identical to the shape following
the initial random population, and the pattern seems to repeat following the second
repopulation step. This suggests that the system has explored the space of possibilities
exhaustively, since it seems to follow the same pattern each time it starts with a fresh
randomly chosen population.

On the other hand, the best fitness curve obtained by the ABC algorithm in Fig-
ure 7.6 again more than doubled over the 500 cycles but to a higher value than that for
GA (0.696 compared with 0.689 for GA). It shows an even steeper improvement at the
beginning of the experiment (until cycle 5), which converges very quickly to the best
solution (answer for the second question), but stays nearly flat for a long time at the
end (again apart from very minor increments at cycles 19 and 22 respectively). The av-
erage fitness curve shows more than a triple improvement over the same period but less
than that for GA. This curve starts with gradual improvement at the beginning of the
experiment (until cycle 26), and then it shows erratic behaviour between 0.5 and 0.6.
This is because in ABC algorithm, while a stochastic selection scheme (i.e. similar to
‘roulette wheel selection’ in GA) based on the nectar (fitness) values is carried out by
onlooker bees, a greedy selection scheme as in differential evolution (DE) is used by
onlookers and employed bees to make a selection between the position of a food source
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(a possible solution) in their memory and the new food source position. Furthermore, a
random selection process is achieved by using scouts. Also, the production mechanism
of the neighbour food source used in ABC is similar to the mutation process, which
is self-adapting, of DE. From this perspective, in ABC algorithm, the solutions in the
colony (population) directly affect the mutation operation since the operation is based
on the difference of two members of the colony. In this way, the information of a good
member of the colony is distributed among the other members due to the greedy se-
lection mechanism employed and the mutation operation to generate a new member of
the colony. Unlike GA, ABC algorithm does not have explicit crossover. However, in
ABC the transfer of good information between the members is achieved by the muta-
tion process, whereas in GA it is managed by the mutation and the crossover operators
together. Therefore, although the local converging speed of a standard GA is quite
good, GA might encounter the premature convergence in optimising some problems if
the initial population does not have a sufficient diversity. On the other hand, while the
intensification process is controlled by the stochastic and the greedy selection schemes
in the ABC, the diversification is controlled by the random selection. It seems that
the problem of getting stuck in local maxima has been avoided (answer for the third
question).

We also find that any increment after a sufficient value for colony size does not
improve the performance of the ABC algorithm significantly (0.696 for 40 colony size
and 100 cycles compared to 0.698 for 100 colony size and 500 cycles). For this reason,
we carried out this work with colony size of 40, which can provide an acceptable
convergence speed for search.

To conclude, simulation results show that the performance of ABC algorithm, in
terms of the quality of results, convergence speed and avoidance of local maxima, is
better than GA under the same conditions although ABC algorithm used fewer param-
eters than GA. Its performance is very good in terms of the local and the global opti-
misation due to the selection schemes employed and the neighbour production mecha-
nism used. Consequently, it can be concluded that ABC algorithm based approach can
successfully be used in the optimisation of transformation-based TE systems.



Chapter 8

Conclusion and future work

During this thesis, we have explored a number of systems for the task of RTE for Ara-
bic (Chapter 7), ranging from the robust, but imprecise, bag-of-words model based on
approximate measures of semantic similarity to more deep systems based on pattern-
matching such as transformation-based approaches. We have also examined the im-
provements of tagging and parsing for Arabic (Chapter 4), which play a role in most of
our approaches as a preprocessing step. We have also created a first dataset for Arabic
RTE task (Chapter 6).

In this final chapter, we seek to address two main questions: what have we learned
about the task of RTE for Arabic, and what are the most promising directions for future
research in this area?

8.1 Main thesis results

This thesis has examined the task of RTE for Arabic from different angles, and we
hope to have made important contributions in various areas.

In Chapter 4, we experimented with a number of strategies to improve our prepro-
cessing stage to convert our input from raw texts into dependency trees. The two main
findings for these experiments are summarised below.

The first major finding was that we presented a very simple strategy for combin-
ing POS taggers which leads to substantial improvements in accuracy. In experiments
with combining three Arabic taggers (AMIRA, MADA and an in-house maximum-
likelihood (MXL)), the current strategy significantly outperformed voting-based strate-
gies for both a coarse-grained set of tags (39 tags, see Table 4.2) and the original finer-
grained of the PATB with 305 tags. The accuracy of a tagger clearly depends on the

227
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granularity of the tagset: the contributing taggers produced accuracies from 95.5% to
96.7% on the coarse-grained tagset, and from 88.8% to 93.6% on the fine-grained one
(see Table 4.2).

The key to the proposed combining strategy is that each of the contributing taggers
is likely to make systematic mistakes; and that if they are based on different principles
they are likely to make different systematic mistakes. If we classify the mistakes that
a tagger makes, we should be able to avoid believing it in cases where it is likely to
be wrong. So long as the taggers are based on sufficiently different principles, they
should be wrong in different places.

We therefore collected confusion matrices for each of the individual taggers show-
ing how likely they were to be right for each category of item–how likely, for instance,
was MADA to be right when it proposed to tag some item as a noun (very likely–
accuracy of MADA when it proposes NN is around 98%), how likely was AMIRA to
be right when it proposed the particle tag RP (very unlikely–accuracy of 8% in this
case)? Given these tables, we simply took the tagger whose prediction was most likely
to be right.

We compared the results of this simple strategy with a strategy proposed by Zeman
and Žabokrtskỳ (2005), in which you accept the majority view if at least two of the
taggers agree, and you backoff to one of them if they all disagree, and with a varia-
tion on that where you accept the majority view if two agree and backoff to the most
confident if they all disagree (see Tables 4.5 and 4.7).

All four strategies produce an improvement over the individual taggers. The fact
that majority voting works better when backing off to MXL than to MADA, despite the
fact that MADA works better in isolation, is thought-provoking. It seems likely to be
that this arises from the fact that MADA and AMIRA are based on similar principles,
and hence are likely to agree even when they are wrong. This hypothesis suggested
that looking at the likely accuracy of each tagger on each case might be a good backoff
strategy. It turns out that it is not just a good backoff strategy, as shown in the column
1 (‘backoff unless two agree’) of Table 4.7: it is even better when used as the main
strategy (column 2: ‘MC’). The differences between columns 1 and 2 are not huge,1

but that should not be too surprising, since these two strategies will agree in every case
where all three of the contributing taggers agree, so the only place where these two will
disagree is when one of the taggers disagrees with the others and the isolated tagger is

1In terms of error rate the difference looks more substantial, since the error rate, 0.005, for column
2 for the fine-grained set is 60% of that for column 1, 0.007; and for the coarse-grained set the error rate
for column 2, 0.04, is 73% of that for column 1, 0.055.
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more confident than either of the others.
The idea reported here is very simple, but it is also very effective. We have reduced

the error in tagging with fairly coarse-grained tags to 0.005, and we have also produced
a substantial improvement for the fine-grained tags, from 93.6% for the best of the
individual taggers to 96% for the combination.

The second major hypothesis was that given the success of the approach outlined
above for tagging, it might be worth applying the same idea to parsing. We there-
fore tried using it with a combination of dependency parsers, for which we used
MSTParser and two variants from the MALTParser family, namely Nivre arc-eager

(MALTParser1) and Stack swap-eager (MALTParser2). We tested a number of strate-
gies including: (i) the three parsers in isolation; (ii) a strategy in which we select a pair
and trust their proposals wherever they agree, and backoff to the other one when they
do not; (iii) a strategy in which we select a pair and trust them whenever they agree,
and backoff to whichever parser is most confident (which may be one of these or may
be the other one) when they do not; and (iv) strategies where we either just use the
most confident one, or where we take either a unanimous vote or a majority vote, and
backoff to the most confident one if this is inconclusive.

The results of these strategies (see Tables 4.15–4.18 and 4.21) indicate that for
parsing, simply relying on the parser which is most likely to be right when choosing the
head for a specific dependent in isolation does not produce the best overall result, and
indeed does not even surpass the individual parsers in isolation. For these experiments,
the best results were obtained by asking a predefined pair of parsers whether they
agree on the head for a given item, and backing off to the other one when they do not.
This fits with Henderson and Brill (1999)’s observations about a similar strategy for
dependency parsing for English. It seems likely that the problem with relying on the
most confident parser for each individual daughter-head relation is that this will tend
to ignore the big picture, so that a collection of relations that are individually plausible,
but which do not add up to a coherent overall analysis, will be picked.

Thus, it seems that the success of the proposed method for taggers depends cru-
cially on having taggers that exploit different principles, since under those circum-
stances the systematic errors that the different taggers make will be different; and on
the fact that POS tags can be assigned largely independently (though of course each
of the individual taggers makes use of information about the local context, and in
particular about the tags that have been assigned to neighbouring items). The reason
why simply taking the most likely proposals in isolation is ineffective when parsing



CHAPTER 8. CONCLUSION AND FUTURE WORK 230

may be that global constraints such as Henderson and Brill’s ‘no crossing brackets’
requirement are likely to be violated. Interestingly, the most effective of our strate-
gies for combining parsers takes two parsers that use the same learning algorithm and
same feature sets but different parsing strategies (MALTParser1 and MALTParser2),
and relies on them when they agree; and backs off to MSTParser, which exploits fun-
damentally different machinery, when these two disagree. In other words, it makes
use of two parsers that depend on very similar underlying principles, and hence are
likely to make the same systematic errors, and backs off to one that exploits different
principles when they disagree.

We then investigated two techniques to combine taggers and parsers for improving
our preprocessing stage. The first technique, which is combine taggers and combine
parsers, suggests that a flawed parser may learn to compensate for the errors made
by a flawed tagger. By applying combining parsers (second finding) on text tagged
by combining taggers (first finding), we got accuracy (around 85% for labelled accu-
racy, which is the best result we have seen for the PATB) higher than applying each
parser in isolation on gold-standard tagged text (around 82%-83%). The second tech-
nique (combining different tagger:parser pairs where each parser uses a different tag-
ger) shows that applying such a technique will increase precision, but decrease recall,
which may be useful for some tasks.

We have not carried out a parallel set of experiments on taggers or parsers for
languages other than Arabic because we are interested here in Arabic. In situations
where three (or more) distinct approaches to a problem of this kind are available, it
seems at least worthwhile investigating whether the proposed methods of combination
will work.

In Chapter 5, we extended ZS-TED, which computes the minimal cost to transform
one tree into another. The extended version, ETED, fixes the main weakness of ZS-
TED, which is that it is not able to do transformations on subtrees (i.e. delete subtree,
insert subtree and exchange subtree). To achieve this goal, we firstly run ZS-TED
(which uses only single node edit operations) and compute the standard alignment
from the results, as in Section 5.3.1; and then we go over the alignment and group
subtrees operations, i.e. for every consecutive k deletions that correspond to an entire
subtree reduce the edit distance score by α×k+β for any desired α and β , which are
in the interval [0,1], as in Section 5.3.2.

It is important to note that although we apply this technique on modifying ZS-TED,
it can also work on modifying any other TED algorithms such as Klein’s algorithm or
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Demaine et al.’s algorithm or Pawlik-Augsten’s algorithm.2 Furthermore, the addi-
tional time cost is O(n2), which is negligible since it is less than the time cost for any
available TED algorithms.

In fact, ETED is more effective and flexible than ZS-TED, especially for applica-
tions that pay attention to relations among nodes (e.g. in linguistic trees, deleting a
modifier subtree should be cheaper than the sum of deleting its components individu-
ally).

In Chapter 6, we undertook the first attempt at creating a dataset for training and
testing Arabic TE systems. We examined two main tools for creating our dataset:

(i) Collecting the dataset: we apply two techniques here: (a) for the training dataset,
we use a headline (as H) from one source and the lead-paragraph (as T) from a
news article about the same story but from another source for 10 returned pages.
This technique enables us to collect a huge amount of T-H pairs without any bias
in a short time, but with a preponderance of positive examples (see Table 6.2)
with minimum common words between each T-H pair; and (b) for the testing
dataset, we update the previous technique, since we need here a balance between
positive and negative pairs. We use the same technique that we used for training
to collect entailment pairs, since such technique is promising in this regard (see
Table 6.2), while we use a paragraph from a news article which gives a high num-
ber of common words with a closely linked headline. This technique enables us
to collect a huge amount of non-entailment pairs with a large number of common
words between each pair without any bias.

(ii) Annotating our dataset: we develop here an online system that allows each an-
notator to annotate any number of pairs, revisit previous annotated pairs, send
comments to the administrator and other options. This system has a number of
advantages such as allowing people to annotate our dataset from different places
or countries and allows saving different information about each pair such as orig-
inal articles, number of words in each sentence, number of common words and
others.

Each pair was annotated by three annotators. The annotator agreement (where
all annotators agree) is around 78% compared with 91% where each annotator
agrees with at least one co-annotator. This suggests that the annotators found this
a difficult task.

2For more detailed description about these algorithms see (Bille, 2005).
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We also tested the reliability of our annotators by using two different techniques:
(a) the rate of selecting ‘unknown’ option for each annotator; and (b) calculated kappa
coefficient for each annotator, which takes chance into account. These techniques
enable us to detect unreliable annotator(s). The results of these analyses suggest that
there are no unreliable annotators among our annotators.

Finally, in Chapter 7, we explored a range of approaches to natural language infer-
ence (NLI), particularly the RTE task of determining whether one text snippet entails
another, beginning with robust but approximate methods, and proceeding to progres-
sively more precise approaches such as transformation-based approaches. These ap-
proaches include: (i) bag-of-words (system 1); (ii) the Levenshtein distance with two
different settings (systems 2-3); (iii) ZS-TED with different settings (system 4-7); and
(iv) ETED with different settings (system 8-10). We applied these systems to our Ara-
bic test set and some of them to the RTE2 test set for two types of decisions: binary
decision (‘yes’/‘no’) and three-way decision (‘yes’/‘unknown’/‘no’) (see Tables 7.1–
7.4).

The results of these experiments show that, as expected, TED-based systems out-
perform the string-based systems, and ETED-based systems outperform ZS-TED-based
systems. The key point with ETED is that subtrees tend to correspond to single infor-
mation units. By treating operations on subtrees as less costly than the correspond-
ing set of individual node operations, ETED concentrates on entire information units,
which are a more appropriate granularity than individual words for considering entail-
ment relations.

Selecting a combination of thresholds and costs for the TED’s primitive edit op-
erations is a challenge, and becomes very hard when dealing with complex problems.
Choosing suitable edit costs depends on different parameters such as the nature of
nodes and applications (e.g. deleting a verb node from a syntactic tree is different
from deleting a symbol in RNA structure). One possible solution to overcoming this
challenge could consist of assigning costs based on an expert valuation, but it may not
be efficiently done in domains where the expertise is very limited. Furthermore, even
if the level of expertise is good, assigning an appropriate cost to each edit operation
can become a tricky task. An alternative solution is to estimate each edit cost automat-
ically. We therefore investigated the use of different optimisation algorithms, and have
shown that using these algorithms produces better performance than setting the costs
of edit operations by hand, and that using the ABC algorithm produces better results
for the same amount of effort as traditional GA.



CHAPTER 8. CONCLUSION AND FUTURE WORK 233

Next, we investigated an improvement to the ETED+ABC (system 10), the best
system among the systems 1-10, by testing various linguistically motivated costs such
as the depth of a node, number of daughters, number of descendants and combinations
between them (systems 11-20). The results of these experiments (see Table 7.5) show
that the performances of some of ETED+ABC with linguistically motivated costs (sys-
tems 11, 12, 16 and 19) are better than the performance of ETED+ABC with constant
edit costs (system 10). By taking into account the depth of an inserted node as edit
cost for this node (the word’s importance), we obtained a promising approach (system
11) which outperforms all the other 19 systems in this thesis (systems 1-10 and 12-
20). This system produces better F-score by around 1% and accuracy by around 2.5%
than the baseline (system 10). This is due to the specific nature of the dependency
tree where the higher position nodes in it are more relevant to the meaning expressed
by a certain phrase (i.e. the main relation between the nodes is at the top of the tree).
Similarly, taking into account the amount of information in a subtree (as with systems
12, 16 and 19) can help the system decide how important this subtree is. This helps it
make judgements about the significance of applying an operator to the subtree.

The findings are encouraging on the Arabic test set, particularly the improvement
in F-score and accuracy. The fact that some of these results were replicated for the
English RTE2 test set, where we had no control over the parser that was used to produce
dependency trees from the T-H pairs, provides some evidence for the robustness of our
approach. We anticipate that in both cases having a more accurate parser (our parser
for Arabic attains around 85% accuracy on the PATB, MINIPAR is reported to attain
about 80% on the Suzanne corpus) would improve the performance of both ZS-TED
and ETED.

In short, we have carried out a number of experiments on our dataset using a vari-
ety of standard TE algorithms (bag-of-words, Levenshtein distance, tree edit distance).
The results of these experiments were comparable with the results of using these algo-
rithms with the standard RTE2 dataset. This suggests that the data we have collected
is comparable with the RTE2 set in terms of the difficulty of the TE task–not full of
trivial entailments that can be captured simply by counting words, but not full of T-H

pairs where the connection requires so much background knowledge that the standard
techniques are unusable. As such, we believe that this dataset is likely to be a use-
ful resource for researchers wishing to investigate the cross-linguistic effectiveness of
various TE algorithms.
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8.2 Main contributions

In the summary of the discussion above of the main thesis results, the current project
has made the following main contributions:

1. We have converted the PATB from phrase structure form into a dependency tree-
bank.

2. We have updated the MXL Arabic tagger to work with MSA rather than the classi-
cal Arabic used in the Holy Quran.

3. We have improved the performance of tagging by combining taggers based on con-
fidence which produces substantially better performance than any of the contribut-
ing taggers.

4. We have improved the performance of parsing by combining parsers based on ma-
jority voting which produces substantially better performance than any of the con-
tributing parsers.

5. We have created semi-automatically the first dataset for Arabic RTE task.

6. We have updated the standard TED algorithm to deal with both single and subtree
operations, i.e. ETED, rather than single operations only.

7. We have improved the performance of TED algorithms by estimating automatically
the relevant edit costs of operations and thresholds by using ABC algorithm.

8. We have developed the first system for Arabic RTE task.

We have shown that ETED is effective for the English RTE2 dataset. A number of
the other algorithms have potential for application to languages other than Arabic, but
this remains to be investigated.

8.3 Future directions

What does the future hold for the current research on TE for Arabic? There are various
avenues for further work related to the research presented in this thesis, both within the
approaches and systems discussed, and more generally for the application areas of TE.

The following suggestions are provided for the future work to improve the current
system:
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1. Further experimental investigations are needed to extend our system by adding a
middle stage between preprocessing and tree matching stages. This stage is for-
ward inference rules, which will play an essential role in ArbTE. In this part, the
inference rules will be applied on H to generate different versions of H that ex-
press the same meaning, as shown in Figure 8.1. We will extract transfer-like rules
(Hutchins and Somers, 1992) for transforming the parse tree that we extract from
the text to other entailed trees, to be used as a set of forward inference rules. The
work for determining which subtrees can be reliably identified will be exploited
here to ensure that we only extract rules from elements of the parse tree that we
trust.

H1” … Hn” 

Does not entail 
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Arabic linguistics 
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Figure 8.1: General diagram of extended ArbTE system.

2. We also speculate that further work by marking the polarity of subtrees in the de-
pendency trees obtained by the parser(s) and making rules sensitive to the polarity
of the items they are being applied to would further improve ArbTE results. This
will make the use of ETED as a way of determining consequence relations more
reliable for all languages, not just Arabic: the fact that (8.1a) entails (8.1b), whereas
(8.2a) does not entail (8.2b), arises from the fact that ‘doubt’ reverses the polarity of
its sentential complement. Systems that pay no attention to polarity will inevitably
make mistakes, and we intend to adapt the ETED algorithm so that it pays attention
to this issue.
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(8.1) Polarity (Entailment)

a. I believe that a woman did it.

b. I believe that a human being did it.

(8.2) Polarity (Non-entailment)

a. I doubt that a woman being did it.

b. I doubt that a human did it.

3. Further investigation and experimentation into ETED is strongly recommended.
As we have seen in Section 7.1.2.4, applying ETED with linguistically motivated
costs gives better results than other systems in this thesis. More broadly, research is
needed to apply ETED more deeply by associating a vector space model with each
node in a tree. Such a vector, for instance, might contain more details about the
node such as POS tag, word frequency, lemma, taxonomy-based score, the depth
of node, its number of daughters and others. Then, when we compare between two
nodes we should pay attention to these features.

4. As we have seen in Chapter 4, combining systems gives better results than each
system in isolation for different aspects of NLP such as POS tagging and parsing.
A further study could assess this technique for the TE task itself. So, going for-
ward, we will need to look at ways to combine different systems–including not
only lexical overlap or syntactic based systems–in order to take advantage of them.

5. Further work needs to be done to complete establishing our dataset. The Arabic
TE dataset presented in this thesis can be utilised for reference; however this is an
initial dataset. It is expected that the initial dataset will be expanded with additional
pairs and decisions (three-ways).

6. We intend to use our system to improve the quality of the candidate input for QA
or IE systems, since such techniques have not been investigated so far for Arabic.

7. Another interesting task for future exploration is applying our technique on the Qur-
Sim corpus (Sharaf and Atwell, 2012) which contains pairs of semantically similar
or related Quranic verses. TED can be seen as providing a family of measures of
semantic relatedness, with the weights chosen in Chapter 7 providing an asymmet-
ric measure corresponding roughly to entailment. It would be interesting to try to
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find weights which correspond to other forms of relatedness such as that embodied
in the QurSim.

8. We intend to make our Arabic RTE task dataset and the stand-off annotations of the
dependency version of the PATB (because of the licence) available to the scientific
community thus allowing other researchers to duplicate our experiments to compare
the effectiveness of our algorithms with alternative approaches.

In the end we would like to conclude that the work in this area (i.e. determining
whether one text snippet can be inferred from another) is very challenging, in partic-
ular for Arabic where we are faced with an exceptional level of lexical and structural
ambiguity. We think that any attempt in this regard for languages other than English
will bring benefits for the whole RTE community.

In addition to the specific contributions outlined before, we hope to have achieved
an aim through this project greater than the announced ones, which is to catalyse other
researchers to investigate NLI for Arabic more seriously, far from being merely a for-
mal topic of linguists and semanticists. Achieving this goal will open the door to
investigate the applications of this task to solve various real-world challenges such as
QA, IE and others. Consequently, it constitutes a topic ripe for the attention of NLP
researchers in order to remedy the gap between the available techniques for Arabic and
those that have been done for other languages such as English.
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Appendix A

Logical form for long sentence

This appendix contains the logical form for English sentence ‘I know she thinks that

the man who you were talking to wants to marry her’, as in (1.14), obtained by the
PARASITE system (Ramsay, 1999).

utt(claim,

exists(_A,

(exists(_B,

(exists(_C,

(event(_A, ’kn(o/e)w’)

&(theta(_A,

(event(_B, think)

&(theta(_B,

(want(_C)

&(theta(_C, agent, ^(agent))

&(theta(_C,

object,

lambda(_D,

exists(_E,

(have(_E)

&(theta(_E, agent, _D)

&theta(_E, object, ^(object)))))))

&(theta(_C,

event,

lambda(_F,

lambda(_G,

lambda(_H,

((_H

:exists(_I,

268
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(event(_I,

marry)

&(theta(_I,

object,

(ref(lambda(_J,

centred(_J,

lambda(_K,

f(_K)))))

! 15))

&theta(_I,

agent,

_L)))))

: _F)))))

&theta(_C,

agent,

(ref(lambda(_M,

(sort(’m(a/e)n’, _M, _N, _O)

& exists(_P,

(event(_P, talk)

& (theta(_P,

agent,

(ref(lambda(_Q,

hearer(_Q)))

! 8))

& (to(_P, _M)

& aspect(ref(lambda(_R,

past(now,

_R))),

prog,

_P))))))))

! 5)))))))

& theta(_B,

agent,

(ref(lambda(_S, centred(_S,lambda(_T,f(_T)))))

! 2)))))

& (theta(_A, agent, ref(lambda(_U, speaker(_U)))!0)

& aspect(now, simple, _C)))))

& aspect(now, simple, _B)))

& aspect(now, simple, _A))))



Appendix B

Possible interpretations for short
sentence

This appendix contains an Arabic sentence with its dependency trees as parsed by
PARASITE system.

20 interpretations of ’the student wrote a book’, arising from:

-- ktb could be kataba or kattaba

-- kataba could be intransitive or transitive

-- kattaba could be transitive or ditransitive

-- either of them could be active or passive

-- in every case, the subject could be 0, or AldArs, or ktb

-- ’AlDars ktb’ could be "the student’s book"

+ there’s one that means "the student’s book is a book", which comes from having

a zero copula.

The corresponding English sentence is unambiguous, whereas from a simple Arabic

sentence containing a verb and two nouns in canonical order we get 20 analyses.

| ?- in arabic. ktb AldArs ktb. ^

/**** DEPENDENCY TREE (1) ***************

.

--------------------------------------

kattaba (make write)

-----------------------------------

kutubN (book) AldArisoa (student)

****/

270
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/**** DEPENDENCY TREE (2) ***************

.

--------------------------------------

kataba (write)

-----------------------------------

kutubN (book) AldArisoa (student)

****/

/**** DEPENDENCY TREE (3) ***************

.

------------------------------------------

kattaba (make write)

---------------------------------------

0 kutubF (book) AldArisoa (student)

****/

/**** DEPENDENCY TREE (4) ***************

.

------------------------------------------

kattaba (make write)

---------------------------------------

0 AldArisoa (student) kutubF (book)

****/

/**** DEPENDENCY TREE (5) ***************

.

--------------------------------------

kuttiba (make write)

-----------------------------------

kutubN (book) AldArisoa (student)

****/

/**** DEPENDENCY TREE (6) ***************

.

--------------------------------------

kuttiba (make write)

-----------------------------------

AldArisou (student) kutubF (book)

****/

/**** DEPENDENCY TREE (7) ***************

.

------------------------------------------

kattaba (make write)



APPENDIX B. POSSIBLE INTERPRETATIONS FOR SHORT SENTENCE 272

---------------------------------------

0 kutubF (book) AldArisoa (student)

****/

/**** DEPENDENCY TREE (8) ***************

.

------------------------------------------

kattaba (make write)

---------------------------------------

0 AldArisoa (student) kutubF (book)

****/

/**** DEPENDENCY TREE (9) ***************

.

-----------------------------

kattaba (make write)

--------------------------

0 kutuba

-------------------

AldArisoi (student)

****/

/**** DEPENDENCY TREE (10) ***************

.

-----------------------------

kataba (write)

--------------------------

0 kutuba

-------------------

AldArisoi (student)

****/

/**** DEPENDENCY TREE (11) ***************

.

--------------------------------------

kattaba (make write)

-----------------------------------

AldArisou (student) kutubF (book)

****/

/**** DEPENDENCY TREE (12) ***************

.

--------------------------------------

kataba (write)
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-----------------------------------

AldArisou (student) kutubF (book)

****/

/**** DEPENDENCY TREE (13) ***************

.

-------------------------

kataba (write)

----------------------

kutubu

-------------------

AldArisoi (student)

****/

/**** DEPENDENCY TREE (14) ***************

.

-------------------------

kuttiba (make write)

----------------------

kutubu

-------------------

AldArisoi (student)

****/

/**** DEPENDENCY TREE (15) ***************

.

-------------------------

kutiba (write)

----------------------

kutubu

-------------------

AldArisoi (student)

****/

/**** DEPENDENCY TREE (16) ***************

.

-----------------------------

kuttiba (make write)

--------------------------

0 kutuba

-------------------

AldArisoi (student)

****/
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/**** DEPENDENCY TREE (17) ***************

.

-----------------------------------------

nomsent

--------------------------------------

kutubu kutubN (book)

-------------------

AldArisoi (student)

****/

/**** DEPENDENCY TREE (18) ***************

.

--------------------------------------

kattaba (make write)

-----------------------------------

AldArisou (student) kutubF (book)

****/

/**** DEPENDENCY TREE (19) ***************

.

--------------------------------------

kataba (write)

-----------------------------------

AldArisou (student) kutubF (book)

****/

/**** DEPENDENCY TREE (20) ***************

.

--------------------------------------

kuttiba (make write)

-----------------------------------

AldArisou (student) kutubF (book)

****/



Appendix C

CoNLL-X data file format

Data in the CoNLL file follows the following rules:

• Each sentence is separated by a blank line.

• A sentence consists of tokens, each token starting on a new line.

• A token is described by ten fields (see Table C.1).1 Fields are separated by a single
tab character. Space/blank characters are not allowed within fields.

• The ID, FORM, CPOSTAG, POSTAG, HEAD and DEPREL fields are guaranteed
to contain non-dummy (i.e. non-underscore) values for all languages.

• Sentences are UTF-8 encoded (Unicode).

For instance, Figure C.1 shows the dependency tree (according to Stanford parser)
for the sentence ‘John eats happily.’ while its corresponding CoNLL format is shown
in Figure C.2 .

1See http://ilk.uvt.nl/conll/#dataformat
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# Field name Description
1 ID Token counter, starting at 1 for each new sentence.
2 FORM Word form or punctuation symbol.
3 LEMMA Lemma or stem (depending on particular data set) of word form, or an under-

score if not available.
4 CPOSTAG Coarse-grained POS tag, where tagset depends on the language.
5 POSTAG Fine-grained POS tag, where the tagset depends on the language, or identical

to the coarse-grained part-of-speech tag if not available.
6 FEATS Unordered set of syntactic and/or morphological features (depending on the

particular language), separated by a vertical bar (|), or an underscore if not
available.

7 HEAD Head of the current token, which is either a value of ID or zero (‘0’). Note that
depending on the original treebank annotation, there may be multiple tokens
with an ID of zero.

8 DEPREL Dependency relation to the HEAD. The set of dependency relations depends
on the particular language. Note that depending on the original treebank anno-
tation, the dependency relation may be meaningful or simply ‘ROOT’.

9 PHEAD Projective head of current token, which is either a value of ID or zero (‘0’), or
an underscore if not available. Note that depending on the original treebank
annotation, there may be multiple tokens an with ID of zero. The dependency
structure resulting from the PHEAD column is guaranteed to be projective (but
is not available for all languages), whereas the structures resulting from the
HEAD column will be non-projective for some sentences of some languages
(but is always available).

10 PDEPREL Dependency relation to the PHEAD, or an underscore if not available. The
set of dependency relations depends on the particular language. Note that de-
pending on the original treebank annotation, the dependency relation may be
meaningful or simply ‘ROOT’.

Table C.1: CoNLL-X data file format.

ROOT

eats(VBZ)

NSUBJ

John(NNP)

ADVMOD

happily(RB)

PX

.(PUNC)

Figure C.1: Dependency tree for the sentence ‘John eats happily.’

1 John _ NNP NNP _ 2 NSUBJ _ _
2 eats _ VBZ VBZ _ 0 ROOT _ _
3 happily _ RB RB _ 2 ADVMOD _ _
4 . _ PUNC PUNC _ 2 PX _ _

Figure C.2: CoNLL format for the sentence ‘John eats happily.’



Appendix D

Analysis of the precision and recall

In this appendix, we will try to answer the following question: why do we get high
precision for string-based classifiers and high recall for syntactic-based ones?

In order to answer this question, suppose we have a population made up of Ys
and Ns, where there are two sorts of Y: Ps, which can be identified on the basis of
some feature P (P might, for instance, be ‘number of words in common’), and Qs,
which cannot; and we have a classifier CP which can recognise Ps but cannot tell the
difference between Qs and Ns.

Now imagine that we have a population made up of p Ps and q Qs, and r Ns,
and assume that p+ q and r are both 50. We can apply our classifier using a strategy
which says ‘Trust the classifier when it says yes, and for some proportion n of the
remainder just make a 50:50 guess’. Varying values of n roughly correspond to varying
thresholds–if n is 0 then we are applying a very strict threshold, because we are saying
‘Only say yes if you are absolutely sure’, whereas if n is 1 then we are saying ‘Say yes

if you think that there is any possibility that the thing you are looking at is a Y’.
Under these conditions, CP (which can recognise Ps but nothing else) will say yes

p+n×0.5× (q+ r) times, and it will be right p+n×0.5×q times, out of a total of
p+q possible times; and it will say no (q+ r)(1−n×0.5) times, and it will be right
r×n×0.5 times. So its precision will be (p+n×0.5×q)/(p+n×0.5× (q+ r)), its
recall will be (p+ n× 0.5× q)/(p+ q), and its accuracy will be (p+ n× 0.5× (q−
r))/(p+q+ r).

How do precision, recall and accuracy behave as n varies? If p < 25, then the
maximum value of F-score occurs when n is 1. If p > 25 then the maximum value of
F-score occurs when n is 0.

How does this apply to the data in Tables 7.1 and 7.2? Suppose that there is a set of
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T-H pairs which one of the string-based algorithms, e.g. bag-of-words, can accurately
mark as yes, but that this algorithm is completely unreliable outside this set. Then P
would be the sentences that this algorithm could accurately mark as yes, Q would be
the other sentences that were in fact yes but that it could not identify, and N are all the
no pairs. If P is quite small, i.e. less than half the total number of yes examples, then
the value of n that gives the highest F-score overall is 1, as in Figure D.1.
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Figure D.1: Precision, recall and F-score for low coverage classifier (P=20).

Suppose, instead, that we were using a classifier which covered quite a large part of
the yes set accurately. In that case the value of n that gives the highest F-score overall
is 0, as in Figure D.2.
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Figure D.2: Precision, recall and F-score for high coverage classifier (P=40).
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In both cases, the accuracy goes down as n increases. For the case where the
classifier finds fewer than half the yes cases, the maximum F-score occurs at the lowest
accuracy. If we use a mixture of 0.6×F-score+0.4×accuracy, the optimal value of n is
0 so long as P covers at least a third of the positive examples, as shown in Figure D.3.
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Figure D.3: Precision, recall and F-score for modest coverage classifier (P=16).

The situation is not, of course, quite as simple as that. In general, for any non-
zero threshold any of the classifiers will produce some false positives and some false
negatives, but the analysis above does provide some insight as to why the string-based
classifiers, which can only reliably identify very simple cases, produce the best values
for F-score and for the given mixture of F-score and accuracy by using a threshold
which gives high recall and modest precision: these classifiers are only reliable with a
threshold that selects fewer than a third of the positive examples: in that case it is worth
trying to make decisions about the remaining cases (which will contain quite a high
proportion of yeses). Even making entirely random guesses improves F-score and the
mix of accuracy and F-score that we are using, and while bag-of-words is not reliable
when there are more than a very few changes, it remains better than random. The
syntactic-based classifier measures, on the other hand, get a reasonably large number
of cases right, which means that they should avoid making guesses about examples
where they are not confident, since the ones they have not picked will contain a much
smaller proportion of yeses, so that picking them nearly randomly is a bad idea.

Furthermore, one of the essential factors in our work to improve the performance
of each classifier is a threshold θ . In order to show the effectiveness of the threshold
on the performance of a classifier f on our binary-decision dataset, let us consider f(x)
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is the output of f for an input x. According to the characteristics of our problem, x

will be a positive example if f (x)< θ for transformation-based classifiers (for bag-of-
words, it should be f (x) > θ ) and a negative example otherwise. Thus, the scores of
precision and recall of the classifiers depend on the choice of θ . Figure D.4 illustrates
the precision, recall and F-score for ZS-TED-based classifier for 43 different thresholds
(from 44 to 128 incremented by 2), while the edit costs for ZS-TED are 2, 20 and 4 for
delete a node, insert a node and exchange a node, respectively.
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Figure D.4: Effectiveness of the threshold on the performance of a classifier.

As you can see in Figure D.4, a lower threshold means higher precision, but usually
a lower recall, while better F-score is achieved when we have higher recall. Also, a
very high threshold means a classifier saying the same thing every time (i.e. equal to
our most common class baseline). At some point, the values of precision and recall
are equal (when threshold equal to 70 in Figure D.4). This means that the number of
pairs classified to be positive is the same as the actual number of positive pairs in our
dataset. This value is known as precision-recall breakeven point (BEP).

Selecting a suitable measure of the quality of such a classifier is a tricky task, which
depends on different factors such as the nature of the problem and the application. So,
in our problem, the user of the classifier should choose a suitable threshold by taking
into account what sort of tradeoffs are available or preferable. For instance, if we desire
a precision above the BEP, we must accept that our recall will be below the BEP, and
vice versa, since we used the balanced F-score.



Appendix E

RTE2 results and systems

The following table illustrates the submission results and system description for RTE2.
Systems for which no component is indicated used lexical overlap.

System Description
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Adams (Dallas) 0.6262 0.6282 X X X

Bos (Rome & Leeds)
0.6162 0.6689 X X X
0.6062 0.6042 X X X X X

Burchart (Saarland)
0.5900 X X
0.5775 X X X X

Clarke (Sussex)
0.5275 0.5254 X X
0.5475 0.5260 X

de Marneffe (Stanford)
0.5763 0.6131 X X X X X
0.6050 0.5800 X X X X X

Delmonte (Venice) 0.5475 0.5495 X X X X

Ferrández (Alicante)
0.5563 0.6089 X X X
0.5475 0.5743 X X
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Herrera (UNED)
0.5975 0.5663 X X
0.5887 X X X

Hickl (LCC) 0.7538 0.8082 X X X X X X X

Inkpen (Ottawa)
0.5800 0.5751 X X X X
0.5825 0.5816 X X X X

Katrenko (Amsterdam)
0.5900 X
0.5713

Kouylekov (ITC-irst & 0.5725 0.5249 X X X
Trento) 0.6050 0.5046 X X X X

Kozareva (Alicante)
0.5487 0.5589 X X X X
0.5500 0.5485 X X X X

Litkowski (CL Research)
0.5813
0.5663 X

Marsi (Tilburg & Twente) 0.6050 X X X

Newman (Dublin)
0.5250 0.5052 X X X X
0.5437 0.5103 X X X X X

Nicholson (Melbourne)
0.5288 0.5464 X X X
0.5088 0.5053 X X X

Nielsen (Colorado)
0.5962 0.6464 X X X X
0.5875 0.6487 X X X X

Rus (Memphis)
0.5900 0.6047 X X
0.5837 0.5785 X

Schilder (Thomson & 0.5437 X X X X
Minnesota) 0.5550 X X X X
Tatu (LCC) 0.7375 0.7133 X X X
Vanderwende (Microsoft 0.6025 0.6181 X X X X
Research & Stanford) 0.5850 0.6170 X X X
Zanzotto (Milan & 0.6388 0.6441 X X X X
Rome) 0.6250 0.6317 X X X X

Mean accuracy for all systems 0.585
Median accuracy for all systems 0.583


