TEXTUAL ENTAILMENT FOR MODERN STANDARD ARABIC

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy
in the Faculty of Engineering and Physical Sciences

By
Maytham Abualhail Shahed Alabbas
School of Computer Science

Contents

Abstract 12
Declaration 13
Copyright 14
Dedication 15
Acknowledgements 16
Publications based on the thesis 17
Arabic transliterations 19
List of abbreviations and acronyms 20
1 Introduction 23
1.1 Overview 23
1.2 Overview of the challenges of Arabic processing 24
1.3 A general framework of RTE 26
1.4 Research goals 27
1.5 ArbTE system architecture 28
1.6 Contributions 30
1.7 Thesis outline 31
2 Background: textual entailment 34
2.1 Entailment in linguistics 34
2.2 Entailment in logic 38
2.3 What is TE? 42
2.3.1 Entailment rules 43
2.3.2 Characteristics of TE 45
2.3.3 Previous approaches to RTE 48
2.3.3.1 Surface string similarity approaches 49
2.3.3.2 Syntactic similarity approaches 51
2.3.3.3 Entailment rules-based approaches 53
2.3.3.4 Deep analysis and semantic inference approaches 55
2.3.3.5 Classification-based approaches 58
2.3.4 Applications of TE solutions 60
3 Background: structural analysis 62
3.1 Introduction 62
3.2 Ambiguity in natural languages 62
3.2.1 Lexical ambiguity 62
3.2.2 Structural ambiguity 64
3.2.3 Scope ambiguity 67
3.3 Sources of ambiguities in Arabic 68
3.3.1 Writing system and structure of words 68
3.3.1.1 Lack of diacritical marks 68
3.3.1.2 Cliticisation 71
3.3.2 Syntactic freedom and zero items 71
3.3.2.1 Word order variation 71
3.3.2.2 Pro-dropping 72
3.3.2.3 Zero copula 73
3.3.2.4 Construct phrases 74
3.3.2.5 Coordination 76
3.3.2.6 Referential ambiguity 77
3.4 Arabic processing tools 78
3.4.1 POS tagging 78
3.4.1.1 POS tagsets 80
3.4.1.2 POS taggers 81
3.4.2 Syntactic parsing 89
3.4.2.1 Phrase structure parsing 89
3.4.2.2 Dependency parsing 90
4 Arabic linguistic analysis 95
4.1 Introduction 95
4.2 POS tagging 97
4.2.1 The taggers 98
4.2.2 Improving POS tagging 102
4.2.2.1 Backoff strategies 104
4.3 Dependency parsing 109
4.3.1 Arabic treebanks 109
4.3.1.1 From PATB to dependency trees 111
4.3.2 Individual parsers 122
4.3.2.1 Improve parsing 126
4.4 Combine taggers and parsers 132
4.4.1 Experiments 132
4.4.1.1 Individual combinations of parsers and taggers 132
4.4.2 Merging combinations 134
4.5 Summary 138
5 Tree matching 139
5.1 Overview 139
5.2 Zhang-Shasha's TED algorithm 143
5.3 Extended TED with subtrees 147
5.3.1 Find a sequence of edit operations 147
5.3.1.1 Complete example 151
5.3.2 Find a sequence of subtree edit operations 162
5.4 Optimisation algorithms 167
5.4.1 Genetic algorithms 167
5.4.2 Artificial bee colony algorithm 170
5.5 Arabic lexical resources 173
5.5.1 Lexical relations 173
5.5.1.1 Synonyms 173
5.5.1.2 Antonyms 175
5.5.1.3 Hypernyms and hyponyms 175
5.5.2 Lexical resources 178
5.5.2.1 Acronyms 178
5.5.2.2 Arabic WordNet 178
5.5.2.3 Openoffice Arabic thesaurus 180
5.5.2.4 Arabic dictionary for synonyms and antonyms 180
5.5.2.5 Arabic stopwords 180
6 Arabic textual entailment dataset preparation 185
6.1 Overview 185
6.2 RTE dataset creation 185
6.3 Dataset creation 187
6.3.1 Collecting T-H pairs 188
6.3.2 Annotating T - H pairs 191
6.4 Arabic TE dataset 193
6.4.1 Testing dataset 198
6.5 Spammer detector 199
6.6 Summary 203
7 Systems and evaluation 205
7.1 Introduction 205
7.1.1 The current systems 205
7.1.1.1 Surface string similarity systems 206
7.1.1.2 Syntactic similarity systems 207
7.1.2 Results 212
7.1.2.1 Binary decision results 213
7.1.2.2 Three-way decision results 216
7.1.2.3 Linguistically motivated refinements 218
7.1.2.4 Optimisation algorithms performance 222
8 Conclusion and future work 227
8.1 Main thesis results 227
8.2 Main contributions 234
8.3 Future directions 234
A Logical form for long sentence 268
B Possible interpretations for short sentence 270
C CoNLL-X data file format 275
D Analysis of the precision and recall 277
E RTE2 results and systems 281
Word count: 69,425

List of tables

2.1 Logic types for NLP. 38
2.2 Some informal definitions for TE. 43
2.3 Some output conditions of TE engines, according to approach of par- ticipants in the RTE challenge. 43
3.1 The active inflection forms for the regular sound verb كَتَبَ kataba "he wrote" (form I: فَعَلَ facala - يَفْعُلُ yaf.؟ulu). 79
3.2 The derivative words for word كتب ktb "to write". 80
4.1 Coarse-grained and fine-grained tag numbers, gold-standard and single tagger. 103
4.2 Tagger accuracies in isolation, with and without TBR. 103
4.3 Precision (P) and recall (R) and F-score for combinations of pairs of taggers, with and without TBR. 104
4.4 Precision (P) and recall (R) and F-score for combinations of three tag- gers, with and without TBR. 104
4.5 Backoff to AMIRA or MADA or MXL when there is no majority agreement 105
4.6 Confidence levels for individual tags. 106
4.7 Backoff to most confident tagger. 106
4.8 LA and UA accuracies for parsing, different head percolation table entry orders and treatments of coordination. 119
4.9 The average length of sentence and the maximum length of sentence for each training and testing dataset. 123
4.10 Accuracy results for a total of CPOSTAGs. 125
4.11 Five worst behaving words. 126
4.12 Highest LA for MSTParser, MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$, gold- standard and PATB $_{M C}$ corpora. 127
4.13 Precision (P), recall (R) and F-score for combinations of pairs of parsers, $\mathrm{PATB}_{M C}$ corpus 127
4.14 Precision (P), recall (R) and F-score for combinations of three parsers, PATB $_{M C}$ corpus 128
4.15 LA of backoff to two parsers (MSTParser, MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$) using the first and the second proposals, PATB $_{M C}$ corpus. 129
4.16 LA of backoff to other parser (MSTParser, MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$) where there is no agreement between two parsers, PATB $_{M C}$ corpus 129
4.17 LA of backoff to two parsers (MALTParser ${ }_{1}$, MALTParser $_{2}$ and MALTParser ${ }_{3}$) where there is no agreement between at least two parsers, $\mathrm{PATB}_{M C}$ cor- pus. 130
4.18 LA of backoff to other parser (MALTParser ${ }_{1}$, MALTParser $_{2}$ and MALTParser ${ }_{3}$) where there is no agreement between two parsers, PATB $_{M C}$ corpus 130
4.19 Highest LA for MSTParser, MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$ for PATB $_{M C}$ corpus, fourfold cross-validation with 4000 training sentences and 1000 testing sentences. 130
4.20 Some POS tags with trusted parsers(s) for head and DEPREL, PATB MC corpus 131
4.21 LA for backoff to the most confident parser, PATB $_{M C}$ corpus, fourfold cross-validation with 4000 training sentences and 1000 testing sentences. 131
4.22 MSTParser and MALTParser ${ }_{1}$ accuracies, multiple taggers compared with gold-standard tagging 133
4.23 Precision (P), recall (R) and F-score for different tagger ${ }_{1}$: parser $_{1}+$ tagger $_{2}$: parser $_{2}$ combinations. 136
6.1 High-level characteristics of the RTE Challenges problem sets. 186
6.2 ArbTEDS annotation rates, 600 pairs. 194
6.3 ArbTEDS text's range annotation rates, three annotators agree, 600 pairs 195
6.4 ArbTEDS_test dataset text's range annotation, 600 binary decision pairs. 199
6.5 Reliability measure of our annotators, strategy A. 200
6.6 Reliability measure of our annotators, strategy B. 202
7.1 Performance of ETED compared with the simple bag-of-words, Lev- enshtein distance and ZS-TED, binary decision Arabic dataset. 214
7.2 Performance of ETED compared with the simple bag-of-words and ZS-TED, binary decision RTE2 dataset. 214
7.3 Comparison between ETED, simple bag-of-words, Levenshtein dis- tance and ZS-TED, three-way decision Arabic dataset. 217
7.4 Performance of ETED compared with the simple bag-of-word and ZS- TED, three-way decision RTE2 dataset. 217
7.5 Comparison between several versions of ETED+ABC with various lin- guistically motivated costs, binary decision. 221
7.6 Comparison between GA and ABC algorithm for five runs, optimise F- score where fitness parameters are $a=1$ and $b=0$ (i.e. fitness= F-score). 223
7.7 Comparison between GA and ABC algorithm for five runs, optimise accuracy (Acc.) where fitness parameters are $a=0$ and $b=1$ (i.e. fitness= accuracy). 223
7.8 Comparison between GA and ABC algorithm for five runs, optimise both F-score and accuracy with a slight priority to F-score, where fitness parameters are $a=0.6$ and $b=0.4$ (i.e. fitness $=$ F-score $\times 0.6+$ Acc. $\times 0.4$). 223
C. 1 CoNLL-X data file format. 276

List of figures

1.1 General RTE architecture (Burchardt, 2008) 27
1.2 General diagram of ArbTE system. 29
2.1 Logical approach structure to check natural language entailment. 39
3.1 Possible syntactic trees for sentence in (3.9) 66
3.2 Ambiguity caused by the lack of diacritics. 70
3.3 AMIRA output for the Arabic sentence in (3.30). 83
3.4 MADA output for the sentence in (3.30). For each word, the predi- cations of the SVM classifiers are indicated by '; ; MADA' line. Each analysis is preceded by its score, while the selected analysis is marked with '*'. For each word in the sentence, only the two top scoring anal- yses are shown because of the space limitation. 85
3.5 MXL output for the Arabic sentence in (3.30). 86
3.6 Three taggers output for the Arabic sentence in (3.30). 86
3.7 Phrase structure tree for (3.31a) (Nivre, 2010) 90
3.8 Projective dependency tree for (3.31a) (Nivre, 2010). 91
3.9 Non-projective dependency tree for (3.31b) (Nivre, 2010). 91
4.1 Two combined taggers and parsers strategies. 96
4.2 Our coarse-grained tagset. 99
4.3 Coarse-grained and fine-grained tag examples. 100
4.4 Comparing basic taggers and combination strategies for Arabic sen- tence in (4.1). 108
4.5 From phrase structure trees to dependency trees. 112
4.6 Phrase structure tree with trace. 114
4.7 Comparing PATB phrase structure and dependency format (without POS tags and labels) in PADT, CATiB and our preferred conversion for the sentence in (4.2). 117
4.8 Reconstruct coordinated structures 117
4.9 Complex coordinated structures. 118
4.10 Head percolation table version (7). 121
4.11 MSTParser's UA and LA by POS tag. 123
4.12 MSTParser, LA and UA for testing 1000 sentences for different train- ing dataset sizes, gold-standard tagging. 124
4.13 MALTParser ${ }_{1}$, LA and UA for testing 1000 sentences for different training dataset sizes, gold-standard tagging. 124
5.1 Constructing Euler string for a tree. 142
5.2 Klein's tree edit distance algorithm (Klein, 1998). 142
5.3 Two trees, T_{x} and T_{y}. 143
5.4 Tree edit operations. 144
5.5 Two trees T_{1} and T_{2} with their left-to-right postorder traversal (the sub- scripts) and keyroots (bold items). 145
5.6 The edit operation direction used in our algorithm. Each arc that im- plies an edit operation is labeled: " i " for an insertion, " d " for deletion, "x" for exchanging and " m " for no operation (matching). 149
5.7 Computing the optimal path for the two trees in Figure 5.5. 151
5.8 Selected forest for loop 0 152
5.9 Selected forest for loop 1 154
5.10 Selected forest for loop 2 155
5.11 Selected forest for loop 3 157
5.12 Selected forest for loop 4 158
5.13 Selected forest for loop 5 160
$5.14 T_{1}$ and T_{2} mapping, single edit operations. 162
5.15 Two trees, T_{3} and T_{4}, with their postorder traversal. 165
5.16 Mapping between T_{3} and T_{4} using ZS-TED and ETED. 166
5.17 The relations between hypernym and hyponym. 176
5.18 Arabic acronyms examples. 179
5.19 Paired synsets for AWN and PWN. 179
5.20 Arabic synonym examples, Openoffice Arabic thesaurus. 180
5.21 Arabic dictionary for synonym and antonym examples. 180
5.22 Arabic neologism examples. 181
6.1 Some examples from the RTE1 development set as XML format. 187
6.2 Some English T-H pairs collected by headline-lead paragraph technique 190
6.3 Annotate new pair's interface. 193
6.4 Organise our data for strategy B 201
7.1 Chromosome structure for binary decision output, $C_{\text {binary-decision }}$, for ZS-TED 209
7.2 Chromosome structure for three-way decisions output, $C_{\text {three-decision }}$, for ZS-TED. 210
7.3 Food source structure for binary decision output, $F S_{\text {eted-binary-decision }}$, for ETED. 212
7.4 Food source structure for three-ways decision output, $F S_{\text {eted-three-decision }}$, for ETED. 212
7.5 The performance of GA. 224
7.6 The performance of ABC 225
8.1 General diagram of extended ArbTE system. 235
C. 1 Dependency tree for the sentence 'John eats happily.' 276
C. 2 CoNLL format for the sentence 'John eats happily.' 276
D. 1 Precision, recall and F-score for low coverage classifier ($\mathrm{P}=20$) 278
D. 2 Precision, recall and F-score for high coverage classifier ($\mathrm{P}=40$). 278
D. 3 Precision, recall and F-score for modest coverage classifier ($\mathrm{P}=16$) 279
D. 4 Effectiveness of the threshold on the performance of a classifier. 280

Abstract
Textual Entailment for Modern Standard Arabic
Maytham Abualhail Shahed Alabbas
A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2013

This thesis explores a range of approaches to the task of recognising textual entailment (RTE), i.e. determining whether one text snippet entails another, for Arabic, where we are faced with an exceptional level of lexical and structural ambiguity. To the best of our knowledge, this is the first attempt to carry out this task for Arabic. Tree edit distance (TED) has been widely used as a component of natural language processing (NLP) systems that attempt to achieve the goal above, with the distance between pairs of dependency trees being taken as a measure of the likelihood that one entails the other. Such a technique relies on having accurate linguistic analyses. Obtaining such analyses for Arabic is notoriously difficult. To overcome these problems we have investigated strategies for improving tagging and parsing depending on system combination techniques. These strategies lead to substantially better performance than any of the contributing tools. We describe also a semi-automatic technique for creating a first dataset for RTE for Arabic using an extension of the 'headline-lead paragraph' technique because there are, again to the best of our knowledge, no such datasets available. We sketch the difficulties inherent in volunteer annotators-based judgment, and describe a regime to ameliorate some of these. The major contribution of this thesis is the introduction of two ways of improving the standard TED: (i) we present a novel approach, extended TED (ETED), for extending the standard TED algorithm for calculating the distance between two trees by allowing operations to apply to subtrees, rather than just to single nodes. This leads to useful improvements over the performance of the standard TED for determining entailment. The key here is that subtrees tend to correspond to single information units. By treating operations on subtrees as less costly than the corresponding set of individual node operations, ETED concentrates on entire information units, which are a more appropriate granularity than individual words for considering entailment relations; and (ii) we use the artificial bee colony (ABC) algorithm to automatically estimate the cost of edit operations for single nodes and subtrees and to determine thresholds, since assigning an appropriate cost to each edit operation manually can become a tricky task.

The current findings are encouraging. These extensions can substantially affect the Fscore and accuracy and achieve a better RTE model when compared with a number of stringbased algorithms and the standard TED approaches. The relative performance of the standard techniques on our Arabic test set replicates the results reported for these techniques for English test sets. We have also applied ETED with ABC to the English RTE2 test set, where it again outperforms the standard TED.

Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the "Copyright") and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.
ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.
iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual property (the "Intellectual Property") and any reproductions of copyright works in the thesis, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.
iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx? DocID=487), in any relevant Thesis restriction declarations deposited in the University Library, The University Library's regulations (see http://www.manches ter.ac.uk/library/aboutus/regulations) and in The University's policy on presentation of Theses.

Dedication

This thesis is dedicated to the memory of my father (Allah give him his mercy), who cannot witness the completion of my PhD thesis, but I know that he would have been very proud of me.

To my mother, who is like a candle-it consumes itself to light the way for others.
To my family: with love and appreciation.

Acknowledgements

To complete a PhD in a reputed university is a mighty undertaking, and I could not have reached the finish line without the financial aid, advice, influence and support of institutions and people.

My thanks are due first to my sponsor, the ministry of higher education and scientific research of the Republic of Iraq, for the financial aid to study in the UK. I hope to be able to transfer the knowledge I acquired here to Iraqi institutions as a repayment of part of my debt to Iraqi people.

I owe an enormous debt of gratitude to my supervisor, Professor Allan Ramsay, for being such a wonderful supervisor and for being unfailingly generous with his time and his support throughout my graduate career. His valuable insights and ideas helped me get over various hurdles during my study and put me back on the right track, when I was about to go off the rails or lose confidence. He has prepared me for academic life and it has been a great experience and opportunity to work with him.

I am truly indebted and thankful to Carmel Roche, director of English language programmes in the university language centre of Manchester, for her recommendation and support. Without her assistance I could not have started my study on time.

I would like to express my deepest appreciation to all staff of Iraqi Cultural Attaché in London for their ingenuity to manage the affairs of Iraqi students and overcome the difficulties that face us during our stay in the UK.

My special thanks and appreciations go to our volunteer annotators who were involved in annotating our dataset: Mohammad Merdan, Saher Al-Hejjaj, Fatimah Furaiji, Siham Al-Rikabi, Khansaa Al-Mayah, Iman Alsharhan, Wathiq Al-Mudhafer and Majda Al-Liabi. I am indebted also to all the researchers whose non-commercial software I used during this study.

I would extended my thanks to all colleagues and friends (too many to list), in particular Yasser Sabtan for countless productive discussions. Assistance provided by Christopher Connolly, Nizar Al-Liabi, Khamis Al-Qubaeissy, Sareh Malekpour and Sardar Jaf was greatly appreciated.

Last but not least, there are no words that can express my thanks to my family enough for their sacrifice and love throughout my life. I would thank them for everything.

Finally, I offer my deepest thank to everybody, who has always stood by me, encouraged me along the way even by a word and believed that I could do it.

Publications based on the thesis

The substantial ideas of this thesis have been peer-reviewed and published in the following publications in chronological order. ${ }^{1}$

Peer-reviewed journals

j1 Alabbas, M. and Ramsay, A. (2013). Natural language inference for Arabic using extended tree edit distance with subtrees. Journal of Artificial Intelligence Research. Forthcoming in Volume 47.

Peer-reviewed conferences and workshops

c1 Alabbas, M. (2011). ArbTE: Arabic textual entailment. In Proceedings of the 2nd Student Research Workshop associated with the International Conference Recent Advances in Natural Language Processing (RANLP 2011), pp. 48-53, Hissar, Bulgaria. RANLP 2011 Organising Committee.
c2 Alabbas, M. and Ramsay, A. (2011a). Evaluation of combining data-driven dependency parsers for Arabic. In Proceedings of the 5th Language \& Technology Conference: Human Language Technologies (LTC 2011), pp. 546-550, Poznań, Poland. ${ }^{2}$
c3 Alabbas, M. and Ramsay, A. (2011b). Evaluation of dependency parsers for long Arabic sentences. In Proceedings of the 2011 International Conference on Semantic Technology and Information Retrieval (STAIR'11), pp. 243-248, Putrajaya, Malaysia. IEEE, doi:10.1109/STAIR.2011.5995796.
c4 Alabbas, M. and Ramsay, A. (2012a). Arabic treebank: from phrase-structure trees to dependency trees. In Proceedings of the META-RESEARCH Workshop on Advanced Treebanking at the 8th International Conference on Language Resources and Evaluation (LREC 2012), pp. 61-68, Istanbul, Turkey.

[^0]c5 Alabbas, M. and Ramsay, A. (2012b). Combining black-box taggers and parsers for modern standard Arabic. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS-2012), pp. 19-26, Wrocław, Poland. IEEE.
c6 Alabbas, M. and Ramsay, A. (2012c). Dependency tree matching with extended tree edit distance with subtrees for textual entailment. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS2012), pp. 11-18, Wrocław, Poland. IEEE.
c7 Alabbas, M. and Ramsay, A. (2012d). Improved POS-tagging for Arabic by combining diverse taggers. In Iliadis, L., Maglogiannis, I., and Papadopoulos, H. (Eds.), Artificial Intelligence Applications and Innovations (AIAI), volume 381 of IFIP Advances in Information and Communication Technology, pp. 107-116. Springer Berlin-Heidelberg, Halkidiki, Thessaloniki, Greece, doi:10.1007/978-3-642-33409-2_12.
c8 Alabbas, M. and Ramsay, A. (2013). Optimising tree edit distance with subtrees for textual entailment. Forthcoming in: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2013), Hissar, Bulgaria.
c9 Alabbas, M. (2013). A dataset for Arabic textual entailment. Forthcoming in: Proceedings of the 3rd Student Research Workshop associated with the International Conference Recent Advances in Natural Language Processing (RANLP 2013), Hissar, Bulgaria.

Arabic transliterations ${ }^{3}$

Letter	HSB	BW	Unicode name	Letter	HSB	BW	Unicode name
s	，	，	Hamza	ظ	Ď	Z	$\mathrm{Za}{ }^{\text {a }}$
I	$\overline{\text { A }}$	1	Alif－Madda above	ε	ς	E	Ayn
i	Â	＞／O	Alif－Hamza above	$\dot{\varepsilon}$	γ	g	Ghayn
g	w	\＆／W	Waw－Hamza above	－	－	－	Tatweel
！	Ǎ	＜／I	Alif－Hamza below	ف	f	f	Fa＇
ك	y	\}	Ya＇－Hamza above	ق	q	q	Qaf
1	A	A	Alif	s	k	k	Kaf
ب	b	b	Ba＇	\downarrow	1	1	Lam
\％	\hbar	p	Ta＇－Marbuta	！	m	m	Meem
ت	t	t	Ta＇	ن	n	n	Nun
ث	θ	v	Tha＇	0	h	h	Ha＇
ج	j	j	Jeem	9	w	w	Waw
乙	H	H	Ha＇	\checkmark	ý	Y	Alif－Maqsura
خ	x	x	Kha＇	ي	y	y	Ya＇
2	d	d	Dal	Arabic diacritics			
；	ð	＊	Dhal	$=$	a	a	Fatha，i．e．／a／
J	r	r	Ra＇	－	u	u	Damma，i．e．／u／
j	z	z	Zay	$=$	i	i	Kasra，i．e．／i／
س	s	s	Sen	三	ã	F	Fathatan，i．e．／an／
ش	š	\＄	Shen	$\stackrel{\square}{ }$	ũ	N	Dammatan，i．e．／un／
$ص$	S	S	Sad	三	i	K	Kasratan，i．e．／in／
ض	D	D	Dhad	＊	\sim	～	Shadda
b	T	T	Ta＇	－	．	o	Sukun（zero vowel）

[^1]
List of abbreviations and acronyms

The following table describes the significance of various abbreviations and acronyms used throughout the thesis.

Abbr.	Full form
1st	first person
2nd	second person
3rd	third person
ABC	artificial bee colony
ADJP	adjective phrase
ADVP	adverb phrase
API	application programming interface
ArbTE	Arabic textual entailment
AWN	Arabic WordNet
BAMA	Buckwalter Arabic morphological analyzer
BEP	precision-recall breakeven point
BIUTEE	Bar Ilan university textual entailment engine
BLEU	bilingual evaluation understudy
BoW	bag-of-words
BPC	base phrase chunker
CATiB	Columbia Arabic treebank
CoNLL	conference on natural language learning
CP	complement phrase
CPOSTAG	coarse-grained part-of-speech tag
DE	differential evolution
DEPREL	dependency relation
DIRT	discovery of inference rules from text
du.	dual
EA	evolutionary algorithm
ERTS	extended reduced tagset
ETED	extended tree edit distance
EWN	Euro WordNet
fem.	feminine
GA	genetic algorithm
GPSG	generalised phrase structure grammar

H	hypothesis
HPSG	head-driven phrase structure grammar
IE	information extraction
IR	information retrieval
LA	labelled attachment score
LD	Levenshtein distance
LDC	linguistic data consortium
LHS	left-hand side
MADA	morphological analysis and disambiguation for Arabic
MALTParser	models and algorithms for language technology parser
masc.	masculine
MC	most confident (tagger)
MLN	Markov logic network
MSA	modern standard Arabic
MSTParser	minimum spanning tree parser
MT	machine translation
MXL	maximum likelihood
NE	named-entity
NIST	national institute of standards and technology
NLI	natural language inference
NLP	natural language processing
NP	noun phrase
NPI	negative polarity item
O	object
OVS	object-verb-subject
P	precision
PADT	Prague Arabic dependency treebank
PARASITE	pragmatics = reasoning about the speaker's intentions
PASCAL	pattern analysis, statistical modelling and computational learning
PATB	Penn Arabic treebank
P $_{c}$	probability of crossover
pl.	plural
P $_{m}$	probability of mutation
POS	part-of-speech
PP	propositional phrase
pro-drop	pronoun-dropping
PSO	particle swarm optimization
PWN	Princeton WordNet
QA	question answering

R	recall
RC	relative clause
RHS	right-hand side
RTE	recognising textual entailment
RTED	robust tree edit distance
RTS	reduced tagset
S	subject
SAMA	standard Arabic morphological analyzer
sg.	singular
ssGA	steady state genetic algorithm
SVM	support vector machine
SVO	subject-verb-object
T	text
TBL	transformation-based learning
TBR	transformation-based retagging
TE	textual entailment
TEASE	textual entailment anchor set extraction
TED	tree edit distance
UA	unlabelled attachment score
UX	uniform crossover
V	verb
VOS	verb-object-subject
VP	verb phrase
VSM	vector space model
VSO	verb-subject-object
XDG	extended dependency graph
ZS-TED	Zhang-Shasha's tree edit distance

Chapter 1

Introduction

1.1 Overview

One key task for natural language systems is to determine whether one text fragment entails another. Entailment can be defined as a relationship between two sentences where the truth of one sentence, the entailing expression, forces the truth of another sentence, what is entailed. For instance, (1.1a) entails (1.1b) whereas (1.2a) does not entail (1.2b).
(1.1) Entailment
a. The couple are divorced.
b. The couple were married.
(1.2) Non-entailment
a. John wrote a story.
b. John wrote a funny story.

For logicians and semanticists, the most obvious technique for doing this is via a logical-based approach. This involves translating both text fragments into a formal meaning representation (e.g. first-order logic) and then applying automated reasoning tools to determine their relationship. This approach has the power and precision we need to handle quantifiers, negation, conditionals and so on. It can succeed in restricted domains, but it fails on open-domain natural language inference (NLI) evaluations. The difficulty is plain, since natural language is complex and obtaining full and accurate formal representations of meaning from natural language expressions presents
countless thorny problems, such as anaphora, ambiguity, extragrammatically and others.

The challenges of NLI are quite different from those encountered in formal deduction: the emphasis is on informal reasoning, lexical semantic knowledge, and variability of linguistic expression, rather than on long chains of formal reasoning (MacCartney, 2009). A more recent, and better-known, formulation of the NLI task is the recognising textual entailment (RTE) task, which contrasts with the standard definition of entailment above, described by Dagan et al. (2006) as a task of determining, for two text fragments text T and hypothesis H, whether " \ldots typically, a human reading T would infer that H is most likely true." According to these authors, entailment holds if the truth of H, as interpreted by a typical language user, can be inferred from the meaning of T. The RTE task is in some ways easier than the classical entailment task, and has led to a number of approaches that diverge from the tradition logical-based one (Blackburn et al., 2001).

The system described in this thesis, Arabic textual entailment (ArbTE) system, embodies an investigation into the effectiveness of existing textual entailment (TE) approaches when they are applied to modern standard Arabic (MSA, or Arabic), ${ }^{1}$ and includes extensions which deal with the specific problems posed by the language. RTE approaches have been developed very recently and have largely been applied to English texts. There is very little work on applying TE techniques to Arabic (we have, in fact, so far found no such work), and little evidence that the existing approaches will work for it. The key problem for Arabic is that it is more ambiguous than English, for reasons described below, which makes it particularly challenging to determine the relations between text snippets, so that many of the existing approaches to TE are likely to be inapplicable.

1.2 Overview of the challenges of Arabic processing

The Arabic language raises many challenges for natural language processing (NLP). Firstly, Arabic contains an exceptionally high level of lexical ambiguity. This arises from two sources: (i) Arabic is written with the short vowels, and a number of other phonetically distinctive items, omitted; and (ii) at the same time, it has very productive derivational morphology, which means that for any root there will be a number

[^2]of derived forms which differ only in their short vowels; and it has complex nonconcatenative inflectional morphology, which means that there are forms of the same lexeme ${ }^{2}$ which differ in a variety of ways. The second point here means that the omission of short vowels is much more problematic than is the case in, for instance, English, where text-messages also omit short vowels. The English sentence 'she snt me a txt $m s g^{\prime}$ is easy to interpret, despite the lack of vowels in the open-class words, because there are very few, if any, other words in English that would produce the same forms. The situation in Arabic is very different, with a single written form corresponding to 10 or more different lexemes.

It should be noted that it is the combination of lack of diacritics and productive derivational and inflectional morphology that leads to the problem. The lack of diacritics is not, by itself, an insurmountable problem.

In addition, Arabic is highly syntactically flexible (Daimi, 2001). It has a comparatively free word order, where sentence components can be reordered without affecting the core meaning (non-canonical word orders are usually employed to change the focus of a sentence without changing its propositional content). In this case, a lot of ambiguity occurs at the syntactic level, and needs a more complex analysis. This as well results in structural ambiguity, with each morphological analysis having more than a single meaning. So, besides the regular sentence of verb-subject-object (VSO), Arabic allows other potential surface forms such as SVO and VOS constructions. The potential of allowing such non-canonical orders leads to a large amount of ambiguity (Alabbas and Ramsay, 2011a).

Arabic also contains numerous clitic items (prepositions, pronouns and conjunctions), so that it is often difficult to determine just what items are present in the first place.

Furthermore, Arabic is a pro-drop language (Attia, 2012). It is similar to some other languages, such as Spanish, Italian and Japanese, where subject pronouns can be omitted. Again, the potential absence of a subject is not unique to Arabic, but it is worse here than in a number of other languages because Arabic verbs can typically occur either intransitively or transitively (and to complicate matters even further the active and passive forms of a verb are often indistinguishable in the written form). In such cases, it is hard to tell whether a sequence consisting of a verb and a following noun phrase (NP) is actually an intransitive use of the verb, with the NP as subject, or

[^3]a transitive use with a zero subject, or indeed a passive use.
Finally, Arabic makes use of 'equational sentences', consisting of an NP and a predication (e.g. another NP or a prepositional phrase (PP)). Given that Arabic nouns typically do not carry overt case markers, it is very hard to tell whether two adjacent nouns form a complex NP, with one of the nouns serving as an adjective; or a 'construct NP', where one of them is serving as a possessive determiner; or a verbless sentence. Thus, there is considerable scope for ambiguity in the analysis of Arabic sentences. They also tend to be rather long. The typical sentence length is 20 to 30 words, and sentences whose length exceeds 100 words are not uncommon, and this also poses a problem for traditional parsing algorithms.

1.3 A general framework of RTE

RTE has been recently introduced as a generic task by Dagan et al. (2006). The main goal of RTE is constructing systems able to capture the semantic variability of language expressions and performing NLIs. These systems can be incorporated in NLP applications. The RTE task takes a pair of text fragments (T and H) and checks whether an entailment relationship holds between them or not. The task covers all language variability phenomena, such as lexical, semantic and syntactic variations.

A standard RTE system pipeline consists of the following main stages:

Linguistic analysis. This system begins by applying different off-the-shelf linguistic analysis tools on both T and H, in order to generate linguistic annotations which will be useful later in processing. The respective levels of analysis range from tokenisation through syntactic parsing to logical analysis.
\boldsymbol{T} and \boldsymbol{H} comparison. Different techniques are used to make comparison between T and H, such as lexical alignment (Hickl et al., 2006) and transformations on syntactic trees (Kouylekov and Magnini, 2005a). In addition, some techniques use n-grams or unigrams to measure lexical overlap, or use WordNet as lexical substitution and logical inference (Bos and Markert, 2006b). A feature vector, which supports a similarity measure of T and H, is considered the typical result for this stage.

Entailment decision. This stage generally uses machine learning, trained on the training datasets of the RTE, to make the final entailment decision.

The architecture in Figure 1.1, for instance, instantiates this general notion where linguistic analysis is represented by preprocessing; T and H comparison is represented by comparative analysis; and the entailment decision is made by a classifier that makes use of a feature vector.

Figure 1.1: General RTE architecture (Burchardt, 2008).

1.4 Research goals

RTE is considered a complex task that requires deep language understanding. The techniques used for it have been developed considerably in the last few years, especially for English texts. ArbTE system is a step forward in this regard. It will investigate the effectiveness of existing TE techniques to Arabic where we are confronted with levels of ambiguity higher than other languages, such as English. There is very little work on applying TE techniques to Arabic, and little evidence that the existing approaches will work for it.

The ArbTE system aims to achieve the following goals:
g1: Design TE algorithms for Arabic. The specific problems we will investigate in this field are the following:
p1: Part of the problem here is that the standard algorithms rely on having accurate syntactic analyses of the relevant texts, and there are no wide-coverage high-precision parsers for Arabic. The lack of such parsers is not simply a matter of lack of investment and effort: Arabic, particularly written modern

Arabic, poses a number of problems for parsing algorithms which are not present for most other languages. In order to overcome this problem in the current project, we had to make a choice between two options: (i) adapting the TE algorithms so that they can be applied to partial or highly ambiguous syntactic analyses; or (ii) improving the accuracy of parsing itself by using various strategies such as system combination techniques.

We have decided to work with the second option, which is the easy one because we did not want to complicate the TE algorithms without a necessity.
p2: Collect Arabic RTE datasets (i.e. development set and test set). Currently there is no suitable dataset for Arabic.
p3: Develop extensions to existing TE algorithms to make them more robust and more effective.
g2: Use the Arabic testing set to compare the effectiveness of different combinations of sub-components and select the most accurate combination.

The reasons for realising TE computationally fall into two main categories:

- Internal goals: defining the entailment will provide the computer with the ability to carry out inferences in order to achieve a better understanding of natural language and will also make it possible to explore other linguistic tasks, such as paraphrase, contradiction, presupposition and others.
- External goals: tackling this task will open the door to applications of these ideas in many areas of NLP, such as question answering (QA), semantic search, information extraction (IE), and multi-document summarisation.

1.5 ArbTE system architecture

The ArbTE system uses a fairly orthodox TE architecture that consists of three main stages as shown in Figure 1.2 (Alabbas, 2011). At each stage we attempt to exploit variations on the standard machinery to help us overcome the extra problems raised by written Arabic as explained below.

Figure 1.2: General diagram of ArbTE system.

Arabic linguistic analysis. This part of the system represents the preprocessing stage that is responsible for converting both input T and H from natural form to dependency trees. To achieve this goal, we first fix acronyms by using a manually-collected Arabic resource and then two state-of-the-art dependency parsers, i.e. MSTParser (McDonald and Pereira, 2006) and MALTParser (Nivre et al., 2007), are used.

Both parsers are trainable. They can be used to induce a parsing model from treebank data and parse new tagged data using an induced model. To provide tagged data to these parsers, three state-of-the-art part-of-speech (POS) taggers, i.e. AMIRA (Diab, 2009), MADA (Habash et al., 2009b) and a home-grown MXL tagger (Ramsay and Sabtan, 2009), are used.

Tree matching. This part will use a tree edit distance (TED) algorithm, as developed by Zhang and Shasha (1989), with our extended version with subtree operations, extended TED (ETED), to make matching between both T and H dependency trees. Using edit distance between two dependency trees will provide us with different advantages, as follows:

- The complexity is lower than for full-scale theorem proving.
- It is robust. One can do it even when one has partial syntactic analyses or is for some other reason unable to build logical forms.
- Different knowledge sources can be expressed by edit operations for resolving the problems of language variability. This is because the lexical and syntactic entailment rules will be used to model the variability phenomena of lexical, syntactic and semantic.

In this part of the system, we also exploit synonyms, antonyms, hypernyms and hyponyms relations encoded by using some Arabic lexical resources (such as Arabic WordNet (AWN) (Black et al., 2006), Openoffice Arabic thesaurus and others) when exchanging items in a tree.

Entailment decision. This part of the system is responsible for making the final entailment decision. The score resulting from the second stage is checked here to decide a particular judgement using either one threshold (binary-decision) or two thresholds (three-way decision). Such thresholds are estimated either empirically on the training data (e.g. Kouylekov, 2006) or automatically by using optimisation algorithms such as genetic algorithm (GA) or artificial bee colony (ABC), as in our project.

1.6 Contributions

The main contributions of this work are:

1. ArbTE system is the first work in TE for Arabic (we have so far found no such work). ${ }^{3}$ The task of RTE for Arabic is interesting. We think that the RTE community will benefit a lot from work about TE in languages other than English and in particular about Arabic, which has a lot of characteristics described in Section 1.2 that make it challenging for NLP in general.
2. Applying our technique relies on having accurate linguistic analyses, which is a difficult task, particularly for Arabic since the problem of ambiguity is worse in Arabic than in English. To overcome these problems we have carried out a number of experiments with our taggers and parsers in order to improve their performance (i.e. deal with problem p1). These experiments show in particular the following main results:

- Our conversion from phrase structure to dependency trees allows parsers to perform accurately even for long sentences exceeding 100 words (Alabbas and Ramsay, 2012a).

[^4]- Combining the output of three different taggers can produce more accurate results than each tagger produces by itself (Alabbas and Ramsay, 2012d).
- Combining the output of multiple data-driven dependency parsers can produce more accurate results, even for imperfectly tagged text, than each parser produces by itself for texts with the gold-standard tags (Alabbas and Ramsay, 2011a).
- Combining different tagger:parser pairs where each parser uses a different tagger gives better precision than recall, as expected, which may be useful for some tasks (Alabbas and Ramsay, 2012b).

3. We have built, using a novel semi-automatic method, a new Arabic RTE dataset. A new dataset is required, since there are no available RTE datasets for Arabic (i.e. solve problem p 2).
4. Our work implements two novel improvements to Zhang-Shasha's TED algorithm (i.e. solve problem p 3), as follows:
(i) Extending the set of edit operations to cover the subtrees transformation operations as well as the standard single nodes edit operations, ETED (Alabbas and Ramsay, 2012c).
(ii) Using the ABC algorithm (Karaboga et al., 2012) to estimate, automatically, relevant costs of edit operations (for single node and subtree) and of threshold(s) for the user defined application and testing data for different domains instead of expertise-based scheme.

1.7 Thesis outline

In this chapter, Introduction, we have presented the research problem and what variety of Arabic is the target of analysis and processing. Then, the general framework of RTE is explained with our research goals and contributions. The remainder of the thesis is organised as follows.

Chapter 2, Background: textual entailment, introduces the problem of entailment as outlined under the perspectives of both linguistics and logic, and then the RTE task is presented in some detail. Next, related work in the areas of RTE is reviewed. At the
end of the chapter, the main applications of RTE are explained.

Chapter 3, Background: structural analysis, describes briefly the sources of ambiguity in natural language, and the challenges of Arabic NLP are discussed in some detail. The chapter ends with description of three state-of-the-art POS taggers (i.e. MADA, AMIRA and MXL) and two state-of-the-art dependency parsers (i.e. MSTparser and MALTParser).

Chapter 4, Arabic structural analysis, presents the experimental results of improving our preprocessing stage. The chapter starts with improving the POS taggers subtask by using the three taggers described in Chapter 3. Next, two techniques to improve the parsing subtask, which depends on the two parsers described in Chapter 3 and the results of improving POS taggers, are discussed. The material in this chapter is derived in large part from our papers c2-c5 and c7.

Chapter 5, Trees matching, describes a number of popular distance-based approaches to tree matching. Then, Zhang-Shasha's TED algorithm is discussed with our extension to this algorithm to take into consideration subtree edit operations as well as edit operations on single nodes (i.e. delete, insert and exchange). After that, two optimisation algorithms, i.e. GA and ABC , that will be used to estimate the cost of edit operations and to determine thresholds for TED are outlined. The chapter ends with a brief description of the Arabic lexical resources that are used in our work (e.g. AWN and Openoffice Arabic thesaurus) to support us with some relations between words (e.g. synonyms, antonyms and hypernyms). The material in this chapter is derived in large part from our papers j 1 and c 6 .

Chapter 6, Arabic textual entailment dataset preparation, starts with presenting our efforts for constructing a training set and testing set for Arabic TE systems, since there is no suitable dataset available for Arabic. Next, two diverse techniques are discussed to check the reliability of a number of volunteer annotators. The material in this chapter is derived in large part from our paper c9.

Chapter 7, Systems and evaluation, describes the design and implementation of RTE systems to Arabic based on different approaches, such as bag-of-words (BoW) and
distance-based algorithms, such as Levenshtein distance (LD) and TED. Then, different ways for calculating cost functions for the different edit operations using GA and ABC algorithm, are discussed. The material in this chapter is derived in large part from our papers c 1 and c 8 .

Chapter 8, Conclusion, concludes the final remarks of the thesis. The chapter ends with suggesting directions for future improvements and research.

Chapter 2

Background: textual entailment

In this chapter the various notions of consequence in linguistics will be reviewed (Section 2.1). In Section 2.2, the standard notion of entailment in logic will be briefly introduced and its problems as a model for NLI will also be discussed. In Section 2.3, the notion of textual entailment (TE) with its characteristics will be presented, a brief summary of TE techniques will be presented and main applications of RTE will be outlined.

2.1 Entailment in linguistics

The term entailment can be defined as a relationship between two sentences where the truth of one sentence S_{1}, the entailing expression, forces the truth of another sentence S_{2}, what is entailed (though the opposite may not be true). Notice that, if S_{1} is true, then S_{2} must also be true; also if S_{2} is false, then S_{1} must be false (Bloomer et al., 2005). By contrast, nothing is said about the truth value of S_{2}, when S_{1} is false. Hence, S_{1} is more informative than S_{2} when S_{1} entails S_{2}, because the information that S_{2} carries is included in the information that S_{1} carries. For instance, let consider (2.1) and (2.2).
(2.1) Entailment
a. The president was assassinated.
b. The president is dead.

(2.2) Non-entailment

a. No student came to class early.
b. No student came to class.

In (2.1), if the president was assassinated, then s / he is clearly dead, i.e. (2.1a) entails (2.1b), but the reverse does not hold. The reason is that if the president was 'assassinated' is true, then there is no way to avoid the conclusion that the president is 'dead', primarily because the meaning of 'assassinated', which means "murder (an important person) in a surprise attack for political (or religious) reasons", in (2.1a). Notice that entailment arises from our background knowledge of language. It therefore relies on the relevant sentence constituents rather than context. By contrast, (2.2a) does not entail (2.2b), but the reverse does. The reason is that if it is true that 'No student came to class early', then it is not necessary for 'No student came to class' to be true. This is because there may be some student who came to class late.

Entailment also plays an essential role in defining and testing many other fundamental relations. For instance, when S_{1} entails S_{2} and vice versa, in this case S_{1} and S_{2} are equivalent, or are paraphrases of each other or synonymous, which means they are true in exactly the same situations, or mutually entailing as in (2.3).
(2.3) Equivalent
a. The terrorist is dead.
b. The terrorist is not alive.

Furthermore, S_{1} and S_{2} are contradictories if S_{1} entails not- S_{2} and S_{2} entails notS_{1} (i.e. each sentence entails the negation of the another) so that when one sentence is true the other must be false (Riemer, 2010), as shown in (2.4). Consequently, a contradiction occurs when a sentence contains contradictory entailment (i.e. when a sentence is followed by the negation of an entailed sentence), as in (2.5). Cruse (2011) defines contrariety in terms of entailment as follows: " S_{1} and S_{2} are contraries if and only if S_{1} entails not- S_{2}, but not- S_{2} does not entail S_{1} (and vice versa)." This means that the two sentences are considered to be contraries if and only if each of them entails the negation of the other, while the latest one does not entail the first one, as in (2.6).
(2.4) Contradictory
a. No student likes exams.
b. At least one student likes exams.
(2.5) Contradiction (cannot be true in any situation)

John came to university and had a good time and John did not come to university.
Here, 'John came to university and had a good time' entails 'John came to university', hence (2.5) is a contradiction because (2.5) contains contradictory entailment.
(2.6) Contrariety
a. These cars are red.
b. These cars are blue.

Entailment also could be used to test a presupposition, which is something assumed to be true in a sentence which asserts other information (Hudson, 2000), for two propositions P and Q as follows: P presupposes Q if both P and not- P entail Q (Bublitz and Norrick, 2011), as in (2.7).
(2.7) Presupposition
a. John's car is red.
b. John has a car.

Here, 'John's car is red' and 'John's car is not red' both entail 'John has a car', hence (2.7a) presupposes (2.7b).

The entailment concept above can be generalised for a set of sentences S_{1}, \ldots, S_{n} and another sentence S. For simplicity, a set of entailing sentences are equated with a single one by joining the sentences using 'and' as shown in (2.8). In this case, the conjunction is true just when each individual sentence in the set is true. Also, it depicts exactly those situations that can be described by each one of the individual sentences.
(2.8) Entailment between a set of sentences and one sentence
a. All mammals are animals and all cows are mammals.
b. All cows are animals.

Two systematic patterns of entailment can be extracted from the above examples between sets and subsets. Upward entailment is concerned with entailment from a subset to a set (i.e. from more specific to less specific); but not vice versa. In other words, it means that if a proposition P is true of a set F, it is true of supersets of F. By contrast, downward entailment, which is the opposite of upward entailment, is concerned with entailment from a set to a subset (i.e. from less specific to more specific); but not vice versa (Chierchia and McConnell-Ginet, 2000). In other words, it means that if a proposition P is true of a set F, it is true of subsets of F. Upward and downward entailment are illustrated in (2.9) and (2.10) respectively.
(2.9) Upward entailment
a. Some horses are black.
b. Some animals are black.
(2.10) Downward entailment
a. No animals are green.
b. No horses are green.

In both (2.9) and (2.10), the sentence (a) entails the sentence (b), but not vice versa. Accordingly, the quantifier 'some' triggers an upward entailment in (2.9), whereas the quantifier ' $n o$ ' involves a downward entailment in (2.10). In general, a downward entailment environment is created by negation so that according to Fauconnier-Ladusaw hypothesis (Zwarts, 1998): negative polarity items (NPIs) can be licensed ${ }^{1}$ in the scope of the downward entailment environment (see Saeed, 2009), as in (2.11).
(2.11) NPIs
a. ?Every student is ever writing report.
b. No student is ever writing report.

Entailment has a number of properties, here are the main two:

- Non-cancellability: entailment cannot be cancelled by adding some explicit material. Let us consider, for instance, the pair of sentences in (2.1): if (2.1b) is not true (i.e. the president is not dead), then (2.1a) could not be true as well, because whatever it is that happened to 'the president' would not be considered as absolutely

[^5]an assassination. In fact, there is no qualification that one could insert in to (2.1a) while preserving its meaning to make it stop entailing (2.1b).

- Non-detachability: the entailment will not change when some identical semantic content words (or phrases) are replaced by others. This is because the entailment relies solely upon the sentence's truth conditional content.

2.2 Entailment in logic

Logic has been widely used as a framework to model semantics of natural language. NLP researchers use different types of logic in their approaches, these logic types are listed in Table 2.1, where we note that as the expressive power of a language increases so does the complexity of reasoning with it. This has important consequences for the use of formal languages as a means of capturing natural language semantics. If the chosen language is not expressive enough, distinctions between different natural language sentences will be lost; but if we choose to use highly expressive formal languages, we have to accept that inference will become very difficult.

Logic	Complexity
Attribute: value pairs	Linear
Propositional logic	NP-complete
Description logic	Semi-decidable (recursively enumerable)
First order logic	Undecidable
Modal logic (temporal logic)	Incomplete
Default logic	Intensional logic (typed λ-calculus, set theory and property theory)

Table 2.1: Logic types for NLP.

As explained earlier, entailment can be defined as a relationship between two sentences where the truth of one sentence forces the truth of another sentence. This linguistic concept of entailment can be formalised logically as a relation between sets of logical formulae (which are the basic building blocks of any logic, also called propositions). Thus, if $P=\left\{P_{1}, \ldots, P_{n}\right\}$ is a set of formulae and Q is a formula, P logically entails Q if and only if every model of P is also a model of Q (Jago, 2007), i.e. the following is true:

$$
\begin{equation*}
\left(P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}\right) \models Q . \tag{2.1}
\end{equation*}
$$

So, logical entailment depends on the concept of truth and truth conditions. Graphically, entailment between two formulae is denoted as: $P \models Q$, which stands for " P entails Q ", whereas $P \nvdash Q$ stands for " P does not entail Q ".

The general structure to checking entailment between natural language sentences by using a logical approach is shown in Figure 2.1.

Figure 2.1: Logical approach structure to check natural language entailment.

In short, the sentences are translated from natural language into some logical form. Then, a theorem prover is used to check whether logical entailment holds between the two logical forms or not. An important point for this technique is that it succeeded in representing the meaning of natural language mathematically. For example, (2.12) uses this technique to test the entailment for the sentences (2.12a) and (2.12b).
(2.12) Logical entailment for natural language (simple example)
a. All fruit are nourishing and all apples are fruit.
$\forall x$ fruit $(x) \rightarrow$ nourishing $(x) \wedge \forall x$ apple $(x) \rightarrow$ fruit (x)
b. All apples are nourishing.
$\forall x$ apple $(x) \rightarrow$ nourishing (x)

A more complex example will be explained in (2.13), which needs additional knowledge to prove the logical entailment between two sentences. The logical forms for these sentences given below were obtained by the PARASITE ${ }^{2}$ system (Ramsay, 1999; Seville and Ramsay, 2001).

[^6](2.13) Logical entailment (complex example that needs additional knowledge)
a. John and Mary got divorced.

```
exists(_A,
    (event(_A, divorce)
    & (theta(_A,
        object,
        (ref(lambda(_B, named(_B, 'Mary')))
        & ref(lambda(_C, named(_C, 'John'))))
    & aspect(ref(lambda(_D, past(now, _D))), simplePast,_A)))))
```

b. They had been married.

```
exists(_A :: {past(ref(lambda(_B, past(now, _B))), _A)},
    exists(_C,
        (event(_C, marry)
        &(theta(_C,
            object,
                ref(lambda(_D, centred(_D, lambda(_E, thing(_E))))))
            &aspect(_A, simplePast, _C)))))
```

c. They are not still married.

```
not(exists(_A,
    (event(_A, marry)
    & (theta(_A,
        object,
        ref(lambda(_B, centred(_B, lambda(_C, thing(_C))))))
        &(unfinished(_A) & aspect(now, simplePast, _A))))))
```

d. John and Mary will get divorced.

```
exists(_A :: {future(now, _A)},
    exists(_B,
            (event(_B, divorce)
            &(theta(_B,
                object,
                (ref(lambda(_C, named(_C, 'Mary')))!2
                & ref(lambda(_D, named(_D, 'John')))!0))
            & aspect(_A, simplePast, _B)))))
```

The sentences in (2.13) are fairly simple, but the reasoning required to judge that (2.13a) should entail each of (2.13b) and (2.13c) requires considerable background knowledge and inferential power. It is easy make logical forms for these sentences, as shown in (2.13), but the reasoning involved in getting them right involves as follows:
i. Understanding that 'divorce' is a process that terminates a marriage.
ii. Doing the temporal reasoning that if something is terminated then it must have existed before the termination took place, and that it no longer exists after the termination.

The sentence (2.13d), on the other hand, does not entail sentence (2.13b) (actually (2.13b) does not even make any sense as a follow-up to (2.13d), because the referential nature of 'had been' requires the context to contain some past instant). Strictly speaking it does not even entail 'They are married', though one probably would want a TE system to say that it does; and it certainly does not entail (2.13c).

So getting these right, using any approach to entailment, requires considerable amounts of background knowledge about temporal relations, as well as the link between divorce and marriage.

Blackburn et al. (2001) argue that it is extremely difficult to construct logical forms for complex sentences. There is no obvious reason why one should not be able to produce a logical form for any sentence that one can parse (though there are, clearly, problems with ambiguous sentences: if there are many structural analyses one will get many logical forms, and s he has to have some way of choosing between them). However, if the sentence is very long as in (2.14), its logical form will be very complex, as given in Appendix A.
(2.14) Sentence with long logical form

I know she thinks that the man who you were talking to wants to marry her.

In fact, the problem here is not the size of the logical form, but it is the depth of nesting. Theorem provers can cope with knowledge bases consisting of millions of facts, but they cannot cope with the kind of nested propositions in this logical form. According to the theoretical and practical argument of Blackburn et al. (2001), it is impossible to establish a logic-based approach to the semantics of natural language because it does not easily scale, as following:

1. It is very difficult, and may even be impossible, to use Montague-like compositional rules to obtain logical forms for natural language texts. The key problems here are ambiguity (there are as yet no reliable algorithms for making the right choice when confronted with multiple interpretations) and extragrammatically (compositional semantics is generally carried out by annotating the rules of the grammar being used for analysing the input text. These annotations are usually added to handcrafted grammar rules. Freely occurring texts often break, or at least bend, the rules of a typical hand-crafted grammar: it is very hard to see how to construct a logical form in this way if the text under consideration is not described by the rules of the grammar, because it is unclear where the construction rules will come from).
2. A huge amount of knowledge is required (e.g. about word meaning), and the task of formalising such knowledge has proved intractable (the CYC ${ }^{3}$ project (Lenat and Guha, 1990), for instance, has failed to provide a suitable knowledge base despite very large amounts of effort).

The situation is, in fact, made worse by the fact that many phenomena in natural language appear to be higher-order (Ramsay and Field, 2008), which makes the prospect of efficient reasoning over logical forms even more remote, as shown in Table 2.1. This technique gives very high precision, but very low recall with most existing theorem provers and knowledge bases. Attention has therefore recently shifted to carrying out shallow inference on freely occurring texts. This task, known as textual entailment (TE), involves developing inference techniques that can be applied directly to natural language text, with the aim of extracting information that is implicit in such text without needing to use the logical-based approach.

2.3 What is TE?

There is no formal definition of TE. Therefore, new challenges are posed for both theoretical studies of the semantics of natural language and actual systems design. Dagan and Glickman (2004) described TE, which is a pre-theoretical notion, as a directional and probabilistic relationship between an entailing natural language text T and an entailed natural language hypothesis H. These authors state that entailment (T entails H or H is a consequent of T) holds if the meaning (or truth) of H, as interpreted by a typical language user, can be inferred from the meaning of T. Table 2.2 summarises

[^7]different informal definitions for TE, while Table 2.3 explains some output conditions of TE engines.

Authors	According to	Definition of TE			
Dagan et al. (2006)		"We say that T entails H if the meaning of H can be inferred from the meaning of T, as would typically be interpreted by people."			
Chierchia and McConnell-Ginet (2000)	formal semantics	"A text T entails another text H if H is true in every circumstance (possible world) in which T is true."			
Guidelines of RTE- 4 challenge	approach of partic- ipants in the RTE challenge	"T entails H if the truth of H can be inferred			
from T within the context induced by T."			$	$	(
:---					

Table 2.2: Some informal definitions for TE.

Authors	Output conditions of TE engines
Kouylekov and Magnini $(2005 b)$	"T entails H if we have a sequence of transformations applied to T such that we can obtain H with an overall cost below a certain threshold empirically estimated on the training data."
Pérez and Al- fonseca (2005)	"If the BLEU's output is higher than a threshold value the entailment is marked as TRUE, otherwise as FALSE."
Pazienza et al. (2005b)	"T entails H if we succeed to extract a maximal subgraph of $X D G_{T}{ }^{5}$ that is in a subgraph isomorphism relation with XDG G_{H}, through the definition of two functions f_{C} and $f_{D} "$, where C is the constituents, D is the dependencies, $f_{C}: C_{T} \rightarrow C_{H}$ and $f_{D}: D_{T} \rightarrow D_{H}$.

Table 2.3: Some output conditions of TE engines, according to approach of participants in the RTE challenge.

2.3.1 Entailment rules

Many researchers use rules to deal with TE. Entailment (or rewriting) rules, in this context, have been introduced to provide pieces of broad-scale knowledge bases for semantic variability patterns that may support entailment judgements (Dagan et al., 2009) with some degree of confidence. An entailment rule is a rule in which the lefthand side (LHS) entails its right-hand side (RHS), denoted by 'LHS \rightarrow RHS', in certain contexts under the same variable instantiations. More specifically, a rule is defined

[^8]as a directional relation between LHS and RHS, corresponding to text fragments (here termed templates), either text patterns (or parse subtrees) with variables or lexical terms as in (2.15). Typically, such rules should be applied solely in specific contexts, defined as relevant contexts by Szpektor et al. (2007). For instance, the rule (2.15a) can be used in the context of 'buying' events, so we should not apply it for 'Students acquired a new language'.
(2.15) Entailment rules
a. X acquire $Y \rightarrow X$ buy $Y \quad$ (Templates with variables)
b. X was found in $Y \rightarrow Y$ contains X (Templates with variables)
c. laptop \rightarrow computer \quad (Lexical terms)
d. letter \rightarrow message (Lexical terms)

Recently, a lot of methods have been suggested for automatic acquisition of such rules, ranging from distributional similarity to finding shared contexts (e.g. Lin and Pantel, 2001; Ravichandran and Hovy, 2002; Shinyama et al., 2002; Barzilay and Lee, 2003; Szpektor et al., 2004; Sekine, 2005; Callison-Burch, 2008; Szpektor and Dagan, 2008; Zhao et al., 2009; Aharon et al., 2010; Cabrio et al., 2012). We focus here on two representative and widely-used unsupervised acquisition methods.

- DIRT ${ }^{6}$ was proposed by Lin and Pantel (2001) as a method based on an extended version of Harris's distributional hypothesis, i.e. words that occur in the same contexts tend to have similar meanings, but it operates at the syntactic level. In this method, if two dependency paths (i.e. binary relationships between two nouns only), which are extracted from dependency trees of parsed corpora, tend to occur in similar contexts, the meanings of these paths tend to be similar. Then, both first and last words (i.e. nouns) of the extracted paths are replaced by slot fillers, which corresponds to variables in entailment rules.
- TEASE ${ }^{7}$ is a bootstrapping-based method proposed by Szpektor et al. (2004). Unlike the DIRT method, TEASE uses the web to collect its rules rather than parsed corpora. It starts with a lexical-syntactic template or a parse subtree with linked items called anchors as given input (the available knowledge collection consists of 136 different templates that were given as input). These anchors are lexical items

[^9]describing the context of the template in a sentence. Then, it extracts verb-based expressions for the other candidate templates for entailment relations with the input template.

Both DIRT and TEASE avoid the problem of determining the direction of the entailment relation, so the resulting relation can be 'LHS entails RHS', 'RHS entails LHS' or each entails the other (paraphrases) under the same variable instantiations.

2.3.2 Characteristics of TE

The RTE task is defined implicitly by the guidelines given to the annotators, since these determine which T-H pairs a system should accept. These guidelines, which are given below, contain some ambiguities and even potential inconsistencies which rather undermine the clarity of the task.

1. Entailment is a directional relationship (i.e. H must be entailed from the given T, while the opposite is not necessary) as shown in (2.16), in which (2.16a) entails (2.16b), whereas the reverse does not.
(2.16) Entailment is a directional relationship
a. I saw a black cat.
b. I saw a cat.
2. T must explain H. Dagan et al. (2006) state that "In principle, the hypothesis must be fully entailed by the text. Judgment should be false if the hypothesis includes parts that cannot be inferred from the text." The above quotation appears to suggest that additional knowledge may not be used to demonstrate entailment. In the following examples, we will show that entailment almost always requires the use of different types of background knowledge.
(2.17) No background knowledge at all
a. I saw a cat.
b. I saw a cat.
(2.18) Basic logic
a. I saw a cat and it was black.
b. I saw a cat.
(2.19) Basic logic and semantic structure of natural language
a. I saw a black cat.
$\exists x \operatorname{black}(x) \wedge \operatorname{cat}(x)$
b. I saw a cat.
$\exists x \operatorname{cat}(x)$
(2.20) Lexical relations
a. I saw a cat.
b. I saw an animal.
c. I saw an Albigensian.
d. I saw a heretic.

But, the question here is how many lexical relations are needed. In (2.20), for instance, anyone will judge that (2.20a) entails (2.20b) because 'cat' is a hyponym of 'animal', whereas even a great number of native English speakers do not know that (2.20c) entails (2.20d).
(2.21) Encyclopedic knowledge
a. John and Mary got divorced.
b. John and Mary had been married.
c. John and Mary are (still) married.
d. John is allergic to eggs.
e. John should not eat pancakes.

In (2.21), there is a relationship between the definition of 'divorced' in the T and the definition of 'marriage' in the H (i.e. the divorce means the end of marriage). So, (2.21a) entails (2.21b) because 'John and Mary got divorced' means that John and Mary married before that. On the other hand, (2.21a) does not entail (2.21c) because 'John and Mary got divorced' means that the marriage bond between them is dissolved, which leads to that 'John and Mary are not (still) married'.

In contrast, in spite of the fact that there is no word in H that has a relation with the definition of 'allergic' in the T, which means having an allergy, (2.21d) entails (2.21e). This example involves a chain of reasoning-that because John is sensitive to eggs and pancakes contain eggs, so John will be sensitive to pancakes as well.

These examples show that entailment cannot be done without background knowledge, but the question here is how much, and what sort, of background knowledge is allowed, in apparent contradiction to guideline 2.
3. Entailment is a probabilistic relationship (i.e. the relation is not deterministic). The annotation guidelines for the annotators of the RTE datasets by Dagan et al. (2006) state that "[...] cases in which inference is very probable (but not completely certain) are still judged at true", as shown in (2.22), which represents a pair \#586 from the PASCAL ${ }^{8}$ RTE Challenge dataset. In this example, it is annotated as positive because the context looks to indicate that the person actually died in 1993.
(2.22) Entailment is probabilistic (pair \#586 in RTE1 dataset)
a. The two suspects belong to the 30th Street gang, which became embroiled in one of the most notorious recent crimes in Mexico: a shootout at the Guadalajara airport in May, 1993, that killed Cardinal Juan Jesus Posadas Ocampo and six others.
b. Cardinal Juan Jesus Posadas Ocampo died in 1993.

Actually, one of the challenging problems for modeling TE is inclusion of 'very probable'. An example can be useful, consider the example in (2.23).
(2.23) Inclusion of very probable
a. X\% of the swans in the world are white.
b. John's swan is white.
c. John's swan is probably white.

The question here is what are the least values of X that make entailment between (2.23a) and (2.23b) and between (2.23a) and (2.23c) respectively. We have made an annotation test by asking 20 people to solve this question. The answers are different values for X for both entailments. Then, we asked the same people with $X=90$ and the answers are 60% with (2.23a) entails (2.23b), 20% that (2.23a) does not entail (2.23b) and 20% said they do not know, whereas all of them answered that (2.23a) entails (2.23 c) because of the presence of 'probably'.

[^10]4. Background knowledge should be admissible. Dagan et al. (2006) state that "Annotators were allowed to assume common background knowledge of the news domain such as that a company has a CEO [...]. However, it was considered unacceptable to presume knowledge such as that Yahoo bought Overture for 1.63 billion dollars." In this quotation, the part of sentence "a company has a CEO", which the authors say is allowable, is not going to be common knowledge for most native English speakers.

Furthermore, in (2.24), which represents pair \#1586 from the RTE1 dataset, these authors argue that the rules defining what represents acceptable background knowledge may be hypothesis dependent. So, the annotators consider that Arabic is the Yemen national language as background knowledge. Also, the authors explain that deciding the entailment between 'Grew up in Yemen' and 'speaks Arabic' may be assumed as background knowledge.
(2.24) Background knowledge (pair \#1586, RTE1, QA, entailment=TRUE)
a. The Republic of Yemen is an Arab, Islamic and independent sovereign state whose integrity is inviolable, and no part of which may be ceded.
b. The national language of Yemen is Arabic.

In fact, it is not clear what "assume common background knowledge" means. In addition, there is no formal definition yet of TE that makes it possible in some way to determine what knowledge is required for a given inference.

To sum up, the annotation guidelines for the annotators of the RTE corpora in Dagan et al. (2006) seem vague in interpreting the background knowledge and some contradiction is also found between the points 2 and 4 .

2.3.3 Previous approaches to RTE

Various approaches for modeling TE have been suggested in the literature. These approaches range from shallow approaches based on measuring lexical similarity to deep approaches based on full semantic interpretation. Many of these approaches are robust-but-shallow approaches based on lexical matching. Some of these approaches apply the matching algorithm directly to the surface string (Section 2.3.3.1), while others convert T - H pairs to syntactic trees before carrying out matching (Section 2.3.3.2). These matching algorithms may make use of lexical resources such as WordNet. Lately, there
has been an activity with respect to more structured meaning representations, abstracting away from the semantically irrelevant surface (Section 2.3.3.3). Other systems apply deep-but-brittle approaches based on full semantic interpretation, such as logical inference (Section 2.3.3.4).

2.3.3.1 Surface string similarity approaches

Many RTE recognition approaches operate directly on simple surface representations without computing more elaborate syntactic or deeper analyses, though possibly after applying some preprocessing natural language actions, such as part-of-speech (POS) tagging or named-entities (NEs) recognition. These approaches depend only on some measures of lexical similarity between individual words. Some of these approaches, for instance, apply a bag-of-words (BoW) model to each T-H pair (e.g. Glickman et al., 2005; Jijkoun and de Rijke, 2005; Adams, 2006). Primarily, for every word in H, the most similar word in T is calculated according to a lexical scoring function, which maps ordered pairs of words to real values in the interval [0,1] (i.e. close or equal to 1 for a pair of similar words and close or equal to 0 for a pair of dissimilar words), and compare the similarity score against a threshold. This threshold is usually learned automatically from a development set of T-H pairs. Different lexical scoring functions are used as measures of lexical similarity (or perhaps the somewhat weaker notion of lexical relatedness), including number of common words, distributional similarity measures (Lin, 1998b), taxonomy-based scoring functions (e.g. the WordNet-based semantic distance measure (Jiang and Conrath, 1997)) or combinations of several component scoring functions (Malakasiotis and Androutsopoulos, 2007), including measures originating from machine translation (MT) evaluation (Finch et al., 2005; Pérez and Alfonseca, 2005; Zhang and Patrick, 2005; Wan et al., 2006). The latter have been developed to automatically compare machine-translations against human-authored reference translations. A well-known measure in this regard is the BLEU method proposed by Papineni et al. (2002), which roughly speaking is a method for automatic evaluation of MT systems. It examines the percentage of word n-gram (sequences of consecutive words) coincidences between an output text of a MT system and a set of human-generated translations, and takes the geometric average of the percentages obtained for different values of n. BLEU's output is always a real number in the interval $[0,1]$ indicating how similar the candidate output and the reference are. On the strength of the BLEU output, the entailment is judged as positive or negative between $T-H$ pairs (Pérez and Alfonseca, 2005). In fact, using n-gram word similarity is very popular
among the systems for RTE (Ferrández et al., 2007; Pakray et al., 2011a; Buscaldi et al., 2012; Neogi et al., 2012). Iftene (2009), for instance, states that there were 6 n-gram based systems in 2006, 11 systems in 2007 and over 14 systems in 2008.

Alternatively, a string edit distance such as Levenshtein distance (LD) (Levenshtein, 1966), which finds the minimum number of edit distance operations (i.e. an insertion, deletion or exchanging of a single item) needed to transform one string to another, or any other string distance method is computed for the $T-H$ pairs.

More sophisticated word-based approaches use vector space models (VSMs), also known as term vector models, of semantics. VSMs start by representing input language expressions as vectors of identifiers, like terms or tokens. Of course the term, which is the measure for the similarity comparison, depends on what is being compared but terms are normally single words, keywords, phrases or sentences. Such vectors show how strongly a term co-occurs with other terms in strings or corpora (Lin, 1998b). In this regard, syntactic information can possibly be taken into consideration (Padó and Lapata, 2007), e.g. the co-occurring words participate in particular syntactic dependencies. Then, the vectors of a single term are combined by using a compositional vector-based meaning representation theory. Eventually, each one of the two input expressions is mapped to a single vector that attempts to capture its meaning, e.g. each expression vector could be the sum or product of the vectors of its words, but more elaborate techniques have also been suggested (e.g. Mitchell and Lapata, 2008; Erk and Padó, 2009).

These models could be used in TE recognition by checking if H 's vector is particularly close to that of a part (e.g. phrase or sentence) of T. Intuitively, this would check if what H says is implicit in what T says (Androutsopoulos and Malakasiotis, 2010), though we must be careful with some expressions such as negations that do not preserve truth values (Zaenen et al., 2005; MacCartney and Manning, 2009).

A number of VSMs strategies have been suggested in the literature, such as latent semantic analysis (Landauer and Dumais, 1997), Cosine similarity, Manhattan distance, Euclidean distance, Jaccard similarity coefficient, Dice similarity coefficient and others.

The main limitations of surface string similarity based approaches come from the fact that these approaches do not take into account any syntactical or semantic information. For example, BoW models ignore altogether the word order and the syntax of the input T - H pairs, and make no attempt at semantic interpretation. So, such an approach gives positive answers for T - H pairs with highly common words, even when
the meaning is different. BoW, for instance, cannot distinguish between 'John loves Mary' and 'Mary loves John' since it ignores predicate-argument structure.

2.3.3.2 Syntactic similarity approaches

Another common approach is to work at the syntactic level. The idea here is to convert both T and H from natural language expressions into syntactic trees using syntactic parsing. Then, one of a range of transformation-based models is applied to explicitly transform T 's parse tree into H 's parse tree, using a sequence of transformations (e.g. Kouylekov and Magnini, 2005a; Kouylekov, 2006; Bar-Haim et al., 2007; Harmeling, 2009; Mehdad, 2009; Mehdad and Magnini, 2009; Wang and Manning, 2010; Heilman and Smith, 2010). The best transformation sequence (i.e. the one of lowest cost or of highest probability) indicates whether T entails H. Such a sequence may be referred to as a 'proof', in the sense that it is used to 'prove' H from T (Stern et al., 2012). Dependency parsers (Kübler et al., 2009) are popular in this regard, as in other NLP areas in recent years. Instead of showing hierarchically the syntactic constituents (e.g. noun phrases (NPs) and verb phrases (VPs)) of a sentence, the output of a dependency parser is a graph (usually a tree) where words are vertices and syntactic relations are dependency relations. Each vertex therefore has a single parent, except the root of the tree. A dependency relation holds between dependent (a syntactically subordinate vertex) and head (another vertex on which it is dependent). So, the dependency structure represents head-dependent relations between vertices that are classified by dependency types such as SBJ 'subject', OBJ 'object', ATT 'attribute', etc. It allows us to be sensitive to the fact that the links in a dependency tree carry linguistic information about relations between complex units, and hence to ensure that when we compare two trees we are paying attention to these relations.

Different transformation-based models, using various types of transformations in order to derive H from T, are suggested. Herrera et al. (2005), for instance, used the notion of tree inclusion (Kilpeläinen, 1992), which obtains one tree from another by deleting nodes. Other systems (e.g. Herrera et al., 2006; Marsi et al., 2006) used a tree alignment algorithm (Meyers et al., 1996), which produces a multiple sequence alignment on a set of sequences over a fixed tree. Tree edit distance (TED) (Selkow, 1977; Tai, 1979; Zhang and Shasha, 1989; Klein et al., 2000; Pawlik and Augsten, 2011) is another example of a transformation-based model in that it computes the sequence of predefined transformations (e.g. insertion, deletion and exchanging of nodes) with the minimum cost that turns one tree into the other. To obtain more accurate predictions,
it is important to define an appropriate inventory of transformations and assign appropriate costs (or probability estimations) to the transformations during a training stage (Kouylekov and Magnini, 2005a; Mehdad, 2009; Mehdad and Magnini, 2009; Harmeling, 2009). For instance, exchanging a noun with its synonyms should be less costly than exchanging it with an unrelated one. Heilman and Smith (2010) extended the above mentioned operations by defining nine additional edit operations (e.g. 'movesibling', 'relabel-edge', 'move-subtree' and others), since the available transformations are limited in capturing certain interesting and prevalent semantic phenomena. This extended set of edit operations allows certain combinations of the basic operations to be treated as single steps, and hence provides shorter (and therefore cheaper) derivations. The fine-grained distinctions between, for instance, different kinds of insertions also make it possible to assign different weights to different variations on the same operation. Nonetheless, these operations continue to operate on individual nodes rather than on subtrees (despite its name, even 'move-subtree' appears to be defined as an operation on nodes rather than on subtrees). Comparably, a heuristic set of 28 transformations, which include numbers of node-substitutions and restructuring of the entire parse tree, is suggested by Harmeling (2009).

The semantic validity of transformation-based inference is usually modeled by defining a cost for each edit operation. Selecting relevant costs for these edit operations depends on different parameters such as the nature of nodes and applications. For instance, TED has been used for matching RNA structures. In this area, the costs that would be appropriate when using TED for matching parse trees might be completely inappropriate. One solution to overcome this challenge could consist of assigning costs based on an expert valuation (e.g. Kouylekov and Magnini, 2005a), but they are usually learned automatically (e.g. Harmeling, 2009; Mehdad, 2009; Wang and Manning, 2010; Heilman and Smith, 2010; Stern and Dagan, 2011), e.g. particle swarm optimization (PSO), which is a stochastic technique that mimics the social behaviour of bird flocking and fish schooling (Parasuraman, 2012), is used for estimating and optimising the cost of each edit operation for TED (Mehdad, 2009; Mehdad and Magnini, 2009). Typically, the sum of the costs of the individual transformation is a global cost for a complete sequence of transformations.

As we have seen, the above systems limited to the standard tree edit operations (i.e. insertion, deletion and exchanging of nodes) can use an exact algorithm that finds the optimal solution. Nevertheless, for the extended set of tree edit operations it is unlikely that efficient exact algorithms for finding lowest cost sequences are available
(Heilman and Smith, 2010), since all these transformations work on single nodes. An appropriate solution for this harder case is using transformations on subtrees as well as on single nodes, which is one of our focuses in the current thesis (see Chapter 4).

Iftene and Balahur-Dobrescu (2007) and Zanzotto et al. (2009), on the other hand, compare the parse tree of H against subtrees of T 's parse tree. It may be possible to match the parse tree of H against a single subtree of T, in effect a single syntactic window on T.

Computing similarities at the syntactic level can often be more accurate than surface string approaches. Consider the pair of sentences in (2.25).
(2.25) H is substring from T (pair \#2081, RTE1, QA, entailment=FALSE)
a. The main race track in Qatar is located in Shahaniya, on the Dukhan Road.
b. Qatar is located in Shahaniya.

In this example, working at the surface string level suggests, wrongly, that T entails H since T includes verbatim H. In contrast, at the syntax level T does not entail H because in the syntactic representations of the two sentences: 'Qatar' is the subject of 'located in Shahaniya' in H, but in T it is not. This example shows a typical example of situations where operating at a higher level than surface strings leads to more reliable detection of similarities. However, the approaches that operate at the syntactic-semantic level do not necessarily outperform in practice approaches that operate on surface level (Wan et al., 2006; Burchardt et al., 2007, 2009) due to the fact that parsers make mistakes. Hence, the syntactic-semantic representations of the input expressions cannot always be computed accurately, which may introduce problems to the next step of processing.

2.3.3.3 Entailment rules-based approaches

One way to deal with TE is through entailment rule representation, which specifies the generation of entailed sentences from a source sentence. For instance, an entailment rule 'LHS \rightarrow RHS' can be applied to a given text, if LHS can be inferred from this text with appropriate variable instantiations. Then, the application deduces that RHS can also be inferred from the text under the same variables. Given the rule (2.26a), a TE recogniser could figure out that (2.27b) can be inferred from (2.27a) by transforming 'Barcelona lost to Real Madrid' into 'Real Madrid thump Barcelona.'
(2.26) Entailment rules
a. X lost to $Y \rightarrow Y$ thump X
b. X acquire $Y \rightarrow X$ learn Y
c. X won $Y \rightarrow X$ played Y
(2.27) Entailment pair for the rule (2.26a)
a. Barcelona lost to Real Madrid in the Copa del Rey semi-final second leg.
b. Real Madrid thump Barcelona.
(2.28) Sentence samples for the rule (2.26b)
a. Students acquired a new language.
b. Students learn a new language.
c. Students learn a new shirt.

The idea of this type of recognition approach is to search for a sequence of inferencepreserving transformations, such as lexical substitutions (e.g. synonyms or hypernymshyponyms) and predicate-template substitutions, that turns one expression (or its syntactic or semantic representation) to the other (e.g. de Salvo Braz et al., 2005; Bar-Haim et al., 2007; Dinu and Wang, 2009). So, T entails H if such a sequence is found. Some approaches associate with each rule a probability (possibly extracted from a training set), which reflects the degree of reliability of this rule to produce an entailed expression. In this case, we may search for the sequence of transformations with the lowest cost less than a threshold, much as in edit distance-based approaches that compute the minimum (string or tree) edit distance between T and H (see Section 2.3.3.2), or of high probability that exceeds a confidence threshold (Harmeling, 2009). Also, one would take into account the contexts where rules are applied, because a rule may not be valid in all contexts (i.e. relevant contexts), e.g. the different possible senses of the words it involves. The rule (2.26b), for instance, should be applied solely when Y corresponds to some sort of knowledge, e.g. using this rule for the sentence (2.28a) we can correctly infer the sentence (2.28b). However, given the sentence (2.28a), the plausible entailment rule (2.26b) would incorrectly infer the sentence (2.28c). One possible solution that has been suggested to make such resources more precise is attaching selectional preferences to entailment rules (e.g. Basili et al., 2007; Pantel et al., 2007; Szpektor et al., 2008). These are semantic classes which correspond to the anchor values of an entailment rule and have the role of making precise the context in
which the rule can be applied (e.g. in the rule (2.26c), LHS entails RHS solely when Y refers to some sort of competition, but LHS does not entail RHS if Y refers to a musical instrument). Then, one can use a rule solely in the contexts similar to those in which it was acquired.

However, transforming T into H is impossible in many cases when only knowledgebased transformations are allowed (Stern et al., 2012). This limitation is dealt with by Stern and Dagan (2011)'s open-source integrated framework, BIUTEE, ${ }^{9}$ which incorporates knowledge-based transformations with a set of predefined tree edit transformations.

Furthermore, when operating at the semantic representations level, the sequence sought is actually a proof that T entails H, and it may be obtained by exploiting theorem provers. Bos and Markert (2006a), for instance, used hand-crafted rules but their number did not get close to the level of coverage needed. Other researchers discuss how to search for an optimal sequence of transformations over parse trees (e.g. Stern and Dagan, 2011; Stern et al., 2012). As we mentioned in Section 2.3.3.2, such a sequence can be seen as proofs at the syntactic level, when both T and H and their reformulations are represented by dependency trees. Moreover, some researchers employ sequences of transformations to bring T closer to H. Then, the support vector machine (SVM) recogniser is used to judge if the transformed T and H constitute a positive TE pair or not.

2.3.3.4 Deep analysis and semantic inference approaches

Different approaches can be considered part of this group. For logicians and semanticists, the most obvious approach to address TE between T and H relies on full semantic interpretation (i.e. logical inferences, see Figure 2.1): translate both T and H into formal meaning representations ϕ_{T} and ϕ_{H} respectively (e.g. Kamp and Reyle, 1993; Moldovan and Rus, 2001), and then apply automated reasoning tools to determine inferential validity (e.g. Bos and Markert, 2006a,b; Tatu and Moldovan, 2005, 2007; Wotzlaw and Coote, 2010). To check which logical relation type for the input problem holds, two kinds of automated reasoning tools are used: finite model builders (e.g.

[^11]Mace 4^{10} and Paradox ${ }^{11}$) and first-order provers (e.g. Vampire, ${ }^{12}$ Bliksem, ${ }^{13}$ Otter ${ }^{14}$ and Prover 9^{15}). Logical inference involves generating pairs of formulae $\left\langle\phi_{T}, \phi_{H}\right\rangle$ for any possible readings of T - H pairs, and then checking if $\left(\phi_{T} \wedge B K\right) \models \phi_{H}$, where $B K$ is background knowledge, which contains common sense knowledge that is assumed to be known by an ordinary person and meaning postulates (Carnap, 1952). In fact, formulating a reasonably complete $B K$ may be, in practice, a very difficult task. One candidate solution to solve this problem, partially, is to obtain common sense knowledge from some available lexical resources, such as WordNet or extended WordNet, ${ }^{16}$ which provides also logical meaning representations extracted from WordNet's glosses (e.g. Moldovan and Rus, 2001; Tatu et al., 2006). For instance, an axiom like the following can be added to $B K$, since 'assassinate' is a hyponym of ‘kill' in WordNet (e.g. Moldovan and Rus, 2001; Bos and Markert, 2006b; Tatu and Moldovan, 2007).

$$
\begin{equation*}
\forall x \forall y \text { assassinate }(x, y) \Rightarrow \operatorname{kill}(x, y) \tag{2.2}
\end{equation*}
$$

Also, frame-based resources such as FrameNet, ${ }^{17}$ or other similar resources, were investigated in some systems (e.g. Tatu and Moldovan, 2005; Burchardt and Frank, 2006; Delmonte et al., 2007) to acquire additional semantic axioms. A number of systems for RTE use other verb-oriented resources, such as VerbNet ${ }^{18}$ or VerbOcean, ${ }^{19}$ which is a broad-coverage semantic network of verbs. These resources provide semantic and syntactic frames for a wide range of English verbs as well as other information (e.g. Balahur et al., 2008; Wang et al., 2009). Other systems used the web as a resource for extracting their rules, NEs and $B K$ (e.g. Bar-Haim et al., 2008; Mehdad et al., 2009). Iftene and Balahur-Dobrescu (2007), for instance, used a semi-automatic technique to build $B K$ depending on the NEs for extracting particular types of information (e.g. is-a relationships 'Netherlands [is] Holland') from online encyclopedias (e.g. Wikipedia). Other systems also used additional resources, such as YAGO, ${ }^{20}$ as a

[^12]source of ontological knowledge.
A further approach is to use no particular $B K$, and measure the difference of the minimum model size that satisfies both ϕ_{T} and ϕ_{H}, compared to the minimum model size that satisfies ϕ_{T} on its own (Bos and Markert, 2006b). The greater difference means the more $B K$ is required for $\left(\phi_{T} \wedge B K\right) \models \phi_{H}$ to hold, which makes it more difficult for speakers to accept that T entails H.

In fact, this kind of approach has high precision to handle negation, conditionals, quantifiers, and so on. It can succeed in restricted domains, but it fails on open-domain NLI evaluations, such as RTE. The difficulty comes from the fact that natural language is massively complex, and the full and accurate translation of natural language expressions into formal meaning representations presents countless thorny problems, since natural language expressions are often ambiguous, especially out of context.

In this regard, some researchers (e.g. Garrette et al., 2011; Qiu et al., 2012) use Markov logic networks (MLNs), which are a powerful framework combining firstorder logic and probabilistic reasoning, so a $B K$ here is a set of first-order logic with weights (Richardson and Domingos, 2006), for representing natural language semantics. Then, a MLN inference engine (e.g. Alchemy ${ }^{21}$ or Tuffy ${ }^{22}$) is used to derive answers from $B K$.

The second interesting recent development has been the application of natural logics (Lakoff, 1970), which provide a conceptual and formal framework for analysing natural inferential systems in human reasoning, without full semantic interpretation. Natural logics use meaning representations that are essentially phrase-structured natural language sentences, and compute entailments as sequences of substitutions for constituents (words or phrases) (e.g. Van Benthem, 1988; Sánchez, 1991; Van Benthem, 1995; Van Eijck, 2007; Nairn et al., 2006; Chambers et al., 2007; MacCartney and Manning, 2008, 2009; MacCartney, 2009; Cabrio and Magnini, 2011).

The third possibility is exploiting ontology-based reasoning. Siblini and Kosseim (2008) presented a system that automatically acquires formal semantic representations (i.e. a description logic based ontology) from T and H, and then aligns the created ontologies. By learning from the available RTE datasets, their system can then discover whether T entails H or not using the information collected from its ontology alignment phase.

[^13]In general, translation to logic form abstracts away from irrelevant surface differences. For instance, both the active and passive forms of a sentence may be mapped to the same representations at semantic level (i.e. logical formula). This makes checking their similarity clearer than simply working at the surface or syntax level.

2.3.3.5 Classification-based approaches

At a certain level, the entailment problem can be simply considered as a classification problem. Machine learning-based TE recognition approaches underpin combining the similarity measures at different levels (lexical, syntactic or semantic) and possibly other features by using machine learning (Mitchell, 1997; Alpaydin, 2010; Flach, 2012; Wu, 2013). These approaches take advantage of the availability of training datasets (through a training stage), and formulate TE algorithms as classifiers (through a classification stage). Such approaches follow two stages. During the training stage, each $T-H$ pair is represented by a feature space (or vector) $\left(f_{1}, . ., f_{n}\right)$ as input to a learning algorithm (typically SVMs) to induce a trained classifier. Once trained, this classifier, during the classification stage, is used to check the entailment between $T-H$ testing pairs after converting them to feature vectors.

Most approaches employ a supervised machine learning algorithm (e.g. SVMs, Naïve Bayes, decision trees, AdaBoost and others) (e.g. Bos and Markert, 2006a; Burchardt et al., 2007; Hickl, 2008; Nielsen et al., 2009; Zanzotto et al., 2009; Gaonac et al., 2010; Pham et al., 2011) to train on feature spaces of an annotated dataset in order to classify an unseen dataset. They train a classifier on vectors corresponding to training T-H pairs, which are manually classified as entailed or not entailed pairs. Then, the classifier examines the features of unseen pairs in order to classify them as entailed or not entailed pairs.

Converting each T-H pair from natural language into a feature space may need some preprocessing actions (Zhang and Patrick, 2005) such as POS tagger, parser, stemmer, NEs, dates/times converter to a consistent format (Hobbs, 1978; Lappin and Leass, 1994; Mitkov, 2002; Mollá et al., 2003; Delmonte et al., 2007; Yang et al., 2008; Pakray et al., 2010, 2011b), normalising of morphosyntactic variations (e.g. may convert passive sentences to active ones) and other actions.

The major issue in using machine learning-based approaches is the type of feature vector which allows for an effective learning of the entailment recognition rules. The main concern therefore is finding a suitable feature space. There are various possible
feature spaces: similarity feature space, entailment triggers and content feature (Zanzotto et al., 2009). In similarity feature space, the feature space contains the scores of a variety of features, including features about lexical, syntactic, semantic and possibly other features. Most approaches use a feature space at lexical level such as the percentage of common (or semantically related) words between T and H (e.g. Corley and Mihalcea, 2005), Levenshtein distance (LD) (e.g. Neogi et al., 2012), the length of the longest common subsequence between T and H (e.g. Newman et al., 2006; Hickl et al., 2006) or other text distance measures. Another feature could model the polarity/modality differences across T and H (e.g. Iftene and Balahur-Dobrescu, 2007; Tatu and Moldovan, 2007). At the syntactic level, a feature could represent the percentage of common dependencies between T and H (e.g. Haghighi et al., 2005; Pazienza et al., 2005a) or the longest common syntactic subtree between T and H (e.g. Katrenko and Adriaans, 2006). At the semantic level, the percentage of shared semantic relations of T and H could be a suitable feature (Zanzotto et al., 2009). In (2.29), for instance, possible (feature,value) pair could be (WordsInCommon,11) or (LongestSubsequence,8).
(2.29) TE example (Zanzotto et al., 2009)
a. At the end of the year, all solid companies pay dividends.
b. At the end of the year, all solid insurance companies pay dividends.

Entailment triggers, on the other hand, are another possible feature space which model complex relations between T and H. These features include (de Marneffe et al., 2006; Inkpen et al., 2006; MacCartney et al., 2006): polarity features (presence/absence of negative polarity) as in (2.30), antonym features (presence/absence of antonymous words in T and H) as in (2.31), adjunct features (dropping/adding of syntactic adjunct when moving from T to H) as in (2.32) and passive features (presence/absence of a transformation from active to passive when moving from T to H or vice versa).
(2.30) Polarity features example
a. TE is very difficult.
b. TE is not hard.
(2.31) Antonym features example (Zanzotto et al., 2009)
a. Oil price is surging.
b. Oil prices are falling down.
(2.32) Adjunct features example
a. John goes fishing.
b. John goes fishing every day.

Another possible feature space is that of content features, which model the content of T and H rather than modeling the distance between them. Zanzotto et al. (2009) use feature spaces that encode directly parts of T and H, or parts of their syntacticsemantic representations (roughly speaking, the feature space contains all the parse tree fragments of T and H) instead of vectors that contain mostly scores measuring the similarity between T and H.

2.3.4 Applications of TE solutions

Many NLP problems can be formulated in terms of RTE even though full RTE systems remain a distant goal. An effective facility for RTE could enable a wide range of immediate applications. Here, we outline the main such applications.

Question answering. In open-domain question answering (QA), current systems return one or more ranked candidate answers from a large collection of documents to a question posed in natural language. In many cases the correct answer may not be the top one but it is nonetheless one of the returned candidates. Many approaches therefore employ an RTE solution to re-rank these candidate answers in order to select a good one. The underlying idea is simple: evaluate whether the target question can be inferred from candidate answers from the source document and ignore nonentailing ones (e.g. Punyakanok et al., 2004; Harabagiu and Hickl, 2006; Schlaefer, 2007; Sacaleanu et al., 2008; Wang and Neumann, 2008; Celikyilmaz et al., 2009; Negri and Kouylekov, 2009; Heilman and Smith, 2010; Ou and Zhu, 2011).

Automatic summarisation. A key challenge in multi-document summarisation, which aims to construct summaries from multiple source documents describing the same events, is the elimination of redundancy. An RTE system can be used to ensure that the summary does not contain any sentences that entail each other (i.e. paraphrases). Such systems can be also useful in ensuring correctness, i.e. the summary must accurately reflect the content of the source document(s), by checking that the summary is implied by the source document(s) (e.g. Lacatusu et al., 2006; Lloret et al., 2008).

Semantic search. Semantic search aims to improve the ability to retrieve documents from a huge source collection, whether on the web or within some searchable dataspace, based on the semantic content of the query and the documents rather than simply keyword-based search. Here, the ability of an effective RTE system to identify documents in which the given search queries can be inferred from their context would make it possible to offer a form of semantic retrieval not available in existing keyword-based searches. The application of RTE systems to retrieve such documents has been explored by Clinchant et al. (2006) and Kotb (2006).

Evaluation of MT systems. MT evaluation uses statistical measures to evaluate the candidate translation of MT systems and human-generated reference translations. The dominant metric, in this regard, is n-gram (e.g. it is used by BLEU), but this measure operates over surface forms only without taking into account syntactic and semantic reformulations (Callison-Burch et al., 2006). This limitation can be mitigated by an effective RTE system. Such a system can assess approximate semantic equivalence between a candidate translation of MT system and a reference translation: if the candidate and the reference entail each other, then it is probably a good translation, even if the surface forms of the two translations are quite different (e.g. Padó et al., 2009a,b).

Chapter 3

Background: structural analysis

3.1 Introduction

As pointed out in the introductory chapter, we will investigate various techniques for the task of RTE for Arabic, which raises many challenges for NLP, where we are faced with an exceptional level of lexical and structural ambiguity. In this chapter, it is expedient to start by shedding light on the ambiguities that occur in natural languages, with particular emphasis on those related to our current study (Section 3.2). Then, we will explain, in some detail, the sources of these ambiguities in Arabic (Section 3.3). At the end of the chapter, we will discuss different NLP tools that deal with our preprocessing stage, i.e. POS taggers and syntactic parsers (Section 3.4).

3.2 Ambiguity in natural languages

Processing natural language is a difficult task. The difficulty comes from various sources. One of these sources is ambiguity. Words, phrases or sentences that have double or multiple meanings are said to be ambiguous. The ambiguity in a natural language arises in different ways, which are in general subdivided into three main kinds: lexical, structural and scope ambiguities. All these kinds will be discussed in further detail below.

3.2.1 Lexical ambiguity

Lexical (or word-level) ambiguity is extremely common in natural language. A string of words (an utterance) may lead to double or multiple interpretations simply because
a single word has two or more meanings. Some types of lexical ambiguities are discussed below.

- Homonyms vs. Polysemes: homonyms are words which have the same written or spoken forms but which differ in meaning and origin, whereas words with the same written or spoken forms and several but related meanings are called polysemes. For instance, homonymy can be illustrated through the word 'left'. It has two unrelated meanings, i.e. "opposite of right" and "past tense of leave" as shown in (3.1). On the other hand, polysemy can be illustrated through the word 'lamb'. It has two related meanings, i.e. "the young sheep (animal)" and "the meat of domestic sheep (that animal)" as shown in (3.2).
(3.1) Homonyms
a. My left hand.
b. He left the class early.
(3.2) Polysemes
a. He ate roast lamb yesterday.
b. He bred two lambs on his farm.
- Homographs vs. Homophones: homographs are words that are spelled the same but differ in meaning and possibly POS class. On the other hand, homophones are words which have the same spoken form but which differ in meaning and written form. For instance, the word 'close' is a homograph, since the same written form represents two words with different pronunciations and meanings, i.e. as a verb it means "move so that an opening or passage is obstructed; make shut", whereas as an adverb it means "near in time, place or relationship" as shown in (3.3). On the other hand, the words 'steel' (i.e. noun, "an alloy of iron with small amounts of carbon") and 'steal' (i.e. verb, "to take (the property of another) without right or permission") are homophones, since they have the same spoken form /sti:1/ but differ in written form and meaning, as shown in (3.4).
(3.3) Homographs (but not homophones)
a. Please, close the door.
b. Do not get too close to the fire.
(3.4) Homophones (but not homographs)
a. It is made of steel.
b. I did not steal it.

Many words are both homographs and homonyms, e.g. 'left' and 'lamb' from (3.1) and (3.2). Other words display combinations of homography and homophony, for instance, the word 'row' has one written form, two spoken forms and three different meanings, as in (3.5).
(3.5) Lexical ambiguity
a. Row a boat.
b. A row of houses.
c. We rowed about money last night.
d. The cats were making a row this morning.

The word 'row' in (3.5a) (verb, "propel with oars") and (3.5b) (noun, "an arrangement of persons or things in a line") are homonyms, homographs and homophones, whereas in (3.5c) (verb, "dispute; quarrel") and (3.5d) (noun, "commotion; a noisy disturbance") are polysemes, homographs and homophones; but (3.5a) and (3.5c) are not homophones, and likewise (3.5b) and (3.5d).

3.2.2 Structural ambiguity

This kind of ambiguity results from various aspects of the grammar of language. These aspects often come from the classification of words or from the arrangement of words and structures. Typically, in this kind of ambiguity two or more syntactic analyses lead to several possible interpretations. In this regard, we will focus on four types of structural ambiguity, as described below.

- Attachment ambiguity: this occurs when a particular constituent of a sentence, such as a prepositional phrase (PP) or a relative clause (RC), could be attached to more than one part of a sentence. For instance, a common pattern of attachment ambiguity is a PP that may modify either the preceding NP or the preceding VP as in (3.6).
(3.6) PP-attachment

I saw the man in the park with a telescope.

The sentence (3.6) has five different interpretations based on the way the PPs 'in the park' and 'with the telescope' are attached: I saw [the man [in the park [with a telescope I]] "I saw the man. The man was in the park. The park had a telescope." or I saw [the man [in the park][with a telescope]] "I saw the man. The man was in the park. The man had a telescope." or I saw [the man [in the park]] [with a telescope] "I saw the man. The man was in the park. I used a telescope to see him." or I saw [the man][in the park [with a telescope]] "I saw the man. I was in the park. The park had a telescope." or I saw [the man] [in the park] [with a telescope] "I saw the man. I was in the park. I used a telescope to see him."

- Word order problems arise when the regular structure of a sentence (e.g. verb-subject-object (VSO) in Arabic and SVO in English) can be rewritten in different ways without affecting the core meaning, such as OVS and other acceptable structures of the sentence. This can happen in English as in (3.7) but tends not to lead to ambiguity, whereas in Arabic it is both common and problematic as in (3.8).
(3.7) English word order variation
a. An old man was sitting at the front of the bus. $(\mathrm{S}+\mathrm{V}+\mathrm{PP})$
b. At the front of the bus was sitting an old man. $(\mathrm{PP}+\mathrm{V}+\mathrm{S})$
(3.8) Arabic word order variation
a.

AHtrm Al+tlmy \quad Al $+m \varsigma l m$
respected the+pupil the+teacher
b.

AHtrm Al+tlmyðи Al+mऽlma
respected the+pupil (nom.) the+teacher (acc.)
"The pupil respected the teacher"
c. احترم التلميذَ المعلُ (VOS)

$$
\begin{array}{lll}
\text { AHtrm } & A l+t l m y \partial a & A l+m \varsigma l m u \\
\text { respected } & \text { the+pupil (acc.) } & \text { the+teacher (nom.) } \\
\text { "The teacher respected the pupil" }
\end{array}
$$

In (3.8a), there are two possible meanings for the sentence depending on which item is the subject and which is the object since it is written without case markers (see Section 3.3.1.1 for more details). So, the sentence could mean "The pupil respected the teacher" where the first noun would be in nominative (nom.) case التلميذُ Al+ tlmyðu and the second noun in accusative (acc.) case - التمُ as in (3.8b), or it could mean "The teacher respected the pupil" where the first noun would be in accusative case التلميذَ Al+tlmyða and the second noun in nominative case المعلا Al+mऽlmu, as in (3.8c). Both orders are possible, and because the case markers are unwritten, it is hard to tell which interpretation is intended.

- POS tagging problems occur when a single word belongs to various POS classes, such as noun, verb, adjective, etc. For example, (3.9) shows an English example with many POS possibilities, which leads to global ambiguity.

(3.9) POS tagging

Time fies like an arrow

$[\text { Time }]_{V, N}[\text { flies }]_{V, N}[\text { like }]_{V, P R E P}[\text { an }]_{D E T}[\text { arrow }]_{N}$

As one can see in (3.9), there are three possible verbs for this sentence (i.e. 'time', 'flies' and 'like'). This leads to different syntactic trees as shown in Figure 3.1.

Figure 3.1: Possible syntactic trees for sentence in (3.9).

This situation is significantly worse for Arabic, where as noted before, a single form is likely to have many possible tags.

- Pronoun-dropping (pro-drop or zero pronouns) problems mean that pronouns can be deleted when considered redundant or unnecessary in a sentence. Arabic, like other languages (e.g. Japanese, Spanish and Italian), is considered a pro-drop language, whereas English is usually not. However, in fact, the English language does allow both subject and object pronouns to be dropped as shown in (3.10).
(3.10) English pro-drop
ϕ^{1} Keep ϕ out of the reach of children.
"(You) keep (it) out of the reach of children."
However, the relatively fixed order of English and the lack of variation in subcategorisation frames again mean that it does not tend to lead to ambiguity. In (3.11), however, pro-drop gives rise to two distinct structural analyses.
(3.11) Arabic pro-drop

In (3.11), there are two different meanings for the Arabic sentence: "(He) asked the student a question" (which has a possibility for a pro-drop subject following the verb) or "The student asked a question" (where the verb can be both transitive or ditransitive). The difference between Arabic and English is that pro-drop in Arabic can lead to structural ambiguity because the reader must decide whether there is a pro-drop or not, whereas in English it mainly leads to referential ambiguity.

3.2.3 Scope ambiguity

One common type of ambiguity is scoping ambiguity that arises at a logico-semantic level. This ambiguity concerns quantifier scope ambiguity, and it can arise when sentences include more than one noun phrase that has a quantifier expression such as 'some', 'every', 'a few' or others in specific positions. For instance, the sentences in (3.12) and (3.13) are semantically ambiguous (i.e. each sentence has two different meanings), but syntactically unambiguous.

[^14](3.12) English quantifier scope ambiguity

Three students met with every professor.
"Three particular students each met all of the professors" or "Each professor was visited by three students, but possibly different students meeting with each"
(3.13) Arabic quantifier scope ambiguity

ate all the+men a-chicken
"All the men ate the same chicken" or "Each man from those men ate a chicken, but possibly not the same chicken"

3.3 Sources of ambiguities in Arabic

As we have just seen, languages display the same kinds of ambiguity. There are, however, various properties of Arabic, and particularly of written Arabic, which mean that Arabic contains many more instances of ambiguity. These properties will be discussed in some detail below.

3.3.1 Writing system and structure of words

3.3.1.1 Lack of diacritical marks

Arabic is written with optional diacritics ${ }^{2}$ (short vowels and a range of other phonological effects), which are usually absent, often leading to multiple ambiguities (Nelken and Shieber, 2005). This is particularly problematic because the diacritics are often the only difference between different words (especially derived forms) and between

[^15]inflected forms of the same word. This, consequently, makes morphological analysis of the language very challenging. This is because a certain lemma (or lexeme) in Arabic can be interpreted in various ways. Hence, a single word can have various senses, where determining the sense is based on the context in which the word is used. Furthermore, a noun in Arabic can be diacritised in three different ways for the nominative, accusative and genitive cases, which can be even more ambiguous at the structural or grammatical level. The following examples explain the effect of diacritisation on the meaning of the word.
(3.14) Different pronunciations distinguish between a noun and verb


```
verb: كَتَبَ kataba "wrote"
noun: كُتبُ kutub "books"
```

(3.15) Different pronunciations distinguish between active and passive

فتح $f t H$			
Active:	fataHa "opened"		
Passive:	فَتَحَحَ	futiHa	"was opened"

(3.16) Different pronunciations distinguish between imperative and declarative

(3.17) Different pronunciations distinguish between a variety of gender and person differences

(3.18) Duplication of the middle letter in some verbs to make the verb transitive (causative) (Attia, 2012)

Figure 3.2 shows an example for an Arabic word without diacritics علم l كا gives seven different readings after adding the diacritic marks.

Arabic diacritics word	POS	Gloss
عِكر Silmu	noun	knowledge
عَلَع**	noun	flag
عَلِّ ¢alima	verb (intransitive, active)	knew
عُلِّ ¢ulima	verb (intransitive, passive)	is known
- عَلَّ	verb (transitive, active, indicative)	taught
عَلِّ	verb (transitive, active, imperative)	teach!
¢ ¢ ¢ُلِّ	verb (transitive, passive)	is taught

Figure 3.2: Ambiguity caused by the lack of diacritics.

In (3.19), for instance, the sentence (3.19a), جاء يو الحمعة jA' $y w m A l+j m \varsigma \hbar$, has two different meanings: "(He) came on Friday" if the word يو ywm is in accusative case (يو $\bar{\beta} y w m a)$ as in (3.19b), whereas it means "Friday came" if the word يوم ywm is in nominative case (يو $\begin{aligned} & y w m u) \text { as in (3.19c). }\end{aligned}$
(3.19) Lack of diacritical marks
a.

b. جاء يو مَ الحمعة (يومة ywma in accusative case)
jA' $\quad y w m a A l+j m \varsigma \hbar$
came Friday
"(He) came on Friday"
c. جاء يو ُُ الجمعة (يومة ywmu in nominative case)
jA' ywmи $A l+j m \varsigma \hbar$
came Friday
"Friday came"

3.3.1.2 Cliticisation

Arabic is a clitic language. Clitics are morphemes that have the syntactic characteristics of a word but are bound to other words (Attia, 2012). Arabic contains numerous clitic items (prepositions, pronouns and conjunctions), so that it is often difficult to determine just what items are present in the first place. For example, the word والى wAly in (3.20) can be analysed into five different ways (Habash, 2010). Each of these cases has a different diacritisation. So, a combination of three Arabic words can show 200+ alternatives of distinct meaning.
(3.20) Numerous clitic items

3.3.2 Syntactic freedom and zero items

3.3.2.1 Word order variation

Arabic is highly syntactically flexible (Daimi, 2001). It has a comparatively free word order, where sentence components can be exchanged without affecting the core meaning. This results in structural ambiguity, with each morphological analysis having more than a single meaning. So, besides the regular sentence of VSO, Arabic allows other potential surface forms such as VOS, SVO and OVS constructions. The potential of allowing variations on the canonical order leads to a large amount of ambiguity. An Arabic word order example is shown in (3.21).
(3.21) Word order (distinguish between subject and object)
a.

$A l+s \check{s} T y$	$q t l$	$A l+l S$
the+policeman	killed	the+thief

b.

$A l+\check{s r} T y u$
the+policeman (nom.)
"The policeman killed the thief"

c. الشرطيَ قتل الـلصُ (OVS)
$A l+s ̌ r T y a \quad q t l \quad A l+l S u$
the+policeman (acc.) killed the+thief (nom.)
"The thief killed the policeman"

In (3.21a), there are two possible meanings for the sentence depending on the distinction between nominative subject and accusative object, since the diacritics are missing. So, the sentence means "The policeman killed the thief" where the first noun الشرطي $A l+s ̌ r T y$ "the policeman" is in the nominative case الشرطيُ Al+šrTyu and the second noun اللـصَ اللص Al+lS "the thief" is in the accusative case $A l+l S a$, as in (3.21b). While it means "The thief killed the policeman" where the first noun الشرطي Al+šr $7 y$ "the policeman" is in the accusative case الشرطيَ Al+šrTya and the second noun الـلص $A l+l S$ "the thief" is in the nominative case الـصُ Al+lSu, as in (3.21c).

3.3.2.2 Pro-dropping

Arabic is a pro-drop language (Ryding, 2005). According to the pro-drop theory, " a null class (pro) is permitted in a finite clause subject place if the agreement features on the verb are rich enough to enable its content to be recovered" (Baptista, 1995). The pro-drop, which is referred to as الضمير المستتر Al+Dmyr Al+msttr "tacit pronoun", can lead to structural ambiguity by leaving any syntactic parser with the challenge to determine if there is a dropped pronoun or not in the subject position, which is made worse by the fact that a large number of Arabic verbs can have both transitive and intransitive forms, or ditransitive and transitive forms, or indeed all three. To make matters even worse, it is generally impossible to tell the difference between active and passive forms by inspecting the surface form. In case that just one NP follows one of
these verbs, the ambiguity appears. This contrasts with English, where the canonical order is SVO, so that losing the subject does not cause confusion about the object. For example, the Arabic sentence in (3.22) has two different interpretations.
(3.22) Arabic pro-drop (Attia, 2012)

```
أَكَت الدجَاجة
    Âakalat \(\quad A l+d j A j \hbar\)
    ate(fem.) the+chicken
"The chicken ate" or "(She) ate the chicken"
```

The ambiguity in (3.22) arises from two facts: (i) the verb Á Aُ Akala "to eat" can be both transitive or intransitive (in this case the meaning is أَكَت الدجَاجَ Âakalat Al+djAjћ"The chicken ate"); and (ii) there is a potential pro-drop subject هي hy "she", which is understood from the feminine mark on the verb (in this case the meaning is أكلت (هي) الد جاجة A Aakalat (hy) Al+djAjћ""(She) ate the chicken").

3.3.2.3 Zero copula

A copula is a verb that links a sentence predicate with the subject. According to Arab grammarians, there are two types of Arabic sentence: a nominal sentence that starts with a noun and a verbal sentence that starts with a verb. There is a special type of a nominal sentence called an equational sentence, where the sentence does not contain a verb. Basically, the equational sentence consists of two main parts: المبتدأ $A l+m b t d \hat{A}$ "the subject", which is NP, and الخبر Al+xbr "the predicate", which can be an NP, an adjective phrase (ADJP), a complement phrase (CP), an adverb phrase (ADVP) or a PP. The equational sentence usually starts with a definite noun (the subject) followed by the predicate. Some Arabic equational sentences are shown in (3.23).

(3.23) Arabic equational sentences

a.

$$
\begin{aligned}
& \text { الرجل طبيب (NP predicate) } \\
& \text { Al+rjl Tbyb } \\
& \text { the+man a-doctor } \\
& \text { "The man is a doctor" }
\end{aligned}
$$

c. الطالب في الصف (PP predicate)
$A l+T A l b$ fy $A l+S f$
the+student in the+class
"The student is in the class"
The standard subject-predicate order for equational sentences is reversed under certain constraints, for instance if the subject is indefinite, as in (3.24).
(3.24) Indefinite subject follows a predicate phrase

These appear to be examples where the copula is omitted. This only happens in present tense affirmative sentences-if a sentence is in the past, future or present tense negative the verbs كان kAn"to be" and ليس lys "be not" are used, where they make the first noun (the subject) in the nominative case and the second noun (the predicate) in the accusative case.

3.3.2.4 Construct phrases

Nouns can be used as adjectives, or as possessive determiners (in so-called 'construct phrases' or 'genitive construct' or 'annexation structure'), with typically little inflectional morphology to mark such uses (Alabbas and Ramsay, 2011b). According to Ryding (2005), "in Arabic, two nouns may be linked together in a relationship where the second noun determines the first by identifying, limiting, or defining it, and thus the two nouns function as one phrase or syntactic unit." Moreover, Arabic nouns can be linked together without any overt marker, whereas two English nouns are joined together by different markers, such as the suffix "-'s" on possessing noun or a possessive phrase "of". Note that this is largely a problem of written Arabic, since in the spoken language the case markers are generally pronounced, thus making the role of each noun clear. Arab grammarians refer to the construct phrase as Idafa, إضافة ǍDAfћ
"annexation". In the construct phrase, the first noun, i.e. مضاف mDAf "the added" (in so-called 'construct state'), ${ }^{3}$ must be indefinite (which can be in any case: nominative, genitive or accusative) and it does not take the nunation (Schulz et al., 2000). It is further worth noting that the initial noun in such phrases will carry the definite form of the case marker even though it does not have a definite article. The second noun, i.e. مضاف اليه mDAf Alyh "annexing noun or amplifying noun", may be either definite or indefinite (which is always in genitive case). Some construct phrases are shown in (3.25), whereas (3.26) shows an example of a noun as an adjective.
(3.25) Construct phrases (Idafa)
a. وزيرُ العدلِ
wzyru $A l+\varsigma d l i$
minister the+justice
"The minister of justice"
b. أبو فلاح
$\hat{A} b w \quad$ flaH \tilde{i}
father Falah
"Falah's father"
c.

wSwlu Al+rŷysi
arrival the+president
"The arrival of the president"
(3.26) Noun as adjective

Also, an NP can be the second part of a different construct phrase. This can be extended recursively creating an Idafa chain, where all the words except for the first

[^16]word must be genitive and all the words except for the last word must be in construct state. An example of an Idafa chain is illustrated in (3.27).
(3.27) Idafa chain
a. إبنُ عمِّ جارِ رئيسِ جلسِ إدارِِ الشركِة (Habash, 2010) Ǎbnu $\quad \varsigma m \sim i ~ j A r i \quad$ rŷysi mjlsi ǍdArћi Al+šrk $\hbar i$ son uncle neighbour chief committee management the+company "the cousin of the CEO's neighbour"
b.
 صحةُ (Schulz et al., 2000) SHћи syAsti Hkwmthi Al+bldi appropriateness policy government the+country
"The appropriateness of the policy of the government of the country"

3.3.2.5 Coordination

Coordination in Arabic is either syndetic (i.e. where terms are linked by an explicit conjunction) or asyndetic (i.e. where terms are linked without an explicit conjunction). In case of syndetic conjunction, which is preferred and very common, some linguistic units are omitted when one or more of the conjunctive particles namely, + g
 clauses and simple sentences to produce compound or complex sentences. Arabic syndetic coordination example is illustrated in (3.28).
(3.28) Syndetic coordination

The second meaning, i.e. "Zaid got married and so did Maryam", for sentence in (3.28) exemplifies the verbal ellipsis, which refers to syntactically null realisation of a verb of the subsequent clause, of a structurally parallel construction whose meaning can be recovered from the previous clause.

3.3.2.6 Referential ambiguity

As mentioned before, a pro-drop in English mainly causes referential ambiguity. In contrast, in Arabic this type of ambiguity arises when some of the linguistic units are omitted, and replaced by a referring expression to denote these units. Some Arabic referential ambiguity examples are shown in (3.29).
(3.29) Referential ambiguity
a. Description

b. The annexation

Â̧Týr mHmd \quad lyA ktAbh
gave Muhammad Ali his-book
"Muhammad gave Ali his book"
Whose is the book?
"Muhammad" or "Ali"
c. Relative clause

"This is the painting of the beautiful car, which dazzled Muhammad" What dazzled Muhammad?
"The painting" or "The beautiful car"

In Section 3.3, we have seen several sources of ambiguity in Arabic. Each of these in isolation is problematic, but when they are multiplied together their effect becomes significantly worse. Appendix B shows how even a very short Arabic sentence
such as كتب الدارس كتبktb Al+dArs ktb can produce a large number of interpretations (i.e. 20 interpretations according to the PARASITE system (Ramsay and Mansour, 2004), such as كَتَبَ الََارِسُ كُتُبُاً kataba Al+dArsu kutubAã "The student wrote books", كُتُبِ الدَارِس كُتُبَاً kutub Al+dAirsu kutubAã "The books of the student (are) books", etc.). The situation is much worse as we come to look at longer examples. In regular usage, the average sentence length of Arabic is 20 to 30 words and sentences with 100+ words are not uncommon, since written Arabic rarely contains punctuation marks even though the Arabic language has them. This makes Arabic NLP challenging in general and specifically the task of determining the relationship between two sentences, which is the aim of the current work, significantly more difficult than it already is for English.

3.4 Arabic processing tools

As mentioned before, the Arabic language is more ambiguous than most other languages (e.g. English), which makes Arabic NLP a challenge. Therefore, many tools are produced in the literature for processing different subtasks of Arabic language automatically (e.g. tokenisation, stemming, morphological analysing, POS tagging, parsing, etc.) in order to use them in solving larger tasks, such as machine translation (MT), question answering (QA) and others. In the current work, we will focus only on two subtasks: POS tagging, which sometimes internally uses other subtasks, such as tokenisation and morphological analysis, and parsing. These two subtasks are considered as preprocessing stages in our main system for Arabic textual entailment (ArbTE) system.

3.4.1 POS tagging

POS tagging is the process of assigning a correct POS tag (e.g. noun, verb or adverb) to each word of a sentence. This is a non-trivial task. It is not just having a set of words with their POS tags (e.g. some words are ambiguous, having more than one POS tag at the same time). Arabic is known for its morphological richness and syntactic complexity (Attia, 2012). It is an extremely inflectional language, where inflection is a process that adds affixes to a word to produce several forms of the same word. For instance, the active inflection of the regular sound verb ${ }^{4}$ verb كَتَبَ kataba "he wrote" (form I:

[^17]فَعَلَ facala - يَفْعُلُ yaf.sulu) has 34 forms, which are summarised in Table 3.1, and another 28 forms for passive. It is also a derivational language, where derivation is a process of forming new words from the current words by changing the pattern and the meaning of derivative words as shown in Table 3.2.

			Past	Present	Imperative
3rd	masc.	sg.	كَتَبَ $k a t a b a$ "he wrote"	يَكْتُبُ yak.tubu "he writes"	-
		du.	كَتَا "they wrote"	يَكْتُبان yak.tubAni "they write"	-
		pl.	كَتُبُوا katabuwA "they wrote"	يَكْتُونَ yak.tubwna "they write"	-
	fem.	sg.	كَتَبْتْ katabat. "she wrote"	تَتْتُتُ تُ tak.tubu "she writes"	-
		du.	كَتَبَتا "they wrote"	تَكْتُبان tak.tubAni "they write"	-
		pl.	كَتَّنَنَ k katab.na "they wrote"	"yak.tub.na "they write"	-
2nd	masc.	sg.	كَتْتَ k Katab.ta "you wrote"	تَكْتُ tak.tubu "you write"	Auk.tub. "write!"
		du.	كَتْتُمُما katab.tumA "you wrote"	تَكتُبان $t a k . t u b A n i$ "you write"	أكْتُبُ Auk.tubA "write!"
		pl.	كَتَبْتُم "yatab.tum.	تَكْتُوْونَ tak.tubuwna "you write"	أكْتُوُوا Auk.tubuwA "write!"
	fem.	sg.	كَتْْت $k a t a b . t i$ "you wrote"	تَكْتُبينَ $t a k . t u b i y n a$ "you write"	$\begin{gathered} \text { Cُكْتُي Auk.tubiy } \\ \text { "write!" } \end{gathered}$
		du.	كَتَتُمْما katab.tumA "you wrote"	تَكْتْبَانَ tak.tubaAni "you write"	أُكْتُبَا Auk.tubaA "write!"
		pl.	Katab.tun~a "you wrote"	تَكَتْبْنَ tak.tub.na "you write"	Auk.tub.na "write!"
1st	masc. \& fem.	sg.	$\begin{gathered} \text { "I wrote" كَتَبْتُ katab.tu } \\ \text { "I } \end{gathered}$	ÂAk.tubu "I write"	-
		$\begin{gathered} \text { du. \& } \\ \text { pl. } \end{gathered}$	كَتْبَنْا k katab.naA "we wrote"	نَكْبُ nak.tubu "we write"	-

Table 3.1: The active inflection forms for the regular sound verb كَتَبَ kataba "he wrote" (form I: فَعَلَ faکala - يَفْعُلُ yaf.ऽulu).

Word	Morphological pattern	Derivative word
كتب ktb "to write"	mfswl	مكتو mktwb "written"
	فاء f فاء	ت6 kAtb "writer"

Table 3.2: The derivative words for word كتب ktb "to write".

3.4.1.1 POS tagsets

The tags should be chosen, in principle, from a well-defined and comprehensive tagset (or list of POS). Traditionally, Arab grammarians classify the words into three categories: أنس Assm "noun", حرف Hrf "particle". This classification is very coarse and it is not often used computationally, because it does not provide enough information to support further analysis. Arabic POS tagsets can be very big. A huge number of (partially orthogonal) features (such as POS, gender, number, clitics, voice, etc.) are determined in order to carry out morphological analysis of a specific word in a specific context. In Arabic, for instance, this can produce around 333,000 theoretically potential combinations of morphemes. In contrast, English tagsets have around 50 tags that cover all morphological variations (Habash, 2010). In fact, there is no optimal POS tagset, because each application needs a different tagset (Habash, 2010). We present here, briefly, three Arabic tagsets that we deal with in the current work.

3.4.1.1.1 Buckwalter tagset

The Buckwalter tagset is an Arabic tagset developed by Tim Buckwalter. It is a very rich tagset that can be used for tokenised and untokenised text. The tokenised tags are used in the Penn Arabic treebank (PATB) (Maamouri and Bies, 2004), whereas untokenised tags are what is produced by the Buckwalter Arabic morphological analyser (BAMA) (Buckwalter, 2004). The tokenised variants are derived from untokenised tags. This tagset uses approximately 70 basic subtag symbols (e.g. NOUN 'noun', NSUFF 'nominal suffix', IND 'indefinite' and NOM 'nominative') (Habash, 2010). These subtags are combined to form over 170 morpheme tags, such as NSUFF_FEM_SG 'feminine singular nominal suffix' and CASE_IND_NOM 'nominative indefinite'. For instance, the Buckwalter tag for the Arabic word حصيلة HSylt "outcome" is NOUN+NSUFF_FEM_SG+CASE_IND_NOM. A full description of this tagset is presented by Buckwalter (2004).

3.4.1.1.2 Reduced tagset

Reduced tagset (RTS), also known as the 'Bies' tagset, was developed by Ann Bies and Dan Bikel. It includes 24 tags derived from the POS tagset of the Penn English treebank. It is a coarse tagset since it ignores a lot of distinctions in Arabic. For instance, it uses JJ tag for all adjectives regardless of their inflections (e.g. the following tags ADJ, DET+ADJ, ADJ+CASE_INDEF_GEN and DET+ADJ+NSUFF_FEM_SG+CASE_DEF_GEN are grouped into JJ). The Arabic word حصيلة HSylh "outcome" is tagged using this tagset as NN 'noun'. A full description of this tagset is presented by Habash (2010, p. 82).

3.4.1.1.3 Extended reduced tagset

The extended reduced tagset (ERTS) is a superset of RTS tagset. ERTS adds additional morphological features to those contained in RTS, such as gender, number and definiteness. For example, it uses M for 'masculine', F for 'feminine', Du for 'dual' and S for 'plural', while the absence of any number markers is used for 'singular'. The Arabic word حصيلة HSylt "outcome" is tagged using this tagset as NNF. A full description of this tagset is presented by Diab (2007).

3.4.1.2 POS taggers

In this section, we will discuss in some detail two well-known Arabic toolkits, AMIRA (Diab, 2009) and MADA (Habash et al., 2009b), which achieve state-of-the-art accuracies in Arabic tagging, and a home-grown Arabic MXL tagger (Ramsay and Sabtan, 2009), which obtains results that are comparable with these two. In addition, we will discuss transformation-based learning (TBL) tagger, or Brill's tagger (Brill, 1995), for retagging the results of each previous tagger to patch the mistakes. We will use the Arabic sentence in (3.30) to show the actual results of each tagger.
(3.30) Arabic sentence

3.4.1.2.1 AMIRA

The AMIRA toolkit is a set of tools built as a successor to the ASVMTools (Diab et al., 2004). It includes three main modules that are briefly reviewed below (Diab, 2009).

- AMIRA-TOK

The first module is a clitic tokeniser (AMIRA-TOK). Throughout its processes, AMIRA does not trust in morphological analysis or generation tools. AMIRA-TOK therefore directly learns the generalisations of clitic tokenisation from the PATB's clitic segmentation without relying on rules explicitly. AMIRA-TOK segments off the following set of clitics: separating conjunctions, affixival prepositions and pronouns, future mark, proclitic and definite article. AMIRA-TOK has a high Fscore of 0.992 .

- AMIRA-POS

AMIIRA-POS tagging module produces the following tagsets: RTS, ERTS or ERTS_PER (i.e. ERTS with person information) POS tags. POS tagging here is done using the SVM-based classification approach applying character n-gram as features in the sequence models. AMIRA-POS tagger is reported to achieve over $\mathbf{9 6 \%}$ accuracy, for ERTS it is 96.13% and RTS 96.15%.

- AMIRA-BPC

This module of AMIRA is a base phrase chunker (BPC), which is the first step towards shallow syntactic parsing. In this module, a sequence of adjacent words are grouped together to form a syntactic phrase, such as NPs and VPs. For instance, an English example of BPC would be $[I]_{N P}[\text { would eat }]_{V P}[\text { red luscious apples }]_{N P}$ [on Sundays $]_{P P}$. The longest possible base phrases are produced by the BPC with not much internal recursion, which is done as a deterministic post process. The BPC internally uses ERTS POS tagset even if a user requested the RTS as POS tagset by using an internal mapping process from RTS to ERTS POS tagset.

AMIRA v2.1 provides three options for running the system. These options are: ${ }^{5}$ tok-only (run the AMIRA-TOK only), tok+pos (run the AMIRA-TOK and then the AMIRA-POS tagger) and all (run all modules in the following sequence: the AMIRATOK, the AMIRA-POS and then the AMIRA-BPC). Figure 3.3 shows the output of AMIRA for the Arabic sentence in (3.30) using ERTS_PER tagset.

[^18]```
Input sentence: $Ark xmsp bAHvyn fy Alm&tmr.
AMIRA-TOK $Ark xmsp bAHvyn fy Alm&tmr .
AMIRA-POS $Ark@@@VBD_MS3 xmsp@@@NNCD_FS bAHvyn@@@NNS_MP fy@@@IN
 Alm&tmr@@@DET_NN .@@@PUNC
AMIRA-BPC [VP $Ark/VBD_MS3] [NP xmsp/NNCD_FS] [NP bAHvyn/NNS_MP]
 [PP fy/IN Alm&tmr/DET_NN] ./PUNC
```

Figure 3.3: AMIRA output for the Arabic sentence in (3.30).

### 3.4.1.2.2 MADA

MADA ${ }^{6}$ toolkit is a utility that accepts raw text as input and outputs, in one operation, POS tags, lexemes, diacritisations and full morphological analyses. MADA distinguishes between morphological analysis problems (handled by morphological analyser) and morphological disambiguation. This toolkit consists of two main parts explained below (Habash et al., 2009b).

## - MADA

MADA operates in stages. First, it uses a list of potential analyses for each word encountered in the text (word context is not considered at this point) provided by BAMA or the standard Arabic morphological analyser (SAMA) (Maamouri et al., 2010). Then, it makes use of up to 19 orthogonal features to rank this list of analyses in order to select a proper analysis for each word in the list. Fourteen morphological features out of 19 features that MADA predicts use 14 SVMs that are trained on the PATB. The remaining 5 features capture spelling variations and $n$-gram statistics. MADA's analysis consists of the word's diacritised form, its lexeme, its morphological features and an English glossary entry.

MADA ranks the possible analyses by appending a numerical score to each analysis and sorting these analyses in descending order and the highest score is flagged with '*' as correct analysis for that word in the context. Because MADA picks out a full analysis from BAMA/SAMA, all decisions concerning morphological ambiguity, lexical ambiguity, tokenisation, diacritisation and POS tagging in any possible POS tagset are made in a single step.

MADA internally depends on three resources, which must be installed separately. These resources are: BAMA/SAMA, SRILM ${ }^{7}$ toolkit (specifically the disambig utility to construct lexeme n-gram) (Stolcke, 2002) and SVMTools package to operate its SVMs (Giménez and Màrquez, 2004).

[^19]
## - TOKEN

TOKEN is regarded as a general tokeniser for Arabic. It provides an easy-to-use resource for tokenising an Arabic text of MADA-disambiguated items into a wide set of possible tokenisation schemes. In fact, MADA takes the decision on whether an Arabic word has a conjunction or preposition clitic, whereas if and how such clitics are separated is determined by TOKEN (accounting for different morphotactics and normalisation) before using them in an application.

TOKEN accepts a MADA-disambiguated file as input and a description of a tokenisation scheme, which specifies how the tokenisation is done.

TOKEN uses morphological generation (through BAMA/SAMA), internally, to recreate the word once different clitics are separated. This guarantees that the form of the generated word is normalised and consistent with other occurrences of that word.

MADA tagger is reported to achieve around $97.6 \%$ accuracy. Figure 3.4 shows the output of MADA for the Arabic sentence in (3.30). In this example the tokenisation was very straightforward, and the main content relates to the tagger.

### 3.4.1.2.3 Maximum-likelihood tagger

Ramsay and Sabtan (2009) produced a maximum-likelihood (MXL) tagger, trained on Quran, which makes use of very simple clues based on the characters at the beginning and end of a word along with transition probabilities between tags, and then patches the errors in this initial assignment. We have updated MXL to work with MSA by retraining it on the PATB. This tagger accepts as input a raw or tokenised text and outputs the text with its POS tag only. We will simply outline the basic principles that it is based on and note its accuracy here.

MXL operates in two stages, as follows:

- In the first stage we use two simple kinds of statistic:
(i) the conditional likelihood that a word which starts with the same two or three letters or ends with the same two or three letters as the one we are trying to tag has a given tag;
(ii) the transition probabilities between tags. We use a weighted combination of these to produce a maximum-likelihood guess at the current tag. This process produced about $95.2 \%$ accuracy when we tested it on PATB.

```
;;; SENTENCE $Ark xmsp bAHvyn fy Alm&tmr
;;WORD $Ark
;;MADA: $Ark asp:p cas:na enc0:0 gen:m mod:i num:s per:3 pos:verb prc0:0 prc1:0 prc2:0 prc3:0
 stt:na vox:a
*1.005981 diac:$Araka lex:$Arak_1 bw:+$Arak/PV+a/PVSUFF_SUBJ:3MS gloss:participate_with;share_with
 pos:verb prc3:0 prc2:0 prc1:0 prc0:0 per:3 asp:p vox:a mod:i gen:m num:s stt:na cas:na
 enc0:0 rat:na source:lex stem:$Arak stemcat:PV
_0.943160 diac:$Ariko lex:$Arak_1 bw:+$Arik/CV+o/CVSUFF_SUBJ:2MS gloss:participate_with;share_with
 pos:verb prc3:0 prc2:0 prc1:0 prc0:0 per:2 asp:c vox:a mod:i gen:m num:s stt:na cas:na
 enc0:0 rat:na source:lex stem:$Arik stemcat:CV
;;WORD xmsp
;;MADA: xmsp asp:na cas:n enc0:0 gen:f mod:na num:s per:na pos:noun_num prc0:0 prc1:0 prc2:0
 prc3:0 stt:c vox:na
*0.979649 diac:xamosapu lex:xamos_1 bw:+xamos/NOUN_NUM+ap/NSUFF_EEM_SG+u/CASE_DEF_NOM glosS:five
 pos:noun_num prc3:0 prc2:0 prc1:0 prc0:0 per:na asp:na vox:na mod:na gen:f num:s stt:c
 cas:n enc0:0 rat:y source:lex stem:xamos stemcat:Nap
_0.963989 diac:xamosapi lex:xamos_1 bw:+xamos/NOUN_NUM+ap/NSUFF_FEM_SG+i/CASE_DEF_GEN glosS:five
 pos:noun_num prc3:0 prc2:0 prc1:0 prc0:0 per:na asp:na vox:na mod:na gen:f num:s stt:c
 cas:g enc0:0 rat:y source:lex stem:xamos stemcat:Nap
... }12\mathrm{ additional options omitted ...
;;WORD bAHvyn
;;MADA: bAHvyn asp:na cas:g enc0:0 gen:m mod:na num:p per:na pos:noun prc0:0 prc1:0 prc2:0 prc3:0
 stt:i vox:na
*1.000161 diac:bAHiviyna lex:bAHiv_1 bw:+bAHiv/NOUN+iyna/NSUFF_MASC_PL_GEN gloss:scholar;researcher
 pos:noun prc3:0 prc2:0 prc1:0 prc0:0 per:na asp:na vox:na mod:na gen:m num:p stt:i cas:g
 enc0:0 rat:y source:lex stem:bAHiv stemcat:Nall
_0.966692 diac:bAHiviyna lex:bAHiv_1 bw:+bAHiv/ADJ+iyna/NSUFF_MASC_PL_GEN gloss:searching pos:adj
 prc3:0 prc2:0 prc1:0 prc0:0 per:na asp:na vox:na mod:na gen:m num:p stt:i cas:g enc0:0
 rat:y source:lex stem:bAHiv stemcat:Nall
... }6\mathrm{ additional options omitted ...
;;WORD fy
;;MADA: fy asp:na cas:na enc0:0 gen:na mod:na num:na per:na pos:prep prc0:na prc1:0 prc2:0 prc3:0
 stt:na vox:na
*1.033497 diac:fiy lex:fiy_1 bw:+fiy/PREP+ gloss:in pos:prep prc3:0 prc2:0 prc1:0 prc0:na per:na
 asp:na vox:na mod:na gen:na num:na stt:na cas:na enc0:0 rat:na source:lex stem:fiy
 stemcat:FW-Wa
_0.914319 diac:fiy~a lex:fiy_1 bw:+fiy/PREP+ya/PRON_1S gloss:in pos:prep prc3:0 prc2:0 prc1:0
 prc0:na per:na asp:na vox:na mod:na gen:na num:na stt:na cas:na enc0:1s_pron rat:na
 source:lex stem:fiy stemcat:FW-Wa-y
... 5 additional options omitted ...
;;WORD Alm&tmr
;;MADA: Alm&tmr asp:na cas:g enc0:0 gen:m mod:na num:s per:na pos:noun prc0:Al_det prc1:0 prc2:0
 prc3:0 stt:d vox:na
*1.019825 diac:Almu&otamari lex:mu&otamar_1 bw:Al/DET+mu&otamar/NOUN+i/CASE_DEF_GEN
 gloss:conference;convention pos:noun prc3:0 prc2:0 prc1:0 prc0:Al_det per:na asp:na vox:na
 mod:na gen:m num:s stt:d cas:g enc0:0 rat:y source:lex stem:mu&otamar stemcat:NduAt
_0.948217 diac:Almu&otamara lex:mu&otamar_1 bw:Al/DET+mu&otamar/NOUN+a/CASE_DEF_ACC
 gloss:conference;convention pos:noun prc3:0 prc2:0 prc1:0 prc0:Al_det per:na asp:na vox:na
 mod:na gen:m num:s stt:d cas:a enc0:0 rat:y source:lex stem:mu&otamar stemcat:NduAt
... 2 additional options omitted ...
; ;WORD
;;MADA: . asp:na cas:na enc0:na gen:na mod:na num:na per:na pos:punc prc0:na prc1:na prc2:na
 prc3:na stt:na vox:na
*1.045299 diac:. lex:._0 bw:./PUNC gloss:. pos:punc prc3:na prc2:na prc1:na prc0:na per:na asp:na
 vox:na mod:na gen:na num:na stt:na cas:na enc0:na rat:na source:punc
SENTENCE BREAK
```

Figure 3.4: MADA output for the sentence in (3.30). For each word, the predications of the SVM classifiers are indicated by ' $;$; MADA' line. Each analysis is preceded by its score, while the selected analysis is marked with '*'. For each word in the sentence, only the two top scoring analyses are shown because of the space limitation.

- We then use transformation-based retagging (TBR) (Section 3.4.1.2.4) to refine the original set of hypotheses. Again we are using the first and last few letters of the word as a cue, with templates based on the first and last two letters of the word rather than the word specific templates from Brill's original set. This leads to a final accuracy of $95.6 \%$.

Figure 3.5 shows the output of MXL for the Arabic sentence in (3.30).

| Input sentence: \$Ark xmsp bAHvyn fy Alm\&tmr . |  |
| :---: | :---: |
| MXL | \$Ark[PV+PVSUFF_SUBJ:3MS] xmsp [NUM+NSUFF_FEM_SG+CASE_DEF_NOM] bAHvyn [NOUN+NSUFF_MASC_PL_GEN] fy [PREP] Alm\&tmr [DET+NOUN+CASE_DEF_GEN] . [PUNC] |

Figure 3.5: MXL output for the Arabic sentence in (3.30).

Figure 3.6 summarises the output of the three taggers above for the sentence in (3.30).

| Arabic | Gloss | AMIRA | MADA | MXL |
| :---: | :---: | :---: | :---: | :---: |
| شارك ش̌Ark | participated | VBD_MS3 | PV+PVSUFF_SUBJ:3MS | PV+PVSUFF_SUBJ:3MS |
| خmsћ | five | NNCD_FS | NOUN_NUM+NSUFF_FEM_SG+ CASE_DEF_NOM | NUM+NSUFF_FEM_SG+ CASE_DEF_NOM |
| باحثين <br> bAHOyn | researchers | NNS_MP | NOUN+NSUFF_MASC_PL_GEN | NOUN+NSUFF_MASC_PL_GEN |
| في | in | IN | PREP | PREP |
| المؤتمر <br> Al+mwtmr | the conference | DET_NN | DET+NOUN+CASE_DEF_GEN | DET+NOUN+CASE_DEF_GEN |
| . | . | PUNC | PUNC | PUNC |

Figure 3.6: Three taggers output for the Arabic sentence in (3.30).

The slight differences between the outputs from MADA and MXL arise because MXL was trained on PATB part 1 v 3 , which uses a subset of the Buckwalter tagset, whereas MADA uses the full Buckwalter tagset.

### 3.4.1.2.4 Transformation-based learning

Transformation-based learning (TBL) (Brill, 1995) is a mechanism for improving the performance of a classifier by spotting patterns of errors in the output of the original classifier. To put it very simply, suppose that the original classifier were a tagger for English, and that it consistently mis-labelled the word 'that' as a determiner rather than
a complementiser in situations where the preceding word was a verb and the following word was a pronoun (e.g. in examples like "I know that she loves me"). Then a typical implementation of TBL would introduce a rule that said "if 'that' has been labelled as $D T$ and the preceding word is a verb and the following word is a pronoun then relabel it as COMP."

The key to the success of this notion is the presence of a suitable set of rule templates. Brill's original templates are represented by Lager (1999) as Prolog rules of the kind shown below:

```
t1(A,B,C)
 # tag:A>B
 <- tag:C@[-1].
t5 (A,B,C)
 # tag:A>B
 <- tag:C@[-1,-2].
t9(A,B,C,D)
 # tag:A>B
 <- tag:C@[-1] & tag:D@[1].
...
```

The first of these says that you can have rules that will retag an item whose tag is A as $B$ if the tag of the preceding word is $C$. Thus this template might be instantiated to

```
t1(det, comp,verb)
 # tag:det>comp
 <- tag:verb@[-1].
```

in order to retag an item from DET to COMP if the preceding word was a VERB (i.e. this is a rather extreme case of a rule for patching cases like the one involving 'that' above).

The standard algorithm explores all instantiations of every template to find the one that produces the greatest net improvement in the tagset (a rule that changes 100 incorrect tags to correct ones and 30 correct ones to incorrect ones produces a net gain of 70 , and hence is better than one that changes 65 incorrect tags to correct ones and introduces no new errors (net gain 65) or one that makes 110 improvements and 50 new errors (net gain 60)). This rule is then applied to the entire training set, and the
rule that makes the most improvements to this retagged version of the training set is found. The collection of rules found by this process is then applied in sequence to the test/application data.

Brill's original templates include ones for retagging an item on the basis of the surrounding tags and ones for retagging it on the basis of the forms of the word and its neighbours. In keeping with the observation above that the first and last few letters of an Arabic word tell you a lot about its tag, it makes sense to add templates that look at prefixes and suffixes, as in the following four templates:

```
tX1(A, B, W) # tag:A>B
 <- sf:W@[0].
tX2(A, B, C, W) # tag:A>B
 <- sf:W@[0] & tag:C@[1].
tY1(A, B, W) # tag:A>B
 <- pf:W@[0].
tY2(A, B, C, W) # tag:A>B
 <- pf:W@[0] & tag:C@[1].
```

The first of these says that if the current word has been tagged as A and its last three characters are $W$ then you should retag it as $B$. The second says much the same, but also looks at the tag of the following word. The other two do the same for prefixes.

To make this concrete, the system finds an instantiation of tX1 as:
rule(tX1('DET+NOUN', 'ADV', lAn)).
This says that if you see a word that ends with the letters لان lAn that has been tagged as $\operatorname{DET}+$ NOUN then you should retag it as ADV.

Similarly, it finds an instantation of tX 2 as:
rule(tX2('PV','IV', 'SUB_CONJ',tqd)).
which says that if a word that ends with تقد $t q d$ has been tagged as a past tense verb and it is followed by a word which is tagged as a subordinating conjunction then retag it as a present tense verb.

Where did these rules come from? They arose because words that end with these letters have often been mistagged, possibly in specific contexts. You should not look
at such a rule in isolation to see if it makes any sense, or indeed to think about why the erroneous tag was suggested in the first place. The only thing you can see about a rule considered in isolation is whether the retagging itself seems sensible-are there situations in which a word that ends with لان lAn should be tagged as an adverb?

### 3.4.2 Syntactic parsing

Parsing of natural language aims to analyse sentences automatically in order to construct representations of their syntactic structure. To achieve this goal, many different types of representation have been proposed, such as phrase structure grammar and dependency structure grammar. We will use the English sentences in (3.31) to show the difference between the phrase structure and dependency structure.
(3.31) English sentences (Nivre, 2010)
a. Economic news had little effect on financial markets.
b. A hearing is scheduled on the issue today.

We will be following common practice in using dependency grammar in our entailment checker, and hence this approach will be described in some detail, and the other will be sketched more briefly.

### 3.4.2.1 Phrase structure parsing

Phrase structure parsing is a form of natural language syntactic parsing which depends on the theoretical tradition of phrase structure representation. It is the task of mapping an input sentence with one or more phrase structure representations. It models a sentence as a tree where words are grouped into phrases that are classified by structural categories such as NP, VP, etc. In phrase structure grammar, functional relations (e.g. subject and object) can be identified in terms of structural configurations (e.g. 'NP under S' and 'NP under VP') (Nivre, 2010).

Consider, for instance, the following grammar:

$$
\begin{aligned}
& S \rightarrow N P V P P U \\
& N P \rightarrow J J N N \mid J J N N S \\
& V P \rightarrow V B D N P P P \\
& P P \rightarrow I N N P
\end{aligned}
$$

This will assign the structure in Figure 3.7 to (3.31a).


Figure 3.7: Phrase structure tree for (3.31a) (Nivre, 2010).

### 3.4.2.2 Dependency parsing

Dependency parsing is a syntactic parsing form that depends on the theoretical tradition of dependency grammar. It is the task of mapping an input sentence to a dependency tree. It models a sentence as a graph (often, but not always a tree) where words are vertices and grammatical functions (or syntactic relations) are directed edges (or dependency relations). Each vertex therefore has a single parent, except the root of the tree. A dependency relation holds between dependent, i.e. a syntactically subordinate vertex, and head, i.e. another vertex on which it is dependent. So, the dependency structure represents head-dependent relations between vertices that are classified by dependency types such as SBJ 'subject', OBJ 'object', ATT 'attribute', etc. Dependency parsing is thus viewed computationally as a structured prediction problem with trees as structured variables. Each sentence, in principle, has exponentially many candidate dependency trees. Figure 3.8 shows the dependency tree for (3.31a), where the arrows between pairs of vertices represent the dependency relations pointing from the head to dependent, while the labels on arrows indicate the dependency types.

Formally speaking, for an input sentence with $n$ words $S=w_{1}, \ldots, w_{n}$, a legal dependency tree is $T=(V, A)$, consisting of a set $V$ of vertex $V \subseteq\left\{R O O T_{0}, w_{1}, \ldots, w_{n}\right\}$ and a set $A$ of dependency relations $A \subseteq V \times R \times V, R$ is a set of dependency types $R \subseteq\left\{r_{1}, \ldots, r_{n-1}\right\}$, if $\left(w_{i}, r, w_{j}\right) \in A$ then $\left(w_{i}, r^{\prime}, w_{j}\right) \notin A$ for all $r \neq r^{\prime}$. The dependency tree has $n+l$ vertices, each vertex corresponds to a word in the sentence plus the artificial root vertex $\left(R O O T_{0}\right)$, i.e. for any $i \leq n(i, r, 0) \notin A$. Since the structure of a dependency tree is acyclic, which means it does not contain cycles, i.e. for all $w_{i}, w_{j} \in A$,


Figure 3.8: Projective dependency tree for (3.31a) (Nivre, 2010).
if $w_{i} \rightarrow w_{j}$, then it is not the case that $w_{j} \rightarrow^{*} w_{i}$ (Kübler et al., 2009). For example, we can define the sets of vertices and dependency relations from the dependency tree shown in Figure 3.8 as follows:

$$
\begin{aligned}
\mathrm{V}= & \{\text { ROOT, Economic, news, had, little, effect, on, financial, markets, . }\} \\
\mathrm{A}= & \{(\text { ROOT, PRED, had), (news, ATT, Economic), (had, SBJ, news), } \\
& \text { (effect, ATT, little), (had, OBJ, effect), (effect, ATT, on), } \\
& \text { (markets, ATT, financial), (on, PC, markets), (had, PU, .) }\}
\end{aligned}
$$

Here, the verb 'had' is the head of the noun 'news' with the dependency type SBJ. The same verb 'had' also heads another noun 'effect' with another dependency type OBJ.

A dependency tree is either projective, if dependency arcs do not cross when depicted on one side of the sentence (i.e. every vertex has a continuous projection) as shown in Figure 3.8, or non-projective, if the previous constraint is not satisfied, as shown in Figure 3.9. More formally, a tree is considered projective, if and only if for every dependency $\operatorname{arc}(i, r, j) \in A$ and node $x \in V, i<x<j$ or $j<x<i$ then there is a subset of dependency arcs $\left\{\left(i, r, i_{1}\right),\left(i_{1}, r_{1}, i_{2}\right), \ldots,\left(i_{x-1}, r_{x-1}, i_{x}\right)\right\} \in A$ such that $i_{x}=x$.


Figure 3.9: Non-projective dependency tree for (3.31b) (Nivre, 2010).

In recent years, there has been a considerable interest in dependency parsing. There are a number of reasons for this. First, dependency-based syntactic representations seem to be effective in many areas of NLP, such as machine translation (MT), information extraction (IE) and textual entailment (TE), thanks to their transparent encoding of predicate-argument structure (Alabbas and Ramsay, 2011b). Second, it is generally perceived that dependency grammar is better suited than phrase structure grammar for flexible or free word order languages, such as Arabic, Czech, and so on (Alabbas and Ramsay, 2011a). Third, and most importantly, the dependency-based approach has led to the development of fast, robust and reasonably accurate syntactic parsers for a number of languages.

Broadly speaking, dependency parsing may be either data-driven or grammarbased. In the current work, we focus on supervised data-driven dependency parsers, which presuppose that input sentences to machine learning have been annotated with their correct dependency structures. There are two different problems in supervised dependency parsers that need to be solved computationally: learning problem and parsing problem (or inference problem) (Kübler et al., 2009). These problems are represented as follows:

- Learning: given a training set of sentences $D$ that are annotated with their dependency structure, induce a parsing model $M$ that can be used to parse new sentences $S_{i=1 . . n}$.
- Parsing: given a parsing model $M$ and sentences $S_{i=1 . . n}$, derive the optimal dependency graph $G_{i}$ for each sentence $S_{i}$ according to $M$.

We will focus here on two state-of-the-art language independent data-driven parsers, as described below.

### 3.4.2.2.1 MALTParser

MALTParser ${ }^{8}$ is a language independent system for data-driven dependency parsing that can be used to induce a parsing model from a dependency treebank for any language. Then, it uses this induced parsing model to parse new data for that language (Nivre et al., 2007). It is categorised, according to the categorisation of parsers by Kübler et al. (2009), as a transition-based parsing system based on the theoretical

[^20]framework of inductive dependency parsing (which depends on an algorithm of deterministic parsing in combination with inductive machine learning to predict the next action of the parser) presented by Nivre (2006). Transition-based parsers model the sequence of decisions of a shift-reduce parser to predict the next state of the system, given the current state and features over parsing decisions' history as well as the input sentence. The parser, at inference time, starts with an initial state and based on the predictions of the model, the parser greedily moves to subsequent states until reaching a termination state. The parsing methodology depends on three main components: ${ }^{9}$

- Deterministic parsing algorithms, which are defined in terms of a transition system, in order to construct labeled dependency graphs (Yamada and Matsumoto, 2003; Nivre, 2003). The transition system consists of a set of configurations and a set of transitions between configurations. Deterministic parsing is implemented during the transition system as greedy best-first search.
- History-based models for predicting the next parser action at nondeterministic choice points (Ratnaparkhi, 1997; Collins, 2003). The transition history is represented by a feature vector, which can be used as input to a classifier for predicting the next transition in order to guide the deterministic parser (Hall, 2008).
- Discriminative learning to map histories to parser actions (Yamada and Matsumoto, 2003; Hall et al., 2006). Discriminative machine learning can be used to train a classifier when it is given a set of transition sequences derived from a treebank. During parsing, the classifier is used to distinguish between different possible transitions given a feature vector representation of the current configuration.

MALTParser supports both projective and non-projective parsing. It implements nine deterministic parsing algorithms. These algorithms are: Nivre arc-eager, Nivre arc-standard, Covington non-projective, Covington projective, Stack projective, Stack swap-eager, Stack swap-lazy, Planar and 2-Planar. It also supports two machine learning algorithms: LIBSVM ${ }^{10}$ (Chang and Lin, 2011) and LIBLINEAR ${ }^{11}$ (Fan et al., 2008).

According to the observation of McDonald and Nivre (2007), MALTParser performs better on dependencies that are further from the root of a tree (e.g. pronouns, nouns dependencies) and those with shorter dependencies.

[^21]Users can also turn MALTParser into a phrase structure parser, which parses continuous and discontinuous phrases with both phrase labels and grammatical functions (Bhatt and Xia, 2012; Hall and Nivre, 2008a,b).

### 3.4.2.2.2 MSTParser

Maximum-spanning tree parser (MSTParser) ${ }^{12}$ is a language independent system for data-driven dependency parsing, which can be used to induce a parsing model from treebank data and to parse new data using an induced model (McDonald and Pereira, 2006). It is categorised, according to the categorisation of parsers in (Kübler et al., 2009), as a graph-based parsing system. It is also a parser generator for dependency parsing, which can be used to create a parser for any language by giving it a dependency treebank of this language. A graph-based parser defines a candidate dependency graph space for a sentence. In the learning stage, the parser assigns, for each sentence, scores to the candidate dependency graphs in order to induce a parsing model $M$. In the parsing stage, the parser finds, for each input sentence, the highest scoring dependency graph, given the parsing model $M$. This method is commonly called maximum spanning tree parsing because the problem of finding the highest scoring dependency graph and the problem of finding a maximum spanning tree in a dense graph are equivalent, under certain assumptions. This allows the parser to find solutions for both projective and non-projective trees.

Typically, MSTParser depends on global training and inference algorithms. The aim here is to learn models in which correct trees have higher weights than the weights of incorrect trees. A global search is run in order to find the highest weighted dependency tree. This operation typically is NP-hard (McDonald and Satta, 2007). This often requires the scope of MSTParser features to be limited to a tiny number (usually two) and/or resort to approximate inference (McDonald and Pereira, 2006).

According to the observation of McDonald and Nivre (2007), MSTParser performs better on dependencies that are closer to the root of a tree (e.g. verbs, conjunctions and prepositions dependencies) and those with longer dependencies.

In Section 3.4, we have described three Arabic taggers and two machine learning parsers, which have achieved state-of-the-art results for a number of languages such as English and Arabic (Kübler et al., 2009). We will use them in our preprocessing stage (Chapter 4) to convert T-H pairs from natural expressions into dependency trees.

[^22]
## Chapter 4

## Arabic linguistic analysis

### 4.1 Introduction

In this chapter we present a preprocessing stage for our Arabic textual entailment (ArbTE) system. This stage is responsible for converting both elements of an Arabic $T-H$ pair from raw texts into dependency trees. It consists of two main subtasks: POS tagging, which internally uses other subtasks, such as tokenisation and morphological analysis, and parsing. In order to achieve this goal, three state-of-the-art Arabic taggers (see Section 3.4.1.2) and two state-of-the-art language-independent data-driven dependency parsers (see Section 3.4.2.2) are used. The PATB is used as training and testing data for experiments as explained below.

We have a task, structural analysis, which involves two linked subtasks, tagging and parsing, and we have several tools that can carry out each of the subtasks. How these tools work is not our concern here. For us they are simply black-boxes which require an input in order to give us an output. What does matter here is how to improve the performance of the overall task. We are therefore going to try to improve the performance of the standard components by varying parameters and combining them instead of improving each component itself.

In order to improve the performance of the overall task, we will investigate two strategies: (i) combined strategy I: in this strategy, there is one pipeline of processes that consists of two consecutive subtasks, i.e. combined taggers and combined parsers. In this strategy, we will receive a raw text as input to the pipeline and tag this text by combined taggers (Section 4.2) to produce tagged text, which is the input to the next subtask, combined parsers (Section 4.3), to produce the final parsed tree as shown in Figure 4.1a; and (ii) combined strategy II: in this strategy, there are two pipelines of
processes, where each pipeline consists of two consecutive subtasks, individual tagger and individual parser. In this strategy, we will receive a raw text as input for both pipelines and tag this text using the tagger of each pipeline. Then, each parser will receive its own tagged text to produce its own parsed tree. The final parsed tree will represent the combined parsed trees for both pipelines (Section 4.4) as shown in Figure 4.1b.

In Section 4.2 and Section 4.3 we will discuss the results of combined strategy I, and in Section 4.4 we will discuss the results of combined strategy II.


Figure 4.1: Two combined taggers and parsers strategies.

In order to check the effectiveness of the POS taggers, the parsers and our techniques, we use four common evaluation measures:

## - Precision (P)

A measure of the ability of a system to present only correctly labelled items, as in Equation 4.1.

$$
\begin{equation*}
P=\frac{\text { number of correctly labelled items retrieved }}{\text { total number of items retrieved }} . \tag{4.1}
\end{equation*}
$$

## - Recall (R)

A measure of the ability of a system to present all correctly labelled items, as in Equation 4.2.

$$
\begin{equation*}
R=\frac{\text { number of correctly labelled items retrieved }}{\text { number of items in collection }} . \tag{4.2}
\end{equation*}
$$

## - F-score

F-score is a measure of a test's accuracy. The general formula for positive real $\beta$ is explained in Equation 4.3.

$$
\begin{equation*}
F_{\beta}=\left(1+\beta^{2}\right) \times \frac{P \times R}{\left(\beta^{2} \times P\right)+R} . \tag{4.3}
\end{equation*}
$$

The traditional measure is the F-score ( or $\mathrm{F}_{1}$ ), which is the harmonic mean of precision and recall as in Equation 4.4.

$$
\begin{equation*}
F \text {-score }=2 \times \frac{P \times R}{P+R} \tag{4.4}
\end{equation*}
$$

The $\mathrm{F}_{1}$-score can be interpreted as a weighted average of the precision and recall, where an $F_{1}$-score reaches its best value at 1 and worst value at 0 .

## - Accuracy

If every item is assigned a label, then precision and recall are the same. Under those conditions, it is common practice to refer to this single value as accuracy.

### 4.2 POS tagging

The process of assigning a correct POS tag (i.e. noun, verb, adverb or others) to each word of a sentence is called POS tagging. This process is considered an essential step for most natural language applications. In general, however, POS taggers make mistakes, and since tagging is the first step in most NLP systems these mistakes will lead to problems in all subsequent stages of analysis. It is thus important to obtain the highest possible accuracy at this initial stage of processing.

### 4.2.1 The taggers

We are interested here in improving POS tagging accuracy. We have carried out a number of experiments with state-of-the-art taggers (AMIRA 2.0 (Section 3.4.1.2.1), MADA 3.1 (Section 3.4.1.2.2) and a home-grown tagger, MXL, with comparable accuracy (Section 3.4.1.2.3)), using the PATB (Maamouri and Bies, 2004) as a goldstandard corpus.

## Gold-standard tags

We used PATB (Part 1 v 3 using 'without-vowel' set of trees) ${ }^{1}$ as a resource for our experiments. The words in the PATB are already tagged. This provides us with a benchmark to evaluate the consequences of using taggers that do not provide $100 \%$ accuracy: we are unlikely to achieve higher accuracy when we tag the test sets using one of the taggers below than we obtain when we use the original tags of the PATB. In subsequent discussion we refer to the tags we obtain this way as gold-standard tags. Even these tags are not guaranteed to be $100 \%$ accurate-they have been obtained by some mixture of automatic and manual tagging, and both of these are liable to error. However, this is the most accurate available set of tags, and furthermore any systematic errors will also appear in the training set, and hence may be compensated for when the parsers are trained. We use this set for reference-if for some experiment we obtain $N$ accuracy with the gold tags and $N^{\prime}$ using one of the taggers then we know that the tagger has introduced an error of $N-N^{\prime}$.

The PATB uses a very fine-grained set of tags, which carry a great deal of syntactically relevant information (particularly case-marking). In particular, case-marking, and to a lesser extent number and gender marking, in Arabic is carried by diacritics which are unwritten in normal text. Thus the only way to extract this information is by making guesses based on the syntactic context. Given that the task of the parser is to determine the syntactic context, it is hard to see how reliable guesses about it can be made prior to parsing. Marton et al. (2010, 2013), for instance, note that adding the case-marking tags supplied by MADA actually decreases the accuracy of parsing, because the parser gives considerable weight to them, but the tagger only manages to assign them correctly in $86 \%$ of cases. A feature which is both significant and hard to determine is not a reliable cue.

[^23]We therefore collapsed this very fine-grained set of 305 tags, which appear in the version of the PATB used here, to a more coarse-grained set with 39 distinct tags, as shown in Figure 4.2. Reducing the granularity of the PATB tagset is fairly common practice, since some of the most fine-grained tags are very hard indeed to distinguish simply on the basis of local clues, which are what most taggers depend on. Unfortunately there is no universally accepted coarse-grained version, so we simply made what seemed like a reasonable compromise. We will return to this in Section 4.4. The differences between these two tagsets are illustrated in Figure 4.3, where the coarse set has one entry for imperfective verbs and the fine one has 44 , of which a few 1st person cases are included in Figure 4.3, and the coarse set has one entry for nouns and the fine one has 47 , differing mainly in case and gender markers. It is worth noting that many of the distinctions made in the fine-grained tagset are invisible in the written form-feminine nouns, for instance, do not carry distinctive case markers. Tagging with the fine-grained tagset is therefore likely to be extremely difficult. The final version of our tagger 'MC' achieves around $99.5 \%$ accuracy on the coarse-grained tagset (see Table 4.7), which is significantly better than the performance of other taggers (Al Shamsi and Guessoum, 2006; AlGahtani et al., 2009; El Hadj et al., 2009; Diab et al., 2004) on this kind of tagset, whereas we achieve $96 \%$ with the full 305 tags (MADA, for instance, obtains $96.6 \%$ on the coarse-grained tagset but only $93.6 \%$ on the fine-grained (351-element) one).

| ABBREV | DET+NOUN_PROP | LATIN | PUNC |
| :--- | :--- | :--- | :--- |
| ADJ | DET+NUM | NEG_PART | PV |
| ADV | EMPH_PART | NOUN | PVSUFF_DO |
| CONJ/ICONJ | EXCEPT_PART | NOUN_PROP | RC_PART |
| CV | FOCUS_PART | NO_FUNC | REL_ADV |
| CVSUFF_DO | FUT+IV | NUM | REL_PRON |
| DEM_PRON | INTERJ | PART | SUB |
| DET | INTERROG_PART | POSS_PRON | SUB_CONJ |
| DET+ADJ | IV | PREP | VERB_PART |
| DET+NOUN | IVSUFF_DO | PRON |  |

Figure 4.2: Our coarse-grained tagset.


#### Abstract

AMIRA The first tagger we use is AMIRA. This tagger is reported to achieve around $97 \%$ accuracy on its target tagset.

Using AMIRA, however, highlights one of the problems that arise when we try to compare its retagged corpus with other corpora. The PATB is tagged, but with


| Coarse-grained tag | Fine-grained tag |
| :--- | :--- |
| IV | IV1P+IV+IVSUFF_MOOD:I |
|  | IV1P+IV+IVSUFF_MOOD:J |
|  | IV1P+IV+IVSUFF_MOOD:S |
|  | IV1P+IV_PASS+IVSUFF_MOOD:S |
|  | IV1S+IV+IVSUFF_MOOD:I |
|  | IV1S+IV+IVSUFF_MOOD:J |
|  | IV1S+IV+IVSUFF_MOOD:S |
|  | IV1S+IV_PASS+IVSUFF_MOOD:S |
|  | $\ldots$ |
| NOUN | NOUN+CASE_DEF_ACC |
|  | NOUN+CASE_DEF_GEN |
|  | NOUN+CASE_DEF_NOM |
|  | NOUN+CASE_INDEF_ACC |
|  | NOUN+CASE_INDEF_GEN |
|  | NOUN+CASE_INDEF_NOM |
|  | NOUN+NSUFF_FEM_DU_ACC |
|  | I. |

Figure 4.3: Coarse-grained and fine-grained tag examples.
different tags from the ones used by AMIRA. ${ }^{2}$ In order to compare AMIRA tags with other corpora tags, we will have to translate between the two tagsets.

This is a non-trivial task. The two tagsets have different numbers of tags (e.g. AMIRA has 130 fine-grained tags compared with 305 in PATB), and more importantly they make different kinds of distinctions. The AMIRA tagset, for instance, uses one tag ( RP ) to cover a range of particles which are subdivided into eight subclasses (EMPH_PART, EXCEPT_PART, FOCUS_PART, INTERROG_PART, RC_PART, NEG_PART, PART, VERB_PART) in the PATB; and it uses several tags to describe different kinds of verbs (VB, VBG, VBD, VBN, VBP) where the PATB just uses three (IV, PV, CV).

In order to overcome these problems, we use TBR (Section 3.4.1.2.4) to recover from the mismatches between the two tagsets. TBR collects statistics about the local context in which erroneous tags have been assigned, and attempts to find rules based on this information to apply after the original tagger has been run. This technique will produce a small improvement in the performance of almost any tagger. Typically,

[^24]taggers that achieve scores in the mid 90s are boosted by 2-3\%-the lower the original accuracy, the greater the typical improvement. When we used it for comparing the original tags produced by AMIRA and the gold-standard tags the score improved from around $90 \%$ to just over $95 \%$ for the coarse-grained tagset. Some of this improvement arises simply from rules that spot that the two tagsets use different names for the same things (e.g. that things that are called JJ are called ADJ in the PATB) but some of it comes from learning how to split coarse-grained AMIRA tags into fine-grained PATB ones.

There is a further problem with using AMIRA. The fact that Arabic allows a range of items to be cliticised (conjunctions, prepositions and pronouns) makes it difficult even to tokenise text reliably. This means that not only does AMIRA sometimes assign different tags from the PATB, it sometimes even splits the text into different numbers of tokens (AMIRA's tokenisation of the PATB text differs from that in the PATB itself, with around $98 \%$ agreement between the two).

In order to solve this problem, we constructed a version of the corpus which has the same size (i.e. number of tokens) as the gold-standard one. We replaced PATB tags by a coarse copy of the AMIRA tags, using hand-coded substitution rules, and then replaced these by fine-grained AMIRA tags where the substituted tags were compatible with tags actually assigned by AMIRA. Thus if the PATB assigned a word the tag ADJ we replaced it by the AMIRA tag JJ. We then inspected the tags assigned by AMIRA itself: if the tag assigned to this word was one of AMIRA's fine-grained adjective tags, e.g. JJR, then we used this instead. If, on the other hand, the hand-coded replacement for the PATB tag was incompatible with the one assigned by AMIRA then we retained the hand-coded one. This gave us a version of the treebank that had the same number of tokens as the original PATB, with as many items as possible given the tags assigned by AMIRA and the others given hand-coded AMIRA equivalents of the original PATB tags.

## MADA

MADA uses the Buckwalter tagset (Section 3.4.1.1.1), which is a slightly extended version of the tagset used in PATB Part 1 v 3 with some extra classification of nouns (e.g. NOUN_QUANT 'quantifier noun' and ADJ_COMP 'comparative adjective’). The finegrained MADA retagged version contains 351 tags compared to 305 tags in the PATB corpus. Fortunately the MADA tags are a strict superset of the standard PATB set, and hence can be reduced to either the standard fine-grained version or our coarse version
by omitting the extra classification of nouns, so we do not have the same problems using MADA with the PATB as we have with AMIRA.

We also applied TBR to the output of MADA, because although we were not faced with mapping incompatible tagsets in the same way as with AMIRA, using TBR nearly always provides a small improvement, amounting in this case to an increase from $94.1 \%$ to $96.7 \%$. We applied the same technique that we used in AMIRA to get a MADA version of the corpus that has the same size as the gold-standard one because MADA's tokeniser also has small variance from the gold-standard (around 1\%).

## MXL

We also use Ramsay and Sabtan (2009)'s maximum-likelihood tagger, MXL. The advantage of this tagger is that because we retrained it on the PATB, the tags it uses are exactly the PATB tags and the tokenisation is exactly the PATB tokenisation. We therefore do not need to overcome problems associated with mismatches between tag sets. As with AMIRA and MADA, we obtained a final small improvement by using TBR.

### 4.2.2 Improving POS tagging

One popular technique for improving tagging accuracy is tagger combination. This approach involves combining different taggers to exploit the unique properties of each tagger and reduce some of the random errors. This technique has been applied to different languages such as English (Brill and Wu, 1998), Swedish (Sjöbergh, 2003), Telugu (Rama Sree and Kusuma Kumari, 2007), Italian (Søgaard, 2009) and Polish (Śniatowski and Piasecki, 2012) and the results were encouraging, but has not to our knowledge been applied to Arabic. We evaluate different techniques for combining POS taggers for Arabic for both coarse-grained and fine-grained tagsets.

For all experiments in the current thesis, we used AMIRA v2.0 with Yamcha toolkit v0.33, ${ }^{3}$ and we used MADA 3.1 with SVMTools v1.3.1 ${ }^{4}$ and SRLIM v1.5.12 ${ }^{5}$ and SAMA v3.1 (catalog number LDC2010L01) from the LDC. ${ }^{6}$

Table 4.1 summarises the coarse-grained and fine-grained tags for the gold-standard corpus and the three retagged corpora by the taggers: AMIRA, MADA and MXL. Table 4.2 summarises the accuracy of the three taggers on our gold-standard set using

[^25]the built-in tagsets and coarse versions of each, and shows the improvements that are obtained in each case by applying TBR. This provides a reference point: the best of the three taggers is MADA, which achieves $96.7 \%$ on the coarse-grained version of its built-in tagset if we also apply TBR and $93.6 \%$ on the fine-grained version, again after applying TBR. The goal here is to see whether we can improve on this by utilising the other taggers, despite the fact that their individual performance is worse.

| Tagset | Gold-standard | AMIRA | MADA | MXL |
| :--- | :---: | :---: | :---: | :---: |
| Coarse-grained | 39 | 29 | 56 | 39 |
| Fine-grained | 305 | 130 | 351 | 305 |

Table 4.1: Coarse-grained and fine-grained tag numbers, gold-standard and single tagger.

| Tagset | TBR | AMIRA | MADA | MXL |
| :--- | :---: | :---: | :---: | :---: |
| Coarse-grained | $\times$ | $89.6 \%$ | $94.1 \%$ | $95.2 \%$ |
|  | $\sqrt{ }$ | $95.3 \%$ | $\mathbf{9 6 . 7 \%}$ | $95.6 \%$ |
| Fine-grained | $\times$ | $84.3 \%$ | $91.7 \%$ | $89.7 \%$ |
|  | $\sqrt{ }$ | $88.8 \%$ | $\mathbf{9 3 . 6 \%}$ | $91.2 \%$ |

Table 4.2: Tagger accuracies in isolation, with and without TBR.

The first observation is that when the taggers agree on how to tag a given item they are more likely to be right than when they disagree. This is fairly obvious-if you have a set of taggers which assign different tags to an item then at least one of them must be wrong. Table 4.3 substantiates this observation-each column shows the precision (Equation 4.1), recall (Equation 4.2) and F-score (Equation 4.4) for a particular pair of taggers simply taking cases where they agree and leaving words on which they disagree untagged. Thus the combination of MADA and MXL achieves a precision of $99.5 \%$ on the coarse-grained tagset and $99 \%$ on the fine-grained one. Table 4.4 shows what happens when we combine all three taggers, either taking the majority view when at least two of them agree or demanding that all three agree. In the latter case we obtain a precision of $99.9 \%$ for the coarse-grained tagset and $99.2 \%$ for the fine-grained one.

| Metrics | Tagset | TBR | AMIRA-MADA | AMIRA-MXL | MADA-MXL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P | Coarse-grained | $\times$ | 96.3\% | 97.7\% | 99.3\% |
|  |  | $\checkmark$ | 99.5\% | 98.8\% | 99.5\% |
|  | Fine-grained | $\times$ | 94.7\% | 92.9\% | 98.9\% |
|  |  | $\checkmark$ | 95.8\% | 94.3\% | 99\% |
| R | Coarse-grained | $\times$ | 86.1\% | 84.3\% | 90.1\% |
|  |  | $\checkmark$ | 91.9\% | 94.1\% | 94.6\% |
|  | Fine-grained | $\times$ | 84.9\% | 79.8\% | 83.3\% |
|  |  | $\checkmark$ | 85.6\% | 81.6\% | 86.4\% |
| F-score | Coarse-grained | $\times$ | 0.909 | 0.905 | 0.945 |
|  |  | $\checkmark$ | 0.955 | 0.964 | 0.97 |
|  | Fine-grained | $\times$ | 0.895 | 0.858 | 0.904 |
|  |  | $\checkmark$ | 0.904 | 0.875 | 0.923 |

Table 4.3: Precision $(\mathrm{P})$ and recall $(\mathrm{R})$ and F-score for combinations of pairs of taggers, with and without TBR.

| Condition | Tagset | TBR | P | R | F-score |
| :--- | :--- | :---: | :---: | :---: | :---: |
| At least two taggers agree | Coarse-grained | $\times$ | $95.1 \%$ | $93.5 \%$ | 0.943 |
|  |  | $\sqrt{ }$ | $98.4 \%$ | $97.8 \%$ | 0.981 |
|  | Fine-grained | $\times$ | $90.7 \%$ | $87.8 \%$ | 0.892 |
|  |  | $\sqrt{ }$ | $92.8 \%$ | $90.5 \%$ | 0.916 |
| All three taggers agree | Coarse-grained | $\times$ | $99.5 \%$ | $83 \%$ | 0.905 |
|  |  | $\sqrt{ }$ | $\mathbf{9 9 . 9} \%$ | $90.9 \%$ | 0.952 |
|  | Fine-grained | $\times$ | $99.1 \%$ | $77.8 \%$ | 0.871 |
|  |  | $\sqrt{ }$ | $\mathbf{9 9 . 2} \%$ | $79.8 \%$ | 0.885 |

Table 4.4: Precision $(\mathrm{P})$ and recall $(\mathrm{R})$ and F-score for combinations of three taggers, with and without TBR.

The cost, of course, is that the recall goes down, because there are places where they disagree, and in these cases no tag is assigned. What should we do in such cases?

### 4.2.2.1 Backoff strategies

Our first proposal was to take the majority view when at least two of the taggers agreed, and to backoff to one or other when there was no common view (Zeman and Žabokrtskỳ, 2005). The results of this are shown in Table 4.5 where column 'AMIRA' shows the result of backing off to AMIRA when there is no majority view, column 'MADA' shows the result of backing off to MADA and column 'MXL' shows the result of backing off to MXL. The results for the coarse-grained tagset are markedly better than for any of the taggers individually, though there is only a very slight improvement over the original MADA scores for the fine-grained set. Interestingly, the
best results are obtained by backing off to MXL rather than to AMIRA or MADA ( $98.2 \%$ vs. $97.5 \%$ or $97.9 \%$, despite the fact that MADA's individual performance is better than MXL's ( $96.7 \%$ vs. $95.6 \%$ ) (the results in this table and in Table 4.7 are for accuracy rather than precision or recall because under this approach every item receives a tag).

| Tagset | TBR | Majority voting, backoff to |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  | AMIRA | MADA | MXL |
| Coarse-grained | $\times$ | $92.3 \%$ | $93.8 \%$ | $94.9 \%$ |
|  | $\sqrt{ }$ | $97.5 \%$ | $97.9 \%$ | $\mathbf{9 8 . 2 \%}$ |
| Fine-grained | $\times$ | $87.5 \%$ | $88.8 \%$ | $89.6 \%$ |
|  | $\sqrt{ }$ | $90.6 \%$ | $91.5 \%$ | $91.8 \%$ |

Table 4.5: Backoff to AMIRA or MADA or MXL when there is no majority agreement.

The fact that backing off to any of AMIRA or MADA or MXL improved the performance suggested that it was worth investigating other backoff strategies. If majority vote + backoff to an arbitrary tagger is better than any single tagger in isolation, then perhaps there is something we can backoff to which will do even better.

We return to the observation that in cases where all three taggers disagree, at most one of them can be right. Given that they each employ different information about the material being tagged, it is likely that they are systematically prone to different kinds of errors.

We therefore collected statistics about the kinds of things they each get right. How likely, for instance, is AMIRA to be right when it assigns the tag DET+NNP? Table 4.6 shows an excerpt of this data, showing the likelihood that each tagger is right for a given assigned tag, e.g. for the given instance of the word الاسماعيلية AlAsmAৎylyћ "Ismailia" the correct tag was DET+NOUN_PROP (as in gold-standard): AMIRA suggested DET+NNP, MADA suggested DET+ADJ and MXL suggested DET+NOUN. Because AMIRA is right $100 \%$ of the time when it suggests DET+NNP, whereas MADA is right $97.5 \%$ of the time when it suggests DET+ADJ and MXL is right only $92.1 \%$ of the time when it suggests DET+NOUN, DET+NNP was chosen. For إلا AlA "except", MADA's suggestion of EXCEPT_PART was accepted because MADA is right $100 \%$ of the time when it suggests EXCEPT_PART, which is better than the reliability of either of the other suggestions. For غير $\gamma y r$ "other than", MXL’s suggestion of NEG_PART was accepted because MXL is right $98.2 \%$ of the time when it suggests NEG_PART, which is better than the reliability of either of the other suggestions.

| Word | Gold-standard | Tagger | Tag (confidence) | Result |
| :---: | :---: | :---: | :---: | :---: |
| AlAsmA¢yly | DET+NOUN_PROP | AMIRA | DET+NNP (100.0) | DET+NOUN_PROP |
|  |  | MADA | DET+ADJ (97.5) |  |
|  |  | MXL | DET+NOUN (92.1) |  |
| ǍlA | EXCEPT_PART | ${ }^{-} \bar{A} \bar{M} I \bar{R} \bar{A}$ | $\overline{\mathrm{RP}} \overline{\text { (7.9 }}$ - ${ }^{\text {c }}$ | EXCEPT_PART |
|  |  | MADA | EXCEPT_PART (100.0) |  |
|  |  | MXL | SUB_CONJ (96.5) |  |
| $\gamma y r$ | NEG_PART | ${ }^{-} \bar{A} \bar{M} I \bar{R} \bar{A}$ | $\overline{\mathrm{RP}} \overline{(8.1)}$ | NEG_PART |
|  |  | MADA | NOUN (97.9) |  |
|  |  | MXL | NEG_PART (98.2) |  |
| $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\ldots$ |

Table 4.6: Confidence levels for individual tags.

Using this strategy for choosing what to do when all three taggers make different suggestions produces the results in Table 4.7. ${ }^{7}$ The 'MC' column reports the results when we simply chose the most confident proposal (henceforth referred to as most confident 'MC'), whereas for 'backoff unless two agree' we took the majority verdict if two of the taggers agreed and the most confident if all three gave different results.

| Tagset | TBR | backoff unless two agree | MC |
| :--- | :---: | :---: | :---: |
| Coarse-grained | $\times$ | $95.7 \%$ | $97.3 \%$ |
|  | $\sqrt{ }$ | $99.2 \%$ | $\mathbf{9 9 . 5} \%$ |
| Fine-grained | $\times$ | $93.2 \%$ | $95.6 \%$ |
|  | $\sqrt{ }$ | $94.5 \%$ | $\mathbf{9 6 \%}$ |

Table 4.7: Backoff to most confident tagger.

The results in Table 4.7 are both surprising and compelling. Simply taking the most confident of the three taggers produces $99.5 \%$ accuracy for the coarse-grained set, which is going to be hard to beat by much, and even for the fine-grained set it produces $96 \%$. This improves over taking the majority verdict when at least two of the contributing taggers agree and backing off to the most confident one where there is no agreement, ${ }^{8}$ and it beats each of the individual taggers by a fairly wide margin-the original error by MADA of $3.3 \%$ for the coarse-grained set has been reduced to $0.5 \%$, a nearly sevenfold reduction.

[^26]In order to make the previous results clearer, let us consider the Arabic sentence in (4.1), which is taken from the gold-standard corpus.
(4.1) Arabic sentence example from gold-standard corpus

wqd tjmऽ ऽšrwn lbnAnyA msyHyA bynhm nsA' wâTfal kAnwA frwA Alý AsrAŷyl bऽd AlAnsHAb AlAsrAy̌yly Alywm llSlAћ $\varsigma$ lý AlHdwd byn Albldyn. "Twenty Lebanese Christians already gathered, including women and children, who fled to Israel after the Israeli withdrawal today to pray on the border between the two countries."

Figure 4.4 summarises the results obtained by each tagger individually compared with the two techniques that are shown in Table 4.7 (i.e. 'backoff unless two agree' and 'MC') for the sentence (4.1). For this sentence, MXL gives better accuracy than both AMIRA and MADA ( $88.5 \%$ vs. $84.6 \%$ for other two taggers). Interestingly, the MC technique gives full accuracy $100 \%$. This result is better than each tagger in isolation and the 'backoff unless two agree' technique, which gives the same accuracy as the best tagger (i.e. MXL, 88.5\%). As can be seen in Figure 4.4, for instance, the correct tag for the tokens بين byn "between" and بعد b ${ }^{\text {بين }}$ " "after" is PREP (as in goldstandard corpus). The 'backoff unless two agree' technique gives an incorrect result (i.e. NOUN) because both AMIRA and MADA identify this token as noun, whereas the MC technique gives the correct result (i.e. PREP) because MXL identifies it as a preposition and it has a more confident score than AMIRA and MADA (98.7 vs. 72.6 and 86.2 respectively). According to our observation, we found out that most confident tagger gives better results than the agreement in most cases when two taggers agree and backoff to which ever tagger is more confident (which may be one of these or may be the other one).

In Section 4.2, we have shown a rather simple mechanism for combining taggers which can provide considerable improvements in accuracy. If you measure the likelihood that a tagger is right when it suggests a particular tag, and then take the suggestion with highest score in each case then you can decrease the error rate substantially. The key is that the different taggers tend to make different systematic mistakes. The accuracy statistics capture these systematic mistakes, so a low score is likely to reflect a case where the tagger is making one of its characteristic errors, and in such cases we take the output of one of the others. This simple approach outperforms strategies

| Goldstandard token | Gold- <br> standard <br> tag | AMIRA | MADA | MXL | backoff unless two agree | MC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| w | CONJ | CC (98.3) | CONJ (98.2) | CONJ (99.3) | CONJ | CONJ |
| qd | VERB_PART | RP (1.3) | VERB_PART (100.0) | VERB_PART (100.0) | VERB_PART | VERB_PART |
| tjms | PV | VBD (92.3) | PV (96.8) | IV (91.2) | PV | PV |
| ¢šrwn | NUM | NNCD (98.9) | NOUN_NUM (94.6) | NUM (98.5) | NUM | NUM |
| lbnAnyA | NOUN | NN (72.6) | NOUN (86.2) | NOUN_PROP (84.9) | NOUN | NOUN |
| msyHyA | ADJ | JJ (85.8) | ADJ (94.2) | NOUN (89.8) | ADJ | ADJ |
| byn | PREP | NN (72.6) | NOUN (86.2) | PREP (98.7) | NOUN | PREP |
| hm | PRON | PRP (99.9) | POSS_PRON (95.7) | PRON (99.8) | PRON | PRON |
| nsA' | NOUN | NN (72.6) | NOUN (86.2) | NOUN (89.8) | NOUN | NOUN |
| w | CONJ | CC (98.3) | CONJ (98.2) | CONJ (99.3) | CONJ | CONJ |
| ÂTfAl | NOUN | NN (72.6) | NOUN (86.2) | NOUN (89.8) | NOUN | NOUN |
| kAnwA | PV | VBD (92.3) | PV (96.8) | PV (97.3) | PV | PV |
| frwA | PV | VBD (92.3) | PV (96.8) | PV (97.3) | PV | PV |
| Alý | PREP | IN (98.8) | PREP (98.9) | PREP (98.7) | PREP | PREP |
| Asrŷyl | NOUN_PROP | NNP (91.9) | NOUN_PROP (98.8) | NOUN_PROP (84.9) | NOUN_PROP | NOUN_PROP |
| bsd | PREP | NN (72.6) | NoUN (86.2) | PREP (98.7) | NOUN | PREP |
| AlAnsHAb | DET+NOUN | DET+NN (92.8) | DET+NOUN (97.7) | DET+NOUN (90.0) | DET+NOUN | DET+NOUN |
| AlAsray̌yly | DET+ADJ | DET+NN (92.8) | DET+ADJ (96.2) | DET+ADJ (94.7) | DET+ADJ | DET+ADJ |
| Alywm | DET+NOUN | DET+NN (92.8) | DET+NOUN (97.7) | DET+NOUN (90.0) | DET+NOUN | DET+NOUN |
| 1 | PREP | IN (98.8) | PREP (98.9) | PREP (98.7) | PREP | PREP |
| AlSlA $\hbar$ | DET+NOUN | DET+NN (92.8) | DET+NOUN (97.7) | DET+NOUN (90.0) | DET+NOUN | DET+NOUN |
| ¢lý | PREP | IN (98.8) | PREP (98.9) | PREP (98.7) | PREP | PREP |
| AlHdwd | DET+NOUN | DET+NN (92.8) | DET+NOUN (97.7) | DET+NOUN (90.0) | DET+NOUN | DET+NOUN |
| byn | PREP | NN (72.6) | NOUN (86.2) | PREP (98.7) | NOUN | PREP |
| Albldyn | DET+NOUN | DET+NNS (95.7) | DET+NOUN (97.7) | DET+NOUN (90.0) | DET+NOUN | DET+NOUN |
| . | PUNC | PUNC (100.0) | PUNC (100.0) | PUNC (100.0) | PUNC | PUNC |
| Accuracy |  | 84.6\% | 84.6\% | 88.5\% | 88.5\% | 100\% |

Figure 4.4: Comparing basic taggers and combination strategies for Arabic sentence in (4.1).
involving more subtle ways of combining the individual taggers, e.g. by taking the majority preference in cases where one exists. This is likely to be because two of the taggers (AMIRA and MADA) use very similar information, and hence where they make systematic mistakes they are likely to make the same systematic mistakes. In such cases they will tend to agree, and hence would outvote MXL as suggested by the precision results in Table 4.4. The simple mechanism we have used provides a built-in resilience against this tendency.

In every case, including TBR makes a useful contribution. Again, TBR is most effective when the base tagger makes systematic errors. The version of TBR that we are using includes extra templates looking at the first three and last three letters of words in addition to the standard word-based templates. These extra templates pay attention to prefixes and suffixes, which carry much more information than is the case for English (where TBR has been most extensively applied).

The bottom line is that for the tagset in Figure 4.2 we can obtain $99.5 \%$ accuracy when tagging freely occurring Arabic. It is going to be hard to improve substantially
on this score. Given that Marton et al. $(2010,2013)$ have argued that coarse-grained tagsets are actually more useful than fine-grained ones for parsing, which is the usual next step in the chain, we are fairly satisfied with this result.

### 4.3 Dependency parsing

In recent years, dependency parsing has become widely used in machine translation (MT), question answering (QA), relation extraction and many other NLP applications (Kübler et al., 2009) for a number of reasons:

- It provides uniform treatments for a wide range of typologically different languages, since it hides differences that arise from different surface word orders and emphasises the functional relations between words, which tend to be similar across languages.
- It can be useful for semantics. It supports compositional semantics, since it can be easier to attach compositional rules directly to lexical items than to assign them to large numbers of phrase structure rules; and it supports less formal approaches to semantics, e.g. via TE, since it is easier to generalise dependency trees as the basis of approximate inference rules than to use phrase structure rules for this purpose.
- It is possible to induce robust and fairly accurate dependency parsers, e.g. MSTParser and MALTParser (see Section 3.4.2.2), from treebanks of suitably annotated dependency trees.

Recall that our ultimate goal is to develop a TE system for Arabic (Alabbas, 2011). An efficient technique to check entailment between two sentences is using TED matching between dependency trees for the two sentences. We therefore need to be able to obtain dependency trees by parsing input Arabic texts, and hence we need dependency treebanks for training our dependency parsers (i.e. MSTParser and MALTParser with various parsing algorithms). We used here MSTParser 0.2 (i.e. uses second-order edge features) and MALTParser 1.7.1.

### 4.3.1 Arabic treebanks

The focus of the current section is on the nature of the training data. Dependency grammar is a general framework, with a myriad major and minor variations. The
distinctions between different versions of dependency grammar are usually debated in terms of their linguistic adequacy, but it is likely that different sets of dependency relations will produce different levels of accuracy when used for inducing parsers. In particular, we want to investigate the effects of different ways of turning the phrase structure trees in the PATB, which is the largest easily available set of training data for Arabic, into dependency trees.

The four best-known Arabic treebanking efforts are the PATB (Maamouri and Bies, 2004), the Prague Arabic dependency treebank (PADT) (Smrž et al., 2008), Columbia Arabic treebank (CATiB) (Habash and Roth, 2009) and Quranic Arabic treebank (Dukes et al., 2013). PATB is a phrase structure treebank, whereas the others are dependency treebanks. PATB and PADT are annotated with rich morphological information, very fine-grained POS tags, semantic roles, diacritisation and lemmas. This allows these treebanks to be used for training different NLP applications (e.g. tokenisation, POS tagging, diacritisation, morphological disambiguation and others) as well as parsing (Habash and Roth, 2009). In contrast, much of the detailed morphological and POS information is not provided in CATiB. The use of any of these treebanks as training data raises problems:

- The trees in PATB are phrase structure trees, and hence are not directly useable for training dependency parsers.
- PADT uses very fine-grained POS tags, and there is no readily available tagger for assigning PADT labels. ${ }^{9}$
- CATiB uses a very coarse-grained set of just six POS tags (i.e. nom 'non-proper nominals including nouns, pronouns, adjectives and adverbs', PROP 'proper nouns', VRB 'active-voice verbs', VRB-PASS 'passive-voice verbs', PRT 'particles such as prepositions or conjunctions' and PNX 'punctuation') (Habash and Roth, 2009). In particular, all verbs are grouped under a single heading (i.e. VRB), with no distinction between present and past; and all nominals are also grouped together (i.e. NOM), with no distinction between nouns or numbers, or even between definite and indefinite forms. Other researchers have noted that dependency parsers can cope with very coarse-grained POS tags, but the loss of this information makes the trees in CATiB unsuitable for our underlying goal of inferring TE rules from trees.

[^27]- Quranic Arabic treebank provides three levels of analysis: morphological annotation, a syntactic treebank and a semantic ontology. This treebank contains classical Arabic, which is the only language of the Quran and Sunna (prophetic traditions). It is the direct ancestor language of MSA, which is the language that is used in most current government communications, media, news, publications, books, etc. This treebank is unsuitable for our purposes because the vocabulary, and to a lesser extent the grammatical structure, does not correspond to the news articles from which we have obtained our $T-H$ pairs.

Of the four, PATB seemed most suitable for our purposes, since we have taggers that can assign the tags used in PATB and the information it contains is what we need for inferring TE rules. We therefore need to convert PATB trees to dependency trees, which we do by using the standard phrase structure to dependency transformation algorithm (given in Figure 4.5), using a percolation table to choose the head daughter in the phrase structure tree.

This raises an interesting question: since PATB does not explicitly embody a notion of the 'head' of a tree, we have some freedom about how to construct the percolation table. Should the head of an NP be the main noun or the determiner? Should the head of a verbless sentence be the subject or the predicate? Should the head of a conjoined phrase be the conjunction itself or the head of the first conjunct?

There are theoretical grounds for choosing one way of answering these questions rather than another, but they also have empirical consequences. It seems likely that one set of choices will provide the parsers with a more easily recognisable set of dependency relations than another. It may turn out that the parsers perform best with a set of trees that were obtained using a theoretically unappealing percolation table (e.g. we will see in Section 4.3.1.1.1 that choosing the first conjunct of a conjoined pair produces better results than choosing the conjunction itself, but it is much easier to obtain a formal interpretation from trees where the conjunction is the head (Gazdar, 1980)). It is, however, a straightforward matter to transform trees that are based on one notion of conjunction to ones based on another, so from a practical point of view we want to find the percolation table that allows the parsers to produce the most accurate results.

### 4.3.1. 1 From PATB to dependency trees

We used PATB Part 1 v3.0 as a resource that provides us with annotations of Arabic at different levels of structure (at the word, the phrase and the sentence levels).

PATB is annotated for POS tag, morphological disambiguation and for syntactic structure. It also provides diacritisations, empty categories, some semantic tags and lemma choice. Because PATB is already tagged, the effects of lexical ambiguity are substantially reduced-we know which items are nouns and which are verbs, and we know about the clitics that have been attached to them. We still have no information about transitivity, which is itself a problem for parsing, but the gross lexical ambiguity that is brought about by the lack of diacritics in modern standard Arabic (MSA) has been eliminated. The PATB includes 734 stories representing 145,386 words ( 166,068 tokens after clitic segmentation; the number of Arabic tokens is 123,796 ). The sentences in PATB, which contains just over 5000 phrase structure trees, are fairly long-the average sentence length is around 28 words per tree, with some trees containing 100+ words.

Converting phrase structure trees to dependency trees is a straightforward task, so long as (i) you can identify the item in each subtree which contains the head; and (ii) there are no constructions with zero-heads. Assuming that these two conditions hold, the algorithm in Figure 4.5 will convert a phrase structure tree to a dependency tree.

```
1. If you are looking at a leaf node, turn it into a tree with no
 daughters.
2. a). Otherwise, choose the subtree which contains the head: turn
 it into a dependency tree: call this D.
 b). Turn all the other subtrees into dependency trees, and add
 them as daughters of D.
```

Figure 4.5: From phrase structure trees to dependency trees.

The only difficult part of this algorithm, which has been discussed by Xia and Palmer (2001), is the selection of the subtree which contains the head. The approach we have taken to this task is to look for all the trees headed by a given label, and find all the labels for their subtrees. This gives us a list of labels for potential head daughters for each non-terminal label (a 'head percolation table' (Collins, 1997)). We then order these in terms of candidacy for being the head daughter, in terms of what we believe to be the correct dependency structure, and we use this preference order for 'choose the subtree which contains the head: turn it into a dependency tree' in the above algorithm. For instance, in the head percolation table the entry (S left VP) means that the head child of an $S$ is the first child of the $S$ from the left with the label VP.

Here, the head percolation table is semi-automatically generated from PATB by
grouping the related tags in one tag and then finding the possible heads for each one. After that, for each table's entry we order the possible heads manually according to its priority. ${ }^{10}$ Then, the above algorithm is used to generate the dependency tree recursively. We used six dependency relations as an initial step to construct our treebank. These relations are: SBJ 'subject', OBJ 'object', ROOT 'root', COORD 'coordinate', PX 'punctuation' and DEP 'dependent'.

There are, however, a number of problems that arise when applying this algorithm to PATB:

- Very large numbers of Arabic sentences begin with the conjunction $+\mathrm{g} w+$ "and". The most plausible reading is that this item implicitly conjoins the first clause in the current sentence to the previous sentence, and hence should be taken as its head. This clashes with the treatment in the PATB, where the conjunction is taken to be the head of the whole sentence. This makes a difference in cases where the sentence has the general form CONJ $S_{1}$ CONJ $S_{2}$ CONJ ... CONJ $S_{n}$, where we bracket it as CONJ ( $S_{1}$ CONJ $S_{2}$ CONJ ... CONJ $S_{n}$ ) and the PATB brackets it as (CONJ $S_{1}$ ) CONJ $S_{2}$ CONJ $\ldots$ CONJ $S_{n}$. There are a surprising number of such cases, and the rebracketing makes a noticeable difference to parsing accuracy. We therefore have to restructure these trees, and we also mark sentence-initial + , w+ "and" with a special tag (i.e. ICONJ) to prevent the parsers confusing it with more normal conjunctive uses of this item. By doing this, the parser's accuracy is improved by around $0.4 \%$ as shown in Section 4.3.1.1.1.
- The PATB deals with free word-order by using traces, where the function of an extraposed item is co-indexed with an item whose label indicates whether it is a subject or object, as shown in Figure 4.6, where the relative pronoun اللذان All*An "who (3rd.masc.du)" is co-indexed with a trace which is itself taken to be the subject of يساهمان $y+s A h m+A n$ "contribute to (3rd.masc.du)".

This does not really make sense within a dependency-based framework. The use of traces is antithetical to the basic idea of dependency grammar, namely that syntactic structure is determined by relations between words: a trace is not a word, and as such has no place in dependency grammar, at least as strictly conceived (e.g. Hudson, 1984). We therefore systematically transform the PATB so that traces are eliminated, with the topicalised NP treated as a proper constituent of the sentence,

[^28]```
[S [S [CONJ w-]
    [VP [VERB -gyr]
    [NP-SBJ [NP [DET+NOUN Al+mSrf+An]]
            [PUNC ,]
            [SBAR [WHNP-1 [REL_PRON All*An]]
                    [S [VP [VERB y+sAhm+An]
                                    [NP-SBJ-1 [-NONE- *T*]]
                                    ...]]]]]]]
```

Figure 4.6: Phrase structure tree with trace.
e.g. in Figure 4.6 the relative pronoun اللذان All 1 An "who" is taken to be a dependent (as subject) of يساهمان $y+S A h m+A n$ "contribute to" despite appearing higher in the original phrase structure tree.

- Arabic allows 'verbless' or 'equational' sentences, consisting of an NP and some kind of predication (another NP, a PP, an adjective) (Alabbas, 2011; Attia, 2012). It is tempting to think of these constructions as containing a zero-copula (the fact that their negated and past forms do include an explicit copula supports this analysis). As noted above, we prefer to eliminate empty items, especially heads.

The standard treatment of such sentences assumes that the predication is the head, largely on semantic grounds. This is almost certainly the right thing to do, but given that the parsers we are using exploit clues extracted from the local context to guide their decisions, it seemed worth investigating the effects of choosing either the subject or the predication as the head-if it turns out the parsers can more reliably assign labels when the subject is the head, we can easily transform the resulting dependency tree to the more normal form once it has been constructed. Over a number of experiments, it turns out that there is around a 2% overall increase in accuracy if the subject is taken to be the head (Alabbas and Ramsay, 2012a). We therefore make this unintuitive switch-if we can identify the constituents of a verbless sentence more easily by taking the subject as the head, then the extra cost of inverting this move later seems well worth paying.

- The PATB uses a very fine-grained set of tags (305 tags), which carry a great deal of syntactically relevant information (particularly case-marking). Because of the difficulty of accurately assigning tags from this fine-grained tagset, we collapsed this set to a coarse-grained set with 39 distinct tags as we explained before in Section 4.2.1 (gold-standard tags), as suggested by Marton et al. (2010, 2013).

The dependency trees to be used by the parsers also have to be labelled with functional relations. Since dependency grammar is entirely concerned with relations between words, any information beyond simple constituency has to be encoded in the labels on the relations. Such relations tend not be explicitly marked in phrase structure trees, since they are often implied by the label of the local tree (to put it simply, it is not necessary to mark the NP daughter of a sentence as its subject, because this is implicit in the rule that says that a sentence may be made out of an NP and a VP). We therefore have to impose a set of functional relations. We cannot use a very fine-grained set of labels here, because the information in PATB simply does not provide enough information. The only labels we can assign with any degree of confidence relate to conjunctions, and to the subject and object of the verb.

There is no consensus about the set of relations to be used in dependency grammar. Some authors, for instance, take it that the auxiliary dominates the verb it is associated with, while others take the opposite view. Similarly, coordinating conjunctions are sometimes treated as heads and sometimes as modifiers. We investigated three issues:

- Is the determiner or the noun the head of an NP? Where an NP contains a determiner, some theories (e.g. categorial grammar) treat the determiner as the head and others (e.g. generalised phrase structure grammar (GPSG) (Gazdar, 1985), head-driven phrase structure grammar (HPSG) (Pollard and Sag, 1994)) treat it as a dependent of the noun. Other frameworks take it be something more like a modifier. Arabic makes less use of determiners than some other languages, since there is no indefinite article and the definite article is treated as a part of the noun to which it is attached, but it does have numbers and demonstrative determiners, and choosing whether these are heads or dependents may make a difference.
- Is the subject or the predication the head of verbless sentences? Arabic verbless sentences are widely regarded as containing an invisible 'zero' copula. If the copula was present, it would be the head, but since it is missing then either the subject or the predication will have to be chosen. Which of these makes the parser perform better?
- What is the head of a conjoined phrase? The choice of how to deal with conjunctions in dependency grammar is widely disputed, with reasonable arguments being put forward on both sides. Some authors, for instance, take it that the coordinating conjunctions are treated as heads, whereas others treat them as modifiers.

These differences show up in PADT and CATiB. PADT considers the coordinating conjunction as the head of the conjunction and others depend on it, whereas CATiB considers the head of the first conjunct of a conjunction as the head of the coordinating conjunction, which in turn heads the second conjunct.

We will use the sentence in (4.2), from (Habash et al., 2009a), to highlight the differences between our conversion and the other Arabic dependency treebanks.
(4.2) Arabic sentence (Habash et al., 2009a)

"Fifty thousand tourists visited Lebanon and Syria last September"

As can be seen in Figure 4.7, ${ }^{11}$ our dependency tree is different from the others in the sentential part خمسون الف سائحxmswn Alf sA'H "Fifty thousand tourists", because we considered the NOUN as the head not NOUN_NUM and the others are dependent, whereas both PADT and CATiB considered the first NOUN_NUM as the head. Furthermore, we follow the CATiB treatment of the conjoined NP لبنان وسوريا lbnAn w+swryA "Lebanon and Syria", where the head is the first noun, with the conjunction as its sole daughter and the second noun as a daughter of the conjunction.

It should be noted that this treatment of conjunction cannot be obtained from the original PATB tree by the algorithm in Figure 4.5. The conjoined phrase لبنان وسوريا lbnAn w swryA "Lebanon and Syria" has three constituents-the conjunction and two NPs. Specifying that the conjunction has priority over any other constituent in the percolation table would produce the subtree given for this phrase in PADT. Specifying that the conjunction has lower priority than one of the NPs would produce a subtree with either سوريا lbnAn "Lebanon" (or possibly سونان swryA "Syria") as its head and the conjunction and the other noun as daughters. There is no way to get the conjunction as a daughter of لبنان lbnAn "Lebanon" and then سوريا swryA "Syria" as a daughter of the conjunction by using the algorithm in Figure 4.5. In order to obtain trees of this kind, we transform the original phrase structure tree so that structures of the form T_{1} become T_{2} in Figure 4.8. If we then assign DUMMY the lowest possible priority in the percolation table and CONJ the highest possible priority for the entry of DUMMY in the table we obtain CATiB-style trees for coordinated structures.

[^29]

Figure 4.7: Comparing PATB phrase structure and dependency format (without POS tags and labels) in PADT, CATiB and our preferred conversion for the sentence in (4.2).

T_{1}

T_{2}

Figure 4.8: Reconstruct coordinated structures.

We extend this treatment to cover cases where we have a complex coordinated expression where several of the conjuncts are linked by commas in addition to explicit conjunctions, converting phrase structure trees like the initial tree T_{1} in Figure 4.9 to the tree D_{1} in this figure instead of D_{2}. This is the treatment used in experiment (7) below.

4.3.1.1.1 Conversion results

To check the effectiveness of our conversion version of PATB to dependency tree format, we used it to train MSTParser and MALTParser with the default parsing algorithm (i.e. Nivre arc-eager), which we will refer to as MALTParser ${ }_{1}$. The aim here was to see how changes in the structure of the trees affect the performance of the parser:

Figure 4.9: Complex coordinated structures.
different ways of organising trees may be better or worse at capturing the regularities encapsulated in the original phrase structure trees, or they make the cues that the parser depends on easier or harder to see.

Large and complex Arabic sentences are used in training and testing the parser (some sentences in each set contain 100 or more words). Both parsers are trained on the first 4000 sentences and tested on 1000 different sentences. We examined eight different ways of converting phrase structure trees to dependency trees, in addition to two baselines. These variations were obtained by changing the priority of items in each entry in the percolation table, and by applying systematic transformations to PATB trees before converting them to dependency trees. The two baselines were obtained by selecting head daughters at random, and by reversing the percolation table that produced the best result when used normally.

The main experiments were as follows:

1. CONJ always has higher priority than anything else (so coordinating conjunctions are the head of the coordinated phrase), as in PADT; nouns have higher priority inside NPs than determiners (opposite of PADT and CATiB); the head of a verbless sentence is the subject (opposite of CATiB).
2. Same as (1), but sentence initial conjunctions are given a separate tag as ICONJ.
3. ICONJ, CONJ have lower priority than anything else: everything else as in (2).
4. Same as (2) but determiners have higher priority than nouns in NPs.
5. CATiB-style treatment of conjunctions (as discussed above). Everything else as in (2).
6. Same as (5) but determiners have higher priority than nouns in NPs.
7. Same as (5), but commas in coordinated expressions are not treated as though they were conjunctions (i.e. tree D_{1} in Figure 4.9, not tree D_{2}).
8. Same as (7), but the head of a verbless sentence is assumed to be its predication rather than its subject.

The labelled attachment score (LA), i.e. the percentage of tokens with correct head and dependency relation (DEPREL), ${ }^{12}$ and unlabelled attachment score (UA), i.e. the percentage of tokens with correct head (regardless of the DEPREL label), for the various transformations of PATB to dependency tree format are shown in Table 6.2.

\#	Items order for each entry in the head percolation table	MSTParser		MALTParser $_{1}$	
		LA	UA	LA	UA
	Random head (baseline 1)	20.2\%	20.6\%	19.3\%	19.7\%
	Inverse of best table, i.e. table (7) (baseline 2)	73.5\%	74.3\%	71.7\%	72.7\%
$\overline{1}$		$\overline{8} \overline{0} . \overline{1} \% \overline{\%}$	$\overline{8} \overline{1} .5 \%$	$\overline{7} \overline{9} . \overline{1} \% \overline{\%}$	$\overline{8} \overline{0} . \overline{4} \%$
2	Split CONJ into CONJ and ICONJ	80.5\%	81.9\%	79.4\%	80.7\%
3	ICONJ, CONJ have lowest possible priority	80.8\%	82.2\%	79.7\%	80.9\%
4	Same as (3) but determiners above nouns in NPs	80.3\%	81.7\%	79.3\%	80.2\%
5	Same as (2) but CATiB-style conjunctions	82.5\%	83.9\%	81.3\%	82.2\%
6	Same as (5) but determiners above nouns in NPs	82.3\%	83.7\%	81.1\%	81.9\%
7	Same as (5) but commas in conjunctions not treated as conjunctions (i.e. tree D_{1} in Figure 4.9, not tree D_{2})	82.8\%	84.2\%	81.5\%	82.6\%
8	Same as (7) but head of verbless sentence is predication	82.3\%	83.8\%	81.2\%	81.0\%

Table 4.8: LA and UA accuracies for parsing, different head percolation table entry orders and treatments of coordination.

Varying the treatments of conjunction, NPs and verbless sentences can affect the performance of MSTParser by around 2.7% compared with around 2.4% for MALTParser $_{1}$. The individual changes are not dramatic, but then each such change only affects one set of relations: there are, for instance, only around 800 determiners in the test set, out of a total of just over 25000 words. So if every instance of a determiner was labelled correctly in (3) and incorrectly in (4) there would only be a 3%

[^30]difference in the total score, so the actual swing of about 0.5% between these two cases for both parsers is quite significant.

The results of the experiments in Section 4.3.1.1.1 show that changing the rules for converting phrase structure trees to dependency trees can affect a parser's accuracy even with the same parser and the same training and testing data. For MSTParser, we obtained LA of 82.8% and UA of 84.2% for the head percolation table version (7) with CATiB-style treatment of conjunction, compared with LA ranging from 80.1% to 82.5% and UA from 81.5% to 83.9% for other percolation tables and treatments of conjunction. For MALTParser ${ }_{1}$, we obtained LA of 81.5% and UA of 82.6% for the same head percolation table, compared with LA ranging from 79.1% to 81.5% and UA from 80.2% to 82.2% for other percolation tables and treatments of conjunction. As noted in Table 6.2, both parsers give better results for the head percolation table version (7), which is explained in Figure 4.10, with preference to MSTParser for all eight versions. It may be that one form of tree captures the underlying regularities better than another, or it may be that one form makes the contextual clues more visible to the parser than another. Consider, for instance, the coordinated expression in (4.2): the association between the verb z زاروا $z A r w A$ "visit" and the name لبنان lbnAn "Lebanon" is likely to be stronger than that between the verb and \boldsymbol{g} "and", so the link between the verb and the name is more likely to be learnt and retrieved when the dependency trees are structured as in CATiB than the link between the verb and the conjunction would be if the trees followed the PADT approach to conjunction.

Where two dependency formats are intertranslatable (e.g. taking either the subject or the predicate to be the head of an equational sentence), then it makes sense to use the version which produces the optimal parser output, since under these circumstances it can be translated to the alternative if that seems preferable for some task. In particular, transforming coordinated expressions so that the first conjunct becomes the head is reversible, even in cases like 'young men and women' which have multiple interpretations "(young men) and women" or "young (men and women)". Converting the first of these so that 'men' becomes the head leaves 'young' and 'and' as daughters, whereas the second will have 'and' as the sole daughter of 'man', and 'young' and 'women' as daughters of 'and'. If the new tree is appropriately labelled then there is no problem with re-transforming it back to the original.

Tag	Possible head(s)
S	PV, IV, IV_PASS, VP, S-NOM-SBJ, PART, SQ, SBAR, S, NP, PP, ICONJ,
	CONJ
NP	NP, NOUN, DET+NOUN, NOUN_PROP, NUM, PRON, REL_PRON, ABBREV,
	DEM_PRON, ADJ, DET+ADJ, PART, SBAR, ICONJ, CONJ
VP	IV, FUT+IV, PV, VP, S-NOM-OBJ, IV_PASS, PV_PASS, CV, PART, NOUN,
	DET+NOUN, NP, NO_FUNC, ADJ, DET+ADJ, ICONJ, CONJ

Figure 4.10: Head percolation table version (7).

Figure 4.11, for instance, shows the final MSTParser's accuracy results (when the head percolation table (7) is used) for the coarse-grained POS tags (CPOSTAGs) ${ }^{13}$ that were obtained by CoNLL-X evaluation script, ${ }^{14}$ which evaluates a parser output with respect to a gold-standard. This figure shows UA and LA for each class of word, where column 3 ('right head': UA) shows how many times words of that class have been assigned as daughters in links with the right head, column 5 ('right DEPREL')

[^31]shows how many times words of the class have been assigned as daughters in links with the right label, and column 7 ('both right': LA) shows how many times they have been assigned the right head and the right label. ${ }^{15}$ The most striking thing about this table is the score for prepositions: these are common (12% of the total number of words) and the parser does very poorly at finding their heads (73% UA). This is unsurprising, since getting the right head for a preposition is equivalent to solving the PP-attachment problem, which is notoriously difficult. In general, we need very large amounts of training data before straightforward statistical techniques can detect the lexical patterns that underly successful strategies for PP-attachment.

4.3.2 Individual parsers

Once we had converted the PATB to dependency tree format, we used it to carry out a range of experiments with MSTParser and MALTParser ${ }_{1}$. In the following experiments, we will use the head percolation table version (7) to convert the PATB to dependency trees.

Default features are used for both parsers except adding feature model -F 'ara.par' for training MALTParser ${ }_{1}$, which gives us a slight improvement on the parsing accuracy. First, we were particularly interested in how the accuracy of the parsers varied with the size of the training set. Our dataset is reasonably large (5000 sentences), but there is always a concern that using an even larger training set will lead to improved performance. We therefore trained the parsers on a series of training sets of increasing size, in order to see how the size of the training set affected the parsers' performance, and to estimate the asymptotic accuracy. Both parsers were trained on 16 datasets, starting with 250 sentences and incrementing by 250 sentences up to a maximum of 4000 sentences. These training sentences represent the first 4000 sentences in our dataset. During the training step, both parsers took (for some training datasets) a few hours, but on average MSTParser is faster than MALTParser ${ }_{1}$. In the testing step, the same 1000 sentences, which represent the last 1000 sentences in our dataset, are used to test both parsers after each training step on one of the training datasets. Both parsers took a few minutes for the testing step, with MSTParser running noticeably faster than MALTParser $_{1}$. Table 4.9 explains the average length of sentence and the maximum length of sentence, in terms of words, for each training and testing dataset.

[^32]| Accuracy | words | right head
 (UA) | $\%$
 right
 DEPREL | $\%$ | both
 (LA) | right | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| total | 25643 | 21590 | 84% | 24013 | 94% | 21231 | 83% |
| NOUN | 4459 | 3719 | 83% | 3898 | 87% | 3591 | 81% |
| PREP | 4075 | 2981 | 73% | 4005 | 98% | 2979 | 73% |
| DET+NOUN | 3567 | 3210 | 90% | 3209 | 90% | 3080 | 86% |
| NOUN_PROP | 2462 | 2142 | 87% | 2282 | 93% | 2107 | 86% |
| DET+ADJ | 2023 | 1819 | 90% | 1929 | 95% | 1818 | 90% |
| PV | 1447 | 1302 | 90% | 1424 | 98% | 1302 | 90% |
| CONJ | 967 | 704 | 73% | 966 | 100% | 704 | 73% |
| ADJ | 927 | 757 | 82% | 846 | 91% | 753 | 81% |
| NUM | 786 | 653 | 83% | 755 | 96% | 649 | 83% |
| ICONJ | 750 | 721 | 96% | 745 | 99% | 721 | 96% |
| IV | 746 | 596 | 80% | 712 | 95% | 583 | 78% |
| SUB_CONJ | 700 | 617 | 88% | 698 | 100% | 617 | 88% |
| DET+NOUN_PROP | 514 | 444 | 86% | 457 | 89% | 434 | 84% |
| POSS_PRON | 495 | 446 | 90% | 457 | 92% | 436 | 88% |
| PRON | 373 | 328 | 88% | 340 | 91% | 319 | 86% |
| REL_PRON | 318 | 307 | 97% | 315 | 99% | 307 | 97% |
| DEM_PRON | 194 | 183 | 94% | 187 | 96% | 181 | 93% |
| NEG_PART | 175 | 138 | 79% | 160 | 91% | 138 | 79% |
| ADV | 128 | 90 | 70% | 122 | 95% | 89 | 70% |
| NO_FUNC | 109 | 66 | 61% | 99 | 91% | 64 | 59% |
| FUT+IV | 78 | 63 | 81% | 74 | 95% | 63 | 81% |
| PVSUFF_DO | 76 | 76 | 100% | 72 | 95% | 72 | 95% |
| VERB_PART | 71 | 70 | 99% | 71 | 100% | 70 | 99% |
| ABBREV | 56 | 41 | 73% | 56 | 100% | 41 | 73% |
| IVSUFF_DO | 46 | 45 | 98% | 41 | 89% | 41 | 89% |
| REL_ADV | 27 | 23 | 85% | 26 | 96% | 23 | 85% |
| PART | 25 | 17 | 68% | 23 | 92% | 17 | 68% |
| DET | 14 | 11 | 79% | 14 | 100% | 11 | 79% |
| EXCEPT_PART | 16 | 10 | 63% | 13 | 81% | 10 | 63% |
| FOCUS_PART | 10 | 5 | 50% | 9 | 90% | 5 | 50% |
| INTERJ | 5 | 3 | 60% | 4 | 80% | 3 | 60% |
| INTERROG_PART | 2 | 1 | 50% | 2 | 100% | 1 | 50% |
| CV | 1 | 1 | 100% | 1 | 100% | 1 | 100% |
| SUB | 1 | 1 | 100% | 1 | 100% | 1 | 100% |
| | | | | | | | |

Figure 4.11: MSTParser's UA and LA by POS tag.

Dataset(s)	Average sentence length	Maximum sentence length
250	33	109
500	33	107
$750-1000$	33	121
$1250-4000$	28	127
Test dataset (1000)	34	134

Table 4.9: The average length of sentence and the maximum length of sentence for each training and testing dataset.

Figures 4.13 and 4.12 illustrate LA and UA excluding punctuation for training set of increasing size (i.e. all 16 datasets) and for MSTParser and MALTParser ${ }_{1}$ respectively.

Figure 4.12: MSTParser, LA and UA for testing 1000 sentences for different training dataset sizes, gold-standard tagging.

Figure 4.13: MALTParser ${ }_{1}$, LA and UA for testing 1000 sentences for different training dataset sizes, gold-standard tagging.

The accuracy curves for the two parsers are very similar, and it is notable that in both cases the accuracy for unlabelled trees is consistently about 2% better than for labelled trees. Both figures show exactly what you would expect: the accuracy of the parsers increases as the size of the training set increases. There is an initial sharp improvement, as the training set increases to about 1000 sentences, and then in both cases the improvement looks roughly linear in the size of the training set. This clearly cannot continue indefinitely-the accuracy must be capped at 100%, and presumably the actual limit is somewhere below that. However, since neither of the plots has become non-linear at the point where we were forced to stop training, it is impossible to estimate the asymptotic accuracy. The important thing to note is that the accuracy of the two parsers is of the same order of magnitude, but that the errors they make are not identical.

As noted in Figures 4.12 and 4.13, the parsers both work with labelled dependency trees, which we are interested in. However, for a number of tasks the constituency structure is all that is required. We have therefore compared the results when simply looking at whether the right head-dependent relations have been found 'UA' and at whether the right labels have been assigned to these relations 'LA'.

Figure 4.11, for instance, shows the overall accuracy for MSTParser over CPOSTAGs (when the training dataset is 4000 sentences, gold-standard tagging) that was obtained by CoNLL-X evaluation script, while Table 4.10 explains the total accuracy of CPOSTAGs resulted by using the same script for MSTParser and MALTParser $_{1}$.

Parser	Words	Right head (UA)	\%	Right DEPREL	\%	Both right (LA)	\%
MSTParser $^{\text {DEPA }}$	25643	21590	84%	24013	94%	21231	83%
MALTParser $_{1}$	25643	21188	83%	23836	93%	20901	82%

Table 4.10: Accuracy results for a total of CPOSTAGs.

The worst performance, for both parsers, comes with conjunctions and punctuation marks. The problem with conjunctions is that Arabic sentences very frequently begin with a conjunction but also contain other conjunctions, which seems to confuse the parsers. Punctuation marks are problematic because all punctuation marks are given the same tag in the PATB, even though they perform very different functions. As such, it is not surprising that they cause problems. Table 4.11 shows the five words where most errors occur.

Conjunctions	MSTParser				MALTParser $_{1}$			
	Any	Head	DEPREL	Both	Any	Head	DEPREL	Both
ف $f y$ "in"/PREP	315	315	22	22	328	328	26	26
$+g w+"$ and"/CONJ	249	249	0	0	232	232	1	1
$+J+$ "for"/PREP	171	170	10	9	158	157	9	8
mn"of/from"/PREP	157	156	6	5	149	148	8	7
$+b+$ "in"/PREP	137	137	9	9	140	140	9	9

Table 4.11: Five worst behaving words.

As noted, conjunctions are difficult to handle. The other items are all prepositions for which the head has been misidentified. This just shows that data-driven dependency parsing is not a solution to the perennial problem of PP-attachment.

4.3.2.1 Improve parsing

The results for individual parsers in isolation in Section 4.3.2 are still lower than what we aspire to. We therefore aim in the current section to investigate the evaluation of different strategies to improve parsing for Arabic by combining parsers, just as we improved tagging by combining taggers. To make our experiments more realistic, the PATB is retagged by using our MC tagger which achieved 99.5% accuracy compared with a gold-standard one with 39 coarse-grained tags. This gives us a version of the corpus, we called it PATB $_{M C}$ corpus, which is almost perfectly tagged (i.e. we used here combined strategy I, which is explained in Figure 4.1a).

In the current experiments we will use MSTParser and three parsing algorithms for MALTParser: MALTParser ${ }_{1}$, MALTParser ${ }_{2}$ using Stack swap-eager, which produces non-projective graphs, and MALTParser ${ }_{3}$ using Planar. As with the gold-standard corpus (see Figure 4.13 and Figure 4.12) the accuracy of the parsers increases as the size of training set increases by using the same 16 sizes of training sets that were used for gold-standard before. Also, MSTParser still works better than the others on these datasets. Therefore, in the remaining experiments in this section, we will concentrate on the LA of the parsers when the training set is 4000 sentences, which provides the highest accuracy for each parser. The highest accuracy for each parser is explained in Table 4.12 for PATB $_{M C}$ corpus with equivalent accuracy for the gold-standard corpus.

Parser	LA	
	Gold-standard	PATB $_{M C}$
MSTParser $^{\text {MALTParser }}$, , ivre arc-eager	82.8%	82.7%
MALTParser $_{2}$, Stack swap-eager	81.5%	81.4%
MALTParser $_{3}$, Planar	81.2%	81.1%
MAL $^{2} \%$	81%	

Table 4.12: Highest LA for MSTParser, MALTParser ${ }_{1}$ and MALTParser $_{2}$, goldstandard and PATB $_{M C}$ corpora.

Because of the ambiguity in Arabic, parsing is difficult and the accuracy is lower than for dependency parsing of many languages. It is thus even more important to find ways of making the best possible use of the available resources. As we have shown before, combining Arabic POS taggers gives better accuracy than each one in isolation. We therefore try here to see how best to combine the parsers. To achieve this goal, we used two approaches as explained below.

We will start our experiment with the three parsers: MSTParser, MALTParser ${ }_{1}$ and MALTParser $_{2}$. The first observation is that when the parsers agree on how to connect (i.e. head) and label (i.e. DEPREL) a given item they are more likely to be right than when they disagree. This is fairly obvious-as before, if you have a set of parsers which assign different head and DEPREL to an item then at least one of them must be wrong. Table 4.13 substantiates this observation-each row shows the precision, recall and Fscore for a particular pair of parsers simply taking cases where they agree and leaving words on which they disagree without head or DEPREL. Thus the combination of MSTParser and MALTParser ${ }_{1}$ achieves a precision of 89.4% and recall 72.1%. Table 4.14 shows what happens when we combine all three parsers, either taking the majority view when at least two of them agree or demanding that all three agree (i.e. MSTParser, MALTParser $_{1}$ and MALTParser ${ }_{2}$). In the latter case we obtain a precision of 92.3% and recall 67.2%.

Pair of parsers	P	R	F-score
MSTParser+MALTParser $_{1}$	89.4%	72.1%	0.799
MSTParser+MALTParser $_{2}$	89.8%	73.2%	0.807
MALTParser $_{1}+$ MALTParser $_{2}$	88.7%	71.8%	0.794

Table 4.13: Precision (P), recall (R) and F-score for combinations of pairs of parsers, PATB $_{M C}$ corpus.

Parser	P	R	F-score
At least two parsers agree	84.8%	$\mathbf{8 0 . 3 \%}$	$\mathbf{0 . 8 2 5}$
Three parsers agree	$\mathbf{9 2 . 3 \%}$	67.2%	0.778

Table 4.14: Precision (P), recall (R) and F-score for combinations of three parsers, PATB $_{M C}$ corpus.

It is notable that the precision on the cases where they agree is considerably higher than the accuracy of any parser in isolation. Furthermore, when we combine only two parsers, we find that the combination of MSTParser with other parsers gives better precision than the accuracy of either parser in isolation, while combining MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$ give lower precision, recall and F-score than other combinations of two parsers.

On the other hand, combining three parsers where they agree gives better precision than where at least two parsers agree and also for any combination of two parsers, but with low recall and F-score.

4.3.2.1.1 Backoff strategies

In order to improve the accuracy (not the precision only) of parsing, we applied three different combinations of experiments depending on voting. Our first proposal was to take the majority view when at least two of the parsers agreed, and to backoff to two different parsers (i.e. by taking the head from one parser and the DEPREL from the other one) when there was no common view (Zeman and Žabokrtskỳ, 2005). The second proposal is the same as the first one, except that we back off unless they all agree, rather than doing so if they all disagree. We back off to two different parsers by taking the head from one parser and the DEPREL from other one. The results of these two proposals are shown in Table 4.15.

The results of these experiments show that the first proposal gives better LA results than the second one and than the highest LA for all parsers in isolation for both PATB $_{M C}$ and gold-standard corpora. The second proposal, on the other hand, failed to achieve the highest LA for all in isolation parsers.

The third proposal was to take the majority view when two of the parsers agreed, and to backoff to the other parser (i.e. by taking both the head and the DEPREL from a different parser) when there was no common view. The results of this proposal are shown in Table 4.16.

Backoff to		LA	
Head	DEPREL	At least two agree	All agree
MSTParser	MALTParser $_{1}$	84.2\%	79.6\%
MSTParser	MALTParser $_{2}$	84.1\%	79.8\%
MALTParser $_{1}$	MSTParser	83.8\%	78.7\%
MALTParser $_{1}$	MALTParser $_{2}$	83.6\%	78.4\%
MALTParser $_{2}$	MSTParser	83.8\%	79.3\%
MALTParser $_{2}$	MALTParser $_{1}$	83.7\%	78.5\%

Table 4.15: LA of backoff to two parsers (MSTParser, MALTParser ${ }_{1}$ and MALTParser $_{2}$) using the first and the second proposals, PATB $_{M C}$ corpus.

Agree	Backoff to	LA
MSTParser+MALTParser $_{1}$	MALTParser $_{2}$	$\mathbf{8 3 . 8 \%}$
MSTParser+MALTParser $_{2}$	MALTParser $_{1}$	$\mathbf{8 3 . 7 \%}$
MALTParser $_{1}+$ MALTParser $_{2}$	MSTParser	$\mathbf{8 4 . 8 \%}$

Table 4.16: LA of backoff to other parser (MSTParser, MALTParser ${ }_{1}$ and MALTParser $_{2}$) where there is no agreement between two parsers, PATB $_{M C}$ corpus.

The results of this experiment show that the third proposal gives better results than the highest accuracy for all parsers in isolation for both PATB $_{M C}$ and gold-standard corpora (see Table 4.12). Also, the best result is generally obtained by combining MALTParser $_{1}$ and MALTParser ${ }_{2}$ parsers where they agree, backoff to MSTParser. This technique achieved 84.8%, which is the highest LA for all experimental results in the current thesis.

In the next experiments, we re-apply the previous three proposals for the three MALTParsers only (i.e. MALTParser ${ }_{1}$, MALTParser $_{2}$ and MALTParser ${ }_{2}$) to check if these proposals still give positive results. The results of these experiments are shown in Tables 4.17 and 4.18 respectively.

Again the results of first and third proposals give better results than the highest accuracy for all MALTParsers in isolation for both PATB $_{M C}$ and gold-standard corpora (see Table 4.12). Also, applying the first and third proposals for combining MSTParser with MALTParsers gives better improvement in results than applying the same two proposals for combining MALTParsers only.

In the next experiment, we used a new proposal that depends on majority vote + backoff to the most confident parser as well as only most confident parser instead of majority vote + backoff to an arbitrary parser, just as we did with the taggers.

Backoff to $_{c \mid}^{c \mid}$ LA			
Head	DEPREL	At least two agree	All agree
MALTParser $_{1}$	MALTParser $_{2}$	$\mathbf{8 2 \%}$	78.1%
MALTParser $_{1}$	MALTParser $_{3}$	$\mathbf{8 1 . 9 \%}$	77.8%
MALTParser $_{2}$	MALTParser $_{1}$	$\mathbf{8 2 . 8 \%}$	78.3%
MALTParser $_{2}$	MALTParser $_{3}$	$\mathbf{8 2 . 8 \%}$	78.1%
MALTParser $_{3}$	MALTParser $_{1}$	$\mathbf{8 1 . 8 \%}$	77.6%
MALTParser $_{3}$	MALTParser $_{2}$	$\mathbf{8 1 . 6 \%}$	77.2%

Table 4.17: LA of backoff to two parsers (MALTParser ${ }_{1}$, MALTParser $_{2}$ and MALTParser $_{3}$) where there is no agreement between at least two parsers, PATB $_{M C}$ corpus.

Agree	Backoff to	LA
MALTParser $_{1}+$ MALTParser $_{2}$	MALTParser $_{3}$	$\mathbf{8 1 . 6 \%}$
MALTParser $_{1}+$ MALTParser $_{3}$	MALTParser $_{2}$	$\mathbf{8 2 . 3 \%}$
MALTParser $_{2}+$ MALTParser $_{3}$	MALTParser $_{1}$	$\mathbf{8 2 . 1 \%}$

Table 4.18: LA of backoff to other parser (MALTParser ${ }_{1}$, MALTParser $_{2}$ and MALTParser $_{3}$) where there is no agreement between two parsers, PATB $_{M C}$ corpus.

Therefore, for MSTParser, MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$ we computed the statistics about the correct head and the correct DEPREL of each POS tag in the 'MC' coarse-grained tagset (39 tags) where each parser agrees with the gold-standard. According to these confidence scores, we can decide how much each parser should be trusted for each POS tag. We trained the parsers on 3000 sentences from the first 4000 sentences in the corpus and used the other 1000 sentences to compute confidence scores using fourfold cross-validation. The highest LA for MSTParser, MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$ is given in Table 4.19.

Parser	LA
MSTParser 2	81.6%
MALTParser $_{1}$	79.7%
MALTParser $_{2}$	79.6%

Table 4.19: Highest LA for MSTParser, MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$ for PATB $_{M C}$ corpus, fourfold cross-validation with 4000 training sentences and 1000 testing sentences.

Some POS tags with their trusted parser(s) for both head and DEPREL are given in Table 4.20.

POS tag	Trusted parser(s) for head	Trusted parser(s) for DEPREL
ADJ, NEG_PART	MALTParser $_{1}$	MALTParser $_{1}$
CONJ, NOUN_PROP	MSTParser	MALTParser $_{2}$
PV	MALTParser $_{2}$	MSTParser 2
DET+NOUN_PROP	MALTParser $_{2}$	MALTParser $_{1}$
NOUN, IV	MSTParser $^{\text {MALTParser }_{2}}$	MSTParser 2
PRON $^{\text {MALTParser }} 2$		
PSEUDO_VERB 2	MALTParser $_{1}$	MSTParser, MALTParser $_{2}$

Table 4.20: Some POS tags with trusted parsers(s) for head and DEPREL, PATB ${ }_{M C}$ corpus.

As shown in Table 4.20, we find that, for instance, MALTParser r_{1} should be trusted when the POS tag is ADJ or NEG_PART for both the head and the DEPREL, whereas MALTParser $_{2}$ should be trusted when the POS tag is PRON. On the other hand, in the case where the POS tag is CONJ or NOUN_PROP MSTParser should be trusted for the head only, whereas MALTParser ${ }_{2}$ should be trusted for the DEPREL. Also, in the case of PSEUDO_VERB POS tag, MALTParser ${ }_{1}$ should be trusted for the head, whereas MSTParser or MALTParser 2 for the DEPREL. The results of this experiment are shown in Table 4.21.

Parser	LA
MSTParser+MALTParser ${ }_{1}$, backoff to the most confident parser	80.1%
MSTParser+MALTParser $_{2}$, backoff to the most confident parser	79.9%
MALTParser $_{1}+$ MALTParser $_{2}$, backoff to the most confident parser	81.4%
At least two parsers agree, backoff to the most confident parser	$\mathbf{8 1 . 9 \%}$
Three parsers agree, backoff to the most confident parser	79.7%
Most confident parser only	78.9%

Table 4.21: LA for backoff to the most confident parser, PATB $_{M C}$ corpus, fourfold cross-validation with 4000 training sentences and 1000 testing sentences.

The above results show that combining parsers depending on the most confident parser for each POS tag can produce accuracy better than each parser produces by itself, but this is not the best of our combinations. The proposal when we took the majority verdict if at least two parsers agreed and the most confident if all three parsers gave different results gives a better result than others and than each parser in isolation. Also, the proposal when we simply chose the most confident fails to give good results compared with the same proposal for combining POS taggers, which gives better results for tagging.

In Section 4.3.2.1, we have presented a parsing combining system, which uses the output of different dependency parsers to combine their individual advantages and compute a joint parse, which produces results for imperfectly tagged text with accuracy higher than the best individual parser's accuracy for perfectly tagged text. We have shown empirically that combining different parsers by voting techniques for imperfectly tagged text may produce considerable quality improvements over using individual parsers in isolation. The confidence based combining technique that we used for tagging, on the other hand, can produce better accuracy than each component produces by itself, but does not beat the voting one.

From all the experiments described above, the best strategy was to use two versions of MALTParser, and to backoff to MSTParser if they disagreed. This strategy achieved 84.8% accuracy, compared to the 82.7% achieved by MSTParser by itself (i.e. the best parser in isolation). The strategy of relying on the most confident of the contributing tools, which was extremely effective for tagging, did not work so well for parsing.

4.4 Combine taggers and parsers

Sections 4.2 and 4.3 describe combined strategy I (Figure 4.1a). Following this strategy, we achieve 84.8% accuracy for dependency trees. We now turn to combined strategy II (Figure 4.1b) to see whether this can improve on combined strategy I.

4.4.1 Experiments

The key question here is: if a tagger assigns tags with accuracy A_{T} and a parser assigns roles to words with accuracy A_{P}, will the combination of the tagger and parser achieve $A_{T} \times A_{P}$ or more or less?

4.4.1.1 Individual combinations of parsers and taggers

In the current experiments we will concentrate on scores for labelled trees. In every case the scores for unlabelled ones are about 2% higher, for all tagger:parser combinations and training sets.

Table 4.22 shows the effects of combining the taggers and parsers. In both cases we have included the results for the gold-standard tags as a benchmark.

Parser	Accuracy	Gold-standard	AMIRA	MADA	MXL	MC
MSTParser 2	LA	82.8%	80.4%	81.3%	81.7%	$\mathbf{8 2 . 7 \%}$
	UA	84.2%	82.1%	83.3%	83.3%	$\mathbf{8 4 . 1 \%}$
MALTParser $_{1}$	LA	81.5%	78.1%	79.8%	79.3%	$\mathbf{8 1 . 4 \%}$
	UA	82.6%	79.5%	81.4%	80.4%	$\mathbf{8 2 . 4 \%}$

Table 4.22: MSTParser and MALTParser ${ }_{1}$ accuracies, multiple taggers compared with gold-standard tagging.

Both MSTParser and MALTParser ${ }_{1}$ do better when trained and tested with the corpus tagged by our MC tagger than other taggers. Parsing with MC tagger gives accuracies approximately similar to these with gold-standard for both parsers. This is because MC tagger gives high tagging accuracy 99.5% compared with gold-standard one. Also, these parsers do better on the corpus tagged by MADA or MXL than when we used AMIRA, despite the fact that the three taggers achieve very similar scores when viewed simply as taggers (AMIRA 95.3\%, MADA 96.7\% and MXL 95.6\%).

We considered two possible causes for this difference: that it arises because of the difference between the tagsets used by the taggers, or that it arises from the differences in tokenisation.

Different tagsets: although the sizes of the two tagsets are similar, the nature of the tags themselves is different. The MXL tags, which are a coarse-grained variant of the tags used in the PATB itself, seem to provide more information about syntactic relations than the AMIRA set. In particular, the fine-grained distinctions between singular and plural nouns, and between various verb forms, that AMIRA provides are not actually very useful when trying to see whether two items are related.

It may be that the information about particles that MXL is sensitive to but AMIRA is not is likely to be useful for parsing: knowing, for instance, that some particle expects the next item to be a verb-initial sentence, whereas another expects a subjectinitial sentence, may well be useful.

In order to see whether this was the cause of the difference, we used the version of the AMIRA corpus that was constructed before in Section 4.2.1 (see page 101), which has the same size as the gold-standard one, where all the tags were compatible with the tags in the PATB, but where some were AMIRA refinements of the originals.

Using the gold-standard tags obtained directly from the PATB scores 82.8%, using the AMIRA tagset scores 80.4%. The only differences are that where the PATB tag
translates to an AMIRA tag, and the tag assigned by AMIRA is compatible with the translation but is finer-grained, we have used the one assigned by AMIRA; and that where several PATB tags translate to the same AMIRA tag (e.g. particles) we have simply used the commonest translation. These results strongly suggest that the choice of tags is significant, since in this experiment the two sets are compatible at every point, but the AMIRA tags include fine-grained distinctions that are made by AMIRA but not ones that are made in the PATB. Thus the decrease in accuracy of the parser must be due solely to the loss of information that arises when we merge PATB tags.

Tokenisation: the other potential problem is that AMIRA's tokeniser segments the text differently from the way that it is segmented in the PATB. In the PATB, for instance, the string لذلك l لكlk"therefore" is treated as a single subordinating conjunction, whereas AMIRA breaks it into a preposition $ل$
 (a preposition $ل l$ "for", and a pronoun y "me"), whereas AMIRA treats it as a single proper noun. This caused us problems when trying to use AMIRA to tag the treebank, since the leaves in the trees did not always correspond to tokens in the output of AMIRA. The difference in tokenisation affected around 2% of tokens, so since the parser performed around 2% worse with AMIRA than with the other taggers it seemed plausible that this was the source of the discrepancy.

In order to investigate the effect of this problem, we produced a version of the corpus where we replaced sequences where the PATB had a single token and AMIRA had several by the hand-coded AMIRA equivalent of the PATB tag, and likewise where the PATB had several tokens and AMIRA had one by the sequence of hand-coded AMIRA equivalents of the PATB tags.

This gave us a version of the treebank that had the same number of tokens as the original PATB, with as many items as possible given the tags assigned by AMIRA and the others given hand-coded AMIRA equivalents of the original PATB tags. The results suggest that this is not the source of the problem, since AMIRA produces almost identical results (no difference to three significant figures) no matter whether its own tokeniser or the tokenisation used in the PATB is used.

4.4.2 Merging combinations

A given tagger:parser combination will make errors. If two such combinations produce different parents for some word, then at least one of them must be wrong. So if we
take the output of two combinations and reject all instances of words where the two suggest different parents for a word, we must improve the precision, because we will be throwing away items where we know that one of the combinations has made a mistake. The other one may, of course, have got the parent for this word right, but since we cannot tell which has got it wrong and which has got it right, we have to distrust the output of each. We will also decrease the recall, because there will now be items for which we have discarded the parents suggested by the parsers, and hence we will end up with no parent assigned to them. The question is: does the increase in precision compensate for the decrease in recall?

If the sets of mistakes that were made by the two combinations were complementary, then the precision of the merged output would be 1 and the recall would be $1-\left(w_{1}+w_{2}\right)$, where w_{i} is the error rate of combination i. The F-score for the merge if the combinations have complementary distributions would thus be ($1-\left(w_{1}+\right.$ $\left.\left.w_{2}\right)\right) /\left(1-\left(w_{1}+w_{2}\right) / 2\right)$. If, on the other hand, the two combinations made exactly the same mistakes then the F-score for the merge would be $\left(1-w_{1}\right)$. In other words, for combinations with similar accuracy, the highest precision will come if the errors they make are complementary, and the highest F-score will come if they make identical errors.

Table 4.23 shows the precision, recall and F-score for all possible pairs of combinations of tagger:parser, e.g. that if you use MSTParser having tagged using AMIRA and MALTParser ${ }_{1}$ having tagged using MADA then the precision is 89.3%, the recall is 66.3% and the F -score is 0.761 . This table includes cases where one or both the parsers were combined with the gold-standard tags. These cases are greyed out, because in any real situation the gold-standard tags would not be available.

Table 4.23 roughly bears out the observations above. The best precision is generally obtained by using different taggers for each part of the combination (so the best precision for AMIRA:MSTParser comes from merging it with MADA:MALTParser ${ }_{1}$, the best for MXL:MSTParser comes from merging it with MADA:MALTParser ${ }_{1}$, and the best for MADA:MSTParser from merging it with MXL:MALTParser ${ }_{1}$); and the best F-score is generally obtained by using the same tagger with the two parsers.

The impetus for Section 4.4 arose from a simple query: what happens if you combine a tagger whose accuracy is A_{T} with a parser whose accuracy is A_{P} ? It turns out that the answer is often better than $A_{T} \times A_{P}$. When, for instance, we combine MSTParser, for which we get an accuracy of 82.8% when using the gold-standard tags, and MXL, whose accuracy is 95.6%, we get 81.7%, which is noticeably greater than the

MSTParser with tagger	MALTParser $_{1}$ with tagger	P	R	F-score
gold-standard	gold-standard	89.3\%	72.3\%	0.799
	AMIRA	87.5\%	61.4\%	0.722
	MADA	90.5\%	57.8\%	0.705
	MXL	89.8\%	60.1\%	0.720
	MC	89.1\%	72.1\%	0.797
AMIRA	gold -standard	89\%	58.5\%	0.706
	AMIRA	87.9\%	69.1\%	0.774
	MADA	89.3\%	66.3\%	0.761
	MXL	89\%	68.4\%	0.774
	MC	89\%	60.3\%	0.719
MADA	gold-standard	89.4\%	57.8\%	0.702
	AMIRA	85.3\%	70.8\%	0.774
	MADA	88.6\%	69.7\%	0.780
	MXL	88.9\%	68.1\%	0.771
	MC	89.4\%	57.8\%	0.719
MXL	gold-standard	89.1\%	59.9\%	0.716
	AMIRA	84.7\%	73.2\%	0.785
	MADA	89.3\%	67.7\%	0.770
	MXL	88.1\%	57.6\%	0.697
	MC	89.1\%	62.1\%	0.732
MC	gold-standard	89.2\%	72.1\%	0.797
	AMIRA	87.7\%	61.9\%	0.726
	MADA	90.2\%	58.2\%	0.707
	MXL	89.5\%	60.7\%	0.723
	MC	89.4\%	72.1\%	0.798

Table 4.23: Precision (P), recall (R) and F -score for different tagger $_{1}$: parser $_{1}+$ tagger $_{2}$: parser $_{2}$ combinations.
79.2% that you would expect if the errors simply compounded one another. It seems as though the fact that the training set contains the same pattern of errors as the test set automatically provides a degree of compensation.

Closer inspection shows that the nature of the tagsets has a substantial effect. Because MXL uses the PATB tagset, which was presumably chosen because it carried the kind of information that is required for parsing, it interacted better with both the parsers than AMIRA, which uses a general purpose tagset which is not tuned to this task. The mismatch between AMIRA's built-in tokeniser and the tokenisation in the treebank caused us some technical problems, but does not seem to be a critical factor in the accuracy of the combination of AMIRA with the two parsers.

We have also investigated the effects of merging the outputs of pairs of tagger:parser combinations. The results here are broadly as expected-the precision of the combination is always better than the accuracy of either of the contributing pairs (which is inevitable), and using a different tagger with each parser in the combination produces the greatest improvement in precision (which is what we expected, but it needed confirmation).

The results above arise from investigating combinations of specific tools-four taggers \times two parsers. Are these results compromised by the fact that we chose these specific tools, or are there general lessons to be learnt? The taggers all use different mechanisms and different information, and the parsers also use substantially different approaches. The fact that nonetheless we get fairly consistent results in Section 4.4.2 suggests that there may be some robustness about the conclusions. It seems that no matter which tagger and which parser we use we get results that are better than you would expect just by looking at the individual performance of the components. The main result of the second set of experiments-that taking the combined output of two different tagger:parser combinations improves the precision-is almost inevitable, but there is a tendency for combinations that involve different taggers to achieve greater precision than ones where the two parsers are combined with a single tagger.

It seems likely that this pattern would be repeated if other parsers or taggers were used: mistakes made by a combination of a tagger Tr and a parser Pr could be caused either by Tr or by Pr. If Tr is combined with some other parser $\operatorname{Pr}^{\prime}$, then the mistakes caused by $T r$ will almost certainly arise again, and will not be spotted when the output of the two combinations is merged, whereas a combination of another tagger $T r^{\prime}$ with $\operatorname{Pr}^{\prime}$ will not repeat the mistakes introduced by Tr. Thus although our experiments were limited to a specific set of tools and a specific language (as any experiments must be) we believe that the results are likely to be applicable if other tools are used. The critical issue is that the tools should be distinct, either using different principles or different underlying data (training sets, rule sets), so that they do indeed make mistakes in different places. This observation is likely to transfer to other languages, not just other tools for handling Arabic. If you have multiple taggers and parsers which make distinct mistakes (which is likely to happen if they are based on different principles or use different features) then combining them will inevitably improve the precision and is likely to also improve the F-score.

4.5 Summary

In this chapter, we have described the performance of our preprocessing stage. We have carried out a number of experiments with state-of-the-art taggers (AMIRA, MADA, a home-grown tagger, MXL and our combined tagger, MC, which depends on the most confident score with comparable accuracy) and parsers (notably MSTParser and MALTParser with various parsing algorithms), using the PATB as training data. These experiments show in particular the following main results:

- Our conversion from phrase structure to dependency trees allows parsers to perform accurately even for long sentences exceeding 100 words (Alabbas and Ramsay, 2012a).
- Combining three different taggers using voting or a very simple approach, which depends on the most confident score, can lead to significant improvements over the best individual tagger (Alabbas and Ramsay, 2012d).
- Combining the output of multiple data-driven dependency parsers can produce more accurate results, even for imperfectly tagged text, than each parser produces by itself for texts with the gold-standard tags (Alabbas and Ramsay, 2011a).
- If you train and test with a flawed tagger and flawed parser, the parser may learn to compensate for the errors made by the tagger (Alabbas and Ramsay, 2012b).
- Combining different tagger:parser pairs where each parser uses a different tagger increases precision, as expected, but at the cost of decreasing recall (Alabbas and Ramsay, 2012b).

In short, we have shown in this chapter that the combined strategy I (Sections 4.2 and 4.3) to combine taggers and parsers gives better accuracy compared to the combined strategy II (Section 4.4) that gives better precision, which may be useful for some tasks.

Chapter 5

Tree matching

5.1 Overview

Recently, comparison of tree-structured data is a growing interest in various diverse areas such as image analysis, XML databases, automatic theorem proving, computational biology and NLP (Mehdad and Magnini, 2009). Tree edit distance (TED) is considered to be one of the most effective techniques in this field. However, one of the main drawbacks of TED is that transformation operations are applied solely on single nodes. This problem is solved in the current work by updating TED to allow subtree transformation operations as well. This makes the extended TED more effective and flexible than the standard one, especially for applications that pay attention to relations among nodes (e.g. deleting a modifier subtree, in linguistic trees, should be cheaper than the sum of deleting its components individually).

As we have already mentioned, the TED algorithm developed by Zhang and Shasha (1989), which forms the basis of our work, will be used in the current work to find the matching between two dependency trees for Arabic text snippets (T and H). In this section, different approaches for TED algorithms will be presented and the reason for using Zhang-Shasha's algorithm will be explained.

The tree edit distance metric is a common similarity measure for rooted ordered trees. It is a generalisation of the well-known string edit distance problem, which is to determine the distance between two strings by measuring the minimum cost of edit operations needed to transform one string into the other. The edit operations are deletion, insertion or exchanging of a single character. Generally, the edit distance between two strings refers to the Levenshtein distance or linear distance introduced by Levenshtein (1966). The pseudo-code of the Levenshtein distance algorithm is given
in Algorithm 5.1.

```
Algorithm 5.1 Pseudo-code of Levenshtein distance algorithm
    str \(r_{1}\), str \(\quad\) the first and second string respectively.
    \(m\) and \(n \quad\) the length of \(s t r_{1}\) and \(s t r_{2}\) respectively.
    \(D \quad\) table with \(\mathrm{m}+1\) rows and \(\mathrm{n}+1\) columns.
    \(\gamma\left(s t r_{1}[i] \rightarrow \wedge\right) \quad\) cost of deleting the \(i_{t h}\) character from \(\operatorname{str} r_{1}\)
    \(\gamma\left(\wedge \rightarrow \operatorname{str} r_{2}[j]\right) \quad\) cost of inserting the \(j_{t h}\) character of \(s t r_{2}\) into \(s t r_{1}\)
    \(\gamma\left(s t r_{1}[i] \rightarrow s t r_{2}[j]\right) \quad\) cost of exchanging the \(i_{t h}\) character of \(s t r_{1}\) with the \(j_{t h}\) character of \(s t r_{2}\)
    \(D[0,0] \leftarrow 0\)
    for \(i \leftarrow 0\) to \(m\) do
        \(D[i, 0] \leftarrow i\)
    end for
    for \(j \leftarrow 0\) to \(n\) do
        \(D[0, j] \leftarrow j\)
    end for
    for \(i \leftarrow 1\) to \(m\) do
        for \(j \leftarrow 1\) to \(n\) do
            \(D[i, j]] \leftarrow \min (D[i-1, j]]+\gamma\left(s t r_{1}[i] \rightarrow \wedge\right)\), // deletion
                        \(D[i, j-1]]+\gamma\left(\wedge \rightarrow s t r_{2}[j]\right), / /\) insertion
                \(\left.D[i-1, j-1]+\gamma\left(s t r_{1}[i] \rightarrow s t r_{2}[j]\right)\right) / /\) changing
        end for
    end for
    return \(D[m, n]\)
```

The Levenshtein distance solves the string edit distance problem by using dynamic programming (Dasgupta et al., 2006; Cormen et al., 2009). It takes the main problem and splits it into sub-problems, solving each sub-problem only once and remembering the results in the matrix D for later. Then, it computes its solution bottom-up by synthesising it from smaller sub-solutions and by trying several possibilities and choices before it arrives at the optimal set of choices for the whole problem. The idea here is to use the cheapest edit operations possible to transform one string to another. Typically, each edit operation costs 1 except that exchanging similar items costs 0 . So, the Levenshtein distance does not calculate the similarity between two strings but the distance in cost measures.

Tree edit operations such as delete, insert and exchange were proposed by Selkow (1977) as an extension to the string edit operations used in the Levenshtein distance.

Selkow implements a recursive algorithm for computing the minimum sequence of operations that transforms one tree to another. In Selkow's algorithm, delete and insert operations are specific operations that are enabled solely on tree leaves, whereas exchange can be applied at every node. There is a nonnegative real cost associated with each edit operations.

In contrast, Tai (1979) proposed an unrestricted edit model. This author uses a dynamic programming algorithm to solve the tree-to-tree correction problem between two trees. Tai's algorithm runs in $O\left(m^{3} n^{3}\right)$ time and space for trees T_{1} and T_{2} with m and n nodes respectively. All trees are considered to be rooted, ordered and labeled. The root is the first node that is visited and the subtrees are then traversed in preorder. This algorithm is an extension of a string-to-string correction algorithm that was proposed by Wagner and Fischer (1974). Tai's algorithm uses the following basic operations: (i) exchanging a node's label; (ii) deleting a node other than the root, i.e. all the children of a deleted node become the children of the parent of that node; and (iii) inserting a node, i.e. an inserted node becomes a parent to some or all the sequence in the left to right order of its parent.

Subsequently, Zhang and Shasha (1989) improved Tai's algorithm and obtained $O\left(m^{2} n^{2}\right)$ time and $O(m n)$ space. These authors presented an efficient technique that is based on dynamic programming to calculate the approximate tree matching for two rooted postordered trees. Approximate tree matching allows users to match a tree with solely some parts of another tree not a whole. In this algorithm, for all the offspring of each node, the lowest cost mapping has to be calculated before the node is met. Hence, the least cost mapping can be chosen right away. For this purpose, the algorithm pursues the keyroots of the tree, which are a set that includes all nodes having a left sibling as well as the root of the tree. Accordingly, the number of keyroots must be identical to the sum of leaves in the tree.

Klein (1998) improves Zhang-Shasha's algorithm using heavy paths (Sleator and Tarjan, 1983) to decompose the larger tree and obtains $O\left(n^{2} m \log m\right)$ time and space, which means his algorithm requires less time but more space than Zhang-Shasha's algorithm. A heavy path of a tree is a path that starts at the root and goes from each vertex v to the child of v whose subtree contains the largest number of vertices. His algorithm uses Euler strings to encode the trees. The Euler string of an ordered and rooted tree T is a string generated as follows: replace each edge $\{x, y\}$ of T by darts, which are two oppositely directed $\operatorname{arcs}(x, y)$ and (y, x) (e.g. for a dart a in Figure 5.1, the oppositely directed arc corresponding to this dart will be a^{\prime}). Then, an Euler tour
of the darts of T is defined by the depth-first search traversal of T (visiting each node's children according to their order).

Figure 5.1: Constructing Euler string for a tree.

This algorithm depends on dynamic programming to calculate the edit distance between two trees T_{1} and T_{2} as shown in Figure 5.2, where $\operatorname{dist}(s, t)$ is the edit distance between two substrings s and $t, E(T)$ is the Euler string of T, and $E^{*}(T)$ is the Euler string of T, interpreted as a cyclic string. Note that the string edit distance here is not an ordinary problem because the Euler string has a pair of darts (e.g. a and a^{\prime}) which affects the edit distance calculation.

- If T_{2} is an unrooted tree, root it arbitrarily.
- Find a heavy-path decomposition of T_{2}, and then identify the relevant substrings of each special subtree of T_{2}.
- By dynamic programming, calculate dist (s, t) for every substring s of the cyclic string $E^{*}\left(T_{1}\right)$ and every relevant substring t of T_{2}.
- For the rooted distance, output $\operatorname{dist}\left(s^{\prime}, t^{\prime}\right)$, where $s^{\prime}=E\left(T_{1}\right)$ and $t^{\prime}=E\left(T_{2}\right)$.
- For the unrooted distance, output $\min _{s \in R\left(T_{1}\right)} \operatorname{dist}\left(s, t^{\prime}\right)$, where $t^{\prime}=E\left(T_{2}\right)$ (note that the min is over all Euler strings of rooted versions of T_{1}).

Figure 5.2: Klein's tree edit distance algorithm (Klein, 1998).

The difference between Klein's algorithm and Zhang-Shasha's algorithm lies in the set of subforests that are involved in the decomposition (Dulucq and Touzet, 2005). This leads to different time complexities in worst case (i.e. $O\left(n^{3} \log n\right)$ in Klein's algorithm compared with $O\left(n^{4}\right)$ in Zhang-Shasha's algorithm). Nevertheless, this does not necessarily mean that Klein's method is better than Zhang-Shasha's method, because each algorithm's performance depends on the shape of the two trees to be compared.

In Figure 5.3, to transform the tree T_{x} into T_{y}, for instance, Klein's solution requires 84 different recursive calls, whereas the Zhang-Shasha's solution requires just 72 (Dulucq and Touzet, 2005).

Figure 5.3: Two trees, T_{x} and T_{y}.

Demaine et al. (2009) develop the first worst-case optimal algorithm for computing the tree edit distance between two rooted ordered trees. These authors also use heavy paths, but differ from Klein's method by switching the trees such that the larger subtree is decomposed in each recursive step. Their algorithm runs in $O\left(n^{2} m\left(1+\log \frac{m}{n}\right)\right)$ time and $O(m n)$ space. These authors show a solution for binary trees and explain how to extend their solution to general trees.

Recently, Pawlik and Augsten (2011) show that the efficiency of the previous algorithms for computing the tree edit distance heavily depends on the tree shape and runs into their worst cases for some data instances. These authors generalise the previous methods and develop a new algorithm called robust tree edit distance (RTED) with $O\left(n^{3}\right)$ time (with $n>m$) and $O(m n)$ space. Their algorithm is efficient for all tree shapes. Also, it never runs in the worst case if a best solution exists.

We have chosen to work with Zhang-Shasha's algorithm because the intermediate structures produced by this algorithm allow us to detect and respond to operations on subtrees.

5.2 Zhang-Shasha's TED algorithm

Zhang-Shasha's TED algorithm (we will refer, henceforth, to this algorithm as ZSTED) is considered an efficient technique based on dynamic programming to calculate the approximate tree matching for two rooted ordered trees. Ordered trees are trees in
which the left-to-right order among siblings is significant. Approximate tree matching allows us to match a tree with just some parts of another tree. There are three operations, namely deleting, inserting and exchanging a node, which can transform one ordered tree to another. Deleting a node x means attaching its children to the parent of x. Insertion is the inverse of deletion. This means an inserted node becomes a parent of a consecutive subsequence in the left to right order of its parent. Exchanging a node alters its label. Each operation is associated with a nonnegative real cost. These costs are exchanged to match the requirements of specific applications. All these editing operations are illustrated in Figure 5.4 (Bille, 2005).

(a) An exchanging of the node label $\left(l_{1} \rightarrow l_{2}\right)$.

(b) Deleting the node labeled $\left(l_{2} \rightarrow \wedge\right)$.

(c) Inserting a node labeled l_{2} as the child of the node labeled $l_{1}\left(\wedge \rightarrow l_{2}\right)$.

Figure 5.4: Tree edit operations.

In ZS-TED, tree nodes are compared using a left-to-right postorder traversal, which visits the nodes of a tree starting with the leftmost leaf descendant of the root and proceeding to the leftmost descendant of the right sibling of that leaf, the right siblings, and then the parent of the leaf and so on up the tree to the root. The last node visited will always be the root. An example of the postorder traversal and the leftmost leaf
descendant of a tree is shown in Figure 5.5. In this figure, there are two trees, T_{1} with $m=6$ nodes and T_{2} with $n=6$ nodes. The subscript for each node is considered the order of this node in the postorder of the tree. So, the postorder of T_{1} is a, b, c, e, d, f and the postorder for T_{2} is b, c, a, e, d, f. The leftmost leaf descendant of the subtrees of T_{1} headed by the nodes a, b, c, e, d, f are $1,2,1,4,1,1$ respectively, and similarly the leftmost leaf descendant of b, c, a, e, d, f in T_{2} are $1,1,3,3,1,1$.

Figure 5.5: Two trees T_{1} and T_{2} with their left-to-right postorder traversal (the subscripts) and keyroots (bold items).

For all the descendants of each node, the least cost mapping has to be calculated before the node is encountered, in order that the least cost mapping can be selected right away. To achieve this, the algorithm pursues the keyroots of the tree, which are defined as a set that contains the root of the tree plus all nodes having a left sibling. Concentrating on the keyroots is critical to the dynamic nature of the algorithm, since it is the subtrees rooted at keyroots that allow the problem to be split into independent subproblems of the same general kind. The keyroots of a tree are decided in advance, permitting the algorithm to distinguish between tree distance (the distance between two nodes when considered in the context of their left siblings in the trees T_{1} and T_{2}) and forest distance (the distance between two nodes considered separately from their siblings and ancestors but not from their descendants) (Kouylekov, 2006). For illustration, the keyroots in each tree in Figure 5.5 are marked in bold.

For each node, the computation to find the least cost mapping (the tree distance) between a node in the first tree and one in the second depends solely on mapping the nodes and their children. To find the least cost mapping of a node, then, one needs to recognise the least cost mapping from all the keyroots among its children, plus the cost of its leftmost child. Because the nodes are numbered according to the postorder
traversal, the algorithm proceeds in the following steps (Kouylekov, 2006): (i) the mappings from all leaf keyroots are determined; (ii) the mappings for all keyroots at the next higher level are decided recursively; and (iii) the root mapping is found. Algorithm 5.2 shows the pseudo-code of ZS-TED (Zhang and Shasha, 1989).

```
Algorithm 5.2 Pseudo-code of ZS-TED.
    \(\mathrm{T}[\mathrm{i}] \quad\) the \(i_{t h}\) node of T, labeled in postorder
    1(i) the leftmost leaf descendant of the subtree rooted at i
    \(\mathrm{K}(\mathrm{T}) \quad\) the keyroots of tree \(\mathrm{T}, \mathrm{K}(\mathrm{T})=\left\{\mathrm{k} \in \mathrm{T} \mid \neg \exists k_{1}>\mathrm{k}\right.\) with \(\left.\mathrm{l}\left(k_{1}\right)=\mathrm{l}(\mathrm{k})\right\}\)
\(\emptyset\) a null tree
    \(F D\left[T_{1}\left[i, i_{1}\right], T_{2}\left[j, j_{1}\right]\right]\) the forest distance from nodes i to \(i_{1}\) in \(T_{1}\) to nodes j to \(j_{1}\) in \(T_{2}\), if \(\mathrm{i}<i_{1}\)
    then \(T_{1}\left[i, i_{1}\right]=\emptyset\).
    \(\gamma\left(T_{1}[i] \rightarrow \wedge\right) \quad\) cost of deleting the \(i_{t h}\) node from \(T_{1}\)
    \(\gamma\left(\wedge \rightarrow T_{2}[j]\right) \quad\) cost of inserting the \(j_{t h}\) node of \(T_{2}\) into \(T_{1}\)
    \(\gamma\left(T_{1}[i] \rightarrow T_{2}[j]\right) \quad\) cost of exchanging the \(i_{t h}\) node of \(T_{1}\) with the \(j_{t h}\) node of \(T_{2}\)
    \(m\) and \(n \quad\) the number of nodes in \(T_{1}\) and \(T_{2}\) respectively
    \(|X| \quad\) the length of X (i.e. the number of nodes in X, e.g. \(\left|T_{1}\right|=m\) )
    min function return minimum item among three items.
    compute \(l_{1}(m), l_{2}(n), K_{1}\left(T_{1}\right), K_{2}\left(T_{2}\right)\)
    for \(x \leftarrow 1\) to \(\left|K_{1}\left(T_{1}\right)\right|\) do
        for \(y \leftarrow 1\) to \(\left|K_{2}\left(T_{2}\right)\right|\) do
            \(F D[\emptyset, \emptyset] \leftarrow 0\)
            for \(i \leftarrow l_{1}(x)\) to \(x\) do
                \(F D\left[T_{1}\left[l_{1}(x), i\right], \emptyset\right] \leftarrow F D\left[T_{1}\left[l_{1}(x), i-1\right], \emptyset\right]+\gamma\left(T_{1}[i] \rightarrow \wedge\right)\)
            end for
            for \(j \leftarrow l_{2}(y)\) to \(y \mathbf{d o}\)
                \(F D\left[\emptyset, T_{2}\left[l_{2}(y), j\right]\right] \leftarrow F D\left[\emptyset, T_{2}\left[l_{2}(y), y-1\right]\right]+\gamma\left(\wedge \rightarrow T_{2}[j]\right)\)
            end for
            for \(i \leftarrow l_{1}(x)\) to \(x\) do
                for \(j \leftarrow l_{2}(y)\) to \(y\) do
                if \(\left(l_{1}(i)==l_{1}(x)\right.\) and \(\left.l_{2}(j)==l_{2}(y)\right)\) then
                        \(F D\left[T_{1}[l 1(x), i], T_{2}\left[l_{1}(y), j\right]\right] \leftarrow \min (\)
                                    \(F D\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j\right]\right]+\gamma\left(T_{1}[i] \rightarrow \wedge\right)\),
                                    \(F D\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j-1\right]\right]+\gamma\left(\wedge \rightarrow T_{2}[j]\right)\),
                                    \(\left.F D\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j-1\right]\right]+\gamma\left(T_{1}[i] \rightarrow T_{2}[j]\right)\right)\)
                                    \(D[i, j] \leftarrow F D\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j\right]\right]\)
                    else
                        \(F D\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{1}(y), j\right]\right] \leftarrow \min (\)
                                    \(F D\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j\right]\right]+\gamma\left(T_{1}[i] \rightarrow \wedge\right)\),
                                    \(F D\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j-1\right]\right]+\gamma\left(\wedge \rightarrow T_{2}[j]\right)\),
                                    \(\left.F D\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j-1\right]\right]+D[i, j]\right)\)
                    end if
                end for
            end for
        end for
    end for
    return \(D[m, n]\)
```


5.3 Extended TED with subtrees

The main weakness of ZS-TED is that it is not able to do transformations on subtrees (i.e. delete subtree, insert subtree and exchange subtree). The output of ZS-TED is the lowest cost sequence of operations on single nodes. We extend this to find the lowest cost sequence of operations on nodes and subtrees. This algorithm, which we call extended TED (ETED), is defined as follows:

1. Run ZS-TED and compute the standard alignment from the results, according to Algorithm 5.3 (Section 5.3.1).
2. Go over the alignment and group subtree operations. Where a sequence of identical operations applies to a set of nodes comprising a subtree, they are replaced by a single operation, whose cost is determined by some appropriate function of the costs of the individual nodes, according to Algorithm 5.4 (Section 5.3.2). A variety of functions could be applied here, depending on the application.

It should be noted here that while we apply this technique to modify ZS-TED $O\left(n^{4}\right)$, it could also be applied to any other algorithm for finding tree edit distance, e.g. Klein's $O\left(n^{3} \log _{n}\right)$ algorithm (Klein, 1998), Demaine et al. $O\left(n^{3}\right)$ algorithm (Demaine et al., 2009) or RTED $O\left(n^{3}\right)$ algorithm (Pawlik and Augsten, 2011), since the extension operates on the output of the original algorithm. The additional time cost of $O\left(n^{2}\right)$ is negligible since it is less than the time cost for any available TED algorithm.

5.3.1 Find a sequence of edit operations

In order to find the sequence of edit operations that transforms one tree into another, the computation proceeds as follows: ZS-TED contains two matrices D and $F D$. These matrices D and $F D$ are used for recording the results of individual subproblems: D is used to store the tree distance between trees rooted at pairs of nodes in the two trees, and $F D$ is used to store the 'forest distance' between sequences of nodes. $F D$ is used as a temporary store while the tree edit distance between pairs of keyroots is being calculated. We have extended the standard algorithm, which computes the cost of the cheapest edit sequence, so that it also records the edit operations themselves (Algorithm 5.3). This involves adding two new matrices, DPATH and FDPATH, to hold the appropriate sequences of edit operations-DPATH to hold the edit sequences for trees rooted at pairs of nodes and FDPATH to hold the edit sequences for forests. D
and DPATH are permanent arrays, whereas $F D$ and $F D P A T H$ are reinitialised for each pair of keyroots.

```
Algorithm 5.3 Pseudo-code of ZS-TED with edit sequences
    \(T[i, j] \quad i_{t h}\) to \(j_{t h}\) nodes in the postorder enumeration of tree \(T(T[i, i]\) is written \(T[i])\)
    \(l(i) \quad\) the leftmost leaf descendant of the subtree rooted at i
    \(K(T) \quad\) the keyroots of tree \(T, K(T)=\left\{k \in T: \neg \exists k_{1}>k\right.\) with \(\left.l\left(k_{1}\right)=l(k)\right\}\)
    \(D[i, j] \quad\) the tree distance between two nodes \(T_{1}[i]\) and \(T_{2}[j]\)
    \(F D\left[T_{1}\left[i, i_{1}\right], T_{2}\left[j, j_{1}\right]\right] \quad\) the forest distance from nodes \(i\) to \(i_{1}\) in \(T_{1}\) to nodes \(j\) to \(j_{1}\) in \(T_{2}\)
    DPATH \([i, j\)
    \(F \operatorname{DATH}\left[T_{1}\left[i, i_{1}\right], T_{2}\left[j, j_{1}\right]\right]\)
    \(\gamma\left(T_{1}[i] \rightarrow \wedge\right)\)
    \(\gamma\left(\wedge \rightarrow T_{2}[j]\right)\)
    \(\gamma\left(T_{1}[i] \rightarrow T_{2}[j]\right)\)
    \(m, n\)
    best
    for \(x \leftarrow 1\) to \(\left|K_{1}\left(T_{1}\right)\right|\) do
        for \(y \leftarrow 1\) to \(\left|K_{2}\left(T_{2}\right)\right|\) do
            \(F D[\emptyset, \emptyset] \leftarrow 0\)
            \(F D P A T H[\emptyset, \emptyset] \leftarrow " "\)
            for \(i \leftarrow l_{1}(x)\) to \(x\) do
                \(F D\left[T_{1}\left[l_{1}(x), i\right], \emptyset\right] \leftarrow F D\left[T_{1}\left[l_{1}(x), i-1\right], \emptyset\right]+\gamma\left(T_{1}[i] \rightarrow \wedge\right)\)
                    FDPATH \(\left[T_{1}\left[l_{1}(x), i\right], \emptyset\right] \leftarrow F D P A T H\left[T_{1}\left[l_{1}(x), i-1\right], \emptyset\right]+\) "d"
                end for
            for \(j \leftarrow l_{2}(y)\) to \(y\) do
                    \(F D\left[\emptyset, T_{2}\left[l_{2}(y), j\right]\right] \leftarrow F D\left[\emptyset, T_{2}\left[l_{2}(y), y-1\right]\right]+\gamma\left(\wedge \rightarrow T_{2}[j]\right)\)
                    \(\operatorname{FDPATH}\left[\emptyset, T_{2}\left[l_{2}(y), j\right]\right] \leftarrow \operatorname{FDPATH}\left[\emptyset, T_{2}\left[l_{2}(y), y-1\right]\right]+\) " i "
            end for
            for \(i \leftarrow l_{1}(x)\) to \(x\) do
                for \(j \leftarrow l_{2}(y)\) to \(y \mathbf{d o}\)
                if \(\left(l_{1}(i)==l_{1}(x)\right.\) and \(\left.l_{2}(j)==l_{2}(y)\right)\) then
                                    cost, path \(\leftarrow \operatorname{best}\left(\left\{F D\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j\right]\right]+\gamma\left(T_{1}[i] \rightarrow \wedge\right)\right.\right.\),
                                    FDPATH \(\left.\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j\right]\right]+" \mathrm{~d} "\right\}\),
                                    \(\left\{F D\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j-1\right]\right]+\gamma\left(\wedge \rightarrow T_{2}[j]\right)\right.\),
                                    FDPATH \(\left.\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j-1\right]\right]+" \mathrm{i} "\right\}\),
                                    \(\left\{F D\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j-1\right]\right]+\gamma\left(T_{1}[i] \rightarrow T_{2}[j]\right)\right)\),
                                    \(\left.\left.\operatorname{FDPATH}\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j-1\right]\right]+" \mathrm{~m} " / " x "\right\}\right)\)
                                    \(F D\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j\right]\right] \leftarrow \operatorname{cost}\)
                                    \(D[i, j] \leftarrow\) cost
                                    \(F D P A T H\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j\right]\right] \leftarrow\) path
                                    DPATH \([i, j] \leftarrow\) path
                    else
                        cost, path \(\leftarrow \operatorname{best}\left(\left\{F D\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j\right]\right]+\gamma\left(T_{1}[i] \rightarrow \wedge\right)\right.\right.\),
                                    FDPATH \(\left.\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j\right]\right]+" \mathrm{~d} "\right\}\),
                                    \(\left\{F D\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j-1\right]\right]+\gamma\left(\wedge \rightarrow T_{2}[j]\right)\right.\),
                                    \(\left.F D P A T H\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{2}(y), j-1\right]\right]+" \mathrm{i} "\right\}\),
                                    \(\left\{F D\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j-1\right]\right]+D[i, j]\right)\),
                                    \(\left.\left.F D P A T H\left[T_{1}\left[l_{1}(x), i-1\right], T_{2}\left[l_{2}(y), j-1\right]\right]+\operatorname{DPATH}[i][j]\right\}\right)\)
                                    \(F D\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{1}(y), j\right]\right] \leftarrow \operatorname{cost}\)
                                    \(F D P A T H\left[T_{1}\left[l_{1}(x), i\right], T_{2}\left[l_{1}(y), j\right]\right] \leftarrow\) path
                end if
                    end for
            end for
        end for
    end for
    return \(D[n, m], D P A T H[n, m]\)
```

The algorithm iterates over keyroots, and is split into two main stages for each pair of keyroots: the initialisation phase (lines 3-12) deals with the first row and column, where we assume that every cell in the first row is reached by appending the insert
operation " i " to the cell to its left and every cell in the first column is reached by appending the delete operation "d" to the cell above it, with appropriate costs. This is exactly parallel to the initialisation of the standard dynamic time warping algorithm for calculating string edit distance, as though we were treating the task of matching the subsets of the subtrees rooted at $T_{1}[x]$ and $T_{2}[y]$ as a string matching problem between the nodes in these two trees as sequences enumerated in postorder.

The second stage (lines 13-37) traces the cost and edit sequence for transforming each sub-sequence of the sequence of nodes dominated $T_{1}[x]$ to each sub-sequence of the sequence of nodes dominated $T_{2}[x]$, by considering whether the nodes in these were reached from the cell to the left by an insert, or from the cell above by a delete, or by the cell diagonally above and left by either a match " m " or an exchange " x ". There are two cases to be considered here:
(i) If the two sequences under consideration are both trees (tested at line 15), then we know that we have considered every possible way of exchanging one into the other, and hence we can record the cost in both $F D$ and D, and the edit sequence in both FDPATH and DPATH. In this case, we calculate the cost of moving along the diagonal by inspection of the two nodes. See Figure 5.6 for an illustration of this notion.
(ii) If one or both of the sequences is a forest we retrieve the cost of moving along the diagonal from DPATH, and we just store the costs in FD and FDPATH.

Figure 5.6: The edit operation direction used in our algorithm. Each arc that implies an edit operation is labeled: " i " for an insertion, " d " for deletion, " x " for exchanging and " m " for no operation (matching).

In both cases, we gather the set of $\{$ cost, path $\}$ pairs that result from considering insert/delete/exchange operations on the preceding sub-sequences, and choose the best such pair to store in the various arrays. This is again very similar to the corresponding
element of the string edit algorithm, with the added complication that calculating the tree edit costs and sequences for a pair of keyroots involves calculating the costs and edit sequences for all pairs of sub-sequences of the nodes below those roots. The results for pairs of keyroots are stored permanently, and are utilised during the calculations for sub-sequences at the next stage.

Figure 5.7 illustrates the intuition of how to compute this optimal path for T_{1} and T_{2} trees in Figure 5.5. In this figure, the cells representing concordance of the optimal sequence of edit operations that transform T_{1} into T_{2} are highlighted in red (the bold character in the cells of FDPATH array (Figure 5.7b) represents the current edit operation), whereas the final optimal path is the last cell (at final row and column).

(a). Temporary array $F D$

T_{2}		b	c	a	e	d	f
T_{1}	-	i	ii	iii	iiii	iiiii	iiiiii
a	d	x	xi	iim	iimi	iimii	iimiii
b	dd	dm	dmi	dmii	dmiii	dmiiii	dmiiiii
c	ddd	dmd	dmm	dmmi	dmmii	dmmiii	dmmiiii
	e	dddd	dmdd	dmmd	dmmx	dmmim	dmmimi
dmmimii							
d	ddddd	dmddd	dmmdd	dmmxd	dmmimd	dmmimm	dmmimmi
	dddddd	dmdddd	dmmddd	dmmxdd	dmmimdd	dmmimmd	dmmimmm

(b). FDPATH array

Figure 5.7: Computing the optimal path for the two trees in Figure 5.5.

The mapping between two trees can be found from the final sequence of edit operations by mapping the nodes corresponding to match operation ' m ' only.

In order to find the complexity for ZS-TED with the sequence of edit operations, let us consider the space complexity first. ZS-TED (Algorithm 5.2) uses a permanent array for D and a temporary array for $F D$. Each of these two arrays requires space $O(m n)$. So, the space complexity for ZS-TED is $O(m n)$. In ETED, we use two permanent arrays for D and DPATH and two temporary arrays for FD and FDPATH. Each of these four arrays requires space $O(m n)$. So, the space complexity for ZS-TED with our updating is still $O(m n)$.

Consider the time complexity for ZS-TED with our updating. ZS-TED has time complexity equal to $O\left(m^{2} n^{2}\right)$. Algorithm 5.3 shows our added rules to ZS-TED. At each point, a constant time operation in the original has been changed to a new constant time operation. There is thus no change in the time complexity. This means time complexity is still $O\left(m^{2} n^{2}\right)$.

In short, the space and time complexities of ZS-TED with our updating to find the sequence of edit operations are still the same as the space and time complexities of the standard one.

5.3.1.1 Complete example

As an example to apply ZS-TED that is shown in Algorithm 5.2, consider the two trees in Figure 5.5. For simplicity, we assume that the cost of each single operation will be 1 except matching will cost 0 , as in Zhang and Shasha (1989). The results of applying
this algorithm step-by-step are shown below, where ' d ', ' i ', ' m ' and ' x ' correspond to deleting a node, inserting a node, matching a node and exchanging a node respectively.

Loop 0:

$$
x=1 \rightarrow i=K_{1}[x]=2 \rightarrow l_{1}[i]=2
$$

$$
y=1 \rightarrow j=K_{2}[y]=4 \rightarrow l_{2}[j]=3
$$

Therefore, in this loop ZS-TED computes the distance between the following forests $\left(T_{1}[2-2]=b\right)$ and $\left(T_{2}[3-4]=a, e\right)$ which are shown in Figure 5.8.

Figure 5.8: Selected forest for loop 0.

$$
\begin{aligned}
& l_{1}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & \mathbf{2} & 3 & 4 & 5 & 6 \\
\hline 1 & \mathbf{2} & 1 & 4 & 1 & 1 \\
\hline
\end{array} \\
& K_{1}=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline \mathbf{2} & 4 & 6 \\
\hline
\end{array} \\
& x \\
& K_{2}= \\
& y
\end{aligned}
$$

temporary array $F D$

permanent array D
where items in red mean $l_{1}(i)=l_{1}(x)$ and $l_{2}(j)=l_{2}(y)$.

T_{2}			
a	e		
T_{1}	-	i	ii
b	d	\mathbf{x}	xi

FDPATH array

Loop 1:

$l_{1}=$| | | $\mathbf{2}$ | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$l_{2}=$| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 3 | 3 | 1 | 1 |

$K_{1}=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| $\mathbf{2}$ | 4 | 6 |

$K_{2}=$| 1 | 2 |
| :--- | :--- |
| | $\mathbf{6}$ |

x
y
$x=1 \rightarrow i=K_{1}[x]=2 \rightarrow l_{1}[i]=2$
$y=2 \rightarrow j=K_{2}[y]=6 \rightarrow l_{2}[j]=1$

Therefore, in this loop ZS-TED computes the distance between the following forests $\left(T_{1}[2-2]=b\right)$ and $\left(T_{2}[1-6]=b, c, a, e, d, f\right)$ which are shown in Figure 5.9.

Figure 5.9: Selected forest for loop 1.

	=	1	2	3	4	5	6
$\mathrm{i}=$	0	1	2	3	4	5	6
2	1	0	1	2	3	4	5

temporary array $F D$

	1	2	3	4			6
1							
2	0	1	1	2			5
3							
4							
5							
6							

permanent array D
where items in red mean $l_{1}(i)=l_{1}(x)$ and $l_{2}(j)=l_{2}(y)$.

	T_{2}		b	c	a		e	d		f
T_{1}	-	i	ii	iii	iiii	iiiii	iiiiii			
	b	d	m	mi	mii	miii	miiii	miiiii		

FDPATH array

Loop 2:

$l_{1}=$| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 1 | 4 | 1 | 1 |

$K_{1}=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 2 | 4 | 6 |
| \uparrow | | |
| \uparrow | | |

x

$l_{2}=$| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 3 | 3 | 1 | 1 |

$K_{2}=$| | |
| :--- | :--- |
| 4 | 6 |
| | |

y
$x=2 \rightarrow i=K_{1}[x]=4 \rightarrow l_{1}[i]=4$
$y=1 \rightarrow j=K_{2}[y]=4 \rightarrow l_{2}[j]=3$
$y=1 \rightarrow j=K_{2}[y]=4 \rightarrow l_{2}[j]=3$

Therefore, in this loop ZS-TED computes the distance between the following forests $\left(T_{1}[4-4]=e\right)$ and $\left(T_{2}[3-4]=a, e\right)$ which are shown in Figure 5.10.

Figure 5.10: Selected forest for loop 2.

	$\mathrm{j}=3 \quad 4$		
$\mathrm{i}=$	0	1	2
4	1	1	1

permanent array D
where items in red mean $l_{1}(i)=l_{1}(x)$ and $l_{2}(j)=l_{2}(y)$.

	T_{2}		a
T_{1}	e		
	-	\mathbf{i}	ii
e	d	x	im

FDPATH array

Loop 3:

$$
l_{1}=
$$

$$
K_{1}=
$$

x

$l_{2}=$| | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 3 | 3 | 1 | 1 |

$K_{2}=$| | 2 |
| :---: | :---: |
| 4 | $\mathbf{6}$ |
| | \uparrow |

y

$$
x=2 \rightarrow i=K_{1}[x]=4 \rightarrow l_{1}[i]=4
$$

$$
y=2 \rightarrow j=K_{2}[y]=6 \rightarrow l_{2}[j]=1
$$

Therefore, in this loop ZS-TED computes the distance between the following forests $\left(T_{1}[4-4]=e\right)$ and $\left(T_{2}[1-6]=b, c, a, e, d, f\right)$ which are shown in Figure 5.11.

Figure 5.11: Selected forest for loop 3.

temporary array $F D$

	1	2	3	4		5	6
1							
2	0	1	1	2			5
3							
4	1	2	1	1		4	5
5							
6							

permanent array D
where items in red mean $l_{1}(i)=l_{1}(x)$ and $l_{2}(j)=l_{2}(y)$.

Loop 4:

$l_{1}=$| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 1 | 4 | 1 | 1 |

$l_{2}=$| | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$K_{1}=$| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 2 | 4 | 6 |
| | | |
| | | \uparrow |
| | | x |

$K_{2}=$| | 2 |
| :--- | :--- |
| $\mathbf{4}$ | 6 |
| \uparrow | | y

$$
\begin{aligned}
& x=3 \rightarrow i=K_{1}[x]=6 \rightarrow l_{1}[i]=1 \\
& y=1 \rightarrow j=K_{2}[y]=4 \rightarrow l_{2}[j]=3
\end{aligned}
$$

Therefore, in this loop ZS-TED computes the distance between the following forests $\left(T_{1}[1-6]=a, b, c, e, d, f\right)$ and $\left(T_{2}[3-4]=a, e\right)$ which are shown in Figure 5.12.

Figure 5.12: Selected forest for loop 4.

	j=	3	4
$\mathrm{i}=$	0	1	2
1	1	0	1
2	2	1	2
3	3	2	2
4	4	3	3
5	5	4	4
6	6	5	5

permanent array D
where items in red mean $l_{1}(i)=l_{1}(x)$ and $l_{2}(j)=l_{2}(y)$.

T_{2}	a	e	
T_{1}	-	i	ii
a	d	m	mi
b	dd	md	mdi
c	ddd	mdd	mdx
e	dddd	mddd	mdxd
d	ddddd	mdddd	mdxdd
f	dddddd	mddddd	mdxddd

FDPATH array

Loop 5:

$$
l_{1}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & 2 & 1 & 4 & 1 & \mathbf{1} \\
\hline
\end{array}
$$

$K_{1}=$| | 1 2 | 3 |
| :--- | :--- | :--- |
| 2 | 4 | 6 |
| | \uparrow | |
| \uparrow | | |

x

$l_{2}=$| | | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$K_{2}=$| 1 | 2 |
| :---: | :---: |
| 4 | $\mathbf{6}$ |
| | \uparrow |
| | |
| | |
| | |

$x=3 \rightarrow i=K_{1}[x]=6 \rightarrow l_{1}[i]=1$
$y=2 \rightarrow j=K_{2}[y]=6 \rightarrow l_{2}[j]=1$

Therefore, in this loop ZS-TED computes the distance between the following forests $\left(T_{1}[1-6]=a, b, c, e, d, f\right)$ and $\left(T_{2}[1-6]=b, c, a, e, d, f\right)$ which are shown in Figure 5.13.

T_{1}

T_{2}

Figure 5.13: Selected forest for loop 5.

	j=	1	2	3	4	5	6
$\mathrm{i}=$	0	1	2	3	4	5	6
1	1	1	2	2	3	4	5
2	2	1	2	3	4	5	6
3	3	2	1	2	3	4	5
4	4	3	2	2	2	3	4
5	5	4	3	3	3	2	3
6	6	5	4	4	4	3	2

temporary array $F D$

	1	2	3	4	5	6
1	1	2	0	1	4	5
2	0	1	1	2	4	5
3	2	1	2	2	4	5
4	1	2	1	1	4	5
5	4	3	4	4	2	3
6	5	4	5	5	3	2

permanent array D
where items in red mean $l_{1}(i)=l_{1}(x)$ and $l_{2}(j)=l_{2}(y)$.

T_{2}	b	c	a	e	d	f	
T_{1}	-	i	ii	iii	iiii	iiiii	iiiiii
a	d	x	xi	iim	iimi	iimii	iimiii
b	dd	dm	dmi	dmii	dmiii	dmiiii	dmiiiii
c	ddd	dmd	dmm	dmmi	dmmii	dmmiii	dmmiiii
	dmdd	dmdd	dmmd	dmmx	dmmim	dmmimi	dmmimii
d	ddddd	dmddd	dmmdd	dmmxd	dmmimd	dmmimm	dmmimmi
	dddddd	dmdddd	dmmddd	dmmxdd	dmmimdd	dmmimmd	dmmimmm

FDPATH array

So, the final distance is 2 which represents the final values (at final row and column) in the D array. The last value in the DPATH array represents the final sequence of edit operations, which is: dmmimmm. According to this path, we can define an alignment between two postorder trees. The alignment between two trees T_{1} and T_{2} is obtained by inserting a gap symbol (' ${ }_{-}$') into either T_{1} or T_{2}, according to the type of edit operation, so that the resulting strings S^{1} and S^{2} are the same length as the sequence of edit operations. The gap symbol is inserted into S^{2} when the edit operation is delete ('d'), whereas it is inserted in S^{1} when the edit operation is insert ('i'). Otherwise, the nodes of T_{1} and T_{2} are inserted into S^{1} and S^{2} respectively. The following is an optimal alignment between $T_{1}(a, b, c, e, d, f)$ and $T_{2}(b, c, a, e, d, f)$:

$S^{1}:$	a	b	c		e	d	f
	\mathbf{d}	\mathbf{m}	\mathbf{m}	\mathbf{i}	\mathbf{m}	\mathbf{m}	\mathbf{m}
$S^{2}:$	-	b	c	a	e	d	f

This means:
d: Delete (a) from T_{1}
m: Leave (b) without change
m: Leave (c) without change
i: Insert (a) into T_{1}
m: Leave (e) without change
m: Leave (d) without change
m: Leave (f) without change

The final mapping between T_{1} and T_{2} is shown in Figure 5.14. For each mapping figure the insertion, deletion, matching and exchanging operations are shown with single, double, single dashed and double dashed outline respectively. The matching nodes (or subtrees) are linked with dashed arrows.

Figure 5.14: T_{1} and T_{2} mapping, single edit operations.

5.3.2 Find a sequence of subtree edit operations

Extending ZS-TED to cover subtree operations will give us more flexibility when comparing trees (especially linguistic trees). The key to this algorithm is that we have to find maximal sequences of identical edit operations which correspond to subtrees. A sequence of nodes (in our case, more than one) in postorder corresponds to a subtree if the following conditions are satisfied: (i) the first node is a leaf; and (ii) the leftmost sibling of the last node in the sequence (i.e. the root of a subtree) is the same as the first node in the sequence. These two conditions can be checked in constant time, since the leftmost sibling of a node can be determined for each node in advance. We can hence find maximal sequences corresponding to subtrees by scanning forwards through the sequence of node operations to find sequences of identical operations, and then scanning backwards through such a sequence until we find the point at which it covers a subtree. This involves potentially $O\left(n^{2}\right)$ steps $-n$ forward steps to find sequences of identical operations, and then possibly $n-1$ backward steps each time to find sub-sequences corresponding to subtrees. As an example, the sequence of nodes a, b, c in tree T_{1} in Figure 5.5 is a subtree because a is a leaf and the leftmost of the last node
c is 1 , which represents the first node a. On the other hand, the sequence of nodes a, b, c, e in the same tree is not a subtree because a is a leaf, but the leftmost of the last node e is 4, which represents itself, not the first node a.

Algorithm 5.4 contains the pseudo-code to find the optimal sequence of single and subtree edit operations for transforming T_{1} into $T_{2} . E_{p=1 . L} \in\{$ " $\mathrm{d} "$, " $\mathrm{i} ", " \mathrm{x"}$, "m" $\}$ in this algorithm is an optimal sequence of node edits for transforming T_{1} into T_{2}, obtained by applying the technique in Section 5.3.1, and S^{1} and S^{2} are the alignments for T_{1} and T_{2} obtained after applying this sequence of node edits.

As shown in Algorithm 5.4, to find the optimal single and subtree edit operations sequence that transforms T_{1} into T_{2}, each maximal sequence of identical operations is checked to see whether it contains subtree(s) or not. Checking whether such a sequence corresponds to a subtree depends on the type of edit operation, according to the following rules: (i) if the operation is "d", the sequence is checked on the first tree; (ii) if the operation is " i ", the sequence is checked on the second tree; and (iii) otherwise, the sequence is checked on both trees. After that, if the sequence of operations corresponds to a subtree, then all the symbols of the sequence are replaced by " + " except the last one (which represents the root of the subtree). Otherwise, checking starts from a sub-sequence of the original, as explained below. For instance, let us consider E_{h}, \ldots, E_{t}, where $1 \leq h<L, 1<t \leq L, h<t$, is a sequence of the same edit operation, i.e. $E_{k=h . t} \in\{" \mathrm{~d} "$, " $\mathrm{i} "$, "x", "m" $\}$. Let us consider $h 0=h$. We firstly check nodes $S_{h}^{1}, \ldots, S_{t}^{1}$ and $S_{h}^{2}, \ldots, S_{t}^{2}$ to see whether or not they are the heads of subtrees. If E_{k} is " d ", the nodes $S_{h}^{1}, \ldots, S_{t}^{1}$ are checked, if it is " i " the nodes $S_{h}^{2}, \ldots, S_{t}^{2}$ are checked, and otherwise, the nodes $S_{h}^{1}, \ldots, S_{t}^{1}$ and $S_{h}^{2}, \ldots, S_{t}^{2}$ are checked. All edit operations E_{h}, \ldots, E_{t-1} are replaced by " + " when this sequence corresponds to a subtree. Then, we start checking from the beginning of another sequence from the left of the subtree E_{h}, \ldots, E_{t}, i.e. $t=h-1$. Otherwise, the checking is applied with the sequence starting from the next position, i.e. $h=h+1$. The checking is continued until $h=t$. After that, when the $(t-h)$ sequences that start with different positions and end with t position do not contain a subtree, the checking starts from the beginning with the new sequence, i.e. $h=h 0$ and $t=t-1$. The process is repeated until $h=t$.

In order to find the complexity for Algorithm 5.4, let us consider the space complexity first. Algorithm 5.4 uses three permanent arrays for E, S^{1} and S^{2}. Each of these three arrays requires space $O(L)$. So, the space complexity for Algorithm 5.4 is $O(m+n)$, when $L \leq m+n$.

Consider the time complexity for Algorithm 5.4. The preprocessing to find each

```
Algorithm 5.4 Pseudo-code to find subtree edit operations
    E the sequence of edit operations that transform tree \(T_{1}\) into tree \(T_{2}, E_{p=1 . L} \in\{\) "d"," i "," \(\mathrm{x} ", " \mathrm{~m} "\}\)
    \(\mathrm{L} \quad\) the length of the sequence of edit operations E
    \(S^{1}, S^{2} \quad\) the optimal alignment for \(T_{1}\) and \(T_{2}\) respectively, when the length of \(S^{1}=S^{2}=L\)
    repeat
        ERoot \(\leftarrow E_{L}\)
        \(F \leftarrow L\)
        repeat
            while ( \(F \geq 2\) and \(E_{F-1}==E\) Root \()\) do
                \(F \leftarrow F-1\)
            end while
            if \((F==L)\) then
                \(L \leftarrow L-1\)
                ERoot \(\leftarrow E_{L}\)
                \(F \leftarrow L\)
            end if
        until \(\left(F<L\right.\) and \(F \geq 2\) and \(E_{F-1} \neq E\) Root \()\) or \((L=0)\)
        \(F 0 \leftarrow F\)
        while \((F<L)\) do
            while \((F<L)\) do
                IsSubtree \(\leftarrow\) true
                while ( \(F<L\) and IsSubtree) do
                    if \(\left(E R o o t=" \mathrm{~d}\right.\) " and \(S_{F}^{1} . . S_{L}^{1}\) is subtree \()\) or
                            ( \(E\) Root \(=\) " \(\mathrm{i} "\) and \(S_{F}^{2} . . S_{L}^{2}\) is subtree \()\) or
                                    \(\left((E R o o t\right.\) in \(\{\) "x"," \(\mathrm{m} "\})\) and \(\left(S_{F}^{1} . . S_{L}^{1}\right.\) and \(S_{F}^{2} . . S_{L}^{2}\) are subtrees \(\left.)\right)\) then
                                    Replace \(E_{F} . . E_{L-1}\) with " + "
                                    \(L \leftarrow F-1\)
                                    \(F \leftarrow F 0\)
                    else
                        IsSubtree \(\leftarrow\) false
                    end if
                end while
                \(F \leftarrow F+1\)
            end while
            \(L \leftarrow L-1\)
            \(F \leftarrow F 0\)
        end while
        \(L \leftarrow F 0-1\)
    until \((L \leq 0)\)
    return \(E\)
```

largest sequence of the same edit operations takes linear time less than $m+n$. ETED does not change the main loops but inserts only new two arrays (i.e. DPATH and $F D P A T H)$. So, the time is $2 \times O\left(m^{2} n^{2}\right)$, which means that time complexity is still $O\left(m^{2} n^{2}\right)$.

In brief, the space and time complexities of ETED are still the same of the space and time complexities of the standard one.

The costs of subtrees are changed to match the requirements of specific applications, but for illustration in the current chapter we will simply take the cost of a subtree operation to be half the sum of the costs of the individual operations that make it up.

To explain how the subtree operations are applied, let us consider the following two trees T_{3} and T_{4} in Figure 5.15.

T_{3}

T_{4}

Figure 5.15: Two trees, T_{3} and T_{4}, with their postorder traversal.

According to ZS-TED, the distance is 6 and final sequence of single node edit operation is: dddmmiiimm. This means:
d: Delete (e) from T_{3}
d: Delete (f) from T_{3}
d: Delete (b) from T_{3}
m: Leave (g) without change
m: Leave (c) without change
i: Insert (y) into T_{3}
i: \quad Insert (z) into T_{3}
i: Insert (x) into T_{3}
m: Leave (d) without change
m: Leave (a) without change

According to ETED, the cost is 3 and the sequence of operations as follows: there is a sequence of ' d ', ' m ' and ' i ' in the result. These sequences consist of three subtrees (i.e. the three deleted nodes, the first two matched nodes and the three inserted nodes):

This means:

```
++d: Delete subtree \((e, f, b)\) from \(T_{3}\)
+m: Leave subtree \((g, c)\) without change
++i: Insert subtree \((y, z, x)\) into \(T_{3}\)
    m: Leave (d) without change
    m: Leave (a) without change
```

The final mapping between T_{3} and T_{4} is shown in Figure 5.16 according to ZS-TED and ETED.

(a) ZS-TED

(b) ETED

Figure 5.16: Mapping between T_{3} and T_{4} using ZS-TED and ETED.

Using TED poses a challenge of selecting relevant costs for edit operations since alterations in these costs or choosing a different combination of them can lead to drastic changes in TED performance (Mehdad and Magnini, 2009). One solution to overcome this challenge could consist of assigning costs based on an expert valuation, but they are usually learned automatically. The following section describes in some detail two algorithms that we will use for this task. A number of experiments that use these algorithms is discussed in Chapter 7.

5.4 Optimisation algorithms

In this section, we describe two well-known optimisation algorithms, namely genetic algorithms (GAs) and artificial bee colony (ABC) algorithm, which we will use to estimate the cost of each edit operation (i.e. for single nodes and for subtrees) and threshold(s) of TED based on application and type of system output.

5.4.1 Genetic algorithms

Genetic algorithms (GAs) were first extensively described by Holland (1975). They were later developed by several researchers such as Goldberg (1989) and have been widely investigated for a variety of application areas. GAs are general tools for search and optimisation based on the mechanics of natural selection. GAs are a sub-class of evolutionary algorithms (EAs), which generate solutions to optimisation problems using techniques inspired by natural evolution, such as selection, mutation and crossover (Sivanandam and Deepa, 2008).

A GA starts with an initial population of solutions (chromosomes or genotype). In each generation, solutions from the current population are taken and used to form a new population by modifying the selected solutions' genome (recombined and possibly randomly mutated). This is motivated by a hope that the new population will be better than the old one. Solutions which are selected to form new solutions (offspring) are selected according to their fitness-the more suitable they are the more chances they have to reproduce. The algorithm terminates when either a maximum number of generations has been produced, or a satisfactory fitness level has been reached for the population. The general algorithmic structure of GA is given in Algorithm 5.5.

```
Algorithm 5.5 The basic algorithm for GA
    Initialise population;
    repeat
        Evaluation;
        Reproduction;
        Crossover;
        Mutation;
    until (termination conditions are met);
```

The main steps of GA are summarised below.

1. Initialisation: initialisation of a candidate solution population is usually uniformly randomly generated, although it may be more effective to incorporate problem knowledge (if such knowledge exists about the problem solution) or any other kind of information in this step;
2. Evaluation: once the population is initialised or when a new solution offspring is created, it is necessary to calculate the fitness value of the candidate solutions by using the user-defined fitness function that measures how good a solution is. The fitness function depends on the application and selecting a suitable one is crucial to the success of the approach;
3. Selection: through this step, a number of individuals is selected as parents for the next generation according to their fitness values, with the fittest ones being favoured, so a mechanism which encourages the best individuals' survival is imposed. The main idea here lies in ensuring that high performance individuals tend to contribute more of their features to successive generations. The most common selection schemes are: (i) roulette-wheel selection: the better the individuals are, the more chances to be selected they have; and (ii) tournament selection: a number of individuals is randomly chosen from the population and the best one from them is selected as a parent, with this process repeated as often as individuals must be chosen;
4. Crossover: the crossover operator combines two or more parts from selected parents for creating new offspring, which are possibly better. The offspring solution is ideally different from any of its parents, but contains combined building blocks from them. This operator applies with a rate called probability of crossover $\left(\mathrm{P}_{c}\right)$. The most popular crossover operators are: (i) one-point crossover: randomly select
a crossover point within two parents and interchange the two parent genes at this point to produce two new offsprings; (ii) two-point crossover: randomly select two crossover points within two parents and interchange the two parent genes between these two points to produce two new offsprings; and (iii) uniform crossover: evaluate each corresponding gene in the parents for exchanging with a fixed probability, typically 0.5 ;
5. Mutation: the mutation operator randomly modifies a single solution. There are many mutation operators, which usually affect one or more loci (genes or components) of the solution. This operator applies with a rate called probability of mutation (P_{m}), which is generally much smaller than P_{c}. Mutation provides a mechanism for restoring lost and unexplored genetic material into the population and for searching regions of the allele space not generated by other operators. It can be used to prevent the premature convergence of GA to sub-optimal solutions. The most popular mutation operators are: (i) flip bit operator: take the randomly chosen genome and invert its value to any value between upper and lower bounds for that gene except the current value; (ii) uniform operator: replace the value of the randomly chosen gene with a selected uniform random value from the user-defined allowable range for that gene; and (iii) Gaussian operator: add a unit Gaussian distributed random value to the chosen gene. The new gene value is clipped, if it falls outside of the user-defined allowable range for that gene;
6. Replacement: the new offspring created through steps 3-5 replaces the individual population according to a given criterion. There are many strategies for the replacement of the offspring population by the individual population such as simply replace the entire parent population with the offspring, replace parents only if the offsprings are fit or elitist replacement which preserves the best individual along the evolution is a popular criterion;
7. Termination conditions: the steps 2-6 complete one cycle of GA, which is commonly called a generation. This cycle is repeated until a termination condition has been reached. The most common terminating conditions are: (i) a fixed number of generations is reached; (ii) a solution that satisfies minimum criteria is found; (iii) all individuals in the population are identical (converge); and (iv) combinations of the above.

After evolution stops the best solution in the current population is returned as the candidate solution to the problem.

The most well-known GA is steady state GA (ssGA), for which the pseudo-code is given in Algorithm 5.6 (Alba and Dorronsoro, 2008). In each generation of ssGA (line $4-8$), two parents are selected from the whole population with a given selection criterion (line 4). These two parents are recombined (line 5) and then one of the obtained offsprings is mutated (line 6). The mutated offspring is evaluated (line 7) and then it is inserted back into the population (line 8), typically replacing the population's worst individual (if the offspring is fitter). This generation is repeated until the termination condition is met (line 9).

```
Algorithm 5.6 The basic algorithm for ssGA
    popsize size of population.
    population population.
    \(\mathrm{pc}, \mathrm{pm} \quad\) probability of crossover and mutation, respectively.
    Initialisation(population,popsize);
    Evaluation(population);
    repeat
        parents \(\leftarrow\) Selection(population,popsize);
        offspring \(\leftarrow\) Crossover(pc,parents);
    offspring \(\leftarrow\) Mutation(pm,offspring);
        Evaluation(offspring);
        Replacement(population,popsize,offspring);
    until (termination conditions are met);
    return the best individual in the population.
```


5.4.2 Artificial bee colony algorithm

The artificial bee colony algorithm (ABC) was proposed recently by Karaboga (2005) as an optimisation algorithm depending on the intelligent foraging behaviour of a honey bee swarm. In this optimisation algorithm, the colony of artificial bees consists of three groups. First, employed bees going to the food source (a possible solution to the problem to be optimised) that they have visited previously. Second, onlookers waiting to choose a food source. Third, scouts carrying out random search. The first half of the colony consists of the employed artificial bees and the second half includes the onlookers and scouts. The number of employed bees is equal to the number of food sources. The employed bee of an abandoned food source becomes a scout. The general algorithmic structure of the ABC optimisation approach is shown in Algorithm 5.7
(Karaboga and Akay, 2009; Akay and Karaboga, 2012; Karaboga et al., 2012).

```
Algorithm 5.7 The basic algorithm for ABC
    Initialisation phase;
    repeat
        Employed bees phase;
        Onlooker bees phase;
        Scout bees phase;
        Memorise the best solution achieved so far;
    until (termination conditions are met);
```

As can be seen in Algorithm 5.7, this algorithm carries out three main phases during each cycle: employed bees phase, onlooker bees phase and scout bees phase, in addition to the initialisation phase which is applied once at the beginning of the algorithm. These phases are described briefly in the following steps.

1. Initialisation phase: in this phase, the population of food sources (solutions) is initialised by randomly distributed scout bees and control parameters are set such as the number of food sources (SN), the number of optimisation parameters (D) and the maximum cycle number (MCN). The following definitions might be used in this phase (Equations 5.1 and 5.2).

$$
\begin{equation*}
x_{i j}=l_{j}+\operatorname{rand}(0,1) \times\left(u_{j}-l_{j}\right), i=1, \ldots, S N, j=1, \ldots, D, \tag{5.1}
\end{equation*}
$$

where l_{j} and u_{j} are the lower and upper bounds of the parameter $x_{i j}$, respectively.

$$
\begin{equation*}
\operatorname{fit}\left(x_{i}\right), x_{i} \in R^{D}, i=1, \ldots, S N \tag{5.2}
\end{equation*}
$$

where x_{i} is a position of food source (solution) as a D-dimensional vector and fit $\left(x_{i}\right)$ is the nectar (objective function) that determines how good a solution is.

After the initialisation phase, the population of food source positions is subjected to repeated cycles (cycle $=1, \ldots, \mathrm{MCN}$) of three major processes: updating feasible solutions (step 2), selecting feasible solutions (step 3) and avoiding sub-optimal solutions (step 4).
2. Employed bees phase: in order to update feasible solutions, artificial employed bees explore new candidate food source positions having more nectar within the
neighbourhood of the previously selected food source in their memory. They find a neighbour food source ($v_{i j}$) using the formula given by Equation 5.3:

$$
\begin{equation*}
v_{i j}=x_{i j}+\phi_{i j}\left(x_{i j}-x_{k j}\right), \tag{5.3}
\end{equation*}
$$

where $x_{k j}$ is a randomly selected food source, $k \in\{1,2, \ldots, S N\}$ (i.e. should be different from i) and j in the range $[1, D]$ are randomly chosen indexes, and $\phi_{i j}$ is a uniformly distributed random number in the range $[-1,1]$, which is used to adjust the old solution to become a new one in the next generation. The $x_{i j}-x_{k j}$ is a difference of position in a particular dimension. In each cycle, the algorithm changes each position in solely one dimension in order to increase the diversity of solution in the search space.

After that, the fitness of each produced food source is calculated and a greedy selection is applied between it and its parent. In other words, the produced solution competes with its parent and the better one wins the competition for the next generation. Then, employed bees will return to their hive and share their food source information with onlooker bees waiting over there.
3. Onlooker bees phase: in this phase, each artificial onlooker bee probabilistically selects one of the proposed food sources depending on the fitness value obtained by the employed bees. To achieve this goal, the roulette-wheel selection scheme can be used. The probability value $\left(p_{i}\right)$ that a food source $\left(x_{i}\right)$ will be selected by an onlooker bee can be calculated by Equation 5.4:

$$
\begin{equation*}
p_{i}=\frac{f i t\left(x_{i}\right)}{\sum_{i=1}^{S N} f i t\left(x_{i}\right)} . \tag{5.4}
\end{equation*}
$$

After a food source is probabilistically selected, a neighbourhood source $v_{i j}$ is determined using Equation 5.3, and its fitness value is computed using Equation 5.2. As in the previous phase, a greedy selection is applied between two sources.
4. Scout bees phase: in this phase, employed bees whose food source positions have not been improved through a number of trials (called 'limit') become scouts and their solutions are abandoned and replaced by new positions that are randomly determined by the scouts using Equation 5.5. This helps avoid sub-optimal solutions.

$$
\begin{equation*}
x_{i j}=x_{j}^{\min }+\operatorname{rand}[0,1]\left(x_{j}^{\max }-x_{j}^{\min }\right), \tag{5.5}
\end{equation*}
$$

where $x_{j}^{\min }$ and $x_{j}^{\max }$ are the lower and upper bounds of the food source position in dimension j, respectively.

The steps 2-4 are repeated until a termination criterion is satisfied such as a maximum cycle number is reached or meeting an error tolerance.

The ABC algorithm has been widely used in many optimisation applications, since it is easy to implement and has few control parameters. The detailed pseudo-code of the ABC algorithm is given in Algorithm 5.8 (Akay and Karaboga, 2012).

To ensure that we get the best possible performance when comparing two tokens (i.e. on surface string level) or nodes (i.e. on syntactic level), we supplement each system used in the current thesis with a range of Arabic lexical resources to provide it with some lexical relations such as synonyms. These resources are discussed in the next section.

5.5 Arabic lexical resources

We derived our lexical rules from a range of Arabic lexical resources (Section 5.5.2) in order to provide us with different lexical relations (Section 5.5.1).

5.5.1 Lexical relations

In our work, we take into account the following lexical relations when we compare two tokens or nodes.

5.5.1.1 Synonyms

Synonyms are different words that signify similar, or sometimes identical, meanings. Synonymous words can be used in different contexts with extremely similar meaning. Synonyms can be any part-of-speech (POS) (e.g. verbs, nouns, adjectives, etc.). Examples of Arabic synonyms are shown in (5.1).
(5.1) Synonyms
a. Verbs


```
Algorithm 5.8 Detailed pseudo-code of the ABC algorithm
    SN number of food sources (i.e. half of colony size).
    \(D\) number of optimisation parameters.
    \(x_{i j} \quad\) solution \(\mathrm{i}, \mathrm{j}, \mathrm{i}=1 \ldots S N, \mathrm{j}=1 \ldots D\).
    trial \(_{i}\) the non-improvement number of the solution \(x_{i}\), used for abandonment.
    MCN maximum cycle number.
    limit number of trials, e.g. limit \(=S N \times D\).
    Initialise the population of solutions \(x_{i, j}, i=1 \ldots S N, j=1 \ldots D\), trial \(_{i}=0\);
    Evaluate the population;
    cycle \(=1\);
    repeat
        \{-- - Produce a new food source population for Employed bee -- - \(\}\)
    for \(i=1\) to \(S N\) do
        Produce a new food source \(v_{i}\) for the employed bee of the food source \(x_{i}\) by using
            (5.3) and evaluate its quality;
        Apply a greedy selection process between \(v_{i}\) and \(x_{i}\) and select the better one;
        If solution \(x_{i}\) does not improve trial \(_{i}=\) trial \(_{i}+1\), otherwise trial \(_{i}=0\);
    end for
    Calculate the probability values \(p_{i}\) by (5.4) for the solutions using fitness values;
    \{-- - Produce a new food source population for onlookers - - - \(\}\)
    \(t=0, i=1\)
    repeat
        if random \(<p_{i}\) then
            Produce a new \(v_{i j}\) food source by (5.3) for the onlooker bee;
            Apply a greedy selection process between \(v_{i}\) and \(x_{i}\) and select the better one;
            If solution \(x_{i}\) does not improve trial \(_{i}=\) trial \(_{i}+1\), otherwise trial \(_{i}=0\);
            \(t=t+1 ;\)
        end if
        \(i=i+1\);
        if \(i=S N\) then
            \(i=0 ;\)
        end if
    until \((t=S N)\)
    \(\{--\) - Determine Scout --- \(\}\)
    if \(\max \left(\right.\) trial \(\left._{i}\right)>\) limit then
            Replace \(x_{i}\) with a new randomly produced solution by (5.1);
    end if
    Memorise the best solution achieved so far;
    cycle = cycle +1 ;
until \((\) cycle \(=\mathrm{MCN})\)
```

b. Nouns

c. Adjectives

مضطهد mDThd "oppressed" \equiv مظلو mĎlwm
So, when two words W_{1} and W_{2} are synonyms this leads to the conclusion that W_{1} entails W_{2} as well as W_{2} entails W_{1}.

5.5.1.2 Antonyms

Antonyms are gradable adjectives (note that, in the narrow sense, the term is frequently used as a synonym for opposite). The comparative forms of antonyms vary according to whether they presuppose the positive forms or not (Aronoff and Rees-Miller, 2003). For example, something that is 'longer' than something else does not need to be 'long'. Compared with something that is 'hotter' than something else, it has to be 'hot'. Therefore, 'longer' is impartial, whereas 'hotter' is committed. According to Cruse (2011) and Aronoff and Rees-Miller (2003), three relatively well-defined groups of antonyms can be distinguished as shown in (5.2).
(5.2) Antonym groups
a. Polar antonyms (i.e. both members of a pair are impartial in the comparative)

$$
\text { قصير } \text { قويل : Twyl "long" }
$$

b. Overlapping antonyms (i.e. one member of a pair is committed in the comparative, the other is impartial)
جيد jyd "good" : رديء rd̂̂ "bad"
c. Equipollent antonyms (i.e. both members are committed in the comparative) حار HAr "hot" : bArd "cold"

In contrast with synonyms, a word W_{1} entails not W_{2} if they are antonyms.

5.5.1.3 Hypernyms and hyponyms

Hypernyms refer to a general category (i.e. a word whose semantic meaning is more generic than another word), whereas hyponyms refer to a subset of that category (i.e.
a word whose semantic meaning is more specific than another word). Figure 5.17 illustrates examples for hypernym and hyponym words.

Figure 5.17: The relations between hypernym and hyponym.

Similar to synonym, a word W_{1} entails a word W_{2} if W_{1} is a hyponym of W_{2}, whereas W_{1} does not entail W_{2} if W_{1} is a hypernym of W_{2}.

We intend here to exploit the synonym, antonym, subset and superset sense relations when exchanging items in a tree. Roughly speaking, if comparing one tree to another requires the exchange of two lexical items, the comparison will be more plausible if the item in the source tree is a synonym or hyponym of the one in the target tree.

In order to make use of these relations, we need to deal with lexical ambiguity. We do this by following a similar approach to Hobbs disambiguation via 'abduction' (see Hobbs, 2005)). In our TE system, we consider that T entails H if there is any reading of H which can be inferred from any reading of T. Doing this will allow our system to delay making decisions about potentially ambiguous lexical items as described below.

- It is reasonably safe to assume that if W_{1} has a sense which is a synonym or hyponym of some sense of W_{2} then a sentence involving W_{1} will entail a similar sentence involving W_{2} as shown in (5.3) and (5.4) respectively.
- It is reasonably safe to assume that if W_{1} has a sense which is a hypernym of some
sense of W_{2} then a sentence involving W_{1} will not entail a similar sentence involving W_{2} as shown in (5.4).
- It is reasonably safe to assume that if W_{1} is an antonym of W_{2} then a sentence involving W_{1} will contradict a similar sentence involving W_{2} as shown in (5.5). During the tree matching, we intend to exchange two antonyms word with cost higher than exchanging other words, since the presence of antonyms is an indication that the two sentences are in direct conflict.

This will definitely be quicker, and may be more reliable, than trying to disambiguate the two from first principles and then looking for entailment relationships.
(5.3) Synonym example
a.

rÂyt ly θA Âms
I-saw Laith/lion yesterday
"I saw Laith yesterday" or "I saw lion yesterday"
b.

rÂyt ÂsdA frHA
I-saw lion yesterday
"I saw lion yesterday"
Since one of ليث ly θ "Laith/lion" meanings (i.e. "lion") is a synonym of أسد Âsd "lion", (5.3a) entails (5.3b) and vice versa.
(5.4) Hyponym/Hypernym example
a.

rÂyt HsAmA Âms
I-saw Hussam/sword yesterday
"I saw Hussam yesterday" or "I saw sword yesterday"
b. رأيت سلاحا أمس
rÂyt slaHA frHA
I-saw weapon yesterday
"I saw weapon yesterday"

Since one of حسام HsAm "Hussm/sword" meanings (i.e. "sword") is a hyponym of سلاح slAHA "weapon", (5.4a) entails (5.4b) but the reverse does not hold. Disambiguation algorithms typically make use of information about the context. When doing

TE, the text is the context-it would be very strange to ask whether 'I bought an apple yesterday' entailed 'I bought a computer yesterday' in a context where 'apple' was a kind of fruit.
(5.5) Antonyms example
a. أمامنا الكثير من الفرص والكثير من التحديات rÂmAmnA Alk日yr mn Al+frS $\quad w+A l k \theta y r$ mn Al+thdyAt Before-us many of opportunities and+many of challenges "Before us are many opportunities and many challenges"
b. أمامنا القليل من الفرص والكثير من التحديات rÂmAmnA Alqlyl mn Al+frS $\quad w+A l k \theta y r ~ m n ~ A l+t h d y A t$ Before-us few of opportunities and+many of challenges "Before us are few opportunities and many challenges"

Since الكثير Alk $\begin{aligned} & \text { القليل Alqyr "many" is an antonym of "few", (5.5a) does not }\end{aligned}$ entail (5.5b).

5.5.2 Lexical resources

We use the following lexical resources in order to provide us with the lexical relations that are explained in Section 5.5.1. The first resource (i.e. acronyms) is used during the preprocessing stage, i.e. before POS tagging, while the others are used during the matching stage.

5.5.2.1 Acronyms

We manually collected a set of acronyms from different Arabic websites. An acronym is a word formed from the initial letters of a name or by combining initial letters or parts of a series of words. Figure 5.18 illustrates some examples of these acronyms.

5.5.2.2 Arabic WordNet

A WordNet is a machine-readable large lexical database. Words (such as nouns, verbs, adjectives and adverbs) are grouped into clusters of synonyms, called 'synsets', that each express a unique word sense (concept/meaning). Typically, it provides examples and definitions for the synsets that are interlinked through conceptual-semantic and lexical relations. The main WordNet relation among words is synonymy, while the

Acronyms	Meaning
بي بي سي	هيئة الإذاعة البريطانية
by by sy	hy'ћ Al+ǍðA¢ $\begin{gathered}\text { ¢ }\end{gathered}$
BBC	British Broadcasting Corporation
ناتو	حلف شمال الأطلسي
nAtw	Hlf ŝmAl Al+ÂTlsy
NATO	North Atlantic Treaty Organization

Figure 5.18: Arabic acronyms examples.
most frequent relations among synsets are hyperonymy and hyponymy. These two relations allow the WordNet to be interpreted hierarchically as a lexical ontology.

WordNet is freely and publicly available for different languages, such as English (also called Princeton WordNet (PWN)), Spanish, German, Italian, Polish, Euro WordNet (EWN) and Arabic. The Arabic WordNet (AWN) (Black et al., 2006) follows the design and contents of PWN and EWN. Arabic synsets are paired with synsets in PWN and are mappable to synsets in EWN. In AWN, Arabic words are represented by their lemmas (abstracting away from morphological inflections). The PWN is significantly bigger than AWN. Figure 5.19 illustrates the various synsets involving the verb زار zAr in Arabic and its translation in English "visit". In this figure, every row represents two synsets that have been paired up, Arabic and English (Habash, 2010).

Arabic WordNet Synset	English WordNet Synset
	tou
	visit, see
	visit, travel to
ز $z A r$	visit, call in, call
 	visit, inflict, bring down, impose
	visit, chew the fat, shoot the breeze, chat, confabulate

Figure 5.19: Paired synsets for AWN and PWN.

The information in AWN, while very useful, is sparse in comparison to the PWN. We therefore used various other Arabic lexical resources, described below, to provide us with more information about relation between words.

5.5.2.3 Openoffice Arabic thesaurus

This thesaurus contains POS tags and synonyms for many Arabic words. Figure 5.20 represents an example of synonyms for the Arabic word بارز bArz.

Word	POS	synonyms
¢ bArz	verb	قاتل qAtl fight
		نازل nAzl clash with

Figure 5.20: Arabic synonym examples, Openoffice Arabic thesaurus.

5.5.2.4 Arabic dictionary for synonyms and antonyms

We manually collected a set of synonyms and antonyms from different Arabic books, websites and tutorials. A number of examples are illustrated in Figure 5.21.

Word	Synonyms	Antonyms
الشهير $A l+s ̌ h y r$ "famous"	المعروف Al+mऽrwf "known"	المجهول Al+mjhwl "unknown"
	المسن Al+msn "aged"	$\begin{aligned} & \dot{A l++\check{A} A b} \\ & \text { "young" } \end{aligned}$
	$\begin{aligned} & \text { الهر Al+hrm } \end{aligned}$ "old"	$\begin{aligned} & \text { الفتى } \\ & \text { Al+ftýy } \\ & \text { "boy" } \end{aligned}$

Figure 5.21: Arabic dictionary for synonym and antonym examples.

We also collected a list of loan words and neologisms, which contains words that are borrowed from foreign languages, such as English. Most of these words have been replaced by MSA neologisms, but still some are used in informal and formal written and spoken modern Arabic as explained in Figure 5.22.

5.5.2.5 Arabic stopwords

This is a list of words which are treated specially during dependency tree matching in order to improve the performance of matching by using different edit costs for them.

Loan word	Neologism
باص hAS bus	قافلة HAft bus
بروفسور brwfswr professor	أستاذ AdstAð professor
راديو lAdy radio	مذياع radio

Figure 5.22: Arabic neologism examples.

There is not a common list of stop words for all applications, since each application has its specific list of stop words. In our work, the following examples are taken into consideration.

- The verb قام qA "to do" with all its conjugations. An example is explained in (5.6).
(5.6) The verb قام qAm "to do"
a.

que bAHDAr Al+ktAb
I-did bring the+book
"I did bringing the book"
b. احضرت الكتاب

AHDrt $A l+k t A b$
I-bring the+book
"I bring the book"

- The particles qt ld or lb lad, when followed by a past tense verb, denote either complete action or emphasis. It may be translated as "indeed", "already" or "really" but sometimes it is not translatable. Ryding (2005) states that "The use of ' $q d$ ' with past tense serves to confirm the meaning of the past tense by emphasising that the action did indeed happen." An example is explained in (5.7).
(5.7) The particle قد qd "already"
a. قد ذهب الرجل الى بيته
qd hb Al +rjl flY beth
already went the+man to his-house
"The man already went to his house"
b. ذهب الرجل الى بيته
ðhb Al+rjl AlY byth
went the+man to his-house
"The man went to his house"
- Cognate accusative (مفعول مطلق mfऽwl mTlq), which is used to add emphasis by using a verbal noun (مصدر $m S d r$) derived from the main verb or predicate that it depends on. An example is given in (5.8).
(5.8) Cognate accusative
a. يكتجون احتجاجا شديدا
yHtjwn AHtjAjA $\check{s} d y d A$
protesting protest a strong
"? Protesting a strong protest"
b. يحتجون شديدا.
$y H t j w n \quad \check{s} d y d A$
protesting a strong
"They are protesting strongly"
- Explicit pronouns, e.g. هو هو hy "she/it", are used in a number of different ways and sometimes as a nonessential part of a clause. One of their functions is to emphasise the omitted subject of a verb. The pronoun is not necessary to mark the subject of a verb since verbs incorporate the subject into their inflections. The pronoun, however, may be used along with the verb in order to emphasise or fortify the subject. In (5.11a), the pronoun could be omitted as in (5.11b), which would still be grammatically correct; however, the emphasis on the subject would be reduced.
(5.9) Pronouns to emphasise the subject of a verb
a.

سيكون هو المتاح السحري			
sykwn	$h w$	$A l+m f t A H$	$A l+s H r y$
will-be it	the+key	magic	
"It will be the magic key"			

b.

$$
\begin{aligned}
& \text { sykwn Al+mftAH } \quad \text { Al+sHry } \\
& \text { السيكون المتاح magic } \\
& \text { will-be the+key } \\
& \text { "(It) will be the magic key" }
\end{aligned}
$$

Such pronouns may also be used presumptively to emphasise a subject which has been realised as a full NP. An example is illustrated in (5.10).
(5.10) Separate personal pronouns
a. حمد هو الولد الوحيد
$m H m d \quad h w$ Al+wld Al+wHyd
Muhammad he the+child only
"Muhammad (he) is the only child"
b. كمد الولد الوحيد
mHmd Al+wld Al+wHyd
Muhammad the+child only
"Muhammad is the only child"
 sentence after them. An example is explained in (5.11).
(5.11) The particles إن Ǎn "indeed"
a. إن هذه جريمة بشعة

Ǎn hðh jrymћ bş̌ћ
indeed this a-repugnant crime
"Indeed, this is a repugnant crime"
b. هذه جريمة بشعة
$h ð h$ jrymћ bş̌ \hbar
this a-repugnant crime
"This is a repugnant crime"

- The forms of implicit emphasis (التوكيد المعنوي Al+twkyd Al+mৎnwy), such as ($n f s$ "same, himself/herself/itself", "selfsame, identical", and others with specific conditions (Badawi et al., 2004). An example is illustrated in (5.12).
(5.12) Implicit emphasis
a. اشتريت نفس الكتاب

Aštryt nfs Al+ktAb
I-bought same the+book "I bought the same book"
b. اشتريت الكتاب

Aštryt $\quad A l+k t A b$
I-bought the+book
"I bought the book"

Chapter 6

Arabic textual entailment dataset preparation

6.1 Overview

There are fewer resources for TE for Arabic than for other languages, and the manpower for constructing such a resource is hard to come by. In this chapter, we describe our efforts for creating a first dataset for training and testing a TE system for Arabic. We describe in Section 6.2 a general description of the English RTE datasets. Next, we start in Section 6.3 with our technique for collecting potential $T-H$ pairs for a development set and testing set for TE systems, using an extension of the headline-lead paragraph technique and then we describe our online system to annotate the collected data. The Arabic dataset for TE systems and a regime to ameliorate some of the difficulties that arise from using the above technique are discussed in Section 6.4. In Section 6.5 , we sketch how we can detect spammer annotator(s) from a number of volunteer annotators, since it is difficult to know in advance how dependable those annotators are.

6.2 RTE dataset creation

The RTE dataset contains two parts: development set (for training) and test set (for testing). Each dataset consists of T-H pairs with their gold-standard annotation. The texts in these datasets were collected from the web from a variety of sources, such as newswire text. In some cases, they were collected from available datasets or systems. They contain one or two sentences (a trend to increase over time) and tend to be fairly
long compared with hypotheses (e.g. the average in RTE1 is 25 words, 28 words in RTE2, 30 words in RTE3 and 39 words in RTE4). In contrast, the hypotheses are quite short single sentences (e.g. averaging 11 words in RTE1, 8 words in RTE2 and 7 words in RTE3 and RTE4), which were manually constructed for each corresponding text. The organisers of the RTE Challenges have released a large test set, which contains several hundred problems of natural language inference (NLI) as summarised in Table 6.1. Some examples of RTE1 development set are shown in Figure 6.1.

Name	Year	Sponsor	Development set (\#problems)	Test set (\#problems)
RTE1	2005	PASCAL	576	800
RTE2	2006	PASCAL	800	800
RTE3	2007	PASCAL $^{\text {RTE4 }}$	2008	NIST 1
RTE5	2009	NIST 2000	-	800
R	600 (main task)	1000		

Table 6.1: High-level characteristics of the RTE Challenges problem sets.

The first three RTE Challenges were presented as a binary classification task 'YES' or 'NO' with fairly even numbers of 'YES' and 'NO' problems. Beginning with RTE4, there were three-way classifications ('YES', 'NO' or 'CONTRADICT', to distinguish cases in which H contradicts T from those in which H is compatible with, but not entailed by, T).

A lot of RTE problem characteristics should be emphasised. Examples in the RTE are collected from a wide variety of sources, such as the web, focusing on the general news domain; therefore systems must be domain-independent. From a human viewpoint, the inferences required are to some extent superficial and do not involve long chains of reasoning. There are also some questions that are expressly designed to frustrate simplistic techniques (see pair 2081 in Figure 6.1). As explained before in Section 2.3, there is no formal definition for TE and the current characterisation is informal and approximate: whether a competent speaker with basic knowledge of the world would typically infer H from T. Entailment will certainly depend on both linguistic and world knowledge, while the required world knowledge scope is left unspecified (see Section 2.3.2).

In spite of the informality of the entailment definition, human judges exhibit agreement rate $91-96 \%$ on the RTE task (Dagan et al., 2006). Then, in principle, the machine performance upper bound should be high, while practically, results show that the

[^33]```
<pair id="13" value="TRUE" task="IR">
 <t>iTunes software has seen strong sales in Europe.</t>
 <h>Strong sales for iTunes in Europe.</h>
</pair>
<pair id="110" value="TRUE" task="IR">
 <t>Wal-Mart faces huge sex discrimination suit</t>
 <h>Wal-Mart faces a sex-discrimination suit</h>
</pair>
<pair id="826" value="TRUE" task="CD">
 <t>A car bomb exploded outside a U.S. military base near Baji.</t>
 <h>A car bomb exploded outside a U.S. military base near Beiji.</h>
</pair>
<pair id="2081" value="FALSE" task="QA">
 <t>The main race track in Qatar is located in Shahaniya, on the
 Dukhan Road.</t>
 <h>Qatar is located in Shahaniya.</h>
</pair>
<pair id="147" value="TRUE" task="RC">
 <t>The Philippine Stock Exchange Composite Index rose 0.1 percent to
 1573.65.</t>
 <h>The Philippine Stock Exchange Composite Index rose.</h>
</pair>
<pair id="148" value="FALSE" task="RC">
 <t>The Philippine Stock Exchange Composite Index rose 0.1 percent to
 1573.65.</t>
 <h>The Philippine Stock Exchange Composite Index dropped.</h>
</pair>
```

Figure 6.1: Some examples from the RTE1 development set as XML format.

RTE task is extremely difficult for machines. For instance, in the first PASCAL RTE competition, lower accuracies were achieved, i.e. 50-59\% (Dagan et al., 2006). In later competitions, participants reported higher accuracies, but this is partially attributable to the test sets of RTE having become substantially easier (MacCartney, 2009).

### 6.3 Dataset creation

In order to train and test a TE system for Arabic, we need an appropriate dataset. To the best of our knowledge, no such datasets are available for Arabic, so we have had to develop one. We did not want to produce a set of T-H pairs by hand-partly because
doing so is a lengthy and tedious process, but more importantly because hand-coded datasets are liable to embody biases introduced by the developer. If the dataset is used for training the system, then the rules that are extracted will be little more than an unfolding of information explicitly supplied by the developers. If it is used for testing then it will only test the examples that the developers have chosen, which are likely to be biased, albeit unwittingly, towards the way they think about the problem.

We also need to cope with the fact that we do not have access to a large team of willing (or paid!) annotators. Whilst it is possible to collect potential T-H pairs automatically, or semi-automatically, these pairs then have to be annotated. If TE is about trying to develop systems that will make the same decisions about whether $T$ entails $H$ as a person, then we need, at least for testing, to know what a person would say. Given that we are intending to follow standard practice and use machine learning algorithms to extract at least some of the inference rules our system will be using, we also need annotated data from which to extract them. We therefore need to get as much data as possible from a rather unreliable set of annotators. In particular, our annotators are under no obligation to do anything, and we are relying entirely on their goodwill. This means that we do not know how many examples a given annotator will do, nor when they will do them. Furthermore, a number of them are based in other institutions, or even other countries, and we have no way of verifying in advance that they will make sensible judgements. TE is about whether a typical adult language user would say that $T$ entailed $H$, rather than about whether it really does entail it. Thus in one sense the judgements that our annotators make cannot fail to be correct-they are typical adult Arabic speakers, so their judgements are what we want to reproduce. Nonetheless, there will be cases where an annotator has misunderstood the task that we have set them, and we need to be able to spot, and recover from, such cases.

We investigate here a semi-automatic technique for creating a dataset for a TE system for Arabic. Our current technique consists of two tools. The first tool is responsible for automatically collecting $T$ - $H$ pairs from news websites (Section 6.3.1), while the second tool is an online annotation system that allows annotators to annotate our collected pairs manually (Section 6.3.2).

### 6.3.1 Collecting T-H pairs

We start by extracting candidate $T-H$ pairs automatically. A number of TE datasets have been produced for different languages, such as English, ${ }^{2}$ Greek (Marzelou et al.,

[^34]2008), Italian (Bos et al., 2009), German and Hindi (Faruqui and Padó, 2011). Some of these datasets were collected by the so-called headline-lead paragraph technique (Bayer et al., 2005; Burger and Ferro, 2005) from newspaper corpora, pairing the first paragraph of an article, as $T$, with its headline, as $H$. This is based on the observation that a news article's headline is very often a partial paraphrase of the first paragraph of this article, conveying thus a comparable meaning. The current work is a step forward in this respect. We use the general idea of headline-lead paragraph strategy with our extension to improve the quality of the $T-H$ pairs.

The most promising idea here is by posing queries to a search engine and filtering the responses for sentences that do (and do not) entail the query. We are currently building a corpus of $T-H$ pairs by using headlines that have been automatically acquired from Arabic newspapers' and TV channels' websites (in our case, we used Al Jazeera http://www.aljazeera.net/, Al Arabiya http://www.alarabiya.net/ and BBC Arabic http://www.b.bc.co.uk/arabic/ websites as resources for our headlines) as queries to be input to Google via the standard Google-API, and then selecting the first paragraph, which usually represents the most related sentence(s) in the article with the headline (Bayer et al., 2005; Burger and Ferro, 2005), of each of the first 10 returned pages. This technique produces a large number of potential pairs without any bias in either the texts or the hypotheses. To improve the quality of the sentence pairs that resulted from the query, we use two conditions to filter the results: (i) the length of a headline must be at least more than five words to avoid very small headlines; and (ii) the number of common words (either in surface forms or lemma forms) ${ }^{3}$ between both sentences must be less than $80 \%$ of the headline length to avoid having excessively similar sentences. The problem is illustrated by (6.1).
(6.1) Positive entailment pair with highly similar common words
a. About 1500 lung cancer patients die unnecessarily each year.
b. 1500 lung cancer deaths unnecessary.

The problem here is that (6.1a) and (6.1b) are so similar that there would be very little to learn from them if they were used in the training phase of a TE system; and they would be almost worthless as a test pair-virtually any TE system will get this pair right, so they will not serve as a discriminatory test pair. In the current work, we apply both conditions above to $85 \%$ of the $T-H$ pairs from both training and testing

[^35]sets. We then apply the first condition only on the remaining $15 \%$ of $T-H$ pairs in order to leave some similar pairs, especially non-entailments, to foil simplistic approaches (e.g. bag-of-words).

In order to find pairs that were not unduly similar, we matched headlines from one source with stories from another. Major stories are typically covered by a range of outlets, usually with variations in emphasis or wording. Stories from different sources can be linked by looking for common words in the headlines-it is unlikely that there will be two stories about, for instance, neanderthals in the news at the same time, so very straightforward matching based on low frequency words and proper names is likely to find articles about the same topic. The terminology and structure of the first sentences of these articles, however, are likely to be quite different. Thus using a headline from one source and the first sentence from an article about the same story but from another source is likely to produce $T-H$ pairs which are not excessively similar. Figure 6.2 shows, for instance, the results of headlines with their lead-paragraphs from various sites (CNN, BBC and Reuters) that mention Berlusconi on a given day's headline.

| Source | Headline (Hypothesis) | Lead paragraph (Text) | Result |
| :--- | :--- | :--- | :--- |
| CNN | Berlusconi says he will not <br> seek another term. | Italian Prime Minister Silvio Berlusconi said Fri- <br> day he will not run again when his term expires in <br> 2013. | YES |
| BBC | Silvio Berlusconi vows not <br> to run for new term in 2013. | Italian Prime Minister Silvio Berlusconi has con- <br> firmed that he will not run for office again when <br> his current term expires in 2013. | YES |
| Reuters | Berlusconi says he will not <br> seek new term. | Italian Prime Minister Silvio Berlusconi declared <br> on Friday he would not run again when his term <br> expires in 2013. | YES |

Figure 6.2: Some English T-H pairs collected by headline-lead paragraph technique.

We can therefore match a headline of one newspaper with related sentences from another one. We have tested this technique on different languages, such as English, Spanish, German, Turkish, Bulgarian, Persian and French. We carried out a series of informal experiment with native speakers to see whether the resulting $T-H$ pairs contain a mixture of cases where $T$ does or does not entail $H$ (the latter are needed at least for testing: a test set with no negative examples will not penalise systems that simply assume that every pair is a positive example). The results were encouraging, to the point where we took this as the basic method for suggesting T-H pairs.

## CHAPTER 6. ARABIC TEXTUAL ENTAILMENT DATASET PREPARATION191

Most of the Arabic articles that are returned by this process typically contain very long sentences (upwards of 100 words), where only a small part has a direct relationship to the query. With very long sentences of this kind, it commonly happens that only the first part of $T$ is relevant to $H$. This is typical of Arabic text, which is often written with very little punctuation, with elements of the text linked by conjunctions rather than being broken into implicit segments by punctuation marks such as full stops and question marks. Thus what we really want as the text is actually the first conjunct of the first sentence, rather than the whole of the first sentence.

In order to find the first conjunct, we use MSTParser to get a picture of the structure of the sentence. As we have seen before in Chapter 4, parsing Arabic is very difficult, and most attempts to use MSTParser as a parser for Arabic score around 83\%. For many purposes this is a rather disappointing level of accuracy, though it seems to be the current state of the art for parsing Arabic (other well-known dependency parsers, e.g. MALTParser, are generally reported as being slightly less accurate (around 81\%), and grammar-driven parsers usually just fail when confronted with the very long sentences that are found in Arabic newspapers and websites). For our current purposes, however, we simply need to find the first conjunction that links two sentences, rather than linking two substructures (e.g. two noun phrases (NPs)). MSTParser does this quite reliably, so that parsing and looking for the first conjunct is a more reliable way of segmenting long Arabic sentences than simply segmenting the text at the first conjunction. For instance, selecting the second conjunction in segment (6.2) will give us the complete sentence 'John and Mary go to school in the morning', since it links two sentences. In contrast, selecting the first conjunction in segment (6.2) will give us solely the proper noun 'John', since it links two NPs (i.e. 'John' and 'Mary').
(6.2) Segmenting sentence

John and Mary go to school in the morning and their mother prepares the lunch.

### 6.3.2 Annotating T-H pairs

The pairs that are collected in the first stage still have to be marked-up by human annotators, but at least the process of collecting them is as nearly bias-free as possible. The annotation is performed by volunteers, and we have to rely on their goodwill both in terms of how many examples they are prepared to annotate and how carefully they do the job. We therefore have to make the task as easy possible, to encourage them
to do large numbers of cases, and we have to manage the problems that arise from having a mixture of people, with different backgrounds, as annotators. In one way having non-experts is very positive: as noted before, TE is about the judgements that a typical speaker would make. Not the judgements that a logician would make, or the judgements that a carefully briefed annotator would make, but the judgements that a typical speaker would make. From this point of view, having a mixture of volunteers carrying out the task is a good thing: their judgements will indeed be those of a typical speaker.

At the same time, there are problems associated with this strategy. Our volunteers may just have misunderstood what we want them to do, or they may know what we want but be careless about how they carry it out. We therefore have to be able to detect annotators who, for whatever reason, have not done the job properly. The system therefore has to be able to measure the reliability of each annotator to avoid unreliable ones. We have investigated the use of different strategies to achieve this goal (see Section 6.5). According to the results of these strategies, the system will decide to block the annotator's annotation account and then remove the annotations of unreliable annotator(s) from the system database.

Because our annotators are geographically distributed, we have developed an online annotation system. The system presents the annotator with sentences that they have not yet seen and that are not fully annotated (here, annotated by three annotators) and asks them to mark this pair as positive 'YES', negative 'NO' or unknown 'UN'. The system also provides other options, such as revisiting a pair that they have previously annotated, reporting sentences that have such gross misspellings or syntactic anomalies that it is impossible to classify them, skipping the current pair when a user chooses not to annotate this pair, and general comments (to send any suggestion about improving the system). The final annotation of each pair is computed when it is fully annotated by three annotators-when an annotator clicks 'Next', they are given the next sentence that has not yet been fully annotated. This has the side-effect of mixing up annotators: since annotators do their work incrementally, it is very unlikely that three people will all click 'Next' in lock-step, so there will be inevitable shuffling of annotators, with each person having a range of different co-annotators. The current annotation tool interface is shown in Figure 6.3. All information about articles, annotators, annotations and other information such as comments is stored in a MySQL database.

## Welcome ANT-1



Figure 6.3: Annotate new pair's interface.

### 6.4 Arabic TE dataset

The current dataset, namely Arabic TE dataset (ArbTEDS), consists of 618 T-H pairs. These pairs are randomly chosen from thousands of pairs collected by using the tool explained in Section 6.3.1. These pairs cover a number of subjects such as politics, business, sport and general news. We used eight expert and non-expert volunteer annotators ${ }^{4}$ to identify the different pairs as 'YES', 'NO' or 'UN' pairs in the ArbTEDS. Those annotators follow nearly the same annotation guidelines as those for building the RTE task dataset (Dagan et al., 2006) (see Section 2.3.2). They used the online system explained in Section 6.3.2 to annotate our collected headline-lead paragraph pairs. Using a web-based annotation tool provides us with different advantages, especially that it is available for many annotators in a lot of places.

Table 6.2 summarises these individual results: the rates on the cases where an annotator agrees with at least one co-annotator (average around 91\%) are considerably higher than those in the case where the annotator agrees with both the others (average around $78 \%$ ). This suggests that the annotators found this a difficult task. Table 6.2

[^36]shows that comparatively few of the disagreements involve one or more of the annotators saying 'UN'-for 600 of the 618 pairs at least two annotators both chose 'YES' or both chose 'NO' (the missing 18 pairs arise entirely from cases where two or three annotators chose 'UN' or where one said 'YES', one said 'NO' and one said 'UN'. These 18 pairs are annotated as 'UN' and they are eliminated from our dataset, leaving 600 binary annotated pairs).

| Agreement | YES | NO |
| :---: | :---: | :---: |
| $\geq 2$ agree | $478(80 \%)$ | $122(20 \%)$ |
| 3 agree | $409(68 \%)$ | $69(12 \%)$ |

Table 6.2: ArbTEDS annotation rates, 600 pairs.
We were expecting annotators to make frequent use of the 'Unknown' option. The fact that they did not means that it is inevitable that the top row in Table 6.2 will cover virtually the entire set. Does that mean that we should trust the majority decision in every case?

This is appealing, since it maximises the size of the dataset. The fact that the rate of agreement drops so dramatically when we insist on unanimity suggests that it is not a good idea. We have average agreement between three annotators in $78 \%$ of cases, compared to $91 \%$ of average agreement between at least two. The frequency of cases where there is not total agreement indicates that, for the text types we are working with (the headline from a story and the first one or two clause(s) of the first sentence of a linked story) people find it very difficult to carry out this task. It seems likely, then, that a computer will also find it very difficult to carry it out. If we use cases where there is majority agreement as our training set, we are likely to learn rules from examples which do not in fact exemplify sound (or even plausible/probabilistic) inferences. If we use them as the test set, we will be asking the system questions to which even our subjects have not given consistent answers. We therefore plan to use only examples where there is a unanimous verdict for both training and testing.

Is it possible to predict which cases will lead to disagreements? One obvious candidate is sentence length. It seems plausible that people will find long sentences harder to understand than short ones, and that there will be more disagreement about sentences that are hard to understand than about easy ones. Further statistical analysis results for the version of the dataset when there is unanimity between annotators is summarised in Table 6.3. We analyse the rates of this strategy that are shown in Table 6.2 according to the text's length, when the $H$ average length is around 10 words and the average of

## CHAPTER 6. ARABIC TEXTUAL ENTAILMENT DATASET PREPARATION195

common words between $T$ and $H$ is around 4 words. The average length of sentence in this dataset is 25 words per sentence, with some sentences containing 40+ words.

| Text length | \#pairs | YES | NO | At least one disagree |
| :---: | :---: | :---: | :---: | :---: |
| $<20$ | 131 | $97(74 \%)$ | $11(8 \%)$ | $23(18 \%)$ |
| $20-29$ | 346 | $233(67 \%)$ | $38(11 \%)$ | $75(22 \%)$ |
| $30-39$ | 110 | $69(63 \%)$ | $20(18 \%)$ | $21(19 \%)$ |
| $>39$ | 13 | $10(77 \%)$ | $0(0 \%)$ | $3(23 \%)$ |
| Total | $\mathbf{6 0 0}$ | $\mathbf{4 0 9 ( 6 8 \% )}$ | $\mathbf{6 9 ( 1 2 \% )}$ | $\mathbf{1 2 2 ( 2 0 \% )}$ |

Table 6.3: ArbTEDS text's range annotation rates, three annotators agree, 600 pairs.
Contrary to the expectation above, there does not seem to be any variation in agreement amongst annotators as sentence length changes. We therefore select the candidate T-H pairs without any restrictions on the length of the text to diversify the level of the examples' complexity, and hence to make the best use for our dataset.

For reference, (6.3) and (6.4) show examples of entailment and non-entailment pairs where the annotators do all agree.
(6.3) ArbTEDS's entailment pair
a. وزارة الدفاع الأمريكية البنتاغون تعد استراتيجية جديدة تضع الهجمات الألكترونية في

wzArћ Al+dfAऽ Al+Âmrykyћ Al+bntAरwn ţd AstrAtyjyћ jdydћ tDऽ Al+hjmAt Al+Âlktrwnyћ fy mSAf Al+Â̧mAl Al+Hrbyћ HsbmA ðkrt SHff Âmrykyt
"The US Department of Defense, the Pentagon, draw up a new strategy that categorises cyber-attacks as acts of war, according to US newspapers"
b. البنتاغون يعتبر الهجمات الألكترونية أعمالا حربية

"The Pentagon considers cyber-attacks as acts of war"
(6.4) ArbTEDS's non-entailment pair
a. عقد في القاهرة اللقاء الأول بين مُثلين عن المجلس الأعلى للقوات المسلحة وحوالي اليا


ऽqd fy Al+qAhrt Al+lqA' Al+Âwl byn mm $\theta l y n ~ \varsigma n ~ A l+m j l s ~ A l+\hat{A} \varsigma l y ́ l l q w A t A l+m s l H \hbar$ $w+$ Hwaly Âlf ̌̌xS ymもlwn ऽddA mn Al+fSAŷl Al+šbAbyћ Alty Ďhrt mnðAndlAऽ $A l+\theta w r \hbar$
"The first meeting held in Cairo between representatives of the supreme council of the armed forces and about a thousand people representing a number of youth groups that have emerged since the outbreak of the revolution"
b.
 $\varsigma q d ~ A ̂ w l ~ l q A ' ~ b y n ~ s ̌ b A b ~ A l+\theta w r \hbar ~ w+A l+m j l s ~ A l+\varsigma s k r y ~ A l+H A k m ~ f y ~ m S r ~$ "A first meeting held between the youth of the revolution and Egypt's ruling military council"

In (6.3), the three annotators are agreed that (6.3a) entails (6.3b) because all the information of the hypothesis is embedded in the text. In (6.4), on the other hand, they all agree that (6.4a) does not entail (6.4b) because there is no evidence in the text about المجلس العسكري Al+mjls Al+ $\operatorname{l}$ الحاك في مصر Al+HAkm fy mSr "Egypt's ruling", which appears in the hypothesis.

Given the lack of agreement amongst annotators, it seemed worth investigating whether it would be possible to pre-filter the test cases. It is extremely easy to collect more potential $T-H$ pairs, so if we could find pairs where our annotators were more likely to agree then we would get a larger dataset for the same amount of annotator effort.

Inspection of individual cases where one annotator disagreed with the others indicated that structural ambiguity is a major source of disagreement between annotators. Typically, in this kind of ambiguity two or more syntactic analyses lead to several possible interpretations. For instance, (6.5) shows a $T-H$ pair when text has structural ambiguity.
(6.5) Pair with text has structural ambiguity
a. I saw the man with the telescope.
b. The man has a telescope.

In the above example, there is a prepositional phrase ( PP )-attachment structural ambiguity in the text. So, the PP 'with the telescope' can be attached to either 'saw' or 'the man', i.e. something $X$ with the telescope, and it is either the man or the seeing event. Therefore, there are two meanings for the text, "The man has a telescope" or "I used the telescope to see the man" (the seeing was done with a telescope). In this case, there are three possibilities for annotators' judgement, as follows:

- Consider that the first meaning is satisfied. They will tag the pair as positive entailment 'YES'.
- Consider that the second meaning is satisfied. They will tag the pair as negative entailment 'NO'.
- Consider that both meanings are satisfied. They will tag the pair as 'UN'.

Hence, the three annotators, for instance, disagree when they annotated the pair
 in the text is ambiguous. They do not know if it is attached with "Poland" or with "the leaders of central and Eastern Europe are members of the European Union".
(6.6) ArbTEDS's ambiguous pair
a. الرئيس الأمرييك باراك أوباما يزور بولندا في المرحة الأخيرة من جولته الأوربية ويلتقي فيها بزعماء وسط وشرقي أوربا الأعضاء في الاتحاد الأوربي لتعزيز العلاقات Al+rŷys Al+Âmryky barAk ÂwbAmA yzwr bwlndA fy Al+mrhlћ Al+Âxyrћ mn jwlth Al+Âwrbyt w+yltqy fyhA bzऽmA' wsd w+šrqy ÂwrbA Al+A̧̧DA' fy Al+atHAd Al+Âwrby ltszyz Al+ $¢ l A q A t$
"US President Barack Obama visits Poland in the last phase of his European trip and he will join leaders of central and eastern Europe nations that are members of the European Union for fence-mending"
b. الرئيس أو باما يزور بولندا لتعزيز العلاقات

Al+rŷys ÂwbAmA yzwr bwlndA ltszyz Al+ ¢lAqAt
"President Obama visits Poland for fence-mending"

The problem seems to be that some people are cautious about interpreting sentences involving attachment ambiguities, on the grounds that if a sentence has multiple interpretations then you cannot be sure which one was intended, and hence you cannot be sure about what it entails, and some are less wary or are plain unaware that the text was ambiguous in the first place. It is hard to detect where there is an attachment ambiguity automatically-using MSTParser to parse the text will tell us where there is a PP that has been attached to some preceding noun or verb, but it will not straightforwardly tell us whether there was an alternative attachment site. In any case, TE is about what a typical speaker will conclude about a $T-H$ pair, and if there is no uniformity among our annotators about what to do in the face of ambiguity then we cannot say what a typical speaker would do: all our annotators are native speakers, so they should all be 'typical'. If their interpretation of the relationship between an ambiguous $T$ and the corresponding $H$ is systematically varied, the idea of a typical speaker is somewhere undermined. This further strengthens the view that we should only use $T-H$ pairs where all the annotators agree.

### 6.4.1 Testing dataset

It is worth noting in Table 6.2 that a substantial majority of pairs are marked positivelythat $T$ does indeed entail $H$. This is problematic, at least when we come to use the dataset for testing. For testing we need a balanced set: if we use a test set where $80 \%$ of cases are positive then a system which simply marks every pair positively will score $80 \%$. It is hard, however, to get pairs where $T$ and $H$ are related but $T$ does not entail $H$ automatically. To solve this problem, three strategies are possible, as follows:

Strategy I: it would be easy to get cases where $T$ does not entail $H$, simply by taking the first sentence from an unrelated article, but this also will not pose a problem for a TE system.

Strategy II: we could ask the reliable annotators, whom we find according to the strategies explained in Section 6.5, to make minor changes to $T$ or $H$ to get nonentailing $T-H$ pairs, but this is liable to embody biases introduced by the annotator (i.e. experimenter's bias).

Strategy III: select the paragraph (except the lead paragraph) in the article that shares the highest number of common words with the headline for the first 10 returned pages. We called this technique headline keywords-rest paragraph. It produces a large number of potential texts, which are related to the main keywords of the headlines, without any bias.

In the current work, we need a testing set with balanced 'YES' and 'NO' pairs (i.e. 300 pairs for each group). In order to construct a testing set from the dataset described in Table 6.3, we follow three steps: (i) we first selected randomly 300 entailed pairs from the 409 entailed pairs ('YES' column in Table 6.3); (ii) we have already 69 not entailed unanimously marked by annotators ('NO' column in Table 6.3), so we still need to construct 231 not entailed pairs. We therefore collect 231 headlines from the rest of the 109 entailed pairs in step (i) and from 122 pairs which are not annotated as 'YES' or 'NO' because at least one annotator disagrees with others ('at least one disagree' column in Table 6.3); and (iii) apply the strategy III on these 231 headlines and ask the reliable annotators, whom we determine according to the strategies explained in Section 6.5, to select a potential text for each headline that it does not entail.

The distribution of our testing set (a $50 \%-50 \%$ split of 'YES' and 'NO' pairs), namely ArbTEDS_test, is summarised in Table 6.4.

| Text's length | \#pairs | YES | NO |
| :---: | :---: | :---: | :---: |
| $<20$ | 131 | $74(56 \%)$ | $57(44 \%)$ |
| $20-29$ | 346 | $165(48 \%)$ | $181(52 \%)$ |
| $30-39$ | 110 | $53(48 \%)$ | $57(52 \%)$ |
| $>39$ | 13 | $8(62 \%)$ | $5(38 \%)$ |
| Total | $\mathbf{6 0 0}$ | $\mathbf{3 0 0}$ | $\mathbf{3 0 0}$ |

Table 6.4: ArbTEDS_test dataset text's range annotation, 600 binary decision pairs.

For example, if you apply the strategy III on the entailed pair in (6.3) to construct a not entailed pair, you could get a pair as illustrated in (6.7).
(6.7) Non-entailment pair for entailment pair in (6.3)
a. صرح المتحدث باسم البنتاغون بأن: الرد على أي هجوم الكتروني تتعرض له الولايات المتحدة ليس ضروريا أن يكون بالثل ولكن كل الحن الخيارات مطروحة على الى الطاولة للرد على هذا الهجوم
SrH Al+mtHd $\theta$ bAsm Al+bntA $\gamma w n$ bÂn: Al+rd $\varsigma$ lý Ây hjwm Alktrwny ttçD lh Al+wlAyAt Al+mtHdћ lys DrwryA Ân ykwn bAlmel wlkn kl Al+xyarAt mTrwHt llrd ऽlý hð̇A Al+hjwm
"The Pentagon spokesman declared that: a response to any cyber-attack on the US would not necessarily be a cyber-response and all options would be on the table to respond to this attack"
b. البنتاغون يعتبر الهجمات الأكترونية أعمالا حربية

"The Pentagon considers cyber-attacks as acts of war"

As can be seen in (6.7), there are around 3 words from 6 common words between $T$ and $H$, but it is marked as not entailed.

### 6.5 Spammer detector

In the current work, we need to cope with the challenges that arise from relying on volunteer annotators. The main challenge here is that it is hard to know in advance how reliable those annotators are. We therefore describe in the current section a regime that
helps us to compensate for this challenge. There are several operational definitions of 'annotator reliability' in use by many researchers, reflecting different viewpoints about what is reliable agreement between annotators. We apply two different strategies to detect annotators who, for whatever reasons, have not done the job properly and mark them as 'spammer'. The system will then decide to block the account of these spammer annotators and then remove their annotations from the system database. These strategies are explained below.

Strategy A: this strategy uses joint-probability of agreement, which is the most simple (and weakest) measure of reliability. This method finds the number of times the annotators agree divided by the total number of annotations. We find here the jointprobability of agreement of selecting 'Unknown' option for each annotators, if this rate exceeds $20 \%$, the annotator will be marked as spammer. The results obtained for applying this strategy are presented in Table 6.5.

|  | Annotator ID |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{A N T}_{1}$ | $\mathbf{A N T}_{2}$ | $\mathbf{A N T}_{3}$ | $\mathbf{A N T}_{4}$ | $\mathbf{A N T}_{5}$ | $\mathbf{A N T}_{6}$ | $\mathbf{A N T}_{7}$ | $\mathbf{A N T}_{8}$ |
| \#pairs | 336 | 212 | 468 | 100 | 317 | 226 | 95 | 100 |
| rate of 'Un- <br> known' option | $0 \%$ | $1.4 \%$ | $1.5 \%$ | $0 \%$ | $1.2 \%$ | $1.3 \%$ | $2 \%$ | $0 \%$ |

Table 6.5: Reliability measure of our annotators, strategy A.

As can be see from the table above, all rates are very small (less than or equal $2 \%$ ). These findings indicate that there is no spammer in our annotators.

Strategy B: we used here a statistical measure for assessing the reliability of agreement among our annotators when assigning categorical ratings to a number of annotating T-H pair of sentences. This measure is called kappa, which takes chance agreement into consideration (i.e. in contrast with strategy A). We use Fleiss's kappa (Fleiss, 1971), which is a generalisation of Cohen's kappa (Cohen, 1960) statistic to provide a measurement of agreement among a constant number of raters $n$, where each of the $k$ subjects are rated by $n>2$ raters. Let $k_{i j}$ be the number of raters who assign the $i$ th subject to the $j$ th category ( $i=1, \ldots, k$ and $j=1, \ldots, c$ ). The kappa can be defined as (Gwet, 2012):

$$
\begin{equation*}
k a p p a=\frac{p_{0}-p_{e}}{1-p_{e}} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{0}=\frac{\sum_{i=1}^{k} \sum_{j=1}^{c} k_{i j}^{2}-n k}{k n(n-1)} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{e}=\sum_{j=1}^{c} p_{j}^{2} \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{j}=\frac{1}{n k} \sum_{i=1}^{k} k_{i j} . \tag{6.4}
\end{equation*}
$$

The numerator of Equation $6.1\left(p_{0}-p_{e}\right)$ gives the degree of agreement actually achieved above chance, whereas the denominator $\left(1-p_{e}\right)$ gives the degree of agreement that is attainable above chance. Kappa is scored as a number between 0 and 1, while the higher kappa is the higher agreement (i.e. kappa=1 is complete agreement).

In our case, we need a global measure of agreement, which corresponds to the annotator reliability. We carry out the following steps: ${ }^{5}$

1. The current annotator is $A N T_{i}, i=1$.
2. Create table for the $A N T_{i}$. This table includes all sentences annotated by $A N T_{i}$, and includes also as columns the other annotators who annotated the same sentences as $A N T_{i}$. Because each annotator has a range of different co-annotators, a more effective way to organise our data is similar to the table shown in Figure 6.4. If an annotator does not annotate a sentence, then the corresponding cell should be left blank.

| Sen_ID $^{2}$ | ANT $_{1}$ | ANT $_{2}$ | ANT $_{3}$ | ANT $_{4}$ | ANT $_{5}$ | ANT $_{6}$ | ANT $_{7}$ | ANT $_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | YES | YES |  | NO |  |  |  |  |
| 2 | YES | NO | NO |  |  |  |  |  |
| 3 | NO | NO |  |  | UN |  |  |  |
| 4 |  | YES |  |  |  | YES | YES |  |
| $\ldots$ |
| 600 |  |  |  | YES | NO |  |  | YES |

Figure 6.4: Organise our data for strategy B.

[^37]3. Compute the multiple-annotator version of kappa, as in Equation 6.1, for all annotators in that table.
4. Compute another kappa for all annotators except $A N T_{i}$ in that table.
5. If the kappa calculated in the step 4 exceeds that of step 3 significantly, then $A N T_{i}$ is possibly a spammer.
6. $i=i+1$.
7. If $i$ exceeds 8 (i.e. number of our annotators), then stop.
8. Repeat this process from step 2 for the $A N T_{i}$.

To identify a 'spammer', you need to compare each annotator to something else (or some other group of annotators). If you take one annotator at a time, you will not be able to compute kappa, which takes chance agreement into consideration. You need two annotators or more to compute kappa.

We find out the kappa for each annotator with his/her co-annotators and another kappa for his/her co-annotators only for our eight annotators using the above steps, as shown in Table 6.6.

| Kappa <br> for | Annotator ID $_{*}^{*} \mathbf{A N T}_{1}$ |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{A N T}_{1}$ | $\mathbf{A N T}_{2}$ | $\mathbf{A N T}_{3}$ | $\mathbf{A N T}_{4}$ | $\mathbf{A N T}_{5}$ | $\mathbf{A N T}_{6}$ | $\mathbf{A N T}_{7}$ | $\mathbf{A N T}_{8}$ |  |  |
| ANT $_{i}$ | 0.62 | 0.47 | 0.60 | 0.49 | 0.58 | 0.59 | 0.65 | 0.58 | $\mathbf{0 . 5 7}$ |  |
| ANT $_{i}$ 's co- <br> annotators | 0.55 | 0.50 | 0.53 | 0.52 | 0.61 | 0.61 | 0.68 | 0.57 | $\mathbf{0 . 5 7}$ |  |

Table 6.6: Reliability measure of our annotators, strategy B.

The first thing to note about the results in Table 6.6 is that all kappa values between 0.4-0.79 represent a moderate to substantial level of agreement beyond chance alone according to the kappa interpretation given by Landis and Koch (1977) and Altman (1991). Also, the variation between the kappa including an annotator and the kappa of his/her co-annotators only is comparatively slight for all annotators. The average of both kappas for all annotators is equal (i.e. 0.57), which suggests that the strength of agreement among our annotators is moderate (i.e. $0.4 \leq$ kappa $\leq 0.59$ ). We have solely three annotators ( $\mathrm{ANT}_{1}, \mathrm{ANT}_{3}$ and $\mathrm{ANT}_{8}$ ) where the kappas including them are higher than kappas for their co-annotators. The other annotators have kappas less than the kappas of their co-annotators but these differences are very slight.

## CHAPTER 6. ARABIC TEXTUAL ENTAILMENT DATASET PREPARATION203

We have applied different strategies for detecting weakest annotators. The findings of these strategies suggest that all our annotators are reliable and we can use their annotated dataset in our work.

### 6.6 Summary

We have outlined an approach to the task of creating a dataset for a TE task for working with a language where we have to rely on volunteer annotators. To achieve this goal, we tested two main tools. The first tool, which depends on the Google-API, is responsible for acquisition of $T-H$ pairs based on the headline-lead paragraph technique of news articles. We have updated this idea in two ways: (i) for the training dataset, we use a headline from one source and the lead paragraph from an article with a closely linked headline, but from a different source. This notion is applicable to the collection of such a dataset for any language. It has two benefits. Firstly, it makes it less likely that the headline will be extracted directly from the sentence that is being linked to, since different sources will report the same event slightly differently. Secondly, it will be more likely than the original technique to produce $T-H$ pairs where $T$ entails $H$ with few common words between $T$ and $H$; and (ii) for the testing dataset, we use the same technique for training to collect the entailed pairs, while we use a different technique which selects the paragraph, other than the lead one, from the article that gives the highest number of common words between both headline and paragraph to collect the non-entailed pairs. This is particularly important for testing, since for testing you want a collection which is balanced between pairs where $T$ does entail $H$ and ones where it does not. This technique will be more likely than the original technique and the updated technique for training to produce $T-H$ pairs with a large number of common words between $T$ and $H$ where $T$ does not entail $H$, which will pose a problem for a TE system. Getting $T$ - $H$ pairs where $T$ is reasonably closely linked to $H$ but does not entail it automatically is quite tricky. If the two are clearly distinct, then they will not pose a very difficult test. As shown in Table 6.2, by using the updated headline-lead paragraph technique, we have a preponderance of positive examples, but there is a non-trivial set of negative ones, so it is at least possible to extract a balanced test set. We therefore apply the headline keywords-rest paragraph technique to construct a balanced test set from our annotated dataset as shown in Table 6.4.

As can be seen in Table 6.2, if we take the majority verdict of the annotators we find that $80 \%$ of the dataset are marked as entailed pairs, $20 \%$ as not entailed pairs. When
we require unanimity between annotators, this becomes $68 \%$ entailed and $12 \%$ not entailed pairs. This drop in coverage, together with the fact that the ratio of entailed:not entailed moves from 100:25 to 100:17, suggests that relying on the majority verdict is unreliable, and we therefore intend to use only cases where all three annotators agree for both training and testing.

In order to make sure that our data is reliable, two different strategies are applied to check unreliable annotator(s). The strategy A is the simple one that depends on the rate of selecting 'unknown' option. The strategy B depends on kappa coefficient, which takes chance into consideration. Both strategies suggest that all our annotators are reliable.

## Chapter 7

## Systems and evaluation

### 7.1 Introduction

In Chapter 5, we described the ETED algorithm which we propose to use for inferring semantic entailment between two text snippets, and we discussed the use of optimisation algorithms for calculating the necessary edit operation costs and thresholds. In this chapter, we will present the results of a series of experiments involving these algorithms. These experiments cover two types of decisions: binary decision (Section 7.1.2.1) and three-way decision (Section 7.1.2.2); and they make use of two datasets-the Arabic TE test set (ArbTEDS_test, see Section 6.4.1) and the English RTE2 test set.

### 7.1.1 The current systems

We explore here a range of systems for the Arabic TE task, beginning with systems which are simple and robust but approximate, and proceeding to progressively more sophisticated systems. These systems can be divided into two main groups: surface string similarity systems (systems 1-3, Section 7.1.1.1) and syntactic similarity systems (systems 4-20, Sections 7.1.1.2 and 7.1.2.3). Systems 1-6 described below are reimplementations of standard approaches that have been done for other languages, such as English. We include these to provide baselines and to confirm that when applied to Arabic they produce results which are similar to those obtained for English. Our contributions are covered by systems 7-20, which represent different versions of our ArbTE system.

### 7.1.1.1 Surface string similarity systems

We have investigated here different lexical-based systems as follow.

System 1: BoW. The recent surge in interest in the problem of TE was initiated by information retrieval (IR) community researchers, who have exploited simple representations (e.g. bag-of-words (BoW) representation) with great success. If we approach the TE task from this direction, then a reasonable starting point is simply to represent $T$ and $H$ by vectors encoding the counts of the words they contain. Then, some measures of vector similarity are used to predict inferential validity (i.e. matching each word in $H$ to the word in $T$ which best supports it). Despite the fact that the BoW representation might seem highly impoverished, BoW models have been shown to be an effective method in addressing a wide range of NLP tasks, such as text categorisation, word sense disambiguation and others.

System 1 is a simple BoW which measures the similarity between $T$ and $H$ as the number of common words between them (either in surface forms or lemma forms), divided by the length of $H$, when the highest similarity is better.

The main drawback of BoW models is that they measure approximate lexical similarity, without regard to syntactic-and even the word order-or semantic structure of the input sentences. This makes them very imprecise, and they can then therefore be easily led astray especially when every word in $H$ also appears in $T$ as in 'John kissed Mary' and 'Mary kissed John' (i.e. it ignores predicate-argument structure).

System 2: $\mathbf{L D}_{1}$. This system uses the Levenshtein distance (LD) algorithm (Algorithm 5.1) to measure the difference between $T$ and $H$ as the number of mismatched words between them (either in surface forms or lemma forms), when the lowest difference is better. The word operation costs (deletion $\gamma\left(W_{1} \rightarrow \wedge\right)$, insertion $\gamma\left(\wedge \rightarrow W_{2}\right)$ and exchange $\gamma\left(W_{1} \rightarrow W_{2}\right)$ ) are set as below, where $W_{1}$ and $W_{2}$ are two words, ' $\subseteq$ ' means 'is subsumed by' and $P O S_{W}$ is the POS tag of $W$.

$$
\begin{equation*}
\gamma\left(W_{1} \rightarrow \wedge\right)=0.5 \tag{7.1}
\end{equation*}
$$

$$
\begin{equation*}
\gamma\left(\wedge \rightarrow W_{2}\right)=1 \tag{7.2}
\end{equation*}
$$

$$
\gamma\left(W_{1} \rightarrow W_{2}\right)= \begin{cases}0 & W_{1} \subseteq W_{2} \& \operatorname{POS}_{W_{1}}=\operatorname{POS}_{W_{2}}  \tag{7.3}\\ \gamma\left(W_{1} \rightarrow \wedge\right)+\gamma\left(\wedge \rightarrow W_{2}\right) & \text { otherwise }\end{cases}
$$

System 3: $\mathbf{L D}_{2}$. The same as for $\mathrm{LD}_{1}$ except that the cost of exchanging non-identical words is the Levenshtein distance between the two words ( $L D_{\text {word }}\left(W_{1}, W_{2}\right)$ ), with lower costs for vowels, as in Equation 7.4 divided by the length of the longer of the two words (derived and inflected forms of Arabic words tend to share the same consonants, at least in the root, so this provides a very approximate solution to the task of determining whether two forms correspond to the same lexical item).

$$
\gamma\left(W_{1} \rightarrow W_{2}\right)= \begin{cases}0 & W_{1} \subseteq W_{2} \& P O S_{W_{1}}=\operatorname{POS}_{W_{2}}  \tag{7.4}\\ L D_{\text {word }}\left(W_{1}, W_{2}\right) & \text { otherwise }\end{cases}
$$

where the costs of deleting a character $\gamma\left(C_{1} \rightarrow \wedge\right)$, inserting a character $\gamma\left(\wedge \rightarrow C_{2}\right)$ and exchanging a character $\gamma\left(C_{1} \rightarrow C_{2}\right)$ are $0.5,1$ and 1.5 respectively for consonants, while the costs for vowels are half the costs for consonants.

### 7.1.1.2 Syntactic similarity systems

The systems in this group work at the syntactic level. These systems follow three steps:
(i) Each sentence is preprocessed by a tagger and a parser in order to convert them to dependency trees. We use the strategy II (Section 4.4) that merging the three taggers on the basis of their confidence levels (which gives us $99.5 \%$ accuracy on the tagset illustrated in Figure 4.2) and then using three parsers (MSTParser plus two parsing algorithms from the MALTParser collection) gives around $85 \%$ for labelled accuracy (see Table 4.16), which is the best result we have seen for the PATB. We use these combinations in a series of experiments which involve the next two steps.
(ii) Pairs of dependency trees are matched using either ZS-TED or ETED to obtain a score for each pair.
(iii) Either one threshold (for simple entails/fails-to-entail tests) or two (for entails/ unknown/fails-to-entail tests) are used to determine whether this score should lead to a particular judgement.

We tested the following systems, where system 7 and upward represent our ArbTE system with different settings.

System 4: ZS-TED ${ }_{1}$. This system uses ZS-TED with a manually-determined set of fixed costs. The costs of deleting a node $\gamma\left(N_{1} \rightarrow \wedge\right)$, inserting a node $\gamma\left(\wedge \rightarrow N_{2}\right)$ and exchanging a node $\gamma\left(N_{1} \rightarrow N_{2}\right)$ are explained below, where $N_{1}$ and $N_{2}$ are two nodes.

$$
\begin{equation*}
\gamma\left(N_{1} \rightarrow \wedge\right)=0 \tag{7.5}
\end{equation*}
$$

$$
\begin{equation*}
\gamma\left(\wedge \rightarrow N_{2}\right)=10 \tag{7.6}
\end{equation*}
$$

$$
\gamma\left(N_{1} \rightarrow N_{2}\right)= \begin{cases}0 & N_{1} \subseteq N_{2} \& \operatorname{POS}_{N_{1}}=\operatorname{POS}_{N_{2}}  \tag{7.7}\\ \gamma\left(N_{1} \rightarrow \wedge\right)+\gamma\left(\wedge \rightarrow N_{2}\right) & \text { otherwise }\end{cases}
$$

System 5: ZS-TED ${ }_{2}$. Using TED poses a challenge of selecting a combination of costs for its three standard edit operations with threshold(s), which is hard when dealing with complex problems. This is because alterations in these costs can lead to drastic changes in TED performance (Mehdad and Magnini, 2009). Selecting relevant costs for these basic operations depends mainly on the nature of nodes and applications. For instance, inserting a noun node into a syntactic tree is different from inserting a node into an XML data tree. One strategy could be by estimating these costs based on an expert valuation. Such a strategy may not be effectively done in domains where the level of expertise is very limited.

System 5 uses expert knowledge to assign costs and threshold(s) for ZS-TED. These costs depend on a set of stopwords and on sets of synonyms and hypernyms, obtained from our lexical resources (Section 5.5). These costs are an updated version of the costs used by Punyakanok et al. (2004). They are calculated using the following equations.

$$
\gamma\left(N_{1} \rightarrow \wedge\right)= \begin{cases}5 & N_{1} \text { is a stopword }  \tag{7.8}\\ 7 & \text { otherwise }\end{cases}
$$

$$
\begin{gather*}
\gamma\left(\wedge \rightarrow N_{2}\right)= \begin{cases}5 & N_{2} \text { is a stopword } \\
100 & \text { otherwise },\end{cases}  \tag{7.9}\\
\gamma\left(N_{1} \rightarrow N_{2}\right)= \begin{cases}0 & N_{1} \subseteq N_{2}, \\
5 & N_{1} \text { is a stopword }, \\
100 & N_{2} \subseteq \text { (or is an antonym) of a node } N_{1}, \\
50 & \text { otherwise }\end{cases} \tag{7.10}
\end{gather*}
$$

System 6: ZS-TED+GA. An alternative strategy for the challenge explained in the previous system (see $\mathrm{ZS}-\mathrm{TED}_{2}$ ) would be to estimate the cost of each edit operation automatically. Bernard et al. (2008) tried to learn a generative or discriminative probabilistic edit distance model from the training data. Other approaches used optimisation algorithms such as genetic algorithm (GA) (Habrard et al., 2008) and particle swarm optimisation (PSO) (Mehdad, 2009).

System 6 uses a GA to estimate the costs of edit operations and threshold(s) for ZS-TED. The chromosome ( $C_{\text {binary-decision }}$ ) for binary decision output is shown in Figure 7.1, where $\theta$ is the threshold, and the fitness ( $f_{\text {binary-decision }}$ ) for binary decision output is explained in Equation 7.11.

$$
\begin{array}{|c|c|c|c|}
\hline \gamma\left(N_{1} \rightarrow \wedge\right) & \gamma\left(\wedge \rightarrow N_{2}\right) & \gamma\left(N_{1} \rightarrow N_{2}\right) & \theta \\
\hline
\end{array}
$$

Figure 7.1: Chromosome structure for binary decision output, $C_{\text {binary-decision }}$, for ZSTED.

$$
\begin{equation*}
f_{\text {binary-decision }}\left(C_{\text {binary-decision }}\right)=a \times F \text {-score }+b \times \text { accuracy }, \tag{7.11}
\end{equation*}
$$

where $a$ and $b$ are real numbers in the interval [0,1]. Providing different values for $a$ and $b$ makes it possible to optimise the system for different applications-in the current experiments, $a$ is 0.6 and $b$ is 0.4 , which effectively puts more emphasis on precision than on recall, but for other tasks different values could be used.

For three-way decisions, the chromosome ( $C_{\text {three-decision }}$ ) is the same as for binary decisions except that we use two thresholds as illustrated in Figure 7.2, where $\theta_{l}$ and
$\theta_{u}$ are the lower and upper thresholds respectively, and the fitness ( $f_{\text {three-decision }}$ ) for three-way decision is explained in Equation 7.12.

$$
\begin{array}{|l|l|l|l|l|}
\hline \gamma\left(N_{1} \rightarrow \wedge\right) & \gamma\left(\wedge \rightarrow N_{2}\right) & \gamma\left(N_{1} \rightarrow N_{2}\right) & \theta_{l} & \theta_{u} \\
\hline
\end{array}
$$

Figure 7.2: Chromosome structure for three-way decisions output, $C_{\text {three-decision }}$, for ZS-TED.

$$
\begin{equation*}
f_{\text {three-decision }}\left(C_{\text {three-decision }}\right)=F \text {-score } . \tag{7.12}
\end{equation*}
$$

We used the steady state GA (ssGA) (Algorithm 5.6) as a version of the GA with the following settings:

- population size is 40 chromosomes;
- the selection scheme is the tournament selection, which selects, as a parent, the fittest individual from a subset of individuals randomly chosen from the original population, with this process repeated as often as individuals must be chosen.

The main advantage of this operator is speed of execution, since it does not need firstly to sort population during its work and it also works on parallel architecture, since all selections could take place simultaneously, which is what happens in nature;

- the crossover operator is uniform crossover (UX), which evaluates each corresponding gene in the parents for exchanging with a fixed probability, here set to 0.5 . This operator is applied with probability $P_{c}$ equal to 0.9 ;
- the mutation operator is Gaussian mutation, which adds a unit Gaussian distributed random value to the randomly chosen gene. The new value of this gene is clipped if it falls outside the user-defined lower and upper bounds for that gene. This operator is applied with probability $P_{m}$ equal to 0.1 ;
- the replacement operator is tournament replacement which replaces the worst individual from a subset of individuals randomly chosen from the original population if it is fitter than an offspring, with this process repeated as often as individuals must be replaced.
- the generation is repeated for 100 generations.

To prevent premature convergence (i.e. a population converging too early), we calculate the difference between the mean of population fitness of the current generation with the mean of the previous one. If the difference between them is less than 0.01 for 15 consecutive generations, we generate a new population by keeping the best individual from the last population and randomly generating the others (we will refer to this process as repopulation).

System 7: ZS-TED+ABC. The same as ZS-TED+GA system except using ABC algorithm (Algorithm 5.8) instead of GA as the optimisation algorithm. The food sources (i.e. the food source is equivalent to the chromosome in GA) are the same as the chromosomes of system 6 and the nectars are also the same as the fitness functions of system 6 . We used the ABC algorithm with the following settings:

- the colony size equals the population size of GA, i.e. 40 solutions;
- the percentages of onlooker bees and employed bees were $50 \%$ of the colony;
- the number of scout bees was selected as one;
- the maximum number of cycles for foraging equals the maximum number of generation for GA, i.e. 100 cycles.

System 8: ETED ${ }_{1}$. This system uses ETED with manually assigned costs. The costs for single nodes are the same for the $\mathrm{ZS}-\mathrm{TED}_{1}$ experiment and the costs for subtrees are half the sum of the costs of their parts.

System 9: ETED $_{2}$. This system uses ETED with the same costs for single nodes that are applied to $\mathrm{ZS}-\mathrm{TED}_{2}$ (see Equations 7.8, 7.9 and 7.10) and the following costs for subtrees, where $S_{1}$ and $S_{2}$ are two subtrees.

$$
\begin{align*}
& \gamma\left(S_{1} \rightarrow \wedge\right)=0, \\
& \gamma\left(\wedge \rightarrow S_{2}\right)=\text { double the sum of costs of its parts, } \\
& \gamma\left(S_{1} \rightarrow S_{2}\right)=\left\{\begin{array}{lr}
0 & S_{1} \text { is identical to } S_{2}, \\
\text { half the sum of costs of its parts otherwise. }
\end{array}\right. \tag{7.15}
\end{align*}
$$

System 10: ETED+ABC. This system uses the ABC algorithm to estimate the costs of edit single and subtree operations and threshold(s) for ETED. For binary decision output, the food source ( $F S_{\text {eted-binary-decision }}$ ) is the extended version of the chromosome of GA for binary decision ( $C_{\text {binary-decision }}$, Figure 7.1) which contains three additional parameters $\alpha, \beta$ and $\eta$ for subtree operations, where $\alpha$ is the multiplier for the sum of the costs of the individual deletions in a deleted subtree, $\beta$ is the multiplier for the sum of the costs of the individual insertions in an inserted subtree, and $\eta$ is the multiplier for the sum of the costs of the individual exchanges in an exchanged subtree, as explained in Figure 7.3. The fitness is the same as $f_{\text {binary-decision }}$ (Equation 7.11). For three-way decisions, the food source ( $F S_{\text {eted-three-decision }}$ ) is the extended version of the chromosome of GA for the three-way decision ( $C_{\text {three-decision }}$, Figure 7.2) which contains the above three additional parameters $\alpha, \beta$ and $\eta$ for subtree operations, as illustrated in Figure 7.4. The fitness for three-way decision is the same as $f_{\text {three-decision }}$ (Equation 7.12). We do not include GA results for ETED, as extensive comparison of the standard GA and the ABC algorithm on the ZS-TED experiments shows that the $A B C$ algorithm consistently produces better results for the same number of iterations.

| $\gamma\left(N_{1} \rightarrow \wedge\right)$ | $\gamma\left(\wedge \rightarrow N_{2}\right)$ | $\gamma\left(N_{1} \rightarrow N_{2}\right)$ | $\theta$ | $\alpha$ | $\beta$ | $\eta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 7.3: Food source structure for binary decision output, $F S_{\text {eted-binary-decision }}$, for ETED.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline \gamma\left(N_{1} \rightarrow \wedge\right) & \gamma\left(\wedge \rightarrow N_{2}\right) & \gamma\left(N_{1} \rightarrow N_{2}\right) & \theta_{l} & \theta_{u} & \alpha & \beta & \eta \\
\hline
\end{array}
$$

Figure 7.4: Food source structure for three-ways decision output, $F S_{\text {eted-three-decision }}$, for ETED.

### 7.1.2 Results

We carried out experiments using the systems in Section 7.1.1 with two types of decisions, either simple binary choice between 'YES' and 'NO' (Section 7.1.2.1) or a three-way choice between 'YES', 'UN' and 'NO' (not 'contradicts') (Section 7.1.2.2). These results include, for the Arabic test set, four groups of systems: (i) the bag-of words (BoW) system (system 1); (ii) Levenshtein distance systems (systems 2-3); (iii) ZS-TED-based systems (systems 4-7); and (iv) ETED-based systems (systems 8-10).

Moreover, although we are primarily interested in Arabic, we have also carried out parallel sets of experiments on the English RTE2 test set, using the Princeton English WordNet (PWN) as a resource for deciding whether a word in $T$ may be exchanged for one in $H$, in order to demonstrate that the general approach is robust across languages.

Because the TED algorithms work with dependency tree analyses of the input texts, we have used a copy of the RTE2 dataset that has been analysed using MINIPAR (Lin, 1998a). ${ }^{1}$ The RTE2 test set contains around 800 T-H pairs, but a number of the MINIPAR analyses have multiple heads and hence do not correspond to well-formed trees, and there are also a number of cases where the segmentation algorithm that was used produces multi-word expressions. After eliminating problematic pairs of this kind we are left with 730 pairs, split evenly between positive and negative examples.

Since we are mainly concerned here with the difference between ZS-TED and ETED, we have omitted the Levenshtein distance systems (second group) from our experimented systems for the RTE2 test set and have simply kept the basic bag-ofwords system as a baseline. Previous authors (e.g. Kouylekov, 2006; Mehdad and Magnini, 2009) have shown that ZS-TED consistently outperforms string-based systems on this dataset, and there is no need to replicate that result here. So, the results for RTE2 include three groups of systems: (i) the bag-of words (BoW) system (system 1); (iii) ZS-TED with manually specified weights (systems 5); and (iv) ETED-based systems (systems 9-10).

### 7.1.2.1 Binary decision results

In this type of decision, text $T$ entails hypothesis $H$ when the cost of matching is less (more in case of bag-of-words) than a threshold. The results of these experiments, in terms of precision (P), recall (R) and F-score (F) (see Equations 4.1, 4.2 and 4.4 respectively) for 'YES' class and accuracy (Acc.), are shown in Table 7.1 for Arabic test set and in Table 7.2 for RTE2 test set.

Most experiments on TE tasks only report F-score or accuracy: in certain situations it may be more important to have decisions that are trustworthy (high precision, as in string-based systems) or to be sure that you have captured as many positive examples as possible (high recall, ${ }^{2}$ as in syntactic-based systems), or to have a good balance

[^38]between these (high F-score). It is easy to change the balance between precision and recall, simply by changing the threshold that is used for determining whether it is safe to say that $T$ entails $H$-we could have chosen thresholds for syntactic-based systems that increased the precision and decreased the recall, so that the results more closely matched string-based systems. We used in the current study $\mathrm{F}_{1}$-score (or balanced Fscore, see Equation 4.4), which is the harmonic mean of precision and recall compared with the other commonly F -scores that are the $\mathrm{F}_{0.5}$-score, which puts more emphasis on precision than recall, and the $\mathrm{F}_{2}$-score, which weights recall higher than precision. So, in $\mathrm{F}_{1}$-score, both precision and recall have the same effect on the final result of the measure, when any increment in precision or recall or both will lead to an increment in the F-score (for more details, see Appendix D). We used in the current experiments a mixture between F-score and accuracy by specifying the fitness parameters that effectively put slightly more emphasis on F-score than on accuracy (i.e. F-score $\times a+$ accuracy $\times b$, where $a=0.6$ and $b=0.4$ ).

| Group | System | $\mathbf{P}_{\text {yes }}$ | $\mathbf{R}_{\text {yes }}$ | $\mathrm{F}_{\text {yes }}$ | Acc. | $\mathrm{F}_{\text {yes }} \times 0.6+$ Acc $\times 0.4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (i) | (1) BoW | 63.6\% | 43.7\% | 0.518 | 59.3\% | 0.548 |
|  | ( $\overline{2}$ ) $\mathrm{LD}_{1}^{-}$ | $\overline{6} \overline{4} .7$ \% | $44 \overline{\%}$ | $\overline{0} .5 \overline{4}$ | $6 \overline{0} \%$ | $0.55 \overline{4}$ |
| (ii) | (3) $\mathrm{LD}_{2}$ | 65\% | 47.7\% | 0.550 | 61\% | 0.574 |
| (iii) | ( $\overline{4}$ ) $\overline{\mathrm{ZS}} \mathrm{TEDD}_{1}^{-}$ | 57. $\overline{7} \%$ | 64.7\% | $\overline{0} . \overline{6} 1$ | $5 \overline{8} . \overline{7} \overline{\%}$ | $0.60 \overline{1}$ |
|  | (5) $\mathrm{ZS}-\mathrm{TED}_{2}$ | 61.6\% | 73.7\% | 0.671 | 63.8\% | 0.658 |
|  | (6) ZS-TED+GA | 59.2\% | 92\% | 0.721 | 64.3\% | 0.690 |
|  | (7) ZS-TED+ABC | 60.1\% | 91\% | 0.724 | 65.3\% | 0.696 |
| (iv) | ( $\overline{8}$ ) $\mathrm{ETE}^{\text {E }} \overline{\mathrm{D}}_{1}^{-}$ | $5 \overline{9} \%$ | $65.7 \%$ | $\overline{0} . \overline{6} 2 \overline{1}$ | ${ }^{6} \overline{0} \%$ | $0.61 \overline{3}$ |
|  | (9) $\mathrm{ETED}_{2}$ | 63.2\% | 75\% | 0.686 | 65.7\% | 0.674 |
|  | (10) ETED+ABC | 61.5\% | 92.7\% | 0.739 | 67.3\% | 0.713 |

Table 7.1: Performance of ETED compared with the simple bag-of-words, Levenshtein distance and ZS-TED, binary decision Arabic dataset.

| Group | System | $\mathbf{P}_{\text {yes }}$ | $\mathbf{R}_{\text {yes }}$ | $\mathrm{F}_{\text {yes }}$ | Acc. | $\mathrm{F}_{\text {yes }} \times 0.6+$ Acc. $\times 0.4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (i) | (1) BoW | 53.1\% | 49.9\% | 0.514 | 52.9\% | 0.520 |
| (ii) | Levenshtein distance systems are omitted from this test |  |  |  |  |  |
| (iii) | $\left.{ }^{-} \overline{5}\right) \overline{\mathrm{Z}} \overline{\mathrm{S}}-\mathrm{T} \overline{\mathrm{E}} \overline{\mathrm{D}}_{2}^{-}$ | -52.9\% | ${ }^{-} 6 \overline{2} .5 \overline{\%}$ | $0.5 \overline{7} 3$ | 53.5\% | $0.5 \overline{5} 8$ |
|  | (9) ETEE $\overline{\mathrm{E}}_{2}$ | -54.2\% | ${ }^{-66.6 \%}$ | 0.598 | 55.2\% | $0.5 \overline{8} 0$ |
|  | (10) ETED+ABC | 55.4\% | 70.1\% | 0.619 | 56.8\% | 0.599 |

Table 7.2: Performance of ETED compared with the simple bag-of-words and ZSTED, binary decision RTE2 dataset.
are also time-consuming.

First of all, we want to point out that in our test set since the output split evenly as 'YES' and 'NO', always guessing 'YES' every time (most-common-class classifier) would get precision, recall, F-score and accuracy equal to 50, 100, 0.67 and 50, respectively. This classifier would achieve perfect recall, but mediocre precision and accuracy, since these are equal to the proportion of 'YES' answer in our test set. Most researchers therefore look at accuracy, though a few try to optimise F-score. In our experiments, we choose to optimise a mixture of accuracy and F-score, since optimising any one of them depends on the nature of the problem and application.

The first two groups in Table 7.1 show the performance of the string-based systems: the simple bag-of-words (BoW) (system 1) and two versions of the Levenshtein distance, $\mathrm{LD}_{1}$ (system 2) and $\mathrm{LD}_{2}$ (system 3). ZS-TED-based systems (third group) give better results than the string-based systems (first and second groups). As we expected, ZS-TED with optimisation algorithm systems (systems 6-7), which automatically estimated edit costs and threshold, produce better performance than using ZS-TED with intuition-based edit costs and threshold (system 5), which in turn produces better performance than ZS-TED with a simple set of fixed edit costs (system 4). Noting that, using the ABC algorithm (system 7) produces better results for the same amount of effort than a traditional GA (system 6) with the advantage of employing fewer control parameters.

The key observation about the results in Table 7.1, however, is that the extended version of TED with subtree operations, ETED (fourth group), improves the performance of our systems (systems 8-10) for Arabic by roughly $2 \%$ in both F-score and accuracy compared with ZS-TED (third group) and roughly $19 \%$ in F-score and $6 \%$ in accuracy compared with string-based systems (first and second groups). This finding supports the main hypothesis of this thesis that extended TED with subtree operations, ETED, is more effective and flexible than the standard one, ZS-TED, especially for applications that pay attention to relations among nodes (e.g. linguistic trees). This allows the algorithm to treat semantically coherent parts of the tree as single items, thus allowing for instance entire modifiers (such as prepositional phrases (PPs)) to be inserted or deleted as single units.

The pattern in Table 7.2 is similar to that in Table 7.1. ZS-TED (system 5) is better than BoW (system 1), and ETED (systems 9-10) is a further improvement over ZSTED (system 5). While it is not competitive with the best RTE2 systems, it achieved an accuracy (56.8\%) which is higher than that of more than a third of the RTE2 participants (average accuracy of 41 systems ( 23 teams) is $58.5 \%$ and median accuracy
of those systems is $58.3 \%$, see Appendix E), in spite of the fact that the preprocessed RTE2 test set that we used is not accurately parsed. Many of those teams had access to preprocessing systems and resources for English which were not available for our system, since English is not the focus of our attention in the present study.

The key point here is that in both sets of experiments, the F-scores improve as we move from string-based measures to ZS-TED and then again when we use ETED; and that they are remarkably similar for the two datasets, despite the fact that they were collected by different means, are in different languages, and are parsed using different parsers.

Given that the value of the measure that we are optimising in these experiments is a mixture of accuracy and F-score, which is itself a mixture of precision and recall, it is hard to predict how the individual components will behave. In other experiments later in the present chapter we optimise for accuracy by itself (Table 7.7) and for Fscore by itself (Table 7.6), and in both cases the same systems produce the best results. It is, however, interesting to note that in Tables 7.1 and 7.2 the settings that achieve the highest score for our mixture of accuracy and F-score for the string-based systems lead to higher precision than recall, whereas for the syntactic-based systems (where the score for the mixture is higher) the optimal systems have higher recall than precision. Appendix D contains an explanation of why this happens.

### 7.1.2.2 Three-way decision results

In this type of decision, we use two thresholds, one to trigger a positive answer if the cost of matching is lower than the lower threshold (exceeds the upper one for the bag-of-words algorithm) and the other to trigger a negative answer if the cost of matching exceeds the upper one (mutatis mutandis for bag-of-words). Otherwise, the result will be 'UN'. The reason for making a three-way decision is to drive systems to make more precise distinctions. Note that we are not distinguishing here between $\{T$ entails $H$, $T$ and $H$ are compatible, $T$ contradicts $H\}$, but between $\{T$ entails $H$, I do not know whether $T$ entails $H, T$ does not entail $H\}$. This is a more subtle distinction, reflecting the system's confidence in its judgement, but it can be extremely useful when deciding how to act on its decision.

The results of this experiment, in terms of precision $(\mathrm{P})$, recall $(\mathrm{R})$ and F -score ( F ), are shown in Tables 7.3 and 7.4 for Arabic and RTE2 test sets, respectively.

| Group | System | P | R | F |
| :---: | :---: | :---: | :---: | :---: |
| (i) | (1) BoW | 59.0\% | 57.3\% | 0.581 |
|  | ( $\overline{2}$ ) $\mathrm{LD}_{1}^{-}$ | 61.4\% | $\overline{5} \overline{8} . \overline{\%} \%$ | 0.597 |
|  | (3) $\mathrm{LD}_{2}$ | 62.9\% | 58.3\% | 0.605 |
| (iii) | ${ }^{-}(\overline{4}) \overline{\mathrm{Z}} \bar{S}^{-}-\mathrm{TE} \bar{D}_{1}$ | $\overline{6} 4.3 \%^{-}$ | $\overline{5} \overline{8} . \overline{4} \%$ | 0.612 |
|  | (5) $\mathrm{ZS}-\mathrm{TED}_{2}$ | 64.8\% | 58.3\% | 0.614 |
|  | (6) ZS-TED+GA | 65.5 \% | 58.6\% | 0.619 |
|  | (7) ZS-TED+ABC | 67.8\% | 58.2\% | 0.626 |
| (iv) | ( $\overline{8}$ ) $\overline{\mathrm{ET}} \bar{E}^{\text {D }} \overline{\mathrm{D}}_{1}$ | 65.3\% | 5 5 ¢ $\overline{3} \overline{3} \%$ | 0.616 |
|  | (9) $\mathrm{ETED}_{2}$ | 66.7\% | 60\% | 0.632 |
|  | (10) ETED+ABC | 70.7\% | 62.4\% | 0.663 |

Table 7.3: Comparison between ETED, simple bag-of-words, Levenshtein distance and ZS-TED, three-way decision Arabic dataset.

| Group | System | P | R | F |
| :---: | :---: | :---: | :---: | :---: |
| (i) | (1) BoW | 50.8\% | 48.3\% | 0.495 |
| (ii) | Levenshōein distance systems are o-mitted from this test |  |  |  |
| (iii) | (5) $\overline{\mathrm{Z}} \overline{\mathrm{S}}$ - $\mathrm{T} \overline{\mathrm{E}} \overline{\mathrm{D}}_{2}^{-}$ | $52.3 \%$ | $\overline{5} \overline{0} . \overline{2} \overline{\%}$ | $\overline{0} .5 \overline{12}$ |
| (iv) | $\begin{aligned} & \text { (9) } \overline{\mathrm{E}} \mathrm{E} \bar{D}_{2} \\ & \text { (10) } \mathrm{ETED}+\mathrm{ABC} \end{aligned}$ | $\begin{aligned} & 54.3 \% \\ & \mathbf{5 5 . 7} \% \end{aligned}$ | $\begin{aligned} & \overline{5} \overline{2} . \overline{7} \overline{\%} \\ & \mathbf{5 6 . 1} \% \end{aligned}$ | $\begin{gathered} -\overline{0} . \overline{535} \\ \mathbf{0 . 5 5 9} \end{gathered}$ |

Table 7.4: Performance of ETED compared with the simple bag-of-word and ZS-TED, three-way decision RTE2 dataset.

Table 7.3 shows the results of the three-way evaluation, along with same comparisons for binary decision. The obvious thing here is that all systems give better precision than recall. Levenshtein distance systems (second group) achieve better Fscore than bag-of-words system (first group) and, as in binary decision, $\mathrm{LD}_{2}$ (system 3) performs slightly better than $\mathrm{LD}_{1}$ (system 2 ).

ZS-TED-based systems (third group) perform better than string-based systems (first and second group). All ZS-TED-based systems achieve nearly the same recall but different precision. The systems with optimisation algorithms outperform those with fixed edit costs and thresholds, while the system with the ABC algorithm outperforms the GA-based one.

Finally, the ETED+ABC system achieves overall F-score of over 0.66, which is better than ZS-TED-based systems by around $4 \%$ and the string-based systems by around $6 \%$. A particularly noteworthy result is the high figures for precision, recall and F-score compared with the all other systems.

The scores for the three-way decision on the RTE2 test set are lower than for our Arabic test set, but again ETED outperforms ZS-TED on all three measures.

### 7.1.2 3 Linguistically motivated refinements

As we have seen in the previous experiments, ETED+ABC (system 10) gives better results than other systems for both datasets (Arabic and RTE2) and for both decisions (binary and three-way). In the next experiments, we will focus on the importance of the words of the $T$ and $H$ for calculating the costs of edit operations for ETED+ABC. We will investigate various linguistically motivated costs along the following lines. These costs are an updated version of the intuition-based costs presented by Kouylekov and Magnini (2006). According to these authors, the intuition underlying insertion is that inserting an informative word (i.e. closer to the root of the tree or with more children) should have higher cost than inserting a less informative word. The experiments here were conducted using the ETED+ABC (system 10) for binary decision only, and aimed at answering the questions below.

Is depth in the tree a significant factor? Nodes high in the tree are likely to be more directly linked to the main message of the sentence, so operations that apply to them are likely to be significant. We test here the following systems.

System 11: Intuition insert-depth . This system is the same as ETED+ABC except the cost of inserting a node is explained in Equation 7.16, where $D E P T H_{N}$ is the depth of the node $N$ (e.g. the depth of the root of a tree is 0 ) and 25 is the the maximum estimated depth of Arabic dependency trees in our PATB dependency version.

$$
\begin{equation*}
\gamma\left(\wedge \rightarrow N_{2}\right)=25-\text { DEPT }_{N_{2}} . \tag{7.16}
\end{equation*}
$$

System 12: Intuition exchange-depth. $^{\text {. This system }}$ is the same as ETED+ABC except the cost of exchanging a node is explained in Equation 7.17.

$$
\gamma\left(N_{1} \rightarrow N_{2}\right)=\left\{\begin{array}{lr}
0 & N_{1} \subseteq N_{2} \& \operatorname{POS}_{N_{1}}=\text { POS }_{N_{2}}  \tag{7.17}\\
25-\min \left(D E P T H_{N_{1}}, D E P T H_{N_{2}}\right) & \text { otherwise } .
\end{array}\right.
$$

System 13: Intuition insert-exchange-depth. . This system is the same as ETED+ABC except the cost of inserting a node as in Equation 7.16 and the cost of exchanging a node as in Equation 7.17.

System 14: Intuition all-depth. . This system is the same as ETED+ABC except multiplying each cost of a node with (25- the depth of this node in the tree). The costs for this system are explained in the following equations.

$$
\begin{gather*}
\gamma\left(N_{1} \rightarrow \wedge\right)=\gamma\left(N_{1} \rightarrow \wedge\right) \times\left(25-\text { DEPTH }_{N_{1}}\right),  \tag{7.18}\\
\gamma\left(\wedge \rightarrow N_{2}\right)=\gamma\left(\wedge \rightarrow N_{2}\right) \times\left(25-D E P T H_{N_{2}}\right),  \tag{7.19}\\
\gamma\left(N_{1} \rightarrow N_{2}\right)=\left\{\begin{array}{l}
0 \\
\gamma\left(N_{1} \rightarrow N_{2}\right) \times\left(25-\min \left(D E P T H_{N_{1}}, \text { DEPTH }_{N_{2}}\right)\right) \text { otherwise } .
\end{array}\right. \tag{7.20}
\end{gather*}
$$

Is number of daughters for a node a significant factor? Nodes with large numbers of daughters are likely to carry a large amount of information, so operations involving these are likely to be significant. We test here the following systems.

System 15: Intuition insert-daughters. $^{\text {This system is the same as ETED+ABC except }}$ the cost of inserting a node is explained in Equation 7.21, where $D T R S_{N}$ is the number of daughters of the node $N$.

$$
\begin{equation*}
\gamma\left(\wedge \rightarrow N_{2}\right)=D T R S_{N_{2}} \tag{7.21}
\end{equation*}
$$

System 16: Intuition exchange-daughters. This system is the same as ETED+ABC except the cost of exchanging a node is explained in Equation 7.22.

$$
\gamma\left(N_{1} \rightarrow N_{2}\right)= \begin{cases}0 & N_{1} \subseteq N_{2} \& \operatorname{POS}_{N_{1}}=P^{2} S_{N_{2}}  \tag{7.22}\\ \max \left(D T R S_{N_{1}}, D T R S_{N_{2}}\right) & \text { otherwise }\end{cases}
$$

System 17: Intuition insert-exchange-daughters. . This system is the same as ETED+ABC except the cost of inserting a node as in Equation 7.21 and the cost of exchanging a node as in Equation 7.22.

Is number of descendants for a node a significant factor? Although nodes with large numbers of daughters are likely to carry a large amount of information, there is no guarantee that ones with few daughters do not, since the daughters themselves may have large numbers of daughters. Hence, we looked at number of descendants as an alternative measure of information content. We test here the following systems.

System 18: Intuition insert-descendants. This system is the same as ETED+ABC except the cost of inserting a node is explained in Equation 7.23, where $D C T S_{N}$ is the number of descendants of the node $N$.

$$
\begin{equation*}
\gamma\left(\wedge \rightarrow N_{2}\right)=D C T S_{N_{2}} . \tag{7.23}
\end{equation*}
$$

System 19: Intuition exchange-descendants. . This system is the same as ETED+ABC except the cost of exchanging a node is explained in Equation 7.24.

$$
\gamma\left(N_{1} \rightarrow N_{2}\right)= \begin{cases}0 & N_{1} \subseteq N_{2} \& \operatorname{POS}_{N_{1}}=\operatorname{POS}_{N_{2}}  \tag{7.24}\\ \max \left(D C T S_{N_{1}}, D C T S_{N_{2}}\right) & \text { otherwise }\end{cases}
$$

System 20: Intuition insert-exchange-descendants. . This system is the same as ETED+ABC except the cost of inserting a node as in Equation 7.23 and the cost of exchanging a node as in Equation 7.24.

The results of the above intuition-based experiments are summarised in the Table 7.5 for both Arabic and RTE2 datasets.

As can be seen from Table 7.5, the performance of some versions of ETED+ABC with various linguistically motivated costs (systems 11, 12, 16 and 19) is better than the performance of ETED+ABC (system 10, here as a baseline), which is the best system in the previous experiments. The systems in Table 7.5 can be divided into two main groups: systems which focus on the importance of the words in the trees (systems 11-14) and systems which focus on the information content (systems 15-20). The key observation in this table is that the best result arises from looking at whether inserted information is high in the tree, i.e. is closely related to the main topic. Therefore, by taking into account the depth of an inserted node as edit cost for this node, we obtained a promising approach (system 11), which outperforms all the other 19 systems in this

| Dataset | System | $\mathbf{P}_{\text {yes }}$ | $\mathbf{R}_{\text {yes }}$ | $\mathrm{F}_{\text {yes }}$ | Acc. | $\mathrm{F}_{\mathrm{yes}} \times 0.6+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ArbTEDS | (10) ETED+ABC (baseline) | 61.5\% | 92.7\% | 0.739 | 67.3\% | 0.713 |
|  | (11) Intuition insert-depth $^{\text {a }}$ | ${ }^{6} \mathbf{3} . \overline{9} \overline{\%}{ }^{-}$ | 90.3\% | $\overline{0} . \overline{749}$ | 69.7 \% | $\overline{0} . \overline{7} 2 \overline{1}$ |
|  | (12) Intuition ${ }_{\text {exchange-depth }}$ | 64.9\% | 86.3\% | 0.741 | 69.8\% | 0.724 |
|  | (13) Intuition insert-exchange-depth | 60.1\% | 91.3\% | 0.725 | 65.3\% | 0.696 |
|  | (14) Intuition all-depth $^{\text {den }}$ | 59\% | 88.3\% | 0.708 | 63.5\% | 0.679 |
|  | (15) Intuition ${ }_{\text {insert-daughters }}$ | ${ }^{6} \overline{0} . \overline{6} \overline{\%}$ | 82.7\% ${ }^{-}$ | $\overline{0} \overline{7} 0$ | 64.5\% | $\overline{0} . \overline{6} 7 \overline{8}$ |
|  | (16) Intuition ${ }_{\text {exchange-daughters }}$ | 66.3\% | 83.3\% | 0.739 | 70.5\% | 0.725 |
|  | (17) Intuition ${ }_{\text {insert-exchange-daughters }}$ | 62.6\% | 88\% | 0.731 | 67.7\% | 0.709 |
|  | (18) $\overline{\text { Intuition }} \overline{\text { insert-descendants }}$ | $\overline{6} \overline{2} . \overline{\%} \overline{\%}-$ | $81.7 \%^{-}$ | $\overline{0} \overline{7} \overline{10}$ | $6 \overline{6} .7 \overline{\%}$ | $\overline{0} . \overline{6} 93$ |
|  | (19) Intuition exchange-descendants $^{\text {a }}$ | 64\% | 88.3\% | 0.742 | 69.3\% | 0.722 |
|  | (20) Intuition insert-exchange-descendants $^{\text {a }}$ | 61.2\% | 93\% | 0.738 | 67\% | 0.711 |
| RTE2 | (10) ETED+ABC (baseline) | 55.4\% | 70.1\% | 0.619 | 56.8\% | 0.599 |
|  | (11) Intuition ${ }_{\text {insert-depth }}$ | $5 \overline{6} .1{ }^{-}$ | 71.8\% | $\overline{0} . \overline{6} 3$ | $57.8 \overline{\%}$ | $\overline{0} .6 \overline{6} 9$ |

Table 7.5: Comparison between several versions of ETED+ABC with various linguistically motivated costs, binary decision.
thesis (systems 1-10 and 12-20). This system produces better F-score by around $1 \%$ and accuracy by around $2.5 \%$ than the baseline (system 10).

Another observation is that the systems 12, 16 and 19, which are about saying the same thing in different words between $T$ and $H$, outperform the other systems (except system 11, which is about adding information in high position in the tree). This is not unexpected-trees with large numbers of daughters or descendants (systems 16 and 19) are likely to carry a large amount of information, so replacing these is likely to make a significant change to the meaning. It is unclear whether system 12 performs well because it is looking at nodes high in the tree, which are important (as with system 11); or because nodes high in the tree are likely to have large numbers of descendants (as with systems 16 and 19).

By applying the best system (system 11) which we obtained for Arabic in these experiments to the RTE2 test set, we again got the same conclusion that this system outperforms the baseline (system 10), which is the best system in the previous experiments for RTE2 test set (see Table 7.2). This system attained F-score and accuracy gain of $2 \%$ and $1 \%$ respectively over the baseline. It achieved an accuracy (57.8\%) higher than that of nearly half of the RTE2 participants (see Appendix E). Since most experiments on RTE2 task only report accuracy, we re-implemented system 11 to optimise accuracy only (i.e. the objective function (fitness) = accuracy). The result of this system achieved an accuracy ( $58.5 \%$ ) which is higher than half of the RTE2 participants and higher than the median accuracy of the whole set of RTE2 systems. We can
thus claim that our system would have put us in the top half of the RTE2 competition, despite the fact that we were using a parser which achieves only $80 \%$ accuracy and that the only resource we have used is WordNet.

Overall, the present findings of these experiments are encouraging and seem to be consistent with those of other studies (e.g. Kouylekov and Magnini, 2006) and suggest that further work in this regard would be very worthwhile.

### 7.1.2.4 Optimisation algorithms performance

In this section, we will answer the question as to which algorithm (GA or ABC algorithm) works best for our task? To answer this question, we need to answer three main subsidiary questions: (i) how good a value does it produce? (ii) how quickly does it produce this value? and (iii) is there any evidence that it is not stuck at a local maximum?

In general, to answer the above questions, we have to experiment to find out, since they are applications-independent. All experiments here use ZS-TED+GA where the GA replaces all but the current leading candidate once the average fitness has (nearly) converged to the fitness of the leader (system 6), and ZS-TED+ABC (system 7). Generally, the most serious challenge in the use of optimisation algorithms is concerned with the quality of the results, in particular whether or not an optimal solution is being reached. One way of providing some degree of insurance is to compare results obtained for $n$ times under different seeds of initial population. We therefore performed both algorithms five times with different random seeds for each run and the same initial seed for both algorithms. For each set of five runs, we used different values of fitness parameters $a$ and $b$, depending on what should be optimised (F-score, accuracy or both). To assess the reliability of GA and ABC algorithm, we calculate the average performance of GA and ABC algorithm for the whole set of runs. A more reliable algorithm should produce (in our case) a higher value for mean, preferably near to the global maximum one.

The performance of GA and ABC algorithm for each run under the same conditions as well as the average performance for the five runs is given in Tables 7.6, 7.7 and 7.8. Each table represents a different fitness function.

| Run\# | Optimisation algorithm |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | GA |  | ABC algorithm |  |
|  | F-score | Acc. | F-score | Acc. |
| 1 | 0.723 | $64.2 \%$ | 0.726 | $65 \%$ |
| 2 | 0.721 | $63.7 \%$ | 0.725 | $65.2 \%$ |
| 3 | 0.723 | $64 \%$ | 0.726 | $65.2 \%$ |
| 4 | 0.718 | $63.8 \%$ | 0.722 | $65 \%$ |
| 5 | 0.722 | $63.8 \%$ | 0.726 | $65.3 \%$ |
| Mean | 0.721 | $63.9 \%$ | $\mathbf{0 . 7 2 5}$ | $65.1 \%$ |

Table 7.6: Comparison between GA and ABC algorithm for five runs, optimise F-score where fitness parameters are $a=1$ and $b=0$ (i.e. fitness $=\mathrm{F}$-score).

| Run\# | Optimisation algorithm |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | GA |  | ABC algorithm |  |
|  | F-score | Acc. | F-score | Acc. |
| 1 | 0.719 | $64.5 \%$ | 0.715 | $66 \%$ |
| 2 | 0.720 | $64.7 \%$ | 0.714 | $65.8 \%$ |
| 3 | 0.719 | $64.5 \%$ | 0.712 | $65.5 \%$ |
| 4 | 0.718 | $64.7 \%$ | 0.715 | $66 \%$ |
| 5 | 0.720 | $64.8 \%$ | 0.717 | $66.2 \%$ |
| Mean | 0.719 | $64.6 \%$ | 0.715 | $\mathbf{6 5 . 9} \%$ |

Table 7.7: Comparison between GA and ABC algorithm for five runs, optimise accuracy (Acc.) where fitness parameters are $a=0$ and $b=1$ (i.e. fitness= accuracy).

| Run\#\# | Optimisation algorithm |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GA |  |  |  | ABC algorithm |  |  |
|  | F-score | Acc. | F-score $\times \mathbf{0 . 6 + A c c} \times \mathbf{0 . 4}$ | F-score | Acc. | F-score $\times \mathbf{0 . 6 + A c c} \times \mathbf{0 . 4}$ |  |
| 1 | 0.713 | $65 \%$ | 0.688 | 0.720 | $65.3 \%$ | 0.693 |  |
| 2 | 0.721 | $64.3 \%$ | 0.690 | 0.724 | $65.3 \%$ | 0.696 |  |
| 3 | 0.715 | $65 \%$ | 0.689 | 0.725 | $65.2 \%$ | 0.696 |  |
| 4 | 0.721 | $64 \%$ | 0.689 | 0.723 | $65.2 \%$ | 0.695 |  |
| 5 | 0.711 | $64.7 \%$ | 0.685 | 0.723 | $65.3 \%$ | 0.695 |  |
| Mean | 0.716 | $64.6 \%$ | 0.688 | 0.723 | $65.3 \%$ | 0.695 |  |

Table 7.8: Comparison between GA and ABC algorithm for five runs, optimise both F-score and accuracy with a slight priority to F-score, where fitness parameters are $a=0.6$ and $b=0.4$ (i.e. fitness= F-score $\times 0.6+$ Acc. $\times 0.4$ ).

As can be seen from the results presented in Tables 7.6-7.8, ABC algorithm outperforms GA in all runs and for different types of fitness in terms of the quality of the results (average of best fitness 0.725 (F-score), $65.9 \%$ (accuracy) and 0.695 (mixture
of F-score and accuracy) compared to 0.721 (F-score), $64.6 \%$ (accuracy) and 0.688 (mixture of F-score and accuracy) for GA) (answer for the first question).

It is hard to answer the third question, but the results in Tables $7.6-7.8$ provide us with some evidence that both algorithms work effectively to avoid getting stuck at a local maximum. In spite of the fact that both algorithms started from different points (random seeds) for each run, they achieved nearly similar results in each run, with ABC algorithm slightly superior to GA.

In order to compare the behaviour of the ABC algorithm more clearly with the behaviour of GA, we used 'performance graphs' (Negnevitsky, 2011). Such a graph is a curve showing the performance of the best individual in the population as well as a curve showing the average performance of the entire population over the chosen number of generations (cycles).

Figures 7.5 and 7.6 demonstrate plots of the best and average values of the fitness across 500 generations (cycles) for GA and ABC algorithm respectively, where both algorithms have been run with the same initial population and the same population size (colony size) equal to 100 . The other settings for GA are the same for ZS-TED+GA (see system 6). In these graphs, the x -axis indicates how many generations (cycles) have been created and evaluated at the particular point in the run, and the $y$-axis represents the fitness value at that point.


Figure 7.5: The performance of GA.

The first thing to note in Figure 7.5 is that the best fitness is more than doubled over the 500 generations. The best fitness curve rises fairly steeply at the beginning of the experiment (until generation number 46), but stays nearly flat for a long time at the end, with very small increments at generations 65,96 and 430 respectively, while


Figure 7.6: The performance of ABC.
the average fitness curve shows more than a triple improvement over the same period. This curve rises rapidly at the beginning of the experiment, but then as the population converges nearly on the best solution, it rises more slowly, and finally flattens at the end. At this point we replace all but the best chromosome with a new random population, in order to try to avoid premature convergence at a local maximum. The shape of the curve following this repopulation step is almost identical to the shape following the initial random population, and the pattern seems to repeat following the second repopulation step. This suggests that the system has explored the space of possibilities exhaustively, since it seems to follow the same pattern each time it starts with a fresh randomly chosen population.

On the other hand, the best fitness curve obtained by the ABC algorithm in Figure 7.6 again more than doubled over the 500 cycles but to a higher value than that for GA ( 0.696 compared with 0.689 for GA). It shows an even steeper improvement at the beginning of the experiment (until cycle 5), which converges very quickly to the best solution (answer for the second question), but stays nearly flat for a long time at the end (again apart from very minor increments at cycles 19 and 22 respectively). The average fitness curve shows more than a triple improvement over the same period but less than that for GA. This curve starts with gradual improvement at the beginning of the experiment (until cycle 26), and then it shows erratic behaviour between 0.5 and 0.6 . This is because in ABC algorithm, while a stochastic selection scheme (i.e. similar to 'roulette wheel selection' in GA) based on the nectar (fitness) values is carried out by onlooker bees, a greedy selection scheme as in differential evolution (DE) is used by onlookers and employed bees to make a selection between the position of a food source
(a possible solution) in their memory and the new food source position. Furthermore, a random selection process is achieved by using scouts. Also, the production mechanism of the neighbour food source used in ABC is similar to the mutation process, which is self-adapting, of DE. From this perspective, in ABC algorithm, the solutions in the colony (population) directly affect the mutation operation since the operation is based on the difference of two members of the colony. In this way, the information of a good member of the colony is distributed among the other members due to the greedy selection mechanism employed and the mutation operation to generate a new member of the colony. Unlike GA, ABC algorithm does not have explicit crossover. However, in ABC the transfer of good information between the members is achieved by the mutation process, whereas in GA it is managed by the mutation and the crossover operators together. Therefore, although the local converging speed of a standard GA is quite good, GA might encounter the premature convergence in optimising some problems if the initial population does not have a sufficient diversity. On the other hand, while the intensification process is controlled by the stochastic and the greedy selection schemes in the ABC , the diversification is controlled by the random selection. It seems that the problem of getting stuck in local maxima has been avoided (answer for the third question).

We also find that any increment after a sufficient value for colony size does not improve the performance of the ABC algorithm significantly ( 0.696 for 40 colony size and 100 cycles compared to 0.698 for 100 colony size and 500 cycles). For this reason, we carried out this work with colony size of 40 , which can provide an acceptable convergence speed for search.

To conclude, simulation results show that the performance of ABC algorithm, in terms of the quality of results, convergence speed and avoidance of local maxima, is better than GA under the same conditions although ABC algorithm used fewer parameters than GA. Its performance is very good in terms of the local and the global optimisation due to the selection schemes employed and the neighbour production mechanism used. Consequently, it can be concluded that ABC algorithm based approach can successfully be used in the optimisation of transformation-based TE systems.

## Chapter 8

## Conclusion and future work

During this thesis, we have explored a number of systems for the task of RTE for Arabic (Chapter 7), ranging from the robust, but imprecise, bag-of-words model based on approximate measures of semantic similarity to more deep systems based on patternmatching such as transformation-based approaches. We have also examined the improvements of tagging and parsing for Arabic (Chapter 4), which play a role in most of our approaches as a preprocessing step. We have also created a first dataset for Arabic RTE task (Chapter 6).

In this final chapter, we seek to address two main questions: what have we learned about the task of RTE for Arabic, and what are the most promising directions for future research in this area?

### 8.1 Main thesis results

This thesis has examined the task of RTE for Arabic from different angles, and we hope to have made important contributions in various areas.

In Chapter 4, we experimented with a number of strategies to improve our preprocessing stage to convert our input from raw texts into dependency trees. The two main findings for these experiments are summarised below.

The first major finding was that we presented a very simple strategy for combining POS taggers which leads to substantial improvements in accuracy. In experiments with combining three Arabic taggers (AMIRA, MADA and an in-house maximumlikelihood (MXL)), the current strategy significantly outperformed voting-based strategies for both a coarse-grained set of tags ( 39 tags, see Table 4.2) and the original finergrained of the PATB with 305 tags. The accuracy of a tagger clearly depends on the
granularity of the tagset: the contributing taggers produced accuracies from $95.5 \%$ to $96.7 \%$ on the coarse-grained tagset, and from $88.8 \%$ to $93.6 \%$ on the fine-grained one (see Table 4.2).

The key to the proposed combining strategy is that each of the contributing taggers is likely to make systematic mistakes; and that if they are based on different principles they are likely to make different systematic mistakes. If we classify the mistakes that a tagger makes, we should be able to avoid believing it in cases where it is likely to be wrong. So long as the taggers are based on sufficiently different principles, they should be wrong in different places.

We therefore collected confusion matrices for each of the individual taggers showing how likely they were to be right for each category of item-how likely, for instance, was MADA to be right when it proposed to tag some item as a noun (very likelyaccuracy of MADA when it proposes NN is around $98 \%$ ), how likely was AMIRA to be right when it proposed the particle tag RP (very unlikely-accuracy of $8 \%$ in this case)? Given these tables, we simply took the tagger whose prediction was most likely to be right.

We compared the results of this simple strategy with a strategy proposed by Zeman and Žabokrtskỳ (2005), in which you accept the majority view if at least two of the taggers agree, and you backoff to one of them if they all disagree, and with a variation on that where you accept the majority view if two agree and backoff to the most confident if they all disagree (see Tables 4.5 and 4.7).

All four strategies produce an improvement over the individual taggers. The fact that majority voting works better when backing off to MXL than to MADA, despite the fact that MADA works better in isolation, is thought-provoking. It seems likely to be that this arises from the fact that MADA and AMIRA are based on similar principles, and hence are likely to agree even when they are wrong. This hypothesis suggested that looking at the likely accuracy of each tagger on each case might be a good backoff strategy. It turns out that it is not just a good backoff strategy, as shown in the column 1 ('backoff unless two agree') of Table 4.7: it is even better when used as the main strategy (column 2: 'MC'). The differences between columns 1 and 2 are not huge, ${ }^{1}$ but that should not be too surprising, since these two strategies will agree in every case where all three of the contributing taggers agree, so the only place where these two will disagree is when one of the taggers disagrees with the others and the isolated tagger is

[^39]more confident than either of the others.
The idea reported here is very simple, but it is also very effective. We have reduced the error in tagging with fairly coarse-grained tags to 0.005 , and we have also produced a substantial improvement for the fine-grained tags, from $93.6 \%$ for the best of the individual taggers to $96 \%$ for the combination.

The second major hypothesis was that given the success of the approach outlined above for tagging, it might be worth applying the same idea to parsing. We therefore tried using it with a combination of dependency parsers, for which we used MSTParser and two variants from the MALTParser family, namely Nivre arc-eager (MALTParser ${ }_{1}$ ) and Stack swap-eager (MALTParser ${ }_{2}$ ). We tested a number of strategies including: (i) the three parsers in isolation; (ii) a strategy in which we select a pair and trust their proposals wherever they agree, and backoff to the other one when they do not; (iii) a strategy in which we select a pair and trust them whenever they agree, and backoff to whichever parser is most confident (which may be one of these or may be the other one) when they do not; and (iv) strategies where we either just use the most confident one, or where we take either a unanimous vote or a majority vote, and backoff to the most confident one if this is inconclusive.

The results of these strategies (see Tables 4.15-4.18 and 4.21) indicate that for parsing, simply relying on the parser which is most likely to be right when choosing the head for a specific dependent in isolation does not produce the best overall result, and indeed does not even surpass the individual parsers in isolation. For these experiments, the best results were obtained by asking a predefined pair of parsers whether they agree on the head for a given item, and backing off to the other one when they do not. This fits with Henderson and Brill (1999)'s observations about a similar strategy for dependency parsing for English. It seems likely that the problem with relying on the most confident parser for each individual daughter-head relation is that this will tend to ignore the big picture, so that a collection of relations that are individually plausible, but which do not add up to a coherent overall analysis, will be picked.

Thus, it seems that the success of the proposed method for taggers depends crucially on having taggers that exploit different principles, since under those circumstances the systematic errors that the different taggers make will be different; and on the fact that POS tags can be assigned largely independently (though of course each of the individual taggers makes use of information about the local context, and in particular about the tags that have been assigned to neighbouring items). The reason why simply taking the most likely proposals in isolation is ineffective when parsing
may be that global constraints such as Henderson and Brill's 'no crossing brackets' requirement are likely to be violated. Interestingly, the most effective of our strategies for combining parsers takes two parsers that use the same learning algorithm and same feature sets but different parsing strategies (MALTParser ${ }_{1}$ and MALTParser ${ }_{2}$ ), and relies on them when they agree; and backs off to MSTParser, which exploits fundamentally different machinery, when these two disagree. In other words, it makes use of two parsers that depend on very similar underlying principles, and hence are likely to make the same systematic errors, and backs off to one that exploits different principles when they disagree.

We then investigated two techniques to combine taggers and parsers for improving our preprocessing stage. The first technique, which is combine taggers and combine parsers, suggests that a flawed parser may learn to compensate for the errors made by a flawed tagger. By applying combining parsers (second finding) on text tagged by combining taggers (first finding), we got accuracy (around $85 \%$ for labelled accuracy, which is the best result we have seen for the PATB) higher than applying each parser in isolation on gold-standard tagged text (around $82 \%-83 \%$ ). The second technique (combining different tagger:parser pairs where each parser uses a different tagger) shows that applying such a technique will increase precision, but decrease recall, which may be useful for some tasks.

We have not carried out a parallel set of experiments on taggers or parsers for languages other than Arabic because we are interested here in Arabic. In situations where three (or more) distinct approaches to a problem of this kind are available, it seems at least worthwhile investigating whether the proposed methods of combination will work.

In Chapter 5, we extended ZS-TED, which computes the minimal cost to transform one tree into another. The extended version, ETED, fixes the main weakness of ZSTED, which is that it is not able to do transformations on subtrees (i.e. delete subtree, insert subtree and exchange subtree). To achieve this goal, we firstly run ZS-TED (which uses only single node edit operations) and compute the standard alignment from the results, as in Section 5.3.1; and then we go over the alignment and group subtrees operations, i.e. for every consecutive $k$ deletions that correspond to an entire subtree reduce the edit distance score by $\alpha \times k+\beta$ for any desired $\alpha$ and $\beta$, which are in the interval $[0,1]$, as in Section 5.3.2.

It is important to note that although we apply this technique on modifying ZS-TED, it can also work on modifying any other TED algorithms such as Klein's algorithm or

Demaine et al.'s algorithm or Pawlik-Augsten's algorithm. ${ }^{2}$ Furthermore, the additional time cost is $O\left(n^{2}\right)$, which is negligible since it is less than the time cost for any available TED algorithms.

In fact, ETED is more effective and flexible than ZS-TED, especially for applications that pay attention to relations among nodes (e.g. in linguistic trees, deleting a modifier subtree should be cheaper than the sum of deleting its components individually).

In Chapter 6, we undertook the first attempt at creating a dataset for training and testing Arabic TE systems. We examined two main tools for creating our dataset:
(i) Collecting the dataset: we apply two techniques here: (a) for the training dataset, we use a headline (as $H$ ) from one source and the lead-paragraph (as $T$ ) from a news article about the same story but from another source for 10 returned pages. This technique enables us to collect a huge amount of $T-H$ pairs without any bias in a short time, but with a preponderance of positive examples (see Table 6.2) with minimum common words between each $T-H$ pair; and (b) for the testing dataset, we update the previous technique, since we need here a balance between positive and negative pairs. We use the same technique that we used for training to collect entailment pairs, since such technique is promising in this regard (see Table 6.2), while we use a paragraph from a news article which gives a high number of common words with a closely linked headline. This technique enables us to collect a huge amount of non-entailment pairs with a large number of common words between each pair without any bias.
(ii) Annotating our dataset: we develop here an online system that allows each annotator to annotate any number of pairs, revisit previous annotated pairs, send comments to the administrator and other options. This system has a number of advantages such as allowing people to annotate our dataset from different places or countries and allows saving different information about each pair such as original articles, number of words in each sentence, number of common words and others.

Each pair was annotated by three annotators. The annotator agreement (where all annotators agree) is around $78 \%$ compared with $91 \%$ where each annotator agrees with at least one co-annotator. This suggests that the annotators found this a difficult task.

[^40]We also tested the reliability of our annotators by using two different techniques: (a) the rate of selecting 'unknown' option for each annotator; and (b) calculated kappa coefficient for each annotator, which takes chance into account. These techniques enable us to detect unreliable annotator(s). The results of these analyses suggest that there are no unreliable annotators among our annotators.

Finally, in Chapter 7, we explored a range of approaches to natural language inference (NLI), particularly the RTE task of determining whether one text snippet entails another, beginning with robust but approximate methods, and proceeding to progressively more precise approaches such as transformation-based approaches. These approaches include: (i) bag-of-words (system 1); (ii) the Levenshtein distance with two different settings (systems 2-3); (iii) ZS-TED with different settings (system 4-7); and (iv) ETED with different settings (system 8-10). We applied these systems to our Arabic test set and some of them to the RTE2 test set for two types of decisions: binary decision ('yes'/‘no') and three-way decision ('yes'/‘unknown'/‘no') (see Tables 7.17.4).

The results of these experiments show that, as expected, TED-based systems outperform the string-based systems, and ETED-based systems outperform ZS-TED-based systems. The key point with ETED is that subtrees tend to correspond to single information units. By treating operations on subtrees as less costly than the corresponding set of individual node operations, ETED concentrates on entire information units, which are a more appropriate granularity than individual words for considering entailment relations.

Selecting a combination of thresholds and costs for the TED's primitive edit operations is a challenge, and becomes very hard when dealing with complex problems. Choosing suitable edit costs depends on different parameters such as the nature of nodes and applications (e.g. deleting a verb node from a syntactic tree is different from deleting a symbol in RNA structure). One possible solution to overcoming this challenge could consist of assigning costs based on an expert valuation, but it may not be efficiently done in domains where the expertise is very limited. Furthermore, even if the level of expertise is good, assigning an appropriate cost to each edit operation can become a tricky task. An alternative solution is to estimate each edit cost automatically. We therefore investigated the use of different optimisation algorithms, and have shown that using these algorithms produces better performance than setting the costs of edit operations by hand, and that using the ABC algorithm produces better results for the same amount of effort as traditional GA.

Next, we investigated an improvement to the ETED+ABC (system 10), the best system among the systems 1-10, by testing various linguistically motivated costs such as the depth of a node, number of daughters, number of descendants and combinations between them (systems 11-20). The results of these experiments (see Table 7.5) show that the performances of some of ETED+ABC with linguistically motivated costs (systems $11,12,16$ and 19) are better than the performance of ETED+ABC with constant edit costs (system 10). By taking into account the depth of an inserted node as edit cost for this node (the word's importance), we obtained a promising approach (system 11) which outperforms all the other 19 systems in this thesis (systems 1-10 and 1220). This system produces better F-score by around $1 \%$ and accuracy by around $2.5 \%$ than the baseline (system 10). This is due to the specific nature of the dependency tree where the higher position nodes in it are more relevant to the meaning expressed by a certain phrase (i.e. the main relation between the nodes is at the top of the tree). Similarly, taking into account the amount of information in a subtree (as with systems 12,16 and 19) can help the system decide how important this subtree is. This helps it make judgements about the significance of applying an operator to the subtree.

The findings are encouraging on the Arabic test set, particularly the improvement in F-score and accuracy. The fact that some of these results were replicated for the English RTE2 test set, where we had no control over the parser that was used to produce dependency trees from the T-H pairs, provides some evidence for the robustness of our approach. We anticipate that in both cases having a more accurate parser (our parser for Arabic attains around $85 \%$ accuracy on the PATB, MINIPAR is reported to attain about $80 \%$ on the Suzanne corpus) would improve the performance of both ZS-TED and ETED.

In short, we have carried out a number of experiments on our dataset using a variety of standard TE algorithms (bag-of-words, Levenshtein distance, tree edit distance). The results of these experiments were comparable with the results of using these algorithms with the standard RTE2 dataset. This suggests that the data we have collected is comparable with the RTE2 set in terms of the difficulty of the TE task-not full of trivial entailments that can be captured simply by counting words, but not full of $T-H$ pairs where the connection requires so much background knowledge that the standard techniques are unusable. As such, we believe that this dataset is likely to be a useful resource for researchers wishing to investigate the cross-linguistic effectiveness of various TE algorithms.

### 8.2 Main contributions

In the summary of the discussion above of the main thesis results, the current project has made the following main contributions:

1. We have converted the PATB from phrase structure form into a dependency treebank.
2. We have updated the MXL Arabic tagger to work with MSA rather than the classical Arabic used in the Holy Quran.
3. We have improved the performance of tagging by combining taggers based on confidence which produces substantially better performance than any of the contributing taggers.
4. We have improved the performance of parsing by combining parsers based on majority voting which produces substantially better performance than any of the contributing parsers.
5. We have created semi-automatically the first dataset for Arabic RTE task.
6. We have updated the standard TED algorithm to deal with both single and subtree operations, i.e. ETED, rather than single operations only.
7. We have improved the performance of TED algorithms by estimating automatically the relevant edit costs of operations and thresholds by using ABC algorithm.
8. We have developed the first system for Arabic RTE task.

We have shown that ETED is effective for the English RTE2 dataset. A number of the other algorithms have potential for application to languages other than Arabic, but this remains to be investigated.

### 8.3 Future directions

What does the future hold for the current research on TE for Arabic? There are various avenues for further work related to the research presented in this thesis, both within the approaches and systems discussed, and more generally for the application areas of TE.

The following suggestions are provided for the future work to improve the current system:

1. Further experimental investigations are needed to extend our system by adding a middle stage between preprocessing and tree matching stages. This stage is forward inference rules, which will play an essential role in ArbTE. In this part, the inference rules will be applied on $H$ to generate different versions of $H$ that express the same meaning, as shown in Figure 8.1. We will extract transfer-like rules (Hutchins and Somers, 1992) for transforming the parse tree that we extract from the text to other entailed trees, to be used as a set of forward inference rules. The work for determining which subtrees can be reliably identified will be exploited here to ensure that we only extract rules from elements of the parse tree that we trust.


Figure 8.1: General diagram of extended ArbTE system.
2. We also speculate that further work by marking the polarity of subtrees in the dependency trees obtained by the parser(s) and making rules sensitive to the polarity of the items they are being applied to would further improve ArbTE results. This will make the use of ETED as a way of determining consequence relations more reliable for all languages, not just Arabic: the fact that (8.1a) entails (8.1b), whereas (8.2a) does not entail (8.2b), arises from the fact that 'doubt' reverses the polarity of its sentential complement. Systems that pay no attention to polarity will inevitably make mistakes, and we intend to adapt the ETED algorithm so that it pays attention to this issue.
(8.1) Polarity (Entailment)
a. I believe that a woman did it.
b. I believe that a human being did it.
(8.2) Polarity (Non-entailment)
a. I doubt that a woman being did it.
b. I doubt that a human did it.
3. Further investigation and experimentation into ETED is strongly recommended. As we have seen in Section 7.1.2.4, applying ETED with linguistically motivated costs gives better results than other systems in this thesis. More broadly, research is needed to apply ETED more deeply by associating a vector space model with each node in a tree. Such a vector, for instance, might contain more details about the node such as POS tag, word frequency, lemma, taxonomy-based score, the depth of node, its number of daughters and others. Then, when we compare between two nodes we should pay attention to these features.
4. As we have seen in Chapter 4, combining systems gives better results than each system in isolation for different aspects of NLP such as POS tagging and parsing. A further study could assess this technique for the TE task itself. So, going forward, we will need to look at ways to combine different systems-including not only lexical overlap or syntactic based systems-in order to take advantage of them.
5. Further work needs to be done to complete establishing our dataset. The Arabic TE dataset presented in this thesis can be utilised for reference; however this is an initial dataset. It is expected that the initial dataset will be expanded with additional pairs and decisions (three-ways).
6. We intend to use our system to improve the quality of the candidate input for QA or IE systems, since such techniques have not been investigated so far for Arabic.
7. Another interesting task for future exploration is applying our technique on the QurSim corpus (Sharaf and Atwell, 2012) which contains pairs of semantically similar or related Quranic verses. TED can be seen as providing a family of measures of semantic relatedness, with the weights chosen in Chapter 7 providing an asymmetric measure corresponding roughly to entailment. It would be interesting to try to
find weights which correspond to other forms of relatedness such as that embodied in the QurSim.
8. We intend to make our Arabic RTE task dataset and the stand-off annotations of the dependency version of the PATB (because of the licence) available to the scientific community thus allowing other researchers to duplicate our experiments to compare the effectiveness of our algorithms with alternative approaches.

In the end we would like to conclude that the work in this area (i.e. determining whether one text snippet can be inferred from another) is very challenging, in particular for Arabic where we are faced with an exceptional level of lexical and structural ambiguity. We think that any attempt in this regard for languages other than English will bring benefits for the whole RTE community.

In addition to the specific contributions outlined before, we hope to have achieved an aim through this project greater than the announced ones, which is to catalyse other researchers to investigate NLI for Arabic more seriously, far from being merely a formal topic of linguists and semanticists. Achieving this goal will open the door to investigate the applications of this task to solve various real-world challenges such as QA, IE and others. Consequently, it constitutes a topic ripe for the attention of NLP researchers in order to remedy the gap between the available techniques for Arabic and those that have been done for other languages such as English.

## Bibliography

Adams, R. (2006). Textual entailment through extended lexical overlap. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 128-133, Venice, Italy.

Aharon, R., Szpektor, I., and Dagan, I. (2010). Generating entailment rules from FrameNet. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010)-Short Papers, pp. 241-246, Uppsala, Sweden. Association for Computational Linguistics.

Akay, B. and Karaboga, D. (2012). A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences, 192:120 - 142, doi:10.1016/j.ins.2010.07.015.

Al Shamsi, F. and Guessoum, A. (2006). A hidden Markov model-based POS tagger for Arabic. In 8es Journées internationales d'Analyse statistique des Données Textuelles (JADT-2006), pp. 31-42, Besançon, France.

Alabbas, M. (2011). ArbTE: Arabic textual entailment. In Proceedings of the 2nd Student Research Workshop associated with the International Conference Recent Advances in Natural Language Processing (RANLP 2011), pp. 48-53, Hissar, Bulgaria. RANLP 2011 Organising Committee.

Alabbas, M., Khalaf, Z., and Khashan, K. (2012). BASRAH: an automatic system to identify the meter of Arabic poetry. Natural Language Engineering, 1(1):1-19, doi:10.1017/S1351324912000204.

Alabbas, M. and Ramsay, A. (2011a). Evaluation of combining data-driven dependency parsers for Arabic. In Proceedings of the 5th Language \& Technology Conference: Human Language Technologies (LTC 2011), pp. 546-550, Poznań, Poland.

Alabbas, M. and Ramsay, A. (2011b). Evaluation of dependency parsers for long Arabic sentences. In Proceedings of 2011 International Conference on Semantic Technology and Information Retrieval (STAIR'11), pp. 243-248, Putrajaya, Malaysia. IEEE, doi:10.1109/STAIR.2011.5995796.

Alabbas, M. and Ramsay, A. (2012a). Arabic treebank: from phrase-structure trees to dependency trees. In Proceedings of the META-RESEARCH Workshop on Advanced Treebanking at the 8th International Conference on Language Resources and Evaluation (LREC 2012), pp. 61-68, Istanbul, Turkey.

Alabbas, M. and Ramsay, A. (2012b). Combining black-box taggers and parsers for modern standard Arabic. In Proceedings of Federated Conference on Computer Science and Information Systems (FedCSIS-2012), pp. 19 -26, Wrocław, Poland. IEEE.

Alabbas, M. and Ramsay, A. (2012c). Dependency tree matching with extended tree edit distance with subtrees for textual entailment. In Proceedings of Federated Conference on Computer Science and Information Systems (FedCSIS-2012), pp. 11-18, Wrocław, Poland. IEEE.

Alabbas, M. and Ramsay, A. (2012d). Improved POS-tagging for Arabic by combining diverse taggers. In Iliadis, L., Maglogiannis, I., and Papadopoulos, H. (Eds.), Artificial Intelligence Applications and Innovations (AIAI), volume 381 of IFIP Advances in Information and Communication Technology, pp. 107-116. Springer Berlin-Heidelberg, Halkidiki, Thessaloniki, Greece, doi:10.1007/978-3-642-334092_12.

Alba, E. and Dorronsoro, B. (2008). Cellular Genetic Algorithms. Operations Research/Computer Science Interfaces Series. New York, USA: Springer Science+Business Media, LLC.

AlGahtani, S., Black, W., and McNaught, J. (2009). Arabic part-of-speech tagging using transformation-based learning. In Proceedings of the 2nd International Conference on Arabic Language Resources and Tools, pp. 66-70, Cairo, Egypt. The MEDAR Consortium.

Alpaydin, E. (2010). Introduction to Machine Learning. Cambridge, Massachusetts, USA: MIT Press.

Altman, D. (1991). Practical Statistics for Medical Research. London, UK: Chapman and Hall.

Androutsopoulos, I. and Malakasiotis, P. (2010). A survey of paraphrasing and textual entailment methods. Journal of Artificial Intelligence Research, 38(1):135-187.

Aronoff, M. and Rees-Miller, J. (2003). The Handbook of Linguistics. Oxford, UK: Blackwell.

Attia, M. (2012). Ambiguity in Arabic Computational Morphology and Syntax: A Study within the Lexical Functional Grammar Framework. Saarbrücken, Germany: LAP Lambert Academic Publishing.

Badawi, E., Carter, M., and Gully, A. (2004). Modern Written Arabic: A Comprehensive Grammar. London, UK: Routledge.

Balahur, A., Lloret, E., Ferrández, O., Montoyo, A., Palomar, M., and Muñoz, R. (2008). The DLSIUAES team's participation in the TAC 2008 tracks. In Proceedings of the 1st Text Analysis Conference (TAC 2008), Gaithersburg, Maryland, USA. National Institute of Standards and Technology.

Baptista, M. (1995). On the nature of pro-drop in capeverdean creole. Technical report, Harvard Working Papers in Linguistics, 5: 3-17.

Bar-Haim, R., Berant, J., Dagan, I., Greental, I., Mirkin, S., Shnarch, E., and Szpektor, I. (2008). Efficient semantic deduction and approximate matching over compact parse forests. In Proceedings of the 1st Text Analysis Conference (TAC 2008), Gaithersburg, Maryland, USA. National Institute of Standards and Technology.

Bar-Haim, R., Dagan, I., Greental, I., and Shnarch, E. (2007). Semantic inference at the lexical-syntactic level. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07), pp. 871-876, Vancouver, British Columbia, Canada. AAAI Press.

Barzilay, R. and Lee, L. (2003). Learning to paraphrase: an unsupervised approach using multiple-sequence alignment. In Proceedings of the Human Language Technology: Conference of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL 2003), pp. 16-23, Edmonton, Canada. Association for Computational Linguistics, doi:10.3115/1073445.1073448.

Basili, R., De Cao, D., Marocco, P., and Pennacchiotti, M. (2007). Learning selectional preferences for entailment or paraphrasing rules. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2007), pp. 1-6, Borovets, Bulgaria. RANLP 2007 Organising Committee.

Bayer, S., Burger, J., Ferro, L., Henderson, J., and Yeh, A. (2005). MITRE's submissions to the EU PASCAL RTE Challenge. In Proceedings of the1st PASCAL Recognising Textual Entailment Challenge, pp. 41-44, Southampton, UK.

Bernard, M., Boyer, L., Habrard, A., and Sebban, M. (2008). Learning probabilistic models of tree edit distance. Pattern Recognition, 41(8):2611-2629, doi:10.1016/j.patcog.2008.01.011.

Bhatt, R. and Xia, F. (2012). Challenges in converting between treebanks: a case study from the HUTB. In Proceedings of the META-RESEARCH Workshop on Advanced Treebanking at the 8th International Conference on Language Resources and Evaluation (LREC 2012), pp. 53-60, Istanbul, Turkey.

Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical Computer Science, 337(1-3):217-239, doi:10.1016/j.tcs.2004.12.030.

Black, W., Elkateb, S., Rodriguez, H., Alkhalifa, M., Vossen, P., Pease, A., and Fellbaum, C. (2006). Introducing the Arabic WordNet project. In Proceedings of the 3rd International WordNet Conference (GWC-06), pp. 295-299, Jeju Island, Korea.

Blackburn, P., Bos, J., Kohlhase, M., and de Nivelle, H. (2001). Inference and computational semantics. In Bunt, H. and Muskens, R.and Thijsse, E. (Eds.), Computing Meaning, volume 77 of Studies in Linguistics and Philosophy, pp. 11-28. Springer Netherlands, doi:10.1007/978-94-010-0572-2_2.

Bloomer, A., Griffiths, P., and Merrison, A. (2005). Introducing Language in Use: A Coursebook. New York, USA: Routledge.

Bos, J. and Markert, K. (2006a). Recognising textual entailment with robust logical inference. In Quiñonero Candela, J., Dagan, I., Magnini, B., and d'Alché Buc, F. (Eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, volume 3944 of Lecture Notes in Computer Science, pp. 404-426. Springer Berlin-Heidelberg, doi:10.1007/11736790_23.

Bos, J. and Markert, K. (2006b). When logical inference helps determining textual entailment (and when it doesn't). In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 98-103, Venice, Italy.

Bos, J., Zanzotto, F., and Pennacchiotti, M. (2009). Textual entailment at EVALITA 2009. In Proceedings of the 11th Conference of the Italian Association for Artificial Intelligence, pp. 1-7, Reggio Emilia, Italy.

Brill, E. (1995). Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging. Computational Linguistics, 21(4):543-565.

Brill, E. and Wu, J. (1998). Classifier combination for improved lexical disambiguation. In Proceedings of the Conference of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics (COLING-ACL '98), pp. 191-195, Montréal, Quebec, Canada. Association for Computational Linguistics.

Bublitz, W. and Norrick, N. (2011). Foundations of Pragmatics. Berlin, Germany: Walter de Gruyter.

Buckwalter, T. (2004). Buckwalter Arabic morphological analyzer version 2.0. Linguistic Data Consortium, LDC Catalog No.: LDC2004L02.

Burchardt, A. (2008). Modeling Textual Entailment with Role-Semantic Information. PhD thesis, Department of Computational Linguistics, Saarland University, Saarbrücken, Germany.

Burchardt, A. and Frank, A. (2006). Approaching textual entailment with LFG and FrameNet frames. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 92-97, Venice, Italy.

Burchardt, A., Pennacchiotti, M., Thater, S., and Pinkal, M. (2009). Assessing the impact of frame semantics on textual entailment. Natural Language Engineering, 15(4):527-550, doi:10.1017/S1351324909990131.

Burchardt, A., Reiter, N., Thater, S., and Frank, A. (2007). A semantic approach to textual entailment: system evaluation and task analysis. In Proceedings of the ACLPASCAL Workshop on Textual Entailment and Paraphrasing, pp. 10-15, Prague, Czech Republic. Association for Computational Linguistics.

Burger, J. and Ferro, L. (2005). Generating an entailment corpus from news headlines. In Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, pp. 49-54, Ann Arbor, Michigan, USA. Association for Computational Linguistics.

Buscaldi, D., Tournier, R., Aussenac-Gilles, N., and Mothe, J. (2012). IRIT: textual similarity combining conceptual similarity with an n -gram comparison method. In Proceedings of the 1st Joint Conference on Lexical and Computational Semantics (*SEM 2012), pp. 552-556, Montréal, Canada. Association for Computational Linguistics.

Cabrio, E. and Magnini, B. (2011). Defining specialized entailment engines using natural logic relations. In Vetulani, Z. (Ed.), Human Language Technology. Challenges for Computer Science and Linguistics, volume 6562 of Lecture Notes in Computer Science, pp. 268-279. Springer Berlin-Heidelberg, doi:10.1007/978-3-642-200953_25.

Cabrio, E., Magnini, B., and Ivanova, A. (2012). Extracting context-rich entailment rules from Wikipedia revision history. In Proceedings of the 3rd Workshop on the People's Web Meets NLP, Association for Computational Linguistics (ACL 2012), pp. 34-43, Jeju, Republic of Korea. Association for Computational Linguistics.

Callison-Burch, C. (2008). Syntactic constraints on paraphrases extracted from parallel corpora. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing (EMNLP 2008), pp. 196-205, Honolulu, Hawaii. Association for Computational Linguistics.

Callison-Burch, C., Osborne, M., and Koehn, P. (2006). Re-evaluating the role of BLEU in machine translation research. In Proceedings of 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2006), pp. 249-256, Trento, Italy. Association for Computational Linguistics.

Carnap, R. (1952). Meaning postulates. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 3(5):65-73.

Celikyilmaz, A., Thint, M., and Huang, Z. (2009). A graph-based semi-supervised learning for question-answering. In Proceedings of the Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics and 4th International Joint Conference on Natural Language Processing of the Asian Federation of

Natural Language Processing (ACL-IJCNLP 2009), volume 1, pp. 719-727, Suntec, Singapore. Association for Computational Linguistics and Asian Federation of Natural Language Processing.

Chambers, N., Cer, D., Grenager, T., Hall, D., Kiddon, C., MacCartney, B., de Marneffe, M., Ramage, D., Yeh, E., and Manning, C. (2007). Learning alignments and leveraging natural logic. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 165-170, Prague, Czech Republic. Association for Computational Linguistics.

Chang, C. and Lin, C. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, doi:10.1145/1961189.1961199.

Chierchia, G. and McConnell-Ginet, S. (2000). Meaning and Grammar: An Introduction to Semantics. Cambridge, Massachusetts, USA: MIT Press.

Clinchant, S., Goutte, C., and Gaussier, E. (2006). Lexical entailment for information retrieval. In Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T., and Yavlinsky, A. (Eds.), Advances in Information Retrieval, volume 3936 of Lecture Notes in Computer Science, pp. 217-228. Springer Berlin-Heidelberg, doi:10.1007/11735106_20.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1):37-46.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics (ACL'97), pp. 16-23, Madrid, Spain. Association for Computational Linguistics.

Collins, M. (2003). Head-driven statistical models for natural language parsing. Computational Linguistics, 29(4):589-637, doi:10.1162/089120103322753356.

Corley, C. and Mihalcea, R. (2005). Measuring the semantic similarity of texts. In Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, pp. 13-18, Ann Arbor, Michigan, USA. Association for Computational Linguistics.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2009). Introduction to Algorithms. Cambridge, Massachusetts, USA: MIT Press.

Cruse, A. (2011). Meaning in Language: An Introduction to Semantics and Pragmatics. Oxford, UK: Oxford University Press.

Dagan, I., Dolan, B., Magnini, B., and Roth, D. (2009). Recognizing textual entailment: rational, evaluation and approaches. Natural Language Engineering, 15(04):i-xvii, doi:10.1017/S1351324909990209.

Dagan, I. and Glickman, O. (2004). Probabilistic textual entailment: generic applied modeling of language variability. In Proceedings of the PASCAL Workshop on Learning Methods for Text Understanding and Mining, pp. 26-29, Grenoble, France.

Dagan, I., Glickman, O., and Magnini, B. (2006). The PASCAL recognising textual entailment challenge. In Quiñonero-Candela, J., Dagan, I., Magnini, B., and d'Alché Buc, F. (Eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, volume 3944 of Lecture Notes in Computer Science, pp. 177-190. Springer Berlin-Heidelberg, doi:10.1007/11736790_9.

Daimi, K. (2001). Identifying syntactic ambiguities in single-parse Arabic sentence. Computers and the Humanities, 35(3):333-349, doi:10.1023/A:1017941320947.

Dasgupta, S., Papadimitriou, C., and Vazirani, U. (2006). Algorithms. New York, USA: McGraw-Hill.
de Marneffe, M., MacCartney, B., Grenager, T., Cer, D., Rafferty, A., and Manning, C. (2006). Learning to distinguish valid textual entailments. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 74-79, Venice, Italy.
de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D., and Sammons, M. (2005). An inference model for semantic entailment in natural language. In Proceedings of 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, pp. 1043-1049, Pittsburgh, Pennsylvania, USA. AAAI Press/MIT Press.

Delmonte, R., Bristot, A., Boniforti, M., and Tonelli, S. (2007). Entailment and anaphora resolution in RTE-3. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 48-53, Prague, Czech Republic. Association for Computational Linguistics.

Demaine, E., Mozes, S., Rossman, B., and Weimann, O. (2009). An optimal decomposition algorithm for tree edit distance. ACM Transactions on Algorithms (TALG), 6(1):2:1-2:19, doi:10.1145/1644015.1644017.

Diab, M. (2007). Improved Arabic base phrase chunking with a new enriched POS tag set. In Proceedings of the 2007 Workshop on Computational Approaches to Semitic Languages: Common Issues and Resources, pp. 89-96, Prague, Czech Republic. Association for Computational Linguistics.

Diab, M. (2009). Second generation tools (AMIRA 2.0): fast and robust tokenization, POS tagging, and base phrase chunking. In Proceedings of the 2nd International Conference on Arabic Language Resources and Tools, pp. 285-288, Cairo, Eygpt. The MEDAR Consortium.

Diab, M., Hacioglu, K., and Jurafsky, D. (2004). Automatic tagging of Arabic text: from raw text to base phrase chunks. In Proceedings of Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL 2004), pp. 149-152, Boston, Massachusetts, USA. Association for Computational Linguistics.

Dinu, G. and Wang, R. (2009). Inference rules and their application to recognizing textual entailment. In Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2009), pp. 211-219, Athens, Greece. Association for Computational Linguistics.

Dukes, K., Atwell, E., and Habash, N. (2013). Supervised collaboration for syntactic annotation of quranic Arabic. Language Resources and Evaluation, 47(1):33-62, doi:10.1007/s10579-011-9167-7.

Dulucq, S. and Touzet, H. (2005). Decomposition algorithms for the tree edit distance problem. Journal of Discrete Algorithms, 3(2-4):448-471, doi:10.1016/j.jda.2004.08.018.

El Hadj, Y., Al-Sughayeir, I., and Al-Ansari, A. (2009). Arabic part-of-speech tagging using the sentence structure. In Proceedings of the 2nd International Conference on Arabic Language Resources and Tools, pp. 241-245, Cairo, Egypt. The MEDAR Consortium.

Erk, K. and Padó, S. (2009). Paraphrase assessment in structured vector space: exploring parameters and datasets. In Proceedings of the Workshop on Geometrical Models of Natural Language Semantics (GEMS'09), pp. 57-65, Athens, Greece. Association for Computational Linguistics.

Fan, R., Chang, K., Hsieh, C., Wang, X., and Lin, C. (2008). LIBLINEAR: a library for large linear classification. The Journal of Machine Learning Research, 9:18711874.

Faruqui, M. and Padó, S. (2011). Acquiring entailment pairs across languages and domains: a data analysis. In Proceedings of the 9th International Conference on Computational Semantics (IWCS'11), pp. 95-104, Oxford, UK. Association for Computational Linguistics.

Ferrández, O., Micol, D., Muéoz, R., and Palomar, M. (2007). DLSITE-1: lexical analysis for solving textual entailment recognition. In Kedad, Z., Lammari, N., Métais, E., Meziane, F., and Rezgui, Y. (Eds.), Natural Language Processing and Information Systems, volume 4592 of Lecture Notes in Computer Science, pp. 284294. Springer Berlin-Heidelberg, doi:10.1007/978-3-540-73351-5_25.

Finch, A., Hwang, Y., and Sumita, E. (2005). Using machine translation evaluation techniques to determine sentence-level semantic equivalence. In Proceedings of the 3rd International Workshop on Paraphrasing (IWP 2005), pp. 17-24, Jeju Island, Korea. Asian Federation of Natural Language Processing.

Flach, P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge, UK: Cambridge University Press.

Fleiss, J. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5):378-382.

Gaonac, M., Gelbukh, A., and Bandyopadhyay, S. (2010). Recognizing textual entailment using a machine learning approach. In Sidorov, G., Aguirré, A., and García, C. (Eds.), Advances in Soft Computing, volume 6438 of Lecture Notes in Computer

Science, pp. 177-185. Springer Berlin-Heidelberg, doi:10.1007/978-3-642-167737_15.

Garrette, D., Erk, K., and Mooney, R. (2011). Integrating logical representations with probabilistic information using Markov logic. In Proceedings of the 9th International Conference on Computational Semantics (IWCS'11), pp. 105-114, Oxford, UK. Association for Computational Linguistics.

Gazdar, G. (1980). A cross-categorial semantics for coordination. Linguistics \& Philosophy, 3:407-409.

Gazdar, G. (1985). Generalized Phrase Structure Grammar. Cambridge, Massachusetts, USA: Harvard University Press.

Giménez, J. and Màrquez, L. (2004). SVMTool: a general POS tagger generator based on support vector machines. In Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC 2004), pp. 43-46, Lisbon, Portugal.

Glickman, O., Dagan, I., and Koppel, M. (2005). Web based probabilistic textual entailment. In Proceedings of the 1st PASCAL Recognising Textual Entailment Challenge, pp. 33-36, Southampton, UK.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Massachusetts, USA: Addison-Wesley.

Gwet, K. (2012). Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement Among Multiple Raters. Gaithersburg, USA: Advanced Analytics Press, LLC.

Habash, N. (2010). Introduction to Arabic Natural Language Processing. Synthesis Lectures on Human Language Technologies. USA: Morgan \& Claypool Publishers.

Habash, N., Faraj, R., and Roth, R. (2009a). Syntactic annotation in the Columbia Arabic treebank. In Proceedings of the 2nd International Conference on Arabic Language Resources and Tools, pp. 125-132, Cairo, Egypt. The MEDAR Consortium.

Habash, N., Rambow, O., and Roth, R. (2009b). MADA+TOKAN: a toolkit for Arabic tokenization, diacritization, morphological disambiguation, POS tagging, stemming and lemmatization. In Proceedings of the 2nd International Conference on Arabic

Language Resources and Tools, pp. 102-109, Cairo, Eygpt. The MEDAR Consortium.

Habash, N. and Roth, R. (2009). CATiB: the Columbia Arabic treebank. In Proceedings of the Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (ACL-IJCNLP 2009)-Short Papers, pp. 221-224, Suntec, Singapore. Association for Computational Linguistics and Asian Federation of Natural Language Processing.

Habash, N., Soudi, A., and Buckwalter, T. (2007). On Arabic transliteration. Arabic Computational Morphology, pp. 15-22.

Habrard, A., Iñesta, J., Rizo, D., and Sebban, M. (2008). Melody recognition with learned edit distances. In Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J., Georgiopoulos, M., Anagnostopoulos, G., and Loog, M. (Eds.), Structural, Syntactic, and Statistical Pattern Recognition, volume 5342 of Lecture Notes in Computer Science, pp. 86-96. Springer Berlin-Heidelberg, doi:10.1007/978-3-540-89689-0_13.

Haghighi, A., Ng, A., and Manning, C. (2005). Robust textual inference via graph matching. In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT-EMNLP 2005), pp. 387-394, Vancouver, BC, Canada. Association for Computational Linguistics, doi:10.3115/1220575.1220624.

Hall, J. (2008). Transition-Based Natural Language Parsing with Dependency and Constituency Representations. PhD thesis, Acta Wexionensia, Computer Science, Växjö University, Sweden.

Hall, J. and Nivre, J. (2008a). A dependency-driven parser for German dependency and constituency representations. In Proceedings of the ACL Workshop on Parsing German (PaGe08), pp. 47-54, Columbus, Ohio, USA. Association for Computational Linguistics.

Hall, J. and Nivre, J. (2008b). Parsing discontinuous phrase structure with grammatical functions. In Nordström, B. and Ranta, A. (Eds.), Advances in Natural Language Processing, volume 5221 of Lecture Notes in Computer Science, pp. 169180. Springer Berlin-Heidelberg, doi:10.1007/978-3-540-85287-2_17.

Hall, J., Nivre, J., and Nilsson, J. (2006). Discriminative classifiers for deterministic dependency parsing. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics (COLING-ACL 2006)-Main Conference Poster Sessions, pp. 316-323, Sydney, Australia. Association for Computational Linguistics.

Harabagiu, S. and Hickl, A. (2006). Methods for using textual entailment in opendomain question answering. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics (COLING-ACL 2006), pp. 905-912, Sydney, Australia. Association for Computational Linguistics, doi:10.3115/1220175.1220289.

Harmeling, S. (2009). Inferring textual entailment with a probabilistically sound calculus. Natural Language Engineering, 15(4):459-477, doi:10.1017/S1351324909990118.

Heilman, M. and Smith, N. (2010). Tree edit models for recognizing textual entailments, paraphrases, and answers to questions. In Proceedings of the Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL 2010), pp. 1011-1019, Los Angeles, California, USA. Association for Computational Linguistics.

Henderson, J. and Brill, E. (1999). Exploiting diversity in natural language processing: combining parsers. In Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC-99), pp. 187-194, Maryland, USA. Association for Computational Linguistics.

Herrera, J., Peñas, A., Rodrigo, A., and Verdejo, F. (2006). UNED at PASCAL RTE-2 challenge. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 38-43, Venice, Italy.

Herrera, J., Peñas, A., and Verdejo, F. (2005). Textual entailment recognition based on dependency analysis and WordNet. In Proceedings of the 1st PASCAL Recognising Textual Entailment Challenge, pp. 21-24, Southampton, UK.

Hickl, A. (2008). Using discourse commitments to recognize textual entailment. In Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008), pp. 337-344, Manchester, UK.

Hickl, A., Williams, J., Bensley, J., Roberts, K., Rink, B., and Shi, Y. (2006). Recognizing textual entailment with LCC's GROUNDHOG system. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 80-85, Venice, Italy.

Hobbs, J. (1978). Resolving pronoun references. Lingua, 44(4):311 - 338, doi:10.1016/0024-3841(78)90006-2.

Hobbs, J. (2005). Abduction in natural language understading. In Horn, L. and Ward, G. (Eds.), The Handbook of Pragmatics, Blackwell Handbooks in Linguistics, pp. 724-740. USA: Blackwell Publishing.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Cambridge, Massachusetts, USA: The University of Michigan Press.

Hudson, G. (2000). Essential Introductory Linguistics. Oxford, UK: Blackwell Publishers Ltd.

Hudson, R. (1984). Word Grammar. Oxford, UK: Basil Blackwell.
Hutchins, W. and Somers, H. (1992). An Introduction to Machine Translation. London, UK: Academic Press.

Iftene, A. (2009). Textual Entailment. PhD thesis, Faculty of Computer Science, Alexandru Ioan Cuza University of Iaşi, Romania.

Iftene, A. and Balahur-Dobrescu, A. (2007). Hypothesis transformation and semantic variability rules used in recognizing textual entailment. In Proceedings of the ACLPASCAL Workshop on Textual Entailment and Paraphrasing, pp. 125-130, Prague, Czech Republic. Association for Computational Linguistics.

Inkpen, D., Kipp, D., and Nastase, V. (2006). Machine learning experiments for textual entailment. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 10-15, Venice, Italy.

Jago, M. (2007). Formal Logic. Philosophy Insights. Tirril, UK: Humanities-Ebooks.
Jiang, J. and Conrath, D. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings of the 10th International Conference on Research in Computational Linguistics (ROCLING X), pp. 8-22, Taiwan, China.

Jijkoun, V. and de Rijke, M. (2005). Recognizing textual entailment using lexical similarity. In Proceedings of the 1st PASCAL Recognising Textual Entailment Challenge, pp. 73-76, Southampton, UK.

Jurafsky, D. and Martin, J. (2009). Speech and Language Processing : An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. New Jersey, USA: Prentice Hall.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report, Department of Computer Engineering, Faculty of Engineering, Erciyes University, Turkey.

Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214(1):108-132, doi:10.1016/j.amc.2009.03.090.

Karaboga, D., Gorkemli, B., Ozturk, C., and Karaboga, N. (2012). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, pp. 1-37, doi:10.1007/s10462-012-9328-0.

Katrenko, S. and Adriaans, P. (2006). Using maximal embedded syntactic subtrees for textual entailment recognition. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 33-37, Venice, Italy.

Kilpeläinen, P. (1992). Tree matching problems with applications to structured text databases. Technical Report A-1992-6, Department of Computer Science, University of Helsinki, Helsinki, Finland.

Klein, P. (1998). Computing the edit-distance between unrooted ordered trees. In Proceedings of the 6th Annual European Symposium on Algorithms (ESA '98), pp. 91-102, Venice, Italy. Springer-Verlag.

Klein, P., Tirthapura, S., Sharvit, D., and Kimia, B. (2000). A tree-edit-distance algorithm for comparing simple, closed shapes. In Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 696-704, San Francisco, California, USA. Society for Industrial and Applied Mathematics.

Kotb, Y. (2006). Toward efficient peer-to-peer information retrieval based on textual entailment. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IATW '06), pp. 455-458, Hong Kong, China. IEEE Computer Society, doi:10.1109/WI-IATW.2006.132.

Kouylekov, M. (2006). Recognizing Textual Entailment with Tree Edit Distance: Application to Question Answering and Information Extraction. PhD thesis, DIT, University of Trento, Italy.

Kouylekov, M. and Magnini, B. (2005a). Recognizing textual entailment with tree edit distance algorithms. In Proceedings of the 1st PASCAL Recognising Textual Entailment Challenge, pp. 17-20, Southampton, UK.

Kouylekov, M. and Magnini, B. (2005b). Tree edit distance for textual entailment. In Nicolov, N., Bontcheva, K., Angelova, G., and Mitkov, R. (Eds.), Recent Advances in Natural Language Processing IV: Selected Papers from RANLP 2005, volume 292 of Current Issues in Linguistic Theory, pp. 168-176. John Benjamins Publishing Company, Amsterdam/Philadelphia.

Kouylekov, M. and Magnini, B. (2006). Tree edit distance for recognizing textual entailment: estimating the cost of insertion. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 68-73, Venice, Italy.

Kübler, S., McDonald, R., and Nivre, J. (2009). Dependency Parsing. Synthesis Lectures on Human Language Technologies. USA: Morgan \& Claypool Publishers.

Lacatusu, F., Hickl, A., Roberts, K., Shi, Y., Bensley, J., Rink, B., Wang, P., and Taylor, L. (2006). LCC's GISTexter at DUC 2006: multi-strategy multi-document summarization. In Proceedings of Document Understanding Conference (DUC 2006) at HLT-NAACL 2006, Brooklyn, New York, USA. National Institute of Standards and Technology.

Lager, T. (1999). $\mu$-TBL lite: a small, extendible transformation-based learner. In Proceedings of the 9th European Conference on Computational Linguistics (EACL99), pp. 279-280, Bergen, Norway. Association for Computational Linguistics.

Lakoff, G. (1970). Linguistics and natural logic. Synthese, 22(1):151-271.

Landauer, T. and Dumais, S. (1997). A solution to Plato's problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2):211-240.

Landis, J. and Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33:159-174.

Lappin, S. and Leass, H. (1994). An algorithm for pronominal anaphora resolution. Computational Linguistics, 20(4):535-561.

Lenat, D. and Guha, R. (1990). Building Large Scale Knowledge Based Systems. Reading, Massachusetts, USA: Addison Wesley.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics-Doklady, 10(8):707-710.

Lin, D. (1998a). Dependency-based evaluation of MINIPAR. In Proceedings of the Workshop on the Evaluation of Parsing Systems at the 1st International Conference on Language Resources and Evaluation (LREC '98), pp. 317-330, Granada, Spain.

Lin, D. (1998b). An information-theoretic definition of similarity. In Proceedings of the 15th International Conference on Machine Learning (ICML '98), pp. 296-304. Madison, Wisconsin, USA.

Lin, D. and Pantel, P. (2001). DIRT-discovery of inference rules from text. In Proceedings of the 7th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 323-328, San Francisco, California, USA. doi:10.1145/502512.502559.

Lloret, E., Ferrández, O., Muñoz, R., and Palomar, M. (2008). A text summarization approach under the influence of textual entailment. In Proceedings of the 5th International Workshop on Natural Language Processing and Cognitive Science (NLPCS 2008), pp. 22-31, Barcelona, Spain. INSTICC Press.

Maamouri, M. and Bies, A. (2004). Developing an Arabic treebank: methods, guidelines, procedures, and tools. In Proceedings of the Workshop on Computational Approaches to Arabic Script-based Languages (Semitic '04), pp. 2-9, Geneva, Switzerland. Association for Computational Linguistics.

Maamouri, M., Graff, D., Bouziri, B., Krouna, S., Bies, A., and Kulick, S. (2010). LDC standard Arabic morphological analyzer (SAMA) version 3.1. Linguistic Data Consortium, LDC Catalog No.: LDC2010L01.

MacCartney, B. (2009). Natural Language Inference. PhD thesis, Department of Computer Science, Stanford University, USA.

MacCartney, B., Grenager, T., de Marneffe, M., Cer, D., and Manning, C. (2006). Learning to recognize features of valid textual entailments. In Proceedings of the Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL 2006), pp. 41-48, New York, USA. Association for Computational Linguistics, doi:10.3115/1220835.1220841.

MacCartney, B. and Manning, C. (2008). Modeling semantic containment and exclusion in natural language inference. In Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008), pp. 521-528, Manchster, UK.

MacCartney, B. and Manning, C. (2009). An extended model of natural logic. In Proceedings of the 8th International Conference on Computational Semantics (IWCS8), pp. 140-156, Tilburg, The Netherlands. Association for Computational Linguistics.

Malakasiotis, P. and Androutsopoulos, I. (2007). Learning textual entailment using SVMs and string similarity measures. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 42-47, Prague, Czech Republic. Association for Computational Linguistics.

Marsi, E., Krahmer, E., Bosma, W., and Theune, M. (2006). Normalized alignment of dependency trees for detecting textual entailment. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 56-61, Venice, Italy.

Marton, Y., Habash, N., and Rambow, O. (2010). Improving Arabic dependency parsing with lexical and inflectional morphological features. In Proceedings of the NAACL HLT 2010 1st Workshop on Statistical Parsing of Morphologically-Rich Languages, pp. 13-21, Los Angeles, California, USA. Association for Computational Linguistics.

Marton, Y., Habash, N., and Rambow, O. (2013). Dependency parsing of modern standard Arabic with lexical and inflectional features. Computational Linguistics, 39(1):161-194.

Marzelou, E., Zourari, M., Giouli, V., and Piperidis, S. (2008). Building a Greek corpus for textual entailment. In Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC 2008), pp. 1680-1686, Marrakech, Morocco. European Language Resources Association.

McDonald, R. and Nivre, J. (2007). Characterizing the errors of data-driven dependency parsing models. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), pp. 122-131, Prague, Czech Republic. Association for Computational Linguistics.

McDonald, R. and Pereira, F. (2006). Online learning of approximate dependency parsing algorithms. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2006), pp. 81-88, Trento, Italy. Association for Computational Linguistics.

McDonald, R. and Satta, G. (2007). On the complexity of non-projective data-driven dependency parsing. In Proceedings of the 10th International Conference on Parsing Technologies (IWPT 2007), pp. 121-132, Prague, Czech Republic. Association for Computational Linguistics.

Mehdad, Y. (2009). Automatic cost estimation for tree edit distance using particle swarm optimization. In Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the the Asian Federation of Natural Language Processing (ACL-IJCNLP 2009)-Short Papers, pp. 289-292, Suntec, Singapore. Association for Computational Linguistics.

Mehdad, Y. and Magnini, B. (2009). Optimizing textual entailment recognition using particle swarm optimization. In Proceedings of the 2009 Workshop on Applied Textual Inference (TextInfer 2009), pp. 36-43, Suntec, Singapore. Association for Computational Linguistics.

Mehdad, Y., Negri, M., Cabrio, E., Kouylekov, M., and Magnini, B. (2009). Using lexical resources in a distance-based approach to RTE. In Proceedings of the 2nd Text Analysis Conference (TAC 2009), Gaithersburg, Maryland, USA. National Institute of Standards and Technology.

Meyers, A., Yangarber, R., and Grishman, R. (1996). Alignment of shared forests for bilingual corpora. In Proceedings of the 16th International Conference on Computational Linguistics (COLING 1996), volume 1, pp. 460-465, Copenhagen, Denmark. doi:10.3115/992628.992708.

Mitchell, J. and Lapata, M. (2008). Vector-based models of semantic composition. In Proceedings of the Conference of 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technology (ACL-08: HLT), pp. 236244, Columbus, Ohio, USA. Association for Computational Linguistics.

Mitchell, T. (1997). Machine Learning. New York, USA: McGraw-Hill.
Mitkov, R. (2002). Anaphora Resolution. Studies in Language and Linguistics. London, UK: Longman.

Moldovan, D. and Rus, V. (2001). Logic form transformation of WordNet and its applicability to question answering. In Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL 2001), pp. 402-409, Toulouse, France. Association for Computational Linguistics, doi:10.3115/1073012.1073064.

Mollá, D., Schwitter, R., Rinaldi, F., Dowdall, J., and Hess, M. (2003). Anaphora resolution in ExtrAns. In Proceedings of the 2003 International Symposium on Reference Resolution and Its Applications to Question Answering and Summarization, pp. 23-25, Venice, Italy.

Nairn, R., Condoravdi, C., and Karttunen, L. (2006). Computing relative polarity for textual inference. In Proceedings of Inference in Computational Semantics Workshop (ICoS-5), pp. 67-76, Buxton, England.

Negnevitsky, M. (2011). Artificial Intelligence: A Guide to Intelligent Systems. Harlow, England: Pearson Education-Addison Wesley.

Negri, M. and Kouylekov, M. (2009). Question answering over structured data: an entailment-based approach to question analysis. In Proceedings of the International Conference of Recent Advances in Natural Language Processing (RANLP 2009), pp. 305-311, Borovets, Bulgaria. Association for Computational Linguistics.

Nelken, R. and Shieber, S. (2005). Arabic diacritization using weighted finite-state transducers. In Proceedings of the ACL Workshop on Computational Approaches to

Semitic Languages, pp. 79-86, Ann Arbor, Michigan, USA. Association for Computational Linguistics, doi:10.3115/1621787.1621802.

Neogi, S., Pakray, P., Bandyopadhyay, S., and Gelbukh, A. (2012). JU_CSE_NLP: language independent cross-lingual textual entailment system. In Proceedings of the 1st Joint Conference on Lexical and Computational Semantics (*SEM 2012), pp. 689-695, Montréal, Canada. Association for Computational Linguistics.

Newman, E., Stokes, N., Dunnion, J., and Carthy, J. (2006). Textual entailment recognition using a linguistically-motivated decision tree classifier. In Quiñonero Candela, J., Dagan, I., Magnini, B., and d'Alché Buc, F. (Eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, volume 3944 of Lecture Notes in Computer Science, pp. 372-384. Springer Berlin-Heidelberg, doi:10.1007/11736790_21.

Nielsen, R., Ward, W., and Martin, J. (2009). Recognizing entailment in intelligent tutoring systems. Natural Language Engineering, 15(4):479-501, doi:10.1017/S135132490999012X.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Proceedings of the 8th International Workshop on Parsing Technologies (IWPT 2003), pp. 149-160, Nancy, France. Association for Computational Linguistics.

Nivre, J. (2006). Inductive Dependency Parsing, volume 34 of Text, Speech and Language Technology. Springer.

Nivre, J. (2010). Dependency parsing. Language and Linguistics Compass, 4(3):138152, doi:10.1111/j.1749-818X.2010.00187.x.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi, E. (2007). MaltParser: a language-independent system for datadriven dependency parsing. Natural Language Engineering, 13(02):95-135, doi:10.1017/S1351324906004505.

Ou, S. and Zhu, Z. (2011). An entailment-based question answering system over semantic web data. In Xing, C., Crestani, F., and Rauber, A. (Eds.), Digital Libraries: For Cultural Heritage, Knowledge Dissemination, and Future Creation, volume 7008 of Lecture Notes in Computer Science, pp. 311-320. Springer BerlinHeidelberg, doi:10.1007/978-3-642-24826-9_39.

Padó, S., Galley, M., Jurafsky, D., and Manning, C. (2009a). Machine translation evaluation with textual entailment features. In Proceedings of the 4th Workshop on Statistical Machine Translation, pp. 37-41, Athens, Greece. Association for Computational Linguistics.

Padó, S., Galley, M., Jurafsky, D., and Manning, C. (2009b). Robust machine translation evaluation with entailment features. In Proceedings of the Joint conference of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (ACL-IJCNLP 2009), pp. 297-305, Suntec, Singapore. Association for Computational Linguistics.

Padó, S. and Lapata, M. (2007). Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161-199, doi:10.1162/coli.2007.33.2.161.

Pakray, P., Bandyopadhyay, S., and Gelbukh, A. (2010). Textual entailment and anaphora resolution. In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010), volume 6, pp. V6-334-V6-336, Chengdu, China. IEEE, doi:10.1109/ICACTE.2010.5579163.

Pakray, P., Neogi, S., Bandyopadhyay, S., and Gelbukh, A. (2011a). A textual entailment system using web based machine translation system. In Proceedings of the 9th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual (NTCIR-9), pp. 365-372, Tokyo, Japan. National Institute of Informatics.

Pakray, P., Neogi, S., Bhaskar, P., Poria, S., Bandyopadhyay, S., and Gelbukh, A. (2011b). A textual entailment system using anaphora resolution. In Proceedings of the 4th Text Analysis Conference (TAC 2011), Gaithersburg, Maryland, USA. National Institute of Standards and Technology.

Pantel, P., Bhagat, R., Coppola, B., Chklovski, T., and Hovy, E. (2007). ISP: learning inferential selectional preferences. In Proceedings of the Human Language Technology: Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL 2007), pp. 564-571, Rochester, New York, USA. Association for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2002). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL 2002), pp. 311318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics, doi:10.3115/1073083.1073135.

Parasuraman, D. (2012). Handbook of Particle Swarm Optimization: Concepts, Principles \& Applications. Nottingham, UK: Auris Reference Limited.

Pawlik, M. and Augsten, N. (2011). RTED: a robust algorithm for the tree edit distance. Proceedings of the VLDB Endowment, 5(4):334-345.

Pazienza, M., Pennacchiotti, M., and Zanzotto, F. (2005a). A linguistic inspection of textual entailment. In Bandini, S. and Manzoni, S. (Eds.), AI*IA 2005: Advances in Artificial Intelligence, volume 3673 of Lecture Notes in Computer Science, pp. 315-326. Springer Berlin-Heidelberg, doi:10.1007/11558590_32.

Pazienza, M., Pennacchiotti, M., and Zanzotto, F. (2005b). Textual entailment as syntactic graph distance: a rule based and a SVM based approach. In Proceedings of the 1st PASCAL Recognising Textual Entailment Challenge, pp. 11-13, Southampton, UK.

Pérez, D. and Alfonseca, E. (2005). Application of the BLEU algorithm for recognising textual entailments. In Proceedings of the 1st PASCAL Recognising Textual Entailment Challenge, pp. 9-12, Southampton, UK.

Pham, Q., Nguyen, L., and Shimazu, A. (2011). A machine learning based textual entailment recognition system of JAIST team for NTCIR9 RITE. In Proceedings of the 9th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual (NTCIR-9), pp. 302-309, Tokyo, Japan. National Institute of Informatics.

Pollard, C. and Sag, I. (1994). Head-Driven Phrase Structure Grammar. Chicago, USA: Chicago University Press.

Punyakanok, V., Roth, D., and Yih, W. (2004). Natural language inference via dependency tree mapping: an application to question answering. Computational Linguistics, 6:1-10.

Qiu, X., Cao, L., Liu, Z., and Huang, X. (2012). Recognizing inference in texts with Markov logic networks. 11(4):15:1-15:23, doi:10.1145/2382593.2382597.

Rama Sree, R. and Kusuma Kumari, P. (2007). Combining POS taggers for improved accuracy to create Telugu annotated texts for information retrieval. In Proceedings of the 3rd International Conferences on the Universal Digital Library (ICUDL 2007), Pittsburgh, PA, USA.

Ramsay, A. (1999). Parsing with discontinuous phrases. Natural Language Engineering, 5(3):271-300, doi:10.1017/S1351324900002242.

Ramsay, A. and Field, D. (2008). Everyday language is highly intensional. In Proceedings of the 2008 Conference on Semantics in Text Processing (STEP '08), pp. 193-206, Venice, Italy. Association for Computational Linguistics.

Ramsay, A. and Mansour, H. (2004). The parser from an Arabic text-to-speech system. In Traitement automatique du language naturel (TALN '04), pp. 315-324, Fès, Morroco.

Ramsay, A. and Sabtan, Y. (2009). Bootstrapping a lexicon-free tagger for Arabic. In Proceedings of the 9th Conference on Language Engineering (ESOLEC 2009), pp. 202-215, Cairo, Egypt.

Ratnaparkhi, A. (1997). A linear observed time statistical parser based on maximum entropy models. In Proceedings of the 2nd Conference on Empirical Methods in Natural Language Processing (EMNLP '97), pp. 1-10, Providence, Rhode Island, USA. Association for Computational Linguistics.

Ravichandran, D. and Hovy, E. (2002). Learning surface text patterns for a question answering system. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL 2002), pp. 41-47, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics, doi:10.3115/1073083.1073092.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning, 62:107-136, doi:10.1007/s10994-006-5833-1.

Riemer, N. (2010). Introducing Semantics. Cambridge, UK: Cambridge University Press.

Ryding, K. (2005). A Reference Grammar of Modern Standard Arabic. Cambridge, UK: Cambridge University Press.

Sacaleanu, B., Orasan, C., Spurk, C., Ou, S., Ferrandez, O., Kouylekov, M., and Negri, M. (2008). Entailment-based question answering for structured data. In Demonstration Papers of the 22nd International Conference on Computational Linguistics (COLING 2008), pp. 173-176, Manchester, UK.

Saeed, J. (2009). Semantics. Oxford, UK: Blackwell.
Sánchez, V. (1991). Studies on Natural Logic and Categorial Grammar. PhD thesis, University of Amsterdam, The Netherlands.

Schlaefer, N. (2007). A Semantic Approach to Question Answering. Saarbrücken, Germany: VDM Verlag Dr. Mueller e.K.

Schulz, E., Krahl, G., and Reuschel, W. (2000). Standard Arabic: An ElementaryIntermediate Course. Cambridge, UK: Cambridge University Press.

Sekine, S. (2005). Automatic paraphrase discovery based on context and keywords between NE pairs. In Proceedings of the 3rd International Workshop on Paraphrasing (IWP 2005), pp. 80-87, Jeju Island, Korea. Asian Federation of Natural Language Processing.

Selkow, S. (1977). The tree-to-tree editing problem. Information Processing Letters, 6(6):184-186, doi:10.1016/0020-0190(77)90064-3.

Seville, H. and Ramsay, A. (2001). Capturing sense in intensional contexts. In Proceedings of the 4th International Workshop on Computational Semantics, pp. 319334, Tilburg, The Netherlands.

Sharaf, A. and Atwell, E. (2012). QurSim: a corpus for evaluation of relatedness in short texts. In Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), pp. 2295-2302, Istanbul, Turkey. European Language Resources Association.

Shinyama, Y., Sekine, S., and Sudo, K. (2002). Automatic paraphrase acquisition from news articles. In Proceedings of the 2nd International Conference on Human Language Technology Research (HLT '02), pp. 313-318, San Diego, California, USA. Morgan Kaufmann Publishers Inc.

Siblini, R. and Kosseim, L. (2008). Using ontology alignment for the TAC RTE challenge. In Proceedings of the 1st Text Analysis Conference (TAC 2008), Gaithersburg, Maryland, USA. National Institute of Standards and Technology.

Sivanandam, S. and Deepa, S. (2008). Introduction to Genetic Algorithms. Berlin, Germany: Springer Verlag Berlin-Heidelberg.

Sjöbergh, J. (2003). Combining POS-taggers for improved accuracy on Swedish text. In Proceedings of the 14th Nordic Conference of Computational Linguistics (NODALIDA 2003), Reykjavik, Iceland.

Sleator, D. and Tarjan, R. (1983). A data structure for dynamic trees. Journal of Computer and System Sciences, 26(3):362-391, doi:10.1016/0022-0000(83)900065.

Smrž, O., Bielicky, V., Kouřilová, I., Kráčmar, J., Hajič, J., and Zemánek, P. (2008). Prague Arabic dependency treebank: a word on the million words. In Proceedings of the Workshop on Arabic and Local Languages (LREC 2008), pp. 16-23, Marrakech, Morocco. European Language Resources Association.

Śniatowski, T. and Piasecki, M. (2012). Combining Polish morphosyntactic taggers. In Bouvry, P., Kłopotek, M., Leprévost, F., Marciniak, M., Mykowiecka, A., and Rybiński, H. (Eds.), Security and Intelligent Information Systems, volume 7053 of Lecture Notes in Computer Science, pp. 359-369. Springer Berlin-Heidelberg, doi:10.1007/978-3-642-25261-7_28.

Søgaard, A. (2009). Ensemble-based POS tagging of Italian. In IAAI-EVALITA, Reggio Emilia, Italy.

Stern, A. and Dagan, I. (2011). A confidence model for syntactically-motivated entailment proofs. In Proceedings of the International Conference Recent Advances in Natural Language Processing (RANLP 2011), pp. 455-462, Hissar, Bulgaria. RANLP 2011 Organising Committee.

Stern, A., Stern, R., Dagan, I., and Felner, A. (2012). Efficient search for transformation-based inference. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012)-Long Papers, volume 1, pp. 283-291, Jeju Island, Korea. Association for Computer Linguistics.

Stolcke, A. (2002). SRILM-an extensible language modeling toolkit. In Proceedings of 7th International Conference on Spoken Language Processing (ICSLP 2002INTERSPEECH 2002), pp. 901-904, Denver, Colorado, USA. International Speech Communication Association.

Szpektor, I. and Dagan, I. (2008). Learning entailment rules for unary templates. In Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008), pp. 849-856, Manchester, UK.

Szpektor, I., Dagan, I., Bar-Haim, R., and Goldberger, J. (2008). Contextual preferences. In Proceedings of the Conference 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-08: HLT), pp. 683-691, Columbus, Ohio, USA. Association for Computational Linguistics.

Szpektor, I., Shnarch, E., and Dagan, I. (2007). Instance-based evaluation of entailment rule acquisition. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (ACL 2007), pp. 456-463, Prague, Czech Republic. Association for Computational Linguistics.

Szpektor, I., Tanev, H., Dagan, I., and Coppola, B. (2004). Scaling web-based acquisition of entailment relations. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (EMNLP 2004), pp. 41-48, Barcelona, Spain. Association for Computational Linguistics.

Tai, K. (1979). The tree-to-tree correction problem. Journal of the ACM, 26(3):422433, doi:10.1145/322139.322143.

Tatu, M., Iles, B., Slavick, J., Novischi, A., and Moldovan, D. (2006). COGEX at the second recognizing textual entailment challenge. In Proceedings of the 2nd PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 104-109, Venice, Italy.

Tatu, M. and Moldovan, D. (2005). A semantic approach to recognizing textual entailment. In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP 2005), pp. 371-378, Vancouver, Canada. Association for Computational Linguistics, doi:10.3115/1220575.1220622.

Tatu, M. and Moldovan, D. (2007). COGEX at RTE3. In Proceedings of the ACLPASCAL Workshop on Textual Entailment and Paraphrasing, pp. 22-27, Prague, Czech Republic. Association for Computational Linguistics.

Van Benthem, J. (1988). The semantics of variety in categorial grammar. Categorial Grammar, 25:37-55.

Van Benthem, J. (1995). Language in Action: Categories, Lambdas, and Dynamic Logic. Cambridge, Massachusetts, USA: MIT Press.

Van Eijck, J. (2007). Natural logic for natural language. In Cate, B. and Zeevat, H. (Eds.), Logic, Language, and Computation, volume 4363 of Lecture Notes in Computer Science, pp. 216-230. Springer Berlin-Heidelberg, doi:10.1007/978-3-540-75144-1_16.

Wagner, R. and Fischer, M. (1974). The string-to-string correction problem. Journal of the ACM, 21(1):168-173, doi:10.1145/321796.321811.

Wan, S., Dras, M., Dale, R., and Paris, C. (2006). Using dependency-based features to take the "para-farce" out of paraphrase. In Proceedings of the Australasian Language Technology Workshop (ALTW 2006), pp. 131-138, Sydney, Australia.

Wang, M. and Manning, C. (2010). Probabilistic tree-edit models with structured latent variables for textual entailment and question answering. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), volume 2, pp. 1164-1172, Beijing, China. Coling 2010 Organizing Committee.

Wang, R. and Neumann, G. (2008). Using recognizing textual entailment as a core engine for answer validation. In Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D., Peñas, A., Petras, V., and Santos, D. (Eds.), Advances in Multilingual and Multimodal Information Retrieval, volume 5152 of Lecture Notes in Computer Science, pp. 387-390. Springer Berlin-Heidelberg, doi:10.1007/978-3-540-857600_50.

Wang, R., Zhang, Y., and Neumann, G. (2009). A joint syntactic-semantic representation for recognizing textual relatedness. In Proceedings of the 2nd Text Analysis Conference (TAC 2009), pp. 1-7, Gaithersburg, Maryland, USA. National Institute of Standards and Technology.

Wotzlaw, A. and Coote, R. (2010). Recognizing textual entailment with deep-shallow semantic analysis and logical inference. In Proceedings of the 4th International Conference on Advances in Semantic Processing (SEMAPRO 2010), pp. 118-125, Florence, Italy. International Academy, Research, and Industry Association.

Wu, Y. (2013). Integrating statistical and lexical information for recognizing textual entailments in text. Knowledge-Based Systems, 40:27-35, doi:10.1016/j.knosys.2012.11.009.

Xia, F. and Palmer, M. (2001). Converting dependency structures to phrase structures. In Proceedings of the 1st International Conference on Human Language Technology Research (HLT 2001), pp. 1-5, San Diego, USA. Association for Computational Linguistics, doi:10.3115/1072133.1072147.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with support vector machines. In Proceedings of the 8th International Workshop on Parsing Technologies (IWPT 2003), pp. 195-206, Nancy, France.

Yang, X., Su, J., and Tan, C. (2008). A twin-candidate model for learning-based anaphora resolution. Computational Linguistics, 34(3):327-356, doi:10.1162/coli.2008.07-004-R2-06-57.

Zaenen, A., Karttunen, L., and Crouch, R. (2005). Local textual inference: can it be defined or circumscribed? In Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment (EMSEE 2005), pp. 31-36, Ann Arbor, Michigan, USA. Association for Computational Linguistics.

Zanzotto, F., Pennacchiotti, M., and Moschitti, A. (2009). A machine learning approach to textual entailment recognition. Natural Language Engineering, 15(04):551-582, doi:10.1017/S1351324909990143.

Zeman, D. and Žabokrtskỳ, Z. (2005). Improving parsing accuracy by combining diverse dependency parsers. In Proceedings of the 9th International Workshop on Parsing Technology (IWPT 2005), pp. 171-178, Vancouver, British Columbia, Canada. Association for Computational Linguistics.

Zhang, K. and Shasha, D. (1989). Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal of Computing, 18(6):1245-1262, doi:10.1137/0218082.

Zhang, Y. and Patrick, J. (2005). Paraphrase identification by text canonicalization. In Proceedings of the Australasian Language Technology Workshop (ALTW 2005), volume 3, pp. 160-166, Sydney, Australia.

Zhao, S., Wang, H., Liu, T., and Li, S. (2009). Extracting paraphrase patterns from bilingual parallel corpora. Natural Language Engineering, 15(4):503, doi:10.1017/S1351324909990155.

Zwarts, F. (1998). Three types of polarity. Studies in Linguistics and Philosophy, 69:177-238.

## Appendix A

## Logical form for long sentence

This appendix contains the logical form for English sentence 'I know she thinks that the man who you were talking to wants to marry her', as in (1.14), obtained by the PARASITE system (Ramsay, 1999).

```
utt(claim,
 exists(_A,
 (exists(_B,
 (exists(_C,
 (event (_A, 'kn(o/e) w')
 &(theta(_A,
 (event (_B, think)
 & (theta(_B,
 (want (_C)
 &(theta(_C, agent, ^(agent))
 &(thetal_C,
 object,
 lambda(_D,
 exists(_E,
 (have (_E)
 &(theta(_E, agent, _D)
 &theta(_E, object, ^(object))))))
 & (theta(_C,
 event,
 lambda(_F,
 lambda(_G,
 lambda(_H,
 ((_H
 :exists(_I,
```

```
 (event(_I,
 marry)
 &(theta(_I,
 object,
 (ref(lambda (_J,
 centred(_J,
 lambda(_K,
 f(_K))))
 ! 15))
 &theta(_I,
 agent,
 _L))!))
 : _F))|)(
 &theta(_C,
 agent,
 (ref(lambda (_M,
 (sort('m(a/e)n', _M, _N, _O)
 & exists(_P,
 (event(_P, talk)
 & (theta(_P,
 agent,
 (ref (lambda (_Q,
 hearer(_Q)))
 ! 8))
 & (to(_P, _M)
 & aspect(ref(lambda(_R,
 past (now,
 _R))),
 prog,
 _P()|)|)|)
 (5))|)|)|
 & theta(_B,
 agent,
 (ref(lambda(_S, centred(_S,lambda(_T,f(_T)))))
 ! 2)))!)
 & (theta(_A, agent, ref(lambda(_U, speaker(_U)))!0)
 & aspect(now, simple, _C)))))
 & aspect(now, simple, _B)))
& aspect(now, simple, _A))))
```


## Appendix B

## Possible interpretations for short sentence

This appendix contains an Arabic sentence with its dependency trees as parsed by PARASITE system.

```
20 interpretations of 'the student wrote a book', arising from:
-- ktb could be kataba or kattaba
 -- kataba could be intransitive or transitive
 -- kattaba could be transitive or ditransitive
-- either of them could be active or passive
-- in every case, the subject could be 0, or AldArs, or ktb
-- 'AlDars ktb' could be "the student's book"
+ there's one that means "the student's book is a book", which comes from having
 a zero copula.
```

The corresponding English sentence is unambiguous, whereas from a simple Arabic
sentence containing a verb and two nouns in canonical order we get 20 analyses.
| ?- in arabic. ktb AldArs kt.b.
/**** DEPENDENCY TREE (1) ***************
-
kattaba (make write)
kutubN (book) AldArisoa (student)
****/

```
/**** DEPENDENCY TREE (2) ****************
•
kataba (write)
kutubN (book) AldArisoa (student)
****/
/**** DEPENDENCY TREE (3) ****************
```

- 

kattaba (make write)
0 kutubF (book) AldArisoa (student)
****/
/**** DEPENDENCY TREE (4) ***************
-
kattaba (make write)
0 AldArisoa (student) kutubF (book)
****/
/**** DEPENDENCY TREE (5) ***************
.
kuttiba (make write)
kutubN (book) AldArisoa (student)
****/
/**** DEPENDENCY TREE (6) ***************
-
kuttiba (make write)
AldArisou (student) kutubF (book)
****/
/**** DEPENDENCY TREE (7)
.
kattaba (make write)

```
0 kutubF (book) AldArisoa (student)
```

0 kutubF (book) AldArisoa (student)
****/
/**** DEPENDENCY TREE (8)
.
kattaba (make write)
0 AldArisoa (student) kutubF (book)
****/
/**** DEPENDENCY TREE (9)
.
kattaba (make write)
0 kutuba
AldArisoi (student)
****/
/**** DEPENDENCY TREE (10)
.
kataba (write)
0 kutuba
AldArisoi (student)
****/
/**** DEPENDENCY TREE (11) ***************
.
kattaba (make write)
----------------------------------------
AldArisou (student) kutubF (book)
****/
/**** DEPENDENCY TREE (12)
.
kataba (write)

```
```

AldArisou (student) kutubF (book)

```
AldArisou (student) kutubF (book)
****/
****/
/**** DEPENDENCY TREE (13) ****************
/**** DEPENDENCY TREE (13) ****************
.
.

kataba (write)
kataba (write)
kutubu
kutubu

AldArisoi (student)
AldArisoi (student)
****/
****/
/**** DEPENDENCY TREE (14) ****************
/**** DEPENDENCY TREE (14) ****************
.
kuttiba (make write)
kutubu
AldArisoi (student)
****/
/**** DEPENDENCY TREE (15) *****************
•
kutiba (write)

kutubu
AldArisoi (student)
****/
/**** DEPENDENCY TREE (16) ****************
.
kuttiba (make write)
0 kutuba
 AldArisoi (student)
****/
```


$\qquad$

```
nomsent

AldArisoi (student)
****/
/**** DEPENDENCY TREE (18) ***************
.
kattaba (make write)

AldArisou (student) kutubF (book)
****/
/**** DEPENDENCY TREE (19
.
kataba (write)
AldArisou (student) kutubF (book)
****/
/**** DEPENDENCY TREE (20) ****************
.
```

```
kuttiba (make write)
```

kuttiba (make write)
AldArisou (student) kutubF (book)
AldArisou (student) kutubF (book)
****/

```
****/
```


## Appendix C

## CoNLL-X data file format

Data in the CoNLL file follows the following rules:

- Each sentence is separated by a blank line.
- A sentence consists of tokens, each token starting on a new line.
- A token is described by ten fields (see Table C.1). ${ }^{1}$ Fields are separated by a single tab character. Space/blank characters are not allowed within fields.
- The ID, FORM, CPOSTAG, POSTAG, HEAD and DEPREL fields are guaranteed to contain non-dummy (i.e. non-underscore) values for all languages.
- Sentences are UTF-8 encoded (Unicode).

For instance, Figure C. 1 shows the dependency tree (according to Stanford parser) for the sentence 'John eats happily.' while its corresponding CoNLL format is shown in Figure C. 2 .

[^41]\(\left.\left.$$
\begin{array}{lll}\hline \# & \text { Field name } & \text { Description } \\
\hline 1 & \text { ID } & \begin{array}{l}\text { Token counter, starting at 1 for each new sentence. } \\
2\end{array} \\
\text { FORM } & \text { Word form or punctuation symbol. }\end{array}
$$\right] \begin{array}{l}Lemma or stem (depending on particular data set) of word form, or an under- <br>

score if not available.\end{array}\right]\)| LEMMA |
| :--- |
| 5 | CPOSTAG | Coarse-grained POS tag, where tagset depends on the language. |
| :--- |
| 6 | FEATS $\quad$| Fine-grained POS tag, where the tagset depends on the language, or identical |
| :--- |
| to the coarse-grained part-of-speech tag if not available. |
| Unordered set of syntactic and/or morphological features (depending on the |
| particular language), separated by a vertical bar (I), or an underscore if not |
| available. |

Table C.1: CoNLL-X data file format.


Figure C.1: Dependency tree for the sentence 'John eats happily.'

| 1 | John | - | NNP | NNP | -2 | NSUBJ | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | eats | - | VBZ | VBZ | -0 | ROOT | - | - |
| 3 | happily | - | RB | RB | -2 | ADVMOD | - | - |
| 4 | . | - | PUNC | PUNC | -2 | PX | - | - |

Figure C.2: CoNLL format for the sentence 'John eats happily.'

## Appendix D

## Analysis of the precision and recall

In this appendix, we will try to answer the following question: why do we get high precision for string-based classifiers and high recall for syntactic-based ones?

In order to answer this question, suppose we have a population made up of Ys and Ns, where there are two sorts of Y: Ps, which can be identified on the basis of some feature P ( P might, for instance, be 'number of words in common'), and Qs, which cannot; and we have a classifier $\mathrm{C}_{P}$ which can recognise Ps but cannot tell the difference between Qs and Ns.

Now imagine that we have a population made up of $p$ Ps and $q$ Qs, and $r$ Ns, and assume that $p+q$ and $r$ are both 50 . We can apply our classifier using a strategy which says 'Trust the classifier when it says yes, and for some proportion $n$ of the remainder just make a 50:50 guess'. Varying values of $n$ roughly correspond to varying thresholds-if $n$ is 0 then we are applying a very strict threshold, because we are saying 'Only say yes if you are absolutely sure', whereas if $n$ is 1 then we are saying 'Say yes if you think that there is any possibility that the thing you are looking at is a Y '.

Under these conditions, $\mathrm{C}_{P}$ (which can recognise Ps but nothing else) will say yes $p+n \times 0.5 \times(q+r)$ times, and it will be right $p+n \times 0.5 \times q$ times, out of a total of $p+q$ possible times; and it will say no $(q+r)(1-n \times 0.5)$ times, and it will be right $r \times n \times 0.5$ times. So its precision will be $(p+n \times 0.5 \times q) /(p+n \times 0.5 \times(q+r))$, its recall will be $(p+n \times 0.5 \times q) /(p+q)$, and its accuracy will be $(p+n \times 0.5 \times(q-$ $r)) /(p+q+r)$.

How do precision, recall and accuracy behave as $n$ varies? If $p<25$, then the maximum value of F -score occurs when $n$ is 1 . If $p>25$ then the maximum value of F -score occurs when $n$ is 0 .

How does this apply to the data in Tables 7.1 and 7.2? Suppose that there is a set of

T-H pairs which one of the string-based algorithms, e.g. bag-of-words, can accurately mark as yes, but that this algorithm is completely unreliable outside this set. Then P would be the sentences that this algorithm could accurately mark as yes, Q would be the other sentences that were in fact yes but that it could not identify, and N are all the no pairs. If P is quite small, i.e. less than half the total number of yes examples, then the value of $n$ that gives the highest F-score overall is 1, as in Figure D.1.


Figure D.1: Precision, recall and F-score for low coverage classifier ( $\mathrm{P}=20$ ).

Suppose, instead, that we were using a classifier which covered quite a large part of the yes set accurately. In that case the value of $n$ that gives the highest F-score overall is 0 , as in Figure D.2.


Figure D.2: Precision, recall and F-score for high coverage classifier ( $\mathrm{P}=40$ ).

In both cases, the accuracy goes down as $n$ increases. For the case where the classifier finds fewer than half the yes cases, the maximum F-score occurs at the lowest accuracy. If we use a mixture of $0.6 \times \mathrm{F}$-score $+0.4 \times$ accuracy, the optimal value of $n$ is 0 so long as P covers at least a third of the positive examples, as shown in Figure D.3.


Figure D.3: Precision, recall and F-score for modest coverage classifier ( $\mathrm{P}=16$ ).

The situation is not, of course, quite as simple as that. In general, for any nonzero threshold any of the classifiers will produce some false positives and some false negatives, but the analysis above does provide some insight as to why the string-based classifiers, which can only reliably identify very simple cases, produce the best values for F-score and for the given mixture of F-score and accuracy by using a threshold which gives high recall and modest precision: these classifiers are only reliable with a threshold that selects fewer than a third of the positive examples: in that case it is worth trying to make decisions about the remaining cases (which will contain quite a high proportion of yeses). Even making entirely random guesses improves F-score and the mix of accuracy and F-score that we are using, and while bag-of-words is not reliable when there are more than a very few changes, it remains better than random. The syntactic-based classifier measures, on the other hand, get a reasonably large number of cases right, which means that they should avoid making guesses about examples where they are not confident, since the ones they have not picked will contain a much smaller proportion of yeses, so that picking them nearly randomly is a bad idea.

Furthermore, one of the essential factors in our work to improve the performance of each classifier is a threshold $\theta$. In order to show the effectiveness of the threshold on the performance of a classifier $f$ on our binary-decision dataset, let us consider $f(x)$
is the output of $f$ for an input $x$. According to the characteristics of our problem, $x$ will be a positive example if $f(x)<\theta$ for transformation-based classifiers (for bag-ofwords, it should be $f(x)>\theta$ ) and a negative example otherwise. Thus, the scores of precision and recall of the classifiers depend on the choice of $\theta$. Figure D. 4 illustrates the precision, recall and F-score for ZS-TED-based classifier for 43 different thresholds (from 44 to 128 incremented by 2), while the edit costs for ZS-TED are 2, 20 and 4 for delete a node, insert a node and exchange a node, respectively.


Figure D.4: Effectiveness of the threshold on the performance of a classifier.

As you can see in Figure D.4, a lower threshold means higher precision, but usually a lower recall, while better F-score is achieved when we have higher recall. Also, a very high threshold means a classifier saying the same thing every time (i.e. equal to our most common class baseline). At some point, the values of precision and recall are equal (when threshold equal to 70 in Figure D.4). This means that the number of pairs classified to be positive is the same as the actual number of positive pairs in our dataset. This value is known as precision-recall breakeven point (BEP).

Selecting a suitable measure of the quality of such a classifier is a tricky task, which depends on different factors such as the nature of the problem and the application. So, in our problem, the user of the classifier should choose a suitable threshold by taking into account what sort of tradeoffs are available or preferable. For instance, if we desire a precision above the BEP, we must accept that our recall will be below the BEP, and vice versa, since we used the balanced F-score.

## Appendix E

## RTE2 results and systems

The following table illustrates the submission results and system description for RTE2. Systems for which no component is indicated used lexical overlap.

|  |  |  | System Description |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| First Author (Group) |  |  |  |  |  |  |  |  |  |  |  |
| Adams (Dallas) | 0.6262 | 0.6282 | $\checkmark$ |  |  |  |  |  | $\checkmark$ |  |  |
|  | 0.6162 | 0.6689 | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |
| Bos (Rome \& Leeds) | 0.6062 | 0.6042 | $\checkmark$ |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Burchart (Saarland) | 0.5900 |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  |  |  |
| Burchart (Saurland) | 0.5775 |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |  |  |
| Clarke (Sussex) | 0.5275 | 0.5254 |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |
| Clarke (Sussex) | 0.5475 | 0.5260 |  | $\checkmark$ |  |  |  |  |  |  |  |
| de Marneffe (Stanford) | 0.5763 | 0.6131 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| de Marnerfe (Stanford) | 0.6050 | 0.5800 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Delmonte (Venice) | 0.5475 | 0.5495 | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  |  |  | $\checkmark$ |  |
| Ferrández (Alicante) | 0.5563 | 0.6089 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  |
| Ferrandez (Alicante) | 0.5475 | 0.5743 | $\checkmark$ |  | $\checkmark$ |  |  |  |  |  |  |


| Herrera (UNED) | 0.5975 | 0.5663 | $\checkmark$ |  |  |  |  |  | $\checkmark$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.5887 |  | $\checkmark$ |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |
| Hickl (LCC) | 0.7538 | 0.8082 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Inkpen (Ottawa) | 0.5800 | 0.5751 | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  | $\checkmark$ |  |  |
|  | 0.5825 | 0.5816 | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  | $\checkmark$ |  |  |
| Katrenko (Amsterdam) | 0.5900 |  |  |  | $\checkmark$ |  |  |  |  |  |  |
|  | 0.5713 |  |  |  |  |  |  |  |  |  |  |
| Kouylekov (ITC-irst \& Trento) | 0.5725 | 0.5249 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  |
|  | 0.6050 | 0.5046 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
| Kozareva (Alicante) | 0.5487 | 0.5589 | $\checkmark$ | $\checkmark$ |  |  |  | $\checkmark$ | $\checkmark$ |  |  |
|  | 0.5500 | 0.5485 | $\checkmark$ | $\checkmark$ |  |  |  | $\checkmark$ | $\checkmark$ |  |  |
| Litkowski (CL Research) | 0.5813 |  |  |  |  |  |  |  |  |  |  |
|  | 0.5663 |  |  |  | $\checkmark$ |  |  |  |  |  |  |
| Marsi (Tilburg \& Twente) | 0.6050 |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  |
| Newman (Dublin) | 0.5250 | 0.5052 | $\checkmark$ | $\checkmark$ |  |  |  | $\checkmark$ | $\checkmark$ |  |  |
|  | 0.5437 | 0.5103 | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
| Nicholson (Melbourne) | 0.5288 | 0.5464 | $\checkmark$ |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |
|  | 0.5088 | 0.5053 | $\checkmark$ |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |
| Nielsen (Colorado) | 0.5962 | 0.6464 |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
|  | 0.5875 | 0.6487 |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
| Rus (Memphis) | 0.5900 | 0.6047 | $\checkmark$ |  | $\checkmark$ |  |  |  |  |  |  |
|  | 0.5837 | 0.5785 |  |  | $\checkmark$ |  |  |  |  |  |  |
| Schilder (Thomson \& Minnesota) | 0.5437 |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
|  | 0.5550 |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
| Tatu (LCC) | 0.7375 | 0.7133 | $\checkmark$ |  |  |  | $\checkmark$ |  |  | $\checkmark$ |  |
| Vanderwende (Microsoft Research \& Stanford) | 0.6025 | 0.6181 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
|  | 0.5850 | 0.6170 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  |
| Zanzotto (Milan \& Rome) | 0.6388 | 0.6441 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
|  | 0.6250 | 0.6317 | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
| Mean accuracy for all systems |  |  |  |  |  | 0.58 |  |  |  |  |  |
| Median accuracy for all systems |  | 0.583 |  |  |  |  |  |  |  |  |  |


[^0]:    ${ }^{1}$ The papers c1-c7 are cited in the text and therefore also appear in the full bibliography, while the papers j 1 and $\mathrm{c} 8-\mathrm{c} 9$ are not, since they are in press.
    ${ }^{2}$ This paper is selected as one of the best papers presented at the LTC 2011, and an extended and updated version of it will appear in the Springer Verlag, LNAI Series before the end of 2013.

[^1]:    ${ }^{3}$ Our system，dataset and Penn Arabic treebank（PATB）（Maamouri and Bies，2004）internally use the Buckwalter（BW）Arabic transliteration scheme（Buckwalter，2004）．However，the transcription of Arabic examples in this thesis follows Habash－Soudi－Buckwalter（HSB）transliteration scheme（Habash et al．，2007）for transcribing Arabic symbols．This scheme extends Buckwalter＇s scheme to increase its readability while maintaining the one－to－one correspondence with Arabic orthography as represented in standard encodings of Arabic，such as Unicode．System internal examples will be presented in the Buckwalter scheme．

[^2]:    ${ }^{1}$ MSA is the Arabic language version which we are concerned with in the current work. When we refer to Arabic throughout this thesis, we mean MSA.

[^3]:    ${ }^{2} \mathrm{~A}$ lemma (or lexeme) is referred to as "the more abstract units which occur in different inflectional 'forms' according to the syntactic rules involved in the generation of the sentences"(Jurafsky and Martin, 2009).

[^4]:    ${ }^{3}$ Confirmed by the reviewers of our paper in (Alabbas, 2011).

[^5]:    ${ }^{1}$ Licensed is a linguistics technical term, which means approximately 'permitted by the grammar'.

[^6]:    ${ }^{2}$ This acronym comes from "PrAgmatics $=$ ReAsoning about the Speaker's InTEnsions".

[^7]:    ${ }^{3}$ This acronym comes from "encyclopedia".

[^8]:    ${ }^{4}$ This acronym comes from "Bilingual Evaluation Understudy".
    ${ }^{5}$ This acronym (i.e. XDG) comes from "Extended Dependency Graph".

[^9]:    ${ }^{6}$ This acronym comes from "Discovery of Inference Rules from Text".
    ${ }^{7}$ This acronym comes from "Textual Entailment Anchor Set Extraction".

[^10]:    ${ }^{8}$ This acronym comes from "Pattern Analysis, Statistical Modelling and Computational Learning".

[^11]:    ${ }^{9}$ This acronym comes from "Bar Ilan University Textual Entailment Engine". Available at: http: //u.cs.biu.ac.il/~nlp/downloads/biutee/protected-biutee.html

[^12]:    ${ }^{10}$ http://www.cs.unm.edu/~mccune/mace4/
    11 http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cs.chalmers.se/~koen/paradox/
    12http://www.vprover.org/
    13 http://www.ii.uni.wroc.pl/~nivelle/software/bliksem/
    ${ }^{14}$ http://www.cs.unm.edu/~mccune/otter/
    15 http://www.cs.unm.edu/~mccune/prover9/
    16http://xwn.hlt.utdallas.edu/
    ${ }^{17}$ https://framenet.icsi.berkeley.edu/fndrupal/
    18 http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
    ${ }^{19}$ http://demo.patrickpantel.com/demos/verbocean/
    ${ }^{20}$ http://www.mpi-inf.mpg.de/yago-naga/yago/

[^13]:    ${ }^{21}$ http://alchemy.cs.washington.edu/
    ${ }^{22}$ http://hazy.cs.wisc.edu/hazy/tuffy/

[^14]:    ${ }^{1}$ The symbol $\phi$ will always show the position of the deleted pronoun.

[^15]:    ${ }^{2}$ Diacritisation in Arabic is done by adding special symbols called حركات HrkAt "diacritical marks" to help in spoken language. Some of these special symbols are put above normal Arabic characters, such as the short vowels known as Damma ( vowel known as Sukun (سكون, ${ }^{\circ}$,.), while others are put under them, such as the short vowel known as Kasra (كسرة, , ,i, /i/). In addition, nunation diacritics, i.e. Dammatan (تو ين ضم , پ. , un, /un/), Fathatan
     ing of a short vowel followed by the phoneme $/ n /$. Finally, the lengthening diacritic Shadda (شدة , ", $\sim$ ) represents gemination of the previous consonant (Alabbas et al., 2012).

[^16]:    ${ }^{3}$ In fact, there are three grammatical states of nouns in Arabic, the indefinite state (e.g. "a queen"), the definite state (e.g. "the queen") and construct state, which indicates that the noun is the head of a construct phrase, (e.g. "the queen of ...").

[^17]:    ${ }^{4}$ Sound verbs do not have a و $w$ and $y$ as one of the three root letters.

[^18]:    ${ }^{5}$ See AMIRA configuration file in AMIRA-2.1/configs/default.amiraconfig.

[^19]:    ${ }^{6}$ This acronym comes from "Morphological Analysis and Disambiguation for Arabic".
    ${ }^{7}$ This acronym comes from "Stanford Research Institute Language Modeling".

[^20]:    ${ }^{8}$ This acronym comes from "Models and Algorithms for Language Technology Parser". Freely available at: http://www.maltparser.org/.

[^21]:    ${ }^{9}$ The following characterisation is taken from the MALTParser documentation.
    ${ }^{10}$ This acronym comes from "Library for Support Vector Machines".
    ${ }^{11}$ This acronym comes from "Library for Large Linear Classification".

[^22]:    ${ }^{12}$ Freely available at: http://www. seas.upenn. edu/~strctlrn/MSTParser/MSTParser.html.

[^23]:    ${ }^{1}$ Catalog number LDC2005T02 from the Linguistic Data Consortium (LDC). Available at: http: //www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2005T02

[^24]:    ${ }^{2}$ We used the ERTS_PER setting for AMIRA and then removed inflectional markers. This produced a set of tags that is very similar to the 25 tags in the Bies/RTS tagset, but with distinctions between nouns, adjectives and cardinal numbers. Although the Bies/RTS tagset is taken as a norm, there are numerous minor variants in use: Marton et al. $(2010,2013)$ found that collapsing some tags and adding some others improve the performance of their parser.

[^25]:    $3^{3}$ http://chasen.org/~taku/software/yamcha/.
    ${ }^{4}$ http://www.lsi.upc.edu/~nlp/SVMTool/
    5http://www.speech.sri.com/projects/srilm/download.html
    ${ }^{6}$ http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2010L01

[^26]:    ${ }^{7}$ These results were obtained by tenfold cross-validation.
    ${ }^{8}$ Note that taking the majority verdict when all three agree and backing off to the most confident when there is not complete unanimity is exactly the same as simply taking the most confident one from the outset.

[^27]:    ${ }^{9}$ Personal correspondence with Dr. Otakar Smrž, who is one of the PADT designers.

[^28]:    ${ }^{10}$ The consequences of using different versions of the percolation table are discussed in Section 4.3.1.1.1

[^29]:    ${ }^{11}$ We deleted the POS tags and dependency relations from dependency trees to compare the tree structures only.

[^30]:    ${ }^{12}$ See Conference on Natural Language Learning (CoNLL)-X format in Appendix C.

[^31]:    ${ }^{13}$ See CoNLL-X format in Appendix C.
    ${ }^{14}$ Available at: http://ilk.uvt.nl/conll/software.html\#eval.

[^32]:    ${ }^{15}$ This table contains just 34 entries-some of the full set of 39 tags do not appear as heads in the test set, either because they never appear as heads at all or because they are rare and hence happen not to occur in the test set (e.g. PUNC and LATIN).

[^33]:    ${ }^{1}$ This acronym comes from "National Institute of Standards and Technology".

[^34]:    ${ }^{2}$ Available at: http://www.nist.gov/tac/2011/RTE/index.html

[^35]:    ${ }^{3}$ When we mention common words throughout this chapter, we mean either in surface forms or lemma forms.

[^36]:    ${ }^{4}$ All our annotators are Arabic native speaker PhD students, who are the author's colleagues. Some of them are linguistics students, whereas the others are working in fields related to NLP.

[^37]:    ${ }^{5}$ These steps are proposed by specialist in inter-rater reliability, Dr. Kilem L. Gwet, Statistical Consultant, Advanced Analytics, LLC. http://www.agreestat.com/.

[^38]:    ${ }^{1}$ The RTE2 preprocessed datasets available at: http://u.cs.biu.ac.il/~nlp/RTE2/Datasets/ RTE-2 $\ \% 20$ Preprocessed $\backslash \% 20$ Datasets.html
    ${ }^{2}$ This might be useful, for instance, with ETED being used as a low cost filter in a question answering (QA) system, where the results of a query to a search engine might be filtered by ETED before being passed to a system employing full semantic analysis and deep reasoning, which are high precision but

[^39]:    ${ }^{1}$ In terms of error rate the difference looks more substantial, since the error rate, 0.005 , for column 2 for the fine-grained set is $60 \%$ of that for column 1, 0.007 ; and for the coarse-grained set the error rate for column $2,0.04$, is $73 \%$ of that for column $1,0.055$.

[^40]:    ${ }^{2}$ For more detailed description about these algorithms see (Bille, 2005).

[^41]:    ${ }^{1}$ See http://ilk.uvt.nl/conll/\#dataformat

