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Abstract

This thesis investigates ways of incorporating reasoning by analogy into Pure

(Unary) Inductive Logic. We start with an analysis of similarity as distance,

noting that this is the conception that has received most attention in the literature

so far. Chapter 4 looks in some detail at the consequences of adopting Hamming

Distance as our measure of similarity, which proves to be a strong requirement.

Chapter 5 then examines various adaptations of Hamming Distance and proposes

a subtle modification, further-away-ness, that generates a much larger class of

solutions.

We then go on to look at a different notion of similarity and suggest that an

isomorphic counterpart of a proposition in another language can be thought of

as its analogue. Chapter 6 shows that the principle this idea motivates is related

to Unary Language Invariance, and is widely satisfied.
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Chapter 1

Introduction

1.1 Historical and philosophical context

References to ‘the’ principle of induction are not hard to find in philosophical

literature. Hume’s famous treatise on the subject (thought it never actually

uses the word ‘induction’) describes the principle as requiring “that instances of

which we have had no experience, must resemble those of which we have had

experience...” [15]. Following Carnap, we can call this reasoning from instances

to instances “predictive inference” [1, p.207]. Karl Popper was more concerned

with inferences to general laws: “First, it must be formulated in terms not only

of ‘instances’ (as by Hume) but of universal regularities or laws” [28]. Russell, in

[32], takes predictive inferences to be primary and gets very specific:

The principle we are examining may be called the principle of induc-

tion, and its two parts may be stated as follows:

(a) When a thing of a certain sort A has been found to be associated

with a thing of a certain other sort B, and has never been found

dissociated from a thing of the sort B, the greater the number of

cases in which A and B have been associated, the greater is the

probability that they will be associated in a fresh case in which

one of them is known to be present;

(b) Under the same circumstances, a sufficient number of cases of

association will make the probability of a fresh association nearly

a certainty, and will make it approach certainty without limit[32].

8



CHAPTER 1. INTRODUCTION 9

Such preliminary accounts of induction are too narrow, in more senses than one.

Consider Russell’s attempt to make ‘the’ principle of induction more precise. A

moment’s reflection on the kind of reasoning actually used in everyday as well as

scientific discourse should reveal that his account leaves out arguments we would

like to be included in a systematic investigation into the logic of induction. Con-

sider, for example, determination of a radioactive material’s half-life. Statistical

analysis will reveal the time taken for various samples to decrease by half; from

the data collected from samples, a general probabilistic statement is inferred.

Such an argument does not fit into Russell’s account. Furthermore, Russell goes

too far in specifying that A must have “never been found dissociated from a thing

of the sort B” [32] to license a predictive inference; the observance of one black

sheep amongst hundreds of white ones will not invalidate our expectation that a

sheep be white. Both parts of Russell’s definition seem to be rather strong and

not uncontentious principles, the absence of either not being incompatible with

induction.

Carnap identifies the following five species of inductive inference (original italics):

1. The direct inference, that is, the inference from the population

to a sample...

2. The predictive inference, that is, the inference from one sample

to another sample not overlapping with the first... The special

case where the second sample consists of only one individual is

called the singular predictive inference...

3. The inference by analogy, the inference from one individual to

another on the basis of their known similarity.

4. The inverse inference, the inference from a sample to the popu-

lation...

5. The universal inference, the inference from a sample to a hy-

pothesis of universal form [1, p.207].

Of course it is not news that induction is poorly understood, but what this does

suggest is that it is best to think of inductive logic more generally as the logic of

uncertain reasoning. Rather than state outright what we take to be ‘the’ principle

of induction, we can investigate the logical properties of a wide range of principles

(and maybe reassess some of them on the basis of our findings.) The question

that motivates inductive logic is then quite general:
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Q1 How should a rational agent assign beliefs?

The received wisdom is that any such assignment of belief should take the form

of a probability function. Arguments for this doctrine, known as probabilism,

take several forms. An early, influential pragmatic argument developed by Frank

Ramsey [29], and Bruno de Finetti, [8] is known as the Dutch Book argument,

which we will briefly sketch below (the full details can be found in [8].) Other

notable defences of probabilism include James Joyce’s argument from accuracy

dominance [17] and arguments from calibration by Bas van Fraassen, [36], and

Abner Shimony, [35].

Supposing that belief admits of degrees, one way of assessing how strongly an

agent believes something is by asking whether she is willing to bet on it. The

idea is that for any sentence θ, stake s and 0 ≤ p ≤ 1, one of the following two

bets will be acceptable to our agent.

(Bet1p) Win s(1− p) if θ is true, lose sp if θ is false.

(Bet2p) Win sp if θ is false, lose s(1− p) if θ is true.

Varying p will obviously affect our agent’s choice, and by monitoring this we can

judge their degree of belief in θ. Specifically, the proposal is that we take our

agent’s belief function w to assign to θ the supremum of the p such that Bet1p is

acceptable to them. To be Dutch booked is to accept a series of bets which have

the net effect of a guaranteed loss. It seems reasonable to require that a rational

agent should not allow herself to be Dutch Booked. De Finetti showed that from

this simple assumption we can derive the probability axioms for w.

Q1 then becomes:

Q2 How should a rational agent assign subjective probabilities?

Before proceeding with the substantive contribution of this thesis to this question,

further mention should be made of Rudolf Carnap’s approach, which has been

highly influential on the development of this field. As suggested by the above

quote, Carnap started from a very broad conception of induction and sought

a systematic approach, as free as possible from pre-theoretic assumptions. Of

particular importance is the requirement that our rational agent start from a

point of zero knowledge. That is, all propositions that constitute their body of
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knowledge must be explicitly conditioned on when assigning probabilities, and

no extra background knowledge be allowed to sneak in. This means that in par-

ticular, and as in deductive logic, we must work with an uninterpreted logical

language; the validity of any assignments cannot depend on particular interpre-

tations of the symbols. Since most philosophical debate over induction involves

actual inferences in natural language, it is worth drawing a distinction as Car-

nap did between Pure and Applied Inductive Logic, our interest being with the

former (henceforth, PIL.) For further explanation of the difference between these

studies, see [[27], Chapter 1]. Note that this does not mean this thesis will never

draw on interpretations to illustrate the formal principles; for example, we often

casually allow that a colour property or an animal might be the interpretation of

a predicate, but don’t wish to commit ourselves to the idea that these things are

primitive properties (or natural kinds, or have any other privileged philosophical

status).

The philosophical problems of induction cannot be fully expunged from the sub-

ject, as it is philosophical ideas that motivate the mathematics. However, this is

a primarily mathematical thesis; it will draw attention to the philosophical issues

that arise but assume that their resolution is not neccessary for the development

of PIL.

In particular, this thesis will look at the fourth kind of inference flagged up by

Carnap above: inference by analogy. Chapter 2 will look at previous attempts to

incorporate reasoning by analogy into inductive logic. Chapters 3, 4 and 5 follow

Carnap’s conception of similarity as arising out of distances between predicates,

investigating the mathematical consequences of a number of principles similar in

spirit to Carnap’s Principle of Analogy (PA) [6]. Chapter 6 takes a rather different

approach, looking at analogies between structurally similar propositions. This

thesis develops and goes some way to answering the question of how inference by

analogy can be incorporated into PIL. It does so by looking in a systematic way

at the possible ways of formalising inference by analogy and the mathematical

consequences of these.

1.2 Notation and basic principles

This mathematical setting for this thesis is the conventional (unary) context

for PIL: first order predicate logic where the only non-logical symbols are finitely
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many unary predicate symbols {P1, ..., Pq} and countably many constant symbols

{a1, a2, a3, ...}. This language with q predicates we denote by Lq. The set of

formulas of Lq we denote by FLq, the set of sentences by SLq, and the quantifier

free sentences by QFSLq.

We define the atoms of Lq as the 2q mutually inconsistent and jointly exhaustive

formulas of the form:

P ε1
1 (x) ∧ P ε2

2 (x) ∧ ... ∧ P εq
q (x)

where εi ∈ {0, 1} and P 1
j = Pj, P

0
j = ¬Pj.

We use α1, ..., α2q to denote the atoms of Lq. So, for example, the atoms of L2

are

α1(x) = P1(x) ∧ P2(x) α2(x) = P1(x) ∧ ¬P2(x)

α3(x) = ¬P1(x) ∧ P2(x) α4(x) = ¬P1(x) ∧ ¬P2(x)

Another useful concept to introduce is that of a state description. A state de-

scription θ(ai1 , ..., ain) ∈ QFSLq is a sentence of the form

αh1(ai1) ∧ ... ∧ αhn(ain)

where hi ∈ {1, ..., 2q} for all i ∈ {1, ..., n}. By convention, when θ ∈ SLq is written

θ(ai1 , ..., ain) then all constants appearing in θ are amongst the ai1 , ..., ain .

The definition of a probability function on Lq is a map w : SLq → [0, 1] such that

for all θ, φ,∃ψ(x) ∈ SLq:

1. If |= θ then w(θ) = 1.

2. If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

3. w(∃xψ(x)) = limm→∞w(
∨m
i=1 ψ(ai)).

Given a probability function w, the conditional probability function of θ ∈ SL

given φ ∈ SL is given by:

w(θ |φ) =
w(θ ∧ φ)

w(φ)

We will adopt the convention that whenever there is a possibility of conditioning
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on zero, equations of the above form should be read as

w(θ |φ)w(φ) = w(θ ∧ φ).

Our interest in inductive logic is to pick out probability functions on Lq which are

arguably logical or rational in the sense that they could be the choice of a rational

agent. Or to put it another way to discard probability functions which could be

judged in some sense to be ‘irrational’. We do this by imposing principles of

rationality to narrow down our class of admissible functions. The principles to

be introduced in this section are ones that seem to be particularly indispensable

when formalising rational thinking and will be referred to frequently throughout.

One very widely accepted principle is that the inherent symmetry between the

constants should be respected by any rational probability function w on Lq. Pre-

cisely w should satisfy:

The Constant Exchangeability Principle (Ex)

For θ, θ′ ∈ QFSLq, if θ′ is obtained from θ by replacing the distinct constant

symbols ai1 , ai2 , ...aim in θ by distinct constant symbols ak1 , ak2 , ...akm respectively,

then w(θ) = w(θ′).

Just as in deductive logic, particular interpretations of predicates and constants

should not have any bearing on the validity of an inference. The only pertinent

information about a constant is which sentences it appears in, not whether it

happens to have been named a1 or a2. For example, just as the validity of a

deductive argument

P (a1) ∧ P (a2)

∴ P (a1)

is unaffected by swapping a1 and a2 for any other two constants, the strength of

an inductive assignment

w(P (a1) | θ(a1, ...an))

should be similarly unaffected.

It being such a fundamental principle, this thesis will only consider probability

functions that satisfy Ex. This allows us access to a powerful representation
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theorem due to de Finetti, see [9].1 In the statement of this theorem let

Dq = {〈x1, ...x2q〉 |xi ≥ 0,
2q∑
i=1

xi = 1}

For ~b = 〈b1, b2, ..., b2q〉 ∈ Dq, let w~b be the probability function on Lq given by

w~b

(
n∧
j=1

αhj(aij)

)
=

2q∏
i=1

bnii

where ni is the number of occurrences of αi amongst the αhj .

De Finetti’s Representation Theorem

If the probability function w on Lq satisfies Ex then there is a (countably additive)

measure µ on Dq such that for any state description θ ∈ Lq.

w (θ) =

∫
Dq
w~x(θ) dµ(~x) (1.1)

Conversely if w is defined by (1.1) then w extends uniquely to a probability

function on Lq satisfying Ex.

We refer to the measure µ here as the de Finetti prior of w.

As already suggested, we would also like the predicates to be exchangeable.

The Predicate Exchangeability Principle (Px)

For θ, θ′ ∈ QFSLq, if θ′ is obtained from θ by replacing the distinct predicate

symbols Pj1 , Pj2 , ...Pjm in θ by distinct predicate symbols Ps1 , Ps2 , ...Psm respec-

tively, then w(θ) = w(θ′).

A further principle suggested by the idea of treating the logical symbols symmet-

rically is that of strong negation:

The Strong Negation Principle (SN)

For θ, θ′ ∈ QFSLq, if θ′ is obtained from θ by replacing each occurrence of ±Pi
by ∓Pi for some predicate Pi, then w(θ) = w(θ′).

1As given here the converse direction assumes a result due to Gaifman on restrictions of
probability functions, see [10].
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SN is motivated by similar considerations to those mentioned with respect to Ex

and Px; in the absence of any knowledge about which properties the predicates

designate, it seems irrational to treat a predicate and its negation differently.

This is perhaps less obvious than the case for Px, and the status of SN will be

discussed at greater length in the following chapter (section 2.2), but we mention

it here as it is a widely adopted principle.

Almost all the probability functions that this thesis is concerned with will satisfy

Px, and most SN, as well as Ex. However, it will always be made explicit in the

statement of a theorem which principles the probability functions under consid-

eration satisfy, so that there really are no hidden assumptions about rationality.

What we are seeking are results that elucidate the consequences of adopting vari-

ous basic principles while abstaining from making hard and fast judgments about

which principles a rational agent should adopt. We frequently start with Px and

SN (and always with Ex) for the reason that these are the principles a rational

agent should be least willing to give up. If one were to have philosophical objec-

tions to Ex, Px or SN they would of course be at liberty to ignore the classes of

functions they give rise to, but the theorems presented here would no doubt be

of interest in any case.

Ex, Px and SN can all be classed as ‘symmetry’ principles. The next principle

can be thought of as a ‘relevance’ principle, stating as it does that having seen

an atom once is relevant to the probability of seeing it again.

The Principle of Instantial Relevance (PIR)

If w is a rational probability function, then

w(αi(an) |αi(an+1) ∧ θ) ≥ w(αi(aj) | θ)

for any θ ∈ SLq not involving an or an+1.

PIR can be thought of as saying (roughly) that a rational person should find an

event more likely in the case that they have witnessed an identical event before.

So functions satisfying PIR will model a kind of singular predictive induction.

For example, if in L2 our predicates stand for being black and being a swan,

PIR ensures that our expectation of seeing a black swan is raised (or at least not

lowered) by having already seen one.

Pleasingly, it is easy to show via de Finetti’s Representation Theorem that all



CHAPTER 1. INTRODUCTION 16

probability functions satisfying Ex satisfy PIR. This result was first proved by

Gaifman[10] but the proof given here follows that of Humburg [16].

Theorem 1. If w is a probability function satisfying Ex, then w satisfies PIR.

Proof. Write ~a for a1, a2, ..., an.

By de Finetti’s Representation Theorem,

w(θ(~a)) =

∫
Dq
w~x(θ)dµ(~x) = A, say,

w(θ(~a) ∧ αi(an+1)) =

∫
Dq
xiw~x(θ)dµ(~x),

and

w(θ(~a) ∧ αi(an+1) ∧ αi(an+2)) =

∫
Dq
x2
iw~x(θ)dµ(~x)

The inequality required by PIR is then∫
Dq
x2
iw~x(θ)dµ(~x)

∫
Dq
w~x(θ)dµ(~x) ≥

∫
Dq
xiw~x(θ)dµ(~x)

∫
Dq
xiw~x(θ)dµ(~x)

which is equivalent to

A

∫
Dq
x2
iw~x(θ)dµ(~x)−

(∫
Dq
xiw~x(θ)dµ(~x)

)2

≥ 0 (1.2)

If A = 0, then all the integrals must be equal to zero and so this holds with

equality. So suppose that A 6= 0. Then 1.2 is equivalent to

∫
Dq

(
xiA−

∫
Dq
xiw~x(θ)dµ(~x)

)2

w~x(θ)dµ(~x) ≥ 0

which is obviously true, since the left hand side is the integral of a square so

always non-negative.

This result perhaps provides another philosophical motivation for Ex; PIR seems

to express one of the primary forms of inductive argument and accepting Ex guar-

antees PIR. The converse is not true; there are probability functions satisfying

PIR that do not satisfy Ex (for an example of such a probability function see

footnote 6 in [?].)
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By accepting Ex, Px and SN we can thin out our class of probability functions,

but we are still left with a very wide class. Carnap initially supposed that a

single function could be defined that would fulfill all the requirements of inductive

inference. It will become clear that, contrary to this original vision, the many

plausible conditions on rationality that can be posited do not always result in

overlapping classes of functions. Moreover, where classes of functions satisfy

our requirements, there is no obvious way of picking a single function from the

class. It becomes an increasingly unavoidable conclusion that there is no single,

well-defined concept of what is rational. Russell’s view then, when he said that

“[n]ot to be absolutely certain is... one of the essential things in rationality” [33],

seems to be correct in more than one respect; not only should rational belief

admit of degrees, but our commitment to any particular belief function should be

uncertain. In what follows, we shall see the effect that accepting various analogy

principles has on this choice.



Chapter 2

Reasoning by analogy

2.1 Introduction

As mentioned in the introduction, Rudolf Carnap, on whose conception of in-

ductive logic this thesis rests, considered inference by analogy to be one of the

fundamental forms of inductive inference. His ideas for modelling analogical rea-

soning are discussed at some length in [6] (see especially p.32). Before presenting

an original contribution to the mathematical problems of modeling analogy in

PIL, we give an overview of this and more recent attempts to find functions that

support analogical reasoning. First, some analysis of that which we seek to model.

Consider the person who knows that the vast majority of venomous snakes have

slanted ‘cat-like’ eyes whereas the vast majority of non-venomous snakes have

round eyes and pupils. If she comes across a snake unlike any she has seen

before, if it has slanted eyes it would be supremely rational to stay well away

from it. Even though she has never seen an identical creature before, it shares a

sufficient number of properties with those in her experience for her to infer the

likelihood of it sharing the further property of being venomous.

Another example: suppose you had only ever eaten green peppers and red pep-

pers, and you disliked the taste of the former but liked the taste of the latter.

Would you expect to like or dislike an orange pepper? Intuitively, we expect to

like the orange pepper, it being similar to red. And for contrast, a non-example;

suppose all the orange chairs in your experience have been very comfortable and

you are presented with another orange chair by a manufacturer you have never

come across before. You would reserve judgment as to whether or not this new

18
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chair will be comfortable, its similarity with the chairs in your experience not

being a pertinent one.

Finally, we mention a different kind of analogy. In “Models and Analogies in

Science” Mary Hesse discusses at some length the “conventional use of “analogy”

in mathematical physics, as when Kelvin exhibited analogies between fluid flow,

heat flow, electric induction, electric current, and magnetic field, by showing that

all are describable by the same equations.”[13] 1 Reasoning about entirely different

concepts by relating them to some common structure may also be an important

part of ancient Chinese logical thought as discussed by Jean-Paul Reding in [30].

To take a particular example,“‘Study the sacrificial rites while affirming that there

are no spirits, this is like studying the ceremonials of hospitality where there are

no guests; this is like knotting nets while there are no fish.’ (Mozi[)]”[30]. As

seen in this quote, this kind of analogy is closely related to metaphor.

The question of what makes a good analogy and a bad one is difficult to answer.

For example, it seems as though similarity of colour is relevant when making pre-

dictions about taste, but not when making predictions about comfortableness;

why does the analogy fail in the second case? The obvious answer is that we

have extra background knowledge that tells us that colour is irrelevant to com-

fortableness. In a state of zero background knowledge, the observance of 100

comfortable orange chairs and 100 uncomfortable blue ones arguably would be

rational grounds for expecting the next orange chair to be comfortable. For a

rational belief function to reflect rationality it should, in the absence of any other

background knowledge, respect analogy.

Unfortunately, finding natural examples of good and bad analogies can actually

obfuscate the heart of the matter, for two reasons. Firstly, as already suggested,

because it is very hard to specify the relevant background information present in

any judgment. In Pure Inductive Logic we start from a position of zero back-

ground knowledge so any information relevant to the inductive inference must

be made explicit, yet this is rarely the case in day to day discourse. Secondly,

because the logical imperfections of natural language may well disguise the logical

structure of the propositions we are considering. To investigate the rationality of

inductive arguments phrased in plain English is not sensible. In his Logical Syn-

tax of Language [2] Carnap points out that although the conclusions of physics

1For those familiar with the concept; any two theories with the same Ramsey sentence are
analogues in this sense.
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apply to natural physical objects, they are arrived at through investigation of

idealized objects: ‘a thin straight lever, ... a simple pendulum’[2], for example.

In the same way, we can approach a study of rational thought by working in

an idealized language. As mentioned in the introduction and following the con-

vention in PIL, I will be working with a first-order language whose only extra

logical symbols are a countable set of constant symbols {a1, a2, a3, ...} and a set of

unary relation (predicate) symbols {P1, ...Pq}. These symbols must be assumed

to represent primitive, or ‘simple’ properties, whereas it is a fair assumption that

many simple English words represent complex properties. Many philosophers mo-

tivate their proposed principles of analogy with natural language examples (for

example, Jan Willem Romeijn with bachelors and maidens [31], Patrick Maher

with swans [21]) and some appeal to particular interpretations of the predicate

symbols is unavoidable. However the reader should remain wary of smuggling in

background knowledge or being mislead by surface grammar when assessing any

natural language examples in what follows.

Although similarity is at the heart of all good analogies, the above examples

all rely on different types of similarity. We interpreted similarity of snakes to

mean possession of a number of identical properties (being a snake, round eyed,

venomous, etc.). To put it another way, we judge atomic sentences composed of

these properties to be more or less similar depending on how many properties

they have in common. Red and orange peppers, however, are similar not only

because they possess some identical properties (size, shape, being peppers, etc.),

but also because they possess colour properties which are themselves similar. As

colours are likely to be the sort of thing we take as primitive properties, the

closeness of two objects’ colours cannot be explicated in terms of other simpler

properties. We must have some kind of similarity relation defined on the primitive

predicates themselves (by which, for example, red is more similar to orange than

it is to yellow.) Of course not all properties will be comparable; it will only be

possible to make judgements of similarity between properties drawn from the same

domain (e.g. between colours, between shapes, between animals.) Finally, in the

examples from mathematical physics, an analogy is made between propositions

that appear to be entirely different in content while bearing some resemblance in

structure. This kind of analogy could also be thought of as metaphor.

The latter kind of analogy seems to be an important type of logical reasoning. It

is often found in the natural sciences; the corroborated physical theory of sound
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being used to motivate a physical theory of light, for example (see [13] for a fuller

account of this comparison). It is also found in mathematics, where a result in

one area often leads one to (rationally) expect a similar result in another; for

example, the many analogues of the group isomorphism theorems in abstract

algebra.

To recap, the three species of analogy identified here derive from

(i) Similarity between predicates within a single domain.

(ii) Similarity between atoms of a single language.

(iii) Similarity between sentences from disjoint languages.

To the best of our knowledge, only the former two types of analogy have previously

been looked at in relation to PIL, and the next section provides a brief survey

of notable work to this end. Chapter 3 will look in more detail at analogies of

type (ii), taking a more systematic and mathematical approach than some of

the previous work on this problem. Since the atoms of Lk can be thought of

as a family of predicates of size 2k, the methods and results of Chapter 3 can

also be brought to bear on questions about analogies of type (i). The advantage

of starting with atoms rather than families of primitive predicates is that there

are natural ways in which atoms can be considered similar without recourse to

particular interpretations of the predicates, whereas similarity between primitives

must depend on their interpretation. Chapter 4 will go on to consider analogies

of type (iii), which appear to be an entirely new consideration in the context of

PIL.

2.2 Review of the literature on analogy

2.2.1 Similarity between Q-predicates

For the first kind of analogy we need some measure of similarity between predi-

cates from within a particular domain, and before that, to make precise the notion

of a ‘domain’. Consider the unary predicate language Lq. If we suppose that the

predicates can stand for any property (or even any ‘natural’ or ‘projectible’ prop-

erty, supposing for a moment that this notion is well-defined) then we could take

q = 6 and let them stand for colour properties (red, yellow, blue, green, orange,
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purple). The propositions expressed by the atomic sentences will then include

the proposition that an object is red and yellow and not blue and not green and

not orange and purple, for example. They will of course include the intelligible

propositions to the effect that an object is one colour and no other, but these

will only be 6 of the total 26. We are now in the awkward position that all these

colour propositions have the same logical status, prior to any empirical informa-

tion. Indeed, how could we ever determine the impossibility of satisfying the

atomic formula ‘x is red and blue, etc.’? At best, that our empirical observations

will show up only sentences positing a single colour property of an object will

allow us to reason inductively that the likelihood of seeing a simultaneously two

or more coloured object is low, approaching zero as the number of observations

increases. But when we claim to know that an object cannot be simultaneously

both red and blue, it seems an unsatisfactory account of this knowledge to sup-

pose that it is nothing more than a very confident inductive generalisation. A

child will grasp this fact about coloured objects as soon as they grasp the very

meaning of colour names, without needing a body of empirical evidence for it.

Carnap’s answer to this was to consider Attribute Spaces2 : geometrical spaces

which can be partitioned into regions, each region corresponding to a predicate

in the underlying language of PIL. The predicates arising from a single Attribute

Space are thus mutually exclusive and jointly exhaustive, like the set of colours.

Such a set {Q1, ..., Qk} Carnap calls a family [6]. We will denote predicates within

a Carnapian family by Qi and refer to them as Q-predicates (following the no-

tation introduced by Carnap), to distinguish them from our Pi which are not

assumed to be mutually exclusive.

This added family structure could be thought of as a matter for applied rather

than pure inductive logic. Suppose we want to reason about colours, and ac-

cordingly let P1, ..., P6 stand for the six main colour properties. Then we have

the prior information that these properties are mutually exclusive and jointly

exhaustive, which we can express as the conjunction of the sentences

∀x

Pi(x)↔

 k∧
j 6=i
j=1

¬Pj(x)




2More recently, Peter Gardenfors has fleshed out a similar theory of what he calls Conceptual
Spaces, see [12]. One very interesting suggestion by Gardenfors is that a condition for a property
to be projectible may be that the corresponding region of the Conceptual Space is convex.
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for i = 1, ..., 6.

Denote this sentence by I and look at the functions wI given by:

wI(θ) := w(θ | I)

where w is a probability function on Lq satisfying Ex. Notice that the arguments

for accepting Px and SN still apply to any function w, though not to wI . In the

case of SN, since w represents a probability function prior to any knowledge about

‘red’, it is entirely correct that we should have w(x is red) = w(x is not red).

After conditioning on the proposition I that encodes some information about

‘red’, we get

wI(x is red) = w(x is red | I) = 1/6

< 5/6 = w(x is not red | I) = wI(x is not red)

hence wI does not satisfy SN. In this example wI will satisfy Px just as w does,

but this will not always be the case. For example, extend the language to contain

another two predicates P7, P8 which stand for being male and female, respectively,

and let I ′ = I ∧ (P7 ↔ ¬P8). Since w is prior to any knowledge about the

predicates, we want to have w(x is male) = w(x is red). But as soon as we move

to wI′ we get

wI′(x is male) = w(x is male | I ′) = 1/2

> 1/6 = w(x is red | I ′) = wI′(x is red)

The advantage of the geometrical picture is that a notion of distance is immediate,

and indeed Carnap suggests a measure of similarity between Q-predicates within a

family based on a distance metric in the corresponding Attribute Space. However

we will see that there are natural distance funtions between atoms that can be

explored without recourse to any underlying Attribute Space. Given that we

wish to avoid the philosophical commitments of Attribute Spaces, this will be our

preferred approach. Note that any probability function defined on atoms could be

thought of as defined on a family of Q-predicates instead, by just ‘forgetting’ the

internal structure of the atoms. As such, the only possible limitation of looking

at atoms is that the total number of atoms in a language must be a power of 2,

whereas a family of Q-predicates could be of any size.
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Other philosophers have not always used a distance function to motivate their

measures of similarity (see [7], [19]) and Jan Willem Romeijn goes so far as to

say that a “relevance function... need not comply to triangle inequalities”[31]

though no further argument for this is given. Brian Skyrms [34], Roberto Festa

[7], Theo Kuipers [19], Ilke Niiniluoto [24] and Maria de Maio [23] all consider a

single family of primitive Q-predicates; their work on analogy is thus concerned

with examples of type (i), although some can be applied to examples of type (ii).

Jan Willem Romeijn [31] and Patrick Maher [21] both use what we have called

atoms in their work on analogy, and so are concerned with analogy of the second

type (ii) detailed in the introduction to this chapter.

In the search for probability functions that support reasoning by analogy, most

previous work has proceeded by constructing candidate functions and demon-

strating that they satisfy certain properties. A survey of these attempts will

follow, but it is worth pointing out the difference between this approach and the

one that we take this thesis. Firstly, there is not usually a sharp distinction

between Pure and Applied Inductive Logic made. Moreover, the emphasis on

individual probability functions in some philosophers’ work is perhaps motivated

by the desire to find ‘the’ rational probability function, allowing a precise quan-

tification of the strength of an inductive argument as Carnap initially envisioned.

However, in light of the many plausible and often mutually contradictory prin-

ciples of rationality posed since the founding of PIL, this seems an unrealistic

aim, and is not the purpose of this thesis. Rather than arguing the case for a

particular probability function, we simply propose to investigate the logical con-

sequences of adopting different principles and where possible, spell out the logical

relationships between them.

When constructing probability functions that support arguments by analogy there

has been a reluctance to stray too far from familiar functions. Central to the

search for logical probability functions has been Carnap’s proposed Continuum

of Inductive Methods (see for example [5], [6]), and many of the attempts to

construct a new function satisfying analogy involve modifying or mixing functions

from this continuum. Members of the continuum are defined on a single family

of Q-predicates, {Q1, ...Qk} say3, and are given as follows. For 0 < λ ≤ ∞, ckλ is

3Notice that the atoms of Lq have the same properties as a family of Q-predicates, so these
functions could also be defined on atoms instead of Lq.
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characterized by the special values

ckλ

(
Qj(an+1) |

n∧
i=1

Qhi(ai)

)
=
nj + λk−1

n+ λ

where nj is the number of occurrences of Qj amongst the Qhi , whilst for λ = 0

ck0 is characterized by

ck0

(
n∧
i=1

Qhi(ai)

)
=

 k−1 if all the hi are equal,

0 otherwise.

We will refer to functions of this kind as cλ-functions. This approach can also be

generalized to give what we shall refer to as cλγ-functions, where γ is any prior

distribution 〈γ1, ...γk〉,
∑k

i=1 γi = 1, and

ckλγ

(
Qj(an+1) |

n∧
i=1

Qhi(ai)

)
=
ni + λγj
n+ λ

Functions from this continuum do not show the kind of analogy effects that

Carnap found desirable. Precisely, they fail to satisfy his Principle of Analogy[6,

p.46] given for a family of Q-predicates {Qi}:

Carnap’s Principle of Analogy (CA)

For predicates Qi, Qj, Qk, if Qi is more similar to Qj than it is to Qk, then

w(Qi(an+1)|Qj(an) ∧ θ) ≥ w(Qi(an+1)|Qk(an) ∧ θ)

for any state description θ not containing an, an+1

Brian Skyrms [34] mixes four cλ to give a probability function which exhibits some

limited properties of analogical reasoning. He works in a language with four Q-

predicates, and by way of illustration associates these with the four outcomes of

a wheel of fortune: North, East, West and South4. The distance between these

4Similarly, the example of a roulette wheel is mentioned in [6, p.3].
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outcomes can be pictured thus:

N

W E

S

The idea here is that if the wheel frequently lands on North, one may be suspect

that it is biased towards North, and thus expect another North. But also, if

such a bias is revealed, it would be rational to consider the outcomes East and

West more probable than South, given that they are closer to North. A single cλ

function is unable to make this second differentiation.

In our notation Skyrms proposes the probability function

w = 4−1(cλγN + cλγW + cλγE + cλγS)

where γN = 〈1
2
, 1

5
, 1

5
, 1

10
〉, γW = 〈1

5
, 1

2
, 1

10
, 1

5
〉, γE = 〈1

5
, 1

10
, 1

2
, 1

5
〉, γS = 〈 1

10
, 1

5
, 1

5
, 1

2
〉

Skyrms explains the choice of w as corresponding to four equally probable ‘metahy-

potheses’ as to the probability distribution of outcomes:

H1 That cλγN is the true probability function

H2 That cλγW is the true probability function

H3 That cλγE is the true probability function

H4 That cλγS is the true probability function

Supposing then that we spin the wheel for the first time and it lands on North

(N); then we can update the probability of each metahypothesis using Bayes’

Theorem. For example,

w(H1 |N) =
w(N |H1)w(H1)

w(N)
=

(1/2)(1/4)

(1/4)
= 1/2

Similarly we get that w(H2 |N) = 1/5, w(H3 |N) = 1/5, w(H4 |N) = 1/10.

Taking the sum of the probabilities given by each hypothesis weighted by these

values, it can be shown that:
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• w(N |N) = 22/55

• w(W |N) = w(E|N) = 12/55

• w(S|N) = 9/55,

where w(W |N) is the probability of a West on the second spin of the wheel given

that the first spin had already landed North, etc. So having seen a single north,

the desired inequalities hold.

However, the analogy effects of Skyrms’ proposed probability function break down

very quickly when probabilities are conditioned on more than one previous out-

come. For example, Roberto Festa, [7], shows that for θ = SSSSSWWWWW ,

w(N |E∧θ) < w(N |S∧θ), contradicting CA and the expectations of any rational

agent.

Having demonstrated the limitations of Skyrms’ proposed function, Festa gener-

alizes Skyrms’ method in an attempt to improve the scope of the analogy effects

displayed there. He does so successfully for a hypothetical situation in which we

know that for some ordered triple 〈Qi, Qj, Qh〉, Qj is more similar to Qi than

Qh is, while Qi and Qj are equally similar to Qh. In other words, the distance

between the three Q-predicates can be pictured thus

Qh

Qi Qj

Starting from the requirement that a mixture w of cλγ functions satisfies

w(Qi(an+1) |Qj(an) ∧ θ) > w(Qi(an+1) |Qh(an) ∧ θ)

for any state description θ not involving an or an+1, Festa derives some constraints

on the γ vectors and concludes that w can be composed of as many different cλγ

functions as one likes, as long as they satisfy the following conditions:

For all pairs of vectors γx = 〈γx1 , γx2 , ..., γxk〉, γy = 〈γy1 , γy2 , ..., γyk〉, either

γxi ≥ γyi , γxj ≥ γyj and γxh ≤ γyh
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or the same statement with x and y swapped. And for at least one pair of vectors,

γu, γv,

γui > γvi and γuj > γvj

or the same statement with u and v swapped. And for at least one pair of vectors,

γw, γz,

γwi > γzi and γwh < γzh

or the same statement with w and z swapped.

A mixture satisfying the above conditions will have the desired effects regarding

Qi, Qj, Qh. However, as Festa points out, it is actually impossible to extend this

kind of system to deal with a wheel of fortune type situation, that is when we

have four predicates with distances that can be pictured

Qi

Qj Qk

Qh

So once again, this ‘solution’ is rather limited.

Maria Concetta di Maio [23] also follows Carnap’s ideas very closely, but rather

than investigating CA she looks at another condition suggested by Carnap as a

‘tentative principle’ [6],p.45.

Principle of Linearity

For any state description θ where ni is the number of occurrences of Qi and nj

is the number of occurrences of Qj, let θi,jp be the conjunction of predicates that

resembles θ except for having p occurrences of Qi and ni + nj − p occurrences of

Qj. Then for an not already appearing in θ,

w(Qi(an) | θi,jp ) is a linear function of p

She looks at this in the context of Ex and two other conditions:

1. w(Qi(an)) = w(Qj(an)), ∀i, j.

2. In a family of just two Q-predicates, w(Q1(an) | θ1,2
p ) = w(Q2(an) | θ2,1

p )
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If we were working with atoms instead of a family of Q-predicates, both conditions

would follow from Px + SN.

Di Maio shows that this principle defines a class of functions containing the

λ-continuum but also containing functions sensitive to analogy. Unfortunately,

the kind of analogy principle she shows to be satisfied by functions in this class

seems to involve conditions on the past evidence as well as on several parameters.

Moreover, the linearity condition seems somewhat arbitrary and Carnap himself

did not regard it to be the most plausible candidate for an axiom of rationality

(see [6, p.45]).

Finally, Theo Kuipers suggests a principle that he calls ‘virtual analogy’ (VA)

[19]:

Virtual Analogy Principle (VA)

Let {Qi} be a family of Q-predicates and d a distance function between Q-

predicates. Then for any i, j, k such that d(Qi, Qj) < d(Qi, Qk),

w(Qj(an+1) |Qj(an) ∧ θ)− w(Qj(an+1) |Qi(an) ∧ θ)

< w(Qk(an+1) |Qk(an) ∧ θ)− w(Qk(an+1) |Qi(an) ∧ θ)

for any state description θ not involving an, an+1.

A comparison between CA and VA will be made in the next section when con-

sidering distance functions on atoms rather than predicates. Both Kuipers, [19]

and Niiniluoto, [24] proceed by weighting cλγ functions by a further parameter.

We mention these only briefly as while this approach ensures some of the desired

analogical properties, the resulting functions violate Ex, which we regard as a

fatal failing.

2.2.2 Similarity between atoms

If, instead of looking at a single family of Q-predicates, we look at a language Lq,

there is another way of combining cλγ-functions: we may define cλγ-functions on

the primitive predicates {P1, P2, ..., Pq} and then look at the functions on atoms

of Lq that this will give rise to. This idea is utilised by both Maher, [21], and

Romeijn, [31]. To begin with, both take L2 with the four atoms:
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α1(x) = P1(x) ∧ P2(x) α2(x) = P1(x) ∧ ¬P2(x)

α3(x) = P1(x) ∧ ¬P2(x) α4(x) = ¬P1(x) ∧ ¬P2(x)

If we let cλγi be a function defined for {Pi,¬Pi}, this immediately gives rise to a

function w on atoms by taking

w(α1(an) | θ) = cλγ1(P1(an) | θ1)cλγ2(P2(an) | θ2)

w(α2(an) | θ) = cλγ1(P1(an) | θ1)cλγ2(¬P2(an) | θ2)

w(α3(an) | θ) = cλγ1(¬P1(an) | θ1)cλγ2(P2(an) | θ2)

w(α4(an) | θ) = cλγ1(¬P1(an) | θ1)cλγ2(¬P2(an) | θ2)

for any state description θ not involving an, where θi is the conjunction of the

±Pi conjuncts in θ.

Maher does not make explicit what general principle of analogy this will satisfy,

but does mention, for example, that

w(α1(an+1) |α2(an) ∧ θ) > w(α1(an+1) |α4(an) ∧ θ)

for any state description θ not involving an, an+1. Intuitively, this is because the

function looks at each conjunct in α1 and then looks for similar conjuncts in the

past evidence. Since α2 has one similar conjunct (P1) and α4 none, the former

will offer more inductive support than the latter.

Taking (as Maher does) d(αi, αj) to be the number of predicates on which αi and

αj differ, w does satisfy CA given for the atoms of L2 rather than on a family of

primitive predicates. In other words, for atoms αi, αj, αk, if d(αi, αj) < d(αi, αk)

then

w(αi(an+1)|αj(an) ∧ θ) ≥ w(αi(an+1)|αk(an) ∧ θ)

for any state description θ not containing an, an+1

Notice that VA can be given in a similar fashion for the atoms of L2, but for the

same distance function, w defined as above will not in general satisfy VA. As a

counter-example, take γ = 2−1, λ to be 1 and θ to be 3 copies of α1. Then
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w(α2 |α2 ∧ α3
1)− w(α2 |α1 ∧ α3

1)

= c1(P1 |P 4
1 )c1(¬P2 | ¬P2P

3
2 )− c1(P1 |P 4

1 )c1(¬P2 |P 4
2 )

=
(3 + 1 + 1/2)(1 + 1/2)− (3 + 1 + 1/2)(1/2)

(3 + 1 + 1)2

= 9/50

Whereas

w(α4 |α4 ∧ α3
1)− w(α4 |α1 ∧ α3

1)

= c1(¬P1 | ¬P1P
3
1 )c1(¬P2 | ¬P2P

3
2 )− c1(¬P1 |P 4

1 )c1(¬P2 |P 4
2 )

=
(1 + 1/2)(1 + 1/2)− (1/2)(1/2)

(3 + 1 + 1)2

= 4/50

Above and wherever no ambiguity can arise, the instantiating constants are left

implicit (it should be assumed that each atom is instantiated by a distinct con-

stant.)

Of course there are many other probability functions that will satisfy CA; Chapter

4 will explore this further. But as Maher points out, the problem with taking the

predicates as independent in this way is that it makes no difference to w which

object the predicates are instantiated by. For example, as far as w is concerned,

α1(a1) ∧ α2(a2) ∧ α3(a3) is indistinguishable from α1(a1) ∧ α1(a2) ∧ α4(a3) since

in both cases there are two instances of P1, two instances of P2 and one instance

of each of ¬P1,¬P2. Intuitively, one’s expectation of seeing a black swan should

be increased more by seeing lots of black swans and lots of white cats than by

seeing lots of white swans and black cats. But w would give

w( a black swan |n black swans and m white cats )

= w( a black swan |n black cats and m white swans ).

This observation suggests the question: does every function that respects analogy

have this unwelcome property? If analogical reasoning is described according to

a strict form of CA in which the conditioning evidence θ can be any quantifier

free sentence, then the answer is yes, as will be shown in Chapter 4.
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For this reason Maher follows Carnap in proposing a weighted average of the

above w and a single cλ-function defined on the atoms. Since for any cλ-function

we have

cλ( a black swan |n black swans and m white cats )

> cλ( a black swan |n black cats and m white swans ),

the weighted average will give a similar inequality. The weighting is done by a

parameter η, where the final function is:

u := ηw + (1− η)cλ

Such a function u will not in general satisfy CA, as Maher notes. Maher’s proposal

differs only slightly from Carnap’s, but does so in two ways. Firstly, his η is

defined as the probability that the predicates are statistically independent, u(I).

Maher’s idea is that if they are independent, w is an appropriate function, whereas

if they are dependent, cλ is more appropriate, and in [21] these two assumptions

are enshrined as axioms. But we are none the wiser as to what principle u

actually satisfies, nor how many other probability functions might satisfy a similar

principle.

The second slight divergence from Carnap is that Maher does not suppose that

the predicates and their negations should have equal initial probabilities. So he

would allow the use of cλγ-functions for various γ in the place of the cλ-functions

Carnap thought appropriate. This is defended in [21] by the following argument:

For example, since being a raven is just one of many comparable things

that an individual could be, I would say rationality requires that in the

absence of any evidence one should think of an unobserved individual

is more probably a non-raven than a raven.[21]

This of course depends on how you choose your language, but if we know that a

raven is just one of many comparable things an individual can be then all of these

things should be represented in the language and we should be conditioning on the

fact that the property of being not a raven is logically equivalent to the disjunction

of these other properties 5. As suggested above (page 23,) in applying PIL to

5If Maher has in mind that a suitable partition of the space of animals could give rise to
a family of predicates: {Ravens, Non-Ravens}, one possible objection is that this may violate
the requirement that properties be convex.
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inductive arguments about ravens, we should move from a probability function w

satisfying Px and SN to one wI according to which it will be more likely to see a

non-raven than a raven. L2 will just not be appropriate for modelling inductive

arguments about ravens.

Like Maher, Romeijn proceeds by defining functions on the primitive predicates

rather than the atoms. He works in L2 and to illustrate his method interprets P1

as the property of being male and P2 as the property of being married, so that the

four atoms correspond to the properties of being a husband, a bachelor, a wife and

a maiden. Interestingly, Romeijn suggests that similarity can be quantified using

any (symmetric) ‘relevance relation’ between atoms which need not correspond

to a distance function; as an example, he defines a relevance function ρ such that

ρ( husbands, bachelors ) > ρ( husbands,wives ). ρ can be represented graphically,

where a shorter line means a higher value, by

W

H B

M

Since ρ “need not comply with triangular inequalities”[31], only a direct line

between atoms should be read as representing their relevance to each other.

He then defines a function which resembles a cλγ function but uses three different

sets of parameters, one for the special values of the form w(±P1(an) | θ), one

for the special values w(±P2(an) | θ ∧ P1(an)) and a third for the special values

w(±P2(an) | θ ∧ ¬P1(an)), where θ is a state description on L2 not involving an.

These parameters are defined to depend on ρ, and the resulting function on atoms

satisfies a principle equivalent to a generalisation of CA using ρ rather than a

distance function in the obvious way. As Romeijn notes, one major limitation of

this model is the asymmetry with which it treats predicates. In particular, his

function does not satisfy Px. Moreover, it remains to give a classification of all

the probability functions consistent with this principle.



Chapter 3

Distance and similarity

Before looking at specific ways in which atoms can be similar to one another,

we give a schema for a class of analogy principles based on similarity of atoms.

As mentioned in Chapter 2, in the context of pure, uninterpreted inductive logic

we have no non-arbitrary measure of similarity between the primitive predicates

of Lq. For our purposes we are not too concerned with a quantitative notion of

similarity between atoms; a qualitative one will be enough. What we need then

is a binary relation between unordered pairs as follows:

Definition 2. Let Aq be the set of atoms of Lq, i.e. the set {α1, ..., α2q}. Then
q>S is a similarity relation just if it is a relation on {Aq×Aq}×{Aq×Aq} defined

only between unordered pairs that have one element in common, and satisfying

{αi, αi} q>S {αi, αj} whenever i 6= j.

We can now introduce the following class of analogy principles.

Analogy Principle for >S (APS)

For any atoms αi, αj, αk of Lq such that {αi, αj} q>S {αi, αk},

w(αi(an) |αj(an+1) ∧ θ) ≥ w(αi(an) |αk(an+1) ∧ θ)

for any θ ∈ QFSLq not containing an, an+1.

We also introduce the following class of stronger principles, in which the inequal-

ities are required to be strict.

Strong Analogy Principle for >S (SAPS)

For any atoms αi, αj, αk of Lq such that {αi, αj} q>S {αi, αk},

w(αi(an) |αj(an+1) ∧ θ) > w(αi(an) |αk(an+1) ∧ θ)

34
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for any θ ∈ QFSL1 not containing an, an+1.

And finally the class of weaker principles, in which the inequalities are only re-

quired to hold for state descriptions.

State Description Analogy Principle for >S (SDAPS)

For any atoms αi, αj, αk of Lq such that {αi, αj} q>S {αi, αk},

w(αi(an) |αj(an+1) ∧ θ) ≥ w(αi(an) |αk(an+1) ∧ θ)

for any state desciption θ ∈ QFSLq not containing an, an+1.

The next section will explore the idea that any measure of dissimilarity should

take the form of a distance function, and that our binary similarity relation be

derived from this.

3.1 Distance

Let us grant firstly that any measure of dissimilarity between the atoms of Lq

should take the form of a distance function.

Definition 3. For a set X, a function d : X ×X → R is a distance function iff:

(i) d(xi, xj) = d(xj, xi), ∀i, j

(ii) 0 = d(xi, xi) < d(xi, xj) , ∀i, j such that i 6= j

(iii) d(xi, xj) ≤ d(xi, xk) + d(xk, xj), ∀i, j, k

Let
∧q
i=1 P

εi
i (x) be an atom of Lq, where εi ∈ {0, 1} and P 1

i = Pi, P
0
i = ¬Pi.

Taking X to be the set {〈ε1, ...εq〉 | εi ∈ {0, 1},∀i}, we then have several choices

for distance functions between the vectors in X and hence the atoms of Lq. Some

different distance functions will result in the same comparative statements about

distances between atoms; for example, recall the following definitions.

Definition 4. The Manhattan distance between two vectors ~x, ~y, which we will

denote ||~x− ~y||M is given by

||~x− ~y||M =

q∑
i=1

|xi − yi|
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Definition 5. The Euclidean distance between two vectors ~x, ~y, which we will

denote ||~x− ~y||E is given by

||~x− ~y||E =

√√√√ q∑
i=1

(xi − yi)2

Notice that both the Manhattan and the Euclidean distances generate the same

sets of inequalities between distances. For example, in L2 these are:

1. d(αi, αi) < d(αi, αj) whenever i 6= j

2. d(α1, α2), d(α1, α3), d(α4, α2), d(α4, α3) < d(α1, α4), d(α2, α3)

And for contrast, recall another notion of distance, the Chebyshev distance:

Definition 6. The Chebyshev distance between two vectors ~x, ~y, which we will

denote ||~x− ~y||C is given by

||~x− ~y||C = max |xi − yi|

If we take the Chebyshev distance, then the only inequalities generated for Lq

are the ones of the form d(αi, αi) < d(αi, αj), where i 6= j.

Any distance function we take will give rise to a similarity relation >S
1 by spec-

ifying that {αi, αj} >S {αi, αk} if and only if d(αi, αj) < d(αi, αk).

If we take the Chebyshev distance and corresponding similarity relation >C , say,

then SDAPC is known as the Strong Principle of Instantial Relevance (SPIR)

[27].

If we take the Manhattan distance, this is equivalent to the Hamming Distance

between atoms,

Definition 7. The Hamming Distance between two atoms, αi and αj, is the

number of predicates P such that αi(an) � P (an) if and only if αj(an) � ¬P (an).

We denote the Hamming Distance by |αi − αj |.

and we will use APH to distinguish the resulting analogy principle. As already

noted, the Euclidean distance will give rise to exactly the same similarity rela-

tion, so can also motivate APH . Hamming Distance seems a particularly natural

1Where no ambiguity will arise, we will omit the index q and just write >S .
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distance function for PIL, given that it has a certain symmetry in the way it

treats predicates and their negations and ascribes the same weight to a difference

in any predicate. In fact, the permutations of atoms that preserve Hamming

Distances are exactly those permutations licensed by SN and Px, as the following

demonstrates.

Given a permutation σ of {1, 2, 3, . . . , 2q} we shall also denote by σ the permu-

tation of atoms given by αi(x) 7→ ασ(i)(x) and the permutation of D2q given

by

〈x1, x2, x3, . . . , x2q〉 7→ 〈xσ(1), xσ(2), xσ(3), . . . , xσ(2q)〉.

Let Pq be the set of permutations of {1, 2, 3, . . . , 2q} such that the corresponding

permutation of atoms can be effected by permuting predicates and transposing

±Pi(x).

Theorem 8. Let σ be a permutation of {1, 2, 3, . . . , 2q}. Then, as a permutation

of atoms, σ preserves Hamming distance if and only if σ ∈ Pq.

Proof. The right to left implication is clear. In the other direction suppose that

σ is a permutation of atoms such that for all i, j

|σ(αi)− σ(αj)| = |αi − αj| . (3.1)

Let α1 = P1∧P2∧. . .∧Pk and define f : {±Pi | 1 ≤ i ≤ 2q } → {±Pi | 1 ≤ i ≤ 2q }
as follows:

f(±Pi) =

 ±Pi if Pi is a conjunct in σ(α1),

∓Pi if ¬Pi is a conjunct in σ(α1).

Let τ be the permutation of { 1, 2, . . . , 2q} such that on atoms

τ(±P1 ∧ ±P2 ∧ . . . ∧ ±Pq) = f(±P1) ∧ f(±P2) ∧ . . . f(±Pq).

Notice that τ ∈ Pq so to show that σ ∈ Pq it is enough to show that τσ ∈ Pq.

Clearly τσ also satisfies (3.1) and τσ(α1) = α1. Hence by (3.1) if k propositional

variables are negated in αi then the same must be true of τσ(αi). Given 1 ≤ k ≤ q

let αik be the atom with just Pk negated. So τσ(αik) is an atom with just one

negated propositional variable, say it is Pν(k). Clearly ν must be a permutation
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of { 1, 2, . . . , q} since if k 6= j then

|αik − αij | = 2

so

|τσ(αik)− τσ(αij)| = 2.

Let η be the permutation of atoms given by permuting the predicates according

to ν, i.e.

η(±P1 ∧ ±P2 ∧ . . . ∧ ±Pq) ≡ ±Pν(1) ∧ ±Pν(2) ∧ . . . ∧ ±Pν(q).

Then η ∈ Pq and as a permutation of atoms η−1τσ preserves Hamming distance

and is the identity on all atoms with at most one negated predicate. But then

η−1τσ must be the identity on all atoms since, for example,

¬P1 ∧ ¬P2 ∧ . . . ∧ ¬Pk ∧ Pk+1 ∧ Pk+2 ∧ . . . ∧ Pq

is the unique atom which is distance k from α1 and distance k + 1 from

P1 ∧ P2 ∧ . . . ∧ Pk ∧ ¬Pk+1 ∧ Pk+2 ∧ Pk+2 ∧ . . . ∧ Pq−1 ∧ Pq

P1 ∧ P2 ∧ . . . ∧ Pk ∧ Pk+1 ∧ ¬Pk+2 ∧ Pk+2 ∧ . . . ∧ Pq−1 ∧ Pq

. . . . . . . . . . . . . . . . . . .

P1 ∧ P2 ∧ . . . ∧ Pk ∧ Pk+1 ∧ Pk+2 ∧ Pk+2 ∧ . . . ∧ Pq−1 ∧ ¬Pq

and these distances must be preserved after applying η−1τσ. Hence η−1τσ =

Identity ∈ Pq so σ = τ−1η ∈ Pq as required.

For this reason, APH will be of particular interest to us, and is the focus of the

next chapter.

Before considering non-distance based notions of similarity, we make one more

observation about this way of treating analogy. If we accept distance as the fun-

damental measure of dissimilarity between predicates, then from the first distance

function axiom we have that d(Pi,¬Pi) = d(¬Pi, Pi) for any predicate Pi. This

alone suggests a symmetry in the way we treat predicates and their negations.

For any distance function on the atoms of L2 that is a function of the distances
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between the primitive predicates, this fact guarantees that d(α1, α2) = d(α3, α4),

for example. Of course since APS only depends on the strict inequalities gen-

erated by d, this does not commit us to w(α1 |α2) = w(α3 |α4) or any other

such equalities but it certainly suggests SN as a background assumption. Px is

not implied in the same way, since we could take our distance function to be a

weighted sum,

d(〈ε1, ...εq〉, 〈τ1, ...τq〉) = λ1d(ε1, τ1) + λ2d(ε2, τ2) + ...+ λqd(εq, τq),

with different λi. For example, define d on the atoms of L2 by

d(〈ε1, ε2〉, 〈τ1, τ2〉) = d(ε1, τ1) + 2d(ε2, τ2),

and let >S be the similarity function that arises. Then we get that d(α1, α2) <

d(α1, α3), hence SAPS implies w(α1 |α2) > w(α1 |α3), in violation of Px.

3.2 Similarity without distance

As mentioned, the idea that similarity derives from distance between predicates

and their negations in some sense implies the acceptance of SN. If we want to

remain agnostic about SN, perhaps we should consider alternatives.

Another way of looking at Hamming Distance is that it measures the number of

SN licensed permutations required to transform one atom to another; the fewer

permutations required, the closer two atoms are to one another. The permuta-

tions licensed by SN are (α1 α2)(α3 α4) and (α1 α3)(α2 α4). It only requires the

application of a single one of these to transform α1 into α2 or α3, but it requires

the application of both to transform α1 to α4.

Consider the following Weak Negation principle:

Weak Negation (WN)

For any sentence θ, if θ′ is the result of simultaneously swapping every instance

of ±Pi in θ for ∓Pi, for all i, then w(θ′) = w(θ).

On L2, WN licenses only the permutation (α1 α4)(α2 α3). It takes one application

of this to transform α1 to α4 and it is impossible to transform α1 to α2 or α3.

Denote by α∗ the atom that is obtained from α by application of the WN licensed

permutation. Then we can define the similarity relation >W by:
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Definition 9. {αi, αj} >W {αi, αk} iff k 6= j, k 6= i and i = j or αj = αi∗

The principle APW will be explored further in Chapter 3.

Another objection to the distance based notion of similarity might be the idea that

while distance does matter, the path taken to get from one point to another is also

relevant. While d(αi, αj) may be strictly less than d(αi, αk), if we’ve ‘travelled’ by

completely different routes in each case, these are not directly comparable. For

example, consider L3. Any distance relation will have something to say about

the values of

d(P1 ∧ P2 ∧ P3, P1 ∧ ¬P2 ∧ ¬P3)

and

d(P1 ∧ P2 ∧ P3,¬P1 ∧ P2 ∧ P3)

If our distance function is consistent with Px (by which we mean the resulting

analogy principle is) then the latter must be less than or equal to the former;

on the other hand, if we weight a difference in P1 very highly, then perhaps the

latter could be larger. But we might still take that any such comparison between

distances does not allow us to say which pair is more similar to one another,

those similarities being in entirely different domains. In that case, a betweenness

relation might be more appropriate than a distance relation.

Definition 10. For atoms

αi =

q∧
n=1

P εn
n , αj =

q∧
n=1

P νn
n , αk =

q∧
n=1

P τn
n

say that αk is further away from αi than αj is if they are different atoms and for

1 ≤ n ≤ q,

εn = τn ⇒ εn = νn.

Definition 11. Let >F be the similarity relation such that {αi, αj} >F {αi, αk}
iff αk is further away from αi than αj is.

Notice that 2>F and 2>H are the same relation, hence APH holds for w on L2 if

and only if APF does2. APF will thus also receive some attention in Chapter 4.

2Whereas q>F 6= q>H for q > 2.
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3.3 Some useful results about (S)APs

Our first observation is that SAPS and the well known Atom Exchangeability

Principle (Ax) (see below) are mutually inconsistent for many similarity relations

>S.

The Atom Exchangeability Principle (Ax)

If σ is a permutation of 1, 2, . . . , 2q, then

w

(
n∧
j=1

αij(aj)

)
= w

(
n∧
j=1

ασ(ij)(aj)

)

If there are distinct i, j, k such that

{αi, αj} >S {αi, αk}

then the stated inconsistency is immediate since for distinct atoms αi(x), αj(x), αk(x)

Ax gives that

w(αi(a2) |αj(a1)) = w(αi(a2) |αk(a1)) (3.2)

wheras SAPS prescribes strict inequality in (3.2). If there is no such triple, then

APS is equivalent to SPIR. SPIR fails for some w satisfying Ax but is also satisfied

by some (see [26].)

Of course this was entirely to be expected since whereas the principles Ex, Px,

SN seem to simply capture an evident symmetry in the language, to demand

symmetry between atoms makes a more substantial claim. To assume that atoms

can be exchanged without restriction is to suppose that the distinguishing features

of the atoms have no relevance for a rational probability function. In particular,

this means that such a function cannot be affected by varying degrees of similarity

between atoms; in other words, it precludes analogy by similarity of atoms. This

result is of some further relevance here because Ax is a widely accepted rational

principle in Inductive Logic, for example it holds for Carnap’s cqλ Continuum

and the continuum arising in [25]. Hence most SAPS principles will fail widely

amongst the familiar rational probability functions considered in Inductive Logic.

Our next proposition shows that APS and SAPS are often preserved under

marginalization, a result which will play an important role later when we come to

consider various (S)APS for Lq with q > 2. To consider what it means for (S)APS



CHAPTER 3. DISTANCE AND SIMILARITY 42

to hold for languages of different sizes we first need to say something about when

we take a similarity relation q+1>S to be the extension of a similarity relation
q>S.

Suppose that q>S is a similarity relation on Lq. For any atom α(x) of Lq write

α+(x) for α(x) ∧ Pq+1(x) and α−(x) for α(x) ∧ ¬Pq+1(x). Then q+1 >S is an

extension of q>S if for every α, β, γ such that {α, β} q>S {α, γ},

{α+, β+} q+1>S {α+, γ+}

{α+, β−) q+1>S {α+, γ−}

{α−, β+} q+1>S {α−, γ+}

{α−, β−} q+1>S {α−, γ−} (3.3)

We can now prove the following proposition.

Proposition 12. Suppose that q >S is a similarity relation on Lq and q+1 >S

an extension to Lq+1. If the probability function w on Lq+1 satisfies Ex + SN +

APS, then the restriction of w to SLq also satisfies APS.

Proof. Let w be a probability function satisfying APS on Lq+1 and let w′ be its

restriction to Lq. Let α(x), β(x), γ(x) be atoms of L′ such that

{α, β} q>S {α, γ}.

Let α+ and α− be defined as above (and similarly for β±, γ±.) By assumption,

we have

{α+, β+} q+1>S {α+, γ+}

{α+, β−) q+1>S {α+, γ−}

(3.4)

Let θ ∈ SL′, so θ does not contain any occurrences of Pq. Then since w satisfies

SN,

w(α− ∧ θ) = w(α+ ∧ θ), w(α+ ∧ θ) = w(α− ∧ θ),

and similarly for β, γ. [Here, following our earlier stated abbreviation, we are
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leaving the instantiating constants implicit].

Hence

w′(α | β ∧ θ) =
w((α+ ∨ α−) ∧ (β+ ∨ β−) ∧ θ)

w((β+ ∨ β−) ∧ θ)

=
w(α+ ∧ β+ ∧ θ) + w(α+ ∧ β− ∧ θ) + w(α− ∧ β+ ∧ θ) + w(α− ∧ β− ∧ θ)

w(β+ ∧ θ) + w(β− ∧ θ)

=
w(α+ ∧ β+ ∧ θ) + w(α+ ∧ β− ∧ θ) + w(α+ ∧ β− ∧ θ) + w(α+ ∧ β+ ∧ θ)

w(β+ ∧ θ) + w(β+ ∧ θ)

=
2w(α+ ∧ β+ ∧ θ) + 2w(α+ ∧ β− ∧ θ)

2w(β+ ∧ θ)
= w(α+ | β+ ∧ θ) + w(α+ | β− ∧ θ)

≥ w(α+ | γ+ ∧ θ) + w(α+ | γ− ∧ θ) by (3.4), APS on Lq+1

= w′(α | γ ∧ φ)

so w′ satisfies APS on Lq, as required.

Note that the same result holds for SAPS, mutatis mutandis.

Clearly, the similarity relation derived from Hamming Distance on Lq+1 is an

extension of the similarity relation derived from Hamming Distance on Lq. More-

over, since Hamming Distance (as well as all other distances mentioned in the

previous section) suggests SN as a background assumption, it is natural to look

at (S)APH in the presence of SN, in which case Proposition 12 shows that it will

be preserved under marginalisation. This means that in seeking to classify the

probability functions satisfying these conditions we can start by looking at small

languages.

Our next proposition concerns the smallest language, L1, where there is only

a single predicate. For this language Carnap’s probability function c1
∞ has the

discrete de Finetti prior which puts all the measure on the single point 〈1
2
, 1

2
〉

and c1
0 has discrete de Finetti prior which splits the measure equally between the

points 〈1, 0〉, 〈0, 1〉.

Proposition 13. Suppose that the probability function w on L1 satisfies Ex. Then

w satisfies APS for any >S.
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Proof. By the definition of a similarity relation, any >S satisfies

{P1, P1}, {¬P1,¬P1} >S {P1,¬P1}

and these are the only possible inequalities relevant to L1. Hence to show that w

satisfies APS it is enough to show that

w(P (an+1) |P (an) ∧ φ) ≥ w(P (an+1) | ¬P (an) ∧ φ) (3.5)

where as usual φ ∈ QFSL1 does not contain an or an+1. This is a well known

example of SPIR, see [27], but for completeness we will sketch the proof.

Using the Disjunctive Normal Form Theorem let

φ(a1, a2, . . . , an) ≡
r∨
j=1

n∧
i=1

P εij(ai)

where the εij ∈ {0, 1} and P 1 = P, P 0 = ¬P. By de Finetti’s Representation

Theorem (and our convention on page 13), to show (3.5) it is sufficient to show

that when the denominators are non-zero,∫
x2f(x) dµ(x)∫
xf(x) dµ(x)

≥
∫
x(1− x)f(x) dµ(x)∫
(1− x)f(x) dµ(x)

where f(x) =
∑r

j=1 x
∑
i εij(1− x)n−

∑
i εij and all the integrals are over D1.

Simplifying and subtracting the right hand side gives∫
x2f(x)dµ(x)

∫
f(x)dµ(x)−

(∫
xf(x)dµ(x)

)2

≥ 0,

equivalently ∫
f(x)

(
x−

∫
yf(y) dµ(y)∫
f(y) dµ(y)

)2

dµ(x) ≥ 0. (3.6)

The result follows.

Note that the only way equality can hold in (3.6) for all f(x) is if µ concentrates

all the measure on the three points 〈1, 0〉, 〈0, 1〉, 〈a, 1−a〉 ∈ D2 for some 0 < a < 1.

This means that if we make the further assumption that w satisfies SN we would
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have to have that µ({〈0, 1〉}) = µ({〈1, 0〉}) and a = 1/2 so

w = µ({〈1
2
,
1

2
〉})c1

∞ + (1− µ({〈1
2
,
1

2
〉}))c1

0.

Hence, given the extra constraint of SN, the corresponding result holds for SAPS

just when w is not of the above form.

Finally we note that for any >S, SAPS implies the Principle of Regularity (REG):

The Principle of Regularity (REG)

For any consistent θ ∈ QFSL, w(θ) 6= 0.

For if w were to fail REG we would have w(θ(a1, ..., an)) = 0 for some θ(a1, ..., an) ∈
QFSL. But then we would have

w(αi(an+2) |αj(an+1) ∧ θ(a1, ..., an)) = w(αi(an+2) |αk(an+1) ∧ θ(a1, ..., an))

for any atoms αi, αj, αk, whereas SAPS requires strict inequality in some in-

stances.

Having introduced the key ideas, in the next Chapter we turn to look at (S)APH

in more detail.



Chapter 4

Hamming Distance and analogy

This Chapter will look more closely at Hamming Distance and the resulting APH ,

SAPH and SDAPH . The close relationship between Hamming Distance and the

symmetry requirements of Px + SN makes this a particularly natural way to

formulate analogy between atoms in PIL.

In consequence of Proposition 12 it is instructive to first consider probability

functions satisfying APH on languages with few predicates. By Proposition 13

APH will hold on L1 for any w satisfying Ex, so we begin with the case of APH

for L2.

4.1 L2 and the Wheel of Fortune

Fix the ordering of the atoms of L2 as usual by α1(x) = P1(x) ∧ P2(x), α2(x) =

P1(x)∧¬P2(x), α3(x) = ¬P1(x)∧P2(x), α4(x) = ¬P1(x)∧¬P2(x). The Hamming

Distance between the atoms can then be pictured thus:

α1

α3 α2

α4

Notie that this situation is actually a model of Skyrm’s ‘Wheel of Fortune’, with

the atoms representing respectively the compass points North, East, West, South.

46
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For ~b ∈ Dq define w~b to be the probability function on Lq given by

w~b

(
m∧
i=1

αhi(ari)

)
=

m∏
i=1

bhi =
2q∏
j=1

b
nj
j

where nj is the number of times that αj appears amongst the αhi .

For 〈a, b, c, d〉 ∈ D2 let y〈a,b,c,d〉 be the probability function given by

8−1(w〈a,b,c,d〉+w〈a,c,b,d〉+w〈b,a,d,c〉+w〈c,a,d,b〉+w〈b,d,a,c〉+w〈c,d,a,b〉+w〈d,b,c,a〉+w〈d,c,b,a〉).

Note that the eight summands correspond to the permutations of α1, α2, α3, α4

that preserve Hamming Distance, where the atoms are associated with a, b, c and d

respectively. Also note that in the case a = b = c = d = 1/4 all these summands

are equal and

y〈 1
4
, 1
4
, 1
4
, 1
4
〉 = w〈 1

4
, 1
4
, 1
4
, 1
4
〉 = c2

∞.

Proposition 14. The following probability functions on L2 satisfy Ex, Px, SN

and APH :

(i) y〈a,b,c,d〉 when 〈a, b, c, d〉 ∈ D2, a ≥ b ≥ c ≥ d, ad = bc and a = b or b = c.

(ii) λy〈a,a,b,b〉 + (1− λ)c2
∞ when 〈a, a, b, b〉 ∈ D2, a > b ≥ 0 and 0 ≤ λ ≤ 1.

(iii) λy〈1,0,0,0〉 + (1− λ)y〈 1
2
, 1
2
,0,0〉 when 0 ≤ λ ≤ 1.

Proof. (i) Clearly y〈a,b,c,d〉 satisfies Ex since it is a convex combination of proba-

bility functions satisfying Ex. Also, by Theorem 8, it satisfies Px and SN as it is

invariant under permutations of the atoms that preserve Hamming Distance. It

remains only to show that y〈a,b,c,d〉 satisfies APH ; in other words, we need to show

that the following inequalities hold for any φ ∈ QFSL2:

y〈a,b,c,d〉(α1

∣∣α2 ∧ φ) ≥ y〈a,b,c,d〉(α1

∣∣α4 ∧ φ) (4.1)

y〈a,b,c,d〉(α1

∣∣α1 ∧ φ) ≥ y〈a,b,c,d〉(α1

∣∣α2 ∧ φ) (4.2)

This is a straightforward calculation which we include for the sake of completeness

(and later reference) though the trusting reader may at this point wish to skip it.

Let N1 = w〈a,b,c,d〉(φ), N2 = w〈a,c,b,d〉(φ), E1 = w〈b,a,d,c〉(φ), E2 = w〈c,a,d,b〉(φ),W1 =

w〈b,d,a,c〉(φ),W2 = w〈c,d,a,b〉(φ), S1 = w〈d,b,c,a〉(φ), S2 = w〈d,c,b,a〉(φ).
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Writing out (4.1) using the definition of y〈a,b,c,d〉 and canceling the 8−1 factors, we

obtain

abN1 + acN2 + baE1 + caE2 + bdW1 + cdW2 + dbS1 + dcS2

bN1 + cN2 + aE1 + aE2 + dW1 + dW2 + bS1 + cS2

≥ adN1 + adN2 + bcE1 + cbE2 + bcW1 + cbW2 + daS1 + daS2

dN1 + dN2 + cE1 + bE2 + cW1 + bW2 + aS1 + aS2

Multiplying out gives that the following sum should be non-negative.

Sum 1.

N1E1(bc− ad)(a− b) +N1E2(b2 − ad)(a− c) +N1W1(bc− d2)(a− b)+
N1W2(b2 − d2)(a− c) +N1S1b(a− d)2 +N1S2(ab− cd)(a− d)+

N2E1(c2 − ad)(a− b) +N2E2: (ad− bc)(c− a) +N2W1(c2 − d2)(a− b)+
N2W2(bc− d2)(a− c) +N2S1(ac− db)(a− d) +N2S2c(a− d)2+

E1W1a(b− c)2 + E1W2(ab− cd)(b− c) + E1S1(a2 − bc)(b− d)+

E1S2(a2 − c2)(b− d) + E2W1(ac− bd)(c− b) + E2S1(a2 − b2)(c− d)+

E2S2(a2 − bc)(c− d) +W1W2d(b− c)2 +W1S1(ad− bc)(b− d)+

W1S2(ad− c2)(b− d) +W2S1(ad− b2)(c− d) +W2S2(ad− bc)(c− d)

If ad = bc and a ≥ b ≥ c ≥ d then all these terms, except for the terms

in N2E1 and W2S1, are greater than or equal to zero (and not all zero unless

a = b = c = d.) If in addition a = b then also c = d (since ad = bc) and the terms

in N2E1 and W2S1 are both equal to zero. Similarly if b = c, then ad = b2 = c2 so

again the terms in N2E1 and W2S1 are both zero. Hence the required inequality

holds.

Writing out (4.2) using the definition of y〈a,b,c,d〉 and canceling the 8−1 factors, we

obtain

a2N1 + a2N2 + b2E1 + c2E2 + b2W1 + c2W2 + d2S1 + d2S2

aN1 + aN2 + bE1 + cE2 + bW1 + cW2 + dS1 + dS2

≥ abN1 + acN2 + baE1 + caE2 + bdW1 + cdW2 + dbS1 + dcS2

bN1 + cN2 + aE1 + aE2 + dW1 + dW2 + bS1 + cS2

Multiplying out gives that the following sum should be non-negative.

Sum 2
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N1E1(a2 − b2)(a− b) +N1E2(a2 − bc)(a− c) +N1W1(ad− b2)(a− b)+
N1W2(ad− bc)(a− c) +N1S1b(a− d)2 +N1S2(ac− bd)(a− d)+

N2E1(a2 − bc)(a− b) +N2E2(a2 − c2)(a− c) +N2W1(ad− bc)(a− b)+
N2W2(ad− c2)(a− c) +N2S1(ab− cd)(a− d) +N2S2c(a− d)2+

E1E2a(b− c)2 + E1W2(bd− ac)(b− c) + E1S1(b2 − ad)(b− d)+

E1S2(bc− ad)(b− d) + E2W1(ab− cd)(b− c) + E2S1(bc− ad)(c− d)+

E2S2(c2 − ad)(c− d) +W1W2d(b− c)2 +W1S1(b2 − d2)(b− d)+

W1S2(bc− d2)(b− d) +W2S1(bc− d2)(c− d) +W2S2(c2 − d2)(c− d)

If ad = bc and a ≥ b ≥ c ≥ d then all these terms except those in N1W1, E1W2,

E2S2 are greater than or equal to zero. If a = b then also c = d (since ad = bc)

and the terms in N1W1, E1W2, E2S2 are zero whilst if b = c then ad = b2 = c2 and

again the terms in N1W1, E1W2, E2S2 are zero. Hence the required inequality

holds in this case too.

(ii) This part is proved similarly. Taking N = w〈a,a,b,b〉(φ), E = w〈b,a,b,a〉(φ),W =

w〈a,b,a,b〉(φ), S = w〈b,b,a,a〉(φ), K = c2
∞(φ), inequality (4.1) becomes

4−1λ(a2N + baE + abW + b2S) + 4−2(1− λ)K

4−1λ(aN + aE + bW + bS) + 4−1(1− λ)K

≥ 4−1λ(abN + abE + abW + abS) + 4−2(1− λ)K

4−1λ(bN + aE + bW + aS) + 4−1(1− λ)K
.

Canceling factors of 4−1 and multiplying out gives that the following sum should

be non-negative.

λ2(NEa(a− b)2 +NS(a2 − b2)(a− b) +WSb(a− b)2)+

λ(1− λ)(NK(a− b)(a− 4−1) + SK(a− b)(4−1 − b))

Clearly this is non-negative since a ≥ b and 2a+ 2b = 1 (so a ≥ 4−1 ≥ b).

With these same values for N,K etc. (4.2) becomes

4−1λ(a2N + b2E + a2W + b2S) + 4−2(1− λ)K

4−1λ(aN + bE + aW + bS) + 4−1(1− λ)K

≥ 4−1λ(a2N + abE + abW + b2S) + 4−2(1− λ)K

4−1λ(aN + aE + bW + bS) + 4−1(1− λ)K
.

Canceling factors of 4−1 and multiplying out gives that the following sum should

be non-negative,



CHAPTER 4. HAMMING DISTANCE AND ANALOGY 50

λ2(NEa(a− b)2 + EW (a2 − b2)(a− b) +WSb(a− b)2)+

λ(1− λ)(EK(a− b)(4−1 − b) +WK(a− b)(a− 4−1)),

which again it clearly is.

For part (iii), let N = w〈1,0,0,0〉(φ), E = w〈0,1,0,0〉(φ),W = w〈0,0,1,0〉(φ), S =

w〈0,0,0,1〉(φ), n = w〈 1
2
, 1
2
,0,0〉(φ), e = w〈0, 1

2
,0, 1

2
〉(φ), w = w〈 1

2
,0, 1

2
,0〉(φ), s = w〈0,0, 1

2
, 1
2
〉(φ)

Ignoring the (trivial by our convention as given on page 13) cases when a denom-

inator is zero note that

(λy〈1,0,0,0〉 + (1− λ)y〈 1
2
, 1
2
,0,0〉)(α1 |α4 ∧ φ) = 0

for all φ, while

(λy〈1,0,0,0〉 + (1− λ)y〈 1
2
, 1
2
,0,0〉)(α1 |α2 ∧ φ) =

(1− λ)16−1n

(λ4−1E + (1− λ)8−1(n+ e)

and

λy〈1,0,0,0〉 + (1− λ)y〈 1
2
, 1
2
,0,0〉(α1 |α1 ∧ φ) =

λ4−1N + (1− λ)16−1(n+ w)

λ4−1N + (1− λ)8−1(n+ w)

Clearly then, (4.1) holds. For (4.2) to hold, canceling factors of 16−1 and cross

multiplying we see that the following sum must be non-negative:

16λ2NE + 2(1− λ)2(ne+ ew)+

4λ(1− λ)(Nn+ 2Ne+ En+ Ew),

which it clearly is.

Noticing that the terms N1, N2, E1, . . . , S2, N,E,W, S,K will always be strictly

positive for consistent φ when d > 0 in (i) and b, λ > 0 in (ii) it can be seen

that we will have SAPH in case (i) if in addition a > d > 0 and in case (ii) if in

addition a > b > 0 and λ > 0. We will never have SAPH in case (iii) since there

are consistent φ for which as N,E,W, S, n, e, w and s are all zero.

It is interesting to note that despite the cases (iii) and (ii) with b = 0 of this

proposition the probability functions

w = λy〈1,0,0,0〉 + (1− λ)c2
∞
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do not satisfy APH when 0 < λ < 1, since in this case, for example,

w(α1 |α2 ∧ α2) =
w(α1 ∧ α2 ∧ α2)

w(α2 ∧ α2)
=

(1− λ)1/43

λ+ (1− λ)1/42

while

w(α1 |α4 ∧ α2) =
w(α1 ∧ α4 ∧ α2)

w(α4 ∧ α2)
=

(1− λ)1/43

(1− λ)1/42

The main part of this chapter will now be devoted to showing the converse to

Proposition 14: that any probability function on L2 satisfying Ex, Px, SN and

APH must be one of the functions above. We first need some lemmata.

Lemma 15. If the probability function w on L2 satisfies Ex, Px, SN then there

is a countably additive measure µ on D2 such that for S a Borel subset of D2 and

σ ∈ P2, µ(σ(S)) = µ(S) and

w =

∫
D2

y〈x1,x2,x3,x4〉 dµ(~x).

Proof. By the version of de Finetti’s Representation Theorem given earlier and

the definition of w〈x1,x2,x3,x4〉

w =

∫
D2

w〈x1,x2,x3,x4〉 dµ(~x)

for some countably additive measure µ on D2. Since for any σ ∈ P2,

w

(
k∧
j=1

αhj(aj)

)
= w

(
k∧
j=1

ασ(hj)(aj)

)
,

∫
D2

w〈x1,x2,x3,x4〉 dµ(~x) =

∫
D2

w〈xσ(1),xσ(2),xσ(3),xσ(4)〉 dµ(~x) (4.3)

=

∫
D2

w〈x1,x2,x3,x4〉 dµ(σ−1(~x)). (4.4)

Hence from (4.4), since |P2| = 8,

w =

∫
D2

w〈x1,x2,x3,x4〉8
−1
∑
σ∈P2

µ(σ−1(~x)).
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The measure

8−1
∑
σ∈P2

µσ−1

has the required invariance property and taking µ′ to be this measure and using

(4.3) for µ′ gives

w =

∫
D2

8−1

(∑
σ∈P2

w〈xσ(1),xσ(2),xσ(3),xσ(4)〉

)
dµ′(~x),

which is the required conclusion since

y〈x1,x2,x3,x4〉 = 8−1

(∑
σ∈P2

w〈xσ(1),xσ(2),xσ(3),xσ(4)〉

)
.

In the next two lemmas assume that w is a probability function on L2 satisfying

APH and Ex, Px, SN with de Finetti representation

w =

∫
D2

y~x dµ(~x)

and, by Lemma 15, µ invariant under permutations σ of D2 for σ ∈ P2.

Recall that ~b ∈ D2 is said to be in the support of µ if for every open subset S of R4

containing ~b, µ(S ∩D2) > 0. Notice that if µ is as in Lemma 15 and 〈b1, b2, b3, b4〉
is in the support of µ then so is 〈bσ(1), bσ(2), bσ(3), bσ(4)〉 for σ ∈ P2.

We shall be needing the following result.

Lemma 16. Let 〈b1, b2, . . . , b2q〉 ∈ Dq be in the support of µ and k1, k2, . . . , k2q ∈
N. Then

lim
m→∞

∫
Dq

∏2q

i=1 x
[mbi]+ki
i dµ(~x)∫

Dq

∏2q

i=1 x
[mbi]
i dµ(~x)

=
2q∏
i=1

bkii ,

where as usual [mbi] is the integer part of mbi.

Proof. We begin by showing that for any natural numbers r1, r2, . . . , r2q , possibly

equal to 0, and for any ν > 0∣∣∣∣∣
∫
Dq

∏2q

i=1 x
mbi+ni
i dµ(~x)∫

Dq

∏2q

i=1 x
mbi
i dµ(~x)

−
2q∏
i=1

bnii

∣∣∣∣∣ < ν. (4.5)
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for all m eventually, where ni = [(m+ s)bi]− (m+ s)bi + sbi + ri for some fixed

s ≥ 2/bi if bi 6= 0 and ni = ri if bi = 0, i = 1, 2, . . . , 2q. Let h ≥ 1 be an upper

bound on the ni (for all m) and let

Ai =

 [bi, h] if bi 6= 0,

{bi, ri} if bi = 0.

Notice that the Ai do not depend on m and ni ∈ Ai for all m, i = 1, 2, . . . , 2q

Since the function

f : 〈x1, x2, . . . , x2q+1〉 7→
2q∏
i=1

x
x2q+i
i

is uniformly continuous on Dq ×
∏2q

i=1 Ai we can pick 0 < ε < ν such that for

~z,~t ∈ Dq ×
∏2q

i=1Ai,∣∣∣∣∣
2q∏
i=1

z
z2q+i
i −

2q∏
i=1

t
t2q+i
i

∣∣∣∣∣ < ν/2 whenever |~z − ~t| < ε. (4.6)

Also since the function
∏2q

i=1 x
bi
i takes its maximum value on Dq at ~x = ~b there is

a δ > 0 such that

2q∏
i=1

bbii >
2q∏
i=1

ybii + 2δ whenever |~y −~b| ≥ ε, ~y ∈ Dq.

Again by the uniform continuity of the function f we can choose ε′ < ε such that

for ~z,~t ∈ Dq ×
∏2q

i=1Ai,∣∣∣∣∣
2q∏
i=1

z
z2q+i
i −

2q∏
i=1

t
t2q+i
i

∣∣∣∣∣ < δ whenever |~z − ~t| < ε′. (4.7)

Hence for any ~x, ~y ∈ Dq with |~x−~b| < ε′, |~y −~b| ≥ ε,∣∣∣∏2q

i=1 x
bi
i −

∏4
i=1 y

bi
i

∣∣∣ ≥ ∣∣∣∣∣∣∏2q

i=1 b
bi
i −

∏2q

i=1 y
bi
i

∣∣∣− ∣∣∣∏2q

i=1 b
bi
i −

∏2q

i=1 x
bi
i

∣∣∣∣∣∣
> |2δ − δ| = δ.
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For any such ~x, ~y then,

2q∏
i=1

ybii <

2q∏
i=1

xbii − δ ≤
2q∏
i=1

xbii (1− δ)

so
2q∏
i=1

ymbii <

2q∏
i=1

xmbii (1− δ)m.

Let Im denote the integral ∫
Dq

∏2q

i=1 x
mbi+ni
i dµ(~x)∫

Dq

∏2q

i=1 x
mbi
i dµ(~x)

.

Then

Im =

∫
Nε(~b)

∏2q

i=1 x
mbi+ni
i dµ(~x) +

∫
¬Nε(~b)

∏2q

i=1 x
mbi+ni
i dµ(~x)∫

Nε(~b)

∏2q

i=1 x
mbi
i dµ(~x) +

∫
¬Nε(~b)

∏2q

i=1 x
mbi
i dµ(~x)

(4.8)

where as usual Nε(~b) = {~x ∈ Dq | |~x−~b| < ε}.
We have that,

∫
¬Nε(~b)

2q∏
i=1

xmbi+nii dµ(~x) ≤
∫
¬Nε(~b)

2q∏
i=1

xmbii dµ(~x)

≤
∫
¬Nε(~b)

inf
Nε′ (

~b)
(

2q∏
i=1

xmbii )dµ(~x)(1− δ)m

= inf
Nε′ (

~b)
(

2q∏
i=1

xmbii )µ(¬Nε(~b))(1− δ)m.

Also,

∫
Nε′ (

~b)

2q∏
i=1

xmbii dµ(~x) ≥
∫
Nε′ (

~b)

inf
Nε′ (

~b)
(

2q∏
i=1

xmbii )dµ(~x)

= inf
Nε′ (

~b)
(

2q∏
i=1

xmbii )µ(Nε′(~b)),
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so ∫
¬Nε(~b)

2q∏
i=1

xmbi+nii dµ(~x) ≤
∫
Nε′ (

~b)

2q∏
i=1

xmbii dµ(~x)
µ(¬Nε(~b))

µ(Nε′(~b))
(1− δ)m

≤
∫
Nε(~b)

2q∏
i=1

xmbii dµ(~x)
µ(¬Nε(~b))

µ(Nε′(~b))
(1− δ)m. (4.9)

Let dm and dm respectively be the minimum and maximum values of
∏2q

x=1 x
ni
i

for ~x from the closure of the set Nε(~b). Then

dm ≤

∫
Nε(~b)

∏2q

i=1 x
mbi+ni
i dµ(~x)∫

Nε(~b)

∏2q

i=1 x
mbi
i dµ(~x)

≤ dm

so there is some constant, dm say, such that

dm =

∫
Nε(~b)

∏2q

i=1 x
mbi+ni
i dµ(~x)∫

Nε(~b)

∏2q

i=1 x
mbi
i dµ(~x)

=
2q∏
i=1

anii

for some ~a ∈ Nε(~b). By (4.7), | dm −
∏2q

i=1 b
ni
i | < ν/2.

Using this, (4.8) and (4.9) we see that for sufficiently large m,

Im −
2q∏
i=1

bnii ≤ dm +
µ(¬Nε(~b))

µ(Nε′(~b))
(1− δ)m −

2q∏
i=1

bnii < ν.

Also for large m,

Im −
2q∏
i=1

bnii ≥ dm

1 + µ(Nε(~b))

µ(Nε′ (
~b))

(1− δ)m
−

2q∏
i=1

bnii

>

∏2q

i=1 b
ni
i − ν/2

1 + ν/2
−

2q∏
i=1

bnii

≥ −ν.

This completes the proof of (4.5). By taking the limit of the ratio of expressions

as in (4.5) when the ri = ki and when the ri = 0 we now obtain as required that

lim
m→∞

∫
Dq

∏2q

i=1 x
[(m+s)bi]+ki
i dµ(~x)∫

D2

∏2q

i=1 x
[(m+s)bi]
i dµ(~x)

=
2q∏
i=1

bkii .
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Lemma 17. Let the probability function w have de Finetti prior µ and suppose

that 〈b1, . . . , b2q〉, 〈c1, . . . , c2q〉 are in the support of µ and
∏2q

i=1 b
bi
i ,
∏2q

i=1 c
ci
i < 1.

Then there are increasing sequences kn, jn and 0 < λ(<∞) such that

lim
n→∞

∫
D2q

∏2q

i=1 x
[knbi]
i dµ(~x)∫

D2q

∏2q

i=1 x
[jnci]
i dµ(~x)

= λ.

Proof. Pick small ε > 0. From the proof of the previous lemma there is a ν > 0

such that sufficiently large m

(1 + ν)

∫
Nε(~b)

2q∏
i=1

x
[mbi]
i dµ(~x) ≥

∫
D2q

2q∏
i=1

x
[mbi]
i dµ(~x) ≥

∫
Nε(~b)

2q∏
i=1

x
[mbi]
i dµ(~x).

(4.10)

The sequence (in m) ∫
Nε(~b)

2q∏
i=1

x
[mbi]
i dµ(~x)

is decreasing to 0 (strictly for infinitely many m) since
∏2q

i=1 b
bi
i < 1. Indeed

∫
Nε(~b)

2q∏
i=1

x
[mbi]
i dµ(~x) ≥

∫
Nε(~b)

2q∏
i=1

x
[(m+1)bi]
i dµ(~x) ≥ γ

∫
Nε(~b)

2q∏
i=1

x
[mbi]
i dµ(~x)

(4.11)

where γ > 0 is at most the minimum of the function
∏

bi 6=0 xi on the closure of

Nε(~b). Similarly for ~c, so we may assume that this same γ works there too.

Using (4.11) we can now produce increasing (infinitely often strictly) sequences

jn, kn ∈ N such that

∫
Nε(~b)

2q∏
i=1

x
[jnbi]
i dµ(~x) ≥

∫
Nε(~c)

2q∏
i=1

x
[(knci]
i dµ(~x)] ≥ γ

∫
Nε(~b)

2q∏
i=1

x
[j(n+1)bi]

i dµ(~x)

∫
Nε(~c)

2q∏
i=1

x
[k(n+1)ci]

i dµ(~x) ≥
∫
Nε(~c)

2q∏
i=1

x
[(j(n+1)ci]

i dµ(~x)] ≥ γ

∫
Nε(~c)

2q∏
i=1

x
[k(n+1)ci]

i dµ(~x).
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From these inequalities we obtain that for all n > 0,

γ ≤

∫
Nε(~b)

∏2q

i=1 x
[jnbi]
i dµ(~x)∫

Nε(~c)

∏2q

i=1 x
[knci]
i dµ

≤ γ−1

and with (4.10)

γ(1 + ν)−1 ≤
∫
D2q

∏2q

i=1 x
[jnbi]
i dµ(~x)∫

D2q

∏2q

i=1 x
[knci]
i dµ(~x)

≤ γ−1(1 + ν). (4.12)

The sequence in (4.12) has a convergent subsequence, to λ say, and the lemma

follows.

Corollary 18. Let w be a probability function with de Finetti prior µ and let ~b,~c

be distinct support points of µ such that
∏2q

i=1 b
bi
i ,
∏2q

i=1 c
ci
i < 1. Then there exists

λ > 0 and state descriptions φn, ψn such that for any r1, . . . , r2q ∈ N,

lim
n→∞

w

(
2q∧
i=1

αrii |φn(a1, . . . , asn) ∨ ψn(a1, . . . , atn)

)

= (1 + λ)−1

2q∏
i=1

brii + λ(1 + λ)−1

2q∏
i=1

crii .

Proof. Let jn, kn, λ be as in Lemma 17 and φn(a1, . . . , asn) be the conjunction

of [jnbi] copies of αi(x) for i = 1, . . . , 2q instantiated by a1, . . . , asn , so sn =∑2q

i=1[jnbi]. Similarly let ψn(a1, . . . , atn) be the conjunction of [knci] copies of

αi(x) for i = 1, . . . , 2q instantiated by a1, . . . , atn , so tn =
∑2q

i=1[knci]. Let δn be

such that ∫
D2q

2q∏
i=1

x
[jnbi]
i dµ(~x) = (1 + δn)λ

∫
D2q

2q∏
i=1

x
[knci]
i dµ(~x),

so δn → 0 as n→∞.

Then

w

(
2q∧
i=1

αrii |φn(a1, . . . , asn) ∨ ψn(a1, . . . , atn)

)

=

∫
D2q

∏2q

i=1 x
[jnbi]+ri
i dµ(~x) +

∫
D2q

∏2q

i=1 x
[knci]+ri
i dµ(~x)∫

D2q

∏2q

i=1 x
[jnbi]
i dµ(~x) +

∫
D2q

∏2q

i=1 x
[knci]
i dµ(~x)
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=

∫
D2q

∏2q

i=1 x
[jnbi]+ri
i dµ(~x)

(1 + λ(1 + δn))
∫
D2q

∏2q

i=1 x
[jnbi]
i dµ(~x)

+

∫
D2q

∏2q

i=1 x
[knci]+ri
i dµ(~x)

(1 + λ−1(1 + δn)−1)
∫
D2q

∏2q

i=1 x
[knci]
i dµ(~x)

.

Taking the limit as n→∞ now gives, by Lemma 17,

(1 + λ)−1

2q∏
i=1

brii + λ(1 + λ)−1

2q∏
i=1

crii ,

as required.

We are now in a position to prove the converse to Proposition 14. In what follows,

let w be a probability function satisfying APH with de Finetti prior µ.

Theorem 19. If the probability function w on L2 satisfies Ex, Px, SN and APH ,

then for some countably additive measure µ on

A2 = {〈x1, x2, x3, x4〉 ∈ D2 | y〈x1,x2,x3,x4〉 = y〈a,b,c,d〉 for some 〈a, b, c, d〉 ∈ D2

with ad = bc and a = b or b = c)},

w =

∫
A2

y〈x1,x2,x3,x4〉 dµ(~x).

Furthermore we may take µ to be invariant under the σ ∈ P2.

Proof. By Lemma 15 we know that

w =

∫
D2

y〈x1,x2,x3,x4〉 dµ(~x)

for some such measure µ so all that remains is to show that µ gives all the measure

to points from A2.

So suppose that ~b = 〈b1, b2, b3, b4〉 is in the support of µ. We can assume, without

loss of generality since we have invariance under the permutations in P2, that

b1 ≥ b2, b3, b4 and b2 ≥ b3. Clearly if all the bi are equal then ~b is in A2. So now

suppose that not all the bi are equal and to start with that at most one of them

is zero.
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Suppose firstly that b1 6= b2. Note that if 〈b1, b2, b3, b4〉 is in the support of µ then

so is 〈b2, b1, b4, b3〉. So by Corollary 18, we can find state descriptions φn, ψn such

that for some λ > 0,

lim
n→∞

w(αj11 α
j2
2 α

j3
3 α

j4
4 |φn ∨ ψn) = (1 + λ)−1(bj11 b

j2
2 b

j3
3 b

j4
4 + λbj12 b

j2
1 b

j3
4 b

j4
3 )

Taking j3 = j4 = 0 and the cases j1 = j2 = 1 and j2 = 1, j1 = 0 we get that

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) =
b1b2 + λb2b1

b2 + λb1

and taking j2 = j3 = 0 and the cases j1 = j4 = 1 and j4 = 1, j1 = 0 we get that

lim
n→∞

w(α1 |α4 ∧ (φn ∨ ψn)) =
b1b4 + λb2b3

b4 + λb3

APH requires that w(α1 |α2 ∧ θ) > w(α1 |α4 ∧ θ) for any θ ∈ QFSL; so, in

particular, w(α1 |α2 ∧ (φn ∨ ψn)) > w(α1 |α4 ∧ (φn ∨ ψn)) for all n. This means

that we cannot have

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) < lim
n→∞

w(α1 |α4 ∧ (φn ∨ ψn))

and so we must have
b1b2 + λb2b1

b2 + λb1

≥ b1b4 + λb2b3

b4 + λb3

which simplifies to

λ(b2b3 − b1b4)(b1 − b2) ≥ 0.

Hence

(b2b3 − b1b4)(b1 − b2) ≥ 0

and we can conclude that

b2b3 ≥ b1b4

Similarly, using the fact that 〈b1, b3, b2, b4〉 and 〈b2, b4, b1, b3〉 must be in the sup-

port of µ and considering

lim
n→∞

w(α1 |α1 ∧ (φn ∨ ψn))
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and

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn))

APH gives that
b2

1 + λb2
2

b1 + λb2

≥ b1b3 + λb2b4

b3 + λb4

for some λ > 0, which simplifies to

λ(b1b4 − b2b3)(b1 − b2) ≥ 0

Hence

(b1b4 − b2b3)(b1 − b2) ≥ 0

and can conclude that

b1b4 = b2b3

Notice that what Corollary 18 is allowing us to do here is to isolate any of the

coefficients in Sum 1, Sum 2 etc. in the proof of Proposition 14. For example,

directly above we have isolated the coefficients of the N1E1 and N2W1 terms in

the first and second sums respectively.

It is clear that we can do this for any coefficient, so we will simply say that in

the above we used N1E1 and N2W1. Similarly, using E2S1 in Sum 1 we get that

(b2
1 − b2

2)(b3 − b4) ≥ 0

and so b3 ≥ b4. Then using E2W1 in the same sum gives that

(b1b3 − b2b4)(b3 − b2) ≥ 0

which with our assumption that b2 ≥ b3 forces b2 = b3. So ~b is in A2 as required.

Still assuming that at most one bi is zero, suppose now that b1 = b2. Notice firstly

that using W2S2 in the Sum 1 gives that b1 6= b3, since otherwise we would have

b1(b4 − b1)(b1 − b4) ≥ 0 and so b1 = b2 = b3 = b4. Now using E2W1 from Sum 1

we get that

0 ≤ (b1b3 − b2b4)(b3 − b2) = b1(b3 − b4)(b3 − b1)
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and so b3 ≤ b4. Also, by E2S2,

0 ≤ (b2
1 − b2b3)(b3 − b4) = b1(b1 − b3)(b3 − b4)

and so we must have b3 = b4 (and so b1b4 = b2b3). Hence once again we have that
~b is in A2, as required.

We finally consider that case when more than one of b1, b2, b3, b4 is zero. Clearly

b1 > 0. If b2 = b3 = b4 = 0 then 〈b1, b2, b3, b4〉 ∈ A2. The remaining cases are

when just b3, b4 are zero and when b2, b3 are zero. If b3 = b4 = 0 then using N1W1

from Sum 2 we obtain

(b1b4 − b2
2)(b1 − b2) ≥ 0

which with the other assumptions forces b1 = b2 so 〈b1, b2, b3, b4〉 ∈ A2. Finally if

b2 = b3 = 0 then using W2S2 from Sum 1 gives the contradiction

(b1b4 − b2b3)(b3 − b4) ≥ 0

thus concluding the proof.

Put another way Theorem 19 tells us that if 〈b1, b2, b3, b4〉 is in the support of µ

then one of the following hold:

(A) y〈b1,b2,b3,b4〉 = y〈1,0,0,0〉,

(B) y〈b1,b2,b3,b4〉 = y〈 1
2
, 1
2
,0,0〉,

(C) y〈b1,b2,b3,b4〉 = y〈 1
4
, 1
4
, 1
4
, 1
4
〉,

(D) y〈b1,b2,b3,b4〉 = y〈a,a,b,b〉 for some a > b > 0 (so b = 1/2− a),

(E) y〈b1,b2,b3,b4〉 = y〈a,b,b,c〉 for some a > b > 0, c = b2/a.

In fact this result can be strengthened further to give a complete classification of

the probability functions satisfying APH (+Ex+Px+SN) on L2.

Theorem 20. Let w be a probability function on L2 satisfying Ex, Px, SN. Then

w satisfies APH just if one of the following hold:

(1) w = y〈a,b,b,c〉 for some 〈a, b, b, c〉 ∈ D2 with a > b ≥ 0, c = b2/a.
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(2) w = λy〈a,a,b,b〉 + (1 − λ)c2
∞ for some 〈a, a, b, b〉 ∈ D2 with a ≥ b ≥ 0 and

0 ≤ λ ≤ 1.

(3) w = λy〈1,0,0,0〉 + (1− λ)y〈 1
2
, 1
2
,0,0〉 with 0 ≤ λ ≤ 1.

Proof. The reverse direction follows from Proposition 51. In the other direction

let µ be as in Theorem 19 and suppose that~b = 〈b1, b2, b2, b4〉 and ~c = 〈c1, c2, c3, c4〉
are distinct points in the support of µ and

y〈b1,b2,b3,b4〉 6= y〈c1,c2,c3,c4〉.

We first show that none of the following are possible.

(i) y〈b1,b2,b3,b4〉 = y〈a,b,b,c〉 for some a > b, c = b2/a, and

y〈c1,c2,c3,c4〉 = y〈α,β,β,γ〉 where α ≥ β andγ = β2/α.

(ii) y〈b1,b2,b3,b4〉 = y〈a,b,b,c〉 for some a > b, c = b2/a, and

y〈c1,c2,c3,c4〉 = y〈α,α,β,β〉 where α ≥ β and either b > 0 or β > 0.

(iii) y〈b1,b2,b3,b4〉 = y〈a,a,b,b〉 where a > b, and

y〈c1,c2,c3,c4〉 = y〈α,α,β,β〉 where α > β.

Concerning (i), notice that

〈a, b, b, b2/a〉 = 〈(1 + z)−2, z(1 + z)−2, z(1 + z)−2, z2(1 + z)−2〉

and

〈α, β, β, β2/α〉 = 〈(1 + w)−2, w(1 + w)−2, w(1 + w)−2, w2(1 + w)−2〉

for some 0 ≤ z, w ≤ 1.

If a = α we would have z = w, contradicting the assumption that y〈b1,b2,b3,b4〉 6=
y〈c1,c2,c3,c4〉. So we can assume that a 6= α.

Since a > 1/4 and α ≥ 1/4, we can assume without loss of generality that a > α.

Notice that this forces z < w and so b = z(1 + z)−2 < w(1 + w)−2 = β, and

c = z2(1 + z)−2 < w2(1 + w)−2 = γ.
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Since 〈b, c, a, b〉, 〈β, γ, α, β〉 must be in the support of µ, by Corollary 18 we can

find sentences φn, ψn such that for some λ,

lim
n→∞

w(αj11 α
j2
2 α

j3
3 α

j4
4 |φn ∨ ψn) = (1 + λ)−1(bj1cj2aj3bj4 + λβj1γj2αj3βj4). (4.13)

By taking j2 = j4 = 0 and the cases j3 = 1, j1 = 0 and j3 = j1 = 1 we get that

lim
n→∞

w(α1 |α3 ∧ (φn ∨ ψn)) =
(ba+ λβα)

(a+ λα)

and taking j2 = j3 = 0 and the cases j4 = 1, j1 = 0 and j4 = j1 = 1 we get that

lim
n→∞

w(α1 |α4 ∧ (φn ∨ ψn)) =
(b2 + λβ2)

(b+ λβ)

Multiplying out the inequality we get from APH , this gives that

λ(αb− βa)(β − b) ≥ 0

and since λ > 0,

(αb− βa)(β − b) ≥ 0

which is impossible.

Now suppose that (ii) holds. Note that 2α ≥ α + β = 1/2, hence α ≥ 1/4. By

our previous observation, if b ≥ 1/4 then z(1 + z)−2 ≥ 1/4, giving

0 ≥ (1− z)2

which is only satisfiable if z = 1, meaning a = 1/4 = b, in contradiction of our

assumption that a > b. So we have that α ≥ 1/4 > b.

Using the corresponding version of (4.13) (with the same ji) but now for the

points 〈b, c, a, b〉, 〈α, α, β, β〉, we obtain the inequality

β(b− a)(α− b) ≥ 0

which, since a > b, is impossible unless β = 0.

Similarly, taking the points 〈b, c, a, b〉, 〈α, α, β, β〉 and the cases j1 = 2, j2 = j3 =

j4 = 0 and j1 = 1, j2 = j3 = j4 = 0, and the cases j1 = j2 = 1, j3 = j4 = 0 and
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j2 = 1, j1 = j3 = j4 = 0, and again using the corresponding versions of (4.13) we

derive from the requirement from APH that

b2 + λα2

b+ λα
≥ bc+ λα2

c+ λα
.

On multiplying out this yields

α(b− c)(b− α) ≥ 0,

implying that b = c = 0.

Finally suppose that (iii) is the case. We can assume that a > α. Using the cor-

responding version of (4.13) again but now with the points 〈a, a, b, b〉, 〈α, β, α, β〉,
the cases j1 = 2, j2 = j3 = j4 = 0 and j1 = 1, j2 = j3 = j4 = 0, and the cases

j1 = j2 = 1, j3 = j4 = 0 and j2 = 1, j1 = j3 = j4 = 0, we derive from the

requirement of APH that

(a2 + λα2)

(a+ λα)
≥ (a2 + λαβ)

(a+ λβ)
.

Multiplying out this inequality gives that

λa(β − α)(a− α) ≥ 0

which again is impossible.

Combining the above with the observation following Theorem 19 we see that the

support of µ can only be one of:

(a) {σ〈a, b, b, c〉 |σ ∈ P2} for some 〈a, b, b, c〉 ∈ D2 with a > b ≥ 0, c = b2/a;

(b) {σ〈a, a, b, b〉 |σ ∈ P2} for some 〈a, a, b, b〉 ∈ D2 with a > b ≥ 0;

(c) The image under the σ ∈ P of {〈a, a, b, b〉, 〈1
4
, 1

4
, 1

4
, 1

4
〉, } where a > b ≥ 0.

The result now follows using Proposition 14.

Directly from this theorem and the remark following Proposition 14 we obtain

that for w a probability function on L2 satisfying Ex, Px, SN, w satisfies SAPH

just if one of the following hold:

(1) w = y〈a,b,b,c〉 for some 〈a, b, b, c〉 ∈ D2 with a > b > 0, c = b2/a.
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(2) w = λy〈a,a,b,b〉 + (1 − λ)c2
∞ for some 〈a, a, b, b〉 ∈ D2 with a > b > 0 and

0 < λ ≤ 1.

4.2 APH for languages with more than 2 predi-

cates

We begin by considering L3. Fix an ordering of the atoms of L3 by

α1(x) = P1(x) ∧ P2(x) ∧ P3(x) α5(x) = ¬P1(x) ∧ P2(x) ∧ P3(x)

α2(x) = P1(x) ∧ P2(x) ∧ ¬P3(x) α6(x) = ¬P1(x) ∧ P2(x) ∧ ¬P3(x)

α3(x) = P1(x) ∧ ¬P2(x) ∧ P3(x) α7(x) = ¬P1(x) ∧ ¬P2(x) ∧ P3(x)

α4(x) = P1(x) ∧ ¬P2(x) ∧ ¬P3(x) α8(x) = ¬P1(x) ∧ ¬P2(x) ∧ ¬P3(x).

As in the case of L2 we define y~c for ~c ∈ D3 by

y~c = |P3|−1
∑
σ∈P3

wσ(~c)

where P3 is the set of Hamming distance preserving permutations of the atoms

of L3. From Theorem 8 on page 37 it follows that |P3| = 48.

For the next proposition it will be useful to observe that because of repeated

terms y〈 1
2
, 1
2
,0,0,0,0,0,0〉 simplifies to

12−1(w〈 1
2
, 1
2
,0,0,0,0,0,0〉 + w〈 1

2
,0, 1

2
,0,0,0,0,0〉 + w〈 1

2
,0,0,0, 1

2
,0,0,0〉

+ w〈0, 1
2
,0, 1

2
,0,0,0,0〉 + w〈0, 1

2
,0,0,0, 1

2
,0,0〉 + w〈0,0, 1

2
, 1
2
,0,0,0,0〉

+ w〈0,0, 1
2
,0,0,0, 1

2
,0〉 + w〈0,0,0, 1

2
,0,0,0, 1

2
〉 + w〈0,0,0,0, 1

2
, 1
2
,0,0〉

+ w〈0,0,0,0, 1
2
,0, 1

2
,0〉 + w〈0,0,0,0,0, 1

2
,0, 1

2
〉 + w〈0,0,0,0,0,0, 1

2
, 1
2
〉). (4.14)

Proposition 21. For 0 ≤ λ ≤ 1 the probability function

w = λy〈 1
2
, 1
2
,0,...,0〉 + (1− λ)c3

0

on L3 satisfies Ex, Px, SN and APH .
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Proof. The only non-trivial part here is to show that w satisfies APH . Let

t1, . . . , t12 denote the values given by each of the summands of y〈 1
2
, 1
2
,0,...,0〉 to

φ ∈ QFSL3 in the order in (4.14).

Note that

w(α1 |α1 ∧ φ) =
λ48−1(t1 + t2 + t3) + (1− λ)8−1w〈1,0,0,...,0〉(φ)

λ24−1(t1 + t2 + t3) + (1− λ)8−1w〈1,0,0,...,0〉(φ)

w(α1 |α2 ∧ φ) =
λ48−1t1

λ24−1(t1 + t4 + t5) + (1− λ)8−1w〈0,1,0,...,0〉(φ)

and

w(α1 ∧ αi ∧ φ) = 0

for all αi such that |α1 − αi| > 1.

The only thing we need check then is that

w(α1 |α1 ∧ φ) ≥ w(α1 |α2 ∧ φ)

(since w(α1 |α1∧φ) ≥ w(α1 |α3∧φ) and w(α1 |α1∧φ) ≥ w(α1 |α5∧φ) will follow

similarly.) But this reduces to the following sum being non-negative

18−1λ2(t1 + t2 + t3)(t4 + t5) + (1− λ)2w〈1,0,0,...,0〉(φ)w〈0,1,0,...,0〉(φ)

+6−1λ(1− λ)(w〈0,1,0,...,0〉(φ)(t1 + t2 + t3 + 2t4 + 2t5) + t1w〈1,0,0,...,0〉(φ)),

which it clearly is.

Theorem 22. c3
∞ and the λy〈 1

2
, 1
2
,0,...,0〉 + (1 − λ)c3

0 for 0 ≤ λ ≤ 1 are the only

probability functions on L3 satisfying Ex, Px, SN and APH .

Proof. Suppose that w is a probability function on L3 not of the above types

that satisfies Ex, Px, SN and APH , and let µ is its de Finetti prior. Let w2 be

the restriction of w to L2.Then w2 is given by the measure µ2 such that for any

A ⊆ D2

µ2(A) = µ{〈x1, x2, x3, x4, x5, x6, x7, x8〉 ∈ D3 | 〈x1+x2, x3+x4, x5+x6, x7+x8〉 ∈ A}

By Theorem 19 there are three possibilities for w2. In the first case

w2 = y〈a,b,b,a−1b2〉
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for some a > b ≥ 0. Pick 〈x1, x2, x3, x4, x5, x6, x7, x8〉 in the support of µ such

that

〈x1 + x2, x3 + x4, x5 + x6, x7 + x8〉 = 〈a, b, b, a−1b2〉

By the same reasoning as that used in Theorem 19 (for L3 instead of L2) we can

assume that µ is invariant under permutations from P3, so in fact we have a series

of possible equations:

〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉,
〈x1 + x5, x3 + x7, x2 + x6, x4 + x8〉

}
=


〈a, b, b, a−1b2〉,
or 〈b, a, a−1b2, b〉,
or 〈b, a−1b2, a, b〉,
or 〈a−1b2, b, b, a〉,

By considering cases1 we find that the only possible solutions to such a system

of equations are:

〈x1, a− x1, a− x1, b− a+ x1, a− x1, b− a+ x1, b− a+ x1, a
−1b2 + a− b− x1〉,

〈x1, a− x1, b− x1, x1, b− x1, x1, a
−1b2 − b+ x1, b− x1〉.

The second of these is actually the same as the first after applying the permutation

in P3 which transposes x1 with x2, x3 with x4, x5 with x6 and x7 with x8 so it is

enough to consider just the first of these.

For readability, let this point be denoted

〈α, β, β, γ, β, γ, γ, δ〉.

Using Corollary 18 for L3, the points

〈β, γ, α, β, γ, δ, β, γ〉, 〈γ, β, β, α, δ, γ, γ, β〉

and appropriate past evidence (φn ∨ ψn), APH requires that

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α7 ∧ (φn ∨ ψn)),

1See Appendix A for details.
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which gives the inequality

(βγ + λγβ)

γ + λβ
≥ β2 + λγ2

β + λγ

for some λ > 0. This simplifies to

λ(γ2 − β2)(β − γ) ≥ 0

and so γ = β.

Replacing γ by β throughout, by the same reasoning, with the same points and

(φn ∨ ψn), APH requires that

lim
n→∞

w(α3 |α4 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α3 |α2 ∧ (φn ∨ ψn))

which gives the inequality

(αβ + λβα)

β + λα
≥ αβ + λβ2

β + λβ

which simplifies to

−λβ(α− β)2 ≥ 0

This is impossible unless α = β, contradicting a > b, or β = 0, contradicting the

assumption that w is not c3
0.

In the second case,

w2 = λy〈a,a,b,b〉 + (1− λ)c2
∞

for some a > b ≥ 0. We again get a series of equations, which we may take to be

〈x1 + x2, x3 + x4, x5 + x6, x7 + x8〉 = 〈a, a, b, b〉

together with

〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉,
〈x1 + x5, x3 + x7, x2 + x6, x4 + x8〉

}
=



〈a, a, b, b〉,
or 〈a, b, a, b〉,
or 〈b, a, b, a〉,
or 〈b, b, a, a〉,
or 〈1

4
, 1

4
, 1

4
, 1

4
〉,
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since taking the vector 〈1
4
, 1

4
, 1

4
, 1

4
〉 in all three cases would yield the solution

〈x, 1
4
− x, 1

4
− x, x, 1

4
− x, x, x, 1

4
− x〉

and the usual argument for this point and

〈1
4
− x, x, x, 1

4
− x, x, 1

4
− x, 1

4
− x, x〉

with w(α1 |α2 ∧ (φn ∨ ψn)) and w(α1 |α4 ∧ (φn ∨ ψn)) forces x = 1/8, and hence

forces w = c3
∞.

Again one can check2 that the only possible solution (up to a permutation from

P3) to such a system of equations is:

〈x1, a− x1, a− x1, x1,
1
4
− x1,

1
4
− a+ x1,

1
4
− a+ x1,

1
4
− x1〉.

Let this be denoted

〈α, β, β, α, γ, δ, δ, γ〉

Notice that α, γ cannot both be zero.

Using Corollary 18 for L3, the points

〈γ, α, δ, β, δ, β, γ, α〉, 〈α, γ, β, δ, β, δ, α, γ〉

and appropriate past evidence (φn ∨ ψn), APH requires that

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α7 ∧ (φn ∨ ψn))

which gives the inequality

γα + λαγ

α + λγ
≥ γ2 + λα2

γ + λα

for some λ > 0, which simplifies to

−λ(α− γ)(α2 − γ2) ≥ 0

so α = γ which gives x1 = 1
4
− x1 and so α = x1 = 1

8
. Note that this means that

β > α > δ, since a > 1/4.

2Details may be found in Appendix A.
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By the same reasoning, using the same points and replacing γ by α throughout,

APH requires that

lim
n→∞

w(α3 |α4 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α3 |α2 ∧ (φn ∨ ψn))

which gives the inequality

δβ + λβδ

β + λδ
≥ αδ + λβα

α + λα

for some λ > 0, which simplifies to

−λα(β − δ)2 ≥ 0

which is impossible by our previous observation that β > α > δ.

In the third and final case,

w = λy〈1,0,0,0〉 + (1− λ)y〈 1
2
, 1
2
,0,0〉

It is easy to see that the only functions whose restriction to L2 result in such a

function are those of the form

λy〈 1
2
, 1
2
,0,0,0,0,0,0〉 + (1− λ)c3

0, 0 ≤ λ ≤ 1,

details of this may be found in Appendix A.

Having determined the probability functions on L3 which satisfy Ex, Px, SN and

APH we are now in a position to do the same for Lk when k ≥ 3. To this end let

yk〈 1
2
, 1
2
,0,...,0〉, where there are 2k − 2 zeros, be the obvious analog of y〈 1

2
, 1
2
,0,0,0,0,0,,0〉

on L3. Then by the direct generalization of the methods in proof of Theorem 22

we obtain:

Corollary 23. For k ≥ 3 the only probability functions on Lk satisfying Ex,

Px, SN and APH are ck∞ and those of the form λyk〈 1
2
, 1
2
,0,...,0〉 + (1− λ)ck0 for some

0 ≤ λ ≤ 1. Furthermore, none of these satisfies SAPH .
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4.3 Weakening the background conditions

Despite the rather natural link between SN and Hamming Distance, one way to

weaken the apparently very strong condition Ex+SN+Px+SAPH would be to

replace SN by WN. Of course WN follows straight-forwardly from SN, so the y~x

probability functions will satisfy WN, but we would hope to have more functions

satisfying SAPH if we replace SN with WN. In fact this is not such an unnatural

picture. We initially thought of the atoms of L2 as the vertices of a wheel of

fortune. In that case, not only did the lengths of the sides between vertices

correspond to Hamming Distance, but the symmetries of the wheel of fortune

corresponded exactly to the permutations of atoms given by Px + SN. In the

following diagram, lengths of sides still represent Hamming Distance, but the

symmetries correspond to the permutations of atoms given by Px + WN.

α1

α2 α3

α4

The four symmetries of the diamond correspond to the four permutations of atoms

given by (14)(23), (14)(2)(3), (1)(4)(23), and (1)(2)(3)(4), which are exactly those

licensed by Px and WN. Define the function z〈a,b,c,d〉 to be

4−1
(
w〈a,b,c,d〉 + w〈d,b,c,a〉 + w〈a,c,b,d〉 + w〈d,c,b,a〉

)
We then have the following:

Lemma 24. If w satisfies Px, WN and APH on L2, then for any point 〈a, b, c, d〉
in the support of its de Finetti prior µ with a ≥ d and b ≥ c, at least one of the

following holds:

1. a = d

2. b = c

3. ac = bd

Proof. If 〈a, b, c, d〉 is in the support of µ then so is 〈d, c, b, a〉, so by Corollary 18
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we can find state descriptions φn, ψn such that for some λ > 0,

lim
n→∞

w
(
αj11 α

j2
2 α

j3
3 α

j4
4 |φn ∨ ψn

)
= (1 + λ)−1

(
aj1bj2cj3dj4 + λdj1cj2bj3aj4

)
Taking j2 = j3 = j4 = 0 and the cases j1 = 2 and j1 = 1 we get that

lim
n→∞

w(α1 |α1 ∧ (φn ∨ ψn)) =
a2 + λd2

a+ λd

and taking j3 = j4 = 0 and the cases j1 = j2 = 1 and j1 = 0, j2 = 1 we get that

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) =
ab+ λdc

b+ λc

APH requires that w(α1 |α1∧θ) ≥ w(α1 |α2∧θ) for any θ ∈ SL; so, in particular,

w(α1 |α1∧(φn∨ψn)) ≥ w(α1 |α2∧(φn∨ψn)) for all n. This means that we cannot

have

lim
n→∞

w(α1 |α1 ∧ (φn ∨ ψn)) < lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn))

and so we must have
a2 + λd2

a+ λd
≥ ab+ λdc

b+ λc

which simplifies to

λ(ac− bd)(a− d) ≥ 0.

Hence

(ac− bd)(a− d) ≥ 0. (4.15)

Using the same points and taking j1 = j3 = j4 = 0 with cases j2 = 2 and j2 = 1

we get

lim
n→∞

w(α2 |α2 ∧ (φn ∨ ψn)) =
b2 + λc2

b+ λc

and taking j3 = j4 = 0 with cases j2 = j1 = 1 and j2 = 0, j1 = 1 we get that

lim
n→∞

w(α2 |α1 ∧ (φn ∨ ψn)) =
ba+ λcd

a+ λd
.

APH then requires

b2 + λc2

b+ λc
≥ ba+ λcd

a+ λd
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which simplifies to

λ(bd− ac)(b− c) ≥ 0

and so we must have

(bd− ac)(b− c) ≥ 0. (4.16)

Either 1. holds, in which case both 4.15 and 4.16 hold, or a > d in which case by

4.1 we must have ac ≥ bd. Then for 4.16 to hold, either ac = bd or b = c and so

either 3. or 2. holds, respectively.

Theorem 25. The only functions satisfying Px + WN + SAPH on L2 are the

following:

1. λz〈a,b,b,c〉+ (1−λ)z〈α,β,γ,α〉, with β > γ, a > c, aγ = bα = βc and 0 < λ < 1.

2. λz〈a,b,c,d〉+ (1−λ)z〈α,β,β,α〉 with a > d, b > c, ac = bd, αb = aβ, βd = αc, and

0 < λ ≤ 1.

Proof. Any probability function satisfying Px + WN must be of the form∫
D2q

z~xdµ(~x).

Moreover, there must be at least one point 〈a, b, c, d〉 in the support of µ with

a, b, c, d non-zero and a 6= d. For otherwise we would have

w(α1 |α1 ∧ α1 ∧ α2 ∧ α3 ∧ α4) = w(α1 |α4 ∧ α1 ∧ α2 ∧ α3 ∧ α4),

contradicting SAPH . By Px and WN, 〈a, c, b, d〉, 〈d, b, c, a〉 and 〈d, c, b, a〉 must

also be in the support of µ, so we can assume without loss of generality that a > d

and b ≥ c. Similarly, there must be at least one point 〈α, β, γ, δ〉 in the support

of µ with α, β, γ, δ non-zero and β 6= γ, for otherwise we would have

w(α2 |α2 ∧ α1 ∧ α2 ∧ α3 ∧ α4) = w(α2 |α3 ∧ α1 ∧ α2 ∧ α3 ∧ α4),

contradicting SAPH . By Px and WN, we can assume without loss of generality

that β > γ and α ≥ δ. Then by Lemma 24, we know that we have the following

four options:
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b = c ac = bd

α = δ (i) (ii)

αγ = βδ (iii) (iv)

Moreover, using Corollary 18, all pairs of points with the first taken from

{〈a, b, c, d〉, 〈a, c, b, d〉, 〈d, b, c, a〉, 〈d, c, b, a〉}

and the second from

{〈α, β, γ, δ〉, 〈α, γ, β, δ〉, 〈δ, β, γ, α〉 〈δ, γ, β, α}

and all appropriate choices of ji, SAPH requires that all of the following expres-

sions must be non-negative.

(a− α)(aβ − αc) (a− α)(aγ − αb) (a− α)(bδ − γd) (a− α)(cδ − βd)

(a− δ)(aβ − bδ) (a− δ)(aβ − cδ) (a− δ)(aγ − bδ) (a− δ)(aγ − cδ)
(a− δ)(αb− βd) (a− δ)(αb− γd) (a− δ)(αc− βd) (a− δ)(αc− γd)

(α− d)(aβ − bδ) (α− d)(aβ − cδ) (α− d)(aγ − bδ) (α− d)(aγ − cδ)
(α− d)(αb− βd) (α− d)(αb− γd) (α− d)(αc− βd) (α− d)(αc− γd)

(δ − d)(aβ − αc) (δ − d)(aγ − αb) (δ − d)(bδ − γd) (δ − d)(cδ − βd)

(b− β)(γd− αc) (b− β)(αb− βd) (b− β)(aγ − cδ) (b− β)(bδ − aβ)

(b− γ)(βd− cδ) (b− γ)(βd− αc) (b− γ)(aβ − cδ) (b− γ)(aβ − αc)
(b− γ)(bδ − γd) (b− γ)(bδ − aγ) (b− γ)(αb− γd) (b− γ)(αb− aγ)

(β − c)(βd− cδ) (β − c)(βd− αc) (β − c)(aβ − cδ) (β − c)(aβ − αc)
(β − c)(bδ − aγ) (β − c)(bδ − aγ) (β − c)(αb− γd) (β − c)(αb− aγ)

(γ − c)(γd− αc) (γ − c)(αb− βd) (γ − c)(aγ − cδ) (γ − c)(bδ − aβ)

Given these constraints, option (i) forces a > α = δ > d, β > b = c > γ and

aγ = bα = βd. Derivation of this can be found in Appendix B, and that all

constraints are satisfied under these conditions can be seen by inspection of the

above list. Options (ii) and (iii) are unsatisfiable, and option (iv) forces a = α,

b = β, c = γ and d = δ3 .We now have two options to consider. Either

(a) 〈a, b, b, c〉, 〈α, β, γ, α〉 belong to the support of µ, with the condition that

a > c, β > γ and aγ = bα = βc. Then any further points in the support of

µ must satisfy either x1 = x4 or x2 = x3 or both.

3Details may be found in Appendix B
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(b) 〈a, b, c, d〉 with a > d, b > c and ac = bd belongs to the support of µ, and any

further points in the support of µ are of the form 〈x, y, y, x〉.

In case (a), that the probability function must be of the form λz〈a,b,b,c〉 + (1 −
λ)z〈α,β,γ,α〉 can be seen as follows. Suppose that there was another point 〈x, y, y, z〉
in the support of µ. If x, y and z are all non-zero, then as well as the conditions

aγ = bα = βc, we would have the conditions xγ = yα = βz. But then γ(a−x) =

α(b − y) = β(c − z). By assumption, α, β and γ are all non-zero, and so this

forces a = x, b = y, c = z.

On the other hand, if x = 0, then (b− y)(xb− yd) ≥ 0 entails y ≥ b or y = 0, and

(b − y)(yd − xc) ≥ 0 entails b ≥ y or y = 0. If b = y, then (y − c)(xb − yd) ≥ 0

becomes −yd(b− c) ≥ 0, which is a contradiction. So the only consistent option

is that y = 0. In this case, (y − c)(bz − ay) ≥ 0 becomes −cbz ≥ 0, implying

z = 0. But then x + 2y + z = 0, which is a contradiction. If we start from the

assumption that z = 0, then (b− y)(bz− ay) ≥ 0 and (b− y)(ay− cz) ≥ 0 jointly

entail either b = y or y = 0, and the same contradiction results. If we start from

the assumption that y = 0, then as already seen, (y − c)(bz − ay) ≥ 0 becomes

−cbz ≥ 0, implying z = 0; also (y− c)(xb− yd) ≥ 0 becomes −bxc ≥ 0, implying

x = 0 and again we have a contradiction.

The assumption of another point 〈x, y, z, x〉 in the support of µ distinct from

〈α, β, γ, α〉 results in a similar contradiction.

In case (b), either the function is simply z〈a,b,c,d〉 or the support of µ includes

another point of the form 〈α, β, β, α〉. Suppose firstly that α > a. Then from the

requirement that (a − α)(aβ − αc) ≥ 0, we must have αc ≥ aβ ≥ βd and from

the requirement that (a − α)(cδ − βd) ≥ 0 we have that βd ≥ cδ = cα, hence

αc = aβ = βd. Since a > d, this forces β = 0 and α = 1/2, and hence c = 0. But

c 6= 0 by assumption, so this case is ruled out.

So now suppose that α = a. Then αc = ac = bd, so (b−β)(γd−αc) ≥ 0 becomes

(b − β)(βd − bd) ≥ 0 and hence either d = 0 or b = β. In the latter case, then

α = a > d and β = b > c, contradicting the fact that 2α+ 2β = 1 = a+ b+ c+d.

In the former case, d = 0, we have αc = bd = 0, so either α = a = 0 or c = 0, in

contradiction of our inital assumptions.

So the only remaining possibility is that a > α. In this case, bd = ac > αc, and

from (a− α)(αc− βd) ≥ 0 we know that αc ≥ βd, hence bd > βd and so b > β.
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Then (b − β)(bδ − aβ) ≥ 0 and (a − α)(aγ − αb) ≥ 0 together force αb = aβ,

and (a − α)(cδ − βd) ≥ 0 and (b − β)(γd − αc) ≥ 0 together force βd = αc.

Observation of the above list of constraints shows that under these conditions all

are satisfied.

Finally, suppose that there were another point 〈x, y, y, x〉 in the support of µ, with

x 6= α; without loss of generality let x > α, so y < β. Then by the same reasoning

as above, we would have to have ay = xb, and thus b(α − x) = a(β − y), but

since a and b are both positive, this is a contradiction. Hence case (b) amounts

to item 2. in the statement of the theorem.

Notice that in the event that the probability function is of the first form, λz〈a,b,b,c〉+

(1− λ)z〈α,β,γ,α〉, if λ = 2−1, α = b, β = a and γ = c, then it satisfies SN and is as

in Theorem 19. In the event that the probability function is of the second form,

λz〈a,b,c,d〉+ (1−λ)z〈α,β,β,α〉 and α = β, a = c, b = d, then it satisfies SN and again

is as in Theorem 19.

We note here that we do not have an analogue of Theorem 22 for these weaker

background conditions, because the proof of that theorem depends on Proposition

12 which depends on SN. One suggestion for future research is to determine

whether Proposition 12 can be extended to probability functions not satisfying

SN.

Given that any picture of Hamming Distance on L2 must have symmetries cor-

responding to permutations licensed by Px and WN, it does not make sense to

weaken the background conditions any further. Instead we move on in the next

section to look at the weaker principle SDAPH , which is much more widely sat-

isfied.

4.4 State Description Analogy for Hamming Dis-

tance

Having looked at APH and SAPH , it might be objected that allowing the evidence

conditioned on, θ, to be any sentence of QFSL is too permissive. The proof

that SAPH (+Ex+Px+SN) is unsatisfiable in L3 and larger languages depends

essentially on our being able to condition on disjunctions of state descriptions, so

perhaps there is something pathological about these cases. This is not obvious,
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since we can come up with plausible stories in which our past evidence would be a

disjunction of this kind; for example, two experts give inconsistent accounts and

we don’t know which to choose from. However, Carnap’s CA and the various other

principles discussed in Chapter 2 only consider state descriptions as admissible

past evidence, so we turn now to SDAPH (as defined on page 35).

On L1 we have only two atoms: P1 and ¬P1, hence as an immediate Corollary

of Proposition 13, for any >S, SDAPS holds for any exchangeable function. It

is easy to demonstrate examples of functions satisfying SDAPH on L2. Notice

that any state description θ ∈ QFSL2 can be written as the conjunction of two

state descriptions θ1 and θ2 on the languages {P1} and {P2}, respectively. Then

if w1, w2 are any two exchangeable functions on L1, for any state description

θ ∈ QFSL2 define a probability function w1 × w2 by

(w1 × w2)(θ) := w1(θ1)w2(θ2).

In other words, if µ1, µ2 are the de Finetti priors of w1, w2 respectively, we have

(w1 × w2)(αn1
1 ∧ αn2

2 ∧ αn3
3 ∧ αn4

4 )

= w1(P n1+n2
1 ∧ ¬P n3+n4

1 )× w1(P n1+n3
2 ∧ ¬P n2+n4

2 )

=

∫
D1

xn1+n2(1− x)n3+n4dµ1(~x)×
∫
D1

xn1+n3(1− x)n2+n4dµ2(~x)

where αmi denotes m conjuncts of the form αi(aj).

Maher’s cλ × cλ ([21]) was of this form, but clearly the construction works just

as well for any two exchangeable functions on L1, and that SDAPH holds can be

seen as follows:

For any state description θ = αn1
1 α

n2
2 α

n3
3 α

n4
4 , let fθ(x) denote the function xn1+n2(1−

x)n3+n4 , gθ(x) the function xn1+n3(1− x)n2+n4 .

We have

(w1 × w2)(α1 |α2 ∧ θ) =

∫
D1
x2fθ(x)dµ1(~x)∫

D1
xfθ(x)dµ1(~x)

×
∫
D1
x(1− x)gθ(x)dµ1(~x)∫

D1
(1− x)gθ(x)dµ1(~x)

≥
∫
D1
x(1− x)fθ(x)dµ1(~x)∫

D1
(1− x)fθ(x)dµ1(~x)

×
∫
D1
x(1− x)gθ(x)dµ1(~x)∫

D1
(1− x)gθ(x)dµ1(~x)

= (w1 × w2)(α1 |α4 ∧ θ)
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And similarly for the other inequalities required by SDAPH . Notice that w1×w2

will satisfy SN just if both w1 and w2 do, and will satisfy Px just if w1 and w2 are

the same function. Clearly this kind of function construction can be extended

to languages of any size, but unfortunately does not always generate functions

satisfying SDAPH on larger languages. In fact, SDAPH will frequently fail even

on L3:

Proposition 26. Suppose cλ is a member of Carnap’s Continuum on L1. Then

w = cλ × cλ × cλ does not satisfy SDAPH .

Proof. Suppose w is as above and let θ = αn2 . Then

w(α1 |α2 ∧ θ) = cλ(P1 |P n+1
1 )× cλ(P2 |P n+1

2 )× cλ(P3 | ¬P n+1
3 )

=
(n+ 1 + λ/2)(n+ 1 + λ/2)(λ/2)

(n+ 1 + λ)3

And

w(α1 |α7 ∧ θ) = cλ(P1 | ¬P1 ∧ P n
1 )× cλ(P2 | ¬P2 ∧ P n

2 )× cλ(P3 |P3 ∧ ¬P n
3 )

=
(n+ λ/2)(n+ λ/2)(1 + λ/2)

(n+ 1 + λ)3

Multiplying out and simplifying we get that

w(α1 |α2 ∧ θ) < w(α1 |α7 ∧ θ)

is equivalent to

λ(2 + λ) < 4n2

which is clearly satisfiable for any λ by taking a large enough n.

In order to completely classify the functions that satisfy SDAPH , we begin by

considering functions on L2.

Our first conjecture was that any w on L2 satisfying SDAPH would be a product

of two functions on L1 (indeed the square of a single function if Px is to hold).

However this is clearly not the case, for we already know that y〈a,a,b,b〉 satisfies

APH and hence SDAPH for any 0 ≤ a, b ≤ 1, a+b = 1/2, but that this cannot be

a product is seen as follows: The de Finetti measure of y〈a,a,b,b〉, µ, gives positive
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measure to the point

〈a, a, b, b〉 =

〈
x

2(x+ y)
,

x

2(x+ y)
,

y

2(x+ y)
,

y

2(x+ y)

〉
.

Hence if there were a function on L1 that squared to give y〈a,a,b,b,〉, its de Finetti

measure would have in its support the points

〈 x

x+ y
,

y

x+ y
〉

and

〈1/2, 1/2〉.

But then µ would also have in its support

〈1/2, 1/2〉 × 〈1/2, 1/2〉 = 〈1/4, 1/4, 1/4, 1/4〉

and〈
x

x+ y
,

y

x+ y

〉
×
〈

x

x+ y
,

y

x+ y

〉
=

〈
x2

(x+ y)2
,

xy

(x+ y)2
,

xy

(x+ y)2
,

y2

(x+ y)2

〉
,

which is not the case.

All the functions satisfying APH have the property that for any point 〈a, b, c, d〉 in

the support of their de Finetti measures, ad = bc. This is also a property of any

product function. A weaker conjecture would therefore be that that all functions

satisfying SDAPH must have this property. Notice that this could only be a

necessary, but not a sufficient condition for satisfying SDAPH , as the following

example demonstrates.

Let

~z1 :=

〈
36

49
,

6

49
,

6

49
,

1

49

〉
and

~z2 :=

〈
1600

1682
,

40

1681
,

40

1681
,

1

1681

〉
and consider the probability function 2−1(y ~z1 + y ~z2)

Then every point 〈a, b, c, d〉 in the support of the corresponding de Finetti measure



CHAPTER 4. HAMMING DISTANCE AND ANALOGY 80

has the property that ad = bc but, for example,

2−1(y ~z1 + y ~z2)(α1 |α2 ∧
5∧
i=1

α2) ≈ 0.04

while

2−1(y ~z1 + y ~z2)(α1 |α4 ∧
5∧
i=1

α2) ≈ 0.08.4 (4.17)

We do have the limited result that if ad = bc holds for all points in the support

of µ, the corresponding probability function satisfies SDAPH as long as the state

description conditioned on is sufficiently small.

Proposition 27. If w is a probability function on L2 satisfying Ex, Px and SN

and every point 〈a, b, c, d〉 in the support of its de Finetti measure µ is such that

ad = bc, then w satisfies:

(i) w(α1 |α1) > w(α1 |α2)

(ii) w(α1 |α2) > w(α1 |α4)

Proof. By Px and SN,

w =

∫
D2

y~x dµ(~x)

and w(α1) = w(α2) = w(α3) = w(α4). In fact, (i) rests only on Px and SN and

does not require the property that ad = bc. Since w(α1) = w(α2), it is sufficient

to show that

w(α1 ∧ α1) > w(α1 ∧ α2)

which is equivalent to∫
D2

(
2a2 + 2b2 + 2c2 + 2d2

)
dµ(~x)−

∫
D2

(2ab+ 2ac+ 2bd+ 2cd) dµ(~x) > 0

Simplifying the left hand side gives∫
D2

[
(a− b)2 + (a− c)2 + (b− d)2 + (c− d)2

]
dµ(~x) > 0

which is clearly non-negative, and indeed positive unless w = c∞.

4See Appendix A for calculations.
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For inequality (ii), we need to show that

w(α1 ∧ α2) > w(α1 ∧ α4)

Equivalently,∫
D2

(2ab+ 2ac+ 2bd+ 2cd) dµ(~x)−
∫
D2

(4ad+ 4bc) dµ(~x) > 0

Simplifying, this gives∫
D2

2(a− c)(b− d) + 2(a− b)(c− d) dµ(~x) > 0

We can assume without loss of generality that a ≥ b, c, d and, unless w = c∞,

a > b for at least one point 〈a, b, c, d〉. Since we are assuming that ad = bc, we

then also have c > d for this point. The inequality then holds as required.

Proposition 27 thus demonstrates a class of probability functions displaying the

limited properties of analogy that Skyrms shows to be satisfiable in [34].

If we restrict our attention to single y~x functions, we can prove that ad = bc is

a necessary and sufficient condition for SDAPH to hold in the presence of Ex +

Px + SN.

We will need the following Lemma.

Lemma 28. Suppose 1 > a0 > a1, a2, ...ak > 0. Then for some n ∈ N,

an0 >

k∑
i=1

ani

Proof. First consider the case when k = 2. We can suppose without loss of

generality that a1 > a2. Note that this means
a0

a1

> 1 >
a2

a1

.

So clearly if we take n to be sufficiently large, we get that(
a0

a1

)n
>

(
a2

a1

)n
+ 1

But this is equivalent to an0 > an2 + an1 and so the statement of the lemma holds.
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Next suppose the statement holds for k − 1, so an0 >
k−1∑
i=1

ani for some n.

Since 1 > a0 > ak, we have that ank < ak < a0. By similar reasoning to the first

case, for sufficiently large m we get

(ano )m >

(
k−1∑
i=1

ani

)m

+ (ank)m >

k∑
i=1

anmi

Hence the lemma holds for all k.

Proposition 29. If y〈a,b,c,d〉 satisfies Ex, Px, SN and SDAPH , then ad = bc.

Proof. We prove this by supposing that ad 6= bc and showing that this leads to a

failure of SDAPH . We can assume without loss of generality that a ≥ b, c, d, with

at least one inequality strict, and b ≥ c, since such a point is obtainable from any

〈x1, x2, x3, x4〉 by a permutation from P4.. Assume firstly that ad > bc (the case

in which ad < bc is similar).

Recall that SDAPH requires that for any state description θ,

y〈a,b,c,d〉(α1 |α2 ∧ θ) > y〈a,b,c,d〉(α1 |α4 ∧ θ)

As in Proposition 51, letN1 = w〈a,b,c,d〉(φ), N2 = w〈a,c,b,d〉(φ), E1 = w〈b,a,d,c〉(φ), E2 =

w〈c,a,d,b〉(φ),W1 = w〈b,d,a,c〉(φ),W2 = w〈c,d,a,b〉(φ), S1 = w〈d,b,c,a〉(φ), S2 = w〈d,c,b,a〉(φ).

Writing out the inequality above using the definition of y〈a,b,c,d〉, we obtain

abN1 + acN2 + baE1 + caE2 + bdW1 + cdW2 + dbS1 + dcS2

bN1 + cN2 + aE1 + aE2 + dW1 + dW2 + bS1 + cS2

>
adN1 + adN2 + bcE1 + cbE2 + bcW1 + cbW2 + daS1 + daS2

dN1 + dN2 + bE1 + cE2 + cW1 + bW2 + aS1 + aS2

which we can multiply out to get

N1E1(abc+ bad− a2d− b2c) +N1E2(ab2 + cad− a2d− cb2) +N1W1(abc+ bd2 −
ad2−b2c)+N1W2(ab2 +cd2−ad2−b2c)+N1S1(a2b+d2b−adb−dab)+N1S2(a2b+

d2c− adc− dab) +N2E1(ac2 + bad− a2d− bc2) +N2E2(cad+ acb− a2d− c2b) +

N2W1(ac2 + bd2 − ad2 − bc2) +N2W2(acb+ cd2 − ad2 − bc2) +N2S1(a2c+ d2b−
adb−dac) +N2S2(a2c+d2c−2adc) +E1W1(b2a+ c2a−2abc) +E1W2(b2a+ c2d−
bcd−bca)+E1S1(ba2 +dbc−b2c−da2)+E1S2(ba2 +dc2−bc2−da2)+E2W1(c2a+
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b2d − cbd − bca) + E2S1(ca2 + db2 − cb2 − da2) + E2S2(ca2 + bcd − bc2 − ad2) +

W1W2(c2d+ b2d− 2bcd) +W1S1(bda+ dbc− b2c− d2a) +W1S2(bda+ dc2− bc2−
d2a) +W2S1(cda+ b2d− b2c− d2a) +W2S2(cda+ dbc− bc2 − d2a) > 0

Factorizing, the coefficients in the inequality become:

N1E1: (bc− ad)(a− b) N1E2: (b2 − ad)(a− c)
N1W1: (bc− d2)(a− b) N1W2: (b2 − d2)(a− c)
N1S1: b(a− d)2 N1S2: (ab− dc)(a− d)

N2E1: (c2 − ad)(a− b) N2E2: (ad− bc)(c− a)

N2W1: (c2 − d2)(a− b) N2W2: (bc− d2)(a− c)
N2S1: (ac− db)(a− d) N2S2: c(a− d)2

E1W1: a(b− c)2 E1W2: (ab− cd)(b− c)
E1S1: (a2 − bc)(b− d) E1S2: (a2 − c2)(b− d)

E2W1: (ac− bd)(c− b) E2W2: (a2 − b2)(c− d)

E2S1: (a2 − bc)(c− d) E2S2: d(b− c)2

W1S1: (ad− bc)(b− d) W1S2: (ad− c2)(b− d)

W2S1: (ad− b2)(c− d) W2S2: (ad− bc)(c− d)

We have, by assumption, that a ≥ b and ad > bc. If in fact a > b, the coefficient

of N1E1 is negative. Let θ be n copies of α1 and n copies of α2 where n is some

natural number.

Then we have N1 = anbn, N2 = ancn, E1 = bnan, E2 = cnan,W1 = bndn,W2 =

cndn, S1 = dnbn, S2 = dncn.

We first assume that a > d and b > c, so N1E1 = (ab)2n is the biggest term in

the expression.

Applying Lemma 28 we can see that if n is large enough, N1E1 = (ab)2n will

be greater than the sum of the other terms. Since the coefficients are relatively

small, if we take n to be sufficiently large we can ensure that

(ad − bc)(a − b)N1E1 > N1E2(ab2 + cad − a2d − cb2) + N1W1(abc + bd2 − ad2 −
b2c) +N1W2(ab2 + cd2 − ad2 − b2c) +N1S1(a2b+ d2b− adb− dab) +N1S2(a2b+

d2c− adc− dab) +N2E1(ac2 + bad− a2d− bc2) +N2E2(cad+ acb− a2d− c2b) +

N2W1(ac2 + bd2 − ad2 − bc2) +N2W2(acb+ cd2 − ad2 − bc2) +N2S1(a2c+ d2b−
adb−dac) +N2S2(a2c+d2c−2adc) +E1W1(b2a+ c2a−2abc) +E1W2(b2a+ c2d−
bcd−bca)+E1S1(ba2 +dbc−b2c−da2)+E1S2(ba2 +dc2−bc2−da2)+E2W1(c2a+

b2d − cbd − bca) + E2S1(ca2 + db2 − cb2 − da2) + E2S2(ca2 + bcd − bc2 − ad2) +
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W1W2(c2d+ b2d− 2bcd) +W1S1(bda+ dbc− b2c− d2a) +W1S2(bda+ dc2− bc2−
d2a) +W2S1(cda+ b2d− b2c− d2a) +W2S2(cda+ dbc− bc2 − d2a)

And hence that

0 > (bc−ad)(a− b)N1E1 +N1E2(ab2 + cad−a2d− cb2) +N1W1(abc+ bd2−ad2−
b2c) +N1W2(ab2 + cd2 − ad2 − b2c) +N1S1(a2b+ d2b− adb− dab) +N1S2(a2b+

d2c− adc− dab) +N2E1(ac2 + bad− a2d− bc2) +N2E2(cad+ acb− a2d− c2b) +

N2W1(ac2 + bd2 − ad2 − bc2) +N2W2(acb+ cd2 − ad2 − bc2) +N2S1(a2c+ d2b−
adb−dac) +N2S2(a2c+d2c−2adc) +E1W1(b2a+ c2a−2abc) +E1W2(b2a+ c2d−
bcd−bca)+E1S1(ba2 +dbc−b2c−da2)+E1S2(ba2 +dc2−bc2−da2)+E2W1(c2a+

b2d − cbd − bca) + E2S1(ca2 + db2 − cb2 − da2) + E2S2(ca2 + bcd − bc2 − ad2) +

W1W2(c2d+ b2d− 2bcd) +W1S1(bda+ dbc− b2c− d2a) +W1S2(bda+ dc2− bc2−
d2a) +W2S1(cda+ b2d− b2c− d2a) +W2S2(cda+ dbc− bc2 − d2a)

which contradicts the requirement of SDAPH .

Above we assumed that a > d, b > c. Notice that if a = d, then either b = c and

all coefficients are non-positive (so SDAPH obviously fails), or b > c and the only

positive coefficients are those of E2W1 and E1W2, both of which equal (abcd)n.

As above, by Lemma 28, these are dominated by the larger terms, generating a

contradiction.

If a > d but b = c, then simply notice that the terms N1E1, N1E2, N2E1, N2E2

are equal and strictly larger than all others, and all have negative coefficients, so

again the contradiction follows by Lemma 28.

If in fact a = b, then notice that either c = d, giving ad = bc, or the coefficient

of W2S2 is negative. We can then generate a contradiction in a similar way to

above by taking θ to be n copies of α3 and n copies of α4. If then b > c, W2S2

will be the biggest term in the expression and the contradiction follows. If b = c,

then W1S1,W1S2,W2S1,W2S2 are equal and strictly larger than the other terms,

and all have negative coefficients, so again the contradiction follows by Lemma

28.

The cases in which we assume ad < bc proceed in a similar way.

To recap then, we know that any product of two probability functions satisfying

Ex will satisfy SDAPH , and we conjecture that if w satisfies SDAPH the support

of µ contains only points with ad = bc. To classify the functions satisfying SDAPH
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we must close the gap between these two conditions which intuitively seem very

near to one another.

While y〈a,a,b,b〉 is not a product of two functions on L1, it is an average of two

products. Let w1 have de Finetti measure µ1 which gives equal measure to all

points in the set

{〈2a, 2b〉, 〈2b, 2a〉} ⊂ D1

and c∞ on L1 as usual have the de Finetti prior which puts all measure on the

point 〈1/2, 1/2〉. Then

y〈,a,a,b,b〉 = 2−1((w1 × c∞) + (c∞ × w1)).

A natural conjecture then might be that all products and averages of products

will satisfy SDAPH . Unfortunately this too fails to capture the class correctly.

Even the above construction can fail to satisfy SDAPH for different choices of

w1. For example, suppose µ1 divides all measure equally between the points

〈0.8, 0.2〉, 〈0.2, 0.8〉, 〈0.9, 0.1〉 and 〈0.1, 0.9〉. Taking θ = α6
1α

3
2 we have

w(α1 |α1 ∧ θ) < w(α1 |α2 ∧ θ).5 (4.18)

At this point a full classification of the probability functions satisfying SDAPH

proves elusive.

5See Appendix for calculations.



Chapter 5

Alternatives to Hamming

Distance in L2

5.1 Distance based alternatives

When looking at Hamming Distance we pictured the four atoms of L2 as being

the vertices of a tetrahedron with edges representing distances between them and

symmetries of the tetrahedron representing the permutations of atoms licensed

by a partcicular set of background conditions. When the symmetries of our

tetrahedron corresponded to the permutations of atoms licensed by Px and SN,

we were looking at a square, and when they corresponded to the permutations of

atoms licensed by Px and WN we were looking at a diamond.

In exactly the same way, we can use any combination of symmetry principles to

motivate distances. The permutations of atoms licensed by WN are (1)(2)(3)(4)

and (14)(23). The only 2D geometrical object with the atoms as vertices and

symmetries (1)(2)(3)(4) and (14)(23) is a parallelogram:

α2 α4

α1 α3

(5.1)

or

α3 α4

α1 α2

(5.2)

Let d1 be a distance function that gives rise to parallelogram 5.1 and d2 be a

86
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distance function that gives rise to parallelogram 5.2. One way of thinking of

such distance functions is that for d1, a difference in P1 is more significant than

a difference in P2, and vice versa for d2.

The distance function d1 on L2 generates a similarity relation >S with the fol-

lowing properties:

{α1, α2} >S {α1, α3}

{α1, α3} >S {α1, α4}

{α2, α1} >S {α2, α4}

{α2, α4} >S {α2, α3}

{α3, α4} >S {α3, α1}

{α3, α1} >S {α3, α2}

Lemma 30. Suppose >S is as above, that w satisfies Ex, WN and APS with de

Finetti prior µ, and 〈a, b, c, d〉 is a point with a ≥ d in the support of µ. Then at

least one of the following must hold:

1. a = d

2. b = c

3. ac = bd

Proof. If 〈a, b, c, d〉 is in the support of µ then so is 〈d, c, b, a〉, so by Corollary 18

we can find state descriptions φn, ψn such that for some λ > 0,

lim
n→∞

w(αj11 α
j2
2 α

j3
3 α

j4
4 |φn ∨ ψn) = (1 + λ)−1(aj1bj2cj3dj4 + λdj1cj2bj3aj4)

Taking j2 = j3 = j4 = 0 and the cases j1 = 2 and j1 = 1 we get that

lim
n→∞

w(α1 |α1 ∧ (φn ∨ ψn)) =
a2 + λd2

a+ λd

and taking j3 = j4 = 0 and the cases j1 = j2 = 1 and j1 = 0, j2 = 1 we get that

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) =
ab+ λdc

b+ λc

APS requires that w(α1 |α1∧θ) ≥ w(α1 |α2∧θ) for any θ ∈ SL; so, in particular,

w(α1 |α1 ∧ (φn ∨ ψn)) ≥ w(α1 |α2 ∧ (φn ∨ ψn)) for all n. This means that we



CHAPTER 5. ALTERNATIVES TO HAMMING DISTANCE IN L2 88

cannot have

lim
n→∞

w(α1 |α1 ∧ (φn ∨ ψn)) < lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn))

and so we must have
a2 + λd2

a+ λd
≥ ab+ λdc

b+ λc

which simplifies to

λ(ac− bd)(a− d) ≥ 0.

Hence

(ac− bd)(a− d) ≥ 0. (5.3)

Using the same points and taking j1 = j3 = j4 = 0 with cases j2 = 2 and j2 = 1

we get

lim
n→∞

w(α2 |α2 ∧ (φn ∨ ψn)) =
b2 + λc2

b+ λc

and taking j3 = j4 = 0 with cases j2 = j1 = 1 and j2 = 0, j1 = 1 we get that

lim
n→∞

w(α2 |α1 ∧ (φn ∨ ψn)) =
ba+ λcd

a+ λd
.

APS then requires

b2 + λc2

b+ λc
≥ ba+ λcd

a+ λd

which simplifies to

λ(bd− ac)(b− c) ≥ 0

and so we must have

(bd− ac)(b− c) ≥ 0. (5.4)

Using the same points and taking j3 = j4 = 0 with cases j1 = j2 = 1 and

j2 = 1, j1 = 0 we get

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) =
ab+ λdc

b+ λc

and taking j2 = j4 = 0 with cases j3 = j1 = 1 and j3 = 0, j1 = 1 we get that

lim
n→∞

w(α1 |α3 ∧ (φn ∨ ψn)) =
ac+ λdb

c+ λb
.
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APS then requires

ab+ λdc

b+ λc
≥ ac+ λdb

c+ λb

which simplifies to

λ(b2 − c2)(a− d) ≥ 0

and so we must have

(b2 − c2)(a− d) ≥ 0. (5.5)

Either 1. holds, in which case 5.3, 5.4 and 5.5 all hold, or a > d. Then by 5.5 we

must have b ≥ c, and by 5.3 we must have ac ≥ bd. But then for 5.4 to hold we

must have either b = c or ac = bd, hence 2. or 3. respectively.

Let w be a probability function with de Finetti prior µ satisfying Ex, Px, WN

and APS. For any two points 〈a, b, c, d〉, 〈α, β, γ, δ〉 in the support of µ, the points

〈d, c, b, a〉 and 〈δ, γ, β, α〉 must also be in the support of µ. Using Corollary 18

with all pairs of points with the first taken from

{〈a, b, c, d〉, 〈d, c, b, a〉}

and the second from

{〈α, β, γ, δ〉, 〈δ, γ, β, α〉},

and all appropriate choices of ji, APS requires that all the following expressions

be non-negative:

(a− α)(aβ − αb) (a− α)(bγ − βc) (a− α)(cδ − γd)

(a− δ)(aγ − bδ) (a− δ)(bβ − cγ) (a− δ)(αc− βd)

(α− d)(aγ − bδ) (α− d)(bβ − cγ) (α− d)(αc− βd)

(δ − d)(aβ − αb) (δ − d)(bγ − βc) (δ − d)(cδ − γd)

(b− β)(αb− aβ) (b− β)(aδ − αd) (b− β)(γd− cδ)
(b− γ)(bδ − aγ) (b− γ)(βd− αc) (b− γ)(aα− δd)

(β − c)(bδ − aγ) (β − c)(βd− αc) (β − c)(aα− δd)

(γ − c)(αb− aβ) (γ − c)(aδ − αd) (γ − c)(γd− cδ)

For brevity, we will restrict our attention to the stronger principle SAPS.

Theorem 31. There are no probability functions satisfying Ex, WN and SAPS

on L2.



CHAPTER 5. ALTERNATIVES TO HAMMING DISTANCE IN L2 90

Proof. We first show that any such functions would have to be of the form

λ2−1(w〈a,b,c,d〉 + w〈d,c,b,a〉) + (1− λ)w〈α,β,β,α〉

where a > d and b > c, ac = bd, αc = βd, aβ = αb and 0 < λ ≤ 1. But then

it is easy to check that such a function gives equality in many of the inequalities

required by SAPS. For example, such a w gives

w(α1 |α1)− w(α1 |α2) =
a2 + d2 + α2

a+ d+ α
− ab+ dc+ αβ

b+ c+ β

=
(ac− bd)(a− d) + (aβ − αb)(a− α) + (βd− αc)(d− α)

(a+ d+ α)b+ c+ β)

= 0.

For w to satisfy SAPS, at least one point with no zero entries in the support of

its de Finetti prior µ must have the property that x1 > x4; similarly at least one

point with no zero entries must have the property that x2 > x3. For otherwise

we would have

w(α1 |α1 ∧ α1 ∧ α2 ∧ α3 ∧ α4) = w(α1 |α4 ∧ α1 ∧ α2 ∧ α3 ∧ α4)

or

w(α2 |α2 ∧ α1 ∧ α2 ∧ α3 ∧ α4) = w(α2 |α3 ∧ α1 ∧ α2 ∧ α3 ∧ α4).

So let 〈a, b, c, d〉 and 〈α, β, γ, δ〉 be these points, respectively. Then by Lemma

30, either b = c or ac = bd and either α = δ or αγ = βδ, giving us the following

four options to consider:

b = c ac = bd

α = δ (i) (ii)

αγ = βδ (iii) (iv)

We consider each in turn.

(i) Suppose firstly that a > α. Then from (a − α)(bγ − βc) ≥ 0 we get that

bγ ≥ βc = βb. Also, since a > α = δ, (a− δ)(bβ − cγ) ≥ 0 forces bβ ≥ cγ = bγ.

So β = γ, contradicting β 6= γ.

So now suppose that α > a. Then also δ > a, and the same two inequalities as

above force β = γ.
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The only remaining option is that a = α. In this case, δ = α = a > d, so

we can generate exactly the same contradiction from (α − d)(bβ − cγ) ≥ 0 and

(δ − d)(bγ − βc) ≥ 0. So option (i) is unsatisfiable.

(ii) Suppose firstly that δ = α > a > d. Since by assumption a > d > 0 and

b, c > 0, the condition ac = bd gives b > c. Then (a − δ)(bβ − cγ) ≥ 0 forces

cγ ≥ bβ, which contradicts β > γ and b > c.

So suppose next that δ = α = a > d. Then (δ − d)(aβ − αb) ≥ 0 forces aβ ≥ αb,

so β ≥ b. But then to ensure that a+ b+ c+ d = 1 = α+β+ γ+ δ we must have

c > γ. Then from (γ − c)(aδ − αd) ≥ 0 we get αd ≥ aδ, giving d ≥ δ which is a

contradiction.

The only remaining option is that a > α = δ. In this case, bd = ac > αc, and from

(a−δ)(αc−βd) ≥ 0, αc ≥ βd. Hence b > β. Then from (α−d)(bβ−cγ) ≥ 0, since

b > c and β > γ, we must have α ≥ d, that is δ ≥ d. From (a− α)(cδ − γd) ≥ 0

and (b − β)(γd − cδ) ≥ 0 we get that γd = cδ = cα ≥ βd. But this contradicts

β > γ.

(iii) is similarly unsatisfiable.

(iv) Firstly suppose that a = α. Then from (δ − d)(aβ − αb) ≥ 0 and (γ −
c)(aδ − αd) ≥ 0 we get that δ > d implies β ≥ b and γ ≥ c, contradicting

a + b + c + d = 1 = α + β + γ + δ. So we must also have δ = d. Now from

(b − γ)(aα − δd) ≥ 0 and (β − c)(aα − δd) ≥ 0 we must have that b ≥ γ and

β ≥ c. Either b = γ, β = c, or b > γ, in which case (b − γ)(bδ − aγ) ≥ 0 and

(b − γ)(βd − αc) ≥ 0 force β = b, and hence γ = c. So either way, 〈α, β, γ, δ〉
must be obtainable from 〈a, b, c, d〉 by a permutation licensed by Px.

If there is a further point 〈x, y, z, w〉 in the support of µ with x 6= a, then as we

have seen in (ii) and (iii), such a point cannot have the properties x > w, y = z or

x = w, y > z. But we have also seen that such a point cannot have the properties

x > w, y > z, xz = yw (as this forces x = y.) By Lemma 30, the only remaining

option is that x = w, y = z (and so xz = yw.)

Next suppose that a > α. Then also a > δ and so from (a− δ)(αc− βd) ≥ 0 we

get βd ≤ αc < ac = bd, hence b > β.

Now (a−α)(aβ−αb) ≥ 0 and (b− β)(αb− aβ) ≥ 0 jointly entail aβ = αb, while

(a− α)(cδ − γd) ≥ 0 and (b− β)(γd− cδ) ≥ 0 jointly entail cδ = γd. Also note

that b > β ≥ γ, so b > γ. So (a − δ)(aγ − bδ) and (b − γ)(bδ − aγ) ≥ 0 jointly
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entail bδ = aγ, while (a− δ)(αc− βd) ≥ 0 and (b− γ)(βd−αc) ≥ 0 jointly entail

αc = βd.

Note that in the above we have not used β > γ or a > d, and so the same obtains

if we start from the assumption that α > a.

Now we get that

αb− bδ = aβ − aγ

and

βd− γd = αc− cδ

Hence

(b+ d)(α− δ + γ − β) = (a+ c)(γ − β + α− δ)

so either α − δ + γ − β = 0, hence α + γ = β + δ = 1/2 or a + c = b + d = 1/2.

Suppose firstly that α + γ = β + δ. Then from αγ = βδ we get

α(1/2− α) = β(1/2− β)

which rearranges to give

1/2(α− β) = (α− β)(α + β)

so either α + β = 1/2 or α = β. In the former case, we now have δ = 1/2− β =

1/2 − (1/2 − α) = α, contradicting α > δ. So we must have α = β and hence

γ = δ. But now b(α−δ) = a(β−γ) forces a = b and similarly d(β−γ) = c(α−δ)
forces d = c. Notice that in the above we have not used the assumption that

a > α, so an exactly analogous argument shows that a + c = b + d also forces

a = b, c = d, α = β, γ = δ.

If we have points 〈a, a, c, c〉, 〈c, c, a, a, 〉, 〈α, α, γ, γ〉, 〈γ, γ, α, α, 〉 in the support of

µ, in order for w to satisfy SAPS we must have a further point 〈x, y, z, w〉 with

x, y, z, w non-zero and x 6= y. Otherwise w would give the equality

w(α1 |α1 ∧ α1 ∧ α2 ∧ α3 ∧ α4) = w(α1 |α2 ∧ α1 ∧ α2 ∧ α3 ∧ α4).

As we have seen, in (ii) and (iii), such a point cannot have the properties x >

w, y = z or x = w, y > z. But we have also seen that such a point cannot have

the properties x > w, y > z, xz = yw (as this forces x = y.) By Lemma 30, the
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only remaining option is that x = w, y = z (and so xz = yw.)

If y = 0, then x = 1/2, and (y− c)(ax− xc) ≥ 0 gives a contradiction. Similarly,

if x = 0, then y = 1/2, and (x − c)(ay − yc) ≥ 0 gives a contradiction. But if

x, y 6= 0, then (a− x)(ya− yc) ≥ 0, (a− y)(ax− xc) ≥ 0, (a− x)(ay − xa) ≥ 0

and (a− y)(xa− ay) ≥ 0 jointly force x = y, which is a contradiction.

We have thus shown that (i)-(iii) are unsatisfiable and (iv) entails that µ has in

its support the points 〈a, b, c, d〉 and 〈d, c, b, a〉 with ac = bd, a > d, b > c, and

any further point 〈α, β, γ, δ〉 in the support not obtainable from the first by WN

licensed permutations must have α = δ, β = γ. We check finally whether any

such 〈α, β, γ, δ〉 can appear in the support of µ.

If α = δ = 0, then β = γ = 1/2, and (α − d)(aγ − bδ) ≥ 0 gives a contradiction.

Similarly, if β = γ = 0, then α = δ = 1/2, and (β − c)(bδ − aγ) ≥ 0 gives a

contradiction.

If α, β, γ, δ 6= 0 then (b − β)(aδ − αd) ≥ 0 entails (b − β)(a − d) ≥ 0 and

(β − c)(aα − δd) ≥ 0 entails (β − c)(a − d) ≥ 0, hence we have b ≥ β = γ ≥ c.

Similarly, (a− δ)(bβ− cγ) ≥ 0 entails (a− δ)(b− c) ≥ 0 and (α− d)(bβ− cγ) ≥ 0

entails (α − d)(b − c) ≥ 0, hence we have a ≥ α = δ ≥ d. Furthermore, since

b > c, at least one of b > β = γ or β = γ > c must hold. So since we have

(b−β)(αb− aβ) ≥ 0 and (γ− c)(αb− aβ) ≥ 0, it must be the case that αb ≥ aβ.

And since a > d, at least one of a > α = δ or α = δ > d must hold, so from

(a−α)(aβ−αb) ≥ 0 and (δ−d)(aβ−αb) ≥ 0 we can deduce aβ ≥ αb. So in fact

αb = aβ. Also from (a−α)(cδ−γd) ≥ 0, (δ−d)(cδ−γd) ≥ 0, (b−β)(γd−cδ) ≥ 0

and (γ − c)(γd− cδ) ≥ 0 we can deduce βd = γd = cδ = cα.

It is easy to see that only one such extra point can appear in the support of µ.

For suppose there was a further, distinct point 〈x, y, y, x〉 in the support of µ.

Such a point would have to have the properties a ≥ x ≥ d, b ≥ y ≥ c, ay = xb,

yd = cx. Then αb− xb = aβ − ay, giving

α− x = β − y = (1/2− α)− (1/2− x) = −α + x

and so α = x (and β = y.)

We have thus proved that any probability function satisfying Ex + WN + SAPS
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must be of the form

λ2−1(w〈a,b,c,d〉 + w〈d,c,b,a〉) + (1− λ)w〈α,β,β,α〉

where a > d, b > c, ac = bd and 0 < λ ≤ 1.

Since any such function violates SAPS, this completes the proof.

There are two further combinations of symmetry principles that give rise to al-

ternative distance functions. Firstly, SN in the absence of Px. Such distance

functions would look like one of the following.

α1 α3

α2 α4

(5.6)

α1 α2

α3 α4

(5.7)

Notice that the similarity function >S that 5.6 gives rise to is actually the same

one as in Theorem 31. An obvious corollary to that theorem then is:

Corollary 32. There are no probability functions that satisfy Ex, SN + SAPS.

And finally, Px in the absence of any negation principle. Such distance functions

could be as below.

α1

α2 α3

α4

(5.8) α4

α2 α3

α1

(5.9)

If k is the distance function pictured by 5.8, let>K be the corresponding similarity

relation on L2. The following are properties of >K .

{α1, α2} >K {α1, α4}

{α1, α3} >K {α1, α4}
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{α2, α4} >K {α2, α1}

{α3, α4} >K {α3, α1}

{α2, α4} >K {α2, α3}

{α3, α4} >K {α2, α3}

{α2, α3} >K {α1, α4}

Let w be a probability function with de Finetti prior µ satisfying Ex, Px and

APK . For any two points 〈a, b, c, d〉, 〈α, β, γ, δ〉 in the support of µ, the points

〈a, c, b, d〉, 〈α, γ, β, δ〉 must also appear. Using Corollary 18 with all pairs of points

with the first taken from

{〈a, b, c, d〉, 〈a, c, b, d〉}

and the second from

{〈α, β, γ, δ〉, 〈α, γ, β, δ〉},

and all appropriate choices of ji, APK requires that all the following expressions

be non-negative:

(a− α)(aβ − αb) (a− α)(aβ − αc) (a− α)(aγ − αb) (a− α)(aγ − αc)
(a− α)(bδ − βd) (a− α)(bδ − γd) (a− α)(cδ − γd) (a− α)(cδ − βd)

(δ − d)(aβ − αb) (δ − d)(aβ − αc) (δ − d)(aγ − αb) (δ − d)(aγ − αc)
(δ − d)(bδ − βd) (δ − d)(bδ − γd) (δ − d)(cδ − γd) (δ − d)(cδ − βd)

(b− β)(αd− aδ) (b− β)(γd− cδ) (b− β)(bδ − βd)

(c− γ)(αd− aδ) (c− γ)(cδ − γd) (c− γ)(βd− bδ)
(b− γ)(bδ − γd) (b− γ)(βd− cδ) (b− γ)(αd− aδ)
(β − c)(bδ − γd) (β − c)(βd− cδ) (β − c)(aδ − αd)

For w to satisfy SAPK there must be at least one point 〈a, b, c, d〉 in the support

of µ with a, b, c, d non-zero and b 6= c, for otherwise w would give

w(α2 |α2 ∧ α1 ∧ α2 ∧ α3 ∧ α4) = w(α2 |α3 ∧ α1 ∧ α2 ∧ α3 ∧ α4).

Suppose without loss of generality that b > c. If w were simply the discrete

probability function that splits all measure between 〈a, b, c, d〉 and 〈a, c, b, d〉 then

it is easy to see that w would give equality in the weak inequalities required by

APK .



CHAPTER 5. ALTERNATIVES TO HAMMING DISTANCE IN L2 96

For example,

w(α1 |α1) =
2a2

2a
= a =

a(b+ c)

b+ c
= w(α1 |α2).

So for w to satisfy SAPK , there must be another point 〈α, β, γ, δ〉 in the support

of µ with α, β, γ, δ non-zero and a 6= α. Without loss of generality we can suppose

that β ≥ γ.

Suppose firstly that a > α. Then from (a−α)(cδ−γd) ≥ 0 we get that bδ > cδ ≥
βd, so from (δ− d)(bδ− βd), δ ≥ d. Then aδ > αd, so from (b− β)(αd− aδ) ≥ 0

and (b − β)(bδ − βd) ≥ 0 we get that β = b. Also from (b − γ)(αd − aδ) ≥ 0

we get that β ≥ γ ≥ b = β so γ = β = b. Finally, note that if δ = d, then

(a − α)(cδ − γd) ≥ 0 entails (a − α)(c − γ) ≥ 0 and so c ≥ γ = b, contradicting

b > c. So δ > d.

That is, we have

a b c d

∨ || ∧ ∧
α β β δ

If α > a, then from (a − α)(bδ − γd) ≥ 0 we get that γd ≥ bδ > cδ, so from

(δ−d)(cδ−γd) ≥ 0 we get that d ≥ δ. Then αd > aδ, so from (c−γ)(αd−aδ) ≥ 0

and (c− γ)(cδ − γd) ≥ 0 we get that γ = c. Also, from (β − c)(aδ − αd) ≥ 0 we

get that c ≥ β, so c ≥ β ≥ γ = c, hence in fact γ = β = c. Finally note that if

δ = d, then (a − α)(bδ − βd) ≥ 0 entails (a − α)(b − β) ≥ 0 and so c = β ≥ b,

contradicting b > c.

That is, we have

a b c d

∧ ∨ || ∨
α β β δ

Theorem 33. If w is a probability function on L2 satisfying Ex, Px and SAPK,

then it must have one of the following forms:

1. 2−1λ
(
w〈a,b,c,d〉 + w〈a,c,b,d〉

)
+ (1− λ)

∫
D2
w〈x,b,b,1−x−2b〉dµ(x),

for some 0 < λ < 1 and some µ such that µ(x) = 0 for any x ≥ a.
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2. 2−1λ
(
w〈a,b,c,d〉 + +w〈a,c,b,d〉

)
+ (1− λ)

∫
D2
w〈x,c,c,1−x−2c〉dµ(x),

for some 0 < λ < 1 and some µ such that µ(x) = 0 for any x ≤ a.

Proof. We know already that w must have in the support of its de Finetti prior

the points 〈a, b, c, d〉, 〈a, c, b, d〉 with b > c. We know that there must also be a

point 〈α, β, β, δ〉 and one of

(i) a > α, d < δ, β = b,

(ii) a < α, d > δ, β = c.

Notice that in either case, if there was a further point 〈x, y, z, w〉 with x = a,

then in fact these points would have to be the same. For then we would have

(w−d)(y−b) ≥ 0 and (c−z)(d−w) ≥ 0 which, given a+b+c+d = 1 = x+y+z+w,

are only jointly satisfiable if w = d, z = c and y = b.

To complete the proof, we note that two points 〈a1, b1, b1, d1〉, 〈a2, b2, b2, d2〉 with

a2 > a > a1 and d2 < d < d1 cannot both appear in the support of µ. For

consider the requirement that (b1 − b2)(a1d2 − a2d1) ≥ 0. Clearly a2d1 > a1d2,

hence b2 ≥ b1. But b2 = c < b = b1.

On the other hand, inspection of the list of constraints shows that two points

〈a1, b1, b1, d1〉, 〈a2, b2, b2, d2〉 with a > a1 > a2, d < d1 < d2, b1 = b2 = b satisfy all

the required conditions. Similarly, two points 〈a1, b1, b1, d1〉, 〈a2, b2, b2, d2〉 with

a1 < a2 < a, d1 > d2 > d, b1 = b2 = c will satisfy all conditions.

Notice that in 5.8, while α4 must be closer to α2 than α3 is, α1 could actually

be further from α2 than α3 is. Let K ′ be a distance function with this further

property. Then as well as the above conditions, >K′ would have to satisfy:

{α3, α2} >K′ {α3, α1}

{α2, α3} >K′ {α2, α1}

Given these extra constraints, APK′ would require that the following inequality

holds for all θ ∈ QFSL.

w(α2 |α3 ∧ θ) ≥ w(α2 |α1 ∧ θ)
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As seen above, at least one point in the support of µ must have the property

that b 6= c (otherwise we would have w(α2 |α3) = w(α2 |α2), in contradiction of

SAPK′ .) Using Corollary 18 with the points 〈a, b, c, d〉 and 〈a, c, b, d〉 and taking

j1 = j4 = 0 with cases j2 = j3 = 1 and j3 = 1, j2 = 0, we get

lim
n→∞

w(α2 |α3 ∧ (φn ∨ ψn)) =
bc+ λcb

c+ λb

Using the same points and taking j3 = j4 = 0 with cases j1 = j2 = 1 and

j2 = 0, j1 = 1 we get

lim
n→∞

w(α2 |α1 ∧ (φn ∨ ψn)) =
ba+ λca

a+ λa

APK′ then requires

bc+ λcb

c+ λb
≥ ba+ λca

a+ λa

which gives

λ(c− b)(b− c) ≥ 0

and since λ > 0, this is only possible if b = c, contradicting our assumption.

In other words, SAPK′ is unsatisfiable, and APK′ only satisfiable if b = c for all

〈a, b, c, d〉 in the support of µ.

5.2 Non-distance based alternatives

5.2.1 Structural similarity

As mentioned in the previous chapter, it might be objected that a principle like

WN actually has another idea behind it; that, for example, an atom P1∧P2∧P3 is

in some way more similar to an atom ¬P1∧¬P2∧¬P3 than it is to P1∧P2∧¬P3.

WN seems to be motivated by the idea that the structure of an atom, in terms of

how many predicates differ in sign, is a significant feature. Recall that we defined

the similarity relation >W to be such that on L2,

{α1, α4}, {α2, α3} >W {α1, α2}, {α1, α3}, {α4, α2}, {α4, α3}
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If we consider APW in the presence of Px and WN, we need the following in-

equalities to be satisfied;

1. w(α1 |α1 ∧ θ) ≥ w(α1 |α4 ∧ θ)

2. w(α1 |α4 ∧ θ) ≥ w(α1 |α2 ∧ θ)

3. w(α2 |α2 ∧ θ) ≥ w(α2 |α3 ∧ θ)

4. w(α2 |α3 ∧ θ) ≥ w(α2 |α1 ∧ θ)

Theorem 34. If w is a probability function, with de Finetti prior µ, satisfying Ex,

Px, WN and APW , then every point in the support of µ has one of the following

forms: 〈a, b, b, a〉, 〈a, 0, 0, b〉, 〈0, a, b, 0〉.

Proof. Suppose that the point 〈a, b, c, d〉 is in the support of µ. Then, by WN

and Px, the point 〈d, b, c, a〉 is also in the support of µ. Using Corollary 18 with

these points and the requirement from APW that

lim
n→∞

w(α1 |α4 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)),

Corollary 18 gives that for some λ > 0,

ad+ λda

d+ λa
≥ ab+ λdb

b+ λb

which, cross-multiplying and expanding gives

−λb(a− d)2 ≥ 0,

so either b = 0 or a = d. Similarly, considering 〈a, b, c, d〉 and 〈d, c, b, a〉 gives that

−c(a− d)2 ≥ 0.

If a 6= d, we must have b = c = 0.

Using Corollary 18, this time with the points 〈a, b, c, d〉 and 〈a, c, b, d〉 and the

requirement from APW that

lim
n→∞

w(α2 |α3 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α2 |α1 ∧ (φn ∨ ψn)),

we get that
bc+ λcb

c+ λb
≥ ba+ λca

a+ λa
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for some λ > 0, which is equivalent to

−a(b− c)2 ≥ 0

and the same inequality with 〈d, b, c, a〉 and 〈d, c, b, a〉 will give

−d(b− c)2 ≥ 0

So either a = d = 0 or b = c. This completes the proof.

Consider the sentence θ = α1 ∧α2 ∧α3 ∧α4 and the inequality required by APW :

w(α1 |α1 ∧ θ) ≥ w(α1 |α4 ∧ θ)

Support points with zeros in will make no contribution to these probabilities,

wheras all remaining support points have x1 = x4 and so force equality in this

instance. So in fact we have

Corollary 35. There are no probability functions that satisfy Ex, Px, WN and

SAPW .

While this formulation of analogy proves unfruitful, the idea of similarity as

deriving from structure will be explored further in the next chapter, with more

success.

5.2.2 Further-away-ness

Returning for a moment to Hamming Distance, we noted in Chapter 3 that this

is rather a crude measure of similarity as it assumes that all distances are compa-

rable, even when they involve totally different predicates. Instead we suggested a

subtler similarity relation >F (see page 40), arising from further-away-ness, and

corresponding analogy principles. Not only is SAPF more intuitively appealing

than SAPH , but the following section will show that (in the presence of Ex + Px

+ SN) it is satisfied by probability functions on languages of all sizes.

As already noted, >H and >F agree on L2, so the class of probability functions

satisfying APF on L2 is exactly that class determined by APH .

Notice also that 3>F is an extension of 2>F as given by the definition on page 42,

and so if we continue to take SN as a background assumption, by Proposition 12,
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a probability function satisfying APF on L3 must marginalise to one satisfying

APF (equivalently APH) on L2. If we suppose that w satisfies Ex + Px + SN,

its de Finetti prior µ must be invariant under permutations from P3; we know

then, from Theorem 22, that the only candidate functions on L3 are of the form

y〈a,b,b,c,b,c,c,d〉 with (a + b)(c + d) = (b + c)2 and νy〈a,b,b,a,c,d,d,c〉 + (1 − ν)c3
0 with

a+ c = b+ d = 4−1.

Proposition 36. The probability function 3
2
λy〈a,a,a,a,b,b,b,b〉 + (1 − 3

2
λ)c3

0 satisfies

Ex + Px + SN + APF on L3 and is the only such probability function that

marginalises to λy〈2a,2a,2b,2b〉 + (1− λ)c2
0 on L2.

Proof. We know that the only probability function on L3 satisfying Ex + Px +

SN and marginalising to something of the form λy〈2a,2a,2b,2b〉+(1−λ)c2
0 on L2 must

contain in the support of its de Finetti prior µ, at least one y〈α, β, β, α, γ, δ, δ, γ〉
such that α + β = 2a, γ + δ = 2b and α + γ = β + δ. So such a function must

have in its support the points 〈α, β, β, α, γ, δ, δ, γ〉 and 〈β, α, α, β, δ, γ, γ, δ〉. Using

these points and Corollary 18 consider the inequality required by APF :

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α4 ∧ (φn ∨ ψn))

which gives
αβ + λβα

β + λα
≥ α2 + λβ2

α + λβ

for some λ > 0. This simplifies to

λ(β2 − α2)(α− β) ≥ 0

which is only satisfiable if α = β and hence α, β = a. But since α + γ = β + δ

this forces γ = δ = b. This means that our function must simply be

νy〈a,a,a,a,b,b,b,b〉 + (1− ν)c3
0

We can now confirm that this function satisfies APF on L3.

The inequalities we need to check for any θ ∈ QFSL are

(i) w(α1 |α1 ∧ θ) ≥ w(α1 |α2 ∧ θ)

(ii) w(α1 |α2 ∧ θ) ≥ w(α1 |α4 ∧ θ)
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(iii) w(α1 |α4 ∧ θ) ≥ w(α1 |α8 ∧ θ)

Let t1 = ν
6
w〈a,a,a,a,b,b,b,b〉(θ), t2 = ν

6
w〈a,a,b,b,a,a,b,b〉(θ), t3 = ν

6
w〈a,b,a,b,a,b,a,b〉(θ), t4 =

ν
6
w〈b,b,b,b,a,a,a,a〉(θ), t5 = ν

6
w〈b,b,a,a,b,b,a,a〉(θ), t6 = ν

6
w〈b,a,b,a,b,a,b,a〉(θ) and t7 = (1 −

ν)c3
0(θ).

Writing out (i) using the definition of w then, we have

a2t1 + a2t2 + a2t3 + b2t4 + b2t5 + b2t6 + 8−2t7
at1 + at2 + at3 + bt4 + bt5 + bt6 + 8−1t7

≥

a2t1 + a2t2 + abt3 + b2t4 + b2t5 + bat6 + 8−2t7
at1 + at2 + bt3 + bt4 + bt5 + at6 + 8−1t7

Cross-multiplying and simplifying, this gives

t1t6a(a− b)(a− b) + t2t6a(a− b)(a− b) + t3t6a(a− b)(a− b)

+t3t78−1(a− 8−1)(a− b) + t6t78−1(8−1 − b)(a− b) ≥ 0

Similarly, (ii) is equivalent to

a2t1 + a2t2 + abt3 + b2t4 + b2t5 + bat6 + 8−2t7
at1 + at2 + bt3 + bt4 + bt5 + at6 + 8−1t7

≥

a2t1 + abt2 + abt3 + b2t4 + bat5 + bat6 + 8−2t7
at1 + bt2 + bt3 + bt4 + at5 + at6 + 8−1t7

Which becomes

t1t5a(a− b)(a− b) + t2t4b(a− b)(a− b) + t2t6a(a− b)(a− b)+

t3t5b(a− b)(a− b) + t2t78−1(a− 8−1)(a− b) + t5t78−1(8−1 − b)(a− b) ≥ 0

and finally, (iii) is equivalent to

a2t1 + abt2 + abt3 + b2t4 + bat5 + bat6 + 8−2t7
at1 + bt2 + bt3 + bt4 + at5 + at6 + 8−1t7

≥

abt1 + abt2 + abt3 + bat4 + bat5 + bat6 + 8−2t7
bt1 + bt2 + bt3 + at4 + at5 + at6 + 8−1t7

which simplifies to

t1t4(a2 − b2)(a− b) + t1t5a(a− b)(a− b) + t1t6a(a− b)(a− b)+

t2t4b(a− b)(a− b) + t3t4b(a− b)(a− b)

+t1t78−1(a− 8−1)(a− b) + t4t78−1(8−1 − b)(a− b) ≥ 0.

Clearly, all three inequalities hold and in fact are strict as long as a 6= b and
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ν > 0. Finally, note that the measure given to 〈a, a, a, a, b, b, b, b〉 is ν/6 but

must be equal to the measure given in L2 to 〈2a, 2a, 2b, 2b〉 which is λ/4, and so

ν = 3/2λ.

Proposition 37. c∞ is the only probability function satisfying Ex + Px + SN +

APF on L3 that marginalises to a probability function of the form y〈,a,b,b,b2/ac〉 on

L2.

Proof. As seen in Theorem 22, we know that such a function must have a point

〈α, β, β, γ, β, γ, γ, δ〉, with α+β = a, β+γ = b, and γ+δ = b2/a in the support of

its de Finetti prior µ. By Px and SN, 〈γ, δ, β, γ, β, γ, α, β〉 must also be a support

point. Using these two points, APF requires that

lim
n→∞

w(α1 |α1 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn))

which, by Corollary 18, gives

α2 + λγ2

α + λγ
≥ αβ + λγδ

β + λδ

for some λ. Cross-multiplying and simplfying, this gives

(αδ − βγ)(α− γ) ≥ 0

We know from the properties of w on L2, that α + β > β + γ, and so α > γ.

So we can conclude that αδ ≥ βγ. We also have that β + γ > γ + δ and so

β > δ. Using the same inequality but with the points 〈β, α, γ, β, γ, β, δ, γ〉 and

〈δ, γ, γ, β, γ, β, β, α〉, we get

(βγ − αδ)(β − δ) ≥ 0

and so βγ ≥ αδ. So in fact we must have αδ = βγ.

Now consider the support points 〈α, β, β, γ, β, γ, γ, δ〉 and 〈β, γ, α, β, γ, δ, β, γ〉
and the requirement from APF that

lim
n→∞

w(α1 |α1 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn))

which, by Corollary 18, gives

α2 + λβ2

α + λβ
≥ αβ + λβγ

β + λγ
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for some λ. Cross-multiplying and simplfying, this gives

(αγ − β2)(α− β) ≥ 0

Now using the points 〈α, β, β, γ, β, γ, γ, δ〉 and 〈β, αγ, β, γ, β, δ, γ〉 and the in-

equality

lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α6 ∧ (φn ∨ ψn))

we get, using Corollary 18, that

(αγ − β2)(β − α) ≥ 0.

Combining these two inequalities we can see that we must have either α = β or

αγ = β2. If α = β, then since αδ = βγ, we must also have γ = δ. But then we

know that (α + α)(γ + γ) = (α + γ)2, hence 0 = (α − γ)2 and so α = γ. Our

function is then c3
0 as required. On the other hand, if αγ = β2, we have β2 > γ2,

hence β > γ, and αγ > βδ since β > δ. But using the points 〈β, α, γ, β, γ, β, δ, γ〉
and 〈γ, δ, β, γ, β, γ, α, β〉 and the inequality

lim
n→∞

w(α1 |α1 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α2 ∧ (φn ∨ ψn)),

Corollary 18 gives

(βδ − αγ)(β − γ) ≥ 0

which contradicts the above observations.

This gives us the following result for SAPF .

Corollary 38. The only probability functions satisfying Ex + Px + SN + SAPF

on L3 are of the form νy〈a,a,a,a,b,b,b,b〉 + (1− ν)c3
∞ with a > b and 0 < ν ≤ 1.

This can be extended to bigger languages in the obvious way. Let 〈a, ..., a, b, ..., b〉 ∈
Dq be the point with a as the first 2q−1 entries and b as the remaining 2q−1 entries,

and y〈a,...,a,b,...,b〉 be the average of the w~x for all ~x obtainable from 〈a, ..., a, b, ..., b〉
by a permutation in Pq. We first have the following Lemma.

Lemma 39. Probability functions on Lq of the form νy〈a,...,a,b,...,b〉 + (1 − ν)cq∞

with a > b and 0 < ν ≤ 1 satisfy Ex + Px + SN + SAPF .
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Proof. Let µq be the de Finetti prior of such a probability function. The satisfac-

tion of Ex, Px and SN is immediate from the definition. To show that SAPF is

satisfied we observe that there are a limited number of possible coefficients in any

inequality obtained by cross-multiplying and simplifying those given by SAPF .

Suppose that {αi, αj} >F {αi, αk}. Suppose initially that i = 1 (without loss of

generality, since any αi can be transformed to α1 by a permutation from Pq) and

notice that in the point ~x = 〈a, ..., a, b, ..., b〉, if xj = b, then we must have xk = b,

whereas in ~y = 〈b, ..., b, a, ..., a〉, if yj = a, then yk = a. Since permutations of

atoms according to Px and SN preserve Hamming Distance and hence further-

away-ness, we in fact have that any point ~y obtained from ~x by such permutations

has the property that (yj 6= yi)⇒ (yk 6= yi).

Now consider any two points in the support of µq, ~p, ~q, any θ ∈ QFSL and the

corresponding terms tp = w~p(θ), tq = w~q(θ). Consider the inequality required by

SAPF ,

pipjtp + qiqjtq + ....

pjtp + qjtq + ...
>
pipktp + qiqktq + ...

pktp + qktq + ...

Cross multiplying and simplifying, this gives

(pipjqkb+ qiqjpk − pipkqj − qiqkpj)tptq + ..... > 0

We show that the coefficient of tptq cannot be negative and is sometimes strictly

positive. Since this holds for arbitrary ~p, ~q, this ensures that the inequality holds

as required. If pi = qi, then in fact

(pipjqkb+ qiqjpk − pipkqj − qiqkpj) = pi(pjqk + qjpk − pkqj − qkpj) = 0

So now consider the case when pi differs from qi, and that neither ~p, nor ~q is the

point 〈2−q, ..., 2−q〉.

Without loss of generality we can assume pi = a and qi = b. We know that

pj = b⇒ pk = b, and qj = a⇒ qk = a. So we need to check the following 9 cases:

qj = qk = b qj = qk = a qj = b, qk = a

pj = pk = b (1) (2) (3)

pj = pk = a (4) (5) (6)

pj = a, pk = b (7) (8) (9)
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Clearly cases (1),(2),(4) and (5) result in zero coefficients. The remaining cases

are as follows:

(3) The inequality required by SAPF is:

abtp + b2tq + ....

btp + btq + ...
>
abtp + batq + ...

btp + atq + ...

After cross-multiplying and rearranging, this becomes:

(a2b+ b3 − ab2 − b2a)tptq + ..... > 0

The coefficient of tptq simplifies to b(a− b)2 and so is positive.

(6) The inequality required by SAPF is:

a2tp + b2tq + ...

atp + btq + ...
>
a2tp + batq + ...

atp + atq + ...

After cross-multiplying and rearranging:

(a3 + b2a− a2b− ba2)tptq + ... > 0

The coefficient of tptq simplifies to a(a− b)2 and so is positive.

(7) The inequality required by SAPF is

a2tp + b2tq + ...

atp + btq + ...
>
abtp + b2tq + ...

btp + btq + ...

After cross-multiplying and rearranging:

(a2b+ b3 − ab2 − b2a)tptq + ... > 0

The coefficient of tptq simplifies to b(a− b)2 and so is positive.

(8) The inequality required by SAPF is

a2tp + batq + ...

atp + atq + ...
>
abtp + batq + ...

btp + atq + ...
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After cross-multiplying and rearranging:

(a3 + b2a− ab − ba2)tptq + ... > 0

The coefficient of tptqs simplifies toa(a− b)2 which is positive.

(9) The inequality required by SAPF is

a2tp + b2tq + ...

atp + btq + ...
>
abtp + batq + ...

btp + atq + ...

After cross-multiplying and rearranging:

(a3 + b3 − ab2 − ba2)tptq + ... > 0

The coefficient of tptq simplifies to (a2 − b2)(a− b) and so is positive.

Finally we suppose that one of ~p or ~q is the point 〈2−q, ..., 2−q〉. Suppose without

loss of generality that ~p is this point. We have the following cases to consider.

qi = a qj = qk = b qj = qk = a qj = a, qk = b qj = b, qk = a

(1) (2) (3) X

qi = b (4) (5) X (6)

Clearly cases (1), (2), (3) and (5) result in zero coefficients.

(4) The inequality required by SAPF is

(2−q)2tp + a2tq + ...

2−qtp + atq + ...
>

(2−q)2tp + abtq + ...

2−qtp + btq + ...

After cross-multiplying and rearranging:

(2−q)2b+ a22−q − (2−q)2a− 2−qab)tptq + ... > 0

The coefficient of tptq simplifies to 2−q(a− b)(a− 2−q) and so is positive.

(6) The inequality required by SAPF is

(2−q)2tp + b2tq + ...

2−qtp + btq + ...
>

(2−q)2tp + batq + ...

2−qtp + atq + ...
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After cross-multiplying and rearranging:

(2−q)2a+ b22−q − (2−q)2b− 2−qba)tptq + ... > 0

The coefficient of tptq simplifies to 2−q(a− b)(2−q − b) and so is positive.

We can now prove the main theorem of this section.

Theorem 40. Probability functions of the form νy〈a,...,a,b,...,b〉 + (1 − ν)cq∞ with

a > b and 0 < ν ≤ 1 satisfy Ex + Px + SN + SAPF on Lq and are the only such

functions for q ≥ 3.

Proof. Lemma 39 shows that such probability functions do indeed satisfy Ex + Px

+ SN + SAPF . What remains is to show that they are the only such probability

functions. The proof of this is by induction, with Corollary 38 as the base case.

For any q, where β1, ..., β2q−1 are the atoms of Lq−1, we fix the ordering of the Lq

atoms α1, ..., α2q by setting

α2i−1 = βi ∧ Pq, α2i = βi ∧ ¬Pq

Now suppose that the statement of the Theorem holds for Lq−1 and consider Lq.

Firstly we show that a function of the form

ν2y〈a,...,a,b,...,b〉 + (1− ν2)cq∞

for some 0 < ν2 ≤ 1 is the only probablity function on Lq satisfying Ex, Px, SN

and SAPF and marginalising to

νy〈2a,...,2a,2b,...,2b〉 + (1− ν)cq−1
∞

on Lq−1. Any function marginalising to the latter must have in the support of its

de Finetti prior µ a point of the form

〈x1, 2a− x1, x2, 2a− x2, ....〉.
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By Px, we then have that a point

〈x1, x2, 2a− x1, 2a− x2, ....〉

is also in the support of µ. If x1 + x2 = 2−(q−1) then also (2a− x1) + (2a− x2) =

2−(q−1), so 4a = 2 ·2−(q−1), contradicting the inductive hypothesis. If x1 +x2 = 2b,

then 2a−x1 + 2a−x2 = 2a gives that 4a− 2b = 2a, while 2a−x1 + 2a−x2 = 2b

gives that 4a− 2b = 2b, either way contradicting the inductive hypothesis. So we

must have that x1 + x2 = 2a.

Now note that SN requires that

〈2a− x1, x1, 2a− x2, x2, ....〉

is also in the support of µ, and SAPF requires

lim
n→∞

w(α1 |α3 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α4 ∧ (φn ∨ ψn)).

So by Corollary 18 we have

x1x2 + λ(2a− x1)(a− x2)

x2 + λ(2a− x2)
≥ x1(2a− x2) + λ(2a− x1)x2

(2a− x2) + λx2

for some λ > 0. This simplifies to

(2x1 − 2a)(2x2 − 2a)) ≥ 0

But since x1 + x2 = 2a, this can only hold if 2x1 = 2x2 = 2a. So we have that

x1 = x2 = a.

Exactly the same reasoning can be applied to all consecutive entries xi, 2a −
xi, xj, 2a − xj to deduce xi = xj = a and to all consecutive entries xi, 2b −
xi, xj, 2b− xj to deduce xi = xj = b. Hence our original point must be

〈a, a, a, a, ..., b, b, b, b〉.

Any point in the support of µ that contains consecutive entries xi, 2a−xi, xj, 2b−
xj, by applying a permutation from Pq becomes one with consecutive entries

xi, 2a−xi, xk, 2a−xk and xl, 2b−xl, xj, 2b−xj. The proof that xi = a and xj = b

then proceeds as above. So any such point is in fact obtained from the first by a
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permutation from Pq.

Finally consider any point in the support of µ of the form

〈x1, 2
−(q−1) − x1, x2, 2

−(q−1) − x2, ...〉.

By Px we know that a point

〈x1, x2, 2
−(q−1) − x1, 2

−(q−1) − x2, ....〉

is also in the support of µ. If x1 + x2 = 2a, then

2−(q−1) − x1 + 2−(q−1) − x2 = 2−(q−2) − 2a = 2b

and similarly, if x1 + x2 = 2b then 2−(q−1) − x1 + 2−(q−1) − x2 = 2a.

Now SN requires that 〈2−(q−1) − x1, x1, 2
−(q−1) − x2, x2, ...〉 is also in the support

of µ, and SAPF requires

lim
n→∞

w(α1 |α3 ∧ (φn ∨ ψn)) ≥ lim
n→∞

w(α1 |α4 ∧ (φn ∨ ψn)).

So by Corollary 18 we have

x1x2 + λ(2−(q−1) − x1)(2−(q−1) − x2)

x2 + λ(2−(q−1) − x2)
≥ x1(2−(q−1) − x2) + λ(2−(q−1) − x1)x2

(2−(q−1) − x2) + λx2

for some λ > 0. This simplifies to

(2x1 − 2−(q−1))(2x2 − 2−(q−1))) ≥ 0

So either 2−(q−1) = 2x1 = 2x2, or

2a = 2x1 = 2x2 > 2−(q−1),

or

2b = 2x1 = 2x2 < 2−(q−1).

Furthermore, the rest of the entries in the vector are subject to the same reason-

ing. That is, any four consecutive entries

xi, 2
−(q−1) − xi, xi+1, 2

−(q−1) − xi+1
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must be one of

2−q, 2−q, 2−q, 2−q,

a, b, a, b,

or

b, a, b, a.

Note that we cannot have a point of the form

〈2−q, 2−q, 2−q, 2−q, ..., a, b, a, b, ...〉

in the support of µ. For if we did, Px would require that

〈2−q, 2−q, 2−q, 2−q, ..., a, a, b, b, ...〉

be in the support of µq. But then we would have

〈2−(q−1), 2−(q−1), ..., 2a, 2b, ...〉

in the support of µq−1, contradicting the inductive hypothesis. By exactly the

same reasoning, we cannot have a point of the form

〈2−q, 2−q, 2−q, 2−q, ..., b, a, b, a, ...〉

in the support of µ. Finally note that we cannot have a point of the form

〈a, b, a, b, ..., b, a, b, a, ...〉

In the support of µ. For if we did, Px would require that

〈a, a, b, b, ..., b, b, a, a, ...〉

be in the support of µq, and this would require a point

〈2a, 2b, ..., 2b, 2a, ...〉

in the support of µq−1, contradicting the inductive hypothesis.

Hence we have confirmed that anything satisfying Ex, Px, SN and SAPF on Lq
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and marginalising to ν1y〈2a,...,2a,2b,...,2b〉+ (1− ν1)cq−1
∞ on Lq−1 must be of the form

ν2y〈a,...,a,b,...,b〉 + (1− ν2)cq∞.

In contrast with Hamming Distance then, this subtler notion of further-away-ness

gives rise to a strong analogy principle that is satisfiable on languages Lq for all

q ≥ 1.

Restricting our attention to state descriptions, again there many probability func-

tions satisfying SDAPF for L3. And again, in contrast with SDAPH , we can

identify a class of probability functions satisfying SDAPF on Lq for all q ≥ 1.

Let w1 be any exchangeable function on L1, and define

w(θ) := w1(θ1)× w1(θ2)× w1(θ3)

for any state description θ, where θi is the conjunction of all the ±Pi occurring

in θ. In other words, if µ1 is the de Finetti prior of w1, we have

w(
8∧
i=1

αnii ) = w1(Pm1
1 ∧ ¬PN−m1

1 )× w1(Pm2
2 ∧ ¬PN−m2

2 )× w1(Pm3
3 ∧ ¬PN−m3

3 )

=

∫
D
xm1(1− x)N−m1dµ1(~x)×

∫
D
xm2(1− x)N−m2dµ1(~x)

×
∫
D
xm3(1− x)N−m3dµ1(~x)

where αmi denotes m conjuncts of the form αi(aj), N = n1 + ... + n8,m1 =

n1 + n2 + n3 + n4,m2 = n1 + n2 + n5 + n6, and m3 = n1 + n3 + n5 + n7.

For any state description θ =
∧8
i=1 α

ni
i , let fθ(x) denote the function xm1(1 −

x)N−m1 , gθ(x) the function xm2(1−x)N−m2 and hθ(x) the function xm3(1−x)N−m3 .

It should be intuitively clear that w will satisfy SDAPF . For example, we have

w(α1 |α2 ∧ θ) =

∫
D x

2fθ(x)dµ1(~x)∫
D xfθ(x)dµ1(~x)

×
∫
D x

2gθ(x)dµ1(~x)∫
D xgθ(x)dµ1(~x)

×
∫
D x(x− 1)hθ(x)dµ1(~x)∫
D(x− 1)hθ(x)dµ1(~x)

≥
∫
D x

2fθ(x)dµ1(~x)∫
D xfθ(x)dµ1(~x)

×
∫
D x(x− 1)gθ(x)dµ1(~x)∫
D(x− 1)gθ(x)dµ1(~x)

×
∫
D x(x− 1)hθ(x)dµ1(~x)∫
D(x− 1)hθ(x)dµ1(~x)

= w(α1 |α4 ∧ θ)
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And similarly for all other required inequalities. This way of forming probability

functions can be extended to languages of size q, for all q, and will give a class of

probability functions satisfying ULi with SDAPF :

Proposition 41. Let w be a probability function on L1 satisfying Ex. Then for

q ≥ 1, the probability functions wq given by

wq(θ) =

q∏
i=1

w(θi)

satisfy ULi with SDAPF .

To relate the probability functions satisfying APF to this class, note that the

probability function y〈a,b,b,c,b,c,c,d〉 is the same as

y〈x,1−x〉 × y〈x,1−x〉 × y〈x,1−x〉

where x3 = a, while the probability function νy〈a,a,a,a,b,b,b,b〉+(1−ν)c3
0 is the same

as

ν

3

(
(y〈x,1−x〉 × c2

0 × c2
0) + (c2

0 × y〈x,1−x〉 × c2
0) + (c2

0 × c2
0 × y〈x,1−x〉)

)
+ (1− ν)c3

0

(5.10)

where x = 4a.

Note that 5.10 is not a product if ν 6= 1, so we know that there are probability

functions satisfying SDAPF other than those described in Proposition 41. The

situation then is similar to that for SDAPH ; although there are clearly many

functions that satisfy SDAPF , these remain to be classified.



Chapter 6

Similarity between sentences

The previous chapters consider analogies that derive from the sharing of similar

or identical properties. For such examples of analogical reasoning, the various

(S)APS seem natural choices for formal principles, but as we have seen (S)APH

and others are too strong to be useful in languages larger than L2. SDAPH is

a weakening of APH that is satisfied by a larger class of probability functions,

though the classification of these proves elusive. But even SDAPH is sufficiently

strong as to rule out many of the familiar probability functions used in induc-

tive logic- for example, those from Carnap’s Continuum [3] and the Nix-Paris

Continuum [25]. However, as laid out in Chapter 2, an alternative kind of anal-

ogy involves similarity between whole sentences. This chapter will show that the

principles inspired by this conception of similarity are consistent with Atom Ex-

changeability and in fact satisfied by all functions from both Carnap’s Continuum

and the Nix-Paris Continuum.

Recall that Atom Exchangeability was defined as follows:

The Atom Exchangeability Principle (Ax)

If σ is a permutation of 1, 2, ..., 2q, then

w

(
n∧
i=1

αhi(ai)

)
= w

(
n∧
i=1

ασ(hi)(ai)

)

Note that Ax in the presence of Ex implies that the probability of a state de-

scription θ =
∧n
i=1 αhi(ai) depends only on the multiset {n1, n2, ..., n2q} where nj

is the number of times that the atom αj appears amongst the αhi . We call this

multiset the spectrum of θ.

114
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Previous attempts to incorporate analogical reasoning into Inductive Logic, in-

cluding Carnap’s own, have considered analogy as deriving from the sharing of

similar or identical properties. In other words, a principle has been sought that

treats some atoms as more similar to one another than others. This approach

means that Ax is violated. Although this may not be a failing of such princi-

ples, it is interesting to note that the conception of analogy presented in this

section is consistent with Ax and is widely satisfied, including by functions of the

afore-mentioned continuua.

6.1 The Counterpart Principle

As discussed in Chapter 2, propositions involving entirely different objects and

properties can nevertheless possess some kind of similarity; this is what metaphor

relies on. We therefore propose the following as a principle of analogical reasoning.

The Counterpart Principle (CP)

For any quantifier free sentence θ(a1, ..., am), if θ′(am+1, ..., a2m) is obtained by

replacing all predicate and constant symbols in θ by new ones,

w(θ | θ′ ) ≥ w(θ)

CP can be thought of as saying that for any sentence θ, having already seen the

counterpart sentence θ′ is at worst irrelevant, and at best offers inductive support

for θ.

Our plan now is to show that CP is rather widely satisfied. We first need the

following notion:

A probability function w on a language L is said to satisfy Unary Language

Invariance, ULi, if there is a family of probability functions wL, one on each

unary language L, each satisfying Ex and Px, such that wL = w and whenever

L ⊂ L′ then wL = wL
′
� SL.

w is said to satisfy ULi with Ax if in addition we can choose these wL to satisfy

Ax.

Note that ULi equivalently means that w can be extended to a probability func-

tion w∞ on the infinite language L∞ = {P1, P2, P3, . . .} satisfying Px.
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Theorem 42. Let w satisfy Ex, Px and ULi. Then w satisfies the Counterpart

Principle.

Proof. Assume that w satisfies ULi and let w+ be a probability function on the

infinite (unary) language L+ = {P1, P2, P3, . . .} extending w and satisfying Ex +

Px. Let θ, θ′ be as in the statement of CP, without loss of generality assume that

all the constant symbols appearing in θ are amongst a1, a2, . . . , ak, all the relation

symbols appearing in θ are amongst P1, P2, . . . , Pj and for θ′ they are correspond-

ingly ak+1, ak+2, . . . , a2k, Pj+1, Pj+2, . . . , P2j. So with the obvious notation we can

write

θ = θ(a1, a2, . . . , ak, P1, P2, . . . , Pj),

θ′ = θ(ak+1, ak+2, . . . , a2k, Pj+1, Pj+2, . . . , P2j)

With this notation let

θi+1 = θ(aik+1, aik+2, . . . , a(i+1)k, Pij+1, Pij+2, . . . , P(i+1)j)

so θ1 = θ, θ2 = θ′. Let L be the unary language with a single unary relation

symbol R and define τ : QFSL→ QFSL+ by

τ(R(ai)) = θi,

τ(¬φ) = ¬τ(φ),

τ(φ ∧ ψ) = τ(φ) ∧ τ(ψ), etc.

for φ, ψ ∈ QFSL.

Now set v : QFSL→ [0, 1] by

v(φ) = w+(τ(φ)).

Then since w+ satisfies (P1-2) (on QFSL) so does v (on QFSL). Also since w+

satisfies Ex + Px, for φ ∈ QFSL, permuting the θi in w(τ(φ)) will leave this

value unchanged so permuting the ai in φ with leave v(φ) unchanged. Hence v

satisfies Ex.

By Gaifman’s Theorem v has an extension to a probability function on SL sat-

isfying Ex and hence satisfying PIR. In particular then

v(R(a1) |R(a2)) ≥ v(R(a1)).
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But since τ(R(a1)) = θ, τ(R(a2)) = θ′ this amounts to just the Counterpart

Principle,

w(θ | θ′) ≥ w(θ).

The condition ULi required for Theorem 42 holds for the cLλ of Carnap’s Contin-

uum and also for the wδL of the Nix-Paris Continuum defined by

wδL = 2−q
2q∑
j=1

w~ej

where ~ej = 〈γ, γ, . . . , γ, γ + δ, γ, . . . , γ, γ〉, the δ occurring in the jth coordinate,

γ = 2−q(1− δ) and 0 ≤ δ ≤ 1. Indeed they both satisfy the stronger condition of

ULi with Ax.

It is worth noting that we cannot do without ULi here; that is, Ex and Px alone

do not guarantee that a probability function satisfies CP. As an example here let

q = 2 and take w to be the probability function1

w = 4−1(w〈 1
2
, 1
2
,0,0〉 + w〈 1

2
,0, 1

2
,0〉 + w〈0, 1

2
,0, 1

2
〉 + w〈0,0, 1

2
, 1
2
〉).

Then w satisfies Ex and Px. However for θ = (P1(a1) ∧ ¬P1(a2)), θ′ = (P2(a3) ∧
¬P2(a4)), a straightforward calculation shows that

w(θ | θ′) = 0 < w(θ) = 1
8
.

Hence CP fails for this function.

A second argument for restricting attention here to probability functions satisfy-

ing ULi (equivalently to probability functions on L∞) is that without it the lack of

available predicates from which to form θ′ from θ becomes a significant nuisance

factor. Given this, and the fact that the main interest in Pure Inductive Logic is

in probability functions satisfying Ax, we shall begin by limiting our attention to

probability functions satisfying ULi with Ax.

Before moving on to consider ULi with Ax we introduce the following irrelevance

principle.

1It is straightforward to see that convex combinations of probability functions also satisfy
(P1-3) and hence are themselves probability functions.
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Weak Irrelevance Principle (WIP)

If θ, φ ∈ QFSL have no constant or predicate symbols in common then

w(θ |φ) = w(θ).

Clearly WIP implies that CP holds with equality. By giving a function that

satisfies WIP, hence CP, but not ULi, we can demonstrate that the converse to

Theorem 42 does not hold.

Proposition 43. There exist probability functions that satisfy Ex and CP but

not ULi.

Proof. Let ~b = 〈2/3, 1/3〉. For any k > 0, any state description θ(~a) on Lk can

be written as a conjunction of two state description, θ1(~a) on L1, and θ2(~a) on

Lk \ L1.

Define a probability function vk on Lk by defining for any state description θ(~a),

vk(θ(~a)) = w~b(θ1(~a)) · c∞(θ2(~a))

Any θ ∈ QFSL+ actually belongs to Lk for some k, so we can define v on L+ by

v(θ) =
∑
θi|=θ

vk(θi)

where the θi are state descriptions on Lk.

Notice that v does not satisfy Px (and hence, does not satisfy ULi); v(P1(a1)) =

2/3 whereas v(P2(a1)) = 1/2. However we can show that v satisfies WIP.

To see this, let θ and φ be state descriptions from disjoint sublanguages of L+, L

and L′ say. Suppose firstly that P1 does not appear in either of them. Then

v(θ ∧ φ) = c∞(θ ∧ φ) = c∞(θ) · c∞(φ) = v(θ) · v(φ).

Now suppose that P1 does appear in one of the two sentences; without loss of

generality, suppose P1 appears in θ. Then θ can be written as a conjunction of a

state description θ1 on L1 and a further state description θ2 on L \ L1. Then
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v(θ ∧ φ) = v(θ1 ∧ θ2 ∧ φ)

= w~b(θ1) · c∞(θ2 ∧ φ)

= w~b(θ1) · c∞(θ2) · c∞(φ)

= v(θ) · v(φ)

So WIP holds for state descriptions and from this WIP for all quantifier free

sentences follows. For let θ, φ be any two quantifier free sentences from disjoint

sublanguages of L+, L and L′. Then

v(θ ∧ φ) = v

∨
θi|=θ

θi ∧
∨
φi|=φ

φi


=
∑
θi|=θ

∑
φi|=φ

v(θi ∧ φj)

=
∑
θi|=θ

∑
φi|=φ

v(θi) · v(φj)

= v(θ) · v(φ)

where the θi, φi are state descriptions on L and L′ respectively.

Since v satisfies WIP, it will give

v(θ | θ′) = v(θ)

for all sentences θ and counterparts θ′. So v satisfies the Counterpart Principle

(trivially) but does not satisfy Language Invariance.

6.2 CP and Ax

A particular class of well understood functions (see for example [25], [14], [27])

satisfying ULi with Ax and CP are those which satisfy the Weak Irrelevance

Principle. Of course the motivations for WIP and CP are very different; in fact,

they are clearly in tension with one another. WIP captures the intution that

knowing a proposition about one set of properties and objects tells us nothing
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about the likelihood of a proposition involving a totally different set. CP suggests

just the opposite – that facts about disjoint sets of properties and objects can be

brought to bear on one another.

For probability functions satisfying Ex, Ax and WIP we have a precise charac-

terization which we now explain because this notation will be required later.

Let B be the set of infinite sequences

p̄ = 〈p0, p1, p2, p3, ...〉

of reals such that p0 ≥ 0, p1 ≥ p2 ≥ p3 ≥ ... ≥ 0 and

∞∑
i=0

pi = 1.

For p̄ ∈ B and f : {1, 2, ..., n} → {1, 2, ..., 2q} let Rp̄,n = 1−
∑n

j=1 pj and designate

f(p) =

〈
2−qRp̄,n +

∑
f(j)=1

pj, 2
−qRp̄,n +

∑
f(j)=2

pj, ..., 2
−qRp̄,n +

∑
f(j)=2q

pj

〉
∈ D2q .

Now let

up̄,Ln = 2−nq
∑
f

wf(p̄)

where the f range over all functions f : {1, 2, ..., n} → {1, 2, ..., 2q} and for

θ ∈ QFSL define

up̄,L(θ) = lim
n→∞

up̄,Ln (θ).

This limit exists and up̄,L extends to a probability function on L ((see [27]). The

fact that the up̄,Ln satisfy Ex and Ax carries over to up̄,L, indeed as we vary L the

up̄,L form a language invariant family so up̄,L satisfies ULi with Ax ([27]).

Notice that if pn+1 = 0 in p̄ then up̄,L = up̄,Ln . In particular for 0 ≤ δ ≤ 1 and

p̄ = 〈1− δ, δ, 0, 0, . . .〉,
wδL = up̄,L = up̄,L1 ,

so these up̄,L extend the Nix-Paris Continuum.

A generalization (to polyadic languages) of the following theorem is proved in

[26]
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Theorem 44. The up̄,L are exactly the probability functions on L satisfying ULi

with Ax and WIP.

This theorem then provides sufficient conditions under which we have equality in

CP (in the presence of ULi with Ax) for all θ ∈ QFSL. Apart from this cause

for CP to not be strict there are also certain sentences θ, apart from the obvious

>,⊥, which guarantee equality. To describe these we first need to introduce some

more notation.

For θ ∈ QFSL, let fθ(n̄) denote the number of state descriptions with spectrum

ñ = {n1, n2, ..., n2q} appearing in the Disjunctive Normal Form of θ2. Note that

for any probability function w satisfying Ax and any sentence θ,

w(θ) =
∑
ñ

fθ(ñ)w(n̄)

where w(ñ) is the value of w on some/any state description with spectrum ñ.

The following lemma appears in [26] but for completeness we include a proof here.

Lemma 45. Let θ ∈ QFSL be such that for any probability function w satisfying

Ax, ∑
ñ

fθ(ñ)w(ñ) = c (6.1)

for some constant c. Then for each ñ, fθ(ñ) = cf>(ñ).

Proof. Given reals s1, s2, ...s2q ≥ 0, and not all zero, let v~s be the probability

function on L such that

v~s(ñ) = (2q!)−1
∑
σ

sn1

σ(1)s
n2

σ(2)...s
n2q

σ(2q)(s1 + s2 + ...+ s2q)
−m

where σ ranges over all permutations of 1, 2, .., 2q and m =
∑2q

i=1 ni. Then v~s

satisfies Ax and (6.3) together with the fact that v~s(>) = 1 gives that∑
ñ

fθ(ñ)(2q!)−1
∑
σ

sn1

σ(1)s
n2

σ(2)...s
n2q

σ(2q) = cv~s(>)(s1 + s2 + ...+ s2q)
m

= c
∑
ñ

f>(ñ)(2q!)−1
∑
σ

sn1

σ(1)s
n2

σ(2)...s
n2q

σ(2q).

2For some fixed set constants which includes all the constants mentioned in θ though the
particular fixed set is not important in what follows.
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Since we can take each si to be algebraically independent this is only possible if the

coefficients of sn1
1 s

n2
2 ...s

n2q

2q on both sides agree, from which the result follows.

We shall refer to a θ ∈ QFSL such that w(θ) = c for all probability functions w

on L satisfying Ax as being of constant type. Notice that in this case c must be

rational with denominator (when in lowest form) which divides all the f>(ñ).

Since all functions satisfying WIP must trivially satisfy CP, we would like to re-

strict our attention now to those functions that do not satisfy WIP and determine

which instances of CP give strict inequality. We are now in a position to show

that there is a class of sentences for which no function (satisfying Ax and ULi)

can return a strict inequality of the form given in CP. These are sentences of

constant type defined above.

Theorem 46. Let θ(a1, ..., ak) and φ(ak+1, ..., ak+r) be quantifier free sentences

with no predicate or constant symbols in common, and define Lθ and Lφ to be the

sets of all predicates occurring in θ and φ respectively. Suppose also that w(θ) is

constant for all probability functions w on Lθ satisfying Ex + Ax. Then

w(θ |φ ) = w(θ)3

for all w on Lθ ∪ Lφ satisfying Ex + Ax.

Proof. Suppose that θ(a1, ..., ak) and φ(ak+1, ..., ak+r) are as in the statement of

the theorem, and that

w(θ) = m/n

for all probability functions w satisfying Ax.

By putting θ in Disjunctive Normal Form (DNF) we can express θ as a disjunction

of state descriptions from Lθ. By Lemma 45,

fθ(ñ) = m/nf>(ñ)

for all spectra ñ. For each spectrum ñ, take just n−1f>(ñ) state descriptions from

θ with that spectrum, to give some subset {θ1, θ2, ..., θr} of the state descriptions

3Note that w(θ |φ ) = w(θ) is equivalent to w(φ | θ ) = w(φ)



CHAPTER 6. SIMILARITY BETWEEN SENTENCES 123

from the DNF of θ. We then have that

w

(
r∨
i=1

θi

)
=
∑
ñ

n−1f>(ñ)w(ñ) = m−1w(θ).

For a given state description θi of spectrum ñ, it is possible to generate any

of the other f>(ñ) state descriptions of the same spectrum by a combination

of permuting atoms and permuting constants. So for each θi, i = 1, ...r, we

can choose n permutations of state descriptions (given by permuting atoms and

constants), σi1, ..., σ
i
n such that

{σi1(θi), ..., σ
i
n(θi), | i ∈ {1, ..., r}, spec(θi) = ñ }

is the set of all state descriptions with spectrum ñ.

For example, if Lθ = {P,¬P} and θ = (P (a1)∧P (a2)∧P (a3))∨(P (a1)∧¬P (a2)∧
P (a3)) ∨ (P (a1) ∧ ¬P1(a2) ∧ ¬P (a3)) ∨ (¬P (a1) ∧ P (a2) ∧ P (a3)) (so in this case

m = 1 and n = 2), then we could choose σix such that σi1 is the identity, for all i,

and

σ1
2(P (a1) ∧ P (a2) ∧ P (a3)) = ¬P (a1) ∧ ¬P (a2) ∧ ¬P (a3)

σ2
2(P (a1) ∧ ¬P (a2) ∧ P (a3)) = ¬P (a1) ∧ P (a2) ∧ ¬P (a3)

σ3
2(P (a1) ∧ ¬P (a2) ∧ ¬P (a3)) = ¬P (a1) ∧ ¬P (a2) ∧ P (a3)

σ4
2(¬P (a1) ∧ P (a2) ∧ P (a3)) = P (a1) ∧ P (a2) ∧ ¬P (a3)

Note that in general, some of the σix will differ and some will be the same permu-

tation. The only requirement is that the resulting σix(θi) are mutually exclusive

and jointly exhaustive.

We then have that
n∨
x=1

r∨
i=1

σix(θi) ≡ >

And so, since φ is quantifier free and has no predicates or constants in common

with θ,
n∨
x=1

r∨
i=1

σix(θi) ∧ φ ≡ φ
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Now for any probability function w we have

w

(
r∨
i=1

(θi ∧ φ)

)
=

r∑
i=1

w (θi ∧ φ) = m−1
∑
θi|=θ

w (θi ∧ φ) = m−1w(θ ∧ φ)

Moreover for any w satisfying Ex + Ax and any x,

w(σix(θi) ∧ φ) = w(θi ∧ φ)

So for each x,

w

(
r∨
i=1

(σix(θi) ∧ φ)

)
= m−1w(θ ∧ φ)

Hence

w

(
n∨
x=1

r∨
i=1

(σix(θi) ∧ φ)

)
=

n∑
x=1

w

(
r∨
i=1

(σix(θi) ∧ φ)

)
= nm−1w(θ ∧ φ)

as required.

So in particular we have the following.

Corollary 47. For any quantifier free sentence θ(a1, ..., ak) such that w(θ) is

constant for all probability functions w satisfying Ax, and any θ′(ak+1, ..., a2k)

obtained by replacing all predicate and constant symbols in θ by new ones,

w(θ | θ′ ) = w(θ)

for all w satisfying Ax.

The converse to Corollary 47 is easily shown.

Proposition 48. Suppose that for θ, θ′ as above,

w(θ | θ′ ) = w(θ)

for all w satisfying Ax. Then w(θ) is constant for all w satisfying Ax.

Proof. Let w1, w2 be distinct probability functions satisfying Ax. Then 2−1(w1 +
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w2) also satisfies Ax and so by assumption,

2−1(w1 + w2)(θ ∧ θ′ ) = 2−1(w1 + w2)(θ)2−1(w1 + w2)(θ′)

= (2−1(w1 + w2)(θ))2

Multiplying out and re-arranging we get

2w1(θ ∧ θ′) + 2w2(θ ∧ θ′) = w1(θ)2 + 2w1(θ)w2(θ) + w2(θ)2

And then, since w1, w2 satisfy Ax, by the assumption we have

2w1(θ)2 + 2w2(θ)2 = w1(θ)2 + 2w1(θ)w2(θ) + w2(θ)2

and by re-arranging

(w1(θ)− w2(θ))2 = 0.

Hence w1(θ) = w2(θ) as required.

Having seen a class of sentences for which equality always holds in the statement

of CP, we turn to consider a case in which strict inequality holds for all non-

constant θ ∈ QFSL. In order to do so we recall the following special case of a

theorem (Theorem 1) from [20].

Theorem 49. Any probability function w on L satisfying ULi with Ax can be

represented as an integral

w =

∫
B
up̄,Ldµ (6.2)

for some measure µ on the Borel subsets of B.

Conversely any such function defined in this way satisfies ULi with Ax.4

Theorem 50. For a probability function w =
∫
B u

p̄,Ldµ, if every point in B is

a support5 point of µ then strict inequality holds in CP whenever θ is not of the

constant type.

4Notice that the ‘building block functions’ here, i.e. the up̄,L, are precisely the probability
functions satisfying ULi with Ax and WIP. An exactly analogous result holds if we drop Ax
here, see [18].

5Recall that a point ~e ∈ B is in the support of µ if µ(B) > 0 for all open subsets B of B
containing ~e.
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Proof. Assume that w can be expressed in this way and let θ, θ′ be as in the

statement of CP. Then since the up̄,L satisfy WIP,

w(θ ∧ θ′)− w(θ)2 =

∫
B
up̄,L(θ ∧ θ′) dµ(p̄)−

(∫
B
uq̄,L(θ) dµ(q̄)

)2

=

∫
B
up̄,L(θ)2 dµ(p̄)−

(∫
B
uq̄,L(θ) dµ(q̄)

)2

=

∫
B

(
up̄,L(θ)−

∫
B
uq̄,L(θ) dµ(q̄)

)2

dµ(p̄) ≥ 0.

Since the support of µ is all of B, and up̄,L(θ) is continuous (see [27]) the only

way we can have w(θ | θ′) = w(θ) is if

up̄,L(θ) =

∫
B
uq̄,L(θ) dµ(q̄)

for all p̄ ∈ B. In other words up̄,L(θ) must be constant for all p̄ ∈ B.

By a result in [27, Chapter 34] any probability function w on L satisfying Ax is

of the form

w = (λ+ 1)

∫
B
up̄,L dµ1(p̄) − λ

∫
B
up̄,L dµ2(p̄)

for some 0 ≤ λ and measures µ1, µ2 on B. Hence if all the up̄,L(θ) are constant

then so too are all w(θ) for w satisfying Ax. In other words θ is of the constant

type.

It might have been hoped at this point that any probability function w satisfying

ULi with Ax would either satisfy WIP, and so never give strict inequality in CP,

or else not satisfy WIP and always give strict inequality in CP whenever θ was not

of the constant type. Unfortunately as the following example shows the situation

is not as simple as that.

Let q = 2 and define wδL = up̄,L where p̄ = 〈1 − δ, δ, 0, 0, 0, ...〉. Then for a

state description θ ∈ QFSL with spectrum 〈3, 1, 0, 0〉 or 〈2, 2, 0, 0〉 the mapping

δ 7→ wδ(θ) has a maximum point in (0, 1).

This can be seen in the following figure, which shows the probability given to

the possible L2 state descriptions of four objects by the function wδ as δ varies

between 0 and 1. The x-axis represents the value of δ. The coloured lines are the

graphs of wδ(θ) for state descriptions θ with spectra as follows:
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red: 〈4, 0, 0, 0〉 blue: 〈3, 1, 0, 0〉 cyan: 〈2, 2, 0, 0〉
purple: 〈2, 1, 1, 0〉 black: 〈1, 1, 1, 1〉
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So for a state description θ with spectrum 〈3, 1, 0, 0〉 or 〈2, 2, 0, 0〉, there are

0 < ν < τ < 1 such that wν(θ) = wτ (θ). Recall that wν and wτ satisfy WIP;

hence if we define w := 2−1(wν + wτ ) we have that w(θ | θ′) = w(θ). However θ

is not of the constant type.

The conditions given by Theorem 50 which ensures that w satisfies CP with

strict inequality for all non constant type sentences can be shown to hold for

Carnap’s Continuum cλ when 0 < λ < ∞, thus ensuring that these cλ satisfy

this strong version of CP. However showing this appears to be quite involved

and in general we currently have little insight into when these conditions hold

for particular probability functions (unlike the situation with the de Finetti’s

Representation). We note that the significance of this result depends on the
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plausibility of the Counterpart Principle as a rational principle. It is either a

success for Carnap’s Continuum that the cλ satisfy a form of reasoning by analogy

or, if CP is unacceptable, a decisive failure.

6.3 CP and Px

In Theorem 42 we showed that CP follows from ULi, and we then went on to

restrict our attention to those probability functions satisfying ULi with Ax, since

these are of particular interest. However we might consider what happens when

we leave out the requirement of Ax. In this case we have the following:

Proposition 51. For any 0 < k < 1 there is no θ such that w(θ) = k for all w

satisfying Ex + Px.

To show this, we introduce some notation. For a1, ..., am let {φ1, φ2, ...φt} be a

maximal set of state descriptions in L appearing in the Disjunctive Normal Form

of >(a1, ..., am) such that no two φi, φj can be generated from one another by

permutating predicates. For any θ ∈ QFSL let fθ(φi) be the number of times

that a state description obtainable from φi by permutations of predicates appears

in the DNF of θ. Note that for any probability function w satisfying Px and any

sentence θ,

w(θ) =
t∑
i=1

fθ(φi)w(φi).

For example, for state descriptions of a1 in L2 set φ1 = α1, φ2 = α2, φ3 = α4. This

is a maximal set as α3 is obtainable from α2 by the permutation that swaps P1

and P2. Now suppose θ = P1(a1)∨P2(a1). We have θ ≡ α1(a1)∨α2(a1)∨α3(a1),

so fθ(φ1) = 1, fθ(φ2) = 2, fθ(φ3) = 0 and w(θ) = w(α1) + 2w(α2).

We can now give the following Lemma.

Lemma 52. Let θ(a1, ..., am) be a sentence such that for any probability function

w satisfying Ex and Px,
t∑
i=1

fθ(φi)w(φi) = k (6.3)

for some constant k. Then for each φi, fθ(φi) = kf>(φi).

Proof. Given reals s1, s2, ...s2q ≥ 0 and not all zero let w~s be the probability
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function on L such that

w~s(φi) = q!−1
∑
σ

sn1

σ(1)s
n2

σ(2)...s
n2q

σ(2q)(s1 + s2 + ...+ s2q)
−m

where 〈n1, ..., n2q〉 is the spectrum of φi (so
∑

i ni = m) and σ ranges over the

permutations of 1, 2, .., 2q that correspond to those permutations of atoms that

Px licenses. Then w~s satisfies Px and (6.3) together with the fact that w~s(>) = 1

gives that

t∑
i=1

fθ(φi)q!
−1
∑
σ

sn1

σ(1)s
n2

σ(2)...s
n2q

σ(2q) = kw~s(>)(s1 + s2 + ...+ s2q)
m

= k

t∑
i=1

f>(φi)q!
−1
∑
σ

sn1

σ(1)s
n2

σ(2)...s
n2q

σ(2q).

Since we can take each si to be algebraically independent this is only possible if the

coefficients of sn1
1 s

n2
2 ...s

n2q

2q on both sides agree, from which the result follows.

We are now in a position to prove Proposition 51.

Proof. Suppose that for some 0 < k < 1 there did exist θ(a1, ..., am) such that

w(θ) = k for all w satisfying Px. Then fθ(φi) = kf>(φi) for all φi. So in

particular,

fθ

(
m∧
j=1

q∧
i=1

Pi(aj)

)
= kf>

(
m∧
j=1

q∧
i=1

Pi(aj)

)
.

But

f>

(
m∧
j=1

q∧
i=1

Pi(aj)

)
= 1,

so since

fθ

(
m∧
j=1

q∧
i=1

Pi(aj)

)
must be an integer, we must have that k = 1, contradicting the assumption.

Proposition 51 makes clear that the analogue of Theorem 46 for all functions

satisfying Px is satisfied trivially. That is, since the only ‘constant’ sentences for

Px are tautologies, the proposition reduces to the obvious fact that

w(> |φ ) = w(>).
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The analogue of Proposition 48 is the following:

Proposition 53. If θ ∈ QFSL is such that for all w satisfying Ex and Px,

w(θ | θ′) = w(θ)

then w(θ) is constant for all w satisfying Ex and Px.

Proof. Let w1, w2 be any two probability functions satisfying Px. Then 1/2(w1 +

w2) also satisfies Px, hence

1/2(w1 + w2)(θ ∧ θ′) = (1/2(w1(θ) + w2(θ)))2

hence

w1(θ)2 + w2(θ)2 − 2w1(θ)w2(θ) = 0

so w1(θ) = w2(θ) as required.

This means that there are no non-trivial θ that give w(θ | θ′) = w(θ) for all w

satisfying Px.

If we weaken the condition to w(θ) = k for all w satisfying both Px and SN,

then we do get a non-trivial result. Take {φ1, ..., φt} this time to be a maximal

set of state descriptions not inter-derivable from the permutations of atoms (and

constants) licensed by both Px and SN (+ Ex) and let fθ(φi) be the number of

times that a state description obtainable from φi by permutations or negations of

predicates appears in the DNF of θ. Then the obvious modification of the proof

of Lemma 52 gives that fθ(φi) = kf>(φi) for all i. We can then modify the proof

of Theorem 46 in the obvious way to give the following.

Theorem 54. Let θ(a1, ..., ak) and χ(ak+1, ..., ak+r) be quantifier free sentences

with no predicate or constant symbols in common, and define Lθ and Lχ to be the

sets of all predicates occurring in θ and χ respectively. Suppose also that w(θ) is

constant for all probability functions w on Lθ satisfying Ex + Px + SN. Then

w(θ |χ ) = w(θ)

for all w on Lθ ∪ Lφ satisfying Ex + Px + SN.
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Proof. Suppose that θ(a1, ..., ak) and χ(ak+1, ..., ak+r) are as in the statement of

the theorem, and that

w(θ) = m/n

for all probability functions w satisfying Ex, Px and SN.

By putting θ in Disjunctive Normal Form (DNF) we can express θ as a disjunction

of state descriptions from Lθ. By Lemma 52,

fθ(φi) = m/nf>(φi).

For each φi from the DNF of θ, take just n−1f>(φi) state descriptions from θ that

can be obtained from φi by permutations and negations of predicates, to give

some subset {φ1, φ2, ..., φr} of the state descriptions from the DNF of θ. We then

have that

w

(
r∨
i=1

φi

)
=
∑
φi

n−1f>(φi)w(θi) = m−1w(θ).

For a given state description φi, it is possible to generate any of the other f>(φi)

state descriptions obtainable by permuting and negating predicates by applying

such permutations. So for each φi, i = 1, ...r, we can choose n permutations of

state descriptions (given by permuting and negating predicates), σi1, ..., σ
i
n such

that

{σi1(φi), ..., σ
i
n(φi), | i ∈ {1, ..., r}}

is the set of all state descriptions that receive the same probability as φi from

any w satisfying Ex, Px and SN.

For example, if Lθ = {P,¬P} and θ = (P (a1)∧P (a2)∧P (a3))∨(P (a1)∧¬P (a2)∧
P (a3))∨ (P (a1)∧¬P1(a2)∧¬P (a3))∨ (¬P (a1)∧¬P (a2)∧P (a3)) (so in this case

m = 1), then we could choose σix such that σi1 is the identity, for all i, and

σ1
2(P (a1) ∧ P (a2) ∧ P (a3)) = ¬P (a1) ∧ ¬P (a2) ∧ ¬P (a3)

σ2
2(P (a1) ∧ ¬P (a2) ∧ P (a3)) = ¬P (a1) ∧ P (a2) ∧ ¬P (a3)

σ3
2(P (a1) ∧ ¬P (a2) ∧ ¬P (a3)) = ¬P (a1) ∧ ¬P (a2) ∧ P (a3)

σ4
2(¬P (a1) ∧ ¬P (a2) ∧ P (a3)) = P (a1) ∧ P (a2) ∧ ¬P (a3)

Note that in general, some of the σix will differ and some will be the same permu-

tation. The only requirement is that the resulting σix(φi) are mutually exclusive
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and jointly exhaustive.

We then have that
n∨
x=1

r∨
i=1

σix(φi) ≡ >

And so
n∨
x=1

r∨
i=1

σix(φi) ∧ χ ≡ χ

Now for any probability function w we have

w

(
r∨
i=1

(φi ∧ χ)

)
=

r∑
i=1

w (φi ∧ χ) = m−1
∑
φi|=θ

w (φi ∧ χ) = m−1w(θ ∧ χ)

Moreover for any w satisfying Ex + Px + SN and any x,

w(σix(φi) ∧ χ) = w(φi ∧ χ)

So for each x,

w

(
r∨
i=1

(σix(φi) ∧ χ)

)
= m−1w(θ ∧ χ)

Hence

w

(
n∨
x=1

r∨
i=1

(σix(φi) ∧ χ)

)
=

n∑
x=1

w

(
r∨
i=1

(σix(φi) ∧ χ)

)
= nm−1w(θ ∧ χ)

as required.

6.4 Variants on CP

Having looked at CP, the question naturally arises: what happens if instead of

changing every symbol occurring in θ we just change some? When we look at the

proof of Theorem 42, we can see that the reasoning used there can in fact justify

a family of principles which we might call CPi, i ∈ N.

Counterpart Principle for i Symbols (CPi)

For any θ ∈ QFSL, let θ′ be the result of swapping exactly i of the non-logical
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symbols in θ for distinct symbols not already occurring in θ. Then

w(θ | θ′) ≥ w(θ).

We have

Proposition 55. Let w satisfy Ex, Px and ULi. Then w satisfies CPi for any i.

Proof. The proof proceeds in the same way as that for Theorem 42, but for

completeness we include it here.

Assume that w satisfies ULi and let w+ be a probability function on the infinite

(unary) language L+ = {P1, P2, P3, . . .} extending w and satisfying Ex + Px. Let

θ, θ′ be as in the statement of CPi. Without loss of generality let a1, ..., an be the

constant symbols and P1, ..., Pk the predicate symbols that appear in both θ and

θ′. Abbreviate a1, ..., an by ~a, and P1, ..., Pk by ~P .

Again without loss of generality let an+1, ..., an+r and Pk+1, ...., Pk+s be the subset

of constant and predicate symbols appearing in θ that have been changed in θ′

to an+r+1, . . . , an+2r, Pk+s+1, Ps+2, . . . , Pk+2s, where r = s = i.

Now with the obvious notation we can write

θ = θ(~a, an+1, an+2, . . . , an+r, ~P , Pk+1, Pk+2, . . . , Pk+s),

θ′ = θ(~a, an+r+1, an+r+2, . . . , an+2r, ~P , Pk+s+1, Pk+s+2, . . . , Pk+2s)

With this notation let

θi+1 = θ(~a, an+ir+1, an+ir+2, . . . , an+(i+1)r, ~P , Pk+is+1, Pk+is+2, . . . , Pk+(i+1)s)

so θ1 = θ, θ2 = θ′. Let L be the unary language with a single unary relation

symbol R and define τ : QFSL→ QFSL+ by

τ(R(ai)) = θi,

τ(¬φ) = ¬τ(φ),

τ(φ ∧ ψ) = τ(φ) ∧ τ(ψ), etc.

for φ, ψ ∈ QFSL.

Now set v : QFSL→ [0, 1] by
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v(φ) = w+(τ(φ)).

Then since w+ satisfies (P1-2) (on QFSL) so does v (on QFSL). Also since w+

satisfies Ex + Px, for φ ∈ QFSL, permuting the θi in w(τ(φ)) will leave this

value unchanged so permuting the ai in φ with leave v(φ) unchanged. Hence v

satisfies Ex.

By Gaifman’s Theorem v has an extension to a probability function on SL sat-

isfying Ex and hence satisfying PIR. In particular then

v(R(a1) |R(a2)) ≥ v(R(a1)).

But since τ(R(a1)) = θ, τ(R(a2)) = θ′ this amounts to the Chinese Principle for

i symbols.

w(θ | θ′) ≥ w(θ).

Notice that the union of all the CPi for i ∈ N entails the original Counterpart

Principle. For any failure of CP is actually a failure of some CPi. For example,

if CP fails for sentences θ(P1, ..., Pn, a1, ..., ar), θ
′(Pn+1, ..., P2n, ar+1, ..., a2r), then

CP(n + r) fails. The converse does not hold, that is, the Counterpart Principle

does not entail the union of all CPi. This can be seen with the following example.

Let ~b = 〈0, 2/3, 1/3, 0〉, so w~b is a probability function on L2 satisfying WIP. Any

state description θ on Lk can be written as the conjunction of a state description

θ1 on L2 and another state description θ2 on Lk \ L2. Now define a probability

function uk on Lk by

uk(θ) = w~b(θ1) · c∞(θ2)

Any θ ∈ QFSL+ must belong toQFSLk for some k, so we can define a probability

function u on L+ by setting

u(θ) =
∑
θi|=θ

uk(θi)

Since w~b and c∞ both satisfy WIP, u will satisfy WIP, and hence CP.

However, we can show that u does not satisfy CPi for any i. Consider the
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sentences P1(a1) and P2(a1), and choose θ, θ′ to be consistent sentences not con-

taining a1, P1 or P2 and with i−1 transformations of symbols needed to turn one

into the other.

Since θ ∧ P1(a1) ∧ θ′ ∧ P2(a1) |= P1(a1) ∧ P2(a1), we have that

u(θ ∧ P1(a1) ∧ θ′ ∧ P2(a1)) ≤ u(P1(a1) ∧ P2(a1))

= w~b(P1(a1) ∧ P2(a1))

= 0.

However

u(θ ∧ P (a1)) · u(θ′ ∧ P2(a1)) = w~b(P1(a1)) · c∞(θ) · w~b(P2(a1)) · c∞(θ′)

= 2/3 · c∞(θ) · 1/3 · c∞(θ′)

> 0

and so

u(θ ∧ P1(a1) ∧ θ′ ∧ P2(a1)) < u(θ ∧ P1(a1)) · u(θ′ ∧ P2(a1)),

contradicting CPi.

We saw in Proposition 43 that the Counterpart Principle does not entail Unary

Language Invariance. Since the union of all the CPi is strictly stronger than the

Counterpart Principle, a question for future research is whether the union of all

the CPi might entail Unary Language Invariance.



Chapter 7

Conclusions

Firstly some remarks on Theorem 42. In Chapter 2 we stated that the object

of this thesis was not to argue for a single rational probability function, but to

investigate logical dependencies between rational rules. An often found theme

is this: a principle which seeks to preserve uniformity in our treatment of the

language will logically entail a principle which captures a form of inductive in-

ference. The derivation of PIR from Ex is one example of this. Jeff Paris and

Peter Waterhouse have proved (see [37]) that Ax entails another form of singular

enumerative induction:

Unary Principle of Induction

w(αi |αm1
1 αm2

2 ...αm2q

2q ) ≥ w(αj |αm1
1 αm2

2 ...αm2q

2q )

whenever mi > mj.

Theorem 42 can be seen as fitting into this pattern: a rule about symmetry

(ULi) entails an ampliative rule (CP). One idea often found in the philosophical

literature is that induction is justified by a presumption of the uniformity of

nature. These results show that induction may be justified, even mandated, by

the presumption of uniformity of language.

The above observation, that Theorem 42 is one instance of a more general pattern

of results, actually provides a rather nice example of the intuition behind the

Counterpart Principle. That is, Theorem 42 is itself a counterpart of Theorem 1.

CP will be of particular interest to philosophers as it is so widely satisfied, in-

cluding by Carnap’s cλ probability functions. If the underlying language can be

136
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freely interpreted, it seems a very strong requirement that a fact involving one set

of properties will give inductive support for a proposition involving an entirely

different set; as a result, CP raises some interesting issues for the relationship be-

tween Pure and Applied Inductive Logic. Pinning down the relationship between

Language Invariance and the collection of Counterpart Principles (CPi) is one

aim for future research. Another is to extend the results of Chapter 6 to include

quantified sentences.

More generally, I hope that this thesis can provide a useful overview of the issues

surrounding the representation of reasoning by analogy in PIL. It seems that the

analogy principles that have received most attention thus far - those based on

similarity between atoms or primitive predicates - create a great many constraints

and are not easily satisfied, especially given the popular background conditions

derived from symmetry considerations. This is surprising given that some mea-

sures of similarity, notably Hamming Distance, seem so naturally aligned with

the requirements of Px and SN.

Moving away from Hamming Distance and indeed from simple distance functions

altogether changes the situation. Our notion of further-away-ness gives rise to

principles (S)APF satisfiable on languages of all sizes, even given the combined

background conditions of Ex + Px + SN. We can in fact classify these completely,

as demonstrated by Theorem 40. If we restrict the conditioning evidence to

state descriptions we know that there are even more probability functions on

languages of all sizes satisfying the corresponding principle SDAPF . Classifying

these completely would be a next step.
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Appendix A

Proof of Theorem 22

In the proof of Theorem 22 we had that

〈x1 + x2, x3 + x4, x5 + x6, x7 + x8〉 = 〈a, b, b, a−1b2〉

and

〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉,
〈x1 + x5, x3 + x7, x2 + x6, x4 + x8〉

}
=


〈a, b, b, a−1b2〉,
or 〈b, a, a−1b2, b〉,
or 〈b, a−1b2, a, b〉,
or 〈a−1b2, b, b, a〉,

By checking cases, we can show that the only solutions to such a set are the

points 〈x1, a− x1, b− x1, x1, b− x1, x1, a
−1b2 − b+ x1, b− x1〉 and 〈x1, a− x1, a−

x1, b− a+ x1, a− x1, b− a+ x1, b− a+ x1, a
−1b2 + a− b− x1〉. The details of this

are as follows.

1. 〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉 = 〈c, b, b, a〉. Then x2 + x4 = b = x3 + x4,

so x2 = x3 and hence c = x1 + x3 = x1 + x2 = a, which is a contradiction.

2. 〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉 = 〈b, c, a, b〉. So x1 + x3 = b = x3 + x4 so

x1 = x4. But then c = x2 + x4 = x2 + x1 = a, which is a contradiction.

3. 〈x1+x3, x2+x4, x5+x7, x6+x8〉 = 〈b, a, c, b〉. So as in 2., x1+x3 = b = x3+x4

so x1 = x4 and x5 = x8. Now 〈x1 + x5, x3 + x7, x2 + x6, x4 + x8〉 = 〈x1 +

x5, x3 + x7, x2 + x6, x1 + x5, so we have two options:

(a) 〈x1 + x5, x3 + x7, x2 + x6, x1 + x5 = 〈b, a, c, b〉. So x1 + x2 = x3 + x7 =

a > c = x2 + x6 = x7 + x8, hence x1 > x6 and x3 > x8. But
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x1 + x3 = x6 + x8 = b, so we have a contradiction.

(b) 〈x1+x5, x3+x7, x2+x6, x1+x5 = 〈b, c, a, b〉. Then x3+x7 = x7+x8 = c

and x2 +x6 = x1 +x2 = a, hence x3 = x8 and x1 = x6. So the original

point must be 〈x1, a− x1, b− x1, x1, b− x1, x1, a
−1b2 − b+ x1, b− x1〉,

as required.

4. 〈x1 +x3, x2 +x4, x5 +x7, x6 +x8〉 = 〈a, b, b, c〉. So as in 1., x2 = x3 and x6 =

x7. Then 〈x1+x5, x3+x7, x2+x6, x4+x8〉 = 〈x1+x5, x2+x6, x2+x6, x4+x8〉,
so we have two options:

(a) 〈x1 +x5, x2 +x6, x2 +x6, x4 +x8〉 = 〈c, b, b, a〉. Then x1 +x5 = x7 +x8 =

c < a = x1 + x2 = x4 + x8, hence x5 < x2 and x7 < x4. But

x2 + x4 = x3 + x4 = b and x5 + x7 = x5 + x6 = b, so we have a

contradiction.

(b) 〈x1 + x5, x2 + x6, x2 + x6, x4 + x8〉 = 〈a, b, b, c〉. So x5 = x2, x4 = x7,

and the original point must be 〈x1, a−x1, a−x1, b−a+x1, a−x1, b−
a+ x1, b− a+ x1, a

−1b2 + a− b− x1〉 as required.

We also look at the point

〈x1 + x2, x3 + x4, x5 + x6, x7 + x8〉 = 〈a, a, b, b〉

together with the system of equations

〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉,
〈x1 + x5, x3 + x7, x2 + x6, x4 + x8〉

}
=



〈a, a, b, b〉,
or 〈a, b, a, b〉,
or 〈b, a, b, a〉,
or 〈b, b, a, a〉,
or 〈1

4
, 1

4
, 1

4
, 1

4
〉,

By looking at cases we can show that the only solution is the point

〈x1, a− x1, a− x1, x1,
1
4
− x1,

1
4
− a+ x1,

1
4
− a+ x1,

1
4
− x1〉.

1. 〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉 = 〈1
4
, 1

4
, 1

4
, 1

4
〉. Then x1 + x2 = a > 1

4
=

x1 + x3, so x2 > x3. But also, x2 + x4 = 1
4
< a = x3 + x4, so x2 < x3, which

is a contradiction.
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2. 〈x1 +x3, x2 +x4, x5 +x7, x6 +x8〉 = 〈a, b, a, b〉. Then x1 +x3 = a = x1 +x2,

hence x2 = x3. But then b = x2 + x4 = x3 + x4 = a, contradicting a > b.

3. 〈x1 +x3, x2 +x4, x5 +x7, x6 +x8〉 = 〈b, a, b, a〉. Then x2 +x4 = a = x3 +x4,

so x2 = x3, but then b = x1 + x3 = x1 + x2 = a, contradicting a > b.

4. 〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉 = 〈b, b, a, a〉. Recall that by assumption

x2 = a − x1 and x4 = a − x3. So in this case we have x1 + x3 = b =

2a− (x1 + x3), contradicting a > b.

5. 〈x1 + x3, x2 + x4, x5 + x7, x6 + x8〉 = 〈a, a, b, b〉. Then x2 = x3, x6 = x7, and

the original point is 〈x1, a−x1, a−x1, x1,
1
4
−x1,

1
4
−a+x1,

1
4
−a+x1,

1
4
−x1〉,

as required.
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Proof of Theorem 25

We look at each of the options (i) - (iv) in conjunction with the specified con-

straints to show that only one of two cases can obtain.

(i) a > d, b = c, α = δ, β > γ.

Assume firstly that α ≥ a. Then δ = α ≥ a > d. The constraints include

(δ − d)(aγ − αb) ≥ 0 and (a − α)(aγ − αb) ≥ 0, so we must have aγ = αb

or α = a. In the first case, we then have aβ > αb = αc since β > γ, b = c,

contradicting the requirement that (aβ−αc)(a−α) ≥ 0. In the second case,

α = a, (δ− d)(aγ −αb) becomes a(δ− d)(γ − b), and the further constraint

(δ−d)(aβ−αc) ≥ 0 becomes a(δ−d)(β−c) ≥ 0. But then α = a, δ > d, and

β > γ ≥ b = c, contradicting the fact that a+ b+ c+ d = 1 = α+β+ γ+ δ.

So we must have that a > α = δ. Now, from (a − δ)(αc − βd) ≥ 0 we

must have that δb = αc ≥ βd > γd. Hence from (b − β)(γd − αc) ≥ 0 we

must have β ≥ b, from (δ − d)(bδ − γd) ≥ 0 we must have δ ≥ d, and from

(γ− c)(γd−αc) ≥ 0 we must have b = c ≥ γ. If β = b, then b = c = β > γ.

Then from (b − γ)(βd − cδ) ≥ 0 we get that 0 ≤ βd − cδ = b(d − δ), and

so d ≥ δ and in fact d = δ. But then a > α, b = β, c > γ and d = δ,

contradicting a+ b+ c+ d = 1 = α + β + γ + δ.

So we must have that β > b. Since we require that (a − δ)(αb − βd) ≥ 0

and (b− β)(αb− βd) ≥ 0, we have that δb = αb = βd; if δ = d we then get

β = b, contradicting β > b.

So we must have that δ > d. From (β − c)(bδ − aγ) ≥ 0, if γ = c = b, then

b(β − c)(δ − a) ≥ 0, which contradicts a > α = δ and β > b = c. So we
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must have c > γ.

As already shown, we must have bδ = βd. We also have, from (a−α)(aγ −
αb) ≥ 0 and (b− β)(aγ − cδ) ≥ 0, that aγ = αb = δc.

To summarise then, we must have a > α = δ > d, β > b = c > γ, and

βd = αb = aγ. Is it easy to check that under these conditions, each of the

constraints is satisfied.

(ii) a > d, b = c, α > δ, β > γ and αγ = βδ. Suppose firstly that α = a. Then

aγ = αγ = βδ. So (b−β)(aγ− cδ) ≥ 0 becomes (b−β)(βδ− bδ) ≥ 0, hence

b = β. Then αb = aβ > βd, hence from (γ − c)(αb − βd) ≥ 0 we get that

γ ≥ c = b = β, which contradicts β > γ.

Now suppose that a > α. Then from (a − α)(aγ − αb) ≥ 0 we must have

that aγ ≥ αb, and hence aγ > bδ = cδ. Then from (γ− c)(aγ− cδ) ≥ 0 and

(b− β)(aγ − cδ) ≥ 0 we have γ ≥ c = b ≥ β which contradicts β > γ.

Finally, if α > a, then from (a−α)(bδ−γd) ≥ 0 we have that γd ≥ bδ. But

then aγ > γd ≥ bδ, so as before, (γ−c)(aγ−cδ) ≥ 0 and (b−β)(aγ−cδ) ≥ 0

generate a contradiction.

(iii) a > d, b > c, ac = bd, α = δ and β > γ. The proof of the impossibility of

this is exactly analogous to case (ii), with every instance of α, β, γ and δ

replaced by b, a, d and c respectively, and vice versa.

(iv) a > d, b > c, ac = bd, α > δ, β > γ, αγ = βδ.

Without loss of generality we can suppose that a ≥ α, hence a > δ. Then

from (a − δ)(αc − βd) ≥ 0 we have that bd = ac ≥ αc ≥ βd, hence b ≥ β.

Then from (b − γ)(bδ − aγ) ≥ 0 and (a − δ)(aγ − bδ) ≥ 0 we have that

bδ = aγ. From (b − γ)(βd − αc) ≥ 0 and (a − δ)(αc − βd) ≥ 0 we have

that βd = αc. Then αc > γd, so from (γ − c)(γd − αc) ≥ 0 we have

c ≥ γ. And βd = αc > δc, so from (δ − d)(cδ − βd) ≥ 0 we must have

d ≥ δ. But then a ≥ α, b ≥ β, c ≥ γ and d ≥ δ, so in fact we must have

a = α, b = β, c = γ, d = δ.
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R (GNU S) Code

For the calculation of counter-example 4.17 on page 80.

> wfun <- function(z,a) { (z[1]^a[1])*(z[2]^a[2])*(z[3]^a[3])*(z[4]^a[4]) }

>

> yfun <- function(p,a){0.125*(wfun(p,a)+wfun(p,c(a[1], a[3], a[2], a[4])) +

wfun(p,c(a[2], a[1], a[4], a[3]))+wfun(p,c(a[2], a[4], a[1], a[3]))+

wfun(p,c(a[3], a[1], a[4], a[2]))+wfun(p,c(a[3], a[4], a[1], a[2]))+

wfun(p,c(a[4], a[2], a[3], a[1])) + wfun(p,c(a[4], a[3], a[2], a[1])))}

>

> ufun<-function(p,q,a){0.5*(yfun(p,a)+yfun(q,a))}

> a<- c(1,6,0,0)

> b<- c(1,5,0,1)

> d<- c(0,6,0,0)

> e<- c(0,5,0,1)

> p<- c(1/49,6/49,6/49,36/49)

> q<- c(1/1681,40/1681,40/1681,1600/1681)

>

> ufun(p,q,a)/ufun(p,q,d)

[1] 0.041021

>

> ufun(p,q,b)/ufun(p,q,e)

[1] 0.08149527

>

For the calculation of counter-example 4.18 on page 85.
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> wfun<-function(p,a){p^a[1]*(1-p)^a[2]}

> yfun<-function(p,a){0.5*(wfun(p,a)+wfun(p,c(a[2],a[1])))}

> ufun<-function(p,q,a){0.5*(yfun(p,a)+yfun(q,a))}

> left<-function(p,q,a,b){ufun(p,q,a)*wfun(0.5,b)}

> right<-function(p,q,a,b){wfun(0.5,a)*ufun(p,q,b)}

> umix<-function(p,q,a,b){0.5*(left(p,q,a,b)+right(p,q,a,b))}

>

> p=0.8

> q=0.9

>

> umix(p,q,c(11,0),c(8,3))/umix(p,q,c(10,0),c(7,3))

[1] 0.4380952

>

> umix(p,q,c(11,0),c(7,4))/umix(p,q,c(10,0),c(6,4))

[1] 0.4381741

>

To draw graph on page 127.

> d1 <-function(d,n){((1-d)/4)^(n[4]+n[2]+n[3])*((1+3*d)/4)^n[1]}

> d2 <-function(d,n){((1-d)/4)^(n[1]+n[4]+n[3])*((1+3*d)/4)^n[2]}

> d3 <-function(d,n){((1-d)/4)^(n[4]+n[2]+n[1])*((1+3*d)/4)^n[3]}

> d4 <-function(d,n){((1-d)/4)^(n[1]+n[2]+n[3])*((1+3*d)/4)^n[4]}

>

> dfun<-function(d,n){0.25*(d1(d,n)+d2(d,n)+d3(d,n)+d4(d,n))}

>

> x=seq(0,1,length=200)

> y1=dfun(x,c(4,0,0,0))

> y2=dfun(x,c(3,1,0,0))

> y3=dfun(x,c(2,2,0,0))

> y4=dfun(x,c(2,1,1,0))

> y5=dfun(x,c(1,1,1,1))

>

> plot(x,y1,type=’l’,ylim=c(0,0.01), col="red" xlab="", ylab="")
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> lines(x,y2,col="blue")

> lines(x,y3,col="cyan")

> lines(x,y4,col="purple")

> lines(x,y5,col="black")
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