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This thesis extensively studies the class of Mixture autoregressive (MAR) mod-
els in terms of its asymptotic properties and applications to financial risk evalua-
tion.

We establish geometric ergodicity of the MAR models and by implication abso-
lute regular and strong-mixing properties of the models. In addition, we also show
the consistency and asymptotic normality of the maximum likelihood estimators
of the MAR models.

We compare the estimates of Value at Risk (VaR) and Expected Shortfall (ES)
based on the MAR models to estimates based on a number of other methods, for
individual stocks, exchange rates and stock indices. We find that the MAR models
consistently perform better than the other models. In addition, tail density forecast
performance of individual stocks, stock indices and exchange rate, based on some
popular GARCH models are compared to tail forecasts based on MAR models with
both Gaussian and Student-t innovations. The MAR models mostly outperform
the other models. Confirming the claim that MAR models are better suited to
capture the kind of data dynamics present in financial data. All the data analysis
are implemented in R.

The traditional residuals of the MAR model are computed as the difference
between the observed values and their conditional means. We show that these
residuals form a martingale difference sequence and that the unconditional variance
of these residuals is strictly positive and bounded by the expected value of its
conditional variance. We compare the class of MARModels to the class of GARCH
models and observed that both the GARCH type models and MAR models can
be cast into the framework of random coefficient autoregressive models as well
as generalized hidden markov models. We also show that for the MAR(2;1,1)
model, the variance-covariance matrix is positive definite and the same for both
the conditional least square and maximum likelihood penalty functions.
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Chapter 1

Introduction

Mixture Autoregressive models belong to the class of finite mixture models, this

class of models have a number of interesting properties that make them viable

models for several time series data in real life scenarios. Some of these properties

include their ability to model both unimodal and multimodal conditional distribu-

tion as well as capture conditional heteroskedasticity. These properties have made

the MAR models and its different variations popular in modelling non-linear time

series. The application of this class of models can be found in finance, medicine,

engineering among others.

This thesis focuses on the application of MAR model to finance, as the flexi-

bility of the class of models has made them increasingly preferred candidates for

capturing stylised properties of different financial time series.

1.1 Background

Time series models are useful for practical purposes only if they can be fitted to

data and their parameters estimated. Computational procedures for determining

22



1.1 Background 23

parameters for the various model classes have been widely studied. Mixture distri-

butions come into play when time series data is made up of undefined subgroups

mixed in random proportions. Mixture distributions are made up of finite or infi-

nite number of components that describe the different characteristics of the various

subgroups of the data. In this work, we focus on finite mixture distributions with

a finite number of components.

Finite Mixture Models and Financial Modelling Recent advances in financial mod-

elling have ushered in a rapid expansion in modelling based on finite mixture

distributions and Markov switching models.

The Markov switching models, also known as the regime switching models,

involve multiple structures that are able to describe time series behaviors in dif-

ferent regimes. These class of models are able to capture more complex dynamic

patterns by allowing switching between these structures, Another important fea-

ture of the Markov switching model is that the switching mechanism is controlled

by an unobservable state variable that follows a first-order Markov chain. The

Markovian property ensures that the current value of the state variable depends

on its immediate past value, so that a structure might hold for a random period of

time, after which it may be displaced by another structure when switching takes

place (Hamilton (1989)), making it well suited for describing correlated data that

exhibit distinct dynamic patterns during different time periods.

Finite mixture distributions arise in a natural way as marginal distribution for

statistical models involving discrete latent variables such as clustering or latent

class models. They are able to capture many specific properties of real data such

as multi-modality, skewness, kurtosis, and unobserved heterogeneity. Their exten-

sion to Markov mixture models is able to deal with many features of practical time
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series, for example, spurious long-range dependence and conditional heteroscedas-

ticity (Fruhirth-Schnatter (2006)).

Geometric Ergodicity, mixing conditions and Maximum likelihood (MLE) estimation

The advent of faster and more sophisticated computational numerical methods

have made the maximum likelihood method of parameter estimation a very popular

approach to mixture density estimation problems.

A maximum likelihood estimate associated with a sample of observations is a

choice of parameters that maximizes the probability density function of the sample,

called in this context the likelihood function. MLE is of fundamental importance

in the theory of inference and it forms the basis of many inferential techniques in

statistics (Myung (2003)). There is vast literature on MLE and it’s applications as

well as it’s properties available in literature among which is Wald (1949), Andersen

(1970) and many others. When a model has a higher maximized loglikelihood value

than other models, the model becomes more viable for further investigation than

the other models.

Geometric ergodicity is very useful in establishing mixing conditions and central

limit results for parameter estimates of a model, it also justifies the use of laws

of large numbers and in essence form a basis for exploring asymptotic theory of

the model. This further translates into examining the consistency and asymptotic

normality of the parameter estimates of the model (Tjostheim (1990)). Meyn and

Tweedie (1993), Stockis et al. (2010), Tweedie (1988),Bradley (2005) and many

others give detailed discussions on geometric ergodicity and mixing conditions.

Risk Recent occurrences in the global financial industry and the substantial losses

that companies and major financial houses have suffered in the past decade have



1.1 Background 25

made the concept of managing risk extremely vital to businesses, hence the popu-

larity of Value at Risk (VaR) as a measure of risk.

A detailed review of Value at Risk (VaR) and its limitations as well as Expected

Shortfall (ES) as a viable option had been looked into in literature (see Jorion

(1997), Manganelli and Engle (2001), Tasche (2002),Tsay (1997) and many others).

Some of the arguments that make ES a more suitable alternative to VaR that

can be found in literature are that VaR does not satisfy the subadditivity axiom

which contradicts the framework of modern portfolio theory, that is, diversification

should reduce risk (Jadhav et al. (2009)). It does not consider tail distribution

beyond it’s value, hence it disregards tail risk and permits the construction of

proxies portfolios having low VaR resulting from a trade-off of heavy tail loss

(Mamon and (Eds.) (2007)). In additon, Rational investors who wish to maximize

expected utility can be misled by the information given by VaR (see Mamon and

(Eds.) (2007) for details).

Some properties of ES that gives it an advantage over VaR include that ES

is coherent, that is it is monotonous, sub-additive, positively homogeneous,and

translative invariant. The coherence property is by far the most important prop-

erty of ES. ES is such that ESα(X) ≥ V aRα(X) and ESα is law invariant.

Furthermore, for a real-valued random variable X with E[X−] < ∞, α → ESα

is absolutely continuous on (0, 1) and non-decreasing. This implies that ESα is

continuous with respect to α thus insensitive to the changes in the confidence level

α, finally, ESα is comonotonic additive.

Density Forecast Forecasts play a very significant role in economics and finance

just as it does in any other science, hence, evaluating accurate/dependable forecasts

is of primary concern. A large chunk of the existing forecast literature is focused
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on evaluating point forecasts then a smaller slice on interval forecasts and a much

thiner slice on probability forecasts. Point forecast have been noted to be generally

unsuitable for most models as forecasts based on quite a number of financial and

economic models are not readily summarised by point forecasts (Berkowitz (2001)).

Furthermore, a lot of important financial calculations are based on estimates which

are not summarized by the point forecasts, examples of which are Value at Risk

(VaR) and Expected shortfall (Jorion (1997)) as well as the Standard Portfolio

Analysis of Risk (SPAN) system. Hence, density forecasts have received increasing

attention over the past decade in both economics and finance related fields and

most especially in the area of risk management (Diebold et al. (1998)).

This thesis, focuses on a class of finite mixture models introduced by Wong

and Li (2000), the Mixture autoregressive model. This class of models and its

extensions employ itself to many applications in various industries including finance

(Saikkonen (2007)), neural networks (Martinetz et al. (1993)) and many others

(Shao (2006)).

Boshnakov (2009) and Boshnakov (2011b) explore the predictive distributions

of the MAR model as well as the conditions for first and second order stationar-

ity of the model. Wong et al. (2009), Lanne and Saikkonen (2003), Ni and Yin

(2009), Jin and Li (2006) study different extensions of the MAR model and ap-

ply them to financial modelling. These extensitons include the MAR model with

ARCH innovations (MARCH model) (Wong and Li (2001)), Student t-mixture

autoregressive (TMAR) model (Wong et al. (2009)), MAR model with GARCH

innovations (MAR-GARCH model) (Lanne and Saikkonen (2003)), Self Organiz-

ing Mixture Autoregressive model (SOMAR) (Ni and Yin (2008)) and Mixture

Autoregressive Panel (MARP) model (Jin and Li (2006)). We give details of these
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extensions and how they are applied in financial modelling.

1.2 Structure of Thesis

In this thesis, we study the traditional residuals of the MAR model and show that

they form a martingale difference sequence and that the unconditional variance

of the residuals is bounded by the expectation of the conditional variance. We

compare the class of MAR models to the class of GARCH models, we observe that

both the GARCH models and the MAR models can be cast into the framework

of Random Coefficient Autoregressive (RCA) models as well as Hidden Markov

Models (HMM). In addition, we show that the MAR model is geometrically ergodic

and by implication satisfies the absolutely regular and strong mixing conditions.

We then examine the asymptotic properties of the maximum-likelihood estimates

of the model.

Furthermore, we propose the use of the MAR model in measuring VaR and

ES and show that the class of MAR models perform comparably better than the

other approaches in literature. Finally, we evaluate the tail density forecast of

some financial time series based on the MAR model. The performance of the

MAR model is compared to that of some popular GARCH models, we found that

the MARmodel better forecasts the tail density of the financial time series selected.

The rest of this thesis is structured as follows, In chapter 2 a detailed descrip-

tion of the Mixture Autoregressive model (MAR) is given, the properties of the

traditional residuals of the model are explored, it is shown that these residuals

form a martingale difference sequence and that the unconditional variance of the

MAR model is strictly positive and bounded by the expected value of the condi-

tional variance. The chapter then proceeds to outline some extensions of the MAR
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model and their applications. The chapter ends with a comparison of the class of

MAR model to the class of GARCH model.

Chapter 3 extends the work done by Klimko and Nelson (1978) and Tjostheim

(1986) on the consistency and asymptotic normality of parameter estimation based

on conditional least squares and maximum likelihood estimator penalty functions.

Expressions are given for the Variance-Covariance matrix of the MAR(2; 1, 1)

model and show that this Variance-covariance matrix is the same for both penalty

functions.

The geometric ergodicity of the MAR model is proved in chapter 4 and as

a consequence, the β− mixing of the model is established. By implication, α−

mixing is also established for the model. It is also shown that the model has a

stationary distribution with finite second moments.

The asymptotic properties of the maximum likelihood estimator of the param-

eters of the MAR model are explored chapter 5. Consistency and asymptotic

normality of the maximum likelihood estimator of the MAR model is proved, we

leverage on the ideas in Douc et al. (2004) for the proofs.

In chapter 6 the concept of risk and risk management is examined, we discuss

the various classes of risk measures viz; coherent, convex and spectral measures

of risk and give some examples of risk measures that fall into these classes. The

chapter then proceeds to discuss Value as Risk as the most popular risk measure in

practise. The merits and demerits of Value at risk are mentioned. This is then fol-

lowed by a detailed description of Expected shortfall as an alternative/complement

to Value at Risk. Expected shortfall is defined in terms of some other risk measures

found in literature. Detailed descriptions of the different methods for evaluating

Value at Risk and Expected shortfall are given. The MAR model is then proposed
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as a viable underlying model for evaluating VaR and ES. The chapter ends with a

description of backtesting methodology for assessing the performance of both VaR

and ES evaluation methodologies. Chapter 7 applies a three component MAR

model to computing VaR and ES and compares the results to some existing meth-

ods in literature. This is done by evaluating one-step ahead out of sample VaR

and ES for daily returns of some financial time series and backtesting using the

backtest methodology described in chapter 6.

Chapter 8 explores the tail forecast density of some financial time series based

on the MAR model and apply the Berkowitz density test to check the fit of the

MAR model to some financial time series data. The performance of the MAR

model is compared to that of some popular GARCH models.

Finally, chapter 9 concludes with recommendations and opportunities for fur-

ther research.

1.3 Contributions

The results of this thesis readily lends themselves to real life applications. We

not only study the asymptotic properties of the class of MAR models, but also

show examples of it application to risk management and find that the models do

perform better than some popular models.

We are currently preparing Chapters 3, 4, 5, 6, 7 and 8 for publication. Chapter

8 has been submitted for the EURO-INFORMS 2013 Joint International Confer-

ence EURO XXVI.

Our contributions are:

• We establish that the MARmodel is geometrically ergodic and by implication

satisfies the absolutely regular (β−mixing) and strong (α-mixing) mixing
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conditions (see Chapter 4, Section 4.3).

• We show that the maximum likelihood estimators of the MAR model are

both consistent and asymptotically normal (see Chapter 5).

• We show that the traditional residuals of the MAR model form a martingale

difference sequence, a very useful property for establishing some asymptotic

properties of the parameter estimates. We also show that the unconditional

variance of these residuals strictly positive and bounded by the expected

value of its conditional variance (see Chapter 2, Section 2.2.1).

• We apply the work done by Klimko and Nelson (1978) on an estimation

procedure for stochastic processes to the Mixture Autoregressive model. We

give an example for the MAR(2;1,1) model and show that for the model, the

variance-covariance matrix is positive definite and identical for both the con-

ditional least square and maximum likelihood penalty functions (see Chapter

3).

• We propose the use of the MAR model for evaluating VaR and ES. We

show that the MAR models do perform comparatively better than the other

approaches examined (see Chapter 7).

• We compare the tail density forecast of some financial time series based on

the MAR models with Gaussian and student-t innovations to some popular

GARCH models. We find that the MaR model better captures the distribu-

tional properties at the tails of financial time series (see Chapter 8).

• We compare the class of mixture autoregressive models to the class of GARCH

models and observe that both the GARCH type models and MAR models
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can be cast into the framework of both Random Coefficient Autoregressive

(RCA) models and Generalized Hidden Markov (GHM) models (see Chap-

ter 2, Section 2.4).



Chapter 2

Mixture Autoregressive Model

2.1 Finite Mixture models

Recent advances in financial modelling have ushered in a rapid expansion in mod-

elling based on finite mixture distributions and Markov switching models. Some

features of finite mixture distributions that render them useful in statistical mod-

elling include:

1. Finite mixture distributions arise in a natural way as marginal distribution

for statistical models involving discrete latent variables such as clustering or

latent class models.

2. Statistical models which are based on finite mixture distributions capture

many specific properties of real data such as multi-modality, skewness, kur-

tosis, and unobserved heterogeneity.

3. Their extension to Markov mixture models enables dealing with many fea-

tures of practical time series, for example, spurious long-range dependence

and conditional heteroscedasticity. (Fruhirth-Schnatter (2006)).
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The focus here is on a class of finite mixture models introduced by Wong and

Li (2000) the Mixture Autoregressive Model. An important property of the MAR

model is that the shape of the conditional distribution of a forecast depends on

the recent history of the process (Boshnakov (2009)). This property gives the

MAR model the flexibility to model unimodal and multimodal time series. It

also provides a suitable platform for capturing conditional heteroscedasticity, a

property that occurs in most financial time series. In addition, the MAR model

lends a flexible approach for capturing multiple regimes in financial data and hence,

changes in volatility persistence. The residuals of the MAR model is computed

as the difference between the observed values and their conditional means. These

residuals are quite useful as they give information on how close the observed values

are to the means of the corresponding predictive distribution. The properties of

these residuals are examined and it is shown that the traditional residuals of the

MAR model forms a martingale difference sequence, a very useful property for

establishing some asymptotic properties of the parameter estimates. Furthermore,

it is shown that the unconditional variance of the residuals is strictly positive and

bounded by the expectation of the conditional variance.

Some extensions of the MAR model, as well as their application to financial

modelling are also given. A comparison of the class of MAR models to the class

of GARCH models is also discussed.

2.2 The Mixture Autoregressive Model

Definition 2.2.1. Mixture Autoregresssive (MAR) Model

A process {yt} is said to be a mixture autoregressive process if the conditional
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distribution function of yt given past information is given by,

Ft|t−1(x) =
g�

k=1

πkFk

�
x− φk,0 −

�pk
i=1 φk,iyt−i

σk

�
, (2.2.0.1)

where

1. Ft|t−1(x) = F (yt | Ft−1) is the conditional distribution of yt given information

up to and including time t− 1;

2. Ft is the sigma field generated by the process {yt} up to and including time t;

3. g is a positive integer representing the number of components in the model;

4. πk > 0 , k = 1, . . . , g,
�g

k=1 πk = 1, are probabilities and they define a

discrete distribution π. πk are referred to as mixing proportions and can be

either time invariant or functions of observed variables (e.g. lagged observa-

tions);

5. σk > 0 is a scaling factor for the kth noise component;

6. Fk(·) is a (conditional) cumulative distribution function;

7. φk,0 and φk,i i = 1, . . . , pk are autoregressive coefficients and φk,i = 0 for

i > pk;

8. pk is the order of the kth autoregressive model and set p = max1≤k≤g pk;

9. We assume that the model is stationary (see Boshnakov (2009)).

Conditions for first and second order stationarity of the MAR model

For the MAR model represented as in Equation (2.2.0.8) below, let each �k(t) be

jointly independent and also independent of past ys in the sense that for each t,
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the σ field generated by the set of random variables {�k(t+n), n ≥ 1, ≤ k ≤ g} is

independent of Ft, furthermore, the choice of each component at any time t (i.e.

zt) does not depend on Ft−1.

For k = 1, . . . , g define Ak by

Ak = C[φk,1, . . . ,φk,p] ≡





φk,1 φk,2 . . . φk,p−1 φk,p

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0





(2.2.0.2)

. Denote the expected value of Azt by A. Then,

A ≡ E(Azt) =
g�

k=1

πkAk (2.2.0.3)

So that the vector Y t = (yt, . . . , yt−p)
�
is such that the vector process Y t is a first

order random coefficient autoregressive process, such that

Y t = czt +AztY t−1 + �t,zt (2.2.0.4)

where �t,zt = (σzt�zt(t), 0, . . . , 0)
�
,

czt =





φzt,0

0
...

0





, c = Eczt =





Eφzt,0

0
...

0





=





c

0
...

0





. (2.2.0.5)

The following results are due to Boshnakov (2009).

First order stationarity of the MAR process

Theorem 2.2.1. The process {yt}, t = 1 − p, . . . , 0, 1, 2, . . . is stationary in the

mean if and only if E�zt(t) exists and one of the following three cases holds:
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1. c = 0 and µ0 = 0

2. c = 0,1 is an eigenvector of A associated with eigenvalue 1, and µ0 = µ1

for some constant µ

3. c �= 0, 1 is not an eigenvalue of A, and µ0 = µ1 where µ = c/(1−
�

φi).

where µ0 is the mean of the initial vector Y 0 and µ is a scalar constant and 1 is

the identity matrix.

See Boshnakov (2009) for proof.

Second order stationarity of the MAR process

Theorem 2.2.2. Let λ(A ⊗ A + E{U zt ⊗ U zt}) < 1 and ∆1 �= 0. The process

{yt}, t = 1 − p, . . . , 0, 1, 2, . . . is second order stationary if and only if the initial

vector (y0, y−1, . . . , y1−p)
�
has mean µ1, where µ is some scalar, covariance C0,0

which is the solution of the equation

C0,0 = AC0,0A
�
+ E{U ztC0,0U

�

zt}+∆1 (2.2.0.6)

.

see Boshnakov (2009) for proof.

The MAR model is such that at each time t, one of g autoregressive-like equa-

tions is picked at random to generate yt. The process yt can be written in the

following form (Boshnakov (2009)). Denote the past values of yt as y
�
t that is,

y
�

t = (yt−1, . . . , yt−p) (where, p = max1≤k≤g pk). (2.2.0.7)

yt = µk(y
�

t) + σk�k(t) and

µk(y
�

t) = φk,0 +
pk�

i=1

φk,iyt−i.
(2.2.0.8)
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where each µk(y
�
t) is an autoregressive model of order pk and make up the compo-

nents of the MAR model, �k(t) is the kth noise component, a strict white noise with

distribution function Fk(·), corresponding density function and characteristic func-

tion fk and ϕk respectively. We assume that the �k(t)s are jointly independent and

independent of past ys. Wong and Li (2001) show that
�g

k=1 πkµ2
k,t−(E(yt | Ft−1)2

is non-negative and zero iff µ1,t = µ2,t = · · · = µg,t.

The model is referred to as the MAR(k; p1, . . . , pk) model i.e. a k-component

MAR model, each component with corresponding order pk. The conditional den-

sity of yt given only the past values of yt is,

fθ(yt | y
�

t) =
g�

k=1

πk

σk
fk

�
yt − φk,0 −

�pk
i=1 φk,iy(t− i)

σk

�
, (2.2.0.9)

where, fk(·) and ϕk represent the conditional probability density function and

the characteristic function whose distribution function is defined by Fk(·) for each

k = 1, . . . , g;

Let {zt} be an iid sequence of random variables with distribution π such that

Pr{zt = k} = πk, k = 1, . . . , g, define a vector Zt = [Zt,1, . . . , Zt,g]
�
such that,

Zt,k =





1 if zt = k

0 otherwise

Then, the process yt can be written as Boshnakov (2009),

yt = µzt(y
�

t) + σzt�zt(t) (2.2.0.10)

where

µzt(y
�

t) = φzt,0 +
p�

i=1

(φzt,iyt−i) (p = max1≤k≤g pk). (2.2.0.11)
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The conditional density of yt given both the past values of yt and zt is,

fθ(yt | y
�

t, zt) =
1

σzt

fzt

�
yt − φzt,0 −

�pzt
i=1 φzt,iy(t− i)

σzt

�
, (2.2.0.12)

{Zt, t > 0} is a simple case of a hidden Markov chain on a finite state space

S ∈ [0, 1] with stationary k-step transition probability matrix. {Zt, t > 0} drives

the dynamics of Yt = (yt, . . . , yt−p+1)
�
, so that we can write a chain,

Qt = (Zt, Yt), (2.2.0.13)

where, Qt is an aperiodic S × Rp-valued Markov chain.

Let A be a non -negative g × g matrix such that A = (aij) and
�

j aij = 1.

Let θ be the vector of all the free parameters of the model. We assume that θ

belongs to a compact subset of Rd denoted by Θ.

The following assumptions are made on the chain Qt.

Assumptions A

(i) The true parameter value which we represent by θ0 lies in the interior of Θ.

(ii) For each k ∈ {1, . . . , g}, {Zt,k : t ≥ 0} is an irreducible, aperiodic Markov

chain on a finite space S with probability distribution π1, . . . , πg and tran-

sition probability matrix A = (aij), so that Zt,k inherits the properties of

{Zt}.

(iii) The chain {Zt} is independent of the �t, also, for Ft−1 = σ{Yr, r ≤ t − 1}

and all i, j,

P (zt = j | zt−1 = i,Ft−1) = P (zt = j | zt−1 = i). (2.2.0.14)
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(iv) {�t} are jointly independent and are independent of past ys.

(v) {�t} has a probability density function that is continuous and positive every-

where.

(vi) fzt(y) is non periodic and bounded on all compacts sets for all k and zt ∈ S.

2.2.1 Residuals of the Mixture Autoregressive model

The linear predictor of the process yt is given as,

ŷt = E(yt | Ft−1) = a0 +
p�

i=1

aiyt−i. (2.2.1.1)

where

a0 =
g�

k=1

πkφk,0 and ai =
g�

k=1

πkφk−i, (2.2.1.2)

Wong and Chan give the conditional expectation of the MAR model defined in

Equation (2.2.0.8) as,

E(yt | Ft−1) =
g�

k=1

πk(φk,0 + φk,1yt−1 · · ·+ φk,pkyt−pk), (2.2.1.3)

indicating that the conditional expectation of the process yt is linear.

The traditional residuals of yt can be obtained as the difference between yt and

ŷt, that is,

ut = yt − ŷt = yt − a0 −
p�

i=1

aiyt−i. (2.2.1.4)

{ut} is an uncorrelated but dependent sequence with the following properties:

1.

E(ut | Ft−1) = E [yt − ŷt | Ft−1]

E(yt | Ft−1)− ŷt = ŷt − ŷt = 0
(2.2.1.5)
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2.

E(ut) = E(E(ut) | Ft−i) = E(0) = 0 (2.2.1.6)

3. Choose s ≤ v and t > v

E(utus | Fv) = usE(ut | Fv) = 0 (2.2.1.7)

Now let t ≥ s > v

E(utus | Fv) = E(E(utus | Fs) | Fv) = 0 (2.2.1.8)

4.

E(utus) = E[(yt − ŷt)(ys − ŷs)] (2.2.1.9)

= E(ytys − ytŷs − ysŷt + ŷtŷs) (2.2.1.10)

= E[E(utus | Fv)] = E(0) = 0. (2.2.1.11)

5.

V ar(ut | Ft−1) = E[(yt − ŷt)
2 | Ft−1]. (2.2.1.12)

V ar(ut) = E[ut − (Eut)]
2

= E[E[ut − (Eut)]
2 | Ft−1]

= E[V ar(ut) | Ft−1].

(2.2.1.13)

We give a quick definition of a martingale difference sequence

Definition 2.2.2. Davidson (1997) AMartingale Difference Sequence(mds){X}∞−∞

is an adapted sequence on (Ω,F , P ) satisfying the following properties:
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1. E|X| ≤ ∞,

2. E(X | Ft−1) = 0, a.s., for all t

Propositon 2.2.1. The traditional residuals ut, of the MAR model, given by equa-

tion 2.2.0.1 is a martingale difference sequence (MDS). Furthermore, the uncon-

ditional variance of ut is strictly positive and bounded by the expectation of its

conditional variance.

Proof. By Definition 2.2.2, and Equations (2.2.1.5) and (2.2.1.6) it follows that the

traditional residuals ut, of the MAR model is MDS.

We expand Equations (2.2.1.12) and (2.2.1.13) as,

V ar(yt | Ft−1) = E(y2t | Ft−1)− (E(yt | Ft−1))
2 (2.2.1.14)

=
g�

k=1

[πkσ
2
k] +

g�

k=1

πk[φk,0 +
pi�

i=1

φk,iyt−i]
2 − (E(yt | Ft−1))

2

(2.2.1.15)

0 <
g�

k=1

πkσ
2
k ≤ V ar(yt | Ft−1) (2.2.1.16)

Thus,

E(
�

k=1

πkσ
2
k) ≤ V ar(ut) < ∞

and V ar(ut) ≤ E(V ar(ut | Ft−1)) and is strictly positive as required.
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2.3 Extensions of the Mixture Autoregressive model and their

applications in financial modeling

2.3.1 The MAR model and Financial modeling

The flexibility of the MARmodels have made them preferred candidates for captur-

ing stylized properties of different financial time series. Some of these applications

are discussed in this section.

A. Market Returns and Stock Index

(a) Wong and Chan model the IBM stock daily closing price fromMay 17 1961

to November 2, 1962. They considered 2-component and 3-component

MAR models for the return series they also computed the one-step and

two-step ahead predictive distributions. They compared this models to

other existing models in literature viz: the ARIMA model (see Box G.

E. P. and C. (1994)), the SETAR model (see Tong (1990)) and the GMTD

model (see Le et al. (1996)). They found that the MAR model out per-

formed both the ARIMA and the SETAR model. They also found that

although the empirical coverage of the prediction intervals for both the

GMTD model and the MAR model are similar, the BIC values reveal the

MAR model as the preferred model.

(b) Wong et al. (2009) extended the MAR model to include ARCH innova-

tions, they call this class of models the MARCH model.

A time series yt is said to follow a MARCH(K, p1, . . . , pK ; q1, . . . , qK) pro-

cess if the cumulative distribution function of yt given past information is
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given by;

F (yt | Ft−1) =
K�

k=1

αkG

�
ek,t�
hk,t

�
, (2.3.1.1)

where

ek,t = yt − µk,t, (2.3.1.2)

µk,t = φk,0 + φk,1yt−1 + · · ·+ φk,pkyt−pk ,

hk,t = βk,0 + βk,1e
2
k,t−1 + · · ·+ βk,qke

2
k,t−qk

.

Ft−1 is the information set up to time t − 1.; G(·) is the cumulative

distribution function of the standard normal distribution and αk > 0 is

such that α1 + · · · + αK = 1 are the mixing proportions. The ex-ante

conditional probability of a MARCH model is defined as:

πk,t = E[Zk,t | Ft−1] (2.3.1.3)

where Zk,t is the unobservable random vector such that Zk,t = 1 if yt

comes from the kth component of the conditional distribution function

and is zero otherwise.

Here the conditional mean of yt follows an AR process while its conditional

variance follows an ARCH process.

Wong and Chan apply this model to the monthly returns of the TSE 300

index with dividends reinvested from January 1956 to December 1999 as

well as monthly S&P 500 total return series from 1956 to 1999. They

compare the performance of the MARCH model to the ILN model, the

2-regime RSLN (RSLN2) model and the 2-point mixture of independent

normal distributions (MIND2) model. These comparisons were done by
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comparing each of the model characteristics such as moments, percentiles,

autocorrelations and squared autocorrelations to those of the observed

data. They find that for both data sets, the MARCH model captures

crucial characteristics of the observed data such as kurtosis (i.e. thick-

ness of tails) and extreme observations (e.g the October 1987 crash). In

addition, they found that the MARCH model is able to flexibly model

volatility clustering in the data.

(c) In order to accommodate the the excess kurtosis exhibited by most fi-

nancial time series (Wong et al. (2009)) introduced the Student t-mixture

autoregressive (TMAR) model. The model consists of a mixture of g

autoregressive components with Student-t distributed innovations.

The conditional cumulative distribution function of the TMAR (g; p1, . . . , pg)

model is defined by the following conditional cumulative distribution func-

tion;

F (yt | Ft−1) =
g�

k=1

αkFvk

�
yt − φk,0 − φk,1yt−1 − · · ·− φk,pkyt−pk

σk

�

(2.3.1.4)

Ft−1 is the information set up to time t; Fvk(·) is the commutative distri-

bution function of the standardized student t-distribution with vk degrees

of freedom; α1 + · · ·+ αg = 1; and αk > 0, for k = 1, . . . , g.

The TMAR (g; p1, . . . , pg) model can also be expressed as follows;

yt = φk,0 + φk,1yt−1 + · · ·+ φk,pkyt−pk + σkεt (2.3.1.5)

with probability αk for k = 1, . . . , g. εt are iid standardised student t-

distributions with degrees of freedom vk.
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The TMAR model is reduced to the MAR model when the degrees of

freedom of all the components of the of the TMAR model tend to infinity

hence the MAR model can be refereed to as a limiting case of the TMAR

model.

The TMAR model is flexible in modelling the tails of the conditional

distribution as well as capture leptokutosis in financial data.

Wong et al. (2009) apply the TMAR model to the daily returns series of

the Hong Kong Hang Seng Index over the January 2, 1996 to December

30, 2005 period. They compare the performance of the TMAR model to

the AR, MA, RW, AR-GARCH,GARCH-t,AR-EGARCH,AR-TGARCH.

The comparison is based on their empirical coverage of the in-sample one-

step ahead prediction intervals as well as the empirical coverage of the

one sided lower prediction intervals of the data.

They find that the the TMAR model generally out performed all the

models considered, as the empirical coverage based on the TMAR model

is closer to the nominal coverage than the all the other models while for

the lower prediction interval the TMAR and the GARCH-t models are

similar.

B. Interest Rates

i. Wong et al. (2009) model 3-year, 5-year and 10-year interest rate swap

spread series in Australia using the MARCH model defined in Equation

(2.3.1.1). They find that the MARCH model is able to capture volatility

persistence and dependence of volatility on the level of data as well as allow

for regime switches in the swap spreads.

ii. Lanne and Saikkonen (2003) extend the MAR model to have GARCH
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innovations, they call it the MAR-GARCH model.

The model is defined as follows;

yt =
m�

i=1

(vi + bi,tyt−1 + · · ·+ bi,pyt−p + σi,tεt)I(c+ ηt ≤ yt−d < c+ ηt)

(2.3.1.6)

with conditional density

ft,t−1(yt) =
m�

i=1

1

σi,t
φ((yt − vi − bi,tyt−1 − · · ·− bi,pyt−p)/σi,t)πi,t−d

(2.3.1.7)

where σi,t is obtained from the GARCH (r,q) process viz;

σ2
i,t = σ2

i + βi,1σ
2
i,t−1 + · · ·+ βi,rσ

2
i,t−r + αi,1u

2
i,t−1 + · · ·+ u2

i,q

(2.3.1.8)

and ui,t = yt − vi − bi,1yt−1 − · · ·− bi,pyt−p. (2.3.1.9)

Here, the assumed GARCH structure implies conditional heteroskedastic-

ity even when the conditional variance is nearly constant i.e. when one of

the mixing proportions is close to 1 and the others close to zero. Notice,

that the parameters in Equation (2.3.1.8) is dependent on the index i indi-

cating that conditional heteroskedasticity in this model is generally regime

dependent making it a viable candidate for capturing multiple regimes in

financial time series.

Lanne and Saikkonen (2003) apply this model to short term interest rate

and Bond pricing. In particular, they apply it to weekly data on the US 3-

month treasury bill. They also apply the model to estimating bond prices

maturing at 1,2 and 3years; They find that the realizations generated from
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the MAR-GARCH model is stable and that the properties are similar to

those of the observed series. Furthermore, the forecasting performance of

the model was found to be better than those existing in literature. In addi-

tion, the implied drift and diffusion functions given by the MAR-GARCH

model is consistent. They obtain an estimate of market price of interest

rate risk by complementing the model for the short term interest rate with

with a model for a longer term interest rate and also computed bond prices

by applying the risk-neutral valuation principle (see Hull (2000)) to market

price of interest rate computed. They find that the model is able to produce

term structure patterns that agree with those historically observed. They

noted that the method can also be applied to pricing derivative securities.

C. Forex Rate Ni and Yin (2008) introduced the Self Organizing Mixture Au-

toregressive model (SOMAR) this model is an improvement on the Self Or-

ganizing Autoregressive model (SOAR) of Lampinen and Oja (1989). The

SOMAR model extends the SOM based local regression model (Strickert and

Hammer (2005)) and the SOAR model.The model combines topological clus-

tering and linear regression to provide better temporal modeling capability of

non-stationary time series. They observe that this joint estimation effectively

reduces computational cost.

The model consists of a number of topologically ordered mixture of local re-

gressive models.

The SOMAR model measures the competence of a local model by the auto-

correlation of the error instead of the error itself, it expects that for a model

following a correct path, the modeling error should be gradually close to white
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noise.The more white an error series is the smaller the sum of it’s autocorrela-

tion coefficient and vise versa. This autocorrelation based similarity measure

makes the network more effective and robust in identifying correct local models

given input segments compared to the error based measures.

Given a consecutive set of p modeling errors, {e(1), · · · , e(p)}, with mean µ

and variance σ2, p > 1. The winning local model is said to be the model

that generates the smallest sum of autocorrelation coefficients (SAC) of the

modeling errors,

Ri(k) =
1

(p− k)σ2

p−k�

t=1

(ei(t)− µi)(ei(t+ k)− µi) (2.3.1.10)

they define the winning local model as,

v = argmin
i

� k�

j=−k

|Ri(k)|
�

i = 1, . . . , N (2.3.1.11)

k is the number of lags and i is the index of a local regressive model and N is

the number of local models.

The winning local AR model and its neighboring models update their model

parameters by the ordinary recursive least-mean square method according to

the updating rule:

wi(t) = wi(t− 1) + h(λ, ki)η(t)ei(t)x(t) (2.3.1.12)

where, ei(t) = x(t)− x(t)Twi, h(λ, ki) is the neighborhood function and η(t) is

the adaptation strength.

The Neural-gas (NG) algorithm (Martinetz et al. (1993)) is then used to find

the optimal representation.
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Ni and Yin (2009) apply the SOMAR model to Forex data, they consider

15years of daily exchange rates from the PACIFIC Exchange Rate Service pro-

vided by W.Antwiler of the UBC’s Saunder school of Business. They examine

both the predicted return and the predicted rate for the data. They compare

the results of the SOMAR network for the predicted FX rate and the predicted

FX price to that of the Vector Self Organizing Map (VSOM), Self organizing

Autoregressive (SOAR) network , Recurrent Self Organizing Map (RSOM),

Recursive Self Organizing Map (RecSOM), Neural Gas (NG), Self Organizing

Map with Support Vector Machine Regression (SOM-SVM), GARCH model

and ARIMA model. They find that the SOMAR more efficiently accommo-

dates the non-stationarity of the FX prices, they also find that the SOMAR

performs better that other SOM based methods in modeling and predicting

non-stationary FX rates.

D. Panel Time Series Jin and Li (2006) introduce the Mixture Autoregressive

Panel (MARP) model. The model enlarges the stationarity region of the tra-

ditional AR model and is able to capture multimodality in some panel data

sets.

The conditional cumulative distribution function for a N−component finite

mixture autoregressive model for a panel time series Xjt, j = 1, . . .M , t =

1, . . . , Tj is given by:

F (Xjt | Ft−1) =
N−1�

i=1

πiΦ
�Xjt − φ0ij −

�p
k=1 φkijXj,t−k

σij

�
(2.3.1.13)

+ πNΦ
�Xjt − φ0N −

�p
k=1 φkNXj,t−k

σNj

�

where i = 1, . . . N is the index of the components and j = 1, . . . , N is the

index of the series and t = 1, . . . , Tj is the time index. k is the index of the of
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the lags and p is the autoregressive order. Jin and Li (2006) assumed that for

the model 2.3.1.13 the order of each component in each series is the same. If

the orders p‘ij are not the same, set p = maxij{p‘ij} and those φkij = 0 when

k > p‘ij.

The random variable Xjt is evaluated at xjt given past information up to time

t−1 and is taken from the ith component with probability πi. Where
�N

i=1 πi =

1, πN = 1 − π1 − . . . πN−1 and π1 ≤ π2 ≤ · · · ≤ πN−1. Φ(·) denotes the

cumulative distribution function of the standard normal distribution. It is

assumed that the error terms �ijt ∼ N(0, σ2
ij) and mutually independent.

Note that although it is assumed that the order p are the same, the length Tj

are not assumed to be the same.

Jin and Li (2006) assumed that the last component in each of the series have

the same coefficient φkN , k = 0, . . . , p. The noise of each of the components

are assumed to be Gaussian, however, the composition noise of each series by

finite mixture are non-Gaussian and hence give rise to more flexible modelling.

Write

θij = (φ0ij, . . . ,φpij, σ
2
ij)

T ,

θj = (θT
1j . . .θ

T
N−1,j)

T ,

θNL = (φ0N , . . . ,φpN , σ
2
N1, . . . , σ

2
NM)T and

θ = (θT
1 . . .θT

M ,θT
NL)

T , (the subscript L represents ”Last” component)

Now for the vectors π = (π1, . . . , πN)T , Zjt = (Z1jt, Z2jt, . . . , ZNjt)T , Zj =

(ZT
1j, Z

T
2j, . . . , Z

T
NTj

)T and Z = (ZT
1 , Z

T
2 , . . . , Z

T
M)T . The vector Zjt contains

the unobservable random variable Zijt where Zijt = 1 when at time t, in the

jth series, theXjt comes from the ith component of the conditional distribution
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function and Zijt = 0 otherwise. So that the parameters are naturally divided

into two groups. Model 2.3.1.13 can thus be rewritten as,

Xjt =
N�

i=1

Zijt(φ0ij +
p�

k=1

φkijXj,t−k + εijt) + ZNjt(φ0N +
p�

k=1

φkNXj,t−k + εNjt)

(2.3.1.14)

where �ijt is the white noise process corresponding to the component of the jth

series. The {�ijt} are also independent for i = 1, . . . , N , j = 1, . . . ,M and all

t.

Representing the MARP in the form of Equation (2.3.1.14) drives home the

fact that the MARP model is actually a mixture of N Gaussian AR models.

The conditional mean of the jth series is given as:

E(Xjt | Ft−1) =
N−1�

i=1

πi(φ0ij +
p�

k=1

φkijxj,t−k) + πN(φ0N +
p�

k=1

φkNxj,t−k)

(2.3.1.15)

Since the conditional mean depends on past information of the time series, the

shape of the conditional distributions will change from time to time and can

be uni-modal or multi-modal.

In the same literature, Jin and Li (2006) relax the assumption that the pa-

rameters πi are common to every series. They give an illustration with a

two-component and order one model. So that Model 2.3.1.13 is modified as:

F (Xjt | Ft−1) = π1jΦ
�Xjt − φ01j − φ11jXj,t−1

σ1j

�
(2.3.1.16)

+ π2jΦ
�Xjt − φ02 − φ12Xj,t−1

σ2j

�

where π1j + π2j = 1 for each j, j = 1, . . . ,M .
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They apply this model to the gray-sided voles data (Hsiao (1986)) and (Hjellvik

and Tjostheim (1999)). They compare the MARP model to the method applied

by Hjellvik and Tjostheim (1999). The BIC value shows that the MARP model

gives a better fit for the data.

2.4 Mixture Autoregressive Model versus the Generalized Au-

toregressive Hetetoskedastic (GARCH) Model

Here the the class of Mixture Autoregressive Models (MAR) is compared to the

class of Generalised Autoregressive (GARCH) models. The similarities of this class

of models to the GARCH models are examined.

2.4.1 The Generalised Autoregressive (GARCH) Model

The motivation for models that put more weight on recent information can be

traced to the following reasons:

1. Research has shown that although longer periods increase the precision of

volatility estimate, they could miss underlying variation in volatility.

2. Traditional estimates of VaR are based on the assumption that the standard

deviation in returns does not change over time (i.e. they are homoskedatic),

however, Manganelli and Engle (2001) argue that better estimates can be

achieved by adopting models that explicitly allow the standard deviation to

change over time (i.e. heteroskedasticity).

The Generalized Autoregressive Heteroskedastic (GARCH) model which is part

of the family of Autoregressive Heteroskedastic (ARCH) models introduced by
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Engle (1982)) and (Bollerslev (1986) is one of such models. These models have

so far successfully lent themselves to financial data (see Bollerslev et al. (1986)

for a survey). Bollerslev (1986) in his paper introduced a more general extension

of the ARCH model of Engle (1982), he called this generalization the GARCH

(Generalized Autoregressive Conditional Heteroskedastic) processes. These class

of models allow for a much more flexible lag structure. The extension of the ARCH

process to the GARCH process bears much resemblance to the extension of the

standard time series AR process to the general ARMA process (Bollerslev (1986)).

The GARCH(p,q) model is defined as follows,

Definition 2.4.1. A process is called a GARCH(p,q) process if its first 2 condi-

tional moments exist and satisfy:

(i) The first moment is given by: E(yt | ys, s < t) = 0, t ∈ Z

(ii) There exists constants ω,αi, i = 1, . . . , q and βj, j = 1, . . . , p such that

σ2
t = V ar(yt | ys, s < t) = ω +

q�

i=1

αiy
2
t−i +

p�

i=1

βjσ
2
t−j, t ∈ Z (2.4.1.1)

Francq and Zakoian (2010) refers to this class of GARCH processes as semi-

strong processes. They also introduce the notion of ”Strong GARCH(p,q)” process

defined as follows,

Definition 2.4.2 (Francq and Zakoian (2010)). Let (η) be an iid sequence with

distribution η. The process (yt) is called a strong GARCH(p,q) (with respect to

the sequence (ηt)) if





yt = σtηt

σ2
t = ω +

�q
i=1 αiy2t−i +

�2
j=1 βjσ2

t−j

(2.4.1.2)

where αi and βj are nonnegative constants and ω is a (strictly) positive constant.
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{η} is a sequence of iid random variables with mean 0 and unit variance and

can be assumed to be standard normal or standardized Student -t distribution or

generalized error distribution (Tsay (1997)). αi ≥ 0, βj ≥ 0 are referred to as the

ARCH and GARCH parameters and
�max (m,s)

i=1 (αi + βi) < 1, such that αi = 0 for

i > m and βj = 0 for j > s.

The constraint imposed on αi + βi implies that the unconditional variance of

yt is finite, while it’s conditional variance σ2
t evolves over time.

Equation (2.4.1.2)above can be further represented as follows, by letting �t =

y2t − σ2
t so that σ2

t = a2t − �t and then putting σ2
t−i = a2t−i − �t−i (i = 0, . . . , s) into

Equation (2.4.1.2) and hence we rewrite the GARCH model as follows,

at = α0 +
maxm,s�

i=1

(αi + βi)a
2
t−i + ηt −

s�

j=1

βjηt−j (2.4.1.3)

Now substituting yt−i by σt−iηt−i in 2.4.1.1 gives:

σ2
t = ω +

q�

i=1

αiσ
2
t−iη

2
t−i +

p�

j=1

βjσ
2
t−j (2.4.1.4)

which can be written as

σ2
t = ω +

r�

i=1

ai(ηt−i)σ
2
t−i (2.4.1.5)

where ai(z) = αiz2+βi, i = 1, . . . , r. Francq and Zakoian (2010) show that this

representation shows that the volatility process of a strong GARCH process is the

solution of an autoregressive equation with random coefficients. We discuss below

the the IGARCH model a class of GARCH models that is popular in financial

modelling especially in financial risk management.
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Integrated GARCH Models

A GARCH(p,q) process is called an IGARCH(p,q) process when,

q�

i=1

αi +
p�

j=1

βj = 1. (2.4.1.6)

The integrated GARCH process are originally developed to cater for data that

exhibit persistent changes in volatility. They can be either non stationary or

stationary with infinite variance hence making the class of models well suited to

heavy tailed data. The class of IGARCH models are sometimes referred to as

the unit root GARCH models (S.Tsay (1997)). Another key characteristic of the

IGARCH models is that the impact of past squared shocks ηt−i = a2t−i − σ2
t−i for

i > 0 on a2t is persistent.

An IGARCH(1, 1) model can be written as follows:

at = σt�t, σ2
t = α0 + β1σ

2
t−1 + (1− β1)a

2
t−1, (2.4.1.7)

where 1 > β1 > 0 and {�} is a sequence of iid random variables with mean 0

and unit variance and can be assumed to be either standard normal, standardized

student-t distribution or generalized error distribution . The volatility process σ2
t

is martingale and under certain conditions it is strictly stationary, but not weakly

stationary (Francq and Zakoian (2010) and Tsay (1997)).

A case of specific interest in the study of the IGARCH (1, 1) model is that of

α0 = 0. Here the volatility forecasts denoted by σ2
h(�) for all forecast horizons,

given as: (σ2
h(�) = σ2

h(1)+ (�− 1)α0, � ≥ 1). This special IGARCH (1, 1) model is

the volatility model used in the RiskMetrics method for calculating VaR, it is also

an exponential smoothing model for {a2t}. Rewrite Equation (2.4.1.7) for α = 0 as
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follows:

σ2
t = (1− β1)a

2
t−1 + β1σ

2
t−1 (2.4.1.8)

= (1− β1)a
2
t−1 + β1[(1− β1)a

2
t−2 + β1σ

2
t−2]

= (1− β1)a
2
t−1 + (1− β1)β1a

2
t−2 + β2

1σ
2
t−2

and by repeated substitution for σ2
t−2, σ

2
t−3, . . . we have,

σ2
t = (1− β1)(a

2
t−1 + β1a

2
t−2 + β2

1a
3
t−3 + ·), (2.4.1.9)

This is known as the exponential smoothing formation with β1 being the discount-

ing factor. Therefore, exponential smoothing methods can be used to estimate an

IGARCH(1, 1) model represented by Equation (2.4.1.9).

2.4.2 Comparison of the MAR and GARCH model based on 1st and

2nd Conditional moments

Consider the MAR model given in Equation (2.2.0.1) above, yt has the following

conditional 1st and 2nd moments,

E(yt | Ft−1) =
g�

k=1

πkµk,t(y
�
) (2.4.2.1)

V ar(yt | Ft−1) = E(y2t | Ft−1)− [E(yt | Ft−1)]
2 (2.4.2.2)

=
g�

k=1

πkσ
2
k +

g�

k=1

πkµ
2
t,k(y

�
)−

�
g�

k=1

πkµt,k(y
�
)

�2

(2.4.2.3)

The 1st and 2nd conditional moments for the the GARCH(p,q) model defined in

Equation (2.4.1.1) is as follows,

E(yt | Ft−1) = 0 (2.4.2.4)

V ar(yt | Ft−1) ≡ σ2
t = ω +

q�

j=1

αjy
2
t−j +

p�

j=1

βjσ
2
t−j (2.4.2.5)
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Notice that the the 1st conditional moment of the MAR model depends on

past values of the time series, thus it is able to capture changes in the shape of the

conditional distributions of the of the series over time, making it a more interesting

alternative for modeling financial time series than the GARCH class of models as

the conditional distribution of financial time series can be changed from short-

tailed to fat-tailed, from symmetric to asymmetric, unimodal to bimodal or even

multimodal in some cases.

Furthermore, a closer examination show that that the the conditional vari-

ances in both models have the same linear structure and are both dependent on

squared past values of the time series. However, the conditional variance of the

MAR model depends on the conditional mean and is able to capture changes in

conditional variance. The last 2 terms of Equation (2.4.2.1) (conditional variance

equation), that is,
�g

k=1 πkµ2
t,k(y

�
) − [

�g
k=1 πkµt,k(y

�
)]2 is non-negative and zero

only if µt,1(y
�
) = µt,2(y

�
) = · · · = µt,g(y

�
). The conditional variance is large when

the µt,k(y
�
)s are very different and smallest when they are all the same, this is ref-

ereed to in literature as the smallest possible conditional variance, and the baseline

conditional variance or volatility is given as
�g

k=1 πKσ2
k (see Francq and Roussignol

(1998)).

It is also worth noting that if we set the RHS of Equation (2.4.2.1) to zero i.e.
�g

k=1 πkµk,t(y
�
) = 0 we have a special case of the semi-strong GARCH processes.

2.4.3 MAR and GARCH models as forms of Vector RCA class models

Both the GARCH models and MAR models can be cast into the framework of

Random coefficient Autoregressive models.

The Random Coefficient Autoregressive (RCA) model is defined as,
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Definition 2.4.3 (The Random coefficient Autoregressive (RCA) Model). The

process {Xt} is generated by a random coefficient autoregressive model if,

Xt = (θ +At)Xt−1 + εt (2.4.3.1)

where θ is a p× p non-random matrix, {At} is a random sequence, εt is sequence

of iid random variables.

The following assumptions are made on Model 2.4.3.1,

1. The sequence {At} and εt are iid and also independent of each other

2. εt is sequence of iid random variables. with zero mean and common positive

definite covariance matrix.

Quinn and Nicholls (1981) gives conditions for the stability of this class of model

and (Feigin and Tweedie (1985)) gives conditions for stationarity and finiteness of

moments.

2.4.4 The MAR model as an RCA model

Consider the Equation (2.2.0.10) representation of the MAR model. For k =

1, . . . , g, define Ak by the column matrix,

Ak = C[φk,1, . . . ,φk,p] (2.4.4.1)

so that

A = E(Azt) =
g�

k=1

πkAk (2.4.4.2)
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Hence, for t ≥ 0, let Y t = (yt, . . . , yt+1−p)
�
be a vector of p values of the time series

{yt}. Then the vector process {Y t} is a first order random coefficient autoregres-

sive process defined as (Boshnakov (2009)),

Y t = czt +AztY t−1 + εt,zt (2.4.4.3)

where

εt,zt = (σztεt(t), 0, . . . , 0)
T , (2.4.4.4)

czt = (φzt,0, 0, . . . , 0)
T ,

c = (E(φzt,0), 0, . . . , 0)
T = (c, 0, . . . , 0)T .

Boshnakov (2009) gives conditions for first and second order stationarity of the

model.

2.4.5 The GARCH model as an RCA model

Now consider the augmented GARCH(1,1) process introduced by Duan (1997)

defined as follows,

εt = σtηt, t = 0, 1, . . . , (2.4.5.1)

σ2
t = cetσ

2
t−1 + f et

where the process {σ2
t} is a real valued process. This process is synonymous to

the strong GARCH process defined in Equation (2.4.2) above. The sequence et is

some measurable function of ηt and is such that the sequence {ηt} is a sequence

of iid real valued sequence random variables with mean 0 and variance 1 and is

independent of σ2
0. cet is an m×m matrix valued polynomial function and f et is

an m × 1 vector valued polynomial function. The process {σ2
t} is a generalized
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polynomial random coefficient vector autoregressive model (Carrasco and Chen

(2002)). Duan (1997) gives sufficient conditions for the strict stationarity of the

model.

2.4.6 MAR and GARCH models as forms of Generalized Hidden Markov

models

Both the MAR and GARCH models can be given Makovian structure and hence

viewed as generalized hidden Markov models (GHMM). The Generalized hidden

Markov process is defined as,

Definition 2.4.4 (Generalized Hidden Markov Model). [Carrasco and Chen (2002)]

A process {Yt, t ≥ 0} with state space (S,B(S)) follows a generalized hidden

Markov model with a hidden chain {Xt, t ≥ 0} if the following hold true:

1. {Xt, t ≥ 0} is a strictly unobserved strictly stationary Markov chain with

state space (X ,B(X )).

2. For all t ≥ 1, the conditional distribution of Yt given (Xt, Yt−1, Xt−1, . . . , Y0, X0)

depends only on Xt.

2.4.7 The MAR model as a Generalized Hidden Markov model

Consider the MAR process as defined in Equation (2.4.4.3) assume that {�t} are

jointly independent and are independent of past ys and has a probability density

function that is continuous and positive everywhere. Furthermore, let {Zt,k : t ≥ 0}

with k = {1, . . . , g} be an irreducible, aperiodic Markov chain on a finite space

S with probability distribution π1, . . . , πg and transition probability matrix A =
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(aij) ∈ S. So that Zt,k inherits the properties of {Zt}. Assume further that the

chain (Z1) is independent of the noise term �t and for Ft−1 = σ{Yr, r ≤ t− 1},

P (zt = j | zt−1 = i,Ft−1) = P (zt = j | zt−1 = i) ∀i, j. (2.4.7.1)

The process defined by:

Yt = (yt, . . . , yt−p+1)
�
and Qt = (Zt, Yt) (2.4.7.2)

is a generalised hidden Markov model with hidden chain {Zt}.

2.4.8 The GARCH model as a Generalized Hidden Markov model

The augmented GARCH model defined in Equation (2.4.5.1), ηt has a positive

continuous density with respect to the lebesgue measure on a real line, hence {εt}

is a generalized hidden markov model with hidden chain {σ2
t }.

2.4.9 Comparison Based on Persistence

Persistence in variance of a random variable evolving through time and volatility

clustering have a lot to do with the dynamics of the properties of the conditional

variance. The degree to which the conditional variance of a random variable is

persistent in financial data is a major cause of economic concern. A number of

research have gone into the study of the extent to which volatility affects financial

data.

Poterba and Summers (1986) show that for stock prices, the extent to which the

volatility of stock returns affect the prices of the corresponding stocks depends

largely on the persistence of shock to variance. Furthermore, an understanding of

persistence of shocks to variance is critical to the pricing of contingent claims like

options.
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The GARCH model defined in Definition 2.4.1 is said to be a useful way of

empirically capturing momentum in conditional variance. However, Lamoureux

and Lastrapes (1990) show that the persistence of the volatility of shocks depends

on the sum of the GARCH parameters , they find that as the sum of the parameters

of the model approaches one from below, the effects of past shocks on current

variance become stronger. Bollerslev and Wooldridge (1988) find that when the

GARCH model is applied to high frequency data like daily asset prices, shocks

to variance are very persistent that is the sum of the parameters of the model is

very close to one. Lamoureux and Lastrapes (1990) further show that ignoring

simple structural shifts in unconditional volatility can lead to spurious appearance

of extremely strong persistence in variance when using GARCH models.

Recent results shown that most financial data exhibit the presence of multiple

regimes (Lanne and Saikkonen (2003)), hence, models in the regime switching

framework have been suggested to more effectively capture this changes in volatility

persistence. The MAR model has a lot of properties that fit into this framework,

making it better suited to capturing persistence and volatility clustering in financial

data.

2.5 Summary

The traditional residuals of the MAR model, computed as the difference between

the observed values and their conditional means is quite useful as they give infor-

mation on how close the observed values are to the means of the corresponding

predictive distribution.

We have shown here that the traditional residuals of the MAR model form a
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martingale difference sequence, a very useful property for establishing some asymp-

totic properties of the parameter estimates.

We have also been able to establish that the unconditional variance of the

traditional residuals are strictly positive and bounded by the expectation of its

conditional variance.

In addition, we compared the MAR Model to the class of GARCH models. We

observed that both the GARCH type models and MAR models can be cast into

the framework of random coefficient autoregressive model as well as generalized

hidden markov models.



Chapter 3

Conditional Least Squares vs Maximum

Likelihood Type Penalty function for MAR

models

This chapter is based on the work of Klimko and Nelson (1978), Tjostheim (1986)

and Masanobu Taniguchi (2000). Klimko and Nelson (1978) developed an esti-

mation procedure for stochastic processes based on the minimization of a sum of

squared deviations about conditional expectations. They studied stationary er-

godic processes as well as Markov processes which are asymptotically stationary

and ergodic and worked out a detailed example for a subcritical branching process

with immigration.

Tjostheim (1986) extended the work by developing a general framework for

analyzing estimates in nonlinear time series models. He further derived general

conditions for strong consistency and asymptotic normality for both conditional

least squares and maximum likelihood type penalty function estimates. He outlined

64
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examples for the Exponential AR model, RCA and Threshold AR models.

We show here that these techniques can be applied to the Mixture Autoregres-

sive model. In particular, we give an example for the MAR(2;1,1) model and show

that for the model, the variance-covariance matrix is for both the conditional least

square and maximum likelihood type penalty functions are positive definite and

the same.

3.1 Conditional Least Squares

The conditional least squares (CLS) procedure provides an integrated means of

handling estimation problems for commonly used stochastic models. This method

stemmed out of the assumption that normally distributed error terms in autore-

gressive models make maximum likelihood estimation similar to the minimization

of a sum of squares. The conditional least squares method is motivated by the

interpretation of conditional expectation as an orthogonal projection in L2.

Klimko and Nelson (1978) showed under a variety of conditions that the CLS

estimators are strongly consistent and asymptotically normally jointly distributed

with rate of convergence ( log lognn )
1

2 .

The following is some notation used in this chapter:

1. Let yt, t = 1, 2, . . . be a stochastic process defined on a probability space

(Ω,F , Pθ), with parameter vector θ = (θ1, . . . , θg)
�
, which we assume lies in

some open set, A of a Euclidean p−space. The true value of θ will be denoted
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by θo = (θo1, . . . , θ
o
g)

�
. The parameter θ includes

π =





π1

...

πg




,σ =





σ1

...

σg




,φi =





φ1,i

...

φg,i




, i = 1, . . . , g (3.1.0.1)

and each φk,i = (φk,1, . . . ,φk,p)
�
are the autoregressive coefficients for each of

the components of the model.

2. Let � · � ,Eθ(·) and Eθ(· | ·) denote the Euclidean norm, the expectation,

conditional expectation under Pθ respectively. So that, �θ� = (θ
�
θ)1/2.

3. For δ > 0, define Nδ = {θ : �θ − θo� < δ}.

4. Let Qn = Qn(θ) = Qn(y1, . . . , yn; θ) be a general real valued penalty function

that is almost surely twice continuously differentiable in a neighbourhood S

of θo and Nδ ⊂ S. Moreover, let (∂Qn/∂θ) be the column vector defined by

(∂Qn/∂θi), i = 1, . . . g, likewise, let (∂2Qn/∂θ2) be the g × g matrix defined

by (∂2Qn)/∂θiθj), i, j = 1, . . . , g.

The Taylor’s expansion for the penalty function Qn around θo is

Qn(θ) = Qn(θ
o) + (θ − θo)

� ∂Qn(θo)

∂θ
(3.1.0.2)

+
1

2
(θ − θo)

� ∂2Qn(θo)

∂θ∂θ� (θ − θo)

+
1

2
(θ − θo)

�
�
∂2Qn(θ∗)

∂θ∂θ� − ∂2Qn(θo)

∂θ∂θ�

�
(θ − θo)

= Qn(θ
o) + (θ − θo)

� ∂Qn(θo)

∂θ

+
1

2
(θ − θo)

�
Vn(θ − θo)

+
1

2
(θ − θo)

�
Tn(θ

∗)(θ − θo),
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where θ∗ is appropriately chosen as an intermediate point between θ and θo such

that 0 < �θo − θ∗� < δ.

Vn =

�
∂2Qn(θo)

∂θi∂θj

�

i,j=1,...,g

(3.1.0.3)

and

T g×g
n (θ∗) =

�
∂2Qn(θ∗)

∂θiθj
− Vn

�

i,j=1,...,g

(3.1.0.4)

The following theorem is due to Klimko and Nelson (1978).

Theorem 3.1.1. Assume that {yt} and Qn are such that, as n → ∞,

B1:

n−1

�
∂Qn(θo)

∂θi

�
a.s.−−→ 0, a.e. for i ≤ g, (3.1.0.5)

B2: (2n)−1Vn
a.e.−−→ V , where V is a g × g positive definite (symmetric) matrix of

constants,

B3:

lim
n→∞

supδ→0[(nδ)
−1|Tn(θ

∗)ij|] < ∞ a.e., i, j ≤ g. (3.1.0.6)

Then there exists a sequence of estimators θ̂n = (θ̂n1, . . . , θ̂ng)
�
such that θ̂n

a.s.−−→ θo

as n → ∞, and such that for � > 0, there is an E event in (Ω,F , P ) with P (E) >

1− � and an n0, such that on E and for n > n0, ∂Qn(θ̂n)/∂θi = 0, for i = 1, . . . g,

and Qn attains a relative minimum at θ̂n.

We show that the MAR model satisfies the conditions of Theorem 3.1.1 in

Theorem 3.1.2. For ease of notation, all through this chapter, we denote the
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conditional expectation of the MARmodel defined in Equation (2.2.0.1) as g(θ,Ft),

that is,

g(θ,Ft) = E(yt | Ft−1) = a0 +
p�

i=1

aiyt−i, (3.1.0.7)

where a0 and ai are given in Equation (2.2.1.2).

The conditional least squares penalty function Qn for the model is,

Qn(θ) =
n−1�

t=0

[yt − g(θ,Ft)]
2 (3.1.0.8)

Theorem 3.1.2. Let yt be an MAR process given by Equation (2.2.0.8) and

Qn(θ) =
�n−1

t=0 [yt+1 − g(θ,Ft)]2. If Assumptions A hold, then there exists a se-

quence of estimators θ̂n = (θ̂n1, . . . , θ̂ng)
�
minimizing the penalty function Qn such

that θ̂n
a.s.−−→ θo as n → ∞. For � > 0, there is an E event in (Ω,F , P ) with

P (E) > 1 − � and an n0, such that on E and for n > n0, ∂Qn(θ̂n)/∂θi = 0, for

i = 1, . . . g, and Qn attains a relative minimum at θ̂n.

Proof. Let, ut = yt − g(θ,Ft). ut is a martingale difference sequence.

The first derivate of the penalty function Qn is,

∂Qn(θ)

∂θi
|θ=θ0 = 2

�
(yt+1 − g(θ,Ft))

∂g(θ,Ft)

∂θi
|θ=θ0

= 2
�

ut+1(θ
o)
∂g(θ,Ft)

∂θi
|θ=θ0

(3.1.0.9)

Differentiating again, we obtain the second derivative,

(∂2Qn(θ))

∂θi∂θj
= 2

�
−

n−1�

t=0

�
∂g(θ,Ft)

∂θi
· ∂g(θ,Ft)

∂θj

�
+

n−1�

t=0

(yt+1 − g(θ,Ft))

�
∂2g(θ,Ft)

∂θi∂θj

��

= 2

�
−

n−1�

t=0

�
∂g(θ,Ft)

∂θi
· ∂g(θ,Ft)

∂θj

�
+

n−1�

t=0

�
ut+1

∂2g(θ,Ft)

∂θi∂θj

��

(3.1.0.10)
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B1 From Equation (3.1.0.9),

n−1∂Qn(θo)

∂θi
= n−12

�
ut+1(θ

o)
∂g(θ0,Ft)

∂θi

We have shown in Section 2.2.1 that ut+1 is martingale difference sequence.

Furthermore, we have also shown in Section 2.2.1 that V ar(ut) < E(V ar(ut |

Ft−1)) ≤ ∞ and is positive. Now, let s2n =
�n

t=1 E(u2
t | Ft−1)) and vn =

(2 log log s2n)
1

2 , then lim sup
�n

t=1
ut

(snvn)
= 1 a.s. (see Klimko and Nelson (1978) for

proof). This together with the strong law of martingales implies that

n−12
�

ut+1(θ
o)
∂g(θ0,Ft)

∂θi
→ 0 as required.

B2 By Equations (3.1.0.10) and (3.1.0.3) we can write,

1

2
Vn =

n−1�

t=0

�
∂g(θ0,Ft)

∂θi
· ∂g(θ

0,Ft)

∂θj

�
−

n−1�

t=0

�
ut+1

∂2g(θ0,Ft)

∂θi∂θj

�
(3.1.0.11)

which after dividing by n gives

1

2n
Vn =

1

n

n−1�

t=0

�
∂g(θ,Ft)

∂θi
· ∂g(θ,Ft)

∂θj

�
− 1

n

n−1�

t=0

�
ut+1

∂2g(θ,Ft)

∂θi∂θj

�
.

By a martingale strong law (see appendix (4)) it follows that as n increases

to infinity, 1
n

�n
t=0 ut+1(θo) → 0. This together with the boundedness of the

second derivative gives

�
1

n

n−1�

t=0

�
ut+1

∂2g(θ,Ft)

∂θi∂θj

��g×g

→ 0g×g, a.e as n → ∞

and

lim
n→∞

�
1

n

n−1�

t=0

∂g(θ,Ft)

∂θi
· ∂g(θ,Ft)

∂θj

�g×g

→ V g×g a.e and V g×g is positive definite,

so that condition B2 is satisfied.
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B3 By Equation (3.1.0.4), we can write,

lim
n→∞

sup
δ→0

(|Tn(θ∗)ij|)
nδ

= lim
n→∞

sup
δ→0

���∂
2Qn(θ∗)
∂θi∂θj

− ∂2Qn(θ∗)
∂θi∂θj

���
nδ

< ∞ a.e.,

for i, j ≤ g and 0 < �θo − θ∗� < δ.

Now write Vn(θ0)ij =
∂2Q(θ0)
∂θi∂θj

and Vn(θ∗)ij =
∂2Q(θ∗)
∂θi∂θj

, so that,

lim
n→∞

sup
δ→0

(|Tn(θ∗)ij|)
nδ

= lim
n→∞

sup
δ→0

1

nδ
|Vn(θ

∗)ij − Vn(θ
0)ij|, (3.1.0.12)

From B2 we have that 1
2nVn(θ0) → V , it follows that for any intermediate point

between θ and θ0, we have,

1

2n
Vn(θ

∗) → V (3.1.0.13)

further more, notice that as n → ∞ and δ → 0 the distance �θ0 − θ∗� → 0 so

that, Tn(θ∗) → 0 < ∞ thus,

lim
n→∞

sup
δ→0

1

nδ
|Vn(θ

∗)ij − Vn(θ
0)ij| → 0 (3.1.0.14)

so that

lim
n→∞

sup
δ→0

(|Tn(θ∗)ij|)
nδ

< ∞ (3.1.0.15)

as required.

Now, by assumption B1-B3 of Theorem 3.1.1 and Egoroff’s theorem (see Loeve

(1977)), choose � > 0, such that for an event E with P (E) > 1 − �, a positive

δ∗ < δ, an M > 0, and an n0 such that on E, for any n > n0 and θ ∈ Nδ∗ ≡ {θ :

�θ − θo� < δ∗}, the following three conditions hold:

i |(θ − θo)
�
∂Q(θo)/∂θ| < nδ3,
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ii the minimum eigenvalue of (2n)−1Vn is greater than some ∆ > 0 (bearing in

mind that limn→∞(2n)−1Vn = V g×g is positive definite),

iii 1/2(θ − θo)
�
Tn(θ∗)(θ − θo) < nMδ3

Hence, using the Taylor’s expansion in Equation (3.1.0.2), for θ on the boundary

of Nδ∗ , we have the following:

Qn(θ) ≥ Qn(θ
o) + n(−δ3 + δ2∆−Mδ3) (3.1.0.16)

= Qn(θ
o) + nδ2(∆− δ −Mδ)

Since ∆ − δ −Mδ can be made positive by initially choosing δ sufficiently small,

Qn(θ) must attain a minimum at some θ̂n = (θ̂n1θ̂n2 . . . θ̂ng)
�
in Nδ∗ , at which point

the least squares equations (∂Qn(α̂n)/∂α) = 0 must be satisfied on E for any

n > n0.

Next replacing ε by εk = 2−k and δk = k−1, k = 1, 2, . . . to determine a sequence

of events {Ek} and an increasing sequence {nk} such that ∂Qn(θ)/∂θ = 0 has a

solution on Ek for any n > nk.

For nk < n ≤ nk+1 define θ̂n on Ek to be a root of ∂Qn(θ)/∂θ = 0 within δ of

θo at which Qn attains a relative minimum.

Then θ̂n → θ0 on lim infk→∞ Ek and P (lim infk→∞ Ek) = 1 since

1− P (lim inf
k→∞

Ek) = P (lim sup
k→∞

Ec
k) = lim

k→∞
P (

∞�

j=k

)Ec
j )

≤ lim
k→∞

∞�

j=k

P (Ec
k) ≤ lim

k→∞

∞�

j=k

2−j = 0.

(3.1.0.17)

Theorem 3.1.3. In addition to the conditions in Theorem 3.1.1, assume further

that
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B1i

�
1

2

�
n− 1

2∂Qn(θ
o)/∂θ

L−→ MVN(0g×1,W ), (3.1.0.18)

where W g×g is a positive definite matrix.

Then,

n
1

2 (θ̂n − θo)
L−→ MVN(0g×1, V −1WV −1). (3.1.0.19)

Proof. Using the results of theorem 3.1.2, we can choose {θ̂n} so that ∂Qn(θ)/∂θ =

0. Expanding the vector n−1/2(∂Qn(θo)/∂θ) in a Taylor series about θo we obtain:

0p×g = n−1/2

�
∂Qn(θ̂n)

∂θ

�
(3.1.0.20)

= n−1/2

�
∂Qn(θo)

∂θ

�
+ n−1{Vn + Tn(θ

∗)}
√
n(θ̂n − θo).

By Assumptions B2 and B3 in Theorem 3.1.2, it follows that n−1{Vn+Tn(θ∗)}
a.s−→

2V , so that the limiting distribution of
√
n(θ̂n−θo) is the same as (2V )−1n−1/2{∂Qn(θ̂o)

∂θ }

and thus together with condition B1i yields the desired result.

3.2 Conditional Least Squares penalty function for Stationary

Ergodic Processes

Consider a stationary ergodic sequence of integrable random variables {yt}∞t=0 and

for an arbitrary positive integer m, Ft = σ(yt, yt−1, · · · , yt−m+1), t = m−1,m, . . . .

Assume that the second moments of {yt} exist and {yt} is second order stationary.

Define the function g(θ,Ft) = Eθ(yt | F −∞t). The conditional least squares

penalty function is defined as in Equation (3.1.0.8). The conditional Least squares

estimates are obtained by minimizing Qn(θ). The following theorem is due to
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Tjostheim (1986) and Masanobu Taniguchi (2000), however, the arguments are

due to Klimko and Nelson (1978).

3.2.1 Consistency

Theorem 3.2.1. Assume that {yt} is a d-dimensional strictly stationary ergodic

process with E(|yt|2) < ∞ and g(θ,Ft) = Eθ{yt | Ft−1} is almost surely three times

continuously differentiable in an open set B containing θo. Moreover, suppose that:

C1:

E

�����
∂g(θ,Ft)

∂θi
(θo)

����
2
�

< ∞ and E

�����
∂g(θ,Ft)

∂θi∂θj
(θo)

����
2
�

< ∞

for i, j = 1, . . . , g.

C2: The vectors ∂g(θo,Ft)/∂θi, i = 1, . . . , g, are linearly independent in the sense

that if a1, . . . ag are arbitrary real numbers, such that

E






�����

r�

i=1

ai
∂g(θ,Ft)

∂θi
(θo)

�����

2



 = 0,

then a1 = a2 = · · · = ag = 0.

C3: For θ ∈ B, there exist functions Gijk
i−1(y1, . . . , yt−1) and H ijk

i−1(y1, . . . , yt−1) such

that

����
∂g(θ,Ft)

∂θi
(θ)

∂2g(θ,Ft)

∂θiθj
(θ)

���� ≤ Gijk
i−1, E(Gijk

i−1) < ∞,
����{yt − g(θ,Ft)}

∂3g(θ,Ft)

∂θiθjθk
(θ)

���� ≤ H ijk
i−1, E(H ijk

i−1) < ∞,

for i, j, k = 1, . . . , g.
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Then there exists a sequence of estimators θ̂n minimizing the penalty function Qn,

such that then there exists a sequence of estimators θ̂n = (θ̂n1, . . . , θ̂ng)
�
minimizing

the penalty function Qn such that θ̂n
a.s.−−→ θo as n → ∞. For � > 0, there is an

E event in (Ω,F , P ) with P (E) > 1 − � and an n0, such that on E and for

n > n0, ∂Qn(θ̂n)/∂θi = 0, for i = 1, . . . g, and Qn attains a relative minimum at

θ̂n.

.

Proof. By the Ergodic theorem, strict stationarity and Assumption C1, together

with Equations (3.1.0.9) and (3.1.0.10) we have that,

n−1 ∂

∂θ
Qn(θ)

a.s−→ −2E[
∂

∂θ
g(θ0,Ft)

�{Yt − g(θ0,Ft)}] = 0, (3.2.1.1)

So that Assumption B1 of Theorem 3.1.1 is satisfied. Furthermore, by Assumption

C1 and the ergodic theorem, we can write

n−1 ∂2

∂θ∂θ�Qn(θ
0)

a.s−→ 2V. (3.2.1.2)

Assumption C2 ensures the positive definiteness of V . So that Assumption B2 of

Theorem 3.1.1 is satisfied. Finally, by the mean value theorem and the ergodic

theorem, Assumption C3 is satisfied and thus completes the proof.

3.2.2 Asymptotic normality

Theorem 3.2.2. Define the g × g matrix (Wij) by

Wij = E

�
u2
m(θ

o)
∂g(θo,Fm−1)

∂ai
· ∂g(θ

o,Fm−1)

∂aj

�
. (3.2.2.1)

Assume,



3.2 Conditional Least Squares penalty function for Stationary Ergodic Processes75

D1: E(yt | yt−1, . . . , y0) = E(yt | yt−1, . . . , yt−m) a.e., t ≥ m, and Wij < ∞ i, j ≤

g, where um(θo) = ym − g(θ0,Fm−1).

Let {θ̂n} be the consistent sequence of estimators obtained in Theorem 3.2.1.

Then

n
1

2 (θ̂n − θo) → MVN(0, V −1WV −1). (3.2.2.2)

Proof. Expand the vector ∂Qn(θ̂)
∂θ in a Taylor series expansion about θo and multiply

through by n− 1

2 .

0p×1 = n− 1

2

∂Qn(θ̂)

∂θ
(3.2.2.3)

= n− 1

2

∂Qn(θo)

∂θ
+ n−1(Vn + Un)n

1

2 (θ̂n − θo).

where U g×g
n = (2−1

�p
k=1(θ̂nk−θok)(∂

3Qn(θ∗))/(∂θi∂θj∂θk))i≤g;j≤g and assume that

{θ̂n} satisfies the least squares equation and θ∗ is an appropriate intermediate

point. We have n−1Un → 0p×p a.e. Billingsley (961b) central limit theorem may

be applied to the martingale

n�

t=m

p�

i=1

�
ci
∂g(θo,Ft−1)

∂θ

�
ut(θ

o),

where ci are non-zero constants so that the conditions in Theorem 3.2.1 are satis-

fied.

Note that Klimko and Nelson (1978), give the relationship between the positive

definiteness of V and W as follows, if

E([ym − g(ym−1, · · · , y0; θ0)]2 | Fm−1) > 0 a.e., (3.2.2.4)

then the positive definiteness of V implies the same as that of W . (see Klimko and

Nelson (1978) for details as well as for an example of a case where V is positive

definite and W is semi-positive definite).
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3.3 Maximum Likelihood Type Penalty Function

Let,

fθ(t, t− 1) = E[(yt − g(θ,Ft))(yt − g(θ,Ft))
�
] (3.3.0.5)

and

φt = [ln{det fθ(t, t− 1)}+ (yt − g(θ,Ft)
�
(fθ(t, t− 1))−1(yt − g(θ,Ft)}] (3.3.0.6)

The likelihood type penalty function of Tjostheim (1986) is,

Ln =
n�

t=m+1

φt (3.3.0.7)

Note that if {Yt} is a conditional Gaussian process, then Ln coincides with the

log likelihood function with the exception of a multiplicative constant (Tjostheim

(1986)). Here, Ln is treated as a general penalty function as it has the martingale

property. The following theorem is due to Tjostheim (1986).

3.3.1 Consistency

Theorem 3.3.1 (Tjostheim (1986)). Assume that {yt} is an m-dimensional strictly

stationary and ergodic process with E(|yt|2) < ∞. Assume also that g(θ,Ft) and

fθ(t, t−1) are almost surely three times continously differentiable in an open set A

containing the true θo. If φt is defined as in Equation (3.3.0.6), and the following

conditions hold:

E1:

E

�����
∂φt

∂θi
(θo)

����

�
< ∞ and E

�����
∂2φt

∂θiθj
(θo)

����

�
< ∞ (3.3.1.1)

for i, j = 1, . . . , g.
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E2: For arbitrary real numbers a1, . . . , ag such that , for θ = θo,

E




�����f

1/2
θ (t, t− 1)

s�

i=1

ai
∂g(θ,Ft−1)

∂θi
)

�����

2




+ E




�����f

1/2
θ (t, t− 1)⊗ f 1/2

θ (t, t− 1)
g�

i=1

ai
∂{�(fθ(t, t− 1))}

∂θi
)

�����

2




= 0, (3.3.1.2)

then we have a1 = a2 = · · · = ag = 0.

E3: The vectors

fθ(t, t− 1)1/2(
∂g(θ,Ft−1)

∂θi
), i = 1, . . . , g are linearly independent (3.3.1.3)

E4: for θ ∈ A, there exists a function H ijk
t (Y1, . . . , Yt) such that

����
∂3φi

∂θi∂θj∂θk
(θ)

���� ≤ H ijk
t and E(H ijk

t ) < ∞ (3.3.1.4)

for i, j, k = 1, . . . , g

E5:

V = E

�
∂φt(θo)

∂θ

∂φtθ

∂θ

�
�

≤ ∞. (3.3.1.5)

Then there exists a sequence of estimators θ̂n = (θ̂n1, . . . , θ̂ng)
�
minimizing the

penalty function Ln such that θ̂n
a.s.−−→ θo as n → ∞. For � > 0, there is an

E event in (Ω,F , P ) with P (E) > 1 − � and an n0, such that on E and for

n > n0, ∂Ln(θ̂n)/∂θi = 0, for i = 1, . . . g, and Ln attains a relative minimum at

θ̂n. Furthermore,

√
n(θ̂n − θo)

d−→ N(0, U−1V U−1), (3.3.1.6)
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where

U = E

�
∂2

∂θ∂θ� φt(θ
o)

�
(3.3.1.7)

We show that the MAR model satisfies the conditions of Theorem 3.3.1 in

Theorem 3.3.2.

Theorem 3.3.2. Let yt be an MAR process given by Equation (2.2.0.8). If As-

sumptions 2.2 hold, then there exists a sequence of estimators θ̂n = (θ̂n1, . . . , θ̂ng)
�

minimizing the penalty function Ln such that θ̂n
a.s.−−→ θo as n → ∞. For � > 0,

there is an E event in (Ω,F , P ) with P (E) > 1− � and an n0, such that on E and

for n > n0, ∂Ln(θ̂n)/∂θi = 0, for i = 1, . . . g, and Ln attains a relative minimum

at θ̂n. Furthermore,

√
n(θ̂n − θo)

d−→ N(0, U−1V U−1) (3.3.1.8)

Proof. By the stationarity and ergodicity of the process as well as Assumption

(E1), we have that n−1∂Ln(θo)/∂θi
a.s−→ E{∂φt(θo)/∂θi} as n → ∞.

However, because of the martingale increment property of {∂φt(θo)/∂θi} we

have E({∂φt(θo)/∂θi}) = E[E{∂φt(θo)/∂θi | Fy
t−1}] = 0 satisfying Assumption B1

of Therorem 3.1.1. Similarly, Assumption B3 follows from E3, the mean value

theorem and the ergodic theorem. From the second part of E1 and the ergodic

theorem, we have

n−1 ∂2Ln

∂θi∂θj
(θo)

a.s.−−→ E

�
E

�
∂2φt

∂θi∂θj
| Fy

t−1

��
� V

�

ij (3.3.1.9)

It is now left to show that E2 implies the matrix V
�
= V

�
ij is positive definite
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(Tjostheim (1986)).

E

�
∂2φt

∂θi∂θj
| Fy

t−1

�
= Tr

�
f−1
θ (t, t− 1)

∂fθ(t, t− 1)

∂θt
f−1
θ (t, t− 1)

∂fθ(t, t− 1)

∂θj

�

(3.3.1.10)

+ 2
∂g(θ,Ft−1)

∂θi
f−1
θ (t, t− 1)

∂g(θ,Ft−1)

∂θj

So that for θ = θo and arbitrary a1, · · · , ag, we have:

s�

i=1

s�

j=1

aiajE

�
E

�
∂2φt

∂θi∂θj
| Fy

t−1

��
= 2E




�����(f

− 1

2

θ (t, t− 1)
s�

i=1

ai
∂g(θ,Ft−1)

∂θi

�����

2




+ E




�����f

− 1

2

θ (t, t− 1)⊗ f
− 1

2

θ (t, t− 1)
s�

i=1

aivec

�
∂fθ(t, t− 1)

∂θi

������

2


 ≥ 0 (3.3.1.11)

Hence the matrix (V )i,j is non-negative definite, and since fθ(t, t − 1) is positive

definite, it follows from Equation (3.3.1.11) and assumption E2 that V is also

positive definite. This concludes the proof.

3.3.2 Asymptotic normality

Tjostheim (1986) explore the asymptotic normality of the estimator θ̂n in the

following theorem.

Theorem 3.3.3. Assume that the conditions of Theorem 3.3.1 are fulfilled and

that for θ = θo and

F1:

Sij �
1

4
E

�
1

f 4
θ (t, t− 1)

�
∂fθ(t, t− 1)

∂θi

∂fθ(t, t− 1)

∂θj

�
E{(yt − g(θ,Ft−1))

4 | Fy
t−1}

−3f 2
θ (t, t− 1)

�
+ 2E{(yt − g(θ,Ft−1))

3 | Fy
t−1}fθ(t, t− 1)]

×
�
∂g(θ,Ft−1)

∂θi

∂fθ(t, t− 1)

∂θj
+

∂g(θ,Ft−1)

∂θj

∂fθ(t, t− 1)

∂θi

���
< ∞ (3.3.2.1)
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Let S = Sij, and let {θ̂n} be the estimators obtained in Theorem 3.3.1. Then we

have

Sij =
1

4
E

�
∂φt

θi

∂φt

θj

�
− U

�

ij (3.3.2.2)

and

n1/2(θ̂n − θo)
d−→ N (0, (U

�
)−1 + ((U

�
)−1S(U

�
)−1). (3.3.2.3)

where

U
�

ij = E

�
1

f 2
θ (t, t− 1)

�
fθ(t, t− 1)

∂g(θ,Ft−1)

∂θi

∂g(θ,Ft−1)

∂θj
+

1

2

∂fθ(t, t− 1)

∂θi

∂fθ(t, t− 1)

∂θj

��

(3.3.2.4)

Proof. Applying the martingales central limit theorems for the strictly stationary

ergodic case together with a Cramer-Wald argument, we find that if the limiting

covariance of n−1/2∂Ln(θ0)/∂θ exists, then it follows that it has a multivariate

normal distribution as its limiting distribution. By Theorem 3.1.1, the estimator

θ̂n is asymptotically normal. Since {∂Ln(θ0)/∂θi,Fn} is a martingale, we have

that,

n−1E

�
∂Ln

∂θi
(θ0)

∂Ln

∂θj
(θ0)

�
= n−1

n�

t=1

�
∂φt

∂θi
(θ0)

∂φt

∂θj
(θ0)

�
(3.3.2.5)

= E

�
E

�
∂φt

∂θi
(θ0)

∂φt

∂θj
(θ0) | Ft−1

��

So that by the definition of φt (Equation (3.3.0.7)), it follows that θ = θ0 and

E

�
E

�
∂φt

∂θi
· ∂φt

∂θj
| Ft−1

��
= 4(Sij + U

�

ij). (3.3.2.6)

By Assumptions E1 and F1

E

�
n−1/2∂Ln(θ0)

∂θi
· n

−1/2∂Ln(θ0)

∂θj

�
< ∞ (3.3.2.7)

The covariance matrix in Equation (3.3.2.3) follows from Theorem 3.1.3 as well as

the definition of S and U
�
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In situations where fθ(t, t−1) does not depend on θ, that is ∂fθ(t, t−1)/∂θ = 0

hence, S = 0 and in addition,

U
�
= E

�
∂g

�
(θo,Ft−1)

θ
{E(fθ(t, t− 1))}−1∂g(θ,Ft−1)

θ

�
(3.3.2.8)

so that we then have,

n1/2(θ̂n − θo)
d−→ N (0, (U

�
)−1). (3.3.2.9)

and estimation using Ln of Equation (3.3.0.7) and Qn of Theorem 3.1.1 would

basically yield similar results.

3.4 An MAR (2; 1, 1) example

We extend the results of the paper by Tjostheim (1986) to the MAR model de-

scribed in Chapter 2. In particular, we explore the MAR (2; 1, 1) model. An MAR

model with two AR components each of order one, that is, p1 = p2 = 1 and k = 2.

The MAR(2,1,1) is such that,

yt =






φ1,0 + φ1,1yt−1 + σ1�1(t) with probability π1

φ2,0 + φ2,1yt−1 + σ2�2(t) with probability π2,

with conditional distribution

Ft|t−1(x) = π1F1

�
yt − φ11yt−1

σ1

�
+ π2F2

�
yt − φ12yt−1

σ2

�
. (3.4.0.10)

g(a,Ft) = E(yt | Ft−1) = a0 + a1yt−1, (3.4.0.11)

where a0 =
g�

k=1

πkφk,0 and a1 =
g�

k=1

πkφk,1. (3.4.0.12)
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The process yt can also be written as:

yt = fzt
(t) + σzt�zt(t) (3.4.0.13)

where fzt
(t) = φzt,0+φzt,1(y(t− 1)) and zt is an i.i.d sequence of random variables

with distribution π, such that Pr{zt = k} = πk, k = 1, 2 (see Boshnakov (2009)).

3.4.1 The Conditional Least Square Type Penalty

Theorem 3.4.1. Let {yt} be defined as in Equation (2.2.0.8). Assume that E(y4t ) <

∞. Then there exists a unique distribution for the initial variable y1 such that

{Yt, t ≥ 1} is strictly stationary and ergodic.

Moreover, there exists a strongly consistent sequence of estimators {ân} min-

imizing the penalty function Qn defined in Equation (3.1.0.8) in the manner of

Theorem 3.2.1 such that ân
a.s.−−→ a and ân is asymptotically normal with variance-

covariance matrix defined by V −1WV −1, V and W are as in Equations (3.1.0.3)

and (3.2.2.1) respectively.

Proof. Wong and Li (2000) and Boshnakov (2009) gives conditions for the station-

ary and ergodicity of the MAR model. The first and second derivative of Equation

(3.1.0.7) is evaluated as,

∂g(a,Ft)

∂ai
=



 1

yt−1



 ,
∂2g(a,Ft)

∂aiaj
=



 1 yt−1

yt−1 y2t−1



 and
∂3g(a,Ft)

∂aiajak
= 0.

With corresponding expected values of the first and second derivative of Equation

(3.1.0.7) evaluated as,

E

�
∂g(a,Ft)

∂ai

�
= E



 1

yt−1



 =



 1

E(yt−1)



 < ∞
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also

E

�
∂2g(a,Ft)

∂aiaj

�
= E



 1 yt−1

yt−1 y2t−1



 = E



 1 E(yt−1)

E(yt−1) E(y2t−1)



 < ∞.

Since the expected values of both the first and second derivatives of Equation

(3.4.0.11) are finite, Condition C1 of Theorem 3.2.1 is satisfied.

Now notice that,

∂g(a,Ft)

∂a0
= 1

∂g(a,Ft)

∂a1
= yt−1

so that , for an arbitrary set of real numbers b1, b2,

E

�����b1
∂g(a,Ft)

∂a0
+ b2

∂g(a,Ft)

∂a1

����

�

so that E[b1 + b2yt−1] = 0 if and only if b1 = 0 implies b2 = 0 and vice versa so

that Condition C2 of Theorem 3.2.1 is also satisfied.

In addition,

E

����
∂

�
g(a,Ft)

∂ai

∂2g(a,Ft)

∂aiaj

����

= E

������

�
1 yt−1

�


 1 yt−1

yt−1 y2t−1





������

E
���
�
1 + y2t−1 yt−1 + y3t−1

���� < ∞

and

E

����{yt − g(a,Ft)}
� ∂3g(a,Ft)

∂aiajak

���� = 0

shows that Condition C3 of Theorem 3.2.1 is satisfied.
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Furthermore,

E

�
∂g(a,Ft)

∂a
fa(t, t− 1)

∂g(a,Ft)

∂a

�
=

E

������

�
1 yt−1

� g�

k=1

πkσ
2
k



 1

yt−1





������

= E
g�

k=1

πkσ
2
k[1 + y2t−1] < ∞

hence, Condition D1 of Theorem 3.2.2 is also satisfied.

Then from Theorem 3.2.1 and Theorem 3.2.2, there is an ân, such that ân
a.s.−−→ a

with variance-covariance matrix defined by V −1WV −1, V as required.

3.4.2 The Maximum Likelihood Type Penalty

Theorem 3.4.2. Let {yt} be defined by Equation (2.2.0.8). Assume that E(y4t ) <

∞. Then there exists a unique distribution for the initial variable y1 such that

{Yt, t ≥ 1} is strictly stationary and ergodic.Moreover, there exists a strongly

consistent sequence of estimators {ân} minimizing the penalty function Ln defined

in Equation (3.3.0.7) in the manner of theorem 3.3.1 such that ân
a.s.−−→ a and ân is

asymptotically normal with variance-covariance matrix simply defined by (U
�
)−1,

U is as in Equation (3.3.1.7).

Proof. Write,

fa(t, t− 1) = E{[(yt − g(a,Ft) | Ft−1)(yt − g(a,Ft))
� | Ft−1] | Ft−1} (3.4.2.1)

=
g�

k=1

πkσ
2
k × I.

where

I =



1 0

0 1
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By Equation (3.4.0.11), the first derivate of fa(t, t− 1) is evaluated as

∂fa(t, t− 1)

∂a
=

�g
k=1 πkσ2

k

∂a
= 0 (3.4.2.2)

and the derivatives of g(a,Ft) = E(yt | Ft−1) is as in the proof of theorem 3.4.1

above. So that the first partial derivates of equation (3.3.0.7) with respect to the

parameters ai is evaluated as,

∂φt

∂ai
=




2(yt−g(a,Ft−1)
E(yt−g(a,Ft−1)2

2yt−1(yt−g(a,Ft−1)
E(yt−g(a,Ft−1)2

.



 (3.4.2.3)

With the corresponding expected value given as,

E

�
∂φt

∂ai

�
= E




2(yt−g(α,Ft−1)
E(yt−g(α,Ft−1)2

2yt−1(yt−g(α,Ft−1)
E(yt−g(α,Ft−1)2



 = 0 and hence E

�
∂φt

∂ai

�
< ∞. (3.4.2.4)

Similarly, the second partial derivates of Equation (3.3.0.7) with respect to the

parameters ai is evaluated as,

∂2φt

∂ai∂aj
=




2

E(yt−g(α,Ft−1)2
2yt−1

E(yt−g(α,Ft−1)2

2yt−1

E(yt−g(α,Ft−1)2
2y2t−1

E(yt−g(α,Ft−1)2
.



 (3.4.2.5)

With corresponding expectation given as,

E

�
∂2φt

∂ai∂aj

�
= E




2

(yt−g(α,Ft−1)2
2yt−1

E(yt−g(α,Ft−1)2

2yt−1

E(yt−g(α,Ft−1)2
2y2t−1

E(yt−g(α,Ft−1)2



 = (3.4.2.6)

2�g
k=1 πkσ2

k

E



 1 yt−1

yt−1 y2t−1



 =

E
2

E(yt − g(α,Ft−1)2



 1 yt−1

yt−1 y2t−1



 < ∞.

Since the expected values of both the first and second derivatives of Equation

(3.3.0.7) are finite, then condition E1 of Theorem 3.3.1 is satisfied.
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From equation (3.4.2.2), the second part of the equation in Condition E2

equates to zero so that, Condition D2 follows from the proof of Condition C2

of equation 3.4.1.

Similarly Condition E3 follows from the fact that

����
∂3φt

∂ai∂aj∂ak

���� = 0. (3.4.2.7)

To show the asymptotic normality of the estimators ân, note that the 2nd term

in the RHS of Equation (3.3.2.4) and the 1st and 3rd terms in the RHS of Equation

(3.3.2.2) are both equal to zero since | ∂3φt

∂ai∂aj∂ak
| = 0 and ∂fa(t,t−1)

∂ai
= 0. So that

Uij = E{ 1

fa(t, t− 1)

∂g(a,Ft)

∂ai

∂g(a,Ft)

∂aj
} (3.4.2.8)

and Sij � 0 < ∞. Hence, the Variance-Covariance matrix is given as (U−1
ij ) as

required.

3.4.3 Variance-Covariance (V-C) Matrix

The V-C matrix is derived using using both the conditional least squares and the

maximum likelihood penalty function. We adapt the following notation:

• V − Cclsi and V − Cclsii are the Variance-Covariance matrix based on the

conditional least squares penalty function for scenario i and ii respectively

• V − Cmli and V − Cmlii are the Variance-Covariance matrix based on the

maximum likelihood penalty function for scenario i and ii respectively.

The two scenarios explored are:

1. Klimko and Nelson (1978)
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I

V − Cclsi = V −1WV −1 where

V = E[∂2g(α,Ft)/∂αiαj] and

W = E[(yt − E(yt | Ft−1)
2∂2g(α,Ft)/∂αiαj]

(3.4.3.1)

II

V − Cmli = (U
�
)−1 + (U

�
)−1S(U

�
)−1 = (U

�
)−1 where

U
�
= E[∂2g(α,Ft)/∂αiαj{E(fα(t, t− 1))}−1]

(3.4.3.2)

2. Tjostheim (1986)

I

V − Cclsii = U−1RU−1 where

U = E[
∂g(α,Ft)

∂α
�
i

∂g(α,Ft)

∂αj
] and

R = E[
∂g(α,Ft)

∂α
�
i

fα(t, t− 1)
∂g(α,Ft)

∂αj
]

(3.4.3.3)

II

V − Cmlii = (U
�
)−1 + (U

�
)−1S(U

�
)−1 = (U

�
)−1 where

U
�
= E[

∂g(α,Ft)

∂α
�
i

{E(fα(t, t− 1))}−1∂g(α,Ft)

∂αj
].

(3.4.3.4)

We show that in both cases the Variance-Covariance matrix is equal.

Scenario I:V = ∂2g(α,Ft)
∂αiαj

Variance-Covariance Matrix for the Conditional Least Squares Penalty Method

The Variance-Covariance Matrix for the Conditional Least Squares Penalty Method,

as defined in Equation (1) is derived.

Recall from Theorem 3.2.2 that the estimators θ̂n are not only consistent but

also asymptotically normal with the properties defined in Equation (3.2.2.2). In
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this section, we compute V −1WV −1 for the MAR (2, 1, 1) model as follows:

V =



 1 Eyt−1

Eyt−1 Ey2t−1



 (3.4.3.5)

and

V −1 =
1

V ar(yt−1)



 Ey2t−1 −Eyt−1

−Eyt−1 1



 (3.4.3.6)

also

W =
�

k=1

πkσ
2
k



 1 Eyt−1

Eyt−1 Ey2t−1



 (3.4.3.7)

Putting Equations (3.4.3.6) and (3.4.3.7) together we have

V −1W =

�
k=1 πkσ2

k

V ar(yt−1)



V ar(yt) 0

0 V ar(yt)



 =
�

k=1

πkσ
2
k × I

where

I =



1 0

0 1





so that

V −1WV −1 =

�
k=1 πkσ4

k

V ar(yt−1)



 Ey2t−1 −Eyt−1

−Eyt−1 1



 = V − Cclsi (3.4.3.8)

Variance-Covariance Matrix for the Maximum Likelihood Penalty Method

The Variance-Covariance Matrix for the Maximum Likelihood Penalty Method as

defined in Equation (1) is derived.

Recall from Theorem 3.3.3 that the estimators θ̂n are not only consistent but

also asymptotically normal with the properties defined in Equation (3.3.2.3).
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In this section, we compute (U
�
)−1+((U

�
)−1S(U

�
)−1) for the MAR2; 1, 1 model

as follows:

Recall from the proof of Theorem 3.4.2 that Sij � 0 since fa(t, t − 1) is in-

dependent of a so that the variance covariance matrix is simply given by (U
�
)−1

computed as follows:

U
�
= E

∂2g(α,Ft−1)

∂αi∂αj
{E(fα(t, t− 1))}−1 (3.4.3.9)

=
1�

k=1 πkσ2
k



 1 Eyt−1

Eyt−1 Ey2t−1





so that

(U
�
)−1 =

�
k=1 πkσ2

k

V ar(yt−1)



 Ey2t−1 −Eyt−1

−Eyt−1 1



 = V − Cmli (3.4.3.10)

Equation (3.4.3.8)= Equation (3.4.3.10) implying that the V-C matrix for both

the conditional least squares and maximum likelihood penalty functions are equal.

Scenario II:V = ∂g(α,Ft)

∂α�
∂g(α,Ft)

∂αj

Variance-Covariance Matrix for the Conditional Least Squares Penalty Method

The Variance-Covariance Matrix for the Conditional Least Squares Penalty Method,

based on Equation (2) is derived.

U = E







 1

yt−1




�
1 yt−1

�


 =



 1 Eyt−1

Eyt−1 Ey2t−1



 (3.4.3.11)

and

(U
�
)−1 =

1

V ar(yt−1)



 Ey2t−1 −Eyt−1

−Eyt−1 1



 (3.4.3.12)
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also

R = E
�

k=1

πkσ
2
k







 1

yt−1




�
1 yt−1

�


 =
�

k=1

πkσ
2
k



 1 Eyt−1

Eyt−1 Ey2t−1



 (3.4.3.13)

Putting Equation 3.4.3.12 and Equation 3.4.3.13 together we have

U−1R =

�
k=1 πkσ2

k

V ar(yt−1)



V ar(yt) 0

0 V ar(yt)



 =
�

k=1

πkσ
2
k × I

where

I =



1 0

0 1





so that

U−1RU−1 =

�
k=1 πkσ4

k

V ar(yt−1)



 Ey2t−1 −Eyt−1

−Eyt−1 1



 (3.4.3.14)

Variance-Covariance Matrix for the Maximum Likelihood Penalty Method

The Variance-Covariance Matrix for the Maximum Likelihood Penalty Method as

defined in Equation (2) is derived.

As before, recall from the proof of Theorem 3.4.2 that Sij � 0 since fa(t, t− 1)

is independent of a so that the variance covariance matrix is simply given by(U
�
)−1

computed as follows,

U
�
= E

∂2g(α,Ft)

∂αi∂αj
{E(fα(t, t− 1))}−1 (3.4.3.15)

=
1�

k=1 πkσ2
k



 1 Eyt−1

Eyt−1 Ey2t−1





so that

(U
�
)−1 =

�
k=1 πkσ2

k

V ar(yt−1)



 Ey2t−1 −Eyt−1

−Eyt−1 1



 = V − Cmlii (3.4.3.16)
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Equation (3.4.3.14) equals equation 3.4.3.16 implying that the Variance-Covariance

matrix for the two penalty functions are also equal, regardless of the scenarios used.

3.5 Summary

The conditional least squares procedure provides an integrated means of handling

estimation problems for commonly used stochastic models. This method stemmed

out of the assumption that normally distributed error terms in autoregressive mod-

els makes maximum likelihood estimation similar to the minimization of a sum of

squares. Klimko and Nelson (1978) developed an estimation procedure for stochas-

tic processes based on the minimization of a sum of squared deviations about con-

ditional expectations. Tjostheim (1986) extended the work by developing a general

framework for analyzing estimates in nonlinear time series models. He further de-

rived general conditions for strong consistency and asymptotic normality for both

conditional least squares and maximum likelihood type penalty function estimates.

We apply these techniques to the Mixture Autoregressive model. In particular, we

have given an example for the MAR(2;1,1) model and have shown that for the

model, the variance-covariance matrix is positive definite and identical for both

the conditional least square and maximum likelihood penalty functions.



Chapter 4

Geometric Ergodicity of the Mixture

Autoregressive Model

Geometric ergodicity is very useful in establishing mixing conditions and central

limit results for parameter estimates of a model. It justifies the use of laws of large

numbers and forms part of the basis for exploring the asymptotic theory of the

model (Tjostheim (1990)).

The aim here is to show that the MAR model is geometrically ergodic and by

implication satisfies the absolutely regular and strong mixing conditions.

We use the following notation.

Denote the lebesgue measure on the Borel σ- Field, B(Rp), of Rp by ϕ and let

� · � be any vector norm on Rp, p > 1.

Also, for any function f , we write

Ez[f(zt)] = E[f(zt) | Zt−1 = z] (4.0.0.1)

92
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4.1 Definitions of some useful concepts related to Markov

chains and geometric ergodicity

Consider a state space S and a σ-field F . Let (Yt) be a homogenous Markov chain

evolving on S, i.e. for all set A ∈ F and all s, t ∈ N, the transition probability

P t(y, A) is defined as,

P t(y, A) := P(Ys+t ∈ A | Yr, r < s;Ys = y). (4.1.0.2)

The Markov Property implies that P t(y, A) does not depend on Yr, r < s, given

Ys. Time homogeneity refers to the fact that the transition probability does not

depend on s.

A Transition Kernel is a function P : S × F → [0, 1] with the following

properties,

1. For all A ∈ F , the transition probability, P (·, A) is measurable;

2. For every y ∈ S, P (y, ·) is a probability measure on (S,F).

The law of each {Yt} is determined by the initial probability measure π and

the transition kernel P . Set

Pπ(Y0 ∈ A0, · · · , Yt ∈ At) =
�

y0∈A0

· · ·
�

yt−1∈At−1

π(dy0)P (y0, dy1) · · ·P (y0, dyt−1)P (yt−1, At)

The Markov chain Yt is said to be ϕ−irreducible for a nontrivial (that is not

identically equal to 0) measure ϕ on (S,F), if

∀A ∈ F , ϕ(A) > 0 ⇒ ∀y ∈ S, ∃t > 0, P t(y, A) > 0. (4.1.0.3)
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If Yt is ϕ−irreducible for some ϕ, Yt is simply called irreducible and ϕ is called

an irreducibility measure for Yt.

Denote the average time that the chain Yt spends in A when it starts at y by

U(y, A) = S
�∞

t=1 IA(Yt), where IA()̇ is an indicator function.

M(A) is a maximal irreducible measure i.e. M(·) is such that all the other

irreducible measures on Yt are absolutely continuous with respect to M(·).

A ϕ−irreducible chain is called recurrent if

U(y, A) :=
∞�

t=1

P t(y, A) = +∞, ∀y ∈ S, ∀A ∈ F+, (4.1.0.4)

where

F+ = {A ∈ F | M(A) > 0}, (4.1.0.5)

that is the chain Yt spends infinite time in A when it starts at y.

A ϕ−irreducible chain is called transient if

∃(Aj), F =
�

j

Aj, U(y, Aj) ≤ Mj < ∞, ∀y ∈ S (4.1.0.6)

Furthermore, Yt is said to be positive recurrent if

lim sup
t→∞

P t(y, A) > 0, ∀y ∈ S, ∀A ∈ F+. (4.1.0.7)

This property is equivalent to the existence of a unique invariant probability mea-

sure i.e. a probability measure π such that

∀A ∈ F , π(A) =

�
P (y, A)π(dy). (4.1.0.8)

A ϕ−irreducible Markov chain Yt is said to be Harris Recurrent (see Meyn and

Tweedie (1993)) if for all A ∈ F , ϕ(A) > 0 and ∀y ∈ S such that, P (LA | Y0 =
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y) = 1, where LA = inf{n ≥ 0 : Yn ∈ A}. That is, given that the process starts in

y it will eventually reach A in a finite number of steps with probability 1.

If a Markov chain is Harris recurrent and positive recurrent, then it is called

positive Harris recurrent.

A non-null set C ∈ F is small if there exists a positive integer m, a constant

n > 0 and a nontrivial probability measure v(·) on A, such that

P n(y, A) ≥ mv(A) ∀y ∈ C, A ∈ F (4.1.0.9)

A set C ∈ B(Y ) is called petite (v-petite) if the chain satisfies the bound K(y, A) ≥

v(A), for all y ∈ C and A ∈ B(Y ) and K(y, A) =
�∞

n=0 P
n(y, A) (see Meyn and

Tweedie (1993)).

For a small set C let

I(C) = {n ∈ N, P n(y, A) ≥ mv(A)} ∀y ∈ C, B ∈ F (4.1.0.10)

Let d(C) be the greatest common divisor of I(C). For all small sets C, if d(C) = 1,

then the Markov chain is called aperiodic; otherwise, it is called periodic with

period d = d(C) (see Masanobu Taniguchi (2000)).

A Markov chain is called ergodic if it is irreducible, aperiodic and positive

Harris recurrent. That is, there exists a probability measure π on S,F , such that,

lim
t→+∞

�P t(y, ·)− π(·)� = 0, y ∈ S, (4.1.0.11)

where � · � here is the total variation norm (see Meyn and Tweedie (1993)).

Ergodicity is however not a sufficient condition for establishing β− mixing

properties. We discuss an additional condition for β−mixing below.
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4.2 Geometric Ergodicity

The chain (Yt) is called geometrically ergodic if there exists a positive constant

ρ < 1 such that,

lim
t→+∞

ρ−t�P t(y, ·)− π(·)� = 0, ∀y ∈ S (4.2.0.12)

Recurrence, existence of an invariant probability measure and ϕ−irreduciblity

properties are not generally easily verified for all models. Tjostheim (1990) and

Meyn and Tweedie (1993) suggest exploring the use of the drift condition for

proving geometric ergodicity.

The following theorem is due to Tjostheim (1990) and Meyn and Tweedie

(1993).

Theorem 4.2.1. (Geometric ergodicity) Suppose that the Markov process Yt is

aperiodic and ϕ−irreducible, suppose also that there exists a petite set A, positive

constants 0 < ρ < 1, ε > 0, M < ∞ and a non-negative measurable function

V ≥ 1 such that:

E[V (Yt) | yt−1 = y] ≤ ρV (y)− ε, y ∈ Ac (4.2.0.13)

and

E[V (Yt) | yt−1 = y] ≤ M, y ∈ A. (4.2.0.14)

Then Yt is geometrically ergodic.

The function V is said to be a drift criterion, it is also referred to as a test

function (see Tweedie (1988)).
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4.2.1 Geometric Ergodicity and mixing Conditions

Mixing coefficients/conditions are defined as follows,

(Davidson (1997)) consider a sequence {Yt(ω)}∞−∞, let F b
a = σ(Yt, a ≤ t ≤ b),

L2(F b
a) be a set of F b

a− measurable random variables with finite and positive

definite variance.

Consider σ-algebras of events separated by at least m time units,

F∞
t+m = σ(Yt+m, Yt+m+1, Yt+m+2, . . . ) and

F t
−∞ = σ(. . . , Yt−2, Yt−1, Yt)

(4.2.1.1)

The following measures have been found useful in characterising the strength of

dependendence between events in these σ-algebras:

α(F t
−∞,F∞

t+m) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F∞
t+m, B ∈ F t

−∞}

φ(F t
−∞,F∞

t+m) = sup{|P(A | B)− P(A)| : A ∈ F∞
t+m, B ∈ F t

−∞,P(B) > 0}

β(F t
−∞,F∞

t+m) = sup{E(|P(A | F t
−∞)− P(A)|) : A ∈ F∞

t+m}

ρ(F t
−∞,F∞

t+m) = sup{cov(X, Y ) : X ∈ L2(F∞
t+m), Y ∈ L2(F t

−∞)}

The following concepts make use of the σ-algebras listed above.

The sequence is said to be α−mixing or strong mixing if limm→∞ αm = 0, where

αm = sup
t

α(F t
−∞,F∞

t+m). (4.2.1.2)

The sequence is said to be φ−mixing or uniform mixing if limm→∞ φm = 0, where

φm = sup
t

φ(F t
−∞,F∞

t+m). (4.2.1.3)

The sequence is said to be β−mixing or absolutely regular if limm→∞ βm = 0,

where

βm = sup
t

β(F t
−∞,F∞

t+m). (4.2.1.4)
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The sequence is said to be ρ−mixing or completely regular if

ρm = sup
t

ρ(F t
−∞,F∞

t+m) → 0. (4.2.1.5)

Davidson (1997) shows that φ−mixing implies α−mixing and β−mixing condition

is intermediate between α−mixing and φ−mixing conditions.

In summary, φ−mixing implies ρ−mixing and β−mixing; also, β−mixing and

ρ−mixing imply α−mixing (see, Dedecker et al. (2007)).

Geometric Egodicity and β−mixing conditions

Yu.A.Davydov (1973) and Bradley (2005) show that for an ergodic Markov chain

Yt, of invariant probability measure π,

βY (t) =

�
�P t(y, .)− π�π(dy). (4.2.1.6)

The rate ρ in Equation (4.2.0.12) can be chosen independently of the initial point.

If Equation (4.2.0.12) holds then it follows that βY (t) = O(ρt). Then (Yt) is a

stationary and geometrically ergodic and hence β−mixing.

Since β−mixing implies α−mixing then geometric ergodicity entails both α−mixing

and β−mixing. Hence, a major consequence of geometric ergodicity is that the

Markov chain Yt is absolutely regular that is, β-mixing and hence strong mixing

that is α-mixing, at a geometric rate.

4.3 Geometric Ergodicity of the MAR model

Let yt be an MAR process defined by Equation (2.2.0.8), we show here that Yt =

(yt, . . . , yt−p+1)
�
is geometrically ergodic and by implication β-mixing.
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Remark 4.3.1. We prove the geometric ergodicity of (Yt) instead of the process yt,

however, if Yt is geometrically ergodic, so is yt.

The follow assumptions are made in addition to assumption A in Section (2.2).

Assumptions B

i For each z ∈ S, there exists ci(z), di(z) ∈ Rp and ci(z) ≥ 0, di(z) ≥ 0, i = 1, . . . , p

such that for y = (y1, . . . , yp)

(a) |fzt(y)| ≤
�p

i=1 ci(z)|yi|+ o(�y�) as �y� → ∞ and

(b) σ2
zt(y) ≤

�p
i=1 di(z)|y2i |+ o(�y�2) as �y� → ∞.

ii Drift Condition: The Foster-Lyapounov drift condition (Tjostheim (1990),

Meyn and Tweedie (1993))

There exists a real valued measure function V ≥ 1 such that for some constant

ε > 0, 0 < ρ < 1, a constant M1 and a small set A = {y ∈ R : �y� ≤ M1}:

E[V (Qt) | Qt−1 = (q)] ≤ ρV (q) for y ∈ Ac (4.3.0.7)

sup
x∈A

E[V (Qt) | Qt−1 = q] < ∞ for y ∈ A (4.3.0.8)

We will use the following result by Meyn and Tweedie (1993) to prove the

geometric ergodicity of the MAR model.

Lemma 4.3.1 (Meyn and Tweedie (1993)). For an aperiodic, ϕ−irreducible Markov

chain, all petite sets are small sets.

(for proof see theorem 5.5.7 of Meyn and Tweedie (1993)).

Next we prove the following result for the chain Qt = (Zt, Yt).
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Propositon 4.3.1. For the Markov chain Qt = (Zt, Yt), if for every Z ∈ S, fz(·) is

bounded on all compact sets, then Qt is v × ϕ-irreducible and for every compact

set C ∈ Rp, S × C is a small set.

Proof. Now, the density function f is continuous and positive everywhere. We

have that if ϕ(A) > 0 and C is a compact subset of Rp, then by Bhattacharya and

Lee (1999, Lemma 1) and Stockis et al. (2010)), we can write

�

A

g(q, y | z)dϕ(q) > 0 (4.3.0.9)

and

inf
y∈C

�

A

g(q, y | z)dϕ(q) > 0 (4.3.0.10)

For any S
� ⊂ S,z = (z1, . . . , zt) ∈ S

�
and y = (y1, . . . , yt) ∈ S and t ≥ p, and the

transition probabilities of moving between alternate states zt is

pz0z1 , . . . , pzt−1zt > 0 (4.3.0.11)

Denote Yt given Z1 = z1, . . . , Zt = zt by Y (z)
t .

For Q0 = (z0, y),

P (Qt ∈ S
� × A | Q0) =

�

zt∈S�

�

zt−1∈S

· · ·
�

z1∈S

pz0z1 , . . . , pzt−1ztP (Y (z)
t ∈ A | Q0)

(4.3.0.12)

from Equation (4.3.0.9)

P (Y (z)
t ∈ A | Yt−p = q) =

�

A

g(q, y | zt−p+1, . . . , zt)dϕ(y) > 0, ∀q (4.3.0.13)

combining Equations (4.3.0.9)-(4.3.0.13) we have,

P (Y (z)
t ∈ A | Y0 = y) > 0 (4.3.0.14)
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and

inf
y∈C

P (Y (z)
t ∈ A | Y0 = y) > 0 (4.3.0.15)

Hence, Qt is ϕ−irreducible.

Furthermore, for any compact set C ∈ Rp

inf
(z0,y)∈S×C

j�

n=1

P n((z0, y), S
� × A) > 0 (4.3.0.16)

and S × C is a small set. which completes the proof.

To verify the geometric erogodicity of the MAR model, we need to:

1 Prove that the process Qt = (Zt, Yt) is ϕ−irreducible and aperiodic.

2 Show the existence of a test function V (Qt) satisfying the drift condition (Equa-

tion (4.3.0.7)) above.

The two steps are summarized in the following theorem.

Theorem 4.3.1. Consider the aperiodic Markov Chain Qt = (Zt, Yt). For a

small set A and the aperiodic and ϕ−irreducible process {Yt; t ≥ 0} such that

Yt = (yt, . . . , yt−p+1)
�
. Each yt is an MAR process defined by Equation (2.2.0.10).

Suppose that Assumption (2.2) and Assumption (4.3) are satisfied and

sup
z

E[
p�

j=1

ci(zt)cj(zt) + E(�2zt)di(zt) | Zt−1 = z] < 1 (4.3.0.17)

Then

1. {Yt; t ≥ 0} is geometrically ergodic with V (y) = 1 + �y�2

2. {Yt; t ≥ 0} has a stationary distribution with finite second moments i.e.

Eπy [y
2
t ] < ∞ and
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3. {Yt; t ≥ 0} is β-mixing and hence strong mixing at geometric rate.

where π is unique invariant distribution of Yt and πy(A) = π(S × A × Rp−1),

A ∈ B(R)

Proof. Step 1: To show that the drift condition 4.3.0.7 (Equation (4.3.0.7)) is sat-

isfied,

let τi(z) =
�p

j=1 ci(z)cj(z) and choose δ > 0 so that
�p

i=1 ξi + δ = 1, where

ξi = sup
z

E[
p�

j=1

ci(z)cj(z) + E(�2t )di(z) | Zt−1 = z] < 1 (4.3.0.18)

Now define a test function V : S ×Rp → R by

V (z, y) = 1 + �y2� (4.3.0.19)

write

ξi ≤ (1− δ

p
) 1 ≤ i ≤ p− 1 (4.3.0.20)
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Hence for y = y1, . . . , yp;

E[V (Qt) | Qt−1 = q] = E[V (Qt) | Qt−1 = (z, y)] (4.3.0.21)

= E[(fzt(y) + σzt�t)
2 | Zt−1 = z] + 1

≤ Ez[(fzt(y) + σzt�t)
2] +

p�

i=2

y2i−1 + 1

≤
p�

i=1

Ez[τi(z) + E�2ztdi(z)]y
2
i +

p�

i=2

y2i−1

+ Ez[(2o(�y�)(
p�

i=1

ciz)|yi|) + (o(�y�))2 + E(�2t )o(�y�2)]

+ E(�2t )o(�y�2) + 1

≤
p�

i=1

ξiy
2
1 +

p�

i=2

y2i−1 + Ez[Lzt(y)] + 1

≤ y1(1−
δ

p
) +

p�

i=2

y2i−1 + Ez[Lzt(y)] + 1

≤
p�

i=1

y2i −
δ

p

p�

i=1

y2i + Ez[Lzt(y)] + 1

≤
p�

i=1

y2i −
δ

p

p�

i=1

y2i + Ez[Lzt(y)] + 1 +
δ

p
− δ

p

= (1 +
p�

i=1

y2i )−
δ

p
(1 +

p�

i=1

y2i ) + Ez[Lzt(y)] +
δ

p

= V (z, y)− δ

p
(V (z, y)) + Ez[Lzt(y)] +

δ

p

= V (z, y)

�
1− δ

p
+

1

V (z, y)

�
Ez [Lzt(y)] +

δ

p

��

where

Lzt(y) = (2o(�y�)(
p�

i=1

ci(z))|yi|) + (o(�y�))2 + E(�2t )o(�y�2). (4.3.0.22)

Ez [Lzt (y)]
V (z,y) → 0 as �y� → ∞, also,
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δ/p
V (z,y) → 0 as �y� → ∞ so that we have,

E[V (Yt) | Yt−1 = z, y] ≤ V (z, y)[1− δ

p
+

δ/p

V (z, y)
] = (4.3.0.23)

V (z, y)(1− δ

p
)

Now suppose that y ∈ Ac and there exists M1 > 1 such that �y� > M1 so that

δ
p < ε < 1, ε is a strictly positive constant defined in Equation (4.3.0.18).

choose 1 − δ
p < ρ < 1 in Equation (4.3.0.23), it follows that the first part of

Equation (4.3.0.7) holds. Furthermore, since fzt(y) is locally bounded for y ∈ A ,

the second part of Equation (4.3.0.7) holds.

Thus,

E[V (Yt) | Yt−1 = (z, y)] ≤ ρV (z, y) for y ∈ Ac (4.3.0.24)

sup
y∈A

E[V (Yt) | Yt−1 = (z, y)] < ∞ for y ∈ A

Therefore, the geometric ergodicity and hence the strict stationarity and β−mixing

property of Yt and hence, yt are established.

We prove Theorem 4.3.1(ii) as follows, by 4.3 we can write

y2t ≤ [
p�

i=1

ci(z)|yi−1|+ o(�y�) + (
p�

i=1

di(z)|y2i−1|+ o�y�2) 1

2 �zt ]
2

= [(
p�

i=1

ci(z)|yi−1|+ o(�y�))2 +
p�

i=1

di(z)|y2i−1|+ o�y�2)�2zt ] + 2fzt(y)σzt�zt

=
p�

i=1

ci(z)|yi−1|cj(z)|yj−1|+2
p�

i=1

ci(z)yi−1o(�y�)+(o�y�)2
p�

i=1

di(z)|y2|+o�y�2)�2zt ]+2fzt(y)σzt�zt

=
p�

i=1

(τi(z)+�2ztdi(z)y
2
i−1)+2

p�

i=1

ci(z)yi−1o(�y�)+(o�y�)2+o�y�2)�2zt ]+2fzt(y)σzt�zt

(4.3.0.25)
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Taking expectation and by the independence of yt−1 and �zt as well as zt and �zt

we have,

Ey2t ≤
p�

i=1

(τi(z) + E�2ztdi(z))Ey2i−1 + Lzt(y) (4.3.0.26)

Lzt(y) is the same as Equation (4.3.0.22) above.

EY 2
t ≤ Lzt(y)

1− [
�p

i=1(τi(z) + E�2ztdi(z))]
(4.3.0.27)

Now by the proof of theorem 4.3.1 i and ii above, the Foster criterion F1 and F2 of

Tweedie (1988) hold. Hence, by Tweedie (1988, Theorem 2), there exists a finite

invariant measure π and ?, Theorem 1(iii)itettweedie88 holds. Hence, the RHS of

Equation (4.3.0.27) is finite. and Eπ(y2t ) < ∞ as required.

4.4 Summary

Geometric ergodicity is very useful in establishing mixing conditions and central

limit results for parameter estimates of a model. It also justifies the use of laws of

large numbers and forms part of the basis for exploring the asymptotic theory of

the model. A consequence of geometric ergodicity is β−mixing.

Since β−mixing implies α−mixing we can say that geometric ergodicity entails

both α−mixing and β−mixing. So that the absolute regularity and hence strong

mixing of the Markov chain Yt is a major consequence of geometric ergodicity.

We have established the geometric ergodicity of the MAR model and by impli-

cation show that it satisfies the absolutely regular and strong mixing conditions.

In addition, we show that the process {yt} has a stationary distribution with finite

second moments.



Chapter 5

Asymptotic Properties of the Maximum

Likelihood Estimator of the Mixture

Autoregressive Model

Amaximum likelihood estimate associated with a sample of observations is a choice

of parameters that maximizes the probability density function of the sample, called

in this context the likelihood function. In this chapter, we examine the asymptotic

properties of the maximum-likelihood estimates of the MAR model and show that

the MLE of the MAR model is both consistent and asymptotically normal.

Given (Yt, t ≥ 0), Yt = (yt, . . . , yt−p+1)
�
each yt is an MAR process defined

by Equation (2.2.0.10) with conditional distribution function defined in Equation

(2.2.0.1) Denote by θ0 the true value of the parameters to be estimated and θ̂ the

maximum likelihood estimate. Let fθ(· | y, k) denote the conditional density of yt

given yt−1, . . . , yt−p, Zt,k, this conditional density is defined in Equation (2.2.0.12).

We write {Ym, . . . , Yn} = Y (m,n). Also, by the markov property, the filtering

106
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distribution of the unknown state given past information is given by,

P(zt = k | zs, Ys, s = 0, . . . , t− 1) = P(zt = k | Y0, Ys, s = 0, . . . , t− 1) (5.0.0.1)

= P(zt = k | zt−1) for k = 1, . . . , g,.

The conditional likelihood function of Y (1,n) given both Y0 and Z0 = z0 is given

as,

pθ(Y
(1,n) | Y0, Z0 = z0) =

g�

zn=1

· · ·
g�

z1=1

n�

t=1

azt−1,ztfθ(Yt | Yt−1, zt) (5.0.0.2)

where aij is the transition probability matrix such that P (Yt = i | Yt−1 = j). The

corresponding conditional log-likelihood function is,

ln(θ, z0) = log pθ(Y
(1,n) | Y0, Z0 = z0) =

n�

t=1

log pθ(Yt | Y (0,t−1)Y0, Z0 = z0).

(5.0.0.3)

where

pθ(Yt | Y (0,t−1), Z0 = z0)

=
g�

zt−1=1

g�

zt=1

fθ(Yt | Yt−1, zt)azt−1,ztP(Zt−1 = zt−1 | Y (0,t−1), Z0 = z0) (5.0.0.4)

Similarly, the conditional log-likelihood function given Y0 only is,

ln(θ) =
n�

t=1

log pθ(Yt | Y (0,t−1)) (5.0.0.5)

where

pθ(Yt | Y (0,t−1)) =
g�

zt−1=1

g�

zt=1

fθ(Yt | Yt−1, zt)azt−1,ztP(Zt−1 = zt−1 | Y (0,t−1))

(5.0.0.6)

Douc et al. (2004, Corollary 1) show that the total variation distance between the

filtering probabilities Pθ(Zt−1 = zt−1 | Y0) and Pθ(Zt−1 = zt−1 | Y0, Z0 = z0) tends

to zero exponentially fast as t → ∞ uniformly with respect to z0.

We will show that the following conditions hold for the MAR model.
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Assumptions C

C1 {Yt, t ≥ 0} is geometrically ergodic

C2 For all y, y
� ∈ Rp, y� is a vector of past values of y.

inf
θ
fθ(y | y�

) > 0, sup
θ

fθ(y | y�
) < ∞ (5.0.0.7)

C3

b+ = sup
θ

sup
y,y�

fθ(y | y�
, k) < ∞ (5.0.0.8)

and

E| log inf
θ
fθ(Y1 | Y0)| < ∞ (5.0.0.9)

Lemma 5.0.1. Let (yt) be an MAR process and Yt = (yt, . . . , yt−p+1)
�
. Then As-

sumption C holds.

Proof. 1. The geometric ergodicity of Yt has been established in Section 4.3.

2. Assume

fk(
yt − φk,0 −

�pk
i=1 φk,iyt−i)

σk
≤ 1. (5.0.0.10)

Choose a positive constant M such that for σ2
k > 0, let σ2

k ≥ M2. Then, by

Equation 2.2.0.12 we can write,

fθ(y | y�
, k) ≤

g�

k=1

πk

M

=
1

M

g�

k=1

πk =
1

M
(since

�g
k=1 πk = 1)

this implies that fθ(y | y�
, k) ≤ 1

M

which then implies that fθ(y | y�
, k) ≤ 1

σk
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so that for all y, y
� ∈ R, we can write fθ(y, | y

�
) ≤ 1

σk
.

Furthermore by the compactness of Θ, we can choose M > 0 such that for

k = 1, . . . , g, φ2
k,0,φ

2
k,i, σ

2
k ≤ M2. Then,

(y − φ2
k,0 − φ2

k,iy
�
)2 ≤ (|y + φ2

k,0 + φ2
k,iy

�
)|2 ≤ (|y|+M |y� |)2, (5.0.0.11)

and

0 ≤ σk ≤ M(1 + |y� |). (5.0.0.12)

So that for all θ ∈ Θ,

fθ(y | y�
) ≥ max

k=1,...,g

πk

σk
fk(

yt − φk,0 −
�pk

i=1 φk,iyt−i)

σk
(5.0.0.13)

≥ max
k=1,...,g

πk

M(1 + |y� |)fk(
yt − φk,0 −

�pk
i=1 φk,iyt−i)

σk

≥ 1

g

1

M(1 + |y� |)fk(
|y|+M |y� |

σk
) > 0.

maxk=1,...,g πk ≥ 1
g and

�g
k=1 πk = 1 so that Assumption C2 follows.

3. By the definition of fθ(·) and proof of Assumption C2, Equation b+ is trivially

dominated by a positive constant thus the first part of Assumption C3 holds.

To prove the second part,

1

σk
≥ inf

θ
fθ(Y1 | Y0) ≥

1

gM
· 1

1 + |Y0|
fk(

(|Y1|+M |Y0|
σk

) > 0 (5.0.0.14)

So that

log(inf
θ
fθ(Y1 | Y0)) ≥ log | 1

gM
|+ log(

1

1 + |Y0|
) + log(fk(

|Y1|+M |Y0|
σk

)) > 0

(5.0.0.15)

= − log |gM |− log(1 + |Y0|) + log(fk(
|Y1|+M |Y0|

σk
))

≥ − log |gM |− 0 + log(fk(
|Y1|+M |Y0|

σk
)) > −∞
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using the fact that EY 2
t < ∞, E log(1+ |Y0|) ≤ E|Y0| < ∞, hence the second

part of Assumption C3 follows.

5.1 Consistency of the maximum likelihood estimator of the

MAR model

Proving consistency of the maximum likelihood estimator of the MAR model in-

volves checking that the limit of the normalized log-likelihood is only maximized

at the true value of the parameter (θ0) that is, l(θ) ≤ l(θ0). We start by stating

some useful lemmas and propositions. The following Lemma is due to Douc et al.

(2004),

Lemma 5.1.1. Given assumption C1 and C2 above hold, for (Yt, t ≥ 0), Yt =

(yt, . . . , yt−p+1)
�
each yt being an MAR process. Then the following holds for all

θ ∈ Θ.

sup
θ∈Θ

|ln(θ, z0)− ln(θ)| ≤
1

(1− ρ)2
a.s for some 0 ≤ ρ < 1 (5.1.0.16)

where

ln(θ, z0) = logPθ(Yt | Y (0,t−1), Z0 = z0) and (5.1.0.17)

ln(θ) = logPθ(Yt | Y (0,t−1)),

ρ = 1− µ−

µ+
,

0 ≤ µ− = inf
θ
inf
i,j

ai,j and

µ+ = sup
θ

sup
i,j

ai,j < 1.

(aij) is the transition probability matrix and is such that
�

j aij = 1
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Proof. By Douc et al. (2004, Corollary 1), the total variation distance between

the filtering predictions Pθ(Zt−1 = zt−1 | Y0) and Pθ(Zt−1 = zt−1 | Y0, Z0 = z0) is

bounded by ρt−1. So that for t ≥ 1 we have,

|Pθ(Yt | Y (0,t−1), Z0 = z0)− Pθ(Yt | Y 0,t−1| =
K�

zt−1=1

K�

zt=1

fθ(yt | yt−1)azt−1
azt

× [Pθ(Zt−1 = zt−1 | Y (0,t−1), Z0 = z0)− Pθ(Zt−1 = zt−1 | Y 0,t−1)]

≤ ρt−1 sup
zt−1

�
fθ(yt | yt−1, zt)azt−1

azt ≤ ρt−1µ+

�
fθ(yt | yt−1, zt) (5.1.0.18)

Now,

Pθ(Yt | Y (0,t−1), Z0 = z0) =
g�

zt−1=1

g�

zt=1

fθ(yt | yt−1)azt−1
azt

× Pθ(Zt−1 = zt−1 | Y (0,t−1), Z0 = z0) ≥ µ−
�

fθ(yt | yt−1, z) (5.1.0.19)

Similarly,

Pθ(Yt | Y (0,t−1)) =
K�

zt−1=1

K�

zt=1

fθ(yt | yt−1)azt−1
azt

× Pθ(Zt−1 = zt−1 | Y (0,t−1)) ≥ µ−
�

fθ(yt | yt−1, z) (5.1.0.20)

By the inequality, | log x− log y| ≤ |x−y|
(x∧y) where x ∧ y = min(x, y). We can write

| logPθ(Yt | Y (0,t−1), Z0 = z0)− logPθ(Yt | Y (0,t−1))| ≤ ρt−1

1− ρ
(5.1.0.21)

summing over all t, the right hand side of Equation (5.1.0.21) gives

n�

t=1

ρt−1

1− ρ
=

1

(1− ρ)2
(5.1.0.22)

so that we have,

sup
θ∈Θ

| ln(θ, z0)− ln(θ) |≤
1

(1− p)2
(5.1.0.23)

as required, which completes the proof.
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The next step is to show that 1
n ln(θ) = 1

n

�n
t=1 logPθ(Yt | Y (0,t−1)) can be

approximated by 1
n

�n
t=1 logPθ(Yt | Y (−∞,t−1)), where 1

n

�n
t=1 logPθ(Yt | Y (−∞,t−1))

is the sample mean of observations from a two-sided stationary ergodic sequence

of random variables in L
�
. We summarize this in the following corollary.

Corollary 5.1.1. Given that the process Yt satisfies Assumption C. Then for all z0

and θ ∈ Θ, the following holds,

lim
n→∞

1

n
ln(θ, z0) = l(θ). (5.1.0.24)

Proof. We adapt the following notation from Douc et al. (2004),

∆t,m,z(θ) = logPθ(Yt | Y (−m,t−1), Z−m = z−m) and (5.1.0.25)

∆t,m(θ) = logPθ(Yt | Y (−m,t−1))

so that

ln(θ) =
n�

t=1

∆t,0(θ) (5.1.0.26)

Douc et al. (2004, Lemma 3) show that ∆t,m,z(θ) and ∆t,m(θ) are uniform Cauchy

sequence and converge uniformly with respect to θ a.s. They also show that they

are uniformly bounded in L1 for all m and that limm→∞ ∆t,m,z(θ) = ∆t,∞(θ). They

say that the inequality does not depend on z and is a stationary ergodic process

such that the following inequalities hold,

sup
θ

sup
z

|∆t,m,z(θ)−∆t,m� ,z� | ≤
ρt+(m∧m�

)−1

1− ρ
and (5.1.0.27)

sup
θ

sup
z

|∆t,m,z(θ)−∆t,m| ≤
ρt+m−1

1− ρ

Setting m = 0 and m
� → ∞ in the system of Equations (5.1.0.27) gives

sup
θ

|∆t,0,z(θ)−∆t,∞| ≤ ρt−1

1− ρ
and (5.1.0.28)

sup
θ

|∆t,0,z(θ)−∆t,0| ≤
ρt−1

1− ρ
.
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Pulling them together and summing over all t we have,

n�

t=1

sup
θ

|∆t,0(θ)−∆t,∞| ≤ 2

(1− ρ)2
a.s. (5.1.0.29)

Thus by Equation (5.1.0.29) 1
n ln(θ) can be approximated by the sample mean of a

stationary ergodic sequence, uniformly with respect to θ ∈ Θ (Douc et al. (2004)),

so that by the ergodic theorem we can write,

1

n
ln(θ) → l(θ) = E∆0,∞(θ) a.s. (5.1.0.30)

This together with Lemma 5.1.1 imply that for θ ∈ Θ,

lim
n→∞

1

n
ln(θ, z0) = l(θ) a.s. (5.1.0.31)

For the MAR process, at any initial point z0,
1
n(ln(θ, zθ)− ln(θ)) → 0 uniformly

with respect to θ ∈ Θ due to the uniform forgetting of the conditional Markov

chain (Douc et al. (2004)).

Hence, θ̂n,z0 and θ̂n are asymptotically equivalent and are the maximum of

l(θn,z0) and l(θn) respectively. The following proposition summarizes this idea.

Propositon 5.1.1. Assume that Assumption C above holds for the MAR process

yt, then

sup
θ

sup
1≤z0≤k

����
1

n
ln(θ, z0)− l(θ)

���� → 0 as n → ∞ (5.1.0.32)

Proof. The proof of this proposition consists of proving the existence of a deter-

ministic function l(θ) such that asymptotically 1
n ln(θ, z0) → l(θ) a.s. uniformly

with respect to θ ∈ Θ. This is implied by Corollary 5.1.1.

We now show that Equation (5.1.0.32) holds.
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By Lemma 5.1.1 and the compactness of Θ it is sufficient to prove that for all

θ ∈ Θ

lim sup
δ→0

lim sup
n→∞

sup
|θ�−θ|≤δ

| 1
n
ln(θ

�
)− l(θ)| = 0, a.s. δ ≥ 0, (5.1.0.33)

which can be broken down into,

lim sup
δ→0

lim sup
n→∞

sup
|θ�−θ|≤δ

| 1
n
ln(θ

�
)− l(θ)| (5.1.0.34)

= lim sup
δ→0

lim sup
n→∞

sup
|θ�−θ|≤δ

| 1
n
ln(θ

�
)− 1

n
ln(θ)|

≤ lim sup
δ→0

lim sup
n→∞

sup
|θ�−θ|≤δ

1

n

n�

t=1

|∆t,0(θ
�
)−∆t,∞(θ

�
)|

+ lim sup
δ→0

lim sup
n→∞

sup
|θ�−θ|≤δ

1

n

n�

t=1

|∆t,∞(θ
�
)−∆t,∞(θ)|

+ lim sup
n→∞

1

n

n�

t=1

|∆t,∞(θ)−∆t,0(θ)|

By Corollary 5.1.1 and Equation (5.1.0.29), the first and third terms can be equated

to 0.

Also, by the ergodic theorem and the following equality from Douc et al. (2004,

Lemma 4)

lim
δ→0

Eθ∗

�
sup

|θ�−θ|≤δ

|∆0,∞(θ
�
)−∆0,∞(θ)|

�
= 0. (5.1.0.35)

The second term proceeds as follows,

lim sup
δ→0

lim sup
n→∞

sup
|θ�−θ|≤δ

1

n

n�

t=1

|∆t,∞(θ
�
)−∆t,∞(θ)| (5.1.0.36)

≤ lim sup
δ→0

lim sup
n→∞

1

n

n�

t=1

sup
|θ�−θ|≤δ

|∆t,∞(θ
�
)−∆t,∞(θ)|

= lim sup
δ→0

Eθ0

�
sup

|θ�−θ|≤δ

|∆0,∞(θ
�
)−∆0,∞(θ)|

�
= 0 a.s.

which concludes the proof.
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We now show that the stationary laws of the observed process associated with

two different values of the parameters (say PY
θ ,PY

θ0 ) do not coincide unless the

parameters do (Douc et al. (2004)). To do this, we will need the following assump-

tions:

Assumption D

(d)

θ = θ0implies that E

�
log

Pθ(y(1,p) | y0)
Pθ0(y(1,p) | y0)

�
= 0 for all p ≥ 1 (5.1.0.37)

(d
�
)

E

�
Eθ0

�
log

Pθ(y(1,p) | y0)
Pθ0(y(1,p) | y0)

| y0
��

= 0 for all p ≥ 1 (5.1.0.38)

We summarize the idea in the following lemma.

Lemma 5.1.2. Let (yt) be an MAR process and Yt = (yt, . . . , yt−p+1)
�
. Assume that

Assumption C holds, then Assumption D holds and

PY
θ = PY

θ∗ implies E

�
log

Pθ0(y(1,p) | y0)
Pθ0(y(1,p) | y0)

�
= 0 for all p ≥ 1 (5.1.0.39)

Proof. The proof is the same as the proof of Douc et al. (2004, Lemma 6). For

p ≥ 1 and m ≥ 0,

Eθ0

�
log

Pθ0(Y (1,p+m) | Y0)

Pθ(Y (1,p+m) | Y0)

�
(5.1.0.40)

= Eθ0

�
log

Pθ0(Y (1,m) | Y (m+1,p+m), Y0)

Pθ(Y (1,m) |(m+1,p+m), Y0)

�
+ Eθ0

�
log

Pθ0(Y (m+1,p+m) | Y0)

Pθ(Y (m+1,p+m) | Y0)

�

The two terms on the RHS are non-negative as they are expectations of the

Kullback-Leibler divergence functions (see Leroux (1992). Thus,

0 ≥ Eθ0

�
log

Pθ0(Y (m+1,p+m) | Y0)

Pθ0(Y (m+1,p+m) | Y0)

�
= Eθ0

�
log

Pθ0(Y (1,p) | Y−m)

Pθ(Y (1,p) | Y−m)

�
(5.1.0.41)

= Eθ0

�
n�

t=1

log
Pθ0(Y (1,p) = y(1,p) | Y−m)

Pθ(Y (1,p) = y(1,p) | Y−m)
Pθ0(Y

(1,p) = y(1,p) | Y−m)v
⊗p

�
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So that, for all m ≥ 0,

Pθ0(Y
(1,p) | Y−m) = Pθ(Y

(1,p) | Y−m) , a.s. (5.1.0.42)

Furthermore, by

lim
j→∞

sup
i≤j

|pθ(Y (t,l) | Y (i,j) − pθ(Y
(t,l)| = 0 (see Douc et al. (2004) lemma 5 for proof).

(5.1.0.43)

write

|Pθ0(Y
(1,p))− Pθ(Y

(1,p))

= lim
m→∞

|Pθ0(Y
(1,p) | Y−m)− Pθ(Y

(1,p) | Y−m) = 0| a.s. (5.1.0.44)

and Pθ0(Y (1,p)) = Pθ(Y (1,p)) as required.

Propositon 5.1.2. Given Assumption C as well as Assumption D and d
�
above

holds, then l(θ) = l(θ0) implies that θ = θ0

Proof. By the dominated convergence theorem:

l(θ) = Eθ0

�
lim

m→∞
log pθ(Y1 | Y (−m,0))

�
= lim

m→∞
Eθ0

�
log pθ(Y1 | Y (−m,0))

�

= lim
m→∞

Eθ0
�
Eθ0

�
log pθ(Y1 | Y (−m,0)) | Y (−m,0)

��
(5.1.0.45)

So that l(θ)− l(θ0) is non-negative as the limit of the expectations of conditional

Kullback Leibler divergence functions between θ and θ0 (see Leroux (1992) and

Francq and Roussignol (1998, Lemma 8)). θ0 is a maximizer of the function θ →

l(θ) (Douc et al. (2004)).

Now for all t ≥ 1 and m ≥ 0, we have that

Eθ0 [log pθ(Y
(1,t) | Y (−m,0))] =

t�

i=1

Eθ0 [log pθ(Y1 | Y (−m−i+1,0))], (5.1.0.46)
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taking limits as m → ∞ we have

lim
m→∞

1

t
Eθ0 [log pθ(Y

(1,t) | Y (−m,0))] = l(θ). (5.1.0.47)

So that

t(l(θ0)− l(θ)) = lim
m→∞

Eθ0

�
log

pθ0(Y (1,t) | Y (−m,0))

pθ(Y (1,t) | Y (−m,0))

�

≥ lim sup
m→∞

Eθ0

�
log

pθ0(Y (t−p+1,t) | Yt−p, Y (−m,0))

pθ(Y (t−p+1,t) | Yt−p, Y (−m,0))

�

= lim sup
m→∞

Eθ0

�
log

pθ0(Y (1,p) | Y0, Y (p−t−m,p−t))

pθ(Y (1,p) | Y0, Y (p−t−m,p−t))

�
(5.1.0.48)

Note that for p ≥ 1 and θ ∈ Θ, we have,

lim
t→∞

sup
m≥t

����Eθ0

�
log

pθ0(Y (1,p) | Y−m, Y (−m,−t))

pθ(Y (1,p) | Y−m, Y (−m,−t))

�
− Eθ0

�
log

pθ0(Y (1,p) | Y0)

pθ(Y (1,p) | Y0)

�����

= 0. (see Douc et al. (2004) for proof) (5.1.0.49)

Taking limits in Equation (5.1.0.48) as t → ∞ and applying Equation (5.1.0.49)

gives,

lim
t→∞

lim sup
m→∞

Eθ0

�
log

pθ0(Y1, · · · , Yp | Y0, Yp−t−m, · · · , Yp−t)

pθ(Y1, · · · , Yp | Y0, Yp−t−m, · · · , Yp−t)

�
= 0 (5.1.0.50)

which concludes the proof.

The consistency of the MAR model is formally stated in the following theorem:

Theorem 5.1.1. Let Yt = (yt, . . . , yt−p+1)
�
, each yt is an MAR model defined in

Equation (2.2.1). Given Assumptions 2.2, Assumption C and Assumption D hold.

Then for any z0 ∈ 1, . . . , g

lim
n→∞

θ̂n,z0 = θ0 a.s., (5.1.0.51)

where, θ̂n,z0 = argmaxθ∈Θ ln(θ, z0) is the maximum likelihood estimator of θ.
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Proof. The proof of the above theorem like most of this chapter largely uses the

results in Douc et al. (2004).Their assumptions/proofs are hinged on the paper

by Wald (1949) which says that there exists a deterministic asymptotic criterion

function l(θ) such that n−1ln(θ, z0) → l(θ) a.s. uniformly with respect to θ ∈ Θ.

The conditional form of the log likelihood function that is ln(θ, z0) is considered

instead of l(θ)

For the MAR model, at any initial point z0,
1
n(ln(θ, z0)− ln(θ)) → 0 uniformly

with respect to θ ∈ Θ this follows from the proof of Proposition 5.1.0.32. The

proposition also establishes the consistency of the conditional log-likelihood of the

model.

Furthermore, the geometric ergodicity of the chain Yt (and by implication the

process yt) establishes the β-mixing (see Section 4.3) property and hence absolute

regularity of the process yt so that Equation (5.1.0.49) is established. This to-

gether with Propositions 5.1.0.32 and Proposition5.1.2 as well as the identifiably

condition established by Assumption D and Lemma 5.1.2 prove the consistency of

the maximum likelihood estimators of the MAR model.

5.2 Asymptotic normality of the maximum likelihood estima-

tor of the MAR model

To prove asymptotic normality we need some further assumptions.

Assumptions E Let Θ0 ⊂ Θ denote an open neighbourhood of θ0 contained in Θ.

For δ ≥ 0, let Θ0 = {θ ∈ Θ : |θ − θ0| < δ}, the following conditions hold:

(a) For all k, l ∈ {1, . . . , g} and y, y
� ∈ R, the function θ → akl(θ) and θ → fθ(y |
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y
�
, k) are twice continuously differentiable on Θ0.

(b)

sup
θ∈Θ0

sup
k,l

�∂ log akl(θ)
∂θ

� < ∞ and (5.2.0.52)

sup
θ∈Θ0

sup
k,l

�∂
2 log akl(θ)

∂θ∂θ� � < ∞ (5.2.0.53)

(c)

E{ sup
θ∈Θ0

sup
k

�∂ log fθ(Y1 | Y0, k)

∂θ
�2 < ∞} and (5.2.0.54)

E{ sup
θ∈Θ0

sup
k

�∂
2 log fθ(Y1 | Y0, k)

∂θ∂θ� � < ∞}. (5.2.0.55)

Lemma 5.2.1. Let Yt = (yt, . . . , yt−p+1)
�
, each yt is an MAR model defined in

Equation (2.2.1). Given that Assumptions 2.2 and C hold, then Assumptions E

follows.

Proof. 1. The first parts of Assumption E (a) and (b) follow from the fact

that the transition probabilities akl(θ) are parameters themselves and linear

functions of the model parameters when l = g.

From Equation (2.2.0.9) both πk
σzt

and fk
�

yt−φk,0−
�pk

i=1
φk,iyt−i

σk

�
are continu-

ous,measurable, finite, positive and differentiable functions. The function

fθ(y, y
�
, k) is a continuous, measurable, finite, positive and differentiable

function, so that the second parts of Assumption E (a) and (b) hold.

2. To validate Assumption E (c), it is sufficient to examine the first and second

order partial derivatives with respect to each of the parameters that make
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up θ. Write

Hk(θ) = log fθ(Yt | Yt−1, k) = log
g�

k=1

πk

σzt

fk(
yt − φk,0 −

�pk
i=1 φk,iyt−i

σk
)

=
g�

k=1

Zk,t log πk −
g�

k=1

Zk,t log σk +
g�

k=1

Zk,t log fk

�
ek,t
σk

�
(5.2.0.56)

where ek,t = yt−φk,0−
�pk

i=1 φk,iyt−i. The first order derivatives are as follows,

∂Hk(θ)

∂πk
=

n�

t=p+1

�
Zk,t

πk
− Zk,t

πg

�
(5.2.0.57)

∂Hk(θ)

∂φk,0
=

n�

t=p+1

Zk,t

σ2
k

f
�

k

�
ek,t
σk

�

∂Hk(θ)

∂φk,i
=

n�

t=p+1

Zk,tyt−i

σ2
k

f
�

k

�
ek,t
σk

�

∂Hk(θ)

∂σk
=

n�

t=p+1

Zk,t

σk
f

�

k

�
ek,t
σk

�

and the second order derivatives are,

∂2Hk(θ)

∂π2
k

=
∂

∂πk

�
n�

t=p+1

�
Zk,t

πk
− Zk,t

πg

��
= −

n�

t=p+1

�
Zk,t

π2
k

+
Zk,t

π2
g

�

(5.2.0.58)

∂2Hk(θ)

∂πk∂πl
=

∂

∂πl

�
n�

t=p+1

�
Zk,t

πk

Zk,t

πg

��
= −

n�

t=p+1

�
Zk,t

π2
g

�

∂2Hk(θ)

∂φ2
k,i

=
∂

∂φk,i

�
n�

t=p+1

Zk,t

σ2
k

f
�

k

�
ek,t
σk

��
= −

n�

t=p+1

Zk,tu(yt,i)2

σ2
k

∂2Hk(θ)

∂φk,iφk,j
=

∂

∂φk,j

�
n�

t=p+1

Zk,t

σ2
k

f
�

k

�
ek,t
σk

��
= −

n�

t=p+1

Zk,tu(yt,i)u(yt,j)

σ2
k

∂2Hk(θ)

∂σ2
k

=
∂

∂σk

�
n�

t=p+1

Zk,t

σk
f

�

k

�
ek,t
σk

��
= −

n�

t=p+1

Zk,t

σ2
k

f
��

k

�
ek,t
σk

�

∂2Hk(θ)

∂σk∂φk,i
=

∂

∂φk,i

�
n�

t=p+1

Zk,t

σk
f

�

k

�
ek,t
σk

��
= −

n�

t=p+1

Zk,t

σ3
k

ek,tu(yt,i)
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where,

u(yt, i) =






1 i = 0

yt−i i > 0

(5.2.0.59)

Yt−1 and �zt in Model 2.2.0.8 are independent and �zt has finite variance. The

assumption E|Y0| < ∞ follows from the geometric ergodicity property.

Some additional regularity assumptions are further needed to set the table for

the proof of the asymptotic normality of the MLE of the MAR model.

Assumption F

(a) There exists a function g0 : R2 → R+ satisfying E[g0(Yt, Yt−1)] < ∞, such that

sup
θ∈Θ0

fθ(y | y�
, k) ≤ g0(y, y

�
) for all y, y

� ∈ R (5.2.0.60)

(b) There exist functions g1, g2 : R2 → R+ satisfying E[gi(YtYt−1)] < ∞, i = 1, 2,

such that

||∂fθ(y | y�
, k)

∂θ
|| ≤ g1(y, y

�
) and ||∂

2fθ(y | y�
, k)

∂θθ� || ≤ g2(y, y
�
) for all y, y

� ∈ R

(5.2.0.61)

Lemma 5.2.2. Let Yt = (yt, . . . , yt−p+1)
�
, each yt is an MAR model defined in

Equation (2.2.1). Given that Assumptions 2.2 and Assumption C hold, then As-

sumptions F follows.

Proof. From Lemma 5.0.1, we have that 0 ≤ fθ(y | y�
, k) ≤ 1

σk
so that Equation

(5.2.0.60) and Assumption F(a) hold.
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Also, Let dk and hk be arbitrary selections with replacement from φk,i and σk,

so that, the first derivative of the conditional density of yt with respect to dk is,

∂fθ(y | y�
, k)

∂dk
=

∂Hk(θ)

∂dk
fθ(y | y�

, k) (5.2.0.62)

and differentiating the conditional density of yt with respect to both dk and hk

gives

∂2fθ(y | y�
, k)

∂dk∂hk
=

�
∂2Hk(θ)

∂dk∂hk
+

∂Hk(θ)

∂dk

∂Hk(θ)

∂hk

�
fθ(y | y�

, k) (5.2.0.63)

Hk(θ) and the corresponding partial derivatives are detailed above. Assume further

that all the first and second order partial derivatives of fθ(y | y�
, k) with respect

to θ are bounded by

fθ(y | y�
, k)(c2(u(yt,i))

2 + c1) ≤
1

σk
(c2(u(yt,i))

2 + c1) (5.2.0.64)

for all y, y
� ∈ R and all k = 1, . . . , g. Setting g1, g2 equal to the RHS of the above

inequality and taking expectations, Assumption F(b) follows from the assumption

that E(Y 4
t ) < ∞.

Theorem 5.2.1. Let Yt = (yt, . . . , yt−p+1)
�
, each yt is an MAR model defined in

Equation (2.2.1). Given that Assumptions 2.2, Assumption C and Assumption D

hold. Assume that E(�4t ) < ∞ and that the Fisher information matrix (I(θ0)) is

positive definite, then for all z0 ∈ 1, . . . , g we have,

1

n

∂2ln(θ̂n,z0 , Z0)

∂θθ� → I(θ0) (5.2.0.65)

and

√
n(θ̂n,z0 − θ0) → N (0, (I(θ0))−1) (5.2.0.66)
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where

I(θ0) = −Eθ0
∂2 log pθ0(Yt | Y−∞, . . . , Yt−1)

∂θ∂θ� . (5.2.0.67)

Proof. The proof of asymptotic normality makes use of the following,

1. A central limit theorem (CLT) for the Fisher score function 1√
n
∂ln(θ0,z0)

∂θ

2. a local uniform law of large numbers for the observed Fisher information

1
n
∂2ln(θ0,z0)

∂θ∂θ�
in the neighborhood of θ0.

Douc et al. (2004) express the score function and the observed fisher information

as functions of conditional expectations of the complete score function and the

complete Fisher information.

5.2.1 A central Limit theorem for the score function

The method here for the Fisher identity is due to Louis (1982) (see also Tanner

(1993)). The Louis Missing Information Principle says that,

Observed Information=Complete Information - Missing Information.

Now, for all z0 and θ ∈ Θ,

1√
n

∂ln(θ0, z0)

∂θ
=

1√
n

n�

t=1

∂ log pθ0(Yt | Y (0,t−1), Z0 = z0)

∂θ
(5.2.1.1)

=
1√
n

∂
�n

t=1 ∆t,0,z0(θ
0)

∂θ
.

Using the notation in the proof of Corollary 5.1.1, write,

∂∆t,0,z0(θ)

∂θ
= Eθ

�
t�

i=1

φ(θ, Qi−1, Qi) | Y (0,t), Z0 = z0

�
(5.2.1.2)

− Eθ

�
t−1�

i=1

φ(θ, Qi−1, Qi) | Y (0,t−1), Z0 = z0

�
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where

φ(θ, Qi−1, Qi) = φ(θ, (Zi−1, Yi−1), (Zi, Yi)) (5.2.1.3)

=
∂ log(aZi−1,Zifθ(Yi | Yi−1, Zi))

∂θ

is the conditional score function of (Zi, Yi) given (Zi−1, Yi−1). Similarly, for m ≥ 0,

∂∆t,m(θ)

∂θ
= Eθ

�
t�

i=1

φ(θ, Qi−1, Qi) | Y (−m,t)

�
(5.2.1.4)

− Eθ

�
t−1�

i=1

φ(θ, Qi−1, Qi) | Y (−m,t−1)

�
,

consider the filtration Ft = σ(Ys, s ≤ t) for all, t ∈ Z. By the dominated conver-

gence theorem, we can write,

Eθ0

� t−1�

i=−∞

�
Eθ0

�
φ(θ0, Qi−1, Qi

�
| Y (−∞,t)

�
(5.2.1.5)

− Eθ0
�
φ(θ0, Qi−1, Qi) | Y (−∞,t−1)

�
) | Y (−∞,t−1)

�
= 0,

where

Eθ0
�
φ(θ0, Qi−1, Qi) | Y (−∞,t−1)

�
(5.2.1.6)

= Eθ0
�
Eθ0

�
φ(θ0, Qi−1, Qi) | Y (−∞,t−1), Zt−1

�
) | Y (−∞,t−1)

�
= 0

So that {∂∆t,∞(θ0)
∂θ }∞t=−∞ is an Ft = σ(Ys, s ≤ t)− adapted, stationary, ergodic and

square integrable martingale increment sequence for which the CLT for sums of

such sequences (see Durrett (1996)) can be applied to show that,

1√
n

n�

t=1

∂∆t,∞(θ0)

∂θ
→ N (0, I(θ0)), (5.2.1.7)

where

I(θ0) = Eθ0 [
∂∆0,∞(θ0)

∂θ

∂∆0,∞(θ0)

∂θ

T

] (5.2.1.8)
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is the asymptotic Fisher information matrix defined as the covariance matrix of

the asymptotic score function (Douc et al. (2004)).

So that

lim
n→∞

E

�����

�����
1√
n

n�

t=1

(
∂∆t,0(θ0)

∂θ
− ∂∆t,∞(θ0)

∂θ
)

�����

�����

2

= 0 (5.2.1.9)

and

lim
n→∞

E

�����

�����
1√
n

n�

t=1

(
∂∆t,0,z(θ0)

∂θ
− ∂∆t,0(θ0)

∂θ
)

�����

�����

2

= 0 (5.2.1.10)

Hence,

1√
n

n�

t=1

∂∆t,0(θ0)

∂θ
and 1√

n

�n
t=1

∂∆t,0,z(θ0)
∂θ have the same limiting distribution.

(5.2.1.11)

Therefore , ∂∆t,0(θ0)
∂θ can be approximated in L2 by a stationary martingale

increment sequence. Thus

1√
n

n�

t=1

∂∆t,0,z(θ0)

∂θ
→ N (0, I(θ0)). (5.2.1.12)

and

1√
n

∂ln(θ0, z0)

∂θ
→ N (0, I(θ0)). (5.2.1.13)

5.2.2 Uniform Law of Large numbers for the observed Fisher informa-

tion

A locally uniform law of large numbers is explored for the observed Fisher infor-

mation that is, for all possibly random sequences {θ0n} such that θ0n
a.s.−−→ θ0 and

− 1

n

∂2ln(θ0n, z0)

∂θ∂θ� (5.2.2.1)
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converges a.s. to the Fisher information matrix at θ0.

First express the observed Fisher information in terms of the hessian of the

complete log-likelihood, we do this by leaning on the Louis missing information

principle [see Louis (1982),Tanner (1993), Wong and Li (2000)]. The basic idea in

the principle leads to,

∂2 log pθ(Y (1,n) | Y0, Z0 = z0)

∂θθ�

= Eθ

�
n�

i=1

ψ(θ, Qi−1, Qi) | Y (0,n), Z0 = z0

�

+ varθ

�
n�

i=1

φ(θ, Qi−1, Qi) | Y (0,n), Z0 = z0

�
, (5.2.2.2)

where

ψ(θ, Qi−1, Qi) = ψ(θ, (Zi−1, Yi−1)(Zi, Yi)) (5.2.2.3)

=
∂2 log(aZi−1,Zifθ(Yi | Yi−1, Zi))

∂θ∂θ� .

Also,

Eθ

�
n�

i=1

ψ(θ, Qi−1, Qi) | Y (0,n), Z0 = z0

�

=
n�

t=1

�
Eθ

�
t�

i=1

ψ(θ, Qi−1, Qi) | Y (0,t), Z0 = z0

�

− Eθ

�
t−1�

i=1

ψ(θ, Qi−1, Qi) | Y (0,t−1), Z0 = z0

��
(5.2.2.4)
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and

varθ

�
n�

i=1

φ(θ, Qi−1, Qi) | Y (0,n, Z0 = z0

�

=
n�

t=1

�
varθ

�
t�

i=1

φ(θ, Qi−1, Qi) | Y (0,t), Z0 = z0

�

− varθ

�
t−1�

i=1

φ(θ, Qi−1, Qi) | Y (0,t−1), Z0 = z0

��
. (5.2.2.5)

As t → ∞ the initial condition on Y0 becomes more trival.

Thus for t ≥ 1 and m ≥ 0,define,

∂∆t,m(θ)

∂θ
= Eθ

�
t�

i=−m+1

ψ(θ, Qi−1, Qi) | Y (−m,t)

�

− Eθ

�
t−1�

i=−m+1

ψ(θ, Qi−1, Qi) | Y (−m,t)

�
(5.2.2.6)

and

Γt,m(θ) = varθ

�
t�

i=−m+1

φ(θ, Qi−1, Qi) | Y (−m,t)

�

− varθ

�
t−1�

i=−m+1

φ(θ, Qi−1, Qi) | Y (−m,t−1)

�
(5.2.2.7)

Now, ∂∆t,m(θ)
∂θ and Γt,m(θ) both converge to ∂∆t,∞(θ)

∂θ and Γt,∞(θ) respectively in L1

as m → ∞. It also follows that {∂∆t,m(θ)
∂θ }∞t=1 and {Γt,∞(θ)}∞t=1 are stationary and

ergodic.

Thus, the observed Fisher information will converge to

−Eθ0

�
∂∆t,m(θ0)

∂θ
+ Γt,∞(θ0)

�
(see Douc et al. (2004).) (5.2.2.8)

For all z0, the Fisher Information identity implies that

1

n
Eθ

�
∂ln(θ, z0)

∂θ

∂ln(θ, z0)T

∂θ
| Y0, Z0 = z0

�

= − 1

n
Eθ

�
∂2ln(θ, z0)

∂θ∂θ� | Y0, Z0 = z0

�
(5.2.2.9)
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Finally, the Louis missing information principle (Louis (1982) and Tanner (1993))

show that the limits in n of the two quantities in Equation (5.2.2.9) both coincide

with the Fisher information at θ0 which completes the proof.

5.3 Summary

In this chapter, we have considered the asymptotic properties of the MLE of the

MAR process. We consider a vector of MAR processes (Yt) as a markov regime

autoregressive process with a compact and finite hidden space. We leverage the

results of Douc et al. (2004) whose assumptions/proofs are hinged on the paper

by Wald (1949) which says that there exisits a deterministic asymptotic criterion

function l(θ) such that n−1ln(θ, z0) → l(θ) a.s. uniformly with respect to θ ∈ Θ.

Hence, we consider the conditional form of the log likelihood function that is

ln(θ, z0) instead of l(θ) and show that the Maximum Likelihood Estimate of the

MAR model is both consistent and asymptotically normal.



Chapter 6

Risk

A major part of decision making involves taking risk. Thus, most decision makers

are faced with the question of how to quantify risk. Investors are also faced with

the dilemma of how much they can possibly lose on an investment as well as the

overall risk exposure of the organisation.

What then is risk? Risk is simply a measure of how volatile the returns on an

asset are.

Jorion (1997) defines risk as the volatility of unexpected outcomes. He classified

the risk exposure of corporations into 3 main types viz:

• Business Risk.

• Strategic Risk.

• Financial Risk.

Risk taking is necessary for profit making. Hence, it is impossible to eliminate risk

not just from financial markets but also from any other profit oriented venture.

The need for risk management cannot therefore be over emphasized.

129
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Managing risk, is the ability to recognize and mitigate against future natural,

social, political and economic events that can have unfavorable effects on invest-

ments. For financial institutions, unfavorable effects usually involve huge losses

on a portfolio of assets such as stocks, bonds, etc. Other risk exposures common

to other organisations include operational risk (which is the risk associated with

incompetent internal processes), fraud or litigation, and many others.

Recent occurrences in the global economy and the substantial losses that com-

panies and major financial houses have suffered in the past decade have made the

concept of managing risk extremely vital to businesses.

The unpredictability of future events necessitates the exploration of tools like

probability theory, stochastic processes, statistics and the like as critical input

for managing risk. Regulators and supervisory authorities require that financial

institutions use quantitative techniques to manage risk.

Acerbi (2002), Artzner et al. (1999),Acerbi et al. (2008),Tsay (1997),Tasche

(2002),Acerbi and Tasche (2002),Fotios C. Harmantzis (2006), Jorion (1997) and

many others have studied various risk measures, the most popular being Value-at-

Risk and Expected Shortfall. This chapter begins with a description of the various

categories of risk measures followed by a detailed discussion on Value at Risk and

Expected shortfall and the approaches to estimating them.

6.1 Coherent Measures of Risk

Consider a set of real-valued random variables G on some probability space (Ω,A, P )

and a fixed α ∈ (0, 1). . A mapping ρ : G → (−∞,∞] with ρ(0) = 0 is called a

coherent risk measure(Artzner et al. (1999)) if it satisfies the following axioms:

i. Translation invariance: ρ(X+α) = ρ(X)−α, for all X ∈ G and α ∈ (0, 1).
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This axiom implies that for each X, ρ(X + ρ(X)) = 0. That is including the

estimated risk in an investment will cancel out the risk, hence it is optimal to

consider building in associated risk into an investment portfolio.

ii. Subadditivity: ρ(X1 +X2) ≤ ρ(X1) + ρ(X2), for all X1,X2 ∈ G. This axiom

simply implies that ”a merger does not create extra risk”. It also means that

diversification should reduce risk.

iii. Positive homogeneity: ρ(λX) = λρ(X), for all, λ ≥ 0 and all X ∈ G. This

axiom implies that if position size were to directly influence risk, then lack of

liquidity would be a concern when computing future net worth of a position.

iv. Monotonicity: ρ(Y ) ≤ ρ(X), for all, X,Y ∈ G with X ≤ Y . This axiom

rules out any risk measure defined by ρ(X) = −EP[X] + α.σP(X). Where σP

is the standard deviation operator, computed under P

Remark 6.1.1. The subadditivity and positive homogeneity axioms imply that

ρ(nX) ≤ nρ(X) for n = 1, 2, . . . .

Remark 6.1.2. The translation invariant and positive homogeneity axiom

imply that, for each α, ρ(α.(−r)) = α where r is the total return on a portfolio.

6.2 Convex Measures of Risk

Multiplying a position by a large factor (say λ) gives rise to additional liquidity

risk, so that subadditivity and positive homogeneity axioms are no longer critical.

Follmer and Schied (2002) suggest relaxing the subadditivity and positive ho-

mogeneity axioms to the weaker property of convexity.
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Definition 6.2.1 (Convex Risk Measure). A risk measure ρ is said to be convex

if it satisfies the following axioms:

i It satisfies axioms i and iv in Section 6.1 that is, it is translative invariant and

monotonic.

ii convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) forall X, Y ∈ G and

λ ∈ [0, 1].

Convexity implies that diversification does not increase risk that is the risk

associated with a diversified position λX + (1 − λ)Y is less than or equal to the

weighted average of individual risks associated with the investments that make up

the portfolio.

6.3 Spectral Measures of Risk

Acerbi (2002) and Tasche (2002) discuss the class of spectral risk measures. This

class of risk measures can be viewed as a subclass of coherent risk measures, as they

are defined by adding two extra axioms to the set of axioms that define coherency.

The following are some useful definitions of some terms used in this section.

Definition 6.3.1. Comonotonic– A pair of real valued random variables X and

Y are said to be comonotonic if there exists a real valued random variable Z and

two non-decreasing functions f, g : R → R such that X = f(Z) and Y = g(Z).

Definition 6.3.2. Quantiles[Acerbi and Tasche (2002) and Acerbi et al. (2008)]–

Let X be a real valued random variable on a probability space (Ω,A,P) and α ∈

(0, 1). The elements of the set

Qα(X) = {x ∈ R : P[X < x] ≤ α ≤ P[X ≤ x]} (6.3.0.1)
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are the inverse of the distribution function (FX(x)) of a random variable X and is

called the α−quantile of X, defined as, Qα(X) = [q−α (X), q+α (X)] �= ∅ with:

q−α (X) = inf {x ∈ R : P[X ≤ x] ≥ α} , α ∈ (0, 1] (lower-α-quantile) (6.3.0.2)

q+α (X) = sup {x ∈ R : P[X < x] ≤ α} , α ∈ [0, 1) (upper-α-quantile) (6.3.0.3)

We now give a formal definition of Spectral risk measures.

Definition 6.3.3 (Spectral Measures of Risk). A risk measure ρ is said to be

a spectral measure of risk if it satisfied the following:

i Coherence: it satisfies axioms i-iv in Section 6.1.

ii Commonotonic additive: ρ(X + Y ) = ρ(X) + ρ(Y ) for any commonotonic

pair X, Y ∈ G.

Note that two commonotonic portfolios provide no diversification when added

together. Furthermore, if a risk measure is both subadditive and commonotonic

additive, then the upper bound ρ(X) + ρ(Y ) placed on ρ(X + Y ) by subaddi-

tivity can be attained for commonotonic variables (Jouini et al. (2006)).

iii law-invariant:ρ(X) = ρ(Y ) whenever X, Y ∈ G have the same probability

law that is ρ(X) depends only on the distribution of X.

This axiom is very important in practise as a risk measure can only be estimated

from empirical loss data if it is law-invariant. Jouini et al. (2006) show that

law invariant convex risk measures have the Fatou Property.

The following are some spectral risk measures found in literature:
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1 Tail Conditional Expectation (TCE)[Acerbi and Tasche (2002)] Consider

a real valued random variable X on a probability space (Ω,A, P ), and confidence

level α. TCE is the measure of risk defined as follows,

TCEα(X) = E[X | X ≤ q−α (X)] (lower TCE at CL α) (6.3.0.4)

TCEα(X) = −E[X | X ≤ q+α (X)] (upper TCE at CL α) (6.3.0.5)

By Artzner et al. (1999) TCEα can also be written as,

TCEα(X) = −EP[X | X ≤ −V aRα(X)]. (6.3.0.6)

We will define V aRα in Section 6.4. Note that TCEα ≥ TCEα. Delbaen et al.

(2000) was able to show that TCEα is in general not a coherent measure of risk

as it is not sub-additive.

2 Worst Conditional Expectation (WCE)[Acerbi and Tasche (2002) and

Artzner et al. (1999)] Consider a real valued random variables X on a probability

space (Ω,A, P ), and confidence level α. WCE is the measure of risk defined as

follows,

WCEα(X) = − inf EP[X | A] : A ∈ A | P > α. (6.3.0.7)

The definition of WCEα implies that WCE is sub-additive that is for any two

random variable X and Y on the same probability space, WCEα(X + Y ) ≤

WCEα(X) +WCEα(Y ).

Remark 6.3.1. (Artzner et al., 1999, Proposition 5.1),suggests that TCEα ≤ WCEα,

this implies that WCEα dominates TCEα.

However, the infimum is not quite effective hence the introduction of the Con-

ditional Value-at-Risk.
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3 Conditional Value-at-Risk[Acerbi and Tasche (2002)]. Consider a real val-

ued random variable X on a probability space (Ω,A, P ), and confidence level α.

The α−level CV aR of Xis the measure of risk defined as follows,

CV aRα(X) = inf (EP[(X − s)−]/α)− s : s ∈ R. (6.3.0.8)

4 Tail Mean[Acerbi and Tasche (2002)] Consider a real valued random variable

X on a probability space (Ω,A, P ), and confidence level α. The α−level TM of

X is the measure of risk defined as follows,

TMα(X) = α−1(E[X1(X≤q−α )] + q−α (α− P [x ≤ q−α ])), (6.3.0.9)

Where 1(·) is an indicator function.

Furthermore, if we have a real-valued integrable random variable X on a prob-

ability space (Ω,A, P ) and confidence level α ∈ (0, 1) fixed, then:

TMα(X) = α−1

� ∞

0

q−u (X)du (6.3.0.10)

Note that TMα depends only on the distribution of X and the confidence level α,

but not on a particular definition of the quantile (see (Acerbi and Tasche, 2002,

Corollary 4.3)).

6.4 Value at Risk

The concept of Value at Risk (VaR) was first introduced by financial companies

in the late ’80s. However, the underlying mathematics sprung from attempts by

Harry Markowitz and others (Markowitz (1952)), to devise optimal portfolios for

equity investors. VaR attempts to provide ways of quantifying risks in financial

positions/portfolios.
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Butler (1999) classifies the contribution of VaR to the science of risk manage-

ment in three bullet points as follows:

1. It helps to allocate resources more efficiently,so that the organisation is not

over exposed to one source of risk.

2. It makes traders and risk managers more accountable for their actions espe-

cially where they introduce avoidable risk or fail to hedge against risk.

3. It helps regulators decide capital adequacy requirements for institutions.

Through the glasses of the financial institutions, VaR is seen as the maximal loss

associated with a catastrophic event under normal market conditions while the

glasses of a regulatory committee reflects VaR as the minimal loss under extraor-

dinary market circumstances (Tsay (1997)).

Value at Risk is formally defined as follows,

Definition 6.4.1. Value at Risk (VaR) is the amount that a portfolio will lose

with a given probability-p, over a specified time horizon-t.

That is with probability (1 − p), the potential loss encountered by the holder

of the financial position over the time horizon t is less than or equal to VaR (Tsay

(1997)).

The probability-p is selected based on how the user and/or the developer of the

risk management system wants to interpret the VaR figure. Typically, values for

the probability p range between 1%− 5% (see J.P.Morgan (1995), Jorion (1997)).

The time horizon also known as the holding period should correspond to the

maximum period needed for an organization’s portfolio liquidation. The value

ranges between 1 − 90 business days (1,5,10 and 90 business days are commonly

used).
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6.4.1 Hiccups in Value at Risk

There has been some debate as to the sufficiency of VaR as a dependable measure

of risk. Some of the arguments that can be found in literature include:

a) VaR does not satisfy the subadditivity axiom which contradicts the framework

of modern portfolio theory that is diversification should reduce risk (Jadhav

et al. (2009)).

Acerbi et al. (2008) describes this non-compliance as two fold viz:

i. Non-additivity by position– When a new instrument is added to a portfolio

it often necessitates that VaR be recomputed for the entire portfolio as total

VaR is not given by the sum of the partial VaR’s of the instruments that

make up the portfolio.

ii. Non-additivity by risk variable– VaR is not a sum of partial VaRs of the

multiple risk variables that make up a portfolio, even when the risks are

independent of each other.

b) VaR disregards tail risk as it does not consider tail distribution beyond it’s

value.

c) VaR permits the construction of proxy portfolios having low VaR as a trade-off

of heavy tail loss (Mamon and (Eds.) (2007)).

d) Rational investors who wish to maximize expected utility can be misled by the

information given by VaR (see Mamon and (Eds.) (2007) for details).

e) VaR is not a coherent measure of risk.
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Based on these shortfalls of VaR, a coherent risk measure referred to as Expected

Shortfall has been suggested as an alternative and/or sometimes a complement for

VaR.

6.5 Expected Shortfall

Expected Shortfall (ES) has been proposed as a viable alternative to VaR as it

caters for the hiccups in VaR. The concept of Expected Shortfall is defined as

follows,

Definition 6.5.1 (Expected Shortfall). Fix the confidence level α ∈ (0, 1).

Then, the ESα(X) called the Expected Shortfall (ES) at level α of X is the mean

loss in the 100α% worst case of a portfolio X, that is,

ESα(X) = E[−X | −X ≥ V aR(α)(X)]

= α−1

� α

0

V aRu(X)du = −α−1

� α

0

q+u (X)du. (6.5.0.1)

where q+u is as defined in Definition 6.3.2 and V aRα(X) = −q+α (X).

6.5.1 Properties of Expected Shortfall

1. Coherence– ES is coherent, that is it satisfies the following axioms (see

Section 6.1 for details):

i. Monotonous

ii. Sub-additive

iii. Positively Homogeneous

iv. Translative invariant
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The coherence property is by far the most important property of ES.

2. Expected Shortfall is the excess loss over value at risk that is, ESα(X) ≥

V aRα(X).

3. ESα is law invariant, that is For any two real-valued random variables X

and Y , with E[X−] < ∞ and E[Y −] < ∞ and confidence level α ∈ (0, 1)

fixed, the following representation holds,

P [X ≤ t] = P [Y ≤ t], t ∈ R implies that ESα(X) = ESα(Y ). (6.5.1.1)

This property implies that it is possible to determine ESα from statistical

observations only.

4. Tasche (2002) suggest that ES is such that,

∂+ESα(X)

∂α
=

−q+α + ESα(X)

α
,
∂−ESα(X)

∂α
=

−q−α (X) + ESα(X)

α
.

(6.5.1.2)

5. For a real-valued random variable X with E[X−] < ∞, α → ESα is ab-

solutely continuous on (0, 1) and non-decreasing. This implies that ESα is

continuous with respect to α.

6. ESα is comonotonic additive, that is,

ESα(f ◦ Z + g ◦ Z) = ESα(f ◦ Z) + ESα(g ◦ Z) (6.5.1.3)

for all non-decreasing f, g and random variables Z with E[(f ◦ Z)−] <

∞, E[(g ◦ Z)−] < ∞

This property implies that by commontonic additivity, ESα(f ◦Z)+ESα(g ◦

Z) is the upper bound for the risk ESα(f ◦ Z + g ◦ Z) and occurs if f ◦ Z
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and g ◦ Z are comonotonic. Thus upper bounds of risk following from sub-

addiitvity are proper worst case bounds (Tasche (2002)). So that ES is the

proper worst case possible loss.

6.5.2 Other Risk Measures and how they connect to Expected Shortfall

Eberlein et al. (2007) refer to Spectral risk measures as generalisations of Expected

Shortfall. Below are some spectral risk measures and how they relate to expected

shortfall.

1. Expected Shortfall (ES) and Tail Mean (TM)

ESα(X) = −TMα(X) (6.5.2.1)

Moreover, for a real-valued integrable random variable X, and any α ∈ (0, 1)

and any � > 0 with α + � < 1, we have the following due to Acerbi and

Tasche (2002)

TMα+� ≥ TMα and ESα+� ≤ ESα. (6.5.2.2)

2. Expected Shortfall (ES) and Conditional Value at Risk (CVaR)

For a real valued integrable random variable X on some probability space

(Ω,A, P ) and for a fixed α ∈ (0, 1),

ESα(X) = CV aRα(X) = −α−1(E[X1{X≤s}]+s(α− P [X ≤ s])),

s ∈ [q−α (X), q+α (X)] (6.5.2.3)

3. Expected Shortfall (ES) and Worst Conditional Expectation (WCE)

For any two real-valued integrable random variablesX and Y on a probability

space (Ω,A, P ) and confidence level α ∈ (0, 1). Let Y be such that Y = f(X)
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where f satisfies f(x) ≤ f(q−α ) for x < q−α , and f(x) ≥ f(q−α ) for x > q−α .

The following proposition by Acerbi and Tasche (2002) holds,

Propositon 6.5.1. i. If P [X ≤ q−α ] then ESα(Y ) = − infA∈A,P [A]≥α E[Y |

A].

ii. If the distribution of X is continuous, then, ESα(Y ) = WCEα(Y ).

Moreover, if we consider a finite number of real valued integrable random

variables in a vector (Xi, . . . , Xd) on a probability space (Ω,A, P ). In addi-

tion, fix the confidence level α ∈ (0, 1). Then there exists another random

vector (X
�
i , . . . , X

�
d) also on some probability space (Ω

�
,A�

, P
�
) with the fol-

lowing properties:

i. (Xi, . . . , Xd) and (X
�
i , . . . , X

�
d) are equally distributed that is,

p[Xi ≤ xi, . . . , Xd ≤ xd] = p
�
[X

�

i ≤ xi, . . . , PX
�

d ≤ x
�

d] (6.5.2.4)

for all (Xi, . . . , Xd) ∈ Rd.

ii. The correspondingWCE and ES coincide for all i = 1, . . . , d i.e. WCE
X

�
i

α =

ES
X

�
i

α , i = 1, . . . d.

Furthermore, for confidence level α ∈ (0, 1) and a real valued integrable

random variable X on some probability space (Ω,A, P ),

TCEα(X) ≤ TCEα(X) ≤ ESα(X), (6.5.2.5)

TCEα(X) ≤ WCEα(X) ≤ ESα(X)
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6.6 Methodologies for evaluating Value at Risk and Expected

Shortfall

All through this section, let Xt represent a financial time-series for example, the

daily closing value of stock indices or daily foreign exchange rates. The focus

is on the asset returns rt = − log(Xt/Xt−1) × 100. We describe here existing

methodologies for evaluating VaR and hence ES.

Existing methodologies for measuring VaR and ES can be categorized into 3

broad classes viz:

1. Parametric Methods

2. Semi-parametric Methods

3. Non-parametric Methods

6.6.1 Parametric Methods

The parametric models attempt to fit a parametric distribution to the data. VaR

is computed directly from the standard deviation based on the fitted distribution.

We now describe some popular parametric methods in practise.

The [JP morgan’s] Risk Metrics Model

This method of estimating VaR was introduced by J.P. Morgan in 1995. It is

sometimes referred to as the Variance-Covariance approach (Tsay (1997)). The

main highlight of the method is that it adapts a practical approach to measuring

risk.
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The variances-covariance within and between assets are modelled using expo-

nentially weighted Moving average , which corresponds to the Integrated GARCH

(IGARCH) model described in Section 2.4.1.8.

The Riskmetrics method assumes that the continuously compounded daily re-

turns of a portfolio follows a conditional normal distribution, while returns them-

selves may not be normally distributed, but fat tailed with common large outliers.

The assumption is that the standardized return (computed as the return divided

by the forecasted standard deviation) is normally distributed. The method focuses

on the size of the return relative to the standard deviation that is, a large positive

or negative return in a period of high volatility may result in a low standardized

return, whereas the same return following a period of low volatility will yield an

unusually high standardized return.

Denote the daily log return by rt and the information set available at time t−1

by Ft−1. The RiskMetrics method assumes that the returns rt given information up

to and including time t− 1 is distributed as N(µt, σ2
t ), where µt is the conditional

mean and σ2
t is the conditional variance of rt. In addition, the method assumes

that the two quantities evolve over time according to the simple model,

µt = 0, σ2
t = ασ2

t−1 + (1− α)r2t−1, 1 > α > 0. (6.6.1.1)

The RiskMetrics method also assumes that the logarithm of the daily price, rt =

ln(Rt), of the portfolio satisfies the difference equation rt − rt−1 = at, where at =

σt�t is an IGARCH(1,1) process without drift also referred to as the random walk

IGARCH. Where a often lies between (0.9, 1) with a typical value of 0.94 (Ruppert

(2004)).

A useful property of this model is that the conditional distribution of a multi-

period return is easily available. Specifically, for a k-period horizon, the log return
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from time t+ 1 to t+ k (inclusive) is given as follows,

rt[k] = rt+1 + · · ·+ rt+k−1 + rt+k (6.6.1.2)

where [k] denotes the k-horizon return. Under the special IGARCH model, the

conditional distribution of rt[k] | Ft−1 ∼ N(0, σ2
t [k]). Under the assumption that

� is i.i.d and the IGARCH model above, we have,

σ2
t [k] = V ar(rt[k] | Ft−1) =

k�

i=0

V ar(at | Ft). (6.6.1.3)

where V ar(at | Ft−1) = E(σ2
t | Ft−1) and can be obtained recursively by rt−1 =

at−1 = σt−1�t−1. The volatility equation of the IGARCH model is written as,

σ2
t = σ2

t−1 + (1− α)σ2
t−1(�

2
t−1 − 1) for all t. (6.6.1.4)

In particular, we have,

σ2
t+i = σ2

t+i−1 + (1− α)σ2
t+i−1(�

2
t+i−1 − 1) for i = 2, . . . , k. (6.6.1.5)

since E(�2t+i−1 | Ft) = 0 for i ≥ 2, Equation (??)sigmaigarch) shows that,

E(σ2
t+i | Ft) = E(σ2

t+i−1 | Ft) for i = 2, . . . , k. (6.6.1.6)

For the 1-step ahead forecast, the IGARCH equation shows that σ2
t+i = ασ2

t +(1−

α)r2t so that V ar(rt+1 | Ft) = σ2
t+1 for i ≥ 1 and hence, σ2

t [k] = kσ2
t+1. The results

show that rt[k] | Ft−1 ∼ N(0, kσ2
t+1).

Consequently, under the special IGARCH(1,1) model, the conditional variance

of rt[k] is proportional to the time horizon k. The conditional standard deviation

of a k-period horizon log return is then
√
kσt+1. The daily VaR of the portfolio

under RiskMetrics is computed as,

VaR = Amount of position× z1−pσt+1 (6.6.1.7)



6.6 Methodologies for evaluating Value at Risk and Expected Shortfall 145

Where p% is the confidence level and z1−p is the 100(1 − p)th quantile of the

standard normal distribution. For example, for a one-sided 95% CI, the daily VaR

of the portfolio under RiskMetrics is:

VaR = Amount of position× 1.65σt+1 (6.6.1.8)

and that the k-day horizon is:

VaR(k) = Amount of position× 1.65
√
kσt+1 (6.6.1.9)

where the argument (k) of VaR is used to denote the time horizon. Consequently,

under RiskMetrics, we have

VaR(k) =
√
k × VaR (6.6.1.10)

This is referred to as the square root of time rule in VaR calculation under Risk-

Metrics (see Tsay (1997)). Consider a long position so that loss occurs when there

is a big price drop (i.e. a large negative return). If the probability is set to 5%,

then RiskMetrics uses 1.65σt+1 to measure the risk of the portfolio; that is, it uses

the one-sided 5% quantile of a normal distribution with mean zero and standard

deviation σt+1. The actual 5% quantile is −1.65σt+1, but the negative sign is

usually ignored with the understanding that it signifies a loss.

Damodaran (1999) argues that focusing on normalized standardized returns

exposes the VaR computation to the risk of more frequent large outliers than

would be expected with a normal distribution. Hence a more recent variation of

the RiskMetrics system was extended to cover mixture of normal distributions,

which allow for the assignment of higher probabilities for outliers.
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The GARCH Model

The GARCH models discussed in Section 2.4.1 above assumes that the variance of

returns follow predictable process (see Jorion (1997)). The model also assumes that

the standardized residuals are independently and identically distributed (i.i.d). In

the model specification, the conditional variance not only depends on the most

recent innovations but also on the immediate past conditional variance. A typical

GARCH (1,1) model is written as,

at = σtηt, ηt ∼ iid(0, 1) σ2
t = ω + α2

t−1 + βσ2
t−1 (6.6.1.11)

where α + β ≤ 1.

The average unconditional variance is found by setting E(a2t−1) = σ2
t = σ2

t−1 =

σ and then substituting σt = σ into Equation (6.6.1.11) we find

σ2 =
α0

1− α1 − β
, (6.6.1.12)

For the GARCH model to be stationary, the persistence which is the sum of the

parameters α1 + β must be less or equal to unity. The GARCH model provides a

parsimonious model useful for financial time series analysis in markets that exhibit

volatility clustering

A very important aspect of implementing the GARCH algorithm is the specifi-

cation of the distribution of ηt. Once we have imposed this distributional assump-

tion, then we are set to write down a likelihood function and get an estimate of

the unknown parameters and hence the time series of estimated variance. So that,
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for a log return rt of an asset, write the GARCH (p,q) model as,

at = σtηt, ηt ∼ iid(0, 1) (6.6.1.13)

σ2
t = α0 +

u�

i=1

αia
2
t−i + βjσ

2
t−j

r2t = φ0 +
p�

i=1

φirt−i + at − θjat−j

Equation (6.6.1.13) contains the mean and volatility equations for the returns rt

and can be used to compute the 1-step ahead forecasts of the conditional mean

and conditional variance of rt. The pth quantile of the conditional distribution

can be obtained by deducting the the product of the pth quantile of the of the

assumed distribution of ηt and the 1-step ahead forecast of conditional variance

from the 1-step ahead forecast of the conditional mean. VaR is then computed as

the amount of the position multiplied by this quantile, for example, for a student

t-distribution, we have

V aRp% = Amount of position× (r̂t,1 − tv,pσ̂t,1) (6.6.1.14)

For instance, the say 5% quantile under the assumption of a standard normal dis-

tribution is simply computed as −1.645 (the 5% quantile of the standard normal)

times the estimated standard deviation. so that V aR5% is computed as amount of

position ×(r̂t,1 − zpσ̂t,1).

A potential handicap of the GARCH model is it’s nonlinearity. The parameters

of the model have to be estimated by maximization of the likelihood function which

involves numerical optimization.

In general it has been found that the GARCH and RiskMetrics methods tend to

underestimate VaR. Furthermore, in practice the assumption that the standardized

residuals are normal is not consistent with the actual behavior of financial returns.
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However, the main advantage of these methods is that they allow a complete

characterization of the distribution of returns, there is however room for fine-

tuning their performance by avoiding the normality assumption.

In addition, both the GARCH and RiskMetrics methods are subject to three

different sources of misspecification viz:

• The specification of the variance equation.

• The distribution chosen to build the log likelihood may be wrong.

• The standardized residuals may not be i.i.d.

These misspecification issues may or may not be relevant for VaR estimation, but

are important to note (see Manganelli and Engle (2001)).

Gaussian Method (Fotios C. Harmantzis (2006))

Consider a sample of returns, say Xi, i = 1, . . . , n, i.i.d., such that X ∼ N(µ, σ2).

µ and σ are unknown parameters. (typically it is assumed that µ = 0).

The VaR at α confidence level is simply given by zασ .zα is such that P (Z >

zα) = α, with Z ∼ N(0, 1). σ is estimated thus,

σ̂2
n =

1

n− 1

n�

i=1

(Xi − X̄)2, (6.6.1.15)

with X̄ = 1
n

�n
i=1 Xi-the mean of X.

ES is computed as,

ES = E(X | X > V aR) = E(X | X > Zασt) = σtE(X/σt | Xσt > Zα) (6.6.1.16)

where Zα = Φ−1(α) represents the α−quantile of the standard Normal distribution,

Φ is the cumulative distribution function (cdf) of the standard Normal distribution.
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Also, E(Z | Z > u) = ϕ(u)/(1−Φ(u))), where Φ is the probability distribution

function (pdf) of the standard Normal distribution and u is a pre-defined threshold.

Stable Paretian Method (Fotios C. Harmantzis (2006))

Under the Stable law, the sum of i.i.d. random variables follow the distribution of

the summands (with different parameters).

The distribution is characterized by four parameters:

• The characteristic exponent (or index of stability) α ∈ (0, 2);

• The scale (or spread) parameter σ ≥ 0;

• The skewness (or symmetry) parameter β ∈ [−1, 1]; and

• The shift (or location) parameter µ ∈ R.

A random variable X is said to have a Stable distribution i.e. X ∼ Sα(σ, β, µ)

if and only if its characteristic function has the form,

E(exp iXt) =






exp{−σα|t|α(1− iβsign(t) tan πα
2 ) + iµt} for α �= 1

exp{−σ|t|(1 + 2iβ
π sign(t) ln |t|) + iµt} for α = 1

(6.6.1.17)

1. The characteristic exponent α determines the rate of decay, that is, the

heaviness of the tails of the distribution.

2. The parameter β is an indication of the skewness of the distribution. β = 0

corresponds to the symmetric case.

3. The parameter µ shifts the distribution to the left or right.

4. The parameter σ expands or contracts the distribution around µ.
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5. α and β together determine the shape of the distribution while σ and µ both

have no effect on its shape.

6. • Standard stable distribution: σ = 1, µ = 0 and X ∼ Sα(1, β, 0).

• Symmetric stable distribution: β = 0 and X ∼ SαS

• Totally positively skewed stable distribution: β = 1 and x ∼ Sα(σ, 1, µ

When α = 2, the alpha-Stable distribution reduces to Gaussian distribution

with characteristic function,

E exp iθX = exp{−σ2θ2 + iµσ}. (6.6.1.18)

to compute ES

i Estimate the parameters: this can be done using a Maximum Likelihood (ML)

estimator

ii Generate random stable variates using monte carlo simulations

iii Compute

ES = E(X | X > V aR) =
(
�n

i=[nα] Xn(i))

(n− [nα])
(6.6.1.19)

This can also be represented as:

µ̂α =

�n
t=1 XtI(Xt ≥ v̂α)�n
t=1 I(Xt ≥ v̂α)

= ([nα] + 1)−1
n�

t=1

XtI(Xt ≥ v̂α) (6.6.1.20)

where v̂p is the sample VaR estimator of vp and Xr is the r−th order statistic

of {Xt}nt=1 (see Chen (2008)).

The Stable Paretian model is a fat-tailed model and hence more suitable for finan-

cial data while the Gaussian model is quite traditionally thin-tailed and hence not

as representative of financial data.
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A major draw back in the Gaussian model is that it underestimates ES while

the stable paretian model tend to overestimates ES.

Extreme Value Theory Klüppelberg and Mikosch (1997)

In practice, when we do not critically examine extreme values it can have some

pretty devastating consequences on decision making. Many researchers and prac-

titioners in modern statistics have tried to build statistical models describing this

extreme events.

Extreme Value Theory (EVT) is a branch of statistics that makes an attempt at

incorporating information about extreme deviations of probability distribution in

model building. Extreme Value Theory is analogous to the Central Limit Theorem

in that they both give information about the limiting distributions, that is, what

the distribution of extreme values should look like in the limit (as our sample

increases or decreases).

Denote the return of an asset measured in a fixed time interval (could be daily,

monthly, quarterly etc.) by rt. For a collection of n returns, {r1, . . . , rn}, the small-

est order statistic is the minimum return denoted by r(1) while the maximum return

is the maximum order statistic r(n). In particular we define, r(1) = min1≤j≤n{rj}

and r(n) = max1≤j≤n{rj}. The minimum return is most relevant to estimating

VaR for a long position, while for a short position we would be looking at the

maximum return. However, properties of the maximum return can be obtained

from the minimum by a simple sign change (see Tsay (1997)).

Gili and Këllezi (2006) describe the following two related ways of identifying

extreme values in real data. In general, the two related ways of identifying ex-

tremes in real data are the the block maxima and the peak over threshold methods
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Klüppelberg and Mikosch (1997). The two methods and the underling theory on

which the methods are hinged are discussed below as well as descriptions of how

each method is used to measure VaR and ES.

The Block Maxima Method The block maxima method was originally used

to analyze data with seasonality.This method considers the maximum value a vari-

able can take in successive periods (these periods could be months, years, weeks

or days). These selected observations make up the extreme events and are also

referred to as block or per period maxima (Gili and Këllezi (2006)).

Distribution of maxima Denote the limit law of the block maxima by Mn,

where n is the size of the block (or subsample). The following theorem is due to

Gnedenko (1943).

Theorem 6.6.1. Let (Xn) be a sequence of i.i.d random variables. If there exists

constants cn > 0, dn ∈ R and some non-degenerate distribution function H such

that,

Mn − dn
cn

d−→ H, (6.6.1.21)

then H belongs to one of the three standard extreme value distributions:

Frèchet: Φα(x) =






0, x ≤ 0

exp[−x−α], x > 0

α > 0

Weibull: Ψα(x) =






exp[−(−x)α], x ≤ 0

1, x > 0

α > 0

Gumbel: Λ(x) = exp[− exp (−x)], x ∈ R

(6.6.1.22)

Gnedenko (1943) gave necessary and sufficient conditions for the CDF F (x) of

rt to be associated with one of the three types of limiting distributions listed in
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Equation (6.6.1.22). The tail behavior of the CDF determines the limiting distri-

bution of the minimum return. Notice that for the Frèchet family of distributions,

the (left) tail of the CDF declines by the power function and for the Weibull family

it is the asymptotic distribution of the finite end points, but decays exponentially

for the Gumbel family. The polynomially decaying tails of the Frèchet distribu-

tion makes it well suited to heavy tailed distributions which include stable and

Student-t distributions. The exponentially decaying tail of the Gumbel distribu-

tion is better suited to thin tailed distributions such as normal and log-normal

distributions. (see Tsay (1997), Klüppelberg and Mikosch (1997) for details).

Consider returns rt and assume they are serially independent with common

cumulative distribution function (CDF) F (x). Let the CDF of the minimum r(1)

be given as Fn,1(x). In practice, the CDF of rt is unknown and by implication

the CDF of this minimum is also unknown. However as the number of returns

increase to infinity, the CDF of the minimum becomes degenerated. Hence, EVT

is concerned with finding two sequences, viz: a location series say {µn > 0} and

a series of scaling factors {σn} such that the distribution of the minimum r(1∗) =

(r(1) − µn)/σnconverges to a non-degenerate distribution as n goes to infinity.

Generalized Extreme Value (GEV) distribution The three standard distribu-

tions listed in Equation (6.6.1.22) have been collapsed into the following one-

parameter representation (Klüppelberg and Mikosch (1997)),

Hξ(x) =






exp[−(1 + ξx)−1/ξ], if ξ �= 0

exp[− exp[−x]], if ξ = 0

(6.6.1.23)
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This generalization is known as the Generalized Extreme Value (GEV) distri-

bution and is obtained by setting

1. ξ = α−1 for the Frèchet distribution (Φα),

2. ξ = −α−1 for the Weibull distribution (Ψα) and

3. ξ = 0 for the Gumbel distribution (Λ).

The standard GEV defined in Equation (6.6.1.23) is the limiting distribution

of normalized extrema.

Gili and Këllezi (2006) suggested the following three parameter specification of

the GEV.

Hξ,µ,σ(x) = Hξ

�
x− µ

σ

�
x ∈ D, D =






]−∞, µ− σ
ξ [ ξ < 0

]−∞,∞[ ξ = 0

]µ− σ
ξ ,∞[ ξ > 0

(6.6.1.24)

They called it the limiting distribution of the unnormalized maxima. Where µ

and σ are the location and scale parameters representing the unknown norming

constants.

We are interested in the return levels (quantiles) of the estimated GEV denoted

as,

Rk = H−1
ξ,σ,µ(1−

1

k
) (6.6.1.25)

As seen above, the extreme value distribution contains three main parameters

viz: ξ-the shape parameter, σn-the scale parameter and µn-the location parame-

ter. These parameters can be estimated with either parametric or non-parametric

methods. As these parameters cannot be estimated based on extreme observa-

tions only as there is only a single minimum and maximum for any given sample,
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we adapt the following idea from Tsay (1997). He suggested that the sample be

divided into sub-samples and then the extreme value theory be applied to the

sub-samples. As an illustration, assume that there are T returns {rj}Tj=1 available.

The sample can be divided into g non-overlapping sub-samples each with n obser-

vations, assuming for ease of computation that T = ng, that is, the data is divided

as,

{r1, . . . , rn | rn+1, . . . , r2n | r2n+1, . . . , r3n | · · · | r(g−1)n+1, . . . , rng} (6.6.1.26)

The observed returns can thus be written as rin+j, where 1 ≤ j ≤ n and

i = 0, · · · , g − 1. It is noteworthy that each sub-sample corresponds to a sub-

period of the data span. In practice, the choice of n can be guided by the financial

activities of the company, e.g. for daily returns, n = 21 would approximately be

the number of trading days in a month, n = 63 would be approximately the number

of trading days in a quarter and n = 252 would correspond to approximately the

number of trading days in a year.

Denote the minimum of the ith sub-sample by rn,i (rn,i is the smallest return

of the ith sub-sample), where n is the size of the ith sub-sample. When n is

sufficiently large, xn,i = ( rn,i−µn

σn
) should follow an extreme value distribution.

Then {rn,i | i = 1, . . . , g} (the collection of sample minima) can then be regarded

as a sample of g observations from that extreme value distribution.

{rn,i = min
1<j<n

{r(i−1)n+j}, i = 1, . . . , g (6.6.1.27)

The unknown parameters of the empirical distribution are then estimated using

the collection of the sub-sample minima rn,i. It is thus apparent that the estimates



6.6 Methodologies for evaluating Value at Risk and Expected Shortfall 156

obtained would most probably depend on the choice of n i.e. the length of the

sub-period.

The parameters ξ, σ and µ, can be estimated by:

1. Maximum Likelihood method (Klüppelberg and Mikosch (1997), Tsay (1997)).

2. Probability Weighted moments (Klüppelberg and Mikosch (1997)).

3. Regression Method (S.Tsay (1997)).

4. nonparametric Approach (S.Tsay (1997)).

The following are brief descriptions of each of the methods.

1. Maximum Likelihood Method

Let us assume that the subperiod minima {rn,i} follow a generalized extreme

value (GEV) distribution such that the pdf of xi =
(rn,i−µn

σn
) is given by,

f(x) =






(1 + ξx)1/ξ−1 exp
�
−(1 + ξx)1/ξ

�
if ξ �= 0 ,

exp [x− exp(x)] if ξ = 0,

(6.6.1.28)

Where





−∞ < x < ∞ for ξ = 0 ,

x < −1/ξ for ξ < 0,

x > −1/ξ for ξ > 0.

(6.6.1.29)

The pdf of rn,i can be obtained by a simple transformation as,

f(rn,i) =






1
σn

�
1 + ξn(rn,i−µn)

σn

�1/ξn−1
exp

�
−
�
1 + ξn(rn,i−µn)

σn

�1/ξn
�

if ξn �= 0

1
σn

exp
�
rn,i−µn

σn
− exp

�
rn,i−µn

σn

��
if ξn = 0,

(6.6.1.30)
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where it is understood that 1+ξn
(rn,i−µn)

σn
> 0 if ξn �= 0 and n is added to the

shape parameter k to signify that its estimate depends on the choice of n.

Under the independence assumption, the likelihood function of the subperiod

minima is,

�(rn,1, . . . , rn,g|ξn,σn,µn) =
g�

i=1

f(rn,i) (6.6.1.31)

Nonlinear estimation procedures can then be used to obtain maximum like-

lihood estimates of ξn, µn, σn. These estimates are unbiased , asymptotically

normal, and of minimum variance under proper assumptions (see Klüppel-

berg and Mikosch (1997), Coles (2001) for more details).

2. Regression Method

The regression method assumes that {rn,i}gi is a random sample from the

GEV distribution and makes use of properties of order statistics (Gumbel

(2004)). Denote the order statistics of the subperiod minima {rn,i}gi as,

rn(1) ≤ rn(1) ≤ · · · ≤ rn(g). (6.6.1.32)

Using properties of order statistics (Cox and Hinkley (1979)) we have:

E{F∗[rn(i)]} =
i

g + 1
, i = 1, . . . , g. (6.6.1.33)

where F∗[rn(i)] is the limiting distribution of the (normalized) minimum For

the two cases, ξ = 0 and ξ �= 0 we have:

Case 1-ξ �= 0

F∗[rn(i)] = 1− exp

�
−
�
1 + ξn

rn(i) − µn

σn

�1/ξn
�

(6.6.1.34)

and then using Equation (6.6.1.33) and Equation (6.6.1.34)and approximat-

ing expectation by an observed value we have (S.Tsay (1997))
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1

g + 1
= 1− exp

�
−
�
1 + ξn

rn(i) − µn

σn

�1/ξn
�

(6.6.1.35)

Hence,

exp

�
−
�
1 + ξn

rn(i) − µn

σn

�1/ξn
�
= 1− 1

g + 1
=

g + 1− i

g + 1
, i = 1, . . . , g

(6.6.1.36)

Taking the natural logarithm twice, the prior equation gives

ln

�
− ln

�
g + 1− i

g + 1

��
=

1

ξn
ln

�
1 + ξn

rn(i) − µn

σn

�
. i = 1, . . . , g (6.6.1.37)

However, in practice, letting ei be the deviation between the previous two

quantities and assuming that the series {ei} is not serially correlated, we

have a regression set up as follows:

ln

�
− ln

�
g + 1− i

g + 1

��
=

1

ξn
ln

�
1 + ξn

rn(i) − µn

σn

�
+ ei, i = 1, . . . , g

(6.6.1.38)

The least squares estimate of ξn, µn, σn can be obtained by minimizing the

sum of squares of ei.

Case 2-ξ = 0: When ξn = 0, the regression setup reduces to

ln

�
− ln

�
g + 1− i

g + 1

��
=

1

αn
rn(i) −

µn

σn
+ ei, i = 1, . . . , g (6.6.1.39)

Note however that although the least squares estimates are consistent, they

are less efficient than maximum likelihood estimates, hence the maximum

likelihood estimates are more frequently used in literature.

3. The Nonparametric Approach

The shape parameter ξ can be estimated using some nonparametric meth-

ods. Two such methods are the Hills estimator (Hill (1975)) and Picklands
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estimator(Picklands (1975)). These estimators do not require us to consider

subsamples as they lend themselves directly to the returns {rt}nt=1. Again,

denote the order statistics of the sample as r(1) ≤ r(2) ≤ · · · ≤ r(n). The two

estimators of the shape parameter ξ are thus defined as follows,

ξp(q) = − 1

ln(2)
ln

�
−r(q) +−r(2q)
−r(2q) +−r(4q)

�
(6.6.1.40)

ξh(q) = −−1

q

q�

i=1

[ln(−r(i))i ∈ (−r(q+1))] (6.6.1.41)

where q is a positive integer. The choice of q differs between the Hills and

Picklands estimators. There is however still no general agreement on what

the best choice of q is, despite the various investigations that have gone into

it (see Tsay (1997) for details).

VaR is computed based on the GEV distribution as follows (Tsay (1997)),

Consider a sample period of T observed asset returns, divide the sample period

into g non overlapping sub periods of length n such that T = ng. If T is not

a multiple of n, delete the excess over the maximum multiple, that is, if T =

ng + m with 1 ≤ m ≤ n, delete the first m observations from the sample to

obtain equal sized subperiods. Obtain estimates for the location (µn), scale(σn)

and shape(ξ) parameters for each of the sub period minima {rn,i}, the estimates

are then plugged into Equation (6.6.1.23), with x = (r − µn)/σn. The quantile of

the GEV distribution for a given probability is then obtained. Thus for a given

probability p of potential loss, let rn be the pth quantile of the subperiod minimum

under the limiting generalised extreme value distribution, we have:

p =






1− exp

�
−
�
1 + ξn(rn−µn)

σn

�1/kn
�

if ξn �= 0 ,

1− exp
�
− exp

�
(rn−µn)

σn

��
if ξn = 0 ,
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where 1 + kn(rn − µn)/σn > 0 for ξn �= 0. The equation can thus be rewritten as,

ln(1− p) =






−
�
1 + kn(rn−µn)

σn

�1/kn
if ξn �= 0 ,

− exp
�

(rn−µn)
σn

�
if ξn = 0 ,

The quantile can be obtained as,

rn =






µn − σn
ξn
{1− [− ln(1− p)]ξn} if ξn �= 0 ,

µn + σn ln[− ln(1− p)] if ξn = 0 ,

The case of ξn = 0 is more suitable to financial applications.

Since most asset returns are either serially uncorrelated or have weak serial

correlations, , we can write

p = P (rn,i ≤ rn) = 1− [1− P (rt ≤ rn)]
n (6.6.1.42)

1− p = [1− P (rt ≤ rn)]
n

So that,





µn − σn
ξn
{1− [−n ln(1− p)]ξn}if ξn �= 0

µn + σn ln[−n ln(1− p)]if ξn = 0

n is the length of each sub period.

Putting in the estimates, VaR is computed as,

R̂k =






µ̂− σ̂
ξ̂

�
1−

�
− log

�
1− 1

k

��−ξ̂
�

ξ̂ �= 0

µ̂− σ̂ log
�
p− log

�
1− 1

k

��
ξ̂ = 0.

(6.6.1.43)

For example, a value of R̂10 of 7 means that on average, the maximum loss

observed during a period of one year will exceed 7% once in ten years.
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The Peak Over Threshold Method This method focuses on the realizations

exceeding a pre-specified (preferably high) threshold. This method is appealing

to modern research as it provides a more efficient way of maximizing available

data. The basic ingredients required to produce the estimators as outlined in

Klüppelberg and Mikosch (1997) is as follows:

i. reliable models for the point process of exceedences.

ii. a sufficiently high threshold u.

iii. estimators for the shape parameter ξ̂, the scale parameter σ̂ and the location

parameter µ̂.

Distribution of Exceedances The peak over threshold (POT) method con-

siders the distribution of exceedances over a predefined threshold.

Consider an unknown distribution function F of a random variable X. Fu is

the conditional excesses distribution function at threshold u and is represented as,

Fu(y) = P (X − u ≤ y | X > u), 0 ≤ y ≤ xF − u, (6.6.1.44)

where X is a random variable , u is a predefined threshold and y = x− u are the

excesses. xF ≤ ∞ is the right endpoint of F , so that, Fu can thus be written as,

Fu(y) =
F (u+ y)− F (u)

1− F (u)
=

F (x)− F (u)

1− F (u)
. (6.6.1.45)

EVT comes in handy in the estimation of Fu as it equips us with a powerful

result about the conditional excess distribution function. as stated in the theorem

below:
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Theorem 6.6.2 (Picklands (1975), Balkema and Haan (1974)). For a large class

of underlying distribution functions F the conditional excess distribution function

Fu(y), for large threshold, u, is well approximated by Fu(y) ≈ Gξ,σ(y), u → ∞

where

Gξ,σ(y) =






1−
�
1 + ξ

σy
�−1/ξ

if ξ �= 0

1− exp[−y/σ] if ξ = 0

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0, −σ
ξ ] if ξ < 0.

And

G0,σ(x) = lim
ξ→0

Gξσ(x).

Gξ,σ is the Generalized Pareto Distribution (GPD) and ξ is the shape parameter

or tail index of the distribution, it gives an indication of the heaviness of the tail,

the larger the value of ξ, the heavier the tail of the distribution.

VaR is computed as– Amount of Position ×x̂p.

Manganelli and Engle (2001) noted that this estimate is only valid for very low

p as the approximation is only asymptotically valid.

Expected Shortfall is measured as follows, Define, ESα as a function of GPD

parameters as follows, from Equation (6.6.1.45) we make F (x) subject of formular

and obtain the following expression: F (x) = (1 − F (u))Fu(y) + F (u). Replacing

Fu by the GPD and F (u) by the estimate n−Nn
n , where n = the total number of

observation and Nu = the number of observations above the threshold u, we have,

F̂ (x) = 1− Nu

n

�
1 +

ξ̂

σ̂
(x− u)

�−1/ξ

(6.6.1.46)

ESα is estimated as,

�ESα = �V aRα + E(X − �V aRα | X > �V aRα) (6.6.1.47)
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where the second term on the RHS of Equation (6.6.1.47) defines the expected

value of the exceedances over the threshold V aRα. Klüppelberg and Mikosch

(1997, Theorem 3.4.13(e)) refers to it as the mean excess function for the GPD

with parameter ξ < 1 and is represented thus,

e(v) = E(X − v | X > v) =
σ + ξv

1− ξ
, σ + ξv > 0 (6.6.1.48)

e(v) gives the average of the excesses of X over different values of a threshold v.

If X follows a GPD, then, for all integers r such that r < 1/ξ, the r first

moments exist (Gili and Këllezi (2006)).

Therefore, by definition of ES and Equation (6.6.1.48), for v = V aRα − u and

X representing the excess y over the threshold u we obtain the following expression

for ESα,

�ESα = �V aRα +
σ̂ + ξ̂(�V aRα − u)

1− ξ̂
=

�V aRα

1− ξ̂
+

σ̂ − ξ̂u

1− ξ̂
(6.6.1.49)

Where

�V aRα = u+
σ̂

ξ̂

��
n

Nu
p

�−ξ̂

− 1

�
. (6.6.1.50)

This expression is obtained by inverting Equation (6.6.1.46) for confidence level α.

A major drawback of the POT method is in the selection of an optimal thresh-

old u. An overly high value of u would result in limited exceedances and conse-

quently high variance estimators.On the other hand, an overly small u would make

the estimators biased (Klüppelberg and Mikosch (1997)).

Klüppelberg and Mikosch (1997) suggests that it is possible to choose u asymp-

totically optimal by quantification of a trade-off between bias and variance.

In summary, EVT is quite a general approach to tail estimation. Its strong

points being in the use of the GEV distribution to parametrize the tail is a seem-

ingly less restrictive assumption considering that it covers most of the commonly
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used distributions. Despite the strong characteristic of EVT it still has a few draw

backs some of which include:

1. The i.i.d. assumption for observations is not quite consistent with the char-

acteristics of financial data. Although generalizations to dependent obser-

vations have been proposed (see, for example, Leadbetter et al. (1983) or

Klüppelberg and Mikosch (1997)), they either estimate the marginal uncon-

ditional distribution or impose conditions that rule out the volatility cluster-

ing behavior typical of financial data.

2. EVT works best for very low probability levels. The floor of this is hard

to determine on a priori ground. Engle and Manganelli (1999) suggest a

Monte Carlo study might help give more insight into the speed with which

the performance of the EVT estimators deteriorates as we move away from

the tail.

3. Another important white space is the issue of the selection of the cut-off point

(threshold u) that determines the number of order statistics to be used in the

estimation procedure. This problem is similar to the choice of the number of

k upper order statistics that enter the Hill estimator. If the threshold is too

high, there are too few exceptions and the result is a high variance estimator.

On the other hand, a threshold too low produces a biased estimator, because

the asymptotic approximation might become very poor. However, the choice

of the threshold cannot be determined purely on statistical theory as different

investors/organisations have different risk tolerances.

4. The choice of k based on the minimization of the mean squared error results

in a biased estimator is also an important point for consideration. Since the
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quantile is a non-linear function of the tail estimator, it is crucial to quantify

the size of this bias. In the application of EVT to Value at Risk an erroneous

estimation of might have very significant consequences on the profitability of

a company/financial institution.

6.6.2 Non-Parametric Methods

Financial risk management focuses majorly with the characteristics of the tail

part of the loss distribution. Unfortunately, there is usually not enough data at

the tail, hence making it difficult to propose an adequate parametric loss model

for the tail. Non-parametric methods come in quite handy in this situation as they

are model-free and are thus free from the bias caused from using a mis-specified

returns distribution.

Non-parametric methods for computing VaR and ES do not make any distri-

butional assumptions about the the portfolio of returns. The historical simula-

tion method also known as the empirical muantile method (Manganelli and Engle

(2001)) is the most common example of this. It provides a simple non-theoretical

way of estimating VaR and ES. Apart from assuming that the same distribution

holds throughout the prediction period, it makes little or no other assumptions

about the statistical distribution of the underlying portfolio returns. Before we

discuss some non-parametric estimation methods available in literature, we give a

brief commentary on quantile estimation and quantile distribution models.

Quantile Estimation Quantile estimation has fast gained ample recognition in ap-

plied statistics, especially in areas where obtaining a good fit to the extreme tails

of a distributional model is quite crucial. Since value at risk is concerned with

the tail behavior of the cumulative distribution function that is the changes in the
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value of the portfolio over a time period, quantile estimation is an essential tool

in enabling us obtain well-fitted tail distributions. Quantile estimation proves a

non-parametric approach to calculating Value at Risk, as, the only assumption it

makes is that the same distribution holds all through the holding period.

Quantile Distribution Models A continuous probability distribution can be defined

in two equivalent ways viz:

• The probability distribution function

p = F (x) = prob(X ≤ x) (6.6.2.1)

• The quantile distribution function

x = F−1(p) = Q(p) (6.6.2.2)

It is obvious that F (·) and Q(·) are inverse functions of each other. In the

same vein, it can be shown that for the probability density function f(x) and the

quantile density function q(p) using the properties of f(x) that,

p = F (Q(p)) where x = F−1(p) = Q(p) (6.6.2.3)

Differentiating with respect to p gives

1 = f(Q(p))q(p) (6.6.2.4)

so that

f(x) = 1/q(p) (6.6.2.5)
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Historical Method (Empirical Quantile Method)

The empirical quantile method is based on the concept of ”rolling windows” (Man-

ganelli and Engle (2001)). The first step is to choose a window of observations

, this would usually range from 6months to 2years. The next step is to sort the

portfolio returns within the selected window in ascending order and the p-quantile

of interest is given by the portfolio return that leaves p% of the observations on the

left side and (1− p)% on its right side. If the figure falls between two consecutive

returns, some interpolation rule is then applied to select a number. one-step ahead

VaR is computed by moving the entire window forward by one observation and

repeating the entire procedure. The Empirical Quantile of a log returns series rt

is used to calculate VaR viz: Let {rt | t = 1, . . . , n} be sample log returns of a

portfolio, assume that these returns are iid random variables with both conditional

distribution and probability density function (pdf) find the order statistics of the

returns, such that r(i) ≤ r(j) for i < j. For the order statistic r(l), where l = np

with 0 < p < 1, the following results culled from Tsay (1997) holds.

Let xp be the pth quantile of F (x), that is, xp = F−1(p). Assume that the pdf

f(x) is not zero at xp (i.e., f(xp �= 0)). Then the order statistic r(l) is asymptotically

normal with mean xp and variance p(1− p)/[nf 2(xp)]. That is,

f(l) ∼ N

�
xp,

p(1− p)

n[f(xp)]2

�
, l = np (6.6.2.6)

Estimate the empirical quantile of rt so that for a given probability p, if l = np

is an integer, then the empirical quantile is r(l), if np is not an integer, we find the

two neighbouring positive integers such that l1 < np < l2 and then interpolate so

that the quantile xp is estimated by:

x̂p =
p2 − p

p2 − p1
r(l1) +

p− p1
p2 − p1

r(l2) (6.6.2.7)
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VaR is computed as: Amount of Position ×x̂p.

The historical method computes ES as a weighted average of excessive losses

beyond VaR. The simplicity of this method makes it quite attractive in practice.

Denote observed losses (returns on stocks) as r1, . . . , rn, with empirical distri-

bution Fn defined as,

Fn(t) =
1

n

n�

i=1

I(ri ≤ t), (6.6.2.8)

Where I(·) is an indicator function. The nth α− quantile F−1(α) is estimated as

F−1
n (α) = rn(i), α ∈

�
i− 1

n
,
i

n

�
(6.6.2.9)

where

rn(1) ≤ · · · ≤ rn(n) are the order statistics. (6.6.2.10)

ES at confidence level α is computed by,

ESα = E(r | r > V aR) =
(
�n

i=[nα] rn(i))

(n− [nα])
(6.6.2.11)

This can also be represented as,

µ̂α =

�n
t=1 rtI(rt ≥ v̂α)�n
t=1 I(rt ≥ v̂α)

= ([nα] + 1)−1
n�

t=1

rtI(rt ≥ v̂α) (6.6.2.12)

where v̂p is the sample VaR estimator of vp and rr is the r−th order statistic

of {rt}nt=1 (see Chen (2008)).

Although VaR calculation using the empirical method is quite simple to imple-

ment and makes no distributional assumptions, it is obvious here that there is an

implicit assumption that the distribution of portfolio returns remain unchanged

within the specified window, hence a major shortfall in the method.

In the first instance, if all the returns within the window are assumed to have

the same distribution, then the logical consequence must be that all the returns of
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the time series must have the same distribution. Since VaR is essentially concerned

with the tail probability this assumption implies that the predicted loss cannot be

greater than the historical loss, however, this is not at all the case in practice.

In addition,the empirical quantile estimator is consistent if and only if the

window length is sufficiently large enough. Manganelli and Engle (2001) suggest

that the length of the window must satisfy two contradictory properties: it must be

large enough, in order to make statistical inference significant, and it must not be

too large, to avoid the risk of taking observations outside of the current volatility

cluster. They conclude that the there is no easy solution to this problem.

Another drawback of the method is that it assigns equal weights to each day

in the time series this could pose a problem in VaR computation if there is a trend

in the variability of the portfolio returns. For example, if the market is moving

from a period of relatively low volatility to a period of relatively high volatility

(or vice versa). In this case, VaR estimates based on the historical simulation

methodology will be biased downwards (correspondingly upwards), since it will

take some time before the observations from the low volatility period leave the

window (Manganelli and Engle (2001)).

Moreover, VaR estimates based on historical simulation may present predictable

jumps, due to the discreteness of extreme returns. To see why, assume that we are

computing the VaR of a portfolio using a rolling window of 180 days and that to-

day’s return is a large negative number. It is easy to predict that the VaR estimate

will jump upward, because of today’s observation. The same effect (reversed) will

reappear after 180 days, when the large observation will drop out of the window.

This is a very undesirable characteristic and causing some questions as to the relia-

bility of the historical simulation method. Finally, the method is hinged on history
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repeating itself, with the selected window providing a comprehensive snapshot of

the market in other windows, so the critical question to ask is ”So what if history

does not repeat itself or what if history is interrupted?”.

Tsay (1997) suggest that the VaR obtained by the empirical quantile can serve

as a lower bound for the actual VaR.

Kernel based Method The kernel based estimation method was first proposed

by Scaillet (2004), who defined expected shortfall as follows:

ESα = E[−a
�
X | −a

�
X > V aRα] (6.6.2.13)

where X is such that Xt, t ∈ Z the vector Xt = (X1,t, . . . , Xn,t)
�
corresponds to

n risks (returns on n stocks over a pre-specified period of time) V aRα is such

that; P [−a
�
> V aRα] = α and a

�
= (a1, . . . , an)

�
is the portfolio structure or

composition and α is the loss probability or confidence level. The kernel estimator

is represented as follows,

[(Xt, a
�
Xt); ξ] = (Th)−1

T�

t=1

XtK((ξ − a
�
Xt)/h), (6.6.2.14)

and

Î(ξ) =

� ξ

−∞
[(Xt, a

�
Xt); u]du. (6.6.2.15)

where h > 0 is the bandwidth and depends on the sample size T and it is assumed

that h → 0 as T → ∞.

The kernel K(u) is a real valued function that at least integrates to 1. The

estimate q(a,α) = −V aRα is given by the kernel estimator q̂(a,α) of the quantile

of level α of the distribution of a
�
X through the equality:

� q̂(a,α)

−∞
[(1, a

�
Xt; u)]du = α (6.6.2.16)
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The ratio Î(q̂(a,α))/α then provides an estimate of the conditional expectation

E[X | a�
X < q(a,α)], and expected shortfall can be estimated as,

�ESα = −a
�
Î(q̂(a,α))/α (6.6.2.17)

An empirical study by Chen (2008) compared the kernel based method to the

historical method (that is, sample average of excessive losses larger than VaR).

They conclude that the extra kernel smoothing does not produce more accurate

estimation of expected shortfall. The paper concluded that expected shortfall is

effectively a mean parameter and can be estimated rather accurately by simple

averaging.

6.7 An MAR approach to measuring VaR and ES

We apply the MAR models described in Chapter 2 to estimating VaR and ES,

based on the model described in Equation (2.2.0.1). The parameters of the model

is estimated by the Maximum (conditional) likelihood method using the EM algo-

rithm of Dempster et al. (1977). The standard errors of this parameter estimates

can be computed using Louis (1982) (see Wong and Li (2001) for a more detailed

description). One step ahead predictive distribution is then computed for the

returns series based on the MAR model (see Boshnakov (2009)).

VaR is computed as the 100α% quantile of the predictive distribution and ES

is computed as, E[rt | rt > V aRα].

6.8 Backtesting Value at Risk and Expected Shortfall

In the previous section, we described various methods for estimating VaR and ES,

it is however important to also examine and compare the predictive performance of
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these methods over a historical period. This process is referred to as backtesting.

6.8.1 Backtesting VaR models

To backtest the VaR methods examined, we lean on Christoffersen (1998)’s frame-

work for evaluating the accuracy of out-of-sample interval forecasts.

Define the indicator function Ht = I(rt < V aRα,t) as the VaR violation indi-

cator such that,

Ht = I(rt < V aRα,t) =






1 rt < V aRα,t

0 rt ≥ V aRα,t

(6.8.1.1)

Christoffersen (1998) says that VaR forecasts are efficient with respect to Ft if,

E[Ht | Ft−1] = 1− α = λ, (6.8.1.2)

Ht is thus uncorrelated with any function of a variable in the information set avail-

able at time t− 1 (Kuester et al. (2006)). So that if Equation (6.8.1.2) holds, then

VaR violations will occur with the correct conditional and unconditional probabil-

ity. If Ft−1 is specified to include at least {H1, . . . , Ht−1}, then by Christoffersen

(1998, lemma 1), efficiency implies correct conditional coverage denoted by,

Ht | Ft−1 ∼ Bernoulli(λ), t = 1, . . . , T. (6.8.1.3)

Test of Unconditional Coverage

Let n1 be the total number of sample VaR violations, T = n0 + n1 be the total

number of observations and λ̂mle the maximum -likelihood estimation of λ. λ̂mle

is the ratio of the total number of violations to the total number of observations
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that is, λ̂mle = n1/T . The test for correct number of violations is carried out by

the following hypothesis.

H0 : E[Ht] = λ vs. H1 : E[Ht] �= λ. (6.8.1.4)

Under the null hypothesis, Equation (6.8.1.3) implies the likelihood-ratio test

statistic,

LRuc = 2[L(λ̂mle : H1, . . . , HT )− L(λ : H1, . . . , HT )] ∼ χ2(1) (6.8.1.5)

where L(·) = ln(L) and L = f(λ : H1, . . . , HT ) is the bernoulli likelihood.

Test of Independence

The test of unconditional coverage does not consider the possibility that VaR

forecast that do not take temporal volatility dependence into account although

will produce violation clusters, might still be correct on the average. A test for

independence is defined as a test that there are no violation clusters, that is, all the

VaR violations are independent. Under the null hypothesis that a violation today

has no influence on the probability of a violation tomorrow against an alternative

hypothesis of dependence. Christoffersen (1998) models {Ht} as a binary first

order Markov chain with transition matrix,

Π =



1− π01 π01

1− π11 π11



 , πij = Pr(Ht = j | Ht−1 = i), (6.8.1.6)

the approximate joint likelihood, conditional on the first observation is given

by,

L(Π : H2, . . . , HT | H1) = (1− π01)
n00πn01

01 (1− π11)
n10πn11

11 , (6.8.1.7)
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where nij is the number of transitions form state i to state j, that is , nij =
�T

t=2 I(Ht = i | Ht−1 = j),

The maximum likelihood of these transition probabilities under the alternative

hypothesis are given by,

π̂01,mle =
n01

n00 + n01
, π̂11,mle =

n11

n10 + n11
(6.8.1.8)

Under the null hypothesis of independence, we have that π01 = π11 ≡ π0 and

L(π0 : H2, . . . , HT | H1) = (1− π01)
(n00+n10)πn01+n11

01 (6.8.1.9)

π̂0 = λ̂mle = n1/T.

So that the LR test for independence of VaR violations is given by,

LRind = 2[L(Π̂ : H2, . . . , HT | H1)− L(π̂0 : H2, . . . , HT | H1)] ∼ χ2(1) (6.8.1.10)

Reject the null hypothesis (H0 : π01 = π11 ≡ π0) if LRind > χ2
α(1)

Test of Conditional Coverage

Since π̂01,mle, is unconstrained, the LR test for independence in Equation (6.8.1.10)

does not consider correct coverage. To test this, Christoffersen (1998) suggested

a test that combines both the test for unconditional coverage (Equation (6.8.1.5))

and the test for independence (Equation (6.8.1.10)) as follows,

LRcc = 2[L(Π̂ : H2, . . . , HT | H1)− L(λ : H2, . . . , HT | H1)] ∼ χ2(2) (6.8.1.11)

= LRcc = LRuc + LRind,

So that the instances in which the violation series Ht fails the correct conditional

coverage property, that is, Equation (6.8.1.3) , can be checked.
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6.8.2 Backtesting ES models

Recall that the expected shortfall ESα,t is the conditional loss distribution. Define

the residuals

�t =
rt − ESα,t−1

σt
= Zt+1 − E[Z | Z > zq] (6.8.2.1)

where rt − ESα,t−1 is the difference between rt and ESα,t−1 in the event of a

quantile violation. The process St = rt − ESα,t−1 forms a martingale difference

series satisfying E[(rt − ESα,t−1) | Ft] = 0. The residuals form an i.i.d zero mean

sequence of innovation variables. So that when risk measures and volatility are

estimated in practice, the following violation residuals can be formed (McNeil et al.

(2010)),

�̂t = Ŝt/σ̂t, Ŝt = rt − ÊSα,t−1 (6.8.2.2)

These violation residuals are expected to behave like realisations of iid variables

from a distribution with mean zero, variance one and an atom of probability mass

of size α at zero (McNeil et al. (2010)). To test for the hypothesis of a zero

mean behaviour against the alternative of a mean greater than zero,a bootstrap

test which makes no assumption about the underlying distribution of the residuals

is performed (see Efron and Tibshirani (1993) for a full description). Note that

this test can be applied to either the standardized or unstandardized residuals to

achieve similar results (McNeil et al. (2010)).

6.9 Summary

A major part of decision making involves risk taking, thus, most decision makers

are faced with the question of how to quantify their risks. Investors are also faced



6.9 Summary 176

with the dilemma of how much they can possibly lose on an investment as well as

the loss threshold (that is the maximum that can be lost on an investment). Value

at Risk (VaR) attempts to provide answers to quantify risk as well as the causes

of risk and in essence suggest ways of reducing risk. VaR does not satisfy the

subadditivity axiom which contradicts the framework of modern portfolio theory,

that is, diversification should reduce risk (Jadhav et al. [2009]). Based on these

shortfalls of VaR, a coherent risk measure referred to in literature as Expected

Shortfall has been suggested as an alternative and/or sometimes a complement to

VaR. ES is coherent (that is ,monotonous, sub-additive , positively homogeneous

and translative invariant).

Existing models for VaR and ES calculation can be categorized into Parametric

Methods (The [JP morgan’s] Risk Metrics Model (sometimes referred to as the

Variance-Covariance approach) (S.Tsay (1997)) ,GARCH Model (Jorion (1997))),

Non-Parametric Methods (Historical Simulation (Manganelli and Engle (2001)))

and Semi-Parametric Methods (Extreme Value Theory (Klüppelberg and Mikosch

(1997))).

We propose the use of the MAR model as a viable approach for evaluating VaR

and hence ES. We also describe backtesting methodology for VaR and ES.

In the next chapter, we compare various approaches for measuring VaR and

ES to an approach based on the MAR model.



Chapter 7

Mixture Autoregressive models and

Financial Risk

We focus here on two popular methods of predicting financial risk, viz. Value-at-

Risk and Expected shortfall. We compare the performance of the existing methods

of estimating one-step ahead VaR and ES to that based on MAR models. In par-

ticular, we consider the MAR(3;2,2,1) model with both Gaussian and Student-t

innovations. The MAR(3;2,2,1) is a three–component MAR model. The compo-

nents are one AR(2) model and two AR(1) models. The methods considered for

comparison include:

• Risk metrics,

• Gaussian GARCH(1,1),

• Student-t GARCH(1,1),

• AR(2)-GARCH(1,1) with Gaussian innovations,

• AR(2)-GARCH(1,1) with Student-t innovations,

177
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• Empirical Quantile,

• Traditional Extreme value theory and

• Point over Threshold Extreme value theory.

The data series investigated include two currency exchange rate (GBP/USD and

GBP/EUR), two stock market indices (adjusted closing prices of the Standard

and Poor (S&P500) and FTSE100), and individual stock (adjusted closing price

of IBM stocks). The data sets cover the period between June 2002 and June 2012.

The data sets are restricted to daily figures, as in practice regulators require that

risk measures are computed on a daily basis.

7.1 Descriptive Statistics of Daily Returns

This study focuses on asset returns rather than asset prices. Here we take the

natural logarithm of daily returns. By the logarithmic law a multiple period return

is additive, that is, it is the sum of the one-period returns involved. The returns

are computed as,

rt = − log

�
Xt

Xt−1

�
× 100 = −[log(Xt)− log(Xt−1)]× 100 (7.1.0.1)

where Xt is the daily closing value at day t of stock prices, stock indices, foreign

exchange rates, etc.

Some descriptive statistics of the returns series are presented in Table 7.1 and

the time series plots, histogram, normal QQ plots and ACF of each of the data

sets are presented in Figures 7.4-7.8.

Kurtosis and skewness are of special interest when modelling extreme events

in risk management. Kurtosis describes the tails of a probability distribution. A
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Table 7.1: Descriptive statistics for daily logarithmic returns

Symbol n Mean Median Std Kur Skw Max Min

IBM 2519 0.0460 0.0368 1.5217 5.8607 0.2555 10.9007 -8.6597
S&P500 2519 0.0118 0.0776 1.3761 8.4558 -0.2067 10.9572 -9.4695
FTSE100 2526 0.0077 0.0430 1.3377 6.3262 -0.1262 9.3842 -9.2646
GBP/USD 3658 0.0012 0.0000 0.4550 6.5744 -0.4825 3.1288 -3.9915
GBP/EUR 3658 -0.0062 0.0000 0.3724 5.8485 -0.1909 2.9188 -2.9020

normal distribution has a kurtosis equal to three regardless of the mean or standard

deviation. A distribution is called leptokurtic or ”fat-tailed” if its kurtosis is greater

than three. From the statistics in Table 7.1 all of the data sets are fat-tailed with

kurtosis greater than three. S&P500 has the highest kurtosis (8.4558).

Skewness is a measure of asymmetry of a distribution. A skewness equal to

zero suggests a symmetrical distribution, the Gaussian distribution has skewness

equal to zero. Table 7.1 infers that none of the data sets are symmetrical, IBM is

positively skewed while all the other data sets are negatively skewed.

Note that we do not give standard errors in Table 7.1, since they would be

based on unrealistic assumptions, such as, independence. The results of Table 7.1

are buttressed by a close examination of the plot of the third and fourth moments

of the data sets. The moments are calculated on a 250 point rolling window. The

plots are presented in Figure 7.2 and 7.3 below, the behaviour clearly shows that

the kurtosis of all five data sets are a far cry from that of the Gaussian distribution.

The time series plots (see Figure 7.1) show that all the time series examined are

non stationary and non uniform with periods of high volatility. The histograms in

Figures 7.4–7.8 also show that all the datasets are far from normal.

The heavy tails of the data sets are further revealed in the normal QQ plots of

all the series versus a normal distribution. It can be seen that sample quantiles in
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Figure 7.4: Time series plot, histogram, normal QQ plot and ACF of IBM returns
from 2002-06-24 to 2012-06-22
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Figure 7.5: Time series plot, histogram, normal QQ plot and ACF of SP500 returns
from 2002-06-24 to 2012-06-22
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Figure 7.6: Time series plot, histogram, normal QQ plot and ACF of FTSE returns
from 2002-06-24 to 2012-06-22
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Figure 7.7: Time series plot, histogram, normal QQ plot and ACF of GBP/USD
returns from 2002-06-24 to 2012-06-22
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Figure 7.8: Time series plot, histogram, normal QQ plot and ACF of GBP/EUR
returns from 2002-06-24 to 2012-06-22
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the tails obviously deviate from the corresponding normal quantiles.
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7.2 VaR and ES estimation results

In order to adequately compare the performance of the various approaches for

estimating VaR and ES described in Section 6.6, we consider the one-step ahead

out-of-sample VaR and ES estimates. We calculate VaRs and ESs at α = 1% and

α = 5% for each of the financial time series described in Section 7.1. All the risk

measures are computed on a rolling window of 1000 data points. Tables 7.2–7.6

show the results of the estimated VaR and ES. The results are interpreted thus.

If an investor holds a long position worth 100,000GBP in FTSE100 stocks, then

the estimated 1-day horizon VaR based on the MAR(3;2,2,1) model with Gaussian

innovations at 1% probability is computed as,

100,000X0.0358=3,580GBP and the corresponding 1-day horizonVaR at 5% prob-

ability is computed as,

100,000X0.0215=2,150GBP. The corresponding expected shortfalls would then be

4,550GBP and 3,060GBP for probabilities 1% and 5% respectively.

A close examination of the figures reveals distinct differences between the ap-

proaches, as well as the value of the tail probability α. We examine here only

α = 1% and α = 5% because α = 5% is most commonly used in practise. We have

included α = 1% to give a sounder basis for comparison.

Tsay (1997), suggests that for daily returns, the empirical quantiles of 5% and

1% are decent estimates of the quantiles of the return distribution. We follow this

suggestion and hence, treat the results based on empirical quantiles as conservative

estimates of the true VaR (i.e., lower bounds). Tsay (1997) noted also that a very

small tail probability (say 0.1%), would make the empirical quantile a less reliable

estimate of the true quantile, hence the VaR based on empirical quantiles would no

longer serve as a lower bound of the true VaR, in which case model based estimates
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would be better.

Estimating the tail behaviour of a statistical distribution has a lot of uncer-

tainty associated to it, hence different underlying models will inherently give dif-

ferent results. Since there is no benchmark VaR value to pitch the accuracy of each

result against, we simply comment on the range of values across all the methods

used, and pay close attention to the figures that grossly differ from the others.

However, we find that similar classes of models tend to give VaR values within the

same range. For example, it can be seen from Tables 7.2–7.6 that computations

based on various classes of GARCH models give VaR measures within the range

of 0.025− 0.0265 at α = 1% for SP500 and 0.0180− 0.0187 at α = 5%.

The tail probability α shows up as very important in VaR and hence ES calcu-

lations, as seen in Tables 7.2–7.6 below, VaR and ES at α = 1% tend to be larger

than those for α = 5%. We find that the approaches based on EVT and MAR

models give significantly better results as they give values close to the empirical

quantiles, while the approaches based on GARCH models tend to underestimate

VaR and ES, these results agree with the results in Tsay (1997).

In the next section, we examine the backtest results.

7.3 Backtest Results

We examine here the performance of the various approaches to VaR and ES in

Tables 7.2–7.6. We show that the MAR(3;2,2,1) models with both Gaussian and

Student-t innovations perform better in more instances than most of the other mod-

els. The backtesting procedures adapted here are mostly based on the framework

developed by Kupiec (1995) and Christoffersen (1998). They examine whether the
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Table 7.2: 1% and 5% VaR/ES computation for daily IBM log returns (returns
are in percentages)

VaR ES

1% 5% 1% 5%

Riskmetrics 0.0268 0.0189 0.0307 0.0237

GARCH(1,1)-norm 0.0305 0.0216 0.0350 0.0271

AR(2)-GARCH(1,1)-norm 0.0303 0.0215 0.0348 0.0269

GARCH(1,1)-t 0.0293 0.0207 0.0350 0.0260

AR-GARCH(1,1)-t 0.0292 0.0207 0.0335 0.0259

Empirical Quantile 0.0458 0.0227 0.0557 0.0359

EVT Threshold (0.02) 0.0427 0.0240 0.0607 0.0365

EVT -GEV 0.0458 0.0227 0.0560 0.0359

MAR(3;2,2,1)-norm 0.0413 0.0252 0.0490 0.0352

MAR(3;2,2,1)-t 0.0401 0.0213 0.0637 0.0350

Table 7.3: 1% and 5% VaR/ES computation for daily S&P500 log returns (returns
are in percentages)

VaR ES

1% 5% 1% 5%

Riskmetrics 0.0254 0.0180 0.0291 0.0226

GARCH(1,1)-norm 0.0264 0.0187 0.0302 0.0234

AR(2)-GARCH(1,1)-norm 0.0261 0.0184 0.0299 0.0231

GARCH(1,1)-t 0.0265 0.0187 0.0302 0.0235

AR-GARCH(1,1)-t 0.0263 0.0186 0.0302 0.0234

Empirical Quantile 0.0409 0.0216 0.0573 0.0341

EVT Threshold (0.019) 0.0391 0.0192 0.0541 0.0319

EVT -GEV 0.0411 0.0217 0.0579 0.0341

MAR(3;2,2,1)-norm 0.0358 0.0215 0.0455 0.0306

MAR(3;2,2,1)-t 0.0349 0.0169 0.0549 0.0294
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Table 7.4: 1% and 5% VaR/ES computation for daily FTSE100 log returns (returns
are in percentages)

VaR ES

1% 5% 1% 5%

Riskmetrics 0.0243 0.0172 0.0278 0.0215

GARCH(1,1)-norm 0.0243 0.0172 0.0279 0.0216

AR(2)-GARCH(1,1)-norm 0.0243 0.0172 0.0279 0.0216

GARCH(1,1)-t 0.0245 0.0174 0.0279 0.0218

AR-GARCH(1,1)-t 0.0246 0.0174 0.0281 0.0218

Empirical Quantile 0.0402 0.0218 0.0536 0.0328

EVT Threshold (0.02) 0.0367 0.0195 0.0517 0.0308

EVT -GEV 0.0403 0.0218 0.0540 0.0329

MAR(3;2,2,1)-norm 0.0423 0.0194 0.0503 0.0331

MAR(3;2,2,1)-t 0.0382 0.0162 0.0612 0.0309

Table 7.5: 1% and 5% VaR/ES computation for monthly GBP/USD exchange
rates

VaR ES

1% 5% 1% 5%

Riskmetrics 0.0072 0.0051 0.0082 0.0064

GARCH(1,1)-norm 0.0077 0.0054 0.0088 0.0068

AR(2)-GARCH(1,1)-norm 0.0073 0.0052 0.0083 0.0065

GARCH(1,1)-t 0.0081 0.0057 0.0088 0.0072

AR-GARCH(1,1)-t 0.0076 0.0054 0.0087 0.0067

Empirical Quantile 0.0125 0.0072 0.0179 0.0111

EVT Threshold (0.0072) 0.0118 0.0072 0.0154 0.0102

EVT -GEV 0.0125 0.0072 0.0180 0.0111

MAR(3;2,2,1)-norm 0.0150 0.0081 0.0182 0.0123

MAR(3;2,2,1)-t 0.0137 0.0069 0.0196 0.0113
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Table 7.6: 1% and 5% VaR/ES computation for monthly GBP/EUR exchange
rates

VaR ES

1% 5% 1% 5%

Riskmetrics 0.0068 0.0048 0.0077 0.0060

GARCH(1,1)-norm 0.0071 0.0050 0.0081 0.0063

AR(2)-GARCH(1,1)-norm 0.0069 0.0049 0.0080 0.0062

GARCH(1,1)-t 0.0072 0.0051 0.0081 0.0064

AR-GARCH(1,1)-t 0.0069 0.0049 0.0079 0.0061

Empirical Quantile 0.0101 0.0061 0.0142 0.0090

EVT Threshold (0.0057) 0.0099 0.0057 0.0132 0.0084

EVT -GEV 0.0101 0.0061 0.0143 0.0090

MAR(3;2,2,1)-norm 0.0096 0.0054 0.0114 0.0080

MAR(3;2,2,1)-t 0.010 0.0044 0.0161 0.0083

approach adequately forecasts the expected number of violations, generates in-

dependent violations and consequently give an ES whose violation residuals have

zero mean behaviour. We have given detailed descriptions of these tests in Sections

6.8.1 and 6.8.2.

7.3.1 VaR Backtest Results

Here we implement both the unconditional (Kupiec (1995)) and conditional (Christof-

fersen (1998)) coverage tests for the correct number of exceedances and indepen-

dence of these exceedances (see Section 6.8.1 for details). We carry out backtesting

procedures for each of the data sets independently for tail probability α = 1% and

α = 5%. For each of the VaR estimation methods considered, we use a rolling win-

dow of size 1000 and compute rolling 1-step ahead out-of-sample VaR forecasts.



7.3 Backtest Results 194

The results are presented in Tables 7.7–7.16 below. At 99% confidence level, a

p-value less than 0.01 is interpreted as evidence against the null hypothesis and

similarly at 95% confidence level, a p-value less than 0.05 is interpreted as evidence

against the null. The results are generated using the R packages listed in Appendix

B.

Test for Correct Exceedances

Here we test the null hypothesis that the model gives the correct number of vio-

lations against the alternative that it does not. So that at significance levels 95%

and 99%, we would not reject the respective null hypothesis for p-values higher

than 0.05 and 0.01 respectively, indicating that the model is a good model. The

results of the test for correct exceedances for VaR at tail probabilties α = 5% and

α = 1% are documented in Tables 7.7–7.11. The first two columns in the tables

give results for the expected and actual exceedances, both at α = 5% and α = 1%.

The next two columns give the likelihood ratio statistic and the critical region.

The last two columns give the p−value and the decision based on the p−value. A

decision ”Fail to Reject H0” is an indication that the model captures the correct

number of exceedances.

We find here that across all the data sets examined, the MAR(3;2,2,1) models

consistently perform well at both 95% and 99% confidence levels, as we fail to

reject the null of correct number of violations (exceedances). In particular, we find

based on the p−value that for individual stock data set (IBM) and both exchange

rate data sets (GBP/USD and GBP/EUR), most of approaches for predicting

VaR seem to give correct exceedances. These results are further buttressed by a

close examination and comparison of the expected and actual exceedances columns
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which reveal that for these data sets, the figures in these two columns are not too

far from each other at α = 5% but a bit farther off at α = 1%. These figures are

closest for the GARCH based parametric models and the MAR(3;2,2,1) models,

than for the empirical quantile (non-parametric) and the EVT (semi-parametric)

methods.

However, for the stock indices, viz SP500 and FTSE (see Tables 7.8 and 7.9),

only the MAR(3;2,2,1) models give correct exceedances at both significance levels

considered. Furthermore, a comparison of the expected and actual exceedances

columns reveals that only the MAR(3;2,2,1) models give figures close together.

These conclusions can be attributed to the fact that stock indices consist of a

portfolio of various individual stocks and hence are most likely to exhibit more

volatile behaviour. This strongly supports a claim that the MAR models are

better suited to capture dynamics represented in stock indices.

Method Parameters

Exp. Exceed Act. Exceed UC.LRstat UC.LRp UC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 75.00 29.00 73.00 10.01 0.12 0.00 0.73 Reject H0 Fail to Reject H0

GARCH-norm 15.00 75.00 25.00 68.00 5.36 0.91 0.02 0.34 Reject H0 Fail to Reject H0

AR(2)-GARCH-norm 15.00 75.00 22.00 70.00 2.71 0.50 0.10 0.48 Fail to Reject H0 Fail to Reject H0

GARCH-t 15.00 75.00 74.00 74.00 119.06 0.05 0.00 0.82 Reject H0 Fail to Reject H0

AR(2)-GARCH-t 15.00 75.00 19.00 74.00 0.89 0.05 0.34 0.82 Fail to Reject H0 Fail to Reject H0

Empirical Quantile 15.00 75.00 25.00 102.00 5.36 8.53 0.02 0.00 Reject H0 Reject H0

EVT 15.00 75.00 25.00 98.00 5.36 6.20 0.02 0.01 Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 95.00 447.00 0.28 0.00 0.60 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 105.00 455.00 2.40 0.00 0.12 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.7: IBM daily returns: Backtesting VaR Results,Test for Correct ex-
ceedances. The p−values are obtained by comparison with the χ2(1)-distribution.
The χ2(1)-distribution has a 5 percent critical value of 3.84 and a 1 percent critical
value of 6.23. For a good model, we expect NOT to reject H0
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Method Parameters

Exp. Exceed Act. Exceed UC.LRstat UC.LRp UC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 75.00 40.00 99.00 28.25 6.75 0.00 0.01 Reject H0 Reject H0

GARCH(1,1)-norm 15.00 75.00 47.00 102.00 43.23 8.53 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 15.00 75.00 46.00 102.00 40.95 8.53 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-t 15.00 75.00 103.00 103.00 223.91 9.17 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-t 15.00 75.00 44.00 102.00 36.53 8.53 0.00 0.00 Reject H0 Reject H0

EVT 15.00 75.00 41.00 120.00 30.25 23.04 0.00 0.00 Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 102.00 461.00 1.55 0.00 0.21 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 91.00 460.00 0.01 0.00 0.92 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.8: SP500 daily returns: Backtesting VaR Results,Test for Correct ex-
ceedances. The p−values are obtained by comparison with the χ2(1)-distribution.
The χ2(1)-distribution has a 5 percent critical value of 3.84 and a 1 percent critical
value of 6.23. For a good model, we expect NOT to reject H0

Method Parameters

Exp. Exceed Act. Exceed UC.LRstat UC.LRp UC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 76.00 33.00 103.00 15.63 8.91 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 15.00 76.00 34.00 104.00 17.23 9.55 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 15.00 76.00 36.00 105.00 20.60 10.22 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-t 15.00 76.00 105.00 105.00 230.99 10.22 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-t 15.00 76.00 32.00 106.00 14.10 10.91 0.00 0.00 Reject H0 Reject H0

Empirical Quantile 15.00 76.00 32.00 123.00 14.10 25.59 0.00 0.00 Reject H0 Reject H0

EVT 15.00 76.00 27.00 122.00 7.42 24.58 0.01 0.00 Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 91.00 462.00 0.01 0.00 0.92 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 92.00 458.00 0.04 0.00 0.83 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.9: FTSE daily returns: Backtesting VaR Results,Test for Correct ex-
ceedances. The p−values are obtained by comparison with the χ2(1)-distribution.
The χ2(1)-distribution has a 5 percent critical value of 3.84 and a 1 percent critical
value of 6.23. For a good model, we expect NOT to reject H0

Method Parameters

Exp. Exceed Act. Exceed UC.LRstat UC.LRp UC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 26.00 132.00 53.00 155.00 20.72 3.80 0.00 0.05 Reject H0 Fail to Reject H0

GARCH(1,1)-norm 26.00 132.00 36.00 132.00 3.09 0.00 0.08 0.96 Fail to Reject H0 Fail to Reject H0

AR(2)-GARCH(1,1)-norm 26.00 132.00 34.00 127.00 1.96 0.25 0.16 0.62 Fail to Reject H0 Fail to Reject H0

GARCH(1,1)-t 26.00 132.00 138.00 138.00 237.15 0.23 0.00 0.63 Reject H0 Fail to Reject H0

AR(2)-GARCH(1,1)-t 26.00 132.00 11.00 136.00 11.76 0.09 0.00 0.76 Reject H0 Fail to Reject H0

Empirical Quantile 26.00 132.00 35.00 113.00 2.50 3.19 0.11 0.07 Fail to Reject H0 Fail to Reject H0

EVT 26.00 132.00 34.00 110.00 1.96 4.28 0.16 0.04 Fail to Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 110.00 458.00 4.19 0.00 0.04 1.00 Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 101.00 454.00 1.31 0.00 0.25 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.10: GBP/USD daily returns: Backtesting VaR Results,Test for Correct ex-
ceedances. The p−values are obtained by comparison with the χ2(1)-distribution.
The χ2(1)-distribution has a 5 percent critical value of 3.84 and a 1 percent critical
value of 6.23. For a good model, we expect NOT to reject H0
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Method Parameters

Exp. Exceed Act. Exceed UC.LRstat UC.LRp UC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 26.00 132.00 52.00 156.00 19.34 4.14 0.00 0.04 Reject H0 Reject H0

GARCH(1,1)-norm 26.00 132.00 43.00 130.00 8.72 0.05 0.00 0.82 Reject H0 Fail to Reject H0

AR(2)-GARCH(1,1)-norm 26.00 132.00 45.00 137.00 10.77 0.16 0.00 0.69 Reject H0 Fail to Reject H0

GARCH(1,1)-t 26.00 132.00 148.00 148.00 271.76 1.83 0.00 0.18 Reject H0 Fail to Reject H0

AR(2)-GARCH(1,1)-t 26.00 132.00 20.00 146.00 1.76 1.39 0.18 0.24 Fail to Reject H0 Fail to Reject H0

Empirical Quantile 26.00 132.00 34.00 130.00 1.96 0.05 0.16 0.82 Fail to Reject H0 Fail to Reject H0

EVT 26.00 132.00 31.00 127.00 0.73 0.25 0.39 0.62 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 103.00 451.00 1.81 0.00 0.18 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 99.00 449.00 0.88 0.00 0.35 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.11: GBP/EUR daily returns: Backtesting VaR Results,Test for Correct ex-
ceedances. The p−values are obtained by comparison with the χ2(1)-distribution.
The χ2(1)-distribution has a 5 percent critical value of 3.84 and a 1 percent critical
value of 6.23. For a good model, we expect NOT to reject H0

Test for independence and correct exceedances

We test here the null hypothesis that the model gives the correct number of vio-

lations and that there are no violation clusters, that is, all the VaR violations are

independent. At significance levels 95% and 99%, we would not reject the respec-

tive null hypothesis for p-values higher than 0.05 and 0.01 respectively, indicating

that the model is a good model. The results of the test for independence and cor-

rect exceedances for tail probabilties α = 5% and α = 1% VaR are documented in

Tables 7.12–7.16. The first two columns in the tables give results for the expected

and actual exceedances both at α = 5% and α = 1%. The next two columns give

the likelihood ratio statistic and the critical region. The last two columns give the

p−value and the decision based on the p−value. A decision ”Fail to Reject H0” is

an indication that the model captures the correct number of exceedances and that

the VaR violations are independent.

We notice here that across all the data sets examined, the MAR(3;2,2,1) model

consistently performs well at both tail probabilities α = 5% and α = 1%, as we not

only fail to reject the null hypothesis of correct number of violations (exceedances),

but we also agree that the probability that a violation will occur tomorrow does
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not depend on the violations that have occurred today.

We find that for the individual stock data set (IBM) at α = 5%, all the ap-

proaches perform well apart from the EVT and Empirical quantile methods. While

at α = 1%, we reject the null hypothesis for the Riskmetrics method and the

GARCH-t approaches. However, for the exchange rate data sets (GBP/USD and

GBP/EUR) and the the stock indices data sets (SP500 and FTSE100), we find,

based on the p−values, that the MAR models both give correct and independent

exceedances at α = 5%. However, at α = 1%, some of the GARCH based para-

metric models also give independent and correct exceedances.

These conclusions are consistent with the claim that MAR models are able to

capture multiple regimes in financial time series an attribute that is common with

both exchange rate and stock indices data.

Method Parameters

Exp. Exceed Act. Exceed CC.LRstat CC.LRp CC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 75.00 29.00 73.00 296.97 585.52 0.00 0.00 Reject H0 Reject H0

GARCH-norm 15.00 75.00 25.00 68.00 260.22 556.09 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH-norm 15.00 75.00 22.00 70.00 232.66 567.86 0.00 0.00 Reject H0 Reject H0

GARCH-t 15.00 75.00 74.00 74.00 710.41 591.41 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH-t 15.00 75.00 19.00 74.00 205.10 591.41 0.00 0.00 Reject H0 Reject H0

Empirical Quantile 15.00 75.00 25.00 102.00 17.48 12.27 0.00 0.00 Reject H0 Reject H0

EVT 15.00 75.00 25.00 98.00 17.48 10.96 0.00 0.00 Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 95.00 447.00 2.30 0.00 0.32 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 105.00 455.00 2.44 0.00 0.29 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.12: IBM daily returns: Backtesting VaR Results, Test for Correct ex-
ceedances and Independence. The p−values are obtained by comparison with the
χ2(2)-distribution. The χ2(2)-distribution has a 5 percent critical value of 5.99
and a 1 percent critical value of 9.21. For a good model, we expect NOT to reject
H0
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Method Parameters

Exp. Exceed Act. Exceed CC.LRstat CC.LRp CC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 75.00 40.00 99.00 30.42 11.41 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 15.00 75.00 47.00 102.00 43.40 11.60 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 15.00 75.00 46.00 102.00 41.08 10.11 0.00 0.01 Reject H0 Reject H0

GARCH(1,1)-t 15.00 75.00 103.00 103.00 227.16 12.41 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-t 15.00 75.00 44.00 102.00 36.60 10.11 0.00 0.01 Reject H0 Reject H0

EVT 15.00 75.00 41.00 120.00 32.63 25.30 0.00 0.00 Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 102.00 461.00 1.57 0.00 0.46 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 91.00 460.00 1.87 0.00 0.39 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.13: SP500 daily returns: Backtesting VaR Results, Test for Correct ex-
ceedances and Independence. The p−values are obtained by comparison with the
χ2(2)-distribution. The χ2(2)-distribution has a 5 percent critical value of 5.99
and a 1 percent critical value of 9.21. For a good model, we expect NOT to reject
H0

Method Parameters

Exp. Exceed Act. Exceed CC.LRstat CC.LRp CC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 76.00 33.00 103.00 333.86 762.82 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 15.00 76.00 34.00 104.00 343.05 768.71 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 15.00 76.00 36.00 105.00 361.43 774.59 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-t 15.00 76.00 105.00 105.00 995.36 774.59 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-t 15.00 76.00 32.00 106.00 324.68 780.48 0.00 0.00 Reject H0 Reject H0

Empirical Quantile 15.00 76.00 32.00 123.00 18.78 32.27 0.00 0.00 Reject H0 Reject H0

EVT 15.00 76.00 27.00 122.00 10.28 30.11 0.01 0.00 Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 91.00 462.00 0.02 0.00 0.99 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 92.00 458.00 0.97 0.00 0.62 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.14: FTSE daily returns: Backtesting VaR Results, Test for Correct ex-
ceedances and Independence. The p−values are obtained by comparison with the
χ2(2)-distribution. The χ2(2)-distribution has a 5 percent critical value of 5.99
and a 1 percent critical value of 9.21. For a good model, we expect NOT to reject
H0

Method Parameters

Exp. Exceed Act. Exceed CC.LRstat CC.LRp CC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 26.00 132.00 53.00 155.00 28.97 53.14 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 26.00 132.00 36.00 132.00 5.83 39.15 0.05 0.00 Fail to Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 26.00 132.00 34.00 127.00 2.85 39.46 0.24 0.00 Fail to Reject H0 Reject H0

GARCH(1,1)-t 26.00 132.00 138.00 138.00 278.87 41.95 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-t 26.00 132.00 11.00 136.00 11.85 46.85 0.00 0.00 Reject H0 Reject H0

Empirical Quantile 26.00 132.00 35.00 113.00 66.38 57.56 0.00 0.00 Reject H0 Reject H0

EVT 26.00 132.00 34.00 110.00 59.37 57.08 0.00 0.00 Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 110.00 458.00 4.48 0.00 0.11 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 101.00 454.00 1.32 0.00 0.52 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.15: GBP/USD daily returns: Backtesting VaR Results, Test for Correct
exceedances and Independence. The p−values are obtained by comparison with
the χ2(2)-distribution. The χ2(2)-distribution has a 5 percent critical value of 5.99
and a 1 percent critical value of 9.21. For a good model, we expect NOT to reject
H0
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Method Parameters

Exp. Exceed Act. Exceed CC.LRstat CC.LRp CC.Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 26.00 132.00 52.00 156.00 22.00 49.35 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 26.00 132.00 43.00 130.00 10.41 27.52 0.01 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 26.00 132.00 45.00 137.00 12.22 23.85 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-t 26.00 132.00 148.00 148.00 303.63 33.69 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-t 26.00 132.00 20.00 146.00 3.92 44.05 0.14 0.00 Fail to Reject H0 Reject H0

Empirical Quantile 26.00 132.00 34.00 130.00 24.26 72.31 0.00 0.00 Reject H0 Reject H0

EVT 26.00 132.00 31.00 127.00 19.18 71.28 0.00 0.00 Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 103 451 0.55 0.49 0.19 1.00 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 99 449 0.81 0.52 0.34 1.00 Fail to Reject H0 Fail to Reject H0

Table 7.16: GBP/EUR daily returns: Backtesting VaR Results, Test for Correct
exceedances and Independence. The p−values are obtained by comparison with
the χ2(2)-distribution. The χ2(2)-distribution has a 5 percent critical value of 5.99
and a 1 percent critical value of 9.21. For a good model, we expect NOT to reject
H0

7.3.2 ES Backtest Results

The null hypothesis here is that the excess conditional shortfall (excess of the actual

series when VaR is violated), is i.i.d. and has zero mean, against the alternative

that the excess shortfall has mean greater than zero and thus that the conditional

shortfall is systematically underestimated (see Section 6.8.2). The test is a one

sided t-test. The bootstrap method is used to obtain the p-values. This is done to

alleviate any bias with respect to assumptions about the underlying distribution

of the excess shortfall, (see McNeil et al. (2010)). The results of the test for zero

mean behaviour of VaR violations at tail probabilities α = 5% and α = 1% for the

ES estimation methods described in Section 6.6 are documented in Tables 7.17–

7.21. The first two columns in the tables give results for the expected and actual

exceedances both at α = 5% and α = 1%. The last two columns the give the

p−value and the decision based on the p−value. A decision ”Fail to Reject H0” is

an indication that based on the corresponding model, the excess violations of VaR

are i.i.d with zero mean.
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The results in Tables 7.17–7.21 reveal that the for the GARCH-t, AR(2)-

GARCH-t, EVT, MAR(3;2,2,1) model with Gaussian innovations, MAR(3;2,2,1)

with Student-t innovations, and empirical quantile methods, the violation resid-

uals (see Section 6.8.2) do behave like realisations of i.i.d variables from a distri-

bution with zero mean at both α = 5% and α = 1%. However, the Riskmetrics,

GARCH-norm and AR(2)-GARCH-norm methods do not. It is noteworthy that

the GARCH-t, AR(2)-GARCH-t, EVT, MAR(3;2,2,1) model with Gaussian inno-

vations, MAR(3;2,2,1) with Student-t innovations, are heavy tailed distributions

making them better suited to financial data. The empirical quantile approach does

not assume any underlying distribution.

Method Parameters

Exp. Exceed Act. Exceed P.Value Decision

1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 75.00 29 72 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 15.00 75.00 25 67 0.04 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 15.00 75.00 24 72 0.02 0.01 Reject H0 Reject H0

GARCH(1,1)-t 15.00 75.00 74 74 1.00 0.16 Fail to Reject H0 Fail to Reject H0

AR(2)-GARCH(1,1)-t 15.00 75.00 19 73 0.69 0.15 Fail to Reject H0 Fail to Reject H0

EVT 15.00 75.00 25 98 1.00 0.04 Fail to Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 104 457 0.72 0.43 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 95 463 0.32 0.44 Fail to Reject H0 Fail to Reject H0

Table 7.17: IBM daily returns: Backtesting ES Results, Zero mean test for Excess
Violations of VaR. For a good model, we expect NOT to reject H0

Method Parameters

Exp. Exceed Act. Exceed P.Value Decision

1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 76.00 33 103 0.01 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 15.00 76.00 34 104 0.01 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 15.00 76.00 36 105 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-t 15.00 76.00 105 105 1.00 0.01 Fail to Reject H0 Reject H0

AR(2)-GARCH(1,1)-t 15.00 76.00 32 106 0.09 0.01 Fail to Reject H0 Reject H0

Empirical Quantile 76.00 123 0.19 Fail to Reject H0

EVT 15.00 76.00 27 122 1.00 0.18 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 91 462 0.17 0.39 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 92 458 0.22 0.44 Fail to Reject H0 Fail to Reject H0

Table 7.18: FTSE daily returns: Backtesting ES Results, Zero mean test for Excess
Violations of VaR. For a good model, we expect NOT to reject H0
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Method Parameters

Exp. Exceed Act. Exceed P.Value Decision

1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 15.00 75.00 40 99 0.01 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 15.00 75.00 47 102 0.03 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 15.00 75.00 46 102 0.02 0.00 Reject H0 Reject H0

GARCH(1,1)-t 15.00 75.00 103 103 1.00 0.00 Fail to Reject H0 Reject H0

AR(2)-GARCH(1,1)-t 15.00 75.00 44 102 0.02 0.00 Reject H0 Reject H0

EVT 15.00 75.00 41 120 1.00 0.01 Fail to Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 102 461 0.75 0.62 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 91 460 0.30 0.41 Fail to Reject H0 Fail to Reject H0

Table 7.19: SP500 daily returns: Backtesting ES Results, Zero mean test for Excess
Violations of VaR. For a good model, we expect NOT to reject H0

Method Parameters

Exp. Exceed Act. Exceed P.Value Decision

1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 26.00 132.00 53 155 0.01 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 26.00 132.00 36 132 0.01 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 26.00 132.00 34 127 0.01 0.00 Reject H0 Reject H0

GARCH(1,1)-t 26.00 132.00 138 138 1.00 1.00 Fail to Reject H0 Fail to Reject H0

AR(2)-GARCH(1,1)-t 26.00 132.00 11 136 0.99 1.00 Fail to Reject H0 Fail to Reject H0

Empirical Quantile 26.00 132.00 35 113 0.17 0.03 Fail to Reject H0 Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 110 458 0.82 0.39 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 101 454 0.80 0.53 Fail to Reject H0 Fail to Reject H0

Table 7.20: GBP/USD daily returns: Backtesting ES Results, Zero mean test for
Excess Violations of VaR. For a good model, we expect NOT to reject H0

Method Parameters

Exp. Exceed Act. Exceed P.Value Decision

1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics 26.00 132.00 52 156 0.00 0.00 Reject H0 Reject H0

GARCH(1,1)-norm 26.00 132.00 43 130 0.00 0.00 Reject H0 Reject H0

AR(2)-GARCH(1,1)-norm 26.00 132.00 45 137 0.01 0.00 Reject H0 Reject H0

GARCH(1,1)-t 26.00 132.00 148 148 1.00 1.00 Fail to Reject H0 Fail to Reject H0

AR(2)-GARCH(1,1)-t 26.00 132.00 20 146 0.97 1.00 Fail to Reject H0 Fail to Reject H0

Empirical Quantile 26.00 132.00 34 130 0.24 0.21 Fail to Reject H0 Fail to Reject H0

EVT 26.00 132.00 31 127 1.00 0.16 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-norm 90.00 450.00 100 455 0.77 0.54 Fail to Reject H0 Fail to Reject H0

MAR(3;2,2,1)-t 90.00 450.00 94 457 0.62 0.63 Fail to Reject H0 Fail to Reject H0

Table 7.21: GBP/EUR daily returns: Backtesting ES Results, Zero mean test for
Excess Violations of VaR. For a good model, we expect NOT to reject H0



7.4 Summary 203

7.4 Summary

We considered the out of sample VaR and ES measures, at tail probabilities α =

1% and α = 5% for each of the financial time series selected. We treated the

results based on empirical quantiles as conservative estimates of the true VaR (i.e.,

lower bounds), and find that the approaches based on EVT and MAR models give

significantly better results as they give values close to the empirical quantiles while

the approaches based on GARCH models tend to underestimate VaR and ES.

Across all the data sets examined, we find that the MAR(3;2,2,1) models with

Gaussian and Student-t innovations consistently perform well at both α = 5% and

α = 1%, as we fail to reject the null of correct number of violations (exceedances),

independent VaR violations and excess violations of VaR is i.i.d with zero mean.

We find that for the individual stock data set (IBM) and both exchange rate

data sets (GBP/USD and GBP/EUR), most of approaches for predicting VaR

seem to give correct excedences based on both the p−values and a comparison of

the expected and actual exceedances columns.

However, for the stock indices (SP500 and FTSE), only the MAR models con-

sistently give correct exceedances, independent VaR violations and i.i.d excess

violations of VaR with zero mean based on both the p−values and a comparison of

the expected and actual exceedances columns. These conclusions can be attributed

to the fact that stock indices consists of a portfolio of various individual stocks

and hence most likely to exhibit more volatile behaviour. MAR models are hence

better suited to capture multiple regimes and other dynamics associated with this

kind of data.

The ES backtest results reveal that the for the GARCH(1,1) and AR(2)-

GARCH(1,1) with Student-t innovations, EVT, MAR(3;2,2,1) models with both
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Gaussian and Student-t innovations and empirical quantile methods at both α =

5% and α = 1%, the violation residuals do behave like realisations of i.i.d vari-

ables from a distribution with zero mean, while the Riskmetrics, GARCH(1,1) and

AR(2)-GARCH(1,1) with Gaussian innovation models do not.

It is noteworthy here that for the EVT based approaches, there are some other

improved variations (see Gilli and këllezi (2006), Klüppelberg and Mikosch (1997),

and Tsay (1997)) which we have not considered here due to time and computational

constraints.



Chapter 8

Density Forecasts and the MAR Model

Forecasts play a very significant role in economics and finance just as they do

in any other science. Evaluating accurate/dependable predictions is of primary

concern. A large chunk of the existing forecast literature is focused on evaluating

point forecasts, a smaller slice on interval forecasts and a much thinner slice on

probability forecasts. Point forecasts have been noted to be generally unsuitable

for all models as forecasts based on quite a number of financial and economic

models are not readily summarized by point forecasts (Berkowitz (2001)). Density

forecasts have become more popular as applications in real life scenarios require

not only a forecast estimate but also the uncertainty associated to such a forecast.

Applications of density forecasts span across the field of macro economics. A

popular example is the ’fan-chart’ of inflation and GDP published by the Bank

of England and by the Sveriges Riksbank in Sweden in their quarterly inflation

reports.

Further applications can be found in finance, the major area being in risk

management. Distributional forecasts of a portflio are issued with the purpose

of tracking measures of portfolio risk such as Value at Risk (VaR) and Expected

205
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Shortfall (ES) (Diebold et al. (1998)). Another application of density forecast in

finance is the extraction of density forecasts from option price data (Diebold et al.

(1998)).

We aim here to evaluate the tail forecast density of some financial time series

based on the MAR model. We compare these tail density forecasts to those based

on some popular GARCH and AR-GARCH models. Evaluating and comparing

the tail density forecasts, create an avenue to further assess, the overall quality

of the conditional loss distributions of the parametric methods used in estimating

risk measures like VaR and ES.

8.1 Density Forecasting

A density forecast is an estimate of the future probability distribution of a ran-

dom variable, conditional on the information available at the time of the forecast.

It gives a complete characterisation of the uncertainty associated with a predic-

tion, as against the point forecast which does not provide information about the

uncertainty of the prediction (Diebold et al. (1998)).

8.1.1 Loss Functions and Action Choices

Diebold et al. (1998) show that the problem of density forecast evaluation is intrin-

sically linked to the forecast user’s loss function. They observed that understanding

the connection between density forecast, loss functions and action choices will shed

more light on what can or cannot be achieved when evaluating density forecasts.

Loss Function, Action Choice and The Decision Environment Consider a stochastic

process yt with corresponding series of realisations {yt}mt=1. Let {ft(yt | Ωt)}mt=1
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be the corresponding sequence of conditional densities governing yt. Also, let

{pt(yt | Ωt)}mt=1 be the sequence of one-step ahead density forecasts of yt. Where

Ωt = {yt−1, yt−1, . . . } is the information set up to time t− 1.

Denote the loss function as L(a, y), where a refers to an action choice. The

loss function L(a, y) chooses an action to minimise expected loss computed using

the density of the data generating process. If p(y) is the correct density, then the

user chooses an action a∗ such that:

a∗(p(y)) = argmina∈A

�
L(a, y)p(y)dy (8.1.1.1)

The action choice defines the loss L(a∗, y) faced for every realization of the pro-

cess y with density f(y). This loss is in itself a random variable and possesses a

probability distribution that depends only on the action choice. The expected loss

with respect to the true data generating process is represented as (Diebold et al.

(1998)),

E[L(a∗, y)] =

�
L(a∗, y)f(y)dy (8.1.1.2)

Density forecast has quite a glaring effect on the user’s expected loss as different

density forecasts will in general lead to different action choices and hence differ-

ent loss distributions. The better the density forecast, the lower the expected loss

computed with respected to the true data generating function.

The Probrobability integral transform (PIT)

The main idea behind the probability integral transform goes as far back as as

Rosenblatt (1952) and was made popular by Diebold et al. (1998). The probability

integral transform is simply the cummulative density function corresponding to the

sequence of density forecasts evaluated at yt. The PITS of the actual realisation
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of the variables over the forecast period ({yt}nt=1), t = 1, . . . , n is calculated with

respect to the model’s forecast densities. Denote this forecast density by {pt(yt)}nt=1

so that we evalutate,

zt =

� yt

−∞
pt(u)du for t = 1, . . . , n. (8.1.1.3)

The true predictive density of yt is given by its data generating process denoted

by ft(yt). When the model forecast density corresponds to the true predictive

density, that is, when pt(yt) = ft(yt), then the sequence {zt}nt=1 is iid U(0, 1).

Diebold et al. (1998) say that the sequence {zt}nt=1 will consist of i.i.d uniform

variables in a time series context when the true densities (conditional on the past

process) are used at each time t to transform the realisations of the series yt’s. The

density forecast is evaluated by assessing whether there is statistically significant

evidence that the realisations do not come form the density, this is as good as test-

ing whether the {zt}nt=1 series depart from the i.i.d uniform assumption, resulting

in a joint test of independence and uniformity.

8.2 Testing Density Forecasts—overview of methods

Diebold et al. (1998) use the probability integral transforms (PITS) to evaluate

density forecasts. They use graphical tools test whether the resultant series consists

of independently and identically distributed uniform random variables U(0, 1).

They assess independence by examining the correlogram and plot of the probability

density function (PDF) to assess uniformity. They argue that statistical tests do

not give insight into the reasons for rejection. Diebold et al. (1998) investigate

independence by testing for non-zero autocorrelations in the first three moments

of the zt series. The following statistics can then be used to test the null hypothesis



8.2 Testing Density Forecasts—overview of methods 209

of uniformity U(0, 1):

1. Kolmogorov-Smirnov (KS(D)) (see Neave and Worthington (1988)). D =

maxj{abs(zj − Aj)} (zj is the theoretical CDF under the null, Aj is the

empirical CDF and n is the number of observations.

2. Kuiper(V) (see Kuiper (1962)). D+ max[(j/n)−zj] andD−[zj−(j−1)/n], V+

D+ +D−.

3. Cramér-von Mises(W 2) (see Cramér (1945)). W 2 =
�n

j=1[zj−(2j−1)/2n]2+

(1/2n).

4. Watson(U2): U = W 2 − n(z̄ − 0.5)2(z̄ is the average cumulative probability

under the null).

5. Anderson and Darling(A2) (see Anderson and Darling (1954)). A2 = −n −
1
n

�n
j=1(2j − 1)[log(zj) + log(1− z−j)].

However, these non-parametric tests are quite data intensive. Research shows the

need for at least 1000 observations for a relatively reliable conclusion (Berkowitz

(2001)).

Berkowitz (2001) introduces an extension of the Rosenblatt transformation. He

advocates for a simple transformation to normality and suggests working with the

inverse normal CDF transformation. That is, rather than {zt}nt=1, he transforms

the observed portfolio returns to create a series, zt = Φ−1(F̂ (yt)).

Let Φ−1(·) be the inverse of the standard normal distribution function, for

a sequence of forecasts regardless of the underlying distribution of the portfolio

returns. The following results are due to Berkowitz (2001).
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Propositon 8.2.1 (Berkowitz (2001)). If the series rt =
� xt

−∞ f(u)du is distributed

as an i.i.d U(0, 1), then

zt = Φ−1[rt] =

� xt

−∞
f(u)du is an i.i.d N(0,1) (8.2.0.4)

Equation (8.2.0.4) is the inverse PIT. This transformation is widely used to

generate random numbers in computations. Berkowitz (2001) apply the inverse

PIT to time series.

Propositon 8.2.2. Let h(zt) be the density of the zt and let φ(zt) be standard

normal. Then log[f(yt)/f̂(yt)] = log[h(zt)/φ(zt)].

Propositions (8.2.1) and (8.2.2) above enable the use of Gaussian likelihood

tools to test the null hypothesis that the data follows a normal distribution. They

also establish that the inaccuracies in the density forecast will be preserved in the

transformed data.

Berkowitz (2001) proposes an LR test based on censored likelihood, where the

shape of the forecasted tail of the density is compared to the observed tail. He

constructs an LR test where he evaluates a restricted likelihood L(0, 1). He then

compares restricted likelihood to an unrestricted likelihood L(µ̂, σ̂2). The test

statistic is based on the difference between the constrained and the unconstrained

values of the likelihood. That is,

LRtail = −2(L(0, 1)− L(µ̂, σ̂2)) (8.2.0.5)

Under the null hypothesis, LRtail ∼ χ2(2).

To jointly test the null hypothesis of independence, and mean= 0 and variance=

1, he defines the following combined statistic,

LR = −2(L(0, 1, 0)− L(µ̂, σ̂2, p̂)) ∼ χ2(3) (8.2.0.6)
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He also proposed LR tests based on a censored likelihood where he compares

the shape of the forecasted tail of the density to the observed tail. The test statistic

is based on the difference between the constrained (L(0, 1)) and the unconstrained

(L(µ̂, σ̂2)). He forms an LR tail test that tests the null that the mean and variance

of the violations equal those implied by the model as follows,

LRtail = −2(L(0, 1)− L(µ̂, σ̂2)) ∼ χ2(2). (8.2.0.7)

The test will not only reject if the tails are too large but will also asymptotically

reject if the tail has excessively small losses relative to forecast.

In this work, we consider the Berkowitz (2001) tail test approach for testing

density forecasts as we are interested in the tails of the forecasts.

8.3 Density Forecast and Mixture Autoregressive (MAR) model

We use two underlying methods to compute the density forecast of financial time

series based on the MAR model.

• In Section 8.3, we we obtained the density forecasts by generating a random

sample of y(k)t+1, k = 1, . . . , N . We then take the histogram of y(k)t+1 as an

estimate of the one-step ahead density forecast, the graphs of which are

presented in Figures 8.1-8.5 below.

• In section 8.4, we obtained the one-step ahead density forecast based on the

MAR model by applying the following theorem by Boshnakov (2009)

Theorem 8.3.1. For each h ≥ 1 the conditon charsteritc function, ϕt+h|t(s) ≡

E(eisyt+h | Ft), of the h−step predictor at time t of the MAR process is given
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by

ϕt+h|t(s) ≡ E(eisyt+h | Ft) (8.3.0.8)

= E(E(eisyt+h | Ft, zt+h, . . . , zt+1) | Ft−h)

=
g�

k1,...,kh=1

(πk1 . . . πkh)e
is(µk1,...,kh

(t+h))Πh−1
i=0 ϕk+h−i(θ

k1,...,kh
h−i s),

where

µk1,...,kh(t+ h)) =
p�

i=1

βk1,...,kh
i y(t+ 1− i) + βk1,...,kh

0 (8.3.0.9)

For the one step ahead density forecast that is h = 1, this gives

ϕt+1|t(s) =
g�

k=1

πke
isµk(t+1))ϕk(σk,φk,1s), (8.3.0.10)

The computations were done using the MixAR R-package newly developed (and

still work in progress) by my supervisor, Dr. Georgi Boshankov.

Here we generate one-step ahead out-of-sample density forecasts of daily returns

on IBM stocks, FTSE and S&P 500 stock indices, GBP/USD and GBP/EUR ex-

change rate data, based on MAR(3;2,2,1) model with both Gaussian and Student-t

innovations.

8.3.1 The MAR(3;2,2,1) model

The MAR(3;2,2,1) model is a mixture autoregressive model with three AR com-

ponents. The first two AR components are of order two and the third one is of

order one, that is, p1 = p2 = 2, p3 = 1 and k = 3.
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The MAR(3;2,2,1) is such that,

yt =






φ1,0 + φ1,1yt−1 + φ1,2yt−2 + σ1�1(t) with probability π1

φ2,0 + φ2,1yt−1 + φ2,2yt−2 + σ2�2(t) with probability π2

φ3,0 + φ3,1yt−1 + σ3�3(t) with probability π3,

with conditional distribution

Ft|t−1(x) = π1F1

�
yt − φ11yt−1 − φ12yt−2

σ1

�
+ π2F2

�
yt − φ21yt−1 − φ22yt−2

σ2

�
+ π3F3

�
yt − φ31yt−1

σ3

�
.

(8.3.1.1)

We investigate the MAR(3;2,2,1) model for Fi(·), i = 1, 2, 3 Gaussian and Student-

t with 3-degrees of freedom. The parameters estimated for each of the financial

returns series based on the two models are given in Tables 8.1 and 8.2.

8.3.2 Density forecasts based on the MAR(3;2,2,1) model

We evaluate one-step ahead density forecast for each of the returns series based on

The MAR(3;2,2,1) models with Gaussian and Student-t innovations.The graphs of

the density forecasts are presented in Figures 8.1-8.5.

Figures 8.1–8.5 reveal that within the time frame selected, the models with Stu-

dent t-innovations produce plots that have sharper peaks and fatter tails than those

with Gaussian innovations. It is noteworthy here that periods of high volatility will

inadvertently result in sharp changes in the shape of the returns series hence we

would expect a bimodal or even multimodal distributions. However, if the volatil-

ity of the financial time series is low then we would expect moderate changes in

the shape of the distribution and hence a unimodal distribution. This seems to be

the case in our selected period for most of investigated series. We notice that the

shape of the predictive distribution for most of the data sets are all unimodal with
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Figure 8.1: One-step ahead density forecast of IBM returns at 2012-06-22 based
on an MAR(3;2,2,1) model with Gaussian and Standardised Student-t innovations
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Figure 8.2: One-step ahead density forecast of S&P500 returns at 2012-06-22 based
on an MAR(3;2,2,1) model with Gaussian and Standardised Student-t innovations
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Figure 8.3: One-step ahead density forecast of FTSE returns at 2012-06-22 based
on an MAR(3;2,2,1) model with Gaussian and Standardised Student-t innovations
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Figure 8.4: One-step ahead density forecast of GBPUSD returns at 2012-06-22
based on an MAR(3;2,2,1) model with Gaussian and Standardised Student-t in-
novations
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Figure 8.5: One-step ahead density forecast of GBPEUR returns at 2012-06-22
based on an MAR(3;2,2,1) model with Gaussian and Standardised Student-t in-
novations
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Table 8.1: Parameters of the MAR(3;2,2,1) model with Gaussian innovations, for
daily logarithmic returns of IBM, FTSE100, S&P500, GBP/USD and GBP/EUR

.

Parameter IBM FTSE100 S&P500 GBP/USD GBP/EUR

p1 2 2 2 2 2
p2 2 2 2 2 2
p3 1 1 1 1 1
π1 0.1786 0.185 0.2087 0.2252 0.3339
π2 0.1786 0.187 0.6638 0.1125 0.5679
π3 0.6427 0.6281 0.1276 0.6623 0.09824
σ1 0.0244 0.01918 0.02195 0.007538 0.005313
σ2 0.01339 0.01287 0.006703 0.00008948 0.002209
σ3 0.008355 0.006945 0.01145 0.003162 0.00008423
φ1,0 -0.001924 0.00001373 -0.0007612 -0.0003367 -0.0002889
φ2,0 0.002839 -0.003116 0.001173 -0.00001085 0.00008435
φ2,0 0.0003086 0.001006 -0.004454 0.0001412 -0.00001024
φ1,1 0.5127 -0.21 -0.596 0.3826 0.5317
φ1,2 0.4718 -0.7283 -0.1037 -0.1492 -0.2552
φ2,1 -0.6242 0.02879 -0.06614 -0.001028 0.1425
φ2,2 -0.4152 0.7263 0.0238 0.00006171 -0.01684
φ3,1 0.007439 -0.04229 0.8579 0.1552 -0.0004513

slight tail disturbances for FTSE100 data set. The S&P500 data how ever gives

clear bimodal shape, this would be expected as the recent global financial crisis

has had its toll on quite a number of American stocks.

8.4 Testing the Density Forecasts

We compare the methodology described in Section 8.3 to evaluate density forecasts

of some financial time series based on some popular models in the financial indus-

try. The models considered include the IGARCH model, GARCH models with

Gaussian and Student-t innovations and AR(2)-GARCH(1,1) models with Gaus-

sian and Student-t innovations. For each of these models, we generate one-step-

ahead out-of-sample density forecasts of daily returns on IBM stocks, FTSE100
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Table 8.2: Parameters of the MAR(3;2,2,1) model with Student-t innovations, for
daily logarithmic returns of IBM, FTSE100, S&P500, GBP/USD and GBP/EUR

.

Parameter IBM FTSE100 S&P500 GBP/USD GBP/EUR

p1 2 2 2 2 2
p2 2 2 2 2 2
p3 1 1 1 1 1
π1 0.1866 0.1632 0.2086 0.2227 0.5838
π2 0.1364 0.5712 0.6638 0.6646 0.3172
π3 0.677 0.2656 0.1276 0.1127 0.09897
σ1 0.01762 0.02327 0.02195 0.00755 0.002261
σ2 0.01994 0.006679 0.006702 0.003174 0.005383
σ3 0.0085 0.01151 0.01145 0.00008981 0.00008506
φ1,0 0.003268 -0.001259 -0.0007611 -0.0003433 0.0000811
φ2,0 -0.003964 0.001382 0.001173 0.0001421 -0.0003033
φ3,0 0.0004588 -0.001933 -0.004452 -0.00001081 -0.00001032
φ1,1 -0.7556 -0.6319 -0.596 0.3878 0.1455
φ1,2 0.439 0.03735 -0.1037 -0.1645 -0.01967
φ2,1 0.8135 -0.1375 -0.06616 0.1531 0.5448
φ2,2 -0.3147 -0.05243 0.0238 0.01082 -0.2617
φ3,1 0.001504 0.4549 0.8577 -0.001003 -0.0004233

and S&P 500 stock indices, GBP/USD and GBP/EUR exchange rate data. We

then pitch the distributional forecasts against the realized returns.

We start the comparision by examining the histogram of the Probability In-

tegral Transform (Diebold et al. (1998)) of each of the financial time series data

with respect to the density forecast produced based on each of the models. The

histograms are also presented in Figures 8.6–8.10.

Close examination reveals that for the PIT of the IBM returns, the IGARCH(1,1),

GARCH(1,1) with Gaussian innovations, GARCH(1,1) with Student-t innovations

and AR(2)-GARCH(1,1) with Gaussian innovation models display slightly butter-

fly shaped histograms while the AR(2)-GARCH(1,1) with Student-t innovations,

the MAR(3;2,2,1) with Gaussian innovations and MAR(3;2,2,1) with Student-t in-

novations, models give histograms that are closer to uniform. For the GBP/USD
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Figure 8.6: Histogram showing the PIT of IBM returns with respect to
the density forecast produced under the assumption that IBM returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t, MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t
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Figure 8.7: Histogram showing the PIT of SP500 returns with respect to
the density forecast produced under the assumption that SP500 returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t ,MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t
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Figure 8.8: Histogram showing the PIT of FTSE returns with respect to
the density forecast produced under the assumption that FTSE returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t, MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t
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Figure 8.9: Histogram showing the PIT of GBPUSD returns with respect to
the density forecast produced under the assumption that GBPUSD returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t,MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t
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Figure 8.10: Histogram showing the PIT of GBPEUR returns with respect to
the density forecast produced under the assumption that GBPEUR returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t, MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t”
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and the GBP/EUR data sets, only the MAR(3;2,2,1) with Gaussian innovations

and MAR(3;2,2,1) with Student-t innovations models give histograms that are

close to uniform.

However, for the S&P500 and the FTSE returns, although the MAR(3;2,2,1)

with Gaussian innovations and MAR(3;2,2,1) with Student-t innovations models

do give somewhat uniform looking PIT histograms, their histograms do not look

strikingly different from that generated based on the other models.

We further emphasize the results of the histograms by comparing the PIT of

each of the data sets based on the different models using a quantile-quantile (QQ)

plot. If the PIT is U(0,1), then the plot should be nearly linear. The plots are

presented in Figures 8.11–8.15.

It is obvious here that the MAR models give consistently linear plots hence but-

tressing our claims based on the histograms that the MAR models better describe

the underlying properties of financial time series.

8.4.1 Tail Density Forecast Test

Since we are interested in the forecast density at the tails, we proceed to carry

out the Berkowitz tail test (Berkowitz (2001)) for testing the tail density forecast

strength of the models. The tables are presented in Tables 8.3–8.12.

Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -113.41 -236.07 -125.33 -250.33 23.85 28.52 0.00 0.00 reject NULL reject NULL

GARCH(1,1)-norm -113.41 -236.07 -125.33 -250.33 23.85 28.52 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-norm -75.84 -215.28 -79.72 -220.02 7.76 9.47 0.02 0.01 reject NULL reject NULL

GARCH(1,1)-t -99.69 -220.99 -107.98 -233.13 16.58 24.30 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-t -58.95 -59.03 0.17 0.92 fail to reject NULL

MAR(3;2,2,1)-norm -75.90 -316.96 -76.29 -317.30 0.79 0.67 0.67 0.72 fail to reject NULL fail to reject NULL

MAR(3;2,2,1)-t -70.56 -323.55 -71.16 -325.00 1.20 2.90 0.55 0.23 fail to reject NULL fail to reject NULL

Table 8.3: 95% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for IBM daily Returns
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Figure 8.11: QQ plot comparing the PIT of IBM returns with respect to
the density forecast produced under the assumption that IBM returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t, MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t to the uniform
random sample
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Figure 8.12: QQ plot comparing the PIT of SP500 returns with respect to
the density forecast produced under the assumption that SP500 returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t, MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t to the uniform
random sample
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Figure 8.13: QQ plot comparing the PIT of FTSE returns with respect to
the density forecast produced under the assumption that FTSE returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t, MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t to the uniform
random sample
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Figure 8.14: QQ plot comparing the PIT of GBPUSD returns with respect to
the density forecast produced under the assumption that GBPUSD returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t, MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t to the uniform
random sample
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Figure 8.15: QQ plot comparing the PIT of GBPEUR returns with respect to
the density forecast produced under the assumption that GBPEUR returns are
IGARCH(1,1), GARCH(1,1)-norm, GARCH(1,1)-t, AR(2)-GARCH(1,1)-norm,
AR(2)-GARCH(1,1)-t, MAR(3;2,2,1)-norm and MAR(3;2,2,1)-t to the uniform
random sample
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Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -113.41 -236.07 -125.33 -250.33 23.85 28.52 0.00 0.00 reject NULL reject NULL

GARCH(1,1)-norm -113.41 -236.07 -125.33 -250.33 23.85 28.52 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-norm -75.84 -215.28 -79.72 -220.02 7.76 9.47 0.02 0.01 fail to reject NULL reject NULL

GARCH(1,1)-t -99.69 -220.99 -107.98 -233.13 16.58 24.30 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-t -58.95 -206.06 -59.03 -206.75 0.17 1.39 0.92 0.50 fail to reject NULL fail to reject NULL

MAR(3;2,2,1)-norm -75.90 -316.96 -76.29 -317.30 0.79 0.67 0.67 0.72 fail to reject NULL fail to reject NULL

MAR(3;2,2,1)-t -70.56 -323.55 -71.16 -325.00 1.20 2.90 0.55 0.23 fail to reject NULL fail to reject NULL

Table 8.4: 99% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for IBM daily Returns
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Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -140.37 -289.40 -161.55 -312.06 42.36 45.32 0.00 0.00 reject NULL reject NULL

GARCH(1,1)-norm -140.37 -289.40 -161.55 -312.06 42.36 45.32 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-norm -148.46 -298.67 -168.83 -321.77 40.75 46.20 0.00 0.00 reject NULL reject NULL

GARCH(1,1)-t -141.81 -307.49 -160.84 -328.95 38.04 42.92 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-t -103.39 -108.36 9.95 0.01 reject NULL

MAR(3;2,2,1)-norm -129.35 -375.30 -133.60 -378.46 8.50 6.32 0.01 0.04 reject NULL reject NULL

MAR(3;2,2,1)-t -121.27 -389.54 -123.45 -394.05 4.37 9.01 0.11 0.01 fail to reject NULL reject NULL

Table 8.5: 95% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for SP500 daily Returns

Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -140.37 -289.40 -161.55 -312.06 42.36 45.32 0.00 0.00 reject NULL reject NULL

GARCH(1,1)-norm -140.37 -289.40 -161.55 -312.06 42.36 45.32 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-norm -148.46 -298.67 -168.83 -321.77 40.75 46.20 0.00 0.00 reject NULL reject NULL

GARCH(1,1)-t -141.81 -307.49 -160.84 -328.95 38.04 42.92 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-t -103.39 -278.52 -108.36 -285.81 9.95 14.58 0.01 0.00 reject NULL reject NULL

MAR(3;2,2,1)-norm -129.35 -375.30 -133.60 -378.46 8.50 6.32 0.01 0.04 fail to reject NULL fail to reject NULL

MAR(3;2,2,1)-t -121.27 -389.54 -123.45 -394.05 4.37 9.01 0.11 0.01 fail to reject NULL fail to reject NULL

Table 8.6: 99% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for SP500 daily Returns
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Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -102.30 -288.94 -107.42 -296.85 10.24 15.82 0.01 0.00 reject NULL reject NULL

GARCH(1,1)-norm -102.30 -288.94 -107.42 -296.85 10.24 15.82 0.01 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-norm -101.93 -283.86 -106.90 -291.12 9.93 14.51 0.01 0.00 reject NULL reject NULL

GARCH(1,1)-t -109.24 -294.98 -115.55 -303.94 12.63 17.92 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-t -83.90 -86.03 4.26 0.12 fail to reject NULL

MAR(3;2,2,1)-norm -94.98 -357.24 -97.59 -358.61 5.23 2.75 0.07 0.25 fail to reject NULL fail to reject NULL

MAR(3;2,2,1)-t -92.77 -361.51 -92.89 -363.94 0.24 4.86 0.89 0.09 fail to reject NULL fail to reject NULL

Table 8.7: 95% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for FTSE daily Returns

Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -102.30 -288.94 -107.42 -296.85 10.24 15.82 0.01 0.00 reject NULL reject NULL

GARCH(1,1)-norm -102.30 -288.94 -107.42 -296.85 10.24 15.82 0.01 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-norm -101.93 -283.86 -106.90 -291.12 9.93 14.51 0.01 0.00 reject NULL reject NULL

GARCH(1,1)-t -109.24 -294.98 -115.55 -303.94 12.63 17.92 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-t -83.90 -283.03 -86.03 -289.78 4.26 13.50 0.12 0.00 fail to reject NULL reject NULL

MAR(3;2,2,1)-norm -94.98 -357.24 -97.59 -358.61 5.23 2.75 0.07 0.25 fail to reject NULL fail to reject NULL

MAR(3;2,2,1)-t -92.77 -361.51 -92.89 -363.94 0.24 4.86 0.89 0.09 fail to reject NULL fail to reject NULL

Table 8.8: 99% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for FTSE daily Returns

Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -92.19 -267.50 -101.34 -275.85 18.30 16.71 0.00 0.00 reject NULL reject NULL

GARCH(1,1)-norm -92.19 -267.50 -101.34 -275.85 18.30 16.71 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-norm -73.12 -221.02 -79.92 -225.98 13.59 9.92 0.00 0.01 reject NULL reject NULL

GARCH(1,1)-t -57.77 -215.35 -63.06 -217.48 10.58 4.26 0.01 0.12 reject NULL fail to reject NULL

AR(2)-GARCH(1,1)-t -35.01 -36.08 2.14 0.34 fail to reject NULL

MAR(3;2,2,1)-norm -139.50 -501.20 -148.63 -504.84 18.26 7.28 0.00 0.03 reject NULL reject NULL

MAR(3;2,2,1)-t -124.11 -507.35 -125.12 -507.85 2.02 1.01 0.36 0.60 fail to reject NULL fail to reject NULL

Table 8.9: 95% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for GBP/USD daily Returns

Tables 8.3, 8.5, 8.7, 8.9 and 8.11 present the results of the Berkowitz (2001)

test at 95% significance each for tail levels α = 5% and α = 1%. The AR(2)-

GARCH(1,1) with Student-t innovations and MAR(3;2,2,1) with Student-t inno-

vations models tend to perform better than all the other models, as we fail to reject

the null hypothesis in most instances for these models except for the S&P500 data

set where none of the models seem to have adequately captured the tail density

forecast at the 95% confidence level.
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Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -92.19 -267.50 -101.34 -275.85 18.30 16.71 0.00 0.00 reject NULL reject NULL

GARCH(1,1)-norm -92.19 -267.50 -101.34 -275.85 18.30 16.71 0.00 0.00 reject NULL reject NULL

AR(2)-GARCH(1,1)-norm -73.12 -221.02 -79.92 -225.98 13.59 9.92 0.00 0.01 reject NULL reject NULL

GARCH(1,1)-t -57.77 -215.35 -63.06 -217.48 10.58 4.26 0.01 0.12 reject NULL fail to reject NULL

AR(2)-GARCH(1,1)-t -35.01 -212.41 -36.08 -215.59 2.14 6.36 0.34 0.04 fail to reject NULL fail to reject NULL

MAR(3;2,2,1)-norm -125.31 -464.68 -135.93 -471.57 21.23 13.78 0.00 0.00 reject NULL reject NULL

MAR(3;2,2,1)-t -114.30 -480.32 -115.80 -481.84 3.01 3.04 0.22 0.22 fail to reject NULL fail to reject NULL

Table 8.10: 99% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for GBP/USD daily Returns

Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -40.42 -204.92 -43.73 -205.16 6.63 0.48 0.04 0.79 reject NULL fail to reject NULL

GARCH(1,1)-norm -40.42 -204.92 -43.73 -205.16 6.63 0.48 0.04 0.79 reject NULL fail to reject NULL

AR(2)-GARCH(1,1)-norm -70.25 -217.57 -70.96 -217.93 1.42 0.72 0.49 0.70 fail to reject NULL fail to reject NULL

GARCH(1,1)-t -39.62 -201.01 -42.16 -201.03 5.08 0.04 0.08 0.98 fail to reject NULL fail to reject NULL

AR(2)-GARCH(1,1)-t -20.09 -23.49 6.81 0.03 reject NULL

MAR(3;2,2,1)-norm -125.31 -464.68 -135.93 -471.57 21.23 13.78 0.00 0.00 reject NULL reject NULL

MAR(3;2,2,1)-t -114.30 -480.32 -115.80 -481.84 3.01 3.04 0.22 0.22 fail to reject NULL fail to reject NULL

Table 8.11: 95% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for GBP/EUR daily Returns

Method Parameters

ull rll LR LRp Decision

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Riskmetrics -40.42 -204.92 -43.73 -205.16 6.63 0.48 0.04 0.79 fail to reject NULL fail to reject NULL

GARCH(1,1)-norm -40.42 -204.92 -43.73 -205.16 6.63 0.48 0.04 0.79 fail to reject NULL fail to reject NULL

AR(2)-GARCH(1,1)-norm -70.25 -217.57 -70.96 -217.93 1.42 0.72 0.49 0.70 fail to reject NULL fail to reject NULL

GARCH(1,1)-t -39.62 -201.01 -42.16 -201.03 5.08 0.04 0.08 0.98 fail to reject NULL fail to reject NULL

AR(2)-GARCH(1,1)-t -20.09 -213.66 -23.49 -217.66 6.81 7.99 0.03 0.02 fail to reject NULL fail to reject NULL

MAR(3;2,2,1)-norm -133.43 -476.66 -140.43 -480.94 14.00 8.57 0.00 0.01 reject NULL fail to reject NULL

MAR(3;2,2,1)-t -118.65 -502.40 -119.73 -503.25 2.16 1.70 0.34 0.43 fail to reject NULL fail to reject NULL

Table 8.12: 99% Berkowitz likelihood ratio tail test for one-step ahead density
forecast for GBP/EUR daily Returns
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Tables 8.4, 8.6, 8.8, 8.10 and 8.12 also present the results of the test at 99%

significance each for tail levels α = 5% and α = 1%. In this case the MAR(3;2,2,1)

with Student-t innovations model does perform better for all the data sets at both

α = 5% and α = 1% tail levels even for the S&P500 data set.

The results of the 95% and 99% Berkowitz test indicates that the models with

Student-t innovations do give better out of sample tail density forecasts.

We observed from the tables that, in general, the MAR models tend to out-

perform the other models in most instances. The MAR model with Student-t

innovations however performs better in all cases even for the SP500 data sets.

These findings are consistent with the findings of De Raaij and Raunig (2005) and

Diebold et al. (1998) that fat-tailed conditional distributions generally give more

satisfactory density forecasts for financial time series.

8.5 Summary

Obtaining good density forecast relies heavily on the ability to make proper dis-

tributional assumptions and adequate modelling of the dynamics of the relevant

conditional moments of financial returns. From the set of models we investigated,

the MAR(3;2,2,1) model with fat-tailed Student-t innovations deliver the best out-

of-sample density forecasts. The SP500 data out-of-sample evaluation results in-

dicate that skewed fat-tailed conditional distributions may be needed to obtain

entirely satisfactory density forecasts, this peculiarity is adequately captured by

the MAR(3;2,2,1) model with Student-t innovations.



Chapter 9

Conclusions/Recommendations for further

research

9.1 Conclusion

This thesis extensively studied the class of finite mixture models introduced by

Wong and Li (2001), the mixture autoregressive (MAR) model.

In chapter 2, we defined the traditional residuals of the MAR model as the

difference between the observed values and their conditional means.These tradi-

tional residuals are quite important as they give information on how close the

observed values are to the means of the corresponding predictive distribution. We

have shown that these residuals form a martingale difference sequence and that

the unconditional variance of the traditional residuals is bounded by the expecta-

tion of its conditional variance. These are useful properties for establishing some

asymptotic properties of the parameter estimates.

We mentioned some extensions of the MAR model and their applications to

Financial modelling found in literature. We then compared the MAR Model to

237
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the class of GARCH models. We observed that both the GARCH type models and

MAR models can be cast into the framework of Random Coefficient Autoregres-

sive model as well as Generalised Hidden Markov models. We also noticed that

persistence in the MAR model makes it suitable for capturing changes in volatility

persistence in most financial data.

In chapter 3 we extended the work done by Klimko and Nelson (1978) on an

estimation procedure for stochastic processes based on the minimization of a sum of

squared deviations about conditional expectations to the Mixture Autoregressive

model. We gave an MAR(2;1,1) example and showed that for the model, the

variance-covariance matrix is positive definite and identical for both the conditional

least square and maximum likelihood penalty functions.

In chapters 4 and 5 we established the geometric ergodicity of the MAR model

and by implication showed that it satisfies the absolutely regular and strong mix-

ing conditions (that is β − mixing and α − mixing conditions). In addition, we

showed that the markov chain Yt (and by implication the MAR process yt) has

stationary distribution with finite second moments. We used the geometric er-

godicity property of the MAR model along with the results in Douc et al. (2004)

and showed that the Maximum Likelihood Estimator of the MAR model is both

consistent and asymptotically normal.

In chapters 6 and 7, we did an extensive study on classes of financial risk

measures, we focused on the most popular of these, Value at Risk (VaR) and

Expected Shortfall(ES). We discussed various existing approaches to evaluating

VaR and ES. We then proposed the use of the MAR model as a viable approach

for evaluating VaR and hence ES. We computed out of sample VaR and ES, at

α = 1% and α = 5% for individual stock (IBM), stock indices (S&P500 and FTSE)



9.1 Conclusion 239

and exchange rate (GBP/USD and GBP/EUR). Based on Tsay (1997)’s suggestion

to treat the results based on empirical quantiles as conservative estimates of the

true VaR (that is, lower bounds), we found that the approaches based on EVT

and MAR models give values close to the empirical quantiles while the approaches

based on GARCH models tend to underestimate VaR and ES. These agrees with

the results in Tsay (1997).

Thereafter, we proceeded to backtest the VaR and ES results using the frame-

work developed by Kupiec (1995) and Christoffersen (1998) which examines whether

the each approach adequately forecasts the expected number of violations, gener-

ate independent violations and consequently gives ES with violation residuals that

exhibit zero mean behaviour. We carried out backtesting procedures for each of

the data sets independently at α = 1% and α = 5%.

Across all the data sets examined, the MAR(3;2,2,1) models consistently per-

forms well at both α = 5% and α = 1% p values, as we fail to reject the null of

correct number of violations (exceedances), we also agree that the probability that

a violation will occur tomorrow does not depend on the violations that have oc-

curred today. In particular, we found that for individual stock (IBM data set) and

both forex data sets (GBPUSD and GBPEUR data sets), most of the approaches

for evaluating VaR seem to give correct exceedances based on the p-values, this

conclusion is further buttressed by a close examination and comparison of the ex-

pected and actual exceedances columns which reveal that for these data sets, the

figures in these two columns are not too far from each other at α = 5% but a bit

farther off at α = 1%. However, for the stock indices (SP500 and FTSE), based

on the p−values, only the MAR models give correct exceedances.

Furthermore, our comparison of the expected and actual exceedances columns
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revealed that the MAR models figures were closer together in the two columns.

These conclusion can be attributed to the fact that stock indices consists of a

portfolio of various individual stocks and hence most likely to exhibit more volatile

behaviour. The MAR models show up to be better suited to capture these kind of

data dynamics.

The ES backtest results revealed that the MAR model does perform better as

at both α = 5% and α = 1%, the violation residuals do behave like realisations of

i.i.d variables from a distribution with zero mean.

In chapter 9, we used the Berkowitz01 test to compare the predictive den-

sity of individual stock (IBM), stock indices (S&P500 and FTSE) and exchange

rate (GBP/USD and GBP/EUR) based on the Gaussian GARCH(1,1), Student-

t GARCH(1,1), the AR(2)-GARCH(1,1) with Gaussian innovations, the AR(2)-

GARCH(1,1) with Student-t innovations against the MAR model(3;2,2,1) with

both Gaussian and Student-t innovations. We find that the MAR models consis-

tently perform better than the other models examined.

9.2 Further Research

In this thesis we have based our VaR and ES calculations as well as the prediction

density on one-step ahead predictions. The next steps would be to consider multi-

step VaR and ES predictions and as well as multi-step prediction densities and see

if the MAR model does perform better.

It will also be worth exploring applications of seasonal mixture autoregressive

models to financial modelling.



Appendix A

Useful definitions, terms and theorems

1. Cauchy Schwartz Inequality

For any two random varables X and Y , we have that

E(XY )2 ≤ E(X2)E(Y 2)

with equality attained when Y = cX, c being a constant. It is worth men-

tioning that the Cauchy-Schwartz inequality is a special case of the Hölder’s

inequality i.e. for p = 2.see Davidson (1997).

2. Martingale Central Limit Theorems

Theorem A.0.1. Let {Xnt,Fnt} be a martingale difference array with finite

unconditional variances {σ2
nt}, and

�n
t=1 σ

2
nt = 1. If

i
�n

t=1 X
2
nt

pr−→ 1, and

ii max1≤t≤n |Xnt|
pr−→ 0,

then Sn =
�n

t=1 Xnt
D−→ N(0, 1).

241
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Theorem A.0.2. If {Xnt,Fnt} is a square integrable martingale difference

sequence and E(X2
t | Ft−1) = σ2

t a.s then, there exists a sequence of positive

constants {ct} such that {X2
t /c

2
t} is uniformly integrable and supn nM

2
n/s

2
n <

∞where M = max1≤t≤n C2
t , and conditions i and ii in A.0.1 hold for Xnt =

Xt/Sn

see Hall.P and Heyde.C.C (1980) and Davidson (1997) for details and proof.

3. Billinglsey’s Central Limit Theorem for Martingales

This is better referred to as ”The Lindeberg-Lèvy theorem for martingales”

Theorem A.0.3. Billingsley (961b) Theorem. Let u1, u2, · · · be a stationary,

ergodic stochastic process such that E{u2
1} is finite and E{un�u1, · · · , un−i} =

0 with probability one. Then the distribution of n1/2
�n

k=1 uk approaches the

normal distribution with mean 0 and variance E{u2
1}.

It is noteworthy that the condition imposed is to ensure that the the partial

sums n1/2
�n

k=1 uk form a martingale

4. Strong Laws for Martingales

Theorem A.0.4. Let {Xt,Ft}∞0 be a martingale difference sequence with

variance sequence {σ2
t }, and {at} a positive constant sequence with at ↑

∞. Sn/an
as−→ 0 if

�∞
t=1 σ

2
t /a

2
t < ∞.

Theorem A.0.5. If {XtFt}∞1 is a martingale difference sequence satisfying

the following
�∞

t=1 E|Xt|p/apt then for 1 ≤ p ≤ 2, Sn/an
as−→ 0.

For details, arguments and proofs, see Hall.P and Heyde.C.C (1980) and

Davidson (1997).
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5. Ergodic Theorem

Theorem A.0.6. Let {Xt(ω)}∞1 be a stationary, ergodic, integrable sequence.

Then limn→∞ Sn(ω)/n = E(X1) ,a.s.

see Davidson (1997) for proof.

6. Fatou PropertyJouini et al. (2006) Suppose that (Ω,F ,P) is a standard

probability space. For a function U : L∞(Ω,F ,P) → R the following are

equivalent:

i U is a law invariant monetary utility function.

ii There is a law invariant, lower semi-continuous, convex function V L1(Ω,F ,P) →

[0,∞] such that dom(V ) ⊂ P(Ω,F ,P) and

U(X) = inf
Y ∈L1

{E[XY ] + V (Y )} for X ∈ L∞ (A.0.0.1)

iii There is a convex function v : P([0, 1]) → [0,∞] such that L1

U(X) = inf
m∈P([0,1])

{
� 1

0

Uα(X)dm(α) + v(m)} for X ∈ L∞ (A.0.0.2)

If any of these conditions is satisfied, then U satisfies the Fatou property.

7. Mean Value Theorem If f(x) is defined and continuous on the interval

[a, b] and differentiable on (a, b), then there is at least one number c in the

interval (a, b) (that is a < c < b) such that

f
�
(c) =

f(b)− f(a)

b− a
(A.0.0.3)

8. Standardaized t-distribution (Zubrzycki (1972)) The standardized

Student-t distribution is a special case of the Student’s t distribution. A
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random variable has a standardized Student’s t distribution with n degrees

of freedom if it can be written as a ratio between a standard normal random

variable and the square root of a Gamma random variable that is, X = Z√
(Γ)

,

where Z is a standard normal random variable and Γ is a Gamma random

variable with parameters n and h = 1. Z and Γ are independent.

The standardized Student-t distribution can also be written as, x = Z√
(χ2

n/n)

where χ2
n is a Chi-square random variable with n degrees of freedom.



Appendix B

R Packages

All computations were done with R (R Core Development Team (2012)) and the

following contributed R packages.

• PerformanceAnalytics (Carl et al. (2012))

• quantmod (Ryan (2011))

• FinTS (Graves (2009))

• car (Fox and Weisberg (2011))

• fExtremes (Wuertz et al. (2012b))

• fBasics (Wuertz et al. (2012a))

• rugarch (Ghalanos (2012))

• mixAR (Boshnakov (2012))

• mixARsim (Boshnakov (2011a))

• tiger (Reusser (2011))

245
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• fImport (Wuertz and many others (2012))

• xtable (Dahl (2012))
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