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Abstract

In this thesis the solutions of the two-dimensional (2D) and three-dimensional

(3D) lid-driven cavity problem are obtained by solving the steady Navier-Stokes

equations at high Reynolds numbers. In 2D, we use the streamfunction-vorticity

(ψ) − (ω) formulation to solve the problem in a square domain. A numerical

method is employed to discretize the problem in the x and y directions with a

spectral collocation method. The problem is coded in the MATLAB programming

environment. Solutions at high Reynolds numbers are obtained up to Re = 25000

on a fine grid of 131× 131.

The same method is also used to obtain the numerical solutions for the steady

separated corner flow at high Reynolds numbers are generated using a for various

domain sizes, at various Reynolds number which are much higher than those

obtained by other researchers.

Finally, the numerical solutions for the three-dimensional lid-driven cavity

problem are obtained by solving the velocity-vorticity formulation of the Navier-

Stokes equations for various Reynolds numbers. A spectral collocation method

is employed to discretize the y and z directions and finite difference method is

used to discretize the x direction. Numerical solutions are obtained for Reynolds

number up to 200.
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Chapter 1

Introduction

The Navier-Stokes equations are the governing equations for fluid flow. They

are a system of nonlinear partial differential equations. There are very few exact

solutions of the equations, and even for simple geometries, the equations have

to be solved numerically. With increasing the Reynolds number, the accurate

solution of the equations becomes more difficult, see Ghia et al. (1982), Azzam

(2003), Erturk et al. (2005), Boppana & Gajjar (2010) and others. A number of

techniques and algorithms have been developed to obtain an accurate solution of

the equation for high Reynolds numbers.

The lid-driven cavity problem is used typically to test new methods and codes.

The lid-driven cavity can be introduced as a fluid contained in a square or rectan-

gular domain with stationary rigid walls and a moving wall, see Figure (1.1). The

literature review of the two-dimensional and three-dimensional lid-driven cavity

reveals that both problems are challenging at a high Reynolds number. Despite

the simplicity of the geometry, difficulties arise from many complex flow features,

such as the recirculating regions in the corner. This motivates us to obtain the

numerical solution to the two-dimensional and three-dimensional lid-driven cavity

19
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u

z

y

x

Figure 1.1: The lid-driven cavity problem geometry.

at a high Reynolds number using techniques based on the Chebyshev collocation

in two directions to exploit the accuracy it offers.

The solution of the two-dimensional Navier-Stokes equations for the lid-driven

cavity is presented in many papers. Burggraf (1966) was one of the earliest who

studied the problem, using a second order finite difference approximation to solve

the equations. Burggraf presented results for Reynolds numbers up to 1000, which

in itself was impressive given the computational facilities available at that time.

A singular behaviour is exhibited in a lot of realistic two dimensional domains

which contain sharp corners. The singularities are observed when solving the lid

driven cavity problem in the vicinity of the two corners of the sliding wall. Moffatt

(1964) give detailed information of the mathematical and physical properties of
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what is expected near the corners of the lid driven cavity problem. Usually, when

a numerical solution is considered for such flows the singularity is ignored with

assumption that the flow is only affected in a small region of the singularity,

Logue (2005).

Gupta et al. (1981) used a semi-analytic technique for solving the lid driven

cavity problem to examine the effect of the singularity in the vicinity of the

two singular corners of the moving wall. They found a good agreement for the

vorticity on the sliding wall and poor agreement for the vorticity on the side

walls. They refer the poor agreement to the fact that the “vorticity values on the

stationary walls were very sensitive to the inaccuracy inherent in the numerical

solution”. Another technique has been used by Peyret & Taylor (1984) to smooth

the velocity profile. They defined the velocity on y = 1 boundary as u(x) =

−16x2(1 − x)2 rather than u(x) = 1. This leads to a good solution and remove

the singularity but this modification changed the problem significantly. Botella &

Peyret (1998) presented a numerical solution for the two-dimensional lid-driven

cavity flow using the Chebyshev collocation method, and the accuracy of the

results is achieved by using the leading term of the asymptotic expansion of the

solution in the vicinity of the corner where there is a discontinuity of velocity.

Extensive results at Re = 1000 are presented and demonstrate the accuracy

by comparing the results with other investigators. They mentioned that the

maximum error of the numerical result is 0.02 percent, while in Ghia et al. (1982)

it is 4 percent. In our work, we use ψy(x) = u(x) = 1 − e500x(1−x) and this

modification does not change the problem as it will been observed through this

thesis.

Ghia et al. (1982) were among the first to provide detailed solutions for

Reynolds numbers up to 10000. They used an implicit multigrid method with
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meshes consisting of as many as 257×257 points. The fine grid enables the method

to resolve the secondary vortices with a good accuracy. Our results are compared

with the Ghia et al. (1982) work for Reynolds numbers up to 10000. Schreiber

& Keller (1983) gave an accurate numerical solution of the two-dimensional lid-

driven cavity at Reynolds numbers up to 10000 on a 180× 180 grid. They were

one of the first to use Richardson extrapolation to obtain fourth order accuracy

for solving the Navier-Stokes equations. Their technique combines a linear sys-

tem solver and the Newton method for the nonlinear system, and employing the

continuation procedure to obtain solutions for high Reynolds numbers. A numer-

ical solution of the lid-driven cavity has been presented by Bruneau & Jouron

(1990). They employed combined multigrid-relaxation scheme to achieve good

convergence on fine grids and obtain results up to Re = 15000. The results

agreed with other published results. The lattice Boltzmann method was used

by Miller (1995) to solve the lid-driven cavity in two dimensions. The primi-

tive variables formulation was considered in a geometry with Dirichlet boundary

conditions. Results were presented for varying aspect ratio on various grid sizes

for Reynolds numbers up to 1000. Jackson (1996) used the multigrid method,

combined with iterative techniques, to obtain accurate two-dimensional solutions

up to Re = 10750 on a 605 × 605 fine grid. The computations were carried out

on massively parallel computers. Chiang et al. (1996) conducted a numerical

simulation for a two-dimensional rectangular cavity with spanwise aspect ratio of

3 : 1, using the finite volume method. The problem is defined by the square cross-

section. They chose Reynolds number at 1500 to be investigated and provided

physical insight to the spanwise flow motion. Chiang et al. (1998) applied the fi-

nite volume method to obtain the two-dimensional solution of the incompressible

Navier-Stokes equations in a lid-driven cavity. On staggered grids, solutions were
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presented for a depth-to-width aspect ratio of 1 : 1 and a span-to-width aspect

ratio of 3 : 1. They state the critical Reynolds number where the instability is

generated.

More recently, Azzam (2003),Erturk et al. (2005) have obtained numerical

solutions for the lid driven cavity for Re = 20000. Azzam (2003) employed a

high order finite difference method in the x direction with a spectral Chebychev

collocation method in the y direction and used direct methods to obtain numer-

ical solutions for Reynolds numbers up to Re = 20000. Her result showed a

good agreement with Ghia et al. (1982) up to Re = 10000. Although her results

presented new data for Re = 20000, finer grids are needed to resolve some high

Reynolds number features. Two years later, the two-dimensional steady incom-

pressible lid-driven cavity problem has been solved by Erturk et al. (2005), who

used the streamfunction-vorticity formulation with a uniform grid of 601 × 601

points. A finite difference formulation was used to obtain the numerical solution.

Results have been presented at Reynolds numbers up to 21000. Their results

showed good agreement with Azzam (2003) results and they suggested finer grid

should be used to obtain higher Reynolds number solutions. An implicit finite

volume method is used to obtain the solution of the Navier-Stokes equations by

Sahin & Owens (2003). The finite volume method was applied to the resulting

formulation to obtain the two-dimensional solution for the lid-driven cavity at

Reynolds numbers up to 10000. Sahin & Owens (2003) show excellent agreement

with previous literature results. Simulation of the two-dimensional lid-driven

cavity has been performed by Bruneau & Saad (2004). A 512 × 512 grid size

was used to generate results for a wide range of Reynolds number. They found

a Hopf bifurcation firstly at Re = 8000, and a periodic solution was obtained at

Re = 10000. The finite element method has been used to solve the isothermal
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flow in two dimensional lid driven cavity by Sun et al. (2006). Where comparison

was possible, there was very good agreement with published results. They men-

tioned that the study results are relevant to devices, such as a scraped surface

heat exchanger. Kumar et al. (2009) used the multigrid method to present the so-

lution of the incompressible Navier-Stokes equations in two dimensions. A square

lid-driven cavity with a moving upper wall was considered. A fine uniform grid

of 513× 513 was used to obtain the solution for the steady flow for Re ≤ 10000.

Boppana & Gajjar (2010) used a hybrid scheme with spectral collocation and high

order finite differences to study the global stability in a square lid-driven cavity.

Their aim was to find the critical parameters that lead to the loss of stability for

aspect ratios of 1.5 and 2, and they found a reasonable agreement with the previ-

ous studies. A new paradigm of compact finite difference approximation, named

Five Points Constant Coefficient Second Order Compact (5PCC-SOC) scheme, is

proposed by Tian & Yu (2011) for the two-dimensional streamfunction-vorticity

formulation. Numerical results were obtained and compared with literature up

to Re = 7500 using various grids and showed good agreement.

In fluid mechanics, the desire to obtain the proper asymptotic description of

the flow at a high Reynolds number has attracted many researchers to study

various flow problems. One of the problems that has remained unsolved at high

Reynolds number is the the steady flow past a finite plate attached normally

to an unbounded wall, see Figure (1.2). A sketch of the flow problem is shown

in Figure (1.2) where the left-hand sketch is the entire plane and one on the

right is the local geometry that we solve. This flow has been of interest to

researchers because it is simpler than the other flows that have been studied whilst

simultaneously retaining many features of interest, such as separating boundary
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ψ ∼ −xy

ψ ∼ −xy

b

y

y

x

x+1−1

1

Figure 1.2: Corner flow geometry : (a) entire flow geometry, (b) local geometry .

layers, reattaching shear layer and eddies, see Mclachlan (1990). Also, it can

be amenable to accurate simulation because the eddies sizes seem not to grow

significantly when Re is increased; hence, the problem can be solved in a smaller

domain. Another reason is that a simple conformal mapping can be applied to

the geometry so that the grid points concentrate on places where the separation

takes place, see Mclachlan (1990).

At the beginning of the twentieth century, Prandtl (1905) presented his pi-

oneering work on boundary layers. He was the first to have an explanation of

the separation at high Reynolds numbers being associated with the separation of

boundary layers. His work became the basis of the further study of the separation

phenomena. Goldstein (1948) considered the singularities in the solution of the

boundary layer equations at the point of separation. Singularities occur when

the velocity distribution outside the boundary layers decrease, giving rise to an

adverse pressure gradient. In that case, the boundary layers equations cease to

be valid at, and near, the separation on the upstream and downstream sides. Leal

(1973) has used numerical methods to describe the separated flow over a finite
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flat plate placed on the x axis between x = −1 and 1. In the absence of the plate

at large distances, the flow is given by the stream function ψ = −xy. Leal (1973)

presented the numerical solution with Reynolds numbers ranging from 10 to 800.

Three-point backward differences and the Runge-Kutta method were employed

for the simulations. Leal (1973) reported that the separation point position dis-

placed slightly further away from the leading edge. The same formulation of the

problem has been discussed and solved by Suh & Liu (1990). Numerical methods

have been employed to obtain the numerical solutions at Reynolds numbers up to

Re = 2800. Suh & Liu (1990) applied Newton’s method to the full Navier-Stokes

equations in order to obtain the solution, and they observed the recirculating

region around the corner. Pauley et al. (1990) studied the boundary layer sepa-

ration under a sudden adverse pressure gradient in two dimensions. The problem

was studied by obtaining the numerical solution of the Navier-Stokes equations.

They found that the periodic vortex is created by an adverse pressure gradient. A

comparison of the numerical results with Gaster (1967) experiments were made

and good agreement was found. Mclachlan (1991) studied the case of corner

flow as a separated flow example in an infinite domain. Mclachlan (1991) used

the multigrid to exploit the rapid convergence and obtain the numerical solution

at a high Reynolds number. The Navier-Stokes equations were discretized and

solved at Reynolds numbers up to 5000. Mclachlan (1991) concluded that the

multigrid method is a practical and economical method and can be used instead

of Newton’s method.

Because of the limitations of computers time and memory, the majority

of attention for the solution of Navier-Stokes equations has been devoted to

two-dimensional problems, see Chiang et al. (1996). With an increase in com-

puter power, it has been possible to simulate the three dimensional problems.
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In Speziale (1987), it has been addressed that the three dimensional velocity-

vorticity formulation has advantages when it is used for solving problems as it is

more suited to a description of incompressible flow. With the primitive variables

formulation, problems have been faced in the accuracy and stability of the pres-

sure boundary conditions. However, the velocity-vorticity formulation in three

dimensions has a disadvantage in that one has to solve for more unknowns, i.e.

three velocity and three vorticity components. In this work, a novel formula-

tion used by Davies & Carpenter (2001) has been employed to overcome this

disadvantage. One of our aims is to obtain an accurate numerical solution of the

three-dimensional incompressible Navier-Stokes equations using this novel formu-

lation. There are various methods to solve such equations. In this work, we use

a hybrid spectral method with, in particular, the Chebychev collocation method

and the finite difference method. Our main motivation is to extend methods

developed by Azzam (2003), Gajjar & Azzam (2004) and Boppana & Gajjar

(2010).

The primitive variable formulation has been used to obtain the numerical solu-

tion by Takami & Kuwahara (1974), Ku et al. (1987), Perng & Street (1989), Al-

bensoeder & Kuhlmann (2005) and Albensoeder & Kuhlmann (2006). Takami &

Kuwahara (1974) obtained three dimensional numerical solutions up to Re = 400

employing a marker and cell (MAC) approach. Chebychev pseudo-spectral tech-

nique has been used by Ku et al. (1987) to obtain the solution up to Re = 1000.

Perng & Street (1989) used MAC strategy to obtain the solution at Re = 3200

using an explicit and implicit MAC scheme. A numerical method for three dimen-

sional lid-driven cavity is presented in Albensoeder & Kuhlmann (2005), using

the Chebyshev collocation method for Re = 1000 with different spanwise aspect

ratio (SAR). The collocation method has been employed for the rigid boundary
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in spanwise z direction, and the mixed Chebyshev-collocation-fourier method for

periodic boundary conditions in z direction. Albensoeder & Kuhlmann (2006)

investigated numerically the three-dimensional flow in a lid-driven cavity in cu-

bic geometry. The simulation was conducted by translating the three-dimensional

flow as a number of two-dimensional problems parallel to the third direction. The

problem was descretized using pseudospectral Chebyshev collocation method.

The singularity near the corner was avoided by using an analytical asymptotic

solution for accuracy.

Solutions to the three-dimensional lid-driven cavity using velocity-vorticity

have been obtained Jackson (1996), Yeckel et al. (1997), Young et al. (2000) and

Zunic et al. (2006). Using the multigrid method Jackson (1996) has obtained nu-

merical solutions for the three-dimensional lid driven cavity up to Re = 3200. His

results agreed well with the literature for moderate Reynolds number up to Re =

2000 but differences were observed for higher Reynolds number. Yeckel et al.

(1997) use parallel computers to study the steady flow in the three-dimensional

lid-driven cavity at moderate Reynolds numbers. They used finite elements and

a GMRES method with diagonal preconditioning to solve the resulting linear sys-

tem. Solutions at Re up to 500 were obtained. They failed to obtain the solution

at Re greater than 500. Young et al. (2000) used a combined boundary element

method - finite element method to show the accuracy of this combination in solv-

ing the three-dimensional Navier-Stokes equations. They have given results of the

velocity-vorticity formulation at moderate Re numbers up to 1000 in a typical

cubic cavity. The approach to solve three-dimensional Navier-Stokes equations

in velocity-vorticity formulation has been carried out by Zunic et al. (2006). A

boundary element method was employed to calculate the boundary vorticity while
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the finite element method was used for the transport equations. For the compu-

tation of velocity, finite element discretization was used. Parallelization has been

performed to speed up the implementation, and the three-dimensional lid-driven

cavity solution was obtained at Re = 100 and Re = 1000 to show an agreement

with the Young et al. (2000) result.

A mixture of experimental and simulation works have been obtained by sev-

eral researchers. Davis & Mallinson (1974) used central finite differences to obtain

solutions for the two-dimensional lid-driven cavity solution at various Reynolds

numbers. The same method was employed to gain a three-dimensional numeri-

cal solution of the lid-riven cavity at Re = 100 of spanwise aspect ratio (SAR)

1 : 1 : 3, and compared with experimental data. Their results suggest that all

two-dimensional results for the flow in lid-driven cavity at Re greater than 500 are

in error when compared with physical experiments because the two-dimensional

model overestimates the strength of the motion. Koseff et al. (1983) mentioned

that the general features of the flow can be obtained. Experimental data have

been compared with numerical simulation generated by two codes; one using a

finite difference method and the second employing the finite element method.

The code failed to resolve some precise features, such as Taylor-Gortler like lon-

gitudinal vortices, because of the limitation of the computing facilities at that

time. An experimental study was conducted by Koseff & Street (1984), in which

they investigated the influence of spanwise aspect ratio on the size of downstream

eddies. They obtained results based on the experiments of square cross-section

(B = D = 150mm), where B is the cavity width and D is the cavity depth,

of the cavity at various spanwise aspect ratios (SAR) of 1 : 1, 2 : 1 and 3 : 1,

where SAR = L/B where L is the cavity length. The experiments were con-

ducted with Re varying from Re = 1000 to Re = 10000. They found that, when
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SAR = 3 : 1, the downstream eddies increase in their size as Re increases. Un-

likely, for SAR = 1 : 1 and SAR = 2 : 1, the downstream eddies decrease in

their size as Re increases. A successful simulation of the three-dimensional lid-

driven cavity has been achieved by Freita et al. (1985) by using an improved finite

difference code. Results at Re = 3200 were obtained, and experimental results

validate the simulation results. Guermond et al. (2002) provided a comparison

between experimental results and numerical simulation results at Re = 1000, and

of spanwise aspect ratio (SAR) 1 : 1 : 2 in a rectangular lid-driven cavity. The

study observed the evolution of the flow up to t = 12, and it found that both

experimental and simulation results are sensitive to the boundary perturbation.

Very small changes to the boundary geometry have been applied in order to ob-

serve the sensitivity. They indicated that, for three-dimensional bounded region,

controlling the shape of the boundary and the value of boundary conditions are

more important than in two dimensions.

Although we solve the steady Navier-Stokes equations, it is important to

review some literature of the time dependent Navier-Stokes equations for the

lid driven cavity. A study of the hydrodynamic stability of flows such as the

lid driven cavity flow is complicated by the fact that the steady flow depends

on two variables and is non parallel. The linear stability of the flow leads to a

two dimensional edge value problems as described by Boppana & Gajjar (2010).

They identified the critical parameters which lead to loss of stability for the

lid driven cavity problems for various aspect ratio A = 1, 1.5 and A = 2 by

solving linearized unsteady equations. It is found that their results reasonably

agreed with literature for the square cavity and there were a discrepancy with the

literature for the other two aspect ratios. An alternative to solving eigenvalue

problem is the direct simulation of the flow. This approach was employed, for
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example, by Gustafson & Halasi (1986b) and Gustafson & Halasi (1986a) to study

driven cavity flow. The direct simulation is expensive in computer time especially

when the flow parameters are close to the critical values. But on the positive side,

it makes the flow accessible after the first Hopf bifurcation Auteri et al. (2002).

By a simulation, a numerical solutions of regularized unsteady lid driven cavity

have been obtained by Shen (1991) using a Chebyshev-Tau approximation. A

Hopf bifurcation is observed between Re = 10500, 15000 and periodic solutions

for the same interval. Cortes & Miller (1994) obtained numerical solutions of

the steady unit lid driven cavity and with aspect ratio two of Re = 5000 using

a spectral difference method. Their result for the aspect ratio two contradict

those obtained by Goodrich et al. (1990) who observed a periodic solutions for

Re = 5000 and Hopf bifurcation for 2000 ≤ Re ≤ 5000.

Poliashenko & Aidun (1995) identified the critical parameter Re for the lid

driven cavity and with aspect ratio 0.8, 1.5. They found that the square lid

driven cavity is stable with increasing Reynolds number. A similar comment is

mentioned by Fortin et al. (1997) who studied the Hopf bifurcation of the unit lid

driven cavity. These two references results are consistent with Shen (1991). The

stability of unsteady lid driven cavity was studied by Auteri et al. (2002) using

spectral method to discrtize the primitive variable formulation of the Navier-

Stokes equations. Their simulation determined the critical value of Re between

Re = 8017.6 and 8018.8. Tiesinga et al. (2002) studied the transition of the

steady to the periodic flow in the lid driven cavity using the Tau-method for time

and finite volume method of second order for variables. Their work predict the

first Hopf bifurcation at Re = 8375.

The literature review has revealed that obtaining the solution of Navier-Stokes

equations at high Reynolds number is challenging. This provides motivation to
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solve the lid-driven cavity problem in two and three dimensions as the literature

review reveals the shortage of results at Reynolds numbers greater than 20000.

Moreover, the literature review indicates that solving the steady separated corner

flow at high Reynolds number is challenging, thereby motivating us to solve this

problem, since it is rich in flow features, such as circulations and eddies.

1.1 Thesis Outline

In the following chapter, we review the numerical methods used to obtain the nu-

merical solution for the three problems; two and three-dimensional lid-driven cav-

ity problems and steady separated corner flow. In Chapter 3, a two-dimensional

test problem is used to test our method. In fact, in this thesis, a number of

test problems are chosen, as described in the later chapters, which are such that

they provide exact solutions to the governing equations provided suitable forcing

functions added. These provide a mean to test code solving equations as close as

possible to the real problems under consideration. Once the forcing functions are

removed, the equations revert in the most cases to the full 2D and 3D Navier-

Stokes equations that we wish to solve. the “exact solutions” give a measure

of the errors involved and convergence properties. This is especially important

when developing complicated codes to make sure that any mistakes are minimized

as much as possible. The problem is coded in MATLAB and the numerical so-

lution is compared with the exact solution. Two-dimensional lid-driven cavity

in streamfunction-vorticity formulation is solved at high Reynolds number using

the Chebyshev collocation method in the x and y directions, and we compare our

results with those available in the literature. Numerical solutions are obtained at

Reynolds numbers up to 25000.
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In Chapter 4, the two-dimensional steady separated corner flow in streamfunction-

vorticity formulation is solved using the same technique as detailed in the pre-

ceding chapter. Solutions are obtained for increasing domain sizes for various

Reynolds numbers up to 14000.

In Chapter 5, the three-dimensional lid-driven cavity in velocity-vorticity for-

mulation is considered using the Chebyshev collocation method to discretize the

equations in the y and z directions, and a finite difference method in the x direc-

tion. Results for various Reynolds numbers are obtained and compared with the

available literature. Finally, conclusions are provided in Chapter 6.



Chapter 2

Employed Methods

2.1 Finite Difference Method

In applied mathematics, many problems can be modelled in terms of partial dif-

ferential equations. These equations can be solved by numerical methods using

many different approaches. The finite difference method replaces each deriva-

tive in the differential equation with appropriate approximation, based on nodal

values. The local approximations can be derived by low order Taylor series ex-

pansions. First, we concentrate on how to approximate the derivative of a known

function by a finite difference formula based only on values of the function itself

at discrete points.

2.1.1 Basic Approximation

Let ψ(x) be a function of one variable that is assumed to be smooth, meaning

that the function can be differentiated several times. Furthermore, each derivative

is well defined and bounded over the interval, which contains the point of our

34
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interest x. Using Taylor’s series expansion, we have

ψ(x+ h) ≈ ψ(x) + hψ′(x) +
h2

2!
ψ′′(x) +

h3

3!
ψ′′′(x) + ... (2.1)

and

ψ(x− h) ≈ ψ(x)− hψ′(x) +
h2

2!
ψ′′(x)−

h3

3!
ψ′′′(x) + ... (2.2)

for the small value of h. The simplest way to approximate the first derivative of

the function φ at the point x is by subtracting equations ( 2.1) and ( 2.2), which

gives the following finite difference approximation

ψ′(x) ≈
ψ(x+ h)− ψ(x− h)

2h
+O(h2). (2.3)

In an analogous manner, the finite difference approximation to the second deriva-

tive can be obtained by adding equations ( 2.1) and ( 2.2) to have the following

form

ψ′′(x) ≈
ψ(x+ h)− 2ψ(x) + ψ(x− h)

h2
+O(h2). (2.4)

2.1.2 Finite Difference Scheme For The Laplacean Oper-

ator

Assuming that the function ψ = ψ(x, y), we divide the x − y plane in a mesh

with spacing ∆x = h and ∆y = k, as shown below in Figure (2.1). The node

(xi, yj) is given by

xi = x0 + ih i = 0, ..., N , yj = y0 + jk j = 0, ...,M.



CHAPTER 2. EMPLOYED METHODS 36

Figure 2.1: Divided plane in finite difference mesh.

At each point xi, yj we try to approximate the derivative of the function ψi,j =

ψ(xi, yj) in the x direction. Therefore, using (2.3) and (2.4), the approximation

for the derivatives in x are

(

∂ψ

∂x

)

i,j

=
ψi+1,j − ψi−1,j

2h
+O(h2), (2.5)

(

∂2ψ

∂x2

)

i,j

=
ψi+1,j − 2ψi,j + ψi−1,j

h2
+O(h2). (2.6)

These two approximations are centered at each point (xi, yj) and, therefore, are

called centered difference approximations. For the y direction, we follow the same

idea to obtain the first and second derivative respectively as follows:

(

∂ψ

∂y

)

i,j

=
ψi,j+1 − ψi,j−1

2k
+O(k2), (2.7)
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(

∂2ψ

∂y2

)

i,j

=
ψi,j+1 − 2ψi,j + ψi,j−1

k2
+O(k2). (2.8)

2.1.3 Fourth-Order Accurate Formulation

Another approximation to the derivatives is the five point formula of fourth-order

accuracy. The derivatives in this case, in x direction, are approximated by

(

∂ψ

∂x

)

i,j

=
ψi−2,j − 8ψi−1,j + 8ψi+1,j − ψi+2,j

12h
+O(h4), (2.9)

and

(

∂2ψ

∂x2

)

i,j

=
−ψi−2,j + 16ψi−1,j − 30ψi,j + 16ψi+1,j − ψi+2,j

12h2
+O(h4). (2.10)

For y direction, the derivatives can be approximated by

(

∂ψ

∂y

)

i,j

=
ψi,j−2 − 8ψi,j−1 + 8ψi,j+1 − ψi,j+2

12k
+O(k4), (2.11)

and

(

∂2ψ

∂y2

)

i,j

=
−ψi,j−2 + 16ψi,j−1 − 30ψi,j + 16ψi,j+1 − ψi,j+2

12k2
+O(k4), (2.12)

see Azzam (2003).
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2.1.4 Type Of Resulting Matrix Associated with Finite

Difference Discretization

For 1-D Problem

Consider the one-dimensional Poisson equation,

−ψ′′(x) = f(x) for x ∈ (0, 1) (2.13)

ψ(0) = ψ(1) = 0. (2.14)

The domain [0,1] can be discretized spaced with N + 1 points, such that

xi = i× h, i = 0, ...N

where h = 1/N . The value of ψ(x0) and ψ(xN ) are known from the boundary

conditions. At every point, we seek an approximation ψi to the exact solution

ψ(xi), where 1 ≤ i ≤ N − 1. If the centered difference approximation (2.10) is

used, then by the equation (2.13) the unknowns ψi, ψi−1, ψi+1, ψi−2, ψi+2 satisfy

the relation

−ψi−2 + 16ψi−1 − 30ψi + 16ψi+1 − ψi+2 = 12h2fi,

in which fi = f(xi). Notice that, for the boundaries i = 0 and i = N , the

equation will involve ψ0 and ψN , which are equal to zero in this case. Since

the points are at i = 1 and i = N − 1, we need points outside the domain to

be associated with the calculation, we apply the second-order finite difference,

rather than the fourth-order, to overcome this problem, which can be seen in the
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resulting matrix. Thus, for n = 5, the linear system obtained is of the form

Aψ = f (2.15)

where

A =
1

h2

































1

−1 2 −1

1 −16 30 −16 1

1 −16 30 −16 1

−1 2 −1

1

































. (2.16)

see Saad (1998).

It can be observed that the resulting matrix is a pentadiagonal matrix for the

fourth-order formulation, which will be the focus of this work. By solving (2.15),

one can obtain ψ at the nodal points.

For 2-D Problem

Similar to the previous case, consider the simple problem,

−

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

= f(x, y) in Ω (2.17)

ψ = 0 on Γ,

where Ω is now the rectangle (0, l1)× (0, l2) and Γ its boundary. The domain can

be discretized by taking N + 1 points in x direction and M + 1 in y direction;

xi = i× h, i = 0, ..., N yj = j × k, j = 0, ...,M
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where

h =
l1
N
, k =

l2
M
.

We number only the interior points, which are those (xi, yj) with 0 < i < N and

0 < j < M , since the boundary values are known. Again, since the derivative

approximations at i = 1, i = N − 1, j = 1and j = M − 1 need points outside

the domain to be associated with the calculation, we apply the second-order

finite difference, rather than the fourth-order, to overcome this problem. Now,

by (2.18), ψi,j , ψi−1,j, ψi+1,j , ψi−2,j, ψi+2,j satisfies the relation

−

(

−ψi−2,j + 16ψi−1,j − 30ψi,j + 16ψi+1,j − ψi+2,j

12h2

)

−

(

−ψi,j−2 + 16ψi,j−1 − 30ψi,j + 16ψi,j+1 − ψi,j+2

12k2

)

= f(xi, yj),

see Saad (1998).

In our work, we are interested in the type of matrix resulting from the finite

difference discretization. Figure (2.2) shows the pattern of the matrix before

imposing the boundary conditions corresponding to the above equation whenN =

9 and M = 7. The matrix pattern depends on how the unknowns are ordered;

Hence, to obtain a pentadiagonal pattern, the components of the unknowns vector
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ψ in (2.15) have to be in order, as they are indexed such that

ψ =



























































ψ1,1

ψ1,2

...

ψN+1,1

ψ1,2

...

ψN+1,2

ψ1,3

...

ψN+1,M+1



























































. (2.18)
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Figure 2.2: The pattern of the two-dimensional matrix resulting from finite dif-
ference discretization when N = 9 and M = 7.
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For 3-D Problem

From the discussion above, one can see that the pattern corresponding to the

finite difference discretization tends to be a banded and highly sparse matrix.

The same pattern of matrix resulting from discretization arises when we deal

with the three-dimensional problem. Figure (2.3) shows the pattern of the matrix

arising when solving the three dimensional Poisson equation using similar finite

difference approximation.

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nz = 5112

Figure 2.3: The pattern of matrix resulting from fourth-order finite difference
discretization for the three-dimensional Poisson problem.

The fourth-order accurate formula is preferable for use in association with

Chebyshev discretization in order to give a more accurate solution.
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2.2 Chebyshev Collocation Method

Definition The Chebyshev polynomial Tn(x) of the first kind is a polynomial in

x of degree n, defined by the relation

Tn(x) = cosnθ where x = cos θ,

which implies

Tn(x) = cos(n arccosx), for n ≥ 0 and x ∈ [−1, 1]. (2.19)

It can be seen that the variable θ can be taken as [0, π], and we know that cosnθ is

a polynomial of degree n in cos θ; therefore one can think of a recurrence relation.

Now, the elementary formulas for Chebyshev polynomials are as follow

cos 0θ = 1, cos 1θ = cos θ, cos 2θ = 2 cos2 θ − 1,

cos 3θ = 4 cos3−3 cos θ, cos 4θ = 8 cos4 θ − 8 cos2 θ + 1, ...

From (2.19), by x = cos θ, it can be deduced that the first few Chebyshev poly-

nomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, .... (2.20)

In general, we obtain the recurrence relation

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, ... (2.21)
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with

T0(x) = 1, T1(x) = x. (2.22)

The recurrence relation defined by (2.21) shows that the Chebyshev polynomial

is a polynomial of degree n with leading coefficient 2n−1 Mason & Handscomb

(2002).

2.2.1 The Chebyshev Expansion

The Gauss Lobatto collocation points are given by

xj = cos

(

jπ

N

)

j = 0, ..., N, (2.23)

where N+1 is the number of points, and a set of grid points in the domain [−1, 1]

that are ( 2
π
)d times as dense in the middle as an equally-spaced grid, where d is

the dimensions of the problem; i.e they cluster at boundaries, see Trefthen (2000).

Trefthen (2000) mentions that, to visualize these points, one can imagine them

as the projections on [−1, 1] of equispaced points on the upper half of the unit

circle.

We can calculate a discrete derivative, wj say, for any smooth continuous

function, f(xj) say, defined on the Chebyshev points. To do that, consider the

unique polynomial p(x) of degree ≤ N with p(xj) = fj , and let wj = p′(xj);

then wj = (DNf)j, where DN is the (N +1)× (N +1) Chebyshev differentiation

matrix. For simplicity, consider the case where N = 2. The Chebyshev points

will be 1, 0 and −1; using Lagrange interpolation across these points gives

p(x) =
(x− 0)

(1− 0)

(x+ 1)

(1 + 1)
f0 +

(x− 1)

(0− 1)

(x+ 1)

(0 + 1)
f1 +

(x− 1)

(−1− 1)

(x− 0)

(−1− 0)
f2 (2.24)
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and the differentiation of this equation gives

p′(x) = (x+
1

2
)f0 − 2xf1 + (x−

1

2
)f2. (2.25)

Now, the differentiation matrix can be assembled by evaluating equation (2.25)

at the Chebyshev points, with the jth point giving the jth row of the matrix

D2 =













3
2

−2 1
2

1
2

0 −1
2

−1
2

2 −3
2













, (2.26)

see Trefthen (2000).

Theorem Chebyshev differentiation matrix For each N ≥ 1, let the rows and

columns of the (N +1)× (N +1) Chebyshev spectral differentiation matrixDN be

indexed from 0 to N . The entries of this matrix are, see Canuto et al. (1988)

(D)i,j(x) =



































ci(−1)i+j

cj(xi−xj)
, i 6= j

−xj
2(1−x2j )

, 1 ≤ i = j ≤ N − 1

2N2+1
6

, i = j = 1

−2N2+1
6

, i = j = N

(2.27)

where

ci =











2, i = 0 or N

1, otherwise.
(2.28)

A second-order derivative can also be represented by the Chebyshev expansion,

which is the square of the Chebyshev differentiation matrix DN , see Canuto et al.
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(1988).

2.2.2 Discretization in 2-D

Consider a two-dimensional problem to be discretized using Chebyshev discretiza-

tion in the x and y directions. Intuitively, when dealing with a 2-D domain, the

differentiation matrix will be larger. To see that, let ψi,j = ψ(xi, yj), where xi

and yj are the Chebyshev collocation points in the x and y directions respectively.

Then, the partial derivative can be written as follows

(
∂ψ

∂x
)i,j =

N
∑

k=0

(Dx)i,kψk,j (2.29)

(
∂ψ

∂y
)i,j =

M
∑

k=0

(Dy)j,kψi,k, (2.30)

where N + 1 is the number of points in the x direction, M + 1 is the number

of points in the y direction, Dx is the Chebyshev differentiation matrix related

to the x points and Dy is the Chebyshev differentiation matrix related to the y

points. Equation (2.29) can be written in the following form,













































∂ψ
∂x 0,0

∂ψ
∂x 1,0

...

∂ψ
∂xN,0

...

∂ψ
∂x 0,M

...

∂ψ
∂xN,M













































= (2.31)
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(Dx)0,0 (Dx)0,1 . . . (Dx)0,N . . . 0 . . . 0

(Dx)1,0 (Dx)1,1 . . . (Dx)1,N . . . 0 . . . 0

...
...

...
...

...
...

...
...

(Dx)N,0 (Dx)N,1 . . . (Dx)N,N . . . 0 . . . 0

...
...

...
...

...
...

...
...

0 0 0 0 . . . (Dx)0,0 . . . (Dx)0,N
...

...
...

...
...

...
...

...

0 0 0 0 . . . (Dx)N,0 . . . (Dx)N,N

























































































ψ0,0

ψ1,0

...

ψN,0
...

ψ0,M

...

ψN,M













































.

Considering N = 2, the differential operator matrix for ∂
∂x

will be,





















































3
2

−2 3
2

0 0 0 0 0 0

1
2

0 −1
2

0 0 0 0 0 0

−1
2

2 −3
2

0 0 0 0 0 0

0 0 0 3
2

−2 3
2

0 0 0

0 0 0 1
2

0 −1
2

0 0 0

0 0 0 −1
2

2 −3
2

0 0 0

0 0 0 0 0 0 3
2

−2 3
2

0 0 0 0 0 0 1
2

0 −1
2

0 0 0 0 0 0 −1
2

2 −3
2





















































. (2.32)
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Now, the equation (2.30) can similarly be written in matrix form, as follows

















































∂ψ
∂y 0,0

∂ψ
∂y 1,0
...

∂ψ
∂y N,0
...

∂ψ
∂y 0,M

...

∂ψ
∂y N,M

















































=















































(Dy)0,0 0 . . . 0 . . . (Dy)0,N . . . 0

0 (Dy)0,0 . . . 0 . . . 0
. . . 0

...
...

...
...

...
...

. . .
...

0 0 . . . (Dy)0,0 . . . 0 . . . (Dy)0,N
...

...
...

...
...

...
...

...

(Dy)N,0 0 0 0 . . . (Dy)N,N . . . 0

...
. . .

. . .
...

...
...

...
...

0 0 (Dy)N,0 0 0 0 . . . (Dy)N,N





























































































ψ0,0

ψ1,0

...

ψN,0

...

ψ0,M

...

ψN,M















































,

(2.33)

and let N = 2, then the differential operator matrix for ∂
∂y
, will be,





















































3
2

0 0 −2 0 0 1
2

0 0

0 3
2

0 0 −2 0 0 1
2

0

0 0 3
2

0 0 −2 0 0 1
2

1
2

0 0 0 0 0 −1
2

0 0

0 1
2

0 0 0 0 0 −1
2

0

0 0 1
2

0 0 0 0 0 −1
2

−1
2

0 0 2 0 0 −3
2

0 0

0 −1
2

0 0 2 0 0 −3
2

0

0 0 −1
2

0 0 2 0 0 −3
2





















































. (2.34)

When an equation has derivatives with respect to x and y which have to be

discretized by Chebyshev methods, the differentiation matrix will contain ele-

ments similar to (2.32) and (2.34). This implies that there will be a block of size

(N+1)× (N +1), in the main diagonal, where N +1 is the number of Chebyshev

points. Figure (2.4) shows the case where N = 4 in both directions x and y; the
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dots indicate the non-zero entries.

0 5 10 15 20 25

0

5

10

15

20

25

nz = 224

Figure 2.4: The pattern of the two-dimensional differential matrix using N = 4.

In some problems we need N to be larger, therefore Figure (2.5) shows what

the matrix look like for a realistic value of N . In the Figure, we have N = 20 and

the shaded lines indicate the non-zero elements. Matrices (2.32) and (2.34) are

examples of Chebyshev differentiation matrices discretized on a tensor product

spectral grid. The easiest way to generate these matrices is to use the kronecker

product, Trefthen (2000). The kronecker product
⊗

of two matrices, a and b

is denoted by a ⊗ b, and the resulting matrix, C say, is formed by all possible

products of elements of a with those of b. If a is a p× q matrix and b is a r × s,

the kronecker product, C = a⊗ b, will be a matrix of the size pr× qs and of the

following form

Ck+(i−1)r,m+(j−1)s = ai,jbk,m
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0 100 200 300 400

0

50

100

150

200

250

300

350

400

nz = 18081

Figure 2.5: The pattern of the two-dimensional differential matrix using N = 20.

where j = 1, 2, ..., q, i = 1, 2, ..., p, m = 1, 2, ..., s and k = 1, 2, ..., r. Alternatively,

the entries will be assembled in the following way,



















a1,1 × b a1,2 × b . . . a1,q × b

a2,1 × b a2,2 × b . . . a2,q × b

...
...

...
...

ap,1 × b ap,2 × b . . . ap,q × b



















. (2.35)



Chapter 3

Solution to the 2-D

Navier-Stokes Equations

3.1 Introduction

In this chapter, we consider the steady Navier-Stokes problem to be solved using

numerical methods. Firstly, we consider a test problem with a known solution

and therefore the results of the numerical simulations can be compared with

the exact solution. Secondly, we solve the lid-driven cavity problem, and the

results can be compared with previous results. We discretize the problem using

Chebyshev discretization in the x and y directions. Because of the non-linearity

of the Navier-Stokes equations, Newton linearization is used to work in terms of

correction terms. Here, we combine the use of Newton linearization with a direct

solver to solve the vorticity-streamfunction formulation. We solve the Navier-

Stokes problem exploiting the accuracy of the use of Chebyshev discretization to

obtain the numerical solution at high Reynolds number and to recognize the type

of resulting matrix. The resulting matrix which arise from the discretization is

51
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usually full and the linear system is solved by a direct solver.

3.2 Test Problem

3.2.1 Problem Formulation

The equations that describe the flow of an incompressible unsteady fluid flow in

non-dimensional form are the continuity equation,

ux + vy = 0, (3.1)

and the Navier-Stokes equations,

ut + (u.∇)u = −∇P +
1

Re
∇2u (3.2)

vt + (u.∇)v = −∇P +
1

Re
∇2v, (3.3)

where (u, v) is the velocity of fluid in the (x, y) directions, P is the fluid pressure

and the Reynolds number Re is defined as Uw
ν
, where U is the velocity of the lid

and w is the cavity width.

An alternative formulation of two-dimensional Navier-Stokes equations is to

use the vorticity (ω) and streamfunction (ψ) as dependent variables. Equations

(3.1), (3.2) and (3.3) are expressed in terms of streamfunction (ψ where u = ψy

and v = −ψx) and vorticity (ω = vx−uy), which gives the following formulation,

∇2ψ = ω

and ωt + ψyωx − ψxωy =
1

Re
∇2ω. (3.4)
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To test our methods, we first work with a simple modification to the above

equations; namely

∇2ψ = ω

and ψyωx − ψxωy =
1

Re
∇2ω + F (x, y), (3.5)

where

F (x, y) =
(

(y − 1)Re
1

2 + 1
)

Re e−Re
( 1
2)y sin x cosx−

1

Re
sin x

(

(Re− 1)2eRe
( 1
2)y + y − 1

)

.

These equations, together with the boundary conditions, see Figure (3.1)



































ψ = 0 and ω = 0 , for x = 0, 0 ≤ y ≤ 1,

ψ = 0 and ω = 0 , for x = π, 0 ≤ y ≤ 1,

ψ = 0 and ω = Resinx , for y = 0, 0 ≤ x ≤ π,

ψ = e−
√
Re sin x and ω = (Re− 1)e−

√
Rey sin x , for y = 1, 0 ≤ x ≤ π,

(3.6)

            D

ψ = e−
√
Re sin x

ω = (Re− 1)e−
√
Rey sin x

ψ = 0
ω = 0

ψ = 0
ω = Resinx

ψ = 0
ω = 0

width

1

π0 x

y

Figure 3.1: Sketch of the lid-driven cavity boundary condition.
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have an exact solution given by

ψ = (y + e−
√
Rey − 1)sinx (3.7)

ω = (e−
√
Rey(Re− 1)− (y − 1))sinx. (3.8)

3.2.2 Discretization in x and y Directions

In the x and y directions, Chebyshev collocation is used, evaluating the function

values at the collocation points. As mentioned previously, we use the collocation

in both directions for this test problem to see the accuracy of the Chebyshev

collocation method and to gain the high resolution which is required to resolve

the thin layers at high Reynolds number. The mapping x ∈ (0, 1) → z ∈ (−1, 1)

in Chebyshev space has to be used such that the collocation points are given by

z = zj = cos(
jπ

N
), j = 0, 1, ..., N, (3.9)

and

x = x(zi) = xi =
π

2
(zi + 1), j = 0, 1, ..., N. (3.10)

In a similar way, the mapping can be used for the y direction,

y = y(zj) = yj =
1

2
(zj + 1), j = 0, 1, ...,M. (3.11)

The function ψi,j is defined as ψi,j = ψ(x = xi, y = yj). Then, the derivatives in

x and y are given respectively as follows

(

∂ψ

∂x

)

i,j

=
2

π

N
∑

k=0

D1i,kψk,j, ⇒

(

∂2ψ

∂x2

)

i,j

=
4

π2

N
∑

k=0

D12i,kψk,j (3.12)
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(

∂ψ

∂y

)

i,j

= 2

M
∑

k=0

D2j,kψi,k, ⇒

(

∂2ψ

∂y2

)

i,j

= 4

M
∑

k=0

D22j,kψi,k, (3.13)

where D1 and D2 are the differentiation matrices as described previously and

N ,M are the number of points in the x and y directions respectively. The sec-

ond derivative can be obtained simply by squaring the differentiation matrix.

Therefore, the discrete forms of the equations are

ωi,j =
4

π2

N
∑

k=0

D12i,kψk,j + 4
M
∑

k=0

D22j,kψi,k, (3.14)

2

M
∑

k=0

D2j,kψi,k
2

π

N
∑

k=0

D1i,kωk,j −
2

π

N
∑

k=0

D1i,kψk,j2

M
∑

k=0

D2j,kωi,k (3.15)

=
1

Re
(
4

π2

N
∑

k=0

D12i,kψk,j + 4
M
∑

k=0

D22j,kψi,k).

3.2.3 Linearization

One difficulty with the system, (3.14) and (3.16), is the non-linearity. The non-

linearity can be overcome by using a Newton-Raphson linearization and working

in terms of correction terms. Let Ψ and Ω be the correction terms where

ωi,j = ω̄i,j + Ωi,j , (3.16)

ψi,j = ψ̄i,j +Ψi,j, (3.17)
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such that |Ψi,j|,|Ωi,j| ≪ 1. The overbar quantities denote some initial guesses.

Substituting (3.16) and (3.17) in (3.14) and (3.16) leads to

ω̄i,j + Ωi,j =
4

π2

N
∑

k=0

D12i,k(ψ̄k,j +Ψk,j) + 4

M
∑

k=0

D22j,k(ψ̄i,k +Ψi,k), (3.18)

and

2

M
∑

k=0

D2j,k(ψ̄i,k+Ψi,k)
2

π

N
∑

k=0

D1i,k(ω̄k,j+Ωk,j)−
2

π

N
∑

k=0

D1i,k(ψ̄k,j+Ψk,j)2

M
∑

k=0

D2j,k(ω̄i,k+Ωi,k) = Rhi,j

(3.19)

where

Rhi,j =
4

π2Re

N
∑

k=0

D12i,k(ω̄k,j + Ωk,j) +
4

Re

M
∑

k=0

D22j,k(ω̄i,k + Ωi,k).

The above are linearized equations by neglecting second-order quantities to give

Ωi,j −
4

π2

N
∑

k=0

D12i,kΨk,j − 4
M
∑

k=0

D22j,kΨi,k = R1i,j, (3.20)

where

R1i,j =
4

π2

N
∑

k=0

D12i,kψ̄k,j + 4

M
∑

k=0

D22j,kψ̄i,k − ω̄i,j,

and

{

4

π

M
∑

k=0

D2j,kψ̄i,k

N
∑

k=0

D1i,k −
4

π

N
∑

k=0

D1i,kψ̄k,j

M
∑

k=0

D2j,k (3.21)

−
4

π2Re

N
∑

k=0

D12i,k −
4

Re

M
∑

k=0

D22j,k

}

Ωi,j

+

{

4

π

N
∑

k=0

D1i,kω̄k,j

M
∑

k=0

D2j,k −
4

π

M
∑

k=0

D2j,kω̄i,k

N
∑

k=0

D1i,k

}

Ψi,j = R2i,j,
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where

R2i,j =
4

π2Re

N
∑

k=0

D12i,kω̄k,j +
4

Re

M
∑

k=0

D22j,kω̄i,k

−
4

π

M
∑

k=0

D2j,kψ̄i,k

N
∑

k=0

D1i,kω̄k,j

+
4

π

N
∑

k=0

D1i,kψ̄k,j

M
∑

k=0

D2j,kω̄i,k.

Collecting the discrete equations together gives the following system of the form







A B

C D













Ω

Ψ






=







R1

R2






(3.22)

where A = (Ai,j) , B = (Bi,j) , C = (Ci,j) , D = (Di,j) and

Ai,j = Ii,j

Bi,j = −
4

π2

N
∑

k=0

D12i,kΨk,j − 4
M
∑

k=0

D22j,kΨi,k

Ci,j =
4

π

M
∑

k=0

D2j,kψ̄i,k

N
∑

k=0

D1i,k −
4

π

N
∑

k=0

D1i,kψ̄k,j

M
∑

k=0

D2j,k

−
4

π2Re

N
∑

k=0

D12i,k −
4

Re

M
∑

k=0

D22j,k

Di,j =
4

π

N
∑

k=0

D1i,kω̄k,j

M
∑

k=0

D2j,k −
4

π

M
∑

k=0

D2j,kω̄i,k

N
∑

k=0

D1i,k.

Here, the matrices A,B,C and D are those of size (N + 1) × (M + 1), and

the vectors R1 and R2 are those of size (N + 1)(M + 1) × 1. Recall that the

Kronecker operator can be used to give the Chebyshev differentiation matrices.
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For example, matrix C can be written as follows

C =
4

π
(((D2⊗ I1)ψ̄)) ∗ (I2⊗D1))−

4

π
diag(((I2⊗D1)ψ̄)) ∗ ((D2⊗ I1))

− (
4

π2Re
)(I2⊗D12)− (

4

Re
)(D22 ⊗ I1),

where I1 is the identity matrix of size (N + 1)× (N + 1) and I2 is the identity

matrix of size (M+1)×(M+1). The vectors ψ̄, ω̄,Ψ and Ω have to be ordered in

a particular way, similar to the way of ordering the vector (2.18). After applying

the Newton linearization, the boundary condition becomes



































Ψi,j = −ψ̄i,j & Ωi,j = −ω̄i,j for, x = 0,

Ψi,j = −ψ̄i,j & Ωi,j = −ω̄i,j for, x = π,

Ψi,j = −ψ̄i,j & Ωi,j = Re sin xi − ψ̄i,j for, y = 0,

Ψi,j = e−
√
Re sin xi − ψ̄i,j & Ωi,j = (Re− 1)e−

√
Rey sin xi − ω̄i,j for, y = 1.

(3.23)

The linear system (3.22) has been solved after imposing the boundary condi-

tions (3.23) in the MATLAB programming environment, and the obtained results

are presented in the next section.

3.2.4 Numerical Results

A direct solver has been used to solve the linear system (3.22) with the boundary

conditions (3.23) in order to obtain the streamline function ψ and vorticity ω. The

solver combined the Newton iteration with the MATLAB backslash (\) operator

to obtain the solution corrected by correction terms Ψ and Ω, as mentioned

above. The convergence stopping criteria that halt the Newton iteration when
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the desired corrections have been made is as follows,

ǫ = max (RΨ, RΩ) ≤ 10−6 (3.24)

where RΨ and RΩ are the infinite norm of the correction terms vectors Ψ and Ω

respectively. In other words, they can be written as RΨ = ‖Ψ‖∞ and RΩ = ‖Ω‖∞.

In Figure (3.2), we fix the number of points in one direction and vary the number

of points in the other direction from 3 to 40 to obtain the numerical solution at

Re = 1. This shows how the numerical error decreases quickly as the number of

points is increased. It is obvious that the numerical solution converges to the exact

solution and Table (3.1) emphasize that. The numerical errors of ψ, tabulated in

(3.1) on various grids for Re = 1, are calculated such that ‖ψexact−ψnumerical‖∞.

Also, the numerical errors of ω listed in the same table are calculated in the

same way. Figure (3.3) shows the relation between the numerical error and Re

on various grids. It also shows the dependence of the grid size to the accuracy

of the solutions. The method maintains the accuracy if the implementation is

run on a fine grid as in Figures (3.4). From these figures, one can see that the

maximum error occurs near the boundary conditions where the solution changes

quickly. Furthermore, it can be observed that the error increases as we increase

the Reynolds number, see Figures (3.3,3.4).
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Figure 3.2: Numerical error of ψ (left) and ω (right) at Re = 1.
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Grid size Error of ψ Error of ω

5× 5 7.03895E-4 1.12039E-2
10× 10 3.97234E-10 6.34623E-9
20× 20 3.16414E-15 4.52971E-14
30× 30 6.38378E-15 3.97460E-14
40× 40 2.77556E-15 5.77316E-14

Table 3.1: Numerical error of ψ and ω at Re = 1 on various grids.
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Figure 3.3: Numerical error of various Re on various grids size.
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Figure 3.4: Numerical error of ψ (left) and ω (right) at Re = 10, 30 on a 51× 51 grid.
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3.3 Solution to 2-D Lid-Driven Cavity

In this section, we consider the two-dimensional lid-driven cavity to be solved

using the same technique that has been used to solve the test problem above.

Setting the function F in the system (3.5) to zero with the boundary conditions

shown in Figure (3.5) leads to the lid-driven cavity problem.

            D

A1
B1

A2
B2

A3
B3

A4
B4

Width

1

1x

y

0

Figure 3.5: Sketch of the lid-driven cavity boundary condition.

In Figure (3.5), the various quantities are given as



























































































A1 : ψ = 0, for 0 < x < 1, y = 1

B1 : ψy = 1, for 0 < x < 1, y = 1

A2 : ψ = 0, for 0 < y < 1, x = 0

B2 :
∫ 1

0

(

∂2ψ
∂y2

− ω
)

dx = 0, for 0 < y < 1, x = 0

A3 : ψ = 0, for 0 < x < 1, y = 0

B3 : ψy = 0, for 0 < x < 1, y = 0

A4 : ψ = 0, for 0 < y < 1, x = 1

B4
∫ 1

0

[

∫ x

0

(

∂2ψ
∂y2

− ω
)

dx
]

dx = 0, for 0 < y < 1, x = 1.

(3.25)
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At the corners of y = 1, we use a different boundary condition, which is

∫ 1

0

(

∂2ψ

∂x2
− ω

)

dy = 1,

while for the boundary conditions of the corners of y = 0, we use

∫ 1

0

[
∫ y

0

(

∂2ψ

∂x2
− ω

)

dy

]

dy = 0.

3.3.1 Derivation and Implementation of Boundary Con-

ditions

After applying the Newton linearization, the boundary conditions become



























































































Ψ = −ψ̄, for 0 < x < 1, y = 1

Ψy = 1− ψ̄y, for 0 < x < 1, y = 1

Ψ = −ψ̄, for 0 < y < 1, x = 0
∫ 1

0

(

∂2Ψ
∂y2

− Ω
)

dx = −
∫ 1

0

(

∂2ψ̄
∂y2

− ω̄
)

dx, for 0 < y < 1, x = 0

Ψ = −ψ̄, for 0 < x < 1, y = 0

Ψy = ψ̄y, for 0 < x < 1, y = 0

Ψ = −ψ̄, for 0 < y < 1, x = 1
∫ 1

0

[

∫ x

0

(

∂2Ψ
∂y2

− Ω
)

dy
]

dx =
∫ 1

0

[

∫ x

0

(

∂2ψ̄
∂y2

− ω̄
)

dx
]

dx for 0 < y < 1, x = 1.

For the corners of y = 1, the boundary conditions become

∫ 1

0

(

∂2Ψ

∂x2
− Ω

)

dy = −1−

∫ 1

0

(

∂2ψ̄

∂x2
− ω̄

)

dy,
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and for the boundary conditions of the corners of y = 0, the boundary conditions

become

∫ 1

0

[
∫ y

0

(

∂2Ψ

∂x2
− Ω

)

dy

]

dy = −

∫ 1

0

[
∫ y

0

(

∂2ψ̄

∂x2
− ω̄

)

dy

]

dy.

One difficulty arises when using the vorticity-streamfunction formulation is the

implementation of the no-slip boundary condition on the domain. Here, a tech-

nique similar to one used by Davies & Carpenter (1997), Azzam (2003), Gajjar &

Azzam (2004) and Davies & Carpenter (2001) is employed, where some integral

constraints are used instead. These integral relations are derived from the Navier-

Stokes equations by integration, which leads to the compatibility constraints on

the vorticity. Consider the Navier Stokes equations (3.4) in the domain 0 ≤ x ≤ 1

and 0 ≤ y ≤ 1, with the boundary condition (3.25). These constraints conditions

are found by integrating the first equation of (3.4) system with respect to y to

obtain
∫ y

0

(

∂2ψ

∂x2
+
∂2ψ

∂y2
− ω

)

dy = 0, (3.26)

which gives

[ψy]
y
0 +

∫ y

0

(

∂2ψ

∂x2
− ω

)

dy = 0. (3.27)

By evaluating this at y = 1 and making use of conditions on ψy, we obtain

1 +

∫ 1

0

(

∂2ψ

∂x2
− ω

)

dy = 0. (3.28)

Putting ωi,j = ω̄i,j + Ωi,j , ψi,j = ψ̄i,j +Ψi,j gives

∫ 1

0

(

∂2Ψ

∂x2
− Ω

)

dy = −

∫ y

0

(

∂2ψ̄

∂x2
− ω̄

)

dy − 1. (3.29)
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Equation (3.29) is one condition that we make use of. The second condition can

be obtained by integrating (3.26) again with respect to y, which gives

∫ 1

0

[ψy]
1
0 +

∫ 1

0

[
∫ y

0

(

∂2ψ

∂x2
− ω

)

dy

]

dy = 0, (3.30)

and hence

ψ(1)− ψ(0) +

∫ 1

0

[
∫ y

0

(

∂2ψ

∂x2
− ω

)

dy

]

dy = 0. (3.31)

Using ψ(1) = ψ(0) = 0 on y = 0, we find

∫ 1

0

[
∫ y

0

(

∂2ψ

∂x2
− ω

)

dy

]

dy = 0. (3.32)

Putting ωi,j = ω̄i,j + Ωi,j , ψi,j = ψ̄i,j +Ψi,j gives

∫ 1

0

[∫ y

0

(

∂2Ψ

∂x2
− Ω

)]

dy = −

∫ 1

0

[∫ y

0

(

∂2ψ̄

∂x2
− ω̄

)

dy

]

dy. (3.33)

From both conditions, it is obvious that we need to approximate the integrals of

the form
∫

h(y)dy at h(yi), where h(y) =
∫ y

0
g(y1)dy1. This can be obtained using

Gaussian Quadrature with Legendre Polynomial as basis functions, such that

I =

∫ 1

0

h(y)dy =
N
∑

j=1

qjh(pj) (3.34)

where qj are known weights and pj are known points. If we let N be the degree

of the approximating Chebyshev polynomial, then h(y) can be written as follows

h(y) =

N
∑

n=0

anTn(z), (3.35)
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so that

h(yk) =

N
∑

n=0

anTn(zk),

where zk are the Chebyshev collocation points in [0, 1]) for k = 0, 1, 2, ..., N . This

leads to the following matrix form

(H)N+1×1 = (T)(N+1)×(N+1)(a)(N+1)×1

where T = (Tjk) = Tk(zj) = cos(n cos−1(zj)) = cos(njπ
N

) where j = 0, 1, 2, ..., N

and H = (h(yk)). Hence, a = ak can be written as

a = (T)−1H.

To approximate the h at the quadrature points, Equation 3.35 can be used to

give

h(pj) =
N
∑

n=0

anTn(z̄j), j = 1, 2, ..., NC

where z̄j = j/NC where j = 0, 1, 2, ..., NC. Hence, the vector h = h(pj) can be

given as

h = (B)NC+1×(N+1)













a0
...

an













(3.36)

where Bjn = Tn(z̄j). Substituting a in (3.36) gives

h =
(

B(T)−1
)

H.
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Therefore, I can be given by

I = q.h = q.
(

B(T)−1
)

H.

The above discussion is the same as in Azzam (2003). By the same token, the

other boundary conditions integrals can be derived by integrating the first equa-

tion of (3.4) system with respect to x.

3.3.2 Numerical Results for Lid-Driven Cavity Flow

In this section, numerical results are discussed for the square-driven cavity. As

already described, the problem was discretized using the spectral collocation

method in both directions, x and y, and then solved directly using MATLAB. The

upper moving wall boundary condition has been modified to ψy = 1 − e500x(1−x)

to avoid the difficulty of a singularity at the corner. Without this modifica-

tion and solving for the cavity problem we could not generate results at high

Reynolds number as the code fails to converge. Figures (3.6,3.7) show the u-

velocity profiles along the vertical lines passing the geometry center of the cavity;

x = 1/2. Moreover, the Figure (3.8) shows the v-velocity profiles along the hor-

izontal lines, passing the geometric center of the cavity; y = 1/2 on a 121× 121

grid at 5000 ≤ Re ≤ 12500. The high Re profiles of u-velocity show a sharp

twist near y = 1, which can be observed clearly when Re ≥ 5000 in Figure 3.7.

A similar behavior can be observed in the profiles of v-velocity when x is close

to 1. Ghia et al. (1982) have reported the same behavior and mentioned that

the kink move towards the upper wall as Re increases, as noted in Figure 3.7.

The u-velocity and v-velocity profiles in Figures (3.6-3.8) show a good agreement

with the well-known Ghia et al. (1982) study. Furthermore, good agreement is
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observed with Erturk et al. (2005) results for Re ≤ 12500. For Re ≥ 15000,

one can note the deviation between the present results and those of Erturk et al.

(2005) as Re increases, see Figure 3.7. We believe that the present work results

are more accurate for two reasons. Firstly, Erturk et al. (2005) generated the

results using the finite difference method, while in the present work we use a

spectral method in both directions. Secondly, Tables (3.4-3.8) show an agree-

ment with Azzam (2003) results where a Chebyshev collocation discretization

has been used in one direction and finite difference in the other direction. How-

ever, there is some disagreement with Azzam (2003) in some precise features for

high Reynolds numbers Re ≥ 15000 which will be mentioned later. The Figure

(3.9) shows a good agreement of vorticity quantity along the moving wall of the

cavity, with the results tabulated by Ghia et al. (1982) at various Re. An often

compared quantity is the tabulating of u-velocity values along the horizontal line

passing through the geometry center and, similarly, tabulating the v-velocity val-

ues along the vertical line passing through the geometry center. A difficulty is

faced when we want to tabulate these values to be compared with some reference

results. That is, previous investigators have worked on uniform grids unlike the

present work which is carried out on non-uniform grids. Therefore, the possi-

bility of finding common points is low and, hence, the present results had to be

approximated on a uniform grid. For this purpose, approximation of the present

results are calculated on uniform grid. We know that a smooth function f(x)

can be approximated using Chebyshev polynomials, as explained in Chapter 2,

as follows

f(x) =

N
∑

k=0

akTk(x), (3.37)
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where N is the number of nodes and ak will be explained shortly. Consider that

the data of u-velocity along the horizontal line passing through the cavity center

on xj points is expressed in vector u(x), where

xj = cos
jπ

N
j = 0, ..., N.

According to 3.37, a data of u(x) can be approximated using Chebyshev polyno-

mials as follows

u(xj) =

N
∑

k=0

akTk(xj). (3.38)

For simplicity of notation, let u(xj) = uj. In matrix form Equation 3.38 can be

written as

u
¯
=

























u0

u1
...

...

uN

























=

























T
¯

















































a0

a1
...

...

aN

























, (3.39)

where T
¯
= Tjk = Tk(xj) = cos(k cos−1(xj)). From (3.39), the coefficient vector a

can be written as follows

a = T−1u k = 0, 1, ..., N. (3.40)

Now, we want the value of u(xj) on the uniform spacing points. In other words,

we want the value of u(x̄j), where

x̄j =
j

p
j = 0, 1, ..., p.
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Here p, is the number of points. From 3.37, the approximation at the equi-spaced

points can be written as follows

u(x̄j) =
N
∑

k=0

akTk(x̄j), (3.41)

which leads the matrix form as

u
¯
=

























u(x̄0)

u(x̄1)

...

...

u(x̄p)

























(p+1×1)

=

























T̄
¯

























p+1×N+1

























a0

a1
...

...

aN

























(N+1×1)

, (3.42)

where T̄
¯
= (T̄ jk) = (T̄k(x̄j)) = cos(k arccos(x̄j)). Putting a = T−1u provides the

desired value at equi-spaced points

u
¯
=

























u(x̄0)

u(x̄1)

...

...

u(x̄p)

























=

























T̄
¯

















































T
¯

−1

















































u(x0)

u(x1)

...

...

u(xN)

























. (3.43)

Having the u,v-velocity at Re = 1000 approximated on the uniform grid, Tables

(3.2) and (3.3) show excellent agreement with Ghia et al. (1982) and Botella &

Peyret (1998). The opposite sign in reference Botella & Peyret (1998) is due to the

opposite direction of the driven wall movement. Excellent agreement is observed

mostly for the fourth digit, with results tabulated by Botella & Peyret (1998).
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Figures (3.9-3.10) show a comparison of the vorticity along the moving wall

(y = 1) with Ghia et al. (1982) results at Re = 100, 400, 1000, 3200, 5000, 7500

and at Re = 10000. The comparison shows good agreement, but one can ob-

serve some oscillations in our results. These oscillations increases when Re is

increased, as it is clear at Re = 10000. However, using finer grid size decreases

the oscillations as we tried to to generate the values of vorticity along the moving

wall on a grid coarser than 120×120, and the oscillations appeared at Re < 3200.

Figures (3.11-3.22) show the streamlines and vorticity contour levels for 100 ≤

Re ≤ 25000. These figures show the primary vortices accompanied by secondary

and tertiary vortices in the corner. It is clear that the center of the primary

vortex commences near the top right corner at Re = 100, and moves towards the

center as Re increases. Its location remains stable at the center for Re ≥ 5000,

as observed by Ghia et al. (1982). The primary vortex size is sensitive to the grid

size, as it is obvious when the size of primary vortex at Re = 2000 on 51× 51 is

compared with the size of the primary vortex at the same Re on 65× 65 grid. It

is clearly observed at Re = 5000 where the primary vortex occupies nearly the

half of the domain on the coarse grid 65× 65, whereas, it looks much smaller on

the fine grid 130×130. Secondary eddies appear near the bottom left corner and

bottom right corner as Re is increased. Also, they appear near the top of the left

wall. Moffatt (1964) mentioned a sequence of eddies near the bottom corners is

observed up to tertiary eddies, see Figures (3.23), (3.24) and 3.25. The size of

these eddies decreases as we get closer to the corner. The tertiary eddies start

appearing in the bottom right for Re ≥ 5000, while they appear in the bottom

left for Re ≥ 15000. Barragy & Carey (1997) have reported the secondary top left

vortex encloses tertiary vortex appears at 10500 ≤ Re ≤ 11000, and mentioned
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that this tertiary has not been reported previously. The present work shows the

secondary top left vortex encloses the tertiary third vortex at Re > 10000 and

still appear at Re > 11000. This is clear in Figures (3.23), (3.24) and (3.25),

which show the corners and top left eddies at Re = 20000, 22000 and 25000.

New results at high Re are reported in this work, and results at Re up to 25000

are generated using Chebychev collocation in each direction. Streamlines and

vorticity contours levels are plotted in Figures (3.20-3.22) for Re = 23000, 24000

and 25000 on a 131 × 131 grid. Secondary vortices are zoomed in and plotted

in figures (3.23), (3.24) and 3.25 with notation T, B, L and R, which denote

respectively top, bottom, left and right. The subscript numbers denote the hier-

archy of the secondary vortices. However, it is worth mentioning that these new

high Reynolds number results especially for Re ≥ 20000 need to be resolved on

finer grids as more oscillations are very clear in these vorticity contours near the

corners and in the middle of the contour. This suggests finer grid are needed to

obtain more accurate results.

Tables (3.4-3.8) provide a comprehensive comparison of the primary and sec-

ondary vortices properties. The present work shows an agreement with Ghia et al.

(1982) and Azzam (2003) for Re ≤ 10000, and with Azzam (2003) at Re = 15000

except in TL2, BL3 and BR3 properties, where one can see the differences in the

vorticity values. At Re = 20000, there is a slight difference, which is 10−1, in the

value of minimum of the streamfunction in the primary vortex. For TL2, BL3

and BR3 properties at Re = 20000, the same comment of Re = 15000 is applied

here. However, the present work may be more accurate than Azzam (2003) due to

the use of spectral discretization in both directions, rather than one direction as

in Azzam (2003). Moreover, in Azzam’s work, the high order differencing reduces
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in order at the boundaries, which is not the case with our use of spectral meth-

ods. For higher Re, Table (3.9) shows the properties of primary and secondary

vortices at Re values 21000, 23000 and 25000. For Re > 20000, the maximum

streamfunction values of the primary vortices increases as the Reynolds number is

increased as it can be observed in table (3.9) where again a finer grid is suggested

to obtain more accurate results.
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Figure 3.6: Comparison of u-velocity profiles along a vertical line passing through the geometry centre at various Reynolds numbers
using N =M = 120 solution.
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Figure 3.7: Comparison of u-velocity profiles along a vertical line passing through the
geometry centre at various Reynolds numbers using N =M = 120 solution.



C
H
A
P
T
E
R

3
.

S
O
L
U
T
IO

N
T
O

T
H
E

2
-D

N
A
V
IE

R
-S
T
O
K
E
S
E
Q
U
A
T
IO

N
S

77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
present
Ghia et al.
Erturk et al.

Re = 5000

v
(x
,1
/
2
)

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
present
Ghia et al.
Erturk et al.

Re = 7500

v
(x
,1
/
2
)

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
present
Ghia et al.
Erturk et al.

Re = 10000

v
(x
,1
/
2
)

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
present
Erturk et al.

Re = 12500

v
(x
,1
/
2
)

x

Figure 3.8: Comparison of v-velocity profiles along a horizontal line passing through the geometry centre at various Reynolds
numbers using N =M = 120 solution.
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Figure 3.9: Comparison of the vorticity along moving wall (y = 1) with Ghia et al. results at Re = 100, Re = 400, Re = 1000
and Re = 3200 using N =M = 120.



CHAPTER 3. SOLUTION TO THE 2-D NAVIER-STOKES EQUATIONS 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

 

 
Ghia et al
present

Re = 5000

ω
(x
,1

)

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

 

 
Ghia et al
present

Re = 7500

ω
(x
,1

)

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

 

 
Ghia et al
present

Re = 10000

ω
(x
,1

)

x

Figure 3.10: Comparison of the vorticity along moving wall (y = 1) with Ghia et al.
results at Re = 5000, Re = 7500 and Re = 10000 using N =M = 120.
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y u,Ref. Ghia et al. (1982) u,Ref.Botella & Peyret (1998) u,present

1.0000 1.00000 -1.0000000 1.0000000
0.9766 0.65928 -0.6644227 0.6639700
0.9688 0.57492 -0.5808359 0.5803324
0.9609 0.51117 -0.5169277 0.5171793
0.9531 0.46604 -0.4723329 0.4724223
0.8516 0.33304 -0.3372212 0.3371788
0.7344 0.18719 -0.1886747 0.1886466
0.6172 0.05702 -0.0570178 0.0570070
0.5000 -0.06080 0.0620561 -0.0620530
0.4531 -0.10648 0.1081999 -0.1081721
0.2813 -0.27805 0.2803696 -0.2804342
0.1719 -0.38289 0.3885691 -0.3885725
0.1016 -0.29730 0.3004561 -0.3003726
0.0703 -0.22220 0.2228955 -0.2229314
0.0625 -0.20196 0.2023300 -0.2023288
0.0547 -0.18109 0.1812881 -0.1812581
0.0000 -0.00000 0.0000000 -0.0000000

Table 3.2: Horizontal velocity u along the vertical line through the geometric
center of cavity, at Re = 1000 with N =M = 80.

x u,Ref. Ghia et al. (1982) u,Ref.Botella & Peyret (1998) u,present

1.0000 0.00000 0.0000000 0.0000000
0.9688 -0.21388 -0.2279225 -0.2283338
0.9609 -0.27669 -0.2936869 -0.2933988
0.9531 -0.33714 -0.3553213 -0.3551266
0.9453 -0.39188 -0.4103754 -0.4103109
0.9063 -0.51550 -0.5264392 -0.5264190
0.8594 -0.42665 -0.4264545 -0.4263811
0.8047 -0.31966 -0.3202137 -0.3201946
0.5000 0.02526 0.0257995 0.0257981
0.2344 0.32235 0.3253592 0.3253755
0.2266 0.33075 0.3339924 0.3340338
0.1563 0.37095 0.3769189 0.3769373
0.0938 0.32627 0.3330442 0.3329679
0.0781 0.30353 0.3099097 0.3099698
0.0703 0.29012 0.2962703 0.2962728
0.0625 0.27485 0.2807056 0.2806893
0.0000 0.00000 0.0000000 0.0000000

Table 3.3: Vertical velocity v along the horizontal line through the geometric
center of cavity, at Re = 1000 with N =M = 80.
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Figure 3.11: Streamline and vorticity contours plot at Re = 100 on 51×51 and 65×65
grid.
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Figure 3.12: Streamline and vorticity contours plot at Re = 100 on 81 × 81 and
121 × 121 grid.
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Figure 3.13: Streamline and vorticity contours plot at Re = 2000 on 51 × 51 and
65× 65 grid.
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Figure 3.14: Streamline and vorticity contours plot at Re = 2000 on a 81 × 81 and
131 × 131 grid.
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Figure 3.15: Streamline and vorticity contours plot at Re = 5000 on 65 × 65 and
81× 81 grid.
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Figure 3.16: Streamline and vorticity contours plot at Re = 5000 on a 121 × 121 and
131 × 131 grid.
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Figure 3.17: Streamline and vorticity contours plot at Re = 10000 on a 121× 121 and
131 × 131 grid.
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Figure 3.18: Streamline and vorticity contours plot at Re = 15000 on a 121× 121 and
131 × 131 grid.
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Figure 3.19: Streamline and vorticity contours plot at Re = 20000 on a 121× 121 and
131 × 131 grid.
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Figure 3.20: Streamline and vorticity contours plot at Re = 23000 on a 131×131 grid.
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Figure 3.21: Streamline and vorticity contours plot at Re = 24000 on a 131×131 grid.
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Figure 3.22: Streamline and vorticity contours plot at Re = 25000 on a 131×131 grid.
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Figure 3.23: Streamline contours of primary and secondary vortices at Re = 20000 on
a 131× 131 grid.
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Figure 3.24: Streamline contours of primary and secondary vortices at Re = 22000 on
a 131× 131 grid.
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Figure 3.25: Streamline contours of primary and secondary vortices at Re = 25000 on
a 131× 131 grid.
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Re=1000 Present Ghia et al. Azzam C/4D

ψmin -0.118923 -0.117929 -0.1189188
Primary ω 2.06757 2.04968 2.06745

(x, y) (0.5261,0.5625) (0.5313,0.5625) (0.5325,0.5664)

ψmax - - -
TL1 ω - - -

(x, y) - - -

ψmax 2.32912E-4 2.31129E-4 2.33132E-4
BL1 ω -0.35557 -0.36175 -0.34481

(x, y) (0.0806,0.0806) (0.0859,0.0781) (0.0820,0.0781)

ψmax 0.17293E-2 0.175102E-2 0.172836E-2
BR1 ω -1.12499 -1.15465 -1.138799

(x, y) (0.8626,0.1114) (0.8594,0.1094) (0.8633,0.1133)

ψmin -0.57390E-8 - -
BL2 ω -0.001824 - -

(x, y) (0.0042,0.0042) - -

ψmin -4.69177E-8 -9.31929E-8 -5.201598E-8
BR2 ω 0.67911E-2 0.852782E-2 0.88759E-2

(x, y) (0.9916,0.0061) (0.9922,0.0078) (0.9922,0.0078)

Table 3.4: Comparison of the properties of primary and secondary vortices,
streamfunction and vortices values and their (x, y) locations at Re = 1000.
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Re=5000 Present Ghia et al. Azzam C/4D

ψmin -0.12224 -0.118966 -0.12074
Primary ω 1.941951 1.86016 2.06745

(x, y) (0.5130,0.5392) (0.5117,0.5373) (0.5156,0.5352)

ψmax 1.44389E-3 1.45641E-3 1.43321E-3
TL1 ω -2.18732 -2.08843 -2.11204

(x, y) (0.0605,0.9120) (0.0625,0.9102) (0.0625,0.9102)

ψmax 1.37613E-3 1.36119E-3 1.36325E-3
BL1 ω -1.5322 -1.53055 -1.520253

(x, y) (0.0736,0.1373) (0.0703,0.1367) (0.0742,0.1328)

ψmax 3.07276E-3 3.08358E-2 3.06056E-2
BR1 ω -2.75494 -2.66354 -2.72155

(x, y) (0.8043,0.0736) (0.8086,0.0742) (0.8047,0.0742)

ψmin -6.25204E-8 -7.08860E-8 -2.8058E-7
BL2 ω 1.25017E-2 1.88395E-2 7.3275E-2

(x, y) (0.0083,0.0083) (0.0117,0.0078) (0.0117,0.0039)

ψmin -1.43384E-6 -1.43226E-6 -1.3767E-6
BR2 ω 3.75573E-2 3.19311E-2 3.1956E-2

(x, y) (0.9794,0.0205) (0.9805,0.0195) (0.9805,0.0195)

Table 3.5: Comparison of the properties of primary and secondary vortices,
streamfunction and vortices values and their (x, y) locations at Re = 5000.
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Re=10000 Present Ghia et al. Azzam C/4D

ψmin -0.12317 -0.119731 -0.12111
Primary ω 1.93769 1.88082 1.90129

(x, y) (0.5130,0.5262) (0.5117,0.5333) (0.5117,0.5313)

ψmax 2.64642E-3 2.42103E-3 2.536148E-3
TL1 ω -2.29556 -2.18276 -2.281775

(x, y) (0.0736,0.9120) (0.0703,0.9141) (0.0703,0.9102)

ψmax 1.61248E-3 1.51829E-3 1.57731E-3
BL1 ω -2.00736 -2.08560 -2.080154

(x, y) (0.0605,0.1558) (0.0586,0.1641) (0.0586,0.1602)

ψmax 3.18780E-3 3.41831E-3 3.16998E-3
BR1 ω -3.74926 -4.0531 -3.7049

(x, y) (0.7723,0.0605) (0.7656,0.0586) (0.7734,0.0586)

ψmin -1.12515E-6 -7.75652E-7 -1.102966E-6
BL2 ω 3.22502E-3 2.75450E-2 3.8301E-2

(x, y) (0.0170,0.0205) (0.0156,0.0195) (0.0195,0.0156)

ψmin -1.41586E-4 -1.31321E-4 -1.22176E-4
BR2 ω 3.13280E-1 3.11258E-1 2.871E-1

(x, y) (0.9330,0.0669) (0.9336,0.0625) (0.9375,0.0641)

ψmax 1.46075E-8 5.6683E-9 3.6614E-7
BR3 ω -4.24431E-3 - 7.48227E-2

(x, y) (0.9957,0.0043) (0.9961,0.0039) (0.9922,0.0039)

Table 3.6: Comparison of the properties of primary and secondary vortices,
streamfunction and vortices values and their (x, y) locations at Re = 10000.
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Re=15000 Present Azzam C/4D

ψmin -0.12673 -0.122200
Primary ω 2.00973 1.90905

(x, y) (0.5130,0.5261) (0.5097,0.5273)

ψmax 3.40013E-3 3.22545E-3
TL1 ω -2.50687 -2.39719

(x, y) (0.0806,0.9121) (0.07813,0.9121)

ψmax 1.67192E-3 1.67566E-3
BL1 ω -2.44086 -2.42273

(x, y) (0.0545,0.1654) (0.0546,0.1680)

ψmax 3.01257E-3 2.99777E-3
BR1 ω -5.04029 -4.94016

(x, y) (0.7386,0.0487) (0.7460,0.0508)

ψmin -2.31104E-5 -2.64342E-5
BL2 ω 1.47342E-1 1.48847E-1

(x, y) (0.0381,0.0432) (0.041,0.0391)

ψmin -3.48190E-4 -3.40445E-4
BR2 ω 4.57611E-1 4.58477E-1

(x, y) (0.9263,0.0879) (0.925,0.0879)

ψmin -2.01457E-5 -2.27687E-5
TL2 ω 6.37882E-1 1.248599

(x, y) (0.0170,0.8247) (0.0078,0.838)

ψmax 1.14225E-8 2.54121E-5
BL3 ω -0.71198E-2 -11.63082E-3

(x, y) (0.0027,0.0042) (0.0059,0.0020)

ψmax 3.15661E-8 3.31309E-6
BR3 ω -5.21837E-3 -3.15454

(x, y) (0.9938,0.0043) (0.9985,0.0020)

Table 3.7: Comparison of the properties of primary and secondary vortices,
streamfunction and vortices values and their (x, y) locations at Re = 15000.
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Re=20000 Present Azzam C/4D

ψmin -0.13019 -0.121658
Primary ω 2.08645 1.89997

(x, y) (0.5120,0.5242) (0.5125,0.5275)

ψmax 3.90472E-3 3.61239E-3
TL1 ω -2.59977 -2.36545

(x, y) (0.0818,0.9115) (0.0825,0.9125)

ψmax 1.62200E-3 1.59644E-3
BL1 ω -2.97556 -2.95067

(x, y) (0.0466,0.1869) (0.0475,0.1825)

ψmax 2.80950E-3 2.81006E-3
BR1 ω -6.38771 -6.08323

(x, y) (0.7216,0.0466) (0.7225,0.0425)

ψmin -8.18552E-5 -8.16565E-5
BL2 ω 2.61159E-1 2.43271E-1

(x, y) (0.0573,0.0573) (0.599,0.5249)

ψmin -4.75360E-4 -4.514639E-4
BR2 ω 6.03230E-1 5.26751E-1

(x, y) (0.9310,0.1102) (0.927,0.0999)

ψmin -8.05661E-5 -2.49534E-3
TL2 ω 9.63705E-1 11.32008

(x, y) (0.0244,0.8224) (0.0999,0.8000)

ψmax 9.43090E-9 2.42359E-5
BL3 ω -2.90919E-3 -5.819478

(x, y) (0.0036,0.0036) (0.0075,0.0025)

ψmax 4.36311E-8 4.14697E-6
BR3 ω -6.73959E-3 -2.03357

(x, y) (0.9929,0.0071) (0.9975,0.0025)

Table 3.8: Comparison of the properties of primary and secondary vortices,
streamfunction and vortices values and their (x, y) locations at Re = 20000.
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Property Re=21000 Re=23000 Re=25000

ψmin -0.13322 -0.14430 -0.17500
Primary ω 2.15589 2.41084 3.10862

(x, y) (0.5121,0.5242) (0.5120,0.5242) (0.5121,0.5242)

ψmax 4.02840E-3 4.32375E-3 4.79308E-3
TL1 ω -2.63865 -2.74545 -2.95676

(x, y) (0.0818,0.9115) (0.0818,0.9115) (0.0818,0.9115)

ψmax 1.60699E-3 1.56161E-3 1.46495E-3
BL1 ω -3.029370 -3.12863 -3.08656

(x, y) (0.0466,0.1869) (0.0466,0.1869) (0.0466,0.1869)

ψmax 2.79890E-3 2.73167E-3 2.70124E-3
BR1 ω -6.68934 -7.42837 -8.73758

(x, y) (0.7107,0.0416) (0.6997,0.0416) (0.6773,0.0369)

ψmin -9.32248E-5 -1.12438E-5 -1.17195E-4
BL2 ω 2.88126E-1 2.72187E-1 2.97771E-1

(x, y) (0.0630,0.0573) (0.0630,0.0573) (0.0690,0.0573)

ψmin -9.41920E-4 -5.60733E-4 -6.21799E-4
BR2 ω -17.52558 0.63354 6.24940E-1

(x, y) (0.8224,0.1595) (0.9310,0.1178) (0.9310,0.1178)

ψmin -9.32947E-5 -1.32626E-5 -1.80051E-4
TL2 ω 0.94105 1.32382 1.43207

(x, y) (0.0245,0.8224) (0.0283,0.8131) (0.0283,0.8131)

ψmax 1.00350E-8 1.21528E-8 1.85370E-8
BL3 ω -2.81117E-3 -4.83697E-3 -5.24281E-3

(x, y) (0.0036,0.0036) (0.0036,0.0052) (0.0036,0.0052)

ψmax 5.24296E-8 8.65752E-8 1.59207E-7
BR3 ω -5.94051E-3 -9.31028E-3 -9.61675E-3

(x, y) (0.9929,0.0071) (0.9907,0.0093) (0.9907,0.0118)

Table 3.9: Properties of primary and secondary vortices, streamfunction and vortices values and their (x, y) locations at
various Re.



Chapter 4

Steady Separated Corner Flow

In this chapter, we study the steady separated flow in a corner, and solve the

full Navier-Stokes equations for high Reynolds numbers. The two-dimensional

stream function-vorticity formulation is used to be discretized using the Cheby-

shev collocation method in both directions, x and y. The problem will be solved

using Newton linearisation with a direct solver in MATLAB. The problem is

solved on various domains and at various high Reynolds numbers. We aim to

give a description of the flow and show the independence of the solution from the

variation of Reynolds number and X∞, which will be described shortly.
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ψ ∼ −xy

ψ ∼ −xy

b

y

y

x

x+1−1

1

Figure 4.1: Corner flow geometry : (a) entire flow geometry, (b) local geometry .

4.1 Problem Formulation

We consider a two-dimensional problem, which describes the steady separated

corner flow. A sketch of the flow problem is shown in Figure (4.1) where the left

sketch is the entire plane, while the right is the local geometry that we solve. The

problem is specified by the flat plate which is placed in −1 ≤ x ≤ 1 on the x axis

and the line of y axis. At far distance from the flat plate, the stream function

is given by ψ = −xy. The steady incompressible flow is described by the full

Navier-Stokes equations in streamfunction-vorticity formulation, which are given

by

∇2ψ = ω

and ψyωx − ψxωy =
1

Re
∇2ω, (4.1)
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where Re is the Reynolds number. In this formulation, the vorticity ω relates to

the streamfunction ψ by u = ψy, v = −ψx, and the vorticity can be defined as ω =

vx− uy. Leal (1973) transformed the domain from (x, y) coordinates to elliptical

coordinates with the relations x = cosh ξ cos η, y = sinh ξ sin η. Consequently,

the equations (4.1) become

∇2ψ = −J(ξ, η)ω (4.2)

and ψyωx − ψxωy =
1

Re
∇2ω, (4.3)

where J(ξ, η) = 1
2
(cosh(2ξ)− cos(2η)) is the Jacobian of the transformation. The

new domain to be solved is where x ≥ 0 and y ≥ 0 map to the semi-infinite

rectangular domain so that 0 ≤ η ≤ 1
2
π with the flat plate at 0 ≤ x ≤ 1

transformed to the η-axis (0 ≤ η ≤ π
2
, ξ = 0). This system is associated with the

boundary conditions as follows



































ψ = 0 and ψy = 0 for, ξ = 0, 0 ≤ η ≤ 1
2
π,

ψ = −xy = −1
4
sinh 2ξ sin 2η and ω = 0 for, ξ → ∞, 0 ≤ η ≤ 1

2
π,

ψ = 0 and ω = 0 for, η = 0, 0 ≤ ξ → ∞,

ψ = 0 and ω = 0 for, η = 1
2
π, 0 ≤ ξ → ∞.

(4.4)

The problem can be discretized and linearized in the same manner as the lid-

driven cavity problem detailed in the previous chapter.
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Value of (ξ) in computational domain Value of X∞ in physical domain
ξ = 1 X∞ = 1.543
ξ = 1.5 X∞ = 2.354
ξ = 2 X∞ = 3.762
ξ = 2.5 X∞ = 6.132
ξ = 3 X∞ = 10.067
ξ = 4 X∞ = 27.308

Table 4.1: The various values of X∞ corresponding to ξ value.

4.2 Numerical Results

As in the lid-driven cavity problem, a direct solver has been used to solve the

linearized system form (4.3) and the steady separated corner flow boundary con-

ditions (4.4) in order to obtain the numerical solution of the streamfunction ψ

and the vorticity ω. The code combines the Newton iteration with the MATLAB

backslash operator as a direct solver to obtain the solution corrected by correc-

tion terms, as explained in the lid-cavity problem. The convergence criteria for

Newton iteration are the same as the lid-driven convergence criteria, see section

3.2.4.

The aim of this work, as mentioned, is to provide an accurate description of

the steady corner flow, and show the independence of the solution from the varia-

tion of Re andX∞ where X∞ = cosh ξ∞. In other words, X∞ isX∞ = cosh ξ cos η

when η = 0, which is the value of x on the x-axis when ξ → ∞. The code is

run on various grid sizes, namely, on 51 × 51, 81 × 81, 101 × 101, and on a fine

grid 121×121. Moreover, we run the code on various semi-infinite domains. The

results are generated for different values of X∞, as shown in the Table (4.1). We

have obtained solutions of the problem for Re up to 14000 when X∞ = 1.543,

which is a much higher Re compared with the previous reported results by Leal
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(1973), Suh & Liu (1990) and Mclachlan (1991). Table 4.2 shows the highest Re

obtained for various X∞ on the fine grid 121×121. We start at Re = 100 in each

domain (different value of X∞), and use the solution at each Reynolds number

as an initial value at the next higher Re.

Figures (4.2-4.3) present the streamfunction and vorticity profiles along the

horizontal line passing through the geometry center for various values of X∞

at several Re. It is observed that the streamfunction profiles are identical for

various X∞. From the graphs in Figures (4.2-4.3), one can see that the stream-

function profiles start from around zero at various values of Re, and maintain

the same profile at different values of Re and X∞, which indicate the indepen-

dence of the solution from the variation of Re and X∞. This can be observed

clearly in Figure 4.2 at Re = 250 and Re = 1000. The same behavior is ob-

served for the computed vorticity along a horizontal line passing through the

transformed geometry center (x(ξ, η = π
4
) = cosh ξ cos π

4
) for various values

of X∞ at several Re in Figures (4.4-4.5). In these figures we zoomed in to

show the clear behavior of the vorticity on the x-axis between approximately

0.5 and 1.2 where the actions of separation and circulations occur. In the same

Figures, when we increase the value of X∞, the vorticity along the horizontal

line passing the geometry center, which is at a large distance from the sepa-

ration point, remains almost constant and near zero. Figures (4.6-4.17) show

the streamline and vorticity contour plots at various Re on various grid sizes

for different values of X∞. The contour levels plotted for the streamlines are

(−0.9,−0.7,−0.5,−0.1,−0.2,−0.3,−0.001, 0.001, 0.004, 0.008, 0.012, 0.016, 0.02,

0.024, 0.028, 0.032) and (−1,−2, 1, 2, 4, 6, 8, 10) for the vorticity contour levels.
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Value of X∞ in physical domain The highest Re obtained
X∞ = 1.543 14000
X∞ = 2.354 11000
X∞ = 3.762 9500
X∞ = 6.132 7500
X∞ = 10.067 5000
X∞ = 27.308 1500

Table 4.2: The various values of X∞ corresponding to ξ value.

The streamline and vorticity contours conform with the Mclachlan (1991) con-

tour levels plots at the common levels and common Reynolds numbers. From

the contour plots, it is obvious that, for large Reynolds number, the solutions

are dependent on the mesh size, and finer grids provide more accurate solution.

As mentioned, the code succeeded in generating the solution at Re = 14000 for

X∞ = 1.543 on the grid 121 × 121, whereas it fails to do so on the 101 × 101

grid size. The presence of the oscillations in Figure (4.17) clearly indicates the

dependency of the solution on the grid size, and the vorticity plot is not fully

resolved. The same comment can be said for the dependency of the value of X∞

on the grid size. As the value of X∞ increases, we need to use a finer grid to

obtain the solution at high Re. For X∞ = 27.308, which is the largest value of

X∞ in the present work, the code fails to obtain the solution at Re higher than

1500 on the grid 121× 121, as highlighted in Table (4.2).

It is worth mentioning that, in Figure (4.11), one can see the effect of the fine

grid 121 × 121 in obtaining the solution of the vorticity at Re = 5000, and the

difference from the solution of the vorticity on the grid 81× 81 at the same value

of Re and X∞. It is evident that the circles (bubbles) around the separation

points are not physical and are due to the coarse grid 81× 81 as they disappear

on the fine grid 121 × 121 solution. Moreover, this indicates that the circles in
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the contour plots of the vorticity in Figures (4.15), (4.16) and (4.17) are not

physical. Table 4.3 shows the comparison of the vorticity values at the center of

Richardson-extrapolated eddy, with Mclachlan (1991), at the common Reynolds

numbers. From this table, it is observed that the center of the corner eddy moves

first left and then moves down as we increase Re, and remains almost fixed for

high Re ≥ 3000. The same observation has been reported by Mclachlan (1991)

without reporting the positions (x, y) of the center of Richardson-extrapolated

eddy as we have in Table 4.3. Mclachlan (1991) mentioned in his paper that the

separated region remains of size O(1) as Reynolds number is increased. This is

confirmed by the present results for various Reynolds numbers. One can observe

the separated region for x∞ = 1.543 from low to high Reynolds number through-

out the listed figures.

Figures (4.18-4.20) show the behavior of vorticity on y = 0 at various Re for

several X∞. Mclachlan (1991) mentioned that the separation point occurs at the

point where ω = 0 and moves to the right as the Reynolds number increases. We

observe the same behavior movement of the separation point for x∞ = 1.543, as

is clear in Figure(4.18). The same behavior is observed for various X∞. How-

ever, one can observe oscillations in Figures (4.18) and (4.19) for some Reynolds

numbers. The oscillations increase as the Reynolds number increases or as X∞

increases, as demonstrated in Figure (4.19) at Re = 7000 for X∞ = 6.132. These

oscillations suggest that a finer grid is required to resolve some features.

Each plot in Figures (4.21) and (4.22) shows the vorticity profile on y = 0 at

fixed Re for various X∞. These plots confirm that more resolution is required as

the X∞ increases, as is very clear in Figure(4.22).
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Re Value of ω at the center (present) (x, y)phy (present) Mclachlan (1991)
1000 1.66923 (0.1429,0.2738) 1.583
2000 1.81680 (0.1662,0.2378) 1.777
3000 1.93989 (0.1658,0.2266) 1.912
4000 2.02886 (0.1787,0.2261) 2.014
5000 2.09864 (0.1787,0.2261) 2.105

Table 4.3: The values of ω at the center of Richardson-extrapolated eddy com-
pared with Mclachlan (1991).

To conclude, the simplicity of the problem domain and the ability of using the

conformal mapping makes this an attractive problem to solve at high Reynolds

number. This problem is full of rich flow features of interest, such as separation,

circulations and eddies. A solution at high Reynolds number on a domain of

X∞ = 1.543, in addition to solutions at high Reynolds number for various X∞,

are obtained. As the Reynolds number increases the separated region remains

of size O(1) and the separation point moves to the right. More resolution is

required as we increase either the Reynolds number or the value of X∞. More

work is required to investigate the oscillations. It may be that the oscillations also

arise because of the boundary conditions for large X∞. In our work, we have used

ψ = xy, but a more accurate asymptotic condition valid for large x and y may

be needed. The results we have obtained are at much higher Reynolds numbers

in comparison with previous researchers. Figures and tables are presented for

future comparisons.
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Figure 4.2: Computed streamfunction along a horizontal line passing through the
transformed geometry center (x(ξ, η = π

4 ) = cosh ξ cos π4 ) of each X∞ at various
Re = 250, 1000 and 4000.
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Figure 4.3: Computed streamfunction along a horizontal line passing through the
transformed geometry center (x(ξ, η = π

4 ) = cosh ξ cos π4 ) of each X∞ at various
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Figure 4.4: Computed vorticity along a horizontal line passing through the transformed
geometry center (x(ξ, η = π

4 ) = cosh ξ cos π4 ) of each X∞ at various Re = 250, 1000
and 4000.
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grids for X∞ = 1.543.



CHAPTER 4. STEADY SEPARATED CORNER FLOW 115

N = M = 50

−0.3−0.2
−0.1

−0.00100.001

0 1
0

1

N = M = 50

1086
4

2

1

0 1
0

1

N = M = 100

−0.3
−0.2

−0.1

−0.0010

0.001

0 1
0

1

N = M = 100

1086

4

2

1

0 1
0

1

N = M = 120

−0.3
−0.2

−0.1

−0.00100.
00

1

0 1
0

1

N = M = 120

1086

4

2

1

0 1
0

1

Figure 4.7: Streamline (left) and vorticity (right) contours plot at Re = 100 on various
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Figure 4.8: Streamline (left) and vorticity (right) contours plot at Re = 1000 on
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Figure 4.9: Streamline (left) and vorticity (right) contours plot at Re = 1000 on
various grids for X∞ = 27.308.
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Figure 4.10: Streamline (left) and vorticity (right) contours plot at Re = 5000 on
various grids for X∞ = 2.352.
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Figure 4.11: Streamline (left) and vorticity (right) contours plot at Re = 5000 on
various grids for X∞ = 6.132.
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Figure 4.12: Streamline (left) and vorticity (right) contours plot at Re = 8000 on
various grids for X∞ = 1.543.
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Figure 4.13: Streamline (left) and vorticity (right) contours plot at Re = 8000 on
various grids for X∞ = 3.762.
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Figure 4.14: Streamline (left) and vorticity (right) contours plot at Re = 10000 on
121 × 121 grid for X∞ = 1.543 and X∞ = 3.762.
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Figure 4.15: Streamline (left) and vorticity (right) contours plot at Re = 11000 on
121 × 121 grid for X∞ = 1.543 and X∞ = 2.352.
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Figure 4.16: Streamline (left) and vorticity (right) contours plot at Re = 13000 on
121 × 121 grid for X∞ = 1.543.
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Figure 4.17: Streamline (left) and vorticity (right) contours plot at Re = 14000 on
121 × 121 grid for X∞ = 1.543.
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Figure 4.18: The vorticity profile on y = 0 at various Re for X∞ = 1.543 (top)
and X∞ = 2.352 (bottom).
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Figure 4.19: The vorticity profile on y = 0 at various Re for X∞ = 6.132 (top)
and X∞ = 10.068 (bottom).
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Figure 4.20: The vorticity profile on y = 0 at various Re for X∞ = 27.308.
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Figure 4.21: The vorticity profile on y = 0 at Re = 1000 for various X∞ (top)
and at Re = 2000 for various X∞ (bottom).
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Figure 4.22: The vorticity profile on y = 0 at Re = 8000 for various X∞.



Chapter 5

Solution to 3-D Navier Stokes

Equations

5.1 Introduction

In this chapter, we consider the solution of the steady flow in a three-dimensional

lid-driven cavity using numerical methods. The three-dimensional velocity-vorticity

formulation, used by Davies & Carpenter (2001), is considered. A test problem

with a known exact solution is solved; hence, we can compare the numerical so-

lution with the exact solution. Then, the cubical lid-driven cavity problem is

solved. The problem is discretized using the Chebyshev discretization in the y

and z directions, and fourth-order finite differences are used for the discretization

in the x direction. Newton linearization is used to linearize the problem and a

direct solver is devoted to solve the problem. The problem has been coded in

both the MATLAB and FORTRAN environments.

131
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5.2 Problem Formulation

In the present work, we use the velocity-vorticity formulation of the Navier-Stokes

equations, which has been used by Davies & Carpenter (2001). “The advantage

of the formulation is that there are only three governing equations to be solved

for three dependent unknowns”, Davies & Carpenter (2001).

The momentum equation for steady incompressible flows with the continuity

equation can be written as

(q.∇)q = −∇P +
1

Re
∇2q (5.1)

∇.q = 0. (5.2)

For the three-dimensional lid-driven cavity problem, the boundary conditions are

as follows, see Figure(5.1):



































u = v = w = 0 for, x = 0, 1

u = v = w = 0 for, y = 0, 1

u = v = w = 0 for, z = 0

u = 1, v = 0, w = 0 for, z = 1.

(5.3)

Let the velocity q = (u, v, w), w = (ωx, ωy, ωz) and introduce the definition of

vorticity w as follows

w = ∇× q. (5.4)

Taking the curl of the momentum equation leads to the vorticity transport equa-

tion, which can be written in conservative form as:

1

Re
∇2w = ∇× (w× q). (5.5)
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u=1

z

y

x

Figure 5.1: Sketch of the three-dimensional lid-driven cavity geometry.

Let

N = ∇× (w × q) = (Nx, Ny, Nz). (5.6)

To find N , we find (w× q) and then take the curl of it, as follows

w× q =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

ωx ωy ωz

u v w

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (wωy − vωz, uωz − wωx, vωx − uωy). (5.7)

Then

Nx =
∂

∂y
[vωx − uωy]−

∂

∂z
[uωz − wωx], (5.8)

Ny =
∂

∂z
[wωy − vωz]−

∂

∂x
[vωx − uωy], (5.9)
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Nz =
∂

∂x
[uωz − wωx]−

∂

∂y
[wωy − vωz]. (5.10)

Nx can be rewritten as

Nx =
∂

∂y
[vωx − uωy]−

∂

∂z
[uωz − wωx]. (5.11)

= v
∂ωx
∂y

− u
∂ωy
∂y

+ ωx
∂v

∂y
− ωy

∂u

∂y

− u
∂ωz
∂z

+ w
∂ωx
∂z

− ωz
∂u

∂z
+ ωx

∂w

∂z
.

= −u

(

∂ωy
∂y

+
∂ωz
∂z

)

+ v
∂ωx
∂y

+ w
∂ωx
∂z

+ ωx

(

∂v

∂y
+
∂w

∂z

)

− ωy
∂u

∂y
− ωz

∂u

∂z
.

Nx = u
∂ωx
∂x

+ v
∂ωx
∂y

+ w
∂ωx
∂z

−

(

ωx
∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z

)

.

= q · ∇ωx −w · ∇u.

In the same manner, Ny can be rewritten as

Ny =
∂

∂z
[wωy − vωz]−

∂

∂x
[vωx − uωy] (5.12)

= w
∂ωy
∂z

− v
∂ωz
∂z

+ ωy
∂w

∂z
− ωz

∂v

∂z

− v
∂ωx
∂x

+ u
∂ωy
∂x

− ωx
∂v

∂x
+ ωy

∂u

∂x
.

= u
∂ωy
∂x

− v

(

∂ωz
∂z

+
∂ωx
∂x

)

+ w
∂ωy
∂z

− ωx
∂v

∂x
+ ωy

(

∂v

∂x
+
∂w

∂z

)

− ωz
∂v

∂z
.

Ny = u
∂ωy
∂x

+ v
∂ωy
∂y

+ w
∂ωy
∂z

−

(

ωx
∂v

∂x
+ ωy

∂v

∂y
+ ωz

∂v

∂z

)

.

= q · ∇ωy −w · ∇v.
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Similarly, Nz can be written in the same manner

Nz =
∂

∂x
[uωz − wωx]−

∂

∂y
[wωy − vωz] (5.13)

= u
∂ωz
∂x

− w
∂ωx
∂x

+ ωz
∂u

∂x
− ωx

∂w

∂x

− w
∂ωy
∂y

+ v
∂ωz
∂y

− ωy
∂w

∂y
+ ωz

∂v

∂y
.

= u
∂ωz
∂x

+ v
∂ωz
∂y

− w

(

∂ωx
∂x

+
∂ωy
∂y

)

−

(

ωx
∂w

∂x
+ ωy

∂w

∂y
+ ωz

∂w

∂z

)

.

Nz = u
∂ωz
∂x

+ v
∂ωz
∂y

+ w
∂ωz
∂z

−

(

ωx
∂w

∂x
+ ωy

∂w

∂y
+ ωz

∂w

∂z

)

.

= q · ∇ωz −w · ∇w.

Following the Davies & Carpenter (2001) study, the components of the velocity

q and vorticity w fields can be divided into two categories. The components

(ωx, ωy, w) are considered to be primary variables. The second category is that the

components (u, v, ωz) are considered to be secondary variables. These variables

can be defined in terms of the primary variables and so-called secondary variables

which are follows

u =

∫ z

0

(

ωy +
∂w

∂x

)

dz (5.14)

v =

∫ z

0

(

−ωx +
∂w

∂y

)

dz (5.15)

ωz = −

∫ z

0

(

∂ωx
∂x

+
∂ωy
∂y

)

dz. (5.16)

The expression for u and v can be obtained by integrating the appropriate com-

ponent of the vorticity definition (5.4) with respect to z. ωz can then be obtained
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by integrating the condition that the vorticity is solenoidal ∇.ω = 0 and using

the boundary conditions on u and v shows that ωz is zero when z = 0, see Davies

& Carpenter (2001).

5.3 Test Problem

In this section, we consider a three-dimensional test problem that has a known

exact solution for the six variables (u, v, w, ωx, ωy and ωz). The test problem

has been chosen such that in the absence of certain forcing functions, the equation

reduced the novel velocity-vorticity formulation. We solve the test problem for

the three primary variables (ωx, ωy, w) by solving the following three equations

1

Re
∇2ωx − u

∂ωx
∂x

− v
∂ωx
∂y

− w
∂ωx
∂z

+ωx
∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z
= F1.

1

Re
∇2ωy − u

∂ωy
∂x

− v
∂ωy
∂y

− w
∂ωy
∂z

(5.17)

+ωx
∂v

∂x
+ ωy

∂v

∂y
+ ωz

∂v

∂y
= F2.

1

Re
∇2w +

∂ωy
∂x

−
∂ωx
∂y

= F3.
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Here, the forcing functions F1, F2 and F3, are as follows

F1 = 3π3 cos(πz)[sin(πx) sin(πy)− cos(π(x+ y))] +

{z + sin(πx) sin(πy) sin(πz)}{π2 cos(πz)[sin(π(x+ y)) + cos(πx) sin(πy)]}+

{sin(πx) sin(πy) sin(πz)}{π2 cos(πz)[sin(π(x+ y)) + sin(πx) sin(πy)]}+

{cos(πz) sin(π(x+ y))}{π2 sin(πz)[cos(π(x+ y))− sin(πx) sin(πy)]}+

{π cos(πz)[cos(π(x+ y))− sin(πx) sin(πy)]}{π cos(πx) sin(πy) sin(πz)}+

{1 + π cos(πz)[sin(πx) sin(πy)− cos(π(x+ y))]}{π sin(πx) cos(πy) sin(πz)}+

{π sin(πz)[cos(πx) sin(πy)− sin(πx) cos(πy)]}{1 + π sin(πx) sin(πy) cos(πz)},

F2 = 3π3 cos(πz)[cos(π(x+ y))− sin(πx) sin(πy)]−

{z + sin(πx) sin(πy) sin(πz)}{π2 cos(πz)[sin(π(x+ y)) + cos(πx) sin(πy)]} −

{sin(πx) sin(πy) sin(πz)}{π2 cos(πz)[sin(π(x+ y)) + sin(πx) sin(πy)]}+

{cos(πz) sin(π(x+ y))}{π2 sin(πz)[sin(πx) sin(πy)− cos(π(x+ y))]}+

{π cos(πz)[cos(π(x+ y))− sin(πx) sin(πy)]}{π cos(πx) sin(πy) sin(πz)}+

{1 + π cos(πz)[sin(πx) sin(πy)− cos(π(x+ y))]}{π sin(πx) cos(πy) sin(πz)}+

{π sin(πz)[cos(πx) sin(πy)− sin(πx) cos(πy)]}{π sin(πx) sin(πy) cos(πz)},

F3 = 3π2 cos(πz) sin(π(x+ y)) + π2 cos(πz)[cos(πx) sin(πy) + sin(π(x+ y))]

π2 cos(πz)[sin(πx) cos(πy) + sin(π(x+ y))].
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The problem is solved in a cubical domain for 0 ≤ x, y, z ≤ 1 with the

following boundary conditions

ωx = π cos(πz)[cos(π(x+ y))− sin(πx) sin(πy)] for, x = 0, 1, (5.18a)

ωx −
∂w

∂y
= 0 for, y = 0, 1, (5.18b)

∫ 1

0

(

ωx −
∂w

∂y

)

dz = 0 for, z = 1, (5.18c)

ωx −
∂w

∂y
= −π cos(πz) sin(πx) sin(πy) for, z = 0, (5.18d)

ωy +
∂w

∂x
= 0 for, x = 0, 1, (5.18e)

ωy = 1 + π cos(πz)[sin(πx) sin(πy)− cos(π(x+ y))] for, y = 0, 1, (5.18f)
∫ 1

0

(

ωy +
∂w

∂x

)

dz = 1 for, z = 1, (5.18g)

ωy +
∂w

∂x
= 1 + π cos(πz) sin(πx) sin(πy) for, z = 0, (5.18h)

w = cos(πz) sin(π(x+ y)) for, x = 0, 1, (5.18i)

w = cos(πz) sin(π(x+ y)) for, y = 0, 1, (5.18j)

w = cos(πz) sin(π(x+ y)) for, z = 0, 1. (5.18k)

In the above, the relation ωx − ∂w
∂y

= 0 in (5.18b) can be obtained from the

definition of the vorticity w = ∇× q as follow. Since

ωx =
∂w

∂y
−
∂v

∂z
, (5.19)

the conditions in (5.18b) follow after using the boundary conditions on v and

w on y = 0, 1. The boundary condition
∫ 1

0

(

ωx −
∂w
∂y

)

dz = 0 in (5.18c) can be
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obtained by integrating (5.19) with respect to z, and this leads to

v = −

∫ z

0

(

ωx −
∂w

∂y

)

dz,

and then setting z = 1. In solving the three-dimensional lid driven cavity we

set ∂v
∂z

= 0 on y = 0, 1 which is the same as the boundary condition in our

test problem. Similarly, we set v = 0 on z = 1 which leads to the same as the

test problem boundary condition on z = 1. Similarly, the relation in (5.18e)

ωy +
∂w
∂x

= 0 can be obtained from the definition of the vorticity w = ∇ × q,

where

ωy =
∂u

∂z
−
∂w

∂x
, (5.20)

and using the condition that u = 0 on x = 0, 1. The boundary condition
∫ 1

0

(

ωy +
∂w
∂y

)

dz = 0 can be obtained by integrating (5.20) with respect to z,

and this leads to

u =

∫ z

0

(

ωy +
∂w

∂x

)

dz,

and then setting z = 1. In solving the three-dimensional lid driven cavity we

set ∂u
∂z

= 0 on x = 0, 1 which is the same as the boundary condition in our

test problem. Similarly, we set u = 1 on z = 1 which leads to the same as

the test problem boundary condition on z = 1. It can be noticed that the

boundary conditions of our test problem has been chosen to be as close to the

three-dimensional lid driven cavity as possible.
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The system of equations (5.18) and (??) has the following exact solution

u = z + sin(πx) sin(πy) sin(πz).

v = sin(πx) sin(πy) sin(πz).

w = cos(πz) sin(π(x+ y)).

ωx = π cos(πz)[cos(π(x+ y))− sin(πx) sin(πy)]

ωy = 1 + π cos(πz)[sin(πx) sin(πy)− cos(π(x+ y))]

ωz =
∂v

∂x
−
∂u

∂y
(5.21)

= π sin(πz)[cos(πx) sin(πy)− sin(πx) cos(πy)].

The forcing functions in the boundary conditions above are just the values of the

velocities and vorticities at the boundaries. The flow in the lid-driven cavity is

identical to the test problem above, but with these forcing functions all set to

zero.

5.3.1 Discretization

Finite differences are used to discretize the x direction, and Chebyshev collocation

is employed to discretize y and z directions. The mapping y ∈ (0, 1) → z ∈

(−1, 1) in Chebyshev space is used so that the collocation points are given by

z̄ = z̄j = cos(
jπ

N
), j = 0, 1, ..., N (5.22)

and

y = y(z̄i) = yi =
1

2
(z̄i + 1), i = 0, 1, ..., N. (5.23)
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In a similar way, the mapping can be used for the z direction

z = z(z̄j) = zj =
1

2
(z̄j + 1), j = 0, 1, ...,M. (5.24)

For the x direction, the finite difference points are given by

x = xp = xmin + (p− 1)∆x p = 1, 2, ..., R

where

∆x =
1

R− 1
.

The derivatives in y and z can be written as follows

(

∂ψ

∂y

)

p,i,j

= 2
N
∑

k=0

D1i,kψk,j,p, (5.25)

(

∂ψ

∂z

)

p,i,j

= 2

M
∑

k=0

D2j,kψi,k,p. (5.26)

D1 and D2 are the Chebychev differentiation matrices described previously, and

N ,M are the number of points in the y and z directions respectively. Here,

R is the number of points in the x direction. The second derivative can be

obtained simply by squaring the differentiation matrix. Notice that we define

ψp,i,j = ψ(x = xp, y = yi, z = zj).

For the x direction, the usual fourth order central difference approximation

of the variable ωx, say, at the point (x, y, z), is given by

(
∂ψ

∂x
)p =

ωxp−2
− 8ωxp−1

+ 8ωxp+1
− ωxp+2

12∆x
, (5.27)
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and

(
∂2ωx
∂x2

)p =
−ωxp−2

+ 16ωxp−1
− 30ωxp + 16ωxp+1

− ωxp+2

12(∆x)2
. (5.28)

The approximation is obtained by replacing all derivatives in (5.17-5.18) with

Chebychev approximation and fourth-order finite difference approximation.

First Equation The equation ( 5.17) can be disretized as follows:

−ωxp−2,i,j
+ 16ωxp−1,i,j

− 30ωxp,i,j + 16ωxp+1,i,j
− ωxp+2,i,j

12hx
2 (5.29)

+

N
∑

k=0

D2
i,kωxpkj +

M
∑

k=0

D2
j,kωxpik

−upij

(

ωxp−2,i,j
− 8ωxp−1,i,j

+ 8ωxp+1,i,j
− ωxp+2,i,j

12hx

)

−vp,i,j

N
∑

k=0

Di,kωxpkj − wp,i,j

M
∑

k=0

Dj,kωxpik

+ωxpij

(

up−2,i,j − 8up−1,i,j + 8up+1,i,j − up+2,i,j

12hx

)

+ωypij

N
∑

k=0

Di,kupkj = (F1)p,i,j.

Second Equation In the same manner, the Equation ( 5.17) can be discretized
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as follows:

−ωyp−2,i,j
+ 16ωyp−1,i,j

− 30ωyp,i,j + 16ωyp+1,i,j
− ωyp+2,i,j

12hx
2 (5.30)

+
N
∑

k=0

D2
i,kωypkj +

M
∑

k=0

D2
j,kωypik

−upij

(

ωyp−2,i,j
− 8ωyp−1,i,j

+ 8ωyp+1,i,j
− ωyp+2,i,j

12hx

)

−vp,i,j

N
∑

k=0

Di,kωypkj − wp,i,j

M
∑

k=0

Dj,kωypik

+ωypij

(

vp−2,i,j − 8up−1,i,j + 8vp+1,i,j − vp+2,i,j

12hx

)

+ωypij

N
∑

k=0

Di,kvpkj = (F2)p,i,j.
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Third Equation Also, and in the same manner, the Equation (5.18) can be

discretized as follows:

−wp−2,i,j + 16wp−1,i,j − 30wp,i,j + 16wp+1,i,j − wp+2,i,j

12hx
2 (5.31)

+

N
∑

k=0

D2
i,kwpkj +

M
∑

k=0

D2
j,kwpik

+

(

ωyp−2,i,j
− 8ωyp−1,i,j

+ 8ωyp+1,i,j
− ωyp+2,i,j

12hx

)

−
N
∑

k=0

Di,kωxpkj = (F3)p,i,j.

5.3.2 Linearization

One difficulty with the system (5.29), (5.30) and (5.31) is the non-linearity. The

non-linearity can be overcome by using a Newton-Raphson linearization and

working in terms of correction terms. Let ω̃x, ω̃y, ω̃z, ũ, ṽ and w̃ be the cor-

rection terms where

ωxp,i,j = ω̄xp,i,j + ω̃xp,i,j , (5.32)

ωyp,i,j = ω̄yp,i,j + ω̃yp,i,j ,

ωzp,i,j = ω̄zp,i,j + ω̃zp,i,j ,

up,i,j = ūp,i,j + ũp,i,j,

vp,i,j = v̄p,i,j + ṽp,i,j,

wp,i,j = w̄p,i,j + w̃p,i,j,
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and where ω̄x, ω̄y, ω̄z, ū, v̄ and w̄ are the initial approximations. Given this, the

system becomes

1

Re
∇2(ω̄xp,i,j + ω̃xp,i,j)− (ūp,i,j + ũp,i,j)

∂(ω̄xp,i,j + ω̃xp,i,j)

∂x
− (v̄p,i,j + ṽp,i,j)

∂(ω̄x + ω̃x)

∂y

−(w̄p,i,j + w̃p,i,j)
∂(ω̄xp,i,j + ω̃xp,i,j)

∂z
+ (ω̄xp,i,j + ω̃xp,i,j)

∂(ūp,i,j + ũp,i,j)

∂x
+ (5.33)

(ω̄yp,i,j + ω̃yp,i,j)
∂(ūp,i,j + ũp,i,j)

∂y
+ (ω̄zp,i,j + ω̃zp,i,j)

∂(ūp,i,j + ũp,i,j)

∂z
= F1p,i,j +Rh1p,i,j.

1

Re
∇2(ω̄yp,i,j + ω̃yp,i,j)− (ūp,i,j + ũp,i,j)

∂(ω̄yp,i,j + ω̃yp,i,j)

∂x
− (v̄p,i,j + ṽp,i,j)

∂(ω̄yp,i,j + ω̃yp,i,j)

∂y

−(w̄p,i,j + w̃p,i,j)
∂(ω̄yp,i,j + ω̃yp,i,j)

∂z
+ (ω̄xp,i,j + ω̃xp,i,j)

∂(v̄p,i,j + ṽp,i,j)

∂x
+ (5.34)

(ω̄yp,i,j + ω̃yp,i,j)
∂(v̄p,i,j + ṽp,i,j)

∂y
+ (ω̄zp,i,j + ω̃zp,i,j)

∂(v̄p,i,j + ṽp,i,j)

∂z p,i,j
= F2p,i,j +Rh2p,i,j.

∇2(w̄p,i,j + w̃p,i,j) +
∂(ω̄yp,i,j + ω̃yp,i,j)

∂x
−
∂(ω̄xp,i,j + ω̃xp,i,j)

∂y
= F3p,i,j +Rh3p,i,j.

(5.35)
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Rh1 is

Rh1p,i,j = −
1

Re

(

−ω̄xp−2,i,j
+ 16ω̄xp−1,i,j

− 30ω̄xp,i,j + 16ω̄xp+1,i,j
− ω̄xp+2,i,j

12hx
2

)

−
1

Re

N
∑

k=0

D2
i,kω̄xpkj −

1

Re

M
∑

k=0

D2
j,kω̄xpik

+ūpij

(

ω̄xp−2,i,j
− 8ω̄xp−1,i,j

+ 8ω̄xp+1,i,j
− ω̄xp+2,i,j

12hx

)

(5.36)

+v̄p,i,j

N
∑

k=0

Di,kω̄xpkj + w̄p,i,j

M
∑

k=0

Dj,kω̄xpik

−ω̄xpij

(

ūp−2,i,j − 8ūp−1,i,j + 8ūp+1,i,j − ūp+2,i,j

12hx

)

−ω̄ypij

N
∑

k=0

Di,kūpkj − ωzpij

M
∑

k=0

Dj,kūpik,

Rh2 is

Rh2p,i,j = −
1

Re

(

−ω̄yp−2,i,j
+ 16ω̄yp−1,i,j

− 30ω̄yp,i,j + 16ω̄yp+1,i,j
− ω̄yp+2,i,j

12hx
2

)

−
1

Re

N
∑

k=0

D2
i,kω̄ypkj −

1

Re

M
∑

k=0

D2
j,kω̄ypik + ūpij

(

ω̄yp−2,i,j
− 8ω̄yp−1,i,j

+ 8ω̄yp+1,i,j
− ω̄yp+2,i,j

12hx

)

+v̄p,i,j

N
∑

k=0

Di,kω̄ypkj + w̄p,i,j

M
∑

k=0

Dj,kω̄ypik − ω̄xpij

(

v̄p−2,i,j − 8v̄p−1,i,j + 8v̄p+1,i,j − v̄p+2,i,j

12hx

)

−ω̄ypij

N
∑

k=0

Di,kv̄pkj − ωzpij

M
∑

k=0

Dj,kūpik, (5.37)
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and Rh3 is

Rh3p,i,j = −

(

−w̄p−2,i,j + 16w̄p−1,i,j − 30w̄p,i,j + 16w̄p+1,i,j − w̄p+2,i,j

12hx
2

)

−
N
∑

k=0

D2
i,kw̄pkj −

M
∑

k=0

D2
j,kw̄pik −

(

ω̄yp−2,i,j
− 8ω̄yp−1,i,j

+ 8ω̄yp+1,i,j
− ω̃yp+2,i,j

12hx

)

+

N
∑

k=0

Di,kω̄xpkj . (5.38)

Rearranging the linearized system (5.33-5.35) and using the relations

ũ =

∫ 1

0

(

ω̃y +
∂w̃

∂x

)

dz (5.39)

ṽ =

∫ 1

0

(

−ω̃x +
∂w̃

∂y

)

dz (5.40)

ω̃z = −

∫ 1

0

(

∂ω̃x
∂x

+
∂ω̃y
∂y

)

dz, (5.41)

Equation (5.33) can be rewritten as follows

A11p,i,jω̃xp−2,i,j
+B11p,i,jω̃xp−1,i,j

+ C11p,i,jω̃xp,i,j +D11p,i,jω̃xp+1,i,j
+ E11p,i,jω̃xp+2,i,j

+A12p,i,jω̃yp−2,i,j
+B12p,i,jω̃yp−1,i,j

C12p,i,jω̃yp,i,j +D12p,i,jω̃yp+1,i,j
+ E12p,i,jω̃yp+2,i,j

+A13p,i,jw̃p−2,i,j +B13p,i,jw̃p−1,i,j + C13p,i,jw̃p,i,j +D13p,i,jw̃p+1,i,j + E13p,i,jw̃p+2,i,j

= F1p,i,j +Rh1p,i,j, (5.42)
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where

A11p,i,j =
−1

Re12h2x
−

1

12hx
ūp,i,j −

1

12hx

M
∑

k=0

D2j,kūp,i,k

M
∑

k=0

Hj,k

B11p,i,j =
16

Re12h2x
+

8

12hx
up,i,j +

8

12hx

M
∑

k=0

D2j,kūp,i,k

M
∑

k=0

Hj,k

C11p,i,j =
−30

Re12hx
2 +

1

Re

N
∑

k=0

D12i,k +
1

Re

M
∑

k=0

D22j,k − v̄p,i,j

N
∑

k=0

D1i,k − w̄p,i,j

M
∑

k=0

D2j,k

+
N
∑

k=0

D1i,kω̄xp,k,j

M
∑

k=0

Hj,k +
ūp−2,i,j − 8ūp−1,i,j + 8ūp+1,i,j − ūp+2,i,j

12hx

D11p,i,j =
16

Re12h2x
−

8

12hx
up,i,j −

8

12hx

M
∑

k=0

D2j,kūp,i,k

M
∑

k=0

Hj,k

E11p,i,j =
−1

Re12h2x
+

1

12hx
up,i,j +

1

12hx

M
∑

k=0

D2j,kūp,i,k

M
∑

k=0

Hj,k

A12p,i,j =
1

12hx
ω̄xp,i,j

M
∑

k=0

Hj,k

B12p,i,j =
−8

12hx
ω̄xp,i,j

M
∑

k=0

Hj,k

C12p,i,j = −

(

ω̄xp−2,i,j
− 8ω̄xp−1,i,j

+ 8ω̄xp+1,i,j
− ω̄xp+2,i,j

12hx

) M
∑

k=0

Hj,k

+

N
∑

k=0

D1i,kūp,i,j + ω̄yp,i,j

N
∑

k=0

D1i,k

M
∑

k=0

Hj,k + ω̄zp,i,j

M
∑

k=0

D2j,kūp,i,k

M
∑

k=0

Hj,k

N
∑

k=0

D1i,k

D12p,i,j =
8

12hx
ω̄xp,i,j

M
∑

k=0

Hj,k

E12p,i,j =
−1

12hx
ω̄xp,i,j

M
∑

k=0

Hj,k
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A13p,i,j =
−1

12hx

(

ω̄xp−2,i,j
− 8ω̄xp−1,i,j

+ 8ω̄xp+1,i,j
− ω̄xp+2,i,j

12hx

) M
∑

k=0

Hj,k −
1

12h2x
ω̄xp,i,j

M
∑

k=0

Hj,k

+
1

12hx
ω̄yp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

Di,k +
1

12hx
ω̄zp,i,j

B13p,i,j =
8

12hx

(

ω̄xp−2,i,j
− 8ω̄xp−1,i,j

+ 8ω̄xp+1,i,j
− ω̄xp+2,i,j

12hx

) M
∑

k=0

Hj,k +
16

12h2x
ω̄xp,i,j

M
∑

k=0

Hj,k

−
8

12hx
ω̄yp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

Di,k −
8

12hx
ω̄zp,i,j

C13p,i,j = −

M
∑

k=0

Dj,kω̄xp,i,j −

N
∑

k=0

Di,kω̄xp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

Di,k −
30

12h2x

M
∑

k=0

Hj,kω̄xp,i,k

+

N
∑

k=0

Di,kūp,i,j + ω̄yp,i,j

N
∑

k=0

Di,k

M
∑

k=0

Hj,k + ω̄zp,i,j

M
∑

k=0

Dj,kūp,i,k

M
∑

k=0

Hj,k

N
∑

k=0

Di,k

D13p,i,j =
−8

12hx

(

ω̄xp−2,i,j
− 8ω̄xp−1,i,j

+ 8ω̄xp+1,i,j
− ω̄xp+2,i,j

12hx

) M
∑

k=0

Hj,k +
16

12h2x
ω̄xp,i,j

M
∑

k=0

Hj,k

+
8

12hx
ω̄yp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

Di,k +
8

12hx
ω̄zp,i,j

E13p,i,j =
1

12hx

(

ω̄xp−2,i,j
− 8ω̄xp−1,i,j

+ 8ω̄xp+1,i,j
− ω̄xp+2,i,j

12hx

) M
∑

k=0

Hj,k −
1

12h2x
ω̄xp,i,j

M
∑

k=0

Hj,k

−
1

12hx
ω̄yp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

Di,k −
1

12hx
ω̄zp,i,j .

By the same token, Equation ( 5.34) can be rewritten as follows

A21p,i,jω̃xp−2,i,j
+B21p,i,jω̃xp−1,i,j

+ C21p,i,jω̃xp,i,j +D21p,i,jω̃xp+1,i,j
+ E21p,i,jω̃xp+2,i,j

+A22p,i,jω̃yp−2,i,j
+B22p,i,jω̃yp−1,i,j

+ C22p,i,jω̃yp,i,j +D22p,i,jω̃yp+1,i,j
+ E22p,i,jω̃yp+2,i,j

(5.43)

+A23p,i,jw̃p−2,i,j +B23p,i,jw̃p−1,i,j + C23p,i,jw̃p,i,j +D23p,i,jw̃p+1,i,j + E23p,i,jw̃p+2,i,j

= F2p,i,j +Rh2p,i,j.
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where

A21p,i,j =
−1

12hx
ω̄xp,k,j

M
∑

k=0

Hj,k −
1

12hx

M
∑

k=0

Dj,kv̄p,i,k

M
∑

k=0

Hj,k

B21p,i,j =
8

12hx
ω̄xp,k,j

M
∑

k=0

Hj,k +
8

12hx

M
∑

k=0

D2j,kv̄p,i,k

M
∑

k=0

Hj,k

C21p,i,j =

N
∑

k=0

D1i,kω̄yp,k,j

M
∑

k=0

Hj,k +
v̄p−2,i,j − 8v̄p−1,i,j + 8v̄p+1,i,j − v̄p+2,i,j

12hx

−ω̄yp,k,j

N
∑

k=0

D1i,k

M
∑

k=0

Hj,k − ω̄zp,k,j

D21p,i,j =
−8

12hx
ω̄xp,k,j

M
∑

k=0

Hj,k −
8

12hx

M
∑

k=0

D2j,kv̄p,i,k

M
∑

k=0

Hj,k

E21p,i,j =
1

12hx
ω̄xp,k,j

M
∑

k=0

Hj,k +
1

12hx

M
∑

k=0

D2j,kv̄p,i,k

M
∑

k=0

Hj,k

A22p,i,j =
−1

Re12h2x
−

1

12hx
ūp,i,j

B22p,i,j =
16

Re12h2x
+

8

12hx
ūp,i,j

C22p,i,j =
−30

Re12hx
2 +

1

Re

N
∑

k=0

D12i,k +
1

Re

M
∑

k=0

D22j,k − v̄p,i,j

N
∑

k=0

D1i,k − w̄p,i,j

M
∑

k=0

D2j,k

+
N
∑

k=0

D1i,kv̄p,i,j −
M
∑

k=0

D2j,kv̄
M
∑

k=0

Hj,k

N
∑

k=0

D1i,k

−

(

ω̄xp−2,i,j
− 8ω̄xp−1,i,j

+ 8ω̄xp+1,i,j
− ω̄xp+2,i,j

12hx

) M
∑

k=0

Hj,k

D22p,i,j =
16

Re12h2x
−

8

12hx
ūp,i,j

E22p,i,j =
−1

Re12h2x
+

1

12hx
ūp,i,j
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A23p,i,j =
−1

12hx

(

ω̄yp−2,i,j
− 8ω̄yp−1,i,j

+ 8ω̄yp+1,i,j
− ω̄yp+2,i,j

12hx

) M
∑

k=0

Hj,k

+
1

12hx
ω̄xp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

D1i,k

B23p,i,j =
8

12hx

(

ω̄yp−2,i,j
− 8ω̄yp−1,i,j

+ 8ω̄yp+1,i,j
− ω̄yp+2,i,j

12hx

) M
∑

k=0

Hj,k

−
8

12hx
ω̄yp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

D1i,k

C23p,i,j = −

N
∑

k=0

D1i,kω̄yp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

D1i,k −

M
∑

k=0

D2j,kω̄yp,i,j + ω̄yp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

D12i,k

+ω̄zp,i,k

N
∑

k=0

D1i,k

D23p,i,j =
−8

12hx

(

ω̄yp−2,i,j
− 8ω̄yp−1,i,j

+ 8ω̄yp+1,i,j
− ω̄yp+2,i,j

12hx

) M
∑

k=0

Hj,k

+
8

12hx
ω̄xp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

D1i,k

E23p,i,j =
1

12hx

(

ω̄yp−2,i,j
− 8ω̄yp−1,i,j

+ 8ω̄yp+1,i,j
− ω̄yp+2,i,j

12hx

) M
∑

k=0

Hj,k

−
1

12hx
ω̄xp,i,j

M
∑

k=0

Hj,k

N
∑

k=0

D1i,k.

For completion, Equation ( 5.35) can be rewritten as follows

A31p,i,jω̃xp−2,i,j
+B31p,i,jω̃xp−1,i,j

+ C31p,i,jω̃xp,i,j +D31p,i,jω̃xp+1,i,j
+ E31p,i,jω̃xp+2,i,j

+A32p,i,jω̃yp−2,i,j
+B32p,i,jω̃yp−1,i,j

+ C32p,i,jω̃yp,i,j +D32p,i,jω̃yp+1,i,j
+ E32p,i,jω̃yp+2,i,j

+A33p,i,jw̃p−2,i,j +B33p,i,jw̃p−1,i,j + C33p,i,jw̃p,i,j +D33p,i,jw̃p+1,i,j + E33p,i,jw̃p+2,i,j

= F3p,i,j +Rh3p,i,j, (5.44)
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where

A31p,i,j = 0, B31p,i,j = 0, C31p,i,j =

N
∑

k=0

D1i,k D31p,i,j = 0, E31p,i,j = 0

A32p,i,j =
1

12hx
, B32p,i,j =

−8

12hx
, C32p,i,j = 0, D32p,i,j =

8

12hx
,

E32p,i,j =
−1

12hx
, A33p,i,j =

−1

12h2x
, B33p,i,j =

16

12h2x
,

C33p,i,j =
−30

12hx
2 +

N
∑

k=0

D12i,k +
M
∑

k=0

D22j,k + ω̄zp,i,k

N
∑

k=0

D1i,k, D33p,i,j =
16

12h2x
,

E33p,i,j =
−1

12h2x
.

Figure 5.2: The coefficient matrix form of three-dimensional problem for N =
M = 10 and R = 20.

Collecting from the discrete equations together provide a system that takes

the block pentadiagonal form, as in Figure (5.2). In the matrix form, the system

can be written as follows

LΦ = RI (5.45)
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where

L =













































CC0 DD0 EE0

BB1 CC1 DD1 E1

AA2 BB2 CC2 DD2 EE3

AA3 BB3 CC3 DD3 EE3

. . .
. . .

. . .
. . .

. . .

AAR−2 BBR−2 CCR−2 DDR−2 EER−2

AAR−1 BBR−1 CCR−1 DDR−1

AAR BBR CCR













































and the blocks AA,BB,CC,DD,EE are of size 3(N+1)(M+1)×3(N+1)(M+1).

The suffix notation corresponds to the x direction points, where x = xp, p =

0, 1, ..., R. The blocks AA,BB,CC,DD,EE consist of the following

AAp =













A11p A12p A13p

A21p A22p A23p

A31p A32p A33p













BBp =













B11p B12p B13p

B21p B22p B23p

B31p B32p B33p













CCp =













C11p C12p C13p

C21p C22p C23p

C31p C32p C33p
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DDp =













D11p D12p D13p

D21p D22p D23p

D31p D32p D33p













EEp =













E11p E12p E13p

E21p E22p E23p

E31p E32p E33p













.

The unknown array is ordered in the following way :

Φ =

























Φ0

Φ1

Φ2

...

ΦR

























where

Φp = [ω̃xpij , ω̃ypij , w̃pij], i = 0, 1, ..., N. j = 0, 1, ...,M p = 0, 1, ..., R
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and

ω̃xpij =



























































ω̃xp00

ω̃xp10

ω̃xp20
...

ω̃xpN0

ω̃xp01

ω̃xp11

ω̃xp21
...

ω̃xpNM



























































.

The right-hand side of the system (5.45) can be expressed in the same way

as the unknowns array; hence, RI = [RI0, RI1, RI2, ..., RIR]
T where RIp =
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[Rh1pij, Rh2pij, Rh3pij]. The boundary conditions (??) can be linearized to give



































































































































ω̃x = −ω̄x + π cos(πz)[cos(π(x+ y))− sin(πx) sin(πy)] for, x = 0, 1

ω̃x −
∂w̃
∂y

= −ω̄x +
∂w̄
∂y

for, y = 0, 1
∫ 1

0

(

ω̃x −
∂w̃
∂y

)

dz =
∫ 1

0

(

−ω̄x +
∂w̄
∂y

)

dz for, z = 1

ω̃x −
∂w̃
∂y

= −ω̄x +
∂w̄
∂y

− π cos(πz) sin(πx) sin(πy) for, z = 0

ω̃y +
∂w̃
∂x

= −ω̄y −
∂w̄
∂x

for, x = 0, 1

ω̃y = ω̄y + 1 + π cos(πz)[sin(πx) sin(πy)− cos(π(x+ y))] for, y = 0, 1
∫ 1

0

(

ω̃y +
∂w̃
∂x

)

dz = 1−
∫ 1

0

(

ω̄y +
∂w̄
∂x

)

dz for, z = 1

ω̃y +
∂w̃
∂x

= −ω̄y −
∂w̄
∂x

+ 1 + π cos(πz) sin(πx) sin(πy) for, z = 0

w̃ = −w̄ + cos(πz) sin(π(x+ y)) for, x = 0, 1

w̃ = −w̄ + cos(πz) sin(π(x+ y)) for, y = 0, 1

w̃ = −w̄ + cos(πz) sin(π(x+ y)) for, z = 0, 1.

(5.46)

Note that the integration involved in the system and the boundary condition can

be treated as the two-dimensional lid-driven cavity detailed in Chapter 3.

5.3.3 Numerical Results

This test problem has been coded in the MATLAB and FORTRAN program-

ming environment, and Newton linearization combined with a direct solver have

been used to solve the problem. The convergence stopping criteria that stop the

Newton iteration when the desired corrections have been made is as follows:

ǫ = max
(

Rω̃x
, Rω̃y

, Rw̃

)

≤ 10−6 (5.47)
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where Rω̃x
, Rω̃y

and Rw̃ are the infinite norm of the correction terms vectors,

ω̃x, ω̃y and w respectively. In other words, they can be written as Rω̃x
= ‖ω̃x‖∞,

Rω̃y
= ‖ω̃x‖∞ and Rw̃ = ‖w̃‖∞ .

Figure (5.3), we show the numerical error of ωx given as ||ωxexact−ωynumerical
||∞

and a similar calculation is used for the error of ωy and w. In addition the Figure

(5.3) shows the numerical error of the primary variables (ωx, ωy, w) on the grids

of 101×11×11 and 151×16×16. Here, the grid of size R×N×M correspond to

the number of points in the x, y, z directions respectively. It is clear that solution

accuracy is dependent on the grid size, as a more accurate solution is obtained on

finer grids. The numerical error increases as Re increases. Moreover, Tables (5.1)

and (5.2) emphasize the dependency of the solution of the secondary variables

(u, v, ωz) on the grid size. The test problem has been solved numerically to test

the method, the code and to prepare for solving the three-dimensional lid-driven

cavity, which will be explained in the next section.
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Figure 5.3: The numerical error of ωx, ωy and w on grids of 101 × 11 × 11 and
151× 16× 16.
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Re Numerical error of u Numerical error of v Numerical error of ωz
10 4.56449E-4 9.64206E-5 1.74315E-2
30 4.65218E-4 1.45803E-4 1.79569E-2
50 4.85458E-4 2.35985E-4 1.84247E-2

Table 5.1: The numerical error of u, v and ωz on a grid of 101× 11× 11.

Re Numerical error of u Numerical error of v Numerical error of ωz
10 2.11363E-4 4.25220E-5 1.56942E-2
30 2.21880E-4 6.26588E-5 1.61875E-2
50 2.13851E-4 9.75225E-5 1.66563E-2

Table 5.2: The numerical error of u, v and ωz on a grid of 151× 16× 16.

5.4 Solution to 3-D Lid-Driven Cavity

The cubical lid-driven cavity problem is considered with an upper moving wall, see

Figure (5.1). The problem is discretized using the Chebyshev discretization in the

y and z directions, and fourth-order finite differences is used for the discretization

in the x direction. Newton linearization is used to linearize the problem and

a direct solver is devoted to solve the problem. The problem has been coded

in both the MATLAB and FORTRAN programming environments. Consider

the previous test problem with setting F1, F2, F3, in the system (5.17) to zero.

The modified system is solved with the boundary conditions similar to the test

problem boundary conditions with simple modifications. These modifications are

simply, to set all the forcing functions to zero, as shown in (5.48) and modified

the boundary conditions on z = 0 as shown in (5.48). That leads to the cubical

lid-driven cavity with an upper moving wall.
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ωx = 0 for, x = 0, 1

ωx −
∂w
∂y

= 0 for, y = 0, 1
∫ 1

0

(

ωx −
∂w
∂y

)

dz = 0 for, z = 1

ωx = −∂v
∂z

for, z = 0

ωy +
∂w
∂x

= 0 for, x = 0, 1

ωy = 0 for, y = 0, 1
∫ 1

0

(

ωy +
∂w
∂x

)

dz = 1 for, z = 1

ωy =
∂u
∂z

for, z = 0

w = 0 for, x = 0, 1

w = 0 for, y = 0, 1

w = 0 for, z = 0, 1.

(5.48)

The boundary conditions on z = 0 can be obtained from the relations (5.19) and

(5.20) where ∂w
∂y

= ∂w
∂x

= 0.

5.4.1 Numerical Results for Three-Dimensional LDC

The convergence criteria used are similar to the three-dimensional test problem.

The results were generated on various grid sizes of which the finest was 251 ×

33 × 33 and for various Reynolds numbers. We use the solution of the previous

Reynolds number as the initial guess to obtain the solution for the next larger

Reynolds number.
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Re = 1
Grid size umin umax wmin wmax
21× 5× 5 -0.10998 1 -0.23735 0.23634
41× 8× 8 -0.20623 1 -0.30276 0.30026
61× 10× 10 -0.20722 1 -0.32534 0.32234

Re = 50
Grid size umin umax wmin wmax
21× 5× 5 -0.13413 1 -0.22015 0.20638
41× 8× 8 -0.26654 1 -0.34878 0.24255
61× 10× 10 -0.26769 1 -0.38709 0.25980

Table 5.3: Minimum and maximum of u-velocity component is evaluated along
the vertical centerline, and the minimum and maximum of w-velocity component
is evaluated along the horizontal centerline at the symmetry plane y = 1

2
for

Re = 1, 50 .

Table (5.3) shows that the minimum and maximum values of the u-velocity

component are evaluated along the vertical centerline, and the minimum and

maximum values of the w-velocity component are evaluated along the horizontal

centerline at the symmetry plane y = 1
2
. It can be observed that how the use of

finer grids gives values which are convergent because of the increased accuracy.

Figures (5.4-5.7) show the u-velocity component along the vertical centerline

and w-velocity component along the horizontal centerline of the symmetry plane

x − z, y = 1
2
. The results of the u-velocity profile agree with those of Jackson

(1996), Albensoeder & Kuhlmann (2005), Ku et al. (1987) and Dennis et al.

(1979) and good agreement can be observed for the w-velocity profiles when we

compare with the same references. It is worth mentioning that the w-velocity

component corresponds to v-velocity in some references such as Jackson (1996)

and Ku et al. (1987) due to the difference in the axes directions that have been

considered. However, the small difference in u− velocity profile, which is of order

(10(−2)), can be attributed to the need to use more grid points especially in the

x direction where we use the finite difference method. That can be seen clearly
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around the corners of contours plots of u in Figures (5.12-5.15).

Figures (5.8-5.11) show the mesh of u-velocity and v-velocity values on the

plane (1
2
, y, z) for various Re = 1, 50, 100 and 200 using the grid of size 251 ×

33 × 33. It can be observed that near the boundary conditions, the values of u-

velocity on the mentioned plane change significantly, especially at y = 0, 1 where

more resolution is needed. Significant changes to v-velocity also occur near z = 1,

where the moving wall is located. One can see that the values of the v-velocity are

small because the flow velocity in the y direction is small. These values increase

in tandem with the Reynolds numbers as evidenced in Figure (5.11) for Re = 200.

Some velocity and vorticity component contour plots are presented in Figures

(5.12-5.15) for Re = 1, 50, 100 and 200, using the grid of size 251× 33× 33. Gen-

erally, good agreement with Jackson (1996) is observed in the common contour

plots which are u(1
2
, y, z), u(x, y, 1

2
), and w(1

2
, y, z). From the contours plots of u,

it can be suggested that resolution is needed as some coarse small circles appear

around the bottom corners. The same observation apply for w contours where

the effect of the used coarse grid is obvious in the interior contours levels. at the

contours plots of u at Re = 200 the need to use a finer grid is more obvious as

the Reynold number increased, see Figure (5.15).

Figures (5.16-5.27) show the velocity component (u, v, w) on the boundaries to

show that our results demonstrate that lid driven cavity boundary conditions are

satisfied. It is clear that all the velocity component (u, v, w) for various Reynolds

numbers are almost zero everywhere on the boundary conditions, except on z = 1

where u = 1.
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To conclude, a test problem for the velocity-vorticity formulation was prepared

to test the numerical methods and the code. Although good results are obtained

using the novel velocity-vorticity formulation, more accurate numerical solutions

can be obtained using finer grids. But finer grids could not be used because of

the huge amount of memory which is required for the direct solver. With the use

of parallelisation, we can overcome this obstacle. However, the novel velocity-

vorticity formulation show its equivalence to the the original formulation with

only solving for three primary variables. This makes this formulation promising

and attractive to use rather than other formulations.
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Figure 5.4: u, w−Velocity profiles for Re = 1 along the vertical and horizontal
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centerline of the x− z symmetry plane (x, 1
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Figure 5.6: u, w−Velocity profiles for Re = 100 along the vertical and horizontal
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Figure 5.12: Contour plots for Re = 1 using a grid of size 251× 33× 33.
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Figure 5.13: Contour plots for Re = 50 using a grid of size 251× 33× 33.
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Figure 5.14: Contour plots for Re = 100 using a grid of size 251× 33× 33.



CHAPTER 5. SOLUTION TO 3-D NAVIER STOKES EQUATIONS 173

z

y

u( 1

2
, y, z)

1

−0.08

0

0.08
0.24
0.48 0.64

0 0.5 1
0

0.2

0.4

0.6

0.8

1
u(x,y, 1

2
)

x

z

−
0.117−0

.0
63

−0
.0

36

−0
.0

09 −
0.018

0 0.5 1
0

0.2

0.4

0.6

0.8

1

w( 1

2
, y, z)

z

y

−0.0019

0.0093

0.0547

0.0899

0.0244

0 0.5 1
0

0.2

0.4

0.6

0.8

1

v(x, 1

2
, z)

x

z

−0.01
−0.03

−0.070.03
0.05
0.07

0.01

0

0 0.5 1
0

0.2

0.4

0.6

0.8

1

ωy(1, y, z)

z

y

−15.681

−2.647

−0.535

−0.11−0.11

0 0.5 1
0

0.2

0.4

0.6

0.8

1

ωx(x, y, 1

2
)

x

y

0

0

1.
3

0.
3

−0.7

−2

−0.3

0.3
0.69

0 0.3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 5.15: Contour plots for Re = 200 using a grid of size 251× 33× 33.
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Figure 5.16: u-velocity values on the boundary conditions for Re = 1.
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Figure 5.17: v-velocity values on the boundary conditions for Re = 1.
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Figure 5.18: w-velocity values on the boundary conditions for Re = 1.
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Figure 5.19: u-velocity values on the boundary conditions for Re = 50.
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Figure 5.20: v-velocity values on the boundary conditions for Re = 50.
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Figure 5.21: w-velocity values on the boundary conditions for Re = 50.
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Figure 5.22: u-velocity values on the boundary conditions for Re = 100.
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Figure 5.23: v-velocity values on the boundary conditions for Re = 100.
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Figure 5.24: w-velocity values on the boundary conditions for Re = 100.
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Figure 5.25: u-velocity values on the boundary conditions for Re = 200.



CHAPTER 5. SOLUTION TO 3-D NAVIER STOKES EQUATIONS 184

Figure 5.26: v-velocity values on the boundary conditions for Re = 1.
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Figure 5.27: w-velocity values on the boundary conditions for Re = 200.



Chapter 6

Conclusions

In this project, firstly, we have investigated the solution of the two-dimensional

lid-driven cavity problem by solving the steady Navier-Stokes equations. The

streamfunction-vorticity formulation was used to obtain the solution for the flow

in a square domain. The Chebyshev collocation method was used to discretize

the equations in both the x and y directions. The Newton-Raphson technique

was employed to linearize the system. A MATLAB code was developed to solve

the system using a direct method to obtain the solution at high Reynolds num-

ber. The advantage of using the spectral method is the greater accuracy that it

offers. Solutions have been obtained for Reynolds number, far higher than those

presented previously by other researchers. Our results obtained concurred with

those available in the literature. There are small differences for Re > 10000 in the

secondary and tertiary corner eddies features, as described previously. We believe

that the present results are more accurate due to the use of the spectral method

in both directions, which offers a great accuracy. New results were obtained for

Reynolds number values of Re = 21000, 22000, 23000, 24000 and 25000. Our so-

lutions show oscillations in the vorticity contour plots near the top left corner

186



CHAPTER 6. CONCLUSIONS 187

but it is suggested that using finer grids would resolve the area in particular, for

Re ≥ 22000.

Secondly, the same technique that has been used for the two-dimensional lid-

driven cavity problem was employed to solve the steady separated corner flow.

Solutions for high Reynolds number, far higher than those obtained previously by

other researchers, were obtained for various grids. Streamfunction and vorticity

contour plots and their profiles for various Reynolds numbers and grids were pre-

sented. They were compared with Mclachlan (1991) and agreed with his results.

New results were obtained for Re ≥ 5000 and up to Re = 14000 for X∞ = 1.543.

Some circles and oscillation near the separation point suggests that a finer grid

needs to be used. A clear finding is that the separated region remains of size

O(1) as the Reynolds number becomes large.

Thirdly, we have investigated the solution of the three-dimensional cubical

lid-driven cavity problem by solving the equations with the three-dimensional

velocity-vorticity formulation. A Chebyshev collocation method was used to dis-

cretize the problem in the y and z directions and the fourth-order finite difference

method was used to discretize the equations in the x direction. The Newton-

Raphson technique was employed to linearize the problem. The discretization

of the equations leads to a sparse block pentadiagonal matrix, which was solved

directly. Some results for Reynolds numbers were presented and compared with

available previous literature. Results were obtained for Re = 1, 50, 100 and 200

and velocity and vorticity contour plots, and their profiles were presented. The

comparisons show agreements between our results and the those of others.
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6.1 Future Work

In the present work, the Chebyshev collocation method has been used successfully

in both directions x and y to solve the two-dimensional problems and it show

its success to generate results for high Reynolds number. Thus, this approach is

suitable for solving other problems and geometries for two dimensions. Moreover,

one can generate more results for higher Reynolds number with finer grids. For

the three-dimensional problem, the sparse block pentadiagonal matrix that arises

from using the hybrid methods is attractive and makes this approach convenient

for solving three-dimensional problems. Additionally, with parallel computing,

there is considerable scope to solve three-dimensional problems; however, we have

found that the method requires a lot of memory and CPU time. Without making

use of a parallel solver, it is unlikely that the present method can be taken further.



Appendix A

Two-Dimensional Lid Driven

Cavity

This appendix shows some further results for two-dimensional lid driven cavity. It

shows u-velocity profiles along a vertical line passing through the geometry centre

at various Reynolds numbers (Re = 5000 − 12500) using N = M = 120 grid.

Similarly, v-velocity profiles along a horizontal line passing through the geometry

centre at various Reynolds numbers (Re = 100−20000) using N =M = 120 grid

has been presented. In addition, this appendix presents streamline and vorticity

contours plots for various Reynolds number up to 24000 on various grids.
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Figure A.1: Comparison of u-velocity profiles along a vertical line passing through the geometry centre at various Reynolds
numbers using N =M = 120 solution.
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Figure A.2: Comparison of v-velocity profiles along a horizontal line passing through the geometry centre at various Reynolds
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APPENDIX A. TWO-DIMENSIONAL LID DRIVEN CAVITY 192

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
present
Erturk et al.

Re = 15000

v
(x
,1
/
2
)

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
present
Erturk et al.

Re = 17500

v
(x
,1
/
2
)

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
present
Erturk et al.

Re = 20000

v
(x
,1
/
2
)

x
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Figure A.4: Streamline and vorticity contours plot at Re = 400 on 51×51 and 65×65
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Figure A.7: Streamline and vorticity contours plot at Re = 1000 on 81 × 81 and
121 × 121 grid.
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Figure A.8: Streamline and vorticity contours plot at Re = 5000 on 65×65 and 81×81
grid.
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Figure A.9: Streamline and vorticity contours plot at Re = 5000 on a 121 × 121 and
131 × 131 grid.
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Figure A.10: Streamline and vorticity contours plot at Re = 7500 on 81 × 81 and
121 × 121 grid.
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Figure A.11: Streamline and vorticity contours plot at Re = 7500 on 131× 131 grid.
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Figure A.12: Streamline and vorticity contours plot at Re = 12500 on a 121 × 121
and 131× 131 grid.
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Figure A.13: Streamline and vorticity contours plot at Re = 17500 on a 121 × 121
and 131× 131 grid.
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Figure A.14: Streamline and vorticity contours plot at Re = 21000 on a 131 × 131
grid.
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Figure A.15: Streamline and vorticity contours plot at Re = 22000 on a 131 × 131
grid.



APPENDIX A. TWO-DIMENSIONAL LID DRIVEN CAVITY 205

N = M = 130

−0.115

−0
.1

18

−0.115

−0.11

−0.1

−0.09

−0.07
−0.05
−0.03

−0.01
−1e−05−0.0001

0.
00

05

0.001

−0
.0

00
1

0.001
−1e−05

−1e−05

0.001

0.0005

0.00025

−0.0001
0.00025

0.0025
0.001

−1e−05

−1
e−

05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = M = 130

0

0
0.5

−1
0.5

2
6

0
−2

−4

23
4

6−4

6

3
3

0

0.5

1

4

1
2

3

2

1
0−

1
−

4

−2

−4 0.5
0−2−1

−4

−2−1

00.5
0

0

11

24

6

1

−4−20
10

2

2
34

6
−4

−2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.16: Streamline and vorticity contours plot at Re = 24000 on a 131 × 131
grid.
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