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ABSTRACT

Hyperspectral imaging is a technique which combines spectral and spatial imaging meth-
ods. The technology is used in remote sensing, medicine, agriculture and forensics just to
mention a few. Non-remote systems are developed by using sensor designs different from
push-broom and whisk- broom methods, commonly found in remote sensing hyperspec-
tral imaging systems. Images are commonly acquired by mounting various electronically
tunable filters in front of monochromatic cameras and capturing a range of wavelengths
to produce a spectral image cube. Illumination plays a major role during imaging, as both
the camera and electronically tunable filter may suffer low transmission at the ends of the
visible spectrum, resulting in a low signal to noise ratio.

The work described in this thesis attempts to address two key objectives. The first was
to identify the main sources of errors in a common design of focal-plane hyperspectral
imaging system and devise ways of compensating for these errors. Calibration and char-
acterization of a focal-plane hyperspectral imaging system included system noise charac-
terization, stray-light compensation, flat field correction, image registration, input-output
function characterization and calibration verification.

The other was to apply imaging techniques to hyperspectral images. This included scene
recognition using ratio indexing and spectral gradients. This comes from the underlying
idea that due to the large number of bands contained in hyperspectral images, more in-
formation is available so better recognition results compared to RGB images. A novel
approach for obtaining ratios for ratio indexing is proposed in this thesis.

The imaging of archived materials from University of Manchester’s John Rylands Library
was also done. The aim was to produce high resolution hyperspectral images that will help
in identifying accurate matches for colours used in document restoration at the Library.
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CHAPTER

ONE

INTRODUCTION

Hyperspectral imaging is a technique which combines spectral and spatial imaging meth-
ods. Although the technology was developed for remote sensing it has found uses in
medicine16, 12, 15 and agriculture49, 61, 21 just to mention a few. These non-remote systems
are developed by using sensor designs different from push-broom and whisk-broom meth-
ods, commonly found in remote sensing hyperspectral imaging systems. Images are com-
monly acquired by mounting various electronically tunable filters in front of monochro-
matic cameras and capturing a range of wavelengths to produce a spectral image cube.
The imaging system used for this thesis falls under this category. Illumination plays a
major role during imaging, as both the camera and electronically tunable filter may suffer
low transmission at the ends of the visible spectrum, resulting in a low signal to noise
ratio.

One of the main objectives of this research was to identify the main sources of errors in
a common design of focal-plane hyperspectral imaging system and devise ways of com-
pensating for these errors. The other was to achieve scene recognition using hyperspectral
data. This comes from the underlying idea that due to the large number of bands contained
in hyperspectral images, more information is available;hence better recognition results.

This chapter introduces basic radiometric terms and definitions which describe the mea-
surement of light. The elements of human vision and the evaluation of its performance,
which are fundamental to understanding judgements of image quality and colour mea-
surement will also be discussed.

Chapter two provides a literature review of colour imaging consisting of colour matching
functions, tristimulus values, colour spaces, colour difference formulae, colour gamut,
and metamerism (the phenomenon by which different spectra appear identical to the
eye or imaging device) including different indices used to compute mismatches among
metameric pairs. The measurement of light in the visible spectrum will also be discussed
and basic photometric terms will be defined.

Chapter three contains a discussion of hyperspectral imaging, in which the process of data
acquisition and processing, and calibration methods are explained.

13



1.1. RADIOMETRY

Chapter four deals with calibration and characterization of a focal-plane hyperspectral
imaging system. This include system noise characterization, straylight compensation, flat
field correction, image registration, input-output function characterization and calibration
verification.

Chapter five presents hyperspectral imaging of archived material at the University of
Manchester’s John Rylands Library. Image acquisition and processing is given and eval-
uation of image quality is also discussed.

Chapter six contains applications of scene recognition algorithms on hyperspectral im-
ages. Spectral gradient and ratio indexing are used for scene recognition of natural scene
images. A novel method for computing image pixel ratios is proposed19. Scene recog-
nition performance appears to peak with five sensor channels, after which it possibly
declines with more channels.

Chapter seven includes a general discussion of the work and suggestions for further work
will also be given.

1.1 Radiometry

Optical radiation can be considered as energy propagated in the form of electromagnetic
waves or particles (photons), which can be reflected, captured, or dispersed using optical
components such as lenses or prisms43. Radiometric measurements are based on geo-
metric optics, with exceptions where wave and quantum optics are used to account for
properties such as diffraction and the interaction with matter at the microscopic level.
Measurement involves a beam of radiation originating from a source, passing through an
optical path and being captured by a radiometric instrument.

Some definitions and concepts will be introduced to help understand the flow of radiation
through various stages of image formation. The following concepts are fundamental terms
associated with optical imaging systems.

Radiance

Radiance can be evaluated on any surface through which radiant flux or power passes
through. This includes surfaces of sources, receivers and any optical elements such as
lenses and mirrors. Radiance is defined as the radiant flux or power per unit solid angle ω
in a given direction per unit projected area dA perpendicular to a given direction62 (Figure
1.1). It is expressed mathematically in Equation 1.1.1

L(x, y, θ, φ) =
d2P (x, y, θ, φ)

dA. cos θ.dω
(1.1.1)

where L(x, y, θ, φ) is the radiance at point (x, y) in the ray direction (θ, φ), d2P (x, y, θ, φ)

is the radiant flux or power passing through the surface element dA at point (x, y) and

14



1.1. RADIOMETRY

Figure 1.1: Radiance of a surface element

within the element of solid angle dω, and dA. cos θ is the element of projected area which
is perpendicular to the ray direction (θ, φ). The SI unit for radiance is watts per metre
square per steradian i.e. Wm−2sr−1.

Radiance measurement is useful because it indicates how much of the radiant power emit-
ted by an emitting or reflecting surface will be received by an optical system looking at
the surface from some angle of view.

Irradiance and radiant exitance

Radiant flux describes the amount of radiant energy that is incident on a surface or emitted
from a surface. When radiant flux is irradiated on a surface it is known as irradiance. It is
the amount of radiant flux per unit area, while radiant exitance is associated with radiant
flux leaving a surface. Both terms have the same unit watts per metre square Wm−2. In
hyperspectral imaging, we consider these quantities for individual wavelength or bands
of wavelengths. When this is done for radiation incident on a surface, it is called spectral
irradiance, and has radiometric units W m−3.

Reflectance

Reflectance is the basic quantity that characterises the process of reflection, which is
a physical process in which radiant energy incident on a material is at least partially
returned by the material without change of wavelength69. It is defined as the ratio of
reflected radiant flux (or power) to incident radiant flux (or power). Its value is between 0
and 1. Spectral reflectance ρ(λ) is defined in Equation 1.1.2 as

ρ(λ) =
Pλ
P0λ

(1.1.2)

where Pλ is the spectral concentration of radiant power reflected by a material and P0λ is
the spectral concentration of radiant power incident on the material69. Surface reflectance
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can be described by its bidirectional distribution function (BRDF) and is considered in
the next section.

1.1.1 Bidirectional reflectance distribution function

The bidirectional reflectance distribution function (BRDF) gives a description of how light
is reflected at surfaces with respect to its spatial and spectral variables. The following is
based on Nicodemus et al.44.

Figure 1.2: Birdirectional reflectance distribution function

In Figure 1.2, A represents the total surface area irradiated. The irradiance from the
direction (θi, φi) inside the solid angle dωi and striking an element of the surface with
area dA is given by dΦi. The reflected radiance in the direction (θr, φr) which originates
from dΦi is represented as dLr.In general, dLr is directly proportional to dΦi. The BRDF
fr is simply defined as the ratio of the reflected radiance in the viewing direction to the
irradiance in the direction of the incident light. The incident and reflected direction angles
are defined with respect to the surface normal.

fr(θi, φi; θr, φr) ≡
dLr(θi, φi; θr, φr)

dEi(θi, φi)
(1.1.3)

The BDRF is modelled using the assumption there is uniform irradiance over a large
area of a uniform and isotropic surface44. The BRDF can be extended to include the
wavelength or bands of wavelength of light as a variable. This function is known as the
bidirectional spectral-reflectance distribution function (BSRDF). The BSRDF of a surface
records the percentage of incoming light that is reflected at each wavelength.
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1.2 Light sources and illuminants

Lights sources emit radiation characterised by a spectral radiant power distribution, which
gives the radiant power exitance at each wavelength or over a band of wavelengths. Exam-
ples of these sources are the sun , a candle and incandescent lamps. An illuminant can be
considered as a light source that has been defined by a spectral radiant power distribution
curve, but may not actually exist. The Commission Internationale de l’Eclairage (CIE) has
defined illuminants which are modelled from different light sources. The spectral radiant
power distribution of CIE standard illuminants are given in terms of an arbitrary unit of
radiant power; hence they are referred to as relative spectral radiant power distributions69.

Figure 1.3: Relative spectral power distribution curves for CIE Standard Illuminants A
and D65

Examples are Illuminants A, B and C which model incandescent light, direct sunlight
and average daylight respectively. Iluminant D is used to represent different phases of
daylight, while illuminant E is an equal energy radiator having constant spectral power
distribution inside the visible spectrum. It is used as a theoretical reference. Figure 1.3
shows the spectral power distribution curves for illuminants A and D65.

1.3 The human vision system

In the human eye, when light arrives at the cornea, it is focused by the cornea and lens onto
the retina producing a small inverted image on the retina. The retinal image is transformed
into a neural signal by light sensitive photoreceptors present in the retina. The retina has
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two types of photoreceptors, namely, rods and cones. The rods are responsible for night
(scotopic) vision and cones for day (photopic) vision.

The sensitivity of the eye to light is not the same for all wavelengths. The spectral sen-
sitivity curves for scotopic and photopic vision of the human eye are shown in Figure
1.4. These curves are obtained by having observers adjust the strength of a beam of light
for a particular wavelength until its brightness matches that of a reference wavelength33.
These curves are known as the spectral luminous efficiency function for scotopic V ′(λ)

and photopic V (λ) vision. An ideal observer having a relative spectral sensitivity function
that is the same as the V (λ) function is known as a CIE standard photopic photometric
observer33.

Figure 1.4: CIE spectral luminous efficiency curves for photopic V (λ) and scotopic vision
V ′(λ)

Human colour vision relies on three types of cone photoreceptors which are sensitive
to light over different, but overlapping regions of the visible spectrum with sensitivities
highest at 420.7 nm (short wavelength), 530.3 nm (medium wavelength), 558.9 nm (long
wavelength) and are known as S, M and L cones respectively57. Figure 1.5 gives the
spectral sensitivity curves for human cones as determined by Stockman et. al57.

The optical quality of the retinal image is degraded by diffraction, monochromatic and
chromatic aberration, and light scatter. Currently, optical defects of the eye are usually
described in terms of its wavefront aberration under specified conditions, the overall level
of aberration being expressed as the root-mean-square (RMS) wavefront error. The optical
performance of the human eye can be characterized by measuring its modulation transfer
function (MTF). The modulation transfer function can be measured using the double-pass
method53, 8, 35 or interferometric method66, 7. In the double-pass method, a point source
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Figure 1.5: Spectral sensitivity curves for the cones of the eye57

of light is imaged on the retina and the reflected light from the eye is captured. This
image is then used to compute the MTF. With the interferometric method, conventional
sinusoidal gratings and interference fringes, which are not blurred by the optics of the
eye are imaged and their contrast sensitivities are determined by subjects adjusting the
contrast of the gratings or fringes on a video monitor to threshold. The MTF is then
estimated as the ratio of their contrast sensitivities. The contrast sensitivity measured
using sinusoidal gratings describes the transfer of contrast through the whole sequence of
stages of the visual system including both the optics of the neural visual system. On the
other hand, measurements of contrast sensitivity using interference fringes describes the
transfer of contrast through the neural visual system, omitting any focussing by the optics
of the eye.

1.4 Aims and objectives

One of the aims of this thesis is to identify the main sources of errors in a focal-plane
hyperspectral imaging system and devise ways of compensating for these errors. The
problem of low signals at short wavelengths, spatial non-uniformity in the sensitivity
of the imaging system and efficiency of calibration references are particularly important
sources of error. In this thesis, the calibration and characterization of a focal-plane hyper-
spectral imaging system was performed. Methods used included, computation of input-
output and modulation transfer functions to check the linearity of the imaging system and
image quality respectively. Analysis of system noise, vignetting and straylight which af-
fect image quality was also performed. Hyperspectral image registration algorithms were
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used to align images and are presented. The evaluation of image registration accuracy
was done by tracking the edge midpoint location of sharp edge regions. Final calibration
verification was tested on Gretag Macbeth colour checker chart hyperspectral images.

The other aim was the application of hyperspectral imaging to archived materials and
natural scenes. Imaging archived materials at the University of Manchester’s John Ry-
lands Library was undertaken. Images were corrected for noise, vignetting and straylight.
Image registration algorithms presented in chapter four were applied to hyperspectral
images. The metric for evaluating registration accuracy was once again edge tracking.
The second application was hyperspectral imaging scene recognition. One approach was
using spectral gradients of hyperspectral images to achieve recognition between images
captured using different light sources. The other, was scene recognition using ratio index-
ing. A novel approach for creating ratio images is given in this thesis. Results show that
hyperspectral imaging gives better results compared to conventional colour images.
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CHAPTER

TWO

COLOUR IMAGING

2.1 Introduction

Sight and colour perception are among the most fascinating human senses. Colour images
can be found in television, books, and newspapers just to mention a few. In order to record
and process colour images, it is essential to understand the capabilities and limitations of
colour imaging devices.

In this chapter, a discussion of photometry, which describes light measurement in the vis-
ible part of the electromagnetic spectrum, is considered. Basic colorimetry, the science of
colour measurement and description, with emphasis on colour matching functions, tris-
timulus values, colour spaces, colour difference formulae, colour gamut and metamerism,
including different indices used to compute mismatch among metameric pairs is also con-
sidered.

2.2 Photometry

The fundamental concept in photometry is the matching of brightness between different
stimuli69. It is the measurement of light weighted by human luminance sensitivity. It is
based on the photopic spectral luminous efficiency function V (λ). The V (λ) function
is used as a weighting function for evaluating the total amount of light in a mixture of
radiation for different wavelengths69. Photometry is based on photopic spectral luminous
efficiency function V (λ) which was standardized by the CIE in 1951. The basic quantities
used in photometric measurements are as follows:

2.2.1 Luminous flux

Luminous flux is radiant flux (or power) weighted by the V (λ) function. The unit for
luminous flux (or power) is the lumen (lm) which is the luminous flux of a beam of
monochromatic radiation with frequency 540 x 1012 hertz (555 nm) and having a radiant

21



2.3. COLORIMETRY

flux of 1/683 watt33.

2.2.2 Luminance

The luminance is defined as the luminous flux per unit solid angle and per unit projected
area, in a given direction, at a point on the surface. It is expressed mathematically in
Equation 2.2.1

Lv(x, y, θ, φ) =
d2Fv(x, y, θ, φ)

dA. cos θ.dω
(2.2.1)

where Lv(x, y, θ, φ) is the luminance at point (x, y), dA. cos θ is the element of projected
area onto a plane perpendicular to direction θ, φ and d2Fv(x, y, θ, φ) is the luminance flux
passing through the surface element dA at point (x, y) and within the element of solid
angle dω. The unit for luminance is given as candela per square metre cd/m2.

2.2.3 Illuminance and luminous exitance

Illuminance is the luminous flux incident on a surface, per unit area while luminous exi-
tance is the luminous flux per unit area emitted from a surface. Both terms have the same
unit which is lux.

2.3 Colorimetry

Colorimetry is the branch of colour science concerned primarily with specifying numeri-
cally the colour of a physically defined visual stimulus such that69:

(1) Stimuli with the same specifications look alike when viewed by an observer with
normal colour vision under the same observing conditions (complete colour match).

(2) The numbers comprising the specifications are continuous functions of the physical
parameters defining the spectral radiant power distribution of the stimulus.

Colorimetery is also concerned with the colour difference perceived by observers when
small differences in the spectral radiant power distribution of visual stimuli are such
that a complete colour-match cannot be observed69. The Commission Internationale de
l’Eclairage (CIE) was the driving force behind the development of colorimetry by defin-
ing and specifying colorimetry through their publications. The fundamental theory of
colorimetry involves how the so-called tristmulus values are specified. CIE tristmulus
values are considered in a later section.

2.3.1 Colour-matching functions

Normal colour vision is basically a function of three variables. The three cone sensitiv-
ity curves of the human eye might seem a good basis for specifying the colour for visual
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stimuli. However, this was not used in establishing an internationally accepted method for
evaluating colour because these curves were not known then with sufficient precision33.
Instead, three- colour matching or trichromatic matching functions are used. These func-
tions were derived from independent experiments by W.D. Wright in 1929 and J. Guild in
1931.

The experimental procedure consisted of observers matching a test colour seen on one
half of the field of view against an additive mixture of beams of red, green and blue light
by adjusting the amounts of red, green and blue light until the additive mixture of colours
matches the test colour. Wright used a trichromatic colorimeter with monochromatic
bands of light isolated from a spectrum formed by a prism68. He used a total of ten
observers with an instrumental field size of 2◦. On the other hand, Guild used a tungsten
lamp with colour filters and seven observers with a field size of 2◦ 30. Guild’s colour
matching functions r̄(λ), ḡ(λ), b̄(λ) contain negative values. In 1931, the CIE transformed
the two sets of colour matching functions obtained from the experiments by Wright and
Guild into a single set of colour-matching functions x̂(λ), ȳ(λ), z̄(λ) having non-negative
values and with ȳ(λ) approximately equal to the daylight luminance sensitivity of the
human eye. A plot of these functions is given in Figure 2.1.

Figure 2.1: CIE 1931 2◦ colour- matching functions

In 1964, a second set of colour matching functions was measured using a larger instru-
mental field size (10◦). One reason for this is the non-uniform distribution of cones in
the retina64. Another reason was to do with intrusion of macular pigment in the foveal
2◦ measurements; in the 10◦ matching, observers were instructed to ignore the central 2◦.
Both sets of colour-matching functions are used in the colour industry and users decide
according to their particular viewing conditions.
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2.3.2 CIE Tristimulus values

Tristimulus values are the basis of colorimetry and their accurate computation is desirable
by the colour industry for a wide range of applications. A colour arising from reflected
light can be specified by a triplet of tristimulus values. Estimating the tristmulus values
requires the relative spectral radiant power distribution of an illuminant, reflectance func-
tion spectra and colour-matching functions. Mathematically, it is the integration of these
three spectra given in Equations 2.3.1, 2.3.2 and 2.3.3.

X =

∫
λ

x̄(λ)E(λ)R(λ)d(λ) (2.3.1)

Y =

∫
λ

ȳ(λ)E(λ)R(λ)d(λ) (2.3.2)

Z =

∫
λ

z̄(λ)E(λ)R(λ)d(λ) (2.3.3)

where E(λ) is the relative spectral radiant power distribution of an illuminant, R(λ) is the
spectral data of the signal and x̄(λ), ȳ(λ), z̄(λ) are the colour matching functions.

The illuminant and reflected spectra are usually measured at every 10 nm or 20 nm interval
from 400 nm to 720 nm. On the other hand, the colour-matching functions are given at
every 5 nm or 1 nm interval. Interpolation is used during computation to estimate colour
matching functions at every 10 nm interval.

Two colour signals having the same tristimulus values will look alike, when viewed un-
der the same photopic conditions33. This phenomenon is known as metamerism and is
considered in a later section.

2.3.3 Chromaticity

Associated with any set of tristimulus values X ,Y ,Z are set of chromaticity coordinates
x,y,z defined by equations 2.3.4, 2.3.5, and 2.3.6.

x =
X

X + Y + Z
(2.3.4)

y =
Y

X + Y + Z
(2.3.5)

z =
Z

X + Y + Z
(2.3.6)

Chromaticity coordinates represent the relative amounts of tristimuls values. The chro-
maticity specifies the colour signal independent of its intensity. Hence colour signals with
different spectral power distribution are represented by the same chromaticity69. It is ob-
vious that x+ y + z = 1 and hence if x and y are known, z can always be deduced using
1 − x − y. With only two variables x,y, a two-dimensional diagram can be constructed.

24



2.3. COLORIMETRY

This diagram is known as the chromaticity diagram as given in Figure 2.2.

Figure 2.2: CIE chromaticity diagram26

It is characterized by a horseshoe shaped locus (spectral locus) of monochromatic spec-
tral colours with a straight line connecting extreme short-wavelength and long-wavelength
chromaticity coordinates. The central position is occupied by white and colours become
more saturated as we move towards the edges. The unique property of this diagram is
that the representative point of an additive mixture of two colour signals lie on a straight
line passing through the chromaticity points corresponding to the constituents of the mix-
ture69.

2.3.4 Colour spaces and colour difference formulae

Chromaticity diagrams have many uses but as they show only proportions of tristimulus
values and not their actual magnitudes, they are restricted to colours having the same
luminance33. They are also perceptually non-uniform. In 1976, the CIE defined two
colour spaces. The first one is known as the CIELUV colour space and tends to be used
with self-luminous stimuli such as those generated using additive colour-reproduction
devices64 and the second one the CIELAB colour space tends to be used for surface
colour specification with coordinates (L∗, a∗, b∗) and is computed using Equations 2.3.7,
2.3.8 and 2.3.9:
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L∗ = 116

(
Y

Yn

) 1
3

− 16 (2.3.7)

a∗ = 500

[(
X

Xn

) 1
3

−
(
Y

Yn

) 1
3

]
(2.3.8)

b∗ = 500

[(
Y

Yn

) 1
3

−
(
Z

Zn

) 1
3

]
(2.3.9)

where X , Y ,Z are tristimulus values and Xn, Yn,Zn are tristimulus values of a white
object colour stimulus. The coordinates L∗, a∗and b∗ represent the lightness, redness-
greenness and yellow - blueness axes respectively. The lightness L* varies from 0 (black)
to 100 (white). This non-linear transform of theX , Y ,Z, values provided partial solutions
to both the problems of colour apperance and colour difference64. Two other quantities
can be defined using the coordinates to form a cylindrical coordinate system. These are
the hue h and chroma C∗ given by Equation 2.3.10 and 2.3.11 respectively.

h = arctan

[
b∗

a∗

]
(2.3.10)

C∗ = (a∗2 + b∗2)
1
2 (2.3.11)

It is possible to compute the colour difference for two colour signals in CIELAB colour
space by calculating the Euclidean distance between the points that represent the signals
in the space64.

∆E∗ab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]1/2 (2.3.12)

where
∆L∗ = L∗1 − L∗2

∆a∗ = a∗1 − a∗2

∆b∗ = b∗1 − b∗2

The subscripts denote the two colour signals. If we compute the colour difference using
polar coordinates, equation becomes

∆E∗ab = [(∆L∗)2 + (∆C∗ab)
2 + (∆H∗ab)

2]1/2 (2.3.13)

Although the CIELAB colour space is more uniform than the tristimulus space it was cre-
ated from, it is still far from being perceptual perfectly uniform64. Consequently, for equal
perceptual colour differences between pairs of samples, the values of CIELAB colour dif-
ference computed between points representing this pair in CIELAB colour space may
vary by an order of magnitude64. Since 1976, research work has been undertaken to pro-
duce more accurate and comprehensive colour difference formulae. These include the
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CMC colour difference formulae13, which was based upon the CIELAB colour difference
components, CIE94 colour difference formulae6, which tried to overcome the complexity
of the CMC formulae and lately the CIEDE200037, which is non-Euclidean colour differ-
ence formulae which corrects for the perceptual non-uniformity of the Euclidean colour
difference formula in the CIELAB colour space.

2.3.5 Colour gamut

Digital colour imaging media provide a connection between digital data and colour sig-
nals. They are grouped into two classes namely output colour imaging media (e.g. mon-
itors, projectors) which produce output colour signals based on digital data sent to it and
input colour imaging media (e.g. cameras, scanners) which produce digital data based on
sensing colour signals39.

The definition of a digital colour imaging medium gamut depends on the class it belongs
to. For output media, the colour gamut is the range of colour signals they can produce
while for input media, it is the range of colour signals across which their responses show
differences20. For both classes, determining the gamut for a medium requires having
access to the entire range of inputs to the medium. The colour gamut of an output medium
is computed by sending the entire range of digital input (or a meaningful size of the input),
measuring the corresponding output and computing the boundary enclosing these colours
in a colour space39. The generation of the range of input data is trivial because of its
availability.

On the other hand, complexity arises when computing the gamut for input, media because
it involves sampling the entire range of possible colour signals i.e. a set of colour stimuli
with a gamut greater than or equal to the gamut of the input media is required to determine
the range across which differences in stimuli can be sensed39. Since the input gamut to
be determined is not known, only the entire gamut of the colour stimuli is known to be
greater than or equal to the gamut of the input media. Once a set of samples from the
entire range of colour stimuli is available, their medium responses are obtained and used
to determine the medium’s gamut boundaries.

2.3.6 Metamerism

Metamerism is a phenomenon that arises when two colours match one another(same tris-
timulus value), but have different spectral composition. The eye responds to light as an
integrated stimulation of each of the three cones types L,M,S33. If two stimuli have iden-
tical L,M,S cone stimulations when seen under the same conditions, they will look alike
no matter their spectral composition. For equal L,M,S cone responses to occur for two
stimuli having different spectral power distribution, their curves need to have crossover
points within each of the bands of the spectrum to which L,M,S cones are sensitive. It
is therefore a characteristic of the metameric pairs that their spectral power distributions
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exhibit three or more crossover points in the visible spectrum33. Metameric pairs are not
defined as L,M,S cone responses but as stimuli that have the same tristimulus values69.

In the colour industry, metameric pairs occur and it becomes imperative to know what ex-
tent these colours cease to match under the range of illuminants, observers and field sizes
available in the industry. This is important because, the greater the degree of metamerism
the greater the difference in spectral composition between a metameric pair, the greater
the likelihood that the colours will no longer match one another if one of the matching
parameters is altered such as, a change in the spectral composition of the illuminant, spec-
tral sensitivity of the observer or field size33. Since these differences are dependent on
the illuminant, observer and field size, indices of metamerism can be computed for each
case.

The CIE recommends that the degree of metamerism for change of illuminant is com-
puted by calculating an Illuminant Metamerism Index M which involves calculating the
colour difference between a metameric pair caused by substituting in place of a reference
illuminant, a test illuminant having a different spectral composition. The colour differ-
ence formulae used should be stated. The preferred reference illuminant is the Standard
Illuminant D65. Test illuminant could be CIE Standard Illuminant A to represent tungsten
light and fluorescent lamps represented by Iluminants F2, F7 or F1133.

The CIE also recommends that the degree of metamerism for change of observer is eval-
uated by computing an Observer Metamerism Index M2 or M10, consisting of the size
of the colour difference between a metameric pair caused by substituting in the place of
a reference observer, a standard deviate observer (SDO) having different spectral sen-
sitivities33. The reference observer can either be the CIE 1931 Standard Colorimetric
Observer (the 2◦ observer) or the CIE 1964 Supplementary Standard Colorimetric Ob-
server (the 10◦ observer). A standard deviate observer (SDO) is obtained by modifying
the CIE colour-matching functions of the reference observer.

An index of metamerism for change of field size has not been recommended by the CIE,
but with the availability of two CIE Standard Colorimetric Observers such evaluation is
possible for changes between 2◦ and 10◦ 33. For a pair of stimuli that are a metameric
match for the CIE 1931 Standard Colorimetric Observer, their colour difference when
computed using the CIE 1964 Supplementary Standard Colorimetric Observer can be
used as metric of their metamerism for a change of field size.
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CHAPTER

THREE

HYPERSPECTRAL IMAGING

3.1 Introduction

Although multispectral imaging has been used for remote sensing applications since the
early 1970s, hyperspectral imaging is finding increased relevance not only for remote
sensing but for other applications in agriculture, physics, medicine, scientific research
and surveillance. Multispectral imagers for example Landsat and Advanced Very High
Resolution Radiometer (AVHRR), measure the reflectance of Earth’s surface materials at
a few broad wavelength bands separated by spectral segments where no measurements
are taken. In contrast, most hyperspectral sensors measure reflected radiation as a series
of narrow wavelength bands. The detailed reflectance spectrum acquired by hyperspectral
imaging makes it possible to identify and distinguish material and conditions in ways that
are impossible even with very high resolution multispectral imagery or colour imaging.

In this chapter, hyperspectral sensors and their applications in remote sensing, medicine,
agriculture and scientific research are considered. Two remote sensing hyperspectral im-
agers using the whisk and push-broom design respectively are discussed. Hyperspectral
imaging using electronically tunable filters is examined in detail, since such a system pro-
vided the experimental data for this thesis. Components of the imaging system like the
monochrome CCD camera and tunable filter are also presented and a description of the
technology surrounding them is given.

3.2 Applications

Hyperspectral imaging provides image data containing spatial and spectral information.
The large amount of information available from hyperspectral imaging makes it attractive
for use in many applications. The next few sections will discuss some of the uses of
hyperspectral imaging in remote sensing, agriculture, medicine and research.
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3.2.1 Remote sensing

In remote sensing, hyperspectral sensors use either the whisk-broom or push-broom de-
sign. In whisk broom sensors like AVIRIS (also referred to as across-track imagers)
rotating mirrors are used to scan the scene from side to side perpendicular to the direc-
tion of the sensors platform just like a whisk-broom. The width of the sweep is referred
to as the sensor swath. The rotating mirrors redirect the reflected light to a point where
a single or just a few sensor detectors are grouped together. The moving mirrors create
spatial distortions that must be corrected with pre-processing by the data provider before
image data is delivered to the user. An advantage of whisk-broom imagers is that they
have fewer sensor detectors to keep calibrated compared to its push broom counterpart.

Push broom sensors like Hyperion do not use rotating mirrors and can also be referred
to as along-track imagers. The sensor detectors in a push broom design are lined up in a
linear array. Instead of sweeping from side to side as the sensor system moves forward,
the one dimensional sensor array captures the entire scan line at once like a pushbroom
would. Pushbroom imagers are lighter, smaller and less complex because of fewer moving
parts than whiskbroom imagers. Also they have better radiometric and spatial resolution.
A major disadvantage of pushbroom imagers is the calibration required for a large number
of detectors that make up the sensor system.

AVIRIS

NASA AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor, is an optical
sensor that captures images of the earth’s surface spectral radiance in 224 bands approx-
imately 10 nm spectral resolution covering the 380 - 2500nm spectral range. It has been
flown on four aircraft platforms namely NASA’s ER-2 jet, Twin Otter International’s tur-
boprop, Scaled Composites’ Proteus, and NASA’s WB-5740. The ER-2 flies at approx-
imately 20 km above sea level, at about 730 km/hr while the Twin Otter aircraft flies at
4km above ground level at 130km/hr. The main objective of the AVIRIS project is to iden-
tify, measure, and monitor constituents of the Earth’s surface and atmosphere based on
molecular absorption and particle scattering signatures. Research work carried out using
AVIRIS data is focused on understanding processes related to the global environment and
climate change40. The AVIRIS contains 224 different detectors each with a wavelength
sensitive range between 380nm and 2500nm of approximately 10 nm interval. When data
from each detector is plotted, it produces a spectrum and comparing this resulting spec-
trum with those of known substances reveals information about the composition of the
area being viewed by the sensor40.(Figure 3.1).

Hyperion

The Hyperion hyperspectral imaging sensor flies on the NASA Earth Observing-1 (EO-1)
spacecraft launched in late 2000. The EO-1 platform is in a 705-km sun-synchronous
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Figure 3.1: AVIRIS data analysis

orbit following 1 minute behind LANDSAT 7, essentially viewing the same atmospheric
conditions23. The Hyperion sensor detects 220 10-nm hyperspectral bands between 400
nm (blue) and 2500 nm (mid-IR) and records reflectance in 12-bit format. The 30 m ×
30 m GSD of Hyperion mimics Landsat’s spatial resolution; however, the 7.5 km hyper-
spectral swath is only a fraction of a 185-km wide Landsat scene. Another hyperspectral
sensor aboard EO-1, called LEISA, with a 185-km swath at 250 m x 250 m GSD, collects
246 bands in the mid-IR portion of the spectrum where water vapor absorption is signif-
icant23. These data were used to derive atmospheric correction information for the other
sensor datasets.

3.2.2 Agriculture

The use of hyperspectral data in agriculture is growing quickly owing to improvements
in the spatial and spectral resolution of hyperspectral sensors. Farming techniques are
becoming more precise so that crop management is localised rather than being applied
uniformly over the whole field. This requires detecting and identifying variable crop
stress in monoculture plots. With hyperspectral images of these plots, local treatment like
fertilisation, irrigation, insecticide can be applied which have implications on production
cost and environmental management21,61. Crop libraries have also been developed for
classification of different varieties of crops49.
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3.2.3 Medicine

The use of hyperspectral imaging techniques in medicine enables many characteristics
of various tissues and organs in health and disease to be analysed which have not been
previously investigated directly. This includes filter- based hyperspectral imagery used
to capture dental samples and the human brain12. Angelopoulou et al.47 used a skin re-
flectance model to propose a method for skin detection under varying lighting conditions.
Dicker et a.15 explored the use of hyperspectral imaging to determine the cell cycle sta-
tus of live cells in culture. Dicker et al.16proposed a method which uses high resolution
hyperspectral imaging to differentiate between normal skin and melanoma.

3.2.4 Research work

For colour- reproduction applications, the spectral and spatial complexity of natural scenes
gives a major challenge during image accquistion and analysis. Natural scenes have
colour gamuts that may extend beyond those of regular colour cameras which have con-
strained gamut and limited chromatic fidelity39. The advantage of using hyperspectral
sensors in this context is that images derived from them and their colour errors can be
rendered faithfully without being constrained by the colour gamut available to a colour
image-acquisition device, i.e. there is no limit on luminance, hue or chroma1. Hyper-
spectral imaging has been used42 to determine whether spatial cone-excitation ratios are
preserved under illuminant changes within the natural visual environment and in estimat-
ing the frequency of metamerism in natural scenes24. These studies are relevant to some
of the simulations considered later in this thesis.

3.3 Hyperspectral imaging with tunable filter

The capture of image cubes in stationary applications and rapid time-varying scenes can
be accomplished using tunable filter hyperspectral imagers. A tunable filter imager, which
is also a focal-plane imager, acquires an image at a single wavelength at a time. The
spectral dimension is acquired by changing the tuning of the wavelength in time. The
main components of this class of hyperpsectral imagers are a CCD camera, electronically
tunable filter and lens system. The next two sections will look at the monochrome CCD
camera and liquid crystal tunable filter and the technology behind them. Camera noise,
which affects the overall quality of the final image, is will also be discussed.

3.4 CCD camera

Charge-coupled devices (CCD) were proposed in the 1970s as imaging sensors and are
used for digital imaging. The CCD architecture has three basic functions, namely charge
collection, charge transfer, and the conversion of charge into measurable voltage32. The
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Figure 3.2: CCD basic structure

structure of a CCD is based upon metal-oxide-semiconductor (MOS) capacitor (Figure
3.2).

Charge is created when an external voltage is applied to the gate electrodes represented
by P1, P2, P3. These charges are stored on photosensitive areas of the CCD and are then
transfered to adjacent areas where it is converted. The gate electodes are usually made
from highly conductive materials such as metal or polysilicon. The oxide layer is silicon
dioxide and the channel is a semiconductor.

The sensor used for this work is an interline transfer sensor. Interline transfer CCD sen-
sors consist of photosensitive sections comprising photodiodes and MOS structure diodes
formed separately from the transfer section32. The charge produced by photoelctric con-
version in a photodiode is stored in the photodiode junction capacitance. This charge is
then transfered to the vertical shift register during the vertical blanking period through
the transfer gate (Figure 3.3). Vertical shift registers are comprised of respective output

Figure 3.3: Interline transfer CCD architecture

sections that also include horizontal shift registers. They are arranged along photodiode
arrays so as to enclose each photodiode. The charge is transferred to the horizontal shift
register for every line during the horizontal blanking period. Finally all charges reach the
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on-chip amplifier to be read out. Because the number of electrons collected in each sensor
is proportional to the incident illumination level, the sensor typically has a linear response
curve.
The camera used in the hyperspectral imaging system in this study is the low-noise Peltier-
cooled digital camera (Hamamatsu, model C4742-95-12ER, Hamamatsu Photonics K. K.,
Japan). It has a resolution of 1344 × 1024 pixels and the available exposure times range
from 10 ms to 4200 s. It uses digital temperature compensation to reduce noise since it
is Peltier-cooled. The intensity response at each pixel is recorded with 12- bit precision.
The spectral range is from the ultra-violet to the infrared regions. The sensor used in
the digital camera is a progressive-scan interline CCD with microlens which enables the
camera to collect more photons from incoming light. It has an effective area of 8.66 mm
× 6.60 mm and sensor cell size 6.45 µm× 6.45 µm (square pixels).

3.5 Camera noise

Camera noise can be seen as variations in pixel values that make the image a less than
exact representation of the original scene. Camera noise can manifest itself in multiple
ways. A classification of camera noise is given in Table 3.1. Camera noise is corrected
for in most imaging systems by acquiring a dark frame which is an image captured with
the camera objective closed. Noise compensation will be discussed in a later section.

3.6 Liquid crystal tunable filter

Liquid crystal tunable filters are based on the principles of birefringence and polarisation.
Birefrigence is a behaviour exhibited by crystalline substances where the crystals display
two different indices of refraction (double refraction) due to their anisotropic nature47.
Light wave being an electromagnetic wave has two distinct planes of oscillation for its
electric and magnetic fields. Polarisation is associated with the electric field vector of a
light wave. It is related to the geometry of light wave propagation.A light wave can be
either unpolarised ( rays having no preferred plane of oscillation) or polarised (all rays
oscillating in a single plane). The process of converting unpolarised light to polarized is
known as polarization and optical devices that achieve this are called polarisers. With po-
larised light, its plane of vibration can be rotated through a process known as retardation
and the optical devices used are called retarders. When light enters a birefringent mate-
rial, the process is modelled in terms of the light being broken up into the fast (called the
ordinary ray) and slow (called the extraordinary ray) components (Figure 3.4). Because
the two components travel at different velocities having refractive indices noand ne, the
waves get out of phase. The difference ∆n = ne−no leads to a phase lag between the or-
dinary and extraordinary rays. When the rays are recombined as they exit the birefringent
material, the polarisation state has changed because of this phase lag47. For a birefringent
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Table 3.1: Camera noise classification32

Noise type Origin Description Dependencies
Photon shot noise CCD sensor Additive noise. Tempo-

ral and spatial variation in
output signal due to dis-
crete nature of electrons

Incident pixel
illumination.

Dark current shot
noise

CCD sensor Additive noise. Tempo-
ral and spatial variation of
dark current electrons.

Temperature,
exposure
time.

FPN,Fixed-
pattern noise

CCD sensor Additive noise. spatially
varying dark current den-
sity for different pixels.

Temperature,
exposure
time.

PRNU,Photo
response non-
uniformity

CCD sensor Multiplicative noise. Spa-
tial pixel-to-pixel varia-
tion.

Incident pixel
illumination.

Thermal noise CCD support IC Additive noise. Tempo-
ral and spatial variation in
pixel values due to thermal
electrons.

Temperature

Reset noise CCD support IC Additive noise. Tempo-
ral and spatial variation
caused when charge is
converted to voltage.

Temperature,
CCD readout
rate.

On-chip amplifier
noise

CCD sensor Additive noise. White and
1/f noise of voltage after
charge conversion.

Temperature,
CCD readout
rate.

Off-chip amplifier
noise

CCD support IC Additive noise.White and
1/f noise of amplifier and
output.

Temperature,
CCD readout
rate.

Quantization
noise

CCD support IC Additive noise.uncertanity
in analog to digital con-
verter .Image content de-
pendent.

Variance of
image data.
Sets lower
noise limit
for non-trivial
image content

plate of thickness d, the phase lag between the two rays is given as

δ = 2πd∆n/λ (3.6.1)

where λ is the wavelength in vaccum. Example of birefringent materials used as retarders
are liquid-crystal, quartz and calcite.
In a Lyot type design, the LCTF consist of a cascade of individual birefringent plates
(sandwiched between polarisers) with each plate having twice the width of its immediate
predecessor. Each individual stage consists of a birefrigent element fixed retarder (for
example quartz plate), a variable retarder (for example nematic liquid crystal wave plate)
and two linear polarisers. The linear polarisers are oriented such that their axes are paral-
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Figure 3.4: Unpolarised light passed through a birefringent material

lel. The quartz element is oriented such that the extraordinary and ordinary components
of the transmitted light are equal (Figure 3.5).
When a voltage is applied across the electrodes, an electric field is induced across the
light path; a torque is exerted twisting the liquid crystal molecules into the direction of
the electric field. A restoring force which tends to keep the molecules aligned parallel to
the surfaces acting against the induced torque is produced such that the amount of twist
is proportional to the strength of the electric field. As the molecules align closely to the
electric field, the retardance through the liquid crystal plate decreases which produces a
waveplate with electronically variable retardance.

Finally, a linear polariser selects wavelengths which have undergone an integral π phase
shift through both retarders. This produces a transmittance which varies as cos2(δλ),
where δλ is the phase shift and was defined in Equation 3.6.1.

3.7 Noise Compensation

Correction for camera noise is a prerequisite for obtaining high resolution images in most
imaging systems. Offset and thermal images are used during image processing. An offset
image simply gives the response of the camera sensor when no light is entering the imag-
ing system with little or no exposure time. It is the zero level of the CCD sensor. On the
other hand, a thermal image is the signal from thermal charges accumulated during acqui-
sition38. It is obtained by capturing an image with no light entering the objective using the
same conditions as those for scene acquisition (same exposure time and temperature) and
then subtracting the offset image (Figure 3.6). For this thesis, camera noise compensation
was achieved by capturing images with the camera objective covered with a dark cloth
using the same exposure time as scene acquisition. Thermal and offset images captured
were only used for calibration analysis.
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Figure 3.5: One stage liquid crystal tunable filter

3.8 Flat field correction

Flat-field correction is a technique used to improve quality in digital imaging. The aim is
to remove artifacts from images that are caused by :

(1) Variations in the pixel-to-pixel sensitivity of the CCD sensor due to the photo-sensitive
cells of the sensor having different quantum efficiency.

(2) Non uniformity of the illuminant.

(3) Effect of transmission through the imaging system (off-axis vinetting by liquid crystal
tunalble filter)42.

Correction is achieved by capturing the image of a smooth, matt, white card with a sur-
face uniformly illuminated during the acquisition stage. A dark image is also captured
as described in the previous section.These images are also saved for use during image
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Figure 3.6: Offset image captured at wavelength of 550 nm

processing. In Figure 3.7, a flat-field image can be seen.

Figure 3.7: Flat field image accquired at 550 nm

3.9 Stray-light compensation

In optical imaging systems, stray-light is considered as light in the optical path that is
imaged on the sensor but does not originate directly from the captured object31. It could
be caused by the optical filters and the geometry of the camera. These include Fresnel
reflection from lens-elements and filter surfaces, diffraction at aperture edges, surface
imperfections, dust and other particles34. Stray-light adds a noticeable offset to pixel
values and this degrades both image contrast and measurement accuracy so there is a need
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to compensate for these effects. Jansson and Breault34 proposed a stray-light model based
on the convolution of the image data with a point spread function which characterises the
effect of stray-light for each pixel.
For simplicity they considered, a line scanner in which only one spatial axis requires
consideration. The finite-extent two-dimensional case can also readily be formulated with
one independent variable. Let S(x, x′) be the PSF of such a scanner in which the flux
received by a detector having coordinate x along an image line is given by Equation 3.9.1.

I(x) =

∫
S(x, x′)O(x′)dx′ (3.9.1)

where O(x′) is the flux emanating from points along some object line having coordinate
x′. The compensation is done by solving Equation 3.9.1 for O(x′) using an iterative Van
Cittertt method algorithm34. This method works well for locally limited point spread
functions.

Helling31 modelled stray light as a superposition of brightness which is a function of
image data but not as a locally limited problem. It is considered to be spatially dependent
and is a linear function of the image data. From his experiments, it is shown that stray-
light can affect opposite portions of the captured image31. The measured signal Ix,y for
pixel (x, y) affected by stray-light for one wavelength channel can be given as

Ĩx,y =

∫
(Px,y(λ)rx,y(λ) + Ŝx,y(λ))τ(λ)dλ (3.9.2)

where Px,y(λ) is the power spectrum of the light source, rx,y(λ) is the spectral reflectance
function of the imaged object, Ŝx,y(λ) is the spectral distribution of the stray light and
τ(λ) is the spectral sensitivity of the imaging system. Equation 3.9.2 can be represented
as

Ĩx,y = Ix,y + Îx,y (3.9.3)

where Ix,y is original signal not affected by stray-light and Îx,y is the offset value intro-
duced by straylight. Terms with spatial dependency carry indices (x, y) indicating the
position of a pixel.

Stray-light compensation is then achieved by extracting the original signal Ix,y from the
measured signal Ĩx,y. The offset signal Îx,y for pixel (x, y) is modelled as the contribution
of all stray-light offsets from all pixels (xo, yo) in the image and is given in Equation 3.9.4

Îx,y =
∑
xo

∑
yo

kx,y,xo,yoIxo,yo (3.9.4)

where kx,y,xo,yo are called coupling coefficients and give the correlation between pixels31.
These coefficients give the ratio of the pixel value Ixo,yo that appears as straylight at pixel
Îx,y.

The memory requirements for computing these coupling coefficients will be enormous if
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Figure 3.8: Stray light image for 550 nm

we consider say an image with spatial resolution of 1024 ×1344 pixels. For this thesis,
images were divided into sub-regions (4 rows and 6 columns) and the mean of each region
was computed resulting in an image containing 24 pixels. Each image produces a total of
576 coupling coefficients. Helling has shown that measurement of coupling coefficients
using sub-sampled images is sufficient for stray-light compensation31.

Coupling coefficients are obtained by carrying out a series of measurements. A black ref-
erence B̃x,y is captured first. A sub-sampled image B̃′x,y is produced using the procedure
outlined earlier. A white rectangular patch matching the size of each sub region is then
placed in turn at each sub-region and captured producing Ĩx,y. Their sub-images are also
obtained. Figure 3.8 shows a white patch captured at one of the sub-regions.

The coupling coefficient are then computed using Equation 3.9.5

k′x,y,xo,yo =
Ĩx,y − B̃′x,y

Ĩxo,yo − B̃′x,y
(3.9.5)

where B̃′x,y is the sub-sampled image of the black reference, Ĩx,y is the value of the
sub-image at pixel position(x, y) and Ĩxo,yo is the value of the sub-sampled image at the
position the white patch was placed. The case where (xo, yo) = (x, y) presents a problem
as this describes the stray-light contribution from its own position. The average value of
neighbouring coefficients is used for this position.

Once the coupling coefficients are known, images can be compensated for stray-light
using Equation 3.9.4 to compute the stray-light offset and then subtract the result from
the measured signal.
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3.10 Image Registration

When images taken at different times by different sensors or from different viewpoints
need to be compared, a problem arises as these images need to be aligned to compare or
integrate data between them. Image registration is the process of aligning (overlapping)
two or multiple images of the same scene captured under different imaging conditions. It
is a crucial step in most image evaluation tasks where the final image is a combination of
images from various sources or images were acquired at different times, as is the case in
hyperspectral imaging.

Image registration is required in remote sensing (multispectral and hyperspectral clas-
sification, weather forecasting,creating super-resolution images, integrating information
into geographic information systems (GIS), in medicine (combining computer tomogra-
phy (CT) and NMR data to obtain the complete information about the patient, monitoring
tumour growth, treatment verification, and in computer vision (target localisation, auto-
matic quality control). Image registration methods can be grouped according to image
acquisition methods.

Multi-view analysis Images of the same scene are acquired from different viewpoints.
The objective is to gain a larger 2D or 3D representation of the imaged scene. In computer
vision, it is used for shape recovery and in remote sensing for mosaicing of images of a
surveyed area.

Multi-temporal analysis Images of the same scene are acquired at different times, dur-
ing regular intervals and sometimes under different imaging conditions. The aim is to
discover and evaluate changes in the scene which appear between image acquisitions. It
is used in remote sensing for landscape planning and in computer vision for automatic
change detection and motion tracking. It also finds use in medical imaging where it can
be used for monitoring of healing therapy and tumour evolution.

Multi-modal analysis Images of the same scene are acquired by different sensors. The
aim is to combine information obtained from different sources to gain a detailed scene
representation. It is used in medical imaging for integration of sensors recording of mag-
netic resonance image (MRI), ultrasound or CT with sensor readings of positron emission
tomography(PET) or magnetic resonance spectroscopy(MRS) and results are used in ra-
diotherapy and nuclear medicine. The hyperspectral images considered in this thesis fall
under this category as each individual wavelength channel can be taken to represent a
different sensor.

Due to the various types of images to be registered and the different type of image degra-
dation present, there is no general method applicable to all registration tasks. Methods
applied should not only consider the geometric deformation between images but also
consider noise, radiometric deformations, required registration accuracy and application-
dependent data properties. Most image registration methods consist of four steps. These
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are feature detection, feature matching, mapping function estimation and image resam-
pling and transformation71. Registration methods can be grouped into area-based and
feature-based. Area-based methods skip the feature detection step and emphasis is on
feature matching. Featured-based methods on the other hand rely heavily on the feature
detection stage. In the next section, each step is analysed and the methods associated with
it.

3.10.1 Feature detection

Distinctive objects e.g. edges, contours, corners and closed boundary regions are manu-
ally or automatically detected, Their point representatives(centre of gravity, line endings,
distinctive points) are normally used and are known as control points. The choice of these
so called control points is not trivial as they have to be spread over the image and can
be easily detected. The detected feature set in the reference and sensed image must have
common elements, even when both images do not cover the entire scene or have object
occlusions.

Significant regions, lines and points in the image are regarded as features. They should be
distinct and stable over time to stay at fixed positions during image acquisition. Region
features are detected using segmentation methods. The regions are usually represented
by their centre of gravity, which is invariant with respect to rotation, scaling, skewing
and also stable under noise and image intensity variation. Line features seen as general
line segments can be detected using standard edge- detection methods. A survey of edge-
detection methods is given in36. In point -features detection, a point is defined as a line in-
tersection, centroid of closed-boundary region or local modulus maximum of the wavelet
transform.

3.10.2 Feature matching

Detected features in the image to be registered (sensed image) and reference image can
be matched using image intensity values, feature spatial distribution or feature symbolic
description. Feature matching methods can be grouped again into area-based and feature
methods.

Area based methods merge the feature- detection and matching steps. They are applied
when the images do not have many prominent details and the distinctive information for
matching is provided by image intensity rather than local shapes and structures. It deals
with images without attempting to match distinct objects in the image. Windows of pre-
defined size or sometimes the entire images are used to establish correspondence during
feature matching50, 5, 48. Area based image registration can be achieved using normalized
cross correlation71. Cross correlation is computed for window pairs or the whole image
from the sensed and reference images and the maximum overlap between images is found.
The Cross correlation-based registration aligns mutually translated images and ones with
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some scaling and rotation present. They can be sensitive to intensity changes included
by varying illumination,noise or the use of different sensors. Other area- based meth-
ods include fourier methods9, 10, 67, 4,mutual information methods63, 51 and optimisation
methods63, 71, 55.

Feature- based methods require that two sets of features in the reference and sensed im-
ages which are represented by their control points (CP) have been detected. A pairwise
correspondence is then found between them using their spatial relations or various feature
descriptors.

Methods which employ spatial relations among features are used when the detected fea-
tures are imprecise or if there is distortion in the neighbourhood of the detected feature.
Stockman et. al.58 use clustering techniques to match points connected by abstract edges
or line segments. Goshtasby et. al28 achieves registration using a graph- matching algo-
rithm which estimates transformation parameters.

Feature descriptors in the sensed and reference image can be used during the feature
matching step. They need to fulfil certain conditions. These descriptors should be in-
variant to image deformation and noise, unique, stable and independent71. Usually not
all these conditions can or need to be satisfied simultaneously. There is usually a tradeoff
depending on the type of image being registered. Features from the sensed and referenced
images with the most similar invariant descriptors are paired as the corresponding ones.
The choice of the type of the invariant description depends on the feature characteristics
and estimated geometric degradation of the images. The simplest feature description is
the image intensity itself limited to the close neighbourhood. The Correlation coefficient
as used by Zheng and Chellapa70 assumes geometric deformation and compensates by es-
timating the illumination direction and then performing coarse-to-fine correlation based
registration70.

3.10.3 Transform model estimation

Once the feature correspondence has been established, the next step is constructing a
mapping function. This function should transform the sensed image and align it to the
reference image. The type of mapping function used should correspond to the geometric
deformation of the sensed image, method of image acquisition and the required accu-
racy of the registration. Mapping models can be classified into two main groups namely
global and local mapping models71. Global models use all the control points for esti-
mating one set of mapping function parameters while local mapping models handle the
image as a combination of patches and define mapping function parameters for each patch
separately71.

One common global mapping model uses bivariate polynomials of low degrees. The
transformation consist of rotation, translation and scaling only. This model is sometimes
known as a shape- preserving mapping because it preserves angles and curvatures. An-
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other global model is the affine transform. It is also a linear model which can map a
parallelogram onto a square. It is determined by three non-collinear control points and
preserves straight lines and straight- line parallelism71.

Images that are deformed locally cannot be mapped using global- mapping models. Local
areas of the image should be registered with the available information about local geomet-
ric distortion. Some local mapping models have been used by Goshtasby27, Ehlers and
Fogel18, Wiemker65 and Flusser22. The weighted least- square and weighted mean meth-
ods27 register images locally by introducing a slight variation to the original least- square
method.

3.10.4 Image resampling and transformation

The mapping functions are used to transform the sensed image. This transformation can
be achieved using a forward or backward method71. In the forward method, each pixel
from the sensed image is directly transformed using the mapping functions. This method
is difficult to implement as it produces holes and/or overlaps in the output image due to
discretisation and rounding. On the other hand, for the backward method, the registered
pixel data from the sensed image are determined using the coordinates of the target pixel
(the same coordinate system as that of the reference image) and the inverse of the es-
timated mapping function. Image interpolation takes place in the sensed image on the
regular grid. In this way neither holes nor overlaps can occur in the output image. Image
interpolation is accomplished by convolution of the image with an interpolation kernel.

3.11 Image Processing

Normalisation of raw hyperspectral images involves compensating for straylight, noise,
non-uniformity of illuminant and transmittance variations of the tunable filter. The nor-
malised image for each wavelength C(λ) is obtained using the model presented in Equa-
tion 3.11.1

C(λ) =
Ir(λ) − Io(λ) − Itr(λ)

If (λ) − Io(λ) − Itf (λ)
×Kλ (3.11.1)

Where Ir(λ) is the raw tiff image, Io(λ) is the offset image, Itr(λ)is the thermal image
associated with the raw image (acquired using the same conditions), If (λ) is the flat-
field image, Itf (λ) is the thermal image associated with the flat-field image and K is
a wavelength dependent normalization coefficient which mirrors the mean value of the
flat-field image.

The normalised imageC(λ) is then compensated for straylight using coupling coefficients
as explained in the section on straylight. Image registration is also carried out. The final
image is then used to obtain the spectral reflectance or radiance of surfaces in any given
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scene.

3.11.1 Spectral reflectance

The spectral reflectance R(λ) for each pixel is obtained by normalizing the corrected
image Ci(λ) at each pixel against the reference materials (Munsell chips) placed within
the scene. Equation 3.11.2 shows the mathematical expression where Pref is the mean
value of a selected patch on the reference material and Rg is the spectrum of the reference
material

R(λ) =
Ci(λ)

Pref
Rg (3.11.2)

3.12 Hyperspectral Imaging system performance

The basic method used for quantifying the performance of imaging systems is by estimat-
ing the quality of images produced. This can be achieved by computing the modulation
transfer function (MTF) of the system. The MTF is a performance measure of an imaging
system describing its ability to resolve signals at different spatial frequencies17. It is an
important image quality metric that has applications in almost every major imaging sci-
ence application. Different methods are used to determine the MTF of imaging systems
based on slit, bar patterns and edge images. Measurement of MTF using slit images is
a time-consuming alignment procedure and the overall setup required for these measure-
ments are expensive60. Bar patterns are not the best choices since the determination of the
modulation of digital bar patterns is not trivial. Edge images on the other hand produce
high accuracy even at low spatial frequencies and this is useful for imaging systems where
spatial frequencies required are defined up to the Nyquist limit of the detector as aliasing
(folding of spatial frequency components above Nyquist frequency into frequencies be-
low the Nyquist frequency) becomes dominant at higher frequencies. The edge method
was used for this research because of the advantages stated above. Modulation transfer
functions are computed from line spread functions (LSF) or edge spread functions (ESF).
Their relationship is considered in the next section.

3.13 MTF, ESF and LSF

The line spread function can be described as the output of the imaging system for an
ideal line. It is usually very tedious to acquire the line spread function directly from
the image so an edge spread function is first constructed and its derivative gives the line
spread function. For an ideal imaging system, a step function (high contrast edge) will
not be degraded. The line spread function of an ideal imaging system can be expressed
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mathematically as a delta function2. A step function i(x) is defined as follows :

i(x) =
0 when x < 0
1 when x ≥ 1

(3.13.1)

A linear system gives an output o(x) which is equal to the convolution of the input signal
i(x) with the LSF of the system:

o(x) = i(x) ∗ L(x) =

∫ ∞
−∞

L(α).i(x− α) dα (3.13.2)

Since the input i(x) is a step function, the output o(x) is the edge spread function repre-
sented as E(x). From Equation 3.13.2, when (x − α) is < 0, i(x) = 0 and for all other
values i(x) = 1. E(x) is then given as

E(x) =

∫ ∞
x

L(α) dα (3.13.3)

The derivative of equation 3.13.3 gives the formula for the LSF:

L(x) =
dE(x)

dx
(3.13.4)

The modulation transfer function M(v) of a system is calculated by taking the Fourier
transform of a line spread function (LSF).

M(v) =

∫ ∞
−∞

L(x).e−i2πvxdx (3.13.5)

3.13.1 Edge Estimation

The initial step in the construction of an edge spread function is identifying a high contrast
sharp edge region in an image. Most digital image acquisition devices are designed to
undersample56. This property of imaging devices can reduce the accuracy of edge spread
function measurements since undersampling causes aliasing. The use of the slanted- edge
algorithm solves this problem. A step edge is slightly tilted perpendicular to the scan
direction. This makes super-resolution measurements possible and uses the change in
phase of the edge across the sampling grid to create a super-resolved ESF17. Figure 3.9
shows a slanted edge image with a tilt angle of 3◦.

The next step requires the estimation of the edge location for each scan line (rows) of the
slanted edge image. There are different methods used for estimating the edge location in
each row to sub-pixel accuracy. Buhr et. al17 used linear interpolation to determine the
edge estimates. A straight- line fit of individual edge estimates is then computed using
linear regression. Granfors et. al29 used a least-squares fitting algorithm to fit a straight
line to the edge locations using 20 data points around an initial estimate of the edge
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Figure 3.9: Slanted edge image with tilt angle of 3◦

position and then performing a final fit using 20 data points around the first fit. Saunders
et. al54 used a Sobel detector to compute the angle of the edge line by using a double
Randon transform.

In the work reported here, estimates were made of both the edge location and direction
and was based on the algorithm proposed by Buhr et.al17. The edge locations were esti-
mated to sub-pixel accuracy by computing the derivative of elements in each row using a
Frequency response impulse (FIR) filter which uses the central difference method to ac-
complish its task. The centroid for each row is then computed by calculating the weighted
sum of pixels in a row and then dividing by the sum of all pixels in that row. For example,
let X represent a vector of pixels in a row of an edge image.

X = [x1, x2, x3, ....., xn] (3.13.6)

The centroid c is computed using Equation 3.13.7

c =
x1 + 2x2 + 3x3 + .....+ xn
x1 + x2 + x3 + .....+ xn

(3.13.7)

Linear regression is then used to fit a straight line through individual edge locations and
the slope and intercepts are obtained. The equation for the linear fit to the set of centroid
data is expressed as the inverse of the regular linear equation46

x = a+ b(y − 1) (3.13.8)

where x is the x-direction (pixel) location, y is the y-direction line number, a is the loca-
tion of the edge on the first row of the edge image and b is the slope of the fit. The plot of
the linear fit for an hyperspectral edge image obtained at 560 nm is given in Figure 3.10.
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Figure 3.10: Linear fit for slanted edge profile obtained from image acquired at 560 nm

3.13.2 Edge Spread Function

The edge spread function can be constructed using different techniques. Samei et. al52 and
Saunders et. al54 accomplished their task by projecting the edge image data along the edge
transition angle they derived using double Hough and double Randon transformations
methods respectively. Granfors et. al29 binned the pixel values according to their distance
from the edge position with a bin size of between 5% and 10 % of the pixel pitch and the
average pixel value is calculated for each bin and this makes up the edge spread function.
Buhr et. al17 based their ESF construction on the number N of lines (rows) that produce
one pixel shift of the edge. An oversampled edge spread function is then produced using
N consecutive lines to form the edge image. One of the methods adopted for this research
is similar to the one used by Buhr et. al. It is not only robust but also very simple to
implement and produces accurate results. Figure 3.11 shows a graphical description of
the setup.

The tilt angle is represented by α. The sampling distance between neighbouring pixels is
given by p. A slight shift of the sampling positions from line to line due to the edge tilt
∆x is given in Equation 3.13.9 as

∆x = p tanα (3.13.9)

The consecutive number of lines needed for a shift of the edge by one pixel is obtained
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Figure 3.11: Graphical description of edge spread function computation17

by dividing the sampling distance by the edge shift.

N = p/∆x = 1/ tanα (3.13.10)

One of the most important steps of this algorithm happens to be the determination of the
integer N . This can be obtained using Equation 3.13.10, if the angle of tilt is known. On
the other hand, if the angle is not known, N can also be obtained from the slope b of the
regression line earlier computed when the edge locations for each row were determined:

N = 1/b (3.13.11)

The inverse of the slope (rounded up to the nearest integer) gives the lateral shift of the
edge by a pixel17. This gives the number of rows needed to form a super- sampled edge
spread function. The super-sampled edge spread function is easily obtained by rearrang-
ing the pixels in the region of interest into a vector. The first pixel in the first row becomes
the first entry in the super-sampled edge spread function. The next entry is the first pixel
in the second row and this goes on until all the pixels in our edge profile are rearranged.
This method uses an assumption that the data points in the super sampled edge spread
function are sampled at regular intervals ignoring the true sampling rate. The sampling
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distance is given in Equation 3.13.12 as

d = a/N (3.13.12)

where a is the original sampling distance andN is the number of rows needed for a lateral
shift of one pixel obtained using Equation 3.13.11.

3.13.3 Line Spread Function

The edge spread function is fitted using a least-square regression function. It uses an
algorithm that iteratively reweighs response values and recomputes least-square fits. The
ESF fit is then differentiated and this gives the line spread function (Figure 3.13). Figure
3.12 gives an oversampled edge spread function constructed from a high contrast edge
for an edge image captured at 560 nm. The MTF is obtained by computing the Fourier
transform of the line spread function.

Figure 3.12: Edge spread function

The MTF is obtained by computing the Fourier transform of the line spread function(LSF).
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Figure 3.13: Line spread function
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CHAPTER

FOUR

SYSTEM CALIBRATION

4.1 Introduction

The characterization of any hyperspectral imaging system is crucial to obtaining high
resolution images. For scientific research and other applications where accurate light
measurement is required, the performance of the imaging system must be checked to
ensure reliable data is produced.

This chapter deals with the calibration and characterization of a focal-plane hyperspec-
tral imaging system. The hyperspectral imaging system used for acquiring images for
this thesis is discussed. Input- output and modulation transfer functions are computed to
investigate linearity of the imaging system and image quality respectively. Analysis of
system noise, vignetting and straylight which affect image quality is discussed. Hyper-
spectral image registration algorithms are presented and their accuracy is evaluated using
edge tracking. Finally, calibration verification is tested on Gretag Macbeth colour checker
chart hyperspectral images.

4.2 Hyperspectral Imaging System

The system used for this work consisted of a Peltier- cooled CCD camera and a liquid
crystal tuneable filter electronically controlled by computer software. The liquid tuneable
filter is mounted in front of the lens with an infra-red blocking filter (Figure 4.1).

The camera is a low-noise Peltier-cooled digital camera (Hamamatsu, model C4742-95-
12ER, Hamamatsu Photonics K. K., Japan). It has a resolution of 1344 × 1024 pixels
and the available exposure times range from 10 ms to 4200 s. It uses digital temperature
compensation to reduce noise since it is Peltier-cooled. The intensity response at each
pixel is recorded with 12-bit precision. The spectral range is from the ultra-violet to the
infra-red regions. The sensor used in the digital camera is a progressive-scan interline
CCD with microlens which enables the camera to collect more photons from incoming
light. It has an effective area of 8.66 mm × 6.60 mm and sensor cell size 6.45 µm× 6.45
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Figure 4.1: Hyperspectral Imaging system

µm (square pixels).

The liquid crystal tuneable filter (LCTF) is a VariSpec, model VS-VIS2-10-HC-35-SQ,
Cambridge Research and Instrumentation. It is mounted in front of the camera lens. The
filter has an aperture of 35 mm and the whole imaging system has a field of view of ±7◦.
The wavelength of peak transmission could be varied over a range spanning 400 nm - 720
nm with a full width at half-maximum transmission of 10 mm at 550 nm, decreasing to 6
mm at 400 nm and 16 mm at 720 nm. The spectral transmittance of the filter when varying
the peak wavelength in 10 nm intervals from 400 nm to 720 nm was measured using a
monochromator. Figure 4.2 shows the transmittance curves for selected wavelengths (400
nm, 490 nm, 560 nm, 640 nm, 720 nm).

As can be seen from Figure 4.2, the shorter wavelength data becomes noisy after the vis-
ible spectrum. This is caused by the sensitivity of the detector inside the monochromator
to these wavelengths.

The characterisation of the LCTF was done by plotting the nominal peak-transmission
wavelength as recorded by the monochromator against the actual peak-transmission wave-
lengths. A Gaussian fit was first applied to the transmittance curves of the liquid crystal
tunable filter measured using the monochromator to obtain peak nominal wavelengths.
Figures 4.3 and 4.4 show the plot of nominal against actual wavelength peak-transmission
values and Gaussian fit for 550 nm and respectively.
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Figure 4.2: Spectral transmittance of LCTF measured using a monochromator

4.2.1 Nominal wavelength accuracy

Analysis was done to determine if the nominal wavelengths selected by the liquid crystal
tunable filter and used to capture hyperspectral images are accurate. The experimental
set up involved capturing images of a mercury vapour lamp. Mercury vapour lamps have
principal emission lines in the visible spectrum69. Two of these lines were investigated
(436 nm and 546 nm). The first set of images were captured between 420 nm and 448 nm
with a 4 nm interval and the second batch were between 528 nm and 560 nm also having
a 4 nm interval. Images were then normalised by subtracting the dark noise images and
dividing by the analog camera gain and exposure time. Regions (100 x 100 pixels) from
the image namely the centre, top right corner, middle up and top left corner were extracted,
averaged and a Gaussian fit was applied. Figure 4.5 and 4.6 show the Gaussian fit of the
central region images acquired at the short and middle wavelengths respectively .

Table 4.1 gives the peak wavelength values from the Gaussian fit which represent the
principal lines being investigated at various locations in the image. From these results,
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Figure 4.3: Plot of nominal peak wavelength against actual peak wavelength

Figure 4.4: Gaussian fit of filters transmittance curve at 550 nm

the principal line found in the shorter wavelength region had a maximum variation of 0.6
nm while the line from the middle wavelength region had a maximum variation of 0.9
nm. These results are less than 1 nm and were deem accurate for further research work.

4.3 Acquisition

The process of obtaining high resolution hyperspectral images involves multiple stages.
Images are generally captured by pointing the hyperspectral imaging system (CCD cam-
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Figure 4.5: Gaussian fit of central region for short wavelengths (420 nm - 448nm)

Figure 4.6: Gaussian fit of central region for middle wavelengths (528 nm - 560nm)

Image location Line 1peak Wavelength, nm Line 2 peak Wavelength,nm
Centre 436.6 546.9

Top right corner 436.5 546.8
Top left corner 436.6 546.9

Middle up 436.6 546.5

Table 4.1: Mercury vapor lamp principal lines peak wavelength
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era with a tunable filter mounted on it) to a scene of interest, adjusting the focus and zoom
of the CCD camera, and recording the sequences. The wavelength range used is 400 nm
- 720 nm at a 10nm interval hence providing 33 images in each image sequences. Neu-
tral grey reference materials are inserted into the scene and are used for computing the
effective spectral radiance and reflectance functions of each pixel in the scene. Figure 4.7
shows N2.5,N5 and N7 Munsell chips used during image acquisition.

Figure 4.7: Munsell reference chips

Bespoke algorithms are used to automatically determine the exposure time of the imaging
system before acquisition so that maximum pixel output is within 80%-90% of the CCD
saturation value. The spectrum of light reflected from the munsell chips are recorded
immediately after acquisition by a telespectroradiometer (SpectraColorimeter, PR-650,
Photo Research Inc. Chatsworth, California). For natural scene imaging, care was taken
not to capture spectral images when there is movement in the scene.

4.4 Input-output function

An important property of imaging systems is its linearity in response to incident light.
In hyperspectral imaging systems using charge-coupled device (CCD) sensors, the basic
function of the CCD is to convert photons carrying image information into an electronic
signal32. After digitization, the signal output should ideally be linearly proportional to the
amount of light incident on the sensor.

A transfer function relating the number of photons incident on the sensor and the digital
output is determined by a multi-stage process which involves the creation and transfer of
charge carriers (electron-hole pairs) in the active pixel regions, followed by conversion of
electrons from the charge domain into the voltage domain as an amplified voltage signal as
stated in chapter three. The transfer function results in a linear variation of final digitized
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output signal in relation to the amount of light incident on the CCD, such that the output
signal is equal to the photon input multiplied by a proportionality constant(gain)32.

The linearity of a camera system is determined by the CCD itself, as well as other elec-
tronic components in the signal processing chain. In effect, any nonlinearity indicates a
change in the camera’s gain constant with signal level. Quantitative imaging operations,
rely on absolute signal measurements, and require that there be no significant interde-
pendence between camera gain and signal intensity. Scientific CCD imaging systems ex-
hibit extremely good linearity over a wide signal range but when full well conditions are
reached under high illumination intensity, a nonlinear response is usually observed32. If
overall illumination is sufficiently bright, the CCD response becomes nonlinear. Depend-
ing upon the sensor characteristics, nonlinear response may also result under extremely
low illumination levels.

A common technique for assessing linearity is based on a graphical plot of measured
output signal as a function of exposure time, extending to the full well capacity of the
device (the number of electrons held by a potential well or pixel; also referred to as linear
full well)32. This metric may be defined as a percentage of deviation from linearity in
comparison to the maximum signal intensity obtained at full well conditions.

The linearity of the hyperspectral imaging system was investigated by recording an output-
input function using a neutral density wedge, a diffuser, a beam splitter and a quartz-
halogen bench lamp. This process involved measuring the signal captured by the hy-
perspectral imaging system and also recording the luminance using a luminance meter
(LMT).

The diffuser was positioned over the aperture of the CCD camera while the neutral density
wedge was placed in front of the quartz- halogen lamp and acted as a mask having a
density which increases exponentially along its length. A 50/50 beam splitter made of
two triangular glass prisms was placed between the light source and the hyperspectral
imaging system with the camera capturing the half the signal and the LMT recording the
other half (Figure 4.8).

Images were captured at fixed wavelengths ( 450 nm, 550 nm and 650 nm) as the neutral
density wedge was adjusted in steps. A total of 24 steps were used ranging from bright
illumination to very low light levels. The LMT data were recorded simultaneously. The
LMT data were then corrected for reflection-transmission properties of the beam splitter
by recording LMT readings from the hyperspectral imaging system position and using a
linear regression fit to define a relationship between LMT data as seen by the hyperspec-
tral imaging system and the original LMT data collected. The experiment was performed
twice. In the first set, an analog gain factor of 100 units was introduced while the second
set had no analog gain. Mean signal values with pixel patches of 5 × 5, 20 × 20, and
790× 870 were then used to investigate linearity (Figure 4. 9). These values were plotted
against the normalized LMT data and the plot for 550 nm without any gain factor is given
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Figure 4.8: Input-output function experimental setup

in Figure 4.10 .

Figure 4.9: Test image showing 20 × 20 and 790 × 870 pixel patches

Results show the hyperspectral imaging system is linear for average light levels but the
same could not be said about low light levels as the data points were too close together.
This can be attributed to the property of the neutral density wedge where the density varies
exponentially with length hence no significant difference as the light level reduces. An
exponential fit was used to analyse the behaviour of the neutral density wedge (Figure
4.11).

Figure 4.11 shows that an exponential curve fits the data accuquired using the neutral
density wedge indicating the hyperspectral imaging system shows some linearity in low
light levels.
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Figure 4.10: Mean signal of HSI camera against Source Luminance for 550nm

Figure 4.11: Exponential fit of Mean signal of HSI camera against Source Luminance for
550nm

4.5 System noise characterization

The input-output function analysed in the previous section gives an indication of the lin-
earity of the hyperspectral system but it is important to quantify the spatial variation in
the sensitivity of the imaging system. In principle, the input-output data could be used
for this analysis but this is not trivial, since there is no means of quantifying the spatial
uniformity of the light source. One of the aims of this characterization was to check for

systematic variation from image to image in the captured series. This will help in un-
derstanding if averaging replicate images are useful or not. When averaging images, the
noise is assumed to be zero mean Gaussian noise. Lowpass filtering an image or averag-
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ing two images may destroy details in the image. In order to avoid this and to improve
the averaging technique, Mansouri et.al38 acquired 6 images instead of 2 for each channel
and the same process was used for this work.

4.5.1 Dark noise image

Six repeated acquisitions of dark noise images were carried out under identical conditions.
A slice was then taken through the centre of each image producing intensity profiles. The
slices were taken from the centre for all six images. The intensity profiles are plotted
against their respective row or column sizes with one trace below the other (all six). Figure
4.12 and 4.13 show the horizontal and vertical intensity profile plots for dark noise image
acquired at 500 nm using camera aperture setting 5.6.

Figure 4.12: Horizontal slice of dark noise image captured for aperture 5.6
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Figure 4.13: Vertical slice of dark noise image captured for aperture 5.6

From Figures 4.12 and 4.13, it can be seen that the fluctuations in all six images show no
systematic variation which implies that an averaged image could be used for all subse-
quent acquisitions.
The other aim was analysis of the relationship between the cameras noise and exposure
time. This analysis should give an idea of the contribution of dark current as a function of
exposure time.

Eight repeated acquisitions of a single wavelength (550 nm) dark noise image under iden-
tical conditions were done for aperture setting 5.6 and a focus setting of infinity. The
exposure time ranged from 0.1 s to 30 s. The analog gain factor of the CCD camera was
set to zero.

A plot of mean dark noise images against exposure time is given in Figure 4.14. It can
be seen from this figure that the mean dark noise is almost constant over the range of
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Figure 4.14: Plot of mean dark noise signal against exposure time

exposure time used. This can be attributed to the Peltier cooling property of the CCD
camera by reducing dark current noise that accumulates during extended exposure times.
A plot of the standard deviation for dark noise as a function of exposure time can be seen
in Figure 4.15.

Figure 4.15: Plot of standard deviation of mean dark noise signal against exposure time

63



4.6. STRAY- LIGHT ANALYSIS

4.6 Stray- light Analysis

The stray-light correction algorithm used for this thesis was described extensively in chap-
ter three. Stray- light is modelled as a superposition of brightness which is a function of
image data. The aim of this analysis was to test the stray- light algorithm on real scene
images and also to investigate the effect of vignetting.

GretagMacbeth colour checker chart was used for this analysis. First, a reference mea-
surement was made by capturing an image of the chart using a black background. The
next step involved capturing an image of the chart using a white background. This intro-
duces artificially generated stray - light into the image. Figure 4.16 shows GretagMacbeth
colour checker chart image .

Figure 4.16: GretagMacbeth colour checker chart image used for stray- light analysis

Images captured using the white background were then corrected for stray - light as de-
scribed in chapter three. Figures 4.17 and 4.18 show results for two patches, the reference
measurement using the black background, and the same measurement after being cor-
rected using the stray - light algorithm effect.

In Figure 4.17, the patch is located at the centre of the image. It can be seen that there is
no considerable difference between the corrected frame and the reference frame.On the
other hand, in Figure 4.18, the patch is positioned at the bottom left corner of the image
sensor array. The results are poor compared to those were the patch was positioned at the
centre of the image. The correction algorithm seems to have compensated more than was
required. These errors can be attributed to vignetting at the edges of the image.
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Figure 4.17: Plot of stray - light analysis on blue patch from GretagMacbeth colour
checker chart image.The cross symbol represents the corrected signal while solid lines
gives the orignal signa

Figure 4.18: Plot of stray - light analysis on red patch from GretagMacbeth colour checker
chart image.The cross symbol represents the corrected signal while solid lines gives the
orignal signal

4.7 Hyperspectral image registration

The aim of this section was to register hyperspectral images with sub-pixel accuracy.
Two global registration algorithms were used for aligning hyperspectral images during
this project. One algorithm used cross correlation as image similarity measure while the
other used normalised mutual information . Both methods are presented and registration
results are also given.

4.7.1 Experimental procedure

Checker board images were captured with a metal halide lamp placed on the left - hand
side of the board (Figure 4.19). Image acquisition was repeated six times. A camera
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aperture setting of 5.6 was used for this acquisition. The checker board was approximately
85 cm for the hyperspectral imaging system. Dark noise and flat field images were also
captured using the same exposure time as those for scene acquisition. Radiance data was
also captured using a telespectroradiometer positioned 3.20 m to the scene image centre.
Checker board images were corrected using dark noise and flat field images.

Figure 4.19: Checker board image used for hyperspectral image registration analysis

Translation and scaling affine transforms were applied to images during the registration
process. The translation affine transform was used for registering over replications of the
same wavelength image while homothety (a combination of translation and scale) was
used for registering over different wavelength images. The scaling factor is excluded
from registering over replications of the same image since chromatic differences will be
identical. The translation transformation matrix and scaling transformation matrix are

given as Translation =

1 0 δx

0 1 δy

0 0 1

, Scale =

sx 0 0

0 sy 0

0 0 1


where δx, δy, sx and sy are transformation parameters to be estimated.

4.7.2 Cross correlation method

This method compensates for limited global chromatic difference by shifting local wavelength-
indexed images to produce maximum overlap with a middle-wavelength reference image.
Cross correlation was used as the image similarity measure. The Matlab optimizer fmin-

search was used to obtain optimum shifts in scale and translation of the unregistered
image for maximum overlap with the reference image. The unregistered image is finally
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adjusted using the optimal registration parameters.

4.7.3 Mutual Information method

This method can also perform translation and homothety registration. Normalised mutual
information is used as an error measure. It measures the registration error between the
unregistered and reference image. The quasi newton Matlab optimizer fminlbfgs is used
to provide optimum shifts needed to achieve the optimal registration between both images
with minimal registration error. Finally, the optimal registration parameters are used to
transform the unregistered image.

4.7.4 Registration evaluation

Images were registered using both algorithms presented in sections 4.7.2 and 4.7.3. The
six replications were registered over position using a translation affine transform with the
third image used as the reference image.

Two approaches were used to register the averaged images. One approach registered
images over wavelength using an homothety affine transform with the middle wavelength
image (560 nm) used as the reference image. The other approach divided the wavelength
range of the images into three parts and registered the central wavelengths of all three
regions against the middle wavelength image (560 nm). The new central wavelength
images were then used as references images to register their regions.

The metric used for determining the goodness of registration was tracking edge locations
in the registered image. The idea behind this method is with unregistered images, due
to chromatic differences, the midpoint of a particular edge location will be unstable for
images of all wavelengths. After aligning the hyperspectral images, the midpoint of edge
locations should be stable. Edge tracking was carried out to obtain edge spread functions
and edge location midpoints. The algorithm used detects sharp edge profiles in the images,
computes their edge spread function and, midpoint of the edge spread function which
represents the midpoint of the edge to sub-pixel accuracy. The line spread function and
its standard deviation were also computed.

Fourteen edge regions were selected from across the checker board image to test registra-
tion accuracy (Figure 4.20). Their edge midpoint locations and standard deviations were
computed for both methods discussed. Plots of edge midpoint locations against wave-
length for edge regions registered using cross correlation ( central wavelength and three
part approaches) and mutual information( central wavelength and three part approaches)
can be seen in Figures 4.21,4.22,4.23 and 4.24 respectively. The difference between the
maxmum and minimum edge midpoint location across wavlengths is given in Table 4.3.

From these results, it can be seen that both registration methods produced registration to
sub-pixel accuracy but results were better using mutual information producing registration
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Figure 4.20: Checker board image used for hyperspectral image registration analysis with
14 edge regions indicated on it using red rectangles

Figure 4.21: Plots of edge midpoint locations against wavelength for image registration
using cross correlation and central wavelength image as reference image

error as small as 0.1 pixels. The largest registration error was found in edges at the
boundary of the image. This can be explained as only the centre of the image was in
focus during acquisition. The edge regions at the boundary of the image are not as sharp
as those produced from the centre of the image.

The two approaches (three part optimisation and central wavelength registration) pro-
duced different results. Registration using the central wavelength as the reference image
gave lower registration errors. For the rest of this thesis, images were registered using
mutual information and the central wavelength as the reference image.
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Figure 4.22: Plots of edge midpoint locations against wavelength for image registration
using cross correlation and three part optimisation

Figure 4.23: Plots of edge midpoint locations against wavelength for image registration
using mutual information and central wavelength image as reference image

4.8 Defective pixels

In most CCD detector array, a small percentage of pixels are defective in some way. These
are pixels that do not respond to light at all, or respond in a nonlinear way. Such pixels
may have extreme dark current as well. It is important to identify these bad pixels on the
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Figure 4.24: Plots of edge midpoint locations against wavelength for image registration
using mutual information and three part optimisation

Table 4.2: Difference between maximum and minimum edge midpoint location across
wavelengths for edge images registered using Cross Correlation (CC) and Mutual Infor-
mation (MI) and methods 1(Three part optimisation) and 2 (Central wavelength registra-
tion)

CC Method 1 CC Method 2 MI Method 1 MI Method 2
Edge 1 2.38 1.64 0.6 0.56
Edge 2 0.72 0.44 0.22 0.32
Edge 3 2.46 1.74 0.72 0.68
Edge 4 0.6 0.5 0.18 0.16
Edge 5 0.36 0.34 0.38 0.2
Edge 6 1.18 0.9 0.54 0.36
Edge 7 0.96 0.86 0.7 0.32
Edge 8 0.42 0.38 0.4 0.18
Edge 9 0.88 0.66 0.2 0.2

Edge 10 0.9 0.62 0.14 0.1
Edge 11 0.32 0.28 0.26 0.08
Edge 12 0.52 0.42 0.44 0.26
Edge 13 0.64 0.42 0.52 0.2
Edge 14 0.82 0.64 0.44 0.28

chip and mask their values. Defective pixels can be grouped into three types namely hot
pixels, dead pixels and stuck pixels.
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4.8.1 Hot pixels

Hot pixels are individual sensors on the CCD chip with higher than normal output volt-
ages. The rates of charge leakage for these pixels are extremely high. They can appear as
small pixel sized bright points of light on longer exposures. Every pixel on the CCD has
some charge leakage, and if exposed long enough, any pixel would light up. Hot pixels
are dependent on the tempearture and gain of the CCD sensor. The warmer the CCD,
the brighter the hot pixels will be. Typically with hot pixels, the dark current is 10 times
higher than the average dark current32

4.8.2 Dead pixels

These are pixels of the CCD sensor that do not react to light hence they have a low output
and/ or poor responsitivity32. These pixels remain unlit no matter the amount of light
hitting the CCD sensor array.

4.8.3 Stuck pixels

These pixels always outputs a high voltage at all exposures. It could be considered as
a hot pixel that is permanently lit. Figure 4.25 shows an image where a stuck pixel is
highlighted. It has a value higher than all other pixels considering either 4 or 8 pixel
connectivity. Hot, stuck or dead pixels can be eliminated by estimating the pixel value

Figure 4.25: Image with a stuck pixel highlighted

from neighbouring pixels. This could be done by the averaging or obtaining the median
of optional number of pixels around the defective one.

4.9 Main meridian analysis

One of the objectives of this chapter was to investigate the resolution of images produced
by the hyperspectral imaging system in the main meridian (horizontal and vertical) at dif-
ferent locations in the field of view of the camera. This was accomplished by obtaining
sample edge patches from the centre and near-boundary from the checker board hyper-
spectral image. Edge and line spread functions were constructed for this near-horizontal
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and near-vertical hyperspectral edge patches using the algorithm discussed in chapter
three. The standard deviation from each fit was computed and recorded. A plot of the
standard deviation against wavelength for each sample edge is presented in Figure 4.26.

Figure 4.26: Plot of LSF standard deviation for near- horizontal and near - vertical hyper-
spectral edge patches

Results show no significant difference between the standard deviations for horizontal and
vertical edge images sampled from the centre of the image with an average standard de-
viation of 1.3 pixels. This result is similar with those obtained in previous work using
the same hyperspectral imaging system24. On the other hand, the standard deviation for
edges obtained from the centre and near boundaries had a significant difference. Results
depend on the focus setting of the camera and vignetting at the boundaries.

4.10 Calibration Verification

The final test image analysis involved verifying system calibration, image correction and
compensation algorithms reported so far. The overall performance of the system was as-
sessed by acquiring and processing images from a GretagMacbeth colour checker chart
and then comparing the derived reflectances with those obtained with a telespectrora-
diometer. Reference Munsell chips N7,N5 and N2.5 were inserted at the edges of the
chart (Figure 4.16). Flat field and dark noise images were also acquired. This process
involved capturing six consecutive images under identical conditions, registering over po-
sition and subsequent averaging to get an image which is ideally free of temporal noise.
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Immediately after acquisition, the spectrum of light reflected from each patch and Mun-
sell chips was recorded by PR650 telespectroradiometer. The averaged GretagMacbeth
colour checker chart image was then corrected for dark noise and spatial non-uniformity
using an averaged dark noise image and flat-field image. The image was further corrected
for stray- light effects and registered over wavelength using the central wavelength im-
age as the reference image. Spectral reflectance functions for each pixel of the corrected
image was then computed by normalizing this corrected signal at each pixel against that
obtained with the reference munsell chips inserted in the scene.
A plot showing the ratio of mean signal for yellow - green and orange patches is given in
Figure 4.27 while the ratio of purple and orange patches is given in Figure 4.28. Symbols
show data for the hyperspectral system and continuous lines for the telespectroradiometer.

Figure 4.27: Spectral reflectance data for ratio between yellow-green and orange patches
of GretagMacbeth colour checker Chart

The root mean square error in the hyperspectral estimates of reflectance across the set
of test surfaces was 0.0025. Although some small systematic distortions were present
in some regions of the spectrum, the overall accuracy of the hyperspectral system was
sufficient for further analysis in later chapters.

73



4.10. CALIBRATION VERIFICATION

Figure 4.28: Spectral reflectance data for ratio between purple and orange patches of
GretagMacbeth colour checker Chart
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CHAPTER

FIVE

APPLICATION 1: IMAGING ARCHIVED MATERIALS

5.1 Introduction

The previous chapter outlined calibrations that were done on the hyperspectral imaging
system and the hyperspectral image registration algorithms used for this thesis. In this
chapter, applications of these methods are discussed. The registration of hyperspectral
images acquired from the University of Manchester’s John Rylands Library is given. The
experimental procedure and metrics used to test the accuracy of the algorithm are also
considered.

5.2 Hyperspectral image registration

The aim of this work was to produce high resolution hyperspectral images that will help in
identifying accurate matches for colours used in document restoration at the university of
Manchester John Rylands Library. Presently, staff use their eyes as cues for determining
the colour used to restore or repair old books or paintings. Hyperspectral images will
give distinct spectral data for each pigment hence making the matching task easier and
accurate.

5.2.1 Experimental Procedure

Images were captured in a room with a metal halide lamps providing illumination. Each
scene capture was repeated four times. Two focus settings were used. For the first focus
setting, the image at 560 nm was sharp while for the second setting, image at 720 nm was
sharp. The scene was 75 cm from the hyperspectral imaging system. The camera’s aper-
ture setting was 5.6. Dark noise and flat field images were also captured. Radiance data
were captured using a telespectroradiometer positioned 3 m to the scene image centre.
Scene images were corrected using dark and flat field images.
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5.2.2 Image registration and averaging

Images were registered using the mutual information algorithm presented in chapter four.
The four replications were registered over position with the second image used as the
reference image. The algorithm was modified for this registration. The scaling factor was
excluded since for replications, chromatic differences are identical. After registering over
replications, their average was obtained and this averaged image was then registered over
wavelength with the image captured at 560 nm used as the reference image. The final
registered images were then stored and ready for analysis. Figure 5.1 and 5.2 show the
averaged registered image of two scenes called hagaddah and woodcut respectively.

Figure 5.1: Hagaddah Image

Figure 5.2: Woodcut Image
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5.2.3 Evaluation of image registration accuracy

It is necessary to estimate how accurate the registration actually is. The method used in
this project involves tracking edge locations in the registered images. The idea behind this
method is with unregistered images, due to effect of chromatic differences, the midpoint
of a particular edge location will be unstable in all 33 images. After aligning the hyper-
spectral images, the midpoints of the edge locations should be stable. The software used
detects sharp slightly slant edges in the image, computes its edge spread function(ESF)
and, midpoint of the edge spread function( which represents the edge to sub-pixel accu-
racy). The line spread function(LSF) and its standard deviation are also computed. These
parameters are computed for unregistered and registered images. Plots of edge midpoints
and the standard deviation of the line spread function against wavelength can be seen in
Figure 5.3 and 5.4.

Figure 5.3: Plot of standard deviation and edge midpoint location of hagaddah image

From figure 5.3, the curve for the plot of standard deviation for the edge spread function
of the haggadah image surprisingly was flat for both focus settings. While the plot for the
woodcut image gave the expected result since for one setting, it was out of focus for the
reference image (560 nm). Further acquisition of other documents and paintings needs to
be done as these results are inclusive.
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Figure 5.4: Plot of standard deviation and edge midpoint location of woodcut image

78



CHAPTER

SIX

APPLICATION 2: SCENE RECOGNITION

6.1 Introduction

Scene recognition is an active research area. One of the problems which affects imaging
scene recognition algorithms is the variability of objects appearance as illumination and
scene geometry changes. Slight changes in the viewing conditions causes a large variation
in the scenes appearance.

In this chapter, two methods are used to achieve scene recognition. One method uses
spectral gradients which are descriptors invariant to scene geometry and illumination. The
other method uses ratio indexing for scene recognition. A novel approach to obtaining
image ratios is proposed.

6.2 Spectral gradient

Spectral gradient algorithm used in this thesis was proposed by Angelopoulou et al3. The
algorithm works by cancelling variations in scene geometry and incident illumination.
This is done by examining the rate of change of reflected intensity with respect to wave-
length. The assumption used is one where the incident illumination remains stable over
small intervals in the visible spectrum. They acquired grey scale images using different
colour filters and computed the spectral derivatives of the scene. The collection of spectral
derivatives computed at different wavelength forms a spectral gradient. This is a surface
reflectance descriptor, invariant to scene geometry and incident illumination for smooth
diffuse surfaces.

When light from a scene falls on a photosensitive sensor, the amount of light reflected I
from each point p(x, y, z) in the scene depends on the light illumination of the scene E
and the surface reflectance S of the material:

I(p, λ) = E(p, λ)S(p, λ) (6.2.1)
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where λ represents the wavelength and depends on the incident and reflected light on the
wavelength. The reflectance function S(p, λ) depends on the surface material, the scene
geometry and the viewing and incidence angles69.

When the spectral distribution of the incident light does not vary with the direction of
light, the geometric and spectral components can be separated:

E(θi, ϕi, λ) = e(λ)E(θi, ϕi) (6.2.2)

where (θi, ϕi) are the spherical coordinates of the length light direction vector and e(λ)

the illumination spectrum. The scene brightness is then represented by Equation 6.2.3

I(p, λ) = e(p, λ)E(p, θi, ϕi)S(p, λ) (6.2.3)

When the logarithm of the image irradiance equation is taken, the multiplicative effect is
changed into an additive one:

L(p, λ) = ln e(p, λ) + lnE(p, θi, ϕi) + lnS(p, λ) (6.2.4)

The next step is computing the partial derivative of the logarithmic image with respect to
wavelength since the aim is investigating how the natural logarithm of an image varies
over wavelengths in the visible spectrum.

Lλ =
eλ(p, λ)

e(p, λ)
+
Sλ(p, λ)

S(p, λ)
(6.2.5)

where eλ(p, λ) = ∂e(p, λ)/∂λ is the partial derivative of the spectrum of the incident
light with respect to wavelength and Sλ(p, λ) = ∂S(p, λ)/∂λ is the partial derivative of
the surface reflectance with respect to wavelength.

Illumination although not constant, is assumed to change slowly over small increments of
wavelength. This means that its derivative with respect to wavelength is approximately
zero. (eλ(p, λ) ≈ 0). This assumption fits well with our hyperspectral imaging system as
images are acquired at 10nm intervals . It is safe to assume that the partial derivatives of
logarithmic images depends on the surface reflectance.

L(p, λ) =
Sλ(p, λ)

S(p, λ)
(6.2.6)

6.2.1 Experimental procedure

The aim of this section was to determine whether two regions (in the same or differ-
ent scenes) are represented by objects with similar or distinct reflectance functions and
whether these objects can be identified. In order to compute the spectral derivatives im-
ages were capture under two illumination conditions. Two metal halide lamps and a
tungsten lamp were used. The first condition combined a metal halide and a tungsten
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lamp, while the other used two metal halide lamps. In each setup, both lamps were an-
gled 45 degrees to the centre of the imaged objects. The imaged objects were positioned
100 cm from the hyperspectral imaging system. The camera’s aperture setting and fo-
cus setting were 5.6 and 1.3 respectively. The usual procedure was followed. Images of
the scene were captured first, then a flat field image and dark image were also captured.
Radiance data for inserted calibration standards was also captured using a PR-650 tele-
spectroradiometer. Scene images were then corrected using the dark noise images and flat
file images and converted to radiance data using data from the calibration standards and
telespectroradiometer. The corrected images (Figure 6.1) were then stored for analysis.

Figure 6.1: GretagMacbeth colour checker chart image used for spectral gradient analysis

6.2.2 Spectral gradient computation

For each corrected image, its logarithmic image was generated. In the logarithmic images,
the value stored at each pixel was the natural logarithm of the original image intensity.
Figures 6.2 and 6.3 show an original image and its logarithmic equivalent captured at
570 nm . As seen from this figure, the logarithmic image preserves the overall appear-
ance of the original image. However the maximum intensity values were scaled down
significantly. From a maximum value of 4096 in a 12-bit image to a maximum value of
3.61.

The next step was computing the spectral derivatives of the logarithmic images. Differen-
tiation was done using finite differencing. The spectral gradients were computed over the
wavelength interval 10nm by subtracting subsequent logarithmic images in the sequence
producing a total of 32 spectral gradients images. The spectral gradient at each pixel is a
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Figure 6.2: Image captured at 570 nm with a scale bar showing pixel intensity

Figure 6.3: Logarithmic image of image acquired at 570 nm with a scale bar showing
pixel intensity

vector consisting of 32 spectral gradients. This vector was expected to remain constant for
materials with the same reflectance function, independent of illumination changes. Figure
6.4 shows the correlation coefficients between the two imaging conditions used for all 24
patches of the GretagMacbeth colour checker chart .

From these results, it can be seen that spectral gradients are unique and are not affected
by illumination change but when the colours are almost the same shade like with the grey
patches, the method breaks down.
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Figure 6.4: Spectral gradient plot for two lighting conditions

6.3 Scene Recognition

Object recognition methods are predominantly based on geometric image properties that,
in principle, are invariant under changes in viewpoint. By contrast, approaches to recog-
nition based on colorimetric properties depend little on viewpoint. One such method
colour indexing was developed by Swain and Ballard59, who used colour histograms and
histogram intersection to determine matches between test and reference images obtained
under different viewing conditions. The colour axes used for the histograms were op-
ponent and non-opponent combinations of the red, green, and blue components of the
triplets (r, g, b) at each point. The method was generally robust to variations in viewpoint
and scene background, but had limited invariance to changes in illumination, as the red,
green, and blue components were simply normalized by their sum.

Funt and Finalyson25 improved the illumination invariance of colour indexing by replac-
ing the red, green, and blue components of the triplet (r, g, b) at a point by the correspond-
ing triplet of spatial ratios defined across adjacent points; that is,(r1/r2, g1/g2, b1/b2) for
points 1 and 2 (they actually used a Laplacian or first directional derivatives of the loga-
rithm of the colours). Such spatial ratios are relatively stable under changes in illumina-
tion, although not exactly invariant. Funt and Finalyson25 noted that if the sensor spectral
sensitivities were broad, as with the cone photoreceptors of the eye, then indexing perfor-
mance was worse, but by transforming spectral sensitivities so that they were spectrally
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narrower or sharper, almost perfect indexing performance could be obtained with their
test and reference images. These were Mondrian-like, abstract coloured patterns under
different illuminations. Somewhat lower performance was obtained with images of real
objects25.

Whether spectral sensitivities are broad or narrow, however, there is a more general prob-
lem with using three sensor spectral sensitivities, in that according to some behavioural
measures41, 45, reliable surface identification by spectral sampling requires more than
three degrees of freedom, in particular with natural scenes of the kind illustrated in Figure
6.5.

Figure 6.5: Eight of the 50 natural scenes used in this work24

In principle, increasing the number of sensor classes over the available wavelength range
should increase the reliability of the colour signal by reducing the number of false matches,
and therefore produce better recognition performance. On the other hand, more sensor
classes might reduce the number of correct matches and increase the level of noise.

One of the objectives of this work was to extend scene recognition using ratio indexing to
hyperspectral images and compare results with RGB images. The other was to determine
how many sensor channels are needed for the reliable recognition of scenes under different
illuminations when test and reference images are sparsely and independently sampled.
Sparse independent sampling was used to capture the spatial uncertainties that, under
other imaging conditions, could arise by occlusion or change in viewpoint.

Simulated Mondrian patterns were used for analysis of the first objective. While the anal-
ysis of the second objective was based on 50 natural scenes, represented as hyperspectral
images. Each scene was simulated under daylight illuminants with different correlated
colour temperatures (CCTs). Unlike the procedure used by Funt and Finalyson25, where
spatial ratios were drawn from neighbouring points in the scene, spatial ratios were here
obtained by taking signals from pairs of points chosen at random across the scene.
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6.4 Ratio Indexing

Ratio indexing identifies an object by comparing its ratios to the ratios of each object
in a database. Funt and Finlayson computed their ratios from neighbouring RGB pix-
els. For this work, ratios were computed from random pairs since more spectral infor-
mation is available with the thin slices provided by hyperspectral imaging. Ratios of
sensor signals were obtained as follows, at each scene pointi = 1, 2, ......, N of the sam-
ple, let qi = (q1i , q

2
i , ..., n) be the n - tuplet of sensor responses in classes 1, 2, , n, and

let (q1, q2, , qN) be the N - vector of thesen-tuplets. Let σ be a random permutation
of the points 1, 2, , N . Then the set of sample ratios consists of the (unordered) set of
N values q1/qσ(1), q2/qσ(2), , qN/qσ(N), where each of the quotients q1/qσ(1) is given by
q1i /qσ(i1), q

2
i /qσ(i2), ....q

n
i /qσ(in).

Ratio histograms were formed from these sets of ratios, but with unequal bin sizes to ac-
commodate the non-uniform distribution of ratios from a uniform distribution of colours,
as in25.

6.5 Histogram Intersection

The intersection of a test image histogram Ha with a reference image histogram Hb is
given in Equation 6.5.1 as

I(Ha, Hb) =

∑
jmin(Ha(j), Hb(j))

min(
∑

jHa(j),
∑

jHb(j)
(6.5.1)

where j indexes the bins used to form the histograms. Necessarily, 0 ≤ (Ha, Hb) ≤ 1.

6.6 Image database

The next two sections presents the database used for scene recognition. One was made
up of 100 simulated Mondrian pattern hyperspectral images while the other contained 50
natural scene images.

6.6.1 Mondrian patterns

One of the objectives of this work was to extend scene recognition using ratio indexing to
hyperspectral images. A controlled randomized test set of 100 synthetic hyperspectral im-
ages of Mondrian patterns were generated from approximately 1200 reflectance Munsell
spectra. Ten of these simulated mandarin patterns can be seen in Figure 6.6.

Mondrian pattern spectra were simulated with CIE correlated colour temperature (CCT)
4000 K and 25000 K. Each hyperspectral image had spatial dimensions 1344 x 1024
pixels and spectral range 400 nm - 720 nm sampled at 10 - nm intervals. Ratios of spectral
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Figure 6.6: Ten of the 100 simulated Mondrian pattern images used for scene recognition

radiances were created by taking pairs of points at random as described earlier. The
number of wavelength channels used for recognition was 7 rather than all 33 due to limits
on computer calculations with ratio histograms of more than seven dimensions. The 7
wavelength channels used were those for 420 nm , 470 nm, 520 nm, 570 nm, 620 nm, 670
nm, 720 nm.

For comparison, hyperspectral images were also simulated using a luminance band and
three RGB bands. RGB images were generated using Nikon camera, human cone sen-
sitivities. RGB images from human cone sensitivities were further transformed using a
method known as spectral sharpening25.

6.6.2 Natural scenes

A database of 50 natural scenes was used for scene recognition and thumbnail illustrations
of eight of those images can be seen in Figure 6.5. Some of the larger set are available
in39. Details of how the hyperspectral data were obtained and of their accuracy are given
in24 and are similar to those described in this work. Each hyperspectral image had spatial
dimensions 1344 ×1024 pixels and spectral range 400 nm - 720 nm sampled at 10 nm
intervals, thereby providing a discrete representation of an effective spectral reflectance
R(λ;x, y) at each wavelength λ and position (x, y) in the scene. The effect of illuminating
the scene by a particular illuminant with spectrum E(λ) was simulated by multiplying
R(λ;x, y) at each point (x, y) by E(λ). The assumptions and approximations involved in
this approach have been discussed in24, Appendix A. Because of the approximately 1.3-
pixel line spread function of the camera system used to acquire the hyperspectral data24,
only non-adjacent pixels were spatially sampled. Daylight spectra were simulated from
those described by the CIE11 with CCTs of 4000 K, 6500 K, and 25000 K, characteristic
of the sun and sky at different times of the day.

A sensor system with a variable number n of sensor channels was simulated by taking the
average bandwidth of a commercial RGB sensor (a Nikon D1 digital camera14), and then
replicating a triangular spectral sensitivity with this bandwidth at evenly spaced points
over the visible spectrum, as illustrated in Figure 6.7 for three examples, with seven, five,
and two sensor channels. The maximum number of sensor channels possible in the present
simulation was limited to seven due to computational cost. No attempt was made in this
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analysis to optimize the spectral locations of the sensors according the characteristics of
the scene being sampled.

Figure 6.7: Examples of spectral sensitivities of simulated variable-channel system with
7, 5, and 2 sensor channels, and of the spectral sensitivities of a Nikon D1 camera, the
CIE photopic luminance function, and the spectral sensitivities of the cone fundamentals.

For comparison, the sensors of a Nikon D1 camera, the CIE photopic luminance func-
tion11, and the spectral sensitivities of the cone photoreceptors, i.e. the cone fundamen-
tals11, were also used.

Spatially random samples of size N = 10, 100, 1000 and 10000 points were taken from
images of scenes under a daylight of CCT 4000 K or 25000 K to act as test sets and from
images of scenes under a daylight of CCT 6500 K to act as the reference set. Critically, the
spatial samples in the test and reference sets were drawn independently. Scene recognition
was also done for all the spatial points in the image.

6.7 Results

The results of scene recognition are divided into two parts. Results for recognition using
the simulated Mondrian hyperpsectral images is given first. As this was a preliminary
application, the metric used to determine recognition accuracy was the mean false alarm
rates computed from histogram intersection. The second part presents results for scene
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recognition for natural scenes. A discrimination index was used for evaluating recognition
accuracy and is explained in a later section.

6.7.1 Mondrian patterns

Matching values from histogram intersection were computed for members of the image
database, from which hit and false-alarm rates from signal detection provided summaries
of recognition performance. Hit rates were uniformly 100, but mean false-alarm rates
varied markedly with the number of bands: approx. 74% with the luminance band, 37%
with human cone RGB bands, 29% with Nikon camera RGB bands, 23% with Sharpened
human cone RGB bands and just 17% with seven hyperspectral bands (Figure 6.8). From
these results it can be seen that ratio indexing based on more than three wavelength bands
may offer significant advantages in object recognition.

Figure 6.8: Plot of mean false alarm rate against sensor classes for simulated Mondrian
pattern ratio histograms

6.7.2 Natural scenes

With 50 scenes, there are 50 possible correct matches, i.e. the test and reference samples
come from images of the same scene, and 50×49 = 2450 false matches, where the test
and reference samples come from images of different scenes. Let HR be the match hit rate
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defined by the mean of I(Ha,Hb) over the 50 correct matches and let FAR be the match
false-alarm rate defined by the mean of I(Ha, Hb) over the 2450 false matches. Both HR
and FAR were expected to vary with the number of sensor channels. Thus, as the number
of sensor channels increases, the conditions for a match become more demanding, and so
the hit rate should decrease but so also should the false-alarm rate.

The true level of recognition depends on the difference between the two, although this
needs to be expressed on a scale that takes into account the limitations of the measure,
i.e. intersection, which as a proportion varies between 0 and 1. One common approach
is to summarize the difference between HR and FAR by the discrimination index d′ from
signal-detection theory; that is, d′ = Φ−1(HR)−Φ−1(FAR), where Φ is the normal cumu-
lative distribution function. This index has the advantage of both linearising proportions
and reducing the effects of bias.

Figures 6.9 and 6.10 show discrimination index d′ plotted against the number of sensor
classes of each type for 10, 100, 1000 and 1000 points drawn randomly from the images.
They also include discrimination index d′ plotted aginst number of sensor classes for
the whole image (1376256 points). The two plots are for test images obtained under a
daylight of CCT 4000 K and under a daylight of CCT 25000 K matched against reference
images obtained under a daylight of CCT 6500 K.

Figure 6.9: Plot of discrimination index d′ against number of sensor classes for images
simulated with CCT 4000 K matched against images simulated with CCT 6500 K

The interpretation of differences in d′ values with different numbers of sensor classes
is complicated by the constraints imposed by the number of scenes being sampled (the
more scenes there are, the greater FAR even though HR remains constant). Importantly,
however, the dependence of mean d’ on the number of sensor channels in the variable-
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Figure 6.10: Plot of discrimination index d′ against number of sensor classes for images
simulated with CCT 25000 K matched against images simulated with CCT 6500 K

channel system appears to peak with five sensor channels, after which it levels off and
possibly declines with six and seven sensor channels.
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CHAPTER

SEVEN

SUMMARY AND FURTHER WORK

There were two main aims in this thesis. The first was to identify the main sources of
error in a common design of focal - plane hyperspectral imaging system and devise ways
of compensating for these errors. The second was to achieve scene recognition using
hyperspectral images. The first aim was considered in chapter four while the second in
chapter six. Images used in this thesis for the scene recognition task were images of
natural scenes and simulated Mondrian patterns. Imaging of archived materials from the
University of Manchester’s John Rylands Library was also addressed in this thesis.
In this chapter, Main results from this thesis will be considered. Further work will also be
recommended.

7.1 Main results

7.1.1 Calibration

Input- output function was computed to investigate the linearity of the imaging system
by recording data using a neutral density wedge, diffuser and quartz halogen bench lamp.
Results showed that the hyperspectral imaging system was linear even at the shorter wave-
lengths which suffers from low illumination. The nominal wavelength accuracy of the
Liquid crystal filter used in the imaging system was investigated by capturing images of a
mercury vapour lamp with the underlying idea that mercury vapour lamps have principal
lines in the visible spectrum69. The principal lines investigated were at 436 nm and 546
nm. Results showed a maximum variation of 0.6 nm for line at 436 nm and a variation of
0.9 nm for the line at 546 nm. These results are less than 1 nm and were deemed accu-
rate for further work in this thesis. Two global image registration algorithms were tested
on hyperpsectral data. The first one used cross correlation while the second used mutual
information. The metric used for determining the goodness of registration was tracking
edge locations in images. Results showed mutual information method gave better reg-
istration results compared to its cross correlation counterpart. The overall performance
of the system was assessed by acquiring and processing images from a GretagMacbeth
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colour checker chart and then comparing the derived reflectance with those obtained with
a telespectroradiometer. The root mean square error in the hyperspectral estimates of re-
flectance across the set of test surfaces was 0.0025 and was seen as sufficient for further
work.

7.1.2 Scene recognition

Scene recognition was done using spectral gradient computation and ratio indexing. For
spectral gradient computation, spectral derivatives of the scene image were computed and
the collection of spectral derivatives computed at different wavelength forms a spectral
gradient. Spectral gradient is a surface reflectance descriptor, invariant to scene geometry
and incident illumination for smooth diffuse surfaces. Images of a GretagMacbeth colour
checker chart were acquired for two imaging conditions. Their spectral gradients were
computed and a correlation coefficient was used to compare images from both imaging
conditions. Results showed that spectral gradients are unique and are not affected by
illumination change but when the colours are almost the same shade like for the grey
patches in the chart, the method breaks down.

Scene recognition using ratio indexing was done on natural scene images and simulated
Mondrian pattern images. The process involved obtaining ratio pairs from images, form-
ing histograms from these ratios and then compare using histogram intersection. Ratios
were created from random pairs. Ten sensor classes were used ranging from CIE pho-
topic luminance function to seven channels of hyperspectral data. Sparse independent
sampling of points simulate occlusion and change in viewpoint. Results showed that with
just one sensor channel of the simulated variable channel system, there was little differ-
ence in performance between it and the CIE photopic luminance function, both yielding
chance levels of scene recognition. But as expected, as the number of channels in the
variable-channel system increased, recognition performance increased. With three sensor
channels, there was little difference between its performance and that of the Nikon sen-
sors and of the cone fundamentals. As the number of channels in the variable-channel
system increased beyond three, performance continued to increase but reached a max-
imum with about five channels. The failure to increase further may be due to several
factors. One possibility alluded to earlier is a decreased signal-to-noise ratio with more
channels; another possibility is the potential confound introduced by summarizing recog-
nition performance by a single measure when both match hit rate and match false-alarm
rate are varying. In any event, with small samples, it seems that indexing with five sensor
channels has advantages over indexing with three sensor channels for the recognition of
natural scenes.
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7.2 Further work

7.2.1 Hyperpspectral Image registration

The image registration algorithm used for this thesis is global. The use of local image reg-
istration or a combination of both approaches may increase registration accuracy. Global
registration methods could be used to register replications of the image as only a transla-
tion transform is applied. A local registration algorithm could then be used for registering
over wavelength. Care needs to be taken on the window size to be used for local registra-
tion. If the window size is too small, the registration parameters become unstable and if
it is too large, it becomes global registration. An investigation into these factors was not
possible within the constraints of this thesis work.

7.2.2 Scene recognition

During the scene recognition task, no attempt was made to optimize the spectral locations
of the sensors according the characteristics of the scene being sampled. A selection of
optimal spectral locations of the sensors could increase scene recognition accuracy. The
image database used for scene recognition contained 50 natural scenes. A larger database
could test the robustness of the algorithm.
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