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Extreme value theory (EVT) has wide applicability in several areas like hydrology,
engineering, science and finance. Across the world, we can see the disruptive effects
of flooding, due to heavy rains or storms. Many countries in the world are suffering
from natural disasters like heavy rains, storms, floods, and also higher temperatures
leading to desertification. One of the best known extraordinary natural disasters is
the 1931 Huang He flood, which led to around 4 millions deaths in China; these were
a series of floods between Jul and Nov in 1931 in the Huang He river.

Several publications are focused on how to find the best model for these events,
and to predict the behaviour of these events. Normal, log-normal, Gumbel, Weibull,
Pearson type, 4-parameter Kappa, Wakeby and GEV distributions are presented as
statistical models for extreme events. However, GEV and GP distributions seem to
be the most widely used models for extreme events. In spite of that, these models
have been misused as models for extreme values in many areas.

The aim of this dissertation is to create new modifications of univariate extreme
value models. The modifications developed in this dissertation are divided into two
parts: in the first part, we make generalisations of GEV and GP, referred to as the
Kumaraswamy GEV and Kumaraswamy GP distributions. The major benefit of
these models is their ability to fit the skewed data better than other models.

The other idea in this study comes from Chen, which is presented in Proceedings
of the International Conference on Computational Intelligence and Software Engi-
neering, pp. 1-4. However, the cumulative and probability density functions for this
distribution do not appear to be valid functions. The correction of this model is
presented in chapter 6.

The major problem in extreme event models is the ability of the model to fit tails
of data. In chapter 7, the idea of the Chen model with the correction is combined
with the GEV distribution to introduce a new model for extreme values referred to
as new extreme value (NEV) distribution. It seems to be more flexible than the GEV
distribution.
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Notation

Symbol Description

Mn The maximum value in the set of data

mn The minimum value in the set of data

D(G) Domain of attraction of G

µ Location parameter

σ Scale parameter

ξ Shape parameter

a Shape parameter

b Shape parameter

A2 Anderson-Darling goodness of fit statistic

W 2 Cramér-von Mises goodness of fit statistic

Bias Bias of the estimator

T Return period in years

Γ Gamma function

γ Incomplete Gamma function

δ1 The mean deviation about the mean

δ2 The mean deviation about the median

B(., .) Beta function

E[.] Expectation of a random variable

Bx(., .) Incomplete beta function

κ3(X) The skewness

κ4(X) The kurtosis

ψ(x) Euler’s psi function
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−J The observed information matrix

−EJ The Expected information matrix.
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Abbreviations

GEV Generalised Extreme Value Distribution

GP Generalised Pareto Distribution

EV1 Gumbel Distribution

EV2 Frechét Distribution

MLE Maximum Likelihood Estimation

EVT Extreme Value Theory

MSe Mean Square Error

SE Standard Error

AIC Akaike Information Criterion

CAIC Consistent Akaike Information Criterion

AICc Akaike Information Criterion with a Correction

BIC Bayesian Information Criterion

Kum Double Bounded Probability Density Function (Ku-

maraswamy Distribution)

pdf Probability Density Function

cdf Cumulative Distribution Function

hrf Hazard Rate Function
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Chapter 1

Introduction

Climate change is considered to be one of the most pressing issues of the last two

decades. It can be thought of as long-term changes in the statistical distribution of

weather patterns. Changes in the climate pose one of the greatest threats to humans.

Floods, due to maximum rainfall events and increases in global average sea levels,

due to higher temperatures, will continue to have an enormous impact on our lives.

Nowadays, the world is increasingly seeing extreme effects from rainfall events, so the

accurate prediction for these events will significantly aid in policy planning. Studying

and analysing rainfall events has a significant impact on hydraulic designs for flood

protection such as flood barriers, floodgates, dams and dykes.

In section 1.1 we review the literature in rainfall and floods analysis. The motivation

of this dissertation is declared next, in the section 1.2. Section 1.3 presents the

structure of this research. Finally, section 1.4 presents related published papers and

conferences.

1.1 The Historical Review of Rainfall and Floods

Analysis

Extreme value models are widely used in several areas of scientific research, engineer-

ing, and medicine. The most common applications of extreme value distributions



1.1 The Historical Review of Rainfall and Floods Analysis 25

are annual maximum rainfall events and floods. In this section, we review the back-

ground of annual maximum rainfall and floods data.

Around the world much research has been conducted on maximum rainfall dis-

tributions and most are focused on the identification of the best fitting probability

distribution function (pdf) for the data. Models used include normal, log-normal,

Gumbel, Weibull, Pearson type, 4-parameter Kappa, Wakeby, two-component GEV,

GEV, and Gamma distributions. Since the first application of extreme values in flood

flows, presented by Fuller (1914), several published works are focused on the appli-

cations of extreme values in hydrology such as floods, rainfall, earthquakes, etc. The

applications of univariate extreme value models to maximum rainfall and floods data

are applied to several regions around the world. As a result of the different topogra-

phy (plain areas to mountainous zones), the records of maximum rainfall events are

different and they will belong to different types of distributions. In this section, we

review some of the applications of extreme value distributions to maximum rainfall

and floods data from several places in the world.

Houghton (1977) introduced a new five-parameter distribution known as the

Wakeby distribution. He clarified the advantages of this model over the lognormal

distribution in fitting U.S flood records depending on several goodness of fit tests.

Also, he showed the ability of the Wakeby distribution to explain the split effect,which

is not evident in other known distributions. Haktanir and Horlacher (1993) examined

nine different distributions that are commonly employed for flood frequency analysis.

These models were applied to two datasets recorded from different locations, the first

dataset is flood data collected from 11 streams in the Rhine Basin, Germany, while

the other is from 2 streams in Scotland. Results for this study can be summarised

into some main points, which are:

• The GEV and 3-parameter lognormal distributions can predict the flood with

the return period of 100-years better than the others,
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• For the maximum likelihood estimator, they found that the log-logistic distri-

bution overestimated return period floods greatly,

• Sometimes the Frechét (EV2) and log-Pearson type 3 (with positively skewed)

yield slightly conservative peaks.

Cannarozzo et al. (1995) proposed the two component extreme value distribution

(TCEV) to model data from rainfall and floods. To explore the usefulness of this

model, the authors used annual maximum rainfalls with several durations: 1, 3, 6, 12

and 24 hours which were recorded at 172 gauges from 1928 to 1981 with sample size

n from 10 to 45 years. For the floods, they used annual maximum peak flood data

collected from 27 stream gauges between 1936 and 1982. According to Karim and

Chowdhury (1995), lognormal, Gumbel and log-Pearson type 3 distributions were

disqualified as best models to annual maximum floods series in Bangladesh. Also,

they explored the GEV distribution as being better than the others for flood fre-

quency analysis. To assessment the return period of the peak discharges and changes

in hydrological response due to the dam break, there are three different methods,

which are: Annual maximum series extreme value analysis (AMS), partial duration

series (PDS) and regional analysis. In order to compare these three methods, Hoy-

bye and Iritz (1997) applied log-Pearson type III (LP3), Gumbel (EVD1), Pearson

type III (P3), 3-parameter lognormal (LN3), and GEV distributions to a monsoon

climate catchment in Hongru River, China. They found that the GEV distribution

was the only model that accepted all catchments when they were tested within the

AMS method.

The GP distribution has been found to be an appropriate distribution for flood fre-

quency analysis (see El-Jabi et al. (1998)). They applied this model to a number of

hydrometric stations in the province of New Brunswick, Canada. The 4-parameter

Kappa distribution (by Parida (1999)) is the best-given model for the Indian sum-

mer monsoon. This model has been applied to the Indian summer monsoon rainfall

(ISMR) data observed over a common period (June-September) during (1940-1980)

at 50 gauging stations across India. The benefit of using the 4-parameter Kappa
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distribution, as mentioned by the author, is the fact that it has sub-models such as

GEV, GP, generalised logistic, exponential, Gumbel, logistic, uniform, and reverse

exponential distributions.

Yue et al. (1999) introduced the Gumbel mixed model, the bivariate extreme value

model with Gumbel marginals, to model the joint probability of dependent flood

peaks and volume, as well as flood volume and durations. In this study, they applied

this model to flood data from the Ashuapmushuan river, Quebec, Canada. Results

show that this model is an appropriate model for both kinds of data. Koutsoyiannis

and Baloutsos (2000) used three extreme distributions, which are: extreme value type

I (EV1 or Gumbel), 2-parameter extreme value type II (EV2(2)), and the generalised

extreme value (GEV) distributions to model the annual maximum series of daily rain-

fall depths in Athens during the period (1860-1995). The authors concluded that the

GEV distribution is a more appropriate model than the others for long records of the

annual maximum rainfall (136 years), whereas the EV1 seems to be a suitable model

if fewer years of measurements are used (34 years of this sample were considered).

To clarify some of the characteristics of hydrologic extremes, Katz et al. (2002) treated

two examples of hydrologic extremes; the first example was concerned with estimat-

ing the best model for the annual maximum of daily rainfall, while the second was

concerned with estimating the model of the annual peak streamflow. While, the GEV

distribution was fitted for the first example, the GP distribution was considered for

the second. To detect the trend of the mean of the Pearson linear correlation coeffi-

cient and MannKendall tests, Crisci et al. (2002) collected rainfall data at durations

of (1, 3, 6, 12 and 24 hours) at 81 rain gauges located in Tuscany. The reason

for choosing a variety of rain gauges comes from the fact that the Tuscany area is

characterized by an extreme variety of topography, from plain areas to mountainous

and hilly zones. The authors fit the data to the GEV distribution to identify the

areas that were affected by the heaviest rainfall at any storm duration. Park et al.

(2001) used the Wakeby distribution (WAD) and estimated the parameters by the

L-moments method (L-M) to fit the summer annual maximum daily and bi-daily

rainfall data at 61 gauges in South Korea. They used different lengths of time series,
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since the records began at different dates, but all of them ran until 1999.

Park and Jung (2002) applied the 4 parameter Kappa distribution (K4D) to fit the

same data with maximum likelihood estimation (MLE) to estimate the 4 parameters.

Koutsoyiannis (2004) compared two types of extreme value distributions, Gumbel

(EV1), and Frechét (EV2), by applying them to a collection of 169 ganges of the

available maximum rainfall records worldwide, with each record having 100-154 years

of data. He showed that the (EV2) distribution is more appropriate than (EV1) for

a longer-record of maximum rainfall data.

Li et al. (2005) analysed daily extreme rainfall at five geographical stations in the

Southwest Western Australia (SWWA). They used the generalised Pareto (GP) dis-

tribution to model the extreme rainfall from daily rainfall data. The authors call a

daily rainfall ‘extreme’ if it exceeds a given threshold. Nadarajah (2005) applied the

GEV distribution to the annual maxima of daily rainfall data in the period 1901-2003

at 14 locations in West Central Florida. To find the best model to fit flood events

of the Pachang river, Taiwan, Nadarajah and Shiau (2005) employed the Gumbel

and GEV distributions as models of extreme values. They showed that the Gumbel

distribution can be considered over the GEV distribution for both flood volume and

flood peak. Feng et al. (2007) analysed four-time durations: daily, 2 days, 5 days

and 10 days for annual maximum rainfall from 651 weather stations in China over

the period 1951-2000. They used the GEV distribution to model this type of data.

Also, they modified the GEV distribution to model linear trends in extreme values.

According to Hanson and Vogel (2008), the Pearson Type-III (P3) distribution makes

a better fit for the full record of daily rainfall, with length 24,657 days at 237 stations

in the U.S. The Kappa (KAP) distribution has been considered by Hanson and Vogel

(2008) as the best model to describe only-wet-days daily rainfall data, which was

constructed from the above data by eliminating zero and trace values.

The Hawaiian Islands have frequently experienced heavy rainfall, and floods, a cause

for a lot of damages to agriculture and properties as well as social problems due to

the effect on tourism. Chu et al. (2009) applied the method of L-moments to fit the

3-parameter GEV model to 20 years of maximum rainfall records up to 2005 from
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158 stations in the Hawaiian Islands. Ranchi, in India, has a subtropical climate in

the summer (March to June) with the temperature between 20 − 37◦C, while the

winter temperature is between 2 − 22◦C. Temperatures are quite different in both

seasons, though rainfall is very little in both summer and winter except for extreme

maximum rainfall in the monsoon season (July to September) with a daily average of

1,100 mms. Shukla et al. (2012) clarify that the GEV distribution can be considered

as the best model to fit the subtropical monsoon region in India by applying this

model to 51 years of the maximum rainfall data during 1956-2006. This distribution

was compared with the Gumbel, Frechet and Weibull distributions.

Panthou et al. (2012) compared two approaches for spatial estimation, a local-fit and

interpolation (LFI) as well as spatial maximum likelihood estimation (SMLE). They

applied five LFI and three SMLE methods to the GEV distribution on the 126 daily

rainfall series covering the period 1950-1990 in Sub-Saharan West Africa. The maxi-

mum daily rainfall data from four different stations in Pakistan: Islamabad, Murree,

Lahore and Sialkot between 1954 and 2005 were studied by Abbas et al. (2012) to

find the appropriate model to fit the data. They compared the gamma, GEV and

GP distributions, and concluded that GEV and GP distributions are more suitable

for the annual maximum rainfall data in several places in Pakistan, more so than the

gamma distribution.

1.2 Motivation

Nowadays, the generalised extreme value distribution has become one of the most

widely applied distributions in univariate extreme value theory. It has several appli-

cations covering most areas of research in science, engineering and medicine such as

floods, wind speed, annual maximum rainfall, earthquake records, high level ozone

concentrations, extreme maximum and minimum temperatures, etc. For more ap-

plications of generalised extreme value distribution in engineering problems we refer

the reader to Castillo et al. (2005) and Beirlant et al. (1996). However, the GEV

distribution has been misused in too many areas, as can be seen from the list given
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in Chapter 4. Consider the following problems:

a. Many hydrological engineering planning, design, and management problems re-

quire a detailed knowledge of flood event characteristics. Flood frequency analysis

often uses the GEV distribution to model flood peak values, which provides an

assessment of flood events.

b. Corrosion science has been based mainly upon deterministic approaches, particu-

larly the electrochemical theory of corrosion. Localized corrosion, however, cannot

be explained without statistical and stochastic approaches because of the large

scatter in data that is common in the laboratory and the field. The GEV distri-

bution has been used in many successful applications of statistical approaches to

localized corrosion in engineering data, to estimate the maximum pit depth that

would be found in a large-area installation by using a small number of samples

with a small area.

c. In the time series of extreme dynamic pressures (i.e. of the squares of extreme

wind speeds), the GEV distribution has also been shown to present good fits to

this type of data.

d. Each of the problems above is concerned with the tail behavior of one or more

variables. So, by capturing the tail behavior more accurately, one could obtain

improved estimation and prediction.

Our proposed models, which we present in Chapters 4, 5, 6 and 7 provide one

way of doing this. We create two new modifications for the GEV distribution: the

first one depends on the double-bounded probability density function (Kumaraswamy

distribution). While the idea of the second comes from the most asked question in

extreme value models “How can we control the thickness of shapes of extreme value

models”. Then we apply these two models to annual maximum rainfall data to show

the flexibility and advantages of these models over the ones that are commonly used

to describe the behaviour of extremes. Another modification is given later, but it

depends on the excess over the threshold model (generalised Pareto distribution). As
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mentioned before, the Pareto distribution is used to model large loss data in insurance

due to the fact that insurance payment data is positively skewed with large upper

tails. The weakness of using a Pareto model for insurance claims is that even though

it covers the large losses well, it fails to cover the behaviour of the small ones.

In Chapter 5, we combine two known models: the GP distribution and the Kum

distribution to create a new model with the aim of attracting wider applicability

in insurance claims. The main motivation in this thesis is to create new models for

univariate extreme values, which can be considered instead of the known distributions.

1.3 Outline

In this thesis we focus on developing the current extreme models (GEV and GP

distributions).

This work is organized as follows:

Chapter 2 can be regarded as a review chapter of extreme value modeling. The

first part of this chapter starts with the classical extreme value theory and Pickands

Balkema de Haan theorem. The two major distributions in extreme value theory,

the GEV and GP distributions are given and followed by some applications of ex-

treme value theory in some fields of research such as ocean engineering, finance and

insurance, structural engineering, etc. The last part is dedicated to discussing the

graphical tools for data analysis and estimation methods, which are used in subse-

quent chapters.

Chapter 3 covers the double-bounded probability density function. In the beginning,

we start with the introduction of the Kumaraswamy (DB-PDF) distribution and

present its pdf and cdf. The next section presents the variety of shapes that the Kum

distribution has, to illustrate the flexibility of this model, including some examples on

applying it to real data. Then, we discuss main properties of the Kum distribution.

The relation with other known distributions and some examples of applications are

given in the last parts of this chapter. Finally, an overview is given as a summary of

the Kumaraswamy distribution.
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Chapters 4 and 5 introduce the univariate Kum-G distributions as modified models of

the extreme value distributions. In Chapter 4 a new distribution - referred to as the

Kumaraswamy Generalised Extreme Value (KumGEV) distribution is introduced.

Some mathematical properties of this distribution are studied. We derive analytical

shapes of the density and hazard rate functions and review some sub-models of the

KumGEV distribution depending on the shape parameters. We calculate explicit

closed form expressions for moments and the moment generating function. Skewness

and Kurtosis are also examined for the distribution. We estimate its parameters by

the method of maximum likelihood and provide the observed information matrix.

To illustrate the potential of the new model, we apply this model to daily rainfall

maxima in millimetres from 1938 to 1972 at Uccle, Belgium. The Rainfall data is

contained in the evd package (Stephenson (2002)) in the R programme. Finally, some

bivariate generalizations of the model are proposed.

In Chapter 5, the same approach used in chapter 4 to modify the GEV distribution

is used here to generate a new distribution, the so-called Kumaraswamy GP distribu-

tion, which includes some sub-models that we present. The mathematical properties

of this distribution are studied. We derive moments, the moment generating function

and mean deviations. Two measures of entropy are derived. Maximum likelihood

estimation is used to estimate the parameters including the information matrix. To

illustrate the benefit of this distribution over the others, we apply KumGP distribu-

tion to dataset consisting of 154 exceedances of the threshold 65m3s−1 by the River

Nidd at Hunsingore Weir from 1934 to 1969. This data is taken from NERC (1975).

In this chapter, we used the evir Pfaff et al. (2010) and Ribatet (2009) packages in

the R programme.

Chen et al. (2010) claim to have proposed a new extreme value distribution, but the

formulas given for the distribution do not form a valid probability distribution. In

Chapter 6, we correct their formulas to form a valid probability distribution. For this

valid distribution, we provide a comprehensive treatment of mathematical properties,

estimate parameters by the method of maximum likelihood and provide the observed

information matrix. The flexibility of the distribution is illustrated using a real data
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set.

In Chapter 7, a new family of distributions is introduced to model univariate extreme

values. We extend the GEV model by adding one shape parameter to control the tail

and the mode. Some known distributions are presented as related distributions to

the new model. The statistical properties of this model are derived with details of the

variety of shapes. The parameter estimation by the method of maximum likelihood

is given. Finally, to illustrate the flexibility of this model, we use the same data used

in chapter 4, which is the annual maximum rainfall data in Uccle, Belgium.

The last part of this research is focused on the main results that we obtained from

this work. Chapter 8 concludes the work in this thesis and reviews some thoughts

that can be considered as future work for each model.

1.4 Thesis Related Publications and Papers

The main result in Chapter 4 has been presented in the Young Researcher Meeting

in Bristol April/2012 and in Mathematics Research Students’ Conference (MRSc)

Manchester 28th September/2012. The works in Chapters 4 and 5 are currently

under consideration for the Extremes journal. The main result in Chapter 6 is

currently under consideration for Statistics: A Journal of Theoretical and Applied

Statistics.



Chapter 2

Extreme Value Theory

2.1 Introduction

Extreme value theory (EVT) is a very important theory in probability and statistics

devoted to study of the behavior of extreme values. Even though these values have

a very low chance to appear, they can turn out to have a very high impact to the

observed system. Finance and insurance are the best fields of research to observe

the importance of extreme events. EVT can be considered as a developing area

of research. It has been started in the last century as an equivalent theory to the

central limit theory, which is dedicated to study of the asymptotic distribution of the

average of a sequence. The EVT focuses on the behavior of block maxima or minima.

The extreme value theory was introduced first by M.Fréchet (1927) and Fisher and

Tippett (1928) then followed by Von Mises (1936), which is translated and reprinted

in Von Mises (1964), and completed by Gnedenko (1943), which is translated and

reprinted in Johnson (1992). The latter gave the Extremal Types Theorem. All

of the following research focused on finding the limiting behavior of the maxima of

sequence of iid random variables.

In this Chapter, we present a general review of the main theories in univariate extreme

value analysis ( Sections 2.3 and 2.4). The rest of this Chapter concentrates on

extreme value models and their applications in hydrology, sciences, engineering and

medicine. We then move to graphical tools for data analysis, maximum likelihood
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estimation method, goodness of fit tests and information criteria.

2.2 Classic Extreme Value Theory

The central limit theorem states that the sum and the mean of an arbitrary finite

distribution are normally distributed under the condition that the sample size is

sufficiently large. However, in some practical studies we are looking for the limiting

distribution of maximum or minimum values rather than the average of the data.

Assume that X1, X2, . . . , Xn is a sequence of iid random variables distributed with

cdf denote F . One of the most interesting statistics in a research is the sample

maximum Mn = max{X1, X2, . . . , Xn}. This theory studied the behaviour of Mn

as the sample size n increases to infinity.

Pr{Mn ≤ x} = Pr{X1 ≤ x,X2 ≤ x, ..., Xn ≤ x, }

= Pr{X1 ≤ x}Pr{X2 ≤ x}... . . . Pr{Xn ≤ x}

= F n(x).

The concept of finding a limiting distribution for the block maxima is similar to the

motivation of the central limit theorem, where the unknown distribution of sums

leads to the normal distribution (Beirlant et al. (1996)). The distribution function F

cannot be found practically, but the Fisher-Tippet-Gnedenko theorem provides the

asymptotic result.

Theorem 2.1. Suppose there are sequences of constants {an > 0} and {bn} such

that:

Pr

{
(Mn − bn)

an
≤ x

}
→ G(x) as n→∞. (2.1)

Then if G is a non-degenerate distribution function then it will belong to one of the

three following fundamental types of Extreme value family:

Type I (Gumbel):

F (x) = exp{−e−(x−µ)/σ}, x ∈ R
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Type II (Frechét):

F (x) =


0, x ≤ 0,

exp{−((x− µ)/σ)−α}, x > µ, α > 0

Type III (Weibull):

F (x) =


1, x > 0,

exp{−(−(x− µ)/σ)α}, x < µ, α > 0

for the parameters σ > 0, −∞ < µ <∞.

2.2.1 Domain of Attraction

Definition 2.1. The distribution function F is in the domain of attraction of an

extreme value distribution if the relation (2.1) is satisfied. We write F ∈ D(G).

2.2.2 Max-Stable Distributions

Definition 2.2. A non-generate distribution function G is max-stable distribution

if for each n = 2, 3, 4, . . . there are a constant an > 0 and bn such that

Gn (anx+ bn) = G(x) as n→∞. (2.2)

Now, the following theorem combines the definition of the max-stable distribution

with the limiting distribution of extreme values.

Theorem 2.2. Suppose G is a nondegenerate distribution function. Then It is a

max-stable distribution if and only if there is a sequence of distribution functions

{Fn} and constants an > 0 and bn such that

Fn
(
a−1nkx+ bnk

)
= G1/k(x) as n→∞ (2.3)

for all k = 1, 2, 3, . . ..

The proof of this theorem can be found in Leadbetter et al. (1983).
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2.3 Pickands Balkema De Haan Theorem

Let X1, X2, . . . Xn be a sequence of iid random variables with distribution function

F (x). We are interested in estimating the distribution function F (u) of extreme

values that exceed a threshold u. The distribution function is given by:

Pr{X > u+ y/X > u} =
1− F (u+ y)

1− F (u)
, y > 0. (2.4)

The problem of values exceeding a certain threshold may be important to several

problems such as a harbor being damaged if a flood exceeds a certain level, or the

glass of oven breaking under high temperature. For more applications we recommend

Castillo et al. (2005). Pickands III (1975), Balkema and De Haan (1974) stated the

limiting distribution of extreme values that exceed a threshold u, which is presented

in the following theorem.

Theorem 2.3. Let X1, X2, . . . be a sequence of iid random variables with distribution

function, F . a large class of underlying distribution functions F and large enough u,

the liming distribution of F (u) is

H(y) = 1− (1 +
ξy

σ̃
)−1/ξ (2.5)

where 1 + ξy
σ̃
> 0 and σ̃ = σ + ξ(u− µ).

The family of distributions in Eq(2.5) is called the Generalised Pareto distribution.

2.4 Univariate Extreme Value Modeling

Extreme value theory (EVT) has been used to develop two classes of extreme value

distributions. The first class is the asymptotic distribution of a sequence of maxi-

mum or minimum values known as one of the three following distributions: Gumbel,

Frechét and Weibull distributions (Coles (2001)). These distributions can be repre-

sented as members of the Generalised extreme value (GEV) distribution. The second

class is the distribution of all exceedances over a high threshold, which is called the

Generalised Pareto distribution.
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2.4.1 Generalised Extreme Value Distribution

In practice, it is very difficult to choose which of the three families (Gumbel, Frechét

and Weibull) is the most appropriate for real data. Therefore, a better analysis

of block maxima (minima) is offered by combining these distributions into a single

family of models called the generalised extreme value (GEV) distribution. Jenkinson

(1955) proposed a formula for (GEV) distribution.

The cdf of the generalised extreme value (GEV) distribution is defined as:

F (x, µ, σ, ξ) =


exp[−[1 + ξ(x− µ)/σ]−1/ξ] if ξ 6= 0,

exp[−exp(−(x− µ)/σ)] if ξ = 0.

where σ > 0 and −∞ < µ < ∞ are the scale and location parameters respectively.

The other parameter ξ is the shape parameter, representing the behavior of the tail.

Sub-models can be defined by ξ → 0, ξ > 0, and ξ < 0, corresponding respectively

to the Gumbel, Frechét and Weibull distributions, which are mentioned above.

The density function of the GEV distribution is:

f(x, µ, σ, ξ) = σ−1[1 + ξ(x− µ)/σ]−1/ξ−1 exp[−[1 + ξ(x− µ)/σ]−1/ξ]. (2.6)

2.4.2 Generalised Pareto Distribution

As mentioned above, the GEV distribution is the asymptotic distribution for the

maxima or minima. Suppose we are interested not only in the maxima of observations,

but also in the behavior of large observations that exceed a high threshold. The

generalised Pareto (GP) distribution was introduced by Pickands III (1975), and

Balkema and De Haan (1974).

We assume that the excess variables X1, X2, . . . , Xn are iid, then the definition of the

GP distribution can be define as:

Definition 2.1. (del Castillo and Daoudi (2009)) The distribution and probability



2.5 Applications of Extreme Value Theory 39

density function of the GP distribution can be written as

F(σ,ξ)(x) =


1− [1 + ξ x/σ]−1/ξ if ξ 6= 0,

1− exp−x/σ if ξ = 0.

and

f(σ,ξ)(x) =


σ−1[1 + ξ x/σ]−(1+ξ)/ξ if ξ 6= 0,

σ−1 exp−x/σ if ξ = 0.

for x ≥ 0, when ξ ≥ 0, or x ≥ 0, and x ≤ −σ
ξ

when ξ < 0, where σ > 0 is the scale

parameter and ξ ∈ R is the shape parameter.

The shape parameter of the GP distribution is dominant in determining the qual-

itative behavior of the tail. So, the following values of the parameter ξ are of interest:

• When ξ → 0, the GP distribution converges to the exponential distribution

with mean σ.

• When ξ = −1, the GP distribution becomes the uniform distribution U(0, σ).

• When ξ = 1/2, the GP distribution becomes the triangular distribution.

• The Pareto distribution is obtained when ξ > 0.

• When ξ ≤ −1
2
, var(X) =∞. The rth central moment exists only if ξ > −1/r.

2.5 Applications of Extreme Value Theory

In many statistical applications, the interest is centered on estimating some popu-

lation parameters. For example, the average temperature, the median income, the

average rainfall, etc; based on samples taken from the same population. Sometimes,

the most important values are not the average, but the maximum or minimum values

(see Castillo (1994), Weibull et al. (1951), and Galambos (1987)). For example, the

maximum flood height, maximum earthquake intensity, largest wildfire, the amounts

of large insurance losses, etc. Largest values, such as loads, earthquakes, winds,
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floods, waves, etc., and the smallest values, such as strength, stress, etc. are the key

to failure of engineering works, so construction engineering should be based on ex-

tremes. Some publications related to extremes from fields such as ocean engineering,

structural engineering, material strength, fatigue strength, etc., can be found in Lead-

better et al. (1983), Ferro and Segers (2003), Court (1953), Battjes (1978), Borgman

(1963, 1970, 1973). Bretschneider (1959), Bryant (1983), Castillo and Sarabia (1992,

1994), Cavanie et al. (1976), Chakrabarti and Cooley (1977), Draper (1963), Earle

et al. (1974), Goodknight and Russell (1963), Günbak (1978), Houmb and Overvik

(1977), Longuet-Higgins (1952, 1975), Onorato et al. (2002), Putz (1952), Sellars

(1975), Davenport (1963, 1967, 1972, 1978), Grigoriu (1984), Hasofer (1972), Hasofer

and Sharpe (1969), Mistéth (1973), and Moses (1974), etc.

In this section we review some applications of the two most widely used distributions

for univariate extreme values. Possible applications of these models cover most areas

of science, engineering and medicine. Here, we brief some published applications such

as:

a. In hydrology, the GEV and GP models are applied to flood frequency distributions,

wind speed distributions, regional analysis of annual maximum rainfall, analysis of

extreme floods, downscaling of future rainfall extreme events, analysis of regional

earthquake records, analysis of daily discharge records, analysis of high level ozone

concentrations, analysis of extreme maximum and minimum temperatures, the

conductor icing distribution, analysis of air pollution data, mapping snow depth

return levels, rainfall temporal patterns for urban drainage design, analysis of

ocean climate,and extreme wave climate variability.

b. In engineering, there are some applications for these models such as pressure ex-

treme in the energy-dissipating structure, assessment of corrosion-based failure in

stainless steel containers, study of friction stir welded copper canisters, analysis of

mobile networks, analysis of extreme loads for design of wind turbine components,

and electricity price modeling.

c. In science, the GEV and GP models are applied for the spatial prediction of
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soil properties, analysis of particle tracking data, estimation of depth-duration-

frequency curves, fisheries research, volume fluctuations in a confined one-dimensional

gas, the role of attractive methane-water interactions, and extreme electron fluxes.

d. In economics, the GEV and GP models are applied for retail and wholesale market

power, risk management, analysis of risk dependence for foreign exchange data,

value-at-risk for financial returns, and the estimation of interest-rate volatility.

e. In medicine, they applied to the testing multiple gene interactions, characteristics

of Alzheimer’s disease, modeling for controlled drug delivery systems.

For more details on the GEV distribution, its theory and further applications,

we refer readers to Leadbetter et al. (1983), Embrechts et al. (1997), Castillo et al.

(2005), and Resnick (2007).

2.6 Graphical Tools for Data Analysis

In extreme value analysis, to treat real data: first, we have to use graphics that will

illustrate clearly the features of the data. In this section, we present some common

graphs used in later chapters such as P-P plots, Q-Q plots, return level plots and

mean residual life plots. In the rest of this dissertation, they will help us to decide

which model will fit a certain kind of data better than others.

2.6.1 Probability-Probability Plots

Let x1, ..., xn be a random sample from the cdf F and let F̂ be the estimated cdf.

Then a plot of

F̂ (xi:n) against pi:n; i = 1, 2, ..., n,

is called the P-P plot, where xi:n is the ith order statistic and pi:n is the plotting

position, which is defined as

pi:n =
i− α
n+ β

; i = 1, 2, ..., n.
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Here α, β ≥ 0 can be chosen empirically based on the behavior of data, the type of

distribution, the estimation method used to estimate the parameters, etc. We choose

α = 0.375 and β = 0.25. If the model fit the data well, then the pattern of points

will be very close to the 45-degree line.

2.6.2 Quantile-Quantile Plots

Let ˆF (x) be the estimate of the distribution function F . The quantile-quantile plot

is similar to the probability-probability plot. We plot the estimate of the inverse cdf

F̂−1(pi:n) versus xi:n; i = 1, 2, ..., n.

The model will fit the data well if the points of the scatter plot are very close to

the 45-degree line.

2.6.3 Return Level Plots

The return level can be defined as the level which is expected to be exceeded once

every 1/p period, which is known as a return period. Then the return level, say

xT , exceeded on average once in T years can be written as

T =
1

P

P (X > x) = 1− F (x) =
1

T
,

∴ xT = F−1(1− 1

T
), (2.7)

which is given by the quantile function F−1. The return level is very important to

determine, for example, the heights of the sea walls, water dams, etc.

2.6.4 Mean Residual Life Plots

The empirical mean residual life plot is the locus of points

(
u,

1

nu

nu∑
i=1

(xi − u)
)
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where x(1), ..., x(nu) are the nu observations that exceed the threshold u. If the ex-

ceedances of a threshold u0 follow the generalised Pareto distribution, the empirical

mean residual life plot should be approximately linear for u > u0.

2.7 Maximum Likelihood Estimation

Assume that, we have X1, X2, ..., Xn a random sample with pdf f(x,Θ), where Θ =

(θ1, θ2, ..., θk). Then the joint probability density function can be written as

f(x/Θ) =
n∏
i=1

f(xi; Θ). (2.8)

After the random sample is collected, the joint pdf will become a function of Θ and

this function is known as a likelihood function, denoted by L(Θ)

L(Θ/x) =
n∏
i=1

f(xi; Θ) (2.9)

The log-likelihood function is the equivalent formula of the likelihood function

and is given by

l(Θ/x) =
n∑
i=1

log f(xi; Θ). (2.10)

Then the estimator Θ̂ are the values of the Θ that maximise the likelihood function

(or the log-likelihood function) with respect to Θ and are obtained by solving the

system of equations

∂l((̂Θ)/x)

∂θi
= 0, i = 1, 2, ...k (2.11)

2.8 Goodness of Fit

A ‘goodness-of-fit’ test is a method used to determine whether a random sample

X1, . . . , Xn, with size n, came from a certain distribution. Three goodness of fit

tests: likelihood ratio test (LRT), Cramér-von Mises criterion and Anderson-Darling

test are discussed in this section. All of these tests are used in Chapters 4, 5, 6 and

7 to fit models to real data.
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2.8.1 The Likelihood Ratio Test

The likelihood ratio test is used to clarify how well a model fits a certain dataset.

When we use this test to compare two models, they should be nested. The principle

for this test is very simple to follow. Suppose that X has a pdf denoted by f(x, θ)

with unknown parameter θ. We interested to test the hypothesis H0 : θ is in Θ1

versus H1 : θ is in Θ2, where Θ1 and Θ2 are the parameters for models 1 and 2,

respectively. The log-likelihood ratio statistic denoted by LRT can be written as

LRT = −2 ln

(
L1(θ̂)

L2(θ̂)

)
(2.12)

where L1 and L2 are the likelihood functions for models 1 and 2, respectively. Model

1 has fewer parameters than model 2. The log-likelihood ratio statistic (LRT) is

distributed asymptotically as a chi-square Rv with degrees of freedom equal to the

difference between the number of free parameters of the two models. We prefer model

1 if LRT > χ2
0.95,p1−p2 , where p1 and p2 are the free parameters.

2.8.2 Cramér-Von Mises Criterion and Anderson-Darling Tests

The Cramér-von Mises criterion and Anderson-Darling tests are common tests used

to test if a random sample x1, x2, ..., xn came from a specific distribution. The for-

mer was proposed in (1928-1930) by Cramér and von Mises, while the latter was

introduced by Anderson and Darling (1952). They can be treated as modifications

of the Kolmogorov-Smirnov (K-S) test, but they give more weight to the tails than

the Kolmogorov-Smirnov test does. These tests depend on the specific distribution to

calculate the critical values. This point can be considered as an advantage in allowing

a more sensitive test, or a disadvantage that critical values must be calculated for

each distribution.

From now on, we denote the Cramér-von Mises and Anderson-Darling tests by

A-D and C-VM, respectively.

Let F (x; θ) be the cdfs and W ∗ and A∗ are the Cramér-von Mises and Anderson-

Darling test statistics, respectively. We follow this procedure:
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• Calculate the distribution function vi = F (xi, θ), where the data are in ascend-

ing order and then compute yi = Φ−1(vi), where Φ−1(.) is the quantile function

of the standard normal N(0, 1).

• Compute the standard values of yi, which can be obtained as

ui = {(yi − ȳ)/sy} .

where (ȳ) is the mean of yi, i = 1, 2, ..., n and sy is the standard deviation of

yi.

• Then the C-VM and A-D test statistics can be written as

W 2 =
n∑
i=1

{
ui −

(2i− 1)

2n

}2

+
1

12n
,

and

A2 = −n− 1

n

n∑
i=1

{(2i− 1) log(ui) + (2n+ 1− 2i) log(1− ui)} .

where the logarithm is the natural logarithm.

• To compare these models we use the modified version of the statistics, W ∗ and

A∗,which can be written as

W ∗ = W 2

(
1 +

0.5

n

)
,

and

A∗ = A2

(
1 +

0.75

n
+

2.25

n2

)
.

When comparing between two models by these tests, we prefer the model with

the smaller values of these statistics.

2.9 Information Criteria

Undoubtedly, the construction of statistical models is strongly dependent on the

results of theoretical analysis of the observed data. Sometimes there is a big gap
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between the theoretical results and practical procedures. In the analysis of a given

set of data, the selection of the perfect model to describe the data is still a considerable

issue. In the previous section, we presented some goodness of fit tests that are used

to compare which model is a better fit to data, but if these models are not nested,

then we have to use other methods. One of these methods is information criteria.

Here, we present the most widely used information criteria: AIC, AICc, BIC and

CAIC, which are used in Chapters 4, 5, 6 and 7 in this dissertation.

2.9.1 Akaike Information Criterion

Akaike Information Criterion was first introduced by Akaike (1973) and developed

further in Akaike (1974). It is the most widely used model selection tool among

researchers. To apply AIC, we start with some optional models, which are regarded

as proper models for certain data. The Akaike information criterion can be calculated

from this formula:

AIC = −2 logL(θ̂) + 2k (2.13)

where k is the number of estimated parameters for the model. Thereafter, we can

say that the proper model to fit the data is the one with the minimum value of AIC

compared to others.

For a large sample, it is possible to prove that AIC introduces good model se-

lections, see Shawky and Abu-Zinadah (2008). Nevertheless, the bias seems to be a

basic issue of study (Findley (1985)).

AICc was proposed by Sugiura (1978) with a view towards bias reduction. There-

after, Hurvich and Tsai (1989) proved that it improved model selections also in small

samples.

If the sample size of the data n is small, n/k < 40, or the model has a large

number of parameters, then we prefer the AICc correction:
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AICc = AIC +
2k(k + 1)

n− k − 1
(2.14)

AICc is suitable for strongly skewed models.

2.9.2 Consistent Akaike Information Criterion

Bozdogan (1987) provided the analytical extension of AIC without harming the basic

principles of the AIC. It is called consistent Akaike Information Criterion (CAIC).

The formula of CAIC can be written as

CAIC = −2 logL(θ̂) + k [log(n) + 1] . (2.15)

2.9.3 Bayesian Information Criterion

Schwarz (1978) developed a new criterion, known as Schwarz Information Criterion

(SIC) or Bayesian Information Criterion (BIC). The main idea of BIC comes from

approximating the Bayes factor with the assumption that the data is independent

and identically distributed. Even though this criteria is derived within the Bayesian

framework, unlike AIC, its formula is very close to the Akaike information criterion

(AIC). It can be defined as

BIC = −2 logL(θ̂) + k log(n). (2.16)

where n is a sample size and logL(θ̂) is the natural logarithm of the likelihood

function. Like AIC, the appropriate model for a certain data is the one with minimum

BIC compared to others.



Chapter 3

The Kumaraswamy distribution

3.1 Introduction

For hydrological random variables, such as daily rainfall, daily stream flow, etc, both

classical probability and empirical distributions do not faithfully fit the data. How-

ever, this problem appears in other random processes when the element values for

these processes are bounded both at the lower and upper ends. In these problems, the

main measures such as mean, variance, skewness and kurtosis cannot be calculated

exactly. In order to find an appropriate model for this type of data, Kumaraswamy

(1980) proposed a new pdf, known as the Double-bounded probability density func-

tion (Kumaraswamy distribution).

Nowadays, the Kumaraswamy distribution is widely used in the field of hydrology

to determine the most probable rainfall (see Sundar and Subbiah (1989), Fletcher and

Ponnambalam (1996), Seifi et al. (2000) and Ganji et al. (2006)). Kumaraswamy’s

double bounded distribution is a family of continuous probability distributions defined

on an interval (c, d). It is denoted by Kum(α, β, c, d).

The distribution and probability density functions are given by:

GKum(z, α, β, c, d) = 1−
[
1−

(
z − c
d− c

)α]β
; x ∈ (c, d) (3.1)

gKum(z, α, β, c, d) =
1

(d− c)
α β

(
z − c
d− c

)α−1 [
1−

(
z − c
d− c

)α]β−1
; x ∈ (c, d) (3.2)
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where α > 0 and β > 0 are the shape parameters and c and d are boundary param-

eters. The standard form of the probability density function of the Kumaraswamy

distribution can be obtained by using the linear transformation X = (z − c) / (d− c).

So, the variable X having the standard Kumaraswamy distribution Kum(α, β) has

the cdf and pdf defined as:

GKum(x, α, β) = 1− (1− xα)β; 0 < x < 1. (3.3)

gKum(x, α, β) = α β xα−1(1− xα)β−1; 0 < x < 1. (3.4)

From (3.3) the quantile function xp can be written as

xp =
[
1− (1− p)β

]1/α
. (3.5)

In this chapter, we review the Kumaraswamy distribution, its properties and ap-

plications. In section 3.2 we illustrate the features of Kumaraswamy distribution. The

properties of this distribution are discussed in section 3.2. We clarify the similarity

and differences between the Kumaraswamy (Kum) and beta distributions. Its rela-

tion to other distributions are presented in sections 3.4 and 3.5 respectively. Some of

its applications are given in section 3.6. Finally, a summary of the Kum distribution

is given in section 3.7.

3.2 Features of the Kum Distribution

As mentioned above the shape parameters α and β can take any positive value or

zero. In Figure 3.1, we illustrate the variety of shapes of the pdf. It is clear that

when α and β cross the line 1 there is a huge change in the shape. These changes

can be broken into three cases:

• Cases when α < 1:

– When β < 1 “Graph A”: Both f(0) and f(1) are infinite. That means the

shape of the pdf will take a bathtub shape: This is common in reliability

engineering data, for example, switching voltage binary devices.
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– When β = 1 “Graph B” : f(0) is infinite and f(1) is finite.

– When β > 1 “Graph C”: The curve is similar to when b is equal 1, but

f(1) = 0, the best example of this kind of shapes is the daily rainfall data.

• Cases when α = 1:

– When β < 1 “Graph D”: f(0) is finite and f(0) = c, where c is a constant,

and f(1) is infinite.

– When β = 1 “Graph E”: The pdf is uniformly distributed with f(x) = 1.

– When β > 1 “Graph F”: f(x) is monotonically decreasing from a finite

value at x = 0, to 0 at x = 1.

• Cases when α > 1:

– When β < 1 “Graph G”: f(x) increases monotonically form zero to

infinity at x = 1.

– When β = 1 “Graph H”: The curve starts from zero at x = 0. Thereafter,

increases to a finite value at x = 1.

– When β > 1 “Graph I”: The shape of the pdf takes an unimodal shape,

which is common in statistical analysis and many distributions have this

shape.

According to Kumaraswamy (1980) “The DB-PDF in graphs C, F and I (see a Figure

3.1) have been adopted by the rainfall process”.
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Figure 3.1: Shapes of DB-PDF for various combinations of α and β.
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3.3 Properties of The Kum Distribution

In this section we present some known properties of the Kum distribution.

According to Mitnik (2008), the Kum distribution shares some properties of the

beta distribution such as closed under linear transformation. This means, if X has

Kum distribution then any linear transformation will be Kum distributed. However,

with the same shape parameters unlike the beta distribution. Also, Kum distribution

is closed under positive exponentiation. The explanation of these two properties are

presented by the following theorems.

3.3.1 Closed Under Linear Transformation

Theorem 3.1. Let X be a random variable distributed as Kum with α, and β shape

parameters, X ∼ Kum(α, β, c, d). Let Y = a X + b. Then:

Y ∼ Kum(α, β, ac+ b, ad+ b).

Corollary 3.2. Let Y = a−X, where a is a real number. Then

Y ∼ Kum(α, β, a− c, a− d)

Corollary 3.3. If X ∼ Kum(α, β) then the linear transformation a+ (b− a)X will

move the random variable X from (0, 1) to (a, b); under the condition that a and b

do not depend on the shape parameters (α, β).

Proof: We proof just Theorem 3.1. Corollaries 3.2-3.3 can be proved similarly.

Let X be distributed as Kum distribution. Then the pdf of the Kum distribution

can be written as

fX(x, α, β, c, d) =
1

(d− c)
α β

(
x− c
d− c

)α−1 [
1−

(
x− c
d− c

)α]β−1
; x ∈ (c, d)

Suppose that Y = a X+ b, a 6= 0 is the linear transformation of the random variable

X. Then pdf of Y can be written as
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fY (y) = fX

(
y − b
a

) ∣∣∣∣dxdy
∣∣∣∣

=
1

(d− c)
α β

(
(y−b
a

)− c
d− c

)α−1 [
1−

(
(y−b
a

)− c
d− c

)α]β−1
1

a

=
1

(a d+ b)− (a c+ b)
α β

(
y − (a c+ b)

(a d+ b)− (a c+ b)

)α−1
×
[
1−

(
y − (a c+ b)

(a d+ b)− (a c+ b)

)α]β−1
Then, we obtain (3.6)

fY (y) =
1

d∗ − c∗
α β

(
y − c∗

d∗ − (c∗

)α−1 [
1−

(
y − c∗

d∗ − c∗

)α]β−1
(3.7)

where, d∗ = a d+ b and c∗ = a c+ b. Then Y is distributed as Kum with parameters

(α, β, ac+ b, ad+ b) and it can be written as

Y ∼ Kum(α, β, ac+ b, ad+ b)

�

3.3.2 Closed Under Exponentiation

Theorem 3.1. Let X be a random variable distributed as standard Kum with α and

β shape parameters; X ∼ Kum(α, β). Let Y = Xm, m > 0. Then

Y ∼ Kum(
α

m
, β)

From this theorem we can prove that Y ∼ B(1, β), where B(., .) is the beta

function defined as

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
.

And Γ(α) =
∫∞
0
xα−1e−xdx is the gamma function.

Proof: Suppose that X is a random variable distributed as standard Kum with

parameters α and β. From Eq(3.4) the pdf is:

fX(x, α, β) = α β xα−1(1− xα)β−1; 0 < x < 1.
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Let Y = Xm. Using the transformation method, it is easy to prove that Y ∼

Kum( α
m
, β):

fY (y) = fX
(
y1/m

) ∣∣∣∣dxdy
∣∣∣∣

= α β
(
y1/m

)α−1 (
1− (y1/m

)α
)β−1

1

m
y1/m−1,

∴ fY (y) =
α

m
β yα/m−1

(
1− yα/m

)β−1
, (3.8)

which is the pdf of the standard kum distribution with parameters ( α
m
, β). �

3.3.3 The Limit Behaviour

According to Jones (2009), the asymptotic distribution of the pdf of the Kum distri-

bution can be written as

g(x) ∼ xα−1 as x→ 0,

g(x) ∼ (1− x)β−1 as x→ 1,

The behaviour is similar to the beta distribution.

3.3.4 Unimodality

Theorem 3.2. The Kumaraswamy distribution is unimodal in the case when both α

and β greater than 1, and the mode x0 can be expressed as

x0 =

(
α− 1

α β − 1

)1/α

Proof: The first derivative of log (f(x)) is

d log f(x)

dx
=
α− 1

x
− β − 1

1− x
,

Then, equaling this equation to zero and solving for x, we obtain

α− 1

x
=
β − 1

1− x
,
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Then the mode of x can be written as

x0 =

(
α− 1

α β − 1

)1/α

.

�

3.3.5 The Moments of the Kum Distribution

The following theorem gives the moments of the Kum distribution

Theorem 3.3. Let X be a Kum distributed random variable with pdf given in (3.4).

Then the moments around zero can be written as

µ′r(X) = β B
(

1 +
r

α
, β
)

(3.9)

We note that the rth moment of the Kum distribution exist if r > −α.

Proof: We can write

E(Xr) =

∫ ∞
−∞

xrf(x)dx,

= α β

∫ 1

0

xrxα−1(1− xα)β−1dx,

= α β

∫ 1

0

xr+α−1(1− xα)β−1dx,

Then substituting x by y = xα, we obtain

E (Xr) = β

∫ 1

0

yr/α(1− y)β−1dy,

= βB
( r
α

+ 1, β
)
, (3.10)

�

From this theorem, the mean and variance can be easily obtained as

E(X) = β B

(
1 +

1

α
, β

)
, (3.11)

V ar(X) = β B

(
1 +

2

α
, β

)
−
[
β B

(
1 +

1

α
, β

)]2
(3.12)
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Figure 3.2: Plots of some almost-symmetric pdfs of the Kum distribution for several
values of shape parameters.

Symmetry and Almost-Symmetry

Unlike the beta distribution, the Kum distribution does not have symmetric special

cases except the uniform case when α = β = 1. However, there are some special cases

which can be considered as almost-symmetric. It is worth mentioning that when both

α and β greater than 1 it takes unimodel shape, while uniantimodel when α and β

less than 1. The Figure 3.2 presents some of these cases for certain values of the

shape parameters.
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3.4 Kum and Beta Distributions

In probability theory, the Kum distribution is very similar to the beta distribution,

but the former has some advantages. Jones (2009) clarified the similarities and dif-

ferences between Kum and beta distributions. For example, Kum densities are also

unimodal, uniantimodal, increasing, decreasing or constant, depending on the values

of shape parameters just like beta distribution.

• When α = β = 1 the Kum pdf is uniformly distributed.

• It is unimodel if α > 1 and β > 1.

• If both α and β < 1 then pdf is uniantimodal.

• If β < 1 and α ≥ 1 the pdf is increasing.

• Finally, when αl1 and β ≥ 1 the pdf is decreasing.

He also provided some advantages of the Kum distribution over the beta distribu-

tion such as it has a simple explicit formula, a simple formula for a random variate

generation, an explicit formula for L-moments and a simpler formula for moments

of order statistics. His study also provided an examination of some advantages of

the beta distribution over Kum distribution such as a simpler formula for moments

and moment generating function, a simpler moment estimation and more ways of

generating the distribution via physical processes. According to Sundar and Subbiah

(1989)“The major advantage of this distribution is the ability to reproduce Gaussian

type distribution as well as extreme value distributions using the same equation, of

course, represented by different values of parameters of the distribution.”

3.5 Relation to Other Distributions

Jones (2009) found that there are three limiting distributions to the Kum distribution,

which can be presented as:
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• IfX ∼ Kum(α, β) the transformation Y = β1/α X is distributedKum(α, β, 0, β1/α),

and its probability density function tends to Weibull distribution as β →∞.

• Similarly, the distribution of Z = α(1−X) tends to the negative logarithm of

the Beta(1, β) distribution as α→∞.

• Finally, in the case when both α and β → ∞ the limiting distribution of

Y = α(1 − β1/α X) is the extreme value type I distribution with density

e−x exp(−e−x).

In addition, the author mentioned some other relations by transformation for exam-

ple: B(a, 1) and Kum(α, 1) are both the power law distributed; both B(1, 1) and

Kum(1, 1) are uniformly distributed; beta and Kum distributions can be treated as

special cases of the generalised beta distribution (G-Beta). In other words, the special

cases of this model can be defined as

Beta(γ, δ) = G− beta(1, γ, δ)

and

Kum(p, δ) = G− beta(p, 1, δ)

where the G-beta distribution has its pdf defined as:

g(x) =
p

B(γ, δ)
xγ p−1(1− xp)δ−1, 0 < x < 1. (3.13)

For more details we refer readers to see Jones (2009).

3.6 Application of Kum Distribution

The Kum distribution does not seem to be very familiar to statisticians due to the

fact that it is sadly not yet widely used. The best example of its applications is the

model of the storage volume of the reservoir, see Fletcher and Ponnambalam (1996).

In hydrology and related areas the Kum distribution has received considerable inter-

est: Sundar and Subbiah (1989) applied the Kum distribution to ocean wave data;
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Seifi et al. (2000) applied the Kum distribution to data taken from a simple voltage

divider with two resistors; Ponnambalam et al. (2001) used the Kum distribution to

“approximate optimal tolerance ranges and yield of distributions which can be non-

symmetrical” and Ganji et al. (2006) applied the Kum distribution to fit the weekly

soil moisture. According to Nadarajah (2008), many papers in the hydrological lit-

erature have used this distribution because it is deemed as a “better alternative” to

the beta distribution, see for example, Koutsoyiannis and Xanthopoulos (1989).

3.7 Summary

Some main points about the Kum distribution are:

• The Kum distribution is closed under linear transformation and exponentiation.

• pdf of the Kum distribution is flexible. That means it has a variety of shapes.

Table 3.1 shows shapes of the Kum distribution and its behaviour at the bound-

aries.

• In spite of the fact that it is very similar to the beta distribution, there are some

advantages and disadvantages over beta distribution, which are mentioned in

this chapter.
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Table 3.1: Shapes of the Kum distribution for different values of its shape parameters.

β < 1 β = 1 β > 1

α < 1 Antimodal distribution Monotonically decreasing Monotonically decreasing

limx→0 F (x) =∞ limx→0 F (x) =∞ limx→0 F (x) =∞

limx→1 F (x) =∞ limx→1 F (x) = c limx→1 F (x) = 0

α = 1 Monotonically increasing Uniform distribution Monotonically decreasing

limx→0 F (x) = c limx→0 F (x) = 1 limx→0 F (x) = c

limx→1 F (x) =∞ limx→1 F (x) = 1 limx→1 F (x) = 0

α > 1 Monotonically increasing Monotonically increasing Unimodal distribution

limx→0 F (x) = 0 limx→0 F (x) = 0 limx→0 F (x) = 0

limx→1 F (x) =∞ limx→1 F (x) = c limx→1 F (x) = 0
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Chapter 4

KumGEV distribution

4.1 Introduction

The GEV distribution has been widely used in many areas, as can be seen from the

list given in chapter 2. However, it does not give adequate fits in many applica-

tions. For example, Buishand (1991) says that the GEV distribution is not “flexible

enough” for extreme rainfall estimation for various durations. Kharin and Zwiers

(2000) show that the GEV distribution does not fit the distribution of longest annual

dry periods well. Martins et al. (2000) say that sometimes GEV distributions do not

have density functions consistent with flood flows and rainfall. Katz et al. (2002)

state that “the GEV distribution does not appear to be acceptable”, for some annual

peak flow time series. For data on traffic loading, Caprani et al. (2008) say that “the

assumption of convergence to a single GEV distribution is not valid”. Tolikas and

Gettinby (2009) find that “the popular GEV distribution is not the best model for

both the extreme minima and maxima daily returns of the Singapore stock market”.

Tolikas (2011) finds that among emerging African stock markets “the popular GEV

distribution is not the best model for the extreme minima in all but the Egyptian

stock market”. Zwiers et al. (2011) find that the GEV distribution does not fit well

for daily temperature extremes at regional scales. Dupuis and Field (1998) propose

robust estimation of extremes, arguing that the GEV distribution may not always

yield good fits. But robust estimation can be time consuming and costly. So, there
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is a need for generalizations of the GEV distribution.

In this chapter, we give a simple generalization of the GEV distribution. We pro-

vide a motivation for this simple generalization. This is based on the definition of the

GEV distribution. The GEV distribution arises as the limiting distribution of normal-

ized maxima: if X1, X2, . . . , Xn is a random sample and if Mn = max(X1, X2, . . . , Xn)

then there may be norming constants an > 0, bn such that

Pr

(
Mn − bn
an

≤ x

)
→ Gξ,µ,σ(x) = exp(−u)

as n → ∞, where 1 + ξ(x − µ)/σ > 0, −∞ < ξ < ∞, −∞ < µ < ∞, σ > 0 and

u = {1 + ξ(x − µ)/σ}−1/ξ. We shall refer to ξ as the shape parameter, µ as the

location parameter, and σ as the scale parameter.

In practice, there may be situations where the distribution of Mn is heterogeneous

(see, for example, Caprani et al. (2008)). One possible way to describe this situation

is to model the distribution of Mn as a mixture, say

Pr

(
Mn − bn
an

≤ x

)
= Pr (Mn ≤ anx+ bn) =

p∑
i=1

wi Pr (Mn,i ≤ anx+ bn) , (4.1)

where Mn,i is a random variable representing the ith component of the mixture and

wi are nonnegative weights summing to one. Under suitable conditions, the limiting

distribution of (4.1) may be

Pr

(
Mn − bn
an

≤ x

)
→

p∑
i=1

wiGξi,µi,σi(x) (4.2)

as n→∞.

But mixtures of the form (4.2) are notoriously difficult to handle not just because

of the complicated mathematical form. Inferences and fitting of (4.2) are also difficult.

Indeed, applications of mixtures of GEV distributions have been very limited.

A way around is to rewrite (4.2) in a simple mathematical form. There are many

choices for the mathematical form.

A choice motivated by the works of Kumaraswamy (1980) and Cordeiro and

de Castro (2011) is

F (x) = 1− {1−G(x)a}b , (4.3)



4.1 Introduction 64

where G(·) denotes a GEV cumulative distribution function and a > 0, b > 0 are two

additional parameters. Note that the right hand side of (4.3) can be expanded as

1− {1−G(x)a}b =
∞∑
i=1

ciG
ai(x), (4.4)

a mixture taking the form of (4.2). The coefficients ci are functions of b. For instance,

c1 = b. The parameter a dictates the tail behaviors of the mixture components. The

parameter b dictates the mixture coefficients.

Following the terminology used in Cordeiro and de Castro (2011), we shall refer to

the distribution given by (4.3) as the KumGEV distribution. The probability density

function corresponding to (4.3) is

f(x) = ab g(x) G(x)a−1 {1−G(x)a}b−1 , (4.5)

where

g(x) = gξ,µ,σ(x) =
dGξ,µ,σ(x)

dx
= σ−1u1+ξ exp(−u) (4.6)

is the probability density function of the GEV distribution. Because g(·) and G(·)

are tractable, the KumGEV distribution can be used quite effectively even if the data

are censored. Moreover, existing software for the GEV distribution (say, to compute

probability density function, cumulative distribution function, quantile function, mo-

ments, maximum likelihood estimates, random numbers, etc) can be easily adapted

for the KumGEV distribution. Clearly, the GEV distribution is a special case of the

KumGEV distribution for a = b = 1.

The role of the two additional parameters, a > 0 and b > 0, is to govern skewness

and generate distributions with heavier/ligther tails. If a < 1 then the tails of f(·)

will be heavier than those of g(·). Similarly, if b < 1 then the tails of f(·) will be

heavier than those of g(·). On the other hand, if a > 1 then the tails of f(·) will be

lighter than those of g(·). Similarly, if b > 1 then the tails of f(·) will be lighter than

those of g(·). Further description of the role of a and b is given in Sections 4.4, 4.5,

and 4.15.

One major benefit of the class of Kum generalised distributions is its ability to fit

skewed data that cannot be properly fitted by existing distributions.
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There are other ways to generalise the GEV distribution. One of the most recent

approaches uses beta generated distributions, see Eugene et al. (2002). But beta

generated distributions involve the incomplete beta function ratio, a special function

requiring numerical routines. There are some other distributions in the literature that

have been used to model extreme values. These include: the three-parameter kappa

distribution due to Mielke Jr (1973) and the four-parameter kappa distribution due

to Hosking (1994). But neither of these actually generalise the GEV distribution.

In this chapter, we study the mathematical properties of the KumGEV distri-

bution with the hope it will attract wider applicability. From now on, we write

the cumulative distribution function and probability density function of the GEV

distribution, respectively, by:

G(x, µ, σ, ξ) = exp(−u), (4.7)

g(x, µ, σ, ξ) = σ−1u1+ξ exp(−u), (4.8)

Where −∞ < x <∞, −∞ < ξ <∞, −∞ < µ <∞, σ > 0, and throughout this

chapter, we use u = {1 + ξ(x− µ)/σ}−1/ξ.

4.2 The KumGEV Distribution and its Sub-Models

The cumulative distribution function and probability density function of the KumGEV

distribution are given by

F (x) = 1− {1− exp(−au)}b , (4.9)

and

f(x) = σ−1a b u1+ξ exp(−au) {1− exp(−au)}b−1 , (4.10)

respectively, where a and b are positive parameters. They can be reduced to some

sub-models for some special values of a and b.
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1. GEV distribution:

If a = b = 1 then the KumGEV distribution reduces to

f(µ,σ,ξ)(x) = σ−1u1+ξ exp(−u).

which is the pdf of the GEV distribution with the location parameter µ ∈ R,

the scale parameter σ > 0, the shape parameter −∞ < ξ < ∞ and u =

{1 + ξ(x − µ)/σ}−1/ξ. It can be reduced to Gumbel, Frechét and Weibull

distributions when ξ → 0, ξ > 0 and ξ < 0 respectively.

2. Gumbel distribution:

For a = b = 1 and ξ → 0 the KumGEV density function yields

f(x) = σ−1u exp(−u).

which is the pdf of the Gumbel distribution with the location parameter µ ∈ R,

the scale parameter σ > 0 and u = exp{−(x− µ)/σ}.

3. Frechét distribution:

When a = b = 1 and ξ > 0 the KumGEV density reduces to

f(x) = σ−1α u−α−1 exp{−u−α}; x > µ, α > 0.

which is the pdf of the Frechét distribution, where u = (x− µ)/σ.

4. Weibull distribution:

For a = b = 1 and ξ < 0, the KumGEV density function yields

f(x) = σ−1α uα−1 exp{−uα}; x > µ, α > 0.

which is the pdf of the Weibull distribution, where u = (x− µ)/σ.

5. KumG distribution(Cordeiro et al. (2012)):

When ξ → 0, the KumGEV distribution can be reduced to Kum Gumbel

distribution with the pdf defined as

f(x) = σ−1a b u exp(−au) {1− exp(−au)}b−1 .
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where −∞ < x, µ < ∞, σ > 0 and u = exp{−(x − µ)/σ}. This model was

proposed by Cordeiro et al.(2012) and it can be reduced to Gumbel distribution

when a = b = 1.

6. KumW distribution (Cordeiro et al. (2010)):

When ξ < 0 we obtain

f(x) = σ−1a b α uα−1 exp(−uα) {1− exp(−uα)}a−1

× (1− {1− exp(−uα)}a)b−1 .

which is the Kum Weibull distribution introduced by Cordeiro et al. (2010),

where −∞ < x, µ < ∞, σ, α > 0 and u = exp{(x − µ)/σ}. When a =

b = 1, b = 1 and c = b = 1 KumW distribution reduces to the Weibull,

exponentiated Weibull(EW) and exponentiated exponential(EE) distributions,

respectively. For more details, see Cordeiro et al. (2010).

These sub-models are defined in Table 4.1. The KumGEV distribution has three

shape parameters (a, b, ξ) allowing it to be highly flexibility.

Parameters
Distribution a b µ σ ξ

Gumbel 1 1 - - → 0

Frechét 1 1 - - > 0

Weibull 1 1 - - < 0

GEVD 1 1 - - -

KumG - - - - → 0

KumW - - - - < 0

KumGEV - - - - -

Table 4.1: Some sub-models of the KumGEV distribution

In the next section we shall see that KumGEV distribution has all five major

shapes.
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A physical interpretation of the KumGEV distribution given by (4.9) and (4.10)

(when a and b are positive integers) is as follows. Suppose a system is made of

b independent components and that each component is made up of a independent

subcomponents. Assume that the system fails if any of the b components fails and

that each component fails if all of the a subcomponents fail. Let Xj1, Xj2, . . . , Xja

denote the lifetimes of the subcomponents within the jth component, j = 1, 2, . . . , b

with common cumulative distribution function Gξ,µ,σ(x). Let Xj denote the lifetime

of the jth component, j = 1, . . . , b, and let X denote the lifetime of the entire system.

So, the cumulative distribution function of X is

Pr(X ≤ x)

= 1− Pr (X1 > x,X2 > x, ..., Xb > x)

= 1− Prb (X1 > x) = 1− {1− Pr (X1 ≤ x)}b

= 1− {1− Pr (X11 ≤ x,X12 ≤ x, . . . , X1a ≤ x)}b

= 1− {1− Pra (X11 ≤ x)}b = 1−
{

1−Ga
µ,σ(x)

}b
.

So, it follows that the KumGEV distribution given by (4.10)and (4.9) is precisely the

time to failure distribution of the entire system.

The KumGEV probability density function (4.10) is much more flexible than the

GEV distribution. This generalization can allow for greater flexibility of its tail.

Plots of the probability density function (4.10) and (4.8) for some parameter values

are given in Figures 4.1-4.2.

If X is a random variable with probability density function (4.10), we write X ∼

KumGEV(a, b, µ, σ, ξ). The KumGEV quantile function is obtained by inverting (4.9)

x = Q(z) = F−1(z) = µ+
σ

ξ

{[
−1

a
log
{

1− (1− z)1/b
}]−ξ

− 1

}
. (4.11)

So, one can generate KumGEV variates from (4.11) by X = Q(Z), where Z is a

uniform variate on the unit interval (0, 1).

Our second method for simulation from the KumGEV distribution is based on

the rejection method. It holds if a ≥ 1 and b ≥ 1. Define a constant M by

M =
abb(a− 1)1−1/a(b− 1)b−1

(ab− 1)b−1/a
.
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Figure 4.1: Plots of the pdf of the GEV distribution for µ = 0, and several values of
σ and ξ.
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Figure 4.2: Plots of the pdf of the KumGEV distribution for µ = 0, σ = 1, ξ =
−0.5, 0, 0.5, 1, (a, b) = (0.5, 0.5) (black curve), (a, b) = (0.5, 1) (red curve), (a, b) =
(0.5, 3) (green curve) and (a, b) = (3, 3) (blue curve).
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Then, the following scheme holds for simulating KumGEV variates:

1. simulate X = x from the probability density function gξ,µ,σ(x);

2. simulate Y = UMx, where U is a uniform variate on the unit interval (0, 1);

3. accept X = x as a KumGEV variate if Y < (x). If Y ≥ f(x) return to step 2,

where g(x) is the pdf of GEV distribution, while f(x) is the pdf of KumGEV

distribution.

In the rest of this chapter, we provide a comprehensive description of the mathe-

matical properties of (4.10). Expansions for the cumulative distribution function and

probability density function of the KumGEV distribution are given in section 4.3.

We examine the shape of (4.10) and its associated hazard rate function in sections

4.4 and 4.5, respectively. We derive expressions for the moments and characteristic

function in sections 4.6 and 4.7. Mean deviations are derived in section 4.8. Order

statistics, their moments and L moments are calculated in section 4.9. Asymptotic

distributions of the extreme values are provided in section 4.10. Rényi and Shannon

entropies are derived in section 4.11. Estimation by the method of maximum like-

lihood, including the observed information matrix, is presented in section 4.12. A

simulation study is presented in section 4.13 to assess the performance of the max-

imum likelihood estimators. Applications of the KumGEV distribution to real data

sets are illustrated in section 4.14. Bivariate generalizations of (4.10) are discussed

in section 4.15. Finally, conclusions remarks are given in section 4.16.

4.3 Expansions for Distribution and Density Func-

tions

We now derive expansions for the cumulative distribution function and probability

density function of the KumGEV distribution,which are useful to study its mathe-

matical properties. Consider the series representation (for α real, non-integer)
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(1 + z)α =
∞∑
k=0

(
α

k

)
zk.

For b real, non-integer, the KumGEV cumulative distribution function (4.9) can be

expressed as

F (x) = 1−
∞∑
k=0

(
b− 1

k

)
(−1)k exp(−kau) (4.12)

and the KumGEV probability density function (4.10) follows as

f(x) = σ−1abu1+ξ
∞∑
k=0

(
b− 1

k

)
(−1)k exp {−(k + 1)au} , (4.13)

where u = {1 + ξ(x − µ)/σ}−1/ξ. If b is an integer, the index k in equations (4.12)

and (4.13) stop at b and b− 1, respectively.

Note that (4.13) can be rewritten as a linear combination of GEV probability

density functions. Let

µ∗ =
σ(k + 1)ξaξ

ξ

[
1− 1

(k + 1)ξaξ

(
1− ξµ

σ

)]
,

σ∗ = σ(k + 1)ξaξ,

and

u∗ =

{
1 + ξ

x− µ∗

σ∗

}−1/ξ
.

Then, (4.13) reduces to

f(x) =
b

σ∗

∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1
(u∗)1+ξ exp (−u∗) , (4.14)

a linear combination of GEV probability density functions with parameters µ∗, σ∗

and ξ. It follows that (4.12) can be rewritten as

F (x) = b
∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1
exp (−u∗) ,

a linear combination of GEV cumulative distribution functions with parameters µ∗,

σ∗ and ξ.
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4.4 Shape of the Probability Density Function

To study the possible shapes of the KumGEV distribution, we derive the pdf and the

hazard rate function of the KumGEV distribution.The first derivative of log{f(x)}

for the KumGEV distribution is:

d log f(x)

dx
= −u

1+ξ

σ

{
(1 + ξ)u−1 − a+

a(b− 1)

exp(au)− 1

}
,

where u = {1 + ξ(x− µ)/σ}−1/ξ. So, the modes of f(x) are the roots of the equation

a(b− 1)

exp(au)− 1
= a− (1 + ξ)u−1. (4.15)

There may be more than one root to Eq(4.15). If x = x0 is a root of Eq(4.15) then it

corresponds to a local maximum, a local minimum or a point of inflexion depending

on whether λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where λ(x) = d2 log f(x)/dx2 is given

by

λ(x) =
(1 + ξ)u1+2ξ

σ2

{
(1 + ξ)u−1 − a+

a(b− 1)

exp(au)− 1

}
−u

2(1+ξ)

σ2

{
(1 + ξ)u−2 +

a2(b− 1) exp(au)

[exp(au)− 1]2

}
.

Plots of the shapes of (4.10) for µ = 0, σ = 1 and selected values of (a, b, ξ) are

given in the Figure 4.2.

We can summarize the shape of pdf as follows:

a) First case when ξ < 0:

pdf of the KumGEV distribution is monotonically increasing for b ≤ 1, while

unimodal when b > 1.

b) Second case when ξ → 0:

In this case pdf takes unimodal shapes and the mode xmode can be calculated by

solving Eq(4.15).

c) Last case when ξ > 0:

Monotonically decreasing shapes appear in the case when ξ > 0.
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Furthermore, the asymptotes of f(x) and F (x) as u→ 0, ∞ are given by

f(x) ∼ σ−1abu1+ξ exp(−au) as u→∞,

f(x) ∼ σ−1abbuξ+b as u→ 0,

F (x) ∼ b exp(−au) as u→∞, and

1− F (x) ∼ (au)b as u→ 0.

Note that the upper tail of f(x) is of exponential type while the lower tail is of

double exponential type. Larger values of a correspond to lighter lower tails and

heavier upper tails of f . Larger values of b correspond to heavier lower tails and

lighter upper tails of f .

4.5 Shape of the Hazard Rate Function

The hazard rate function (hrf) can be defined as h(x) = f(x)/{1 − F (x)}. It is

an important quantity characterizing the life time phenomena of a system. For the

KumGEV distribution, h(x) takes the form

h(x) =
abu1+ξ exp(−au)

σ {1− exp(−au)}
, (4.16)

where u = {1 + ξ(x− µ)/σ}−1/ξ. The first derivative of log h(x) is:

d log h(x)

dx
= −u

1+ξ

σ

{
(1 + ξ)u−1 − a− a

exp(au)− 1

}
.

So, the modes of h(x) are the roots of the equation

a

exp(au)− 1
= (1 + ξ)u−1 − a. (4.17)

There may be more than one root to (4.17). If x = x0 is a root of (4.17) then it

corresponds to a local maximum, a local minimum, or a point of inflexion; depending
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Figure 4.3: Plots of the hazard rate function of the GEV distribution for µ = 0,
σ = 1,and several values of ξ.

on whether λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where here λ(x) = d log2 h(x)/dx2 is

given by

λ(x) =
(1 + ξ)u1+2ξ

σ2

{
(1 + ξ)u−1 − a− a

exp(au)− 1

}
−u

2(1+ξ)

σ2

{
(1 + ξ)u−2 − a2 exp(au)

[exp(au)− 1]2

}
.

Plots of the hrf for the GEV and KumGEV distributions for selected parameter

values are shown in Figures 4.3-4.4.
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Figure 4.4: Plots of the hazard rate function of the KumGEV distribution for µ = 0,
σ = 1, ξ = −0.5, 0, 0.5, 1, (a, b) = (0.5, 0.5) (black curve), (a, b) = (0.5, 1) (red curve),
(a, b) = (0.5, 3) (green curve) and (a, b) = (3, 3) (blue curve).
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Furthermore, the asymptotes of h(x) as u→ 0,∞ are given by

h(x) ∼ σ−1abu1+ξ exp(−au); as u→∞ and

h(x) ∼ σ−1buξ; as u→ 0.

So, the ultimate hazard rates behave exponentially while the initial hazard rates

behave double exponentially. Larger values of a correspond to lighter lower tails of

h. Larger values of b correspond to heavier lower tails and heavier upper tails of h.

Figure 4.4 illustrates some of the possible shapes of h(x) for µ = 0, σ = 1

and selected values of (a, b, ξ). Both monotonically increasing and monotonically

decreasing shapes appear possible. Monotonically increasing shapes appear when

ξ ≤ 0. Monotonically decreasing shapes appear when ξ > 0.

4.6 Moments

The moments of the KumGEV distribution can be presented in the following theorem.

Theorem 4.1. Let X distributed KumGEV(a, b, µ, σ, ξ). Then the nth moments can

be written as

E (Xn) = σ−1ab

∞∑
k=0

(
b− 1

k

)
(−1)kI (n, 1 + ξ, (k + 1)a)

Using the representation, (4.13), we can write

E (Xn) = σ−1ab
∞∑
k=0

(
b− 1

k

)
(−1)k

∫ ∞
−∞

xnu1+ξ exp {−(k + 1)au} dx, (4.18)

where u = {1 + ξ(x − µ)/σ}−1/ξ. Applying Lemma 1 in appendix A to calculate

integral in (4.18), we obtain

E (Xn) = σ−1ab

∞∑
k=0

(
b− 1

k

)
(−1)kI (n, 1 + ξ, (k + 1)a)

where n ≥ 1. The first four moments can be defined as

E (X) = b

∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1

{(
µ− σ

ξ

)
+

(
σ

ξ

)
[(k + 1)a]ξ Γ (1− ξ)

}
, (4.19)
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E
(
X2
)

= b
∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1

{(
µ− σ

ξ

)2

+ 2

(
µ− σ

ξ

)(
σ

ξ

)

[(k + 1)a]ξ Γ (1− ξ) +

(
σ

ξ

)2

[(k + 1)a]2ξ Γ (1− 2ξ)

}
, (4.20)

E
(
X3
)

= b
∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1

{(
µ− σ

ξ

)3

+ 3

(
µ− σ

ξ

)2(
σ

ξ

)
[(k + 1)a]ξ Γ (1− ξ) + 3

(
µ− σ

ξ

)(
σ

ξ

)2

[(k + 1)a]2ξ

Γ (1− 2ξ) +

(
σ

ξ

)3

[(k + 1)a]3ξ Γ (1− 3ξ)

}
, (4.21)

and

E
(
X4
)

= b
∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1

{(
µ− σ

ξ

)4

+ 4

(
µ− σ

ξ

)3(
σ

ξ

)
[(k + 1)a]ξ Γ (1− ξ) + 6

(
µ− σ

ξ

)2(
σ

ξ

)2

[(k + 1)a]2ξ

Γ (1− 2ξ) + 4

(
µ− σ

ξ

)(
σ

ξ

)3

[(k + 1)a]3ξ Γ (1− 3ξ)

+

(
σ

ξ

)4

[(k + 1)a]4ξ Γ (1− 4ξ)

}
. (4.22)

provided that 1− ξ, 1− 2ξ, 1− 3ξ and 1− 4ξ are not integers. The infinite series

in (4.19)-(4.22) all converge.

The expressions given by (4.19)-(4.22) can be used to compute the mean, variance,

skewness and kurtosis of X. Values of these four quantities versus ξ are plotted in

the figure (4.5) for µ = 0, σ = 1 and selected values of (a, b). It is evident each of the

quantities is an increasing function of ξ for most choices of (a, b).
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Figure 4.5: Plots of the mean, variance, skewness and kurtosis versus ξ for µ = 0,
σ = 1, (a, b) = (0.5, 0.5) (black curve), (a, b) = (0.5, 3) (red curve), (a, b) = (1, 1)
(green curve) and (a, b) = (3, 0.5) (blue curve), and (a, b) = (3, 3) (turquoise curve).
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4.7 Characteristic Function

Let X ∼ KumGEV(a, b, µ, σ, ξ). By using the representation, (4.14), the characteris-

tic function of Xis φ(t) = E[e(itX)], where i =
√
−1, can be expressed as

φ(t) = b

∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1
φ∗(t), (4.23)

where φ∗(·) denotes the characteristic function of a GEV random variable with pa-

rameters µ∗, σ∗ and ξ.

The characteristic function of GEV random variables has been derived only re-

cently, see Nadarajah and Pogány (2012). It involves Fox’s H2,0
0,2 function and the

Wright generalised confluent hypergeometric 1Ψ0-function. For details on these spe-

cial functions, we refer the readers to Wright (1935), (Mathai and Saxena, 1978, chap.

1), (Srivastava et al., 1982, chap. 1) and Kilbas et al. (2006).

The moment generating and cumulant generating functions of X can be deduced

from (4.23). The moment generating function of X is

φ(−it) = b
∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1
φ∗(−it).

The cumulant generating function of X is

log φ(t) = log b+ log

[
∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1
φ∗(t)

]
.

The latter can be used to deduce the cumulants of X ∼ KumGEV(a, b, µ, σ, ξ) from

those of a GEV random variable.

4.8 Mean Deviations

The amount of scatter in a population is evidently measured to some extent by the

totality of deviations from the mean and median. These are known as the mean devia-

tion about the mean and the mean deviation about the median – defined respectively,

by

δ1(X) =

∫ ∞
−∞
|x− µ0| f(x)dx
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and

δ2(X) =

∫ ∞
−∞
|x−M | f(x)dx,

where µ0 = E(X) and M = Median(X) denotes the median. The measures, δ1(X)

and δ2(X), can be calculated using the relationships

δ1(X) =

∫ µ0

−∞
(µ0 − x) f(x)dx+

∫ ∞
µ0

(x− µ0) f(x)dx

= µ0F (µ0)−
∫ µ0

−∞
xf(x)dx− µ0 {1− F (µ0)}+

∫ ∞
µ0

xf(x)dx

= 2µ0F (µ0)− 2µ0 + 2

∫ ∞
µ0

xf(x)dx

and

δ2(X) =

∫ M

−∞
(M − x)f(x)dx+

∫ ∞
M

(x−M)f(x)dx

= MF (M)−
∫ M

−∞
xf(x)dx−M {1− F (M)}+

∫ ∞
M

xf(x)dx

where M is the median then F (M) = 1
2
. Therefore δ2(X) can be obtain as

= 2

∫ ∞
M

xf(x)dx− µ0.

Let X ∼ KumGEV(a, b, µ, σ, ξ). Using the representation, (4.13), we can write∫ ∞
y

xf(x)dx = σ−1ab
∞∑
k=0

(
b− 1

k

)
(−1)k

∫ ∞
y

xu1+ξ exp {−(k + 1)au} dx

= σ−1ab
∞∑
k=0

(
b− 1

k

)
(−1)kJ (y, (k + 1)a) ,

where u = {1 + ξ(x− µ)/σ}−1/ξ and the final step follows by Lemma 2 in appendix

A. It follows that

δ1(X) = 2µ0

{
1− [1− exp(−au)]b

}
− 2µ0 + 2σ−1ab

∞∑
k=0

(
b− 1

k

)
(−1)kJ (µ0, (k + 1)a) ,

and

δ2(X) = 2σ−1ab
∞∑
k=0

(
b− 1

k

)
(−1)kJ (M, (k + 1)a)− µ0,

where µ0 is given by (??) and

M = µ+
σ

ξ

{[
−1

a
log
{

1− 2−1/b
}]−ξ

− 1

}
.



4.9 Order Statistics 82

4.8.1 Bonferroni and Lorenz Curves

Bonferroni and Lorenz Curves, which are widely used in some fields like insurance,

reliability, medicine and economics. The Lorenz curve was introduced by Lorenz

(1905), and it is used in economics to represent income distribution. It was developed

later by Gastwirth (1971). It can be defined as:

L(p) =
1

µ

∫ q

−∞
xf(x) dx,

Another curve used widely in economics and reliability is the Bonferroni Curve, which

was proposed by Bonferroni (1930). It can be written as:

B(p) =
1

pµ

∫ q

−∞
xf(x) dx,

where, µ = E(x) and q = µ+ σ
ξ
{log[1− (1− p)− 1

a ]−ξ − 1}.

4.9 Order Statistics

Order statistics make their appearance in many areas of statistical theory and prac-

tical applications. Let X1:n < X2:n < · · · < Xn:n denote the order statistics for a

random sample X1, X2, . . . , Xn from (4.10). Then the probability density function

and the cumulative distribution function of the kth order statistic, say Y = Xk:n, are

given, respectively, by

fY (y) =
abn!

σ(k − 1)!(n− k)!
u1+ξ exp(−au) [1− exp(−au)]b(1+n−k)−1{

1− [1− exp(−au)]b
}k−1

and

FY (y) =
n∑
j=k

(
n

j

){
1− [1− exp(−au)]b

}j
[1− exp(−au)]b(n−j) ,
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Where u = {1 + ξ(x − µ)/σ}−1/ξ. The moments of Y can be found as follows, by

expanding the probability density function:

E (Y p) =
abn!

ξ(k − 1)!(n− k)!

k−1∑
i=0

∞∑
j=0

(
k − 1

i

)(
b(i+ 1 + n− k)− 1

j

)
(−1)i+j

×
∫ ∞
−∞

xpu1+ξ exp {−(j + 1)au} dx

=
abn!

ξ(k − 1)!(n− k)!

k−1∑
i=0

∞∑
j=0

(
k − 1

i

)(
b(i+ 1 + n− k)− 1

j

)
(−1)i+j

×I (p, 1 + ξ, (j + 1)a) , (4.24)

where the final step follows by Lemma 1 in appendix A.

L-moments are summary statistics for probability distributions and data samples

Hosking (1990). They are analogous to ordinary moments but are computed from

linear functions of the ordered data values. The rth L moment is defined by

λr =
r−1∑
j=0

(−1)r−1−j
(
r − 1

j

)(
r − 1 + j

j

)
βj,

where βj = E{XF (X)j}. In particular, λ1 = β0, λ2 = 2β1 − β0, λ3 = 6β2 − 6β1 + β0

and λ4 = 20β3 − 30β2 + 12β1 − β0. In general, βr = (r + 1)−1E(Xr+1:r+1), so it can

be computed using (4.24). The L moments have several advantages over ordinary

moments: for example, they apply for any distribution having finite mean; no higher-

order moments need be finite.

4.10 Extreme Values

If X1, . . . , Xn is a random sample from (4.10) and if X̄ = (X1 + · · ·+Xn)/n denotes

the sample mean, then by the usual central limit theorem
√
n(X̄ −E(X))/

√
Var(X)

approaches the standard normal distribution as n → ∞. Sometimes one would be

interested in the asymptotic of the extreme order statistics Mn = max(X1, . . . , Xn)

and mn = min(X1, . . . , Xn).

Take the probability density function and the cumulative distribution function as

given by (4.10) and (4.9), respectively. It is easy to see that

Pr (Mn ≤ x) =
{

1− [1− exp(−au)]b
}n
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and

Pr (mn ≤ x) = 1− [1− exp(−au)]nb ,

where u = {1 + ξ(x− µ)/σ}−1/ξ. Let

ωn = µ+
σ

ξ

[(
u

na
+

log b

a

)−ξ
− 1

]
and

εn = µ+
σ

ξ

[(
u

a
+

log(nb)

a

)−ξ
− 1

]
.

Then,

lim
n→∞

Pr (Mn ≤ ωn) = lim
n→∞

{
1−

[
1− exp

(
−u
n
− log b

)]b}n
= lim

n→∞

{
1−

[
1− 1

b
exp

(
−u
n

)]b}n

= lim
n→∞

{
exp

(
−u
n

)}n
= exp(−u)

and

lim
n→∞

Pr (mn ≤ εn) = lim
n→∞

1− [1− exp (−u− log n− log b)]nb

= lim
n→∞

1−
[
1− 1

nb
exp (−u)

]nb
= 1− [1− exp (−u)]

= exp(−u).

Note that both ωn and εn are non-linear transformations of x. One can also find linear

transformations that converge in distribution to GEV random variables as n → ∞.

For details, we refer the readers to (Leadbetter et al., 1983, chap. 1).

4.11 Entropies

An entropy of a random variable X is a measure of variation of the uncertainty. Let

X ∼ KumGEV(a, b, µ, σ, ξ). Here, we derive explicit forms for two most popular

entropies: Rényi entropy and Shannon entropy.
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Firstly, consider Rényi entropy Rényi (1961) defined by

JR(γ) =
1

1− γ
log

{∫
fγ(x)dx

}
, (4.25)

where γ > 0 and γ 6= 1. For the probability density function given by (4.10),∫ ∞
−∞

fγ(x)dx =

(
ab

σ

)γ ∫ ∞
−∞

uγ+γξ exp(−aγu) [1− exp(−au)]bγ−γ dx

=

(
ab

σ

)γ ∞∑
k=0

(
bγ − γ
k

)
(−1)k

∫ ∞
−∞

uγ+γξ exp {−(γ + k)au} dx

=

(
ab

σ

)γ ∞∑
k=0

(
bγ − γ
k

)
(−1)kI (0, γ + γξ, (γ + k)a) ,

where u = {1 + ξ(x− µ)/σ}−1/ξ. So, (4.25) yields the expression

JR(γ) =
γ

1− γ
log

(
ab

σ

)
+

1

1− γ
log

{
∞∑
k=0

(
bγ − γ
k

)
(−1)kI (0, γ + γξ, (γ + k)a)

}
,

where γ > 0 and γ 6= 1.

Shannon entropy (Shannon (1951)) defined by E[− log f(X)] is the particular case

of (4.25) for γ ↑ 1. However, its expression can be derived more easily without using

this fact. Let U = {1 + ξ(X − µ)/σ}−1/ξ. Then, using the series expansion for

log(1− z), we can write

E [− log f(X)] = − log

(
ab

σ

)
− (1 + ξ)E(logU) + aE(U) + (1− b)

×E {log [1− exp(−aU)]}

=− log

(
ab

σ

)
− (1 + ξ)E(logU) + aE(U) + (b− 1)

×
∞∑
i=1

1

i
E [exp(−iaU)] . (4.26)

By (4.13) and Lemma 1 in appendix A,

E [exp(−iaU)] = σ−1ab

∞∑
k=0

(
b− 1

k

)
(−1)k

∫ ∞
−∞

u1+ξ exp {−(k + i+ 1)au} dx

= σ−1ab
∞∑
k=0

(
b− 1

k

)
(−1)kI (0, 1 + ξ, (k + i+ 1)a) . (4.27)

By (4.13) and Lemma 3 in appendix A,

E [logU ] = σ−1ab
∞∑
k=0

(
b− 1

k

)
(−1)k

∫ ∞
−∞

log uu1+ξ exp {−(k + 1)au} dx

= −b
∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1
{log [(k + 1)a] + C} , (4.28)
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where C is Euler’s constant. Combining (4.26)-(4.28), we obtain

E [− log f(X)] = − log

(
ab

σ

)
+ b(1 + ξ)

∞∑
k=0

(
b− 1

k

)
(−1)k

k + 1
{log [(k + 1)a] + C}

+σ−1a2b
∞∑
k=0

(
b− 1

k

)
(−1)kI (0, 2 + ξ, (k + 1)au)

+σ−1ab(b− 1)
∞∑
i=1

1

i

∞∑
k=0

(
b− 1

k

)
(−1)kI (0, 1 + ξ, (k + i+ 1)a) .

4.12 Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample of size n from (4.10). Let ui = {1 + ξ(xi −

µ)/σ}−1/ξ for i = 1, 2, . . . , n. Then the log-likelihood function for the vector of

parameters (a, b, µ, σ, ξ) can be written as

logL(a, b, µ, σ, ξ) = −n log σ + n log(ab) + (1 + ξ)
n∑
i=1

logui − a
n∑
i=1

ui

+(b− 1)
n∑
i=1

log [1− exp (−aui)] . (4.29)

The first-order partial derivatives of (4.29) with respect to the five parameters are:

∂ logL

∂a
=
n

a
−

n∑
i=1

ui + (b− 1)
n∑
i=1

ui
exp (aui)− 1

, (4.30)

∂ logL

∂b
=
n

b
+

n∑
i=1

log [1− exp (−aui)] , (4.31)

∂ logL

∂µ
=

1 + ξ

σ

n∑
i=1

uξi −
a

σ

n∑
i=1

u1+ξi +
a(b− 1)

σ

n∑
i=1

u1+ξi

exp (aui)− 1
, (4.32)

∂ logL

∂σ
= −n

σ
+

1 + ξ

σ2

n∑
i=1

(xi − µ)uξi −
a

σ2

n∑
i=1

(xi − µ)u1+ξi

+
a(b− 1)

σ2

n∑
i=1

(xi − µ)u1+ξi

exp (aui)− 1
, (4.33)

and

∂ logL

∂ξ
=

n∑
i=1

log ui −
1 + ξ

ξ

n∑
i=1

(
log ui + uξi

xi − µ
σ

)
+
a

ξ

n∑
i=1

ui

(
log ui + uξi

xi − µ
σ

)
−a(b− 1)

ξ

n∑
i=1

ui
exp (aui)− 1

(
log ui + uξi

xi − µ
σ

)
. (4.34)
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The maximum likelihood estimates of (a, b, µ, σ, ξ), (â, b̂, µ̂, σ̂, ξ̂), are the simulta-

neous solutions of the equations ∂ logL/∂a = 0, ∂ logL/∂b = 0, ∂ logL/∂µ = 0,

∂ logL/∂σ = 0 and ∂ logL/∂ξ = 0. As n → ∞, (â − a, b̂ − b, µ̂ − µ, σ̂ − σ, ξ̂ − ξ)

approaches a multivariate normal vector with zero means and variance-covariance

matrix −(E[J])−1, where

J =



∂2 logL

∂a2
∂2 logL
∂a∂b

∂2 logL
∂a∂µ

∂2 logL
∂a∂σ

∂2 logL
∂a∂ξ

∂2 logL

∂b∂a
∂2 logL
∂b2

∂2 logL
∂b∂µ

∂2 logL
∂b∂σ

∂2 logL
∂b∂ξ

∂2 logL

∂µ∂a
∂2 logL
∂µ∂b

∂2 logL
∂µ2

∂2 logL
∂µ∂σ

∂2 logL
∂µ∂ξ

∂2 logL

∂σ∂a
∂2 logL
∂σ∂b

∂2 logL
∂σ∂µ

∂2 logL
∂σ2

∂2 logL
∂σ∂ξ

∂2 logL

∂ξ∂a
∂2 logL
∂ξ∂b

∂2 logL
∂ξ∂µ

∂2 logL
∂ξ∂σ

∂2 logL
∂ξ2


.

The matrix, −E[J], is known as the expected information matrix. The matrix, −J,

is known as the observed information matrix.

In practice, n is finite. The literature (see, Cox and Hinkley (1979)) suggests

that it is best to approximate the distribution of (â− a, b̂− b, µ̂− µ, σ̂ − σ, ξ̂ − ξ) by

a multivariate normal distribution with zero means and variance-covariance matrix

given by −J−1, inverse of the observed information matrix, with (a, b, µ, σ, ξ) replaced

(â, b̂, µ̂, σ̂, ξ̂).

The 5 ∗ 5 unit expected information matrix (ki,j = −E[ ∂2

∂θi∂θj
ln f(xi, θ)]) can be

written as:

k(θ) =



ka,a(θ) ka,b(θ) ka,µ(θ) ka,σ(θ) ka,ξ(θ)

kb,b(θ) kb,µ(θ) kb,σ(θ) kb,ξ(θ)

kµ,µ(θ) kµ,σ(θ) kµ,ξ(θ)

kσ,σ(θ) kσ,ξ(θ)

kξ,ξ(θ)


Elements in the information matrix J and the expected information matrix −E[J]

are given in appendix A.

The multivariate normal approximation can be used to construct approximate

confidence intervals and confidence regions for the individual parameters and for the

hazard and survival functions.
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4.13 Simulation Study

Here, we assess the performance of the maximum likelihood estimates given by (4.30)-

(4.34) with respect to sample size n. The assessment is based on a simulation study:

1. Generate a thousand samples of size n from (4.10). The inversion method is

used to generate samples, i.e variates of the KumGEV distribution are generated

using (4.11).

2. Compute the maximum likelihood estimates for the thousand samples, say

(âi, b̂i, µ̂i, σ̂i, ξ̂i) for i = 1, 2, . . . , 1000.

3. Compute the biases and mean squared errors given by

biash(n) =
1

1000

1000∑
i=1

(
ĥi − h

)
and

MSEh(n) =
1

1000

1000∑
i=1

(
ĥi − h

)2
for h = a, b, µ, σ, ξ.

We repeat these steps for n = 10, 20, . . . , 1000 with a = 3, b = 3, µ = 0, σ = 1 and

ξ = 0.5, so computing biasa(n), biasb(n), biasµ(n), biasσ(n), biasξ(n) and MSEa(n),

MSEb(n), MSEµ(n), MSEσ(n), MSEξ(n) for n = 10, 20, . . . , 1000.

Figures 4.6 and 4.7 show how the five biases and the five mean squared errors vary

with respect to n. The broken line in Figure 4.6 corresponds to the biases being zero.

The following observations can be made:

1. The biases for each parameter are generally positive.

2. Although they appear volatile, the biases for each parameter decrease to zero

as n→∞.

3. The biases appear largest for the parameter b.

4. The biases appear smallest for the parameter a.
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5. Although they appear volatile, the mean squared errors for each parameter

decrease to zero as n→∞.

6. The mean squared errors appear largest for the parameters µ, σ and b.

7. the mean squared errors appear smallest for the parameters a and ξ.

We have presented results for only one choice for (a, b, µ, σ, ξ), namely that (a, b, µ, σ, ξ) =

(3, 3, 0, 1, 0.5). But the results are analogous for other choices.
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Figure 4.6: biasa(n) (top left), biasb(n) (top right), biasµ(n) (middle left), biasσ(n)
(middle right) and biasξ(n) (bottom left) versus n = 10, 20, . . . , 1000.
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Figure 4.7: MSEa(n) (top left), MSEb(n) (top right), MSEµ(n) (middle left),
MSEσ(n) (middle right) and MSEξ(n) (bottom left) versus n = 10, 20, . . . , 1000.
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4.14 Application

4.14.1 The Annual Rainfall Maxima Data-Uccle

In this section, we illustrate the flexibility of the KumGEV distribution using a real

data set. We use the annual rainfall maxima in millimetres from 1938 to 1972 at

Uccle, Belgium, over the duration of one day. This data set is contained as part of

the evd contributed package in the R package (R Development (2011)). The data was

collected by Sneyers (1977).

We fitted (4.8) and (4.10) to the annual daily maximum rainfall. While fitting

(4.10), we have considered the particular case for a = 1, in order not to use the full

flexibility of the proposed distribution. The maximum likelihood procedure described

in section 4.12 was used for fitting (4.10). The results are: µ̂ = 28.3824(1.9204),

σ̂ = 9.0291(1.5793), ξ̂ = 0.2316(0.2133) with − logL = 136.9071 for (4.8); b̂ =

0.1358(0.0233), µ̂ = 20.5080(1.0703), σ̂ = 2.5521(0.0599), ξ̂ = −0.0277(0.0021) with

− logL = 134.9920 for (4.10). The numbers within brackets are the standard errors

computed by inverting the observed information matrix (see Section (4.12)).

We can see that (4.10) gives much smaller standard errors for µ, σ and ξ, suggesting

that the proposed distribution can be more accurate. To illustrate the fitting to

maximum rainfall data, we calculate the four types of information criteria, which are

AIC, BIC, AICc, and CAIC. For more details on these statistics see section 2.9.3.

Table 4.2 shows the values of theses information criteria. Therefore, the best model

is the one with minimum information criteria.

Model a b µ σ ξ AIC BIC CAIC AICc

KumGEV 1 0.1358 20.5080 2.5521 -0.0277 277.98 284.2 288.2 279.6
(-) (0.0233) (1.0703) (0.0599) (0.0021)

GEV 1 1 28.3824 9.0291 0.2316 279.81 284.5 287.5 280.8
(-) (-) (1.9204) (1.5793) (0.2133)

Table 4.2: MLEs of the model parameters for the annual rainfall maxima data, the
corresponding SEs (given in parentheses) and the statistics AIC, BIC and CAIC.
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The two fitted models, (4.8) and (4.10), are nested. So, they can be compared by

the likelihood ratio test (see Table 4.3). Comparing the likelihood values, we see that

(4.10) provides a significantly better fit than (4.8). Furthermore, chi-square goodness

of fit tests give the p-values of 0.0676 and 0.0373 for (4.8) and (4.10), respectively,

suggesting again that (4.10) provides a significantly better fit. Also, the value of

the Anderson-Darling and Cramér-von Mises test for the KumGEV is smaller that

those of the GEV distribution, suggesting that the KumGEV distribution is more

significance that the other.

Model Hypotheses Statistics w P-value

KumGEV vs Ho : a = b = 1vs 3.8302 0.0503

GEV H1 : Ho is false

Table 4.3: LR statistics for the annual rainfall maxima data

Model Anderson-Darling Cramér-von Mises

KumGEV 0.1695225 0.02260322

GEV 0.3105545 0.04270863

Table 4.4: The Anderson-Darling and Cramr-von Mises statistics for the annual
rainfall maxima data

The conclusion based on the likelihood values and the chi-square goodness of fit

tests can be verified by means of probability-probability plots, quantile-quantile plots

and density plots. For the model given by (4.8), exp{−[1 + ξ̂(x(j) − µ̂)/σ̂]−1/ξ̂} are

plotted versus (j−0.375)/(n+0.25), j = 1, 2, . . . , n (as recommended by Blom (1958)

and Chambers et al. (1983)), where x(j) are the sorted values of the annual daily

maximum rainfall and n is the number of observations. For the model given by (4.8),

µ̂+(σ̂/ξ̂){
[
− log((j−0.375)/(n+0.25))

]−ξ̂−1} are plotted versus x(j), j = 1, 2, . . . , n

(as recommended by Blom (1958) and Chambers (1983)).

The probability-probability plots and quantile-quantile plots for the two fitted models
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are shown in Figures 4.8 and 4.9. We can see that the model given by (4.10) has the

points closer to the diagonal line especially in the upper tail.

The density plots are shown in the Figure 4.10. Again the fitted probability

density function for (4.10) appears to capture the general pattern of the empirical

histogram better.

Quantities of interest for practitioners of extreme value models are the return

levels. A T year return level, xT , is defined as the level that is exceeded on average

every T years. For the GEV model given by (4.8),

xT = µ+
σ

ξ

{[
− log

(
1− 1

T

)]−ξ
− 1

}
. (4.35)

For the KumGEV model given by (4.10),

xT = µ+
σ

ξ

{[
−1

a
log
{

1− T−1/b
}]−ξ

− 1

}
. (4.36)

Plots of (4.35) and (4.36) for T = 2, 3, . . . , 50 along with 95 confidence intervals

computed by the delta method ((Rao, 1973, pages. 387-389)) are shown in Figure

4.11.

Return levels are important quantities. They are used to determine, for example,

dimensions of sea walls, water dams, flood defences, etc. Figure 4.11 suggests that

the return levels given by (4.35) and (4.36) do not differ so much. However, the

confidence bands for (4.36) appear much narrower and much more realistic. The

confidence bands for (4.35) are wide and even take negative values. So, if one were

to use the model (4.10) instead of (4.8), significant savings with respect to cost and

time could be made.
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Figure 4.8: Probability plots for the fits of the pdf of the GEV distribution and
the pdf of the KumGEV distribution for annual daily rainfall maxima from Uccle,
Belgium.
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Figure 4.9: Quantile plots for the fits of the pdf of the GEV distribution and the pdf
of the KumGEV distribution for annual daily rainfall maxima from Uccle, Belgium.
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butions for annual daily rainfall maxima from Uccle, Belgium.
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Figure 4.11: Return levels for annual daily rainfall maxima from Uccle, Belgium and
their 95 percent confidence intervals for the fits of the pdf of the GEV distribution
(in red) and the pdf of the KumGEV distribution (in black).
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4.15 The Bivariate KumGEV Distribution

The Kum-G distribution defined by (5.5) can be generalised to the bivariate and

multivariate cases in a natural way. Consider the bivariate case for simplicity. Let

G denote a bivariate cumulative distribution function with joint probability density

function g, marginal probability density functions gi, i = 1, 2 and marginal cumu-

lative distribution functions Gi, i = 1, 2. There are various forms of the bivariate

Kumaraswamy Generalised extreme value (KumGEV) distributions, but the most

common form was introduced by Pickands (1981).

A sensible bivariate generalization of (4.9) is:

F (x, y) = 1− {1−Ga (x, y;φ)}b , (4.37)

where a > 0, b > 0 and φ are specified by G. The generalization is sensible because

the two motivations presented in Section 1 also apply to (4.37): this time, motivation

could be based on mixtures of bivariate extreme value distributions (not mixtures

of GEV distributions) and failures of a system due to two different causes (and not

failures of a system due to a single cause).

The marginal probability density functions fi, i = 1, 2 and the marginal cumula-

tive distribution functions Fi, i = 1, 2 of F are

fi (x) = abgi (x)Ga−1
i (x) {1−Ga

i (x)}b−1

and

Fi (x) = 1− {1−Ga
i (x)}b .

The conditional cumulative distribution functions of F are

F (y | x) =
1− {1−Ga (x, y)}b

1− {1−Ga
1 (x)}b

and

F (x | y) =
1− {1−Ga (x, y)}b

1− {1−Ga
2 (y)}b

.
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The joint probability density function of F is

f (x, y) = abA(x, y),

where

A (x, y) = −a(b− 1) {1−Ga (x, y)}b−2G2a−2(x, y)
∂G(x, y)

∂x

∂G(x, y)

∂y

+(a− 1) {1−Ga (x, y)}b−1Ga−2(x, y)
∂G(x, y)

∂x

∂G(x, y)

∂y

+ {1−Ga (x, y)}b−1Ga−1(x, y)
∂2G(x, y)

∂x∂y
.

4.15.1 Maximum Likelihood Estimation for the Bivariate Kum-

GEV Distribution

Finally, we consider maximum likelihood estimation of the parameters of (4.37). Sup-

pose (x1, y1), (x2, y2), . . ., (xn, yn) is a random sample of size n from (4.37). Then

the log-likelihood function for the vector of parameters (a, b,φ) can be written as

logL(a, b,φ) = n log(ab) +
n∑
i=1

logA (xi, yi) . (4.38)

The first-order partial derivatives of (4.38) with respect to the parameters are:

∂ logL

∂a
=
n

a
+

n∑
i=1

B (xi, yi)

A (xi, yi)
,

∂ logL

∂b
=
n

b
+

n∑
i=1

C (xi, yi)

A (xi, yi)
,

∂ logL

∂φ
=

n∑
i=1

D (xi, yi)

A (xi, yi)
,

where
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B (xi, yi) = (1− b) [1−Ga (xi, yi)]
b−2G2a−2 (xi, yi)

∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi

+a(b− 1)(b− 2) [1−Ga (xi, yi)]
b−3G3a−2 (xi, yi) logG (xi, yi)

×∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi
− 2a(b− 1) [1−Ga (xi, yi)]

b−2G2a−2 (xi, yi)

× logG (xi, yi)
∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi
+ [1−Ga (xi, yi)]

b−1Ga−1 (xi, yi)

×∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi
− (a− 1)(b− 1) [1−Ga (xi, yi)]

b−2G2a−1 (xi, yi)

× logG (xi, yi)
∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi
+ (a− 1) [1−Ga (xi, yi)]

b−1

×Ga−1 (xi, yi) logG (xi, yi)
∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi

−(b− 1) [1−Ga (xi, yi)]
b−2G2a−1 (xi, yi) logG (xi, yi)

∂2G (xi, yi)

∂xi∂yi

+ [1−Ga (xi, yi)]
b−1Ga−1 (xi, yi) logG (xi, yi)

∂2G (xi, yi)

∂xi∂yi
,

C (xi, yi) = −a [1−Ga (xi, yi)]
b−2G2a−2 (xi, yi)

∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi

−a(b− 1) [1−Ga (xi, yi)]
b−2G2a−2 (xi, yi) log [1−Ga (xi, yi)]

×∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi
+ (a− 1) [1−Ga (xi, yi)]

b−1

×Ga−1 (xi, yi) log [1−Ga (xi, yi)]
∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi

+ [1−Ga (xi, yi)]
b−1Ga−1 (xi, yi) log [1−Ga (xi, yi)]

∂2G (xi, yi)

∂xi∂yi
,
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and

D (xi, yi) = [1−Ga (xi, yi)]
b−1Ga−1 (xi, yi)

∂3G (xi, yi)

∂xi∂yi∂φ

−2a(a− 1)(b− 1) [1−Ga (xi, yi)]
b−2G2a−3 (xi, yi)

∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi

×∂G (xi, yi)

∂φ
− a(b− 1) [1−Ga (xi, yi)]

b−2G2a−2 (xi, yi)
∂G (xi, yi)

∂yi

×∂
2G (xi, yi)

∂xi∂φ
− a(b− 1) [1−Ga (xi, yi)]

b−2G2a−1 (xi, yi)
∂G (xi, yi)

∂xi

×∂
2G (xi, yi)

∂yi∂φ
− a(a− 1)(b− 1) [1−Ga (xi, yi)]

b−2G2a−2 (xi, yi)

×∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi

∂G (xi, yi)

∂φ
+ (a− 1)2 [1−Ga (xi, yi)]

b−1

×Ga−2 (xi, yi)
∂G (xi, yi)

∂xi

∂G (xi, yi)

∂yi

∂G (xi, yi)

∂φ

+(a− 1) [1−Ga (xi, yi)]
b−1Ga−1 (xi, yi)

∂G (xi, yi)

∂yi

∂2G (xi, yi)

∂xi∂φ

+(a− 1) [1−Ga (xi, yi)]
b−1Ga−1 (xi, yi)

∂G (xi, yi)

∂xi

∂2G (xi, yi)

∂yi∂φ

−a(b− 1) [1−Ga (xi, yi)]
b−2G2a−2 (xi, yi)

∂2G (xi, yi)

∂xi∂yi

∂G (xi, yi)

∂φ

+(a− 1) [1−Ga (xi, yi)]
b−1Ga−2 (xi, yi)

∂2G (xi, yi)

∂xi∂yi

∂G (xi, yi)

∂φ

+a2(b− 1)(b− 2) [1−Ga (xi, yi)]
b−3G3a−3 (xi, yi)

∂G (xi, yi)

∂xi

×∂G (xi, yi)

∂yi

∂G (xi, yi)

∂φ
.

The maximum likelihood estimators of (a, b,φ), say (â, b̂, φ̂), are the simultaneous

solutions of the equations ∂ logL/∂a = 0, ∂ logL/∂b = 0 and ∂ logL/∂φ = 0. As

n→∞, (â−a, b̂−b, φ̂−φ) approaches a multivariate normal vector with zero means

and variance-covariance matrix, −(EJ)−1, where

J =


∂2 logL

∂a2
∂2 logL
∂a∂b

∂2 logL
∂a∂φ

∂2 logL

∂b∂a
∂2 logL
∂b2

∂2 logL
∂b∂φ

∂2 logL

∂φ∂a
∂2 logL
∂φ∂b

∂2 logL
∂φ2

 .

As suggested in Section 4.12, it is best to approximate the distribution of (â −

a, b̂− b, φ̂−φ) by a multivariate normal distribution with zero means and variance-

covariance matrix given by −J−1, inverse of the observed information matrix, with
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(a, b,φ) replaced (â, b̂, φ̂). Explicit expressions for the elements of J are too long to

be presented here.

Two most common extreme value forms for G (Gumbel and Mustafi (1967)) are

G (x, y) = G1(x)G2(y) exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1}
(4.39)

for 0 ≤ θ ≤ 1, and

G (x, y) = exp

{
−
[
(logG1(x))θ + (logG2(y))θ

]1/θ}
(4.40)

for 1 ≤ θ ≤ ∞. To compute the maximum likelihood estimators as well as the ob-

served information matrix, one needs the partial derivatives ∂G/∂x, ∂G/∂y, ∂G/∂θ,

∂2G/∂x∂y, ∂2G/∂x∂θ, ∂2G/∂y∂θ, and ∂3G/∂x∂y∂θ. Explicit expressions for these

partial derivatives for (4.39) and (4.40) are given in appendix A.

We saw in Sections 4.1, 4.4 and 4.5 how the parameters a and b control the

marginal tails of (4.37). It is also of interest to know how the parameters control the

joint tail of (4.37). There are several measures for dependence in the joint tail. One

popular measure due to Coles et al. (1999) is

χ = lim
y→∞

1− F (y,∞)− F (∞, y) + F (y, y)

1− F (y,∞)
. (4.41)

It is difficult to derive an expression for (4.41) for the general form in (4.37). However,

one can show that (4.41) reduces to 2− (2−θ/2)b and 2−2b/θ for the particular cases

in (4.39) and (4.40), respectively, if G1(·) and G2(·) are identical. Hence, only the

parameter b appears to control the dependence in the joint tail. As b increases the

amount of dependence decreases. Asymptotic independence for (4.39) corresponds

to b = log 2/ log(2− θ/2). Asymptotic independence for (4.40) corresponds to b = θ.

4.16 Summary

In this chapter, we study some mathematical properties of a generalisation of the

GEV distribution, the Kumaraswamy GEV (KumGEV) distribution. This can be

quite flexible in the analysis of continuous data in some area of research. We provide
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its moments and characteristics function. Additionally, explicit expressions are de-

rived for the mean deviations and Rényi and Shannon Entropies. We obtain explicit

expressions for the moments of order statistics and examine the asymptotic distribu-

tions of extreme order statistics. The estimation of parameters is performed by MLE

method. Also, the usefulness of the KumGEV distribution is illustrated by applying

it to annual maximum rainfall data at Uccle, Belgium.

Based on some statistical measures, we conclude that the KumGEV distribution ap-

pears to be more appropriate than the GEV distribution for the annual maximum

rainfall data.



Chapter 5

KumGP distribution

5.1 Introduction

In extreme value theory, we are not only interested in maximum and minimum values,

we use other extremes data if there are available. Let X1, X2, ..., Xn be the original

collected data, one technique to extract higher extremes from a set of data is to take

the exceedances yi over high threshold t. So, we interested in a set of observations

x1, x2, ... that exceed the threshold t, xi > t. In some instances the observations below

the threshold are not recorded, due to they not being considered important in the

end. Pickands III (1975) and Balkema and De Haan (1974) introduced the generalised

Pareto (GP) distribution as the limiting distribution for exceedances (shortfalls) over

(below) a higher (lower) threshold. This has since been widely used to model geophys-

ical phenomena such as floods or extreme windstorms, due to its close relationship

with the extreme value distributions. Also, it is a most popular distribution in a

financial risk modelling. The GP distribution has a distribution function

F(σ,ξ)(x) =


1− [1 + ξ(x− t)/σ]−1/ξ if ξ 6= 0,

1− exp−(x− t)/σ if ξ = 0.

Where σ is the scale parameter and ξ is the shape parameter. The domain of x

depends on ξ; x ≥ t, when ξ ≥ 0, or x ≥ t, and x ≤ t− σ
ξ

when ξ < 0. Some known

distributions occur as special cases, depending on the value of the shape parameter
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ξ. Cases ξ = 0, t = 0 and ξ = 1, t = 0 yield, exponential distribution with mean σ,

and uniform distribution on the interval (0, σ) respectively. The Pareto distribution

is obtained when ξ > 0, t = σ/ξ, and it becomes the triangular distribution when

ξ = −1/2, t = 0.

The GP distribution is one of the most widely applied models for univariate

extreme values such as lifetime data analysis, the coupon collector’s problem, anal-

ysis of radio audience data, analysis of rainfall time series, comparing investment

risk between Chinese and American stock markets, regional flood frequency anal-

ysis, drought modeling, value at risk, analysis of turbine steady-state, second-order

material property closures, wind extremes, analysis of motor liability insurance, anal-

ysis of finite buffer queues, river flow modeling, measuring liquidity risk of open-end

funds, modeling of extreme earthquake events, estimation of the maximum inclusion

size in clean steels, and modeling of high-concentrations in short-range atmospheric

dispersion.

For more details on the GP distribution, its theory and further, we refer the

reader to Leadbetter et al. (1983), Embrechts (1999), Castillo et al. (2005), and

Resnick (2007). Even though, it is widely applied in some fields of research, it has

also been misused in many areas. It does not give adequate fits in many areas, as

can be seen in some of the research.

For example, Madsen and Rosbjerg (1998) find that the GP distribution does not

give a good fit to drought deficit volumes due to many small drought events. In an

illustrative example of the SAS/ETS SEVERITY procedure, Joshi (2010) finds that

“both plots indicate that the Exp , Pareto, and GP distributions are a poor fit”.

We propose a simple generalization of the GP distribution. We provide a motiva-

tion for this simple generalization. This is based on the definition of the GP distri-

bution. The GP distribution arises as the conditional distribution of exceedances of

a process over a large threshold (Pickands III (1975)). If F (·) denotes the cumulative

distribution function of the process then we can write

1− F (x) ≈ p

(
1 + ξ

x− t
σ

)−1/ξ
(5.1)
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for x > t and some large t, where p = 1 − F (t), x > t if ξ ≥ 0, t < x ≤ t − σ/ξ

if ξ < 0, −∞ < ξ < ∞ is a shape parameter and σ > 0 is a scale parameter. One

way to improve on (5.1) is to take a mixture of GP cumulative distribution functions.

That is, write

1− F (x) ≈
k∑
i=1

wi

(
1 + ξi

x− t
σi

)−1/ξi
(5.2)

for x > t and some large t. But mixtures of the form (5.2) are notoriously difficult

to handle not just because of the complicated mathematical form. Inferences and

fitting of (5.2) are also difficult. For example, on the subject of estimating a mixture

of Pareto distributions, Bee et al. (2009) say “Application of standard techniques

to a mixture of Pareto is problematic”. Indeed, applications of mixtures of Pareto

distributions have been very limited.

A way around is to rewrite (5.2) in a simple mathematical form. There are many

choices for the mathematical form. A choice motivated by the works of Kumaraswamy

(1980) and Cordeiro and de Castro (2011) is

1− F (x) = {1−G(x)a}b , (5.3)

where G(·) denotes a GP cumulative distribution function and a > 0, b > 0 are two

additional parameters whose role is partly to introduce skewness and to vary tail

weights. Note that the right hand side of (5.3) can be expanded as

{1−G(x)a}b =
∞∑
i=0

ci [1−G(x)]b+i , (5.4)

a mixture taking the form of (5.2). The coefficients ci are functions of a and b. For

instance, c0 = ab. The parameter b mainly dictates the tail behaviors of the mixture

components. The parameter a mainly dictates the mixture coefficients.

Following the terminology used in Cordeiro and de Castro (2011), we shall refer to

the distribution given by (5.3) as the KumGP distribution. The probability density

function corresponding to (5.3) is

f(x) = ab g(x) G(x)a−1 {1−G(x)a}b−1 , (5.5)



5.1 Introduction 108

where g(x) = dG(x)/dx is a GP probability density function. Because g(·) and

G(·) are tractable, the KumGP distribution can be used quite effectively even if

the data are censored. Moreover, existing software for the GP distribution (say,

to compute probability density function, cumulative distribution function, quantile

function, moments, maximum likelihood estimates, random numbers, etc) can be

easily adapted for the KumGP distribution. Clearly, the GP distribution is a special

case of the KumGP distribution for a = b = 1 with a continuous crossover towards

cases with different shapes (for example, a particular combination of skewness and

kurtosis).

The role of the two additional parameters, a > 0 and b > 0, is to govern skewness

and generate distributions with heavier/ligther tails. If a < 1 then the tails of f(·)

will be heavier than those of g(·). Similarly, if b < 1 then the tails of f(·) will be

heavier than those of g(·). On the other hand, if a > 1 then the tails of f(·) will be

lighter than those of g(·). Similarly, if b > 1 then the tails of f(·) will be lighter than

those of g(·). Further description of the role of a and b is given in Section 5.4.

Another physical interpretation for the KumGP distribution when a and b are

positive integers is as follows. Suppose a system is made of b independent components

and that each component is made up of a independent subcomponents. Suppose the

system fails if any of the b components fails and that each component fails if all of the a

subcomponents fail. Let Xj1, Xj2, . . . , Xja denote the lifetimes of the subcomponents

within the jth component, j = 1, 2, . . . , b with a common GP cumulative distribution

function. Let Xj denote the lifetime of the jth component, j = 1, . . . , b, and let X

denote the lifetime of the entire system. So, the cumulative distribution function of

X is

Pr(X ≤ x) = 1− Prb (X1 > x) = 1− {1− Pr (X1 ≤ x)}b

= 1− {1− Pr (X11 ≤ x,X12 ≤ x, . . . , X1a ≤ x)}b

= 1− {1− Pra (X11 ≤ x)}b = 1−
{

1−Ga
ξ,σ(x)

}b
.

So, it follows that the KumGP distribution given by (5.3) and (5.5) is precisely the

time to failure distribution of the entire system. The GP distribution has been widely
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used to model lifetimes: see, for example, Mahmoudi (2011).

There are other ways to generalise the GP distribution; the most recent general-

izations of the GP distribution were proposed by Papastathopoulos and Tawn (2012),

a paper currently in press for the Journal of Statistical Planning and Inference. They

referred to their generalizations as EGP1, EGP2 and EGP3 distributions. The EGP1

distribution is specified by the cumulative distribution function

F (x) =
1

B (κ, 1/ | ξ |)
B

1−(1+ξ xσ )
−|ξ|/ξ (κ, 1/ | ξ |) (5.6)

for x > 0 (if ξ ≥ 0), 0 < x ≤ −σ/ξ (if ξ < 0), σ > 0, κ > 0 and −∞ < ξ <∞, where

Bx(·, ·) denotes the incomplete beta function defined by

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1dt.

The EGP2 distribution is specified by the cumulative distribution function

F (x) =
1

Γ(κ)
γ

[
1

ξ
ln
(

1 + ξ
x

σ

)
, κ

]
(5.7)

for x > 0 (if ξ ≥ 0), 0 < x ≤ −σ/ξ (if ξ < 0), σ > 0, κ > 0 and −∞ < ξ <∞, where

Γ(·) denotes the gamma function defined by

Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt,

and γ(·, ·) denotes the incomplete gamma function defined by

γ(a, x) =

∫ x

0

ta−1 exp(−t)dt.

The EGP3 distribution is specified by the cumulative distribution function

F (x) =

{
1−

(
1 + ξ

x

σ

)−1/ξ}κ
(5.8)

for x > 0 (if ξ ≥ 0), 0 < x ≤ −σ/ξ (if ξ < 0), σ > 0, κ > 0 and −∞ < ξ <∞.

Unfortunately, none of the distributions given by (5.6)-(5.8) are new. There have

been many papers published proposing distributions same as (5.6)-(5.8) or containing

(5.6)-(5.8) as special cases. However, none of these papers have been cited by Papas-

tathopoulos and Tawn (2012). Besides, (5.6) and (5.7) involve the incomplete beta
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function and the incomplete gamma function, special functions requiring numerical

routines. We shall also see later that none of (5.6)-(5.8) provide significant improve-

ments over the GP distribution for the data set considered in Papastathopoulos and

Tawn (2012).

Now, let us explain why the distributions given by (5.6)-(5.8) are not new. Firstly,

(5.6) is a special case of the class of beta-G distributions introduced by Eugene et al.

(2002), and followed by Jones (2004) and many others. The beta-G distribution is

specified by the cumulative distribution function

F (x) =
1

B(a, b)

∫ G(x)

0

ta−1(1− t)b−1dt (5.9)

for a > 0 and b > 0, where B(·, ·) denotes the beta function defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt.

Note that (5.6) is a special case of (5.9) for G(·) specified by

G(x) = 1−
(

1 + ξ
x

σ

)−|ξ|/ξ
.

This a special case is considered in detail by (Akinsete et al., 2008, sec. 2.2), Mah-

moudi (2011) and many others.

Secondly, (5.7) is a special case of the class of gamma-G distributions introduced

by Zografos and Balakrishnan (2009), and followed by Ristić and Balakrishnan (2012)

and many others. The gamma-G distribution is specified by the cumulative distribu-

tion function

F (x) =
γ (a,− log [1−G(x)])

Γ(a)
(5.10)

for a > 0. Note that (5.7) is a special case of (5.10) when G(·) is a GP cumulative

distribution function. Furthermore, the formula for the cumulative distribution func-

tion of the EGP2 distribution given in Papastathopoulos and Tawn (2012) is not a

cumulative distribution function at all.

Finally, (5.8) is identical to the exponentiated Pareto distribution studied by

Adeyemi and Adebanji (2005), Shawky and Abu-Zinadah (2008, 2009), Afify (2010)

and many others.
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5.2 The KumGP Distribution and Sub-Models

Let G(σ,ξ) and g(σ,ξ) denote the cdf and the pdf of the GP distribution, respectively.

From now on, the G and g functions will be written as

G(σ,ξ)(x) = 1− u, (5.11)

and

g(σ,ξ)(x) = σ−1u1+ξ, (5.12)

respectively, for x > t if ξ ≥ 0, t < x ≤ t − σ/ξ if ξ < 0, σ > 0, −∞ < ξ < ∞,

and u = {1 + ξ(x − t)/σ}−1/ξ. The cdf and the pdf of the KumGP distribution are

given by

F (x) = 1− {1− (1− u)a}b , (5.13)

and

f(x) = σ−1abu1+ξ(1− u)a−1 {1− (1− u)a}b−1 , (5.14)

respectively. The EGP3 distribution given by (5.8) is a particular case of the KumGP

distribution. Unlike the EGP1 and EGP2 distributions, the KumGP distribution does

not involve special functions. So, one can expect that the KumGP distribution will

attract wider applicability than the EGP1, EGP2 and EGP3 distributions.

As has been indicated in the introduction, the KumGP distribution has many sub-

models. In this section, we introduce some distributions, which can arise as special

cases from KumGP distribution.

• GP distribution:

If a = b = 1 then the KumGP distribution reduces to

f(σ,ξ)(x) = σ−1[1 + ξ(x− t)/σ]−(1+ξ)/ξ,

which is the pdf of the GP distribution with the scale parameter σ > 0 and the

shape parameter−∞ < ξ <∞.
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• Pareto distribution:

For a = b = 1, ξ > 0 and t = σ/ξ the KumGP density function yields

f(σ,ξ)(x) =
ξ

σ
(
x− t
σ

)−(ξ+1),

which is the pdf of the Pareto distribution with the scale parameter σ > 0 and

the shape parameter ξ > 0.

• Exponential distribution:

For a = b = 1, ξ = 0 and t = 0 the KumGP distribution becomes

fσ(x) =
1

σ
exp−x/σ,

which is the pdf of the exponential distribution with mean σ

• Uniform distribution:

For a = b = 1, ξ = −1 and t = 0 the KumGP distribution reduces to

fσ(x) =
1

σ
,

the pdf of the uniform distribution defined on the interval (0, σ)

• Triangular distribution:

For a = b = 1, ξ = −1/2 and t = 0 the KumGP distribution becomes

fσ(x) =


2x
σc

0 ≥ x ≤ c,

2(σ−x)
σ(σ−c) c < x < σ,

which is the triangular distribution on [0, σ] with mode c, where 0 < c < σ.

• Lomax distribution:

For a = b = 1, ξ = 1/α, σ = λ/α and t = 0 the KumGP distribution becomes

fα,λ(x) =
α

λ
(1 +

x

λ
)−(α+1)

which is the Lomax distribution with parameters α and λ. The Lomax distri-

bution is also known as Pareto type II distribution.
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Parameters
Distribution a b t σ ξ

Exponential 1 1 0 - 0

Lomax 1 1 0 λ/α 1/α

Uniform 1 1 0 - −1

Triangular 1 1 0 - −1/2

Pareto 1 1 σ/ξ - > 0

GPD 1 1 - - -

KumGPD - - - - -

Table 5.1: Some sub-models of the KumGP distribution

In the Table 5.1 we review these sub-models for the KumGP distribution.

The KumGP distribution given by (5.14) is much more flexible than the GP

distribution and can allow for greater flexibility of tails. Plots of the pdf for the GP

and KumGP distributions for selected parameter values are shown in the Figures

5.1-5.2

To generate a random sample from the KumGP distribution, assume that X has

probability density function (??). The quantile function of the KumGP distribution

can be written as

x = Q(z) = t+
σ

ξ

{{
1−

[
1− (1− z)1/b

]1/a}−ξ
− 1

}
. (5.15)

So, we can generate a random sample from the KumGP distribution by X = Q(z),

where Z is uniformly distributed on (0, 1).

In the rest of this chapter, we provide a comprehensive description of the math-

ematical properties of (5.14). We examine the shape of (5.14) and its associated

hazard rate function in Section 5.4. We derive expressions for moments and moment

generating function in sections 5.5 and 5.6, respectively. Order statistics, their mo-

ments and L moments are calculated in section 5.8. Asymptotic distributions of the

extreme values are provided in section 5.9. Estimation by the method of maximum

likelihood – including the observed information matrix – is presented in section 5.11.
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Figure 5.1: Plot of the pdf of the GP distribution.
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Figure 5.2: Plots of the pdf of the KumGP distribution for t = 0, σ = 1, ξ =
−0.5, 0, 0.5, 1, (a, b) = (0.5, 0.5) (black curve), (a, b) = (0.5, 1) (red curve), (a, b) =
(0.5, 3) (green curve) and (a, b) = (3, 3) (blue curve).
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A simulation study is presented in section 5.12 to assess the performance of the max-

imum likelihood estimators. Application of the KumGP distribution to a real data

set is illustrated in Section 5.13.

5.3 Hazard Rate Function

The hazard rate function (hrf)(also known as the failure rate, hazard rate, or force

of mortality) is defined by h(x) = f(x)
1−F (x)

. For the KumGP distribution the hrf takes

the formula:

h(x) =
abσ−1uξ+1(1− u)a−1

1− (1− u)a
(5.16)

u = {1 + ξ(x − t)/σ}−1/ξ. Plots of the hrf for the GP and KumGP distribution for

selected parameter values are shown in the Figures 5.3-5.4. We can see the flexibility

of the hrf of the KumGP distribution over the hrf of the GP distribution.

5.4 Shapes of the PDF and HRF

1. Shape of the pdf:

To study the shape of the KumGP distribution, we derive the pdf of the KumGP

distribution. The first derivative of log f(x) for the KumGP distribution is:

d

dx
log f(x) = −u

ξ

σ

{
(ξ + 1)− u

1− u

[
(a− 1)− a(b− 1) (1− u)a

[1− (1− u)a]

]}

So, the modes of f(x) are the roots of the following equation:

a(b− 1)(1− u)a−1

1− (1− u)a
=
a− 1

1− u
− 1 + ξ

u
. (5.17)

where, u = {1 + ξ(x − t)/σ}−1/ξ. There may be more than one root to

Eq(5.17). So, if x = x0 is the root of Eq(5.17) then it may correspond to a

local maximum, local minimum or the point of inflexion depending on whether

λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where λ(x) = d2

dx2
log f(x) is :
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Figure 5.3: Plot of the hrf of the GP distribution.
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Figure 5.4: Plots of the hrf of the KumGP distribution for t = 0, σ = 1, ξ =
−0.5, 0, 0.5, 1, (a, b) = (0.5, 0.5) (black curve), (a, b) = (0.5, 1) (red curve), (a, b) =
(0.5, 3) (green curve) and (a, b) = (3, 3) (blue curve).
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λ(x) =
u2ξ

σ2
(ξ (ξ + 1))− (a− 1)u2/ξ+1

σ2

[
(ξ + 1) (1− u) + u

(1− u)2

]
− a(b− 1)

σ2

×

{
u2ξ+1 (1− u)a−2 [(a− 1)u− (1 + ξ) (1− u)]

[1− (1− u)a]
+
au1+ξ (1− u)2a−1

[1− (1− u)a]
2

}
.

According to Nadarajah et al. (2012), the asymptotes of f(x) and F (x) as

u→ 0, 1 are given by

f(x) ∼ abbσ−1ub+ξ exp(−au); as u→ 0,

f(x) ∼ abσ−1(1− u)a−1; as u→ 1,

1− F (x) ∼ (au)b; as u→ 0,

and

F (x) ∼ b(1− u)a; as u→ 1.

Note that both the upper and lower tails of f(x) are polynomials with respect

to u. Larger values of a correspond to lighter lower tails and lighter upper tails

of f . Larger values of b correspond to heavier lower tails and heavier upper

tails of f .

2. Shape of the hrf:

The first derivative of log h(x) is given by:

d

dx
log h(x) = −u

ξ

σ

{
(ξ + 1)− (a− 1)u

[1− u]
− au (1− u)a−1

[1− (1− u)a]

}

The modes of the h(x) are the roots of the following equation:

(ξ + 1) = u

{
(a− 1)

(1− u)
− a (1− u)a−1

[1− (1− u)a]

}
(5.18)

The local maximum, local minimum or the point of inflexion of the shape de-

pends on whether λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where λ(x) = d2

dx2
log f(x)
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is given by:

λ(x) =
d2 log h(x)

dx2

=
u2ξ

σ2

{
ξ (ξ + 1)− (a− 1)u

(ξ + 1) (1− u) + u

(1− u)2

}
+
au2ξ+1 (1− u)a−1

σ2 [1− (1− u)a]{
(a− 1)u− (ξ + 1) (1− u)

(1− u)
+

au (1− u)a

[1− (1− u)a]
2

}
.

The asymptotes of h(x) as u→ 0, 1 are given by

h(x) ∼ bσ−1uξ as u→ 0,

and

h(x) ∼ abσ−1(1− u)a−1 as u→ 1.

Note that both the upper and lower tails of h(x) are polynomials with respect

to u. Larger values of a correspond to lighter lower tails. Larger values of b

correspond to heavier lower tails and heavier upper tails of h. Bathtub shaped

hazard rates are the most realistic ones in terms of practical applications. It is

interesting to note that the KumGP distribution can exhibit this shape. The

GP distribution cannot exhibit bathtub shaped hazard rates.

For more details of the shapes of the pdf and the hrf, we present the following

three cases:

a) First case when ξ < 0:

Both the pdf and hrf of the KumGEV distribution are bathtub shaped for a < 1

and monotonically increasing for a ≥ 1.

b) Second case when ξ → 0:

Constant, monotonically decreasing and increasing shapes appear possible in this

case. Both the pdf and hrf are monotonically decreasing for a < 1 and the pdf

will be unimodal with mode xmode for a > 1, while the hrf will be constant for

a = 1, b ≤ 1 , slightly decreasing for a = 1, b > 1 and monotonically increasing

for a > 1.
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c) Last case when ξ > 0:

Monotonically decreasing shapes appear for a ≤ 1, while unimodal shape for

a > 1. For both the pdf and hrf, we can find the mode by solving Eq (5.17).

5.5 Moments

Let X ∼ KumGP(a, b, σ, ξ). Using the transformation u = {1 + ξ(x− t)/σ}−1/ξ, we

can write

E (Xn) = ab

∫ 1

0

[
σ

ξ

(
u−ξ − 1

)
+ t

]n
(1− u)a−1 [1− (1− u)a]b−1 du

= ab

n∑
i=0

(
n

i

)(
σ

ξ

)i(
t− σ

ξ

)n−i ∫ 1

0

u−iξ(1− u)a−1 [1− (1− u)a]b−1 du

= ab
n∑
i=0

(
n

i

)(
σ

ξ

)i(
t− σ

ξ

)n−i ∞∑
j=0

(
b− 1

j

)
(−1)j

∫ 1

0

u−iξ(1− u)a+aj−1du

= ab
n∑
i=0

(
n

i

)(
σ

ξ

)i(
t− σ

ξ

)n−i ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− iξ, a+ aj) (5.19)

for n ≥ 1 provided that 1− iξ is not an integer for all i = 0, 1, . . . , n. The first four

moments are:

E (X) = ab
∞∑
j=0

(
b− 1

j

)
(−1)j

[(
t− σ

ξ

)
1

a+ aj
+
σ

ξ
B (1− ξ, a+ aj)

]
, (5.20)

E
(
X2
)

= ab
∞∑
j=0

(
b− 1

j

)
(−1)j

[(
t− σ

ξ

)2
1

a+ aj
+ 2

(
σ

ξ

)(
t− σ

ξ

)

×B (1− ξ, a+ aj) +

(
σ

ξ

)2

B (1− 2ξ, a+ aj)

]
, (5.21)

E
(
X3
)

= ab
∞∑
j=0

(
b− 1

j

)
(−1)j

[(
t− σ

ξ

)3
1

a+ aj
+ 3

(
σ

ξ

)(
t− σ

ξ

)2

×B (1− ξ, a+ aj) + 3

(
t− σ

ξ

)(
σ

ξ

)2

B (1− 2ξ, a+ aj)

+

(
σ

ξ

)3

B (1− 3ξ, a+ aj)

]
, (5.22)
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and

E
(
X4
)

= ab

∞∑
j=0

(
b− 1

j

)
(−1)j

[(
t− σ

ξ

)4
1

a+ aj
+ 4

(
σ

ξ

)(
t− σ

ξ

)3

×B (1− ξ, a+ aj) + 6

(
t− σ

ξ

)2(
σ

ξ

)2

B (1− 2ξ, a+ aj)

+4

(
t− σ

ξ

)(
σ

ξ

)3

B (1− 3ξ, a+ aj) +

(
σ

ξ

)4

B (1− 4ξ, a+ aj)

]
.(5.23)

provided that 1− ξ, 1− 2ξ, 1− 3ξ and 1− 4ξ are not integers. The infinite series in

(5.20)-(5.23) all converge.

The mean, variance, skewness and kurtosis can be calculated from the first four

nth moments, which is given by (5.20)-(5.23). Plots of these measures versus ξ are

shown in Figure 5.5 for µ = 0, σ = 1 and selected values of (a, b). These plots show

that each of the measures are increasing of ξ, for most choice values of parameters

a, b.
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Figure 5.5: Plots of the mean, variance, skewness and kurtosis versus ξ for µ = 0,
σ = 1, (a, b) = (0.5, 0.5) (black curve), (a, b) = (0.5, 3) (red curve), (a, b) = (1, 1)
(green curve) and (a, b) = (3, 0.5) (blue curve), and (a, b) = (3, 3) (turquoise curve).
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5.6 Moment Generating and Characteristic Func-

tions

Suppose X is a random variable having the KumGP pdf in Eq(??). We obtain the

moment generating function by using the following formula M(t) = E[e(tX)]. So,

M(t) = E(etx) =

∫ ∞
−∞

etxf(x) dx

= σ−1a b

∞∑
k=0

(−1)k
(
b− 1

k

)∫ ∞
−∞

etxuξ+1(1− u)a(k+1)−1dx,

= σ−1a b
∞∑
k=0

(−1)k
(
b− 1

k

)
J3(t, a(k + 1)),

where u = {1 + ξ(x − µ)/σ}−1/ξ and µ is the threshold. Using Lemma 1 in

appendix B, we obtain

M(t) = a bet
∗
1

∞∑
k=0

∞∑
j=0

(−1)k
(
b− 1

k

)
(t∗2)

j

j!
B(1− jξ, a(k + 1)),

where ξ < 1/j. Also, the characteristic function, φ(t) = E[exp(itX)], where i =
√
−1,

of the KumGP distribution can be written as

φ(t) = a beit
∗
1

∞∑
k=0

∞∑
j=0

(−1)k
(
b− 1

k

)
(it∗2)

j

j!
B(1− jξ, a(k + 1)),

where t∗1 = t(µ− σ
ξ
) and t∗2 = tσ

ξ
.

5.7 Mean Deviations

The mean deviation about the mean and the mean deviation about median are defined

as:

δ1(x) =

∫ ∞
−∞
|x− µ0|f(x) dx,

δ2(x) =

∫ ∞
−∞
|x−M |f(x) dx
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respectively, where µ0 and M denote to the mean and median, respectively. Then

the measures, δ1(X) and δ2(X), can be calculated by using these relationships:

δ1(X) =

∫ µ0

−∞
(µ0 − x) f(x)dx+

∫ ∞
µ0

(x− µ0) f(x)dx

= µ0F (µ0)−
∫ µ0

−∞
xf(x)dx− µ0 {1− F (µ0)}+

∫ ∞
µ0

xf(x)dx

= 2

∫ ∞
µ0

xf(x)dx+ 2µ0F (µ0)− 2µ0,

and

δ2(X) =

∫ M

−∞
(M − x)f(x)dx+

∫ ∞
M

(x−M)f(x)dx

= MF (M)−
∫ M

−∞
xf(x)dx−M {1− F (M)}+

∫ ∞
M

xf(x)dx

= 2

∫ ∞
M

xf(x)dx− µ0.

Let X ∼ KumGP(a, b, σ, ξ). Then

∫ ∞
y

xf(x)dx = σ−1a b
∞∑
k=0

(−1)k
(
b− 1

k

)∫ ∞
y

xuξ+1(1− u)a(k+1)−1dx

= σ−1a b
∞∑
k=0

(−1)k
(
b− 1

k

)
J4 (y, a(k + 1)) .

The final step follows by Lemma 2 in appendix B. Then the mean deviation about

the mean can be written as

δ1(X) = 2σ−1a b
∞∑
k=0

ak−1∑
j=0

(−1)k
(
b− 1

k

)
J4 (µ0, a(k + 1))

+2µ0

{
1− [1− (1− u0)a]b

}
− 2µ0,

and

δ2(X) = 2σ−1a b
∞∑
k=0

(−1)k
(
b− 1

k

)
J4 (M,a(k + 1))− µ0,

where µ∗0 =
[
1 + ξ(µ0− t)/σ

]−1/ξ
. From Eq (5.20) we get µ0, and the median can

be calculated from the quantile function

M = t+
σ

ξ

{{
1−

[
1− 2−1/b

]1/a}−ξ − 1

}
.
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5.8 Order Statistics

The main purpose of this section is to derive the order statistics, their moments,

probability weighted moments and L-moments for the KumGP distribution.

• Order Statistics:

Assume that X1, X2, . . . , Xn is a random sample from the KumGP distribution

with pdf (??). Let X1:n < X2:n < · · · < Xn:n be the order statistics for this

sample. Then the probability density and distribution function of the kth order

statistics, say Y = Xk:n, are given by

fY (y) =
n!

(k − 1)!(n− k)!
[F (x)]k−1 [1− F (x)]n−k f(x),

=
a b n!

σ(k − 1)!(n− k)!
u1+ξ(1− u)a−1 [1− (1− u)a]b(n−k+1)−1

{
1− [1− (1− u)a]b

}k−1
=

abn!

σ(k − 1)!(n− k)!

∞∑
i=0

(
k − 1

i

)
(−1)iu1+ξ(1− u)a−1 [1− (1− u)a]b(i+n−k+1)−1

=
abn!

σ(k − 1)!(n− k)!

∞∑
i=0

(
k − 1

i

)
(−1)ifa,b(i+n−k+1)−1,σ,ξ(x),

where u = {1 + ξ(x − t)/σ}−1/ξ and fa,b,σ,ξ(·) denotes the probability density

function of Xa,b,σ,ξ ∼ KumGP(a, b, σ, ξ). So, the probability density function of

Y is a linear combination of probability density functions of KumGP(a, b, σ, ξ).

Hence, other properties of Y can be easily derived. For instance, the cumulative

distribution function of Y can be expressed as

FY (y) =
n∑
j=k

(
n

j

)
{F (x)}j {1− F (x)}(n−j) ,

=
abn!

σ(k − 1)!(n− k)!

∞∑
i=0

(
k − 1

i

)
(−1)iFa,b(i+n−k+1)−1,σ,ξ(x), .

where Fa,b,σ,ξ(·) denotes the cumulative distribution function corresponding to

fa,b,σ,ξ(·). The qth moment of Y can be expressed as
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E (Y q) =

∫ ∞
−∞

xqfY (y)dx

=
abn!

σ(k − 1)!(n− k)!

∞∑
i=0

(
k − 1

i

)
(−1)i

∫ ∞
−∞

xqfa,b(i+n−k+1)−1,σ,ξ(x)dx,

=
abn!

σ(k − 1)!(n− k)!

∞∑
i=0

(
k − 1

i

)
(−1)iE

[
Xq
a,b(i+n−k+1)−1,σ,ξ

]
, (5.24)

where the last part can be calculated from (5.19). Then the qth moment of Y

can be written as

E (Y q) =
a2b b∗n!

σ(k − 1)!(n− k)!

∞∑
i=0

n∑
r=0

(
k − 1

i

)(
n

r

)
(−1)i

(
σ

ξ

)i
×
(
t− σ

ξ

)n−i ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− rξ, a+ aj) . (5.25)

• Probability weighted moments of order statistics:

An alternative form for the moments of the KumGP order statistics depend on

the probability weighted moments. Barakat and Abdelkader (2004) used a new

formula to present the sth moments which can be written as

E(Xs
i:n) = s

n∑
j=n−i+1

(−1)j−n+i−1
(
j − 1

n− i

)(
n

j

)
Ij(s)

where Ij(s) is the integral

Ij(s) =

∫ ∞
−∞

xs−1{1− F (x)}jdx,

=

∫ ∞
−∞

xs−1{1− (1− u)a}bjdx,

By using the binomial expansion, we obtain

Ij(s) = σ

∞∑
l=0

s−1∑
k=0

(−1)l
(
s− 1

k

)(
bj

l

)(
σ

ξ

)k (
t− σ
ξ

)s−k−1
B(−ks− ξ, al − 1),

and then

E(Xs
i:n) = sσ

n∑
j=n−i+1

∞∑
l=0

s−1∑
k=0

(
j − 1

n− i

)(
n

j

)(
s− 1

k

)(
bj

l

)
(−1)j−n+l+i−1

×
(
σ

ξ

)k (
t− σ
ξ

)s−k−1
B(−ks− ξ, al − 1), (5.26)

where ξ < −ks.
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• L-moments of order statistics:

L-moments are used to summaries the shape of the probability distribution.

They are similar to the ordinary moments, but they are calculated from linear

combinators of the order statistics. Hosking (1990) gave some advantages of the

L-moments over the ordinary moments such as: for L-moments to be finite, we

only assume that the distribution has finite mean; unlike the ordinary moments,

which request that the higher-order moments are finite. The rht L-moments

can be given by

λr =
r−1∑
j=0

(−1)r−1−j
(
r − 1

j

)(
r − 1 + j

j

)
βj,

where βj = E{XF (X)j}. In particular, λ1 = β0, λ2 = 2β1 − β0, λ3 = 6β2 −

6β1+β0 and λ4 = 20β3−30β2+12β1−β0. In general, βr = (r+1)−1E(Xr+1:r+1),

so it can be computed using (5.25).

5.9 Extreme Values

Suppose X1, . . . , Xn is a random sample from the KumGP distribution (??). If X̄ de-

notes the sample mean, then by the central limit theorem,
√
n(X̄−E(X))/

√
Var(X)

is distributed normally as n → ∞, provided that ξ < 1/2. Sometimes one would be

interested in the asymptotic of the extreme order statistics Mn = max(X1, . . . , Xn)

and mn = min(X1, . . . , Xn).

Firstly, suppose that G, the cdf of the GP distribution (5.11), belongs to the max

domain of attraction of the Gumbel extreme value distribution. Then, by (Leadbetter

et al., 1983, chap. 1), there must exist a strictly positive function h(t), such that:

lim
t→∞

1−G (t+ xh(t))

1−G(t)
= exp(−x)
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for every x ∈ (−∞,∞). Using L’Hopital’s rule, we note that

lim
t→∞

1− F (t+ xh(t))

1− F (t)
= lim

t→∞

{
1−Ga (t+ xh(t))

1−Ga(t)

}b
= lim

t→∞

{
1−G (t+ xh(t))

1−G(t)

}b
= exp(−bx)

for every x ∈ (−∞,∞). So, it follows that F also belongs to the max domain of

attraction of the Gumbel extreme value distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp {− exp(−bx)}

for some suitable norming constants an > 0 and bn.

Secondly, suppose that G, belongs to the max domain of attraction of the Fréchet

extreme value distribution. Then by (Leadbetter et al., 1983, chap. 1), there must

exist a β > 0 such that

lim
t→∞

1−G(tx)

1−G(t)
= xβ

for every x > 0. Using L’Hopital’s rule, we note that

lim
t→∞

1− F (tx)

1− F (t)
= lim

t→∞

{
1−Ga(tx)

1−Ga(t)

}b
= lim

t→∞

{
1−G(tx)

1−G(t)

}b
= xbβ

for every x > 0. So, it follows that F also belongs to the max domain of attraction

of the Fréchet extreme value distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp
(
−xbβ

)
for some suitable norming constants an > 0 and bn.

Thirdly, suppose that G, belongs to the max domain of attraction of the Weibull

extreme value distribution. Then by (Leadbetter et al., 1983, chap. 1), there must

exist a α > 0 such that

lim
t→0

G(tx)

G(t)
= xα
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for every x < 0. Using L’Hopital’s rule, we note that

lim
t→0

F (tx)

F (t)
= lim

t→0

1− [1−Ga(tx)]b

1− [1−Ga(t)]b

= lim
t→0

[
G(tx)

G(t)

]a
= xaβ.

So, it follows that F also belongs to the max domain of attraction of the Weibull

extreme value distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp {−(−x)aα}

for some suitable norming constants an > 0 and bn.

The same argument applies to min domains of attraction. That is, F belongs to

the same min domain of attraction as that of G.

5.10 Rényi and Shannon Entropies

In this section, we calculate the Rényi and Shannon entropies for the KumGP dis-

tribution. The Rényi entropy is defined as

H(γ) =
1

1− γ
log

{∫ ∞
−∞

fγ(x)dx

}
.

where γ > 0 and γ 6= 1. If X a random variable has pdf of the KumGP distribution

given in (6.5) then we can write,∫ ∞
−∞

fγ(x)dx =

(
a b

σ

)γ ∫ ∞
−∞

uγ+γξ(1− u)γa−γ [1− (1− u)a]bγ−γ dx

=

(
a b

σ

)γ ∞∑
k=0

(
bγ − γ
k

)
(−1)k

∫ ∞
−∞

uγ+γξ(1− u)a(γ+k)−γdx

=

(
a b

σ

)γ
σ
∞∑
k=0

(
bγ − γ
k

)
(−1)k

∫ 1

0

u(γ+k)(1+ξ)(1− u)a(γ+k)−γdu,

=

(
a b

σ

)γ
σ
∞∑
k=0

(
bγ − γ
k

)
(−1)kB(γ∗, a∗),
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where γ∗ = (γ − 1)(ξ − 1) + 1 and a∗ = (a − 1)γ + ak + 1 Then the Rényi entropy

can written as:

H(γ) =
σ

1− γ
log

{∫ ∞
−∞

fγ(x)dx

}
,

=
1

1− γ
log

{(
a b

σ

)γ ∞∑
k=0

(
bγ − γ
k

)
(−1)kB(γ∗, a∗)

}
.

Using Maclaurin series expansion for log(1 − z), the Shannon entropy can be

calculated:

E [− log f(X)] = − log

(
a b

σ

)
− (1 + ξ)E logU − (a− 1)E log(1− U)

−(b− 1)E log [1− (1− U)a]

=− log

(
a b

σ

)
− (1 + ξ)E logU + (a− 1)

n∑
i=1

1

i
E(U i)

+(b− 1)
n∑
i=1

1

i
E
[
(1− U)ai

]
. (5.27)

The three components in this equation can be derived as follows:

E [logU ] =

(
a b

σ

) ∞∑
k=0

(−1)k
(
b− 1

k

)∫ ∞
−∞

log u uξ+1(1− u)a(k+1)−1d x,

= ab
∞∑
k=0

(−1)k
(
b− 1

k

)∫ 1

0

log u (1− u)a(k+1)−1d u,

by using Eq (4.2531) in Gradshteyn and Ryzhik (1994), we obtain

E [logU ] = a b
∞∑
k=0

(−1)k
(
b− 1

k

)
B(1, a(k + 1))

[
ψ(1)− ψ(a(k + 1) + 1)

]
,

where ψ(x) is the Euler’s psi function.

E(U i) =

(
a b

σ

) ∞∑
k=0

(−1)k+j
(
b− 1

k

)∫ ∞
−∞

uiuξ+1(1− u)a(k+1)−1d x,

= ab

∞∑
k=0

(−1)k
(
b− 1

k

)∫ 1

0

ui(1− u)a(k+1)−1d u,

= a b
∞∑
k=0

(−1)k
(
b− 1

k

)
B(i+ 1, a(k + 1)).
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The last component can be calculated as

E(1− U)ai =

(
a b

σ

) ∞∑
k=0

(−1)k+j
(
b− 1

k

)∫ ∞
−∞

(1− u)aiuξ+1(1− u)a(k+1)−1d x,

= a b
∞∑
k=0

(−1)k
(
b− 1

k

)∫ 1

0

(1− u)a(k+i+1)−1d u,

= a b
∞∑
k=0

(−1)k

a(k + i+ 1)

(
b− 1

k

)
.

So, the Shannon entropy can be written as:

E [− log f(X)] = − log

(
a b

σ

)
+ a(a− 1)b

n∑
i=1

∞∑
k=0

ak−1∑
j=0

(−1)k+j

i(j + i+ 1)

×
(
b− 1

k

)(
ak − 1

j

)
+ ab(b− 1)

n∑
i=1

∞∑
k=0

a k−1∑
j=0

(−1)k+j

i

×
(
b− 1

k

)(
ak − 1

j

)
B(j + 1, ai+ 1)− a b(1 + ξ)

×
∞∑
k=0

a k−1∑
j=0

(−1)k+j
(
b− 1

k

)(
ak − 1

j

)[
ψ(j + 1)

−ψ(j + 2)
]
B(j + 1, 1). (5.28)

5.11 Maximum Likelihood Estimation

Suppose X1, X2, . . . , Xn is a random sample of size n from (5.14). Let ui = {1 +

ξ(xi− t)/σ}−1/ξ for i = 1, 2, . . . , n. Then the log-likelihood function for the vector of

parameters (a, b, σ, ξ) can be written as

logL(a, b, σ, ξ) = n log(ab)− n log σ + (1 + ξ)
n∑
i=1

log ui + (a− 1)
n∑
i=1

log (1− ui)

+(b− 1)
n∑
i=1

log [1− (1− ui)a] . (5.29)

The first-order partial derivatives of (5.29) with respect to the four parameters are:

∂ logL

∂a
=
n

a
+

n∑
i=1

log (1− ui)− (b− 1)
n∑
i=1

(1− ui)a log (1− ui)
1− (1− ui)a

, (5.30)

∂ logL

∂b
=
n

b
+

n∑
i=1

log [1− (1− ui)a] , (5.31)
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∂ logL

∂σ
=−n

σ
+

1 + ξ

σ2

n∑
i=1

uξi (xi − t)−
a− 1

σ2

n∑
i=1

u1+ξi (xi − t)
1− ui

+
a(b− 1)

σ2

n∑
i=1

u1+ξi (1− ui)a−1 (xi − t)
1− (1− ui)a

, (5.32)

and

∂ logL

∂ξ
=

n∑
i=1

log ui +
1 + ξ

ξ2

n∑
i=1

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}
− a− 1

ξ2

×
n∑
i=1

ui
1− ui

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}
+
b− 1

ξ2

×
n∑
i=1

aui (1− ui)a−1

1− (1− ui)a

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}
. (5.33)

The maximum likelihood estimates of (a, b, σ, ξ), say (â, b̂, σ̂, ξ̂), are the simultane-

ous solutions of the equations ∂ logL/∂a = 0, ∂ logL/∂b = 0, ∂ logL/∂σ = 0 and

∂ logL/∂ξ = 0. As n → ∞, (â − a, b̂ − b, σ̂ − σ, ξ̂ − ξ) approaches a multivariate

normal vector with zero means and variance-covariance matrix −(E[J])−1, where

J =



∂2 logL

∂a2
∂2 logL
∂a∂b

∂2 logL
∂a∂σ

∂2 logL
∂a∂ξ

∂2 logL

∂b∂a
∂2 logL
∂b2

∂2 logL
∂b∂σ

∂2 logL
∂b∂ξ

∂2 logL

∂σ∂a
∂2 logL
∂σ∂b

∂2 logL
∂σ2

∂2 logL
∂σ∂ξ

∂2 logL

∂ξ∂a
∂2 logL
∂ξ∂b

∂2 logL
∂ξ∂σ

∂2 logL
∂ξ2


.

The matrix, −E[J], is known as the expected information matrix. The matrix,

−J, is known as the observed information matrix.

In simulations and real data applications described later on, we maximized the

log-likelihood function using the nlm function in the R statistical package. For each

maximization, the nlm function was executed for a wide range of initial values. At

least one maximum was identified each time. In cases of more than one maximum

occurring, we took the maximum likelihood estimates to correspond to the largest of

the maxima.

The literature (see, for example, Cox and Hinkley (1979)) suggests that it is best

to approximate the distribution of (â−a, b̂− b, σ̂−σ, ξ̂− ξ) by a multivariate normal

distribution with zero means and variance-covariance matrix given by −J−1, inverse
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of the observed information matrix, with (a, b, σ, ξ) replaced (â, b̂, σ̂, ξ̂). So, it is useful

to have explicit expressions for the elements of J, which are shown in appendix B.

The matrix, −J, is known as the observed information matrix. The matrix, −EJ,

is known as the expected information matrix. The 4 ∗ 4 unit expected information

matrix k(θ) is:

k(θ) =


ka,a(θ) ka,b(θ) ka,σ(θ) ka,ξ(θ)

ka,b(θ) kb,b(θ) kb,σ(θ) kb,ξ(θ)

ka,σ(θ) kb,σ(θ) kσ,σ(θ) kσ,ξ(θ)

ka,ξ(θ) kb,ξ(θ) kσ,ξ(θ) kξ,ξ(θ)


.

5.12 Simulation Study

The aim of this section is to show that the estimators (â, b̂, σ̂ and ξ̂) are unbiased and

have a minimum mean square error when the sample size, n, is large. We follow the

simulation procedure:

1. Generate a thousand samples of size n from the KumGP distribution (5.14).

The inversion method given earlier, (5.15), is used to generate samples.

2. Compute the maximum likelihood estimates for the thousand samples, say

(âi, b̂i, σ̂i, ξ̂i) for i = 1, 2, . . . , 1000.

3. Compute the biases and mean squared errors given by

biash(n) =
1

1000

1000∑
i=1

(
ĥi − h

)
and

MSEh(n) =
1

1000

1000∑
i=1

(
ĥi − h

)2
for h = a, b, σ, ξ.

We repeat these steps for n = 10, 20, . . . , 1000 with a = 3, b = 3, t = 0, σ = 1 and

ξ = 0.5, so computing biasa(n), biasb(n), biasσ(n), biasξ(n) and MSEa(n), MSEb(n),

MSEσ(n), MSEξ(n) for n = 10, 20, . . . , 1000.
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Figure 5.6: biasa(n) (top left), biasb(n) (top right), biasµ(n) (middle left), biasσ(n)
(middle right) and biasξ(n) (bottom left) versus n = 10, 20, . . . , 1000.
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Figure 5.7: MSEa(n) (top left), MSEb(n) (top right), MSEµ(n) (middle left),
MSEσ(n) (middle right) and MSEξ(n) (bottom left) versus n = 10, 20, . . . , 1000.
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Figures 5.6 and 5.7 show how the four biases and the four mean squared errors

vary with respect to n. The broken line in Figure 5.6 corresponds to the biases being

zero. The broken line in Figure 5.7 corresponds to the mean squared errors being

zero. We know from theory that maximum likelihood estimates have biases of the

order O(1/n) and mean squared errors of the order O(1/n). With this in mind, we

have shown in Figures 5.6 and 5.7 how the four biases and the four mean squared

errors vary with respect to n. The following observations can be made:

1. The biases for the parameters a, b, and ξ are generally positive, while they are

negative for σ.

2. Although they appear volatile, the biases for each parameter decrease to zero

as n→∞.

3. The biases appear largest for parameters b and σ, while it is smallest for pa-

rameters a and ξ.

4. Although they appear volatile, the mean squared errors for each parameter

decrease to zero as n→∞.

5. The mean squared errors appear largest for the parameter b.

6. The mean squared errors appear smallest for the parameters a, σ and ξ.

7. The biases for a appear to level out for all n > 150;

8. The biases for b appear to level out for all n > 500;

9. The biases for ξ appear to level out for all n > 400;

10. The mean squared errors for a appear to level out for all n > 800;

11. The mean squared errors for b appear to level out for all n > 500;

12. The mean squared errors for σ appear to level out for all n > 180;
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13. The mean squared errors for ξ appear to level out for all n > 80.

Here, we have presented results for only one choice for (a, b, σ, ξ), namely that

(a, b, σ, ξ) = (3, 3, 1, 0.5), but results are analogous for other choices. In addition to

computing the biases and mean squared errors, we also computed p values to check

for multivariate normality and validity of likelihood ratio tests. The p values for

multivariate normality were based on the Shapiro-Wilk test Royston (1982). The p

values for the validity of likelihood ratio tests were based on the chi-square goodness

of fit test. Plots of the p values versus n showed that they remained above 0.05 for

all values of n greater than 200.
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5.13 An Application

To illustrate the better flexibility of our model compared to the others, we apply this

model to floods data.

5.13.1 Floods Data in the River Nidd at Hunsingore Weir

Here, we illustrate the flexibility of the KumGP distribution using a real data set,

analysed in Papastathopoulos and Tawn (2012). The data set consists of 154 ex-

ceedances of the threshold level 65m3s−1 by the River Nidd at Hunsingore Weir from

1934 to 1969. The data is taken from NERC (1975).

Empirical Mean Residual Life Plot:

A mean residual life plot of the data is shown in Figure 5.8. From this plot we choose

t = 72.7m2s−1. This threshold shown in red seems appropriate for this.

Estimate the Parameters:

We fit the KumGP, GP, EGP1, EGP2, and EGP3 distributions to the data. The latter

three distributions are those considered by Papastathopoulos and Tawn (2012). The

maximum likelihood procedure described in section 5.11 was used for fitting Eq(??).

The MLEs of the parameters, the Log-Lik and information criteria are listed in Tables

5.2- 5.3.

Model a b κ σ ξ -Log-Lik

KumGP 4.659 111.634 - 2.467 10.073 551.4591

GP 1 1 - 19.823 0.393 556.2307

EGP1 - - 1.875 7.190 0.687 553.7751

EGP2 - - 2.220 3.911 0.601 553.5387

EGP3 - - 1.834 8.057 0.696 553.858

Table 5.2: MLEs of the model parameters for Floods data.

None of the three-parameter distributions (EGP1, EGP2 and EGP3) provide a

significant improvement over the GP distribution. From these three distributions,

the EGP1 distribution has the largest likelihood value and the smallest AIC value,
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Figure 5.8: The Mean residual life plot for exceedances of the levels of River Nidd
over the threshold 65m3s−1.

Model AIC AICc

KumGP 1110.918 1111.243

GP 1116.461 1116.568

EGP1 1113.55 1113.752

EGP2 1113.077 1113.279

EGP3 1113.716 1113.917

Table 5.3: The statistics AIC and AICc.
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but the fit of the EGP2 distribution is not significantly better than that of the GP

distribution. The proposed four-parameter distribution provides a significant im-

provement over the GP distribution and the three three-parameter distributions. It

has the largest likelihood value and the smallest AIC value amongst all of the fit-

ted distributions. Furthermore, chi-square goodness of fit tests give the p-values of

0.0373, 0.0461, 0.048, 0.041 and 0.068 for GP, EGP1, EGP2, EGP3, and KumGP

distributions, respectively, suggesting that actually the KumGP distribution pro-

vides the only adequate fit. In the Table presents values of the Anderson-Darling

and Cramér-von Miseswe tests. According to these tests, we can conclude that the

KumGP distribution give better fit than the GP distribution.

Model Anderson-Darling Cramér-von Mises

KumGP 0.1695225 0.02260322

GP 0.3105545 0.04270863

Table 5.4: The Anderson-Darling and Cramér-von Mises statistics for the annual
rainfall maxima data

Graphs:

The conclusion drawn, based on the likelihood values, AIC , AICc values and the

chi-square goodness of fit tests can be verified by means of probability-probability

plots, quantile-quantile plots and density plots.

A probability-probability plot consists of plots of the observed probabilities against

probabilities predicted by the fitted model. For example, for the GP model, the val-

ues 1− [1+ ξ̂(x(j)− t)/σ̂]−1/ξ̂ are plotted versus (j−0.375)/(n+0.25), j = 1, 2, . . . , n.

This is method was recommended by Blom (1958) and Chambers (1983), where x(j)

are the sorted values of the data in ascending order, and n is the number of obser-

vations. A quantile-quantile plot consists of plots of the observed quantile against

quantile predicted by the fitted model. For example, for the GP model, the values

t+(σ̂/ξ̂){(1−(j−0.375)/(n+0.25))−ξ̂−1} are plotted versus x(j), j = 1, 2, . . . , n. This

is the method was recommended by Blom (1958) and Chambers (1983). Probability-

probability plots and quantile-quantile plots for the five fitted models are shown in
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Figures 5.9 and 5.10. We can see that the KumGP model has the points closest to

the diagonal line, especially in the upper tail, thus showing the closest agreement

between expected and observed values. In fact, the sum of the absolute differences in

probabilities are 2.28 for GP distribution, 2.61 for EGP1 distribution, 2.64 for EGP2

distribution, 2.59 for EGP3 distribution, and 1.83 for KumGP distribution. The sum

of the absolute differences in quantiles are 430.6654, 623.6487, 639.2003, 623.0249,

and 361.5818 for GP, EGP1, EGP2, and KumGP distribution, respectively.

A density plot compares the fitted probability density functions of the models

with the empirical histogram of the observed data. The density plots are shown in

Figure 5.11. Again the fitted probability density function for KumGP distribution

appears to capture the general pattern of the empirical histogram best.

Quantities of interest for users of extreme value models are the return levels. A

T year return level, say xT , is defined as the level that is exceeded on average every

T years. For the GP model given by (5.12),

xT = t+
σ

ξ

{
(T )ξ − 1

}
, (5.34)

where m is the average number of exceedances per year. For the KumGP model given

by (??),

xT = t+
σ

ξ

{[
1−

{
1− (T )−1/b

}1/a]−ξ − 1

}
, (5.35)

where m is, again, the average number of exceedances per year. Plots of (5.34) and

(5.35) for T = 2, 3, . . . , 50 along with 95 confidence intervals computed by the delta

method ((Rao, 1973, pages. 387-389)) are shown in Figure 5.12.

Return levels are important quantities. They are used to determine, for example,

dimensions of sea walls, water dams, flood defences, etc. Figure 5.12 suggests that

the return levels given by (5.34) and (5.35) do not differ so much. However, the

confidence bands for (5.35) appear much narrower and much more realistic. The

confidence bands for (5.34) are so wide that they do not appear in the figure! So, if

one were to use the KumGP model instead of the GP model, there could be significant

savings with respect to cost and time.
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Figure 5.9: Probability plots for the fits of GP, EGP1, EGP2, EGP3, and KumGP
(New model) for exceedances of the levels of River Nidd over the threshold t =
72.7m3s−1.
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Figure 5.10: Quantile plots for the fits of GP, EGP1, EGP2, EGP3, and KumGP (New
model) for exceedances of the levels of River Nidd over the threshold t = 72.7m3s−1.
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Figure 5.11: Fitted probability density functions of GP, EGP1, EGP2, EGP3, and
KumGP (New model) for exceedances of the levels of River Nidd over the threshold
t = 72.7m3s−1.



5.13 An Application 146

2 5 10 20 50

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0
50

0

Return period, T years

R
et

ur
n 

le
ve

l

2 5 10 20 50

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0
50

0

2 5 10 20 50

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0
50

0

2 5 10 20 50

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0
50

0

2 5 10 20 50

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0
50

0

2 5 10 20 50

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0
50

0

Figure 5.12: Return levels for exceedances of the levels of River Nidd and their 95
percent confidence intervals for the fits of the pdf of the GP distribution (in red) and
the pdf of KumGP distribution (in black).
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5.14 Summary

In this chapter, we discuss the most recent extensions of the GP distribution proposed

by Papastathopoulos and Tawn. Here, we point out that Papastathopoulos and

Tawns generalisations are in fact not new and then go on to propose a tractable

generalization of the GP distribution dependent on the Kumarasswamy distribution.

For the latter generalisation, we provide a comprehensive treatment of mathematical

properties, estimate parameters by the method of maximum likelihood and provide

the observed information matrix.

Some main points about the KumGP distribution are:

• pdf of the KumGP distribution is flexible. That means it can take a variety of

shapes; monotonically decreasing, monotonically increasing, unimodal.

• Bathtub shaped hazard rates are the most realistic ones in terms of practical

applications. It is interesting to note that the KumGP distribution can ex-

hibit this shape. The GP distribution cannot exhibit bathtub shaped hazard

rates. The KumGP distribution’s hrf has a variety of shapes: monotonically

decreasing, monotonically increasing, and unimodal.

• Finally, by applying the KumGP distribution to floods data in the river Nidd

at Hunsingore weir, we conclude that the KumGP distribution is more flexible

compared to the GP, EGP1, EGP2, and EGP3 distributions.



Part III

A New Family of Extreme Value

Distributions



Chapter 6

On Chen et al.’s Extreme Value

Distribution

6.1 Introduction

The GEV distribution is one of the most widely applied models for univariate extreme

values. Its cumulative distribution function and probability density function are

specified by

F (x) = exp(−u)

and

f(x) = σ−1u1+ξ exp(−u), (6.1)

respectively, where 1 + ξ(x − µ)/σ > 0, −∞ < ξ < ∞, −∞ < µ < ∞, σ > 0 and

u = {1+ξ(x−µ)/σ}−1/ξ, which is used throughout this chapter. Possible applications

of the GEV distribution cover most areas of science, engineering and medicine. Some

published applications are mentioned in previous chapters.

In recent years, several extensions of the GEV distribution have been proposed.

The most recent of these is due to Chen et al. (2010). Earlier generalizations in-

clude the three-parameter kappa distribution due to Mielke Jr (1973) and the four-

parameter kappa distribution due to Hosking (1994). Chen’s generalization has the
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cumulative distribution function and the probability density function given by

F (x) =

{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β
, (6.2)

and

f(x) = α(δβ)−1(x− µ)α−1 exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
(6.3)

respectively, for −∞ < x <∞, α > 0, β > 0, δ > 0 and −∞ < µ <∞. An excellent

motivation for introducing (6.2) and (6.3) is described in Chen et al. (2010). However,

neither of (6.2) and (6.3) appear to be valid functions since (x − µ)α is undefined

for x < µ. Here, we provide a modification of Chen et al. (2010)’s generalization to

correct this error. We specify the cumulative distribution function and the probability

density function by

F (x) =
(
1− 2−1/β

)−1 [{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β
− 2−1/β

]
, (6.4)

and

f(x) =
α(x− µ)α−1

δβ(1− 2−1/β)
exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
(6.5)

respectively, for α > 0, β > 0, δ > 0 and x > µ > −∞. Clearly, both (6.4) and (6.5)

are valid functions. We shall refer to the distribution given by (6.4) and (6.5) as the

Chen distribution.

If X is a random variable with probability density function (6.5), we write X ∼

Chen(α, β, δ, µ). The Chen quantile function is obtained by inverting (6.4)

x = Q(z) = F−1(z) = µ+
[
−δ ln

{[
2−1/β +

(
1− 2−1/β

)
q
]−β − 1

}]1/α
. (6.6)

So, one can generate Chen variates from (6.6) by X = Q(U), where U is a uniform

variate on the unit interval (0, 1).

In the rest of this Chapter, we provide a comprehensive description of the mathe-

matical properties of (6.5). We examine the shape of (6.5) and its associated hazard

rate function in sections 6.2 and 6.3, respectively. We derive expressions for the

moments in the section 6.4. Order statistics, their moments and L moments are
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calculated in the section 6.5. Asymptotic distributions of the extreme values are pro-

vided in the section 6.6. Estimation by the method of maximum likelihood, including

the observed information matrix, is presented in the section 6.7. A simulation study

is presented in the section 6.8 to assess the performance of the maximum likelihood

estimators. Application of the Chen distribution to a real data set is illustrated in

the section 6.9.

Results in the section 6.4 involve infinite series representations. The terms of

these infinite series are elementary, so infinite series can be computed by truncation

using any standard package.

6.2 Shape of the Probability Density Function

The first derivative of ln (f(x)) for the Chen distribution is:

d ln f(x)

dx
= −α

δ
(x− µ)α−1 +

α− 1

x− µ
+
α

δ

(
1

β
+ 1

)
(x− µ)α−1

1 + exp

[
1

δ
(x− µ)α

] .
So, modes of f(x) are the roots of the equation

α

δ
(x− µ)α − α

δ

(
1

β
+ 1

)
(x− µ)α

1 + exp

[
1

δ
(x− µ)α

] = α− 1. (6.7)

There may be more than one root to (6.7). If x = x0 is a root of (6.7) then it

corresponds to a local maximum if d ln f(x)/dx > 0 for all x < x0 and d ln f(x)/dx <

0 for all x > x0. It corresponds to a local maximum if d ln f(x)/dx < 0 for all x < x0

and d ln f(x)/dx > 0 for all x > x0. It corresponds to a point of inflexion if either

d ln f(x)/dx > 0 for all x 6= x0 or d ln f(x)/dx < 0 for all x 6= x0.

Plots of shapes of (6.5) for µ = 0, δ = 1 and selected values of (α, β) are given in

Figure (6.1). Both unimodal and monotonically decreasing shapes appear possible.

Unimodal shapes appear for large α. Monotonically decreasing shapes appear for

small α.

Furthermore, the asymptotes of f(x) and F (x) as x→ 0,∞ are given by

f(x) ∼ α(δβ)−1
(
1− 2−1/β

)−1
xα−1 exp

[
−1

δ
(x− µ)α

]
; as x→∞,
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Figure 6.1: Plots of the pdf of Chen distribution for µ = 0, δ = 1, α = 0.5, 1, 2, 5,
β = 0.5 (black curve), β = 1 (red curve), β = 2 (green curve) and β = 5 (blue curve).
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f(x) ∼ α(δβ)−12−1/β−1
(
1− 2−1/β

)−1
(x− µ)α−1; as x→ µ,

1− F (x) ∼ β−1
(
1− 2−1/β

)−1
exp

[
−1

δ
(x− µ)α

]
; as x→∞,

and

F (x) ∼ (δβ)−12−1/β−1
(
1− 2−1/β

)−1
(x− µ)α; as x→ µ.

Note that the upper tail of f(x) is that of a Weibull distribution. The lower tail is

polynomial.

6.3 Shape of the Hazard Rate Function

For the Chen distribution, h(x) takes the form

h(x) = α

(x− µ)α−1 exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
δβ

[
1−

{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β] . (6.8)

The first derivative of lnh(x) is:

d lnh(x)

dx
=−α

δ
(x− µ)α−1 +

α− 1

x− µ
+
α

δ

(
1

β
+ 1

)
(x− µ)α−1

1 + exp

[
1

δ
(x− µ)α

]

+α

(x− µ)α−1 exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
δβ

[
1−

{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β] .

So, modes of h(x) are the roots of the equation

α− 1 =
α

δ
(x− µ)α − α

δ

(
1

β
+ 1

)
(x− µ)α

1 + exp

[
1

δ
(x− µ)α

] − α(x− µ)α

×
exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
δβ

[
1−

{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β] . (6.9)
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There may be more than one root to (6.9). If x = x0 is a root of (6.9) then it

corresponds to a local maximum if d lnh(x)/dx > 0 for all x < x0 and d lnh(x)/dx < 0

for all x > x0. It corresponds to a local maximum if d lnh(x)/dx < 0 for all x < x0

and d lnh(x)/dx > 0 for all x > x0. It corresponds to a point of inflexion if either

d lnh(x)/dx > 0 for all x 6= x0 or d lnh(x)/dx < 0 for all x 6= x0.

Furthermore, the asymptotes of h(x) as x→ 0,∞ are given by

h(x) ∼ αδ−1xα−1; as x→∞,

and

h(x) ∼ α(δβ)−12−1/β−1
(
1− 2−1/β

)−1
(x− µ)α−1; as x→ µ.

Note that both the upper and lower tails of h(x) behave polynomially with respect

to x.

Figure (6.2) illustrates some of the possible shapes of h(x) for µ = 0, δ = 1 and

selected values of (α, β). Both monotonically increasing, monotonically decreasing

and upside down bathtub shapes appear possible.

1. Upside down bathtub shapes appear for small values of α and β;

2. Monotonically decreasing shapes appear for small values of α;

3. Monotonically increasing shapes appear for large values of α.

Upside down bathtub shaped hazard rates are a widely spread shape in reliabil-

ity and survival analysis. Silva et al. (2010) presented an example for such hazard

rates,which can be observed in the course of a disease whose mortality reaches a peak

after some finite period, and then declines gradually . For other practical examples

yielding upside down bathtub hazard rates, see Singh and Misra (1994).

It is interesting to note that the Chen distribution can exhibit upside down bath-

tub shapes. However, the GEV distribution cannot exhibit upside down bathtub

shaped hazard rates.
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Figure 6.2: Plots of the hrf of the Chen distribution for µ = 0, δ = 1, α =
0.5, 0.8, 1.5, 2, β = 0.5 (black curve), β = 1 (red curve), β = 2 (green curve) and
β = 5 (blue curve).
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6.4 Moments

Let X ∼ Chen(α, β, δ, µ). Using the binomial expansion, we can write

E (Xn) = E ((X − µ+ µ)n)

=
n∑

m=0

(
n

m

)
µn−mE ((X − µ)m)

= α(δβ)−1
(
1− 2−1/β

)−1 n∑
m=0

(
n

m

)
µn−m

∫ ∞
µ

(x− µ)m+α−1

× exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
dx

= α(δβ)−1
(
1− 2−1/β

)−1 n∑
m=0

(
n

m

)
µn−m

∫ ∞
µ

(x− µ)m+α−1

× exp

[
−1

δ
(x− µ)α

] ∞∑
k=0

(
−1/β − 1

k

)
exp

[
−k
δ

(x− µ)α
]
dx

= α(δβ)−1
(
1− 2−1/β

)−1 n∑
m=0

(
n

m

) ∞∑
k=0

µn−m
(
−1/β − 1

k

)
×
∫ ∞
µ

(x− µ)m+α−1 exp

[
−k + 1

δ
(x− µ)α

]
dx

= β−1
(
1− 2−1/β

)−1 n∑
m=0

(
n

m

) ∞∑
k=0

µn−m
(
−1/β − 1

k

)
×δm/α(k + 1)−m/α−1

∫ ∞
0

ym/α exp (−y) dy

= β−1
(
1− 2−1/β

)−1 n∑
m=0

(
n

m

) ∞∑
k=0

µn−m
(
−1/β − 1

k

)
×δm/α(k + 1)−m/α−1Γ (m/α + 1) (6.10)

for m > 0 any real number. The first four moments are given by:

E (X) = β−1
(
1− 2−1/β

)−1 [ ∞∑
k=0

µ

(
−1/β − 1

k

)
(k + 1)−1

+
∞∑
k=0

(
−1/β − 1

k

)
δ1/α(k + 1)−1/α−1Γ (1/α + 1)

]
, (6.11)
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E
(
X2
)

= β−1
(
1− 2−1/β

)−1 [ ∞∑
k=0

µ2

(
−1/β − 1

k

)
(k + 1)−1

+2
∞∑
k=0

µ

(
−1/β − 1

k

)
δ1/α(k + 1)−1/α−1Γ (1/α + 1)

+
∞∑
k=0

(
−1/β − 1

k

)
δ2/α(k + 1)−2/α−1Γ (2/α + 1)

]
, (6.12)

E
(
X3
)

= β−1
(
1− 2−1/β

)−1 [ ∞∑
k=0

µ3

(
−1/β − 1

k

)
(k + 1)−1

+3
∞∑
k=0

µ2

(
−1/β − 1

k

)
δ1/α(k + 1)−1/α−1Γ (1/α + 1)

+3
∞∑
k=0

µ

(
−1/β − 1

k

)
δ2/α(k + 1)−2/α−1Γ (2/α + 1)

+
∞∑
k=0

(
−1/β − 1

k

)
δ3/α(k + 1)−3/α−1Γ (3/α + 1)

]
, (6.13)

and

E
(
X4
)

= β−1
(
1− 2−1/β

)−1 [ ∞∑
k=0

µ4

(
−1/β − 1

k

)
(k + 1)−1

+4
∞∑
k=0

µ3

(
−1/β − 1

k

)
δ1/α(k + 1)−1/α−1Γ (1/α + 1)

+6
∞∑
k=0

µ2

(
−1/β − 1

k

)
δ2/α(k + 1)−2/α−1Γ (2/α + 1)

+4
∞∑
k=0

µ

(
−1/β − 1

k

)
δ3/α(k + 1)−3/α−1Γ (3/α + 1)

+
∞∑
k=0

(
−1/β − 1

k

)
δ4/α(k + 1)−4/α−1Γ (4/α + 1)

]
. (6.14)

The infinite series in (6.10)-(6.14) all converge.

The expressions given by (6.11)-(6.14) can be used to compute the mean, variance,

skewness and kurtosis of X. The values of these four quantities versus α are plotted

in Figure (6.3) for µ = 0, δ = 1 and selected values of β.
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Figure 6.3: Mean, variance, skewness, and kurtosis of the Chen distribution, versus
α for µ = 0, δ = 1, β = 0.5 (solid curve), β = 1 (curve of dashes), β = 2 (curve of
dots) and β = 5 (curve of dots and dashes).
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From these measures, we can see that:

I. Mean, variance and skewness are monotonic decreasing functions of α.

II. Kurtosis initially decreases before increasing with respect to α.

III. Mean is a monotonic decreasing function of β.

IV. Skewness is a monotonic increasing function of β.

6.5 Order Statistic

Order statistic is the most statistical tools that appear in many areas of statistical

theory and practice. Let X1:n < X2:n < · · · < Xn:n denote the order statistics for a

random sample X1, X2, . . . , Xn from (6.5). Then the pdf of the kth order statistic,

say Y = Xk:n, can be expressed as

fY (y) =
α
(
1− 2−1/β

)−n−1
n!

δβ(k − 1)!(n− k)!
(x− µ)α−1

{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
× exp

[
−1

δ
(x− µ)α

][{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β
− 2−1/β

]k

×

[
1−

{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β]n−k

=
α
(
1− 2−1/β

)−n−1
n!

δβ(k − 1)!(n− k)!

k−1∑
i=0

n−k∑
j=0

(
k − 1

i

)(
n− k
j

)
(−1)k−i+j2(i+1−k)/β

×(x− µ)α−1 exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−(i+j+1)/β−1

=
α
(
1− 2−1/β

)−n−2
n!

δβ(k − 1)!(n− k)!

k−1∑
i=0

n−k∑
j=0

(
k − 1

i

)(
n− k
j

)
2(i+1−k)/β − 2−j/β

(−1)i−k−j(i+ j + 1)

×fα,β/(i+j+1),δ,µ(x),

where fa,b,σ,ξ(·) denotes the probability density function of Chen (a, b, σ, ξ). So, the

probability density function of Y is a finite linear combination of probability density

functions of Chen random variables. Hence, other properties of Y can be easily
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derived. For instance, the cumulative distribution function of Y can be expressed as

FY (y) =
α
(
1− 2−1/β

)−n−2
n!

δβ(k − 1)!(n− k)!

k−1∑
i=0

n−k∑
j=0

(
k − 1

i

)(
n− k
j

)

× 2(i+1−k)/β − 2−j/β

(−1)i−k−j(i+ j + 1)
Fα,β/(i+j+1),δ,µ(x),

where Fa,b,σ,ξ(·) denotes the cumulative distribution function corresponding to fa,b,σ,ξ(·).

The qth moment of Y can be expressed as

E [Y q] =
α
(
1− 2−1/β

)−n−2
n!

δβ(k − 1)!(n− k)!

k−1∑
i=0

n−k∑
j=0

(
k − 1

i

)(
n− k
j

)

× 2(i+1−k)/β − 2−j/β

(−1)i−k−j(i+ j + 1)
E
[
Xq
α,β/(i+j+1),δ,µ

]
,

where Xa,b,σ,ξ ∼ Chen (a, b, σ, ξ).

Hosking (1990) explained that “L-moments are summary statistics for probability

distributions and data samples . They are analogous to ordinary moments but are

computed from linear functions of the order statistics”. The rth L moment is defined

by

λr =
r−1∑
j=0

(−1)r−1−j
(
r − 1

j

)(
r − 1 + j

j

)
βj,

where βj = E{XF (X)j}. In particular, λ1 = β0, λ2 = 2β1 − β0, λ3 = 6β2 − 6β1 + β0

and λ4 = 20β3−30β2 + 12β1−β0. In general, βr = (r+ 1)−1E(Xr+1:r+1), so it can be

computed using (6.15). Hosking (1990) clarified that “the L moments have several

advantages over ordinary moments: for example, they apply for any distribution

having finite mean; no higher-order moments need be finite”.

6.6 Extreme Values

This section mirrors section (5.9). Suppose again X1, . . . , Xn is a random sample

from (6.5). X denotes the sample mean, then by using the central limit theorem,
√
n(X − E(X))/

√
Var(X) approaches the standard normal distribution as n→∞.

Here, we determine the max and min domains of attraction of the cumulative

distribution function given by (6.4).
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Let g(t) = (δ/α)(t− µ)1−α. Then,

lim
t→∞

1− F (t+ xg(t))

1− F (t)
= lim

t→∞
exp

{
1

δ
[(t− µ)α − (t+ xg(t)− µ)α]

}
= lim

t→∞
exp

{
1

δ
(t− µ)α

[
1−

(
1 +

xg(t)

t− µ

)α]}
= lim

t→∞
exp

{
−α
δ

(t− µ)αg(t)x
}

= exp(−x)

for every x ∈ (−∞,∞). So, it again follows by (Leadbetter et al., 1983, chap. 1) that

F belongs to the max domain of attraction of the Gumbel extreme value distribution

with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp {− exp(−x)}

for some suitable norming constants an > 0 and bn.

Also, by using Corollary 1.6.3 in Leadbetter et al. (1983), we can determine the

form of the norming constants. One can see that bn = F−1(1 − 1/n) and an =

(α/δ)(bn − µ)α−1, where F−1(·) denotes the inverse function of F (·).

For the min domain of attraction, we note that

lim
t→0

F (tx+ µ)

F (t+ µ)
= lim

t→0

(
tx

t

)α
= xα.

So, F belongs to the min domain of attraction of the Weibull extreme value distri-

bution.

6.7 Maximum Likelihood Estimation

Suppose once more that X1, X2, . . . , Xn is a random sample of size n from (6.5).

Then the log-likelihood function for the vector of parameters (α, β, δ, µ) can be written

as

lnL(α, β, δ, µ) = n lnα− n ln δ − n ln β − n ln
[
1− 2−1/β

]
− 1

δ

n∑
i=1

(xi − µ)α + (α− 1)

×
n∑
i=1

ln (xi − µ)−
(

1

β
+ 1

) n∑
i=1

ln

{
1 + exp

[
−1

δ
(xi − µ)α

]}
.(6.15)
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The first-order partial derivatives of (6.15) with respect to the four parameters are:

∂ lnL

∂α
=
n

α
− n

δ

n∑
i=1

(xi − µ)α ln (xi − µ) +
n∑
i=1

ln (xi − µ)

+
1

δ

(
1

β
+ 1

) n∑
i=1

exp

[
−1

δ
(xi − µ)α

]
(xi − µ)α ln (xi − µ)

1 + exp

[
−1

δ
(xi − µ)α

] , (6.16)

∂ lnL

∂α
=−n

β
+

n ln 2

β2
(
21/β − 1

) +
1

β2

n∑
i=1

ln

{
1 + exp

[
−1

δ
(xi − µ)α

]}
, (6.17)

∂ lnL

∂δ
=−n

δ
+

1

δ2

n∑
i=1

(xi − µ)α − 1

δ2

(
1

β
+ 1

)

×
n∑
i=1

exp

[
−1

δ
(xi − µ)α

]
(xi − µ)α

1 + exp

[
−1

δ
(xi − µ)α

] , (6.18)

and

∂ lnL

∂µ
=
α

δ

n∑
i=1

(xi − µ)α−1 − (α− 1)
n∑
i=1

(xi − µ)−1 − α

δ

(
1

β
+ 1

)

×
n∑
i=1

exp

[
−1

δ
(xi − µ)α

]
(xi − µ)α−1

1 + exp

[
−1

δ
(xi − µ)α

] . (6.19)

The maximum likelihood estimates of (α, β, δ, µ), say (α̂, β̂, δ̂, µ̂), are the simulta-

neous solutions of the equations ∂ lnL/∂α = 0, ∂ lnL/∂β = 0, ∂ lnL/∂δ = 0 and

∂ lnL/∂µ = 0. As n → ∞, (α̂ − α, β̂ − β, δ̂ − δ, µ̂ − µ) approaches a multivariate

normal vector with zero means and variance-covariance matrix −(E[J])−1, where

J =



∂2 lnL

∂α2
∂2 lnL
∂α∂β

∂2 lnL
∂α∂δ

∂2 lnL
∂α∂µ

∂2 lnL

∂β∂α
∂2 lnL
∂β2

∂2 lnL
∂β∂δ

∂2 lnL
∂β∂µ

∂2 lnL

∂δ∂α
∂2 lnL
∂δ∂µ

∂2 lnL
∂δ2

∂2 lnL
∂δ∂µ

∂2 lnL

∂µ∂α
∂2 lnL
∂µ∂β

∂2 lnL
∂µ∂δ

∂2 lnL
∂δ2


.

The matrix, −E[J], is known as the expected information matrix. The matrix, −J,

is known as the observed information matrix.
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In simulations, and real data applications described later on, we maximized the

log-likelihood function using the nlm function in the R (R Development (2011)) sta-

tistical package. For each maximization, the nlm function was executed for a wide

range of initial values. At least one maximum was identified each time. In cases of

more than one maximum, we took the maximum likelihood estimates to correspond

to the largest of the maxima.

In practice, n is finite. The literature (see, for example, Efron and Hinkley (1978)

suggests that it is best to approximate the distribution of (α̂−α, β̂−β, δ̂−δ, µ̂−µ) by

a multivariate normal distribution with zero means and variance-covariance matrix

given by −J−1, inverse of the observed information matrix, with (α, β, δ, µ) replaced

(α̂, β̂, δ̂, µ̂). So, it is useful to have explicit expressions for the elements of J. They

are given in appendix A.

The multivariate normal approximation can be used to construct approximate

confidence intervals and confidence regions for the individual parameters and for the

hazard and survival functions.

6.8 Simulation Study

In this section, we assess the performance of the maximum likelihood estimates given

by (6.16)-(6.19) with respect to sample size n. The assessment is based on a simula-

tion study:

1. Generate ten thousand samples of size n from (6.5). The inversion method is

used to generate samples, i.e variates of the Chen distribution are generated

using (6.6).

2. Compute the maximum likelihood estimates for the thousand samples, say

(α̂i, β̂i, δ̂i, µ̂i) for i = 1, 2, . . . , 10000.

3. Compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑
i=1

(
ĥi − h

)
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Figure 6.4: biasα(n) (top left), biasβ(n) (top right), biasδ(n) (middle right) and
biasµ(n) (bottom left) versus n = 10, 20, . . . , 1000.

and

MSEh(n) =
1

10000

10000∑
i=1

(
ĥi − h

)2
for h = α, β, δ, µ.

We repeat these steps for n = 10, 20, . . . , 1000 with α = 2, β = 2, δ = 1 and µ = 0, so

computing biasα(n), biasβ(n), biasδ(n), biasµ(n) and MSEα(n), MSEβ(n), MSEδ(n),

MSEµ(n) for n = 10, 20, . . . , 1000.
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Figure 6.5: MSEα(n) (top left), MSEβ(n) (top right),MSEδ(n) (middle right) and
MSEµ(n) (bottom left) versus n = 10, 20, . . . , 1000.
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Figures 6.4 and 6.5 show how the four biases and the four mean squared errors

vary with respect to n. The broken line in Figure 6.4 corresponds to the biases being

zero. The broken line in Figure 6.5 corresponds to the mean squared errors being

zero. The following observations can be made:

1. Biases for α and δ are generally negative;

2. Biases for β and µ are generally positive;

3. Biases for each parameter generally approach zero as n→∞; exclude biases of

the parameter b;

4. Biases appear largest for β; they appear exceedingly large;

5. Biases appear smallest for µ;

6. Mean squared errors for each parameter generally decrease to zero as n → ∞;

exclude Mean squared errors of the parameter b;

7. Mean squared errors appear largest for β; again they appear exceedingly large;

8. Mean squared errors appear smallest for µ.

We have presented results for only one choice for (α, δ, δ, µ), namely that (α, δ, δ, µ) =

(2, 2, 1, 0), but results were similar for other choices.

6.9 An Application

To illustrate the flexibility of the Chen distribution, we fitted this model to the same

real data set used in Chen et al. (2010). The data used by Chen et al. (2010) are

present in appendix C.

We fitted the GEV and Chen distributions to the data. The maximum likelihood

procedure described in the section 6.7 was used for fitting the Chen distribution. The

fitted estimates for the Chen distribution were: α̂ = 1.700(0.069), β̂ = 0.055(0.045),

δ̂ = 17125.09(10190.82), µ̂ = −33.524(193.361) with − lnL = 324.443 and AIC =
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Figure 6.6: Probability plots for the fits of the GEV distribution (in red) and the
Chen distribution (in black) for annual maximum rainfall from Maple Ridge in British
Columbia.

656.885. The fitted estimates for the GEV distribution were: µ̂ = 552.016(19.520),

σ̂ = 129.755(13.307), ξ̂ = −0.308(0.072) with − lnL = 327.932 and AIC = 661.864.

The numbers within brackets are standard errors obtained by inverting the observed

information matrix, see section 6.7.

We can see that the negative log-likelihood values and the AIC values are smaller

for the Chen distribution. So, for the data set used in Chen et al. (2010), the Chen

distribution provides a better fit. This is confirmed by the probability-probability

plots, quantile-quantile plots and density plots shown in Figures 6.6- 6.8. The points

in Figures 6.6 and 6.7 are closer to the diagonal lines for the Chen distribution. The

fitted probability density function for the Chen distribution appears to better capture

the histogram in Figure 6.8.

Furthermore, chi-square goodness of fit tests give the p-values of 0.039 and 0.071

for the GEV distribution and the Chen distribution, respectively, suggesting that
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Eq(6.5) provides the only adequate fit.

6.10 Summary

This chapter discussed the most recent generalisation of GEV distribution introduced

by Chen et al. (2010). This generalisation does not appear to be valid since (x− µ)α

is undefined for x < µ. In this study, we provide a modification of Chen et al.

(2010)’s generalization to correct this error. The mathematical properties of this

model are presented. Parameters of the Chen model are estimated by the maximum

likelihood estimation method. To study the bias and mean square error (MSE) for

the estimator, a simulation study is used.

Finally, using the same data as in Chen et al. (2010), we conclude that the corrected

form of the Chen distribution appears to be an appropriate model for the annual

maximum rainfall data compared to the GEV distribution.



Chapter 7

A New Distribution for Extreme

Values

In this chapter, we introduce a new modification of the GEV distribution dependent

on the quantile function. Because of its flexibility in the different pdf forms, this new

model can be widely used to model some natural phenomena. The main idea of this

new model is motivated by the question “How to make control on the thickness of

the shapes of the extreme value models?”. Chen et al. (2010) introduced a new dis-

tribution for the return period of antecedent precipitation by taking the power of the

quantile function of the logistic distribution. According to Chen this new model has

a variety of shapes and has a closed form density and distribution function. Also, it

fits the real extreme value data better than known distributions of univariate extreme

values, but the given formulas for the distribution do not form a valid probability

distribution since (x − µ)α is undefined for x < µ. Therefore, we corrected their

formulas to form a valid probability distribution and presented them in the previous

chapter. Here, we use the corrected formula to improve the GEV distribution. In

section 7.1 the pdf and cdf of a new family are introduced. The relation to other

distributions is presented in section 7.2. Some of the important statistical properties

such as closeness under linear transformation, the variety of shapes of the pdf and

hrf, moments and moment generating function and the analytical expression for the

mean deviations about the mean and the median are introduced in section 7.3. We
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derive the order statistics and extreme values for a new extreme value distribution

in sections 7.4 and 7.5. In section 7.6, three methods to estimate the parameters are

investigated. Finally, to illustrate the benefit of the new extreme value distribution

over other models we fit these distributions to the real data.

7.1 Introduction

The distribution function of the GEV distribution is defined as

G(x, µ, σ, ξ) = exp(−u),

where u = {1 + ξ(x − µ)/σ}−1/ξ. So, the quantile function of GEV distribution can

be written as

xp = F−1(p) = µ+
σ

ξ

{[
log(

1

p
)

]−ξ
− 1

}
, (7.1)

According to Chen et al.(2010), the quantile function of the new distribution can be

defined as

xp = F−1(p) = µ+

(
σ

ξ

)1/a
{[

log(
1

p
)

]−ξ
− 1

}1/a

, (7.2)

where p ∈ (0, 1) and the shape parameters α and ξ satisfy a > 0, ξ ∈ (−∞,∞) and

µ and σ are the location and scale parameters respectively. The major reason for

adding another shape parameter is to control the thickness of the tail. This family

of distributions has a closed form of its pdf, cdf and quantile function. In order to

obtain the pdf and cdf we first derive two following functions

F (x) = exp

{
−
[
1 + ξ

(x− µ)a

σ

]−1/ξ}
, (7.3)

f(x) =
a

σ
(x− µ)a−1

[
1 + ξ

(x− µ)a

σ

]−1/ξ−1
exp

{
−
[
1 + ξ

(x− µ)a

σ

]−1/ξ}
. (7.4)

since (x− µ)α is undefined for x < µ, we only consider the case when x > µ and

hence ((7.5)) and ((7.6)) define the cdf and pdf for a new extreme value distribution,

respectively. Also, we consider t = µ as a certain threshold. From now on let the new

distribution of extremes values be denoted by NEV. Then the NEV distribution has
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three parameters a, σ, and ξ. Throughout this chapter, we set u =
[
1 + ξ (x−t)a

σ

]−1/ξ
.

Then the cdf and pdf can be written as

F (x) =
1

1− e−1
{exp{−u} − exp{−1}} , (7.5)

f(x) = (1− e−1)−1 a
σ
u1+ξ

(
σ(u−ξ − 1)

ξ

)1−1/a

exp(−u); x ∈ (t,∞), (7.6)

where σ > 0 and ξ ∈ R. Let C = (1− e−1)−1. Then we can rewrite the cdf and pdf

in the more simple forms:

F (x) = C {exp{−u} − exp{−1}} , (7.7)

f(x) = σ−1C a u1+ξ
(
σ
(
u−ξ − 1

)
/ξ
)1−1/a

exp(−u); (7.8)

The hazard rate function takes the following form

h(x) =
f(x)

1− F (x)
,

h(x) = σ−1C a uξ+1

(
σ
(
u−ξ − 1

)
/ξ
)1−1/a

exp(−u)

1− C {exp{−u} − exp{−1}}
. (7.9)

7.2 Relation to Other Distributions

From the NEV distribution, we can deduce some well known distributions. The

following theorem gives the relation between NEV distribution and GEV distribution.

Theorem 7.1. Let X be a r.v following the new distribution with a, ξ shape param-

eters; with t = 0. And Y = X1/a, then

X ∼ NEVD(a, σ, ξ)←→ Y ∼ GEV (0, σ, ξ).

7.3 Statistical Properties

In this section, we present some properties of the new distribution of extreme values.
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7.3.1 Closeness Under Linear Transformation

Theorem 7.2. Let X be a r.v following the new distribution with a, ξ shape param-

eters. And Y = b X ± d, then

X ∼ NEV (a, t, σ, ξ)←→ Y ∼ NEV (a, d± bt, baσ, ξ)

Proof:

We only proof in one direction:

fY (y) = fX

(
y − d
b

)
|dx
dy
|, (7.10)

= σ−1C a

(
y − d
b
− t
)a−1 [

1 +
ξ

σ

(
y − d
b
− t
)a]−1/ξ−1

exp

{
−
[
1 +

ξ

σ

(
y − d
b
− t
)a]−1/ξ}

(
1

b
),

∴ f(y) = σ∗−1C a (y − t∗)a−1
[
1 +

ξ

σ∗
(y − t∗)a

]−1/ξ−1
exp

{
−
[
1 +

ξ

σ∗
(y − t∗)a

]−1/ξ}
, (7.11)

where σ∗ = baσ and t∗ = d+ bt. Then Y is distributed with the NEV distribution

with parameters (a, baσ, ξ) and t∗ = d + bt. We note that the random variable Y

has the same shape parameters as the random variable X. In other words, the shape

parameter of the NEV distribution is fixed, while the location and scale parameters

change under the transformation. As a result of this, the skewness and the kurtosis

for this model are constants and they are independent of the location and scale

parameters.

7.3.2 Shapes of PDF and HRF

The first derivative of log f(x) is:

d

dx
log f(x) =

a

ξ

(
σ(u−ξ − 1)

ξ

)−1/a{
(a− 1)

a
− (1− uξ) [(1 + ξ)− u]

}
. (7.12)

So, the modes are the roots of the equation

(a− 1)

a
= (1− uξ) [(1 + ξ)− u] . (7.13)
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As it seems, this equation has no explicit solution. Therefore, we discuss two main

points before clarifying the shapes of pdf and hrf.

a) First case when a < 1:

In this case the pdf has exponential shapes which means that there is no mode.

b) Second case when a = 1:

The pdf of the NEV distribution reduces to the pdf of the GEV distribution and

equation (7.13) becomes (1 − uξ) [(1 + ξ)− u] = 0. However, we know that, the

modes of the GEV distribution are defined as

mode =

µ+ σ (1+ξ)−ξ−1
ξ

if ξ 6= 0,

µ if ξ = 0.
(7.14)

The first derivative of log h(x) is:

d

dx
log h(x) =

(
σ(u−ξ − 1)

ξ

)−1/a{
(a− 1)− a(1− uξ)

ξ

[
(1 + ξ)− u

1− eu

]}
.

(7.15)

So, the modes are the roots of the equation

ξ(1− 1/a)(1− uξ)−1 = (1 + ξ)− u

1− eu
. (7.16)

Figures 7.1 and 7.2 show the different shapes for the pdf and hrf respectively.

From these figures, we can see that pdf and hrf for the new distribution take shapes

depending on the values of the shape parameters. For more details we consider three

cases.

a) First case when ξ < 0:

The pdf of the NEV distribution is monotonically decreasing for a < 1 and bimodal

for a ≥ 1. The hrf takes bathtub shape when a < 1 while, monotonically increasing

for a ≥ 1.

b) Second case when ξ → 0:

Monotonically decreasing and unimodal shapes appear possible in the pdf for

a ≤ 1 and a > 1, respectively. The hrf is monotonically decreasing for a < 1,

slightly increasing in the case a = 1 and monotonically increasing for a > 1.



7.3 Statistical Properties 175

c) Last case when ξ > 0:

Monotonically decreasing shapes appear for a ≤ 1, while unimodal for a > 1 for

both the pdf and hrf. We can find the mode by solving Eq(7.13).

7.3.3 The Quantile Function

If X is a random variable with pdf of the new distribution, then we can write the

quantile function as

xp = F−1(p) = t+

{
σ

ξ

[
− log(p(1− e−1))

]−ξ − 1

}1/a

. (7.17)

From (7.17) we can generate random samples by X = F−1(p), where p is a uniform

variate on the unit interval (0, 1). In addition, we can calculate the median of the

NEV distribution from the quantile function by setting p = 1
2
. The median is:

x0.5 = F−1(p) = t+

{
σ

ξ
[1.151822]−ξ − 1

}1/a

. (7.18)

7.3.4 Moments

The moments of the NEV distribution are given by the following theorem.

Theorem 7.3. Let X be a random variable with the pdf given in (7.8).Then the

moments can be written as

E (Xn) = C

n∑
k=0

k/a∑
j=0

(−1)k/a−j
(
n

k

)(
k/a

j

)(
σ

ξ

)k/a
tn−kγ (1− ξj, 1) . (7.19)

Proof: We can write

E(xn) =

∫ ∞
−∞

xnf(x)dx,

= σ−1C a

(
σ

ξ

)1−1/a ∫ ∞
t

xnu1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx (7.20)

∴ E (Xn) = C aσ−1
(
σ

ξ

)1−1/a

K1(n). (7.21)

Using Lemma 1 in appendix C, the moments of the NEV distribution can be

written as

E (Xn) = C
n∑
k=0

k/a∑
j=0

(−1)k/a−j
(
n

k

)(
k/a

j

)(
σ

ξ

)k/a
tn−kγ (1− ξj, 1) .
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Figure 7.1: Plots of the pdf of the NEV distribution for t = 0, σ = 1, ξ =
−0.5, 0, 0.5, 1, a = 0.1 (black curve), a = 0.5 (red curve), a = 1 (green curve),
a = 1.5 (blue curve), and a = 3.5 (turquoise curve).
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Figure 7.2: Plots of the hrf of the NEV distribution for t = 0, σ = 1, ξ =
−0.5, 0, 0.5, 1, a = 0.1 (black curve), a = 0.5 (red curve), a = 1 (green curve),
a = 2.5 (blue curve), and a = 5 (turquoise curve).
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�

Based on this theorem, we can calculate the four main measures. First, compute the

first four moments as

E (X) = C

(−1)jt γ(1, 1) +

1/a∑
j=0

(−1)1/a−j
(

1/a

j

)(
σ

ξ

)1/a

γ(1− ξj, 1)

 , (7.22)

E
(
X2
)

= C

(−1)jt2 γ(1, 1) + 2

1/a∑
j=0

(−1)1/a−j
(

1/a

j

)(
σ

ξ

)1/a

t γ(1− ξj, 1)

+

2/a∑
j=0

(−1)2/a−j
(

2/a

j

)(
σ

ξ

)2/a

γ(1− ξj, 1)

 , (7.23)

E
(
X3
)

= C

(−1)jt3 γ(1, 1) + 3

1/a∑
j=0

(−1)1/a−j
(

1/a

j

)(
σ

ξ

)1/a

t2 γ(1− ξj, 1)

+3

2/a∑
j=0

(−1)2/a−j
(

2/a

j

)(
σ

ξ

)2/a

t γ(1− ξj, 1) +

3/a∑
j=0

(−1)3/a−j
(

3/a

j

)

×
(
σ

ξ

)3/a

γ(1− ξj, 1)

}
, (7.24)

E
(
X4
)

= C

(−1)jt4 γ(1, 1) + 4

1/a∑
j=0

(−1)1/a−j
(

1/a

j

)(
σ

ξ

)1/a

t3 γ(1− ξj, 1)

+6

2/a∑
j=0

(−1)2/a−j
(

2/a

j

)(
σ

ξ

)2/a

t2 γ(1− ξj, 1) + 4

3/a∑
j=0

(−1)3/a−j
(

3/a

j

)

×t
(
σ

ξ

)3/a

γ(1− ξj, 1) +

4/a∑
j=0

(−1)4/a−j
(

4/a

j

)(
σ

ξ

)4/a

γ(1− ξj, 1)

 . (7.25)

As mentioned in previous chapters, we can use the first four moments to calculate

the mean, variance, skewness and kurtosis.
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7.3.5 Moment Generating Function

Let X be a random variable having the NEV distribution with t = µ. Then the

moment generating function can be calculated as

M(t) = E(etx)

=

∫ ∞
−∞

etxf(x)dx

= σ−1C a

(
σ

ξ

)1−1/a ∫ ∞
µ

etxu1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx

= σ−1C a

(
σ

ξ

)1−1/a

K2 (µ, t) , (7.26)

where t∗ = t
(
σ
ξ

)1/a
. Using Lemma 2 in appendix C, the moment generating function

can be written as

M(t) = C etµ
∞∑
j=0

∞∑
i=0

(−1)j/a−it∗j

j!

(
j/a

i

)
γ (1− ξi, 1) . (7.27)

Using the relation between the moments and moment generating function, we can

calculate moments from the moment generating function.

7.3.6 Mean Deviations

The mean deviations about mean and median, denoted by δ1(x) and δ2(x), respec-

tively, are defined as

δ1(x) =

∫ ∞
−∞
|x− µ0|f(x) dx,

and

δ2(x) =

∫ ∞
−∞
|x−M |f(x) dx
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where µ0, M are the mean and median . These measures can be calculated by using

the following relations:

δ1(X) =

∫ ∞
µ

|x− µ0|f(x) dx,

=

∫ µ0

µ

(µ0 − x) f(x)dx+

∫ ∞
µ0

(x− µ0) f(x)dx

= µ0F (µ0)−
∫ µ0

µ

xf(x)dx− µ0 {1− F (µ0)}+

∫ ∞
µ0

xf(x)dx

= 2µ0F (µ0)− 2µ0 + 2

∫ ∞
µ0

xf(x)dx

and

δ2(X) =

∫ ∞
µ

|x−M |f(x) dx,

=

∫ M

µ

(M − x)f(x)dx+

∫ ∞
M

(x−M)f(x)dx

= 2

∫ ∞
M

xf(x)dx− µ0.

If u = {1 + ξ/σ(x− µ)α}−1/ξ and C = (1− e−1)−1 then∫ ∞
z

xf(x)dx = C
a (σ/ξ)1−1/a

σ

∫ ∞
z

x u1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx

= C
a (σ/ξ)1−1/a

σ
K3 (z) ,

where the final step follows by Lemma 3 in appendix C. Then we can write the mean

deviations about mean and median as

δ1(X) = 2µ0C
{
e−u0 − e−1

}
− 2µ0 + 2σ−1ab

∞∑
k=0

(
b− 1

k

)
(−1)kJ (µ0, (k + 1)a) ,

and

δ2(X) = 2σ−1ab
∞∑
k=0

(
b− 1

k

)
(−1)kJ (M, (k + 1)a)− µ0,

where µ0 is given by (7.22) and

M = µ+
σ

ξ

{[
−1

a
log
{

1− 2−1/b
}]−ξ

− 1

}
.
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7.4 Maximum Likelihood Estimation Method

Suppose that X1, X2, ..., Xn are a random sample from the NEV distribution and

assume that the vector θ is defined as θ = (a, σ, ξ). Note that the pdf of the new

distribution is:

f(x) = σ−1C a (x− t)a−1
[
1 +

ξ

σ
(x− t)a

]−1/ξ−1
exp

{
−
[
1 +

ξ

σ
(x− t)a

]−1/ξ}
(7.28)

Then the likelihood function of the parameters can be written as

n∏
i=1

f(x; θ) = σ−n(C a)n
n∏
i=1

(xi − t)a−1
n∏
i=1

[
1 +

ξ

σ
(xi − t)a

]−1/ξ−1
exp

{
−

n∑
i=1

[
1 +

ξ

σ
(xi − t)a

]−1/ξ}
(7.29)

The Log-Likelihood function takes the form

logL(x; θ) = −n log σ + n log(C a) +
n∑
i=1

log

[
1 +

ξ

σ
(xi − t)a

]−1/ξ−1
+

n∑
i=1

log (xi − t)a−1 −
n∑
i=1

[
1 +

ξ

σ
(xi − t)a

]−1/ξ
(7.30)

By differentiating Eq (7.30) with respect to a, σ, ξ and equating them to zero, we

obtain the maximum likelihood estimates (MLEs) θ̂ = (â, σ̂, ξ̂) for θ = (a, σ, ξ) as

the solutions of the following equations

∂ logL

∂a
=
n

a
+
n

a2
log(

σ

ξ
) +

1

a2

n∑
i=1

(
u−ξi − 1

)
+ (1− 1/a)

ξ

σ

n∑
i=1

(xi − t)

× log (xi − t)−
(1 + ξ)

σ

n∑
i=1

uξi (xi − t)a log (xi − t)

+
1

σ

n∑
i=1

uξ+1
i (xi − t)a log (xi − t) , (7.31)
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∂ logL

∂σ
=− n

a σ
− (1− 1/a)

ξ

σ2

n∑
i=1

(xi − t)a +
(1 + ξ)

σ2

n∑
i=1

uξi (xi − t)a

− 1

σ2

n∑
i=1

uξ+1
i (xi − t)a , (7.32)

and

∂ logL

∂ξ
=−n

ξ
(1− 1/a) + (1− 1/a)

n∑
i=1

(xi − t)a

σ2
+

n∑
i=1

log ui −
1 + ξ

ξ

×
n∑
i=1

(
log ui + uξi

(xi − t)a

σ

)
+

n∑
i=1

ui
ξ

(
log ui + uξi

(xi − t)a

σ

)
. (7.33)

For interval estimation and testing of hypothesis for the parameters θ = (a, σ, ξ),

the fisher information matrix is required. The observed information matrix is denoted

by −J , where J takes the following form

J =


∂2 logL

∂a2
∂2 logL
∂a∂σ

∂2 logL
∂a∂ξ

∂2 logL

∂σ∂a
∂2 logL
∂σ2

∂2 logL
∂σ∂ξ

∂2 logL

∂ξ∂a
∂2 logL
∂ξ∂σ

∂2 logL
∂ξ2

 .

The elements of this matrix are given in appendix D.

The asymptotic distribution of the vector
√

(n)
(

(̂θ)− θ
)

is multivariate normal

distribution with mean vector 0 and the variance-covariance matrix K(θ)−1, where

K(θ) is the expected information matrix written as

k(θ) =


ka,a(θ) ka,σ(θ) ka,ξ(θ)

kσ,σ(θ) kσ,ξ(θ)

kξ,ξ(θ)

 .
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7.5 Applications

To carry out the comparison between NEV distribution and other distributions, we

have to determine which statistical distributions can potentially be used to analyse

annual maximum rainfall data. As shown in chapter 1, there are several models

that can be considered as best models for rainfall events. The most popular model

for this kind of data is the GEV distribution which is the most widely used model

in univariate extreme value analysis. In this section we apply these two models to

maximum rainfall data in Uccle, Belgium.

7.5.1 Maximum Rainfall Data in Uccle, Belgium

To construct the best model for maximum rainfall data, we fitted GEV and NEV

distributions to the annual maximum rainfall data in Uccle presented in chapter 4.

Figure 7.3 shows the maximum rainfall data.
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Figure 7.3: Plot of the maximum rainfall data in Uccle.
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Empirical Mean Residual Life Plot:

To determine the threshold for the maximum rainfall data in Uccle, we plot a mean

residual life plot of the data. From Figure 7.4 we choose t = 15.9014mm. This

threshold shown in red line seems appropriate.
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Figure 7.4: Mean residual life plot for exceedances of the levels of maximum rainfall
in Uccle over the threshold 15.9014.

Estimates of the parameters:

The estimators for two models’ parameters are shown in the table below:

Since the models are not nested and cannot be compared by the -log-Likelihood,

we compute information criteria, which are presented in Table 7.2
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Model a µ σ ξ -Log-Lik

GEV 1 28.3824 9.0291 0.2316 136.9071

NEV 1.326973874 15.9014 46.065499897 0.006723105 136.0909

Table 7.1: MLEs of the model parameters and Log-Lik for Uccle maximum rainfall
data.

Model AIC BIC CAIC AICc

GEV 279.8142 284.4802 287.4802 280.8142

NEV 278.1818 282.8478 285.8478 279.1818

Table 7.2: Information criteria AIC, BIC, CAIC and AICc.

Graphs:

After estimating the parameters for both models, we can visualize them. In this ap-

plication, we employ probability-probability plots, quantile-quantile plots and density

plots to confirm results shown by information criteria (AIC, BIC, CAIC and AICc).

As shown in Tables 7.1-7.2 the negative log-likelihood values and the information

criteria values are smaller for the NEV distribution. Therefore, the NEV distribution

provides a better fit for annul maximum rainfall data. This result is proven by the

probability-probability plots, quantile-quantile plots and density plots shown in Fig-

ures 7.5- 7.7. The points in Figures 7.5 and 7.6 are closer to the diagonal lines for the

NEV distribution. The fitted probability density function for the NEV distribution

appears to better capture the upper tail of the histogram in Figure 7.7.
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Figure 7.5: Probability plots for the fits of the NEV and GEV distributions for annual
maximum rainfall from Uccle, Belgium.
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Figure 7.6: Quantile plots for the fits of the NEV and GEV distributions for annual
maximum rainfall from Uccle, Belgium.
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Annual Maximum Rainfall in Uccle
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Figure 7.7: Density plots for the fits of the NEV distribution and the GEV distribu-
tion for annual maximum rainfall from Uccle, Belgium.

To sum up, we see that all statistical measures based on Log-likelihood, AIC,

BIC, CAIC, AICc, P-P and Q-Q plots show that the new distribution of extreme

values is a better model than the GEV distribution for the annual maximum rainfall

data especially in the tails. This confirms our assumption that the shape parameter

a controls the tails and distribution modes as well. Also, the NEV distribution has

closed form for density, distribution and quantile functions.
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7.6 Summary

The work in this chapter can be summarised into the following main points:

• pdf of the NEV distribution is flexible. That means it can take a variety of

shapes: monotonically decreasing, monotonically increasing, unimodal; with

some almost-symmetric cases when ξ > 0, and bimodal, depending on the

shape parameters a, ξ.

• Bathtub shaped hazard rates are the most realistic ones in terms of practical

applications. The NEV distribution’s hrf has a variety of shapes: monotonically

decreasing, monotonically increasing, and unimodal.

• Based on the annual maximum rainfall data in Uccle, Belgium, the NEV distri-

bution and the GEV distribution are compared. The analysis shows that NEV

is better model than the GEV distribution for the annual maximum rainfall

data especially in the tails.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion of Thesis

This study has introduced four modifications for GEV and GP distributions.

In chapter 4, we studied some mathematical properties of a generalisation of the

GEV distribution; the so-called Kumaraswamy GEV (KumGEV) distribution, which

can be quite flexible in analyzing continuous data in some areas of engineering in-

cluding: flood frequency analysis, network engineering, nuclear engineering, offshore

engineering, risk-based engineering, space engineering, software reliability engineer-

ing, structural engineering and wind engineering. Its moments and characteristic

function are given. Explicit expressions are derived for the mean deviations and two

well known entropies, the Rényi and Shannon entropies. We examine moments of

order statistics and asymptotic distributions of extreme order statistics.

The proposed model has been applied to the annual maximum rainfall data in

Uccle, Belgium. Using the maximum likelihood estimation method to fit GEV and

KumGEV distributions, it seems that KumGEV distribution is more accurate than

GEV. These results are confirmed by P-P plots, Q-Q plots, and density plots, which

indicate that KumGEV distribution gives a better fit for the annual maximum rain-

fall data, especially in the upper tail. Finally, the bivariate KumGEV models are

presented.
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The generalised Pareto (GP) distribution is the most popular model for extreme val-

ues; especially for floods and value at risk analysis. Recently, Papastathopoulos and

Tawn have proposed some generalisations of the GP distribution for improved mod-

eling.

This study pointed that Papastathopoulos and Tawn’s generalizations are in fact

not new, and then we went on to propose a tractable generalisation of the GP dis-

tribution depending on the Kumaraswamy distribution, referred to as the KumGP

distribution. For the latter generalisation, we provide a comprehensive treatment of

mathematical properties and the flexibility of this model is shown. We suggest more

applications for the KumGP distribution for datasets that have increasing, decreas-

ing and unimodel shapes. In addition, we found that the hazard rate function of the

KumGP distribution can exhibit a bathtub shape that can not be reached by the

original distribution.

Dataset consisting 154 exceedances of the threshold level 65m3s−1 by the River Nidd

at Hunsingore Weir from 1934 to 1969 is tested to illustrate the flexibility and to show

its ability to fit that datasets. In this case, we compare the proposal model with GP,

EP1, EP2 and EP3. The three last models were introduced by Papastathopoulos

and Tawn (2012). These models were examined by the log-likelihood and informa-

tion criteria (AIC and AICc). They suggested that the KumGP distribution provides

a significant improvement over the others, even when we used other measures such

as Cramér-von Mises criterion and Anderson-Darling tests. It seemed to be that

the KumGP gives better results. Finally, P-P plots, Q-Q plots, and density plots

confirmed these results.

In chapter 6, we investigated the model introduced by Chen, Bunce and Jiang.

The formulas given for the distribution do not form a valid probability distribu-

tion. We corrected their formulas to form a valid probability distribution. For this

valid distribution, we provided a comprehensive treatment of mathematical proper-

ties, estimated parameters by the method of maximum likelihood, and provided the

observed information matrix. The flexibility of the distribution is illustrated using a

real dataset.



8.2 Discussion of Future Research 192

In chapter 7, we used the corrected formula for the Chen distribution and applied

it to the GEV distribution. The resulting model has a shape parameter a that controls

the thickness of the tail. Its statistical properties were discussed. Also, we found

that the NEV distribution is the exponential transformation of the GEV distribution

when µ = 0. The pdf of the NEV distribution can be monotonically decreasing,

bimodal, unimodel with some almost-symmetric cases when ξ > 0; while, the hazard

rate function can take monotonically decreasing, monotonically increasing, bathtub,

unimodel shapes. To illustrate the flexibility of this model over the GEV distribution,

we applied these two models to the maximum rainfall data in Uccle, Belgium. The

analysis showed that NEV is a better model than the GEV distribution for the annual

maximum rainfall data especially in the tails.

8.2 Discussion of Future Research

We now recommend some outlines for future work to extend these results. The future

recommendations are:

1. Many situations in structural engineering require consideration of the extremes

of more than one variable (eg floods, wind). So, it is not enough to study the

univariate extreme behaviour. We need to study the bivariate and multivariate

extreme value behaviours. The KumGEV, and the KumGP distributions can be

extended to the bivariate and multivariate cases.

2. In this study, we used the maximum likelihood estimation method to estimate

parameters for each model. For this method, the redundancy problem will appear,

especially for models with many parameters. For such situations, we suggest

using other methods to estimate the parameters, such as the probability weighted

moments (PWM) method, and minimum distance estimation (MDM) method.

3. In chapter 5, we mention that the results reported must be treated conservatively

because of the sample size. For n = 154, some of the biases and mean squared
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errors reported in Figures (5.6) and (5.7) appear large. Furthermore, asymptotic

normality does not appear to have been reached. Better estimation methods (for

example, bias-corrected estimation methods or bootstrapping based methods)

will be needed to draw more sensible results.

4. The Pareto distribution has been widely used in the insurance industry to model

payment data, due to the fact that the payment data is highly positively skewed.

Many researchers used the GP distribution, especially for data on large losses.

The main reason for using the Pareto distribution to model the larger losses data

is the shape of the Pareto distribution, having a long and thick upper tail. Despite

advantages of these distributions to model highly skewed data, they fail to cover

small losses. Because of the flexibility of the KumGP distribution, we suggest

applying this model to insurance claims with small losses.

5. The existing software for the GEV and GP distribution (say, to compute pdf,

cdf, quantile function, moments, MLEs, random numbers, etc) can be easily

adapted for the KumGEV and KumGP distributions. Clearly, the GEV and

GP distributions are special cases of the KumGEV and KumGP distributions,

respectively, for a = b = 1.
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M. Fréchet. Sur la loi de probabilité de lécart maximum. Ann. de la Soc. polonaise

de Math, 6:93–116, 1927.

W.E. Fuller. Flood flows. Transactions of the American Society of Civil Engineers,

77(1):564–617, 1914.

J. Galambos. The asymptotic theory of extreme order statistics. Krieger Pub Co,

1987.

A. Ganji, K. Ponnambalam, D. Khalili, and M. Karamouz. Grain yield reliability

analysis with crop water demand uncertainty. Stochastic Environmental Research

and Risk Assessment, 20(4):259–277, 2006.



BIBLIOGRAPHY 200

J.L. Gastwirth. A general definition of the lorenz curve. Econometrica: Journal of

the Econometric Society, pages 1037–1039, 1971.

B. Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire.

Annals of Mathematics, 44, 1943.

RC Goodknight and TL Russell. Investigation of the statistics of wave heights. ASCE

Journal of the Waterways and Harbors Division, 89:29–52, 1963.

I.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series and products. New York:

Academic Press,— c1994, 5th ed. completely reset, edited by Jeffrey, Alan, 1, 1994.

M. Grigoriu. Estimates of extreme winds from short records. Journal of Structural

Engineering, 110(7):1467–1484, 1984.

E.J. Gumbel and C.K. Mustafi. Some analytical properties of bivariate extremal

distributions. Journal of the American Statistical Association, 62(318):569–588,

1967.
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A. Rényi. On measures of entropy and information. In Fourth Berkeley Symposium

on Mathematical Statistics and Probability, pages 547–561, 1961.

S.I. Resnick. Extreme values, regular variation, and point processes. Springer, 2007.

M. Ribatet. Pot: Generalized pareto distribution and peaks over threshold. R package

verions, pages 1–1, 2009.
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Appendix A

Appendix to Chapter 4

The calculations in chapter 4 require the following lemmas.

Lemma 1 Let

I(n, α, β) =

∫ ∞
−∞

xnuα exp(−βu)dx,

where u = {1 + ξ(x− µ)/σ}−1/ξ. Then

I(n, α, β) = σ
n∑
k=0

(
n

k

)(
µ− σ

ξ

)n−k (
σ

ξ

)k
βξ+kξ−αΓ (α− ξ − kξ) ,

Proof: We can write

I(n, α, β) =

∫ ∞
−∞

xnuα exp(−βu)dx

= σ

∫ ∞
0

[
σ

ξ

(
u−ξ − 1

)
+ µ

]n
uα−ξ−1 exp(−βu)du

= σ

n∑
k=0

(
n

k

)(
µ− σ

ξ

)n−k (
σ

ξ

)k ∫ ∞
0

uα−ξ−1−kξ exp(−βu)du.

So, the result follows from the definition of gamma function. �

Lemma 2 Let

J(y, α) =

∫ ∞
y

xu1+ξ exp(−αu)dx,

where u = {1 + ξ(x− µ)/σ}−1/ξ. Then

J(y, α) =
σ2

ξ
(j + 1)ξ−1αξ−1γ (1− ξ, (j + 1)αz) + σ

(
µ− σ

ξ

)
1

(j + 1)α

{1− exp [−(j + 1)αz]} ,
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where z = {1 + ξ(y − µ)/σ}−1/ξ and γ(a, x) denotes the incomplete gamma function

defined by

γ(a, x) =

∫ x

0

ta−1 exp(−t)dt.

Proof: We can write

J(y, α) =

∫ ∞
y

xu1+ξ exp(−αu)dx

= σ

∫ z

0

[
σ

ξ

(
u−ξ − 1

)
+ µ

]
exp(−αu)du.

So, the result follows from the definition of incomplete gamma function. �

Lemma 3 We have∫ ∞
−∞

log u u1+ξ exp(−βu)dx = −σ
β

[log β + C] ,

where u = {1 + ξ(x− µ)/σ}−1/ξ and C is Euler’s constant.

Proof: We can write∫ ∞
−∞

log u u1+ξ exp(−βu)dx = σ

∫ ∞
0

log u exp(−βu)du.

The second integral can be calculated using equation (4.331.1) in Gradshteyn and

Ryzhik (2000) to yield the required result. �

Information Matrix

It is useful to have explicit expressions for the elements of J. These are now given:

J11 = − n
a2

+ (1− b)
n∑
i=1

u2i exp (aui)(
exp (aui)− 1

)2 ,
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J12 =
n∑
i=1

ui
exp (aui)− 1

,

J13 =− 1

σ

n∑
i=1

u1+ξi +
b− 1

σ

n∑
i=1

u1+ξi

(1− aui) exp (aui)− 1(
exp (aui)− 1

)2 ,

J14 =− 1

σ2

n∑
i=1

(xi − µ)u1+ξi +
b− 1

σ2

n∑
i=1

(xi − µ)u1+ξi

(1− aui) exp (aui)− 1(
exp (aui)− 1

)2 ,

J15 =
1

ξ

n∑
i=1

ui

(
log ui + uξi

xi − µ
σ

)
− b− 1

ξ

n∑
i=1

ui

(
log ui + uξi

xi − µ
σ

)
(1− aui) exp (aui)− 1(

exp (aui)− 1
)2 ,

J22 =− n
b2
,

J23 =
a

σ

n∑
i=1

u1+ξi

exp (aui)− 1
,

J24 =
a

σ2

n∑
i=1

(xi − µ)
u1+ξi

exp (aui)− 1
,

J25 =−a
ξ

n∑
i=1

(
log ui + uξi

xi − µ
σ

) ui
exp (aui)− 1

,

J33 =
a(b− 1)

σ2

n∑
i=1

u1+2ξ
i

exp (aui)
(

1 + ξ − aui
)
− (1 + ξ)(

exp (aui)− 1
)2

−a(1 + ξ)

σ2

n∑
i=1

u1+2ξ
i +

ξ(ξ + 1)

σ2

n∑
i=1

u2ξi

J34 =
a

σ2

n∑
i=1

u1+ξi − a(1 + ξ)

σ3

n∑
i=1

u2ξ+1
i (xi − µ)− 1 + ξ

σ2

n∑
i=1

uξi

+
ξ(1 + ξ)

σ2

n∑
i=1

(xi − µ)u2ξi −
a(b− 1)

σ2

n∑
i=1

u1+ξi

exp (aui)− 1

+
a(b− 1)

σ3

n∑
i=1

(xi − µ)u1+2ξ
i

exp (aui)
(

1 + ξ − aui
)
− (1 + ξ)(

exp (aui)− 1
)2

J35 =−a
σ

n∑
i=1

u1+ξi

{
log ui −

1 + ξ

ξ

(
log ui + uξi

xi − µ
σ

)}
+
a(b− 1)

σ

n∑
i=1

u1+ξi log ui
exp (aui)− 1

+
1

σ

n∑
i=1

uξi −
1 + ξ

σ2

n∑
i=1

(xi − µ)u2ξi
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+
a2(b− 1)

ξσ

n∑
i=1

u2+ξi(
exp (aui)− 1

)2( log ui + uξi
xi − µ
σ

)
exp (aui)

−(1 + ξ)a(b− 1)

ξσ

n∑
i=1

u1+ξi

exp (aui)− 1

(
log ui + uξi

xi − µ
σ

)
J44 =

n

σ2
− 2a(b− 1)

σ3

n∑
i=1

(xi − µ)
u1+ξi

exp (aui)− 1
− 2(1 + ξ)

σ3

n∑
i=1

(xi − µ)uξi

+
ξ(1 + ξ)

σ4

n∑
i=1

(xi − µ)2u2ξi +
2a

σ3

n∑
i=1

(xi − µ)u1+ξi − a(1 + ξ)

σ4

n∑
i=1

(xi − µ)2u1+2ξ
i

+
a(b− 1)

σ4

n∑
i=1

(xi − µ)2 u1+2ξ
i

(1 + ξ)
(

exp (aui)− 1
)
− aui exp (aui)(

exp (aui)− 1
)2 ,

J45 =
1

σ2

n∑
i=1

(xi − µ)uξi −
1 + ξ

σ3

n∑
i=1

(xi − µ)2u2ξi −
a

σ2

n∑
i=1

(xi − µ)u1+ξi log ui

+
a(1 + ξ)

ξσ2

n∑
i=1

(xi − µ)u1+ξi

(
log ui + uξi

xi − µ
σ

)
+
a(b− 1)

σ2

n∑
i=1

(xi − µ)

u1+ξi log ui
exp (aui)− 1

+
a2(b− 1)

ξσ2

n∑
i=1

(xi − µ)u2+ξi exp (aui)(
exp (aui)− 1

)2 (
log ui + uξi

xi − µ
σ

)

−(1 + ξ)a(b− 1)

ξσ2

n∑
i=1

(xi − µ)u1+ξi

exp (aui)− 1

(
log ui + uξi

xi − µ
σ

)
and

J55 =− 2

ξ2

n∑
i=1

(
log ui + uξi

xi − µ
σ

)
+

1 + ξ

ξσ2

n∑
i=1

(xi − µ)2u2ξi

− a

ξ2

n∑
i=1

ui

(
log ui + uξi

xi − µ
σ

)
− a

ξ2

n∑
i=1

ui

(
log ui + uξi

xi − µ
σ

)2
−a
ξ

n∑
i=1

ui

(
1

ξ
+ uξi

xi − µ
σ

)(
log ui + uξi

xi − µ
σ

)
+

a

ξσ

n∑
i=1

(xi − µ)u1+ξi log ui

+
a(b− 1)

ξ2

n∑
i=1

ui
exp (aui)− 1

(
log ui + uξi

xi − µ
σ

)

+
a(b− 1)

ξ2

n∑
i=1

ui

(
(1− aui) exp (aui)− 1

)
(

exp (aui)− 1
)2 (

log ui + uξi
xi − µ
σ

)2



213

+
a(b− 1)

ξ

n∑
i=1

ui
exp (aui)− 1

(
1

ξ
+ uξi

xi − µ
σ

)(
log ui + uξi

xi − µ
σ

)
−a(b− 1)

ξσ

n∑
i=1

(xi − µ)
u1+ξi log ui

exp (aui)− 1
.

Expected Information Matrix

As mentioned in chapter 4, the (5 ∗ 5) unit expected information matrix (ki,j =

−E[ ∂2

∂θi∂θj
ln f(xi, θ)]) can be written as:

k(θ) =



ka,a(θ) ka,b(θ) ka,µ(θ) ka,σ(θ) ka,ξ(θ)

kb,b(θ) kb,µ(θ) kb,σ(θ) kb,ξ(θ)

kµ,µ(θ) kµ,σ(θ) kµ,ξ(θ)

kσ,σ(θ) kσ,ξ(θ)

kξ,ξ(θ)


Elements of the expected information matrix can be defined as:

ka,a =− 1

a2
− (b− 1)

(
β0,1,1,0 − β0,0,2,0

)
, ka,b = β0,0,1,0,

ka,µ = − 1

σ2
β1,1,0,0 +

b− 1

σ

(
β1,0,1,0 + a(β1,1,1,0 − β1,0,2,0)

)
,

ka,σ = − 1

σ
β1,1,0,1 − (b− 1)

( a
σ2
β1,1,1,1 −

1

σ2
β1,0,1,1 + aβ1,0,2,1

)
,

ka,ξ = −γ0,1,0,1 − (b− 1)
(
a(γ0,1,1,1 + γ0,0,2,1)− γ0,0,1,1

)
,

kb,b =− 1

b2
, kb,µ =

a

σ
β1,0,1,0, kb,σ =

a

σ2
β1,1,1,1, kb,ξ = aγ0,0,1,1,

kµ,µ = −ξ(ξ + 1)

σ2
β2,0,0,0 −

a(1 + ξ)

σ2
β2,1,0,0 +

a(b− 1)

σ2

(
aβ2,1,1,0 + (1 + ξ)β2,0,1,0

−β2,0,2,0
)
,

kµ,σ =
(1 + ξ)

σ2

( ξ
σ
β2,0,0,1 − β1,0,0,0

)
− a

σ2

((ξ + 1)

σ
β2,1,0,1 − β1,1,0,0

)
+ a(b+ 1)((ξ + 1)

σ3
β2,0,1,1 +

a

σ3
β2,1,1,1 −

1

σ2
β1,0,1,0 − aβ2,0,2,1

)
,

kµ,ξ =
1

σ
δ0,1,0,1,0 −

(ξ + 1)

σ2
β0,2,0,1,0 −

a

σ

(
ρ1,1,0,0,1,0 + ρ2,1,0,0,1,0 −

1

σ
β1,2,0,1,0

)
−a(b− 1)

σ

(
(a− 1)ρ2,1,1,0,1,0 − ρ1,1,1,0,1,0 + aρ2,1,2,0,1,0 +

1

σ
β1,2,1,1,0

)
,
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kσ,σ =
1

σ2
− (ξ + 1)

σ3

(
2β0,1,0,1,0 −

ξ

σ
β0,2,0,2,0

)
− a

σ3

((ξ + 1)

σ
β1,2,0,2,0 − 2β1,1,0,1,0

+
1

σ
β2,2,0,1,0

)
− a(b− 1)

σ3

(a(a− 1)

σ
β2,2,1,2,0 −

a(ξ + 1)

σ
β1,2,1,2,0

+2β1,1,1,1,0 +
a2

σ
β2,2,2,2,0

)
,

kσ,ξ =
1

σ2
β1,0,0,1 −

(ξ + 1)

σ3
β2,0,0,2 −

a

σ3

(
δ1,1,0 −

1

σ
β2,1,0,2

)
−a(b− 1)

σ2

(
aδ1,1,1 − δ1,0,1 +

1

σ
β2,0,1,2 +

a

σ
δ1,0,2

)
,

and

kξ,ξ =−2

ξ
ρ+

2

ξ2
β1,0,0,1 +

1 + ξ

ξ
− a
(
γ0,1,0,2 −

2

ξ
γ0,1,0,1 +

1

ξσ2
β2,1,0,2

)
−a(b− 1)

(
aγ0,1,1,2 − γ0,0,1,2 +

2a

ξ
γ0,0,1,1 −

1

ξσ2
β2,0,2,2 + aγ0,0,2,2

)
.

where,

u = 1 +
(x− µ)

σ
, ρ = E(lnU)

βi,j,k,r = E

{
(x− µ)rU

k+j
ξ
−i exp(−akU−1/ξ)

(
1− exp(−aU−1/ξ)

)−k}
,

γi,j,k,r = E

{
U

k+j
ξ
−i exp(−akU−1/ξ)

(
1− exp(−aU−1/ξ)

)−k( lnU

ξ2
− (x− µ)

ξσU

)r}
,

and

δi,j,k = E

{
(x− µ)U

k+j
ξ
−i exp(−akU−1/ξ)

(
1− exp(−aU−1/ξ)

)−k( lnU

ξ2
− (x− µ)

ξσU

)}
.

Explicit expressions for the remaining elements of J follow by symmetry.

Two-Types of Kum-GEV Distribution

Here, we give explicit expressions for the partial derivatives needed in Section (4.15)

for the models given by (4.39) and (4.40). In the case of (4.39), they are

∂G (x, y)

∂θ
= −G(x, y)

[
1

logG1(x)
+

1

logG2(y)

]−1

,

∂2G (x, y)

∂θ2
= G(x, y)

[
1

logG1(x)
+

1

logG2(y)

]−2

,

∂G (x, y)

∂x
= g1(x)G2(y) exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

−θg1(x)G2(y)

(logG1(x))
2

[
1

logG1(x)
+

1

logG2(y)

]−2

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}
,
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∂2G (x, y)

∂x∂θ
= −g1(x)G2(y)

[
1

logG1(x)
+

1

logG2(y)

]−1

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

− g1(x)G2(y)

(logG1(x))
2

[
1

logG1(x)
+

1

logG2(y)

]−2

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}
,

+
θg1(x)G2(y)

(logG1(x))
2

[
1

logG1(x)
+

1

logG2(y)

]−3

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}
,

∂G (x, y)

∂y
= g2(y)G1(x) exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

−θg1(x)G2(y)

(logG2(y))
2

[
1

logG1(x)
+

1

logG2(y)

]−2

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}
,

∂2G (x, y)

∂y∂θ
= −g2(y)G1(x)

[
1

logG1(x)
+

1

logG2(y)

]−1

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

− g2(y)G1(x)

(logG2(y))
2

[
1

logG1(x)
+

1

logG2(y)

]−2

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}
,

+
θg2(y)G1(x)

(logG2(y))
2

[
1

logG1(x)
+

1

logG2(y)

]−3

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}
,

∂2G (x, y)

∂x∂y
= g1(x)g2(y) exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

− θg1(x)g2(y)
(logG2(y))

2

[
1

logG1(x)
+

1

logG2(y)

]−2

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

− θg1(x)

(logG1(x))
2

[
1

logG1(x)
+

1

logG2(y)

]−4

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

×

{
g2(y)

[
1

logG1(x)
+

1

logG2(y)

]2
+

g2(y)

(logG2(y))
2

[
2

logG1(x)
+

2

logG2(y)
− θ
]}

,
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and

∂3G (x, y)

∂x∂y∂θ
= −g1(x)g2(y)

[
1

logG1(x)
+

1

logG2(y)

]−1

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

− g1(x)g2(y)

(logG2(y))
2

[
1

logG1(x)
+

1

logG2(y)

]−2

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

+
θg1(x)g2(y)

(logG2(y))
2

[
1

logG1(x)
+

1

logG2(y)

]−3

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

− g1(x)

(logG1(x))
2

[
1

logG1(x)
+

1

logG2(y)

]−4

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

×

{
g2(y)

[
1

logG1(x)
+

1

logG2(y)

]2
+

g2(y)

(logG2(y))
2

[
2

logG1(x)
+

2

logG2(y)
− θ
]}

+
θg1(x)

(logG1(x))
2

[
1

logG1(x)
+

1

logG2(y)

]−5

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}

×

{
g2(y)

[
1

logG1(x)
+

1

logG2(y)

]2
+

g2(y)

(logG2(y))
2

[
2

logG1(x)
+

2

logG2(y)
− θ
]}

+
θg1(x)g2(y)

(logG1(x) logG2(y))
2

[
1

logG1(x)
+

1

logG2(y)

]−4

exp

{
−θ
[

1

logG1(x)
+

1

logG2(y)

]−1
}
.

In the case of (4.40), they are

∂G (x, y)

∂θ
= G(x, y)

{
θ−2 log

[
(logG1(x))

θ
+ (logG2(y))

θ
]
− θ−1

[
(logG1(x))

θ
+ (logG2(y))

θ
]−1

×
[
(logG1(x))

θ
log logG1(x) + (logG2(y))

θ
log logG2(y)

]}
,

∂G (x, y)

∂x
= − g1(x)

G1(x)
(logG1(x))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−1

G(x, y),

∂2G (x, y)

∂x∂θ
= − g1(x)

G1(x)
(logG1(x))

θ−1
log logG1(x)

[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−1

G(x, y)

+θ−2 g1(x)

G1(x)
(logG1(x))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−1

G(x, y)

× log
[
(logG1(x))

θ
+ (logG2(y))

θ
]
−
(
θ−1 − 1

) g1(x)
G1(x)

(logG1(x))
θ−1

G(x, y)

×
[
(logG1(x))

θ
log logG1(x) + (logG2(y))

θ
log logG2(y)

]
×
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−2

− g1(x)

G1(x)
(logG1(x))

θ−1

×
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−1 ∂G(x, y)

∂θ
,

∂G (x, y)

∂y
= − g2(y)

G2(y)
(logG2(y))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−1

G(x, y),
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∂2G (x, y)

∂y∂θ
= − g2(y)

G2(y)
(logG2(y))

θ−1
log logG2(y)

[
(logG2(y))

θ
+ (logG1(x))

θ
]1/θ−1

G(x, y)

+θ−2 g2(y)

G2(y)
(logG2(y))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−1

G(x, y)

× log
[
(logG1(x))

θ
+ (logG2(y))

θ
]
−
(
θ−1 − 1

) g2(y)
G2(y)

(logG2(y))
θ−1

G(x, y)

×
[
(logG1(x))

θ
log logG1(x) + (logG2(y))

θ
log logG2(y)

]
×
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−2

− g2(y)

G2(y)
(logG2(y))

θ−1

×
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−1 ∂G(x, y)

∂θ
,

∂2G (x, y)

∂x∂y
= − g1(x)g2(y)

G2(x)G2(y)
(logG1(x))

θ−1
(logG2(y))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−2

×G(x, y)
{
−
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ

+ (1− θ)
}
,
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and

∂3G (x, y)

∂x∂y∂θ
=

g1(x)g2(y)

G2(x)G2(y)
log logG1(x) (logG1(x))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]2/θ−2

G(x, y)

× (logG2(y))
θ−1 − (1− θ) g1(x)g2(y)

G2(x)G2(y)
log logG1(x) (logG1(x))

θ−1
(logG2(y))

θ−1

×
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−2

G(x, y) +
g1(x)g2(y)

G2(x)G2(y)
log logG2(y)

× (logG1(x))
θ−1

(logG2(y))
θ−1

[
(logG1(x))

θ
+ (logG2(y))

θ
]2/θ−2

G(x, y)

−(1− θ) g1(x)g2(y)
G2(x)G2(y)

log logG2(y) (logG1(x))
θ−1

(logG2(y))
θ−1

×
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−2

G(x, y)− θ−2 g1(x)g2(y)

G2(x)G2(y)
(logG1(x))

θ−1

× (logG2(y))
θ−1

[
(logG1(x))

θ
+ (logG2(y))

θ
]2/θ−2

G(x, y) log
[
(logG1(x))

θ

+(logG2(y))
θ
]
+ θ−2(1− θ) g1(x)g2(y)

G2(x)G2(y)
(logG1(x))

θ−1
(logG2(y))

θ−1

×
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−2

G(x, y) log
[
(logG1(x))

θ
+ (logG2(y))

θ
]

+
(
θ−1 − 2

) g1(x)g2(y)

G2(x)G2(y)
(logG1(x))

θ−1
(logG2(y))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]2/θ−3

×G(x, y)
[
(logG1(x))

θ
log logG1(x) + (logG2(y))

θ
log logG2(y)

]
−(1− θ)

(
θ−1 − 2

) g1(x)g2(y)

G2(x)G2(y)
(logG1(x))

θ−1
(logG2(y))

θ−1
[
(logG1(x))

θ

+(logG2(y))
θ
]1/θ−3

G(x, y)
[
(logG1(x))

θ
log logG1(x) + (logG2(y))

θ
log logG2(y)

]
+
g1(x)g2(y)

G2(x)G2(y)
(logG1(x))

θ−1
(logG2(y))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]2/θ−2

×∂G(x, y)
∂θ

− (1− θ) g1(x)g2(y)
G2(x)G2(y)

(logG1(x))
θ−1

(logG2(y))
θ−1

×
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−2 ∂G(x, y)

∂θ
− θ−2 g1(x)g2(y)

G2(x)G2(y)

× (logG1(x))
θ−1

(logG2(y))
θ−1

[
(logG1(x))

θ
+ (logG2(y))

θ
]2/θ−2

×G(x, y) log
[
(logG1(x))

θ
+ (logG2(y))

θ
]

+θ−1 g1(x)g2(y)

G2(x)G2(y)
(logG1(x))

θ−1
(logG2(y))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]2/θ−3

×G(x, y)
[
(logG1(x))

θ
log logG1(x) + (logG2(y))

θ
log logG2(y)

]
+
g1(x)g2(y)

G2(x)G2(y)
(logG1(x))

θ−1
(logG2(y))

θ−1
[
(logG1(x))

θ
+ (logG2(y))

θ
]1/θ−2

G(x, y).



Appendix B

Appendix to Chapter 5

In this section we present main Lemmas that are repeatedly used in chapter 5.

Lemma 1 Let

J3(t, β) =

∫ ∞
−∞

etxuξ+1(1− u)β−1dx,

where u = {1 + ξ(x− µ)/σ}−1/ξ. Then

J3(t, β) = σet
∗
1

∞∑
i=0

(t∗2)
i

i!
B(1− iξ, β).

Where t∗1 = t(µ− σ
ξ
) and t∗2 = tσ

ξ
.

Proof: We can write

J3(t, β) =

∫ ∞
−∞

etxuξ+1(1− u)β−1dx,

= σ

∫ 1

0

et
(
(σ/ξ)u−ξ+(µ−σ/ξ)

)
(1− u)β−1du,

= σet
∗
1

∫ 1

0

et
∗
2u
−ξ

(1− u)β−1du,

= σet
∗
1

∞∑
i=0

(t∗2)
i

i!

∫ 1

0

u−iξ(1− u)β−1du,

∴ J3(t, β) = σet
∗
1

∞∑
i=0

(t∗2)
i

i!
B(1− iξ, β).

�

Lemma 2 Let

J4(y, β) =

∫ ∞
y

xuξ+1(1− u)a(k+1)dx,
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where u = {1 + ξ(x− t)/σ}−1/ξ. Then

J4(y, β) =
σ2

ξ
B(y∗; 1− ξ, β) + σ(t− σ/ξ)

[
1− (1− y∗)β

]
.

Proof: We can write

J4(y, β) =

∫ ∞
y

xuξ+1(1− u)βdx,

= σ

∫ y∗

0

[σ
ξ
u−ξ + (t− σ

ξ
)
]
(1− u)β−1du,

=
σ2

ξ

∫ y∗

0

u−ξ(1− u)β−1du+ σ(t− σ

ξ
)

×
∫ y∗

0

(1− u)β−1du,

∴ J4(y, β) =
σ2

ξ
B(y∗; 1− ξ, β) + σ(t− σ/ξ)

[
1− (1− y∗)β

]
.

where y∗ = {1 + ξ(y − t)/σ}−1/ξ. and B(x; a, b) denotes the incomplete beta function

defined by

B(x, a, b) =

∫ x

0

za−1(1− z)b−1dz.

�

Information Matrix

As shown in the chapter 5, the information matrix J can be written as:

J =



∂2 logL

∂a2
∂2 logL
∂a∂b

∂2 logL
∂a∂σ

∂2 logL
∂a∂ξ

∂2 logL

∂b∂a
∂2 logL
∂b2

∂2 logL
∂b∂σ

∂2 logL
∂b∂ξ

∂2 logL

∂σ∂a
∂2 logL
∂σ∂b

∂2 logL
∂σ2

∂2 logL
∂σ∂ξ

∂2 logL

∂ξ∂a
∂2 logL
∂ξ∂b

∂2 logL
∂ξ∂σ

∂2 logL
∂ξ2


.
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The explicit expressions for the elements of J are given as

J11 =− n
a2

+ (1− b)
n∑
i=1

(1− ui)a log2 (1− ui)
1− (1− ui)a

+ (1− b)
n∑
i=1

(1− ui)2a log2 (1− ui)
[1− (1− ui)a]2

,

J12 =−
n∑
i=1

(1− ui)a log (1− ui)
1− (1− ui)a

,

J13 =− 1

σ2

n∑
i=1

u1+ξi (xi − t)
1− ui

+
b− 1

σ2

n∑
i=1

u1+ξi (xi − t) (1− ui)a−1 [1− (1− ui)a]

× [a log (1− ui) + 1] +
a(b− 1)

σ2

n∑
i=1

u1+ξi (xi − t) (1− ui)2a−1 log (1− ui) ,

J14 =− 1

σ2

n∑
i=1

ui
1− ui

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}
+
b− 1

σ2

n∑
i=1

ui

× (1− ui)a−1 [a log (1− ui) + 1]

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}

−b− 1

σ2

n∑
i=1

ui [a log (1− ui) + 1]

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}

× (1− ui)2a−1 +
a(b− 1)

σ2

n∑
i=1

ui (1− ui)2a−1 log (1− ui)
{

log

[
1 + ξ

xi − t
σ

]

−xiξ
σ

[
1 + ξ

xi − t
σ

]−1}
,

J22 =− n
b2
,

J23 =
a

σ2

n∑
i=1

u1+ξi (1− ui)a−1 (xi − t)
1− (1− ui)a

,

J24 =
a

ξ2

n∑
i=1

ui (1− ui)a−1

1− (1− ui)a

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}
,

J33 =
n

σ2
− 2(1 + ξ)

σ3

n∑
i=1

uξi (xi − t) +
ξ(1 + ξ)

σ4

n∑
i=1

u2ξi (xi − t)2 −
a− 1

σ4

×
n∑
i=1

u2ξ+2
i (xi − t)2

(1− ui)2
− (a− 1)(1 + ξ)

σ4

n∑
i=1

u2ξ+1
i (xi − t)2

1− ui
+

2(a− 1)

σ3
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×
n∑
i=1

uξ+1
i (xi − t)

1− ui
− a(a− 1)(b− 1)

σ4

n∑
i=1

u2ξ+2
i (1− ui)a−2 (xi − t)2

1− (1− ui)a

−a
2(b− 1)

σ4

n∑
i=1

u2ξ+2
i (1− ui)2a−2 (xi − t)2

[1− (1− ui)a]2
+
a(b− 1)(1 + ξ)

σ2

×
n∑
i=1

u2ξ+1
i (1− ui)a−1 (xi − t)

1− (1− ui)a
− 2a(b− 1)

σ3

n∑
i=1

uξ+1
i (1− ui)a−1 (xi − t)

1− (1− ui)a
,

J34 =
1

σ2

n∑
i=1

uξi (xi − t) +
1 + ξ

ξ2σ2

n∑
i=1

u2+ξi log ui (xi − t)
{

log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

×
[
1 + ξ

xi − t
σ

]−1}
− a− 1

ξ2σ2

n∑
i=1

u2+ξi (xi − t)
(1− ui)2

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

×
[
1 + ξ

xi − t
σ

]−1}
− (a− 1)(1 + ξ)

ξ2σ2

n∑
i=1

u1+ξi (xi − t)
1− ui

{
log

[
1 + ξ

xi − t
σ

]

−xiξ
σ

[
1 + ξ

xi − t
σ

]−1}
− a(a− 1)(b− 1)

ξ2σ2

n∑
i=1

u2+ξi (1− ui)a−2 (xi − t)
1− (1− ui)a

×

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}
− a2(b− 1)

ξ2σ2

n∑
i=1

(xi − t)

×u
2+ξ
i (1− ui)2a−2

[1− (1− ui)a]2

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}

+
a(b− 1)(1 + ξ)

ξ2σ2

n∑
i=1

u1+ξi (1− ui)a−1 (xi − t)
1− (1− ui)a

{
log

[
1 + ξ

xi − t
σ

]

−xiξ
σ

[
1 + ξ

xi − t
σ

]−1}
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and

J44 =
1

ξ

n∑
i=1

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}

−2 + ξ

ξ3

n∑
i=1

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}

+
1 + ξ

σ2ξ2

n∑
i=1

{
−tσ

[
1 + ξ

xi − t
σ

]−1
+ ξxi (xi − t)

[
1 + ξ

xi − t
σ

]−2}

+
2(a− 1)

ξ3

n∑
i=1

ui
1− ui

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}

−a− 1

ξ4

n∑
i=1

ui

(1− ui)2

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}2

−a− 1

aξ2

n∑
i=1

ui
1− ui

[
1 + ξ

xi − t
σ

]−1{
−t+

xiξ

σ
(xi − t)

[
1 + ξ

xi − t
σ

]−1}

−2a(b− 1)

ξ3

n∑
i=1

ui (1− ui)a−1

1− (1− ui)a

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}

+
a(b− 1)

ξ2

n∑
i=1

(1− ui)a−2 (1− aui)
1− (1− ui)a

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}2

−a
2(b− 1)

ξ2

n∑
i=1

ui (1− ui)2a−2

[1− (1− ui)a]2

{
log

[
1 + ξ

xi − t
σ

]
− xiξ

σ

[
1 + ξ

xi − t
σ

]−1}2

+
a(b− 1)

σξ2

n∑
i=1

ui (1− ui)a−1

1− (1− ui)a
[
1 + ξ

xi − t
σ

]−1{
−t+

xiξ

σ
(xi − t)

[
1 + ξ

xi − t
σ

]−1}
.

Explicit expressions for the remaining elements of J follow by symmetry.
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Appendix to Chapter 6

Here, we give explicit expressions for the elements of the information matrix J defined

in section (6.7):

J11 = − n

α2 −
1

δ

n∑
i=1

(xi − µ)α ln2 (xi − µ) +
1

δ

(
1

β
+ 1

) n∑
i=1

(xi − µ)α ln2 (xi − µ)

1 + exp

[
1

δ
(xi − µ)α

]
− 1

δ2

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α ln2 (xi − µ){
1 + exp

[
1

δ
(xi − µ)α

]}2 ,

J12 = − 1

δβ2

n∑
i=1

(xi − µ)α ln (xi − µ)

1 + exp

[
1

δ
(xi − µ)α

] ,
J13 =

1

δ2

n∑
i=1

(xi − µ)α ln (xi − µ)− 1

δ2

(
1

β
+ 1

) n∑
i=1

(xi − µ)α ln (xi − µ)

1 + exp

[
1

δ
(xi − µ)α

]

+
1

δ3

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α ln (xi − µ) exp

[
1

δ
(xi − µ)α

]
{

1 + exp

[
1

δ
(xi − µ)α

]}2 ,

J14 =
α

δ

n∑
i=1

(xi − µ)α−1 ln (xi − µ) +
1

δ

n∑
i=1

(xi − µ)α−1 −
n∑
i=1

(xi − µ)−1

−α + 1

δ

(
1

β
+ 1

) n∑
i=1

(xi − µ)α−1

1 + exp

[
1

δ
(xi − µ)α

]
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+
α

δ2

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α−1 ln (xi − µ) exp

[
1

δ
(xi − µ)α

]
{

1 + exp

[
1

δ
(xi − µ)α

]}2 ,

J22 =
n

β2 −
2 ln 2n

β2 (21/β − 1)
+

2(ln 2)2n

β4 (21/β − 1)
2 −

2

β3

n∑
i=1

ln

{
1 + exp

[
1

δ
(xi − µ)α

]}
,

J23 =
α

β2δ

n∑
i=1

(xi − µ)α−1

1 + exp

[
1

δ
(xi − µ)α

] ,
J24 =

n

δ2
− 2

δ3

n∑
i=1

(xi − µ)α +
2

δ3

(
1

β
+ 1

) n∑
i=1

(xi − µ)α

1 + exp

[
1

δ
(xi − µ)α

]

− 1

δ4

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α exp

[
1

δ
(xi − µ)α

]
{

1 + exp

[
1

δ
(xi − µ)α

]}2 ,

J34 =− α
δ2

n∑
i=1

(xi − µ)α−1 +
α

δ2

(
1

β
+ 1

) n∑
i=1

(xi − µ)α−1

1 + exp

[
1

δ
(xi − µ)α

]
− α
δ3

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α−1{
1 + exp

[
1

δ
(xi − µ)α

]}2

and

J44 =−α(α− 1)

δ

n∑
i=1

(xi − µ)α−2 + (α− 1)
n∑
i=1

(xi − µ)−2

+
α(α− 1)

δ

(
1

β
+ 1

) n∑
i=1

(xi − µ)α−2

1 + exp

[
1

δ
(xi − µ)α

]
−α

2

δ2

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α−2{
1 + exp

[
1

δ
(xi − µ)α

]}2 .

Explicit expressions for the remaining elements of J follow by symmetry.

Rainfall data from Maple Ridge in British Columbia, Canada

fifty-two ordered annual maximum antecedent rainfall measurements in mm from

Maple Ridge in British Columbia, Canada: “264.9, 314.1, 364.6, 379.8, 419.3, 457.4,

459.4, 460.0, 490.3, 490.6, 502.2, 525.2, 526.8, 528.6, 528.6, 537.7, 539.6, 540.8,

551.0, 573.5, 579.2, 588.2, 588.7, 589.7, 592.1, 592.8, 600.8, 604.4, 608.4, 609.8,
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619.2, 626.4, 629.4, 636.4, 645.2, 657.6, 663.5, 664.9, 671.7, 673.0, 682.6, 689.8,

698.0, 698.6, 698.8, 703.2, 755.9, 786.0, 787.2, 798.6, 850.4, 895.1”.
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Appendix to Chapter 7

The calculations in chapter 7 require the following lemmas.

Lemma 1 Let

K1(µ, n) =

∫ ∞
µ

xnu1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx,

where u = {1 + ξ/σ(x− µ)a}−1/ξ. Then

K1(µ, n) =
ξ

a

n∑
k=0

k/a∑
j=0

(−1)k/a−j
(
n

k

)(
k/a

j

)(
σ

ξ

)(k+1)/a

µn−kγ (1− ξj, 1) ,

Proof: We can write

K1(µ, n) =

∫ ∞
µ

xnu1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx,

=
ξ

a

(
σ

ξ

)1/a ∫ 1

0

[
σ

ξ

(
u−ξ − 1

)1/a
+ µ

]n
exp(−u)du

=
ξ

a

n∑
k=0

k/a∑
j=0

(−1)k/a−j
(
n

k

)(
k/a

j

)(
σ

ξ

)(k+1)/a

µn−k
∫ 1

0

u−ξj exp(−u)du.

Using the binomial expansion so, the result follows from the definition of incomplete

gamma function. �

Lemma 2 Let

K2(µ, t) =

∫ ∞
µ

etxu1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx,
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where u = {1 + ξ/σ(x− µ)a}−1/ξ. Then

K2(µ, t) =
ξ

a
etµ
(
σ

ξ

)1/a ∞∑
j=0

∞∑
i=0

(−1)j/a−it∗j

j!

(
j/a

i

)
γ (1− ξi, 1) .

Proof: We can write

K2(µ, t) =

∫ ∞
µ

etxu1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx,

=
ξ

a
etµ
(
σ

ξ

)1/a ∫ 1

0

exp{t∗
(
u−ξ − 1

)1/a − u}du,
The exponential part in this integral can be represent by the power series

ex =
∑∞

i=0
xi

i!

K2(µ, t) =
ξ

a
etµ
(
σ

ξ

)1/a ∞∑
j=0

t∗j

j!

∫ 1

0

(
u−ξ − 1

)j/a
exp(−u)du.

Using the result from Lemma 1 in appendix D, then

K2(µ, t) =
ξ

a
etµ
(
σ

ξ

)1/a ∞∑
j=0

∞∑
i=0

(−1)j/a−it∗j

j!

(
j/a

i

)
γ (1− ξi, 1) .

So, the result follows from the definition of incomplete gamma function. �

Lemma 3 Let

K3(z) =

∫ ∞
z

x u1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx,

where u = {1 + ξ/σ(x− µ)a}−1/ξ. Then

K3(z) =
ξ

a

(
σ

ξ

)1/a


1/a∑
j=0

(−1)1/a−j
(

1/a

j

)(
σ

ξ

)1/a

γ (1− ξi, z∗) +
(
1− e−z∗

)
where z∗ = {1 + ξ(z − µ)/σ}−1/ξ.

Proof: We can write

K3(z) =

∫ ∞
z

x u1+ξ
(
u−ξ − 1

)1−1/a
exp(−u)dx,

=
ξ

a

(
σ

ξ

)1/a ∫ z∗

0

[
σ

ξ

(
u−ξ − 1

)1/a
+ µ

]n
exp(−u)du,

∴ K3(z) =
ξ

a

(
σ

ξ

)1/a


1/a∑
j=0

(−1)1/a−j
(

1/a

j

)(
σ

ξ

)1/a

γ (1− ξi, z∗) +
(
1− e−z∗

) .

So, the result follows from the definition of incomplete gamma function. �
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Information Matrix

The information matrix for NEV distribution can be written as:

J =


∂2 logL

∂a2
∂2 logL
∂a∂σ

∂2 logL
∂a∂ξ

∂2 logL

∂σ∂a
∂2 logL
∂σ2

∂2 logL
∂σ∂ξ

∂2 logL

∂ξ∂a
∂2 logL
∂ξ∂σ

∂2 logL
∂ξ2

 .

Then the 4× 4 elements of information matrix are given by

J11 =− n
a2
− 2n

a3
log(

σ

ξ
)− 2

a3

n∑
i=1

(
u−ξi − 1

)
+

2ξ

a2σ

n∑
i=1

(xi − µ)a log (xi − µ)

−(1− 1

a
)
ξ

σ

n∑
i=1

(xi − µ)a log2 (xi − µ)− (1 + ξ) ξ

σ2

n∑
i=1

u2ξi (xi − µ)2a

× log2 (xi − µ) +
(1 + ξ)

σ

n∑
i=1

uξi (xi − µ)a log2 (xi − µ)− (1 + ξ)

σ2

n∑
i=1

u2ξ+1
i

× (xi − µ)2a log2 (xi − µ) +
1

σ

n∑
i=1

uξ+1
i (xi − µ)a log2 (xi − µ) ,

J12 =− ξ

a σ

n∑
i=1

(xi − µ)a − (1− 1

a
)
ξ

σ

n∑
i=1

(xi − µ)a−1
(
a log(xi − µ) + 1

)
−(1 + ξ)

σ

n∑
i=1

[
a ξ

σ
u2ξi (xi − µ)2a−1 log (xi − µ)− a uξi (xi − µ)a−1

× log (xi − µ)− uξi (xi − µ)a−1
]

+
1

σ

n∑
i=1

[
a(ξ + 1)

σ
u2ξ+1
i (xi − µ)2a−1

× log (xi − µ)− a uξ+1
i (xi − µ)a−1 log (xi − µ)− uξ+1

i (xi − µ)a−1
]
,
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J13 = − n

a2σ
− ξ

a2 σ2

n∑
i=1

(xi − µ)a − (1− 1

a
)
ξ

σ2

n∑
i=1

(xi − µ)a log(xi − µ)

+
(1 + ξ)

σ2

n∑
i=1

uξi (xi − µ)a log(xi − µ)− (1 + ξ)ξ

σ3

n∑
i=1

u2ξi (xi − µ)2a

× log(xi − µ)− 1

σ2

n∑
i=1

uξ+1
i (xi − µ)a log(xi − µ) +

(1 + ξ)

σ3

n∑
i=1

u2ξ+1
i

× (xi − µ)2a log(xi − µ),

J14 = − n

a2ξ
+

1

a2 σ

n∑
i=1

(xi − µ)a + (1− 1

a
)
1

σ

n∑
i=1

(xi − µ)a log(xi − µ)

− 1

σ

n∑
i=1

uξi (xi − µ)a log(xi − µ)− (1 + ξ)

σ2

n∑
i=1

u2ξi (xi − µ)2a log(xi − µ)

− 1

σξ

n∑
i=1

uξ+1
i (xi − µ)a log(xi − µ)

(
log ui + (1 + ξ)uξi

(xi − µ)a

σ

)
,

J22 =
ξ (a− 1)2

σ

n∑
i=1

(xi − µ)a−2 − a(1 + ξ)

σ

n∑
i=1

uξi (xi − µ)a−2
[
(a− 1)− a ξ

σ
uξi

× (xi − µ)a] +
a

σ

n∑
i=1

uξ+1
i (xi − µ)a−2

[
(a− 1)− a (ξ + 1)

σ
uξi (xi − µ)a

]
,

J23 =
ξ (a− 1)

σ2

n∑
i=1

(xi − µ)a−1 − a(1 + ξ)

σ2

n∑
i=1

uξi (xi − µ)a−1 +
a(1 + ξ)ξ

σ3

n∑
i=1

u2ξi

× (xi − µ)2a−1 +
a

σ2

n∑
i=1

uξ+1
i (xi − µ)a−1 − a(1 + ξ)

σ3

n∑
i=1

u2ξ+1
i (xi − µ)2a−1 ,

J24 = −(a− 1)

σ

n∑
i=1

(xi − µ)a−1 +
a

σ

n∑
i=1

uξi (xi − µ)a−1 − a(1 + ξ)

σ2

n∑
i=1

u2ξi

× (xi − µ)2a−1 +
a

σξ

n∑
i=1

uξ+1
i (xi − µ)a−1

(
log ui + (1 + ξ)uξi (xi − µ)a

)
,

J33 =
n

aσ2
− (1− 1

a
)
2ξ

σ3

n∑
i=1

(xi − µ)a − 2(1 + ξ)

σ3

n∑
i=1

uξi (xi − µ)a +
(1 + ξ)ξ

σ4

n∑
i=1

u2ξi

× (xi − µ)2a +
2

σ2

n∑
i=1

uξ+1
i (xi − µ)a − (1 + ξ)

σ4

n∑
i=1

u2ξ+1
i (xi − µ)2a ,

J34 =

(
1− 1

a

)
1

σ2

n∑
i=1

(xi − µ)a +
1

σ2

n∑
i=1

uξi (xi − µ)a − (1 + ξ)

σ3

n∑
i=1

u2ξi

× (xi − µ)2a +
1

σ2ξ

n∑
i=1

uξ+1
i (xi − µ)a

(
log ui + (1 + ξ)uξi (xi − µ)a

)
,
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And

J44 =− n
ξ2

(1− 1/a) +
2

ξ2

n∑
i=1

(
log ui + uξi

(xi − µ)a

σ

)
− 1

σ2ξ

n∑
i=1

u2ξ+1
i (xi − µ)2a

− 2

ξ2

n∑
i=1

ui

(
log ui + uξi

(xi − µ)a

σ

)
+

(1 + ξ)

σ2ξ

n∑
i=1

(xi − µ)2a u2ξi −
1

ξ2

n∑
i=1

ui

×
(

log ui + uξi
(xi − µ)a

σ

)2
.

Where u = [1 + ξ
σ
(x− µ)a]−1/ξ.


